
APPLICATION OF THE GABRIEL GRAPH
TO INSTANCE BASED LEARNING ALGORITHMS

Kaustav Mukherjee, B.E (Computer Engineering)
University of Pune, 2002

A PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

In the
School

of
Computing Science

O Kaustav Mukherjee 2004

SIMON FRASER UNIVERSITY

August 2004

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name:

Degree:

Title of Project:

Kaustav Mukherjee

Master of Science

APPLICATION OF THE GABRIEL GRAPH TO
INSTANCE BASED LEARNING ALGORITHMS

Examining Committee:

Prof. Pavol Hell
Professor, School of Computing Science, S.F.U
Chair

Date DefendedIApproved:

Prof. Binay Bhattacharya
Professor, School of Computing Science, S.F.U
Senior Supervisor

Prof. Tom Shermer
Professor, School of Computing Science, S.F.U
Supervisor

Prof. Michael Houle
Visiting Professor, National Institute of Informatics,
Tokyo, Japan
External Examiner

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work,
has granted to Simon Fraser University the right to lend this thesis,
project or extended essay to users of the Simon Fraser University Library,
and to make partial or single copies only for such users or in response to
a request from the library of any other university, or other educational
institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to
keep or make a digital copy for use in its circulating collection.

The author has further agreed that permission for multiple copying of
this work for scholarly purposes may be granted by either the author or
the Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain
shall not be allowed without the author's written permission.

Permission for public performance, or limited permission for private
scholarly use, of any multimedia materials forming part of this work,
may have been granted by the author. This information may be found on
the separately catalogued multimedia material and in the signed Partial
Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and
signed by this author, may be found in the original bound copy of this
work, retained in the Simon Fraser University Archive.

W. A. C. Bennett Library
Simon Fraser University

Burnaby, BC, Canada

ABSTRACT

Instance based learning (IBL) algorithms attempt to classify a new unseen

instance (test data) based on some "proximal neighbour" rule, i.e. by taking a majority

vote among the class labels of its proximal instances in the training or reference dataset.

The k nearest neighbours (k-NN) are commonly used as the proximal neighbours. We

study the use of the state of the art approximate technique of k-NN search on the best

known IBL algorithms. The results are impressive; substantial speed up in computation

is achieved and on average the accuracy of classification is preserved.

Geometric proximity graphs especially the Gabriel graph (a subgraph of the well

known Delaunay triangulation) provides an elegant algorithmic alternative to k-NN based

IBL algorithms. The main reason for this is that the Gabriel graph preserves the original

nearest neighbour decision boundary between data points of different classes very well.

However computing the Gabriel graph of a dataset in practice is prohibitively expensive.

Extending the idea of approximate k-NN search to approximate Gabriel neighbours

search, it becomes feasible to compute the latter. We thin (reduce) the original reference

dataset by computing its approximate Gabriel graph and use it independently as a

classifier as well as an input to the IBL algorithms. We achieve excellent empirical

results; in terms of classification accuracy, reference set storage reduction and

consequently, query response time. The Gabriel thinning algorithm coupled with the IBL

algorithms consistently outperforms the IBL algorithms used alone, with respect to

storage requirements and maintains similar accuracy levels.

iii

ACKNOWLEDGEMENTS

I would like to take this opportunity to make an attempt to express my gratitude

towards all those people who have played an important role in some way or another to

help me achieve whatever little I have.

First and foremost, I wish to express my sincerest thanks to my Senior

Supervisor Prof. Binay Bhattacharya. This work would not be in the form it is today

without his intellectual inputs and advice throughout the duration of my Master's

program. I am grateful to my external examiner Prof. Michael Houle, on whose work

much of this work is based on. I, to suit my needs, systematically slaughtered his

excellent implementation of the SASH! I am also thankful to Prof. Tom Shermer my

supervisor and the other members of my committee, Prof. Bhattacharya and Prof. Houle

who provided extremely insightful comments into the initial draft of this report. A big

thank you to Prof. Pavol Hell, the graduate director who has motivated the "project

option" at the school, for helping me with the last bureaucratic hurdles.

To my family and especially Mom, my heartfelt thanks for always believing in me

and motivating me to do my best. I feel this a small payback for all that they have

sacrificed for me. Finally, but most importantly, I would like to thank the love of my life,

Bosky to whom this work is dedicated. She is my friend, guide and philosopher and has

been a tower of strength through all my ups and downs for the last five years.

DEDICATION

To Bosky.

TABLE OF CONTENTS

.. .. Approval 11

... Abstract .. 111

Acknowledgements .. iv

Dedication .. v

Table of Contents ... vi

... List of Figures .. VIII

List of Tables .. ix

List of Abbreviations and Acronyms ... x

Chapter 1 Introduction .. 1

.. Motivation 1

Problem Framework .. 3

Issues .. 7

Distance Functions: ... 7
Border and Interior points .. 8

Previous Work ... 1 0

... Instance based learning algorithms 10
.. Exact k-Nearest Neighbour Search 15

Approximate k-Nearest Neighbour Search (the SASH) 15
Proximity Graph based methods .. 16
Support Vector Machines ... 21

... Contributions 21

Outline of work ... 22

Chapter 2 Reference Set Thinning With Approximate Proximal Neighbours 24

2.1 The Approximate Gabriel Neighbour Approach .. 24

2.1 . 1 The GSASH ... 24
2.1.2 The Approximate Gabriel Thinning Algorithm ... 35

2.2 The Approximate Nearest Neighbour Approach ... 36

2.3 A Hybrid Approach ... 37

Chapter 3 Experimental Results ... 39

3.1 Results on real-world data ... 39

3.2 Results on synthetically generated data ... 43

Chapter 4 Conclusion ... 47

Bibliography .. 50

vii

LIST OF FIGURES

Figure 1.5: Empty circle property of Gabriel neighbours and good decision

boundary presewati~n--~----- 20

Figure 2.1 : The GSASH structure--- 28

Figure 3.1 F-shaped boundary results--- -44

Figure 3.2 Circular boundary results--- -45

Figure 3.3 Random rectangular strip boundary results------------------------------------ -46

viii

LIST OF TABLES

LIST OF ABBREVIATIONS AND ACRONYMS

1. GSASH - Gabriel Spatial Approximation Sample Hierarchy.

2. IBL - Instance Based Learning.

3. k-NN - k Nearest Neighbours.

4. NN - Nearest Neighbour.

5. SASH - Spatial Approximation Sample Hierarchy.

6. SVM - Support Vector Machines.

7. UCI - University of California, Irvine.

CHAPTER 1

INTRODUCTION

1 .I Motivation

Recent years have witnessed an explosive growth in the amount of data that is

being generated by corporations, agencies and government as well. Organizing the

large amounts of data make it possible to make better use of this data. This viewpoint

has been recognised and people are now keen on extracting more out of data, i.e.

instead of blindly building large collections of data, the focus has been on recording

observations and then structuring the same. This can be seen as value added data or

quite simply, information.

In several real-world domains, for every observation that is made it is possible to

associate a class membership attribute. For example in an office, every object may be

classified either as being a furniture object or a non-furniture one. So for an observation

of a chair, the class attribute would be "furniture". Let us look at a couple of more

concrete examples.

Its election time. People generally vote based on what issues are important to

them. So voter statistics agencies get busy with gathering information on a

representative sample of the population about relevant election issues. People are

interviewed and their opinions on issues are recorded. Each issue is treated as an

"attribute" for the particular person or observation. Finally they are asked as to what

party they would vote for. Note that the data collection agency may add some attributes

to the recorded observations such as geographical location of the voters etc. So the data

collected about the voters constitutes the observations and the party they vote for

indicates their class membership. Assuming that the observations were made on a

representative sample of the population, we can now generalize these observations to

the entire population, especially the undecided voters (assuming we have their views on

election issues). Therefore the voter statistics agencies can now predict accurate

election results before the actual elections.

"At one time, cancer of the cervix was a major cause of death among women in

British Columbia. However, there has been a major decrease in the death rate because

of screening, early diagnosis and treatment" [BC Cancer Agency]. By recording cell

observations, it can be classified whether the cells are normal or abnormal. If we have

sufficient representative examples of both normal and abnormal observations, we can

quickly and accurately classify new cases, which is what the BC Cancer Agency has

done. By regular screening they have managed to achieve an 85% reduction in the

number of B.C. women getting cancer of the cervix and for reducing cervical cancer

deaths by 75% since the 1950s [BC Cancer Agency].

The above examples should be motivating for computer scientists to develop

accurate and fast "pattern classification" techniques; i.e. using previously recorded

observations, classifying unseen cases. Accuracy is important, as we want our results to

be reliable; speed is important because with so much new as well as old data that can

become irrelevant as time passes, we need to produce results that are relevant to the

time frame in which they were collected. We now embark on our study.

I .2 Problem Framework

Our pattern classification problem can be precisely formulated as follows:

Input: A set of vectors V called the reference dataset. Each reference vector can be

denoted as V, = {Xi, ci}, where is another vector (often called a feature vector,

(Toussaint [I 81)). The feature vector X, is composed of d scalar components or features,

where d is the dimensionality (number of features) of the problem.

= {xi,, xi*, .. . xid}. ci tells us the class label of the feature vector Xi.

Problem: To determine the class label for a new instance 4.

Classical parametric solution:

Bayes decision theory (Duda and Hart [lo]) says that if we know both the a priori

probabilities (the probabilities of certain "classes" of observations or feature vectors) and

the conditional probability densities (the probabilities that certain observations are made

given that we already know the classes of the given observations), then we can compute

the a posteriori probabilities (i.e. the probabilities of given observations being of certain

classes), using Bayes Rule.

So now if we make a new observation Y, all we simply compute is the a posteriori

probabilities using Bayes rule. The a posteriori probability associated with the class ci

that is maximal is chosen and the class ci is the class label attached to the observation.

Thus we can safely say that the Bayes rule does minimize the probability of error

simply because it picks the "most probable" class label for a given observation. In this

sense Bayes rule is optimal. It however makes the (practically unrealistic) assumption

that the distribution of the observationslfeature vectors is known.

Classical non-parametric solution:

The classical non-parametric solution to the pattern classification problem is the

use of the nearest neighbour rule (Cover and Hart 191). (It is a non-parametric technique

as the forms of the underlying probability distribution functions are treated as unknown,

and in practice this is almost always the case.) We have a set of stored instances or

sample points whose class labels are known. We are asked to classify an instance, i.e.

its class label is to be determined. The rule itself is straightforward:

"Classify an instance whose class label is unknown with the same class
label as that of its nearest instance in the stored set ".

The problem can be visualized as partitioning the feature space (some metric

space) into regions, where each region ideally consists of observations of a unique class

or category (see figure 1.1 on the next page). As we can see, there is a clear cut

"decision boundary" which separates instances of classes 1 and 2. (The decision

boundary is not necessarily homeomorphic to a line; it could be even be a closed loop)

We can now predict what class a new point would belong to by simply verifying whether

the point lies on the left hand side (class 7) or the right hand side (class 2) of the

decision boundary.

Figure 1 .I Partitioning of attribute space into distinct regions based on class.

CLASS 1 point: 0 CLASS 2 point: fB Decision boundary: ,- - - -
I

This seemingly na'ive rule is powerful for two reasons:

1. It is intuitive in the sense that things that have similar properties or attributes are

near to each other spatially. This property is sometimes referred to as "spatial

auto correlation".

2. Perhaps more important is the fact that the error rate of this rule is upper

bounded by twice the (optimal) Bayes error rate (Duda and Hart [lo]) for a large

enough reference dataset. In other words, just this basic proximity information

has at least 50% of the entire information that an optimal classifier would require.

An obvious generalization of this basic rule is the k nearest neighbour rule, which

intuitively means that to classify an unseen sample we take a majority vote of the class

labels of its k closest samples in the stored dataset. The use of this principle has been

shown to obtain good estimations of the Bayes error rate (Toussaint [18]) for large

enough reference datasets. There have also been extensions to the basic rule to reduce

the number of samples stored but still try to obtain the same accuracy as the basic NN

rule (see Hart [I 21, Gates [I I]). However the original problems of storage of a huge set

of instances still remain. As a result to compute the nearest neighbour for each point, we

have to look at a large stored dataset. Even incorporating "sophisticated" tree-based

search structures, does not solve the problem of a potentially vast search space in

relatively higher dimensions (Beyer et al [5], Houle [13]). Thus the efficacy of the rule is

limited by its computationally intensive nature. This is why reference set thinning is

essential (Hart [I 21).

Let us call our original reference set V. If the algorithm is decremental in nature (as

ours is), we start with a non-empty set of points V and apply our deletion criterion on

each point. If a point satisfies the criterion, which is basically some boolean condition,

then we remove the point from V. We continue with this step until some stopping

condition is reached. This is also typically a boolean criterion. Our final reduced set is

say, V' that we use for classification of new points. This is the essence of reference set

thinning.

1.3 Issues

1 .XI Distance Functions:

We will focus on two distance functions that we employ for testing all the

algorithms. This consistency is essential as different distance functions can lead to

significantly different accuracy results. For a fairly exhaustive list of distance functions

please look at Wilson and Martinez [20]. One of the distance functions that we use for

datasets with only numeric data is the well known Euclidean distance function:

where is the feature (attribute) vector,

d = number of features (dimensions), Xi= {xil, ~ i 2 , . . ., xid)

When the dataset has non-numeric (nominal) attributes as well, then we use an

alternate distance function called the Vector-Angle metric (Houle [I 31). It is calculated as

follows:

where X1.X2 is the dot product between the two vectors and
I(I(is the norm of the vector'

The distance is some value between 0 and 1 where the value 0 indicates

extreme dissimilarity and the value 1 indicates exact similarity.

1.3.2 Border and Interior points

A very important factor for most Instance Based Learning algorithms is whether

they focus on the retention of the so called border or central points. As we have already

seen in section 1.2, the nearest neighbour decision boundary is an important part of the

feature space, which distinguishes points between different classes. So our focus should

be to keep the decision boundary more or less intact. Intuitively this means that points

closer to the decision boundary are important to maintain the same and these are the

border points. In the corresponding Voronoi diagram (see de Berg et al [4]) of the set of

points, the Voronoi cells, which share a common face with another cell having a point

from a different class, are the border points. The union of these common faces forms the

nearest neighbour decision boundary. So in order to maintain the decision boundary we

should try to keep most border points and thin our reference set by discarding the

interior points that do not contribute to the decision boundary (the unlabeled points in

figure 1.2).

Figure 1.2 Border Points Versus Interior Points

r - - -
CLASS 1 point: 0 CLASS 2 point: @ NN Decision boundary: .'

x: CLASS 1 border point y: CLASS 2 border point

1.4 Previous Work

1.4.1 Instance based learning algorithms

Instance based learning (IBL) algorithms (Aha et al [I]) are a subset of

algorithms from the machine learning literature which use "instances" (our reference

vectors) from a stored reference set as a means of generalizing the classes of new

unseen instances. As already discussed in section 1.2 and the subsection 1.3.2, these

algorithms are faced with the challenge of finding the "right number" of instances to save

for generalizing. These algorithms generally compute the k nearest neighbours of each

stored instance and use certain relationships to decide whether to keep or throw away

the instance. To compute the nearest neighbour(s), these algorithms use a distance

function (described in subsection 1.3.1) to decide how "close" each instance is to its

neighbours. For an in depth survey of IBL algorithms of the past and their development

through the years Wilson and Martinez [20] and Brighton and Mellish [7] provide good

surveys. Let us now look briefly at the two most powerful and undoubtedly the state of

the art in IBL algorithms.

1.4.1 .I The Decremental Reduction Optimization Procedure 3 (DROP3)

This powerful algorithm was proposed by and first described in Wilson and

Martinez [I 91 under the name RT3. Basically it computes two sets for each instance; the

k nearest neighbour set and the associate set. The k nearest neighbour set is exactly

what the name suggests, a set of k nearest neighbours of the given instance. The

associate set for a given instance p, consists of a set of those instances A, which have p

as one of their k nearest neighbours. Each instance p also maintains a nearest enemy

e', which is the instance nearest to p (could be a k-NN of p), with a different class than

that of p. The original reference set is denoted by V. The reduced reference set is

denoted by V'. Initially, we have V'= V. The algorithm works on the following rule:

"Remove an instance p if a majority of its associates in V would be
correctly classified without p".

Intuitively the above rule means that the algorithm tests for "leave one out cross

validation" generalization accuracy, which is an estimate of the true generalization

capability of the resulting classifier (Wilson and Martinez [20]). An instance is removed if

its removal does not hurt the accuracy of the nearest neighbour classifier based on the

reduced reference set (the set without the instance in it).

There are two somewhat subtle modifications to this basic algorithm.

1. We have already discussed in section 1.3.2, that we need to preserve the border

points and that central points can be removed without any loss of classification

capability. To this end, the DROP3 algorithm sorts all the instances in V' by the

distances to their nearest enemy. It then performs the test of removal of

instances beginning with the instances furthest from their nearest enemies,

thereby testing for central points first (which would have their nearest enemies far

away) rather than border points. This gives the border points a greater chance of

survival.

2. There is the problem with noise in real datasets (i.e. instances that have been

labelled with a different class than its correct class label). To alleviate this,

DROP3 employs what is known as a noise filter before sorting the instances. The

noise filter simply removes those instances that are misclassified by their k

nearest neighbours. This idea was proposed by Wilson [21] and the name Wilson

Editing has been coined for the same. Classifying unseen data using the 1-NN

rule, even with a simple Wilson edited dataset is so powerful that the error rate

converges to the (optimal) Bayes error (Toussaint 1181).

Thus, the algorithm first performs this noise filtering pass, sorts all the instances

with respect to increasing distance from their nearest enemy and then does the removal

test on this sorted list of instances. The final classification or testing step is done by

computing the k-NN for each test case and taking the majority vote among the class

labels of the same. On average, testing with several datasets from the UCI machine

learning data repository, Wilson and Martinez have shown this algorithm to reduce the

reference set size to 15-20% of the original while maintaining the classification accuracy

level of the basic k nearest neighbour classifier which stores 100% of the instances. The

pre-processing or training step requires 0(n2) time in the worst case.

1.4.1.2 The Iterative Case Filtering Algorithm (ICF)

This iterative algorithm was proposed by and described in Brighton and Mellish

[7]. The algorithm is similar to DROP3 in the sense that it also computes nearest

neighbour and associate sets for each instance in the reference set. The key difference

is in the way that these sets are manipulated. Brighton and Mellish call the neighbour

and associate sets as reachable and coverage sets respectively.

One important difference between DROP3 and ICF is in the way the

neighbourhood set of an instance is computed. DROP3 computes this by fixing an upper

bound of k on the size of the neighbourhood set. However ICF computes its reachable

(neighbourhood) set adaptively. Like DROP3 it also maintains a nearest enemy e' for

each instance in the reference set. ICF however uses the nearest enemy to bound its

instance's neighbourhood set; i.e. the set of instances that lie within the hypersphere

centred at the instance p and whose radius is equal to the distance between p and its

nearest enemy p.e' constitute p's reachable set (see figure 1.3).

Figure 1.3 Reachable set of an instance

CLASS 1 point: 0 CLASS 2 point: @

The coverage set computation is analogous to the associate set computation.

The coverage set of an instance p includes the set of all those instances A, which have p

in their reachable set. The algorithm can be summarized by the following rule:

"Delete those instances whose reachable set size is larger than its
coverage set size".

The intuition behind this rule is that an instance p is removed when more

instances can be used to represent p than p itself represents. Typically instances far

away from the decision boundary will have large reachable sets and these are the

instances we wish to remove. After removing these instances the authors hope to

maintain the border points well. The algorithm involves two main steps as follows:

We know that noisy points are harmful for our classification task and

like DROP3 we employ the Wilson editing algorithm to filter out these

points; i.e. remove a point if it is misclassified by its k-NN.

We then apply the deletion criterion mentioned before repeatedly.

Those instances that satisfy the criterion are marked for deletion. At

the end of one pass over the dataset all those instances that are

marked are removed. If we remove at least one instance we repeat

step 2 (recomputing the reachable and coverage sets as we go) until

no instances are removed during any one pass. This turns out to be a

good stopping point for the algorithm.

The final reduced dataset is used for classifying the instances using the k-NN

rule similar to the DROP3 algorithm. Asymptotically the ICF algorithm also has a

quadratic running time in the worst case but in practice it runs much faster than the

DROP3 algorithm. This is because it simply "flags" an instance for deletion and only

removes flagged instances at the end of the current pass unlike the DROP3 algorithm

where if an instance is selected for removal we have to remove it immediately and

update the neighbour lists for the associates of the removed instance with a new

neighbour. Brighton and Mellish [7] perform similar testing as Wilson and Martinez [20]

and observe that the storage requirement is reduced to a similar percentage as that of

DROP3. The classification accuracy is also competitive with DROP3 and the basic

nearest neighbour classifier.

1.4.2 Exact k-Nearest Neighbour Search

One of the oldest and most successful methods for nearest neighbour search

has been proposed in Bentley [3]. The data structure proposed is called the k-d tree, the

k-dimensional tree, where k is the number of dimensions. Theoretically the k-d tree

performs nearest neighbour queries in logarithmic expected time. However, the efficacy

of this and many other similar indexing data structures have been questioned with

respect to the effect known as the curse of dimensionality (Houle [13]). As the

dimensions of the search space increase (for even as small as 10-15 dimensions) linear

search outperforms the "efficient" algorithms proposed on these data structures (Beyer

et al [5]). It has also been suggested recently that exact techniques for nearest

neighbour search are unlikely to improve substantially over sequential search unless the

data itself has some specific underlying distribution, which is extremely rare in practice.

Thus recent research effort has shifted attention to finding powerful approximate

techniques for NN search, which is what we describe next.

1.4.3 Approximate k-Nearest Neighbour Search (the SASH)

We use the most recent work in effective approximate multi dimensional index

structures proposed by Houle [13]. Most of the previous work in this field was based on

the more traditional tree based index structure (e.g. Beckman et al [2]). The idea there

was to assign items to the subtree of their nearest node from a limited set of candidates.

However well this choice is made, some nodes will have nearest neighbours that can be

reached only via paths of great lengths. For more details please see Houle [13]. The

data structure proposed by Houle counters this problem by allowing multiple paths

between nodes. Unlike a tree-based structure, nodes have multiple parents, which result

in only very few nodes whose near neighbours can be reached only via long paths. So in

essence the search space is more "compact". The search recursively locates

approximate nearest neighbours within a large sample of the data and follows links from

these sample neighbours to discover approximate neighbours within the remainder of

the set. A modified version of the data structure, the Spatial Approximation Sample

Hierarchy (SASH) will be described in more detail later as it is an inherent part of our

algorithms. We call the modified version as the GSASH (Gabriel SASH).

1.4.4 Proximity Graph based methods

Construct a graph where each vertex is a data point and it is joined by an edge to

its nearest neighbour. This is the nearest neighbour graph (NNG). The minimum

spanning tree (MST) is also a graph, which captures proximity relationships among its

vertices. The proximity graph we are most interested in for applications to IBL algorithms

is the Gabriel graph (GG). Both the NNG and MST are subgraphs of the GG. The GG

itself is a subgraph of the Delaunay Triangulation, (DT) the dual of the Voronoi diagram.

The Voronoi diagram and correspondingly the DT of a point set capture all the

proximity information about the point set because they represent the original nearest

neighbour boundary as discussed below. Discarding all those points whose Voronoi cell

shares a face with those cells that contain points of the same class as the point under

consideration, we obtain a Voronoi condensed dataset (see Toussaint et al [17]). In

terms of the DT, discard all those vertices of the graph that share an edge with vertices

only from its own class. The NN decision boundary is the union of the common faces of

the Voronoi diagram between Voronoi cell neighbours of different classes.

The decision boundary that is maintained after condensing is the same, as that

would have been maintained even if all points had been kept. The error rate is therefore

also maintained. The condensed set is called a decision boundary consistent subset.

Voronoi condensing does not reduce the number of points to a great extent (Toussaint

[I 71). Also the computational complexity of the Voronoi diagram in higher dimensions is

exponential in the number of dimensions. We need to do some more work. If we are

willing to distort the decision boundary slightly we can do much better. Thus a subset of

the edges of the DT has to be selected. Bhattacharya [6] shows results for two such

subgraphs, the Gabriel graph and the Reduced Neighbourhood graph. S6nchez et al

[15], 1161 also do similar experimentation. It has been acknowledged that the Gabriel

graph based condensing is the best. We now explain the algorithm in more detail, as it is

one of the cornerstones of this work.

1.4.4.1 The Gabriel graph

For a set V of n points (reference vectors) V = @,, p2, . . ., pn}, two points pi and p,

are Gabriel neighbours if

disf(pi, pi) < disf(pj, pk) + d i s f h , pk) V k #i,j 1.1

By joining all pairs of Gabriel neighbours with edges, we obtain the Gabriel

graph. In a geometric sense, two points pi and p, are Gabriel neighbours iff the circle with
-

diameter as pi, p, (also called the circle of influence of pi and p,) does not contain any

other point p k E V inside it.

The Gabriel graph can be easily constructed from the Voronoi diagram of the

given point set by joining those pairs of Voronoi neighbours by an edge if the edge

intersects the common face between the Voronoi neighbours. For more details on the

Gabriel graph and its properties please see Bhattacharya [6].

1.4.4.2 The Gabriel thinning algorithm

The brute force approach to compute the Gabriel graph is first described: V = (p l ,

p2, . . ., pn} is our set of points for which we have to compute the Gabriel graph:

1. For each pair of points (pi, pi), i, j = 1, 2, . . ., n; where i < j:

(i) Perform the following test b'k E V and k # i, j:

if dis?(pi, pj] > dis?(pi, pk) + dis?@i, pk)

then pi and p, are not Gabriel neighbours (go back to step 1).

(ii) pi and pi are marked as Gabriel neighbours.

Step 1 takes 0(n2) operations as there are 0(n2) pairs of points to test. Step 1 (i)

requires O(n) operations, for a fixed d number of dimensions. Therefore the complexity

of the nai've algorithm is 0(n3), i.e. cubic for a constant number of dimensions.

Bhattacharya [6] suggested a heuristic method to compute the Gabriel graph,

which asymptotically still has a cubic complexity in the worst case but observed to be

closer to quadratic at least for small dimensions (d < 5). We describe the algorithm

pictorially (see Bhattacharya [6] for details).

As seen in the figure 1.4 (shown on the next page), when testing q as a possible

Gabriel neighbour of p, any point in the right half space RH (B, p), determined by the line

perpendicular to the line pq i.e. B (p, q), could be rejected as it cannot be a Gabriel

neighbour of p.

Figure 1.4 Heuristic method to compute Gabriel neighbours

Possible Gabriel neighbours of point p:

Points rejected as Gabriel neighbours of point p: 0

Now as we have the Gabriel graph constructed, the thinning algorithm follows

(Bhattacharya [6]):

Algorithm ExactGabrielThinning:

1. Construct the Gabriel graph of the given set of points.

2. For each point, determine all its Gabriel neighbours. If all the neighbours are

from the same class as the point itself, mark the point under consideration for

deletion.

3. Delete all marked points. The remaining points form the thinned (reduced)

set.

The thinned set generally consists of points located close to the decision

boundary as these points will have as Gabriel neighbours some points on the other set

of the boundary. The boundary itself is slightly "smoothed" (figure 1.5).

Figure 1.5: Empty circle property of Gabriel neighbours and
good decision boundary preservation

h--..

CLASS 1 point: 0 CLASS 2 point: @ NN Decision boundary: I'
Gabriel decision boundary: r

Point p has Gabriel neighbours from 'other' class and hence is kept.
Point 9 does not and hence is removed.

1.4.5 Support Vector Machines

Support vector machines (SVM) (Khuu et al [14]) are a new generation learning

system based on recent advances in statistical learning theory. It is based on the idea of

hyperplane classifiers, or linearly separability of data points. It uses concepts from

integral calculus and quadratic programming to divide the feature space into distinct

separable regions each region for objects of one class.

There are two main disadvantages with this approach (Khuu et al [14]). The

success of an SVM depends heavily on the choice of "kernel functions" which are used

to create the separating decision boundary between the input data. Designing these

functions belongs to a field outside of Computer Science. The second important

drawback is that the performance of SVM declines with increased dimensionality and

reference dataset size.

1.5 Contributions

There are three key contributions that we make in this work:

1. We apply the best-known approximation technique for k-NN search; a spatial

index called the Spatial Approximation Sample Hierarchy abbreviated as the

SASH (Houle [13]) and come up with approximate versions of the state of the

art IBL algorithms that compute the k-NN of the instances or reference

vectors in the stored reference dataset. We preserve the accuracy of

classification with substantial speed up in computation.

2. We next propose a modified version of the SASH to compute approximate

Gabriel neighbours of a set of points in d-space, named the GSASH. It

requires O(n logpn) time and O(n) space to compute the GSASH. The

GSASH can be used to compute the k closest approximate Gabriel

neighbours in O(k logzk + logs n) time.

3. Lastly but perhaps most significantly, we propose a novel Hybrid IBL

algorithm based on the Gabriel proximity graph based thinning and the ICF

algorithm. Experimental results on synthetically generated data and real

world data suggest that the Hybrid algorithm exhibits the best features of its

constituents. It maintains the NN decision boundary faithfully and consistently

outperforms the IBL algorithms used independently for thinning, with respect

to storage (and thus speed).

1.6 Outline of work

The rest of this report proceeds as follows:

Chapter 2 is dedicated to three important sub-parts. In part I, we demonstrate

how we modify the SASH to build the GSASH to compute approximate Gabriel

neighbours. We describe the construction of the GSASH in depth. Then we present

some theoretical upper bounds on the construction and query costs of the GSASH

structure.

Part II explains approximate classifier design using the more traditional k-NN

technique. We show how the IBL algorithms (ICF and DROP3) can be easily modified to

incorporate search for approximate k nearest neighbours using the SASH.

In part Ill, we describe our hybrid two-phase algorithm of reference set thinning

using the Gabriel graph and then further thinning using the ICF algorithm (Brighton and

Mellish 171).

Next, in chapter 3, we perform an extensive experimental comparative evaluation

of the ICF algorithm with the Gabriel algorithm used independently as well as the hybrid

approach described in chapter 2. We perform tests on 14 individual real world datasets

(from the UCI machine learning archive). We also study the behaviour of the different

algorithms in terms of what kind of points they keep by using randomly generated

synthetic data.

We finally conclude in chapter 4 with some observations of our own and suggest

some avenues for further work in this field.

CHAPTER 2

REFERENCE SET THINNING WITH APPROXIMATE
PROXIMAL NEIGHBOURS

2.1 The Approximate Gabriel Neighbour Approach

The fundamental point regarding the Gabriel neighbour based approach is that

the Gabriel graph preserves the all important nearest neighbour decision boundary very

faithfully for a given set of points. However as seen before, it is difficult to compute the

Gabriel graph efficiently. So our focus is to compute an approximate version of this

graph sub-quadratically. For this we introduce the GSASH.

2.1.1 The GSASH

The GSASH is basically a modified version of the SASH (the Spatial

Approximation Sample Hierarchy), which is an index structure for supporting

approximate nearest neighbour queries. For more details about the SASH, please see

Houle [I 31. The GSASH (Gabriel SASH) structure is defined next.

2.1 .I .I GSASH structure

A GSASH is basically a graph with following characteristics:

Each node in the graph corresponds to a data item.

Like a tree, it consists of height h E 0(log2n) levels for a dataset of size n. There is

a significant difference here though. For a dataset of size n we actually maintain at

most 2n nodes in the GSASH, with n items at the base or leaf level to a top or root

level with just one node. With the possible exception of the first level, all other

levels have half of the nodes as the level below it. So the structure is as follows:

All the n data items (or pointers to them; we will not make a distinction between

the two in this discussion) are stored at the bottom most level. We then "copy" half

of these i.e. n/2 items uniformly at random to the level above the bottom most. We

repeat this process of "copying" all the way up to the root. At the level just below

the root there are some c nodes (we will discuss the parameter c shortly) and we

pick one of these c to be the root. We will look into this "copying" technique in

more detail in the next section.

Nodes have edges directed to a level above and below except for the root and

leaf levels where edges can only go below and above respectively. Each node

links to at most p parent nodes at the level above and at to at most c child nodes

at the level below it where p and c are constant parameters chosen for

construction. The difference between parent and child edges is purely conceptual,

to illustrate the data structure cleanly. We will have more to say about these

parameters later. The distance dist(a, b) is stored with each edge (a, b).

To ensure that every node is reachable from the root, a parent g is required for

every node v as its guarantor (except for the root itself of course). The child v is

called a dependent of its guarantor g.

2.1 .I .2 GSASH Construction

The edges between the GSASH levels are chosen such that every node is

connected to a small number of its approximate Gabriel neighbours at a level above it.

We can now see the intuition behind the "copying" technique: Each node at level I is

connected to a small number of its approximate Gabriel neighbours among one half of

the nodes from its own level which have been "copied" above at level I - 1. So if a node v

at level I connects to an approximate Gabriel neighbour ra t level I - I it is very likely that

r will be an approximate Gabriel neighbour of v at all levels I' < 1-1 if r is "copied" above.

We now present the GSASH construction algorithm. It is based on the algorithm

ConnectSASHLevel (described in Houle [I 31). Let GSASHidenote the GSASH built up to

level i. The GSASH is built by iteratively constructing GSASHi for 1 I i I h. So our job is

to connect GSASH, and GSASHcl by making parent-child connections between the two.

GSASH, is the root node.

Algorithm BuildGSASH (I):

1. If I = 2, every node in level 2 connects to the root which is the parent for all and the

root has all the nodes in level 2 as its children. The root becomes the sole guarantor

for all its children and the children become the dependents of the root. Thus GSASH2

is constructed.

2. For each node v of level I that we want to connect, do:

(i) For each level I I i < I, pick a set of p approximate Gabriel neighbours Piv) as

follows:

a) If i = 1, then Pi(v) consists of the root.

b) else i > I . C,{v) = the set of distinct children of the nodes in Pi-,(v).

Find the p nearest approximate Gabriel neighbours of v among the nodes in

Ci(v). Use the empty circle property to determine the set of approximate

Gabriel neighbours. Set P,(v) to this set of p closest approximate Gabriel

neighbours. (If less than p neighbours are found at any level i i.e. in C&),

pick all of the available neighbours).

(ii) Set the parents of v to be the nodes of PI-,(v). Each node v is now connected

to p parents, which are its p closest approximate Gabriel neighbours at level i.

3. Create child edges for all nodes of level 1-1 as follows:

a) For each node u of level 1-1, determine the set of nodes from level I that

picked it up as a parent. Call this set H(u).

b) Sort H(u) in increasing order of distances from u.

c) Pick the c closest nodes to u among H(u) as the children of u.

4. For each node v of level I, if it was picked as a child of at least one node u from level

1-1, then the closest node from level 1-1 that picked it becomes the guarantor g(v) of

v. Else v is what is called an orphan node.

5. For each orphan node vat level I, we need to find at least one parent from level 1-1,

which can act as its parentiguarantor. We need to find a guarantor which has less

than its allotted share of children c and which is an approximate Gabriel neighbour of

v. We double the size of the candidate parent set and find a guarantor as follows

(Houle [13]):

b) Compute PI-,(v) as in step 2 but with p = 2p.

c) If we cannot find a node with less than c allotted children as a guarantor of v

then i = i + l and go to step 5.b.

d) Else we pick as the guarantor, the node u, which has less than c children and

closest to v. u adds v to its list of children and v adds u to its (previously

empty) parent list.

End of construction of GSASH,.

Note that step 5 of the algorithm i.e. the search for guarantors for orphan nodes

need not be performed for all the levels at the GSASH. It is only required for the leaf

level where all the data points reside, because we need to be able to trace a path from

every leaf to the root to search for approximate Gabriel neighbours. Some nodes in the

inner levels of the GSASH could remain orphans because we know that they have been

"copied" either above or below and hence probably connected by GSASH edges. In

practice it has been observed that only a very small fraction of nodes are ever orphans.

Figure 2.1 : The GSASH structure

GSASH nodes visited during the search for Gabriel neighbours for node q: 0

Node q can be a query node or a node that wants to connect to its parents.

p = 3 , c = 4

2.1 .I .3 The empty circle test

The empty circle test to check for Gabriel neighbours (step 2(i)c) of algorithm

BuiIdGSASH is described in more detail. For connecting a node v at level I to its set of p

nearest Gabriel neighbours at level I - ?, we need to test the points in the set Cl{v) (for 2

I i < I) to determine the p nearest approximate Gabriel neighbours of the points at level i.

For any q E Ci(v), we need to determine whether 9 is a Gabriel neighbour of v. In other

words we need to determine whether the circle of influence of point v and 9 is empty with

respect to the point set at level i, which is GSASHi. However, we only consider the points

of Cl{v) instead of the entire GSASHi (because of our "copying technique") for our empty

circle test.

It can be argued that the Gabriel neighbours found in this manner may not be

"true" Gabriel neighbours because we perform the empty circle test on only ICl{v)l 5 pc

nodes whereas there are at least 2 points at the level i. However if q is a true Gabriel

neighbour of v, our test will also likely say so. It is possible for our test to say that 9 is a

Gabriel neighbour of v even when it is not so. The argument made is that at level I-?,

outside of the pc candidates there is at least one point r, which is actually inside the

circle of influence of v and q (and r P C1{v)). This would actually mean that dist(v, r) <

dist(v, 9) and dist(9, r) < dist(v, 9). If point r had been copied above level I -1 (with

probability 1/2), then it is most likely that r would have been picked up at level I-? and

hence q would not be picked as a parent of p. Even in the case of r not being copied up,

because 9 is picked, it would likely imply that r would also be picked (since dist(v, r) <

dist(v, 9)). Hence it is the case that "true" Gabriel neighbours would be picked as

parents.

To reduce computation we could avoid exhaustively testing all pc pairs of

potential neighbours at each level. We could build a SASH on the pc candidates at each

level. The SASH as we know, can be used for making approximate nearest neighbour

queries. So we build a SASH and test whether any of the approximate nearest

neighbours thus found lies inside the circle of influence of node v and its candidate

parent 9. If any one does lie inside the circle, we terminate the search and declare that v

and 9 are not approximate Gabriel neighbours otherwise we continue the search using

the points (which lie outside the circle) at the next level of the SASH until we reach the

leaf level.

2.1 .I .4 GSASH querying

We now propose the GSASH as a means for computing the k Gabriel neighbours

of a given query item q. The querying algorithm works a lot like the candidate parents

generation step (step 2 of Algorithm BuildGSASH). We can simply compute Ph(q) for p =

k and return the result as Ph(g). Instead of simply picking a constant k neighbours from

each level, a variable number of neighbours kican be picked from each level i. kishould

be smaller for higher levels of the GSASH and larger for the lower levels so that a larger

proportion of the search can be made on the largest number of items (those located

closer to the bottom of the structure) Houle [13], talks about this in context of the SASH

and calls it a "geometric search pattern". The value of ki is given by:

ki = max {k 1-(h-i)bogn 1
1 h PC}.

We now describe the algorithm in more detail.

Algorithm FindApproxGabrielNeighbours (q, k):

1. Pick a set of ki Gabriel neighbours from each level 1s i 5 h as follows:

a. If i = 1, P,{q) consists of a single node, the root.

b. If i > 1, let Ci(q) be the set of distinct children of the nodes in Pi-,(@.

c. If i > 1, let P,{q) be equal to the ki closest Gabriel neighbours from this set

C,{q). Use the empty circle property to determine the set of Gabriel

neighbours. If less than ki neighbours are found in the set, return the entire

set.

Return the k nearest elements from the set Ph(q) as the query result. If this set

contains less than k elements return the entire set.

Thus we can find k approximate Gabriel neighbours of any given query point.

2.1.1.5 Upper bounds

We now present some theoretical upper bounds on the construction and query

costs of the GSASH. Note that in our experiments we assign small constant values to

the parameters p and c.

The GSASH storage turns out to be O(n) because each of the nodes in the

structure is connected to at most p other nodes, leading to a total storage of at most

2np.

Ignoring the costs of finding guarantors for orphan nodes (which in practice

account for a very small proportion of the time taken for construction), the GSASH

construction time can be bounded by O(n lognn). This can be explained as follows: For

each of the O(n) nodes, we visit at most 0(log2n) levels of the GSASH, picking p nodes

at each level and finally connecting level 1-1 and level I with c child edges. The constant

factors hidden inside the asymptotic notation include the costs required to perform the

empty circle test for Gabriel neighbours. For each of the p nodes at a given level we can

perform this test on at most c potential neighbours by exhaustively testing all the O(pc)

pairs, incurring a total cost of at most 0(p2c2) (step 2(i)c of algorithm BuildGSASH). Step

2(ii) contributes an additional factor of O(p) and step 3 another O(cn) in the worst case.

So the observed complexity is close to 0(p2c2n log2n). However using the modification

introduced in section 2.1.1.3, we can avoid testing all pc pairs exhaustively by building a

SASH of the pc nodes at each level to compute approximate nearest neighbours of the

node which has to connect to its p parents and then performing the empty circle test

(eqn (1 .I)) using these approximate NNs. Building a SASH on pc nodes incurs a cost of

O(pc loggc) and querying it to compute approximate NNs incurs an additional

logarithmic factor of 0(log2pc) for each node. Hence the complexity of the GSASH

construction can be bounded by O(pc loggc . n log2n).

The GSASH querying complexity is straightforward. For a given query point, we

need to compute the k Gabriel neighbours. We traverse 0(log2n) levels, picking at most

ki closest Gabriel neighbours at each level from a set of size at most cki at the cost of

c2ki2. The complexity can be bounded by 0(c2k2 log2n). However we can reduce

computation here by following a similar idea as that of the construction algorithm and

also by picking ki closest Gabriel neighbours at each level (using the geometric search

pattern as mentioned in section 2.1.1.4). The cost of a geometric approximate k-NN

query using the SASH is O(k + log2n) (Houle [13]). Therefore, we pick ki closest

approximate Gabriel neighbours at each level by building a SASH on k,c candidates and

perform the empty circle test (equation 1 . I) using the computed approximate NNs of the

node v which we are to connect with its parents. Since the sum of ki for all i is O(k), the

total cost of building a SASH for all levels is O(kc logzkc) E O(k log2k) for constant c. The

approximate k-NN query cost is subsumed by the SASH construction cost. We perform

the query at most at 0(log2n) levels. Thus the GSASH querying complexity reduces to

O(k log2k + log2n).

Note that all these results are overly conservative as we assume that the children

of a given set of nodes are distinct, which in general is most unlikely. In Houle 1131 it has

been suggested that c = 4p is a good parameter setting. p = 4 and thus c = 16 have

been found to be good parameter values and these are maintained as constants

throughout our experimental analysis of the GSASH. We also maintain k = 32 as a

constant (the actual number of Gabriel neighbours computed varies according to the

dataset but is upper bounded by 32).

Therefore considering p and c as constants the upper bounds on the GSASH

construction and query algorithms can be set at:

O(n log2n) . . . GSASH construction.

0(klog2k + log2n) . . .GSASH query for k approximate Gabriel neighbours.

2.1 .I .6 Comparison with exact Gabriel graph computation

We have already noted in subsection 1.4.4.2 that the computation of the exact

Gabriel graph involves a cubic time complexity. Our algorithm computes an approximate

version of the Gabriel graph. By calling the FindApproxGabrielNeighbours algorithm

repeatedly, for every point in the dataset, we can implicitly compute an approximate

version of the Gabriel graph. So where exactly is the approximation in our algorithm? We

set the number of Gabriel neighbours that a node at a lower level can connect to a level

above it, by p. Our algorithm is basically limited by the number of Gabriel neighbours

every node in the GSASH is allowed to connect to.

It can however be argued that each point in the dataset may look at all possible

O(n) points in the GSASH for finding its Gabriel neighbours and therefore, theoretically

we do not save any computation. However, the GSASH searches for the Gabriel

neighbours through a very compact portion of the search space. So, we find a high

proportion of the true Gabriel neighbours (as much as 90% or more) at speeds of more

than an order of magnitude faster than exact computation. We verify this experimentally

in the following table:

Table 2.1: Comparison of execution costs for the approximate and exact
Gabriel neighbour computation* (d = no. of dimensions)

No. of points

500
1000
3000

*Implementation in C++, on a Plll 1.2GHz machine, running the g++ compiler under
Linux.

All values are in seconds and indicate CPU time. For the approximate Gabriel

neighbours computation, the cost involves both the building of the GSASH and Gabriel

neighbour querying for every point in the dataset. Of course if the set of points is

previously known, the GSASH could be precomputed and the running time would involve

only the cost of querying the GSASH to find Gabriel neighbours. The data consists of

randomly generated points inside a unit hypercube in two, three, four and five

dimensions.

Approximate Exact
d = 2
1.28
3.56
13.78

d = 2
3.6
16.75
201.25

d = 3
2.46
5.75
26.43

d = 3
5.71
27.03
339.46

d=4
2.59
6.5
27.1

d = 4
6.03
29.12
360.81

d = 5
4.34
11.0
47.68

d = 5
9.43
46.82
596.38

2.1.2 The Approximate Gabriel Thinning Algorithm

We are now ready to describe our approximate Gabriel thinning algorithm based

on the GSASH. It is basically a two-pass algorithm with an editing (noise removal) pass

and the final thinning pass. The noise removal pass is based on Wilson Editing (Wilson

[20]) and marks for deletion each point, such that the majority of its Gabriel neighbours

are from a different class as the point itself. This is also called proximity graph based

editing (Sanchez et al [15]).

Algorithm ApproximateGabrielThinning:

1. Construct the GSASH of the given set of points (Algorithm BuildGSASH).

2. For each point in the set:

(i) Compute the given points approximate Gabriel neighbours (Algorithm

FindApproxGabrielNeighbours).

(ii) Mark for removal the point, if a majority of its approximate Gabriel neighbours

have a different class label as the point itself.

3. Delete the marked points from step 2.

4. Compute the approximate Gabriel neighbours of the reduced set.

5. For each point in the reduced set:

Mark for deletion those points, for which all its approximate Gabriel neighbours

are from the same class as the point itself.

6. Delete the marked points from step 5.

7. Return the remaining points. This forms the approximate Gabriel thinned set, which

is used for classifying new points (New points are classified by taking the majority

vote among the class labels of their approximate Gabriel neighbours).

2.2 The Approximate Nearest Neighbour Approach

The original SASH (on which the GSASH is based) was actually intended for

supporting nearest neighbour queries. Structurally the SASH and GSASH are quite

similar. The biggest difference is that the "copying" of nodes technique is not employed

in the SASH. Each SASH node corresponds to a unique object in the dataset and nodes

from one level to another are connected based on a distance-based proximity measure.

Apart from these differences, the construction algorithm is similar (except that the SASH

computes approximate nearest neighbours). The query algorithm differs slightly. In the

SASH it is not just the leaf level where all the data points are. So the result of the k

nearest neighbour query would be the best k nodes taken from all the levels and not just

the bottommost one. Also there can be no orphan nodes allowed at any level because in

the SASH every node is distinct and hence needs to have a path to the root.

So, now we have an efficient SASH based procedure to compute the

approximate k-NN of a given data point. We can therefore modify the existing IBL

algorithms to take advantage of this. As it turned out, modifying the ICF algorithm was

straightforward, as it only marks points for deletion if the deletion criterion is satisfied. At

the end of the entire pass over the dataset, it removes the instances. At this point we

have to rebuild the SASH again and perform another pass over the remaining data (if at

least one point was removed during the current pass). In contrast, the DROP3 algorithm

immediately removes a point if it satisfies the deletion criterion and updates the

neighbourhood and associate lists accordingly. The SASH being a static index cannot

support these dynamic insertion and deletion operations. So we modify the DROP3

algorithm to compute "extra" neighbours before hand. So, as long as the neighbour list of

every point contains the minimum k neighbours we can continue. When the number of

neighbours falls below k, we have to rebuild the SASH again. We observe that 2k

neighbours is a good number of neighbours to maintain at the beginning.

It is observed that the results obtained with exact k-NN and approximate k-NN

search on these state of the art IBL algorithms are very competitive for our real world

datasets both in terms of classification accuracy and storage reduction. We now shift our

focus on the ICF algorithm as we develop our Hybrid algorithm. The main reason for this

is that the ICF algorithm is more "adaptive" (as previously discussed in section 1.4.1.2)

than DROP3. Also, the ICF algorithm can be modified more naturally for use with the

SASH.

2.3 A Hybrid Approach

Our Hybrid algorithm combines the best of both the Gabriel thinning and the ICF

algorithm. It is basically a two-phase algorithm. In phase I, we apply Gabriel thinning. In

phase II, the Gabriel thinned set serves as the input to the ICF algorithm. For more

details about the ICF algorithm please look at Brighton and Mellish [7].

Algorithm Hybrid

1. Perform Algorithm ApproximateGabrielThinning.

2. Use the output of step 1 as the input reference set for Algorithm ICF.

(The Algorithm ICF is described on the next page as outlined in Brighton and Mellish

V1).

Algorithm ICF

1. Repeat steps (i)-(iv):

(i) for all instances i in the reference set T:

a. Compute reachable(0

b. Compute coverage(/]

(ii) progress = false

(iii) for all instances i in the reference set T

if I reachable(/] I > 1 coverage(0 I
mark i for deletion

progress = true

(iv) for all instances i in T:

if i is marked for deletion, then remove i from T

2. until not progress.

3. return T.

(Note: the reachable and coverage sets computation is described in sub-section 1.4.1.2)

We run extensive tests on both artificial as well as real world data and present

experimental results in the next chapter.

CHAPTER 3

EXPERIMENTAL RESULTS

Our results are divided into two sections. Section 1 deals with results on real

world data obtained from the UCI machine learning data repository. In section 2 we

present results obtained on artificially generated two-dimensional data to show what kind

of thinned data each algorithm maintains, i.e. whether the decision boundary is indeed

faithfully represented or distorted.

3.1 Results on real-world data

I I Characteristics I

I ionosphere 1 351 1 2 1 34 1 Numeric I

Dataset

abalone
balance scale
breast cancer - w
cell
cmc

Iris I 150 I 3 I 4 I Numeric
liver - buoa 345 2 6 Numeric . . . - . - - -. - -

spambase I 4601 I 2 1 57 1 Numeric

Numeric

ecoli 336 8 7 Numeric

Data Type

Mixed
Numeric
Numeric
Numeric
Mixed

- --

Table 3.1: Nature of the real world datasets used

Dimensions

8
4
10
6
10

No. of
instances

41 77
625
699
3000
1473

thyroid
voting
wine

No' Of

classes
29
3
2
2
3

21 5
435
178

3
2
3

5
16
12

Numeric
Boolean
Numeric

All of the above datasets (except the cell dataset) have been obtained from the

UCI Machine Learning data repository. The cell data was obtained from the Biomedical

Image Processing Laboratory at McGill University. These datasets appear to be the

universal choice for performing experimental analysis of IBL algorithms (Wilson and

Martinez [20] and Brighton and Mellish [7]).

The table a couple of pages ahead (table 3.2) gives us a measure of the

accuracy of each algorithm i.e. the percentage of test cases correctly classified, and the

percentage of storage maintained (with respect to the original dataset size). The results

are obtained by the so-called 10-fold cross validation technique: Each dataset is divided

into 10 equally sized chunks. 10 experiments are run on these chunks with 9 chunks

used as the reference set and 1 chunk as the test set, changing the test chunk for each

of the 10 runs. This is a similar strategy used by both Brighton and Mellish [7] and

Wilson and Martinez [20].

The Gabriel algorithm is the algorithm, ApproximateGabrielThinning of section

2.1.2. This algorithm produces the best accuracy results but consequently also requires

the highest storage. The ICF algorithm is the one described in Brighton and Mellish [7].

The only difference between the original algorithm and the one used here is that we

have used the technique of approximate NN search described in section 2.2. It should

be noted that the results obtained with exact and approximate NN search are very

competitive. For results of the ICF algorithm with exact NN search please look at

Brighton and Mellish [7]. The Hybrid algorithm is the one discussed in section 2.3; a

combination of the Gabriel and ICF algorithm. As can be seen from the table, this

algorithm strikes the best balance between classification accuracy and storage

reduction.

There are some issues related to the "right" distance function. We used the

Euclidean distance and the Vector Angle distance depending on performance. The

Euclidean distance metric is a good choice for predominantly numeric data whereas the

use of the Vector Angle distance metric is a fairly subjective issue. It did well for some

non-numeric and numeric data as well. The choice of distance function can result in

dramatic changes in results. However this was not our main focus. Our aim was on

maintaining consistency across the test results and hence for each dataset we

maintained the same distance function, for each algorithm. Like Sanchez et al [15], we

vary the parameter k (either picking 1 or 3 depending on performance) used for

classifying instances based on k-NN.

There are a few observations to be made about the table 3.2. The results we

obtain and the ones reported by Brighton and Mellish [7] are similar and fairly consistent.

(Note that we use the SASH for approximate k-NN computation whereas Brighton and

Mellish used exact computation, so there are slight variations for a couple of datasets,

but on average, the results are consistent). The Abalone dataset seems to cause the

worst performance for every algorithm, but this is more due to the nature of the data

itself where class boundaries highly overlap and there are a large number of classes

(29). Apart from the thyroid data, the Hybrid algorithm does at least as well as ICF. Also

we observe that the Hybrid algorithm consistently maintains a smaller subset of the

reference dataset for all the tested datasets.

It is not hard to see why the Hybrid algorithm produces the best results. We know

that the Gabriel algorithm maintains the NN decision boundary very faithfully and this

basically is the first pass of the Hybrid algorithm. So now when we use this thinned

version of the original dataset as an input to ICF (which is the second pass of the Hybrid

algorithm), we thin the boundary even more. Instead of maintaining a very thick band of

boundary points (as the Gabriel algorithm does) we maintain a thinned version of the

most important boundary points. We will see in the next section as to exactly what kind

of points do each of these algorithms maintain where the algorithms are compared for

performance on the artificially generated datasets.

Dataset I Hybrid I ICF I Gabriel

Accuracy Storage Accuracy Storage

20.83% 4.20% 23.52% 19.44%

86.78% 11.69% 82.09% 20.96%

95.0% 2.70% 94.88% 3.16%

Accuracy I Storage

abalone

balancescale

breastcancer - w

cell

cmc

diabetes - pima

ecoli

ionosphere

iris

liver - bupa

spam base

thyroid

voting

wine

Table 3.2 Results on real-world data

42

3.2 Results on synthetically generated data

We test our algorithms on three synthetically generated datasets with sharp

regular shaped decision boundaries. All the data is generated inside a unit square and

the decision boundaries are varied. The decision boundaries are F-shaped, circular and

a rectangular strip. Points generated randomly on either side of the boundary are given

opposite class labels. Points inside the boundary are given random class labels.

The data generated is two-dimensional for convenient visualization purposes. We

generate 1000 points randomly. The results obtained are 10-fold cross validated like the

real-world data. The tables shown on the next three pages (tables 3.3, 3.4 and 3.5) show

the points that are kept by each algorithm after thinning. They also show the error rate

and storage reduction percentage for each algorithm, on each dataset (the datasets are

essentially the same in terms of the co-ordinates but the class labels of the data points

vary according to the decision boundaries).

As expected, the Gabriel algorithm produces the thinned subset of points that

tightly maintain the decision boundary at the cost of slightly extra storage. The ICF

algorithm distorts the boundaries significantly, as can be seen in results on the F-shaped

and circular boundaries. There are a significant number of "non-border" points that are

maintained which are not close enough to the boundary so as to classify border points

correctly. This is a significant drawback and this is where the Hybrid algorithm wins out.

Not only does it reduce storage appreciably but also it maintains the decision boundary

quite faithfully. Based on the experimental results, we can say it combines the best of

both worlds: faithful decision boundary preservation a la the Gabriel algorithm and

aggressive storage reduction due to effect of the ICF algorithm.

Points remaining after thinning Description

Class 1

Algorithm: Approximate Gabriel

Error rate: 3.2%

Storage: 1 0.58%

Total points (after thinning): 96

Class I points remaining: 50

Class 2 points remaining: 46

1

Algorithm: Hybrid

o 75 Error rate: 3.9%

Class 1
Storage: 6.28%

0.5 . Class 2 [7 Total points (after thinning): 58

o 25 Class I points remaining: 29

0
Class 2 points remaining: 29

0 0.333 0.666 0.999

Algorithm: ICF

0.75
Error rate: 3.2%

0.5 Storage: 7.93%
P - * 4 Class 2

Total points (after thinning): 64
0.25

Class 1 points remaining: 30

Class 2 points remaining: 34

Figure 3.3 F-shaped boundary results.

CLASS 1 point: 0 CLASS 2 point: 0 Decision boundary: -

Points remaining after thinning Description

Class 1 . Class 2 U

Class 1 Fl

Algorithm: Approximate Gabriel

Error rate: 2.5%

Storage: 12.94%

Total points (after thinning): 1 17

Class 1 points remaining: 57

Class 2 points remaining: 50

Algorithm: Hybrid

Error rate: 2.8%

Storage: 7.3%

Total points (after thinning): 72

Class 1 points remaining: 34

Class 2 points remaining: 38

Algorithm: ICF

Error rate: 4.3%

Storage: 7.72%

Total points (after thinning): 77

Class 1 points remaining: 32

Class 2 points remaining: 45

Figure 3.4 Circular boundary results.

CLASS 1 point: 0 CLASS 2 point: @ Decision boundary: 0

Points remaining after thinning Description

Algorithm: Approximate Gabriel

Error rate: 10.4%

Storage: 13.6%

Total points (after thinning): 124

Class 1 points remaining: 59

Class 2 points remaining: 65

Class 2

Algorithm: Hybrid

Error rate: 10.3%

Storage: 8.65%

Total points (after thinning): 75

Class I points remaining: 35

Class 2 points remaining: 40

Class 1 1-q

Algorithm: ICF

Error rate: 1 1.8%

Storage: 6.47%

Total points (after thinning): 50

Class I points remaining: 25

Class 2 points remaining: 25

Figure 3.5 Random rectangular strip boundary results.

CLASS I point: CLASS 2 point: @ Decision boundary: I I

CHAPTER 4

CONCLUSION

In this work, we examine the problem of reference set thinning, also called

training set storage reduction, for instance based learning algorithms. We review the

existing techniques and argue that the state of the art solutions to the problem involve

the heavy computational burden of computing the k nearest neighbours of every

instance in the reference set. lncorporating the use of the SASH, an efficient index

structure for supporting approximate nearest neighbour queries, we find that the existing

techniques can be sped up by substantially with no degradation in classification

accuracy as well as storage reduction.

The Gabriel graph has been long known to be an excellent geometrical construct

to capture proximity relationships between its nodes. However computing it was

practically infeasible because of the worst case cubic time complexity involved.

Incorporating the idea of approximate k nearest neighbour search into approximate

Gabriel neighbour search, we come up with a modified version of the SASH that we call

the GSASH. The GSASH can be constructed in O(n lognn) time for a dataset of size n

and used as a means for computing k approximate Gabriel neighbours of a query point

in O(k logzk + log2n) time We apply the GSASH to compute approximate Gabriel

neighbours and use it in the Gabriel graph based reference set thinning algorithm

proposed by Bhattacharya [6]. The single most important property of the Gabriel graph is

that it preserves the nearest neighbour decision boundary very faithfully. We show

experimental results comparing this algorithm with the best known IBL algorithms and

not surprisingly it turns out the Gabriel thinning algorithm performs better on real world

and synthetic data. The Gabriel thinning algorithm's running time is basically dominated

by the time required to compute the Gabriel neighbours of the reference data set. Hence

the complexity of the algorithm is O(kn log2k + nlog2n).

The only major drawback with the Gabriel thinning algorithm is that it does not

produce a considerable storage reduction compared to the IBL algorithms. This is a

serious issue because of the large amount of data available; computation time

performance can degrade if we maintain a very large subset of the data for pattern

classification. Therefore we propose a hybrid reference set thinning algorithm, which

involves the Gabriel thinning algorithm as the first pass and the ICF algorithm of Brighton

and Mellish [7] as the second pass. Our choice of the ICF algorithm was purely

motivated by the fact that like the Gabriel algorithm it is also adaptive in nature and can

incorporate the SASH quite seamlessly. Our Hybrid algorithm is shown to exhibit the

best features of both of its constituents. It still maintains the decision boundary quite

faithfully and also results in aggressive storage reduction. In fact, its accuracy is

competitive with that of the Gabriel algorithm and its storage reduction surpasses that of

the ICF algorithm.

There is still much work that has to be done especially with approximate proximal

neighbours search. For one, we need to develop dynamic versions of the

SASHIGSASH, which can support insertionsldeletions dynamically without having to

rebuild the structure from scratch. This would save significant computation time.

Our Hybrid algorithm seems to be in line with the cutting edge research in pattern

classification, which suggests the use of "Classifier Ensembles", collections of classifiers

working together. Certain classifiers are good for certain domains while not so good for

others. We believe that a Gabriel neighbour based classifier would be an excellent

addition to these "Classifier Ensembles" simply because of the nature of the Gabriel

graph that preserves the all important nearest neighbour decision boundary very well.

BIBLIOGRAPHY

[l] D.W. Aha, D. Kibler & M.K. Albert (1991), Instance-Based Learning Algorithms,,

Machine Learning, 6: 37 -- 66.

[2] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger [1990]. The R* tree: An

efficient and robust access method for points and rectangles, Proceedings of ACM

SIGMOD Conference on Management of Data, 322 - 331.

[3] J. L. Bentley (1975). Multidimensional binary search trees used for associative

searching. Communications of the ACM, 18(9): 509 -- 517.

[4] M. de Berg, 0. Schwarzkopf M. van Kreveld, and M. Overmars (2000) Computational

Geometry: Algorithms and Applications, Second Edition, Springer-Verlag.

[5] K. Beyer, J. Goldstein, R. Ramakrishnan and U. Shaft (1999). When is nearest

neighbour meaningful? Proceedings of the 7th International Conference on Database

Theory (ICDT), 217 - 235.

[6] B.K. Bhattacharya (1982). Application of Computational Geometry to Pattern

Recognition Problems, PhD Thesis. Simon Fraser University, School of Computing

Science Technical Report TR 82-3,259 pages.

[7] H. Brighton and C. Mellish (2002). Advances in Instance Selection for Instance-

Based Learning Algorithms. Data Mining and Knowledge Discovery, 6: 153 - 172.

[8] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein (2001). Introduction to algorithms,

Second Edition, The MIT Press.

[9] T. M. Cover & P. E. Hart (1967). Nearest neighbor pattern classification. Institute of

Electrical and Electronics Engineers Transactions on lnformation Theory, 13(1), 21-

27.

[lo] R. Duda and P. Hart (1973). Pattern Classification and Scene Analysis. Wiley-

lnterscience publication.

[I l l W. Gates (1972), The reduced nearest neighbour rule, IEEE Transactions on

lnformation Theory, 18: 431 -- 433.

[I21 P.E. Hart (1968), The condensed nearest neighbour rule, IEEE Transactions on

lnformation Theory, 14(3), 51 5 -- 51 6.

[I31 M. Houle (2003). SASH: a Spatial Approximation Sample Hierarchy for Similarity

Search. IBM Tokyo Research Laboratory Report RT-0517, 16 pages.

[I41 H.V. Khuu, H.K. Lee, and J.L. Tsai Machine Learning with Neural Networks and

Support Vector Machines. University of Wisconsin-Madison (Web link: http://

www.cs.wisc.edu/-hiep/Sources/Articles/svms nns research.pdf (date: August 29,

2004))

[I51 J.S. Sanchez, F. Pla, F.J. Ferri (1997). Prototype selection for the nearest

neighbour rule through proximity graphs. Pattern Recognition Letters, 18: 507 -

51 3.

[I61 J.S. Sanchez, F. Pla, F.J. Ferri (1997). On the use of neighbourhood-based non-

parametric classifiers, Pattern Recognition Letters, 18: 1 179 - 1 186.

[I71 G.T. Toussaint, B.K. Bhattacharya and R.S. Poulsen (1984), The application of

Voronoi diagrams to non-parametric decision rules, Proceedings of the 16'~

Symposium on Computer Science and Statistics, 97 --I 08.

[I81 G. T. Toussaint (2002). Proximity graphs for nearest neighbour decision rules:

recent progress, Interface-2002, 34th Symposium on Computing and Statistics

(theme: Geoscience and Remote Sensing).

[I91 D. R. Wilson & T. R. Martinez (1997). Instance pruning techniques. In Fisher, D.

(Ed.), Machine Learning: Proceedings of the Fourteenth International Conference

(ICML197), 403 - 41 1.

[20] D. R. Wilson & T. R. Martinez (2000). Reduction Techniques for instance based

learning algorithms. Machine Learning, 38: 257 - 286.

[21] D.L. Wilson (1972). Asymptotic properties of nearest neighbour rules using

edited data. IEEE Transactions on Systems, Man and Cybernetics, 2: 408-421.

