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ABSTRACT 

Instance based learning (IBL) algorithms attempt to classify a new unseen 

instance (test data) based on some "proximal neighbour" rule, i.e. by taking a majority 

vote among the class labels of its proximal instances in the training or reference dataset. 

The k nearest neighbours (k-NN) are commonly used as the proximal neighbours. We 

study the use of the state of the art approximate technique of k-NN search on the best 

known IBL algorithms. The results are impressive; substantial speed up in computation 

is achieved and on average the accuracy of classification is preserved. 

Geometric proximity graphs especially the Gabriel graph (a subgraph of the well 

known Delaunay triangulation) provides an elegant algorithmic alternative to k-NN based 

IBL algorithms. The main reason for this is that the Gabriel graph preserves the original 

nearest neighbour decision boundary between data points of different classes very well. 

However computing the Gabriel graph of a dataset in practice is prohibitively expensive. 

Extending the idea of approximate k-NN search to approximate Gabriel neighbours 

search, it becomes feasible to compute the latter. We thin (reduce) the original reference 

dataset by computing its approximate Gabriel graph and use it independently as a 

classifier as well as an input to the IBL algorithms. We achieve excellent empirical 

results; in terms of classification accuracy, reference set storage reduction and 

consequently, query response time. The Gabriel thinning algorithm coupled with the IBL 

algorithms consistently outperforms the IBL algorithms used alone, with respect to 

storage requirements and maintains similar accuracy levels. 

iii 
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CHAPTER 1 

INTRODUCTION 

1 .I Motivation 

Recent years have witnessed an explosive growth in the amount of data that is 

being generated by corporations, agencies and government as well. Organizing the 

large amounts of data make it possible to make better use of this data. This viewpoint 

has been recognised and people are now keen on extracting more out of data, i.e. 

instead of blindly building large collections of data, the focus has been on recording 

observations and then structuring the same. This can be seen as value added data or 

quite simply, information. 

In several real-world domains, for every observation that is made it is possible to 

associate a class membership attribute. For example in an office, every object may be 

classified either as being a furniture object or a non-furniture one. So for an observation 

of a chair, the class attribute would be "furniture". Let us look at a couple of more 

concrete examples. 

Its election time. People generally vote based on what issues are important to 

them. So voter statistics agencies get busy with gathering information on a 

representative sample of the population about relevant election issues. People are 



interviewed and their opinions on issues are recorded. Each issue is treated as an 

"attribute" for the particular person or observation. Finally they are asked as to what 

party they would vote for. Note that the data collection agency may add some attributes 

to the recorded observations such as geographical location of the voters etc. So the data 

collected about the voters constitutes the observations and the party they vote for 

indicates their class membership. Assuming that the observations were made on a 

representative sample of the population, we can now generalize these observations to 

the entire population, especially the undecided voters (assuming we have their views on 

election issues). Therefore the voter statistics agencies can now predict accurate 

election results before the actual elections. 

"At one time, cancer of the cervix was a major cause of death among women in 

British Columbia. However, there has been a major decrease in the death rate because 

of screening, early diagnosis and treatment" [BC Cancer Agency]. By recording cell 

observations, it can be classified whether the cells are normal or abnormal. If we have 

sufficient representative examples of both normal and abnormal observations, we can 

quickly and accurately classify new cases, which is what the BC Cancer Agency has 

done. By regular screening they have managed to achieve an 85% reduction in the 

number of B.C. women getting cancer of the cervix and for reducing cervical cancer 

deaths by 75% since the 1950s [BC Cancer Agency]. 

The above examples should be motivating for computer scientists to develop 

accurate and fast "pattern classification" techniques; i.e. using previously recorded 

observations, classifying unseen cases. Accuracy is important, as we want our results to 

be reliable; speed is important because with so much new as well as old data that can 

become irrelevant as time passes, we need to produce results that are relevant to the 

time frame in which they were collected. We now embark on our study. 



I .2 Problem Framework 

Our pattern classification problem can be precisely formulated as follows: 

Input: A set of vectors V called the reference dataset. Each reference vector can be 

denoted as V, = {Xi, ci}, where is another vector (often called a feature vector, 

(Toussaint [I 81)). The feature vector X, is composed of d scalar components or features, 

where d is the dimensionality (number of features) of the problem. 

= {xi,, xi*, .. . xid}. ci tells us the class label of the feature vector Xi. 

Problem: To determine the class label for a new instance 4. 

Classical parametric solution: 

Bayes decision theory (Duda and Hart [lo]) says that if we know both the a priori 

probabilities (the probabilities of certain "classes" of observations or feature vectors) and 

the conditional probability densities (the probabilities that certain observations are made 

given that we already know the classes of the given observations), then we can compute 

the a posteriori probabilities (i.e. the probabilities of given observations being of certain 

classes), using Bayes Rule. 

So now if we make a new observation Y, all we simply compute is the a posteriori 

probabilities using Bayes rule. The a posteriori probability associated with the class ci 

that is maximal is chosen and the class ci is the class label attached to the observation. 

Thus we can safely say that the Bayes rule does minimize the probability of error 

simply because it picks the "most probable" class label for a given observation. In this 

sense Bayes rule is optimal. It however makes the (practically unrealistic) assumption 

that the distribution of the observationslfeature vectors is known. 



Classical non-parametric solution: 

The classical non-parametric solution to the pattern classification problem is the 

use of the nearest neighbour rule (Cover and Hart 191). (It is a non-parametric technique 

as the forms of the underlying probability distribution functions are treated as unknown, 

and in practice this is almost always the case.) We have a set of stored instances or 

sample points whose class labels are known. We are asked to classify an instance, i.e. 

its class label is to be determined. The rule itself is straightforward: 

"Classify an instance whose class label is unknown with the same class 
label as that of its nearest instance in the stored set ". 

The problem can be visualized as partitioning the feature space (some metric 

space) into regions, where each region ideally consists of observations of a unique class 

or category (see figure 1.1 on the next page). As we can see, there is a clear cut 

"decision boundary" which separates instances of classes 1 and 2. (The decision 

boundary is not necessarily homeomorphic to a line; it could be even be a closed loop) 

We can now predict what class a new point would belong to by simply verifying whether 

the point lies on the left hand side (class 7) or the right hand side (class 2) of the 

decision boundary. 



Figure 1 .I Partitioning of attribute space into distinct regions based on class. 

CLASS 1 point: 0 CLASS 2 point: fB Decision boundary: ,- - - - 
I 

This seemingly na'ive rule is powerful for two reasons: 

1. It is intuitive in the sense that things that have similar properties or attributes are 

near to each other spatially. This property is sometimes referred to as "spatial 

auto correlation". 

2. Perhaps more important is the fact that the error rate of this rule is upper 

bounded by twice the (optimal) Bayes error rate (Duda and Hart [lo]) for a large 

enough reference dataset. In other words, just this basic proximity information 

has at least 50% of the entire information that an optimal classifier would require. 

An obvious generalization of this basic rule is the k nearest neighbour rule, which 

intuitively means that to classify an unseen sample we take a majority vote of the class 

labels of its k closest samples in the stored dataset. The use of this principle has been 



shown to obtain good estimations of the Bayes error rate (Toussaint [18]) for large 

enough reference datasets. There have also been extensions to the basic rule to reduce 

the number of samples stored but still try to obtain the same accuracy as the basic NN 

rule (see Hart [ I  21, Gates [ I  I]). However the original problems of storage of a huge set 

of instances still remain. As a result to compute the nearest neighbour for each point, we 

have to look at a large stored dataset. Even incorporating "sophisticated" tree-based 

search structures, does not solve the problem of a potentially vast search space in 

relatively higher dimensions (Beyer et al [5], Houle [13]). Thus the efficacy of the rule is 

limited by its computationally intensive nature. This is why reference set thinning is 

essential (Hart [I 21). 

Let us call our original reference set V. If the algorithm is decremental in nature (as 

ours is), we start with a non-empty set of points V and apply our deletion criterion on 

each point. If a point satisfies the criterion, which is basically some boolean condition, 

then we remove the point from V. We continue with this step until some stopping 

condition is reached. This is also typically a boolean criterion. Our final reduced set is 

say, V' that we use for classification of new points. This is the essence of reference set 

thinning. 



1.3 Issues 

1 .XI Distance Functions: 

We will focus on two distance functions that we employ for testing all the 

algorithms. This consistency is essential as different distance functions can lead to 

significantly different accuracy results. For a fairly exhaustive list of distance functions 

please look at Wilson and Martinez [20]. One of the distance functions that we use for 

datasets with only numeric data is the well known Euclidean distance function: 

where is the feature (attribute) vector, 

d = number of features (dimensions), Xi= {xil, ~ i 2 ,  . . ., xid) 

When the dataset has non-numeric (nominal) attributes as well, then we use an 

alternate distance function called the Vector-Angle metric (Houle [ I  31). It is calculated as 

follows: 

where X1.X2 is the dot product between the two vectors and 
I( I( is the norm of the vector' 

The distance is some value between 0 and 1 where the value 0 indicates 

extreme dissimilarity and the value 1 indicates exact similarity. 



1.3.2 Border and Interior points 

A very important factor for most Instance Based Learning algorithms is whether 

they focus on the retention of the so called border or central points. As we have already 

seen in section 1.2, the nearest neighbour decision boundary is an important part of the 

feature space, which distinguishes points between different classes. So our focus should 

be to keep the decision boundary more or less intact. Intuitively this means that points 

closer to the decision boundary are important to maintain the same and these are the 

border points. In the corresponding Voronoi diagram (see de Berg et al [4]) of the set of 

points, the Voronoi cells, which share a common face with another cell having a point 

from a different class, are the border points. The union of these common faces forms the 

nearest neighbour decision boundary. So in order to maintain the decision boundary we 

should try to keep most border points and thin our reference set by discarding the 

interior points that do not contribute to the decision boundary (the unlabeled points in 

figure 1.2). 



Figure 1.2 Border Points Versus Interior Points 

r - - - 
CLASS 1 point: 0 CLASS 2 point: @ NN Decision boundary: .' 

x: CLASS 1 border point y: CLASS 2 border point 



1.4 Previous Work 

1.4.1 Instance based learning algorithms 

Instance based learning (IBL) algorithms (Aha et al [ I ]) are a subset of 

algorithms from the machine learning literature which use "instances" (our reference 

vectors) from a stored reference set as a means of generalizing the classes of new 

unseen instances. As already discussed in section 1.2 and the subsection 1.3.2, these 

algorithms are faced with the challenge of finding the "right number" of instances to save 

for generalizing. These algorithms generally compute the k nearest neighbours of each 

stored instance and use certain relationships to decide whether to keep or throw away 

the instance. To compute the nearest neighbour(s), these algorithms use a distance 

function (described in subsection 1.3.1) to decide how "close" each instance is to its 

neighbours. For an in depth survey of IBL algorithms of the past and their development 

through the years Wilson and Martinez [20] and Brighton and Mellish [7] provide good 

surveys. Let us now look briefly at the two most powerful and undoubtedly the state of 

the art in IBL algorithms. 

1.4.1 .I The Decremental Reduction Optimization Procedure 3 (DROP3) 

This powerful algorithm was proposed by and first described in Wilson and 

Martinez [ I  91 under the name RT3. Basically it computes two sets for each instance; the 

k nearest neighbour set and the associate set. The k nearest neighbour set is exactly 

what the name suggests, a set of k nearest neighbours of the given instance. The 

associate set for a given instance p, consists of a set of those instances A, which have p 

as one of their k nearest neighbours. Each instance p also maintains a nearest enemy 

e', which is the instance nearest to p (could be a k-NN of p), with a different class than 



that of p. The original reference set is denoted by V. The reduced reference set is 

denoted by V'. Initially, we have V'= V. The algorithm works on the following rule: 

"Remove an instance p if a majority of its associates in V would be 
correctly classified without p". 

Intuitively the above rule means that the algorithm tests for "leave one out cross 

validation" generalization accuracy, which is an estimate of the true generalization 

capability of the resulting classifier (Wilson and Martinez [20]). An instance is removed if 

its removal does not hurt the accuracy of the nearest neighbour classifier based on the 

reduced reference set (the set without the instance in it). 

There are two somewhat subtle modifications to this basic algorithm. 

1. We have already discussed in section 1.3.2, that we need to preserve the border 

points and that central points can be removed without any loss of classification 

capability. To this end, the DROP3 algorithm sorts all the instances in V' by the 

distances to their nearest enemy. It then performs the test of removal of 

instances beginning with the instances furthest from their nearest enemies, 

thereby testing for central points first (which would have their nearest enemies far 

away) rather than border points. This gives the border points a greater chance of 

survival. 

2. There is the problem with noise in real datasets (i.e. instances that have been 

labelled with a different class than its correct class label). To alleviate this, 

DROP3 employs what is known as a noise filter before sorting the instances. The 

noise filter simply removes those instances that are misclassified by their k 

nearest neighbours. This idea was proposed by Wilson [21] and the name Wilson 

Editing has been coined for the same. Classifying unseen data using the 1-NN 



rule, even with a simple Wilson edited dataset is so powerful that the error rate 

converges to the (optimal) Bayes error (Toussaint 1181). 

Thus, the algorithm first performs this noise filtering pass, sorts all the instances 

with respect to increasing distance from their nearest enemy and then does the removal 

test on this sorted list of instances. The final classification or testing step is done by 

computing the k-NN for each test case and taking the majority vote among the class 

labels of the same. On average, testing with several datasets from the UCI machine 

learning data repository, Wilson and Martinez have shown this algorithm to reduce the 

reference set size to 15-20% of the original while maintaining the classification accuracy 

level of the basic k nearest neighbour classifier which stores 100% of the instances. The 

pre-processing or training step requires 0(n2) time in the worst case. 

1.4.1.2 The Iterative Case Filtering Algorithm (ICF) 

This iterative algorithm was proposed by and described in Brighton and Mellish 

[7]. The algorithm is similar to DROP3 in the sense that it also computes nearest 

neighbour and associate sets for each instance in the reference set. The key difference 

is in the way that these sets are manipulated. Brighton and Mellish call the neighbour 

and associate sets as reachable and coverage sets respectively. 

One important difference between DROP3 and ICF is in the way the 

neighbourhood set of an instance is computed. DROP3 computes this by fixing an upper 

bound of k on the size of the neighbourhood set. However ICF computes its reachable 

(neighbourhood) set adaptively. Like DROP3 it also maintains a nearest enemy e' for 

each instance in the reference set. ICF however uses the nearest enemy to bound its 

instance's neighbourhood set; i.e. the set of instances that lie within the hypersphere 



centred at the instance p and whose radius is equal to the distance between p and its 

nearest enemy p.e' constitute p's reachable set (see figure 1.3). 

Figure 1.3 Reachable set of an instance 

CLASS 1 point: 0 CLASS 2 point: @ 

The coverage set computation is analogous to the associate set computation. 

The coverage set of an instance p includes the set of all those instances A, which have p 

in their reachable set. The algorithm can be summarized by the following rule: 

"Delete those instances whose reachable set size is larger than its 
coverage set size". 

The intuition behind this rule is that an instance p is removed when more 

instances can be used to represent p than p itself represents. Typically instances far 

away from the decision boundary will have large reachable sets and these are the 

instances we wish to remove. After removing these instances the authors hope to 

maintain the border points well. The algorithm involves two main steps as follows: 



We know that noisy points are harmful for our classification task and 

like DROP3 we employ the Wilson editing algorithm to filter out these 

points; i.e. remove a point if it is misclassified by its k-NN. 

We then apply the deletion criterion mentioned before repeatedly. 

Those instances that satisfy the criterion are marked for deletion. At 

the end of one pass over the dataset all those instances that are 

marked are removed. If we remove at least one instance we repeat 

step 2 (recomputing the reachable and coverage sets as we go) until 

no instances are removed during any one pass. This turns out to be a 

good stopping point for the algorithm. 

The final reduced dataset is used for classifying the instances using the k-NN 

rule similar to the DROP3 algorithm. Asymptotically the ICF algorithm also has a 

quadratic running time in the worst case but in practice it runs much faster than the 

DROP3 algorithm. This is because it simply "flags" an instance for deletion and only 

removes flagged instances at the end of the current pass unlike the DROP3 algorithm 

where if an instance is selected for removal we have to remove it immediately and 

update the neighbour lists for the associates of the removed instance with a new 

neighbour. Brighton and Mellish [7] perform similar testing as Wilson and Martinez [20] 

and observe that the storage requirement is reduced to a similar percentage as that of 

DROP3. The classification accuracy is also competitive with DROP3 and the basic 

nearest neighbour classifier. 



1.4.2 Exact k-Nearest Neighbour Search 

One of the oldest and most successful methods for nearest neighbour search 

has been proposed in Bentley [3]. The data structure proposed is called the k-d tree, the 

k-dimensional tree, where k is the number of dimensions. Theoretically the k-d tree 

performs nearest neighbour queries in logarithmic expected time. However, the efficacy 

of this and many other similar indexing data structures have been questioned with 

respect to the effect known as the curse of dimensionality (Houle [13]). As the 

dimensions of the search space increase (for even as small as 10-15 dimensions) linear 

search outperforms the "efficient" algorithms proposed on these data structures (Beyer 

et al [5]). It has also been suggested recently that exact techniques for nearest 

neighbour search are unlikely to improve substantially over sequential search unless the 

data itself has some specific underlying distribution, which is extremely rare in practice. 

Thus recent research effort has shifted attention to finding powerful approximate 

techniques for NN search, which is what we describe next. 

1.4.3 Approximate k-Nearest Neighbour Search (the SASH) 

We use the most recent work in effective approximate multi dimensional index 

structures proposed by Houle [13]. Most of the previous work in this field was based on 

the more traditional tree based index structure (e.g. Beckman et al [2]). The idea there 

was to assign items to the subtree of their nearest node from a limited set of candidates. 

However well this choice is made, some nodes will have nearest neighbours that can be 

reached only via paths of great lengths. For more details please see Houle [13]. The 

data structure proposed by Houle counters this problem by allowing multiple paths 

between nodes. Unlike a tree-based structure, nodes have multiple parents, which result 

in only very few nodes whose near neighbours can be reached only via long paths. So in 



essence the search space is more "compact". The search recursively locates 

approximate nearest neighbours within a large sample of the data and follows links from 

these sample neighbours to discover approximate neighbours within the remainder of 

the set. A modified version of the data structure, the Spatial Approximation Sample 

Hierarchy (SASH) will be described in more detail later as it is an inherent part of our 

algorithms. We call the modified version as the GSASH (Gabriel SASH). 

1.4.4 Proximity Graph based methods 

Construct a graph where each vertex is a data point and it is joined by an edge to 

its nearest neighbour. This is the nearest neighbour graph (NNG). The minimum 

spanning tree (MST) is also a graph, which captures proximity relationships among its 

vertices. The proximity graph we are most interested in for applications to IBL algorithms 

is the Gabriel graph (GG). Both the NNG and MST are subgraphs of the GG. The GG 

itself is a subgraph of the Delaunay Triangulation, (DT) the dual of the Voronoi diagram. 

The Voronoi diagram and correspondingly the DT of a point set capture all the 

proximity information about the point set because they represent the original nearest 

neighbour boundary as discussed below. Discarding all those points whose Voronoi cell 

shares a face with those cells that contain points of the same class as the point under 

consideration, we obtain a Voronoi condensed dataset (see Toussaint et al [17]). In 

terms of the DT, discard all those vertices of the graph that share an edge with vertices 

only from its own class. The NN decision boundary is the union of the common faces of 

the Voronoi diagram between Voronoi cell neighbours of different classes. 

The decision boundary that is maintained after condensing is the same, as that 

would have been maintained even if all points had been kept. The error rate is therefore 



also maintained. The condensed set is called a decision boundary consistent subset. 

Voronoi condensing does not reduce the number of points to a great extent (Toussaint 

[I 71). Also the computational complexity of the Voronoi diagram in higher dimensions is 

exponential in the number of dimensions. We need to do some more work. If we are 

willing to distort the decision boundary slightly we can do much better. Thus a subset of 

the edges of the DT has to be selected. Bhattacharya [6] shows results for two such 

subgraphs, the Gabriel graph and the Reduced Neighbourhood graph. S6nchez et al 

[15], 1161 also do similar experimentation. It has been acknowledged that the Gabriel 

graph based condensing is the best. We now explain the algorithm in more detail, as it is 

one of the cornerstones of this work. 

1.4.4.1 The Gabriel graph 

For a set V of n points (reference vectors) V = @,, p2, . . ., pn}, two points pi and p, 

are Gabriel neighbours if 

disf(pi, pi) < disf(pj, pk) + d i s f h ,  pk) V k  #i,j .. . . . . . . . . . .. . .. . .. . .. . . . . . . . . 1.1 

By joining all pairs of Gabriel neighbours with edges, we obtain the Gabriel 

graph. In a geometric sense, two points pi and p, are Gabriel neighbours iff the circle with 
- 

diameter as pi, p, (also called the circle of influence of pi and p,) does not contain any 

other point p k  E V inside it. 

The Gabriel graph can be easily constructed from the Voronoi diagram of the 

given point set by joining those pairs of Voronoi neighbours by an edge if the edge 

intersects the common face between the Voronoi neighbours. For more details on the 

Gabriel graph and its properties please see Bhattacharya [6]. 



1.4.4.2 The Gabriel thinning algorithm 

The brute force approach to compute the Gabriel graph is first described: V = ( p l ,  

p2, . . ., pn} is our set of points for which we have to compute the Gabriel graph: 

1. For each pair of points (pi, pi), i, j = 1, 2, . . ., n; where i < j: 

(i) Perform the following test b'k E V and k # i, j: 

if dis?(pi, pj] > dis?(pi, pk) + dis?@i, pk) 

then pi and p, are not Gabriel neighbours (go back to step 1). 

(ii) pi and pi are marked as Gabriel neighbours. 

Step 1 takes 0(n2) operations as there are 0(n2) pairs of points to test. Step 1 (i) 

requires O(n) operations, for a fixed d number of dimensions. Therefore the complexity 

of the nai've algorithm is 0(n3), i.e. cubic for a constant number of dimensions. 

Bhattacharya [6] suggested a heuristic method to compute the Gabriel graph, 

which asymptotically still has a cubic complexity in the worst case but observed to be 

closer to quadratic at least for small dimensions (d < 5). We describe the algorithm 

pictorially (see Bhattacharya [6] for details). 

As seen in the figure 1.4 (shown on the next page), when testing q as a possible 

Gabriel neighbour of p, any point in the right half space RH (B, p), determined by the line 

perpendicular to the line pq  i.e. B (p, q), could be rejected as it cannot be a Gabriel 

neighbour of p. 



Figure 1.4 Heuristic method to compute Gabriel neighbours 

Possible Gabriel neighbours of point p: 

Points rejected as Gabriel neighbours of point p: 0 

Now as we have the Gabriel graph constructed, the thinning algorithm follows 

(Bhattacharya [6]): 



Algorithm ExactGabrielThinning: 

1. Construct the Gabriel graph of the given set of points. 

2. For each point, determine all its Gabriel neighbours. If all the neighbours are 

from the same class as the point itself, mark the point under consideration for 

deletion. 

3. Delete all marked points. The remaining points form the thinned (reduced) 

set. 

The thinned set generally consists of points located close to the decision 

boundary as these points will have as Gabriel neighbours some points on the other set 

of the boundary. The boundary itself is slightly "smoothed" (figure 1.5). 

Figure 1.5: Empty circle property of Gabriel neighbours and 
good decision boundary preservation 

h--.. 

CLASS 1 point: 0 CLASS 2 point: @ NN Decision boundary: I' 
Gabriel decision boundary: r 

Point p has Gabriel neighbours from 'other' class and hence is kept. 
Point 9 does not and hence is removed. 



1.4.5 Support Vector Machines 

Support vector machines (SVM) (Khuu et al [14]) are a new generation learning 

system based on recent advances in statistical learning theory. It is based on the idea of 

hyperplane classifiers, or linearly separability of data points. It uses concepts from 

integral calculus and quadratic programming to divide the feature space into distinct 

separable regions each region for objects of one class. 

There are two main disadvantages with this approach (Khuu et al [14]). The 

success of an SVM depends heavily on the choice of "kernel functions" which are used 

to create the separating decision boundary between the input data. Designing these 

functions belongs to a field outside of Computer Science. The second important 

drawback is that the performance of SVM declines with increased dimensionality and 

reference dataset size. 

1.5 Contributions 

There are three key contributions that we make in this work: 

1. We apply the best-known approximation technique for k-NN search; a spatial 

index called the Spatial Approximation Sample Hierarchy abbreviated as the 

SASH (Houle [13]) and come up with approximate versions of the state of the 

art IBL algorithms that compute the k-NN of the instances or reference 

vectors in the stored reference dataset. We preserve the accuracy of 

classification with substantial speed up in computation. 

2. We next propose a modified version of the SASH to compute approximate 

Gabriel neighbours of a set of points in d-space, named the GSASH. It 



requires O(n logpn) time and O(n) space to compute the GSASH. The 

GSASH can be used to compute the k closest approximate Gabriel 

neighbours in O(k logzk + logs n) time. 

3. Lastly but perhaps most significantly, we propose a novel Hybrid IBL 

algorithm based on the Gabriel proximity graph based thinning and the ICF 

algorithm. Experimental results on synthetically generated data and real 

world data suggest that the Hybrid algorithm exhibits the best features of its 

constituents. It maintains the NN decision boundary faithfully and consistently 

outperforms the IBL algorithms used independently for thinning, with respect 

to storage (and thus speed). 

1.6 Outline of work 

The rest of this report proceeds as follows: 

Chapter 2 is dedicated to three important sub-parts. In part I, we demonstrate 

how we modify the SASH to build the GSASH to compute approximate Gabriel 

neighbours. We describe the construction of the GSASH in depth. Then we present 

some theoretical upper bounds on the construction and query costs of the GSASH 

structure. 

Part II explains approximate classifier design using the more traditional k-NN 

technique. We show how the IBL algorithms (ICF and DROP3) can be easily modified to 

incorporate search for approximate k nearest neighbours using the SASH. 

In part Ill, we describe our hybrid two-phase algorithm of reference set thinning 



using the Gabriel graph and then further thinning using the ICF algorithm (Brighton and 

Mellish 171). 

Next, in chapter 3, we perform an extensive experimental comparative evaluation 

of the ICF algorithm with the Gabriel algorithm used independently as well as the hybrid 

approach described in chapter 2. We perform tests on 14 individual real world datasets 

(from the UCI machine learning archive). We also study the behaviour of the different 

algorithms in terms of what kind of points they keep by using randomly generated 

synthetic data. 

We finally conclude in chapter 4 with some observations of our own and suggest 

some avenues for further work in this field. 



CHAPTER 2 

REFERENCE SET THINNING WITH APPROXIMATE 
PROXIMAL NEIGHBOURS 

2.1 The Approximate Gabriel Neighbour Approach 

The fundamental point regarding the Gabriel neighbour based approach is that 

the Gabriel graph preserves the all important nearest neighbour decision boundary very 

faithfully for a given set of points. However as seen before, it is difficult to compute the 

Gabriel graph efficiently. So our focus is to compute an approximate version of this 

graph sub-quadratically. For this we introduce the GSASH. 

2.1.1 The GSASH 

The GSASH is basically a modified version of the SASH (the Spatial 

Approximation Sample Hierarchy), which is an index structure for supporting 

approximate nearest neighbour queries. For more details about the SASH, please see 

Houle [I 31. The GSASH (Gabriel SASH) structure is defined next. 

2.1 .I .I GSASH structure 

A GSASH is basically a graph with following characteristics: 

Each node in the graph corresponds to a data item. 

Like a tree, it consists of height h E 0(log2n) levels for a dataset of size n. There is 

a significant difference here though. For a dataset of size n we actually maintain at 



most 2n nodes in the GSASH, with n items at the base or leaf level to a top or root 

level with just one node. With the possible exception of the first level, all other 

levels have half of the nodes as the level below it. So the structure is as follows: 

All the n data items (or pointers to them; we will not make a distinction between 

the two in this discussion) are stored at the bottom most level. We then "copy" half 

of these i.e. n/2 items uniformly at random to the level above the bottom most. We 

repeat this process of "copying" all the way up to the root. At the level just below 

the root there are some c nodes (we will discuss the parameter c shortly) and we 

pick one of these c to be the root. We will look into this "copying" technique in 

more detail in the next section. 

Nodes have edges directed to a level above and below except for the root and 

leaf levels where edges can only go below and above respectively. Each node 

links to at most p parent nodes at the level above and at to at most c child nodes 

at the level below it where p and c are constant parameters chosen for 

construction. The difference between parent and child edges is purely conceptual, 

to illustrate the data structure cleanly. We will have more to say about these 

parameters later. The distance dist(a, b) is stored with each edge (a, b). 

To ensure that every node is reachable from the root, a parent g is required for 

every node v as its guarantor (except for the root itself of course). The child v is 

called a dependent of its guarantor g. 

2.1 .I .2 GSASH Construction 

The edges between the GSASH levels are chosen such that every node is 

connected to a small number of its approximate Gabriel neighbours at a level above it. 

We can now see the intuition behind the "copying" technique: Each node at level I is 



connected to a small number of its approximate Gabriel neighbours among one half of 

the nodes from its own level which have been "copied" above at level I - 1. So if a node v 

at level I connects to an approximate Gabriel neighbour ra t  level I - I it is very likely that 

r will be an approximate Gabriel neighbour of v at all levels I' < 1-1 if r is "copied" above. 

We now present the GSASH construction algorithm. It is based on the algorithm 

ConnectSASHLevel (described in Houle [I 31). Let GSASHidenote the GSASH built up to 

level i. The GSASH is built by iteratively constructing GSASHi for 1 I i I h. So our job is 

to connect GSASH, and GSASHcl by making parent-child connections between the two. 

GSASH, is the root node. 

Algorithm BuildGSASH (I): 

1. If I = 2, every node in level 2 connects to the root which is the parent for all and the 

root has all the nodes in level 2 as its children. The root becomes the sole guarantor 

for all its children and the children become the dependents of the root. Thus GSASH2 

is constructed. 

2. For each node v of level I that we want to connect, do: 

(i) For each level I I i < I, pick a set of p approximate Gabriel neighbours Piv) as 

follows: 

a) If i = 1, then Pi(v) consists of the root. 

b) else i > I .  C,{v) = the set of distinct children of the nodes in Pi-,(v). 

Find the p nearest approximate Gabriel neighbours of v among the nodes in 

Ci(v). Use the empty circle property to determine the set of approximate 

Gabriel neighbours. Set P,(v) to this set of p closest approximate Gabriel 

neighbours. (If less than p neighbours are found at any level i i.e. in C&), 

pick all of the available neighbours). 



(ii) Set the parents of v to be the nodes of PI-,(v). Each node v is now connected 

to p parents, which are its p closest approximate Gabriel neighbours at level i. 

3. Create child edges for all nodes of level 1-1 as follows: 

a) For each node u of level 1-1, determine the set of nodes from level I that 

picked it up as a parent. Call this set H(u). 

b) Sort H(u) in increasing order of distances from u. 

c) Pick the c closest nodes to u among H(u) as the children of u. 

4. For each node v of level I, if it was picked as a child of at least one node u from level 

1-1, then the closest node from level 1-1 that picked it becomes the guarantor g(v) of 

v. Else v is what is called an orphan node. 

5. For each orphan node vat  level I, we need to find at least one parent from level 1-1, 

which can act as its parentiguarantor. We need to find a guarantor which has less 

than its allotted share of children c and which is an approximate Gabriel neighbour of 

v. We double the size of the candidate parent set and find a guarantor as follows 

(Houle [13]): 

b) Compute PI-,(v) as in step 2 but with p = 2p. 

c) If we cannot find a node with less than c allotted children as a guarantor of v 

then i = i + l  and go to step 5.b. 

d) Else we pick as the guarantor, the node u, which has less than c children and 

closest to v. u adds v to its list of children and v adds u to its (previously 

empty) parent list. 

End of construction of GSASH,. 



Note that step 5 of the algorithm i.e. the search for guarantors for orphan nodes 

need not be performed for all the levels at the GSASH. It is only required for the leaf 

level where all the data points reside, because we need to be able to trace a path from 

every leaf to the root to search for approximate Gabriel neighbours. Some nodes in the 

inner levels of the GSASH could remain orphans because we know that they have been 

"copied" either above or below and hence probably connected by GSASH edges. In 

practice it has been observed that only a very small fraction of nodes are ever orphans. 

Figure 2.1 : The GSASH structure 

GSASH nodes visited during the search for Gabriel neighbours for node q: 0 

Node q can be a query node or a node that wants to connect to its parents. 

p = 3 , c = 4  



2.1 .I .3 The empty circle test 

The empty circle test to check for Gabriel neighbours (step 2(i)c) of algorithm 

BuiIdGSASH is described in more detail. For connecting a node v at level I to its set of p 

nearest Gabriel neighbours at level I - ?, we need to test the points in the set Cl{v) (for 2 

I i < I )  to determine the p nearest approximate Gabriel neighbours of the points at level i. 

For any q E Ci(v), we need to determine whether 9 is a Gabriel neighbour of v. In other 

words we need to determine whether the circle of influence of point v and 9 is empty with 

respect to the point set at level i, which is GSASHi. However, we only consider the points 

of Cl{v) instead of the entire GSASHi (because of our "copying technique") for our empty 

circle test. 

It can be argued that the Gabriel neighbours found in this manner may not be 

"true" Gabriel neighbours because we perform the empty circle test on only ICl{v)l 5 pc 

nodes whereas there are at least 2 points at the level i. However if q is a true Gabriel 

neighbour of v, our test will also likely say so. It is possible for our test to say that 9 is a 

Gabriel neighbour of v even when it is not so. The argument made is that at level I-?, 

outside of the pc candidates there is at least one point r, which is actually inside the 

circle of influence of v and q (and r P C1{v)). This would actually mean that dist(v, r) < 

dist(v, 9) and dist(9, r) < dist(v, 9). If point r had been copied above level I -1 (with 

probability 1/2), then it is most likely that r would have been picked up at level I-? and 

hence q would not be picked as a parent of p. Even in the case of r not being copied up, 

because 9 is picked, it would likely imply that r would also be picked (since dist(v, r) < 

dist(v, 9)). Hence it is the case that "true" Gabriel neighbours would be picked as 

parents. 

To reduce computation we could avoid exhaustively testing all pc pairs of 

potential neighbours at each level. We could build a SASH on the pc candidates at each 



level. The SASH as we know, can be used for making approximate nearest neighbour 

queries. So we build a SASH and test whether any of the approximate nearest 

neighbours thus found lies inside the circle of influence of node v and its candidate 

parent 9. If any one does lie inside the circle, we terminate the search and declare that v 

and 9 are not approximate Gabriel neighbours otherwise we continue the search using 

the points (which lie outside the circle) at the next level of the SASH until we reach the 

leaf level. 

2.1 .I .4 GSASH querying 

We now propose the GSASH as a means for computing the k Gabriel neighbours 

of a given query item q. The querying algorithm works a lot like the candidate parents 

generation step (step 2 of Algorithm BuildGSASH). We can simply compute Ph(q) for p = 

k and return the result as Ph(g). Instead of simply picking a constant k neighbours from 

each level, a variable number of neighbours kican be picked from each level i. kishould 

be smaller for higher levels of the GSASH and larger for the lower levels so that a larger 

proportion of the search can be made on the largest number of items (those located 

closer to the bottom of the structure) Houle [13], talks about this in context of the SASH 

and calls it a "geometric search pattern". The value of ki is given by: 

ki = max {k 1-(h-i)bogn 1 
1 h PC}. 

We now describe the algorithm in more detail. 



Algorithm FindApproxGabrielNeighbours (q, k): 

1. Pick a set of ki Gabriel neighbours from each level 1s i 5 h as follows: 

a. If i = 1, P,{q) consists of a single node, the root. 

b. If i > 1, let Ci(q) be the set of distinct children of the nodes in Pi-,(@. 

c. If i > 1, let P,{q) be equal to the ki closest Gabriel neighbours from this set 

C,{q). Use the empty circle property to determine the set of Gabriel 

neighbours. If less than ki neighbours are found in the set, return the entire 

set. 

Return the k nearest elements from the set Ph(q) as the query result. If this set 

contains less than k elements return the entire set. 

Thus we can find k approximate Gabriel neighbours of any given query point. 

2.1.1.5 Upper bounds 

We now present some theoretical upper bounds on the construction and query 

costs of the GSASH. Note that in our experiments we assign small constant values to 

the parameters p and c. 

The GSASH storage turns out to be O(n) because each of the nodes in the 

structure is connected to at most p other nodes, leading to a total storage of at most 

2np. 

Ignoring the costs of finding guarantors for orphan nodes (which in practice 

account for a very small proportion of the time taken for construction), the GSASH 

construction time can be bounded by O(n lognn). This can be explained as follows: For 

each of the O(n) nodes, we visit at most 0(log2n) levels of the GSASH, picking p nodes 

at each level and finally connecting level 1-1 and level I with c child edges. The constant 

factors hidden inside the asymptotic notation include the costs required to perform the 



empty circle test for Gabriel neighbours. For each of the p nodes at a given level we can 

perform this test on at most c potential neighbours by exhaustively testing all the O(pc) 

pairs, incurring a total cost of at most 0(p2c2) (step 2(i)c of algorithm BuildGSASH). Step 

2(ii) contributes an additional factor of O(p) and step 3 another O(cn) in the worst case. 

So the observed complexity is close to 0(p2c2n log2n). However using the modification 

introduced in section 2.1.1.3, we can avoid testing all pc pairs exhaustively by building a 

SASH of the pc nodes at each level to compute approximate nearest neighbours of the 

node which has to connect to its p parents and then performing the empty circle test 

(eqn (1 .I)) using these approximate NNs. Building a SASH on pc nodes incurs a cost of 

O(pc loggc) and querying it to compute approximate NNs incurs an additional 

logarithmic factor of 0(log2pc) for each node. Hence the complexity of the GSASH 

construction can be bounded by O(pc loggc . n log2n). 

The GSASH querying complexity is straightforward. For a given query point, we 

need to compute the k Gabriel neighbours. We traverse 0(log2n) levels, picking at most 

ki closest Gabriel neighbours at each level from a set of size at most cki at the cost of 

c2ki2. The complexity can be bounded by 0(c2k2 log2n). However we can reduce 

computation here by following a similar idea as that of the construction algorithm and 

also by picking ki closest Gabriel neighbours at each level (using the geometric search 

pattern as mentioned in section 2.1.1.4). The cost of a geometric approximate k-NN 

query using the SASH is O(k + log2n) (Houle [13]). Therefore, we pick ki closest 

approximate Gabriel neighbours at each level by building a SASH on k,c candidates and 

perform the empty circle test (equation 1 . I )  using the computed approximate NNs of the 

node v which we are to connect with its parents. Since the sum of ki for all i is O(k), the 

total cost of building a SASH for all levels is O(kc logzkc) E O(k log2k) for constant c. The 

approximate k-NN query cost is subsumed by the SASH construction cost. We perform 



the query at most at 0(log2n) levels. Thus the GSASH querying complexity reduces to 

O(k log2k + log2n). 

Note that all these results are overly conservative as we assume that the children 

of a given set of nodes are distinct, which in general is most unlikely. In Houle 1131 it has 

been suggested that c = 4p is a good parameter setting. p = 4 and thus c = 16 have 

been found to be good parameter values and these are maintained as constants 

throughout our experimental analysis of the GSASH. We also maintain k = 32 as a 

constant (the actual number of Gabriel neighbours computed varies according to the 

dataset but is upper bounded by 32). 

Therefore considering p and c as constants the upper bounds on the GSASH 

construction and query algorithms can be set at: 

O(n log2n) . . . GSASH construction. 

0(klog2k + log2n) . . .GSASH query for k approximate Gabriel neighbours. 

2.1 .I .6 Comparison with exact Gabriel graph computation 

We have already noted in subsection 1.4.4.2 that the computation of the exact 

Gabriel graph involves a cubic time complexity. Our algorithm computes an approximate 

version of the Gabriel graph. By calling the FindApproxGabrielNeighbours algorithm 

repeatedly, for every point in the dataset, we can implicitly compute an approximate 

version of the Gabriel graph. So where exactly is the approximation in our algorithm? We 

set the number of Gabriel neighbours that a node at a lower level can connect to a level 

above it, by p. Our algorithm is basically limited by the number of Gabriel neighbours 

every node in the GSASH is allowed to connect to. 



It can however be argued that each point in the dataset may look at all possible 

O(n) points in the GSASH for finding its Gabriel neighbours and therefore, theoretically 

we do not save any computation. However, the GSASH searches for the Gabriel 

neighbours through a very compact portion of the search space. So, we find a high 

proportion of the true Gabriel neighbours (as much as 90% or more) at speeds of more 

than an order of magnitude faster than exact computation. We verify this experimentally 

in the following table: 

Table 2.1: Comparison of execution costs for the approximate and exact 
Gabriel neighbour computation* (d = no. of dimensions) 

No. of points 

500 
1000 
3000 

*Implementation in C++, on a Plll 1.2GHz machine, running the g++ compiler under 
Linux. 

All values are in seconds and indicate CPU time. For the approximate Gabriel 

neighbours computation, the cost involves both the building of the GSASH and Gabriel 

neighbour querying for every point in the dataset. Of course if the set of points is 

previously known, the GSASH could be precomputed and the running time would involve 

only the cost of querying the GSASH to find Gabriel neighbours. The data consists of 

randomly generated points inside a unit hypercube in two, three, four and five 

dimensions. 

Approximate Exact 
d = 2  
1.28 
3.56 
13.78 

d = 2  
3.6 
16.75 
201.25 

d = 3  
2.46 
5.75 
26.43 

d = 3  
5.71 
27.03 
339.46 

d=4 
2.59 
6.5 
27.1 

d = 4  
6.03 
29.12 
360.81 

d = 5  
4.34 
11.0 
47.68 

d = 5  
9.43 
46.82 
596.38 



2.1.2 The Approximate Gabriel Thinning Algorithm 

We are now ready to describe our approximate Gabriel thinning algorithm based 

on the GSASH. It is basically a two-pass algorithm with an editing (noise removal) pass 

and the final thinning pass. The noise removal pass is based on Wilson Editing (Wilson 

[20]) and marks for deletion each point, such that the majority of its Gabriel neighbours 

are from a different class as the point itself. This is also called proximity graph based 

editing (Sanchez et al [15]). 

Algorithm ApproximateGabrielThinning: 

1. Construct the GSASH of the given set of points (Algorithm BuildGSASH). 

2. For each point in the set: 

(i) Compute the given points approximate Gabriel neighbours (Algorithm 

FindApproxGabrielNeighbours). 

(ii) Mark for removal the point, if a majority of its approximate Gabriel neighbours 

have a different class label as the point itself. 

3. Delete the marked points from step 2. 

4. Compute the approximate Gabriel neighbours of the reduced set. 

5. For each point in the reduced set: 

Mark for deletion those points, for which all its approximate Gabriel neighbours 

are from the same class as the point itself. 

6. Delete the marked points from step 5. 

7. Return the remaining points. This forms the approximate Gabriel thinned set, which 

is used for classifying new points (New points are classified by taking the majority 

vote among the class labels of their approximate Gabriel neighbours). 



2.2 The Approximate Nearest Neighbour Approach 

The original SASH (on which the GSASH is based) was actually intended for 

supporting nearest neighbour queries. Structurally the SASH and GSASH are quite 

similar. The biggest difference is that the "copying" of nodes technique is not employed 

in the SASH. Each SASH node corresponds to a unique object in the dataset and nodes 

from one level to another are connected based on a distance-based proximity measure. 

Apart from these differences, the construction algorithm is similar (except that the SASH 

computes approximate nearest neighbours). The query algorithm differs slightly. In the 

SASH it is not just the leaf level where all the data points are. So the result of the k 

nearest neighbour query would be the best k nodes taken from all the levels and not just 

the bottommost one. Also there can be no orphan nodes allowed at any level because in 

the SASH every node is distinct and hence needs to have a path to the root. 

So, now we have an efficient SASH based procedure to compute the 

approximate k-NN of a given data point. We can therefore modify the existing IBL 

algorithms to take advantage of this. As it turned out, modifying the ICF algorithm was 

straightforward, as it only marks points for deletion if the deletion criterion is satisfied. At 

the end of the entire pass over the dataset, it removes the instances. At this point we 

have to rebuild the SASH again and perform another pass over the remaining data (if at 

least one point was removed during the current pass). In contrast, the DROP3 algorithm 

immediately removes a point if it satisfies the deletion criterion and updates the 

neighbourhood and associate lists accordingly. The SASH being a static index cannot 

support these dynamic insertion and deletion operations. So we modify the DROP3 

algorithm to compute "extra" neighbours before hand. So, as long as the neighbour list of 

every point contains the minimum k neighbours we can continue. When the number of 



neighbours falls below k, we have to rebuild the SASH again. We observe that 2k 

neighbours is a good number of neighbours to maintain at the beginning. 

It is observed that the results obtained with exact k-NN and approximate k-NN 

search on these state of the art IBL algorithms are very competitive for our real world 

datasets both in terms of classification accuracy and storage reduction. We now shift our 

focus on the ICF algorithm as we develop our Hybrid algorithm. The main reason for this 

is that the ICF algorithm is more "adaptive" (as previously discussed in section 1.4.1.2) 

than DROP3. Also, the ICF algorithm can be modified more naturally for use with the 

SASH. 

2.3 A Hybrid Approach 

Our Hybrid algorithm combines the best of both the Gabriel thinning and the ICF 

algorithm. It is basically a two-phase algorithm. In phase I, we apply Gabriel thinning. In 

phase II, the Gabriel thinned set serves as the input to the ICF algorithm. For more 

details about the ICF algorithm please look at Brighton and Mellish [7]. 

Algorithm Hybrid 

1. Perform Algorithm ApproximateGabrielThinning. 

2. Use the output of step 1 as the input reference set for Algorithm ICF. 

(The Algorithm ICF is described on the next page as outlined in Brighton and Mellish 

V1). 



Algorithm ICF 

1. Repeat steps (i)-(iv): 

(i) for all instances i in the reference set T: 

a. Compute reachable(0 

b. Compute coverage(/] 

(ii) progress = false 

(iii) for all instances i in the reference set T 

if I reachable(/] I > 1 coverage(0 I 
mark i for deletion 

progress = true 

(iv) for all instances i in T: 

if i is marked for deletion, then remove i from T 

2. until not progress. 

3. return T. 

(Note: the reachable and coverage sets computation is described in sub-section 1.4.1.2) 

We run extensive tests on both artificial as well as real world data and present 

experimental results in the next chapter. 



CHAPTER 3 

EXPERIMENTAL RESULTS 

Our results are divided into two sections. Section 1 deals with results on real 

world data obtained from the UCI machine learning data repository. In section 2 we 

present results obtained on artificially generated two-dimensional data to show what kind 

of thinned data each algorithm maintains, i.e. whether the decision boundary is indeed 

faithfully represented or distorted. 

3.1 Results on real-world data 

I I Characteristics I 

I ionosphere 1 351 1 2 1 34 1 Numeric I 

Dataset 

abalone 
balance scale 
breast cancer - w 
cell 
cmc 

Iris I 150 I 3 I 4 I Numeric 
liver - buoa 345 2 6 Numeric . . . - . - - -. - - 

spambase I 4601 I 2 1 57 1 Numeric 

Numeric 

ecoli 336 8 7 Numeric 

Data Type 

Mixed 
Numeric 
Numeric 
Numeric 
Mixed 

- -- 

Table 3.1: Nature of the real world datasets used 

Dimensions 

8 
4 
10 
6 
10 

No. of 
instances 

41 77 
625 
699 
3000 
1473 

thyroid 
voting 
wine 

No' Of 

classes 
29 
3 
2 
2 
3 

21 5 
435 
178 

3 
2 
3 

5 
16 
12 

Numeric 
Boolean 
Numeric 



All of the above datasets (except the cell dataset) have been obtained from the 

UCI Machine Learning data repository. The cell data was obtained from the Biomedical 

Image Processing Laboratory at McGill University. These datasets appear to be the 

universal choice for performing experimental analysis of IBL algorithms (Wilson and 

Martinez [20] and Brighton and Mellish [7]). 

The table a couple of pages ahead (table 3.2) gives us a measure of the 

accuracy of each algorithm i.e. the percentage of test cases correctly classified, and the 

percentage of storage maintained (with respect to the original dataset size). The results 

are obtained by the so-called 10-fold cross validation technique: Each dataset is divided 

into 10 equally sized chunks. 10 experiments are run on these chunks with 9 chunks 

used as the reference set and 1 chunk as the test set, changing the test chunk for each 

of the 10 runs. This is a similar strategy used by both Brighton and Mellish [7] and 

Wilson and Martinez [20]. 

The Gabriel algorithm is the algorithm, ApproximateGabrielThinning of section 

2.1.2. This algorithm produces the best accuracy results but consequently also requires 

the highest storage. The ICF algorithm is the one described in Brighton and Mellish [7]. 

The only difference between the original algorithm and the one used here is that we 

have used the technique of approximate NN search described in section 2.2. It should 

be noted that the results obtained with exact and approximate NN search are very 

competitive. For results of the ICF algorithm with exact NN search please look at 

Brighton and Mellish [7]. The Hybrid algorithm is the one discussed in section 2.3; a 

combination of the Gabriel and ICF algorithm. As can be seen from the table, this 

algorithm strikes the best balance between classification accuracy and storage 

reduction. 



There are some issues related to the "right" distance function. We used the 

Euclidean distance and the Vector Angle distance depending on performance. The 

Euclidean distance metric is a good choice for predominantly numeric data whereas the 

use of the Vector Angle distance metric is a fairly subjective issue. It did well for some 

non-numeric and numeric data as well. The choice of distance function can result in 

dramatic changes in results. However this was not our main focus. Our aim was on 

maintaining consistency across the test results and hence for each dataset we 

maintained the same distance function, for each algorithm. Like Sanchez et al [15], we 

vary the parameter k (either picking 1 or 3 depending on performance) used for 

classifying instances based on k-NN. 

There are a few observations to be made about the table 3.2. The results we 

obtain and the ones reported by Brighton and Mellish [7] are similar and fairly consistent. 

(Note that we use the SASH for approximate k-NN computation whereas Brighton and 

Mellish used exact computation, so there are slight variations for a couple of datasets, 

but on average, the results are consistent). The Abalone dataset seems to cause the 

worst performance for every algorithm, but this is more due to the nature of the data 

itself where class boundaries highly overlap and there are a large number of classes 

(29). Apart from the thyroid data, the Hybrid algorithm does at least as well as ICF. Also 

we observe that the Hybrid algorithm consistently maintains a smaller subset of the 

reference dataset for all the tested datasets. 

It is not hard to see why the Hybrid algorithm produces the best results. We know 

that the Gabriel algorithm maintains the NN decision boundary very faithfully and this 

basically is the first pass of the Hybrid algorithm. So now when we use this thinned 

version of the original dataset as an input to ICF (which is the second pass of the Hybrid 

algorithm), we thin the boundary even more. Instead of maintaining a very thick band of 



boundary points (as the Gabriel algorithm does) we maintain a thinned version of the 

most important boundary points. We will see in the next section as to exactly what kind 

of points do each of these algorithms maintain where the algorithms are compared for 

performance on the artificially generated datasets. 

Dataset I Hybrid I ICF I Gabriel 

Accuracy Storage Accuracy Storage 

20.83% 4.20% 23.52% 19.44% 

86.78% 11.69% 82.09% 20.96% 

95.0% 2.70% 94.88% 3.16% 

Accuracy I Storage 

abalone 

balancescale 

breastcancer - w 

cell 

cmc 

diabetes - pima 

ecoli 

ionosphere 

iris 

liver - bupa 

spam base 

thyroid 

voting 

wine 

Table 3.2 Results on real-world data 
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3.2 Results on synthetically generated data 

We test our algorithms on three synthetically generated datasets with sharp 

regular shaped decision boundaries. All the data is generated inside a unit square and 

the decision boundaries are varied. The decision boundaries are F-shaped, circular and 

a rectangular strip. Points generated randomly on either side of the boundary are given 

opposite class labels. Points inside the boundary are given random class labels. 

The data generated is two-dimensional for convenient visualization purposes. We 

generate 1000 points randomly. The results obtained are 10-fold cross validated like the 

real-world data. The tables shown on the next three pages (tables 3.3, 3.4 and 3.5) show 

the points that are kept by each algorithm after thinning. They also show the error rate 

and storage reduction percentage for each algorithm, on each dataset (the datasets are 

essentially the same in terms of the co-ordinates but the class labels of the data points 

vary according to the decision boundaries). 

As expected, the Gabriel algorithm produces the thinned subset of points that 

tightly maintain the decision boundary at the cost of slightly extra storage. The ICF 

algorithm distorts the boundaries significantly, as can be seen in results on the F-shaped 

and circular boundaries. There are a significant number of "non-border" points that are 

maintained which are not close enough to the boundary so as to classify border points 

correctly. This is a significant drawback and this is where the Hybrid algorithm wins out. 

Not only does it reduce storage appreciably but also it maintains the decision boundary 

quite faithfully. Based on the experimental results, we can say it combines the best of 

both worlds: faithful decision boundary preservation a la the Gabriel algorithm and 

aggressive storage reduction due to effect of the ICF algorithm. 



Points remaining after thinning Description 

Class 1 

Algorithm: Approximate Gabriel 

Error rate: 3.2% 

Storage: 1 0.58% 

Total points (after thinning): 96 

Class I points remaining: 50 

Class 2 points remaining: 46 

1 

Algorithm: Hybrid 

o 75 Error rate: 3.9% 

Class 1 
Storage: 6.28% 

0.5 . Class 2 [7 Total points (after thinning): 58 

o 25 Class I points remaining: 29 

0 
Class 2 points remaining: 29 

0 0.333 0.666 0.999 

Algorithm: ICF 

0.75 
Error rate: 3.2% 

0.5 Storage: 7.93% 
P - * 4 Class 2 

Total points (after thinning): 64 
0.25 

Class 1 points remaining: 30 

Class 2 points remaining: 34 

Figure 3.3 F-shaped boundary results. 

CLASS 1 point: 0 CLASS 2 point: 0 Decision boundary: - 



Points remaining after thinning Description 

Class 1 . Class 2 U 

Class 1 Fl 

Algorithm: Approximate Gabriel 

Error rate: 2.5% 

Storage: 12.94% 

Total points (after thinning): 1 17 

Class 1 points remaining: 57 

Class 2 points remaining: 50 

Algorithm: Hybrid 

Error rate: 2.8% 

Storage: 7.3% 

Total points (after thinning): 72 

Class 1 points remaining: 34 

Class 2 points remaining: 38 

Algorithm: ICF 

Error rate: 4.3% 

Storage: 7.72% 

Total points (after thinning): 77 

Class 1 points remaining: 32 

Class 2 points remaining: 45 

Figure 3.4 Circular boundary results. 

CLASS 1 point: 0 CLASS 2 point: @ Decision boundary: 0 



Points remaining after thinning Description 

Algorithm: Approximate Gabriel 

Error rate: 10.4% 

Storage: 13.6% 

Total points (after thinning): 124 

Class 1 points remaining: 59 

Class 2 points remaining: 65 

Class 2 

Algorithm: Hybrid 

Error rate: 10.3% 

Storage: 8.65% 

Total points (after thinning): 75 

Class I points remaining: 35 

Class 2 points remaining: 40 

Class 1 1-q 

Algorithm: ICF 

Error rate: 1 1.8% 

Storage: 6.47% 

Total points (after thinning): 50 

Class I points remaining: 25 

Class 2 points remaining: 25 

Figure 3.5 Random rectangular strip boundary results. 

CLASS I point: CLASS 2 point: @ Decision boundary: I I 



CHAPTER 4 

CONCLUSION 

In this work, we examine the problem of reference set thinning, also called 

training set storage reduction, for instance based learning algorithms. We review the 

existing techniques and argue that the state of the art solutions to the problem involve 

the heavy computational burden of computing the k nearest neighbours of every 

instance in the reference set. lncorporating the use of the SASH, an efficient index 

structure for supporting approximate nearest neighbour queries, we find that the existing 

techniques can be sped up by substantially with no degradation in classification 

accuracy as well as storage reduction. 

The Gabriel graph has been long known to be an excellent geometrical construct 

to capture proximity relationships between its nodes. However computing it was 

practically infeasible because of the worst case cubic time complexity involved. 

Incorporating the idea of approximate k nearest neighbour search into approximate 

Gabriel neighbour search, we come up with a modified version of the SASH that we call 

the GSASH. The GSASH can be constructed in O(n lognn) time for a dataset of size n 

and used as a means for computing k approximate Gabriel neighbours of a query point 

in O(k logzk + log2n) time We apply the GSASH to compute approximate Gabriel 

neighbours and use it in the Gabriel graph based reference set thinning algorithm 

proposed by Bhattacharya [6]. The single most important property of the Gabriel graph is 

that it preserves the nearest neighbour decision boundary very faithfully. We show 



experimental results comparing this algorithm with the best known IBL algorithms and 

not surprisingly it turns out the Gabriel thinning algorithm performs better on real world 

and synthetic data. The Gabriel thinning algorithm's running time is basically dominated 

by the time required to compute the Gabriel neighbours of the reference data set. Hence 

the complexity of the algorithm is O(kn log2k + nlog2n). 

The only major drawback with the Gabriel thinning algorithm is that it does not 

produce a considerable storage reduction compared to the IBL algorithms. This is a 

serious issue because of the large amount of data available; computation time 

performance can degrade if we maintain a very large subset of the data for pattern 

classification. Therefore we propose a hybrid reference set thinning algorithm, which 

involves the Gabriel thinning algorithm as the first pass and the ICF algorithm of Brighton 

and Mellish [7] as the second pass. Our choice of the ICF algorithm was purely 

motivated by the fact that like the Gabriel algorithm it is also adaptive in nature and can 

incorporate the SASH quite seamlessly. Our Hybrid algorithm is shown to exhibit the 

best features of both of its constituents. It still maintains the decision boundary quite 

faithfully and also results in aggressive storage reduction. In fact, its accuracy is 

competitive with that of the Gabriel algorithm and its storage reduction surpasses that of 

the ICF algorithm. 

There is still much work that has to be done especially with approximate proximal 

neighbours search. For one, we need to develop dynamic versions of the 

SASHIGSASH, which can support insertionsldeletions dynamically without having to 

rebuild the structure from scratch. This would save significant computation time. 

Our Hybrid algorithm seems to be in line with the cutting edge research in pattern 

classification, which suggests the use of "Classifier Ensembles", collections of classifiers 

working together. Certain classifiers are good for certain domains while not so good for 



others. We believe that a Gabriel neighbour based classifier would be an excellent 

addition to these "Classifier Ensembles" simply because of the nature of the Gabriel 

graph that preserves the all important nearest neighbour decision boundary very well. 
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