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ABSTRACT 

Apoptosis is a type of cell death mediated by different signaling pathways 

involving protein-protein interactions that eventually activate caspases, a family of 

proteases capable of degrading cellular proteins. In this study we identify genes that 

belong to 16 protein families known to be involved in apoptosis in 5 vertebrate genomes: 

human, mouse, rat, Danio zebrafish, and Fugu pufferfish. It is shown that most apoptotic 

pathways are conserved in these vertebrate genomes, whereas key genes of the Fas- 

mediated extrinsic pathway have not yet been identified in zebrafish and pufferfish 

genomes. Sequence alignment indicates that the upstream regions are less conserved 

than the corresponding transcript sequences and the sequence identity further declines 

after masking out the repetitive elements in the upstream sequences. These data are 

critical for phylogenetic footprinting studies of apoptosis genes in vertebrate genomes. 

Based on 366 known protein-protein interactions covering 168 (-72%) human 

apoptosis genes, we assemble a protein interaction network. To facilitate human 

visualization and potentially help biologists in apoptosis research, a two-layer protein 

interaction network is built for each human apoptosis gene. Several known apoptotic 

complexes, such as apoptosome, DISC, inflammasome and TNFRI complex, are all 

visualized in the two-layer interaction networks. We hypothesize that these two-layer 

protein interaction networks may help infer other multi-protein complexes in apoptosis. 

Furthermore, we computationally identify putative transcription factor (TF) binding 

sites upstream of apoptosis genes, and use protein-protein interactions in conjunction 

with phylogenetic footprinting information for prediction filtering. Our results suggest that 

protein-protein interaction data could complement sequence conservation to reduce 

iii 



false positive predictions. The TF classes STAT, bHSH, paired, SMAD, and bZlP have 

most predicted binding sites upstream of human apoptosis genes. From the 

computational analysis and known transcription factor binding sites, we construct a 

regulatory network for each main apoptotic signaling pathways. These in silico networks 

demonstrate that some transcription factors might regulate several genes involved in the 

same pathway. Lastly, to make these data available for apoptosis research, we develop 

a database-driven web site and its URL is htt~://a~o~tosis.mbb.sfu.ca/main.DhD. 
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CHAPTER ONE: INTRODUCTION 

1 .I Apoptosis and programmed cell death 

The word "apoptosis" comes from an ancient Greek, meaning the "falling of 

leaves from a tree in autumn" or "falling of petals from a flower" (Lawen 2003). 

Apoptosis is now referred to as a type of cell death that orderly and efficiently removes 

damaged or unnecessary cells in metazoan organisms (for reviews, see Ashe and Berry 

2003; Danial and Korsmeyer 2004; Lawen 2003). It is often used synonymously as the 

term programmed cell death (PCD), though some may argue that PCD refers to the 

temporal and spatial cell death during development and it occurs through apoptosis 

(Lawen 2003). Here we use them interchangeably. 

Apoptosis plays a critical role in controlling cell populations during embryonic 

development in multi-cellular organisms, which is probably best illustrated by the tissue 

differentiation of the nematode Caenorhabditis elegans. The worm hermaphrodites have 

1090 somatic cells, 131 of which commit suicide by apoptosis; the remaining 959 cells 

survive and develop into tissues (Danial and Korsmeyer 2004; Ellis and Horvitz 1986). 

In adults, apoptosis also operates to maintain normal tissue homeostasis, and serves as 

a defense mechanism against cells that might threaten the integrity of the organism 

itself, such as cells infected by viruses, cells with damaged DNA or endoplasmic 

reticulum (ER) stress, as well as autoimmune cells in the immune system (Ashe and 

Berry 2003; Danial and Korsmeyer 2004; Kaufman 1999). 

Under normal circumstances, apoptosis is tightly controlled to ensure destroying 

of only unwanted cells. However, aberrant regulation of apoptosis has been implicated in 

the pathogenesis of a wide range of human diseases. Insufficient apoptosis can develop 



into cancers or autoimmunity, whereas excessive cell death is evident in acute and 

chronic degenerative disorders (e.g. Alzheimer's and Parkinson's diseases), 

immunodeficiency, and infertility (Danial and Korsmeyer 2004). 

1.2 Apoptotic signaling pathways 

How does an organism make the tough decision between cell death and survival? 

In other words, how are intracellular or extracellular apoptotic stimuli transmitted to 

invoke cellular responses for killing cells? Much research has been done in the past 

decades to identify these signal transduction cascades, and many apoptotic signaling 

pathways have been characterized (for reviews, see Ashe and Berry 2003; Danial and 

Korsmeyer 2004). Generally, two types of apoptotic signaling pathways were described: 

intrinsic pathway and extrinsic pathway. The intrinsic pathway is also known as the 

mitochondrial pathway since the mitochondrion plays a central role in it (Hockenbery et 

a/. 1990). In the mitochondrial pathway, three apoptotic factors such as AIF, cytochrome 

C and SmacIDIABLO can be released from inside mitochondria to initiate the apoptosis 

program upon intracellular apoptotic stimuli, typically from intracellular stress. Two 

members of the Bcl-2 protein family, Bcl-2 or Bax, can block or promote the release of 

cytochrome C, respectively. In contrast, the extrinsic apoptotic pathways are mediated 

by death receptors located in the cell membranes that are activated by their extracellular 

ligands, and apoptotic stimuli come from extracellular sources such as UV radiation. Two 

major well-characterized extrinsic pathways are Fas (TNFRSFG, APO-1lCD95) - 

mediated death pathway and TNFRI - mediated death pathway (Ashe and Berry 2003; 

Danial and Korsmeyer 2004). Fig.1 shows a schematic diagram of the TNFRI-mediated 

apoptotic signaling pathway. In this pathway, the ligand TNF binds to its receptor TNFRI 

localized in the cell membrane. This process initiates the recruitment of proteins with DD 

domain and/or CARD domain, which are the major protein interaction domains in the DD 



superfamily (Reed et a/. 2003). These domain interactions lead to the sequential 

signaling cascade to activate Caspase-2, which then passes the signals to the intrinsic 

mitochondria1 pathway. The final phase of these pathways is typically the activation of 

executioner caspases (i.e. effector caspases) of apoptosis, such as caspase-3, which 

degrades the cellular infrastructure by large-scale proteolysis. Additionally, some 

caspases can cleave other caspases and thus causing amplification of apoptotic signals 

during signaling cascades (Ashe and Berry 2003; Shi 2002). 

Figure 1. The TNFRI-mediated extrinsic apoptotic signaling pathway and related 
pathways 

TRAD 
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This figure was used from Ashe and Berry (2003) with permission, mainly to illustrate the domain 
interaction leading to sequential transduction of extracellular apoptotic signals. 



Caspases are a family of cysteine aspartate-specific proteases that are involved in 

apoptosis initiation and execution, or are required for proteolytic processing of certain 

pro-inflammatory cytokines (Reed eta/. 2003; Shi 2002). To date, 13 mammalian 

caspases have been identified, though not all human or mouse homologs for each family 

member have been identified. Caspases are synthesized as pro-caspases, which are 

then proteolytically processed to their active forms at the conserved aspartate residues. 

All pro-caspases contain a highly homologous protease domain and an N-terminal 

prodomain. The protease domain contains two subunits of - 20 and 10 kDa, 

respectively, which associate to form a heterodimer following proteolytic processing. 

Two heterodimers then associate to form a tetramer, which is the active form of 

caspases (Fesik 2000). The N-terminal domain is of variable length depending on the 

functional category of the caspase. Initiator and inflammatory caspases have long 

prodomains (>I00 amino acids), whereas effector caspases have short prodomains (<30 

amino acids). Long prodomains contain specific motifs essential for caspase activity. 

These motifs may be either death effector domains (DEDs) as in caspase 8 and 10, or 

caspase recruitment domains (CARDS) as in caspases 1, 2, 4, 5, 9, 11, 12, 13, and 14 

(Reed et a/. 2003). 

In addition, several other important apoptotic signaling pathways have been 

described, including NF-KB pathway and its major regulators of NF-KB, its inhibitor I-KB 

and I-KB kinase (IKK), as well as JNKIMAPK pathways (Shapira et a/. 2004; Yamamoto 

and Gaynor 2004). These two pathways can interact with the TNFRI-mediated extrinsic 

pathway, as shown in Fig.1. 

Despite the progress made towards revealing the various apoptotic-signaling 

pathways that can ultimately determine a cell's fate, the regulatory mechanisms of gene 

expression caused by apoptotic signals remain largely unknown. As is shown in the 



Methods section below, there are only approximately 60 known binding sites for 26 

distinct transcription factors in 18 apoptosis genes, most of which have been collected 

by the TRANSFAC database (Wingender et a/. 2000; Wingender et a/. 2001; Wingender 

2004). To fully understand the regulation and deregulation (as in case of human 

diseases) of apoptotic signaling cascades, it is critical to identify and characterize 

transcription factors (TFs) and their cis-regulatory elements that play crucial roles in 

apoptosis. 

1.3 Computational identification of transcription factor binding sites 

In the pre-genomics days, experimental methods for regulatory element 

discovery such as nuclease protection assays and gel-shift analysis were used to 

confirm elements on a one-gene-one-element-a-time basis (Liu et a/. 2004). In this post- 

genomics era, high-throughput computational approaches are increasingly needed to 

predict putative transcription factor binding sites (TFBS) for subsequent experimental 

validation. Developing computational methods for TFBS detection has now become an 

area of intense research in bioinformatics, and many algorithms have emerged in the 

past several years. Several TFBS prediction tools are briefly reviewed below. 

The discovery of regulatory regions in intergenic sequences through cross- 

species comparison is often termed 'phylogenetic footprinting'. It is based on the 

observation that functionally important regions tend to be conserved over the course of 

evolution by selective pressure. Many putative TFBS are enriched in conserved non- 

coding genomic sequences (Fickett and Wasserman 2001 ; Levy et a/. 2001 ; Wasserman 

et a/. 2000). One strategy tries to find common motifs that are shared by multiple 

orthologous sequences; while the other begins with global alignment of orthologous 

sequences, followed by identification of conserved regions. Footprinter is a program 

designed specifically for phylogenetic footprinting (Blanchette and Tompa 2002; 



Blanchette and Tompa 2003), and it detects highly conserved motifs in the homologous 

regions with regard to the phylogenetic relationship among the homologous sequences. 

In practice, the choice of species is critical in phylogenetic footprinting. Too great an 

evolutionary distance can result in regulatory alterations or difficulty in aligning short 

patches of identity between long sequences. Inadequate evolutionary distance may be 

insufficient for non-functional sequences to diverge while conserving the functional 

sequences (Lenhard et a/. 2003). Thus, the arbitrary parameters are often difficult to 

choose and they heavily influence the prediction performance of such tools. 

Although comparative genomics approaches have been shown to be very 

effective to significantly reduce the noise and search space in identifying putative cis- 

regulatory elements (Lenhard et a/. 2003; Liu et a/. 2004), these techniques usually only 

provide information about which region is conserved among two or more species. The 

challenge remains to assess whether these regions of homology are involved in 

regulation (Ureta-Vidal et a/. 2003). This is why global alignment has often been used in 

conjunction with the binding profiles of known transcription factor binding sites, usually 

taken from the TRANSFAC database (Wingender et a/. 2000; Wingender et a/. 2001 ; 

Wingender 2004). Consite (Lenhard et a/. 2003), and rVlSTA (Loots et a/. 2002) are two 

examples that make use of the integrated approaches. The DNA binding specificity of 

TFs is commonly modeled using position weight matrices (PWM) (Fickett and 

Wassermann 2000; Lenhard et a/. 2003). From a set of binding site sequences 

determined experimentally for a specific transcription factor, a position frequency matrix 

(PFM) can be generated by simply counting the frequency of each nucleotide A, C, G, T 

on each position (Lenhard and Wassermann 2002; Lenhard et a/. 2003). From this PFM, 

a standard computational procedure is applied to calculate a PWM, which consists of the 

log-odds score (or "weight") of each nucleotide on each position in relation to a 

background model (Fickett and Wassermann 2000). Using these PWM models and 



pattern-finding algorithms, one can search the upstream promoter regions and yield a 

large list of putative TFBS. An advantage of this approach is that a TF is immediately 

associated with the predicted binding sites that the TF can possibly bind. However, the 

predictive power of this technique is often restricted by the quality of PWM models, 

which depends upon the number of experimentally determined binding sites as well as 

their sequence degeneracy (Lenhard et a/. 2003). 

To reduce the non-functional predicted sites, researchers have been trying to 

take advantage of available experimental data, such as gene expression data, as 

enhancing signals (Lenhard et a/. 2003; Ureta-Vidal et a/. 2003). Functional genomics 

data, primarily microarray expression data, have been used to improve the predictive 

performance. For genes clustered from the expression profiles, motif-finding algorithms 

are used to find over-represented motifs in their upstream regions, assuming that co- 

expressed genes are more likely to share a similar set of transcription factor binding 

sites. AlignACE (Roth et a/. 1998) and DlALlGN (Morgenstern et a/. 1998) are two 

programs of such techniques. There are also studies suggesting that genes encoding 

interacting proteins tend to be co-regulated (Hannenhalli and Levy 2003; Jansen et a/. 

2002; Manke et a/. 2003; Simonis et a/. 2004), and in this study we used this hypothesis 

as one of filtering procedures for the predicted binding sites in human apoptotic genes. 

1.4 Aim of the thesis 

Apoptosis has become a major biomedical research area in recent years, which 

is explained by the fact that apoptosis is implicated in the pathogenesis of a wide variety 

of human diseases. Characterization of protein-protein interaction networks and 

regulatory networks during apoptotic signal transduction will help us to understand the 

mechanisms of the human diseases associated with apoptosis and develop rational 

strategy for their prevention and treatment. In this area, high-throughput computational 



approaches may guide the design of downstream experiments to speed up discovery of 

apoptotic protein-protein interactions and regulatory elements. Regulatory networks that 

connecting transcription factors and their target genes in apoptosis will help us 

understand the transcriptional regulation during apoptotic signal transduction. 

Proteins involved in apoptosis often contain evolutionarily conserved domains 

that can serve as signatures for identification, allowing one to apply bioinformatics 

techniques in the analysis of families of apoptosis-related proteins (Reed et al. 2003). 

The authors have classified apoptotic proteins into 16 protein families and signature 

domains and identified over 200 apoptosis genes in the genome of human or mouse. 

The major protein families known to be involved in apoptosis include caspases, Bcl-2 

family, death domain superfamily, as well as tumor necrosis factor (TNF) superfamily 

and their receptors, and others. 

In this study, we have examined the conservation of major apoptotic signaling 

pathways in human (Homo sapiens), and vertebrate model organisms mouse (Mus 

musculus), rat (Rattus norvegicus), zebrafish (Danio rerio), and pufferfish (Fugu 

rubripes). The phylogenetic relationship of these 5 vertebrate species is represented in 

Fig. 2. Human and mouse (rat) diverged -90 million years ago (MYA), human and 

pufferfish diverged -450 MYA, and their complete genome sequences have been 

released (Ureta-Vidal et a/. 2003). We have also extracted all experimentally determined 

protein-protein interactions of human apoptosis genes and constructed a protein 

interaction network, and investigate how protein-protein interaction data might be used in 

conjunction with sequence conservation for computational TFBS detection. Lastly, 

primarily based on our computational analyses we have constructed several in silico 

regulatory networks of several major apoptotic-signaling pathways to obtain insights into 

the transcriptional regulators that are critical in controlling apoptosis. 



Figure 2. The phylogenetic relationship of the 5 vertebrate species 
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CHAPTER TWO: METHODS 

2.1 ldentification of apoptosis genes in mammalian genomes 

The protein accession numbers of apoptosis associated genes in human and 

mouse were primarily derived from the 227 genes compiled by Reed eta/. (2003), and 

updated from NCBl LocusLink (Pruitt and Maglott 2001) for genes that were annotated 

or updated after their publication. The apoptosis genes in rat were identified at NCBl 

LocusLink using the human gene names or synonyms. Genes without available RefSeq 

(Pruitt and Maglott 2001) transcripts were excluded. The RefSeq accessions of all 

apoptosis genes in each mammalian species were batch retrieved from NCBI. For genes 

mapping to multiple alternatively spliced isoforms, only the longest transcript is used for 

obtaining upstream sequences below. 

2.2 ldentification of apoptosis genes in zebrafish and pufferfish genomes 

The proteomes of both zebrafish and pufferfish have not been well annotated 

and no protein name could readily be found like in mammals. Thus, to identify the 

apoptosis relevant genes in these two lower vertebrate genomes, their whole gene sets 

were obtained from Ensembl via the EnsMart interface (Kasprzyk et a/. 2004). The 

zebrafish gene set is derived from the whole genome shotgun assembly sequence 

version 3 (released on November 2003), whereas the pufferfish genome is based on 

v21.2c.l (released on May 2004). Each gene set was formatted to be suitable for BLAST 

search. Apoptosis genes in these two genomes were identified by TBLASTN with default 

settings (Altschul et a/. 1997). The protein sequence of each human gene was used to 

blast against the zebrafish or pufferfish gene set. If no human gene is available or no 



significant hit was identified, the protein sequence of the mouse homolog was used. If 

again no mouse protein sequence is available or no significant hit was identified, the rat 

protein sequence was used instead. To further ensure data quality, all putative gene 

candidates were verified at the Ensembl web site (Stalker et a/. 2004). If a hit is 

unambiguously annotated by Ensembl to be a homologue to a mammalian apoptosis 

gene (or occasionally to an apoptosis gene in other vertebrates) or contains a putative 

Interpro domain involved in apoptosis, this gene was annotated as an apoptosis gene in 

zebrafish or pufferfish genome. 

2.3 Retrieval of upstream sequences 

The region to be used for detecting cis-regulatory elements in eukaryotes is not 

well defined. In theory, the whole regulatory region for metazoan genes should include 

the 5'- and 3'-flanking regions, as well as the intronic sequences, and this is a large 

amount of sequence (Ureta-Vidal et a/. 2003). Taking into account our computational 

power, we elected to choose only 3 kb upstream sequences for this analysis. The whole 

process could be easily scaled up for analyzing more sequences if required. The 

upstream region was measured from transcription start site (TSS) based on the RefSeq 

annotation. The transcript RefSeq accessions in mammals were used to obtain 3 kb 

upstream sequences from the UCSC Table Browser (Karolchik et a/. 2004). The 

reference sequences in human, mouse, and rat are based on the latest available 

assemblies of July 2003, May 2004, and June 2003, respectively. For the zebrafish and 

pufferfish genes, their Ensembl transcript identifiers were used to obtain the 3 kb 

upstream sequences from Ensembl via the EnsMart interface (Kasprzyk et a/. 2004). 

2.4 Known transcription factors and their binding sites 

The TRANSFAC database professional version 7.4 was licensed from the 



BioBase (Wingender et a/. 2000; Wingender et a/. 2001 ; Wingender 2004). We only 

extracted the entries for vertebrate species, which include 4,754 binding sites, 786 

transcription factors, and 490 PWM matrices representing binding profiles of known 

transcription factors. 

2.5 The known apoptotic protein-protein interactions in humans 

The experimentally determined protein-protein interactions of human apoptosis 

genes were extracted from the human protein reference database - HPRD (Peri et a/. 

2003), and only the interactions between the genes in our human apoptosis gene set 

were retained. The latest update of the protein-protein interaction data for our analysis 

was performed on June 20, 2004. The protein-protein interaction network was 

constructed using the open-source, Java-based Cytoscape (Shannon et a/. 2003). 

2.6 Data storage 

To facilitate data storage and analysis, we designed a MySQL relational 

database for storing all genomic DNA and protein sequences, known and predicted 

transcription factors and their binding sites, as well as matrices from TRANSFAC 

(Wingender et a/. 2000; Wingender et a/. 2001; Wingender 2004). This local database is 

also the backend engine for the searchable web site described in 2.12. 

2.7 Identification of conserved regions 

A conserved region is determined by sequence identity percentage and length 

cutoffs. Conserved segments with percent identity X and length Y are defined to be 

regions in which every contiguous subsegment of length Y is at least X% identical to its 

paired sequence. The global alignment tool LAGAN (Brudno et a/. 2003) was used for 

sequence alignment of the upstream or transcript sequences of each gene pair. The 

sequence identity percentage was calculated by using the BioPerl toolkit (Stajich et a/. 



2002). The alignment visualization tool VISTA (Mayor et a/. 2000) was used to identify 

conserved regions in the aligned upstream sequence pair. The VISTA window size is 21- 

bp, and the sequence identity threshold in this window is specified dynamically based 

upon the average identity of the sequence pair (i.e. 5% higher than the average identity). 

These segments are then merged to define the conserved regions between two 

upstream sequences of an apoptosis gene in two species (e.g. human and mouse). 

2.8 TFBS identifications 

Putative transcription factor binding sites are predicted and filtered by a three- 

step approach, which is schematically illustrated by the flow chart in Fig. 3. First, the 

TFBS software system (Lenhard and Wasserman 2002) was used for predicting 

transcription regulatory sites in the upstream regions of our genes in each species. The 

TF binding profiles were the 490 matrices derived from vertebrate genomes in the 

TRANSFAC database (Wingender et a/. 2000; Wingender et a/. 2001; Wingender 2004). 

Matrix thresholds of 70%, 75%, 80%, 85%, and 90% were compared. Hits that match 

each matrix above the predefined threshold were identified along the genomic 

sequences and stored in the database. Second, the algorithm identifies a subset of 

binding sites in the conserved regions between each species pair as determined above 

in 2.6. Third, for human genes with interacting partners, the algorithm identifies another 

subset of common binding sites matching the same PWM matrix in at least one pair of 

interacting genes. Union and intersection algorithm was used to integrate phylogenetic 

footprinting information and human protein-protein interaction data. The union subset of 

transcription factor binding sites consists of those sites that are either in the conserved 

regions between two species or that are shared by at least a pair of interacting genes, 

but the intersection subset was only considered once. The intersection subset of 

transcription factor binding sites consists of those sites that are both in the conserved 



regions between two species and that are shared by at least a pair of interacting genes. 

Figure 3. The flow chart of the TFBS prediction approach. 

I Apoptosis Genes I 

1 3 kb Upstream Sequences I 

Filter 2 - interactions 
(human genes only) 

Filter 1 - sequence 
conservation 

I Prediction Test I 

Statistical Analysis . 

This figures illustrates schematically the logical flow of predicting and filtering transcription factor 
binding sites. All apoptosis genes were used to retrieve their 3 kb upstream sequences. These 
upstream sequences were used for detecting putative transcription factor binding sites and for 
sequence alignment (LAGAN) to identify conserved regions between species pairs (VISTA; 
Filterl). Another two filters are protein-protein interactions for human genes only and enrichment 
ratio (see Statistical analysis below). Prediction test (see Prediction performance testing below) 
was performed for the final sets of transcriptional factor binding sites. 

Filter 3 - 
enrichment ratio 

2.9 Statistical analysis 

The statistical significance of predictions was estimated by the over- 

representation of k-mer (a binding site of k nucleotides) in the upstream (non-coding) 

regions using exon sequences (transcript) as background model, an approach similar to 



Hampson et a/. (2002) and Xue et a/. (2004). An enrichment ratio of a binding site in 

upstream against exon sequence was measured by S,,, the ratio of C,,, its occurrence in 

the upstream, with the Cex, its occurrence in the corresponding exon sequence: 

Snc = Cnc /Cex (1) 

S,, > 1 correlates with over-representation of the binding site, and the larger the S,, is, 

the more significantly the site is enriched in the upstream. 

The nucleotide composition can be rather different between the upstream and 

coding regions, and thus the probability of obtaining a specific binding site is also 

different in the upstream or transcript sequence. In order to normalize this disparity, we 

calculated the average frequency of each nucleotide A, C, G, T in upstream and 

transcript. Given the Pa, PC, P,, and Pt for the average frequency of the 4 nucleotides A, 

C, G, T, respectively, the expected occurrence F of a k-mer with a hypothetical binding 

site sequence of AiGjCmTn (where i + j+ m+ n = k) can be estimated as: 

F = P,'P~P,'-"P~" (2) 

Therefore, the normalized enrichment ratio s,,' (normalized by the length of non- 

coding region Lnc and background exon Lex, as well as the expected frequency F,, and 

F,J for a binding site is equivalent to the measure of enrichment using the frequency in 

transcript region as background, which includes the theoretical ratio of k-mer occurrence 

in the non-coding region against the transcript region [Equation (3)]. 

snc' = (CncLexFex) (CexLncFnc) (3) 

We used this algorithm to normalize the nucleotide composition difference and 

sequence length of both upstream and coding regions, and calculate the enrichment of 

predicted sites for a transcription factor in the upstream region of a gene against its 

transcript sequences. For approximately estimating F, the TFBS degeneracy was not 

considered and the site sequence (e.g. AiGjCmTn above) used is the binding site that has 

the highest score against the matrix of the transcription factor in the upstream or 



transcript sequences. Binding sites that are at least 1.5 times enriched in the upstream 

regions compared to its coding regions were considered statistically significant. 

2.10 Calculating the expected number of occurrences for each TF class 

The method for calculating the expected number of binding site occurrences for 

each TF class is similar to that described by Zhang et a/. (2002). Given a matrix 

representing the binding profile of a TF and its dominant binding site sequence, we can 

calculate the probability (p) of its occurrence in the upstream sequence as: 

where N is the length of the matrix, i is the position index, S represents a set of 

nucleotides (A, C, G, T), and Pb is the frequency of each nucleotide in the upstream 

sequence, i.e. Pa, PC, P,, or Pt. Assuming a uniform distribution of nucleotides in 

upstream sequences, Pa, PC, P,, or Pt is equal to 0.25 each. Then its expected 

occurrence (1) in the upstream is calculated as h z Lp, where L is the length of the 

upstream sequence, i.e. 3 kb. Since we used both strands for putative TFBS predictions, 

the total length of each upstream sequence is 6 kb. The average expected occurrence 

for each TF class is calculated based on all expected occurrence of all TFs in each 

class. 

2.1 1 Predictive performance testing 

A test data set with known transcription factor binding sites in the promoter 

regions of apoptosis genes was assembled from both the TRANSFAC database and 

literature. There are totally 61 known binding sites. After excluding genes without 

interacting partners in our human gene set (i.e. CIITNC2TA, PUMNBBC3, and TRIF), 

the test set consists of 54 binding sites in 15 distinct apoptosis genes for 26 distinct 



transcription factors (Table 1). The binding sites of human Caspase-8 are not in the 

TRANSFAC database and were derived from literature (Liedtke et a/. 2003). To assess 

the predictive performance, the sensitivity (SN) and specificity (SP) are defined based on 

Lenhard et a/. (2003). SN is the percent correct predictions in the test set, that is, when a 

prediction and a known TFBS overlap by at least 50% given a corresponding 

transcription-factor binding profile. SP is defined as the number of predicted binding sites 

in the 3 kb upstream sequence but expressed as the average number of predicted 

binding sites along a 100 bp upstream sequence in both strands using 490 binding 

matrices from vertebrates. Control for using interaction data as filtering procedure was to 

test binding sites shared by gene pairs that have no known interacting relationships. To 

achieve this, gene pairs in the interaction tables are shuffled to ensure that the randomly 

generated genes pairs do not have known interaction data available from HPRD (Peri et 

a/. 2003). For example, if gene A has interactions with gene B and gene C (A-B, A-C are 

now gene pairs in the interaction table), in the new pairs gene A was paired with a 

random human apoptosis gene except gene B and gene C. The predicted binding sites 

shared in the new gene pairs were used for testing similarly as the original gene pairs 

that have known interacting relationships. 
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2.12 Construction of apoptotic regulatory networks 

The putative transcription factors that have binding sites within 600 bp upstream 

of transcription start sites from major TF families for all gene components of the 

apoptotic signaling pathways are retrieved from the local MySQL database. The 

regulatory networks were constructed with Cytoscape (Shannon et a/. 2003). 

2.13 Development of the data-driven web site 

The MySQL database described in 2.6 serves as the backend engine. The 

searchable web interface was developed with server-side scripting language PHP. User 

documentation is available at htt~://a~o~tosis.mbb.sfu.ca/help.~h~. 



CHAPTER THREE: RESULTS 

3.1 Apoptotic signaling pathways in vertebrate genomes 

Based on the protein families classified by Reed et a/. (2003), we identified 236 

apoptosis genes with RefSeq transcripts in humans, and 223 in mice. However, only 147 

RefSeq genes were identified in rats (see Appendix A). This discrepancy of gene 

numbers between rat and human/mouse is likely due to the rat genome status, though 

some apoptosis genes might have evolved significantly during mammalian evolution. 

With the recent release of the complete rat genome, more apoptosis genes could be 

found in rat. For the other two vertebrates, we identified 114 apoptosis related genes in 

the zebrafish genome and1 06 apoptosis genes in the pufferfish genome (see Appendix 

B) using TBLASTN with protein sequences from mammals as queries. These lower gene 

numbers might be attributed to the relative simplicity of apoptotic signaling pathways in 

these two lower vertebrate species. The apoptosis signaling pathways may have 

become more complex and many functionally redundant genes emerged over the course 

of vertebrate evolution (Le Bras ef a/. 2003). 

Most caspases involved in apoptosis initiation and execution were identified in 

the zebrafish or pufferfish genomes (Table 2), except caspase-10. Caspase-10 was also 

not found in mouse or rat genome. Neither caspase-1 1 nor caspase-12 was identified in 

human; human caspase-4 and caspase-5 are orthologous to murine caspase-11 (Reed 

ef a/. 2003). In contrast, caspases involved in pro-inflammatory cytokine activation, most 

of which were identified in mammalian genomes, appeared to be absent in zebrafish and 

pufferfish genomes except Caspase-I . 



Table 2. Functions of caspases and homologous genes identified in the 5 vertebrate 
genomes. 

Caspase Human Mouse Rat Zebrafish Pufferfish Main function(') 

Caspase-1 
Caspase-2 

Caspase-3 

Caspase-4 
Caspase-5 

Caspase-6 

Caspase-7 

Caspase-8 

Caspase-9 

Caspase-1 0 
Caspase-1 1 

Caspase-12 

Caspase- 14 

Cytokine activation 

Apoptosis initiator 

Apoptosis effector 

Cytokine activation 

Cytokine activation 

Apoptosis effector 

Apoptosis effector 
Apoptosis initiator 

Apoptosis initiator 

Apoptosis initiator 

Cytokine activation 

Cytokine activation 

Cvtokine activation 
Plus sign (+) indicates that a homolog was identified in the species; minus sign (-) indicates that a 
homolog was not identified in the species. 
(1) Not all these family members have been well characterized with respect to their physiological 
roles and targets, although it is known that distinct caspases play roles in apoptosis or 
inflammation (Ashe and Berry 2003). 
(2) Human Caspase-4 and Caspase-5 are homologous to murine Caspase-I 1 (Reed et a/. 2003), 
and the human ortholog of murine Caspase-12 is non-functional due to a termination codon prior 
to the region encoding the catalytic domain (Fischer et a/. 2002). 

For the key genes of the 4 major apoptotic signaling pathways described in 

Ashe and Berry (2003), all homologous genes for the mitochondria1 intrinsic apoptotic 

pathway were identified in these 5 vertebrate genomes (Table 3). This is not 

unexpected, as most genes in this pathway are homologues of death genes in C. 

elegans. For example, the vertebrate homolog of Apaf-I in C elegans is ced-4 (Zou et a/. 

1997), the Bcl-2 homolog is ced-9 (Hengartner and Horvitz 1994), and caspase-I is 

homologous to ced-3 (Yuan et a/. 1993; ced-3 also has sequence similarity to caspase-2 

[Wormbase] and caspase-3 [Desnoyers and Hengartner 19971, but the ced-3 substrate 

specificity is more similar to caspase-3 [Xue et a/. 19961). Hence, the intrinsic apoptotic 

pathway is well conserved during metazoan evolution. 

For the death receptor - mediated extrinsic pathways, many components in the 



TNFR-mediated pathway were found in the 5 vertebrate genomes, although the receptor 

TNFRI (TNFRSFIA) has not been identified in the fish genomes. Some other members 

of the TNFR superfamily exist instead, which are presumably able to bind to the TNF 

ligands (e.g. TNF-a or TNF-P); or TNFRI will ultimately be identified in zebrafish and 

pufferfish genomes. The major components of the NF-KB pathway also exist in all 5 

genomes. On the other hand, three key genes in the Fas-mediated extrinsic pathway, 

i.e., Fas (TNFRSFG), FasL (TNFSFG) and adaptor protein FADD, are not identified in 

both zebrafish and pufferfish genomes. This is in agreement with an earlier report in the 

pufferfish genome (Le Bras et a/. 2003). If these results were not caused by the 

annotation status of zebrafish and pufferfish genomes, they indicate that perhaps only 

with the exception of Fas-mediated extrinsic pathway, the core apoptotic pathways are 

evolutionarily conserved in vertebrates. 



Table 3. Key genes involved in the four major apoptotic pathways and homologous 
genes identified in the 5 vertebrate genomes. 
- -  -- 

Gene Species Apoptotic pathway 

Human Mouse Rat Zebrafish Pufferfish 

AI F + 
Bcl-2 + 
Bax + 
Apaf I + 
Caspase-9 + 
Smac + 
XlAP + 
Caspase-3 + 
TNFSFG + 
Fas + 
FADD + 
Caspase-8 + 

Bid + 
TNFSFI + 
TNFRSFIA + 
TRADD + 
RIP + 
TRAF2 + 
Caspase-2 + 
NF-KB + 
IKB + 
I KK + 

lntrinsic 
lntrinsic 
lntrinsic 
lntrinsic 

lntrinsic 

lntrinsic 
lntrinsic 
lntrinsic 
Fas extrinsic 
Fas extrinsic 
Fas extrinsic 

Fas extrinsic 
Fas extrinsic 

TNFRI extrinsic 
TNFRI extrinsic 

TNFRI extrinsic 
TNFRI extrinsic 
TNFRI extrinsic 
TNFRI extrinsic 

NF-KB 

NF-KB 

NF-KB 
Plus sign (+) indicates that a homolog was identified in the species; minus sign (-) indicates that a 
homolog was not identified in the species. The key genes involved in each apoptotic pathway 
were based on Ashe and Berry (2003). 

3.2 Sequence similarities of apoptosis genes and upstream regions 

The determination of sequence conservation varies depending upon the chosen 

species, and the evolutionary rates can be considerably different between genes (Ureta- 

Vidal et a/. 2003). Thus, it is crucial to estimate the sequence identity in our gene set for 

determining conserved regions across several species. Based on pairwise sequence 



alignment by using the global alignment tool LAGAN, the average sequence identity of 

human and mouse apoptosis genes (transcripts) was -75%, and -57%, -52% for 

unmasked and masked upstream sequences, respectively (Fig. 4). The average 

sequence identity is lower in human-rat, human-zebrafish, and human-pufferfish 

comparisons, but likewise, the gene sequences had highest sequence identity, followed 

by unmasked upstream sequences and masked upstream sequences. These results 

show that the upstream sequences are significantly less conserved than the transcript 

sequences. If the upstream is masked (as in our case for TFBS predictions), the 

sequence identity further declines, suggesting that repetitive elements contribute much 

to the sequence identity of the upstream sequences. Furthermore, the sequence identity 

was fairly diverse in our gene set (as indicated by the relatively high standard deviation 

in Fig. 4), making it difficult to set a fixed sequence conservation threshold for identifying 

conserved regions in phylogenetic footprinting studies. In the present study we chose to 

set the sequence identity threshold for each upstream sequence pair dynamically based 

on their average sequence identity. For example, if the masked upstream sequences of 

Apafl are on average 55% identical between human and mouse, we set 60% as the 

conservation threshold in the 21-bp sliding windows to identify their conserved regions. 



Figure 4. Sequence identity of apoptosis transcripts and their upstream regions. 

Transcript sequence 1; 
Unmasked upstream I/ 
Masked upstream 11 

HM HR HD HF 

Species pair 

The figure shows the average sequence identity between each species pair for all apoptosis 
genes we have identified. The error bar represents standard deviation. HM = human and mouse 
comparison, HR = human and rat comparison, HD = human and Danio comparison, HF = human 
and Fugu comparison. The transcript sequence is the RefSeq sequence of each gene; 
Unmasked upstream is the 3 kb upstream sequence in which the repetitive elements are not 
masked; masked upstream is the 3 kb upstream sequence in which the repetitive elements are 
masked out by using RepeatMasker (Smit and Green. httw:llreweatmasker.ord). 

3.3 Human protein-protein interaction networks in apoptosis 

We extracted 366 distinct, experimentally determined protein-protein interactions 

covering 168 (-72%) human apoptosis genes, and constructed a human apoptotic 

protein interaction network (see Appendix C). This protein interaction network was 

defined as nodes representing human apoptotic proteins (genes) and edges 

representing all known interactions between them irrespective of their interaction type or 

condition. Thus, this network shows all currently known interactions of human apoptosis 

genes (proteins) that can take place under a certain biological context. In this entire 

network, each node (gene) has an average of -2.2 edges (interactions). Table 4 lists the 



number of direct interactions for highly interacting nodes, genes that have the number of 

interactions exceeding 3 times the average interaction number (i.e. 3x2.2=6.6). Genes 

with more than 20 direct interactions include TRAF2 (36), Caspase-8 (24) and Bcl-2 

(23), and TRAFI (22), all of which play critical roles in apoptosis. On the other hand, 

genes with only a single interacting partner include BAG3, Beclin, Bcl-3, Bcl-B, Bik, 

Bimp2, Bimp3, CARDS, COP, DR6, EDA-A1, EDAR, HIPPI, IF116, IRAK-M, Mal, MALT- 

1, PYRIN, SIAH-1, SIAH-2, TEF2, TLR6, TNFRSFIOC, TNFRSFIOD, TNFSF7, 

TNFSF8, TNFSF12, and TNFSF18. TRAFs can be used as examples to infer functional 

importance form the number of interactions. TRAFs bind TNF receptors and their 

adapter proteins (e.g. TRADD), protein kinases involved in induction of NFKB and Jun 

amino-terminal kinase (JNKs), and serve as a bridge between TNFRI, NFKB and JNK 

pathways (Ashe and Berry 2003; Reed et a/. 2003). 

Table 4. Highly interacting genes in the protein-protein interaction network of human 
apoptotic pathways. 

Gene Number of Interactions 
TRAF2 36 
Caspase-8 
Bcl-2 
TRAFI 
TRAF3 
Bcl-x 
TRAF6 
FADD 
Tradd 
RIP 
TNFRSFIA 
Cardiak 
FLl P 
TRAF5 
Caspase-3 11 
The genes are sorted by the number of interact 

Gene Number of Interactions 
Caspase-9 9 
ClAPl 9 
Bcl- 1 0 8 
MyD88 8 
Apafl 7 
Caspase-10 7 
Caspase-7 7 
DR4 7 
DR5 7 
Fas 7 
TNFRSF14 7 
TNFRSF3 7 
TNFRSF5 7 
TNFSFI 3 7 

:ions in descending order. 

To further make these interaction data useful to molecular biologists, we built a 

two-layer interaction network for each human apoptosis gene that has protein-protein 

interaction data with other human apoptosis gene(s). A two-layer interaction network is 



defined as a protein interaction network consisting of all the direct interactions of a 

particular gene and all direct interactions of its direct interacting partners. This interaction 

network is generally not too complex for better human visualization, yet contains much 

more information than just listing the direct interacting partners of a gene. It presents a 

broader context of interactions between related genes that are most likely involved in the 

same pathway or belong to a multi-protein complex. For example, in this two-layer 

interaction network centered on TNFRI (Fig. 5), most genes involved in TNFRI- 

mediated extrinsic pathway (shown in Fig.l), including TNFSFI, TNFRI (TNFRSFIA), 

adapter protein Tradd, RIP, RAlDD are all represented and the interactions between 

them and other closely related genes are clearly shown. Also, the TNFRI complex 

involved in TNFRI-mediated apoptotic pathway includes TNFRI (TNFRSFIA), TRADD, 

TRAF2, clAP1, and kinase RIP1 (Micheau and Tschopp 2003). The two-layer interaction 

network of TNFRI demonstrates that components of the TNFRI complex are interacting 

with each other either directly or indirectly, which is not evident if we only examine the 

raw, pairwise interaction data. 



Figure 5. A two-layer protein interaction network of human TNFRI (TNFRSFIA). 

This network is constructed using all interactions of the node of TNFRI (TNFRSFIA), which is 
highlighted, and all interactions of interacting partners of TNFRI. 

3.4 TFBS prediction using both phylogeny and interaction data 

We investigated how protein-protein interaction data might be used to improve 

computational TFBS identification, mainly to reduce false positives and to improve 

prediction specificity. The prediction performance using TFBS Perl system and filtered 

with phylogenetic footprints and human protein-protein data is shown in Table 5. The 

85% matrix threshold seems to be the best setting. At this matrix threshold, the 

sensitivity is the same as that of 70% matrix threshold; however, the number of 



predictions is much lower, which suggests higher prediction specificity. Less stringent 

matrix threshold did not increase the prediction sensitivity but only dramatically 

increased false positives. Additionally, we applied a unionlintersection algorithm to 

combine sequence conservation and protein-protein interaction data and identify binding 

sites in the conserved regions andlor binding sites shared by human interacting genes. 

The sensitivity of only keeping sites in the conserved regions drops slightly under all 

matrix thresholds; by selecting sites either in the conserved regions or shared by 

interacting genes, the sensitivity is the same as the prediction without any filtering 

procedures but the number of predictions drops, indicating that many false positives are 

eliminated and the specificity is improved. The sensitivity of only keeping binding sites 

shared by interacting human genes is lower than using phylogenetic footprinting 

information, partly because the interaction data are not comprehensive and more 

interactions might exist between human apoptosis genes. The sensitivity of control 

(method 4 in Table 5; predicted binding sites shared by gene pairs that currently have no 

known interaction data, see Methods for details) is much lower than that of keeping 

binding sites shared by interacting human genes (method 3). At 85% matrix threshold, 

the sensitivity of method 3 is 64.8% compared to 35.2% in its control (method 4). 

However, it is notable that the prediction sensitivity of the control is not extremely low, 

which could also be at least partly attributed to the fact that more interactions may be 

discovered between human apoptosis genes. 



Table 5. TFBS prediction sensitivity (SN) and specificity (SP) using protein-protein 
interaction data and phylogenetic footprinting information. 

70% 80% 85% 90% 95% 

SN SP SN SP SN SP SN SP SN SP 

(1) Method: 1 = all predictions without filtering; 2 = only retain binding sites in the conserved 
regions between human and mouse; 3 = only retain binding sites shared by at least one pair of 
interacting human apoptosis genes; 4 = control of Method 3, average of 3 times shuffling of 
records in the interaction table; SP is not applicable for the control; 5 = union: (2) OR (3) (remove 
a redundant intersection portion); 6 = intersection: (2) AND (3). 

3.5 Distribution of binding sites for each TF class 

In order to estimate the relative importance of each TF class (family) in 

apoptosis, we surveyed the number of binding sites for TFs in each TF family in the 3 kb 

upstream of human apoptosis genes. After normalization by the number of matrices in 

each TF class, it is shown in Fig. 6 that STAT (e.g. STATI), bHSH (e.g. AP-2) and 

paired (e.g. Paxl) classes have the highest numbers of binding sites in human apoptosis 

genes. STAT factors have been shown to play roles in development, cell growth, 

proliferation and apoptotic cell death, and there were many studies indicating that TFs in 

this family control expression of many apoptosis genes, including Bcl-2, Bcl-x, caspase- 

1, Fas receptor and FasL, and are involved in regulating p53 target genes (Stephanou 

and Latchman 2003; Stephanou et a/. 2001; Vousden and Lu 2002). SMAD (e.g. 

Smadl), bZlP (e.g. c-Fos, c-Jun), CH (e.g. SPI), CC (zinc finger; e.g. GATA-I), 

forkhead (e.g. E2F), HMG (e.g. SRY) all have relatively high numbers of predicted sites. 



However, the numbers of predicted binding site for ETS (e.g. c-ETS-1, PU.l), Re1 (e.g. 

NF-KBI), and p53 TF families might be underestimated. One explanation for this is, the 

p53 response element is frequently found in the intronic regions of target genes (Mirza et 

a/. 2003; Wang et a/. 2001), and the intronic regions were not included in our predictions. 

As the average length of matrices is over 10 (see Appendix D) and the minimal length is 

8 for the predicted binding sites of each TF class, it is almost unlikely that these binding 

sites could have occurred just by chance. This is non-trivial, as in an extreme case that a 

matrix merely has 5 nucleotides long; the number of expected occurrence for a binding 

site in a 6 kb upstream sequence (3 kb for both strands) would be -6. 
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3.6 In silico construction of human apoptotic regulatory networks 

A regulatory network can be defined as a graph in which nodes represent either 

transcription factors or their regulated genes and edges indicate their regulatory 

relationship (Bar-Joseph eta/. 2003; ldeker et a/. 2002; Lee eta/. 2002; Pilpel et a/. 

2001). For each of the major apoptosis signaling pathways, i.e. the mitochondria1 

intrinsic pathway, Fas-mediated extrinsic pathway, and TNFRI-mediated extrinsic 

pathway, we constructed an in silico using transcription factors that have detected 

binding sites within 600 bp upstream regions of human apoptosis genes. One reason for 

choosing 0-600 bp upstream regions is that there exist most predicted binding sites in 

these regions (Fig. 7). A regulatory subnetwork of the TNFRI pathway is shown in Fig. 

8. For human visualization purpose, this subnetwork only includes TNF (TNFSFI), 

TNFRI (TNFRSFIA), TRADD, and TRAF2. The network is highly connected, 

suggesting that few TF families might regulate this pathway and many transcription 

factors control more than 2 genes in this pathway. 



Figure 7. Distribution of predicted binding sites in different upstream regions. 

0-600 600-1200 1200-1 800 2400-3000 

Distance range (bp) 

This figure shows the number of all predicted binding sites (85% matrix threshold against all the 
490 matrices) either located in conserved regions or shared by interacting gene pairs of human 
apoptosis genes in different upstream regions of 600 bp intervals. The distance is relative to a 
RefSeq annotated transcription start site (position 0). The distance range includes the lower 
boundary but not the upper boundary. For example, binding sites in 0-600 bp contain all sites that 
start from above 0 (>0) and end with 600 (<=600). 



Figure 8. Computationally identified regulatory network for the TNFRI-mediated 
extrinsic apoptotic-signaling pathway 

In this subnetwork, ovals represent transcription factors and circles in the middle represent target 
genes. An arrow between a TF and its target indicates a potential transcriptional regulatory 
relationship. For visualization purposes, only 4 key genes that are involved in this pathway and 
belong to the TNFRI complex are shown. Table 6 summarizes'the RN ratios of the regulatory 
networks covering all key genes in intrinsic pathway, Fas-mediated extrinsic pathway and 
TFNRI-mediated extrinsic pathway. 

For estimating the potential significance of each transcription factor in 

each entire regulatory network (figures not shown as they are too complex for 

human visualization), we calculated its RN ratio of each transcription factor 

(Table 6). The RN ratio for a transcription factor is the number of target genes 

that this transcription factor is linked to in the regulatory network divided by the 



total number of key genes in each pathway. Transcription factors such as AP-4, 

AR, CIEBPalpha, CIEBPbeta, CIEBPdelta, DBP, E2F, E2F-1, GATA-2, GR, GR- 

alpha, GR-beta, NF-KB, STAT1 , STAT3, STAT4, STAT5A, and STAT6 appear to 

possess most connections to genes in the 3 regulatory networks. Other 

transcription factors connected to genes in two of the apoptotic pathways include 

AP-1, c-Ets-I, c-Fos, c-Jun, c-Myb, CIEBPgamma, E2F-3, E2F-4, and others. 

These data could be used to prioritize candidate transcription factors that might 

coordinately regulate several genes in the same pathway. 

Table 6. Potential importance of transcription factors in the regulatory networks of 
three major apoptotic pathways. 

Factor Name Intrinsic pathway Fas pathway TNFR pathway 

AP- 1 

AP-4 

AR 

ATF 

ATF- 1 

ATF-a 

ATF3 

ATF4 

C-Ets-I 

c-Fos 

c-Jun 

c-Myb 

C-Myc 



Factor Name Intrinsic pathway Fas pathway TNFR pathway 

CIEBPalpha 

CIEBPbeta 

CIEBPgamma 

CIEBPdelta 

CIEBPepisilon 

CRE-BPI 

CREB 

CREMalpha 

DBP 

deltaCREB 

DP-1 

E2F 

E2F+E4 

E2 F- 1 

E2F-3 

E2F-4 

Fra-I 

Fra-2 

GATA-2 

GATA-3 

GR 

GR-alpha 

GR-beta 

HNF-3alpha 

HNF-3b 

HNF-3beta 

HNF-3gamma 



Factor Name Intrinsic pathway Fas pathway TNFR pathway 

JunB 0.875 0.571 0.500 

JunD 0.875 0.571 0.500 

LCR-F1 0.625 0.571 0 

NF-KB 0.750 0.500 0.500 

P53 0.375 0.600 0.400 

RAR-alpha 0.250 0.714 0.750 

RAR-alpha1 0.250 0.714 0.750 

The NF-KB pathway is not included for this analysis as there are only three key components in 
the pathway. A ratio of 0 indicates that the transcription factor was not in the regulatory network. 

3.7 A data-driven website for apoptosis research 

One fundamental task of bioinformatics is to provide value-added resources that 

can directly benefit molecular biologists in their "wet-lab" experiments. Motivated by this 

philosophy, we developed a database-driven, dynamic web site for apoptosis 



researchers. Suppose a biologist needs to know the interactions of most genes involved 

in the mitochondria1 apoptotic signaling pathway, one can find the two-layer interaction 

network of Apafl (Fig. 9), which is ideal for human visualization. Many genes involved in 

this pathway, such as Apafl, Caspase-9, NAC, and Caspase-3, are all displayed in this 

network. If such an interaction network is still complex due to many direct interactions of 

the gene and many interactions of its interacting partners, the interacting gene pairs can 

be shown to help identify the interaction gene pairs included in the network. 

Figure 9. A web-based two-layer protein interaction network for the human Apafl. 

Furthermore, a user can search for all transcription factors common in a set of 

genes in the apoptotic pathways. This option was intended for searching potentially 

common transcription factors in components of a multi-protein complex or involved in the 



same pathway, but is currently limited as the RefSeq of some genes might not be 

available and not included for our analyses. Part of the search results for putative 

common transcription factors in human Apaf-I and Caspase-9 is shown in Fig. 10. 

Alternatively, for a transcription factor, one can find which genes in the apoptotic 

pathways might be its targets of regulation, which is recently termed "regulon" (Simmons 

et a/. 2004). Another option is to find all potential transcription factors controlling an 

apoptosis gene. 

Figure 10. The search results of putative transcription factors and binding sites shared by 
human Apafl and Caspase-9. 



CHAPTER FOUR: DISCUSSION AND CONCLUSION 

4.1 Usage of protein-protein interaction data for TFBS prediction 

After various genomes have been sequenced and more are being sequenced in 

a high-throughput manner, several major bioinformatics challenges remain in the post- 

sequencing genomics era. One of them is the identification of regulatory regions 

regulating the expression of genes along the genomes. The main difficulty of TFBS 

prediction lies on the fact that transcription factor binding sites are very short (typically 6- 

12 bp in eukaryotes; longer in prokaryotes) and degenerate to tolerate considerable 

sequence variations, and thus many computationally predicted sites can occur randomly 

in the genome (Lenhard et a/. 2003; Sharan et a/. 2003). 

If functional genomics data such as microarray gene expression data are 

available and can be integrated into TFBS predictions, the predictive performance of 

many computational approaches can be improved. Microarray data have already been 

used for identifying regulatory elements. For genes clustered by the expression profiles, 

motif-finding algorithms are used to find over-represented motifs in their upstream 

regions, since co-expressed genes are co-regulated and may share a set of similar 

transcription factor binding sites (Qian et a/. 2003). 

Here we explored how protein-protein interaction data might also be used for 

TFBS filtering. Our assumption is that interacting genes share a similar set of 

transcription factor binding sites. In prokaryotes a significant proportion of genes that 

are co-regulated at the transcriptional level code for proteins that interact physically 

(Teichmann and Babu 2002). In eukaryotes, mainly limited to yeast, gene expression 

profiles have been shown to correlate with protein-protein interactions (Ge et a/. 2001; 



Jansen et a/. 2002; Teichmann and Babu 2002). Gene expression profiles are highly 

correlated for gene products that form multi-subunit protein complexes or involved in the 

same pathway (Staudt and Brown 2000), and genes with similar expression patterns are 

more likely to encode interacting proteins (Ge et a/. 2001). Hannenhalli and Levy (2003) 

showed that the cis-identity, defined as the proportion of shared transcription factor 

binding sites (TFBS) between two cis-element profile (or cis-profile, refers to the 

collection of TFBS regulating the transcription of a gene), is higher for functionally linked 

interacting proteins as well as for members of a signal transduction pathway, which 

suggests similar transcriptional control of genes in a complex or pathway. Thus, these 

authors hypothesize that genes encoding for interacting proteins will be transcribed with 

a common set of regulatory signals. Simmons et a/. (2004) studied transcriptional 

regulation of protein complexes in yeast and showed that the genes in multi-protein 

complexes are likely to be co-regulated either together or in smaller subgroups. We 

based our TFBS filtering on the assumption that interacting genes are more likely to 

share a similar set of transcription factor binding sites. 

Our prediction results show that the prediction sensitivity of only keeping binding 

sites in conserved regions is lower than non-filtering prediction, because some binding 

sites may not be located in the conserved regions (Lenhard et a/. 2003). There are 

studies showing examples of regulatory elements that are found in regions of low 

sequence identity. For example, there are two functional MARE motifs in pufferfish and 

chicken that is located in a poorly conserved region compared with human and mouse 

(Flint et a/. 2001). 

To improve TFBS predictions we used a simple union algorithm with protein-protein 

interaction data (i.e. retain binding sites either in the conserved regions or shared by at 

least a pair of interacting genes), the sensitivity is the same as the no-filtering approach, 

while the specificity is significantly improved (implied by fewer average predictions in a 



100 bp upstream sequence). 

This approach apparently has limitations. First, though there is some evidence 

that the interacting genes tend to share a similar cis-profile (Hannenhalli and Levy 2003; 

Simmons et a/. 2004), it is not certain that this assumption can generally hold true. 

Interacting genes may have other mechanisms of regulation at translational level or 

post-translational level. The relationships between gene expression and genome-wide 

two-hybrid interaction data appear to be more tenuous (Ge et a/. 2001; Gerstein and 

Jansen 2000; Jansen et a/. 2002). Second, it depends on the known protein-protein 

interactions; some interactions may be yet to be discovered. Thus, with increasing 

amount of protein-protein interaction data, the TFBS predictive performance of using 

protein-protein interaction data would definitely improve. Third, the PWM compiled from 

experimentally determined TFBS available in TRANSFAC database poses a major 

limitation, because the computational approach described relies on the available DNA 

binding profiles of known transcription factors (Lenhard et a/. 2003; Loots et a/. 2002). 

While the current computational tools have success in predicting TBFS within a 

special context, apparently there is still much scope for improvement. The prediction 

sensitivity is sometimes reasonably high, but the specificity is extremely low, yielding 

most false positives randomly distributed along the genomic sequences (Lenhard et a/. 

2003). Innovative algorithms, and perhaps even more importantly, high-quality functional 

genomics as well as proteomics data sets with respect to gene expression, are required 

to further advance this bioinformatics field. With the increasing amount of protein-protein 

interaction data generated by various ongoing proteomics efforts, we suggest that they 

could be used in a similar manner as microarray data for improving computational TFBS 

identification. 



4.2 Human protein-protein interaction networks and regulatory networks in 
apoptosis 

Many protein-protein interaction data disperse in the literature and recently, 

efforts have been made to gather these interaction data into databases and provide 

searchable user interfaces, such as BIND (Bader et a/. 2003), the human protein 

reference database - HPRD (Peri et a/. 2003), and others. However, these sites in 

general only present the interaction partners of a gene in a pairwise manner, greatly 

limiting the potential value of these experimentally determined protein interaction data. 

For each of the 168 human apoptosis genes that have known protein-protein 

interaction data, we constructed a two-layer interaction network. These two-layer 

interaction networks are suitable for human visualization and intended to help biologists 

in apoptosis research. Each of them consists of protein interactions of related genes 

that are likely involved in the same pathway or a protein complex. Several multi-protein 

complexes have been characterized in the major apoptotic signaling pathways. The 

apoptosome complex, which is formed in the mitochondria1 intrinsic pathway, contains 

Apaf-I, ATP, Caspase-9, cytochrome C, and NAC (Acehan et a/. 2002; Chu et a/. 2001; 

Li et a/. 1997; Liu et a/. 1996). The DISC complex in the Fas-mediated extrinsic 

pathway, and contains Fas (TNFRSFG), FasL (TNFSFG), FADD, and either Caspase-8 

or Caspase-I 0 (Kischkel et a/. 1995; Muzio et a/. 1995; Wajant 2002). The 

inflammasome, which is mainly involved in cytokine activation, contains ASC, NALPI, 

Caspase-I, and Caspase-5 (Martinon et a/. 2002). The TNFRI complex includes 

TNFRI , TRADD, TRAF2, clAP1, and the kinase RIP1 (known as complex I) assembles 

in plasma membrane rapidly to recruit IKK leading to NF-KB activation and survival; and 

the second complex includes TRADD, RIPI, FADD, Caspase-8 and -10, which forms a 

cytoplasmic complex (complex II) to initiate apoptosis (Micheau and Tschopp 2003). 

Components in these complexes must interact with each other, either directly or 



indirectly. This information regarding protein complexes does normally not exist in the 

pairwise protein interaction data. However, if we add another layer of interactions, all 

these complexes can be represented in two-layer interaction networks (e.g. Fig. 5; all 

168 two-layer interaction networks are available at 

htt~://a~o~tosis.mbb.sfu.ca/interaction.~h~). Hence, we hypothesize that the two-layer 

interaction network can help biologists to discover other interactions andlor multi-protein 

complexes in apoptotic pathways. 

Transcriptional regulatory networks are key to our understanding of fundamental 

biological processes, and it can even offer insights into the defect of gene expression 

that is common in many human diseases (Qian etal. 2003). However, linking 

transcription factors and their target genes presents great challenges to genome biology. 

In eukaryotes, most studies concerning regulatory networks were performed in 

unicellular yeast Saccharomyces cerevisiae (Bar-Joseph et a/. 2003; ldeker et a/. 2002; 

Lee et al. 2002; Pilpel et al. 2001). However, there was no previous systematic analysis 

of transcriptional regulatory networks in human apoptotic signaling pathways. 

We computationally constructed a regulatory network for each human apoptotic- 

signaling pathway and estimated the putative regulatory significance of each 

transcription factor. These in silico regulatory networks are generic (i.e. without a special 

biological context) and aimed to help understand the potential transcriptional regulation 

in apoptotic signal transduction. The network is highly connected, suggesting that few 

TF families might regulate this pathway and many transcription factors might regulate 

more than 2 genes in this network. Transcription factors such as AP-4, AR, CIEBPalpha, 

CIEBPbeta, CIEBPdelta, DBP, E2F, E2F-1, GATA-2, GR, GR-alpha, GR-beta, NF-KB, 

STAT1 , STAT3, STAT4, STAT5A1 and STAT6 appear to possess most connections to 

genes in the 3 regulatory networks. Other transcription factors connected to genes in two 

of the apoptotic pathways include AP-1, c-Ets-l , c-Fos, c-Jun, c-Myb, CIEBPgamma, 



E2F-3, and E2F-4. These data could be used to prioritize candidate transcription factors 

that might coordinately regulate several genes in the same pathway. 

To conclude this work, the following work has been done regarding genes that 

are involved in apoptotic signaling pathway: 

Compiled genes known to be involved in apoptosis from 5 vertebrate genomes; 

Extracted known protein-protein interactions between human apoptosis genes 

and constructed two-layer interaction networks suitable for human visualization; 

Predicted many putative transcription factor binding sites for transcription factors 

that might regulate or co-regulate many genes in the apoptotic signaling 

pathways; 

Constructed in silico regulatory networks to obtain insights into regulation of the 

major apoptotic signaling pathways; 

Developed a database-driven web site to make the data available to the 

apoptosis research community. 
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WEB SITE REFERENCES 

htt~:llwww.a~ache.org: Apache web server. 

htt~://a~o~tosis.rnbb.sfu.ca/main.~h~: A data-driven web site for searching apoptosis 
regulatory elements and two-layer human apoptotic protein-protein interaction 
networks, developed for this project. 

http://www.biobase.com: TRANSFAC (professional version) web site. 

htt~://www.bio~erl.org: BioPerl toolkit. 

httr>://www.cbil.u~enn.edu/tess: TESS Transcription Element Search System, including 
free web access to the public version of the TRANSFAC database. 

htt~:l/www.ensembl.orq: Ensembl web site. 

http://www.ensembl.orrr/Multi/martview: Ensembl EnsMart interface. 

http://forkhead.cab.ki.seITFBS: TFBS Perl system documentation. 

http://www.aene-renulation.com: TRANSFAC database documentation. 

http:~lqenome.ucsc.edu/cni-binlhqText: UCSC genome table browser. 

http://lanan.stanford.edu/laqan web/index.shtml: LAGAN alignment tool. 

http://www.mvsql.com: MySQL database server. 

htt~://www.ncbi.nih.aov: National Centre for Biotechnology Information. 

http:I/www.perl.orq: Perl programming language web site. 

http:l/www.php.net: PHP scripting language web site. 

htt~://www-gsd.lbl.qov/vista/index.shtml: VISTA alignment and visualization tool. 



Appendix A: The RefSeq accession numbers of apoptosis genes identified in the 
mammalian genomes. 

Gene Name Human RefSeq Mouse RefSeq Rat RefSeq 

A1 a 

A l b  

AI F 

AIM2 

Ankyrin-I 

An kyrin-2 

An kyrin-3 

ANTI 

ANT2 

ANT3 

Apafl 

Apollon 

Arc 

ASC 

Aven 

Bad 

BAFF-R 

BAG I 

BAG2 

BAG3 

BAG4 

BAG5 



- - - 

Gene Name Human RefSeq Mouse RefSeq Rat RefSeq 

Bak 

BAP31 

BAR 

Bax 

Bcl- 1 0 

BcI-2 

BcI-3 

Bcl-B 

Bcl-G 

Bcl-L 1 2 

Bcl-w 

Bcl-x 

Beclin 

Bid 

Bik 

Bim 

Bimpl 

Bimp2 

Bimp3 

Bmf 

Bnipl 

Bnip2 

Bok 

c-re1 

CARD6 

CARD9 

Cardiak 

CARP 



Gene Name Human RefSeq Mouse RefSeq Rat RefSeq 

Caspase-I 

Caspase-I 0 

Caspase-14 

Caspase-2 

Caspase-3 

Caspase-4 

Caspase-5 

Caspase-6 

Caspase-7 

Caspase-8 

Caspase-9 

clAPl 

CllTA 

CLAN 

COP 

CPAN 

Cryopyrin 

DAP-3 

DAP-Kinase 

DEDD 

DEDD2 

DFF45 

DFFA-likeA 

DFFA-likeB 

DR3 

DR4 

DR5 

DR6 



Gene Name Human RefSeq Mouse RefSeq Rat RefSeq 

E DA-A 1 

EDAR 

EDARADD 

EndoG 

FADD 

Fas 

FLASH 

FLIP 

FSP27 

HIP-1 

HlPPl 

Hrk 

HtrA2 

Iceberg 

IF116 

i kba 

ikbb 

ikbe 

ikbka 

lkbkb 

lkbke 

ikbz 

IL-I R 

ILP2 

IRAK-1 

I RAK-2 

I RAK-4 

I RAK-M 



Gene Name Human RefSeq Mouse RefSeq Rat RefSeq 

KRC 

MADD 

Mal 

MALT-1 

NETWORK-1 

Mcl-I 

MEPRIN-I a 

MEPRIN-I b 

Mil-I 

ML-IAP 

MyD88 

NAC 

NAlP 

NFkBl 

NFkB2 

Nfkbill 

NGFR 

Nip3 

Nix 

NMP-84 

Nod I 

Nod2 

NOP2 

Noxa 

p193 

~ 5 0  

~ 5 2  

P53 



Gene Name Human RefSeq Mouse RefSeq Rat RefSeq 

P65 

P73 

PAN1 1 

PAN2 

PAN3 

PEA-1 5 

Pidd 

POP1 

POP2 

Puma 

PYRlN 

Raf I 

RAlDD 

RelA 

RelB 

RELT 

RIP 

SIAH-1 

SIAH-2 

Smac 

Smn 

Survivin 

TANK 

TBK-1 

TEFl 

TEF2 

TEF3 

TEF4 



Gene Name Human RefSeq Mouse RefSeq Rat RefSeq 

TEF5 

TI RP 

TLRI 

TLRlO 

TLR2 

TLR3 

TLR4 

TLR5 

TLR6 

TLR7 

TLR8 

TLR9 

TNFRI 

TNFRSFIOA 

TNFRSFI OB 

TNFRSFIOC 

TNFRSFIOD 

TNFRSFI I A  

TNFRSFI I B 

TNFRSFI 2 

TNFRSF13b 

TNFRSF14 

TNFRSFI 6 

TNFRSFI 7 

TNFRSF18 

TNFRSFI 9 

TNFRSFIA 

TNFRSFI B 



Gene Name Human RefSeq Mouse RefSeq Rat RefSeq 

TNFRSF3 

TNFRSF4 

TNFRSF5 

TNFRSF6 

TNFRSF6B 

TNFRSF7 

TNFRSF8 

TNFRSF9 

TNFSFI 

TNFSFI 0 

TNFSFI 1 

TNFSFI 2 

TNFSFI 3 

TNFSFI 3b 

TNFSF14 

TNFSF15 

TNFSFI 8 

TNFSF2 

TNFSF3 

TNFSF4 

TNFSF5 

TNFSF6 

TNFSF7 

TNFSF8 

TNFSF9 

Tradd 

TRAFI 

TRAF2 



Gene Name Human RefSeq Mouse RefSeq Rat RefSeq 

TRAF3 

TRAF4 

TRAF5 

TRAF6 

TRlF 

Trip 

TTRAP 

TUCAN 

TWEAK-R 

UNC5H1 

UNC5H2 

UNC5H3 

UNC5H4 

VDACI 

VDAC2 

VDAC3 

XEDAR 

XlAP 



Appendix B: The Ensembl IDS of apoptosis genes identified in the Danio and Fugu 
genomes. 

Gene Name Danio Ensembl Gene ID Fugu Ensembl Gene ID 

AI F 

Ankyrin-I 

Ankyrin-3 

ANT2 

ANT3 

Apafl 

Apollon 

ASC 

Bad 

BAG I 

BAG2 

BAG3 

BAG4 

BAG5 

BAP31 

BAR 

Bax 

Bcl-I 0 

Bcl-2 

Bcl-G 

Bcl-x 

Bimpl 

Bimp2 

Bimp3 

Bnipl 

ENSDARG00000004596.2 

ENSDARG00000023273.1 

ENSDARG00000012091.2 

ENSDARG00000023035.1 

ENSDARGOOOOOOl76ll.2 

ENSDARG00000021239.2 

ENSDARGOOOOOOI 6703.2 

ENSDARG00000025239.2 

ENSDARGOOOOOOl6986.2 

ENSDARG00000020895.2 

ENSDARG00000002935.2 

ENSDARGOOOOOOI 6349.2 

ENSDARG00000003448.1 

ENSDARGOOOOOOI 8864.2 

ENSDARG00000022311 . I  

- 

ENSDARG00000020623.2 

- 

ENSDARG00000025613.1 

ENSDARG00000024762.1 

ENSDARG00000008434.2 

- 

ENSDARG00000007176.2 

ENSDARG00000015105.2 

ENSDARGOOOOOOI 121 1 .I 

- 

- 

SlNFRUGOOOOOl32896.1 

- 

- 

SINFRUGOOOOOl5ll54.l 

SlNFRUGOOOOOl27619.1 

- 

- 

Sl NFRUGOOOOOI 27522.1 

SINFRUG00000145698.1 

SlNFRUGOOOOOl24171 .I 

SlNFRUGOOOOOl29587.1 

SINFRUG00000148315.1 

- 

SINFRUG00000145185.1 

SINFRUG00000135145.1 

SlNFRUGOOOOOl55270.1 

SlNFRUGOOOOOl55226.1 

- 

SlNFRUGOOOOOl54885.1 

SINFRUGOOOOOl51272.1 

- 

SlNFRUGOOOOOl5372l .I 

- 



Gene Name Danio Ensembl Gene ID Fugu Ensembl Gene ID 

Bnip2 

Bok 

c-re1 

CARD9 

Cardiak 

CARP 

Caspase-I 

Caspase-2 

Caspase-3 

Caspase-6 

Caspase-7 

Caspase-8 

Caspase-9 

clAPl 

CPAN 

Cryopyrin 

DAP-3 

DAP-Kinase 

DEDD 

DEDD2 

DFF45 

DFFA-likeA 

DFFA-likeB 

DR3 

DR6 

EDA-A1 

EDAR 

EndoG 

ENSDARGOOOOOOI 8654.2 

ENSDARG00000008082.2 

ENSDARG00000003646.2 

ENSDARG00000008151.2 

- 

ENSDARGOOOOOOI 0568.2 

ENSDARG00000008165.2 

ENSDARGOOOOOOl4202.2 

ENSDARGOOOOOOI 7905.2 

ENSDARG00000025608.1 

ENSDARGOOOOOOl6228.2 

ENSDARG00000004166.2 

ENSDARG00000004325.2 

- 

ENSDARG00000009748.2 

ENSDARG00000002237.2 

- 

ENSDARGOOOOOOI 0449.2 

- 

ENSDARG00000002758.2 

- 

ENSDARGOOOOOOI 1058.2 

ENSDARGOOOOOOI 2640.1 

ENSDARG00000023511 . I  

ENSDARG00000028025.1 

- 

ENSDARGOOOOOOI 6846.2 

ENSDARGOOOOOOI 3314.2 



Gene Name Danio Ensembl Gene ID Fugu Ensembl Gene ID 

FLASH 

FLl P 

FSP27 

HIP-1 

HlPPl 

HtrA2 

ikba 

ikbka 

lkbkb 

lkbke 

ikbz 

I RAK- 1 

IRAK-4 

IRAK-M 

KRC 

MADD 

MALT-1 

NETWORK-1 

Mcl-I 

MEPRIN-la 

MEPRIN-I b 

Mil-I 

MyD88 

NAC 

NFkB1 

NFkB2 

NGFR 

Nip3 

ENSDARG00000022718.1 

ENSDARGOOOOOOl9149.2 

ENSDARG00000002891.1 

ENSDARG00000012291.2 

ENSDARG00000021022.2 

ENSDARG00000003377.2 

ENSDARG00000005481.1 

- 

ENSDARGOOOOOOI 1732.2 

ENSDARG00000008987.2 

- 

ENSDARGOOOOOOI 0657.2 

ENSDARG00000009541.2 

ENSDARG00000002158.2 

ENSDARG00000003495.2 

ENSDARG00000006052.2 

- 

ENSDARG00000008363.2 

ENSDARG00000008029.2 

- 

ENSDARGOOOOOOl2343.2 

ENSDARGOOOOOOI 0169.2 

- 
- 

ENSDARG00000004043.2 

ENSDARG00000013019.2 

ENSDARGOOOOOOI 9785.2 



Gene Name Danio Ensembl Gene ID Fugu Ensembl Gene ID 

Nix 

NM P-84 

Nod1 

Nod2 

P I  93 

P52 

P53 

P65 

P73 

PEA-1 5 

Pidd 

POP1 

POP2 

PYRlN 

Raf I 

RAlDD 

RelA 

RelB 

RIP 

SIAH-1 

SIAH-2 

Smac 

Smn 

Survivin 

TBK-1 

TEFI 

TEF2 

TEF3 

ENSDARG00000025468.1 

ENSDARGOOOOOOI 1938.2 

ENSDARG00000009801.2 

ENSDARGOOOOOOI 0756.2 

ENSDARG00000024235.1 

ENSDARG00000004772.2 

ENSDARG00000005535.2 

ENSDARG00000015126.2 

ENSDARGOOOOOOI 7953.2 

ENSDARGOOOOOOl4546.2 

ENSDARGOOOOOOI 8596.2 

- 

ENSDARG00000012001.2 

- 

ENSDARG00000008824.2 

ENSDARG00000028192.1 

- 

- 

ENSDARG00000006677.2 

ENSDARG00000003044.2 

ENSDARG00000026203.1 

ENSDARG00000003346.2 

ENSDARGOOOOOOI 8494.2 

ENSDARGOOOOOOI 5440.2 

ENSDARGOOOOOOI 1399.2 

ENSDARG00000028159.1 

ENSDARGOOOOOOI 8779.2 

ENSDARG00000026508.1 



- - 

Gene Name Danio Ensembl Gene ID Fugu Ensembl Gene ID 

TEF4 

TEF5 

TLR I 

TLRIO 

TLR2 

TLR3 

TLR4 

TLR5 

TLR6 

TLR7 

TLR8 

TLR9 

TNFRSFI I B 

TNFRSF14 

TNFRSFI 6 

TNFRSF19 

TNFRSFI B 

TNFSFI 

TNFSFI 0 

TNFSFI 3b 

TNFSF2 

Tradd 

TRAFI 

TRAF2 

TRAF3 

TRAF4 

TRAF6 

Trip 

- 

ENSDARG00000009569.2 

ENSDARGOOOOOOI 0871.2 

- 

ENSDARGOOOOOOI 3167.2 

ENSDARGOOOOOOl6065.2 

ENSDARGOOOOOOl9742.2 

ENSDARG00000003558.2 

- 

- 

- 

ENSDARG00000008467.2 

- 

ENSDARGOOOOOOI 2428.2 

- 

ENSDARG00000025982.1 

- 

ENSDARGOOOOOOl3598.2 

ENSDARG00000004196.2 

ENSDARGOOOOOOl2945.1 

ENSDARG00000009511.2 

- 

ENSDARGOOOOOOI 1321.2 

ENSDARGOOOOOOI 8205.2 

ENSDARG00000022000.1 

ENSDARG00000003884.2 

ENSDARG00000007432.2 

- 



Gene Name Danio Ensembl Gene ID Fugu Ensembl Gene ID 

TTRAP 

UNC5H1 

UNC5H2 

UNC5H3 

UNC5H4 

VDACI 

VDAC2 

VDAC3 

XlAP 

ENSDARGOOOOOOI 6685.2 

- 
ENSDARG00000021881 .I 

ENSDARGOOOOOOI 3623.2 

ENSDARG00000003695.2 

ENSDARGOOOOOOl6143.2 



Appendix C: The human apoptotic protein-protein interaction network 



Appendix D: An example position frequency matrix (PFM) for each TF class in Fig. 
6, its average matrix length and expected number of occurrences in upstream 
sequences 

TF class 

CC 

CH 

homeo 

POU 

MADS 

HMG 

ETS 

Matrix example Average Expected 

0.0008 



Expected 
occurrences 

6.6x10-' 

Matrix example Average 
matrix length 

16.5 paired r 
paired- 
homeo 

forkhead k 
LIM 

runt 

histone 

bHSH 

STAT 



Grainyhead 

Expected 
occurrences 

0.0002 

Matrix example 

A : 0 0 8 0 0 1 3 2 0 0 1 1  1 4 0 0 0 8 0 4 0 8 2 2 0  
C : l O l O O l l 5 2 l  l O l O 2 1 4 O O 2 7 I O 5 l O O  
3 7 4  
G : 0 0 2 1 0 3 5 2 0 0 7 3 5 6 6 5 2 1  I 0 0 0 0 3 0 0  
T : 0 0 0 8 9 1 0 5 0 0 0 5 0 0 4 3 1 0 0 1 0 2 2 1 6  

Average 
matrix length 

12.5 

P53 

Refer to Fig. 6  for the description of each TF class. The matrix example was the first one 
retrieved for each class. The expected number of occurrences was calculated based on the 
average length of matrices in a 6  kb upstream sequence. 

A : 4 5 1 5 0 1 7 0 0 0 0 0 0 0 2 0 1 7 0 0 0 0 0  
C : 0 0 0 1 7 0 0 0 1 3 1 7 1 7 0 0 0 1 7 0 0 0 2 1 3 7  
G: 1 3 1 2 2 0 0 0 1 7 0 0 0 1 7 1 7 1 5 0 0 0 1 7 0 0 2  
T : 0 0 0 0 0 1 7 0 4 0 0 0 0 0 0 0 1 7 0 1 5 4 7  

17 3.5x10-' 


