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Abstract 

Based on U.S. data, Antris (2004) illustrates that the assumption of Hicks-neutral 

technological change necessarily biases estimates of the elasticity of substitution between 

capital and labor towards one, given Berndt's (1976) specification. Modifying the 

specification to allow for biased technological change, he obtains significantly lower 

estimates of the elasticity. Using Canadian data, I obtain similar results. This suggests that 

a Cobb-Douglas specification of Canada's aggregate production function may be 

misleading. 
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1 Introduction 

The elasticity of substitution between capital and labor plays an important role in economic 

theory. In particular, different values of this elasticity result in different implications in 

models of economic growth or income distribution. For instance, the sustainability of 

long-run growth in the absence of technological change depends crucially on whether the 

elasticity of substitution is greater than or smaller than one. In addition, the elasticity of 

substitution may affect tax incidence between capital and labor. A lower elasticity is also 

associated with a lower response of investment to tax benefits. Therefore, the elasticity of 

substitution between capital and labor is of significant policy interest1. 

Empirically, the value of the elasticity of substitution for the U.S. manufacturing sector has 

been widely estimated since the derivation of the Constant Elasticity of Substitution (CES) 

production function by Arrow et al. (1961). In particular, Berndt (1976) reconciled the 

difference between time-series and cross-sectional studies, by use of high-quality data, and 

found the estimates to be insignificantly different from one. As is well known, a CES 

production function with unity elasticity of substitution is Cobb-Douglas. 

Antris (2004) demonstrates that the assumption of Hicks-neutral technological change 

necessarily biases estimates of the elasticity of substitution between capital and labor 

towards one, given Berndt's (1976) specification. The source of the bias can be understood 

as follows. 

' See Antris (2004) for the literature sources of more examples concerning implications of the elasticity of 
substitution. 

1 



Suppose aggregate output Y, can be represented by a production function of the form: 

Y, = A,F(K,,L,), 

which is characterized by constant returns to scale in the two inputs, capital Kt and labor 

Lt . The parameter At is an index of technological efficiency, in the sense that it has no 

effect on the ratio of marginal products for a given capital-labor ratio. Profit maximization 

by firms in a competitive framework delivers two optimality marginal product conditions: 

rt = f '(kt) and wt = f (kt) - f '(kt)kt , where k is the capital-labor ratio, f (k) is output per 

unit of labor, and r and w are the real rental prices of capital and labor, respectively. 

Combining these two conditions, we have 

rt -.kt = f '(kt )kt 
wt f (kt - f '(kt )kt ' Or 

The left-hand side of this equation is the ratio of capital and labor income, which is known 

to be stable in the United States, while the capital-labor ratio has steadily increased for the 

2 post-war years. Then this equation can be consistent with the U.S. data only if 

f '(kt )kt / f (kt) is not a function ofk, , i.e., f '(kt )kt / f (kt ) = a where a is a constant. 

Solving this differential equation yields f (kt) = Ck; (C is a constant of integration), which 

is a Cobb-Douglas production function, characterized by a unit elasticity of substitution. 

Since the approach of Berndt (1976) consists of running log-linear specifications closely 

This is also true for the Canadian economy. 

2 



related to the expression above, his finding of a unit elasticity of substitution should not be 

surprising. 

As noted in Antras (2004), the Cobb-Douglas production function is no longer the only one 

consistent with stable factor shares, when technological change is allowed to affect the 

ratio of marginal products, i.e., the technological change is not Hicks-neutral. Modifying 

the specification to allow for biased technological change, he obtained significantly lower 

estimates of the elasticity. 

The estimation of Antras (2004) is based on time-series data from the private sector of the 

U.S. economy for the period 1948-1 998. To verify his arguments, I make a replication of 

that paper with Canadian data. And the results of my estimation turn out to be consistent 

with those obtained by Antras: With Hicks-neutral technological change, more than half of 

the estimates are insignificantly different from one, while most of them are significantly 

lower than one under biased technological change. 



2 Model Specification 

Following Antris (2004), I assume that aggregate production in the Canadian business 

sector can be represented by a constant returns to scale production function, which is 

characterized by a constant elasticity of substitution between the two factors, capital and 

labor. Arrow et al. (1961) derived a CES functional form for the production function as 

below: 

where Y, is real output, Kt is the flow of capital services, Lt is the flow of labor services, 

A, is a Hicks-neutral technological shifter, 6 is a distribution parameter, and the constant 

a is the elasticity of substitution between capital and labor. a is defined as 

a = d log(K I L) 1 d log(F, 1 FK ) , where F, and FK are the marginal products of capital 

and labor, respectively. Berndt (1976) defines the aggregate input functione = Y, /At ,  

which is independent of A, given the assumption of Hicks-neutral technological change. 

Assuming competitive markets, profit maximization by firms gives two first-order 

marginal productivity relations: real factor prices equal real value of their marginal 

products. Taking logarithms and adding an error term, we obtain 

log(F, 1 Kt ) = a, + a log(R, I P, ) + E,,, (1) 

log(Ft l L, ) = a, + a log(Wt / P, ) + E,., (2) 



where R, , W, , and P, are the prices of capital services, labor services, and aggregate input 

F, , respectively, and a, and a, are constants that depend on a and S . As pointed out by 

Antris, the disturbance terms can be explained as optimization errors. If we subtract (1) 

from (2) ,  we obtain a third equation 

log(K, IL,) =a, + o l o g ( y  lR t )+z3 ,  

In the above equations prices are assumed to be exogenous. However, if actually they are 

endogenous, OLS estimates will be inconsistent with the direction of the bias unknown. As 

noted by Berndt (1976), even if both prices and quantities are endogenous, in our small 

sample case it may be desirable to ignore the simultaneous equations bias and estimate the 

reciprocal regressions from equations (1) through (3) by OLS: 

log(R, 1 P, ) = a, + (1 l o )  log(< I Kt ) + E,,, 

log(W, 1 4 )  = a, + (1 I a )  log(F, 1 L, ) + E,,, 

log(W, 1 R, ) = a, + (1 1 a )  log(K, 1 L, ) + E,,, 

To be convenient, denote the estimates of o based on equations (1) through (6) bya,  , i = 

1,. . ., 6. As shown in Berndt (1976), in this bivariate regression setting, we have following 

relationships for the OLS estimates: 

where R: refers to the R-square in equation i, for R2 here is just the squared sample 

correlation coefficient between the two variables. Since R2 I 1, we always have 



inequalities o, I o, , a, I o, , o, I a,. And it is clear that the standard and reverse 

estimates are closer if the R-square in the OLS regression is larger. 

Berndt (1 976) pointed out that estimates of the elasticity of substitution seem to vary 

systematically with the choice of functional form: regressions based on the marginal 

product of capital equation (1) generally produce lower estimates of o than regressions 

based on the marginal product of labor equation (2). And it is confirmed again by Antriis 

(2004) - his estimates are consistent with this empirical regularity: a, < a,. 



3 Data Construction and Sources 

As can be seen from equation (1) through (6), the data required for the estimation are: the 

flow of labor services L, , the nominal price of labor services W, , the flow of capital 

services K t ,  the rental price of capital R, , the aggregate input index 4 ,  and the price of 

aggregate input P, . 

Antras (2004) used the U.S. private sector data. However, there is no such a counterpart in 

Canadian data. Statistics Canada segments the economy into business sector and 

non-business sector, instead of private sector and public sector. Since the differences are 

not expected to be significant (see Harchaoui et al., 2001, pp. 168-169), I use Canadian 

business sector data for estimation. 

For my project, all the data are retrieved from CANSIM database of Statistics Canada. 

Thanks to the Statistics Canada's Multifactor Productivity Program, I could directly obtain 

annual Fisher chained index series for all the six variables for the period 1961-1997. 

L, , the flow of labor services, or labor input, is measured as a weighted sum of hours 

worked by industry where the weighs are defined as the industry's share in the total labor 

compensation. The weights are assumed to reflect the differences in the composition of the 

labor force, or labor quality, by industry. 



W, , the nominal price of labor services, or price of labor input, is taken to be equal the total 

compensation of all jobs divided by L, . Compensation of all jobs includes wages, salaries 

and supplementary labor income accrued to employees and self-employed. 

Kt ,  the flow of capital services, or capital input, is assumed to be proportional to real 

capital stock, which is weighted by asset prices. 

Total capital income is a residual as total income minus all other input costs. And the rental 

price of capital, Rt , is computed as the ratio of total capital income to the real capital 

stock K t .  

The aggregate input index F, is calculated as follows: 

F , l  Lt 1 
- = -(sf + &)- + - (s: + )- Kt , 
- 1  2 - 1  2 Kt-, 

where sf and sf represent the input shares in terms of compensation (hence sf +sf =I). 

The price of combined input index P, is constructed implicitly as (R, Kt + WtLt ) IF,, i.e., 

the sum of labor compensation and capital compensation divided by<.  

As shown by Berndt (1 976), the quality of data is essential to the estimation. Guided in this 

way, Antras (2004) illustrated the effect of data quality on the estimates of the elasticity, by 

experimenting with different methods in the construction of these variables. Antras was 



able to benefit from recent literature on improvement of measurement of the U.S. capital 

and labor input. Statistics Canada is also proceeding with revision of estimates of capital 

and labor input, to reflect the heterogeneity and changing compositions of both types of 

input. The methodology used for this revision can be found in Gu et al. (2003) and 

Harchaoui et al. (2003). Unfortunately, for the time being the available quality-adjusted 

data only covers the period 198 1-2000. If we try to do estimation based on these refined 

data, we have to face serious small-sample bias. However, I still present the results from 

the estimation based on this sample of only 20 observations. For this data set, I use labor 

input and capital input volume index, which are available as CANSIM series, as Lt and Kt .  

And I construct their associated price index as the ratio of factor compensation and input 

index. Following Berndt (1976) and Antras (2004), I construct the price of aggregate input 

P, as a Tornqvist aggregate index of Wt and R, . And the aggregate input index F, is 

computed implicitly as (R, Kt + W, L, ) I P, . 

Hereafter I denote the quality-adjusted data as data A and the unadjusted data as data B. 



4 Estimates under Hicks-Neutral Technological Change 

As same as Antrds (2004), I present estimates of the elasticity of substitution between 

capital and labor based on different estimation methods. First I report simple ordinary least 

squares estimates of equations (1) through (6) for both data configurations. Then I try to 

solve the problems caused by serial correlation in disturbances, endogeneity of the 

regressors, and nonstationarity of the series. 

4.1 Least Squares Estimation 

Table 1 presents OLS estimates of equations (1) through (6) for both data sets. Most 

notable is the huge difference between the estimates from different data configurations. For 

data configuration B, all the estimates of the elasticity are very close to unity. But data set 

A produces estimates quite lower than one. When we compare the standard errors and 

R-squares, we can find that quality-adjusted data make a poorer estimation with higher 

standard errors and lower R-squares, which are opposite to the finding of Antrds (2004). As 

high R-square makes standard and reciprocal estimates from the same first-order condition 

approach to each other, the estimates in column I1 cluster much closer, ranging from 0.997 

to 1.156. In contrast, the estimates of column I have a wider range from 0.359 to 0.742. The 

null hypothesis of a unit elasticity of substitution cannot be rejected at the 5% significance 

level for equations (1) through (4) for data set B, and equations (4) through (6) for data set 

A. Another point to be noted is that the low Durbin-Watson statistics for all the 

specifications suggest existence of serial correlation in the residuals. 



It seems that the inherent bias toward unity with assumption of Hicks-neutral technological 

change exposited by Antris (2004) is also found with Canadian data. However, the effect 

of data quality on estimation is found to be totally different. The undesirable estimates out 

of quality-adjusted data are very likely to be caused by the small-sample bias. Therefore I 

will proceed with data configuration B only. 

4.2 Feasible Generalized Least Squares Estimation 

The low Durbin-Watson statistics in OLS estimation suggest that there exist serial 

correlation in the residuals. A Ljung-Box test for autocorrelation was performed for all six 

specifications, and the null hypothesis of no autocorrelation up to order k was rejected in all 

six regressions for all k 1 16. Following Antris (2004), I also assume a standard AR(1) 

process for the autocorrelation structure, i.e., E, = p-, + U ,  where u, is white noise. 

To be consistent with Antris (2004), I also applied the two-step Prais-Winsten procedure 

to data configuration B. Column I11 of Table 1 reports the FGLS estimates of the elasticity 

of substitution. All the FGLS estimates are lower than the OLS ones. The estimates from 

equations (1) through (3) are lower than 0.80, far away from one. But the estimates from 

equations (4) through (6) become closer to one, ranging from 0.974 to 1.006. Similar to the 

results of Antris (2004), the FGLS standard errors are higher than the OLS ones but the 

difference is not so big. Now the estimates o, , a,, and o, are insignificantly different from 

one, while the null hypothesis of unity elasticity is rejected for the first three estimates. 



Table 1 Estimates with Hicks-Neutral Technological Change 

OLS FGLS GIV 

A B B B 

I I1 I11 IV 

1 0~ 0.376 0.997 0.760 0.672 

S.E. 0.087 0.056 0.066 0.078 

R2 0.511 0.902 0.792 0.687 

D-W 0.20 1 0.450 1 .030 0.594 

2 O2 0.359 1.039 0.770 0.704 

S.E. 0.087 0.059 0.069 0.086 

R2 0.484 0.899 0.780 0.662 

D-W 0.205 0.447 0.983 0.641 

3 c3 0.370 1.013 0.763 0.680 

S.E. 0.087 0.057 0.067 0.081 

R2 0.501 0.901 0.788 0.677 

D-W 0.203 0.445 1.002 0.607 
- 

4 O 4  0.736 1.106 0.974 0.921 

S.E. 0.170 0.062 0.081 0.1 12 

R2 0.511 0.902 0.805 0.666 

D-W 0.49 1 0.525 1.253 1.238 

5 O5 0.742 1.156 1.006 0.979 

S.E. 0.180 0.066 0.086 0.128 

R2 0.484 0.899 0.795 0.632 

D-W 0.504 0.521 1.262 1.239 

6 O 6  0.738 1.124 0.984 0.939 

S.E. 0.174 0.063 0.083 0.117 

R~ 0.501 0.901 0.802 0.653 

D-W 0.496 0.519 1.243 1.23 1 

No. of Obs. 20 37 37 3 6 



4.3 Generalized Instrumental Variable Estimation 

As explained in Antris (2004), estimating equations (1) through (3) and their reverse 

specifications exposes the existence of an endogeneity problem. Antras (2004) adopted 

three instruments as supply shifters to solve the problem of simultaneous equation bias: (1) 

U.S. population, (2) wages in the government sector, and (3) real capital stock owned by 

the government. To be consistent with his paper, I use similar instruments for my 

estimation: (1) Canadian population3, (2) wages in the non-business sector4, and (3) real 

capital stock owned by the government at the end of previous year5. The justification of the 

use of these three instruments and their construction methods are similar to those explained 

in Antrisys paper. 

Instead of standard 2SLS procedure, a generalized instrumental variable (GIV) procedure 

developed by Fair (1970) is implemented in Antris (2004), in order to solve the 

autocorrelation problem at the same time. Using the same estimation technique 

summarized in the Appendix A of Antras (2004), I obtained GIV estimates of the elasticity 

of substitution, which are presented in Table 1 as column IV. For all the equations the GIV 

estimates are lower than the FGLS ones, while the GIV estimates a, , a , ,  and a, are still 

close to one, ranging from 0.921 to 0.979. In Antris (2004), the GIV estimation collapses 

all the estimates into the smallest interval around one (0.989, 1.017), among the three 

estimation procedures. However, it is not the same for my case. As same as the FGLS 

3 Only quarterly data are available. I use the first quarter data here. 
Wages in the non-business sector are computed as total compensation per job in the non-business sector 

deflated by aggregate input price index 4 . 
5 It is constructed as the nominal value of fix capital owned by the government divided by the implicit price 
index of government gross fixed capital formation. 
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estimates, the null hypothesis of a unit elasticity of substitution cannot be rejected only for 

the last three estimates, a, , a, and a, . 

Here another point should be noted. If we compare the estimates a, and a, (or a, and a , )  

in columns 11, I11 and IVY the latter is always larger. This is consistent with the empirical 

regularity found in the U.S. data, which is mentioned in Berndt (1976) and AntrBs (2004): 

Regressions based on the marginal product of capital equation (1) generally produce lower 

estimates of a than regressions based on the marginal product of labor equation (2). 

4.4 Time Series Estimation 

As a major difference from Berndt (1976), AntrBs (2004) uses modern time series analysis 

to treat the nonstationarity nature of the data series. 

Figure 1 Nostationarity of the Series 

Figure 1 graphs the six series involved in our estimation, with the logarithms of the 

14 



variables normalized to zero in 1961. As is similar to the U.S. version in Antras (2004), two 

facts can be noticed from the figure. First, potential nonstationarity exists in each one of the 

series: the logarithms of W, 1 P, , F, I L, , W, I R, and Kt 1 L, all trend upwards, whereas 

R, I P, and F, 1 Kt show a downward trend. Second, the two variables in each of the 

specifications (1) through (6) follow similar trends. Therefore, we have a similar potential 

problem of spurious regression as noted in Antras (2004). Although the high R-square and 

low Durbin-Watson statistics in our OLS estimation already imply this possibility, we still 

need formal test for the nonstationarity. 

Table 2 reports the results of the unit root tests I performed on each of the series. The first 

row is the results of a Dickey-Fuller test of a unit root in the series. And the next two rows 

are results of Augmented Dickey-Fuller tests that include higher-order autoregressive 

terms to allow for serial correlation. The null hypothesis of a unit root cannot be rejected 

for each series whether we add in one or two lags. A Phillips-Perron test at truncation lags 

2 ,3  and 4 also gives the same result. The ADF and PP test are also performed on first 

difference of each of the six series. And the results show a rejection of the null hypothesis 

of a unit root in first differences, which means that all the series are not integrated of order 

two. Therefore, a conclusion can be drawn that all the series are integrated of order one. 

This implies that the OLS estimates are potentially subject to a spurious regression bias. 

OLS estimates are not consistent unless the two variables in each regression are 

cointegrated. 



Table 2 Unit Root Tests 

5% 
log[$) log($) log[$) log(:) log(:) log[$) Critical 

Value 

5% 
A 101(3 A log(:) 4 10g(:) 4 log($) A log($) A log($) critical 

Value 

Table 3 presents the summary of two cointegration tests. Part A reports the results of Engle 

and Granger's (1987) residual-based Augmented Dickey-Fuller test. It is merely a ADF 

test on the residuals from the OLS regressions (1) through (6). However, the critical values 

of standard unit root tests are not appropriate. Mackinnon (1991) gives a set of parameters 

and a convenient formula to calculate critical values. I use the parameters for N=l and "no 

trend" specification to calculate the critical values of 5% significant level, which are 

reported in the last column of part A. It is clear that the results are inconclusive. When the 



estimation includes one lagged first difference of the residuals, the null hypothesis of 

nonstationarity is rejected for all the six specifications, which means the two variables in 

the regression are cointegrated. However, the null hypothesis cannot be rejected for the 

same regressions if we include two lagged first differences, implying that the two variables 

in the regression are not integrated. This finding is the same as that reported in Antris 

(2004). 

Part B of Table 3 shows the results from the cointegration tests of Johansen and Juselius 

(1990), which have two versions. The max-lambda version tests the null hypothesis of the 

existence of r integrations against the alternative of r+l cointegrations with r = 0, 1 ,. . ., 

k-l( k is the number of variables tested), while the trace version tests the null hypothesis of 

the existence of r integrations against the alternative of k cointegrations. To do this test, I 

chose the model with a constant and no trend, the same as that in Antris (2004), for the 

cointegration equation. It can be seen that the null hypothesis of no integration cannot be 

rejected for all the six specifications, no matter one or two lags are included in the test. It 

seems to be safe to conclude that there is no integration for all the six specifications. 

However, this cointegration test requires a large sample size (about 300) to be reliable, 

according to Kennedy (2003, p 435). Considering our small sample size (only 37), it may 

be too risky to draw such a conclusion of no integration. And the inconclusive results 

presented by the residual-based ADF test can be regarded as some evidence of existence of 

possible cointegrations. 



Table 3 Cointegration Tests 

A. Residual-Based Augmented Dickey-Fuller Tests 

Residuals Residuals Residuals Residuals Residuals of Residuals 5% 

of eq(1) of eq(2) of eq(3) of eq(4) eq(5) of eq(6) Critical Value 

ADF -2.277 0 
-2.164 -2.221 -2.358 -2.287 -2.3 18 -2.945 

B. Johansen-Juselius Cointegration Tests 

Max-Lambda Trace 
Test r=Ovsr=l  r l l  vs r=2  r=Ovsr=2 r l l  vsr=2 

No. of Lags 1 2 1 2 1 2 1 2 
log(F/K) & log(R/P) 10.98 7.55 5.66 4.96 16.64 12.48 5.66 4.94 
log(F/L) & log(W/P) 11.05 7.46 5.67 5.41 16.72 12.87 5.67 5.41 
log(K/L) & log(W/R) 11.12 7.57 5.61 5.07 16.73 12.63 5.61 5.07 

5% Critical Value 15.67 9.24 19.96 9.24 

Therefore, we would say that the cointegration tests are inconclusive, just like what Antrhs 

(2004) did. Given this, our OLS estimates should be interpreted with caution because of a 

potential spurious regression bias. Antrhs (2004) did not difference the data to solve the 

problem of spurious regression, since by doing so important long-run information would 

be lost and the interpretation of coefficients would become difficult. He also pointed out 

that the FGLS and GIV estimates are asymptotically equivalent to the estimates that would 

be obtained with the differenced data, given a unit root in the residuals of OLS regressions 

(Hamilton, 1994, p562). This implies that our estimates in columns I11 and IV of Table 1 

are still consistent, at the cost of important long-run information in the data being 

neglected. 



5 Estimates under Biased Technological Change 

The results in the previous section provide some evidence in favour of a Cobb-Douglas 

specification of Canada's aggregate production function. All the six OLS estimates in 

column I1 in Table 1 are close to one, and the null hypothesis of a unit elasticity of 

substitution cannot be rejected for 10 out of the 18 estimates in columns 11,111 an IV. 

Therefore, our estimation based on Canadian data seems to be consistent with one of 

Antris' (2004) conclusions: The assumption of Hicks-neutral technological change 

necessarily biases the estimates of elasticity of substitution towards one, which means an 

aggregate production function of Cobb-Douglas. 

On the other hand, Antras (2004) showed that in the presence of biased technological 

change, Berndt (1976) estimation equations are misspecified in a critical way, biasing the 

estimates towards finding the results that support a Cobb-Douglas production function. 

And he also offered some solutions to this misspecification problem. Modifying the 

econometric specification to allow for biased techmcal change, he obtained significantly 

lower estimates of the elasticity of substitution. In this section I will verify this point with 

Canadian data, using the same estimation procedure employed by Antras (2004). 



5.1 The Sources of the Bias 

In Antrhs (2004), the source of the bias is explained in the way as follows. Consider the 

Arrow et al. (1961) CES production function expanded to allow for non-neutral 

technological change 

where A: is an index of capital-augmenting efficiency and A: is an index of 

labor-augmenting efficiency. In the presence of biased technological change, it is 

impossible to construct an index of aggregate input F, that is independent of the 

efficiency indices A: and A: . In this case, the estimation equations (I), (2), (4) and (5 ) ,  

which include 4 and its associated price, are all misspecified in the sense that they suffer 

from an omitted-variable bias. If we take the first order conditions with respect to capital 

and labor, we can obtain the following expression, from which equations (3) and (6) are 

derived: 

Equation (8) shows that as long as A: # A: (i.e., as long as technological change is 

non-neutral) equations (3) and (6) also suffer from an omitted-variable bias. Furthermore, 

we can subtract log(Kt l Lt) from equation (8) to obtain 

The left-hand side of equation (9) is the logarithm of the ratio of labor income and capital 

income, which is stable for the sample period. As noted in the introduction, the 
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capital-labor ratio Kt I L, on the right hand side has steadily increased during the same 

period. Therefore, if the bias in technological change is ignored, i.e., if the ratio A: 1  is 

not included in the regression, the estimate of (1 - a )  I a will necessarily be close to zero, 

implying that the estimate of o will necessarily be close to one. On the other hand, if 

Kt 1 Lt and A: / A: grow at the same rate, then steady factor shares can be consistent with 

any well-behaved production function, hence the elasticity of substitution may or may not 

be one. 

5.2 Model Specification and Additional Data 

As is clear now, when biased technological change is taken into account, it is impossible to 

construct an index of aggregate input F, that is independent of the efficiency indices 

A: and A: . Therefore, it is necessary to control for these two efficiency indices in our 

estimation of elasticity of substitution. Following Antris (2004), we assume that A: and 

A: grow at constant rates lK and A, . Then the production function becomes 

Now the first-order conditions for profit maximization become the following six 

specifications, analogous to equations (1) through (6)  in section 2: 



 log(^, l e y )  = a; + ( l / a ) l o g ( ~  /K,)-[(1-a)la]A, . t + ~ , , ,  (4') 

1 o g ( ~  14') =a; + ( l / a ) l o g ( ~  / ~ , ) - [ ( l - a ) / a k  at +E,,, (5') 

log(W; IR,) = a: + ( l l a ) l o g ( ~ ,  l ~ , ) - [ ( l - a ) l o k ~ ~ - ~ ~ ) . t + ~ , , ~  (6') 

As pointed out in Antras (2004), there are two differences between the specifications in 

(1 ') through (6') and those in (1) through (6). First, the aggregate input index F, is replaced 

by real output Y, , and accordingly the price of aggregate input P, is replaced by the price of 

output P, . Second, all six specifications now include a time trend. Therefore, exclusion of 

the time trend in the regression would result in bias. The only exception is the 

Cobb-Douglas case ( a  =l), where the bias would be zero. 

Following Antrhs (2004), 1 use real value added in Canadian business sector to proxy 

for Y, , and the corresponding implicit price index to proxy for P,' . 

5.3 Estimation Results 

Column I in Table 4 presents OLS estimates of equations (1 ') through (6'). When we 

compare these estimates with those in column I1 in Table 1, we could find that they are in 

general far away from unity, with a wide dispersion around one: from 0.289 to 1.272. Since 

the standard errors are much larger than those in Table 1, the null hypothesis of a unit 

elasticity cannot be rejected at the 5% significance level for four of the six specifications, 

which can be learnt from the t-stats given in the table. Again the Durbin-Watson statistics 

are very low, which indicates the existence of serial correlation in the residuals. 



Table 4 Estimates Allowing for Biased Technological Change 

OLS FGLS GIV AR(2) 2SLS Saikkonen With Lags 
I I1 I11 IV v VI VII 

1' 0 1  0.568 0.519 0.254 0.507 0.195 0.519 0.525 

S.E. 0.071 0.050 0.250 0.050 0.118 0.121 0.054 
t-stat for 

H ,  : a, =I -6.072 -9.661 -2.987 -9.782 -6.828 -87.399 -8.741 

R2 0.789 0.790 0.146 0.962 0.916 0.803 0.948 
D-W 0.275 1.085 1.205 1.836 1.929 0.269 1 .069 

2' ( 7 2  0.870 0.911 0.449 0.384 0.360 0.907 0.357 
S.E. 0.095 0.055 0.136 0.134 0.131 0.109 0.111 

t-stat for 
H ,  : a, =1 -1.364 -1.612 -4.041 -4.583 -4.896 -25.341 -5.820 

R 2  0.983 0.944 0.873 0.995 0.995 0.985 0.996 
D-W 0.414 1.334 1.455 1.936 1.934 0.474 1.545 

3' O 3  0.289 0.507 0.232 0.304 0.196 0.062 0.379 

S.E. 0.091 0.065 0.131 0.055 0.127 0.180 0.055 
t-stat for 

H ,  : a , = l  -7.787 -7.53 1 -5.871 -12.706 -6.3 13 -67.773 -1 1.328 

R 2  0.968 0.749 0.405 0.994 0.965 0.966 0.994 

D-W 0.227 1.229 1.025 2.048 0.262 0.279 1.106 

4' O 4  0.871 0.691 0.312 0.663 0.955 1.134 0.699 
S.E. 0.109 0.069 3.678 0.067 0.283 0.295 0.073 

t-stat for 
H ,  : a, =1 -1.185 -4.504 -1.926 -5.016 -0.158 6.107 -4.146 

R2 0.692 0.762 0.087 0.915 0.675 0.708 0.895 
D-W 0.434 1.150 1.287 1.863 0.467 0.419 1.163 

5' O5 1.224 1.026 0.867 1.517 1.113 1.200 1.418 

S.E. 0.134 0.061 0.233 0.337 0.130 0.161 0.439 
t-stat for 

H ,  : a, =1 1.673 0.422 -0.762 1.534 0.869 31.986 0.952 

R~ 0.982 0.947 0.875 0.993 0.980 0.980 0.992 
D-W 0.492 1.247 1.254 1.757 0.486 0.476 1.217 

6' O6 1.272 0.875 1.324 0.627 1.606 -7.483 0.625 

S.E. 0.403 0.111 0.755 0.121 0.950 17.150 0.090 
t-stat for 

H ,  : 0, =l  0.675 -1.128 0.245 -3.073 0.638 -5.558 -4.145 

D-W 0.555 1.235 1.221 1.927 0.600 0.797 1.270 
No. of Obs. 3 7 3 7 3 6 35 3 5 34 3 6 



To be consistent with Antrhs (2004), column I1 in Table 4 reports FGLS estimates that 

apply the Prais-Winston procedure. The results are qualitatively similar to OLS estimates. 

They are distributed around one in a range fiom 0.507 to 1 .O26. For each of the estimates, 

the FGLS standard error is much lower. However, the null hypothesis of a unit elasticity 

cannot be rejected at the 5% significance level for three out of the six specifications. In 

column 111, I present estimates based on GIV technique as same as that used in section 4. In 

contrast to the case in Antras (2004), the GIV technique seems to make the dispersion of 

estimates fiom different specifications much wider, with the lowest estimate being 0.232 

and the highest 1.324. And in general the standard errors are very large for GIV estimates. 

It is likely that the contradiction between the natures of my GIV estimates and those in 

Antris (2004) results from the different autocorrelation process of OLS residuals. As 

mentioned in Antras, assuming an AR(1) process in autocorrelation structure could leave 

us as many observations as possible, which is essential for our case of small sample size. 

On the other hand, he also performed a Ljung-Box test to test whether the residuals in the 

AR(1) regressions were white noise. He was lucky that his assumption of an AR(1) process 

was justified by his favorable results of the Ljung-Box tests. However, when I applied the 

Ljung-Box tests to Canadian data, the null hypothesis of the residuals in specifications (1 ') 

through (6') following an AR(1) process was in general rejected at 5% significance level. 

Especially, it is rejected even at 1% significant level for equations (3') and (5'). In light of 

this, I imposed an AR(2) process, and ran the regression 2, = p,i.,-, + p2it-, + u, , where 

i., is the vector of OLS residuals in Table 4. Ljung-Box tests at up to 5 lags were 



performed for each of the six specifications leading to no rejections of the null hypothesis 

of the estimated residuals u, to be white noise. 

Eviews estimates AR models using nonlinear regression techniques. The details can be 

found in Fair (1 984, pp 2 10 - 2 14) and Davidson and MacKinnon (1 996, pp 3 14 - 341). 

Column IV of Table 4 presents the estimates based on AR(2) models. It is apparent that 

five out of the six estimates are much lower than one. Moreover, they are statistically 

different from one at 5% significance level. 

To deal with the problem of endogeneity accompanied by AR errors, EViews uses a 

nonlinear least squares procedure as described in Fair (1984). Column V reports the 2SLS 

estimates. It seems that the method of 2SLS with AR(2) errors does even worse than the 

GIV technique in bringing estimates together. 

The high R-squares and low Durbin-Watson statistics obtained under OLS indicate that the 

results may suffer from spurious regression bias, just as in section 4. Figure 2 graphs the six 

series involved in our estimation based on biased technological change, with the 

logarithms of the variables normalized to zero in 1961. 



Figure 2 Nostationarity of the Series 

As is similar to Figure 1, we could see that the logarithms of W, I P,' , Y, l L, , W, I R, and 

Kt I L, all trend upwards, whereas R, I P,' and Y, I Kt show a somewhat downward trend. I 

repeated the unit root tests for the series involved in the estimation of equations (1 ') 

through (67, with the results reported in Table 5. In general the null hypothesis of a unit 

root cannot be rejected for the level form of the six series, but is rejected for all the six first 

differenced series. Therefore, we conclude that all the six series are integrated of order one. 

Then a cointegration test is required to tell whether or not the regressions above are 

spurious. Part A of Table 6 presents the results of Engle and Granger's (1987) 

residual-based ADF test. The residuals are obtained fi-om equations (1 ') through (6'), 

which include a time trend. And the specification of the test includes zero, one or two lags 

of the first difference of the residuals. Considering the inclusion of time trend in the 

equations, I used the "with trend" parameters given in MacKinnon (1991) to compute the 

critical values, as noted in Antris (2004). Different from the case in section 4, the null 
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hypothesis of a unit root in residuals cannot be rejected for almost all the six specifications 

at 5% significance level, with only one exception where the statistic is marginally higher 

than the 5% critical value. Therefore, it seems that there is no cointegration relationship 

between the two variables in any specifications. Part B of Table 6 shows the results of 

Johansen and Juselius (1 990) test, which also support our finding of no cointegration. 

Table 5 Unit Root Tests 

5% 
log(;) log() log[:) log[$) log(:) log(:) Critical 

Value 

A1Og(3 Alog($) Alog(:) *log($)  log($) A ~ O ~ ( $ )  ci:al 
Value 



Table 6 Cointegration Tests 

A. Residual-Based Augmented Dickey-Fuller Tests 

Residuals Residuals Residuals Residuals Residuals of Residuals 5% 

of eq(1') of eq(2') of eq(3') of eq(4') eq(5') Critical 
of 4 6 ' )  Value 

-1.745 0 -2.104 -1.139 -2.022 -2.133 -2.379 -3.539 

B. Johansen-Juselius Cointegration Tests 

Max-Lambda Trace 
Test r=Ovsr=l  r l 1  vs r=2  r=Ovsr=2 r l l  vs r=2  

No. of Lags 1 2 1 2 1 2 1 2 
log(Y1K) & log(R/P) 14.26 11.68 7.02 5.6 21.28 17.28 7.02 5.6 
log(Y1L) & log(W/P) 11.68 12.53 7.98 5.96 19.66 18.49 7.98 5.96 
log(K/L) &log(W/R) 19.37 18.8 4.24 5.29 23.6 24.09 4.24 5.29 

5% Critical Value 18.96 12.25 25.32 12.25 

Given that there is no cointegration between any pair of variables involved in the 

estimation, the OLS estimates should be not consistent. However, taking into account of 

our small sample size and the possible small-sample bias, we cannot make such a firm 

conclusion. To be consistent with Antris (2004), I also report the results of applying 

Saikkonen's (1990) procedure for estimating cointegrating vectors, assuming existence of 

cointegration relationships. Column N of Table 4 presents the results of the 

implementation of Saikkonen's (1990) procedure for 1 = 1 andp = 1. And the t-statistics 

reported are those modified according to the method summarized in Appendix B of Antris 

(2004). As noted by Antras, they should be compared with the associated critical value 

from a standard normal distribution. The most striking finding from column VI is that I 

obtained a negative elasticity of substitution from specification (6'), which cannot be 



interpreted reasonably. Obviously the wrong sign strongly indicates that the assumption of 

cointegraion does not hold water. 

If we believe that there is no cointegration, which seems to be more convincing, then OLS 

estimates are not reliable because of the spurious regression bias. Following AntrBs (2004), 

I included lagged values of both the dependent and independent variables in the regression 

as a remedy for the spurious regression bias. As noted by AntrBs, this procedure leads to 

consistent estimates of the elasticity and to t-stats of the hypothesis ai =1 that are 

asymptotically N(0,l). Column VII of Table 4 presents the estimates resulting from such a 

procedure. They are largely different from Saikkonen estimates for several specifications, 

suggesting that the spurious regression biases might be important. The estimates of the 

elasticity obtained from equations (Iy), (27, (3'), (4') and (6 ' )  are substantially lower than 

one. However, the estimate obtained from equation (5') is much higher than one. As noted 

in Antris (2004), the approach of adding lags of both variables in the model is only 

appropriate under the null hypothesis of no cointegration of the variables. If we check 

Table 6 again, we could find that the ADFl statistic for equation (5') is very close to the 

5% critical value. And this may be some evidence that there exists cointegration between 

the two variables in equation (5'). It would be a reasonable explanation especially when we 

take account of the small size of our sample. Another point worth noting is the similarity 

between the AR(2) estimates in column IV and the "With Lags" estimates in column VII. It 

can be regarded as another justification of our imposition of AR(2), instead of AR(l), 

process for the autocorrelation structure in residuals. 



6 Conclusion 

For this project, I use Canadian data to replicate Antras' (2004) paper. That paper 

illustrates with the U.S. data that ignoring the bias in technological change necessarily 

leads to an acceptance of the null hypothesis of a unit elasticity of substitution between 

capital and labor, while the elasticity is likely to be considerably below one with biased 

technological change. This result is found to be true for Canadian data as well. Under the 

assumption of Hicks-neutral technological change, my estimation shows that more than 

half of the estimates of elasticity of substitution between capital and labor are 

insignificantly different from unity. Allowing for biased technological change, the 

estimates of elasticity of substitution are in general substantially below one. This implies 

that a Cobb-Douglas specification of Canada's aggregate production function may be not 

appropriate. 



Appendix 

Data Sources: CANSIM Series 

Quality-adjusted L: V2007227 

Quality-adjusted K: V2007223 

Labor compensation: 1724149 

Capital compensation: 1724 145 

Population: V1 

Nominal wage in non-business sector: V7205 15 

Nominal capital owned by government: V647193 

Capital price deflator: V3860236 
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