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ABSTRACT

Apoptosis is a type of cell death mediated by different signaling pathways
involving protein-protein interactions that eventually activate caspases, a family of
proteases capable of degrading cellular proteins. In this study wé identify genes that
belong to 16 protein families known to be involved in apoptosis in 5 vertebrate genomes:
human, mouse, rat, Danio zebrafish, and Fugu pufferfish. It is shown that most apoptotic
pathways are conserved in these vertebrate genomes, whereas key genes of the Fas-
mediated extrinsic pathway have not yet been identified in zebrafish and pufferfish
genomes. Sequence alignment indicates that the upstream regions are less conserved
than the corresponding transcript sequences and the sequence identity further declines
after masking out the repetitive elements in the upstream sequences. These data are
critical for phylogenetic footprinting studies of apoptosis genes in vertebrate genomes.

Based on 366 known protein-protein interactions covering 168 (~72%) human
apoptosis genes, we assemble a protein interaction network. To facilitate human
visualization and potentially help biologists in apoptosis research, a two-layer protein
interaction network is built for each human apoptosis gene. Several known apoptotic
complexes, such as apoptosome, DISC, inflammasome and TNFR1 complex, are all
visualized in the two-layér interaction networks. We hypothesize that these two-layer
protein interaction networks may help infer other multi-protein complexes in apoptosis.

Furthermore, we computationally identify putative transcription factor (TF) binding
sites upstream of apoptosis genes, and use protein-protein interactions in conjunction
with phylogenetic footprinting information for prediction filtering. Our results suggest that

protein-protein interaction data could complement sequence conservation to reduce



false positive predictions. The TF classes STAT, bHSH, paired, SMAD, and bZIP have
most predicted binding sites upstream of human apoptosis genes. From the
computational analysis and known transcription factor binding sites, we construct a
regulatory network for each main apoptotic signaling pathways. These in silico networks
demonstrate that some transcription factors might regulate several genes involved in the
same pathway. Lastly, to make these data available for apoptosis research, we develop

a database-driven web site and its URL is http://apoptosis.mbb.sfu.ca/main.php.
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CHAPTER ONE: INTRODUCTION

1.1 Apoptosis and programmed cell death

The word “apoptosis” comes from an ancient Greek, meaning the “falling of
leaves from a tree in autumn” or “falling of petals from a flower” (Lawen 2003).
Apoptosis is now referred to as a type of cell death that orderly and efficiently removes
damaged or unnecessary cells in metazoan organisms (for reviews, see Ashe and Berry
2003; Danial and Korsmeyer 2004; Lawen 2003). It is often used synonymously as the
term programmed cell death (PCD), though some may argue that PCD refers to the
temporal and spatial cell death during development and it occurs through apoptosis
(Lawen 2003). Here we use them interchangeably.

Apoptosis plays a critical role in controlling cell populations during embryonic
development in multi-cellular.organisms, which is probably best illustrated by the tissue
differentiation of the nematode Caenorhabditis elegans. The worm hermaphrodites have
1090 somatic cells, 131 of which commit suicide by apoptosis; the remaining 959 cells
survive and develop into tissues (Danial and Korsmeyer 2004; Ellis and Horvitz 1986).
In adults, apoptosis also operates to maintain normal tissue homeostasis, and serves as
a defense mechanism against cells that might threaten the integrity of the organism
itself, such as cells infected by viruses, cells with damaged DNA or endoplasmic
reticulum (ER) stress, as well as autoimmune cells in the immune system (Ashe and
Berry 2003; Danial and Korsmeyer 2004; Kaufman 1999).

Under normal circumstances, apoptosis is tightly controlled to ensure destroying
of only unwanted cells. However, aberrant regulation of apoptosis has been implicated in

the pathogenesis of a wide range of human diseases. Insufficient apoptosis can develop



into cancers or autoimmunity, whereas excessive cell death is evident in acute and
chronic degenerative disorders (e.g. Alzheimer’s and Parkinson’s diseases),

immunodeficiency, and infertility (Danial and Korsmeyer 2004).

1.2 Apoptotic signaling pathways

How does an organism make the tough decision between cell death and survival?
In other words, how are intracellular or extracellular apoptotic stimuli transmitted to
invoke cellular responses for killing cells? Much research has been done in the past
decades to identify these signal transduction cascades, and many apoptotic signaling
pathways have been characterized (for reviews, see Ashe and Berry 2003; Danial and
Korsmeyer 2004). Generally, two types of apoptotic signaling pathways were described:
intrinsic pathway and extrinsic pathway. The intrinsic pathway is also known as the
mitochondrial pathway since the mitochondrion plays a central role in it (Hockenbery et
al. 1990). In the mitochondrial pathway, three apoptotic factors such as AlF, cytochrome
C and Smac/DIABLO can be released from inside mitochondria to initiate the apoptosis
program upon intracellular apoptotic stimuli, typically from intracellular stress. Two
members of the Bcl-2 protein family, Bcl-2 or Bax, can block or promote the release of
cytochrome C, respectively. In contrast, the extrinsic apoptotic pathways are mediated
by death receptors located in the cell membranes that are activated by their extracellular
ligands, and apoptotic stimuli come from extracellular sources such as UV radiation. Two
major well-characterized extrinsic pathways are Fas (TNFRSF6, APO-1/CD95) -
mediated death pathway and TNFR1 - mediated death pathway (Ashe and Berry 2003;
Danial and Korsmeyer 2004). Fig.1 shows a schematic diagram of the TNFR1-mediated
apoptotic signaling pathway. In this pathway, the ligand TNF binds to its receptor TNFR1
localized in the cell membrane. This process initiates the recruitment of proteins with DD

domain and/or CARD domain, which are the major protein interaction domains in the DD



superfamily (Reed et al. 2003). These domain interactions lead to the sequential
signaling cascade to activate Caspase-2, which then passes the signals to the intrinsic
mitochondrial pathway. The final phase of these pathways is typically the activation of
executioner caspases (i.e. effector caspases) of apoptosis, such as caspase-3, which
degrades the cellular infrastructure by large-scale proteolysis. Additionally, some
caspases can cleave other caspases and thus causing ampliﬁcation of apoptotic signals

during signaling cascades (Ashe and Berry 2003; Shi 2002).

Figure 1. The TNFR1-mediated extrinsic apoptotic signaling pathway and related
pathways
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This figure was used from Ashe and Berry (2003) with permission, mainly to illustrate the domain
interaction leading to sequential transduction of extraceliular apoptotic signals.



Caspases are a family of cysteine aspartate-specific proteases that are involved in
apoptosis initiation and execution, or are required for proteolytic processing of certain
pro-inflammatory cytokines (Reed et al. 2003; Shi 2002). To date, 13 mammalian
caspases have been identified, though not all human or mouse homologs for each family
member have been identified. Caspases are synthesized as pro-caspases, which are
then proteolytically processed to their active forms at the conserved aspartate residues.
All pro-caspases contain a highly homologous protease domain and an N-terminal
prodomain. The protease domain contains two subunits of ~ 20 and 10 kDa,
respectively, which associate to form a heterodimer following proteolytic processing.
Two heterodimers then associate to form a tetramer, which is the active form of
caspases (Fesik 2000). The N-terminal domain is of variable length depending on the
functional category of the caspase. Initiator and inflammatory caspases have long
prodomains (>100 amino acids), whereas effector caspases have short prodomains (<30
amino acids). Long prodomains contain specific motifs essential for caspase activity.
These motifs may be either death effector domains (DEDs) as in caspase 8 and 10, or
caspase recruitment domains (CARDSs) as in caspases 1, 2,4, 5,9, 11, 12, 13, and 14
(Reed et al. 2003).

In addition, several other important apoptotic signaling pathways have been
described, including NF-xB pathway and its major regulators of NF-kB, its inhibitor 1-xB
and I-xB kinase (IKK), as well as JNK/MAPK pathways (Shapira ef al. 2004; Yamamoto
and Gaynor 2004). These two pathways can interact with the TNFR1-mediated extrinsic
pathway, as shown in Fig.1.

Despite the progress made towards revealing the various apoptotic-signaling
pathways that can ultimately determine a cell’s fate, the regulatory mechanisms of gene

expression caused by apoptotic signals remain largely unknown. As is shown in the



Methods section below, there are only approximately 60 known binding sites for 26
distinct transcription factors in 18 apoptosis genes, most of which have been collected
by the TRANSFAC database (Wingender et al. 2000; Wingender et al. 2001; Wingender
2004). To fully understand the regulation and deregulation (as in case of human
diseases) of apoptotic signaling cascades, it is critical to identify and characterize
transcription factors (TFs) and their cis-regulatory elements that play crucial roles in

apoptosis.

1.3 Computational identification of transcription factor binding sites

In the pre-genomics days, experimental methods for regulatory element
discovery such as nuclease protection assays and gel-shift analysis were used to
confirm elements on a one-gene-one-element-a-time basis (Liu ef al. 2004). In this post-
genomics era, high-throughput computational approaches are increasingly needed to
predict putative transcription factor binding sites (TFBS) for subsequent experimental
validation. Developing computational methods for TFBS detection has now become én
area of intense research in bioinformatics, and many algorithms have emerged in the
past several years. Several TFBS prediction tools are briefly reviewed below.

The discovery of regulatory regions in intergenic sequences through cross-
species comparison is often termed ‘phylogenetic footprinting’. It is based on the
observation that functionally important regions tend to be conserved over the course of
evolution by selective pressure. Many putative TFBS are enriched in conserved non-
coding genomic sequences (Fickett and Wasserman 2001; Levy et al. 2001; Wasserman
et aI.- 2000). One strategy tries to find common motifs that are shared by multiple
orthologous sequences; while the other begins with global alignment of orthologous
sequences, followed by identification of conserved regions. Footprinter is a program

designed specifically for phylogenetic footprinting (Blanchette and Tompa 2002,;



Blanchette and Tompa 2003), and it detects highly conserved motifs in the homologous
regions with regard to the phylogenetic relationship among the homologous sequences.
In practice, the choice of species is critical in phylogenetic footprinting. Too great an
evolutionary distance can result in regulatory alterations or difficulty in aligning short
patches of identity between long sequences. Inadequate evolutionary distance may be
insufficient for non-functional sequences to diverge while conserving the functional
sequences (Lenhard ef al. 2003). Thus, the arbitrary parameters are often difficult to
choose and they heavily influence the prediction performance of such tools.

Although comparative genomics approaches have been shown to be very
effective to significantly reduce the noise and search space in identifying putative cis-
regulatory elements (Lenhard et al. 2003; Liu ef al. 2004), these techniques usually only'r
provide information about which region is conserved among two or more species. The
challenge remains to assess whether these regions of homology are involved in
regulation (Ureta-Vidal et al. 2003). This is why global alignment has often been used in
conjunction with the binding profiles of known transcription factor binding sites, usually
taken from the TRANSFAC database (Wingender et al. 2000; Wingender et al. 2001;
Wingender 2004). Consite (Lenhard et al. 2003), and rVISTA (Loots et al. 2002) are two
examples that make use of the integrated approaches. The DNA binding specificity of
TFs is commonly modeled using position weight matrices (PWM) (Fickett and
Wassermann 2000; Lenhard et al. 2003). From a set of binding site sequences
determined experimentally for a specific transcription factor, a position frequency matrix
(PFM) can be generated by simply counting the frequency of each nucleotide A,C, G, T
on each position (Lenhard and Wassermann 2002; Lenhard et al. 2003). From this PFM,
a standard computational procedure is applied to calculate a PWM, which consists of the
log-odds score (or “weight”) of each nucleotide on each position in relation to a

background model (Fickett and Wassermann 2000). Using these PWM models and



pattern-finding algorithms, one can search the upstream promoter regions and yield a
large list of putative TFBS. An advantage of this approach is that a TF is immediately
associated with the predicted binding sites that the TF can possibly bind. However, the
predictive power of this technique is often restricted by the quality of PWM models,
which depends upon the number of experimentally determined binding sites as well as
their sequence degeneracy (Lenhard et al. 2003).

To reduce the non-functional predicted sites, researchers have been trying to
take advantage of available experimental data, such as gene expression data, as
enhancing signals (Lenhard ef al. 2003; Ureta-Vidal ef al. 2003). Functional genomics
data, primarily microarray expression data, have been used to improve the predictive |
performance. For genes clustered from the expression profiles, motif-finding algorithms :
are used to find over-represented motifs in their upstream regions, assuming that co-
expressed genes are more likely to share a similar set of transcription factor binding
sites. AlignACE (Roth ef al. 1998) and DIALIGN (Morgenstern et al. 1998) are two
programs of such techniques. There are also studies suggesting that genes encoding
interacting proteins tend to be co-regulated (Hannenhalli and Levy 2003; Jansen ef al.
2002; Manke et al. 2003; Simonis ef al. 2004), and in this study we used this hypothesis

as one of filtering procedures for the predicted binding sites in human apoptotic genes.

1.4 Aim of the thesis

Apoptosis has become a major biomedical research area in recent years, which
is explained by the fact that apoptosis is implicated in the pathogenesis of a wide variety
of human diseases. Characterization of protein-protein interaction networks and
regulatory networks during apoptotic signal transduction will help us to understand the
mechanisms of the human diseases associated with apoptosis and develop rational

strategy for their prevention and treatment. In this area, high-throughput computational



approaches may guide the design of downstream experiments to spéed up discovery of
apoptotic protein-protein interactions and regulatory elements. Regulatory networks that
connecting transcription factors and their target genes in apoptosis will help us
understand the transcriptional regulation during apoptotic signal transduction.

Proteins invoived in apoptosis often contain evolutionarily conserved domains
that can serve as signatures for identification, allowing one to app]y bioinformatics
techniques in the analysis of families of apoptosis-related proteins (Reed et al. 2003).
The authors have classified apoptotic proteins into 16 protein families and signature
domains and identified over 200 apoptosis genes in the genome of human or mouse.
The major protein families known to be involved in apoptosis include caspases, Bcl-2
family, death domain superfamily, as well as tumor necrosis factor (TNF) superfamily
and their receptors, and others.

In this study, we have examined the conservation of major apoptotic signaling
pathways in human (Homo sapiens), and vertebrate model organisms mouse (Mus
musculus), rat (Rattus norvegicus), zebrafish (Danio rerio), and pufferfish (Fugu
rubripes). The phylogenetic relationship of these 5 vertebrate species is represented in
Fig. 2. Human and mouse (rat) diverged ~90 million years ago (MYA), human and
pufferfish diverged ~450 MYA, and their complete genome sequences have been
released (Ureta-Vidal et al. 2003). We have also extracted all experimentally determined
protein-protein interactions of human apoptosis genes and constructed a protein
interaction network, and investigate how protein-protein interaction data might be used in
conjunction with sequence conservation for computational TFBS detection. Lastly,
primarily based on our computational analyses we have constructed several in silico
regulatory networks of several major apoptotic-signaling pathways to obtain insights into

the transcriptional regulators that are critical in controlling apoptosis.



Figure 2. The phylogenetic relationship of the 5 vertebrate species

92 Human (Homo sapiens)

450

4“1 — Mouse (Mus musculus)

— Rat (Rattus norvegicus)

140 Zebrafish (Danio rerio)

Pufferfish (Fugu rubripes)

(Million years)
500 400 300 200 100

This figure was drawn based on Ureta-Vidal et al. (2003). The numbers at the corner of each
branch represent the time in million years in which the species diverged.



CHAPTER TWO: METHODS

2.1 Identification of apoptosis genes in mammalian genomes

The protein accession humbers of apoptosis associated genes in human and
mouse were primarily derived from the 227 genes compiled by Réed et al. (2003), and
updated from NCBI LocusLink (Pruitt and Maglott 2001) for genes that were annotated
or updated after their publication. The apoptosis genes in rat were identified at NCBI
LocusLink using the human gene names or synonyms. Genes without available RefSeq
(Pruitt and Maglott 2001) transcripts were excluded. The RefSeq accessions of all
apoptosis genes in each mammalian species were batch retrieved from NCBI. For genes
mapping to multiple alternatively spliced isoforms, only the longest transcript is used for

obtaining upstream sequences below.

2.2 Identification of apoptosis genes in zebrafish and pufferfish genomes

The proteomes of both zebrafish and pufferfish have not been well annotated
and no protein name could readily be found like in mammals. Thus, to identify the
apoptosis relevant genes in these two lower vertebrate genomes, their whole gene sets
were obtained from Ensembl via the EnsMart interface (Kasprzyk et al. 2004). The
zebrafish gene set is derived from the whole genome shotgun assembly sequence
version 3 (released on November 2003), whereas the pufferfish genome is based on
v21.2c.1 (released on May 2004). Each gene set was formatted to be suitable for BLAST
search. Apoptosis genes in these two genomes were identified by TBLASTN with default
settings (Altschul et al. 1997). The protein sequence of each human gene was used to

blast against the zebrafish or pufferfish gene set. If no human gene is available or no

10



significant hit was identified, the protein sequence of the mouse homolog was used. If
again no mouse protein sequence is available or no significant hit was identified, the rat
protein sequence was used instead. To further ensure data quality, all putative gene
candidates were verified at the Ensembl web site (Stalker ef al. 2004). If a hit is
unambiguously annotated by Ensemb! to be a homologue to a mammalian apoptosis
gene (or occasionally to an apoptosis gene in other vertebrates) or contains a putative
InterPro domain involved in apoptosis, this gene was annotated as an apoptosis gene in

zebrafish or pufferfish genome.

23 Retrievél of upstream sequences

The region to be used for detecting cis-regulatory elements in eukaryotes is not
well defined. In theory, the whole regulatory region for metazoan genes should include
the 5'- and 3'-flanking regions, as well as the intronic sequences, and this is a large
amount of sequence (Ureta-Vidal et al. 2003). Taking into account our computational
power, we elected to choose only 3 kb upstream sequences for this analysis. The whole
process could be easily scaled up for analyzing more sequences if required. The
upstream region was measured from transcription start site (TSS) based on the RefSeq
annotation. The transcript RefSeq accessions in mammals were used to obtain 3 kb
upstream sequences from the UCSC Table Browser (Karolchik et al. 2004). The
reference sequences in human, mouse, and rat are based on the latest available
assemblies of July 2003, May 2004, and June 2003, respectively. For the zebrafish and
pufferfish genes, their Ensembl transcript identifiers were used to obtain the 3 kb

upstream sequences from Ensembl via the EnsMart interface (Kasprzyk et al. 2004).

2.4 Known transcription factors and their binding sites

The TRANSFAC database professional version 7.4 was licensed from the

11



BioBase (Wingender et al. 2000; Wingender et al. 2001; Wingender 2004). We only
extracted the entries for vertebrate species, which include 4,754 binding sites, 786
transcription factors, and 490 PWM matrices representing binding profiles of known

transcription factors.

2.5 The known apoptotic protein-protein interactions in humans

The experimentally determined protein-protein interactions of human apoptosis
genes were extracted from the human protein reference database - HPRD (Peri et al.
2003), and vonly the interactions between the genes in our human apoptosis gene set
were retained. The latest update of the protein-protein interaction data for our analysis
was performed on June 20, 2004. The protein-protein interaction network was

constructed using the open-source, Java-based Cytoscape (Shannon et al. 2003).

2.6 Data storage

To facilitate data storage and analysis, we designed a MySQL relational
database for storing all genomic DNA and protein sequences, known and predicted
transcription factors and their binding sites, as well as matrices from TRANSFAC
(Wingender et al. 2000; Wingender et al. 2001; Wingender 2004). This local database is

also the backend engine for the searchable web site described in 2.12.

2.7 Identification of conserved regions

A conserved region is determined by sequence identity percentage and length
cutoffs. Conserved segments with percent identity X and length Y are defined to be
regions in which every contiguous subsegment of length Y is at least X% identical to its
paired sequence. The global alignment tool LAGAN (Brudno et al. 2003) was used for
sequence alignment of the upstream or transcript sequences of each gene pair. The

sequence identity percentage was calculated by using the BioPerl toolkit (Stajich et al.
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2002). The alignment visualization tool VISTA (Mayor et al. 2000) was used to identify
conserved regions in the aligned upstream sequence pair. The VISTA window size is 21-
bp, and the sequence identity threshold in this window is specified dynamically based
upon the average identity of the sequence pair (i.e. 5% higher than the average identity).
These segments are then merged to define the conserved regions between two

upstream sequences of an apoptosis gene in two species (e.g. human and mouse).

2.8 TFBS identifications

Putative transcription factor binding sites are predicted and filtered by a three-
step approach, which is schematically illustrated by the flow chart in Fig. 3. First, the
TFBS software system (Lenhard and Wasserman 2002) was used for predicting
transcription regulatory sites in the upstream regions of our genes in each species. The
TF binding profiles were the 490 matrices derived from vertebrate genomes in the
TRANSFAC database (Wingender et al. 2000; Wingender et al. 2001; Wingender 2004).
Matrix thresholds of 70%, 75%, 80%, 85%, and 90% were compared. Hits that match
each matrix above the predefined threshold were identified along the genomic
sequences and stored in the database. Second, the algorithm identifies a subset of
binding sites in the conserved regions between each species pair as determined above
in 2.6. Third, for human genes with interacting partners, the algorithm identifies another
subset of common binding sites matching the same PWM matrix in at least one pair of
interacting genes. Union and intersection algorithm was used to integrate phylogenetic
footprinting information and human protein-protein interaction data. The union subset of
transcription factor binding sites consists of those sites that are either in the conserved
regions between two species or that are shared by at least a pair of interacting genes,
but the intersection subset was only considered once. The intersection subset of

transcription factor binding sites consists of those sites that are both in the conserved

13



regions between two species and that are shared by at least a pair of interacting genes.

Figure 3. The flow chart of the TFBS prediction approach.

Apoptosis Genes

-

3 kb Upstream Sequences

Filter 2 — interactions
(human genes only)

-

-

LAGAN/VISTA I:> TFBS Predictions <:I Interactions

Filter 1- sequence
conservation

-

Statistical Analysis Filter 3 -
enrichment ratio
>= 1.5

-

Prediction Test

This figures illustrates schematically the logical flow of predicting and filtering transcription factor
binding sites. All apoptosis genes were used to retrieve their 3 kb upstream sequences. These
upstream sequences were used for detecting putative transcription factor binding sites and for
sequence alignment (LAGAN) to identify conserved regions between species pairs (VISTA;
Filter1). Another two filters are protein-protein interactions for human genes only and enrichment
ratio (see Statistical analysis below). Prediction test (see Prediction performance testing below)
was performed for the final sets of transcriptional factor binding sites.

2.9 Statistical analysis
The statistical significance of predictions was estimated by the over-
representation of k-mer (a binding site of k nucleotides) in the upstream (non-coding)

regions using exon sequences (transcript) as background model, an approach similar to
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Hampson et al. (2002) and Xue ef al. (2004). An enrichment ratio of a binding site in
upstream against exon sequence was measured by S, the ratio of C,, its occurrence in
the upstream, with the C,,, its occurrence in the corresponding exon sequence:

Snc = Cnc /Cex (1)
S, > 1 correlates with over-representation of the binding site, and the larger the S, is,
the more significantly the site is enriched in the upstream.

The nucleotide composition can be rather different between the upstream and
coding regions, and thus the probability of obtaining a specific binding site is also
different in the upstream or transcript sequence. In order to normalize this disparity, we
calculated the average frequency of each nucleotide A, C, G, T in upstream and |
transcript. Given the P,, P., P4, and P; for the average frequency of the 4 nucleotides A,
C, G, T, respectively, the expected occurrence F of a k-mer with a hypothetical binding
site sequence of AG,Cr, T (Where i + j+ m+ n = k) can be estimated as:

F = P,P/P."P" (2)

Therefore, the normalized enrichment ratio S,. (normalized by the length of non-
coding region L, and background exon L.,, as well as the expected frequency F,. and
Fex) for a binding site is equivalent to the measure of enrichment using the frequency in
transcript region as background, which includes the theoretical ratio of k-rﬁer occurrence
in the non-coding region against the transcript region [Equation (3)].

Sne = (CreLexFex) / (CoxlncFrnc) ©)

We used this algorithm to normalize the nucleotide composition difference and
sequence length of both upstream and coding regions, and calculate the enrichment of
predicted sites for a transcription factor in the upstream region of a gene against its
transcript sequences. For approximately estimating F, the TFBS degeneracy was not
considered and the site sequence (e.g. AiGiCnT, above) used is the binding site that has

the highest score against the matrix of the transcription factor in the upstream or
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transcript sequences. Binding sites that are at least 1.5 times enriched in the upstream

regions compared to its coding regions were considered statistically significant.

2.10 Calculating the expected number of occurrences for each TF class
The method for calculating the expected number of binding site occurrences for
each TF class is similar to that described by Zhang et al. (2002). Given a matrix
representing the binding profile of a TF and its dominant binding site sequence, we can
calculate the probability (p) of its occurrence in the upstream sequence as:
N
p=1II (Ps) M
i=1 beS '
where N is the length of the matrix, i is the position index, S represents a set of
nucleotides (A, C, G, T), and P, is the frequency of each nucleotide in the upstream
sequence, i.e. P,, P, Pg, or P;. Assuming a uniform distribution of nucleotides in
upstream sequences, P,, P, Py, or P is equal to 0.25 each. Then its expected
occurrence (A) in the upstream is calculated as A = Lp, where L is the length of the
upstream sequence, i.e. 3 kb. Since we used both strands for putative TFBS predictions,
the total length of each upstream sequence is 6 kb. The average expected occurrence

for each TF class is calculated based on all expected occurrence of all TFs in each

class.

2.11 Predictive performance testing

A test data set with known transcription factor binding sites in the promoter
regions of apoptosis genes was assembled from both the TRANSFAC database and
literature. There are totally 61 known binding sites. After excluding genes without
interacting partners in our human gene set (i.e. CIITA/C2TA, PUMA/BBC3, and TRIF),

the test set consists of 54 binding sites in 15 distinct apoptosis genes for 26 distinct
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transcription factors (Table 1). The binding sites of human Caspase-8 are not in the
TRANSFAC database and were derived from literature (Liedtke et al. 2003). To assess
the predictive performance, the sensitivity (SN) and specificity (SP) are defined based on
Lenhard et al. (2003). SN is the percent correct predictions in the test set, that is, when a
prediction and a known TFBS overlap by at least 50% given a corresponding
transcription-factor binding profile. SP is defined as the number of predicted binding sites
in the 3 kb upstream sequence but expressed as the average number of predicted
binding sites along a 100 bp upstream sequence in both strands using 490 binding
matrices from vertebrates. Control for using interaction data as filtering procedure was to
test binding sites shared by gene pairs that have no known interacting relationships. Td
achieve this, gene pairs in the interaction tables are shuffled to ensure that the randomly
generated genes pairs do not have known interaction data available from HPRD (Peri et
al. 2003). For example, if gene A has interactions with gene B and gene C (A-B, A-C are
now gene pairs in the interaction table), in the new pairs gene A was paired with a
random human apoptosis gene except gene B and gene C. The predicted binding sites
shared in the new gene pairs were used for testing similarly as the original gene pairs

that have known interacting relationships.
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2.12 Construction of apoptotic regulatory networks

The putative transcription factors that have binding sites within 600 bp upstream
of transcription start sites from major TF families for all gene components of the
apoptotic signaling pathways are retrieved from the iocal MySQL database. The

regulatory networks were constructed with Cytoscape (Shannon et al. 2003).

2.13 Development of the data-driven web site
The MySQL database described in 2.6 serves as the backend engine. The
searchable web interface was developed with server-side scripting language PHP. User

documentation is available at http://apoptosis.mbb.sfu.ca/help.php.
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CHAPTER THREE: RESULTS

3.1 Apoptotic signaling pathways in vertebrate genomes

Based on the protein families classified by Reed et al. (2003), we identified 236
apoptosis genes with RefSeq transcripts in humans, and 223 in mibe. However, only 147
RefSeq genes were identified in rats (see Appendix A). This discrepancy of gene
numbers between rat and human/mouse is likely due to the rat genome status, though
some apoptosis genes might have evolved significantly during mammalian evolution.
With the recent release of the complete rat genome, more apoptosis genes could be
found in rat. For the other two vertebrates, we identified 114 apoptosis related genes in
the zebrafish genome and106 apoptosis genes in the pufferfish genome (see Appendix
B) using TBLASTN with protein sequences from mammals as queries. These lower gene
numbers might be attributed to the relative simplicity of apoptotic signaling pathways in
these two lower vertebrate species. The apoptosis signaling pathways may have
become more complex and many functionally redundant genes emerged over the course
of vertebrate evolution (Le Bras ef al. 2003).

Most caspases involved in apoptosis initiation and execution were identified in
the zebrafish or pufferfish genomes (Table 2), except caspase-10. Caspase-10 was also
not found in mouse or rat genome. Neither caspase-11 nor caspase-12 was identified in
human; human caspase-4 and caspase-5 are orthologous to murine caspase-11 (Reed
et al. 2003). In contrast, caspases involved in pro-inflammatory cytokine activation, most
of which were identified in mammalian genomes, appeared to be absent in zebrafish and

pufferfish genomes except Caspase-1.
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Table 2.  Functions of caspases and homologous genes identified in the 5 vertebrate

genomes.
Caspase Human Mouse Rat Zebrafish Pufferfish Main function
Caspase-1 + + + + + Cytokine activation
Caspase-2 + + + + Apoptosis initiator
Caspase-3 + + + + Apoptosis effector
Caspase-4 + + - - Cytokine activation
Caspase-5 + - - - - Cytokine activation
Caspase-6 + + + + + Apoptosis effector
Caspase-7 + + + + + Apoptosis effector
Caspase-8 + + + + + Apoptosis initiator
Caspase-9 + + + + + Apoptosis initiator
Caspase-10 + - - - - Apoptosis initiator
Caspase-11 -@ + + - - Cytokine activation
Caspase-12 -@ + + - - Cytokine activation
Caspase-14 + + + - - Cytokine activation

Plus sign (+) indicates that a homolog was identified in the species; minus sign (-) indicates that a
homolog was not identified in the species.
(1) Not all these family members have been well characterized with respect to their physiological
roles and targets, although it is known that distinct caspases play roles in apoptosis or
inflammation (Ashe and Berry 2003).
(2) Human Caspase-4 and Caspase-5 are homologous to murine Caspase-11 (Reed et al. 2003),
and the human ortholog of murine Caspase-12 is non-functional due to a termination codon prior
to the region encoding the catalytic domain (Fischer ef a/. 2002).

For the key genes of the 4 major apoptotic signaling pathways described in
Ashe and Berry (2003), all homologous genes for the mitochondrial intrinsic apoptotic
pathway were identified in these 5 vertebrate genomes (Table 3). This is not
unexpected, as most genes in this pathway are homologues of death genes in C.
elegans. For example, the vertebrate homolog of Apaf-1 in C elegans is ced-4 (Zou et al.
1997), the Bcl-2 homolog is ced-9 (Hengartner and Horvitz 1994), and caspase-1 is
homologous to ced-3 (Yuan et al. 1993; ced-3 also has sequence similarity to caspase-2
[Wormbase] and caspase-3 [Desnoyers and Hengartner 1997], but the ced-3 substrate
specificity is more similar to caspase-3 [Xue ef al. 1996]). Hence, the intrinsic apoptotic

pathway is well conserved during metazoan evolution.

For the death receptor - mediated extrinsic pathways, many components in the
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TNFR-mediated pathway were found in the 5 vertebrate genomes, although the receptor
TNFR1 (TNFRSF1A) has not been identified in the fish genomes. Some other members
of the TNFR superfamily exist instead, which are presumably able to bind to the TNF
ligands (e.g. TNF-a or TNF-B); or TNFR1 will ultimately be identified in zebrafish and
pufferfish genomes. The major components of the NF-kB pathway also exist in all 5
genomes. On the other hand, three key genes in the Fas-mediated extrinsic pathway,
i.e., Fas (TNFRSF6), FasL (TNFSF6) and adaptor protein FADD, are not identified in
both zebrafish and pufferfish genomes. This is in agreement with an earlier report in the
pufferfish genome (Le Bras ef al. 2003). If these results were not caused by the
annotation status of zebrafish and pufferfish genomes, they indicate that perhaps only
with the exception of Fas-mediated extrinsic pathway, the core apoptotic pathways are

evolutionarily conserved in vertebrates.

24



Table 3. Key genes involved in the four major apoptotic pathways and homologous
genes identified in the 5 vertebrate genomes.

Gene Species Apoptotic pathway
Human Mouse Rat Zebrafish Pufferfish

AlF + + + + - intrinsic

Bcl-2 + + + + + Intrinsic

Bax + + + + + Intrinsic

Apaf1 + + + + + Intrinsic

Caspase-9 + + + + + Intrinsic

Smac + + - + + Intrinsic

XIAP + + + + + Intrinsic

Caspase-3 + + + + + Intrinsic

TNFSF6 . + + + - - Fas extrinsic

Fas + + + - - Fas extrinsic

FADD + + + - - Fas extrinsic

Caspase-8 + + + + + Fas extrinsic

Bid + + + - - Fas extrinsic

TNFSF1 + + + + - TNFR1 extrinsic

TNFRSF1A + + + - - TNFR1 extrinsic

TRADD + + + - + TNFR1 extrinsic

RIP + + + + + TNFR1 extrinsic

TRAF2 + + + + + TNFR1 extrinsic

Caspase-2 + + + + + TNFR1 extrinsic

NF-«B + + + + + NF-xB

kB + + + + + NF-xB

IKK + + + + + NF-xB

Plus sign (+) indicates that a homolog was identified in the species; minus sign (-) indicates that a
homolog was not identified in the species. The key genes involved in each apoptotic pathway
were based on Ashe and Berry (2003).

3.2 Sequence similarities of apoptosis genes and upstream regions

The determination of sequence conservation varies depending upon the chosen
species, and the evolutionary rates can be considerably different between genes (Ureta-
Vidal et al. 2003). Thus, it is crucial to estimate the sequence identity in our gene set for

determining conserved regions across several species. Based on pairwise sequence

25



alignment by using the global alignment tool LAGAN, the average sequence identity of
human and mouse apoptosis genes (transcripts) was ~75%, and ~57%, ~52% for
unmasked and masked upstream sequences, respectively (Fig. 4). The average
sequence identity is lower in human-rat, human-zebrafish, and human-pufferfish
comparisons, but likewise, the gene sequences had highest sequence identity, followed
by unmasked upstream sequences and masked upstream sequences. These results
show that the upstream sequences are significantly less conserved than the transcript
sequences. If the upstream is masked (as in our case for TFBS predictions), the
sequence identity further declines, suggesting that repetitive elements contribute much
to the sequence identity of the upstream sequences. Furthermore, the sequence identi’tyr
was fairly diverse in our gene set (as indicated by the relatively high standard deviation |
in Fig. 4), making it difficult to set a fixed sequence conservation threshold for identifying
conserved regions in phylogenetic footprinting studies. In the present study we chose to
set the sequence identity threshold for each upstream sequence pair dynamically based
on their average sequence identity. For example, if the masked upstream sequences of
Apaf1 are on average 55% identical between human and mouse, we set 60% as the

conservation threshold in the 21-bp sliding windows to identify their conserved regions.
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Figure 4. Sequence identity of apoptosis transcripts and their upstream regions.
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The figure shows the average sequence identity between each species pair for all apoptosis
genes we have identified. The error bar represents standard deviation. HM = human and mouse
comparison, HR = human and rat comparison, HD = human and Danio comparison, HF = human
and Fugu comparison. The transcript sequence is the RefSeq sequence of each gene;
Unmasked upstream is the 3 kb upstream sequence in which the repetitive elements are not
masked; masked upstream is the 3 kb upstream sequence in which the repetitive elements are
masked out by using RepeatMasker (Smit and Green. http://repeatmasker.org/).

3.3 Human protein-protein interaction networks in apoptosis

We extracted 366 distinct, experimentally determined protein-protein interactions
covering 168 (~72%) human apoptosis genes, and constructed a human apoptotic
protein interaction network (see Appendix C). This protein interaction network was
defined as nodes representing human apoptotic proteins (genes) and edges
representing all known interactions between them irrespective of their interaction type or
condition. Thus, this network shows all currently known interactions of human apoptosis
genes (proteins) that can take place under a certain biological context. In this entire

network, each node (gene) has an average of ~2.2 edges (interactions). Table 4 lists the
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number of direct interactions for highly interacting nodes, genes that have the number of
interactions exceeding 3 times the average interaction number (i.e. 3x2.2=6.6). Genes
with more than 20 direct interactions include TRAF2 (36), Caspase-8 (24) and Bcl-2
(23), and TRAF1 (22), all of which play critical roles in apoptosis. On the other hand,
genes with only a single interacting partner include BAG3, Beclin, Bel-3, Bcl-B, Bik,
Bimp2, Bimp3, CARDS, COP, DR6, EDA-A1, EDAR, HIPPL, IF116, IRAK-M, Mal, MALT-
1, PYRIN, SIAH-1, SIAH-2, TEF2, TLR6, TNFRSF10C, TNFRSF10D, TNFSF7,
TNFSF8, TNFSF12, and TNFSF18. TRAFs can be used as examples to infer functional
importance form the number of interactions. TRAFs bind TNF receptors and their
adapter proteins (e.g. TRADD), protein kinases involved in induction of NFxB and Jun
amino-terminal kinase (JNKs), and serve as a bridge between TNFR1, NFxB and JNK

pathways (Ashe and Berry 2003; Reed ef al. 2003).

Table 4.  Highly interacting genes in the protein-protein interaction network of human
apoptotic pathways.

Gene Number of Interactions Gene ‘Number of Interactions
TRAF2 36 Caspase-9 9
Caspase-8 24 CIAP1 9
Bcl-2 23 Bcl-10 8
TRAF1 22 MyD88 8
TRAF3 19 Apaf1 7
Bcel-x 18 Caspase-10 7
TRAF6 18 Caspase-7 7
FADD 16 DR4 7
Tradd 15 DR5 7
RIP 14 Fas 7
TNFRSF1A 14 TNFRSF14 7
Cardiak 13 TNFRSF3 7
FLIP 13 TNFRSF5S 7
TRAF5 13 TNFSF13 7
Caspase-3 11

The genes are sorted by the number of interactions in descending order.

To further make these interaction data useful to molecular biologists, we built a
two-layer interaction network for each human apoptosis gene that has protein-protein

interaction data with other human apoptosis gene(s). A two-layer interaction network is
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defined as a protein interaction network consisting of all the direct interactions of a
particular gene and all direct interactions of its direct interacting partners. This interaction
network is generally not too complex for better human visualization, yet contains much
more information than just listing the direct interacting partners of a gene. It presents a
broader context of interactions between related genes that are most likely involved in the
same pathway or belong to a multi-protein complex. For example, in this two-layer
interaction network centered on TNFR1 (Fig. 5), most genes involved in TNFR1-
mediated extrinsic pathway (shown in Fig.1), including TNFSF1, TNFR1 (TNFRSF1A),
adapter protein Tradd, RIP, RAIDD are all represented and the interactions between
them and other closely related genes are clearly shown. Also, the TNFR1 complex
involved in TNFR1-mediated apoptotic pathway includes TNFR1 (TNFRSF1A), TRADD,
TRAF2, clAP1, and kinase RIP1 (Micheau and Tschopp 2003). The two-layer interaction
network of TNFR1 demonstrates that components of the TNFR1 complex are interacting
with each other either directly or indirectly, which is not evident if we only examine the

raw, pairwise interaction data.
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Figure 5. A two-layer protein interaction network of human TNFR1 (TNFRSF1A).

This network is constructed using all interactions of the node of TNFR1 (TNFRSF1A), which is
highlighted, and all interactions of interacting partners of TNFR1.

3.4 TFBS prediction using both phylogeny and interaction data

We investigated how protein-protein interaction data might be used to improve
computational TFBS identification, mainly to reduce false positives and to improve
prediction specificity. The prediction performance using TFBS Perl system and filtered
with phylogenetic footprints and human protein-protein data is shown in Table 5. The
85% matrix threshold seems to be the best setting. At this matrix threshold, the

sensitivity is the same as that of 70% matrix threshold; however, the number of
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predictions is much lower, which suggests higher prediction speciﬁcity; Less stringent
matrix threshold did not increase the prediction sensitivity but only dramatically
increased false positives. Additionally, we applied a union/intersection algorithm to
combine sequence conservation and protein-protein interaction data and identify binding
sites in the conserved regions and/or binding sites shared by human interacting genes.
The sensitivity of only keeping sites in the conserved regions drops slightly under ali
matrix thresholds; by selecting sites either in the conserved regions or shared by
interacting genes, the sensitivity is the same as the prediction without any filtering
procedures but the number of predictions drops, indicating that many false positives are
eliminated and the specificity is improved. The sensitivity of only keeping binding sites |
shared by interacting human genes is lower than using phylogenetic footprinting
information, partly because the interaction data are not comprehensive and more
interactions might exist between human apoptosis genes. The sensitivity of control
(method 4 in Table 5; predicted binding sites shared by gene pairs that currently have no
known interaction data, see Methods for details) is much lower than that of keeping
binding sites shared by interacting human genes (method 3). At 85% matrix threshold,
the sensitivity of method 3 is 64.8% compared to 35.2% in its control (method 4).
However, it is notable that the prediction sensitivity of the control is not extremely low,
which could also be at least partly attributed to the fact that more interactions may be

discovered between human apoptosis genes.
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Table 5. TFBS prediction sensitivity (SN) and specificity (SP) using protein-protein
interaction data and phylogenetic footprinting information.

Matrix 70% 80% 85% 90% 95%
threshold

Method SN SP SN SP SN SP SN SP SN sP
1 794 628 794 107 794 41 647 14 401 4
2 776 169 757 28 757 10 502 4 346 1
3 728 465 684 69 648 26 606 8 325 2
4 426 - 407 - 352 - 296 - 185 -
5 794 490 794 79 794 29 647 10 401 2
6 | 63.7 165 611 18 611 7 423 2 223 05

(1) Method: 1 = all predictions without filtering; 2 = only retain binding sites in the conserved
regions between human and mouse; 3 = only retain binding sites shared by at least one pair of
interacting human apoptosis genes; 4 = control of Method 3, average of 3 times shuffling of
records in the interaction table; SP is not applicable for the control; 5 = union: (2) OR (3) (remove
a redundant intersection portion); 6 = intersection: (2) AND (3).

3.5 Distribution of binding sites for each TF class

In order to estimate the relative importance of each TF class (family) in
apoptosis, we surveyed the number of binding sites for TFs in each TF family in the 3 kb
upstream of human apoptosis genes. After normalization by the number of matrices in
each TF class, it is shown in Fig. 6 that STAT (e.g. STAT1), bHSH (e.g. AP-2) and
paired (e.g. Pax1) classes have the highest numbers of binding sites in human apoptosis
genes. STAT factors have been shown to play roles in development, cell growth,
proliferation and apoptotic cell death, and there were many studies indicating that TFs in
this family control expression of many apoptosis genes, including Bcl-2, Bcl-x, caspase-
1, Fas receptor and FasL, and are involved in regulating p53 target genes (Stephanou
and Latchman 2003; Stephanou et al. 2001; Vousden and Lu 2002). SMAD (e.g.
Smad1), bZIP (e.g. c-Fos, c-Jun), CH (e.g. SP1), CC (zinc finger; e.g. GATA-1),

forkhead (e.g. E2F), HMG (e.g. SRY) all have relatively high numbers of predicted sites.

32



However, the numbers of predicted binding site for ETS (e.g. c-ETS-1, PU.1), Rel (e.g.
NF-kB1), and p53 TF families might be underestimated. One explanation for this is, the
p53 response element is frequently found in the intronic regions of target genes (Mirza ot
al. 2003; Wang et al. 2001), and the intronic regions were not included in our predictions.
As the average length of matrices is over 10 (see Appendix D) and the minimal length is
8 for the predicted binding sites of each TF class, it is almost uniikely that these binding
sites could have occurred just by chance. This is non-trivial, as in an extreme case that a
matrix merely has 5 nucleotides long; the number of expected occurrence for a binding

site in a 6 kb upstream sequence (3 kb for both strands) would be ~6.
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3.6 In silico construction of human apoptotic regulatory networks

A regulatory network can be defined as a graph in which nodes represent either
transcription factors or their regulated genes and edges indicate their regulatory
relationship (Bar-Joseph et al. 2003; ideker et al. 2002; Lee et al. 2002; Pilpel et al.
2001). For each of the major apoptosis signaling pathways, i.e. the mitochondrial
intrinsic pathway, Fas-mediated extrinsic pathway, and TNFR1-médiated extrinsic
pathway, we constructed an in silico using transcription factors that have detected
binding sites_ within 600 bp upstream regions of human apoptosis genes. One reason for
choosing 0-600 bp upstream regions is that there exist most predicted binding sites in
these regions (Fig. 7). A regulatory subnetwork of the TNFR1 pathway is shown in Fig.
8. For human visualization purpose, this subnetwork only includes TNF (TNFSF1),
TNFR1 (TNFRSF1A), TRADD, and TRAF2. The network is highly connected,
suggesting that few TF families might regulate this pathway and many transcription

factors control more than 2 genes in this pathway.
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Figure 7. Distribution of predicted binding sites in different upstream regions.
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This figure shows the number of all predicted binding sites (85% matrix threshold against all the
490 matrices) either located in conserved regions or shared by interacting gene pairs of human -
apoptosis genes in different upstream regions of 600 bp intervals. The distance is relative to a
RefSeq annotated transcription start site (position 0). The distance range includes the lower
boundary but not the upper boundary. For example, binding sites in 0-600 bp contain all sites that
start from above 0 (>0) and end with 600 (<=600).
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Figure 8, Computationally identified regulatory network for the TNFR1-mediated
extrinsic apoptotic-signaling pathway
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In this subnetwork, ovals represent transcription factors and circles in the middle represent target
genes. An arrow between a TF and its target indicates a potential transcriptional regulatory
relationship. For visualization purposes, only 4 key genes that are involved in this pathway and
belong to the TNFR1 complex are shown. Table 6 summarizes the RN ratios of the regulatory
networks covering all key genes in intrinsic pathway, Fas-mediated extrinsic pathway and
TFNR1-mediated extrinsic pathway.

For estimating the potential significance of each transcription factor in
each entire regulatory network (figures not shown as they are too complex for
human visualization), we calculated its RN ratio of each transcription factor
(Table 6). The RN ratio for a transcription factor is the number of target genes

that this transcription factor is linked to in the regulatory network divided by the
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total number of key genes in each pathway. Transcription factoré such as AP-4,
AR, C/EBPalpha, C/EBPbeta, C/EBPdelta, DBP, E2F, E2F-1, GATA-2, GR, GR-
alpha, GR-beta, NF-xB, STAT1, STAT3, STAT4, STAT5A, and STAT6 appear to
possess most connections to genes in the 3 regulatory networks. Other
transcription factors connected to genes in two of the apoptotic pathways include
AP-1, c-Ets-1, c-Fos, c-Jun, c-Myb, C/EBPgamma, E2F-3, E2F-4, and others.
These data could be used to prioritize candidate transcription factors that might

coordinately regulate several genes in the same pathway.

Table 6. Potential importance of transcription factors in the regulatory networks of
three major apoptotic pathways.

Factor Name Intrinsic pathway Fas pathway TNFR pathway
AP-1 0.875 0.571 0.375
AP-4 0.625 0.571 0.625
AR 0.625 0.714 0.625
ATF 0.750 0.714 0.250
ATF-1 0.875 0.714 0.250
ATF-a 0.750 0.714 0.250
ATF3 0.750 0.857 0.250
ATF4 0.750 0.714 0.250
c-Ets-1 0.500 0.429 0.500
c-Fos 0.875 0.571 0.375
c-Jun 0.875 0.714 0.375
c-Myb 0.250 0.714 0.375
c-Myc 0.625 0.286 0
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Factor Name

Intrinsic pathway

Fas pathway

TNFR pathway

C/EBPalpha
C/EBPbeta
C/EBPgamma
C/EBPdelta
C/EBPepisilon
CRE-BP1
CREB
CREMalpha
DBP
deltaCREB
DP-1

E2F

E2F+E4
E2F-1

E2F-3

E2F-4

Fra-1

Fra-2

GATA-2
GATA-3

GR

GR-alpha
GR-beta
HNF-3alpha
HNF-3b
HNF-3beta
HNF-3gamma

1.000
0.625
0.250
0.625
0

0.875
0.750
0.750
0.625
0.750
0.250
0.625
0.375
0.875
0.375
0.250
0.875
0.875
0.875
0.625
1.000
1.000
1.000
0.625
0.625
0.625
0.625

0.857
0.714
0.714
0.714
0.714
0.714
0.714
0.714
0.571
0.714
0.714
0.714
0.714
0.857
0.714
0.714
0.571
0.571
0.571
0.571
0.714
0.714
0.714
0.429
0.429
0.429
0.429

0.875
0.875
0.625
0.875
0.625
0.250
0.250
0.250
0.750
0.250
0.625
0.750
0.625
0.875
0.625
0.625
0.500
0.375

- 0.626

0.375
0.875
0.875
0.875
0

0
0
0

39



Factor Name Intrinsic pathway Fas pathway TNFR pathway

JunB 0.875 0.571 0.500
JunD 0.875 0.571 0.500
LCR-F1 0.625 0.571 0

NF-xB 0.750 0.500 0.500
P53 0.375 0.600 0.400
RAR-alpha 0.250 0.714 0.750
RAR-alpha1 0.250 0.714 0.750
RAR-beta 0.375 0.714 0.750
RAR-beta2 0.250 0.714 0.750
RAR-gamma 0 0.714 0.750
RXR-alpha 0.250 0.714 0.750
RXR-beta 0.375 0.714 0.750
RXR-gamma 0 0.714 0.750
STAT1 0.875 0.857 0.875
STAT3 0.750 0.857 0.875
STAT4 0.750 0.857 1.000
STAT5A 0.875 0.857 1.000
STAT6 0.875 0.857 1.000
T3R-alpha 0.375 0.714 0.750
T3R-alphat 0.375 0.714 0.750
T3R-alpha2 0.250 0.714 0.750
T3R-beta1 0 0.714 0.750

The NF-«xB pathway is not included for this analysis as there are only three key components in
the pathway. A ratio of 0 indicates that the transcription factor was not in the regulatory network.

3.7 A data-driven website for apoptosis research
One fundamental task of bioinformatics is to provide value-added resources that
can directly benefit molecular biologists in their “wet-lab” experiments. Motivated by this

philosophy, we developed a database-driven, dynamic web site for apoptosis
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researchers. Suppose a biologist needs to know the interactions of mdst genes involved
in the mitochondrial apoptotic signaling pathway, one can find the two-layer interaction
network of Apaft (Fig. 9), which is ideal for human visualization. Many genes involved in
this pathway, such as Apaft, Caspase-9, NAC, and Caspase-3, are all displayed in this
network. If such an interaction network is still complex due to many direct interactions of
the gene and many interactions of its interacting partners, the interacting gene pairs can

be shown to help identify the interaction gene pairs included in the network.

Figure 9. A web-based two-layer protein interaction network for the human Apaf1.

Furthermore, a user can search for all transcription factors common in a set of

genes in the apoptotic pathways. This option was intended for searching potentially

common transcription factors in components of a multi-protein complex or involved in the
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same pathway, but is currently limited as the RefSeq of some genes might not be
available and not included for our analyses. Part of the search results for putative
common transcription factors in human Apaf-1 and Caspase-9 is shown in Fig. 10.
Alternatively, for a transcription factor, one can find which genes in the apoptotic
pathways might be its targets of regulation, which is recently termed “regulon” (Simmons
et al. 2004). Another option is to find all potential transcription factors controlling an

apoptosis gene.

Figure 10. The search results of putative transcription factors and binding sites shared by
human Apaf1 and Caspase-9.
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CHAPTER FOUR: DISCUSSION AND CONCLUSION

4.1 Usage of protein-protein interaction data for TFBS prediction

After various genomes have been sequenced and more are being sequenced in
a high-throughput manner, several major bioinformatics challengeé remain in the post-
sequencing genomics era. One of them is the identification of regulatory regions
regulating the expression of genes along the genomes. The main difficulty of TFBS
prediction lies on the fact that transcription factor binding sites are very short (typically 6-
12 bp in eukaryotes; longer in prokaryotes) and degenerate to tolerate considerable )
sequence variations, and thus many computationally predicted sites can occur randomly
in the genome (Lenhard et al. 2003; Sharan et al. 2003).

If functional genomics data such as microarray gene expression data are
available and can be integrated into TFBS predictions, the predictive performance of
many computational approaches can be improved. Microarray data have already been
used for identifying regulatory elements. For genes clustered by the expression profiles,
motif-finding algorithms are used to find over-represented motifs in their upstream
regions, since co-expressed genes are co-regulated and may share a set of similar
transcription factor binding sites (Qian et al. 2003).

Here we explored how protein-protein interaction data might also be used for
TFBS filtering. Our assumption is that interacting genes share a similar set of
transcription factor binding sites. In prokaryotes a significant proportion of genes that
are co-regulated at the transcriptional level code for proteins that interact physically
(Teichmann and Babu 2002). In eukaryotes, mainly limited to yeast, gene expression

profiles have been shown to correlate with protein-protein interactions (Ge ef al. 2001;
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Jansen et al. 2002; Teichmann and Babu 2002). Gene expression profiles are highly
correlated for gene products that form multi-subunit protein complexes or involved in the
same pathway (Staudt and Brown 2000), and genes with similar expression patterns are
more likely to encode interacting proteins (Ge et al. 2001). Hannenhalli and Levy (2003)
showed that the cis-identity, defined as the proportion of shared transcription factor
binding sites (TFBS) between two cis-element profile (or cis-profile, refers to the
collection of TFBS regulating the transcription of a gene), is higher for functionally linked
interacting proteins as well as for members of a signal transduction pathway, which
suggests similar transcriptional control of genes in a complex or pathway. Thus, these
authors hypothesize that genes encoding for interacting proteins will be transcribed with 7
a common set of regulatory signals. Simmons et al. (2004) studied transcriptional
regulation of protein complexes in yeast and showed that the genes in multi-protein
complexes are likely to be co-regulated either together or in smaller subgroups. We
based our TFBS filtering on the assumption that interacting genes are more likely to
share a similar set of transcription factor binding sites.

Our prediction results show that the prediction sensitivity of only keeping binding
sites in conserved regions is lower than non-filtering prediction, because some binding
sites may not be located in the conserved regions (Lenhard et al. 2003). There are
studies showing examples of regulatory elements that are found in regions of low
sequence identity. For example, there are two functional MARE motifs in pufferfish and
chicken that is located in a poorly conserved region compared with human and mouse
(Flint et al. 2001).

To improve TFBS predictions we used a simple union algorithm with protein-protein
interaction data (i.e. retain binding sites either in the conserved regions or shared by at
least a pair of interacting genes), the sensitivity is the same as the no-filtering approach,

while the specificity is significantly improved (implied by fewer average predictions in a
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100 bp upstream sequence).

This approach apparently has limitations. First, though there is some evidence
that the interacting genes tend to share a similar cis-profile (Hannenhalli and Levy 2003;
Simmons et al. 2004), it is not certain that this assumption can generally hold true.
Interacting genes may have other mechanisms of regulation at translational levei or
post-translational level. The relationships between gene expression and genome-wide
two-hybrid interaction data appear to be more tenuous (Ge et al. 2001; Gerstein and
Jansen 2000; Jansen et al. 2002). Second, it depends on the known protein-protein
interactions; some interactions may be yet to be discovered. Thus, with increasing
amount of protein-protein interaction data, the TFBS predictive performance of using
protein-protein interaction data would definitely improve. Third, the PWM compiled from |
experimentally determined TFBS available in TRANSFAC database poses a major
limitation, because the computational approach described relies on the available DNA
binding profiles of known transcription factors (Lenhard et al. 2003; Loots et al. 2002).

While the current computational tools have success in predicting TBFS within a
special context, apparently there is still much scope for improvement. The prediction
sensitivity is sometimes reasonably high, but the specificity is extremely low, yielding
most false positives randomly distributed along the genomic sequences (Lenhard et al.
2003). Innovative algorithms, and perhaps even more importantly, high-quality functional
genomics as well as proteomics data sets with respect to gene expression, are required
to further advance this bioinformatics field. With the increasing amount of protein-protein
interaction data generated by various ongoing proteomics efforts, we suggest that they
could be used in a similar manner as microarray data for improving computational TFBS

identification.
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4.2 Human protein-protein interaction networks and regulatory networks in
apoptosis

Many protein-protein interaction data disperse in the literature and recently,
efforts have been made to gather these interaction data into databases and provide
searchable user interfaces, such as BIND (Bader ef al. 2003), the human protein
reference database - HPRD (Peri et al. 2003), and others. However, these sites in
general only present the interaction partners of a gene in a pairwise manner, greatly
limiting the potential value of these experimentally determined protein interaction data.

For each of the 168 human apoptosis genes that have known protein-protein
interaction data, we constructed a two-layer interaction network. These two-layer
interaction networks are suitable for human visualization and intended to help biologists -
in apoptosis research. Each of them consists of protein interactions of related genes
that are likely involved in the same pathway or a protein complex. Several multi-protein
complexes have been characterized in the major apoptotic signaling pathways. The
apoptosome complex, which is formed in the mitochondrial intrinsic pathway, containé
Apaf-1, ATP, Caspase-9, cytochrome C, and NAC (Acehan et al. 2002; Chu et al. 2001;
Li et al. 1997; Liu et al. 1996). The DISC complex in the Fas-mediated extrinsic
pathway, and contains Fas (TNFRSF6), FasL (TNFSF6), FADD, and either Caspase-8
or Caspase-10 (Kischkel et al. 1995; Muzio et al. 1995; Wajant 2002). The
inflammasome, which is mainly involved in cytokine activation, contains ASC, NALP1,
Caspase-1, and Caspase-5 (Martinon et al. 2002). The TNFR1 complex includes
TNFR1, TRADD, TRAF2, clAP1, and the kinase RIP1 (known as complex 1) assembles
in plasma membrane rapidly to recruit IKK leading to NF-kB activation and survival; and
the second complex includes TRADD, RIP1, FADD, Caspase-8 and -10, which forms a
cytoplasmic complex (complex Il) to initiate apoptosis (Micheau and Tschopp 2003).

Components in these complexes must interact with each other, either directly or
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indirectly. This information regarding protein complexes does normally not exist in the
pairwise protein interaction data. However, if we add another layer of interactions, all
these complexes can be represented in two-layer interaction networks (e.g. Fig. 5; all
168 two-layer interaction networks are available at
http://apoptosis.mbb.sfu.cal/interaction.php). Hence, we hypothesize that the two-layer
interaction network can help biologists to discover other interactions and/or multi-protein
complexes in apoptotic pathways.

Transcriptional regulatory networks are key to our understanding of fundamental
biological processes, and it can even offer insights into the defect of gene expression
that is common in many human diseases (Qian ef al. 2003). However, linking
transcription factors and their target genes presents great challenges to genome biology‘.‘
In eukaryotes, most studies concerning regulatory networks were performed in
unicellular yeast Saccharomyces cerevisiae (Bar-Joseph et al. 2003; Ideker et al. 2002;
Lee et al. 2002; Pilpel et al. 2001). However, there was no previous systematic analysis
of transcriptional regulatory networks in human apoptotic signaling pathways.

We computationally constructed a regulatory network for each human apoptotic-
signaling pathway and estimated the putative regulatory significance of each
transcription factor. These in silico regulatory networks are generic (i.e. without a special
biological context) and aimed to help understand the potential transcriptional regulation
in apoptotic signal transduction. The network is highly connected, suggesting that few
TF families might regulate this pathway and many transcription factors might regulate
more than 2 genes in this network. Transcription factors such as AP-4, AR, C/EBPalpha,
C/EBPbeta, C/EBPdelta, DBP, E2F, E2F-1, GATA-2, GR, GR-alpha, GR-beta, NF-xB,
STATH1, STAT3, STAT4, STATSA, and STAT6 appear to possess most connections to
genes in the 3 regulatory networks. Other transcription factors connected to genes in two

of the apoptotic pathways include AP-1, c-Ets-1, c-Fos, c-Jun, c-Myb, C/EBPgamma,
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E2F-3, and E2F-4. These data could be used to prioritize candidate transcription factors

that might coordinately regulate several genes in the same pathway.

To conclude this work, the following work has been done regarding genes that

are involved in apoptotic signaling pathway:

1.

2.

Compiled genes known to be involved in apoptosis from 5 vertebrate genomes;
Extracted known protein-protein interactions between human apoptosis genes
and constructed two-layer interaction networks suitable for human visualization;
Predicted many putative transcription factor binding sites for transcription factors
that might regulate or co-regulate many genes in the apoptotic signaling
pathways;

Constructed in silico regulatory networks to obtain insights into regulation of the
major apoptotic signaling pathways;

Developed a database-driven web site to make the data available to the

apoptosis research community.
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WEB SITE REFERENCES

http://www.apache.org: Apache web server.

http://apoptosis.mbb.sfu.ca/main.php: A data-driven web site for searching apoptosis
regulatory elements and two-layer human apoptotic protein-protein interaction
networks, developed for this project.

http://www.biobase.com: TRANSFAC (professional version) web site.

http://www.bioperl.org: BioPerl toolkit.

http://www.cbil.upenn.eduftess: TESS Transcription Element Search System, including
free web access to the public version of the TRANSFAC database.

http://www.ensembl.org: Ensembl web site.

http://www.ensembl.org/Multi/martview: Ensembl EnsMart interface.

httg://forkheéd.cgb.ki.se/T EBS: TFBS Perl system documentation.
http://www.gene-regulation.com: TRANSFAC database documentation.

http://genome.ucsc.edu/cgi-bin/hgText: UCSC genome table browser.

http://lagan.stanford.edu/lagan_web/index.shtml: LAGAN alignment tool.
http://www.mysqgl.com: MySQL database server.

http://www.ncbi.nih.gov: National Centre for Biotechnology Information.

http://www.perl.org: Perl programming language web site.
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http://www-gsd.lbl.gov/vista/index.shtml: VISTA alignment and visualization tool.
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Appendix A: The RefSeq accession numbers of apoptosis genes identified in the

APPENDICES

mammalian genomes.

Gene Name Human RefSeq Mouse RefSeq Rat RefSeq
Ala NM_000295 NM_009742 NM_022519
Alb NM_130786 NM_007534 -

AlF NM_004208 NM_012019 NM_031356
AIM2 NM_004833 XM_357160 -

Ankyrin-1 NM_020476 XM_144122 -
Ankyrin-2 NM_001148 NM_178655 XM_227735
Ankyrin-3 NM_020987 NM_170728 -

ANT1 NM_012469 XM_134169 -

ANT2 NM_001152 NM_007451 NM_057102
ANT3 NM_001636 - -

Apaf1 NM_181861 NM_009684 NM_023979
Apollon NM_016252 NM_007566 -

Arc NM_015193 NM_030152 NM_053516
ASC NM_013258 NM_023258 NM_172322
Aven NM_020371 NM_028844 XM_230438
Bad NM_004322 NM_007522 NM_022698
BAFF-R NM_052945 NM_028075 -

BAG1 NM_004323 NM_009736 -

BAG2 NM_004282 NM_145392 -

BAG3 NM_004281 NM_013863 -

BAG4 NM_004874 NM_026121 -

BAGS NM_004873 XM_127149 XM_345726
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Gene Name Human RefSeq Mouse RefSeq Rat RefSeq
Bak NM_001188 NM_007523 -

BAP31 NM_005745 NM_012060 -

BAR NM_016561 NM_025976 -

Bax NM_004324 NM_007527 NM_017059
Bcl-10 NM_003921 NM_009740 NM_031328
Bel-2 NM_000633 NM_009741 NM_016993
Bel-3 NM_005178 NM_033601 XM_223405
Bcl-B NM_020396 NM_013479 NM_053733
Bcl-G NM_138722 XM_132904 -

Bcl-L12 NM_138639 NM_029410 -

Bel-w NM_004050 NM_007537 NM_021850
Bel-x NM_001191 NM_009743 NM_031535
Beclin NM_003766 NM_019584 NM_053739
Bid NM_001196 NM_007544 NM_022684
Bik NM_001197 NM_007546 -

Bim NM_138621 NM_009754 NM_022612
Bimp1 NM_014550 NM_130859 XM_243622
Bimp2 NM_024110 NM_130886 -

Bimp3 NM_032415 NM_175362 -

Bmf NM_033503 - NM_139258
Bnip1 NM_001205 XM_355000 -

Bnip2 NM_004330 NM_016787 -

Bok NM_032515 NM_016778 NM_017312
c-rel NM_002908 NM_009044 XM_223688
CARD6 NM_032587 - -

CARD9 NM_052814 - NM_022303
Cardiak NM_003821 NM_138952 -

CARP NM_014391 NM_013468 NM_013220
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Gene Name Human RefSeq Mouse RefSeq Rat RefSeq
Caspase-1 NM_033292 NM_009807 NM_012762
Caspase-10 NM_001230 - -
Caspase-14 NM_012114 NM_009809 XM_234878
Caspase-2 NM_032982 NM_007610 NM_022522
Caspase-3 NM_004346 NM_009810 NM_012922
Caspase-4 NM_001225 NM_007609 -
Caspase-5 NM_004347 - -
Caspase-6 NM_001226 NM_009811 NM_031775
Caspase-7- NM_033338 NM_007611 NM_022260
Caspase-8 NM_001228 NM_009812 NM_022277
Caspase-9 NM_001229 NM_015733 NM_031632
clAP1 NM_003921 NM_007464 -

CIITA NM_000246 NM_007575 NM_053529
CLAN NM_021209 XM_140158 XM_216640
COP NM_052889 - -

CPAN NM_004402 NM_007859 NM_053362
Cryopyrin NM_004895 NM_145827 -

DAP-3 NM_033657 XM_144039 NM_173138
DAP-Kinase NM_004938 - NM_133392
DEDD NM_004216 NM_011615 NM_031800
DEDD2 NM_133328 NM_026117 -

DFF45 NM_004401 NM_010044 NM_053679
DFFA-likeA NM_198289 NM_007702 XM_214551
DFFA-likeB NM_014430 NM_009894 -

DR3 NM_148965 NM_033042 XM_345611
DR4 NM_003844 - -

DR5 NM_003842 NM_020275 XM_344431
DR6 NM_014452 NM_178589 -
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Gene Name Human RefSeq Mouse RefSeq Rat RefSeq
EDA-A1 NM_021783 NM_010099 -

EDAR NM_022336 NM_010100 -
EDARADD NM_145861 NM_133643 -

EndoG NM_004435 NM_007931 -

FADD NM_003824 NM_010175 NM_152937
Fas NM_000043 NM_007987 - NM_139194
FLASH NM_012115 - XM_232860
FLIP NM_003879 NM_009805 NM_057138
FSP27 XM_352506 NM_178373 -

HIP-1 NM_005338 NM_146001 -

HIPPI NM_018010 NM_028680 -

Hrk NM_003806 NM_007545 NM_057130
HtrA2 NM_013247 NM_019752 -

lceberg NM_021571 - -

IF116 NM_005531 NM_008329 -

ikba NM_020529 - -

ikbb NM_002503 NM_010908 NM_030867
ikbe NM_004556 NM_008690 -

ikbka NM_001278 NM_007700 -

Ikbkb XM_032491 NM_010546 NM_053355
Ikbke NM_014002 NM_019777 XM_344139
ikbz NM_031419 NM_030612 -

IL-1R NM_004633 NM_008362 NM_133575
ILP2 NM_033341 - -

IRAK-1 NM_001569 NM_008363 XM_343844
IRAK-2 NM_001570 NM_172161 -

IRAK-4 NM_016123 NM_029926 -

IRAK-M NM_007199 NM_028679 -
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Gene Name Human RefSeq Mouse RefSeq Rat RefSeq
KRC NM_024503 NM_010657 -
MADD NM_130470 NM_145527 NM_053585
Mal NM_002371 NM_010762 NM_012798
MALT-1 NM_006785 NM_172833 -
NETWORK-1 NM_022151 NM_022323 XM_225513
Mcl-1 NM_021960 NM_008562 NM_021846
MEPRIN-1a NM_005588 NM_008585 NM_013143
MEPRIN-1b NM_005925 NM_008586 NM_013183
Mil-1 NM_015367 NM_153516 -
ML-IAP NM_139317 XM_283820 -
MyD88 NM_002468 NM_010851 NM_198130
NAC XM_293792 XM_193688 XM_340835
NAIP NM_004536 NM_008670 XM_226742
NFkB1 NM_003998 NM_008689 XM_342346
NFkB2 NM_002502 NM_019408 -
Nfkbil1 NM_005007 NM_010909 -
NGFR NM_002507 NM_033217 NM_012610
Nip3 NM_004052 NM_009760 NM_053420
Nix NM_004331 NM_009761 NM_080888
NMP-84 NM_005131 NM_153552 -
Nod1 NM_006092 NM_172729 -
Nod2 NM_022162 NM_145857 -
NOP2 NM_182543 - -
Noxa NM_021127 NM_021451 -
p193 NM_006437 - -
p50 NM_003998 NM_008689 XM_238811
p52 NM_001517 XM_133174 XM_227168
P53 NM_000546 NM_011640 NM_030989




Gene Name Human RefSeq Mouse RefSeq Rat RefSeq
P65 NM_031899 NM_028976 -
P73 NM_005427 NM_011642 -
PAN11 NM_153447 NM_011860 -
PAN2 NM_134444 NM_023697 NM_133524
PAN3 NM_175854 - -
PEA-15 NM_003768 NM_011063 -
Pidd NM_145886 NM_022654 XM_347291
POP1 NM_015029 NM_152894 -
POP2 NM_022135 NM_022318 NM_199113
Puma NM_014417 NM_133234 -
PYRIN NM_000243 NM_019453 NM_031634
Raf1 NM_002880 NM_029780 NM_012639
RAIDD NM_003805 NM_009950 XM_235060
RelA NM_021975 NM_009045 XM_238994
RelB NM_006509 NM_009046 -
RELT NM_032871 NM_177073 -
RIP NM_003804 NM_009068 XM_225262
SIAH-1 NM_003031 NM_009172 NM_080905
SIAH-2 NM_005067 NM_009174 NM_134457
Smac NM_019887 NM_023232 -
Smn NM_022874 NM_011420 NM_022509
Survivin NM_001168 NM_009689 -
TANK NM_004180 NM_011529 NM_145788
TBK-1 NM_013254 NM_019786 -
TEF1 NM_021961 NM_009346 -
TEF2 NM_003563 NM_025287 -
TEF3 NM_003214 NM_197987 -
TEF4 NM_003598 NM_011565 XM_218630
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Rat RefSeq

Gene Name Human RefSeq Mouse RefSeq

TEF5 NM_003214 NM_011566 -

TIRP NM_021649 NM_173394 -

TLR1 NM_003263 NM_030682 -

TLR10 NM_030956 - -

TLR2 NM_003264 NM_011905 NM_198769
TLR3 NM_003265 NM_126166 NM_198791
TLR4 NM_138554 NM_021297 NM_019178
TLR5 NM_003268 NM_016928 XM_223016
TLR6 NM_006068 NM_011604 -

TLR7 NM_016562 NM_133211 -

TLR8 NM_016610 NM_133212 -

TLRY NM_017442 NM_031178 -

TNFR1 NM_001065 NM_011609 NM_013091
TNFRSF10A NM_003844 - -
TNFRSF10B NM_003842 NM_020275 -
TNFRSF10C NM_003841 - -
TNFRSF10D NM_003840 - -
TNFRSF11A NM_003839 NM_009399 -
TNFRSF11B NM_002546 NM_008764 NM_012870
TNFRSF12 NM_148965 NM_033042 -
TNFRSF13b NM_012452 NM_021349 -
TNFRSF14 NM_003820 NM_178931 -
TNFRSF16 NM_002507 NM_033217 NM_053401
TNFRSF17 NM_001192 NM_011608 -
TNFRSF18 NM_004195 NM_009400 -
TNFRSF19 NM_018647 NM_013869 -
TNFRSF1A NM_001065 NM_011609 NM_013091
TNFRSF1B NM_001066 NM_011610 NM_130426
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Gene Name Human RefSeq Mouse RefSeq Rat RefSeq
TNFRSF3 NM_002342 NM_010736 -
TNFRSF4 NM_003327 NM_011659 NM_013049
TNFRSF5 NM_001250 NM_170701 -
TNFRSF6 NM_000043 NM_007987 NM_139194
TNFRSF6B NM_032945 - -

TNFRSF7 NM_001242 XM_284241 -

TNFRSF8 NM_001243 NM_009401 NM_019135
TNFRSF9 NM_001561 NM_011612 -

TNFSF1 NM_000595 NM_010735 NM_080769
TNFSF10 NM_003810 NM_009425 NM_145681
TNFSF11 NM_003701 NM_011613 NM_057149
TNFSF12 NM_003809 NM_011614 -

TNFSF13 NM_003808 NM_023517 -
TNFSF13b NM_006573 NM_033622 XM_213352
TNFSF14 NM_003807 NM_019418 -

TNFSF15 NM_005118 NM_177371 NM_145765
TNFSF18 NM_005092 NM_183391 -

TNFSF2 NM_000594 NM_O1 3693 NM_012675
TNFSF3 NM_002341 NM_008518 -

TNFSF4 NM_003326 NM_009452 NM_053552
TNFSF5 NM_000074 NM_011616 NM_133542
TNFSF6 NM_000639 NM_010177 NM_012908
TNFSF7 NM_001252 NM_011617 -

TNFSF8 NM_001244 NM_009403 -

TNFSF9 NM_003811 NM_009404 -

Tradd NM_003789 XM_134502 XM_341671
TRAF1 NM_005658 NM_009421 -

TRAF2 NM_021138 NM_009422 XM_217381
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Gene Name Human RefSeq Mouse RefSeq Rat RefSeq
TRAF3 NM_145725 NM_011632 -

TRAF4 NM_004295 NM_009423 -

TRAF5 NM_004619 NM_011633 -

TRAF6 NM_145803 NM_009424 XM_230377
TRIF NM_014261 NM_174989 NM_053588
Trip NM_005879 NM_011634 -

TTRAP NM_016614 NM_019551 -

TUCAN NM_014959 - -
TWEAK-R NM_016639 NM_013749 NM_181086
UNC5H1 XM_030300 NM_153131 NM_022206
UNC5H2 NM_170744 NM_029770 NM_022207
UNC5H3 NM_003728 NM_009472 -

UNC5H4 NM_080872 NM_153135 XM_224934
VDAC1 NM_003374 NM_011694 NM_031353
VDAC2 NM_003375 NM_011695 NM_031354
VDAC3 NM_005662 NM_011696 NM_031355
XEDAR NM_021783 NM_175540 -

XIAP NM_001167 NM_009688 NM_022231
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Appendix B: The Ensembl IDs of apoptosis genes identified in the Danio and Fugu

genomes.

Gene Name

Danio Ensembl Gene 1D

Fugu Ensembl Gene ID

AlIF
Ankyrin-1
Ankyrin-3
ANT2
ANT3
Apaf1
Apolion
ASC
Bad
BAG1
BAG2
BAG3
BAG4
BAGS
BAP31
BAR
Bax
Bcl-10
Bcl-2
Bcl-G
Bcel-x
Bimp1
Bimp2
Bimp3
Bnip1

ENSDARG00000004596.2
ENSDARG00000023273.1
ENSDARG00000012091.2
ENSDARG00000023035.1
ENSDARG00000017611.2
ENSDARG00000021239.2
ENSDARG00000016703.2
ENSDARG00000025239.2
ENSDARG00000016986.2
ENSDARG00000020895.2
ENSDARG00000002935.2
ENSDARGO00000016349.2
ENSDARGO00000003448.1
ENSDARG00000018864.2
ENSDARG00000022311.1

ENSDARG00000020623.2
ENSDARG00000025613.1
ENSDARG00000024762.1
ENSDARG00000008434.2
ENSDARG00000007176.2
ENSDARG00000015105.2
ENSDARG00000011211.1

SINFRUG00000132896.1

SINFRUG00000151154.1
SINFRUG00000127619.1

SINFRUG00000127522.1
SINFRUG00000145698.1
SINFRUG00000124171.1
SINFRUG00000129587.1
SINFRUG00000148315.1
SINFRUG00000145185.1
SINFRUGO00000135145.1
SINFRUG00000155270.1
SINFRUG00000155226.1
SINFRUG00000154885.1
SINFRUG00000151272.1

SINFRUG00000153721.1
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Gene Name

Danio Ensembl Gene ID

Fugu Ensembl Gene ID

Bnip2

Bok

c-rel
CARD9
Cardiak
CARP
Caspase-1

Caspase-2

Caspase-3 -

Caspase-6
Caspase-7
Caspase-8
Caspase-9
ClAP1
CPAN
Cryopyrin
DAP-3
DAP-Kinase
DEDD
DEDD2
DFF45
DFFA-likeA
DFFA-likeB
DR3

DR6
EDA-A1
EDAR
EndoG

ENSDARGO00000018654.2
ENSDARG00000008082.2
ENSDARG00000003646.2
ENSDARG00000008151.2
ENSDARGO00000010568.2
ENSDARG00000008165.2
ENSDARG00000014202.2
ENSDARGO00000017905.2
ENSDARG00000025608.1
ENSDARG00000016228.2
ENSDARG00000004166.2
ENSDARG00000004325.2
ENSDARG00000009748.2
ENSDARG00000002237.2

ENSDARGO00000010449.2

ENSDARG00000002758.2
ENSDARG00000011058.2
ENSDARG00000012640.1
ENSDARG00000023511.1
ENSDARG00000028025.1
ENSDARG00000016846.2
ENSDARG00000013314.2

SINFRUG00000125422.1
SINFRUG00000127895.1
SINFRUG00000125585.1
SINFRUG00000140308.1
SINFRUG00000143650.1
SINFRUG00000123590.1
SINFRUGO00000150854.1
SINFRUG00000153768.1
SINFRUG00000149757.1
SINFRUG00000137039.1
SINFRUG00000151828.1
SINFRUG00000121271.1
SINFRUG00000151815.1
SINFRUG00000120866.1
SINFRUG00000139205.1
SINFRUG00000129387.1
SINFRUG00000126787.1
SINFRUG00000123753.1
SINFRUG00000143240.1

SINFRUG00000128904.1
SINFRUG00000144989.1
SINFRUGO00000144147.1
SINFRUGO00000137336.1

67



Gene Name

Danio Ensembl Gene ID

Fugu Ensembl Gene ID

FLASH
FLIP
FSP27
HiP-1

HIPPI

HtrA2

ikba

ikbka

Ikbkb

Ikbke

ikbz

IRAK-1
IRAK-4
IRAK-M
KRC

MADD
MALT-1
NETWORK-1
Mcl-1
MEPRIN-1a
MEPRIN-1b
Mil-1
MyD88
NAC

NFkB1
NFkB2
NGFR

Nip3

ENSDARG00000022718.1
ENSDARG00000019149.2
ENSDARG00000002891.1
ENSDARG00000012291.2
ENSDARG00000021022.2
ENSDARG00000003377.2
ENSDARG00000005481.1
ENSDARG00000011732.2
ENSDARG00000008987.2

ENSDARG00000010657.2
ENSDARG00000009541.2
ENSDARG00000002158.2
ENSDARGO00000003495.2
ENSDARG00000006052.2
ENSDARG00000008363.2
ENSDARG00000008029.2
ENSDARG00000012343.2
ENSDARG00000010169.2

ENSDARG00000004043.2
ENSDARG00000013019.2
ENSDARG00000019785.2

SINFRUG00000139764.1
SINFRUG00000149841.1
SINFRUG00000142884.1
SINFRUG00000155476.1
SINFRUG00000150960.1
SINFRUG00000145881.1

SINFRUG00000154808.1
SINFRUG00000153830.1
SINFRUG00000137211.1
SINFRUG00000122284.1

SINFRUG00000129322.1
SINFRUG00000153288.1
SINFRUG00000127514.1
SINFRUG00000141433.1
SINFRUG00000142288.1
SINFRUG00000143419.1
SINFRUG00000121087.1
SINFRUG00000139935.1

SINFRUG00000140313.1
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Gene Name

Danio Ensembl Gene ID

Fugu Ensembl Gene ID

Nix
NMP-84
Nod1
Nod2
P193
P52
P53
P65
P73
PEA-15
Pidd
POP1
POP2
PYRIN
Raf1
RAIDD
RelA
RelB
RIP
SIAH-1
SIAH-2
Smac
Smn
Survivin
TBK-1
TEF1
TEF2
TEF3

ENSDARG00000025468.1
ENSDARG00000011938.2
ENSDARG00000009801.2
ENSDARG00000010756.2
ENSDARG00000024235.1
ENSDARGO00000004772.2
ENSDARG00000005535.2
ENSDARG00000015126.2
ENSDARG00000017953.2
ENSDARGO00000014546.2
ENSDARG00000018596.2

ENSDARG00000012001.2
ENSDARG00000008824.2
ENSDARG00000028192.1

ENSDARG00000006677.2
ENSDARG00000003044.2
ENSDARG00000026203.1
ENSDARG00000003346.2
ENSDARG00000018494.2
ENSDARG00000015440.2
ENSDARG00000011399.2
ENSDARG00000028159.1
ENSDARG00000018779.2
ENSDARG00000026508.1

SINFRUG00000134338.1
SINFRUG00000123317.1
SINFRUG00000144256.1
SINFRUG00000134206.1
SINFRUG00000139489.1
SINFRUG00000148742.1

SINFRUG00000144776.1
SINFRUG00000133773.1
SINFRUG00000139383.1
SINFRUG00000129594.1
SINFRUG00000153876.1
SINFRUG00000128869.1
SINFRUG00000124092.1
SINFRUG00000123923.1
SINFRUG00000155319.1
SINFRUG00000124017.1
SINFRUG00000129198.1

SINFRUG00000122152.1

SINFRUG00000144598.1

SINFRUG00000142204.1
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Gene Name

Danio Ensembl Gene 1D

Fugu Ensembl Gene (D

TEF4
TEF5
TLR1
TLR10
TLR2
TLR3
TLR4
TLR5
TLR6
TLR7
TLRS8
TLR9
TNFRSF11B
TNFRSF14
TNFRSF16
TNFRSF19
TNFRSF1B
TNFSF1
TNFSF10
TNFSF13b
TNFSF2
Tradd
TRAF1
TRAF2
TRAF3
TRAF4
TRAF6
Trip

ENSDARG00000009569.2
ENSDARG00000010871.2
ENSDARG00000013167.2
ENSDARG00000016065.2
ENSDARG00000019742.2
ENSDARG00000003558.2

ENSDARG00000008467.2

ENSDARG00000012428.2

ENSDARG00000025982.1
ENSDARGO00000013598.2
ENSDARG00000004196.2
ENSDARG00000012945.1
ENSDARG00000009511.2
ENSDARG00000011321.2
ENSDARG00000018205.2
ENSDARG00000022000.1
ENSDARG00000003884.2
ENSDARGO00000007432.2

SINFRUGO00000139713.1
SINFRUGO00000153549.1
SINFRUGO00000136489.1
SINFRUG00000127281.1
SINFRUG00000148027.1
SINFRUG00000130570.1
SINFRUG00000135468.1
SINFRUG00000153794.1

SINFRUG00000151268.1

SINFRUG00000135870.1
SINFRUG00000153451.1

SINFRUG00000125406.1
SINFRUG00000136786.1
SINFRUG00000148227.1
SINFRUG00000138929.1
SINFRUG00000130060.1

SINFRUG00000126483.1

SINFRUG00000123917.1
SINFRUG00000129233.1
SINFRUG00000154715.1
SINFRUG00000154904.1
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Gene Name

Danio Ensembl! Gene ID

Fugu Ensembl Gene ID

TTRAP
UNCS5HA1
UNC5H2
UNCS5H3
UNC5H4
VDACH1
VDAC2
VDAC3
XIAP

ENSDARG00000016685.2

ENSDARGO00000007437.2

ENSDARG00000021881.1
ENSDARG00000013623.2
ENSDARG00000003695.2
ENSDARGO00000016143.2

SINFRUG00000129653.1
SINFRUG00000120852.1
SINFRUGO00000133834.1
SINFRUG00000132851.1

SINFRUG00000127720.1

71




Appendix C: The human apoptotic protein-protein interaction network
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Appendix D: An example position frequency matrix (PFM) for each TF class in Fig.
6, its average matrix length and expected number of occurrences in upstream

sequences

TF class

Matrix example

Average
matrix length

Expected
occurrences

cC

111050118667
1715601161414 11
2010530118241819
1702501191415

11.5

0.0008

CH

241417001920211739
2010102805151056 40

56 6589 108 106 0 99 99 76 72 21 32
819100928692927

OnNn-N nON

13.2

5.4x107°

homeo

D NwNhWw OO

21225202816311697 11
00000203014111147
16240001081106304
30252413247921213353

15.9

1.6x10°

POU

6135612202625251595
1145100001566
25822326010226
7481110000499

13.8

2.9x10°

bZIP

6141944363024721015
1512322413044082412
1913165633229000245 11
7893685247101389

13.0

8.9x10°

bHLH

23050000001
10500100120
21004405203
01001050231

12.0

0.0004

bHLH-ZIP

207001011
070070211
200701532
300005023

14.4

1.4x10°

MADS

30019919117100094

1700001112212055
700211117370103

14.5

1.1x10°

HMG

101521250282710167 11
412029000362
3210000151310

2115401218536

9.8

0.007

ETS

092014141
3200003
11312140010
0

A:
C:
G:
T:
A:
C:
G:
T:
A
C:
G:
T:
A:
C:
G:
T:
A:
C:
G:
T:
A:
C:
G:
T:
A:
C:
G:
T:
A:
C:
G:
T:
A:
C:
G:
T:
A:
C:
G:
T: 000000

1
2
2
0
2
3
2
0
2
4421210102020079
1
4
6
6
1
.
8
0
1
5

14.6

1.0x10°
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TF class

Matrix example

Average
matrix length

Expected
occurrences

paired

17337153
014010216

16.5

6.6x107

paired-
homeo

517337153
1014010216

73220010
11117321

13.6

3.9x10°

REL

15651201
0151001516
6159310000
12310161520

10.0

0.006

CH+homeo

21120000431
140121200133
30000012161
67000120607

0.0007

Trp

(o)} (3, BN, W e

16169820418000116121
156105111641491800016720
6591488342522060004721151211
8153216555406060151141

14.3

1.5x10°

forkhead

21000005555102
12150400000200

20000000000230

15.4

3.1x10°

LIM

4603122000103
16101231008001458
811100024210318414
36300503109106

12.0

0.0004

runt

853040000001843
443461030014059
349610170171712162
2427616014001510823

15.7

2.1e-06

histone

10123418190141370422
11171012514139021223
104991621010021414
9819162000023812

12.4

0.0002

bHSH

430002241231
601113125851293
3600063310918
042010011001

12.6

0.0002

STAT

59794000049121
6612510003092003
11836501011421235

A
C:
G:
T:
A:
C:
G:
T:
A
C:
G:
T:
A
c:
G:
T:
A1
C:1
G:
T
A1
C:0
G:002405150000023
T4
A:3
C:
G:
T:
A
C:
G:
T
A
C:
G:
T:
A:
C:
G:
T
A
C:
G:
T:878101130290201006 1

12.0

0.0004
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TF class Matrix example Average Expected
matrix length | occurrences
SMAD A:0080013200111400080408220 | 125 0.0002
C:101001152110102140027105100
374
G:00210352007356652110000300
T.0008910500050043100102216
Grainyhead | A:502002142650150 11 0.001
C:01700132636117615
G:11201718612104922814
T:301720815743401050
P53 A:45150170000000201700000 17 3.5x107

C:00017000131717000170002137
G:131220001700017171500017002
T.00000170400000001701547

Refer to Fig. 6 for the description of each TF class. The matrix example was the first one
retrieved for each class. The expected number of occurrences was calculated based on the
average length of matrices in a 6 kb upstream sequence.

75




