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Abstract 

Cluster analysis is a technique for finding group structure in data; it is a branch of 

multivariate statistics which has been applied in many disciplines. The most common 

method of cluster analysis is hierarchical agglomeration. Several algorithms are 

discussed, with a focus on complete linkage. Constrained classification is then presented, 

specifically the case in which members of a cluster are required to be geographically 

contiguous. An example is provided, illustrating the creation of territories for automobile 

insurance in British Columbia, Canada. The dissimilarities between objects are measured 

by symmetrized deviance drops. This approach may be described as model-based 

clustering subject to contiguity constraints. 
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Glossary 

This glossary defines vocabulary common to automobile insurance rating in British 

Columbia. 

claims rated scale 
( C W  

collision coverage 

comprehensive 
(comp.) coverage 

credibility 

deductible 

exposure 

Insurance Corporation 
of British Columbia 
(ICBC) 

an individual's driving record and experience as described by 
an integral value; new drivers begin at level 0 and receive 
minus 1 credit for each year of accident-free driving 

a product protecting motorists against property damage when 
their vehicle is determined to be at-fault in a crash 

a product protecting motorists against property damage to 
vehicles resulting from theft, vandalism, fire, animal collision, 
glass breakage and other perils 

a measure of the amount of trust placed in the precision of a 
given estimate; related to confidence intervals 

the dollar amount of a loss which is retained, that is, paid by 
the insured 

a measure of baseline risk to an insurer; one exposure unit is a 
policy with a 12 month term, a 6 month policy would count as 
half an exposure unit 

the number of claims made per exposure; usually expressed as 
a percentage 

a crown corporation established in 1973 to provide 
automobile insurance coverage to British Columbia motorists 



lessee 

lessor 

loss cost 

loss ratio 

mandatory insurance 

policy 

private passenger 

rate class 

rate group 

severity 

short-term 

term 

territory 

a person leasing a vehicle from its owner 

the owner of a vehicle which is leased 

the average dollar amount of claims per exposure; 
equivalently, the product of frequency and severity 

the percentage of premium collected which is used to pay for 
claims 

the minimum amount of coverage required; provided by ICBC 

a contract specifying how an insurer will compensate an 
insured for losses arising from certain events 

a vehicle used primarily for pleasure, commuting, or business; 
excludes motor homes, motorcycles, collector vehicles, 
trailers, buses, taxis, limousines, etc. 

a description of vehicle use and type represented by a three 
digit code; may incorporate such information as distance 
driven, vehicle weight, engine size, and passenger capacity 

a vehicle rating assigned to specific vehicle make, model and 
model year combinations; based on factors such as repair cost 
and theft frequency 

a designation used for ICBC's best customers; CRS level -9 or 
better 

the dollar amount of an insurance claim; may also refer to an 
average amount 

a contract written for less than a full 12 months 

the period for which an insurance policy is in effect; usually 
described by the difference between the effective and expiry 
dates of the policy 

a geographical region used for insurance rating 



1 Introduction 

1.1 Project History 

The Insurance Corporation of British Columbia (ICBC) uses a set of 14 geographic 

territories to help set provincial automobile insurance rates. A map of these territories is 

provided in Figure 1.1. 



0 1991 Insurance Corporation of British Columbia, by permission 

Figure 1.1 Map of ICBC territories 

Urban sprawl and a multi-year rate freeze have contributed to a large increase in the 

variation of loss ratios within these territories. This is especially true in Greater 

Vancouver and the Fraser Valley, which are currently divided into only three territories, 

but account for more than half of the company's policies (see Figure 1.2). One of these 

territories contains nearly half of the province's vehicles alone. 



Vaneowr 
Island (3) 

Northern 
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Figure 1.2 Regional distribution of policies 

(number of territories in parentheses) 

The inhomogeneity within territories has created an excellent opportunity for ICBC's 

competitors. They are able to offer substantially lower rates to customers in those regions 

where rates do not accurately reflect the level of risk. Even in the absence of competition 

on mandatory insurance, there was a social concern arising from this large imbalance. 

The aim of the cluster analysis which follows was to identify geographically contiguous 

regions with similar claims experience, which could form a greater number of smaller 

and more efficient territories. This was accomplished by studying various attributes of the 

claims histories of existing territories. 



1.2 Data Objects 

The original region of interest for the study comprised an area extending from West 

Vancouver to Chilliwack. This was later extended to include the rest of British Columbia. 

In a cluster analysis, the objects to be clustered must be clearly defined. In this project, 

the objects are geographical areas (polygons). 

The following municipalities were deemed large enough to identify one or more objects: 

Abbotsford/Chilliwack, Campbell River, Castlegar/Nelson/Trail, CourtenayIComox, 

CranbrookIKimberley, Dawson CreekIFort St. John, Duncan, Kamloops, Greater 

Kelowna, Merritt, Mission, NanaimoLadysrnith, Parksville/Qualicum Beach, Penticton, 

Port Alberni, Powell River, Prince George/Quesnel/Williams Lake, Prince Rupert/ 

TerraceIKitimat, Salmon Arm, Greater Vancouver, Vernon, and Greater Victoria. 

Outside of these urban centres, it was more challenging to define the objects, as large 

enough objects were not available as portions of municipalities. These other regions are 

typically a mixture of small towns and rural areas. These were combined into credible 

objects based on geographical proximity and claim counts. 

There was a total of 247 objects in the province's 14 territories. The number of objects in 

each territory generally ranged from two to 36, with only the Lower Mainland having 

more. Territories with six or fewer objects were not clustered (see section 3.10). 

Some objects had very little claims experience over the study period, due to low exposure 

counts. These smaller objects often did not merge until late in the clustering process. The 



rural objects tended to be smaller in terms of claims and policy counts than the urban 

objects. In general, rural areas tended to have lower crash rates than the Lower Mainland 

but other types of claims, such as for glass damage, were more frequent. Standards for 

full credibility of objects were defined by a minimum number of claims for collision and 

comprehensive. These minimum claims standards were relaxed somewhat for rural 

objects, and other data such as population and policy counts in force were considered. 

Instead of discarding the data, the claims from smaller objects were pre-merged with 

neighbouring regions based on a comparison of the mean frequencies and severities. A 

total of 15 objects were pre-merged, nine in urban centres and six in rural areas. This left 

a total of 232 objects for the entire province. 

Carvalho et al. (1996) describe a more formal procedure for aggregation, as they call it. 

This creates objects which exceed a pre-specified minimum population. 

1.3 Data Attributes 

Two insurance coverages, collision and comprehensive, were examined for private 

passenger motor vehicles over a five year period from 1997-2001. The study of property 

and casualty insurance claims is generally split into two components, frequency and 

severity, which are modelled separately (Klugman et al., 1998). For each object, the 

severity of all claims was captured. No outliers were observed, with all amounts falling 

below $100,000. 



It is possible to determine how many claims have been made during the term of a policy, 

given that at least one claim has occurred. Claims records with the same license plate and 

expiry date belong to the same policy term. The highest number of claims observed in 

one policy term was five for collision and nine for comprehensive. 

Exposure was calculated as the difference between the expiry date and the inception or 

renewal date. However, there were some complications. Policy cancellations are not 

reflected in an earlier expiry date, so exposure may be overstated for vehicles which are 

written off. That is, we essentially assume that no further accidents would have occurred 

had the vehicle still been on the road. The experience from policies which overlapped 

either end of the five year period was censored to be consistent with the scope of the 

study. 

It is not possible to gather exposure data directly on policies without claims. Instead, we 

obtained total object exposures for the period. Then the total exposure of claims-free 

policies was given by the difference between that of all policies, and those with at least 

one claim. 

1.4 Data Quality 

All aspects of geographical information for policies and claims were required to be 

consistent. This resulted in the deletion of about 1.5% of claims and 1.7% of policy 

records. There was also a small number of coding errors in the claims database, 

comprising 0.1 % of records. These claims were omitted since they could not be 

accurately assigned to an object. 



There was a problem with claims on leased vehicles because the geographical 

information available is that of the lessor, not the lessee. Leased vehicles accounted for 

about 10% of claims and have been removed from the analysis because they would have 

biased the results near major leasing locations. It would have been unfair to charge the 

actual residents based on the experience of these leased vehicles. In general, leased 

vehicles tended to have higher frequency and severity characteristics. Loss ratios were 

especially higher for collision coverage. 



2 Survey of Cluster Analysis 

2.1 Introduction to Cluster Analysis 

The general problem of cluster analysis can be formulated as the partitioning of a set of N 

objects into K clusters. Partitioning is based on data collected from each of the objects. 

The data may be univariate, or describe multiple features, potentially with different scales 

of measurement. Dissimilarity is a mathematical measure of distance between a pair of 

objects. It may use the original data values, some estimated parameters, or the likelihoods 

of statistical models. 

Initially, all clusters consist of single objects. Later, clusters may contain one or more 

objects. The dissimilarity between clusters is calculated from the dissimilarities of pairs 

of objects, one object from each cluster. At each step in the clustering process, the two 

clusters with the lowest dissimilarity are joined, subject to any constraints. 

The many applications of cluster analysis are too numerous to list here and vary greatly. 

Taxonomy, marketing, epidemiology, chemistry and library science are a few of the 

subjects mentioned in the literature. The respective objects to cluster in these disciplines 

might be species, customer groups, health regions, elements and books. 



Hartigan (1975), Mirkin (1996) and Gordon (1999) each describe several purposes served 

by a cluster analysis: 

naming of objects in a way that distinguishes them from others; 

summarization and simplification of data so that characteristics of clusters, 

rather than individual objects, can be studied; 

convenient display of information; 

use of resulting groupings for prediction; 

inspiration to create hypotheses and theories. 

In the creation of territories for insurance rating, the objective is best described by 

purpose (iv) above. The clusters of objects formed will become part of the rating 

structure, and a major portion of an insurance rate will be a prediction of the expected 

value of claims in clusters. 

Data for cluster analysis may be on an interval, ratio, ordinal, or categorical scale 

(Hartigan, 1975). There are three main ways to handle multiple data types (Romesburg, 

1984): 

(i) the scale differences can be ignored; 

(ii) multiple analyses could be performed on the different variables; 

(iii) the continuous attributes may be summarized into counts in intervals. 



The second approach will be employed in this project to deal with counts and continuous 

data. 

Standardization is also an important consideration as there is a potential that a subset of 

the variables could dominate the dissimilarity measure. It is important to weigh the 

variables carefully so if standardization is not used, simpler techniques such as omission 

of variables or repetition of data should be employed (Romesburg, 1984). 

There are two major objectives to consider which affect the mechanics of how clusters 

are formed. These goals are homogeneity within the resulting groups and differentiation 

between them. The balance between these considerations is a determining factor in 

choosing the clustering method. 

2.2 Methods of Cluster Analysis 

Clustering methods are of two distinct types: hierarchical and non-hierarchical. Non- 

hierarchical methods take an existing classification and re-assign the membership of 

objects. Hierarchical methods reveal the cluster membership of objects for each possible 

number of clusters, providing a complete picture of group structure. They are by far the 

most popular methods in practice and will be utilized in chapter 3. Hierarchical methods 

can be further split by the direction of clustering. Agglomerative methods start from the 

bottom-up with N singleton objects and join pairs of objects or pairs of clusters until all 

objects inhabit a single cluster. Conversely, divisive methods operate from the top-down 

by choosing a cluster at each step, and splitting it. 



Hierarchical agglomerative algorithms may be grouped into three main categories: 

linkage, variance, and centroid. Linkage methods include single link (also known as 

minimum link or nearest neighbour), complete link (also known as maximum link or 

further neighbour), average link, and weighted average link. The other types of 

algorithms, variance and centroid, use Euclidean distance as the measure of dissimilarity 

(Gordon, 1999). 

Hierarchical agglomeration and other methods of cluster analysis generally require the 

specification of a square dissimilarity matrix D with entries Dij , which represent the 

dissimilarities between the data from each pair of objects, Oi and Oj . The elements of D 

are subject to the following three conditions (Gordon, 1996a): 

(i) Dij 2 0 ; 

(ii) Dii = 0 ; 

(iii) D- 1J - - D- Jl . 

In single linkage, the clusters with the two most similar member objects are always 

joined. In complete linkage, the dissimilarity between two clusters is measured by the 

maximum dissimilarity between member objects. Clusters are then formed by joining 

those with the lowest dissimilarities. Single linkage often results in well-differentiated 

groups but is subject to chaining. This phenomenon occurs when one of the clusters 

continually grows. This is because there are many comparisons with this large cluster, 

and one of the dissimilarities is likely to result in another object joining it. Complete 

linkage can be thought of as a trial-and-error approach as every possible merger is 



analyzed in order to minimize the dissimilarity within clusters. The susceptibility to 

chaining disappears and clusters tend to be cohesive and of similar size. A drawback of 

complete linkage is that distinct clusters might be quite similar, but this is not a concern 

here. Finally, average and weighted average linkage seek to balance the two objectives of 

homogeneity and differentiation (Gordon, 1987) by looking at average differences 

between groups. Complete linkage is used for the analyses to follow in chapter 3. 

2.3 Constrained Classification 

One complication in cluster analysis arises when constraints exist on the cluster 

membership of objects. DeSarbo and Mahajan (1984) attribute the introduction of the 

topic of constrained cluster analysis to Gordon (1 973). Constrained analyses may 

sometimes be performed in order to allow comparisons with unconstrained analyses, and 

are often easier to interpret (Gordon, 1996b). Geographical contiguity is the constraint 

which most often affects spatial cluster analyses. Another common constraint is on the 

number of objects in a cluster. This type of constraint can also be addressed outside of the 

analysis by simply choosing a partition with more clusters (Murtagh, 1985). Another 

frequently occurring constraint in cluster analysis is on the specific composition of 

classes. 

The sources of constraints may be dichotomized as inherent or imposed conditions 

(Murtagh, 1985). Inherent, or internal reasons have to do with the physical resemblances 

of objects (DeSarbo and Mahajan, 1984). Imposed, or external constraints may be due to 

policy or resources (Gordon, 1996b). In this project, both types of constraints are present. 

The fact that territories are required to be contiguous may be regarded as an inherent 



condition, while the restriction that the new territories preserve the boundaries of the 

existing territories is an imposed legal constraint. 

Contiguity constraints tend to lead to the problem of single objects never joining a 

cluster, because an object may have a small number of neighbours, and may happen to be 

dissimilar to all of them. On the other hand, constrained analyses are not as dependent on 

the chosen clustering method, since many fewer solutions are possible (Gordon, 1996a). 

Contiguity constraints are usually handled in one of three ways. First, they can be ignored 

altogether in the clustering and only assessed afterwards upon inspection of a map 

(Gordon, 1996b). However, this can be misleading as contiguous objects may not be 

similar and spatially varying effects could be overlooked. A second strategy sometimes 

employed is to quantify contiguity as part of the dissimilarity measure (Murtagh, 1985). 

This involves adding a term to each entry of the dissimilarity matrix which describes the 

geographical distance between the objects. But this is very subjective as results will 

depend on the magnitude of the penalty assessed to non-contiguous objects. 

The third approach is to utilize a contiguity matrix (Gordon, 1996b), which must be 

consulted before any merger is allowed. There are sometimes difficulties in defining 

contiguity exactly, and the matrix must be specified such that there is a path between any 

two objects. A disjoint set is a group of objects with a path connecting them but where 

none of the objects are contiguous to any object outside the set. The disjoint sets of 

objects could be analyzed separately. If objects are arranged in a square grid, such as 

plots of land, an object may have four neighbours if common edges are required for 



contiguity, or eight neighbours if intersection at a corner is sufficient for contiguity 

(Murtagh, 1985). If the objects are points, contiguity may be defined as being within a 

certain radius, or being one of the nearest neighbours (Murtagh, 1985). Gordon (1999) 

also points out that neighbouring objects are not necessarily contiguous, e.g. if they are 

separated by mountain ranges, bodies of water, etc. 

The contiguity matrix C is ordinarily a square, symmetric matrix with binary entries, Cij 

Murtagh (1985) suggests that a continuous measure could also be used, but in this case 

binary values would seem to suffice. Let Cij = 1 if objects Oi and Oj are contiguous, and 

Cij = 0 otherwise. The diagonal entries of the matrix, Cii , are not meaningful and if we 

also assume that Cij = Cji , then only the sub-diagonal elements of C need to be specified. 

Overall, the challenges presented by using a contiguity matrix seemed the least difficult 

to overcome, so this was selected as the way to deal with the constraint of geographical 

contiguity. More details on the specification of the contiguity matrix will be provided in 

section 3.2. 

2.4 Cluster Validation 

A cluster analysis always produces a partition, even if there are no truly different groups 

present in the data (Stockburger, 1996). However, the presence of heterogeneity is rarely 

tested in practice (Gordon, 1999). Tests of a given hierarchy are focused on three main 

areas: homogeneity, differentiation and stability. Various functions of dissimilarities 

within and outside of clusters may be used to assess homogeneity (Gordon, 1999). 

Differences between the times of original cluster formation and eventual amalgamation 



can measure the differentiation between groups (Gordon, 1996a). One way to determine 

the stability of a hierarchy is to run the analysis on several data sets or with separate 

variables, or to use multiple clustering methods, and then compare the various results 

(Gordon, 1999). A common stopping rule used to choose the number of clusters is to look 

at a tree diagram and determine at which step, say step k, there is a large gap in the 

dissimilarity values of merged clusters (Wulder, 2002). This implies that the previous 

merger, at step k-1, combined much more similar clusters than those merged at step k. 

The theory behind post-analysis evaluation is not a well-developed field and informal 

methods are common, such as an assessment of whether the project goal was achieved 

within an acceptable level of tolerance (Romesburg, 1984). This assessment may be 

based mainly on intuition or prior beliefs. 



3 Application - Insurance Claims Data 

3.1 Outline of Analysis 

This chapter describes the process of clustering the objects, namely the regions as 

described in section 1.2, in a single territory. Suppose the territory contains n objects, Ok , 

k = I.. .n. There are four sets of data to be used in clustering: collision severity, 

comprehensive severity, collision frequency and comprehensive frequency, as discussed 

in section 1.3. The main complication in the analyses is a constraint based on 

geographical contiguity, a topic which was introduced in section 2.3. A numerical 

example of clustering with collision severity data will be shown in sections 3.6 and 

following. 

Romesburg (1984) and Gordon (1999) each outline six major steps in a cluster analysis, 

which are largely applicable here. The first three steps involve selection of the objects, 

Ok , and variable(s) of interest, followed by standardization of the data, if necessary. The 

next two steps are to define a measure of dissimilarity, D ,  among objects and choose a 

clustering method. Finally, in the presentation step, the number of clusters is determined, 

results are interpreted and significance may be tested. In model-based clustering, it is also 



necessary to choose a distributional model for the variable(s). For this project, a 

description of these steps is provided in Table 3.1. 

Step 

Objects 

Variables 

Description 

Standardization 

Model 

The approach employed here may be summarized as hierarchical agglomerative 

classification, using the complete linkage clustering method, and subject to contiguity 

constraints. The output is a hierarchical arrangement of clusters joined at increasing 

levels of dissimilarity. The clustering is run separately on each of the four combinations 

of coverage (collision, comprehensive) and attribute (frequency, severity). But since the 

desired output is a single set of new territories, the results need to be combined in some 

way. 

Sections 

Geographical areas, e.g. municipalities 

Collision severity, Comp. severity, Collision freq., Comp. freq. 

Dissimilarity 

Method 

Presentation 

3.2 Contiguity Matrix 

Suppose the contiguity matrix C is a symmetric n x n matrix with elements Cij, indexed 

by the data objects. The only objects allowed to merge are those which are 

geographically adjacent, that is, pairs of objects Oi and Oj with Cij = 1. C is updated and 

1.2 

1.3 

Rate Group and Deductible, or Rate Class and CRS factors 

Lognormal, Poisson, or Negative Binomial distributions 

3.3, 3.4 

3.5, 3.7 

Table 3.1 Steps in a cluster analysis 

Symmetrized deviance drops 

Complete linkage 

Consensus rules and outlier re-allocation 

- - - -  

3.5 

2.2, 3.5 

3.8, 3.9 



utilized in each step of the clustering algorithm. For instance, after step k, the updated 

contiguity matrix will be denoted by c"-~,  

Contiguity must be precisely defined as there are many possible ambiguities. The most 

common criterion for two objects to be contiguous is a common land boundary of 

reasonable length. This means that the boundaries do not simply meet at a single corner, 

or for a small number of city blocks. In rural areas, it is also a requirement that at least 

one road crosses the common boundary. Objects will also be considered neighbours if 

they are separated by a body of water but accessible by a bridge, tunnel or vehicle ferry. 

In fact, it is necessary to define objects connected in this way as contiguous because 

otherwise certain groups of objects might never be able to merge with any others. The 

city of Richmond is an example since access to neighbouring municipalities requires 

travelling across a bridge or through a tunnel. 

Applying these rules consistently across the province results in an average of two to four 

neighbours per object, depending on the territory under consideration. For individual 

objects, the number of neighbours was as low as one for objects on a territory boundary. 

The largest number of neighbours observed for a single object was seven. 

3.3 Data Standardization 

In order to isolate the effect of territory from all other rating criteria, the frequency and 

severity data had to be adjusted for differences due to rate class, claims rated scale, rate 

group, and deductible. It was decided to adjust each combination of coverage and 

attribute for two variables, as shown in Table 3.2. These were determined to be rate group 



and deductible for all combinations other than collision frequency, which were 

standardized for rate class and claims rated scale differences. 

CoverageIAttribute 

Collision severity 

Comp. severity 

Table 3.2 Standardization of claims data 

Variables chosen 

Collision frequency 

Comp. frequency 

To ensure enough occurrences of each bivariate combination, rating variables were 

grouped into intervals as shown in Tables 3.3 - 3.6. 

Explanation for chosen variables 

Rate group, deductible 

Rate group, deductible 

- - -  I Interval I Rate Class I Vehicle Use 

Repair costs, speed of vehicles 

Repair costs, many small claims 

Rate class, CRS 

Rate group, deductible 

Distance driven, driving historylexperience 

New vehicles targeted, small claims eliminated 

1 

2 

1 5 1 007 I Business use 1 

3 

4 

001 

002 

Table 3.3 Rate class intervals 

Pleasure use only 

To and from work or school 

003, 004 

005 

6 

Interval CRS Level Status 

5-75 RoadStar Gold 

-9 to -14 RoadStar i 

Commuting under 15 km, or park and ride 

Seniors (pleasure only) 

Table 3.4 Claims rated scale (CRS) intervals 

021 - 027 Experienced drivers only (licensed 10+ years) 



Table 3.5 Rate group intervals 

Interval Rate Group 

Table 3.6 Deductible intervals 

Interval 

There are 11 rate classes which were grouped into six categories designed to preserve 

Deductible 

similarity of vehicle uses, while aggregating newer or less frequently used classes. The 

three claim rated scale intervals are in common use and distribute policies into roughly 

equal proportions. The main goal of collapsing the 24 rate groups into six intervals was to 

obtain similarly sized groups of policies. Minimum deductibles have historically ranged 

from $100 to $300, so the $500 and up interval was chosen to separate those customers 

who intentionally selected a higher deductible. 

There is a substantial amount of variation among data objects in the distribution of the 

above variables; otherwise, of course, standardization would not be necessary. For 

example, wealthier areas tended to have more vehicles with high rate groups and a 



greater proportion of policies with higher deductibles. There were also large differences 

noted in the proportions of non-Roadstars and experienced drivers. 

3.4 Adjustment Factors 

There are 12 possible combinations of the 6 rate group intervals and 2 deductible 

intervals. There are 18 possible combinations of the 6 rate class intervals and 3 claims 

rated scale intervals. Since the example to follow uses collision severity for the 

clustering, we suppose that the data are being adjusted for rate group intervals, indexed 

by s = 1.. .6, and deductible intervals, indexed by t = 1.. .2. For each object Ok within a 

territory, the proportion pstk of the vehicles belonging to each rate group/deductible 

combination was calculated. The proportions p~t  over all objects were also determined by 

allocating all vehicles in the territory to the appropriate combinations. 

Similarly, average frequencies fst and severities zst were calculated within the entire 

territory for all rate group/deductible combinations. These were then multiplied by the 

object proportions pstk and summed to obtain an expected frequency fk and severity z k  

for each object Ok , k = 1.. .n: 



These values were compared to an expected frequency T and severity for the entire 

territory, which are based on the overall proportions pst : 

- 
Z = x:=, pst Zst 

Then for each object Ok , k = 1.. .n, an adjustment factor was calculated for both 

frequency (factor uk ) and severity (factor vk ): 

The values of these adjustment factors fell mostly between 0.95 and 1.05, with almost all 

the values between 0.90 and 1.10. It was not considered worthwhile to use a more 

complicated method of standardization. 

3.5 Methodology for Severity Data 

This section describes the models, likelihoods and dissimilarities for severity data, both 

collision and comprehensive. Frequency data are discussed in section 3.7. The severity 

data for an object Ok consists of a list of individual claim amounts yk~, 1 = 1.. .mk. The 

application of the adjustment factors was straightforward for severity. Each individual 



claim amount ykl  was multiplied by vk , but the adjusted severities will still be referred to 

as y~ , 1 = 1.. .mk. A lognormal model was fit to these adjusted severities. The density 

function of the lognormal distribution has the form: 

For object Ok , the maximum likelihood estimates for the parameters pk and oE of the 

lognormal model are as follows: 

3.5.1 Dissimilarity Measures 

We can now construct the log-likelihood matrix L . The entries Lij are given by the log- 

likelihoods of the object Oj data under the models estimated with the object Oi data: 

Lij =log nzlf (yj~; pi, a 2 )  = - ~ ~ l { [ l o g  (yjl) - (ii12 1 2  6i2} - mj log (& 8i) - Czl log (yjl) 

We could now measure the dissimilarity between a pair of objects Oi and Oj with the 

symmetrized distance (Smyth, 1997): 



Note the building blocks of the dissimilarities are model likelihoods, not simply data or 

parameters. Model-based clustering uses the comparison of statistical models to assess 

dissimilarity. However, Smyth's original clusters were all the same size, and this is not 

the case here. Likelihoods depend on the number of data points, and the rows of the log- 

likelihood matrix L tend to be very similar. That is, the spread among log-likelihoods, 

Lik , i = 1.. .n, involving the data from object Ok , is small, as only the parameter 

estimates, pi and 6i2, are varying. If we proceeded as above, the objects with fewer 

claims might merge sooner than they should, because there is not enough information to 

conclude that they are dissimilar. 

One might think of averaging log-likelihoods per observation but empirically this turns 

out to be unsatisfactory. For example, using the Lower Mainland data we would have 

expected a priori that the most similar pair of objects would be the two listed in Table 3.7 

below, since their means and standard deviations modelled by the lognormal distribution 

differed by only a dollar or two. 

Table 3.7 Estimated parameters of lognormal collision severity models 

Object 
0) 

0 3 6  

0 1 2  

Claim 
count 

(mk) 

1,475 

3,316 

Mean 

4,086.64 

4,087.48 

Standard 
Deviation 

9,284.45 

9,286.88 

Mode 

427.46 

427.51 



But when the dissimilarities were constructed from the average of the two log-likelihoods 

per data point, these two objects were not the most similar. Another possibility would be 

to use log-likelihood differences. The log-likelihood Lj for the data from a given object 

Oj is the largest when i = j , that is, when the parameters have also been estimated using 

the object Oj data. The other log-likelihoods may be standardized by subtracting this 

maximum value, Ljj . When multiplied by -2, this difference is called the deviance drop. 

The deviance drop is: 

h j  = - 2 {log [n21 f (yjl; pi, 6i2)] - log [n21f (yjl; fij, 6j2)]) = - 2 (Lij - Ljj) i, J = l...n 

Instead of constructing the dissimilarity matrix directly from the deviance drops, the 

deviance drops may be averaged. This alternative dissimilarity measure, the symmetrized 

deviance drop, is: 

The deviance drops still exhibit dependence on the number of data points, but it is not 

clear that this would have a significant impact on the mechanics of the clustering. We 

will return to this topic in section 4.3. The matrix D" , with entries D; , was selected as 

the measure of dissimilarity to be used in the analyses which follow. DA will 

subsequently be referred to simply as D . 



3.5.2 Example - Dissimilarities 

The calculation of the quantities in section 3.5.1 is now illustrated for the two objects 

presented in Table 3.7, 0 3 6  and 012. Since there are hundreds of claims for each object, 

the log-likelihoods below are simply expressed as sums of the log-likelihood 

contributions of each individual observation. Four values are required from the log- 

likelihood matrix L : 

L36,36 = log HE f (~36, I; p36 ,  636'  ) = - z:!? { [log (~36, I) - 7.40631' / [2 (1.8 183)] ] 

- 1475 log [d2n(1.8183)] - log (~36.1) = - 18,317.99 

L36.n = log nE: f (yiz. I; p36,  h 2 )  = - x:z6 {[log (~12, I) - 7.40631' / [2 (1.8183)l) 

- 3316 log [42a (1.8183)] - E:2:6 log ( y l ~ , ~ )  =- 30,264.22 

Lnis = log f (~36, i; jk2,612~) = - z!? { [log (~36~1) - 7.40641~ / [2 (1.8184)]} 

-1475 log [J2n (1.8184)] - zif:' log (~36.1) = - 18,322.63 

LIZ,IZ = log TCn;; f (yir I; (i12,612~) = - x:$6 {[log (~12. I) - 7.40641' / [2 (1.8184)]} 

- 3316 log [42a (1.8184)] - x;::6 log (y12,l) = - 30,256.50 

The deviance drops are then computed directly from the log-likelihood values above: 

A36,iz = - 2 (L36.12 - Li2,iz) = - 2 [(-30,264.22) - (-30,256.50)] = - 2 (-7.72) = 15.44 

A12,36 = - 2 (L12.36 - L36,36) = - 2 [(-18,322.63) - (-18,317.99)] = - 2 (-4.65) = 9.30 



Finally, the dissimilarity between objects 0 3 6  and 0 1 2  is given by the average of these 

two deviance drops: 

3.5.3 Updating the Dissimilarity Matrix 

The dissimilarity matrix must be updated at each step of the clustering algorithm and this 

will now be demonstrated. Before the first step, D has dimension n, which is the number 

of rows and columns. In the first step, two objects will be merged to form a cluster; then, 

considering all the other objects as clusters, there will be n-1 clusters in a set G"-' having 

individual clusters G:" , i = 1.. .n-1. The dissimilarity matrix involving these clusters will 

now have dimension n-1. In general, after the kth step, there will be n-k clusters in a set 

G"' , and the dissimilarities will be contained in the matrix Dn-k with entries The 

updated contiguity matrix will be denoted by Cn-k , and have elements c ; -~ .  

At the kth step of the algorithm, k = 1.. .n-1, the next cluster is formed by searching for 

hk , the lowest dissimilarity between any two contiguous clusters G;-('-') and Gn(k-l).  
J . 

Suppose the two clusters satisfying this criterion are G:"") and G?(~-') 
J* 

. The 

dissimilarity between this newest cluster, G:;"-" u G J* n-(k-l) , and all other clusters 



~ n - ( k - 1 )  

g 
, g B: {i*, j*) , must now be determined. The revised matrix DnWk is constructed from 

the preceding dissimilarity matrix Dn-'k-" by the following steps: 

1. Move the two rows and columns of D"-(~-" corresponding to clusters G:?+') and 

G"(~-" to the bottom two rows and the two rightmost columns of Dn-'-'I, thus creating a 
J* 

re-ordered version of the matrix, D"-'~-" . These two rows and columns will later be 

replaced with a single new row and column describing the dissimilarities between this 

newly formed cluster and all the others, which were unaltered in step k. 

2. Calculate a vector w of length n-k, with entries given by (Gordon, 1996b): 

where the parameters a1 , a2, p and y may be varied in accordance with the desired 

agglomerative algorithm. This general form allows many algorithms to be tested using 

the same computer program. 

Under the complete linkage method, the elements of w are calculated by setting 

(al, a2, p, y) = (i, i, 0, $) in the general agglomerative formula given above. It can be 

seen that this simplifies to taking maxima of pairs of dissimilarity values: 



3. Finally, delete the last two rows and columns in D"-'~-" and replace them by the 

vector w and its transpose, respectively, making a new last row and new right-hand 

column. The matrix so formed, of dimension n-k, is the matrix Dn-k . The diagonal 

elements of a dissimilarity matrix are not meaningful, and may be replaced by zeros. 

When using complete linkage, at each step of the algorithm, we keep track of the 

maximum dissimilarities between any two objects in a cluster, and so it is not necessary 

to re-visit the original dissimilarity matrix D.  For the construction of Dn-k, all the 

dissimilarity values required are present in the matrix Dn-'k-l' . This type of argument will 

also apply to single linkage, but not, for example, to average linkage, where the original 

matrix D must be consulted at each step. 

The contiguity matrix, using complete linkage, can be revised in an analogous way. This 

is true only because the complete link method is being used. The only difference with the 

contiguity matrix is that the maxima are taken over values of a binary matrix. 

4. Using the updated matrices, clusters are successively agglomerated until only one 

remains. 

3.5.4 Reversals 

Overall, complete linkage is the most robust linkage method. Robustness is often 

assessed in reference to reversals. Suppose two clusters have merged in the previous step. 

A reversal occurs when a third cluster is more similar to the new cluster than the two 



clusters which joined are to each other. Conditions necessary for the absence of reversals 

are given by Gordon (1996a) in terms of the clustering parameters a1 , a2, B and y : 

(i) y 2 - min ( a ~ ,  a2) ; 

(ii) a1 + a 2  2 0 ; and 

(iii) a1 + a2 + p 2 1. 

Reversals are more likely under contiguity constraints as similar objects may not become 

contiguous until later in the clustering process, that is, after other intervening objects 

have joined. In fact, complete linkage is the only major method immune to reversals 

when contiguity is defined in terms of the individual objects (Murtagh, 1985). This is 

because condition (iii) above becomes stricter when constraints are present (Gordon, 

1996b). The revised condition is: 

(iii) min [a1 + a2, y + min (al, az)] + P 2 1. 

3.6 Collision Severity Example - Clustering 

The methodology discussed in the previous section will now be applied to collision 

severity in one particular territory, whose contiguity structure has been determined using 

the criteria in section 3.2, and whose data have been adjusted as per sections 3.3 and 3.4. 

Figure 3.1 is the map of this sample territory with 11 objects labelled by letters of the 

alphabet: A, C, E, J, K, L, M, N, P, S and Z. 



Figure 3.1 Map of original objects in territory 

The contiguity matrix for this set of objects is specified in Table 3.8: 

Z E S P A C K L M N J  

Table 3.8 Contiguity matrix C , for selected territory 

3 1 



Although it appears from Figure 3.1 that object P might have more than one neighbour, 

objects Z, E, S and C are not defined as contiguous for the reasons given in section 3.2. 

The matrices in this section are all symmetric and so only the sub-diagonal elements are 

shown. The object dissimilarity matrix is displayed in Table 3.9, with its values rounded 

to the nearest integer: 

Z E S P A C K L M N  J 

Table 3.9 Dissimilarity matrix D ,  for selected territory 

To illustrate how clustering proceeds, the 4th, 5" and 6th steps of the complete linkage 

algorithm are illustrated. After the first three iterations, the contiguity and dissimilarity 

matrices are as shown in Tables 3.10 and 3.1 1 : 



S 

P 

A 

C 

K 
J 

EZ 

LMN 

S P A C K J EZ LMN 

Table 3.1 0 Contiguity matrix c8, after 3rd step 

I s P A C K J EZ LMN 

LMN 1 1137 446 133 231 65 357 283 

Table 3.1 1 Dissimilarity matrix D ~ ,  after 3'(' step 

The eight smallest values in the dissimilarity matrix above correspond to values of zero in 

the contiguity matrix, which means that the corresponding mergers are not permitted. It is 

objects P and A which have the lowest dissimilarity among contiguous pairs. We create a 

new row at the bottom of the matrices in Tables 3.12 and 3.13 for this new cluster called 

AP. It is contiguous to object S and cluster LMN since object A was contiguous to both 

of these, and object P was only contiguous to object A. Notice in the matrices below that 

the rows and columns corresponding to objects A and P have been deleted, 



I s C K J EZ LMN AP 

LMN I 0 0 1 1 0 

Table 3.1 2 Contiguity matrix C7 , after 4'h step 

S C K J EZ LMN AP 

Table 3.1 3 Dissimilarity matrix D7 , after 4th step 

The next merger is between a single object, K, and the cluster of three objects, LMN. 

This is true because neither objects S and C nor clusters EZ and AP are contiguous, and 

all other lower dissimilarities were previously ruled out. We now give details of the 

construction of the matrix D" Following step 1 of section 3.5.3, we obtain the matrix 

fi7 displayed in Table 3.14: 



I s C J EZ AP K LMN 
S 

C 

J 

EZ 

AP 

K 

LMN 

Table 3.1 4 Dissimilarity matrix D7 , during 5th step 

and the vector w from step 2 is constructed by taking maxima of the following pairs of 

values from 8' : (786, 1137); (231,231); (422, 357); (268,283); and (373,446). This 

vector forms the new row KLMN, which appears at the bottom of Table 3.16. The 

contiguity matrix C6 is obtained similarly and shown in Table 3.15. 

I s C J EZ AP KLMN 

Table 3.1 5 Contiguity matrix C6,  after 5th step 

EZ 

AP 

KLMN 

1 0 0 

1 0 0 0 

0 1 1 0 1 



EZ 

AP 

KLMN 

S C J EZ AP KLMN 

Table 3.1 6 Dissimilarity matrix D 6 ,  after 5th step 

In the 6" step, object S joins cluster AP. The matrices for the remaining five clusters are 

given in Tables 3.17 and 3.18. The last row in Table 3.18 is the transpose of the first 

column in Table 3.16, after deleting the rows corresponding to object S and cluster AP. 

This is because cluster AP is less dissimilar to each other cluster than object S is. 

KLMN 
APS 

C J EZ KLMN APS 

Table 3.1 7 Contiguity matrix C5, after 6th step 

C 

J 

EZ 

KLMN 

APS 

Table 3.1 

C J EZ KLMN APS 

8 Dissimilarity matrix D5 , after 6th step 



Clustering continues until all objects occupy a single group. The next step would be to 

combine the two clusters EZ and APS, followed by object C and cluster KLMN, then 

object J and cluster CKLMN. At the last step, the two remaining clusters are joined. 

3.7 Methodology for Frequency Data 

We now turn to the discussion of the frequency count data. Unlike the severities, these 

data are only available in the grouped format of Table 3.19. The number of claims 

observed, W, during the terms of individual policies belonging to object Ok is tabulated, 

for all policies having one or more claims. The exposure for each of these policies is also 

determined. Then the total exposure, E ~ c  , is calculated among all policies having exactly 

c claims, c > 0, during their terms. 

# of claims, c, Sum of exposure for Product of # of 
policies with exactly c claims & sum of 
claims during term (Eke) exposure ( c  Eke) 

EIO = EI - c;=~ E~~ 0 

El 1 El 1 

Table 3.19 Format of frequency data 



For each object Ok , the exposure counts for policies with claims, Eke (c = 1,2, . . .) are 

multiplied by the factor uk , described in section 3.4. The notation will be unchanged for 

these adjusted exposures. The total object exposure, Ek , is obtained from a separate 

database and used to calculate the total adjusted claims-free exposures, Eko , as in Table 

3.19. 

3.7.1 Collision Frequency 

One possible model for these frequencies is the Poisson distribution. The Poisson 

probability mass function for the number of claims, W, is given by: 

The estimate of the rate parameter within each object does not correspond to the usual 

notion of claims frequency in insurance. The numerator in the formula contains 

exposures rather than policy counts. This lessens the impact of short-term policies by 

weighting them with an exposure of less than one. For object Ok , the maximum 

likelihood estimate of hk is easily derived to be: 

The log-likelihood of the object Oj data under the model estimated from the object Oi 

data is: 



~a = log I I , = ~ , ~  ,... [p (c; Xi)] EF = log (Xi) (~~=o, l , . . ,  c E~C) - x i  E, - Z ~ = , I  ,.. EJC log (C !) 

As for severities, the dissimilarity matrix consists of the symmetrized deviance drops: 

J$' 4 = (Aj + Aji) / 2 i, j = l...n; J < i 

Clustering then proceeds in exactly the same fashion as for severity data. 

3.7.2 Comprehensive Frequency 

The Poisson distribution is often used in the context of rare events and thus may not be 

suitable for modelling the frequency of perils such as vandalism and theft from autos. 

This is because there are enough policies with a large number of these types of claims to 

inflate the variance in claim counts far above the mean. The negative binomial 

distribution is employed in this case. 

The negative binomial probability mass function for the number of claims, W, is given 

by: 

r (I + c)qC 
P (W = c) = p (c; r, q) = 

~ ! r ( r ) ( l + q ) ' + ~  

and so the log-likelihood of the object Oj data using the parameters fi and Gi estimated 

from the object Oi data is then: 



L = log n,=o,~,...[p (c; ti, Gill E'c 

- 
- LO,I ,... Ejc [log {T (i'i + C) 1 [C ! T (fi)]) + c log (Gi) + (fi + C) log (1 + Gi)] 

The symmetrized deviance drop is again used as the dissimilarity measure, and clustering 

is performed as before. 

3.8 Synthesis of Results 

Suppose we have the results of the separate cluster analyses on the four coverage and 

attribute combinations. The desired output is a single set of clusters within the territory. It 

is not straightforward to determine the best number of clusters. The dissimilarity values 

are not directly comparable across analyses. One can note jumps in the pattern of values 

in each case but there is little chance that these will correspond exactly. 

Gordon (1999) formalizes the process of combining the results of multiple analyses. He 

defines three main consensus rules. Under the strict consensus rule, only clusters 

appearing in all analyses are included as part of the combined set. A somewhat relaxed 

version of this is the majority consensus rule, which only requires the final clusters to be 

present in more than half of the individual classifications. Finally, the median consensus 

rule seeks to minimize the number of classes retained which occur less than half of the 

time. 

The strategy employed here can be described as a combination of consensus and outlier 

re-allocation, applied in turn. The analyses can be presented in terms of four sets of maps. 

To have a meaningful comparison between the different results, each clustering sequence 



must be frozen at the same step of the algorithm and a snapshot taken. Then the maps can 

be overlaid and a combined set of results produced. 

In the Lower Mainland, nearly 314 of the objects had at least one neighbouring object 

which was in the same cluster as the object, for all four combinations of coverage and 

attribute (see Table 3.20). This was assessed once each of the individual analyses had 

reached 11 clusters, a number determined largely by trial and error. For the Southern 

Interior, just under 213 of the objects were in perfect agreement, while the percentage was 

higher in the medium-sized territories. 

Territory 

I Prince George Area 1 82% 1 

Perfect 
Matches 

Kootenays 

Mid IslandISunshine Coast 

92% 

91 % 

Table 3.20 Proportions of objects satisfying strict consensus rule 

Lower Mainland & Fraser Valley 

Southern Interior 

This process leaves a minority of the objects unassigned to a cluster. Judgement is then 

applied to fill in the gaps. There are several considerations which can be helpful: 

72% 

64% 

(i) 

(ii) 

(iii) 

a singleton object could be landlocked by a cluster; 

an object could match a particular cluster on three of the four maps and it seemed 

reasonable to accept the single difference; 

a group of outstanding objects could be formed into an additional cluster because 

they were most similar to each other; 



(iv) one could determine that an object was about to join a cluster by examining what 

the next few mergers would have been. 

By using these considerations, a reasonable set of consensus clusters was produced in 

each existing territory. The cut-off number of steps was chosen for each territory having 

in mind an acceptable range for the number of new clusters, based on the population of 

the original territory. 

3.8.1 Example - Synthesis 

We now show how a set of results obtained as in section 3.6 can be combined. In the 

example, the first two mergers for collision severity, as well as the second two, occurred 

at very comparable dissimilarity values. After that point, the gaps gradually increased, 

until there was a very large jump in dissimilarity when performing the final merger. 

Table 3.21 displays the dissimilarity values of the mergers for all four analyses run on 

this territory. 



Table 3.21 Dissimilarity values for mergers 

The results of the four cluster analyses must then be synthesized. The information in 

Table 3.21 is used as an aid in deciding where clustering should be stopped. We observe 

for comprehensive frequency, it would not be advisable to stop at three clusters, as 

another merger could be performed with a minimal increase in dissimilarity. Since there 

are only 11 objects in the territory, stopping with three or more clusters would likely 

result in too many groupings. Therefore, a snapshot of the four analyses was taken with 

two clusters remaining. Four maps were produced, and when overlaid, resulted in the 

groupings in Figure 3.2. 

Collision 
Frequency 

0 

Comp. 
Severity 

7 

Clusters 
Remaining 

10 

Comp. 
Frequency 

7 

Collision 
Severity 

22 



Figure 3.2 Strict consensus clusters 

Nine of the 11 objects from Figure 3.2 were in agreement on all four maps. The other two 

hatched objects, C and M, did not satisfy the strict consensus rule. Object C matched with 

the cluster JKLN on three of the four maps, while in case of comprehensive severity, it 

stood alone as a cluster and all other objects occupied the other cluster. The small circular 

object, M, also matched the cluster JKLN on three of the four maps, but not the same 

three maps as for object C. It was its own cluster for collision fi-equency. If the majority 

consensus rule was applied, objects C and M joined cluster JKLN to produce the two 

clusters displayed in Figure 3.3. 



Figure 3.3 Majority consensus clusters 

3.9 Outlying Objects 

Upon inspection of the object loss ratios within the clusters in each territory, a number of 

objects was identified which did not seem to fit well in their assigned clusters. It was then 

decided to allow these areas to move to clusters that were not necessarily contiguous but 

contained objects with more similar loss ratios. In cases where a better suited match was 

not found, no change was made. 

The decision to redistribute some objects was generally based on outlying loss ratios. It 

was then of interest to compare how the adjusted loss costs fit in after these re-groupings. 

The adjustment refers to isolating the territory effect by controlling for other rating 



factors, as discussed in sections 3.3 and 3.4. It turns out that most of the differences 

between loss cost and loss ratio relativities were less than 3%. This would indicate that 

the data normalization process had been performed adequately. 

3.9.1 Example - Outliers 

At this point, the loss ratios were examined for the objects in each cluster to ensure that 

any outlying objects were re-assigned. Object C was identified as an outlier, as its loss 

ratios were somewhat higher than those of the other objects in cluster 2. The decision was 

made to re-allocate object C to cluster 1, resulting in the revised territory map in Figure 

3.4. 

Figure 3.4 Map of final clusters for territory 



3.10 Other Territories 

The clustering algorithms were not run on any of the rural territories in northern British 

Columbia or smaller territories along the coast. Due to their small populations, it would 

not have been advisable to split these territories. 

The only urban territory which did not produce satisfactory results was the Victoria area. 

This territory incorporates a strange mixture of regions including Southern Vancouver 

Island as well as other islands west of the mainland. It includes relatively accessible 

areas, and also less populated and more remote regions like the Queen Charlotte Islands. 

A major difficulty lay in defining contiguity among islands. Many of the islands are 

connected by ferry to ports located in different territories. This means the island is not 

contiguous to any other part of its own territory, except possibly other islands. An 

additional problem is the lack of data, as most of these islands have very small 

populations. It was decided to form four island groups that would have a credible amount 

of data. These objects were not clustered along with the Vancouver Island portion of the 

territory. 



4 Diagnostics 

4.1 Alternative Models for Severity 

The lognormal distribution used in chapter 3 is just one possible model for claims 

severities; one might also consider Gamma, Weibull, Pareto, exponential and other 

distributions (Klugman et al., 1998). Some of the other common loss distributions were 

not considered for various reasons: the Pareto distribution is not available in standard 

statistical computing packages; normal and logistic distributions are symmetric, while the 

data presented here are clearly not; Weibull, inverse distributions and various 

transformations were considered unnecessarily complex. We consider only the lognormal 

and Gamma families. 

4.1.1 Collision Severity Models 

Plots were constructed to compare the cumulative distribution functions of the fitted 

lognormal models to the empirical CDFs of collision severities. The plots showed that the 

lognormal distribution does not generally fit well in the tails. Figure 4.1 is the plot of the 

empirical (solid) and fitted (dotted) distributions for one such representative object. The 

scale along the x-axis has been removed for confidentiality reasons. 



Figure 4.1 Empirical and hypothesized lognormal CDFs 

The two parameter gamma distribution is a much better fit in the upper tail, however it is 

not a good fit in the lower tail. This is likely because method-of-moments estimators 

were used, and these are greatly affected by larger values. The exponential distribution 

was examined and fits quite well, especially in the tails. This suggests that the density 

may be strictly decreasing, instead of initially increasing. However, upon inspection of 

the empirical distribution functions, this monotonicity was not observed for all of the 

objects. The collision severity cluster analysis based on an exponential model was run for 

one territory, but it resulted in one of the clusters containing a disproportionate number of 

objects. Finally, the best option seemed to be to tolerate the imperfections of the 

lognormal model, assuming that it might not affect the clustering outcomes greatly. 



4.1.2 Comprehensive Severity Models 

The lognormal model seemed to perform much better for comprehensive severities than 

collision severities, especially in the tails. The exponential model is not a good fit here. 

Gamma distributions fit well only in the right tails, again likely due to the chosen method 

of estimation. Furthermore, the lognormal distribution seems to fit adequately based on 

the plots of the empirical and estimated distribution functions. 

4.2 Alternative Models for Frequency 

Three counting distributions, the binomial, Poisson, and negative binomial, are 

commonly used in insurance (Klugman et. al, 1998). The binomial distribution is useful 

in life insurance, or other instances where at most one claim occurs for each of a set of 

policies, and where the variance in claim counts does not exceed the mean. For collision 

and comprehensive automobile insurance coverages, multiple claims are possible and 

variances are not generally less than means. Therefore, we consider only the Poisson and 

negative binomial distributions. 

4.2.1 Collision Frequency Models 

The Poisson is a single parameter counting distribution with the restriction that the mean 

equals the variance. The results of the x2  test for the Poisson distribution in the territory 

with the highest collision frequency showed one quarter of the statistics significant at the 

1% level. This was because the probabilities of two or more claims were being 

underestimated by the Poisson model. The estimates of the overdispersion were mostly in 

the 1 - 3% range. However, when attempting to fit negative binomial models for collision 



frequency, there were several objects with a maximum observed value of two claims 

during a policy term, and for these objects, the variance was not greater than the mean. It 

was expected that an even greater problem would arise with such objects in the other 

territories with lower collision frequencies. Therefore, the Poisson distribution was 

selected to model collision frequency. 

4.2.2 Comprehensive Frequency Models 

Comprehensive frequency has a much longer-tailed distribution than collision frequency 

since occurrences of multiple claims are more likely. However, there are no claims 

against the majority of policies during a year. Most of the probability mass function for 

comprehensive frequency is still concentrated at 0 and 1, as it is for collision frequency. 

Then fitted Poisson models have tails which decrease too quickly to account for the 

probabilities of five or more comprehensive claims. Policies with this many 

comprehensive claims were present in most objects, and Poisson models were easily 

rejected by the x 2  test. 

Since the variances in comprehensive frequency clearly exceed the means, a negative 

binomial model is proposed. For one of the territories with moderate frequencies, the 

likelihood ratio tests of Poisson versus negative binomial favoured the latter distribution 

in every case. In this territory, about 10% of the objects were not a good fit to the 

negative binomial model, according to the x2  test at a 1% significance level. The 

negative binomial model would be rejected for one-third of the objects if the significance 

level were set at 10%. 



4.3 Dissimilarities 

A number of graphs were created to check various properties of the dissimilarities during 

the clustering of Lower Mainland collision severity. The iteration number for the first 

merger of each object, and the corresponding dissimilarity value, were plotted against 

both the total number of claims, and the number of original neighbours. Also, mean 

severity and its rank among all values were plotted against the time of the first merger. 

None of these graphs indicated any obvious biases in the complete linkage algorithm. 

Three of the charts described above are presented here. Each point in the graphs 

represents an individual object at the time it first joins a cluster. Figure 4.2 shows the 

dissimilarity values associated with the first mergers of the original objects in a territory. 

In the later iterations, it does not appear that the size of an object influences when it first 

merges. Apart from the outlier with the largest dissimilarity, if one examines the sizes of 

objects across any range of dissimilarity values above 20, the distribution of object size 

does not appear to depart significantly from a uniform distribution. 



i o n  

Object size (claim count) 

Figure 4.2 Dissimilarity values of first mergers 

In Figure 4.3, the mean severity for each object is plotted as clustering proceeds in time 

along the x-axis. When there are two points at a single step, it indicates that two singleton 

objects were combined to form a new cluster. This is the case in most of the early 

iterations. Later on, a single severity value for a step means that a singleton object joined 

an existing cluster. If there is no point plotted for a particular iteration, two existing 

clusters were merged at that step. This is common in the later stages of agglomeration, 

after most objects have joined a cluster, which occurs by about step 45 in Figure 4.3. 



Step of algorithm 

Figure 4.3 Collision severities of merged objects 

Figure 4.4 reveals the relationship between the number of neighbours an object has in the 

original contiguity matrix, and how soon it first joins a cluster. It might seem plausible 

that an object with more neighbours would be more likely to join a cluster earlier. 

However, for objects with any given number of original neighbours, there are always 

some objects which merge early and others which merge late in the algorithm. 
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Figure 4.4 Steps of first mergers by number of neighbours 

One final graph was created to assess the dependence of the symmetrized deviance drops 

on object size. The dissimilarity value upon merger of the last few singleton objects to 

join a cluster is such that it ranks between the 7oth and 85th percentile of all values in the 

original dissimilarity matrix D.  Figure 4.5 does show an increasing trend in the 

magnitude of 80' percentiles of object dissimilarities, dm , versus object claim counts. 

These percentiles were determined by ordering the n-1 dissimilarities between a given 

object and all others. 



Object size (claim count) 

Figure 4.5 8oth percentiles of object dissimilarities by number of claims 

It should be noted that these higher percentiles of the dissimilarity values only affect the 

clustering for the few objects which do not merge until late in the algorithm. It may be 

that most of the clustering process is not greatly affected by the dependence on the 

number of claims. This is an issue which could be more fully explored in the future. 

4.4 Other Clustering Methods and Algorithms 

4.4.1 Single Linkage 

For two reasons, the single linkage method was not as compatible with the objectives of 

this study as the complete linkage method. First of all, single linkage is prone to chaining. 

It would not be desirable here to have one cluster which contained far more objects than 

the other clusters. Secondly, single linkage produces very differentiated clusters, but they 



may not be very homogeneous. It is important that objects be similar to others in the 

same cluster, since the part of the insurance rate which is based on the territory will 

become the same for all objects in the cluster. It is not a problem if a separate cluster 

happens to have similar characteristics. A single linkage algorithm was tested on Lower 

Mainland collision severity data. In the intermediate iterations, a steady 70 - 80% of the 

clusters were singleton objects, meaning that chaining did take place. This reinforced our 

choice of the complete linkage method. 

4.4.2 Contiguity Constraints 

It was necessary to write specialized computer programs to ensure contiguity of clusters. 

This is because clustering functions and procedures in the standard statistical computing 

packages do not handle geographical contiguity constraints. The contiguity structure 

would need to be incorporated directly into the dissimilarity matrix in order to make use 

of existing software. It seemed unlikely that actual data differences would be preserved 

under this approach so it was not attempted. 

Also, an unconstrained analysis was produced for comparison purposes, however the 

agreement between it and the corresponding constrained classification was only 11%. In 

other words, only one in nine objects belonged to the same cluster under both approaches. 

The removal of contiguity constraints was soon dismissed since this type of analysis 

would rely heavily on tedious judgements to determine the final clusters. 

It is instructive to note that when a set of three territories was clustered simultaneously, 

the resulting clusters followed the boundaries of the original territories without any 



overlap. This satisfied the legal constraint on the analysis, which would not likely be met 

if the entire province were clustered at once. 



5 Future Studies 

Many aspects of this cluster analysis could benefit from further investigation. Future 

work may be grouped into three main categories, those issues which would affect the 

analyses prior to, during and after clustering, respectively: 

(0 

(ii) 

(iii) 

data used in clustering: object definitions, alternate attributes, sources of data 

variation; 

dissimilarity and contiguity matrices: dissimilarity measures, distributional 

models, and approaches to contiguity; 

post-analysis validation: alternatives to consensus clusters, methods of evaluating 

and improving homogeneity and stability of clusters. 

The next three sections describe various ideas belonging to each of these categories. 

5.1 Additional Data 

Competitors are likely to respond to any change in pricing strategy, so it will be 

important at some point after implementation of new territories to study the variation 

within objects (i.e. better and worse neighbourhoods). The postal code is probably too 



fine a geographical breakdown but the vital statistics code or census tract might work 

well if they could be mapped from the existing structure. If a finer breakdown than the 

current proposal is ultimately employed, using surrounding clusters to develop rates 

would become more important, as less of the individual objects would possess sufficient 

claims histories to accurately estimate their true claims characteristics. 

In some ways, loss cost is a better claims attribute to look at than frequency or severity 

alone as it incorporates both components of the loss process. However, loss cost is 

generally a single number defined for a group of policies and thus there is no basis for 

comparison between groups other than absolute differences. (The same could be said for 

group frequency or mean severity). To get a meaningful comparison, loss costs are 

needed on an individual policy basis or other finer breakdown, and these are difficult to 

obtain. The problem with individual policy loss costs is that they are not uniformly based 

on annual policy terms. This causes difficulty in calculating the number of policies with 

no claims, and in using the shorter term data meaningfully. We could also use a grouping 

such as monthly or annual loss costs to compare objects but it is not clear how 

dissimilarity would be measured in these cases. 

Eventually, leased vehicles could be included in the study as geographical information 

becomes available; this could result in more accurate groupings in the future. Some 

further adjustments to the data might also improve the clustering results. Losses could be 

modelled including deductibles, and data could be adjusted for historical trends where 

frequencies have changed due to loss reduction initiatives. Another source of data 

variation which might be adjusted for is short-term policies. 



5.2 Mathematical Issues 

A major question which is challenging to assess is the effectiveness of the dissimilarity 

measure, e.g. would a sample size adjustment to yield an asymptotic x2  distribution for 

the deviance drops produce better results? The use of a non-parametric dissimilarity 

measure, such as the difference between the Kolmogorov-Srnirnov statistics for two 

empirical frequency or severity distributions, could also be considered. 

With a moderate amount of effort, it would be possible to fit a number of additional loss 

distributions, besides those of the lognormal and Gamma families, to the severity data. 

This could reveal if a more complex model would give significantly different or better 

clustering results. 

A slightly different approach to the clustering algorithm would be to require contiguity 

up to a certain step, and then to begin to combine scattered groupings. This would not 

likely produce contiguous final clusters, and would require a change in historical 

direction to be deemed acceptable. 

5.3 Cluster Assessment 

If separate final clusters were allowed for collision and comprehensive coverages, further 

simplifications to the groupings would be possible. For example in the Lower Mainland, 

most of Vancouver had similar collision results but there was a large variation in 

comprehensive experience. This strategy would also help to deal with some problem 

objects which matched their assigned cluster for one coverage but not the other. 



Social census data such as income, education and population could be incorporated to 

form more homogeneous clusters. It would be difficult to include this data directly in the 

clustering process, so it would likely be simpler to integrate it when choosing the number 

of clusters, or allocating outliers to clusters. 

A final topic to explore would be splitting the data by time period to assess the stability 

of territory assignments. It is suspected that the groupings would not change greatly, 

based on the fact that the loss ratio relativities of each cluster changed very little when the 

data were updated to include 2002 claims. The differences were less than 3% for the 

majority of clusters. 
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