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Abstract 

Power system state estimation and security assessment have recently become two 

major issues in the operation of power systems due to the increasing stress on power 

system networks. 

Utility operators must be properly informed of the operating condition or state 

of the power system in order to achieve a more secure and economical operation 

of today's complicated power systems. The state of a power system is described 

by a collection of voltage vectors for a given network topology and parameters. In 

this work, we applied Artificial Neural Networks (ANN) to estimate the state of a 

power system. State filtering and forecasting techniques were used to build Time 

Delay Neural Network (TDNN) and Functional Link Network (FLN) to capture the 

dynamic of a power system. 

Security assessment is the evaluation of a power system's ability to withstand 

disturbances while maintaining the quality of service. Many different techniques have 

been proposed for stability analysis in power systems. We focused on using neural 

networks as a fast and accurate alternative to security assessment. We developed an 

ANN-based tool to identify stable and unstable conditions of a power system after 

fault clearing. The hybrid method employing neural networks was used to successfully 

evaluate the Transient Energy Function (TEF) as a security index. 
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Chapter 1 

Introduction 

1.1 State Estimation 

State Estimation is becoming increasingly important in modern energy management 

of power systems. Especially, with world-wide deregulation of the power industry, 

power system state estimation has gained an even greater importance as a real-time 

monitoring tool. In regard to new possibilities associated with open access and the 

operation of transmission networks, the patterns of power flow in a deregulated power 

system have become less predictable compared to the integrated systems of the past. 

In order to achieve a more secure and economic operation of such a complicated sys- 

tem, it is vital for utility operators to be properly informed of the operating condition 

or state of the power system. 

The state of the power system is described by a collection of voltage vectors for a 

given network topology and parameters. The set of measurements used for state esti- 

mation are collected through the Supervisory Control And Data Acquisition (SCADA) 

system. To gain more time and accurate information in making control decisions such 
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as economic dispatch, stability assessment, and other related functions [22], the sys- 

tem operator inputs the previous estimate of the system state and measurements 

transmitted through SCADA into the power system state estimator. 

This estimation process can be carried out through two functions that include state 

forecasting and state filtering. State forecasting uses the past information while state 

filtering determines the optimal estimate by considering all available measurements 

and predicted states. Several algorithms have been proposed to achieve this estimation 

function. The most commonly used method for state estimation in power systems has 

been the Extended Kalman Filter (EKF) [30, 4, 7, 51. In this method, when the 

system is operating normally, the EKF scheme provides an optimal state estimate. 

Most of the Extended Kalman Filter equations seen in the literature are divided 

into forecasting and filtering steps, formulated as follows : 

The State Forecasting consists of a dynamic model using a state transition 

equation of the form [8] 

where X(k)  is the state vector, F(k)  is the dynamic model parameter matrix, 

G(k) is the control vector of the system, and w(k) is white noise with normal 

probability distribution and covariance matrix, Q. 

The State Filtering consists of the measurement model of the form 

where Z(k) is the measurement vector, h(.) is the nonlinear measurement func- 

tion and v(k) is the measurement noise vector with normal probability distribu- 

tion and covariance matrix, R. With x being the estimate of state vector and 
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~ ( k )  being the predicted value, Extended Kalman Filter (EKF) provides the 

minimum variance estimate of the state at  time sample k as 

With the predicted state vector obtained from Equation 1.1 

where 

K ( k )  = 

M ( k )  = 

R(lc) = 

Po(k+l)  = 

P+(k> = 

Note that P+is the covariance matrix of error, e+ = X-x and H is the Jacobian 

matrix of h (H = g). 

All the approaches based on the above method have a common difficulty which is using 

the diagonal transition matrix, F. Using diagonal transition is physically unacceptable 

because the time evolution of the voltages of topologically close nodes is strongly 

related and dependent upon nodal power injections [33]. 

Two other major problems specific to the EKF method are that EKF is compu- 

tationally very demanding specially combined with the multidimensional aspects of 

real-world power systems 1241 and that once the system encounters large load changes, 

the performance is significantly affected due to linearization of nonlinear equations. 

To overcome the dimensionality problem, the hierarchical state estimation method 

was proposed. "In the hierarchical model, the overall physical system is decomposed 
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into subsystems. "Dynamic Hierarchical State Estimation" is used for each subsystem 

independently and then the various estimations are coordinated on a higher level" 

PI - 

To address the problem of sudden load changes, the nonlinearities of measurement 

functions were taken into account, but the computational burden became significant 

[25]. Because of their fast response and efficient learning, neural networks have become 

a suitable candidate in the study of state estimation. Neural networks can achieve high 

computational speed by employing a massive number of simple processing elements 

arranged in parallel with a high degree of connectivity between elements. 

This thesis project applies a dynamic neural network model to solve the state 

estimation problem using the two estimation steps explained above. 

Most real-world problems of power systems are time-varying in nature. Hence, 

dynamic neural networks should be used for such time varying systems rather than 

static neural networks. To capture the dynamics of the power system states, a nonlin- 

ear temporal dynamic model of Artificial Neural Network (ANN) is required for the 

st ate forecasting. 

There are two ways of incorporating time information into ANNs [21]. "The first 

technique is to use a spatial representation of time, such as in Time Delay Neural 

Networks (TDNNs). In these ANNs, time information is represented spatially across 

the network input, and the ANNs compute a static mapping from the input to output. 

In the second technique, time is represented implicitly by using a recurrent ANN 

architecture, that is, the effect of temporal evolution are captured in the state of the 

network. In this research, TDNN has been used for the forecasting step because the 

structure is straightforward with a satisfactory speed and precision" [17]. 
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To solve the state filtering problem, four different ANN models based on multi- 

layer perceptron, Functional Link Network (FLN), counter propagation network 

(CPN), and Hopfield network were developed [18]. Out of these four models, FLN 

was found to be most suitable for state estimation. Moreover, [18] established that 

compared with other neural network models, the FLN model has superior inherent 

filtering capability for bad data in the measurement set. Also, the FLN-based static 

state estimator provides system states in one forward pass and does not involve any 

iterative process. Hence, the FLN has been used in the present work for the state 

filtering step. 

1.2 Transient Stability 

Another important problem in power systems is stability. Many major recent black- 

outs, caused by power system instability, show the importance of this phenomenon 

[38]. Transient stability has been the dominant stability problem on most systems, 

and has been the focus of much of the industry's attention concerning system stabil- 

ity assessment. Transient stability assessment is concerned with the behavior of the 

synchronous machines after they have been perturbed following a large disturbance 

in a system. 

Power system stability is defined as "The ability of an electric power system, for 

a given initial operating condition, to regain a state of operating equilibrium after 

being subjected to  a physical disturbance, with most system variables bounded so 

that practically the entire system remains intact" [20]. 

A variety of transient stability assessment methods have been reported in the 

literature [27]. These methods include time domain solutions [31, 371, extended equal 

area criteria [40], and direct stability methods such as transient energy function [13, 21, 
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pattern recognition and expert systems/neural networks [9, 31, 161. 

In the time domain simulation method, the initial system state is obtained from 

the pre-fault system. This is the starting point used for the integration of the fault-on 

dynamic equations. After the fault is cleared, the post-fault dynamic equations are 

numerically integrated. The machine angles may be plotted versus time and analyzed. 

If these angles are bounded, the system is stable, otherwise it is unstable. 

On the one hand, time domain simulation provides the most accurate approach 

for determining the transient stability of the system. This method allows flexible 

modeling of components. However, it is computationally intensive and not suitable 

for on-line application. On the other hand, a direct method in transient stability 

analysis offers the opportunity of assessing the transient stability of power systems 

without explicitly solving differential equations. Therefore, they are computationally 

fast and suitable for real-time transient stability analysis [39]. However, they require 

significant approximations which limit modeling accuracy. 

To overcome such problems, pattern-matching methods have been proposed [26]. 

"These methods are driven by a large database of examples from off-line studies. 

Among these methods artificial neural networks have been frequently proposed since 

they offer certain features such as fast execution and excellent generalization capabil- 

ity" [ l l ] .  

This thesis project was also concerned with the use of ANNs in transient stability 

analysis. A method based on ANNs is used to estimate the transient energy function 

as a security index. The distance between the current operating point and the secu- 

rity limit for a given power system is the security index that is obtained by applying 

standard operation criteria for transient response to off-line simulations. These simu- 

lations form a database that can be used later on to train ANNs. Further investigation 
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was undertaken by constructing an ANN-based tool to identify stable and unstable 

conditions of a given power system using the transient energy function. 

The remainder of this thesis is organized as follows. In Chapter Two, all the power 

system benchmarks used in this thesis are explained. It includes sample simulations of 

each case with related plots. Chapter Three describes the ANN-based state estimation 

methods and explains the architecture of Time Delay Neural Network (TDNN) and 

Functional Link Networks. Chapter Four represents the results of the proposed ANN 

design for state estimation. It contains input selection and validation results and 

discussion of each test system. Transient stability analysis starts from Chapter Five 

which reviews background information on stability assessment and discusses different 

methods including transient energy function. Chapter Six presents the ANN structure, 

feature selection, and error analogy. Finally, conclusions are drawn in Chapter Seven 

and possible future research directions are discussed. 



Chapter 2 

Power Systems Model Description 

Four test power systems were employed in this thesis project as benchmarks. In 

this chapter the structure of each test power system with the mathematical model 

of their elements is presented. These models are coded as MATLAB functions in 

Power System Toolbox (PST) 161. These benchmarks were used to perform transient 

stability simulations and to build data patterns which were used later for training and 

testing neural networks. 

For each test system, the one-line diagram following a description of all the equip- 

ment characteristics is presented. Sample simulations were conducted for each bench- 

mark to give a better understanding of them. Later, the simulation algorithm and 

the process of data generating are explained. 

2.1 Power System Structure 

Every power system is basically divided into three subsystems which are Generation, 

transmission, and distribution. The generation unit usually consist of all prime movers 

8 
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and electric generators and their associated control units. Transmission system inter- 

connects all the generating and load units. Distribution system is the final destination 

of a power system where the power is transferred to consumers. To illustrate a power 

system and its interconnected elements, the following test system which is one of the 

test systems provided by PST [6] is explained. 

2.2 Single-machine-infinite-bus System 

The smallest and simplest system used in this study is a single-machine system with 

three buses. In this power system, bus 1 is the slack bus, bus 2 is the generation 

bus, and bus 3 is the load bus. Figure 2.1 shows the one-line diagram of the system. 

Generator 2 is presented as an infinite bus, therefore, the voltage of bus 2 is maintained 

Figure 2.1: Machine connected to an infinite bus 

2 3 
4 

infinite bus $ Load 

constant, i.e., the internal voltage behind either transient or subtransient impedance 

is fixed. Transient and subtransient parameters are explained later in the synchronous 

machine section. The following is a list of basic element in the single-machine-infinite- 

bus test system: 

1. Bus and Line specifications 

There are three types of bus in a power system: 1- Load buses which all loads 
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Figure 2.2: Approximate equivalent circuit for a transmission line [19] 

(active and reactive powers) are connected to them. 2- Generator buses which 

all generators are connected to these buses. 3- Slack or swing bus which has a 

generator connected to this bus where it's voltage magnitude and phase angle 

are fixed for power flow calculation. 

A transmission line in a power system is characterized by three main parameters: 

series resistance R due to the conductor resistivity, line reactance which is mostly 

series inductance L due to the magnetic field between conductors, and line 

charging or shunt capacitance C due to the electric field between conductors. A 

simplified "T" model of a transmission line is shown in Figure 2.2. 

2. Synchronous Machines 

Synchronous generators form the principal source of electric energy in power 

system. Many large loads are driven by synchronous motors. "A synchronous 

machine has two essential elements: the field and the armature. The field is 

on the rotor and the armature is on the stator. The field winding is excited 

by direct current. When the rotor is driven by a prime mover (turbine), the 

rotating magnetic field of the winding induces alternative voltages in the three 

phase armature windings of the stator. 

Following a disturbance, currents are induced in the synchronous machine rotor 
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Figure 2.3: Simple synchronous machine model based on [19] 

predisturbance ~0 
internal voltage 

X = X, = X ,  in steady-state model 

X =Xi = X i  in transient model 

X = x," = x," in subtransient model 

circuits. Some of these induced rotor currents decay more rapidly than others. 

Machine parameters that influence rapidly decaying components are called sub- 

transient parameters, while those influencing the slowly decaying components 

are called the transient parameters, and those influencing sustained components 

are the synchronous parameters" [19]. 

The synchronous machine characteristics of interest are the effective inductance 

(or reactance) as seen from the terminals of the machine and associated with the 

fundamental frequency currents during sustained, transient, and subtransient 

conditions. A simplified model of a synchronous machine, under conditions 

mentioned above, is shown in Figure 2.3. 

3. Exciter data specification 

The basic function of an excitation system is to provide direct current to the 

synchronous machine field winding. "The excitation system performs control 

and protective functions essential to the satisfactory performance of the power 

system by controlling the field voltage and thereby the field current. The con- 

trol functions include the control of voltage and reactive power flow, and the 
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Table 2.1: Bus specification matrix in PST for the single machine case 
I Bus voltage angle P Q P Q G B bus max min 

no. (pu) (deg) gen gen load load shunt shunt type V V 
1 1.05 0.0 0.9 0.0 0.0 0.0 0.0 0.0 2 999 -999 

enhancement of system stability. The excitation system supplies and automat- 

ically adjusts the field current of the synchronous generator to maintain the 

terminal voltage as the output varies within continuous capability of the gener- 

ator. 

4. Governor Specifications 

The prime sources of electrical energy supplied by utilities are the kinetic energy 

of water, the thermal energy derived from fossil fuels, and nuclear fission. The 

prime movers convert these sources of energy into mechanical energy that is, in 

turn, converted to electrical energy by synchronous generators. The prime mover 

governing systems provide a means of controlling power and frequency also 

known as load-frequency control. Governors vary prime mover output(torque) 

automatically for changes in system speed (frequency)" [19]. Figure 2.4 depicts 

the relation of prime movers and excitation controls in the generation unit. 

The prime movers are concerned with speed regulation and control of energy 

supply while excitation control is to regulate generator voltage and reactive 

power output. 

In Power System Toolbox, the power system structure is defined by bus and line 

specification matrices. Table 2.1 shows the matrix of bus specifications of the single- 

machine system. The same specification format is used for all bus matrices. 
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Figure 2.4: Generation system with associated control unit based on [12] 

Excitation 
system 

Turbine Generator 

Controller i- 

To generator buses 

Table 2.2: Line specification matrix in PST for the single machine cas 
I from to resistance reactance line tap phase shifter 

bus bus charging ratio angle 
1 3 0.0 0.1 0.0 1 .o 0.0 
2 3 0.0 0.3999 0.0 1 .O 0.0 
2 3 0.0 0.3999 0.0 1.0 0.0 

Bus 2 is the swing bus with voltage magnitude fixed at  1.05pu based on Table 2.1. 

Active power generation on this bus is 0.9 (pu). It has zero real power generation and 

acts as a reactive power source to hold the voltage at  the center of the interconnecting 

transmission lines. The swing bus generator at  bus two has limits of -999 (pu) to 999 

(pu) for voltage magnitude. Table 2.2 shows the line format and the line matrix for 

the single-machine case in PST. 

There are three types of synchronous machine models used in PST, the electrome- 

chanical or classical model, the transient model, and the subtransient model. In Power 

System Toolbox, the machine specification matrix is called m,ac-con. Table B.l shows 
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the machine data format in PST. 

The first generator data set is for a subtransient model and the second data set is 

for an elec&romechanical generator model used to represent the infinite bus. Time con- 

stants Ti,, Ti,, TiO, and T:, are the four principal d- and q- axis open circuit time 

constants. These time constants determine the rate of decay of currents and volt- 

ages from the standard parameters used in specifying synchronous machine electrical 

characteristics. 

The algorithm of modeling the generators in PST is as follows: "The initialization 

uses the solved load flow bus voltages and angles to compute the internal voltage 

and the rotor angle. The d-axis voltage is identically zero for all time. The network 

interface computation generates the voltage behind the transient reactance on the 

system reference frame. In the dynamics calculation, the rotor torque imbalance and 

the speed deviation are used to compute the rates of change of the two state variables, 

machine angle, and machine speed. 

The data set for ST3 exciters in the single-machine-infinite-bus system is: 

The exciter is initialized using the generator field voltage to compute the state vari- 

ables. Then the exciter output voltage is converted to the field voltage of the syn- 

chronous machine. In the dynamics calculation, generator terminal voltage, and 

the external signal is used to calculate the rates of change of the excitation sys- 

tem states7'[6]. Table B.2 shows the data format of IEEE ST3 exciter used in Power 
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System Toolbox and Figure A.2 shows the exciter control diagram. 

Table B.3 shows the data format of governor specification in Power System Tool- 

box. The control diagram of the governor is also represented in Figure A.3. The 

following (tg-con)is the parameter matrix of single machine governor. 

No time constant is allowed to be set to zero in this model. This data specification 

can be used to model a steam unit or a hydro unit. 

There is another data specification matrix called switching file, sw-con, which 

defines the simulation control times. This matrix provides the control of simulation 

start time, initial time step, fault application time, fault location bus number, type 

of fault, duration of fault, fault clearing time, and finishing time. 

2.2.1 Transient Stability Simulation 

A power system transient stability simulation model consists of a set of differential 

equations determined by the dynamic models and a set of algebraic equations deter- 

mined by the power system network. Figure 2.5 shows the general structure of the 

power system model applicable to transient stability analysis. 

First in transient simulation, a load flow study is performed to obtain a set of 

feasible steady-state system conditions to be used as initial condition. Power System 

Toolbox [6] calculates system bus voltage magnitudes and angles (unknown variables) 

by solving the nonlinear algebraic network equations using the Newton-Raphson al- 

gorithm in polar coordinates so that the specified loads are supplied. A Jacobian 

in terms of these variables is generated at  each iteration and is used to update the 

magnitude and angle variables. As the solution progresses, if the voltages a t  the load 

buses are found to be out-of-limits then the corresponding adjustments are made to 
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Figure 2.5: Structure of the complete power system model for transient stability 
analysis based on [19] 

reference frame:d-q 
--------------------- 
I I 

frame: R-l 
I - - - -  

---------- 
I 
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I 

I 

Other 
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Differential equations Algebraic equations 

I 

I 
- 

I 
I 
I Excitation 
I system 
I Stator equations El 
I 
I Prime mover I R . I l  

I 

bring their voltages back in range. At the end of the solution process, either the 

solution has converged, or the number of allowed iterations has been exceeded. A 

solved load flow case is required to set the operating condition used to initialize the 

dynamic device models. 

In Power System Toolbox [6], the dynamic generator models calculate the gen- 

r- ' 

network 
equations 

erator internal node voltages, i.e., the voltage behind transient impedance for the 

electromechanical generator, transient generator, and the voltage behind subtran- 

sient impedance for the subtransient generator. These internal voltages are used with 

a system admittance matrix reduced to the internal nodes to compute the current 

injections into the generators and motors. A MATLAB script file, s-sirnu, calls the 

models of the Power System Toolbox to: 

1. select a data file (In this work it is either the single-machine, 3-machine, 7- 

machine or 19-machine test system) 

swing equation I I  I 
I 

2. perform a load flow 

I 

3. initialize the non-linear simulation models 

I L I I ) I  \ ..................... -------------- ' I 
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4. do a step-by-step integration of the non-linear dynamic equations to give the 

response to a specified system fault 

Simulation 

A predictor-corrector algorithm is used for the step-by-step integration of the system 

equations. At each time step: 

1. The ion-linear equations for the load at  load buses are solved to give the voltage 

a t  these buses. The current injected by the generators and absorbed by the 

motors is calculated from the reduced admittance matrix appropriate to the 

specified fault condition at  that time step based on the machine internal voltages 

and the load bus voltages. 

2. The rates of change of the state variables are calculated. 

3. A predictor integration step is performed which gives an estimate of the states 

a t  the next time step. 

4. A second network interface step is performed. 

5. The rates of change of the state variables are recalculated. 

6. A corrector integration step is performed to obtain the final value of the states 

at  the next time step. 

All calculations are performed using MATLAB's vector calculation facility. This 

results in a simulation time which is largely a function of the number of time steps. 

In most simulations there are a t  least 500 time steps which are adjustable. 

A menu of plots is presented at  the completion of the simulation. These plots 

include all dynamic states, induction motor active and reactive powers, generator 
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Voltage Magnitude at Fault Bus 

0.5 1 1.5 2 2.5 3 3.5 
time (s) 

Figure 2.6: Voltage magnitude(pu) at  the faulty bus (3) 

terminal voltage magnitudes, and bus voltages (magnitude and angle). Figures 2.6-2.8 

are sample simulations of the single-machine system for 3.5 seconds. At 0.1 second, 

a three-phase fault was applied at  bus 3 on line 3-2. At 0.5 second the line was 

disconnected a t  bus 3. The fault persists for 1.0 second when the line was disconnected 

from bus 2. The time step is 0.005 second. 

Figure 2.6 shows voltage magnitude of the faulty bus (bus 3). Plots in Figure 

2.7 show the speed deviation of each machine and plots in Figure 2.8 illustrate all 

machine angles. 

Before applying the fault, the system has a satisfactory and stable initial con- 

dition. Voltage magnitude is fixed at  1.05pu and there is no oscillation during this 

period. During the fault application, voltage vector is set to zero (three phase fault) 

and machine speed deviation and angle start to increase until fault cleared at  1.0 
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Figure 2.7: Speed deviation of all machines 
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Figure 2.8: Machine angles 
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Figure 2.9: One-line diagram of 3-machine system 

second. After removing the fault, both speed deviation and angle of machine 2 start 

to oscillate. Machine 2 does not lose synchronism with the rest of the system since 

angle oscillation does not go over 90 degrees. Note that in Figure 2.7 and 2.8, machine 

2 does not show that much variation in speed and angle compared to machine 1 since 

it is modeled as the infinite bus. 

2.3 3-machine-9-bus System 

Figure 2.9 shows the one-line diagram of the second test power system used in this 

work. The power system consists of 9 buses, i.e., one slack or swing bus, 2 generator 

buses and 6 load buses. The bus and line data format is the same as explained in 

the previous case. Matrices Bus and Line are bus and line specifications for the 
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I 3-machine system. 

Bus = 

Line 

The system has 2 generator buses at  buses 2 and 3. There is an induction generator 

a t  bus 8 which is modeled as a negative load in the load flow. 

As indicated before, motors form a major portion of the system loads. "Induction 

motors in particular form the workhorse of the electric power industry. An induction 

machine carries alternating currents in both the stator and rotor windings. In a three- 

phase induction machine, the stator windings are connected to a balanced three-phase 

supply. The rotor windings are either short-circuited internally or connected through 

slip rings to a passive external circuit. The distinctive feature of the induction machine 

is that the rotor currents are induced by electromagnetic induction from the stator. 
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Figure 2.10: Equivalent circuit of a three-phase induction machine [19] 
R, x s  X r  

L w 

x m 
R' - 
S 

This is the reason they are called induction machine" [19]. Figure 2.10 represents the 

steady-state equivalent circuit of the induction machine. Data format for induction 

generator in Power System Toolbox is presented in Table B.1. Matrix igen-con shows 

the parameters of the induction generator in the 3-machine case. 

igen-con = [ 1 8 60. .001 . O 1  3 .009 . O 1  2. 0 0 0 0 0 1 ] 

In PST, the dynamic model for an induction machine is formulated by Brereton, 

Lewis and Young [3]. In this model the three states are the d and q voltages behind 

transient reactance and the slip. 

Generator and machine specifications are the same as in Table B.1. According to 

the specification matrix, all the machines at  buses 1, 2, and 3 are modeled as electro- 

mechanical machines because their transient and subtransient parameters are set to 

zero. 

I 1 1 100 0.000 0.000 0. 0.0608 0 

rnac-con = 2 2 100 0.000 0.000 0. 0.1198 0 

3 3 100 0.000 0.000 0. 0.1813 0 

0 0 0 0 0 0 0 13.64 9.6 0 1 

0 0 0 0 0 0 0  6.4 2 . 5 0 2  

0 0 0 0 0 0 0 3.01 1.0 0 3 I 
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Voltage Magnitude at Fault Bus 

1.44 
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Figure 2.11: Voltage magnitude (pu) at  the faulty bus (4-5) 

The following plots 2.11, 2.12, and 2.13 are some simulation samples of the system 

for 5 seconds. 

1. Voltage magnitude at  faulty bus is shown in Figure 2.1 1 

2. All machines' speed deviations are illustrated in separate plots in Figure 2.12 

3. Line power flows is shown in Figure 2.13 

At 0.1 second, a three-phase fault was applied a t  bus 4 on line 4-5. At 0.15 second 

the line was disconnected at  bus 4. The fault persisted until 0.2 second when the line 

was disconnected from bus 5. The time step was 0.0025 second. 

As Figure 2.11 shows, after removing the fault, voltage recovered within 3 to 4 

seconds to l.O(pu). Machine 3 showed more oscillation compared to machine 2 due to 
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x l o 5  speed deviation of each machine 
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Figure 2.12: Speed deviation of all machines 

time in seconds 

Figure 2.13: Line power flows 
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Figure 2.14: One-line diagram of the 7-machine system 

the fault location being closer to it. According to Plot 2.13, variation of power flows 

for all lines stayed in range of f lpu  except bus 4-5 which was the faulty line. 

2.4 7-machine-14-bus System 

Figure 2.14 shows the one-line diagram of the 7-machine test power system used in 

this work. The power system consists of 15 buses, i.e., one slack or swing bus, 7 

generator buses, and 7 load buses. The bus and line data format is the same as 

explained for previous cases. Bus and Line matrix specifications for the 7-machine 

system are given in C . l  and C.2. In this system, there are 7 generators at  buses 1, 102, 

103, 104, 2, and 12. There are simple exciters and turbine governors on all generators 

and power system stabilizers on generators 1 to 4. 

The basic function of a power system stabilizer (PSS) is to add damping to the 

generator rotor oscillation by controlling its excitation using auxiliary signals. These 

auxiliary signals are usually shaft speed, terminal frequency, and power. Power system 

dynamic performance is improved by the damping of system oscillation. 

Figure A.l  presents the block diagram of the PSS used in the 7-machine system 
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Voltage Magnitude at Fault Bus 
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Figure 2.15: Voltage magnitude (pu) at  the faulty bus (11-110) 

in Power System Toolbox. Data format for PSS in Power System Toolbox is shown 

in Table B.2. Matrix pss-con shows the parameters of the PSS in 7-machine system. 

Generator and machine data format are the same as in Table B.1. The machine 

pss-con = 

specification matrix, provided in C.3, shows that all machines are modeled as sub- 

1 2 100.0 10.0 0.05 0.01 0.05 0.01 0.2 -0.05 

1 3 100.0 10.0 0.05 0.01 0.05 0.01 0.2 -0.05 

transient models. 

The following plots 2.15, 2.16, and 2.17 are some simulation samples of the system 

for 5 seconds. 

1. Voltage magnitude a t  the faulty bus is shown in Figure 2.15 
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Figure 2.16: Speed deviation of all machines 
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Figure 2.17: Machine angle of all machines 
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2. All machines' speed deviations are illustrated in separate plots in Figure 2.16 

3. All machines' angles are illustrated in Figure 2.17 

At 0.1 second, a line-to-ground fault was applied at  bus 11 on line 11-110. At 0.15 

second the line was disconnected at  bus 11. The fault persisted until 0.18 second 

when the line was disconnected from bus 110. The time step was 0.0055 second. 

The speed of machine 6, which is connected to bus 11, has the most oscillation 

compared to other machines, which is due to  the closeness of fault to this machine. 

According to Figure 2.17, all machine angles go beyond the stability boundary within 

a few seconds of fault occurrence. This indicates the instability of system after fault 

removal. 

2.5 19-machine-42-bus System 

The biggest model under investigation was a 19-machine test power system. Figure 

2.18 shows the one-line diagram of this system. The power system consists of 42 

buses, one slack or swing bus, 19 generator buses, and 22 load buses. The system 

has 19 generator buses a t  buses 1, 2, 3, ..., 18, and 19. All machines are modeled as 

a classical model except the one at  bus 15 which is represented by its subtransient 

parameters. Loads are constant impedances. Table B.2 shows the value of parameters 

used for the exciter in the 19-machine case. All the other component characteristics 

are given in D. 1, D.3, and D.5. The same process as explained for the single-machine 

was used for this case. Bus, line, and machine specification data format are the same 

as explained before. Figures 2.19, 2.20, and 2.22 are some simulation samples of the 

system for 5 seconds. 

1. Voltage magnitude at  the faulty bus is shown in Figure 2.19 
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Figure 2.18: One-line diagram of 19-machine system 
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I transient gain reduction time constant (Tc) I 0 sec I 

Table 2.3: Simple exciter data for 19-machine case 
voltage regulator gain ( K A )  

voltage regulator time constant (TA) 

- - -- -- - - 

2. All machines' speed deviation are shown in plots of Figures 2.20 and 2.21 

100 pu 
0.02 sec 

maximum voltage regulator output (VRm,,) 
minimum voltage regulator output (VRmin) 

3. Exciter output voltage is shown in Figure 2.22 

6 pu 
-3 pu 

The simulation ran for 5 seconds with the time step of 0.005 second. At 0.1 sec, a three 

phase fault was applied at  bus 15 on line 15-33. At 0.15 sec the line was disconnected 

at  bus 15. The fault persisted for 0.2 second when the line was disconnected from bus 

33. Figure 2.20 and 2.21 show that the speed deviation of machine 15 is much higher 

than other machines due to the three-phase fault occurring on line 15-33. 

These simulations were sources of data generating which were used to train and 

test neural networks in next chapters. The condition under which these simulations 

were run, and the process of data pattern generating are explained later for each case. 
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Voltage Magnitude at Fault Bus (pu) 
1.4 , 

Figure 2.19: Voltage magnitude at  the faulty bus (15-33) 
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Figure 2.20: Speed deviation of machines 1 to 9 
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machine speed deviation 
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Figure 2.21: Speed deviation of machines 11 to 19 
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Figure 2.22: Generator field voltage 



Chapter 3 

ANN-Based State Estimation 

This chapter discusses the application of neural networks in state estimation of power 

systems. Two basic steps of power system state estimation, state filtering and state 

forecasting, are discussed in this chapter. Two neural networks (FLN and TDNN) 

were developed for filtering and forecasting process. The architecture of each neural 

network is explained in detail at  the end of this chapter. 

3.1 Modeling of System Dynamics 

Although, power systems rarely gain a true steady state operation, the magnitude of 

oscillations due to load variation is generally small. So, it is justifiable to consider it 

a quasi-static operation, in which change in loads take place at  the beginning of each 

time sample and are instantaneously met by adjusting generated power. 

Considering that the system is operating under quasi-static conditions, its state 

of operation is perfectly characterized by the set of all complex nodal voltages as in 

Equation 3.1. "The conventional state vector of an N bus power system is composed 

of n = 2N - 1 variables: 
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2 = [Vl, 01, V2,@2, a*., vNIT,  (3.1) 

where V,  is the voltage magnitude of bus i, and Oi is the phase angle of bus i. 

For a given network configuration, a unique way of assessing the system state is 

through the measurements gathered from around the system. The most available 

measurements used for real-time monitoring consist of: 

1. active and reactive power bus injections 

2. active and reactive line power flows 

3. bus voltage magnitudes 

These measurements are related to the state vector by the nonlinear equation: 

where m is the number of measurements, x ( k )  is the m-dimensional measurement vec- 

tor, h ( o )  is the m-dimensional nonlinear vector function relating measurement vector 

( 2 )  to  state vector x,  and v ( k )  is the m-dimensional measurement error vector which 

is normal error affecting the measurements, for example, from the limited accuracy 

of meter devices. 

In addition to Equation 3.2 the dynamic model of a power system is of the following 

general form: 

where n is the number of state variables, x is the n-dimensional state vector, f is 

the n-dimensional nonlinear state transition function, and w ( k )  is the system noise 

vector" [17]. Typically, the total number of measurements m, ranges from 1.5 to 3 

times the number of state variables n ,  [8]. 
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Figure 3.1 : Functional link network 

Equations 3.1 to 3.3 show the process of power system state estimation based on 

the forecasting and filtering process. We tried to employ neural networks to estimate 

the state of a power system by relating to this process. In order to capture the 

dynamics of the power system states, a nonlinear temporal dynamic model of ANN 

was required for the state estimation while for the filtering step, a flat delta rule 

network was developed. The following section discusses this matter in detail. 

3.1.1 Functional Link Network 

In this study, state filtering was achieved by using Functional Link Network (FLN) 

[17]. "This static network provides the output, which are state variables, in one 

forward pass and does not involve any iterative process. Figure 3.1 illustrates a 

scheme for Functional Link Network. 

In FLN, the input patterns are enhanced by means of functional transformations 

before feeding them into the input layer of the actual network. In enhanced input 
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pattern representation, each component of the input pattern multiplies the entire 

input pattern vector [17]. If X I ,  2 2 ,  . .. , x, represents a set of original inputs or features, 

the enhanced inputs along with these original inputs are obtained through a sequence 

of transformation, such as 

The idea of enhanced representation is very close to that of series expansion. Problems 

that might be difficult in the original pattern space generally become quite straight- 

forward in the enhanced representation space. In the present work, only second-order 

products of inputs (~1x2 ,  22x3, ..., 2,-12,) have been considered as enhanced inputs 

since the number of inputs were high and the result from the second-order was satis- 

factory. 

An enhanced input/output pair is learned by a flat net, that is, a net with no 

hidden layer. Previous research indicated that supervised learning can be achieved 

very well with a flat net and delta rule if the enhancements are done correctly [41]. The 

flat architecture of the FLN exhibits highly desirable learning capabilities and, in some 

applications, drastically reduces the convergence time. The delta rule, also known as 

the Least-Mean-Square (LMS) learning rule, is a method of finding the desired weight 

vector that can successfully associate each input vector with its desired output [35]. 

The benefit of the FLN, when applied to mathematical modeling, is the increased 

accuracy of mapping through the expansion of the basic set. 

3.1.2 Time-Delay Neural Network 

The most common feedforward networks are static networks, which have no internal 

time delays. They respond to a particular input by immediately generating a specific 

output. However, static networks can respond to temporal patterns if the network 
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Tlme 
Delay 

x(k-n) I 
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I 

Figure 3.2: Time-delay neural network 

is are delayed samples of the input signals, i.e., time is treated as anoth ~ e r  dimen- 

sion in the problem [17]. Incorporating time as another dimension in neural networks 

is often referred to as Time Delay Neural Network (TDNN). These networks, trained 

with the standard back propagation algorithm, have been used as adaptive filters for 

noise reduction and echo canceling and for chaotic time series prediction [15]. 

Our TDNN consists of an input layer with delay units, the hidden layer, and the 

output layer. In TDNN the basic units are modified by introducing delays as shown 

in Figure 3.2. This structure incorporates time alignment by delaying the input with 

a fixed time span. 

The inputs to such a unit are multiplied by several weights, one for each delay and 

one for the undelayed unit input. In this way, a TDNN unit has the ability to relate 
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and compare current input to the past history of events" [17]. 

TDNN is capable of modeling dynamic systems where the output has a finite 

temporal dependence on the input, that is 

x(k + 1) = F[x(k), x(k - I ) ,  ..., x(k - n)],  

where F ( e )  is the nonlinear function [17]. 

The back propagation algorithm has been used as the learning procedure, which 

works well for classification, prediction, function estimation, and time series tasks 

[14, 351. The following is a brief explanation of the back propagation algorithm. 

The Back Propagation Algorithm 

This algorithm is derived based on the concept of the gradient descent search to 

minimize the error through the adjustment of weights. For a three-layer ANN with I 

inputs, one hidden layer with J neurons, and K output neurons, the error function is 

defined as follows 

where dpk and opk are the desired and actual outputs of the ANN for pattern p, 

for p = 1 , 2 ,  ..., P with P being the number of training patterns. Individual weight 

adjustments are computed by 

where q is a learning rate constant. Through some derivations, the following recursive 

formula for adjustment of weights with the momentum term are obtained. 

For the output layer 
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where Awkj = dokyj; and hok = (dk - ok)ok(l - on), yj is the output of the j th  hidden 

neuron, and a! is a momentum constant between 0.1 and 0.8. 

For the hidden layer 

K where = yj(l - yj)xi C k = ,  dOkw,& for i = 1 ,2 ,  ..., I, and xi is the value of the ith 

input varia-ble. 

For a given error tolerance Em,,, learning rate +~l, momentum a! and maximum 

learning cycle, the ANN with randomly initialized weights is trained through repeated 

presentation of the training patterns until the error goal or maximum training cycle 

is reached. 

3.2 Development of ANN-Based State Estimation 

Model 

The state forecasting and filtering steps have been attempted by using FLN and 

TDNN, respectively. Past history of state variables up to  time (k) has been used to  

forecast the states at  time ( k $ l  ). 

The inputs to the FLN are real-time measurements consisting of real and reactive 

power bus injections and line flows, whereas the desired outputs are the state variables. 

The output of the FLN computed for time (k) has been used as the input to the 

TDNN. The Time Delay Neural Network (TDNN) takes these state variables from 

FLN at  time (k) and forecasts the system states for time ( k + l ) .  

Two neural networks proposed for state estimation were explained in this chapter. 

To validate the results taken from the proposed networks, three different test power 

systems were investigated. In the next chapter the result of each case is represented. 



Chapter 4 

The Proposed Neural Network 

Design 

Chapter Three demonstrated the notion of two neural networks built for state estima- 

tion of power systems. The first step is filtering, which is accomplished by Functional 

Link Networks (FLN). The second step is forecasting, which is achieved by Time 

Delay Neural Networks (TDNN). This chapter consists of a description of each NN 

structure. In Chapter Two, four power systems were explained in detail. Three 

of them were used as testing benchmarks in state estimation study in this chapter. 

All three systems were simulated by MATLAB Power System Toolbox to generate 

inputJoutput pair patterns for training and testing neural networks. 

Each test system was simulated under different loading conditions in order to 

obtain the training data set. The pair of input/output, (p, q ) / ( v ,  Q), of each bus was 

collected after each simulation to build the data base. The obtained data set contained 

the necessary information to help NNs generalize the estimation problem since all the 

possible loading conditions were considered. 

This chapter presents the process and also the condition under which the data is 
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generated. Each network was tested by a novel pattern to examine its performance. 

The result is presented at  the end of each section. 

4.1 The Neural Network Structure 

4.1.1 Data Selection 

Most of the necessary information for determining the state of a power system is 

usually contained in the voltage and power waveforms. Therefore, real and reactive 

power of buses, which are also the most available measurements, were selected as 

inputs to the Functional Link Network. Voltage magnitude and phase angle of the 

corresponding buses were used as targets (desired outputs) of the FLN. 

In the forecasting step, the output of the FLN at  time instant (k)  plus two or three 

time delay units were used as inputs to the Time Delay Neural Network (TDNN). 

Adding delay units would increase the time of training process. The number of time 

delays was determined depending on the complexity of the system. The forecasted 

value of voltage vector a t  time instant ( k  + 1) was considered as the output of the 

TDNN. 

4.1.2 Data Preparation 

As explained in Chapter Three, the input data to Functional Link Network were 

enhanced before feeding them to the NN. Each component of the input (real and 

reactive power of each bus) multiplied the entire input vector. Figure 4.1 illustrates 

this process. Outputs of FLN were voltage magnitudes and phase angles. 

"Neural network training can be done more efficiently if certain preprocessing steps 

are performed on the network inputs and targets" [17]. It is often useful to scale the 
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Figure 4.1: Functional Link Network 

Active and 
Reactive power 

Series 
Expansion 

Outputs 

inputs and targets before training, so that they always fall within a specified range. 

The function "premnmx" in MATLAB was used to scale inputs and targets so that 

they would fall in the range [-1 ,I]. 

The following explains the structure of FLN and TDNN for each test system; 

4.2 Single-machine-infinite-bus Test System 

The first test power system was the single-machine-infinite-bus system. Training 

patterns for this case were generated using the load flow program of MATLAB Power 

System Toolbox. They were generated by varying the active and reactive load at  

(P - V)/generation buses linearly by 100% and for (P - &)/load buses by 50%, 

thus covering a wide range of operating conditions. "The load curve at  each bus 

was composed of a linear trend plus a random fluctuation (jitter)" [17]. The jitter 

was represented by a normal distribution random process. Figure 4.2 is a sample 

of this random fluctuation for the generation bus. As can be seen, the range of 
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power generation vary between l(pu) and 3(pu) which is considered a wide range of 

operation. 

Figure 4.2: Power generation variation of bus 1 in the single machine system 

number of samples 

The training patterns, which consisted of real and reactive power of each bus a t  

different load level, were inputs to the FLN. The corresponding voltage magnitude 

and phase angle were the outputs (targets) of the NN. Initially one neural network 

was considered for both voltage and angle. This network architecture did not have a 

satisfactory performance, hence, two separate neural networks were considered. Two 

FLN-TDNN sets were created. The purpose of one set was to evaluate the bus voltage 

and the other to evaluate the phase angle. 

The following discusses the structure of each set with related results. Note that, 

MATLAB's Neural Network Toolbox was used to build neural networks in this study. 

The functions indicated by quotations are MATLAB's functions 
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4.2.1 Topology of FLN 

As explained in Chapter Three, the Functional Link Network was built using a flat net. 

This network consisted of a single layer, no hidden layer, with the "DOT Product" 

weight function and a linear transfer function. 

1. Input layer 

The humber of inputs for this system was 21 which was consisted of real and 

reactive power of all buses and their second-order outer product. In the single 

machine system, there are three buses where each has one real and one reactive 

power value. Therefore, 3 x 2 = 6 is the original number of inputs according 

to Figure 4.1. Considering only second order outer product of these inputs, the 

sum of arithmetic progression formula gives 6/2(2 x 1 + (6 - 1) x I) = 21, which 

is the total number of inputs. 

2. Output layer 

As mentioned before, two FLNs were developed to evaluate voltage and angle 

of each bus. Each networks had 3 outputs, which was the number of buses in 

the single-machine system. 

3. Widrow-Hoff learning algorithm 

The learning in a neural network means finding an appropriate set of weights 

to produce the desired outputs when presented with novel inputs. "The learn- 

ing algorithm used in this part for both networks is Widrow-Hoff weightlbias 

learning, also known as delta or least-mean-squared (LMS) rule. It is a method 

of finding the desired weight vector that can successfully associate each input 

vector with its desired output" [35 ] .  The LMS algorithm can be expressed by 
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Equation 4.1 

where w(t) is the weight vector, EI, is the error, and p is the parameter that 

determines the stability and speed of convergence of the weight vector toward 

the minimum-error value. The learning rate or (p)  was taken as le-4 for the 

voltage-FLN and le-3 for the angle-FLN. 

4. FLN training 

For training the FLNs, 200 data patterns were generated by varying the loads at  

each bus covering a wide operating range of the base case load curve. In order to 

empower the generalization property of neural networks, these generated train- 

ing data patterns were shuffled several times. The voltage-FLN was trained for 

5000 epochs (one epoch is a single training pass through all training patterns), 

and the angle-FLN for 4000 epochs. Then they were tested with novel input 

patterns. 

Out of 200 patterns, 180 of them were used for training and 20 patterns were 

used for testing. Figure 4.3 compares the output of FLN with the true value 

for 7 randomly selected testing points. Table 4.1 shows the exact value of each 

point in Figure 4.3. 

Table 4.1: Voltage values corresponding to Figure 4.3 
Voltage of bus 3 

FLN 
True value 

7 samples of testing points 
1.0342 1.0339 1.0335 1.0332 1.0329 1.0325 1.0322 
1.0344 1.0341 1.0338 1.0335 1.0332 1.0329 1.0326 
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Figure 4.3: Voltage comparison between the FLN output and the real value for bus 3 

X 

FLN output * 

1.032 

number of samples 

5. Validation Results 

Table 4.2 also represents the result of the Functional Link Network compared 

with those obtained from the MATLAB load flow program (true values) and the 

corresponding maximum absolute error. Note that only the voltage of bus 3 is 

presented in the table because two other buses are voltage controlled or (P-V) 

buses and their voltage is fixed for all loading conditions. It can be seen that, 

both FLNs can solve state estimation with less than 2% error. 

The demand for electricity is continuously changing with various daily, weekly 

and seasonal influences. A testing pattern was built to model a typical daily 

Table 4.2: Voltage comparison between FLN outputs and true v 
I True value I FLN output I Absolute error 

Bus 3 voltage 
Bus 1 angle 
Bus 2 angle 
Bus 3 angle 

1.0358 
26.6966 

0 
17.6876 

1 .0358 
26.1028 

0 
17.2967 

0 
0.5937 

0 
0.3909 
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load variation of a power system. The performance of two FLNs were tested 

using the data pattern. Figures 4.4 and 4.5 show the result and compares them 

with actual values. 

The voltage variation due to load drop in bus 1 in the single-machine system is 

presented in Figures 4.4 and 4.5. Both Figures show how closely FLN output 

follows the real value. 

4.2.2 Topology of TDNN 

A feed-forward back propagation network with one hidden layer and one output layer 

was used for the state forecasting step. Two time-delay neural networks were devel- 

oped to serve our purpose. One to forecast the voltage magnitude, called voltage- 

TDNN, and angle-TDNN to forecast the phase angle. 

In both TDNN, the output had a finite temporal dependence on the input, that 

is O(k + 1) is evaluated using v(k), v(k - I), v(k - 2) and also 8(k + 1) is evaluated 

using O(k), O(k - I ) ,  O(k - 2) where O(k + 1) and 9(k + 1) were the estimate of voltage 

magnitude and phase angle respectively, [v(k), v(k - I), v(k - 2)], and [O(k), O(k - 

I), O(k - 2)] were the sliding window which consisted of three time delay units for 

voltage and angle input respectively. 

In case of single-machine system only the voltage of bus 3 was considered because 

other buses had a fixed voltage magnitude. Therefore, TDNN for single-machine 

system has one input with three time delay units and one corresponding output. 

1. Hidden layer 

Determining the number of hidden nodes in the hidden layer was based on trial 

and error since it is not always straightforward. The goal is to use as few neurons 

as possible because adding one neuron increases the training time substantially. 
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Another way was also tried to determine the number of neurons by examining 

the weight values on hidden nodes periodically as the network trains. Those 

neurons whose weights changed very little from the starting value might not 

be participating in the learning process therefore, they can be removed from 

the hidden layer. The number of neurons in the hidden layer was 1 in the 

voltage-TDNN and 2 in the angle-TDNN. 

2. Back Propagation Network (BPN) 

In Chapter Three, the details of back propagation algorithm was explained for 

a three-layer NN. In addition to that, a summary description is provided below 

to illustrate how BPNs works. 

The BPN learns a predefined set of input-output (target) pairs by using a two- 

phase propagate-adapt cycle. After an input pattern has been applied to the first 

layer of the network, it is propagated through each upper layer until an output 

is generated. This output pattern is then compared to the desired output and 

an error signal is computed for each output unit. 

The error signals are then transmitted backward from the output layer to each 

node in the intermediate layer that contributes directly to the output. However, 

each unit in the intermediate layer receives only a portion of the total error 

signal, based roughly on the relative contribution the unit made to the original 

output. This process repeats, layer by layer, until each node in the network 

has received an error signal that describes its relative contribution to the total 

error. Based on the error signal received, connection weights are then updated 

by each unit to cause the network to converge toward a state that allows all the 

training patterns to be encoded. 
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Figure 4.6: Voltage comparison between TDNN outputs and true values for bus 3 

TDNN output X 

voltage 
magnitude 
. (PU) 

1.036 

number of samples 
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3. TDNN training 

The same 200 data patterns, used in FLN section, were used to train and test 

TDNNs. Out of these, 180 patterns were used to train the neural network, and 

the remaining 20 patterns were used to test the accuracy and robustness of the 

ANN. The input to the voltage-TDNN is the voltage of bus 3 plus three time 

delay units. In case of angle-TDNN, the angle of all three buses with three time 

delay units were considered as inputs and the forecasted angle of each bus was 

the output. 

The learning rate (p)  of le-3 was used because with larger values convergence 

did not take place. The state forecasting results are given in Table 4.3 and 

Figure 4.6 for 7 randomly selected testing points. 

Table 4.3 shows the value of each point in the Figure 4.6 to clarify the precision 
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I True value 1 1.0372 1.0369 1.0366 1.0364 1.0361 1.0358 1.0355 1 

Table 4.3: Voltage comparison between TDNN outputs and true values for bus 3 
Voltage magnitude 

TDNN 

of TDNN. 

7 samples of testing patterns 
1.0371 1.0368 1.0366 1.0363 1.0360 1.0358 1.0355 

Table 4.4: Angle comparison between angle-TDNN and true values 

4. Validation Results 

. ' 

For training and testing the angle TDNN, another 200 patterns were generated 

using the same method described before. Out of these, 180 patterns were used 

to train the neural network and the remaining 20 patterns were used to test the 

accuracy and robustness of the ANN. Table 4.4 presents the result of the angle- 

TDNN compared with those obtained from the MATLAB load flow program 

and the corresponding maximum absolute error. Table 4.4 also shows that the 

designed neural network can forecast the angle of all buses with absolute error 

less than le-2. 

4.3 3-machine Test System 

The 3-machine-9-bus system was another test system considered in our study. The 

one-line diagram and a description of each element of the system are explained in 

Chapter Two. The same topology and trainingllearning algorithm as explained in 

previous section were also used for three-machine system. To avoid the repetitive 

Bus angle 1 
Bus angle 2 
Bus angle 3 

TDNN output 
21.3385 

0 
14.1216 

True value 
21.3308 

0 
14.1205 

Absolute error 
0.0078 

0 
0.0011 
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explanation of each neural network, only those parts which are different from the 

single-machine system is described here. 

4.3.1 FLN Structure 

The number of inputs of FLN for the 3-machine system was 171 which consisted of 

real and reactive power of load buses and their second-order outer product. There 

are 9 buses in the 3-machine system with active and reactive powers designated to 

each bus. Therefore, the original number of inputs were 9 x 2 = 18. The enhanced 

representation of these inputs consisted of their second order outer product, which 

made the total number of inputs 18/2(2 x 1 + (18 - 1) x 1) = 171. 

Voltage of each bus, 9 in total, were considered as voltage-FLN outputs. After 

monitoring the change of weight value for each node as the network was trained, we 

realized that the first three outputs, which are the (P-V) buses, did not participate in 

the learning process. The reason is that they are voltage controlled buses and their 

voltage magnitudes are fixed for all loading conditions. Therefore, only the voltage 

of load buses, bus 4 to 9, were considered. For angle-FLN the phase angles of all 9 

buses were considered. 

The learning rate (p)  was taken as le-4 for the voltage-FLN network and le-3 for 

the angle-FLN. The same trainingllearning algorithm (as explained before) was used 

for both NNs. 

The training patterns were generated for base case using the MATLAB load flow 

program by varying the load at  (P-V) buses linearly by loo%, and (P-Q) buses by 

50% covering a wide range of operation. Any operating condition beyond or below 

this range is unacceptable since the load flow algorithm does not converge. 
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0 FLN results 

For training both FLNs, 250 patterns were generated by varying the loads a t  

each bus covering a wide operating range of the base case load curve. Out of 

250 patterns, 200 were used for training and 50 patterns were used for testing. 

After training for 4000 epochs, the voltage-FLN was tested for a novel input 

pattern. Figure 4.7 shows the result for 8 randomly data points. Tables in 4.5 

are the corresponding values of each point in Figure 4.7. 

Figure 4.7: Voltage comparison between FLN outputs and true values for load buses 
Voltage comparison of FLN and true values for bus 4 to 9 

ll-----l 

number of samples 

The FLN was able to  estimate state variables with less than 0.1% error. The 

results of the FLN and those obtained from the load flow program with the 
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Table 4.5: Voltage values corresponding to Figure 4.7 
( Bus no. I 8 samples of testing patterns for FLN 

corresponding maximum absolute error are presented in Table 4.6. 

4.3.2 TDNN Structure 

4 
5 
6 
7 
8 
9 

Bus no. 
4 - 
5 
6 
7 
8 
9 

There were two time-delay neural networks created to estimate the voltage magnitude, 

called voltage-TDNN, and angle-TDNN to estimate the phase angle. The output 

variable, voltage magnitude and phase angle, were estimated using the past values of 

the variable. The sliding window consisted of two time delay units for each input. 

The number of hidden nodes was 3, which was obtained based on trial and error. 

The learning rate ( p )  of le-5 was used to make sure that the network would settle to 

a proper solution. 

For training and testing the voltage-TDNN, 200 patterns were generated. The 

same data generating process as used in FLN was used for TDNN. Out of these 200 

patterns, 180 patterns were used to train the neural network, and the remaining 20 

patterns were used to test the accuracy and robustness of the NN. 

' 0.9949 0.9942 0.9936 0.9929 -0.9923 0.9916 0.9909 0.9902 
0.9719 0.9710 0.9701 0.9692 0.9683 0.9673 0.9664 0.9655 
1.0141 1.0137 1.0133 1.0129 1.0125 1.0121 1.0117 1.0113 
0.9796 0.9789 0.9782 0.9775 0.9768 0.9761 0.9754 0.9747 
0.9874 0.9868 0.9861 0.9855 0.9848 0.9842 0.9835 0.9828 
0.9369 0.9357 0.9344 0.9332 0.9319 0.9306 0.9294 0.9281 

corresponding true values 
0.9949 0.9943 0.9936 0.9929 0.9923 0.9916 0.9909 0.9902 
0.9720 0.9711 0.9702 0.9693 0.9683 0.9674 0.9664 0.9655 
1.0142 1.0139 1.0135 1.0131 1.0127 1.0123 1.0118 1.0114 
0.9797 0.9790 0.9783 0.9776 0.9769 0.9762 0.9755 0.9748 
0.9877 0.9871 0.9864 0.9857 0.9851 0.9844 0.9837 0.9831 
0.9371 0.9359 0.9346 0.9334 0.9321 0.9308 0.9296 0.9283 
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Table L 5: Volta~ 
Volt age 
Bus 4 
Bus 5 
Bus 6 
Bus 7 
Bus 8 
Bus 9 
Angle 
Bus 1 
Bus 2 
Bus 3 
Bus 4 
Bus 5 
Bus 6 
Bus 7 
Bus 8 
Bus 9 

TDNN Results 

comparison 
FLN output 

0.9980 
0.9763 
1.0159 
0.9829 
0.9905 
0.9429 

FLN output 
0 

24.3748 
15.2248 
0.2351 
0.5956 
11.5412 
11.6750 
16.6271 
0.9056 

between FLN outputs and truc 
I True value I Absolute error I 

0.9981 
0.9765 
1.0161 
0.9831 
0.9908 
0.9431 

True value 
0 

24.4965 
15.3184 
0.2571 
0.6300 
11.6180 
11.7535 
16.7161 
0.9451 

0.0001 
0.0002 
0.0002 
0.0002 
0.0003 
0.0002 

Absolute error 
0 

0.1217 
0.0936 
0.0220 
0.0344 
0.0768 
0.0785 
0.0890 
0.0395 

values 

The output of voltage-TDNN consisted of forecasted voltage of load buses and 

the output of angle-TDNN consisted of forecasted angle of all buses. The result 

of voltage forecasting is given in Figure 4.8 and Table 4.8. Figure 4.8 compares 

the output of voltage-TDNN with true values and Table 4.8 presents the value 

of corresponding points in Figure 4.8. 

As it can be seen in Figure 4.8, the first three plots are the (P-V) buses with 

fixed voltage; therefore the neural network was not able to estimate their voltage 

properly. The result of angle-TDNN is shown in Figure 4.9. Table 4.8 shows 

the value of each point in Figure 4.9. 

Table 4.9 also shows the result of both TDNNs compared with those obtained 

from the load flow program and the maximum absolute error. 
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Figure 4.8: Voltage comparison between TDNN outputs and true values for all buses 

Voltage comparison of TDNN and true values for all buses 

* * * &  * * * * *  * * * & * * * * *  * * * & * * * * *  
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Table 4.7: Voltage values corresponding to Figure 4.8 
Bus no. 

1 

9 

Bus no. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

8 samples of testing patterns for TDNN 
1.0988 1.0910 1.0782 1.0588 1.0304 0.9900 0.9334 

0.8776 0.8758 0.8740 0.8722 0.8704 0.8686 0.8668 0.8649 

Corresponding true values to TDNN outputs 
1 .0400 1.0400 1.0400 1.0400 1 .0400 1.0400 1.0400 1.0400 
1.0253 1.0253 1.0253 1.0253 1.0253 1.0253 1.0253 1.0253 
1.0254 1.0254 1.0254 1.0254 1.0254 1.0254 1.0254 1.0254 
0.9639 0.9629 0.9620 0.9610 0.9600 0.9590 0.9581 0.9570 
0.9285 0.9272 0.9259 0.9246 0.9232 0.9218 0.9204 0.9190 
0.9949 0.9943 0.9937 0.9931 0.9925 0.9918 0.9912 0.9905 
0.9464 0.9453 0.9443 0.9433 0.9422 0.9411 0.9400 0.9389 
0.9559 0.9549 0.9539 0.9529 0.9519 0.9509 0.9498 0.9487 
0.8777 0.8759 0.8741 0.8722 0.8703 0.8684 0.8665 0.8645 
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Figure 4.9: Angle comparison between TDNN outputs and true values for all buses 

Angle comparison of TDNN and true values for all buses 

number of samples 
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Bus no. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Bus no. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

' Table 4.8: Phase angle values corresponding to Figure 4.9 
7 samples of testing patterns for TDNN 

0 0 0 0 0 0 0 

- 

Corresponding true values to TDNN outputs 
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Table 4.9: Voltage and angle cor 
I Voltage I TDNN output - 

Bus 4 
Bus 5 
Bus 6 
Bus 7 
Bus 8 
Bus 9 

I 

Angle / TDNN output 
Bus 1 I 0 
Bus 2 
Bus 3 
Bus 4 
Bus 5 
Bus 6 
Bus 7 
Bus 8 
Bus 9 

n~ar i son  of TDNNs with true 

1 .O494 
1 .O486 
1 .O4O7 
1 .OM7 
1 .O338 
1 .O4OO 

True value 

Absolute error 
0 
0 
0 
0 
0 
0 

Absolute error 
0 
0 
0 
0 
0 
0 
0 
0 
0 

values 

4.4 19-machine Test System 

The 19-machine system was the largest test system used for our study. Due to the 

complexity of this system, the operating range was tighter than two previous cases. 

Data patterns were generated by varying the load at  each bus, from 70% to 110% of 

the base case, to cover an acceptable range of operating conditions. The load flow 

algorithm did not converge for loading levels beyond the mentioned range. 

1. FLN Results 

The number of inputs to FLN was 3570 for the 19-machine system. The input 

consisted of real and reactive power of each bus and their second-order outer 

products. In enhanced representation by considering the second order product 

of the original inputs, we arrived a t  84/2(2 x 1 + (84 - 1) x 1) = 3570. Like 

other test systems, only voltage of load buses were considered as outputs of 
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Figure 4.10: Voltage-FLN response to generation increase a t  bus 15 

1.1 I I I I I 

FLN output * Real value 

0.85 
0 5 10 15 20 25 30 

number of samples 

voltage-FLN. The trainingllearning functions were the same as previous cases. 

The learning rate (p)  was taken as le-5 . 

For training FLNs, 800 data patterns were generated where, 700 patterns were 

used for training and 100 patterns were used for testing. The FLN was able to 

estimate state variables with less than 1% error. 

The results of FLNs compared with those obtained from the load flow program 

and their maximum absolute error are presented in Tables 4.10 and 4.11. 

After training, both FLNs were tested for a novel input pattern. Figure 4.10 

shows a sample voltage variation of bus 15, due to generation increase. The 

response of FLN to the mentioned pattern is shown in Figure 4.10. 
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Table 4.10: Voltage comparison between voltage-FLN outputs and true values 

Voltage 
Bus 20 
Bus 21 
Bus 22 
Bus 23 
Bus 24 
Bus 25 
Bus 26 
Bus 27 
Bus 28 
Bus 29 
Bus 30 
Bus 31 
Bus 32 
Bus 33 
Bus 34 
Bus 35 
Bus 36 
Bus 37 
Bus 38 
Bus 39 
Bus 40 
Bus 41 
Bus 42 

7LN output 
1.0084 
0.9985 

1 
1.0434 
1.043 1 
1.0128 
1.011 

1.0137 
1.0141 
1.0262 
1.0247 
1.0171 
1.0272 
1.0254 
1.0236 
1 .O33 
1.021 1 
1 .O3 

1 .O35 1 
1.0387 
0.979 
1.0349 
1.0189 

True value 
1.0078 
0.9985 
0.9997 
1 .O433 
1.043 1 
1.0128 
1.0109 

Absolute error 
0.0006 
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Table 4.11: Angle comparison between angle-FLN outputs and true va,lues 

Angle 
Bus 1 
Bus 2 
Bus 3 
Bus 4 
Bus 5 
Bus 6 
Bus 7 
Bus 8 
Bus 9 
Bus 10 
Bus 11 
Bus 12 
Bus 13 
Bus 14 
Bus 15 
Bus 16 
Bus 17 
Bus 18 
Bus 19 
Bus 20 
Bus 21 
Bus 22 
Bus 23 
Bus 24 
Bus 25 
Bus 26 
Bus 27 
Bus 28 
Bus 29 
Bus 30 
Bus 31 
Bus 32 
Bus 33 
Bus 34 
Bus 35 
Bus 36 
Bus 37 
Bus 38 
Bus 39 
Bus 40 
Bus 41 
Bus 42 

FLN output 
0 

27.0654 
-49.8562 
-88.2939 
-55.9147 
8.8534 
15.9695 
-13.5285 
22.1734 
-5.7947 

-48.2982 
-50.3828 
24.4519 
-48.3997 
5.7682 
7.4332 
-2.0202 
-76.826 
-77.7801 
-53.857 
20.687 

-58.7886 
15.2758 
-14.3232 
2.9126 
-2.6931 

-94.421 8 
-91.394 

-50.9967 
-52.3709 
22.3145 
-51.952 
3.9748 
4.4101 
-2.2743 

-84.6295 
-82.1877 
18.3862 

-10.9206 
-47.955 
10.3876 
-0.4407 

True value 
0 

26.9928 
-50.4979 
-89.08 19 
-56.4634 
8.8121 
15.9064 
-13.7597 
22.1014 
-6.0091 

-48.9397 
-5 1.0298 
24.3829 
-48.9417 
5.7312 
7.3938 
-2.0588 
-77.594 
-78.5588 
-54.5141 
20.6235 
-59.3308 
15.2138 
-14.5561 
2.8797 
-2.7332 
-95.1909 
-92.1741 
-5 1.644 
-53.0228 
22.2487 
-52.5018 
3.9404 
4.3751 
-2.3133 

-85.4221 
-82.9761 
18.3198 
-11.1459 
-48.5599 
10.3173 
-0.5101 

Absolute error 
0 

0.0726 
0.6417 
0.7881 
0.5487 
0.0413 
0.063 
0.2312 
0.072 
0.2144 
0.6415 
0.647 
0.069 
0.542 
0.037 
0.0393 
0.0387 
0.768 
0.7786 
0.6571 
0.0635 
0.5421 
0.062 
0.2329 
0.033 
0.04 

0.7691 
0.7801 
0.6473 
0.6519 
0.0658 
0.5498 
0.0344 
0.035 
0.039 
0.7926 
0.7884 
0.0665 
0.2254 
0.6049 
0.0702 
0.0694 
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2. TDNN Results 

Like previous cases, two TDNNs were developed to estimate the voltage and 

phase angle. For training and testing the voltage-TDNN, 800 patterns were 

generated with using the same process explained before. Out of these, 700 

patterns were used to train the neural network, and the remaining 100 patterns 

were used to test the accuracy and robustness of the ANN. 

The inputs to the voltage-TDNN were the voltage of load buses a t  time instant 

(k) plus two time delay units. For the angle-TDNN, phase angles of all buses 

were considered. The outputs of TDNNs were predicted values of the state 

variables at  time (k + 1).  The result for both TDNNs are given in Tables 4.12 

and 4.13. 
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Table 4.12: Voltage comparison between voltage-TDNN output and true values 

Voltage 
Bus 20 
Bus 21 
Bus 22 
Bus 23 
Bus 24 
Bus 25 
Bus 26 
Bus 27 
Bus 28 
Bus 29 
Bus 30 
Bus 31 
Bus 32 
Bus 33 
Bus 34 
Bus 35 
Bus 36 
Bus 37 
Bus 38 
Bus 39 
Bus 40 
Bus 41 
Bus 42 

TDNN output 
1.0187 
1 .OlO3 
1.0193 
1.0448 
1.0464 
1.023 1 
1.0252 
1.0467 
1 .O35 

1 .O32l 
1.0309 
1.0246 
1 .O356 
1 .OX 1 
1.0309 
1 .O39 
1.0355 
1.0395 
1.0366 
1 .O4l7 
1.0079 
1 .O437 
1.0301 

True value 
1.0188 
1.0104 
1.0194 
1.0448 
1.0464 
1 .OZ2 
1 .OZ3 
1.047 
1 .O35 1 
1.0321 
1 .O3 1 
1.0246 
1 .O%6 
1 .O322 
1.0309 
1 .O39 
1.0356 
1 .O3% 
1 .O366 
1.0417 
1.008 

1 .O437 
1 .O3O2 

Absolute error 
0.0001 
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Table 4.13: Angle comparison between angle-TDNN outputs and true values 

Angle 
Bus 1 
Bus 2 
Bus 3 
Bus 4 
Bus 5 
Bus 6 
Bus 7 
Bus 8 
Bus 9 

Bus 10 
Bus 11 
Bus 12 
Bus 13 
Bus 14 
Bus 15 
Bus 16 
Bus 17 
Bus 18 
Bus 19 
Bus 20 
Bus 21 
Bus 22 
Bus 23 
Bus 24 
Bus 25 
Bus 26 
Bus 27 
Bus 28 
Bus 29 
Bus 30 
Bus 31 
Bus 32 
Bus 33 
Bus 34 
Bus 35 
Bus 36 
Bus 37 
Bus 38 
Bus 39 
Bus 40 
Bus 41 
Bus 42 

TDNN output 
-0.0001 
21.7352 
-3 1.9332 
-61.3504 
-37.7305 
7.5424 
13.5049 
-8.1892 
18.5223 
-1.9267 
-30.682 
-32.3617 
19.6531 
-3 1.7596 
5.0727 
6.4067 
-1.1982 

-52.2579 
-53.0178 
-35.1596 
16.6328 

-40.01 19 
12.9439 
-8.8332 
2.7806 
- 1.7444 

-66.2281 
-63.8087 
-32.8662 
-33.9671 
17.9266 

-34.6274 
3.6271 
3.9734 
-1.4101 

-58.5183 
-56.5731 
15.4571 
-6.0828 

-3 1.1247 
9.3269 
0.5328 

True value 
0 

21 
-3 1.9384 
-61.3555 
-37.7351 
7.5428 
13.5061 
-8.1898 
18.5233 
-1.9272 
-30.6836 
-32.3639 
19.6546 
-3 1.7622 
5.0728 
6.407 

-1.1984 
-52.2614 
-53 .O2O5 
-35.1614 
16.633 1 
-40.0167 
12.9448 
-8.834 
2.7807 
-1.7446 
-66.2337 
-63.8134 
-32.8701 
-33.9718 
17.9283 
-34.6302 
3.6272 
3.9735 
-1.4103 
-58.524 

-56.5772 
15.458 
-6.0836 

-31.1253 
9.3271 
0.5326 

Absolute error 
0.0001 
0.0019 
0.0052 
0.0051 
0.0046 
0.0004 
0.0012 
0.0006 
0.001 

0.0005 
0.0015 
0.0022 
0.0015 
0.0027 
0.0001 
0.0003 
0.0002 
0.0035 
0.0027 
0.0018 
0.0003 
0.0048 
0.0009 
0.0008 
0.0001 
0.0002 
0.0056 
0.0047 
0.0039 
0.0047 
0.0017 
0.0028 
0.0002 
0.0001 
0.0001 
0.0057 
0.0041 
0.0009 
0.0008 
0.0006 
0.0002 
0.0001 



Chapter 5 

The Transient Energy Function 

This Chapter presents a general introduction to the power system transient stability 

problem. The objective is to provide an overview of the power system stability phe- 

nomena and the analytical techniques applicable to transient stability analysis. The 

basic concept of direct methods such as transient energy function is presented. 

Transient Stability 

"Power system stability may be broadly defined as the ability of a power system to 

remain in a state of operating equilibrium under normal operating conditions and to 

regain an acceptable state of equilibrium after being subjected to a disturbance. 

Since power systems rely on synchronous machines for generating electrical power, 

a necessary condition for satisfactory system operation is that all synchronous ma- 

chines remain in synchronicity. Transient stability is the ability of the power system 

to  maintain synchronism when subjected to  a severe transient disturbance. A dis- 

turbance may be a small one in the form of load changes or a severe form such as 
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short-circuit on a transmission line or loss of a large generator, etc. The system re- 

sponse to such disturbances involves excursion of rotor angles, machine speed, bus 

voltages and other system variables" [19]. If the resulting variation between machines 

remains within certain bounds then the system is stable. The loss of synchronism 

will usually be evident within 2 to 3 seconds of the initial disturbance and it is influ- 

enced by the nonlinear characteristics of the power system. The following is a brief 

illustration of transient stability problem, identification of factors influencing it and 

a description of analytical techniques applicable to transient stability analysis. 

5.1.1 The Swing Equation 

For the purpose of analyzing the system response to large disturbances, simple models 

of power systems are used. All resistances are neglected. Generators are represented 

by the classical model as a constant voltage behind the direct-axis transient reactance, 

Xi. The loads are modeled as constant admittances, and the input power from the 

prime mover, P,, is assumed constant . These parameters constitute the classical 

representation of a power system which is derived from [23, 391. The equation of 

motion or the swing equation in (pu) for machine i in a power system is of the form: 

2Hi d2di 
- - = Pmi - Pmaxi sin Si 
wo dt2 

Where 

P,=mechanical power input in (pu) 

Pmaxi=maximum electrical power output in (pu) 

H=inertia constant in (MW.s/MVA) 

wo=synchronous speed in (elec.rad/s) 

b=rotor angle in (elec.rad) 

t=time in (s) 
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For an n-machine system, we can write n swing equations namely for i = 1, ..., n. 

Practical power systems have complex network structures. Accurate analysis of their 

transient stability requires detailed models for generating units and other equipment. 

"The most practical method of transient stability analysis is time-domain simulation 

in which the nonlinear differential equations are solved by using step-by-step numer- 

ical integration techniques to examine the behavior of the rotor angles. The most 

common n.bmerica1 integration methods used in transient stability are Euler method, 

Runge-Kutta method and implicit integration methods. Solving second order differ- 

ential equations for every single machine in the system is extremely time consuming 

and computationally intensive specially for large complex power system. To over- 

come this difficulty, direct methods were proposed" [19]. Direct methods determine 

stability without explicitly solving the system's differential equations. This approach 

is academically appealing and has received considerable attention. The next section 

describes the basic concepts on which the direct methods are based. 

5.2 The Transient Energy 

The transient energy approach can be described by considering a ball rolling on the 

inner surface of a bowl. "The area inside the bowl represents the region of stability, 

and the area outside, is the region of instability. The rim of the bowl has an irregular 

shape so different points on the rim have different heights. When the ball is sitting 

at  the bottom of the bowl this state is referred to as the Stable Equilibrium Point 

(SEP). When the ball is pushed to one side (kinetic energy is injected into the system), 

it will roll up on the surface in the direction of the force. The point that ball will 

stop depends on the amount of energy injected to it. When the ball rolls up the 

kinetic energy is converted to the potential energy. If the ball converts all the kinetic 
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energy into potential energy before reaching the rim of the bowl then it will roll back 

and eventually will settle down at  the stable equilibrium point due to friction forces. 

However, if the amount of injected kinetic energy is high enough to  cause the ball to  

go over the rim then the ball will go to the instable region. 

Power system stability has a similar concept to the rolling ball. Initially the system 

is operating at  the stable equilibrium point. When a disturbance happens, the system 

gains kinetic energy and this energy causes the synchronous machines to accelerate. 

After removing the disturbance this kinetic energy is converted to potential energy. 

The stability of the power system is the ability of the system to absorb the potential 

energy of the post disturbance system" [19]. There is a maximum amount of energy 

that a power system can absorb which is called the critical energy. Assessment of 

transient stability requires: 

1. Functions that describe the transient energy responsible for separation of one 

or more synchronous machines from the rest of the system. 

2. An estimate of the critical energy required for the machines to lose synchronism 

The energy function V describes the total system transient energy for the post dis- 

turbance system. "It is defined as 

1 
V = - J,L$ - Phi (Bi - 0:) - c Ei EjBii (cos 0, - cos 0:;) 

9 

where 

0:=angle of bus i at  the post disturbance SEP 
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Ji = 2Hiuo=per unit moment of inertia of the ithgenerator 

Ei=voltage magnitude of the ith generator 

P&, = Pmi - E!Gii and Gij + jBij is the ijth element of the admittance matrix. 

The transient energy function consists of three terms, which can be physically 

interpreted as follows: 

1. The first term is the transient kinetic energy: Vk, = f x:=, Jiw: 

2. The remainder is the transient potential energy, which may be decomposed in 

the following two terms: 

First term in V, is the change in rotor potential energy of all generators relative to  

Center of Inertia (COI) and the second term in V, is the change in stored magnetic 

energy of all branches. Vd represents the change in dissipated energy of all branches. 

For the application of the Transient Energy Function (TEF) method, it is con- 

venient to  describe the transient behavior of the system with the generator angles 

expressed with respect to  the inertial center of all generators. The position of the 

Center of Inertia (COI) is defined as 

where HT is the sum of the inertia constants of all n generators in the system. The 

motion of the generators with respect to the COI reference frame can be expressed 

by defining 
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where hi is the angle of machine i and dcol is the position of the center of inertia" 

P91. 

In the Center of Inertia (C0I)representation) the physical meaning of the angles 

has not changed. "The difference between this notation and the original notation is 

that COI notation measures angles relative to a rotating reference frame whereas the 

original notation measures angles in reference to a stationary frame. Moreover, the 

transformation of the former equations into the center of Inertia coordinates provides 

a concise framework for the analysis of systems with transfer conductances" [lo]. 

The transient stability assessment involves the following steps: 

1. Calculation of the critical energy V,,, which is the transient energy of the post 

fault system a t  the unstable clearing point. 

2. Calculation of the total system energy at  the instant of fault-clearing Vcl, which 

is the total energy of system at  the fault clearing time. 

3. Calculation of stability index: Vcr - V,.. The system is stable if the stability 

index is positive. 

The most difficult step in applying the TEF method is the calculation of V,,. The 

above formulation is explained for the single-machine-infinite-bus in the following 

section. 

5.2.1 One-machine-infinite-bus System 

Consider a machine connected to an infinite bus through two parallel lines. Assume 
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Figure 5.1: Machine connected to an infinite bus 

1 2 

V 5 infinite bus 
/ 

5 
that a fault occurs a t  the middle of one of these lines. "Using the expression in the 

Equation 5.2, the total energy is defined by 

1 
V (6, w )  = - J W ~  - Pm (6 - 6,) - Pm,, (cos 6 - cos 6,) 

2 (5.6) 

Since the provided model is ideal and damping is neglected, the total energy is constant 

along the post-fault trajectory and it is equal to the total energy level at  the clearing 

time. In other words, the only form of energy in the system are either kinetic energy 

or potential energy or the sum of these two energies, called the total energy. The 

latter is always constant at  any time in the post-fault period. From the expression of 

the total energy, the transient energy method can easily be explained. Referring to 

the rolling ball case as depicted in Figure 5.2, an additional energy is injected into the 

system during the fault-on period, in the same way as the ball in the bowl is given 

energy when it is initially pushed. During the post-fault period, the total energy 

remains constant. In Figure 5.2, A1 represents the excess of kinetic energy injected 

into the system during the time period where the fault is on and A2 represents the 

transient energy margin. The stability of the system is determined by the ability 

of the post-fault system to convert the excess of kinetic energy Vke (w,) [32]. If the 

kinetic energy at  the clearing time exceeds the difference between the potential energy 



CHAPTER 5. THE TRANSIENT ENERGY FUNCTION 

Figure 5.2: TEF approach 

Transient energy margin 

Angle 

at  clearing time and that at  the unstable equilibrium point then the system will be 

unstable. Then we have 

This inequality is the mathematical way of stating the Energy Approach. The above 

inequality, must hold not only at  clearing time, but also during the post-fault time" 

1231 

Vke (w) + Vpe (6) < Vpe (6,) (5.8) 

According to the inequality 5.8 a transient stability criterion can be defined and 

extended to a multi machine system as follows: Following a disturbance, the system 

is  transiently stable if the total energy is  less than the potential energy evaluated at 

the closest Unstable Equilibrium Point  (UEP) [39]. "The calculation of 6, (6,) or V,, 

in general, is the most difficult step in applying the TEF  method. Three different 
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approaches are briefly described below. 

5.3 The Closest Unstable Equilibrium Point (UEP) 

Approach 

Unstable equilibrium point is one of the early TEF methods for transient stability 

analysis used to determine the smallest VcT. UEPs are determined by solving the 

post-disturbance system steady-state equations with different initial values of bus 

angles. Then the system potential energy at  each point is evaluated. The minimum 

potential energy is considered as the VcT. For a power system this approach calculates 

the critical energy by implicitly assuming the worst fault; hence, the results are very 

conservative and usually of little practical value. 

5.4 The Controlling UEP Approach 

This method removes much of the above mentioned problem by computing the critical 

energy dependent on the fault location. This approach is based on the system trajec- 

tories for all critically stable cases that are closely related to the boundary of system 

separation. These points are called controlling unstable equilibrium points. Numerical 

problems are usually encountered when solving for the controlling UEP. The problem 

is formulated as a computationally intensive multi-dimensional optimization problem 

which may suffer from non-convergence under stressed conditions. 
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5.5 Sustained-fault Approach 

To avoid the time-consuming controlling-UEP computation, the sustained fault 

method was developed" [19]. 

The critical energy is determined as follows: 

1. A time domain simulation with a sustained fault is run until the system crosses 

the Potential Energy Boundary Surface (PEBS). The crossing of the PEBS is 

indicated by the potential energy reaching its maximum. 

2. The potential energy at  the crossing of the PEBS is taken as the critical energy 

for that particular fault location. 

5.6 Limitation of Direct Methods 

In spite of the many significant accomplishments in the direct methods, modeling 

limitations and the unreliability of computation techniques are major obstacles to 

their widespread practical use. On the other hand, time-domain method has an 

unlimited modeling capability but due to the step-by-step integration of differential 

equations, it is very slow and not suitable for on-line applications. 

The best way appears to be the use of a hybrid approach in which the transient 

energy calculation is incorporated into the conventional time-domain simulation. This 

enhances the capability of simulations by computing the stability margin and mini- 

mizing the effort required in determining the stability limits. Chapter Six discusses 

this approach in detail. 



Chapter 6 

Stability Analysis with Hybrid 

Met hods 

Chapter Five introduces the concept of transient stability analysis, also known as 

Dynamic Security Assessment (DSA). It also presents different methods of transient 

stability assessment and their shortcomings. Recent research has shown interest in 

hybrid methods which seem to be the better compromise between accuracy in power 

system modeling and the necessity of obtaining reliable stability/instability indices 

[19, 201. 

The name hybrid comes from the fact that it combines both the time domain 

and the TEF evaluation in solving stability problems and producing a stability in- 

dex. "The hybrid method first computes actual system trajectory using time domain 

simulation, then calculates the degree of stability by evaluating the TEF index. 

Security assessment consists of off-line and on-line procedures. Off-line procedures 

are planning tools used to verify if the system topology and the operating conditions 

will match the pre-defined security constraint. On-line procedures are activated dur- 

ing system operation aiming at  verifying actual operating condition of the system. 
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On-line procedures have to be balanced between accuracy and short computational 

time. In fact, the system operator requires a fast and reliable answer to the question 

"secure/nonsecure" [42]. Transient stability analysis is the answer to  this question. 

Another very important issue in this context is the quantitative evaluation of 

stability/instability indices, i.e., the degree of stability. "Once the system has been 

evaluated in terms of stability/instability indices, a particular importance must be 

given to control actions aimed to improve the evaluated margins. These control actions 

may be defined as preventive actions or corrective actions. Examples of these actions 

are fast-valving, braking resistor insertion, generator re-scheduling etc" [I]. 

In this work, the hybrid method by means of neural networks is proposed to  assess 

the stability of power systems. Stability analysis involves analysis of complex patterns 

of system behavior. Therefore, the ANN technique is used for fast pattern recognition 

and classification of dynamic system security status [36, 291. The topology of the 

proposed neural network, the method of training, and the selection of input/output 

data are discussed later in this chapter. 

6.1 Overview of the Implemented Hybrid Method 

In this work, the concept of using neural networks is presented for power system 

transient stability assessment. "This concept combines the advantages of time domain 

simulation with capability of neural networks in fast pattern recognition to evaluate 

transient energy function. The level of security is calculated by using the Transient 

Energy Function (TEF) to  evaluate energy margin (AV) which is called TEF index 

in our study. Hybrid methods can be based on: 

1. Potential Energy (GPE) method [28] 
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2. Kinetic Energy (KE) method [27] 

The hybrid method in this research is based on the generalized potential energy ap- 

proach. The transient stability analysis begins with a load-flow calculation used as an 

initial condition followed by the dynamic simulation of the perturbed system. After 

the removal of the perturbation, the ANN-based procedure evaluates the Transient 

Energy Function (TEF) a t  each time sample" [I]. 

As explained in Chapter Five, angle and speed of the COI are used as reference 

for the dynamic analysis. The system instability is detected if machine angles were 

beyond the threshold of 180 degrees in the COI reference. The time instant that 

system loses stability is called critical time. The corresponding potential energy at  

critical time, which is assumed to be equal to the maximum of the PE, is known as 

Kr . 

The TEF  index is calculated by subtracting the total transient energy function 

of the system at  the fault clearing time from the total transient energy value at  the 

critical clearing time, TEF index = V, - Vd. This energy margin represents the 

distance of system stability from the unstable point. A low or negative value of this 

index indicates instability and a relatively high positive value of TEF index represents 

a secure condition. 

Two test systems, which were explained in Chapter Two, are used in this part to 

validate the result of the study. The type, location, and the condition under which 

these perturbations were applied are discussed later for each test system separately. 
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6.2 The Proposed ANN Approach to TEF Evalu- 

ation 

In order to achieve a neural network with transient energy approximation capability, a 

multi-layer feed-forward back- propagation network was used. The network consisted 

of three basic elements: 1) an organized topology of interconnected neurons; 2) a 

suitable learning algorithm, and 3) a method of recalling information. 

6.2.1 Topology of the ANN 

The topology of a multi-layer feed-forward ANN consisted of an input layer, one 

hidden layer, and an output layer. 

1. The input layer 

Appropriate selection of input variables is the key to the success of ANN ap- 

plications. Stability of a power system is mainly based on synchronization of 

all machines. Synchronism in machine speeds (also angles), (&, wi) , governs the 

stability of a power system. Thus, machine angle (rad) in COI reference and 

speed deviation (pu) of all buses were chosen as inputs to the ANN. 

2. The Hidden Layer 

Computational power of the ANN is a result of the addition of hidden layers. 

But there are no general guidelines to determine the number of hidden layers and 

neurons. Many applications have proved that ANNs with one single hidden layer 

have sufficient capability of capturing complicated relations between input and 

output variables. Therefore one hidden layer with five neurons was determined. 

The number of neurons in the hidden layer was determined based on trial and 
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error. 

3. The Output Layer 

Determination of the output layer is quite straight-forward. For T E F  estimation, 

one output neuron is required. Appropriate scaling of the input and output 

variables was carried out and the network training set was preprocessed by 

normalizing the inputs and outputs so that they fall in the interval [-I, 11. 

This preprocessing was explained in detail in Chapter Four. The input/output 

relation can be expressed as: 

TEF = F(S1, wl, ..., Sn, w,), (6.1) 

where n is the number of machines in the system. Sigmoid transfer function which is 

the most widely used function for back propagation neural networks was used for hid- 

den and output layer neurons. Models incorporating sigmoid transfer functions often 

help generalized learning characteristics and yield models with improved accuracy. 

6.2.2 The Back Propagation Algorithm 

This algorithm is derived based on the concept of the gradient descent search to 

minimize the error through the adjustment of weights. The detail of this algorithm was 

explained in Chapter Four. A feed-forward back propagation network with Levenberg- 

Marquardt training algorithm was used in this section. 

6.2.3 ANN Training 

1. Data generation 

To develop data patterns for training and testing NNs, different cases were 

developed by changing the network topology, i.e., taking out one line out of 
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service a t  a time. In this work, only line-to-ground faults on all possible locations 

in the power system network were considered. Note that other fault types will 

require the same procedure as line-to-ground fault. 

At first, load flow solution was taken as initial condition in each case. Then, 

time domain simulations were run with different fault locations. The dynamic 

behavior of each system was monitored following each fault. After fault remov- 

ing, machine angles and speed deviations of all machines were collected at  every 

time step for 5 seconds. The loss of synchronism usually happens within 2 to 

3 seconds of the initial disturbance therefore, capturing 5 seconds seemed to 

be adequate. The value of TEF was calculated for every time step after fault 

removal. A data base was then formed by pairing the angle and speed deviation 

of each machine and the corresponding TEF. Accordingly, the inputs to the NN 

are twice the number of machines in each case and the output is the estimated 

TEF. 

The above process was repeated with longer fault duration to cause a complete 

system instability in order to evaluate the critical transient energy. The instant 

that all machine angles were beyond 180 degrees (in COI reference) was recorded 

as the critical time. The transient energy function value a t  critical time was 

recorded as the critical transient energy. 

2. Data preparation 

The generated data of each case were normalized and shuffled several times 

before training the NN. This was done to enhance the randomness of the data. 

After the data was shuffled, it was divided into two groups, one was used for 

training and the other for testing. For proper NN performance, test data and 
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training must be different although belonging to the same statistical source. The 

property of being able to correctly classify previously unseen inputs is referred 

to as generalization. 

During the training session, the NN was closely monitored to prevent network memo- 

rization or saturation. When a NN memorizes the training data, it reproduces accept- 

able results for patterns that have been used during the training, but unacceptable 

results with high errors when tested on novel patterns. There are different techniques 

to ensure that a NN has learned and not memorized. A properly trained NN should 

respond with equal error measures to both training and testing patterns. The train- 

ing patterns in this study were first divided into two subsets where one subset was 

almost four times the size of the other subset. After the first few iterations, the NN 

was trained on the larger subset and tested on the smaller subset. If the errors of 

the larger subset and the smaller subset were comparable, the training patterns were 

re-shuffled and divided again into two subsets and so on. 

Another problem with NN training is network saturation. This happens when the 

nonlinear functions of the hidden neurons reach the upper or lower saturation limits. 

It is common to have neurons in the saturation region, but too many of them in the 

saturation region would make the NN ineffective. To prevent network saturation, the 

hidden neurons were closely monitored and those with no contribution to the training 

process were eliminated. 

6.3 Validation Results 

Test systems in this section include the 19-machine case and the 7-machine case. The 

above method of generating data formed a data base consisted of 3191 data pairs for 
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Table 6.1: Sample Input of ANN for 7-machine case 

Inputs 
Machine no. 1 

the 7-machine case and 22132 data pairs for the 19-machine case. The data was then 

passed to neural networks for training and testing. 

In the case of 19-machine, with 38 inputs and more than 22000 data pairs, the 

ANN training was time-consuming. Therefore, the number of inputs were reduced to 

machine angles only since these variables have stronger discriminating capabilities for 

stability evaluation. 

Machine no.2 
Machine no.3 
Machine no.4 
Machine no.5 
Machine no.6 
Machine no.7 

6.3.1 7-machine Test System 

Angle (rad) 
0.3941 
0.3941 
0.3941 
0.3941 
0.1713 
-0.0619 
-0.3234 

Table 6.1 shows sample input data for TEF neural networks. System specification of 

the 7-machine system is described in Chapter Two. The NN had 2 x 7 = 14 inputs 

which was the number of all machine angle and speed deviations. 

In our study, a priori knowledge of the fault type is needed to  evaluate the transient 

energy. The fault type under investigation was the line-to-ground fault for all possible 

locations. The fault was on line 11-110 which lasted for 0.08 second. 

After generating and then shuffling the data pairs, 3000 of them were used to train 

the NN and the rest were used to test the capability of the NN to evaluate the TEF 

index. Table 6.2 shows the result of the TEF evaluation and the potential energy of 

each machine. The negative value of TEF shows the instability of the system. 

Speed deviation 
-0.0002 
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Table 6.2: Output of TEF-ANN for unstable case (1) 

I Potential ( 
Output 

Machine no.1 

Table 6.3: Output of TEF-ANN unstable case (2) 

Machine no.2 
Machine no.3 
Machine no.4 
Machine no.5 
Machine 110.6 
Machine no.7 

Energy (pu) 
-0.001 1 

According to one-line diagram of the system in Figure 2.14, bus 11 is the slack 

bus which is connected to the rest of the system via bus 110. The potential energy 

of machine 6, which is the slack generator, compared to other machines clarifies this 

point. 

Table 6.3 shows another unstable case of the system. The fault was on line 120-110 

which lasted for 1 second. The potential energy of machines 6 and 7 indicates that 

they are the most affected machines in the system. 

On the other hand, Tables 6.4 and 6.5 show two stable cases for the same power 

system. In the first case, the fault is line-to-ground fault on line 102-10 which lasted 

for 0.1 second. Bus 102 which is connected to generator 2 showed a stable behavior 

TEF Index 

-0.001 1 
-0.001 1 
-0.001 1 
-0.0014 
-0.1368 
0.0206 

Output 
Machine no. 1 
Machine no.2 
Machine no.3 
Machine no.4 
Machine 110.5 
Machine no.6 
Machine 110.7 

-0.3528 

Potential Energy 

(PU) 
-0.0083 
-0.0084 
-0.0084 
-0.0084 
-0.0104 
-0.905 
0.1538 

TEF Index 

-2.5176 
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Table 6.4: Output of TEF-ANN for stable case 

1 Potential I 
Machine no.2 I 3.0382 
Machine no.3 I -0.2462 

Output 
Machine no.1 

Machine no.6 I 0.8699 
Machine no.7 I 0.2944 

Energy (pu) 
-0.2471 

Machine no.4 I -0.2462 
Machine no.5 I -0.2276 

Table 6.5: Output of TEF-ANN for stable case (2) 

TEF lndex 

1.8465 I 

I JPotential tnergy (pu) I 1 

Machine no.7 ( 0.01 711 

Output 
Machine no.1 
Machine no.2 

after fault removal. This was the result of power system stabilizer on that generator. 

The above argument was also true for the second stable case which was a line-to- 

1.0e-003 
-0.0639 
-0.0639 

ground fault on line 10-104. The potential energy of each machine is also presented 

in Tables 6.4 and 6.5 to simplify the analysis of each machine's behavior. Note that 

the potential energies were calculated by numerical methods and only the TEF index 

TEF Index 

was the result of our neural network. 

The ANN was trained with a learning rate of 0.01, momentum constant of 0.9, 

the maximum error tolerance of 0.5e-4, and 4400 epochs. The training algorithm was 

back propagation and the mean squared error as the performance function. After 

training the NN, a novel testing pattern was used to  evaluate the accuracy of the 
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Figure 6.1: Error Histogram for the 7-machine NN 
1201 I , I I I 

Absolute errol 

NN. To show the accuracy of obtained results, a histogram of the absolute error of all 

the testing pairs is shown in Figure 6.1. The absolute error is the absolute difference 

between the real value of TEF and the output of our neural network. The histogram 

shows that of 191 data points about 60% are below 0.05. 

6.3.2 19-machine Test System 

The same training as explained before was used to generate 22132 data pairs. Table 

6.6 shows a sample generated training data. The line-to-ground fault was on line 23-7 

and lasted for 0.08 second. As explained before, due to the large number of data 

patterns the number of inputs was reduced to  19 by only considering machine angles 

at  the fault clearing time. 

Out of these 22132 data pairs, 22000 were shuffled and then passed to the NN 

for training. The rest of data was used to test the capability of the NN to evaluate 
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Table 6.6: Sample Input of ANN for 19-machine case 
--- 

Inputs I Angle (rad) I Speed deviation 
Machine no.1 1 0.5025 1 -0.0002 
Machine no.2 
Machine no.3 
Machine no.4 
Machine 110.5 
Machine no.6 
Machine n0.7 
Machine no.8 
Machine no.9 
Machine no. 10 
Machine no. 11 
Machine no. 12 
Machine no. 13 
Machine no. 14 
Machine no. 15 
Machine no. 16 
Machine no. 17 
Machine no. 18 
Machine no. 19 

the TEF index. The NN output in Table 6.7 shows the corresponding TEF index to 

Table 6.6. The potential energy gained by each machine during fault is also presented 

in Table 6.7. The potential energy was calculated using numerical method and is 

only shown to give a better understanding of dynamic behavior of each machine. The 

positive value of TEF index refers to the stability of power system after fault removal. 

The ANN is trained with a learning rate of 0.01, momentum constant of 0.9, the 

maximum error tolerance 0.5e-4, and 1000 epochs. A novel testing pattern was used 

to evaluate the accuracy of the NN. Figure 6.2 shows the error of 80 randomly selected 

points from the testing pattern. The error was defined as the difference between the 

real value of TEF and the result from the NN. 

To show the accuracy of obtained results, a histogram of the absolute error of all 

the testing pairs is shown in Figure 6.3. The histogram shows about 80% of error 
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Table 6.7: Sample Output of ANN for 19-machine case 

Output 
Machine no. 1 
Machine no.2 
Machine no.3 
Machine no.4 
Machine no.5 
Machine no.6 
Machine no.7 
Machine no.8 
Machine no.9 

Machine no. 10 
Machine no. 1 1 
Machine no. 12 
Machine no. 13 
Machine no. 14 
Machine no. 15 
Machine no. 16 
Machine no. 17 
Machine no. 18 
Machine no. 19 

points are below 0.01. 

Potential 
Energy (pu) 

0.0003 

Both error histograms indicate that the ANN-architecture is able to evaluate the 

TEF index mostly with higher than 2% precision. That makes the proposed ANN a 

reliable tool to help utility operators in decision making. 

TEF Index 

0.1421 
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Figure 6.2: Error of TEF-NN for the 19-machine system 
error=real value-NN output 

I I 

Figure 6.3: Error Histogram for the 19-machine NN 
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6.4 The Proposed ANN-Based Tool For Stability 

Analysis 

In the previous section a novel neural network approach to evaluate TEF index was 

proposed. In this section, we proposed an ANN approach to detect whether a con- 

tingency affecting a power system can cause instability. "It is crucial for the operator 

to know the status of each machine in a power network after fault removal, i.e., if a 

machine remains stable or unstable after a particular fault. 

For that purpose, an ANN-based tool was used at  the fault clearing time for 

discriminating between stable and unstable machine clusters" [I]. The proposed ANN 

structure was trained and validated by simulating properly arranged scenarios from 

two test systems, which were used in the TEF evaluation section. 

6.4.1 Topology of the ANN 

The topology of a multi-layer feed-forward back-propagation ANN consisted of an 

input layer, one hidden layer and one output layer. 

I. The input layer 

Machine angles and potential energy, evaluated a t  the fault clearing time for 

each machine, were adopted as input variables for neural networks. 

2. The hidden layer 

Based on trial and error method, five neurons were considered in the hidden 

layer. 

3. The output layer 

"The selection of output variables is defined by the recognition of the problem as 
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a classification one: whether a machine belongs to  the stable/unstable cluster. 

For every single machine one neural network was adopted. A total of m neural 

networks was required, where m was the number of machines in each power 

system. The single output for each ANN was set to  -1 if the corresponding gen- 

erator was unstable and +1 if it was stable" [I]. Figure 6.4 shows the structure 

of neural network with details of each layer. 

Figure 6.4: Neural network scheme for transient stability analysis 
Input Hidden Output 

Layer Layer 

H 

"Sigmoid" transfer function which is the most widely used function for back propaga- 

tion problems was used for the hidden layer. Since the output was either 1 for stable 

cases and -1 for unstable cases, the "symmetric hard limit" transfer function was used 

for the output layer. 
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6.4.2 ANN Training 

1. Data generation 

The simulations were performed under similar condition as explained before but 

this time machine angles and potential energy of each machine in COI reference 

were taken as inputs. Machine angles were taken as stability indicators. If the 

angle-in COI reference was higher than 180 degrees the target output was set 

to -1, otherwise 1. 

2. Data preparation 

"Once the training data was built, the percentage of stablelunstable cases in 

the data set was analyzed to make sure a sufficient number of unstable cases are 

present in the training set" [I]. 

6.5 Validation Results 

The proposed framework was tested on the 19-machine case and also the 7-machine 

test system. The data base for the 7-machine system consisted of 3191 data patterns 

and 22132 data patterns for the 19-machine case. The training set was then passed 

to neural networks for training and testing. 

6.5.1 7-machine Test System 

The number of inputs was 7+  7 = 14, which includes machine angle and the potential 

energy of each machine. From the total number of 3191 simulation patterns, 2918 

were used to train the ANNs and 273 were used to test them. Table 6.8 shows a 

representative sample of input a t  the fault clearing instant. The NNs performance 
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Table 6.8: Sample Input of ANNs 

Table 6.9: Output of ANNs 

Input No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Angle of machine 1 in COI ref. 
Angle of machine 2 in COI ref. 
Angle of machine 3 in COI ref. 
Angle of machine 4 in COI ref. 
Angle of machine 5 in COI ref. 
Angle of machine 6 in COI ref. 
Angle of machine 7 in COI ref. 
Potential energy of machine 1 in COI ref. 
Potential energy of machine 2 in COI ref. 
Potential energy of machine 3 in COI ref. 
Potential energy of machine 4 in COI ref. 
Potential energy of machine 5 in COI ref. 
Potential energy of machine 6 in COI ref. 
Potential energy of machine 7 in COI ref. 

was tested by a novel input. The novel input included machine angles and potential 

energies of all machines after a line-to-ground fault on line 2-20. The fault lasted for 

about 3 seconds to  make sure all the machines in the test system were gone unstable. 

The obtained results are shown in Table 6.9. 

The NN set was also tested with the stable case (1) explained in section 6.3.1. 

Table 6.10 shows the result which has consistency with that obtained from the TEF 

index in Table 6.4. All machines in the power system remain stable after fault removal 

except machine 2 which was connected to bus 102. After fault removal, line 102-10 

Output No. 
1 
2 
3 
4 
5 
6 
7 

State of the i-th machine 
-1 
- 1 
-1 
-1 
- 1 
- 1 
-1 
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Table 6.10: Output of ANNs 

was out of system therefore, there is no synchronism between machine 2 and the rest 

of machines in the power system. 

A summary of the results gained by 273 test pairs is shown in Table 6.11. As can 

be seen, the "False Alarm" and "Missed alarms" error indices are limited within few 

percent. "False Alarm" is the error in the ANN output when declared as unstable 

but stable by simulation and "Missed Alarm" is the error in the ANN output when 

declared as stable but unstable by simulation [I]. 

The maximum error for false alarms is 3.6% which is still considered an acceptable 

error rate. In case of missed alarms the error is surprisingly low thus showing that 

the proposed tool has a good capability in predicting the stability of machines for the 

line-to-ground contingency. 

Output No. 
1 
2 
3 
4 
5 
6 

6.5.2 19-machine Test System 

State of the i-th machine 
1 
-1 
1 
1 
1 
1 

In this case again, the chosen inputs for each of neural networks were angle and 

potential energy of each machine therefore, 19 i- 19 = 38 inputs. From the total 

number of 22132 simulation patterns, 21397 were used to train the ANN set and 735 

were used to test them. 

Table 6.12 shows a sample of inputs a t  the fault clearing instant of a fault that 
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Table 6.11: Results of the validation data for 7-machine case 

occurred on line 15-33. The fault lasted for about 0.05 seconds. According to simula- 

tion results, all the machines remain synchronized after fault removal except machine 

15 which was disconnected from the rest of the system due to outage of line 15-33. 

The output of the NN, shown in Table 6.13, also confirms the simulation results. 

A summary of results gained by 735 test patterns are shown in Table 6.14. The 

maximum error for false alarms is 4.21%. In case of missed alarms the error is very low 

thus showing that the proposed tool has a good capability in predicting the stability 

of machines. 

An ANN-based contingency screening tool was proposed in this Chapter. The 

ANN tool makes use of the Hybrid method combining time domain simulations and 

energy function in transient stability analysis. The line-to-ground fault was investi- 

gated in this work but the same process can be used for other fault types. 

A set of ANNs to determine the status of machines after fault removal along with 

an NN to evaluate the TEF index as a degree of stability was proposed. Both NNs 

were validated using two test power systems. The fast computation time with reliable 

results make the implemented ANN method an efficient on-line screening tool. 

Machine 1 
Machine 2 
Machine 3 
Machine 4 
Machine 5 
Machine 6 
Machine 7: 

Stable 
Cases 
196 
195 
195 
195 
200 
203 
170 

Unstable 
Cases 

77 
78 
78 
78 
73 
70 
103 

False 
alarms 

0 
0 
0 
6 
0 
4 
10 

False alarms 
% 

0.00% 
0.00% 
0.00% 
2.20% 
0.00% 
1.40% 
3.60% 

Missed 
alarms 

0 
0 
0 
0 
0 
0 
0 

Missed alarms 
% 

0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
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Table 6.12: Sample Input of ANN 

I n ~ u t  No. I 
l ~ n ~ l e  of machine 1 in COI ref. 

l~otential energy of machine 19 in COI ref. 

Angle of machine 2 in COI ref. 
Angle of machine 3 in COI ref. 
Angle of machine 4 in COI ref. 
Angle of machine 5 in COI ref. 
Angle of machine 6 in COI ref. 
Angle of machine 7 in COI ref. 
Angle of machine 8 in COI ref. 
Angle of machine 9 in COI ref. 
Angle of machine 10 in COI ref. 
Angle of machine 1 1 in COI ref. 
Angle of machine 12 in COI ref. 
Angle of machine 13 in COI ref. 
Angle of machine 14 in COI ref. 
Angle of machine 15 in COI ref. 
Angle of machine 16 in COI ref. 
Angle of machine 17 in COI ref. 
Angle of machine 18 in COI ref. 
Angle of machine 19 in COI ref. 
Potential energy of machine 1 in COI ref. 
Potential energy of machine 2 in COI ref. 
Potential energy of machine 3 in COI ref. 
Potential energy of machine 4 in COI ref. 
Potential energy of machine 5 in COI ref. 
Potential energy of machine 6 in COI ref. 
Potential energy of machine 7 in COI ref. 
Potential energy of machine 8 in COI ref. 
Potential energy of machine 9 in COI ref. 
Potential energy of machine 10 in COI ref. 
Potential energy of machine 11 in COI ref. 
Potential energy of machine 12 in COI ref. 
Potential energy of machine 13 in COI ref. 
Potential energy of machine 14 in COI ref. 
Potential energy of machine 15 in COI ref. 
Potential energy of machine 16 in COI ref. 
Potential energy of machine 17 in COI ref. 
Potential energy of machine 18 in COI ref. 
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Table 6.13: Output of ANNs 
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'Table 6.14: Results of the validation data for 19-machine case 

Machine 1 
Machine 2 
Machine 3 
Machine 4 
Machine 5 
Machine 6 
Machine 7 
Machine 8 
Machine 9 
Machine 10 
Machine 11 
Machine 12 
Machine 13 
Machine 14 
Machine 15 
Machine 16 
Machine 17 
Machine 18 
Machine 19 

- 

Stable 
Cases 
65 1 
672 
714 
632 
65 1 
672 
630 
714 
630 
65 1 
672 
672 
630 
609 
630 
630 
662 
609 
609 

-- 

Unstable 
Cases 

84 
63 
21 
103 
84 
63 
10.5 
21 
105 
84 
63 
63 
105 
126 
105 
105 
73 
126 
126 

False 
alarms 

2 1 
0 
0 
2 
0 
0 
10 
3 1 
5 
21 
0 
0 
1 
5 
0 
0 
11 
0 
7 

False alarms 
% 

2.80% 
0.00% 
0.00% 
0.27% 
0.00% 
0.00% 
1.37% 
4.21% 
0.67% 
2.80% 
0.00% 
0.00% 
0.13% 
0.67% 
0.00% 
0.00% 
1 SO% 
0.00% 
0.95% 

Missed 
alarms 

0 
0 
0 
0 
0 
0 
0 
5 
0 
2 
0 
0 
0 
0 
0 
0 
1 
0 
0 

Missed alarm5 
% 

0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.67% 
0.00% 
0.27% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 
0.13% 
0.00% 
0.00% 
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Conclusion 

With the evolution of the electric power industry toward open markets over the last 

decade resulting in over-stressed power systems, more rigorous state estimation and 

security assessment are required. 

State estimation is an essential monitoring tool to achieve a secure and economical 

operation in today's complicated power systems. Security assessment evaluates the 

ability of a power system to withstand a contingency. 

This thesis project described implementation of artificial neural networks in state 

estimation of a power system by employing forecasting and filtering methods. We 

developed Functional Link Network to filter bad data (bad data detection) transmitted 

via SCADA. Time Delay Neural Network was developed to forecast the next state of 

the system by using the output of FLN. Two networks were validated by three power 

system benchmarks provided in MATLAB's Power System Toolbox (PST). 

The presented results from all three test cases showed consistency in terms of 

accuracy and reliability. The average absolute error in forecasted voltage magnitude 

was about 0.001 and for phase angles less than 0.01. The satisfactory precision in 

results with fast computation of the implemented method established the suitability 
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of artificial neural networks for on-line applications in DSA. 

Next, we introduced a novel approach to transient stability assessment by means of 

neural networks. The influencing factors in transient stability analysis were identified. 

Different numerical techniques as well as direct methods in Transient Energy Function 

(TEF) evaluation were examined. 

Our study showed an effective combination of both time domain and TEF method 

in Hybrid *Method for stability analysis. A NN-based technique to evaluate energy 

margin of a power system as a security index was proposed. The result obtained from 

the method were compared to those from MATLAB Power System Toolbox and the 

error histograms showed absolute error less than 0.01 for about 80% of total data. 

Another ANN-based monitoring tool was also represented to identify stable and 

unstable machines in a power system after fault removal. The performance of the 

NN was verified using two test power system benchmarks. The satisfactory results 

in predicting stability/instability properties of a power system, along with the short 

computational time (a few milliseconds) made the implemented ANN method an 

appropriate complementary tool for contingency screening in the energy management 

center. 

Our results show that Artificial Neural Networks are promising tools for global 

power system problems such as state estimation and transient stability assessment. 

However, as with all methods, there are some limitations too. 

In our state estimation study, the TDNN failed to predict the voltage magnitude 

of controlled voltage buses ( P-V buses). Although these buses do not affect the state 

estimation analysis that much, this issue should be considered in future works. 

In transient stability study only line-to-ground fault was considered. We did not 

explore whether in the presence of multiple faults, the suggested ANN method would 

be suitable or not. This could also be addressed in future investigations. 
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Figure A. l :  Power system stabilizer block diagram in PST [6] 
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Figure A.2: ST3 Excitation System in PST [6] 

1 
E+ - 

1 +sTr 
+ 
E~~ 

V Rmin 

Figure A.3: Simple turbine governor model in PST [6] 
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Table B.l: Generator and Machine Specification Matrix Format in PST [6] 

Figure B.l: Data format for induction generation in power system toolbox 

column 
1 
2 
3 
4 

5 

6 I magnetizing reactance X, I PU 

variable 
motor number 
bus number 

motor base MVA 
stator resistance rs 

stator leakage reactance x, 

7 
8 

9 
10 
11 
12 
13 
15 

unit 

MVA 

Pu 

PU 

rotor resistance r, 

rotor leakage reactance xr 

inertia constant H 
second cage resistance r2 

intercage reactance x2 
deep bar ratio 

leakage saturation current 
fraction of active bus load 

PU 

PU 
Sec 
Pu 
PU 
PU 
PU 
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Table B.2: Exciter Specification Matrix Format in PST [6] 

column 
1 
2 
3 

4 

voltage regulator time constant sec I T r  I 

5 

6 

data 
exciter type 
machine number 
input filter time constant TR 

voltage regulator gain K A  

unit 
3 for ST3 

sec 

voltage regulator time constant 
TA 
voltage regulator time constant 
Ti3 

8 

9 

10 

11 

12 

13 

16 1 potential source reactance XL I pu 

17 I rectifier loading factor K p  I 

sec 

sec 

14 

15 

18 I maximum field voltage Efd,, [ pu 

19 I inner loop feedback constant KG I 

- 
maximum voltage regulator 
Output V ~ m a x  
minimum voltage regulator 
Output V ~ m i n  
maximum internal signal VJ,, 

minimum internal signal Vlmin 

first state regulator gain KJ 

potential circuit gain coefficient 
K P  

PU 

PU 

pu 

pu 

potential circuit phase angle qp 

current circuit gain coefficient 
K! 

Table B.3: Governor Specification Matrix Format in PST [6] 

degrees 

20 maximum inner loop voltage 
feedback VG,, 

pu 
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Figure B.2: Data format for power sysbem stabilizer in PST 
column 

1 

2 
3 
4 
5 

1 8 1 lag time constant T4 1 sec 1 

6 

data 
type 

1 speed input 
2 power input 

machine number 
gain K 

washout time constant T 
lead time constant T I  

unit 

sec 
sec 

lag time constant T2 

9 

sec 

7 lead time constant T? 1 sec 

10 minimum output limit PU I maximum output limit PU 
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Table C.1: Bus specification for the 7-machine test system 
1 1.03 18.5 1.75 0.4 0.00 0.00 0.00 0.00 

102 1.03 18.5 1.75 0.4 0.00 0.00 0.00 0.00 
103 1.03 18.5 1.75 0.4 0.00 0.00 0.00 0.00 
104 1.03 18.5 1.75 0.4 0.00 0.00 0.00 0.00 
2 1.01 8.80 7.00 1.76 0.00 0.00 0.00 0.00 
3 0.9781 -6.1 0.00 0.00 9.76 1.00 0.00 0.00 

; 10 1.0103 12.1 0.00 0.00 0.00 0.00 0.00 0.00 
11 1.03 -6.8 7.16 1.49 0.00 0.00 0.00 0.00 
12 1.01 -16.9 7.00 1.39 0.00 0.00 0.00 0.00 
13 0.9899 -31.8 0.00 0.00 17.67 1.00 0.00 0.00 
20 0.9876 2.1 0.00 0.00 0.00 0.00 0.00 0.00 
101 1.00 -19.3 0.00 1.09 0.00 0.00 0.00 0.00 
110 1.0125 -13.4 0.00 0.00 0.00 0.00 0.00 0.00 
120 0.9938 -23.6 0.00 0.00 0.00 0.00 0.00 0.00 

Table C.2: Line specification for the 7-machine test system 
I 1 10 0.0 0.0668 0.00 1. 0. 



-- 
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Table C.3: Machine specification for the 7-machine test system 
1 1 225 0.16 .00234 1.81 0.30 0.217 7.80 0.022 

Table C.4: Exciter specification for the 7-machine test system 
0 1 0.02 200.0 0.05 0 0 5.0 -5.0 
0 2 0.02 200.0 0.05 0 0 5.0 -5.0 
0 3 0.02 200.0 0.05 0 0 5.0 -5.0 
0 4 0.02 200.0 0.05 0 0 5.0 -5.0 
0 5 0.02 200.0 0.05 0 0 5.0 -5.0 
0 6 0.02 200.0 0.05 0 0 5.0 -5.0 
0 7 0.02 200.0 0.05 0 0 5.0 -5.0 
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Table D.l:  Bus specification for the 19-machine test system 
1 1.0490 0.0000 28.3794 23.2983 0.0000 0.0000 0.00 0.00 



- - 
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Table D.2: Bus specification for the 19-machine test system (cont) 
25 1.0098 2.7673 0.0000 0.0000 80.8300 45.0000 0.00 0.00 
26 1.0060 -3.0830 0.0000 0.0000 80.8300 35.0000 0.00 15.00 
27 1.0050 -105.2786 0.0000 0.0000 97.0600 40.0000 0.00 59.00 
28 1.0086 -102.1152 0.0000 0.0000 87.0600 32.0000 0.00 0.00 
29 1.0243 -59.0441 0.0000 0.0000 0.0000 0.0000 0.00 0.00 
30 1.0226 -60.4863 0.0000 0.0000 0.0000 0.0000 0.00 0.00 
31 1.0153 23.1674 0.0000 0.0000 0.0000 0.0000 0.00 0.00 
32 1.0243 -59.6333 0.0000 0.0000 0.0000 0.0000 0.00 0.00 
33 1.0235 3.8774 0.0000 0.0000 0.0000 0.0000 0.00 0.00 
34 1.0215 4.3326 0.0000 0.0000 0.0000 0.0000 0.00 0.00 
35 1.0310 -2.6429 0.0000 0.0000 0.0000 0.0000 0.00 0.00 
36 1.0171 -95.0157 0.0000 0.0000 0.0000 0.0000 0.00 0.00 
37 1.0275 -92.4547 0.0000 0.0000 0.0000 0.0000 0.00 0.00 
38 1.0347 18.7511 0.0000 0.0000 0.0000 0.0000 0.00 0.00 
39 1.0378 -13.2266 0.0000 0.0000 0.0000 0.0000 0.00 0.00 
40 0.9654 -55.4078 0.0000 0.0000 0.0000 0.0000 0.00 0.00 
41 1.0312 10.2218 0.0000 0.0000 0.0000 0.0000 0.00 0.00 
42 1.0146 -1.0369 0.0000 0.0000 0.0000 0.0000 0.00 0.00 
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Table D.3: Line specification for the 19-machine test system 
30 12 0.00007 0.00700 0.00000 0.0 0.0 0.0 0.0 0.0 
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Table D.4: Line specification for the 19-machine test system (con 
21 2 0.00000 0.00100 0.00000 1.0 0.0 0.0 0.0 0.0 
21 31 0.00000 0.00500 0.00000 1.0 0.0 0.0 0.0 0.0 
22 32 0.00000 0.01000 0.00000 1.0 0.0 0.0 0.0 0.0 
22 5 0.00000 0.00080 0.00000 1.0 0.0 0.0 0.0 0.0 
23 38 0.00000 0.00500 0.00000 1.0 0.0 0.0 0.0 0.0 
23 41 0.00000 0.02000 0.00000 1.0 0.0 0.0 0.0 0.0 
24 39 0.00000 0.00400 0.00000 1.0 0.0 0.0 0.0 0.0 
25 33 0.00000 0.00300 0.00000 1.0 0.0 0.0 0.0 0.0 
25 34 0.00000 0.00300 0.00000 1.0 0.0 0.0 0.0 0.0 
25 6 0.00000 0.00090 0.00000 1.0 0.0 0.0 0.0 0.0 
25 42 0.00000 0.02000 0.00000 1.0 0.0 0.0 0.0 0.0 
26 35 0.00000 0.00070 0.00000 1.0 0.0 0.0 0.0 0.0 
26 1 0.00000 0.00200 0.00000 1.0 0.0 0.0 0.0 0.0 
28 36 0.00000 0.00500 0.00000 1.0 0.0 0.0 0.0 0.0 
28 37 0.00000 0.00800 0.00000 1.0 0.0 0.0 0.0 0.0 
28 4 0.00000 0.00080 0.00000 1.0 0.0 0.0 0.0 0.0 
23 7 0.00000 0.00070 0.00000 1.0 0.0 0.0 0.0 0.0 
24 8 0.00000 0.00070 0.00000 1.0 0.0 0.0 0.0 0.0 



APPENDIX D. DATA SPECIFICATION OF THE 19-MACHINE TEST SYSTEM119 



Bibliography 

[I] R. Aresi, B. Delfino, G.B. Denegri, S. Massucco, and A. Morini, A combined 

ann/simulation tool for electric power system dynamic security assessment, IEEE 

Transactions on Power Systems (1999), 1303-1309. 

[2] T. Athay, V.R. Sherkat, R. Podmore, S. Virmani, and C. Peuch, System engi- 

neering for emergency operating state control. 

[3] D.S. Brereton, D.G. Lewis, and C.C. Young, Representation of induction motor 

loads during power system stability studies, AIEE Trans. 76 (1957), no. 3, 451- 

460. 

[4] N.G. Bretas, An iterative dynamic state estimation and bad data processing, Int. 

J. Electr. Power Energy Syst. 11 (1989), no. 1, 70-74. 

[5] J. Chang, G.N. Taranto, and J.H. Chow, Dynamic state estimation in power sys- 

tem using a gain-scheduled nonlinear observer, IEEE Conf. Control Application 

(1995), 221-226. 

[6] J. Chow, Power system toolbox dynamic tutorial and functions, Cherry Tree Sci- 

entific Software, RR No.5 Colborne, Ontario KOK 1S0, Canada, 2 ed., 1991-2002. 



BIBLIOGRAPHY 121 

[7] F.N. Chowdhury, J.P. Christensen, and J.L. Aravena, Power system fault de- 

tection and state estimation using kalman filter with hypothesis testing, IEEE 

Transactions on Power Delivery 6 (1991), 1025-1030. 

[8] A.M. Leite da  Silva, M.B. Do Coutto Filho, and J.F. De Querroz, State forecasting 

in electric power systems, Proc. IEE-C 130 (1983), no. 5, 237-244. 

[9] K. Demaree, An on-line dynamic security analysis system implementation, A 

paper prepared for presentation a t  the IEEE Winter Meeting (1994). 

[lo] G.C. Ejebe, W.F. Tinney, V. Vittal, and G. Cauley, A sparse formulation and im- 

plementation of the system transient energy function for dynamic security anal- 

ysis, Electrical Power and Energy Systems 18 (1996), no. 1, 3-9. 

[ll] M.A. El-Sharkawi, Neural networks and their application to power engineering, 

Control and Dynamic Systems 41 (1991). 

[I21 0. I. Elgerd, Electric energy systems theory : An introduction, McGraw-Hill, 

1982. 

[13] A.A. Fouad and V. Vittal, Power system transient stability analysis using the 

transient energy function, Prentice Hall, 1992. 

[14] D. Hammerstrom, Working with neural networks, IEEE Spectrum (1993), 46-53. 

[15] D.R. Hush and G. Horne, Progress in supervised neural networks, IEEE Signal 

Processing Magazine 10 (1993), no. 1, 8-37. 

[16] A.B.R. Kumar, A. Ipakchi, V. Brandwajan, M.A. El-Sharkawi, and G. Cauly, 

Neural networks for dynamic security assessment of large scale power systems: 



BIBLIOGRAPHY 

requirements overview, Proceedings 1st International forum on NNAPS (lggi) ,  

65-71. 

[17] D.M. Vinod Kumar and S.C. Srivastava, Power system state forecasting using 

artificial neural networks, Electric machines and power systems 27 (1999), 653- 

664. 

[18] ~ . M . . v i n o d  Kumar, S.C. Srivastava, S. Shah, and S. Mathur, Topology processing 

and static state estimation using artificial neural networks, IEE-C Proc. 143 

(1996), no. 1, 99-105. 

[19] P. Kundur, Power system stability and control, EPRI Power System Engineering 

Series, McGraw-Hill, Inc., 1994. 

[20] P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, 

N. Hatziargyriou, D. Hill, A. Stankovic, C. Taylor, T .  Van Cutsem, and V. Vit- 

tall Definition and classification of power system stability, IEEE Transactions on 

power systems (2003), 1-15. 

[21] S. Y. Kung, Digital neural networks, Prentice Hall Inc., Englewood Cliffs NJ, 

1993. 

[22] J .  Lin, S. Huang, and K. Shih, Application of sliding surface-enhanced fuzzy 

control for dynamic state estimation of a power system, IEEE Transactions on 

power systems 18 (2003), no. 2, 570-577. 

[23] A. Llamas, Assessment of direct methods in power system transient stability anal- 

ysis for on-line applications, Ph.D. thesis, Virginia Polytechnic Institute and 

State University, December 1992. 



BIBLIOGRAPHY 123 

[24] D. Mallieu, T.H. Vancutsem, P. Rousseaux, and M. Ribbens Pavella, Dynamic 

multi level filtering for real-time estimation of electric power systems, Control 

Theory and Advanced Technology 2 (1986), no. 2, 255-272. 

[25] J.K. Mandal and A.K. Sinha, Hierarchical state estimation incorporating mea- 

surment function nonlinearities, Electrical Power and Energy Systems 19 (1997), 

no. 1,. 57. 

[26] Y. Mansour, A. Chang, J. Tamby, E. Vaahedi, B.R. Corns, and M. El-Sharkawi, 

Large scale dynamic security screening and ranking using neural networks, IEEE 

Transactions on power systems 12 (1997), no. 2, 954-960. 

[27] Y. Mansour, E. Vaahedi, A.Y. Chang, B.R. Corns, B.W. Garrett, K. Demaree, 

T .  Athay, and K. Cheung, B.c. hydro's on-line transinet stability assessment 

model development, analysis and post-processing, IEEE Transactions on Power 

Systems 10 (1995), no. 1, 241-253. 

[28] G.A. Maria, C. Tang, and J. Kim, Hybrid transient stability analysis, IEEE 

Transactions on Power Systems 5 (1990), no. 2, 384-391. 

[29] M. Pavella, L. Wehenkel, and Y. Zhang, Sime: A hybrid approach to fast tran- 

sient stability assessment and contingency selection, Electric Power and Energy 

Systems 19 (1997), no. 3, 195-208. 

[30] G.D. Prasad and S.S. Thakur, A new approach to dynamic state estimation of 

power system, Electric Power Systems Research 45 (l998), 173-180. 

[31] W.W. Price, Rapid analysis of transient stability, Tech. Report 87/th0169-3- 

PWR, IEEE Task Force, September 1987. 



BIBLIOGRAPHY 124 

[32] F.A. Rahimi, N.J. Balu, and M.G. Lauby, Assessing on-line transient stability 

in energy management systems, IEEE computer application in power 4 (1991), 

no. 3. 

[33] P. Rousseaux, T.H. Van cutsem, and T.E. Dy Liacco, Whiter dynamic state 

estimation, Int. Journal of Electrical Power and Energy Systems 12 (1990), no. 2, 

104-1-16. 

[34] P. Rousseaux, D. Mallieu, T.H. Van Cutsem, and M. Ribbens-Pavella, dynamic 

state prediction and hierarchical filtering for power system state estimation, Au- 

tomatica 24 (1988), no. 5, 595-618. 

1351 D.E. Rumelhart, L. McClelland, and PDP research group, Parallel distributed 

processing, vol. 1, The MIT Press, Cambridge, Massachusetts, USA, 1987. 

[36] P.K. Simpson, Artificial neural systems, Pergamon Press (1990). 

[37] C.K. Tang, C.E. Graham, M. El-Kady, and R.T.H. Alden, Transient stability 

index from conventional time domain simulation, IEEE Transactions on power 

systems 9 (1994), no. 3, 1524-1530. 

[38] G.S. Vassel, Northeast blackout of 1965, IEEE Power Engineering Review (lggl) ,  

4-8. 

[39] A.Jr. Vidalinc, On-line transient analysis of a multi-machine power system using 

the energy approach, Master's thesis, Virginia Polytechnic Institute and State 

University, July 1997. 



BIBLIOGRAPHY 125 

[40] Y .  Xue  and M .  Pavella, Extended equal area: A n  analytical ultra-fast method for 

transient stability assessment an,d preventive control of power systems, Interna- 

tional journal o f  electrical power and energy systems 11 (1989) ,  no.  2 ,  131-149. 

[41] P. Yoh-Han,  Adaptive pattern recognition and neural networks, Addison Wesley  

Publishing Company  Inc., 1989. 

[42] Q. Zhou,  J .  Davidson, and A.A. Fouad, Application of artificial neural netwroks 

in power system security and vulnerability assessment, IEEE Transactions o n  

power systems 9 (1994),  no.  1 ,  525-532. 


