
Obtaining Non-isomorphic Two-level Regular
Fractional Factorial Designs

Chunfang Lin

B.Sc.. 2002.

University of Science and Technology of China.

A PROJECT SUBMITTED IN PARTIAL FULFILLMENT

O F THE REQUIREMENTS FOR THE DEGREE O F

MASTER OF SCIENCE

in the Department

of

Statistics and Act,uarial Science

@ Chunfang L i ~ i 2004

SIMON FRASER UNIVERSITY

August 2004

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or otlicr ~ileans, without the permission of tllc author.

APPROVAL

Degree: hlaster of Science

Title of project: (lbtktining Non-isomorphic TWO-level Rcgulal Fr;xtiorl,~l FClc-

torial Designs

Examining Cornlllittee: Dr. hlicl-lael A. Stephens

Chair

Dr. Raiidy R. Sittcr

Senior S~~pcrvisor

Siltloll Fraser Univctrsity

Dr. Dcrck Bingham

Silnol~ Frascr University

Dr. Boxin Tang

13x1 e r r i~~ l Examiner

Simon Fraser Uriivcrsity

Datc Approved:

Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has

granted to Simon Fraser University the right to lend this thesis, project or

extended essay to users of the Simon Fraser University Library, and to

make partial or single copies only for such users or in response to a

request from the library of any other university, or other educational

institution, on its own behalf or for one of its users.

The author has further agreed that permission for multiple copying of this

work for scholarly purposes may be granted by either the author or the

Dean of Graduate Studies.

I t is understood that copying or publication of this work for financial gain

shall not be allowed without the author's written permission.

The original Partial Copyright Licence attesting to these terms, and signed

by this author, may be found in the original bound copy of this work,

retained in the Simon Fraser University Archive.

Bennett Library
Simon Fraser University

Burnaby, BC, Canada

Abstract

Two fractional factorial designs are isomorphic if one can be obtairled fro111 t,he ot,ller

by reordering the treat,rilerit cornbinations, relabeling the factor levels and relabeliq t.lle

factors. By defining a word-pat,tern matrix, we are able to c reak a new iso1riorpliis1ll

check which is much fast,cr than existing checks for certain ~i tuat~ions. We co r~ ib in~ this

with a new, ext,rerrlely fast, sufficient condition for non-isomorpliisnl t,o avoid checking

certain cases. We then create a faster search algorithm by combining the Bingliam and

Sitter (1999) search algoritlini, the isomorphism check algorit'hni of Clark and De;w

(2001) with our proposed isomorpliism check. The algoritliril is used t.o extend tllp

known set of exist,ing nori-isomorphic 128-run designs to situat,ions wit,li 12. 13. 14. all(]

15 factors.

Acknowledgments

Firstly, thanks to my supervisor, Dr. Randy Sit,t"?r, for his cont,inlial guidaricc

support,. Not only has he given me helpful suggestions and motivatiori on irit.erest,irlg

rcscarcli const,ant,ly tnit also helped me struggle with improviiig niy English. I would

also thank Dr. Dcrek Birigliarn and Dr. Boxiri Tang for their rnany helpful suggestions

and nice t,alks. To all niy friends in the department of Stat,istics and Actuarial Science,

t1i;mks for the fun times arid working hard toget'her. Finally: 111y love arid t,hanks go to

lily family, who have always made me their pride.

Contents

. Approval ii
...

. Abstract 111

. Acknowledgments iv

. Contents v

. List of Tables vii

. 1 Illtroduct. ion 1

. 2 Existing r\lethods for Checking Isomorphism 8

. 2.1 A Brief Review 8

. 2.2 Ison~orphism Checking Algorithlns 11

. 2.2.1 The Chen, Sun and \?'u Algorithm 11

. 2.2.2 The Clark and Dean Algorit. hm 15

2.2.3 The Block and Mee Algoritlini 16

. 2.3 Ilitroduction of Existing Search Algoritlilns 17

2.3.1 The Franklin-Bailey Algorithn 17

2.3.2 The Chen, Sun arid 1li1 Sequential illgorithm 19

2.3.3 The Bingliam and Sitt. er Combined Algorit. hn1 19

. 2 . 3 Summary and Discussion L>O

. , . . , . , , 3 '> 3 Proposed Isomorphisln Check a d Algorithm - --
. 7 3 . 3.1 The Basic Idea - --

. 3.2 IIalliming Distance lletliod \'l7l1e11 Using It' hlatris '3

. 3.3 Eig(m~1.111~ aild Eigciiv~ct.ol Crit. ~ r i o i i 27

3.4 Sq11~l l t i i~ l C:onstru(tioii of Noii-isoiiiorplIi(' 2kp lJ D(~siglls 2:)

. 3.5 128-11111 R(w11lt. ioii IV Dcsigiis 31

. 3.6 Disc~~ssioii :32

. 4 E'ut. lire Work 34

. 4.1 C h o r a l 31

. 4.2 Our Proposal 35

Appoiidic:es

A I\/I;it. rix for 128-run Dcsigi . 37

. B I\liiliiin~iii Al>orra.t.iorl 128-rl111 D~siglls IVith k 5 16 39

. C Fc)rt.r;l. ii Prograrli 1soclic~ck.fX~ 32

. Bil)liogr;~plly 62

List of Tables

. 1.1 Design Matrix and Data for Example 1.

. 1.2 Estimate of Effects and Alias Structure of Example 1.

. 2.3.1 Search table for 2'-' designs

2.4.1 Number of Designs Entertailled in Creating Catalogs of FF designs with

. 5 Basic Factors

3.5.1 Number of Non-isomorphic 2"-" FF Resolution IV Designs ~vitli 71 = 128

3.6.1 Tirne Spent when Using Design Matrix arid IV hlatrix with p 5 X. - p for

. 128-run Designs

4.1.1 Nunher of Designs Entertained in Creating Cat'alogs of FF des ips \vit,h

5 Basic Factors arid Number of Corresponding Non-iso~rior~liic Desiglls .

4.2.1 Tirrie Using Proposed Algorithm and Eigenvalue Criteriori Algoritlml for

3 S l l l S . 128-r~in Dt 'g

Chapter 1

Introduction

Fractional factorial designs arc cornnionly used in rriany areas of scicncc arid enginctarillg.

Slipposc we wish to perforni an experirnent which considers k factors (variables). end l

;it (I 1 ~ ~ ~ 1 s . A full factorial would run the experiment at every possiblc conibiliatlori of

factor lcwl settings (treatment or a run). i.e.. q h . For example. if q = 2 and k = 3. tllcrt

;lr(l 2" possible factor level combinations as depicted in the first 3 columns of Table 1 1.

where the '+' and '- ' denote the high and lour level of a factor, respectivclv, and each

row of the first 3 columns represents a run at a possible factor level co1nt)ination.

TO carry out the experiment, a design matrix is used to describe tht. esperlnlcIltnl

plarl by using standard notation for levels such as '+' and ' - ' (or ' l ' , alld ' - 1'). For a

design wit11 X; factors and n runs, its 11 x k design rmtrix has r1 rows for tllc esperinlelltal

rulls and X; c~olunins for the factors.

Two i~rl~)ortant properties of the 2"dl factorial designs are balance and orthogo-

nality (see Wu and Haniada (2000, p. 102), references therein). A design is balanced

if cacli factor level appears in the same nurrlber of runs. Two factors are terrlled to 1 , ~

orthogonal if all their possible level combinat,ioris appear ill the same number of runs.

A drlsign is orthogonal if all pairs of its factors are orthogonal. Colislder tlic first tllrclt.

colllrriiis ill Table 1.1. The 2" design is b;~laricd sinw for cwh fact01 . t lip l e s r r l s .+'

CHAPTER 1. IArTRODUCTIO.W 2

and '-' each appear in four runs. It is also orthogonal because each of the four 1~vcl

combinations (-, -), (-, +), (+, -) and (+, +) appears in two runs for each pair of

factors.

To illustrate the concepts in the full factorial design. we consider an exanlple givcw

by hlontgorriery (2001 p. 308).

Example 1: A factorial experiment is carried out in a pilot plant to stlidy thc factors

thought to influence the filtration rate of a chemical product which is produced in a

pressure vessel, each at two levels:

A. Temperature

B. Pressure

C. Concentrat,ion of formaldehyde

D. Stirring rate.

Table 1.1: Design Matrix and Data for Example 1
Run A B C D=ABC Response(y,)

Let y, denote the response for the I-th run (last colurnn of Table 1.1). To rricasurc

the average effect of a factor, for example .4, compute the difference between the avcr;lg(l

of the y,'s a t A+ (the high, +, level of factor A) arid thc average of thc y, 's at .4- (tho

low, -, level of factor A). This difference is termed the Main Effect (ME) of A. 1 t' .

CHAPTER 1. INTRODUCTION

The interaction effect of two factors A and B, AB, is defined as

where ME(BIA+) is the conditional ME of B at A+, ME(BIA-) is the conditional ME

of B at A-, ME(AIB+) is the conditional ME of A at B+, ME(A1B-) is the conditional

For Example 1, based on the given definition above, we can obtain

Running a full factorial design may be undesirable and/or too costly. Instead, one

could run a fraction of the full factorial design, which is known as a fractional factorial

(FF) design. One common way to do this is to assign the levels of p of the factors to the

columns of the interactions of remaining columns from a full factorial with]c - p factors,

denoted as a q k - p design. For example, suppose that it is too expensive to conduct all 16

runs of the Z4 full factorial design in Example 1. We could run a 24-1 design with factor

D assigned to the ABC interaction column of a 23 full factorial (see Table 1.1). If so,

the column of D is used for estimating the ME of D and also for the interaction effect

among A, B, and C. i.e., the data from such a design is not capable of distinguishing the

estimate of D from the estimate of ABC. Therefore, the ME of D is said to be aliased

with the ABC interaction. Notationally, this aliased relation or defining relation is

denoted by

D = ABC or I = ABCD,

CHAPTER 1. INTRODUCTION

where I here refers to the overall mean, a column of +'s. Similarly, A is aliased with

the B C D interaction, B is aliased with ACD interaction, C is aliased with ABD, AB

is aliased with C D , etc. If two effects are aliased with each other, we cannot distinguish

between their effects. However, according to the hierarchical ordering principle, that

ME'S are more likely to be important than 2-factor interactions (2fi), which are more

likely to be important than 3-factor interactions (3fi), etc., the effect of 3fi1s is often

assumed negligible and the estimate is attributed to the ME or 2fi. For Example 1, the

estimates of effects and alias structure are shown in Table 1.2.

Table 1.2: Estimate of Effects and Alias Structure of Example 1.
Estimate Alias Structure
1, = 19 1 , -t A+BCD
l g = 1.5 l B -+ B+ACD
lc = 14 I c + C+ABD
l D = 16.5 l D -+ D+ABC
l A B = -1 l A B -+ AB+CD
LAC = 13.5 lAC + A C f B D
l A D = 19 l A D -+ AD+BC

Those fractions defined through such defining relations are called group-generated

fractions, and the corresponding designs are called regular designs since any two

factorial effects either can be estimated independently of each other or are fully aliased.

Otherwise, a design is termed a non-regular design, which includes many so-called

plackett-Burman designs and mixed-level orthogonal arrays. In this thesis, we only

consider the orthogonal designs. Those group-generated fractions are determined by

the p generators or defining words, which are all the columns that are equal to the

identity column I. A word consists of le t te rs which are labels of factors denoted by 1,

2, . . . , k or A, B , The number of letters in a word is termed the word length.

The defining contrast subgroup for the design consists of all the columns that are

equal to the identity column I. These include the generators and interactions of the

CHAPTER 1. INTRODUCTION 5

generators. As an example, consider a 27-2 design. Suppose we have I=ABCF and

I=BCDEG as the generators. In this case, the defining contrast subgroup of the design

is

I = ABCF = BCDEG = AEFG,

where AEFG is obtained by multiplying ABCF and BCDEG such that any letters in

common disappear. The vector

(4 , . . . 1 Ak) (1.1)

is the word-length pa t t e rn , where Ai denotes the number of words of length i in the

defining contrast subgroup.

Box and Hunter (1961) define the resolution of a fractional factorial (FF) design to

be the smallest r such that A, 1 1 and argue that a design with highest resolution is

better as it aliases ME'S with highest-order interactions. Thus maximum resolution is a

useful and convenient criterion for selecting practical designs in terms of the hierarchical

ordering principle.

If two designs have the same resolution, they are not necessarily equivalent and we

need a further criterion to characterize or discriminate FF designs. Fries and Hunter

(1980) propose the following criterion. It has been a popular and most commonly used

criterion to select a good design.

Min imum Aberra t ion Criterion: For any two 2 " ~ designs dl and d2, let r be

the smallest integer such that &(dl) # Ar(d2). Then dl is said to have less aberration

than d2 if A,(dl) < A,(d2). If there is no design with less aberration than dl, then dl

has minimum aberration(MA) .

Example 2: The following two 27-2 designs,

dl : I = A B C F = BCDEG = ADEFG

CHAPTER 1. INTRODUCTION

d2 : I = ABCF = ADEG = BCDEFG,

both have resolution IV, but they have different word-length patterns,

Based on the MA criterion, the first design is a better design.

For a given k and p, a MA design always exists but is not always unique. Chen et al.

(1993) suggest a competing criterion for design selection, the number of clear effects.

A ME is eligible if it is not aliased with other ME'S and clear if it is also not aliased

with any 2fi's. This concept can also be extended to interactions of any order as follows.

A q-factor interaction is eligible if it is not aliased with any effects of order less than q.

An eligible q-factor interaction is clear if it is also not aliased with any other q-factor

interaction. A ME or 2fi is strongly clear if none of its aliases are ME'S, 2fi's, or X ' s .

Clearly, we can derive the following important and useful rules from the definition

of clear effects:

1. In any resolution IV design, the ME'S are all clear.

2. In any resolution V design, the ME'S are strongly clear and the 2fi's are clear.

3. Among the resolution IV designs with given k and p, those with the largest number

of clear 2fi's are the best.

To further illustrate the criterion, let us consider two 26-3 designs. The first design,

dl, has defining contrast subgroup

and the second design, d2,

I = 136 = 1245 = 23456.

From the definition introduced above, we know that dl has resolution IV and six clear

ME's but no clear 2fi's while d2 has resolution III and only three clear ME'S 2, 4, and

CHAPTER 1. INTRODUCTION 7

5 but six clear 2fi's 23, 26, 34, 35, 46, and 56. Since d2 has only three clear ME's and

ME's are usually more important than 2fi's based on the hierarchial ordering principle,

one may say d 2 is inferior to d l . On the other hand, d2 has more clear effects than d l .

If in an investigation, only three factors and some of their two-factor interactions are

believed to be important a priori, d 2 will be a preferred choice.

Chapter 2

Existing Met hods for Checking

2.1 A BriefReview

A regular FF design is uniquely determined by its defining words and design matrix. Two

designs are said to be isomorphic or equivalent if one can be obtained from the other

by relabeling the factors having the same number of levels, reordering the treatment

combinations and/or relabeling the levels of one or more factors. Otherwise, these two

designs are non-isomorphic (non-equivalent). In other words, isomorphic designs can be

transferred into each other by the usual randomization of factor labels and level labels.

Since isomorphic designs share the same statistical properties in classical ANOVA models

and essentially are the same, it is necessary to include only one of them in any catalogue

of designs, or if possible to avoid considering more than one of them in any search for

optimal designs and thus avoid unnecessary computations. To obtain a catalogue of

designs, a straightforward approach does not work. For example, in a 220-15 design,

there are 5 independent factors and 15 additional factors, and yet they can be defined in

(::I:) = 7,726,160 combinations. It is impractical to identify isomorphic designs among

CHAPTER 2. EXISTING METHODS FOR CHECKING ISOMORPHISM 9

all the 7,726,160 designs because of the computational difficulties involved in determining

whether any two designs are isomorphic. The identification of the isomorphism of two

designs is a vital combinatorial problem. For two k-factor (each having q levels) n-

run designs, a complete search compares n!k!(q!)k designs based on the definition of

isomorphism. It is known as an NP problem, when n and k increase.

The isomorphism of two regular FF designs has been discussed extensively in the

literature. Draper and Mitchell (1968) develop a "sequential conjecture" method for

testing the isomorphism of two designs. The method tests isomorphism by comparing the

word-length patterns of designs. Unfortunately, it has since been determined that two

designs could be non-isomorphic even though they have the same word-length pattern.

For example, there exist two 212-3 F F designs that have identical word-length patterns

but are not isomorphic. Also, in Draper and Mitchell (1968)'s stage-by-stage procedure,

a design which has the same word-length pattern as the one previously found would

automatically be discarded, even if the two designs are not isomorphic. Therefore, the

set of designs constructed using the word-length pattern comparison to test isomorphism

is not necessarily a complete set of non-isomorphic designs of the specified type. Of

course, the word-length pattern completely determines aberration and resolution, but

for specific design situations, there are various other ways to rank designs. For example,

the MA design may be far from the best design in terms of clear effects as we mention

in Chapter 1.

Draper and Mitchell (1970) propose a more sensitive test for isomorphism using a

"letter pattern comparison." Let aij be the number of words of length j in which letter

i appears, then A=(aij)k,k is the letter pattern matrix of the design with k factors.

They then declare two designs, dl and d2, to be isomorphic if and only if Adl = P(Ad2),

where P(Ad,) is some permutation of the rows of Adz and where Ad, and Adz are the

letter pattern matrices corresponding to dl and d2, respectively. However, Chen and

Lin (1990) show that this is not an isomorphism test by giving two non-isomorphic

CHAPTER 2. EXISTING METHODS FOR CHECKING ISOMORPHISM 10

231-15 designs with identical letter pattern matrices. Thus the letter pattern does not

uniquely determine a F F design either. Note that the use of letter pattern is a finer

representation of a design than using the word-length pattern since the word-length
k pattern of a design can be written as (c:=, ail,. . . , ~ f = ~ aij/j l . . . ,x,=l aik/k), which

implies that two designs having identical letter pattern matrices necessarily have the

same word-length pattern.

Chen (1992) discusses the isomorphism of 2k-p F F designs in terms of the existence of

a relabeling map between two frequency vectors together with an appropriately defined

matrix X. With the help of this frequency representation, Chen (1992) proves that

any 2k-p F F design with p=l or 2 is uniquely determined by its word-length pattern

and further proves that the word-length pattern uniquely determines any MA 2k-p F F

design when p=3 or 4. Chen et al. (1993) propose a sequential algorithm for constructing

complete sets of F F designs by exploring the algebraic structure of the F F designs. A

collection of FF designs with 16, 32, and 64 runs is given.

Clark and Dean (2001) present a method of determining isomorphism of any two

factorial designs (non-regular as well as regular). Two designs are isomorphic if the

factors can be relabeled so that the Hamming distance between a pair of corresponding

points runs is the same for the two designs in all possible dimensions. The method

gives a necessary and sufficient link between isomorphism and the Hamming distance

matrices of two designs. They also provide an algorithm for checking the isomorphism

of F F designs when all the factors have two levels which saves considerable time for

detecting non-isomorphic designs.

Ma et al. (2001) propose a new algorithm based on the centered Lz-discrepancy(CD2),

a measure of uniformity, for detecting the isomorphism of F F designs and show it can

significantly reduce the complexity of the computation. For two higher-level designs,

they create a uniformity criterion for isomorphism (UCI). However, UCI is only a net-

essary condition for design isomorphism. They conjecture that UCI is also a sufficient

CHAPTER 2. EXISTING METHODS FOR CHECKING ISOMORPHISM 11

condition, but are unable to prove it thus far.

Sun et al. (2002) present an algorithm for sequentially constructing non-isomorphic

regular and non-regular orthogonal designs. The algorithm is based on a minimal col-

umn base. They introduce an extended word-length pattern criterion, the definition of

minimal column base, column base and its properties. Finally, they successfully obtain

the complete catalog of orthogonal designs of 12, 16 and 20 runs.

Block and Mee (2004) present the results of an enumeration of n=128 run resolution

IV designs. Rather than determining whether a new candidate design is isomorphic to

the existing designs based on a complete permutation check, they retain all the designs

that differ in their projections. Resolution IV designs are tabulated for k=12,. . . ,40

factors in 128-run designs. Since their criterion is not a sufficient and necessary condition,

they still cannot claim that the designs that they provide are a complete non-isomorphic

set.

2.2 Isomorphism Checking Algorithms

In this section, we examine three of the isomorphic checking algorithms in more detail.

These are the Chen, Sun and Wu Algorithm (Chen et al., 1993), the Clark and Dean

Algorithm (Clark and Dean, 2001), and the Block and Mee Algorithm (Block and Mee,

2004).

2.2.1 The Chen, Sun and Wu Algorithm

To define a 2k-p F F design, Chen (1992) divides the k letters into 2p-I subsets. Let fi

be the number of letters in the i-th subset such that c::;' fi = k , and let f = (f,, f2,. . . ,

f2P-1) be called the frequency vector of the design. Chen (1992) constructs a matrix,

CHAPTER 2. EXISTING METHODS FOR CHECKING ISOMORPHISM 12

where I, is a p x p identity matrix and B is a p x (2p - p - 1) matrix which contains

all the distinct and nonzero linear combinations (modulo 2) of column vectors of I,.

If V , is a column vector of X, (V,, f) equals the length of the i-th word. Chen (1992)

suggests the following testing method with the help of this frequency representation

(Chen's Theorems 5 and 6):

THEOREM 2.2.1. Let f=(f l , . . . , f2p-l)t and g=(gi, . . . , g2p-l)t be two frequency vec-

tors, X be given by (2.1) such that (X, f) and (X, g) are two 2k-p FF designs. If there

exists a relabeling map $ for (1,2, . . . ,2p - I), such that for any i and j,

1. f i = S*(i)

2. V*(i) * V+(j) = V+(l), where V, * V, =

where V,, V, are row vectors of X and * denotes the sum modulo 2, then f and g are

equivalent, otherwise, they are not.

THEOREM 2.2.2. Any 2k-p FF design with p=l or 2 is uniquely determined by its

word-length pattern.

Consider two 25-2 F F designs with defining contrast subgroups,

Both designs have word-length pattern (0, 0, 2, 1). Furthermore, Ad, = P(Ad2), where

Adl and Ad2 are the letter patterns of design dl and d 2 , respectively. From the definition

of frequency vector, we can easily obtain f=(2, 2, I) , g = (l , 2, 2), and

CHAPTER 2. EXISTING METHODS FOR CHECKING ISOMORPHISM 13

and thus Vl=(l, 0, I) , V2=(0, 1, 1) and V3=(l, 1, 0). Obviously, there exists a map $

for (1, 2, 3). That is,

As a result, we conclude that design dl and design d2 are isomorphic.

Subsequently, Chen et al. (1993) present a more detailed and executable algorithm

to detect the isomorphism of two F F designs.

Each 2k-p design has a design matrix. Thus it can be viewed as submatrices of

regular Hadamard matrices. A regular Hadamard matrix of order 24 (q=k-p) is a 29 x 24

orthogonal matrix of f 1's with the additional property that the entrywise product of

any two columns is among the 2q columns. By replacing -1 by 1 and 1 by 0 and using

addition over GF(2), these 2q columns form an elementary Abelian group over GF(2),

where GF(2) is the Galois Field with two elements. Except for the column corresponding

to the identity element in the group, we may write the remaining columns as

Within C , we can find q independent columns that generate all the columns in C . A

2k-p design can be viewed as a subset of C with k columns.

To identify isomorphic designs, Chen et al. (1993) divide all designs into different

categories according to their word-length patterns and letter patterns. Designs with dif-

ferent word-length patterns or letter patterns are obviously non-isomorphic. Therefore,

CHAPTER 2. EXISTING METHODS FOR CHECKING ISOMORPHISM 14

they only need to check the isomorphism of designs with the same letter patterns. By

applying the algorithm mentioned above, this can be done.

Their isomorphism check can be illustrated by a simple example. Suppose we have

two 27-3 designs with defining relation

dl : I = abe = abdf = bdcg

dz : I = ace = acdf = abcdg.

These two designs have the following three properties in common:

1. The set of C:

{ a, b, ab, c, ac, bc, abc, d l ad, bd, abd, cd, acd, bcd, abcd)

2. Word-length pattern: (0, 0, 2, 3, 2)

3. Letter pattern:

They apply the following algorithm to do the isomorphism check.

1. Select four independent columns from d2, for example, {a, b, ac, abcd), There are

a total of (i) choices.

2. Select a relabeling map from {a, bl ac, abcd) to { A , B, C, D), i.e., A=a, B=b, CZclc,

D=abcd. There are 4! = 24 choices.

CHAPTER 2. EXISTING METHODS FOR CHECKING,ISOMORPHISA/I 15

3. Write the remaining columns {c, d, acd) in 4 as interaction of {A, B, C, D) , i.e.,

c = AC, d = BCD, acd = BD. Therefore, d2 can be written as { A , B, C, D, AC,

BCD, BD).

4. Compare the new representation of d2 with that of dl. If they match, dl and d2

are isomorphic and the process stops. Otherwise, go to step 2 and try another.

map of { A , B, C, D). When all the relabeling maps are exhausted, go to step 1

and choose another 4 independent columns.

2.2.2 The Clark and Dean Algorithm

Let Td be an n x k design matrix of a 2k-p FF design, and define the Hamming distance

matrix Hd to have (i, j)-th element

where s[Td]fj is equal to 1 if in the 1-th column of Td, the symbols in the i-th and j-th

rows are different, and equal to zero if they are the same. The (i, j)-th element of Hd

counts the number of dimensions in which the i-th and j-th points fail to coincide. The

distance matrix Hd is invariant to the permutation of columns and relabeling of levels

within columns of Td.

THEOREM 2.2.3. Designs dl and d2 are isomorphic iff there exists an n x n permu-

tation matrix R and a permutation {ci, ~ 2 , . . . , ck) of {1 ,2 , . . . , 1;) such that, for every

g = l , ~ , . . . , k, = R (H J ~ l ~ ~ 2 ~ . . + % }
2

) R'.

PROOF: Clark and Dean (2001).

When all the factors in the design have two levels, coded as -1 and 1,

CHAPTER 2. EXISTING METHODS FOR CHECKING ISOMORPHISM 16

{ ~ 1 , ~ 2 , . . . , ~ q } where J,, is an n x n matrix of 1's. Let Td be a matrix consisting of q columns

{cl, c2,. . . , cq) of Td. Based on the theorem mentioned above, the following corollary

can be obtained.

COROLLARY 2.2.1. Designs dl and d2 are isomorphic iff there exists an n x n

permutation matrix R and a permutation {cl, cz, . . . , ck) of {1,2, . . . , k) such that, for

every q=1,2,. . . , k,

Based on this corollary, Clark and Dean (2001) provide two FORTRAN programs

(d e ~ e ~ 1 . f and deseq2.f) for identifying the isomorphism of any two 2-level designs. For

two isomorphic 2-level designs, Tdl =RTd2CL, where R and C are permutation matrices

and L is a diagonal matrix with L2 = I. Therefore, the first program (deseql .f) does an

initial check for non-isomorphism by checking whether for each q=l , 2, . . . , k, there is

some subset {cl, c2, . . . , c,} of {cl, c2, . . . , ck} such that the rows of HL:""'~} and HL;' . .~'~}
contain the same set of distances with the same multiplicity. If there exists q=l , 2, . . . ,

k such that there is no subset of {cl, cz, . . . , cq} of (cl, c2,. . . , ck) making the rows of

{cl'-"cql contain the same set of distances with the same multiplicity, H::~....'} and Hd2

then designs dl and d2 are non-isomorphic. However, two non-isomorphic designs could

pass this initial test, thus requiring the second program to do a complete comparison.

The second program (deseq2.f) looks through all row and column permutations that

transform one design to the other. If we cannot find any row and column permutation,

then the two designs are non-isomorphic.

2.2.3 The Block and Mee Algorithm

Block and Mee (2004) list all resolution IV designs for n=64 and show their projections.

They observe that every 2:;' design of size 64 has a unique set of delete-one-factor

CHAPTER 2. EXISTING METHODS FOR CHECKING ISOMORPHISM 17

projections. As an example (given in their paper), a design with the generators G=ABC,

H=ADE and J=ABDF, has nine factors and nine delete-one-factor projections:

0 Design with word-length pattern=(0,2,1) if one deletes factor A

Design with word-length pattern=(l,l,O,l) if one deletes factor B or D

Design with word-length pattern=(1,2) if one deletes factor C , El G, or H

0 Design with word-length pattern=(2,0,1) if one deletes factor F or J.

Block and Mee (2004) conjecture that for resolution IV designs with n=128, if two

designs have isomorphic delete-one-factor projection sets, then there exists a permutation

of the columns and rows of one design to make it identical to the other, i.e., they are

isomorphic. This test is more discriminating than word-length pattern and letter pattern.

It is still a conjecture, however, and if the conjecture is false, they have not enumerated

the complete catalogue of non-isomorphic designs with n=128.

2.3 Introduction of Existing Search Algorithms

In the following section, we introduce some existing search algorithms for obtaining

collections of non-isomorphic two-level F F designs. These are the Franklin-Bailey Al-

gorithm (Franklin and Bailey, 1977), the Chen, Sun and Wu Algorithm (Chen et al.,

1993), the Bingham and Sitter Combined Algorithm (Bingham and Sitter, 1999).

2.3.1 The Franklin-Bailey Algorithm

Das (1964) defines k - p of the factors as basic factors and the remaining p factors

as added factors in a 2k-p FF design. The group of size 2 " ~ containing all the main

effects and interactions among the k - p basic factors is called the basic effects group.

Originally a search algorithm uses the search-table data structure to identify designs that

CHAPTER 2. EXISTING METHODS FOR CHECKING ISOMORPHISM 18

Table 2.3.1: Search table for 26-2 designs

allow estimation of a requirements set of factors and interactions given that all other

interactions are negligible. The algorithm can be adapted to our problem as follows.

Step 1. Construct a two-way search table. The table has 2 " ~ - (k - p) - 1 rows, headed

by the generalized interactions of the basic factors, and p columns, headed by the added

factors. The elements of the table are the generalized interactions between the row and

column headers. The rows are sorted by word-length. For example, for 26-2, the search

table is given in Table 2.3.1. Step 2. Select a generator from the i-th column, where i= l .

Step 3. For i=2,. . . , p , select a generator which is not in the same row of the search

table as the previous columns. That is, because selecting generators from the same row

of the search table results in designs with resolution less than 111, which is usually not

of interest, avoid such selections.

Franklin (1985) notes that the search table can be used to construct the set of non-

isomorphic F F designs. All possible combinations of generators obtained by the above

algorithm contain the set of all non-isomorphic F F designs and many isomorphic designs.

By applying the isomorphism test to compare designs, this set of designs can be reduced

to the set of all non-isomorphic F F designs.

CHAPTER 2. EXISTING METHODS FOR CHECKING ISOMORPHISM 19

2.3.2 The Chen, Sun and Wu Sequential Algorithm

To create a catalogue of MA FF's, Chen et al. (1993) present a sequential construction

algorithm to get all non-isomorphic designs.

Let D ; , be the set of non-isomorphic 2k-P designs with resolution > r (for the

remainder of the discussion, it is assumed that r=III and the r superscript is suppressed

for convenience). Suppose we begin with Dkl,pl , the set of of all non-isomorphic 2 k l - p l F F

designs, then Dkl+l,pl+l is constructed as follows. Assign the additional factor to one of

the unused columns in each of the designs in Dkl ,p l . Since there are 2 k 1 - ~ l - k1 - 1 unused

columns available, there are at most 2k1-p1 - k1 - 1 ways to assign this factor. After

removing designs with resolution less than 111, we obtain a class of designs, denoted
- - -

by Dk,+l,pl+l. Obviously, Dkl+l,pl+l C Dkl+i ,p l+~ because Dlcl+l,pl+l contains many

isomorphic designs. Perform isomorphism checking to remove all isomorphic designs to

get Dkl+l ,pl+l . Similarly, Dk1+2,p1+2 can be constructed. This procedure continues until

all the non-isomorphic designs with k factors and p generators are obtained.

2.3.3 The Bingham and Sitter Combined Algorithm

Bingham and Sitter (1 999) propose combining the ideas in the Franklin-Bailey algorithm

and the Chen, Sun and Wu algorithm to find all non-isomorphic 2 k l + k 2 - ~ l - ~ 2 fractional

factorial split-plot (FFSP) designs, with 2 k 1 - p 1 the whole-plot design and 2 k 2 2 - ~ 2 the sub-

plot design. By setting k2 and p2 equal to 0, their algorithm can be used to search for

all the non-isomorphic 2 k - p F F designs.

Let DklYP1 be the set of non-isomorphic 2k1'-p1 designs with resolution > r , create

Dkl+l,pl+l by selecting all non-isomorphic generators in the first column of the search

table. There are as many non-isomorphic generators as there are different lengths of

generators in the first column of the search table by Theorem 2.2.2.

Next, create Dk1+2,p2+2 by selecting a design in Dkl+l,pl+l and adding generators

from the second column and compare each design chosen to those already in Dk1+2,p1+2

CHAPTER 2. EXISTING METHODS FOR CHECKING ISOMORPHISM 20

to see if it is isomorphic to any in Dk1+2,p1+2. If it is isomorphic to the designs already

in Dk1+2,p1+2, the design is discarded; otherwise it is included into Dk1+2,pl+2. Bingham

and Sitter (1999) prove that one need only consider the generators in the second column

of the search table that are below the generators from the first column. The notion of

adding factors to the design by considering generators below the fixed design generators

also is applied for all added columns. This helps significantly reduce the number of

designs considered with respect to other methods. They continue adding factors until

they obtain Dkl,pl.

2.4 Summary and Discussion

1. The Search Algorithms. There are three existing search algorithms. These

are the Franklin-Bailey search table algorithm (Franklin and Bailey, 1977) , the

Chen, Sun and Wu sequential algorithm (Chen et al., 1993) and the Bingham and

Sitter combined algorithm (Bingham and Sitter, 1999). For a 2k-p F F design, the

Franklin-Bailey search table algorithm requires consideration of N1 = nT='=, (2k-p -

(k - p) - i) designs. The Chen, Sun and Wu sequential algorithm reduces the

number of designs considered since it adds another factor based on the set of non-

isomorphic designs. The combined algorithm significantly reduces the number of

designs considered with respect to the other algorithms. For example, Table 2.4.1

(recreated from Bingham and Sitter, 1999), gives the number of designs considered

by each algorithm for various n=32 F F designs.

2. Isomorphism Checking. So far, there are five proposals for checking isomor-

phism. These are Chen et al. (1993), Clark and Dean (2001), Ma et a1 (2001),

Sun et al. (2002), and Block and Mee (2004). For n-run and k-factor designs,

a complete search needs n!kQk reordering and remodelings. Chen et al. (1993)

reduce this to (,!$(k - p)! comparisons. Clark and Dean (2001) require k(k!)2

CHAPTER 2. EXISTING METHODS FOR CHECKING ISOMORPHISM 2 1

Table 2.4.1: Number of Designs Entertained in Creating Catalogs of F F designs with 5
Basic Factors

algorithm 27-2 28-3 29-4

search 650 15,600 358,800 7,893,600
sequential 96 184 330 609
combined 45 89 273 282

comparisons in the worst case. Each comparison requires O (n !) operations. Ma

et al. (2001) require 0 (n 2 k 2 k) to compare 2"' CD2 values in the worst case. No

similar information is available for Sun et al. (2002) and Block and Mee (2004).

3. Discussion. Chen et al. (1993) obtain the complete collection of 16-, 32- and

64-run FF designs by their proposed search algorithm and isomorphism checking

algorithm. This is a complete catalog since their isomorphism check is iff. Block

and Mee (2004) combine the Chen, Sun and Wu search algorithm and their pro-

posed sufficient condition for non-isomorphism test. Thus, no one has combined

the efficient iff isomorphism test of Clark and Dean (2001) with the most efficient

search algorithm of Bingham and Sitter (1999). In the next chapter, we first intro-

duce a new isomorphism check which is more efficient than Clark and Dean (2001)

for some situations and then combine this with the Bingham and Sitter search

algorithm and Clark and Dean isomorphism check.

Chapter 3

Proposed Isomorphism Check and

Algorithm

3.1 The Basic Idea

A 2k-p design is uniquely determined by its p defining relations. In other words, the

defining contrast subgroup determines a 2'-~ design. Therefore, we focus on design

isomorphism through its defining contrast subgroup. It turns out that this will yield

some computational advantages in some cases.

Recall that for a 2k-p design, the defining relation is

and the word-length pattern is (All A2,. . . , Ak), where A, is the number of words of

length q. Let W, be an A, by k matrix with elements

Thus, for a 2'"-p design with resolution r, it has the set of matrices WT, W,,l,

. . . , W,, where m is the maximum non-zero word length. For instance, consider the

22

CHAPTER 3. PROPOSED ISOMORPHISM CHECK AND ALGORITHM 23

27-3 design with resolution I11 and defining contrast sub-group

The design has word-length pattern (0, 0, 4, 3, 0, 0, 0) and the set

and

Let W be formed by stacking all of the Wis and called word-pattern matrix. In this

example,

W =

Obviously, for a 2k-p design, the W, matrix always has k columns for every q and the

sum of each row is equal to q.

CHAPTER 3. PROPOSED ISOMORPHISM CHECK AND ALGORITHM 24

3.2 Hamming Distance Method When Using W Ma-

trix

Let d [~] f , ~ = l if in the I-th column of W the symbols in the i-th and j-th rows are

different, and =O if they are the same. Similar to Clark and Dean (2001), we define the

distance matrix H but in our case for W instead of the design matrix. Let the (2 , j)-th

element of H be equal to

k

[H] i j = C 6 [~] : , for i # j
1=1

and equal to 0 if i=j . The distance matrix H is invariant to permutations of columns

and to switching the role of 0 and 1 so that 1 represents the presence of a factor and 0 the

absence, but not to the re-ordering of the rows (words). We can get a similar theorem to

Clark and Dean (2001)'s Hamming distance matrix theorem. Before we state and prove

Theorem 3.2.1 below, we introduce a useful lemma.

LEMMA 3.2.1. Two 2 " ~ FF designs d l and d2 are isomorphic if Wd, = RWd,c for

some permutation matrices R and C.

PROOF: Follows obviously from the fact that W is uniquely determined by defining

contrast subgroup.

Note, it is possible to have two isomorphic but not identical design matrices which

yield the same W. Thus, by viewing W, we have implicitly eliminated some isomorphic

designs.

AS to how to find C technically, refer to Chen et al. (1993) (p.10) or section 2.2.1.

Lemma 3.2.1 tells us that if a design d l can be obtained by another design d 2 by relabeling

the factor labels in the defining contrast subgroup, then d l is isomorphic to d,. With the

help of Lemma 3.2.1 above, we are now able to state and prove Theorem 3.2.1 below.

THEOREM 3.2.1. 2k-p designs d l and d2 are isomorphic i f there exists an s x s

CHAPTER 3. PROPOSED ISOMORPHISM CHECK AND ALGORITHM 2 5

permutation matrix R and a permutation {cl, ~ 2 , . . . , ck) of {1,2, . . . , k) such that, for
{l 2 1) - R { H i c l ? ~ 2 > , . . ! ~ l } 1 = l , 2 , . . . , k, H1 ' ""' -)R1, where s = 2P- 1.

PROOF:

1. Suppose that design dl and d2 are isomorphic. Then we can write Wdl = RWd2C
or W~l,2,....*) = R W { c l ~ ~ 2 ~ . . . ~ ~ k)

1 dz by Lemma 3.2.1, where C is the permutation matrix

corresponding to the permutation {q, c2, . . . , ck) that maps the factor labels of d2

to those of dl, and R is the permutation matrix that reorders the words in d2 into

the same order as those in dl. Thus for 1 5 q 5 k,

Therefore, for each 1 = 1 ,2 , . . . , k,

2. Let {cl, c2,. . . , ck) be a fixed permutation of {1,2,. . . , k) and let ~ i ~ ~ ~ ' ~ - ~ ~) be

the distance matrix corresponding to the columns {cl, c2, . . . , q) of Wd2, then

R H $ ~ ~ ~ ~ ~ ~ - . ~ ~ ~ } R ~ is the distance matrix corresponding to the columns {cl, c2, . . . , CL)

of RWd2 for some given permutation R since

CHAPTER 3. PROPOSED ISOMORPHISM CHECK AND ALGORITHM 26

thus, for a fixed sequence of distance matrices R H ~ ~ ~ ' ~ ~ ~ . . ~ * ~ ~) Rt, 1 = 1,2 , . . . , k,

(3.4) implies a fixed sequence R H ~ ~ " R ~ , 1 = 1 ,2 , . . . , k, and we may consider each

column of the word-pattern matrix separately. Let Wdl be an s x k word-pattern

matrix with first row the same as the first row of Wd2C ({cl, c2, . . . , ck) of the first

row of Wd2). For each 1 E {1,2,. . . , k), we construct the 1-th column of Wdl as

follows. For i = 2, . . . , s, if [RH~"'R']~,~=o for some j = 1 , 2 , . . . , i - 1, then set

the symbol in the i-th row of column 1 of Wdl to be the same as the symbol in

the j-th row, i.e., [Wdl]{i,l) = [Wdlltj,l). Otherwise set [Wdl]{i,l) equal to a different

symbol. Remember the symbol here can only be 0 or 1. Thus, the I-th column of

Wdl is the same as the cl-th column of RWd,. Therefore Wdl is identical to Wd2

up to a permutation of rows and columns, which means that Wdl=RWd,C, i.e.,

designs dl and d2 are isomorphic.

COROLLARY 3.2.1. 2k-p designs dl and d2 are isomorphic igP there exists a n s x s

permutation matrix R and a pernutat ion {cl, ~ 2 , . . . , ck) of {1,2, . . . , k) such that, for

1 = 1,2, . . . , k, H,(') = R(H,("))Rt, where s = 2' - 1.

Recall that applying Clark and Dean (2001)'s method requires k(k!)2 comparisons

and each comparison requires O(n!) operations in theory for the worst case. In our check,

we only need O(s!) operations. Therefore, if s = 2P - 1 < 2 " ~ = n , i.e., p < k - p, as

n increases, a larger p can be used to satisfy this inequality so that we can take more

advantage by using Theorem 3.2.1.

CHAPTER 3. PROPOSED ISOMORPHISM CHECK AND ALGORITHM 2 7

3.3 Eigenvalue and Eigenvector Criterion

To boost the speed to identify the non-isomorphism of two designs, we also intro- --
duce the eigenvalue and eigenvector of a matrix Zi = W;Wi, where Ei is the sub-

set of {W,, W,+l,. . . , Wk-p}. For example, let k - p=5 and r=3, then % could be

and we let El = W3, E2 = Wg, E3 = W5, E4 = (2) and so on.

Before proceeding to the main result given in Theorem 3.3.1 below, we introduce

concepts in linear algebra and a useful lemma. Let V be a vector space over the field F

and let T be an n x n matrix on V. An eigenvalue of T is a scalar c in F such that there

is a non-zero vector a in V with Ta = ca and the matrix T - cI is singular. If c is an

eigenvalue of T , then any ac such that Ta = ca is called an eigenvector of T associated

with the eigenvalue c. Since c is an eigenvahe of iff det(c1 - T) = 0, we form the

matrix (X I - T) with polynomial entries, and consider the polynomial f = det(xI - T) .

Clearly the eigenvalues of T are just the scalars c such that f (c) = 0. This f is called

the characteristic polynomial of T . Two matrices A and B are similar if there exists

an invertible matrix P such that B = P-'AP.

L E M M A 3.3.1. Similar matrices have the same characteristic polynomial.

PROOF: If B = PV1AP, then

det(xI - B) = det(xI - P-'AP)

= det(P-'(XI - A) P)

= d e t (~ - ') . det(xI - A) . det(P)

= det(xI - A).

CHAPTER 3. PROPOSED ISOMORPHISM CHECK AND ALGORITHM

In other words, similar matrices have identical eigenvalues.

Now we are ready to state the main result of this section. Let A(q, i) = (Xq,i , l , Xq,i,2,

. . . , Xg,i,k) be the vector of eigenvalues of Zi of design q, where i = 1,. . . , 2k-p-T+1 - 1,

= 1, 2, and Xg,i,l > Xq,i,2 . . . > & , i , k Let r(q, 2) = (vq,i,l, vq,i,2, . . . , vq,i,k) denote

the corresponding matrix of eigenvectors, where vq,i,j is the corresponding eigenvector

of for j = 1 , 2 , . . . , k.

T H E O R E M 3.3.1. If two 2 " ~ resolution r designs dl and d2 are isomorphic, then

there exists a k x k pennutation matrix C such that, for all i= 1, 2, . . . , (2k-p-T+1 - I),

PROOF: -
Let zli and zzi represent the Wi matrices for designs dl and d2, respectively If dl and

d2 are isomorphic, then they have the same word-length patten and satisfy

where R, and C are row and column permutation matrices. Then clearly,

(a) Follows from Lemma 3.3.1 since Zli and Z2i are similar matrices. (b) Based on

the definition of eigenvalues and eigenvectors and equation (3.5), we obtain Zlivl,i,j =

C'Z2iCvl,i,j = Xl,i,jvl,i,j SO that Z2iC~l , i , j = Xl,i,jC~l,i,j since Z2iv2,i3j = Xz,i,jvn,i,j and

= X2,i,j. This means = v2,i,j, i.e., Fl,i = C1r2,i.

CHAPTER 3. PROPOSED ISOMORPHISM CHECK AND ALGORITHM 29

Theorem 3.3.1 only gives a condition for checking the isomorphism of two designs.

However, it can be used to efficiently and straightforwardly detect the non-isomorphism

of two designs. In other words, if two designs do not satisfy either (a) or (b) in Theorem

3.3.1, then two designs are non-isomorphic. If they satisfy (a) and (b), we must resort

to further checking. Thus, it is similar in spirit to the Block and Mee check.

3.4 Sequential Construction of Non-isomorphic 2 k - p

Designs

To construct a complete catalogue of non-isomorphic 2 " ~ designs, we propose the follow-

ing sequential approach which combines the search method proposed by Bingham and

Sitter (1999) which extends the algorithms of Franklin and Bailey (1977) and Franklin

(1985), the isomorphism check of Clark and Dean (2001), and the results of sections

3.1-3.3.

Proposed Algorithm:

1. Construct a search table, which has added factors as columns, and all possible

interactions of basic factors as rows, and the interaction of corresponding row and

column as elements. The elements are thus words. For example, for 26-2, the

search table is given in Table 2.3.1.

2. For the first column, we pick up generators with different length as non-isomorphic

designs. Thus the number of non-isomorphic designs for a 2"l design is identical

to the number of designs with different word-length patterns by Theorem 2.2.2.

Let DkVp be the set of all the non-isomorphic 2 " ~ designs (with at least resolution

111).

3. Assume that we have all the 2 " ~ non-isomorphic designs, Dk-p+l,l. TO construct

Dk-p+2,2, we select one design from Dk-p+l,l and add the generators from the next

CHAPTER 3. PROPOSED ISOMORPHISM CHECK AND ALGORITHM

column of the search table. Note we only pick up the generators in the next column

of the search table that are below the generator from the current column. Compare

each successive design chosen to those already in Dk-p+2,2 to determine whether

it is isomorphic to an already obtained design. We do the following isomorphic

check for each two selected designs.

(a) Compute the word-length patterns. Compare them, if they are different, these

two designs are non-isomorphic, otherwise go to (b).
--

(b) Compute the vector of eigenvalues of W,!Wi. If any two vectors are different,

these two designs are non-isomorphic, otherwise go to (c).

(c) If s = 2P - 1 < 2k - p = TI, i.e., p 5 k - p, use the subroutine 'wcheck'

in the FORTRAN program isocheck.f90 in Appendix C which implements

Theorem 3.2.1, otherwise use the subroutine 'deseq2' which is the second

program (deseq2.f) of Clark and Dean (2001), if the row permutation and

column permutation are found, these two designs are isomorphic, otherwise,

they are non-isomorphic.

If the design is isomorphic to some design in the Dk-p+2,2, discard it; otherwise,

this design is added to Dk-p+2,2.

4. Repeat Step 3 to construct the complete set of all non-isomorphic designs Dk-p+q,q,

q = 3 ,4 ,

A FORTRAN program is given in Appendix C and the following is an example to

illustrate the algorithm.

Example 3: 16-run FF Designs

Firstly, based on the algorithm mentioned above, we can easily get D ~ J ={(125), (l235),

(12345)). Secondly, to get D6,2r we select a generator from D ~ J and consider generators

from the second column that are below it in Table 2.3.1. For example, we select the

CHAPTER 3. PROPOSED ISOMORPHISM CHECK AND ALGORITHM 3 1

generator wl=125, and consider the first generator in the second column, w2=136. Since

D6,2 is empty, the design should be added to D6,2. We then consider the second gener-

ator in the second column 146, however ((125,146)) and ((125,136)) are isomorphic.

Similarly, we find that ((125,236)), ((125,246)) are isomorphic to ((125,136)). When

we consider (125,346), we find that this design has different word-length pattern from

((125,136)). Thus DsI2 is expanded to ((125,136), (125,346)). Next, we pick the design

((125,1346)), and compare it to (125, 136). Since they are non-isomorphic, we continue

and compare it to (125, 346) and find they are also non-isomorphic. Therefore, DsY2 be-

comes ((125,136), (125,346), (125,1346)). The same steps continue until we reach the

last design (1235, 12346). After completing this search and comparison in the second

column, the algorithm stops and D6,2 =((125,136), (125,346), (125,1346), (1235,1246)).

The FORTRAN program continues through the columns until we get D ~ ~ , I I .

3.5 128-run Resolution IV Designs

So far, the appended FORTRAN program has helped us obtain the complete catalogue

of 128-run designs with up to 15 factors, Table 3.5.1 lists the number of possible non-

isomorphic F F 128-run resolution IV designs with k i 15 factors. A collection of these

designs are available. The numbers in Table 3.5.1 do correspond to those given in Block

and Mee (2004), where they conjecture that they are the complete set of non-isomorphic

designs, thus supporting their claim up to designs with 15 factors. For k 2 12 factors,

F F designs of resolution V and more do not exist. In Appendix B, we list the best

ten designs based on MA criterion for Ic 5 15, where the columns of each design are

columns of the matrix in Appendix A used for the generators. For example, k = 9,

the best design has columns 31 and 103. In Appendix A, we can find the 31-th column

corresponds to generator 12345, since rows 1, 2, 3, 4 and 5 of column 31 contain a 1.

Similarly, the 103-th column is 12367.

CHAPTER 3. PROPOSED ISOMORPHISM CHECK AND ALGORITHM

Table 3.5.1: Number of Non-isomorphic 2 " ~ FF Resolution IV Designs with n = 128
k No. of Designs

3.6 Discussion

Comparing two isomorphic designs is computer intensive but the really bad situation is

two non-isomorphic designs which pass the non-isomorphic checks. The reason is that,

if two designs are isomorphic we merely need to consider row and column permutations

until we get one from the other, but if two designs are non-isomorphic and pass all

the non-isomorphism tests, we need to try all possible row and column permutations to

be sure that they are not isomorphic. Our proposed isomorphism check algorithm can

identify all non-isomorphic designs up to 15 factors since the non-isomorphic FF designs

with k < 15 have different vectors of eigenvalues for some Ei matrix, thus helping a

great deal in the real search and comparison.

We only prove that the eigenvalue and eigenvector criterion is a necessary condition

to detect the isomorphism between two designs, which is the reason why we still use

subroutine 'deseq2' or 'wcheck' (try all possible relabelings of rows and columns in both

subroutines) to do a complete identification. On the other hand, our proposed algorithm

is beneficial for p _< k - p thanks to using the W matrix instead of the design matrix.

This can be supported by Table 3.6.1, where s, m, h and d represent seconds, minutes,

hours and days, respectively. The W matrix is (2p - 1) x k, thus its dimension changes

CHAPTER 3. PROPOSED ISOMORPHISM CHECK AND ALGORITHM

with the number of factors instead of run size. In other words, it may be efficient to get

non-isomorphic 256 or bigger run FF designs by our proposed algorithm.

Table 3.6.1: Time Spent when Using Design Matrix and W Matrix with p 5 k - p for
128-run Designs

matrix 29-2 2 l 0 - ~ 211-4 212-5 213-6

Design matrix 2m46s 29m 12h 16h ldlOh
W matrix 0.57s 4.7s 36s 5m3s 40m

Chapter 4

Future Work

The isomorphism of regular F F designs has been extensively discussed in the literature

(section 2.1). The most efficient search algorithm is given by Bingham and Sitter (1999).

However, there are a number of other considerations that could be made.

4.1 General

Firstly, the ratio of the number of the non-isomorphic designs to the number of designs

considered in the most efficient search algorithm is still small. For example, Table 4.1.1

lists the number of designs entertained in creating catalogs of F F designs with 5 basic

factors and the number of corresponding non-isomorphic designs. The percent is the

ratio of number of the non-isomorphic designs and number of designs entertained in the

combined Bingham and Sitter search algorithm. We can see all the percents are less

than 20%. Therefore, an interesting work is to reduce the number of designs considered

in search algorithm.

Secondly, the speed of detecting the isomorphism of two designs may still have po-

tential room to improve. Therefore, if either the search algorithm or the isomorphism

check can be made more efficient, one could combine the most efficient search algorithm

CHAPTER 4. FUTURE WORK 35

Table 4.1.1: Number of Designs Entertained in Creating Catalogs of F F designs with 5
Basic Factors and Number of Corresponding Non-isomorphic Designs

algorithm 27-2 28-3 29-4 210-5

combined 45 89 273 282
non-isomorphic 8 15 29 46
percent 17.78 18.85 10.62 16.31

and isomorphism check to obtain the catalogue of F F designs.

4.2 Our Proposal

We may apply this eigenvalue and eigenvector criterion to q-level (q 2 3) and mixed-level

FF, FFSP or non-regular designs. The criterion may have greater benefits in higher-level

or mixed-level designs.

From the catalogue of all non-isomorphic designs, one can show that the word-length

pattern (A1, Az, . . . , Ak) of a 2k-p design with resolution r is uniquely determined by

A,, AT+1, . . . , Ak-p, when k-p=3, 4, 5, 6. For k-p=7, it is also true for the obtainable

non-isomorphic designs. This fact tells us that to check the word-length pattern of two

designs we only need to check the first Ic - p word-lengths for 8, 16, 32, 64-run regular

designs. For p > k - p, we actually do not need to write down the complete defining

contrast subgroup. It is enough to write down the generators and the at most up to the

(k - p)-th interactions of the generators in order to compare the word-length pattern of

two designs. We conjecture that this is also true for k-p2 7.

Furthermore, we conjecture that the algorithm proposed in section 3.4 excluding part

(c) of step 3 is sufficient to obtain the catalogue of non-isomorphic two-level F F designs.

Thus it would only implement the word-length pattern comparison and eigenvalue cri-

terion and would not look for any row, column and level permutations. Therefore, we

call it the eigenvalue criterion algorithm (E.C.A in Table 4.2.1). We obtain the same

CHAPTER 4. FUTURE W O R K

Table 4.2.1: Time Using Proposed Algorithm and Eigenvalue Criterion Algorithm for
128-run Designs

algorithm 29-2 210-3 212-5 213-6 214-7 215-8 216-9

P. A. 0.57s 4.7s 36s 5m3s 40m 10d 40d -

E.C.A. 0.44s 2.5s 27s 5ms 22m42s 2h18m 14h18m 118h

number of non-isomorphic 128-run designs with lc 5 16 as that given by Block and Mee

(2004). The reason we stop at k = 16 is not because of the speed of isomorphism check

but rather because there are a huge number of non-isomorphic 128-run designs. Table

4.2.1 lists the time using the proposed algorithm (P.A. in Table 4.2.1) in section 3.4 and

the eigenvalue criterion algorithm. S, m, h, and d in Table 4.2.1 represent seconds, min-

utes, hours and days, respectively. One can see the speed of E.C.A is about 1000 times

faster than that of P.A. Almost certainly, the time can be further reduced by at least

10 times via astute programming since we have not taken full advantage of the Fortran

programming language and faster computer facilities. Since the non-isomorphic designs

are a small part of the designs considered in creating the catalogue of F F designs and

the percentage of the number of non-isomorphic designs will be smaller as the number of

factors increases, E.C.A will have greater benefit in creating the catalogue of F F designs

with more factors. --
In the proposed algorithm, we compute the vector of eigenvalues of all WiW,, where

K ' s are the subset of {W,, W,+I,. . . , WL-~) . It will be interesting to think about --
whether the vector of eigenvalues of W,'Ws may determine the vector of eigenvalues of -- - -
WAW,, where Zs ' s are some Wi and Wc's are the remaining subsets. In other words, is --
it possible that if the vectors of eigenvalues of W,'Ws for two designs are the same, the --
corresponding vectors of eigenvalues of WLW, will be the same? Exploring the existence

-
and components of W s seems worthwhile.

Appendix A

Matrix for 128-run Design

NOTE: The independent columns are in boldface and numbered 1, 2, 4 , 8, 16, 32, 64.

APPENDIX A . MATRIX FOR 128-RUN DESIGN

Appendix B

Minimum Aberration 128-run
Designs With k < - 16

NOTE: The MA 216-' designs listed below are obtained from Eigenvalue Criterion Algorithm
(see section 4.2).

k Columns (A4, A5, . . .)
8 127 0 0 0 0 1

APPENDIX B. MINIMUM ABERRATION 128-RUN DESIGNS WITH K 5 16 40

k Columns (&,Ar. . .)
10 15 51 85 0 3 3 1 0 0 0

APPENDIXB. MINIMUMABERRATlON128-RUNDESIGNS W I T H K S 16 41

k Columns (&A5, . . .)
13 7562777102115 2 1 6 1 8 1 0 9 4 2 2 0
13 7 56 27 45 107 117 2 1 6 2 0 8 5 8 4 0 0 0
13 7 56 27 107 93 118 3 1 2 2 4 8 3 1 2 0 0 1
13 7 25 98 45 85 126 3 1 4 1 7 1 4 8 2 3 2 0
13 7 25 42 83 101 127 3 1 4 1 8 1 2 7 6 2 0 1
13 7 25 43 75 101 118 3 1 5 1 7 1 1 8 5 3 1 0
13 7 25 42 83 53 124 3 1 5 1 7 1 1 8 5 3 1 0
13 7 25 98 43 83 125 3 16 15 10 12 4 1 2 0
13 7 56 27 45 107 93 3 1 6 1 6 8 1 1 8 0 0 1
13 7 25 43 75 101 115 3 1 7 1 5 7 1 2 7 1 1 0

Appendix C

Fortran Program 1socheck.fSO

PROGRAM alldesign

!get the all the non-isomorphic design for the two level
!diffdesign : save the non-isomorphic designs for add k-th step
!diffmatrix:ith column is the position of non-isomorphic design 's basic
!effect for ith step
!idiff : the number of old non-isomorphic designs
!new-idiff : the number of new non-isomorphic designs
!MM : the number of basic factors
!KK : the number of added factors
!m: the number of runs
!lenvec: the cumulative number of words for i-length
!new-ii is from 1 to new-idiff
!design2 is a design from the exiting non-isomorphic design
!pick up a new design from the search table,denoted as design1
1--

INTEGER::jstep,idiff,new-ii,new-idiff,nn,ii,jii,ifile,p,infor
INTEGER::infor2,infor3,infor4
LOGICAL::diff,first
CHARACTER(20)::filenames
CHARACTER*IO : : b(3)
INTEGER,PARAMETER::MM=7,diffrows=3530,kcols=2O,ncol=26O
INTEGER,PARAMETER::lwork=I30
INTEGER:: KK,nrow,jjii,k,i,j
INTEGER,DIMENSION(8)::date-time
INTEGER,DIMENSION(MM-~)::~~~V~C
INTEGER,DIMENSION(kcols)::addeff
INTEGER,DIMENsIoN(~*~co~s):: basiceff
REAL,DIMENSION(lwork)::work,work2,~0rk3,~0~k~
INTEGER,DIME~sION(2,kcols)::designl,design2
~ ~ ~ ~ ~ ~ ~ , ~ ~ ~ ~ ~ ~ ~ ~ ~ (d i f f r o w s , k c o l s) : : d i f f m a t r i ~
INTEGER,DIMENSION(diffrows~2,kcols)::diffde~ign,ne~~diffdesign
INTECER,DIMENSION(2,kcols)::wlp
RE~L,~IME~~I0N(2,kcols)::eigenval,eigenval2,eigenvalc

APPENDIX C. FORTRAN PROGRAM ISOCHECK.FS0

REAL, DIMENSION (2,kcols) : : eigenval22, eigenval32, eigenval42
INTEGER,DIMENSION(~ ,ncol, kcols) : :wmatrix
INTEGER,DIMENSION (2, n d , kcols) : : pparr ,pparr2 ,pparr3, pparr4, cpparr
INTEGER,DIMENSION(~, kcols ,ncol) : : tpp, tpp2, tpp3, tpp4, tcpp
INTEGER ,DIMENSION (2, kcols ,kcols) : : tpppp, tpppp2, tpppp3, tpppp4, tcpppp

0~~N(150,file="searchtable128.txt~~)
nn=2**MM
0p~~(l,file="designl28-l.out")
READ(I~O,*) (lenvec(i1, i=l ,MM-2)
DO i=l,lenvec(MM-2)
~~~~(150,*)baSiceff (1) 

END DO 
DO i=l,kcols 
adde f f ( i ) =MM+ i 
END DO 

ithe first step is to get the non-isomorphic 28-1 designs 
DO i=1, MM-2 
IF(i .EQ. 1) THEN 
diffdesign(i, I, l)=basicef f (1) 
diffdesign(i ,2,1)=addeff (1) 
diffmatrix(i,l)=l 
ELSE 

diffdesign(i,I,l)=basiceff (lenvec(i-l)+1) 
diffdesign(i,2,1)=addeff (I) 
diffmatrix(i,l)=lenvec(i-l)+l 

END IF 
END DO 
call date-and-time (b(l), b(2), b(3) ,date-time) 
WRITE(I,*) "The current time : : " , b(1) ,b(2) 
j step=l 
idif f =MM-2 
DO i=l,idiff 
w~~T~(l,*)diffdesign(i,l,l) 
END DO 
close(1) 
j step- j step+l 
idiff-MM-3 
DO WHILE(jstep .LT. 9) 

if ile-jstep 
p= jstep+MM 
SELECT cASE(if ile) 
CASE(2) 
filenames="designl28-2.0uto1 

CASE(3) 
filenames=11design128-3.0ut" 
CASE(4) 
f ilenames="design128-4. out" 
CASE(5) 



APPENDIX C. FORTRAN PROGRAM ISOCHECK.FS0 

filenames="design128-5.0utM 
CASE(6) 
filenames="designI28-6.0ut~~ 

CASE(7) 
filenames="designl28-7.out" 
CASE(BI 
f ilenames="design128-8. out" 
CASE(9) 
f ilenames="designl28-9. out" 

END SELECT 
open(ifile,filetfilename~) 
call date-and-time(b(1) ,b(2) ,b(3) ,date-time) 
 WRITE(^^ ile, *) "The current time : : , b(1) ,b(2) 
DO ii=l,idiff 

first=.TRUE. 
DO jii=diffmatrix(ii,(jstep-l))+l,lenvec(MM-2) 
IF(ii .EQ. 1 .AND. first)THEN 
first=.FALSE. 
new~diffdesign(l,:,l:(jstep-l))=diffdesign~lJ:,l:~jstep-l)) 
new-diffdesign(1, I, jstep)=basiceff (jii) 
new-diffdesign(l,2,jstep)=addeff(jstep) 
diffmatrix(1, jstep)=diffmatrix(l, jstep-l)+l 
new-idiff=l 

END IF 
designl(:,l:(jstep-l))=diffdesign(ii,:,l:(jstep-1)) 
designl(l,jstep)=basiceff(jii) 
design1 (2, jstep)=addef f (jstep) 
new-ii=l 

IF(jstep .LE. 11)THEN 
call lpattern(designl(: ,1:jstep) ,MM,jstep,wlp(l, : I  ,pparr(l,: ,I:P) ,& 

pparr2(1,: ,1:p),pparr3(1,: ,1:p),pparr4(IJ: ,l:p),wmatrix(l,: ,1:~)) 
END IF 
IF(wlp(l,3) .NE.O)THEN 

go to 998 
END IF 
if(wlp(1,4).ne.O)then 
call xtransp2(pparr(lJl:wlp(1,4),1:p),wlp(1,4),p,& 

tpp(l,l:p,l:wlp(l,4~)) 
call multxy2(tpp(l,l:p,l:~lp(1,4)) ,pparr(l,l:wlp(1,4) ,1:~) ,& 

p,wlp(l,4) ,p,tpppp(l,l:p,l:p)) 
call SSYEVONJ ,'UJ,p,real(tpppp(l,l:p,l:p)) ,p,& 

eigenval2 (1,l: p) ,work, lwork, inf or) 
end if 
if(wlp(l,5).NE.O)then 
call xtran~~2(~~arr2(1,1:wlp(1,5) $1:~) ,wlp(L5) ,& 

p,tpp2(1,1:p,l:wlp(1,5))) 
call multxy2(tpp2(1,1:p,l:~lp(l,5)) ,pparr2(1 J ~ : ~ ~ P ( ~ ~ ~ )  J i : ~ )  ,& 

p,wlp(l,5) ,p,tpppp2(I,l:p,l:p)) 
call SSYEV('NJ, 'UJ ,p,rea1(tpppp2(1,1:p,l:p)),pJ& 



APPENDIX C. FORTRAN PROGRAM ISOCHECK.FS0 

eigenval22(1,1:p),work2,lwork,infor2) 
end if 
if(wlp(l,6).NE.O)then 
call xtransp2(pparr3(1,1:wlp(1,6) ,1:p) ,wlp(l,6) ,& 

p,tpp3(1,1:p,l:wlp(l,6))) 
call multxy2(tpp3(1,1:p,l:wlp(l,6)),pparr3(1,1:wlp~l,6~ ,l:p) ,& 

p,wlp(l,6) ,p,tpppp3(l,l:p,l:p)) 
call SSYEV('NJ , 'U' ,p,real(tpppp3(1,1:p, 1:p)) ,p,& 

eigenval32(1,1:p),work3,lwork,infor3) 
end if 
if (wlp(i,7) .NE.O)then 
call xtransp2(pparr4(1,1:wlp(1,7) ,l:p) ,wlp(1,7) ,& 

p,tpp4(1,1:p,l:wlp(l,7))) 
call multxy2(tpp4(1,1:p,l:wlp(1,7)),pparr4(1,1:wlp(1,7) ,1:p) ,& 

p,wlp(l,7) ,p,tpppp4(l,l:p,1:p)) 
call ~~~EV('N','U',p,real(tpppp4(l,l:p,l:p)),p,& 

eigenva142 (1,l: p) , work4, lwork , inf or4) 
end if 
DO 
diff=.FALSE. 
design2(: ,1: jstep)=new-diffdesignbew-ii ,  : ,I : jstep) 

IF(jstep .LE. 11)THEN 
call lpattern(design2(:, 1: jstep) ,MM, jstep,wlp(2, : ) ,pparr(2, : , I:P)& 

,pparr2(2, : ,1:p) ,pparr3(2, : ,l:p) ,pparr4(2, : ,l:p) ,wmatrix(2, : ,l:p)) 
END IF 
1~(wlp(2,3) .NE.O)THEN 

go to 998 
END IF 
j j ii=O 
~~(sm(abs(wlp(l,l:p)-wlp(2,l:p))) .GT. 1.91) THEN 
diff=.TRUE. 
ELSE 
if(wlp(2,4).1~.0 .and. (.not. diff))then 
call xtransp2(pparr (2,l: wlp(2,4), 1 :P) , wlp(2 ,4) ,& 

p,tpp(2,1:p,l:wlp(2,4))) 
call multxy2(tpp(2,1:p,l:wlp(2,4)),pparr(2,1:wlp(2,4) ,1:p) ,& 

p,wlp(2,4) ,p,tpppp(2,1:p,l:p)) 
call SSYEV('NY ,'UJ ,p,real(tp~pp(2,1:p,l:p)) ,p,& 

eigenva12(2, 1 :PI, work,lwork, inf or) 
IF(sm(abs (eigenval2(1,1 :p)-eigenval2(2, p ) .GT. 1) THEN 

diff=.TRUE. 
else 
do i=jjii+l,jjii+wlp(l,4) 
do k=l,p 

cpparr(l,i,k)=pparr(l,i-jjii,k) 
cpparr(2,i,k)=pparr(2,i-jjii,k) 

end do 
end do 
jjii=jjii+wlp~l,4~ 



APPENDIX C. FORTRAN PROGRAM ISOCHECK.FS0 

end if 
end if 
if(wlp(2,5).ne.O .and. (.not. diff))then 

call xtransp2(pparr2(2,1:wlp(2,5),1:p),wlp(2,5),p,% 
tpp2(2,1:p,l:wlp(2,5))) 

call multxy2(tpp2(2,1:p,l:wlp(2,5)),pparr2(2,l:wlp(2,5),1:p),% 
p,wlp(2,5) ,p,tpppp2(2,1:p,1:p)) 

call SSYEV('NJ, 'U',p,real(tpppp2(2,1:p,l:p)),pS% 
eigenva122 (2,l: p) , work2, lwork , inf or21 

1~(sum(abs(eigenval22(1,1:p)-eigenva122(2,1:p))) .GT. 0.5) THEN 
diff=.TRUE. 

else 
do i=jjii+l,jjii+ulp(l,5) 
do k=l,p 

cpparr(l,i,k)=pparr2(1,i-jjii,k) 
cpparr(2,i,k)=pparr2(2,i-jjii,k) 

end do 
end do 
j jii=jjii+wlp(1,5) 

end if 
end if 
if(wlp(1,4).ne.0 .and. wlp(l,5).ne.O .and. (.not.diff))then 
call xtransp2(cpparr(l,l:jjii,l:p),jjii,p,tcpp(l,l:p,l:jjii)) 
call multxy2(tcpp(l,l:p,l:jjii),cpparr(l,l:jjii,l:p),& 

p, jjii,p,tcpppp(l,l:p,l:p)) 
call sSYEV('NJ, 'U',p,real(tcpppp(l,I:p,I:p)),p,& eigenvalc(l,l:p),work4,1work,infor4) 
call xtransp2(cpparr(2,1:jjii,l:p),jjii,p,tcpp(2,1:p,l:jjii)) 
call multxy2(t~pp(2,1:p,l:jjii),cpparr(2,1:jjii,l:~) ,p,& 

jjii,p,t~pppp(2,1:p,l:p)) 
call SSYEV('NJ, 'UJ ,p,real(tcpppp(2,1:p,l:p)) ,p,% 

eigenvalc(2,1:p),work4,1work,infor4) 
~~(~um(abs(eigenvalc(l,l:p)-eigenvalc(2,:p .GT. 0.5) THEN 

diff=.TRUE. 
end if 
end if 
if(wlp(2,6).ne.O .and. (.not.diff))then 
call xtransp2 (pparr3(2,1: wlp(2,6) ,1 ,wlp(2,6) ,% 

p,tpp3(2,1:p,l:wlp(2,6))) 
call multxy2(tpp3(2,1:p,l:~lp(2,6)) ,pparr3(2,1:wlp(2,6) ,I:P) ,% 

p,wlp(2,6) ,p,tpppp3(2,1:~,1:~)) 
call SSYEV('NJ, 'U',p,real(tpppp3(2,1:~,l:p)) ,p,% 

eigenval32 (2,1 :PI, work, lwork, inf or) 
IF (sum (abs (eigenval32 (1,1: p) -eigenva132 ( 2 ,  : p ) ) . GT . 0.5) THEN 

diff=.TRUE. 
else 
do i=jjii+l, jjii+wlp(l,6) 
do k=l,p 

cpparr(l,i,k)=pparr3(1,i-jjii,k) 
cpparr(2,i,k)=pparr3(2,i-jjii,k) 



APPENDIX C. FORTRAN PROGRAM ISOCHECK.FS0 

end do 
end do 
jjii=jjii+~lp(l,6) 
call xtransp2(~pparr(l,l:jjii,l:~),jjii,~,tc~~(l,l:~,l:jjii)) 
call multxy2(tcpp(l,l:p,l:jjii) ,cpparr(l,l:jjii,l:p) ,& 

p,jjii,p,tcpppp(l,l:p,l:p)) 
call SSYEV('N', 'U' ,p,real(tcpppp(l, l:p,l:p)) ,& 

p,eigenvalc(l,l:p),work4,1work,infor4) 
call xtransp2(cpparr(2,1: jjii,l:p),jjii,p,tcpp(2,1:p,l:jjii)) 
call multxy2(tcpp(2,1:p,l: jjii),~~~arr(2,l:jjii,l:~),& 

p,jjii,p,tcpppp(2,1:pSl:p)) 
call SsYEV('NJ ,'U',p,real(tcpppp(2,1:p,l:p)) ,p,& 

eigenvalc(2,1:p),~~rk4,1work,infor4) 
IF(sm(abs (eigenvalc (1 , 1 :p) -eigenvalc ( 2 ,  : p ) . GT. 0.5) THEN 

diff=.TRUE. 
end if 
end if 

end if 
if(wlp(2,7).ne.O .and. (.not. diff))then 
call xtransp2(pparr4(2,1:wlp(2,7) ,l :p) ,wlp(2,7) ,& 

p,tpp4(2,1:p,l:wlp(2,7))) 
call multxy2(tpp4(2,i:p,l:~lp(2,7)) ,pparr4(2,1:wlp(2,7),1:p),& 

p,wlp(2,7) ,p,tpppp4(2,1:p*l:p)) 
call SSYEV('N','U' ,p,real(tpppp4(2,1:~,1:p)) ,p,& 

eigenval42 (2,l: p) ,work, lwork , inf or) 
1~(sm(abs(eigenval42(1,1:p)-eigenva142(,:p .GT. 0.5) THEN 

diff=.TRUE. 
else 

do i=jjii+l, jjii+wlp(l,7) . 
do k=l,p 
cpparr(l,i,k)=pparr4(1,i-jjii,k) 
cpparr(2,i,k)=pparr4(2,i-jjii,k) 
end do 
end do 
jjii=jjii+~lp(1,7) 

call xtransp2(cpparr(l,l: j jii,l:p) ,jjii,p,t~pp(l,l:~,l:jjii)) 
call multxy2(tcpp(l,l:p,l:jjii) ,cpparr(l,l:jjii,l:~) ,& 

p,jjii,p,tcpppp(l,l:p,l:p)) 
call SSYEV( 'N', 'U',p,real(tcpppp(l,l:p,l:p)) ,& 

p, eigenvalc (1,l: p) , work4, lwork, inf or41 
call xtransp2(cpparr(2,1:jjii,l:p),jjii,& 

p,tcpp(2,1:p,1:jjii)) 
call multxy2(tcpp(2,l:p,1: jjii) ,cpparr(2,1: jjii,l:p) ,& 

p, jjii,p,tcpppp(2,1:p,l:p)) 
call SSYEV('N' ,'UJ ,p,real(tcpppp(2,1:p,l:p)) ,& 

p, eigenvalc (2,l :p) ,work4, lwork, inf 01-41 
1~(sum(abs(eigenvalc(l,l:p)-eigen~a~c(2,1:p .GT. 0.5) THEN 

diff=.TRUE. 
else 



APPENDIX C. FORTRAN PROGRAM ISOCHECK.FS0 

if (jstep . LE. MMIthen 
call ~check(wmatrix(l,1:(2**jste~-l),1:~),& 

wmatrix(2,l: (2**jstep-1) ,l:p) ,MM,p,2**jstep-1,diff) 
else 
call deseq2(designl( : , 1 : jstep) ,design2( : , 1 : jstep) ,MM,p,dif f) 

end if 
end if 
END IF 
END IF 
END IF 
IF(.NOT. diff) THEN 

go to 998 

ELSE 
new-ii=new-ii+l 

END IF 
IF(new-ii .EQ. (new-idiff+l)) THEN 

new-idiffznew-idiff+l 
new-diffdesignbew-idiff ,1:2,1: jstep)=designl (I: 2, I: jstep) 
diffmatrixbew-idiff,jstep)=jii 
go to 998 

END IF 
END DO 

998 END DO 
END DO 
idiff=new-idiff 
diffdesign=new-diffdesign 
DO i=l,idiff 
~~~~~(ifile,*)diffdesign(i,l,l:jstep) 
END DO
call date-and-time(b(1) ,b(2) ,b(3) ,date-time)
WRITE(if ile, *) "The current time : : " , b(1) ,b(2)
jstep=jstep+l
close(if ile)
END DO

999 END PROGRAM alldesign
...
!this is the program to produce wlp
!gen is the matrix with row for generators
!wmat[i,] is ith generator 'S letters

SUBROUTINE lpattern (design, MM, addnum, wlp, ppmat , ppmat2, &
ppmat3, ppmat4 ,ppmatall)

INTEGER: :i, j,bits,sm,b,bb,r,k,jj,l,addn~,jfi~e, jsix,jseven
INTEGER::numbJnumb2,numb3,numb4
CHARACTER(20)::lpfile,ppfile
INTEGER,PARAMETER::ncols=20,nrows=260,ncol=260
I N T E G E R , D I M E N s I o N (~ , ~ ~ ~ ~ ~ ~) : : ~ ~ ~ ~ ~ ~
INTEGER,DIMENSION(~CO~S) : : wlp
INTEGER,DIMENSION(nrows) : :digit

APPENDIX C. FORTRAN PROGRAM ISOCHECK.FSO

DO i=l,nrows
digit (i)=0

END DO
DO i=l,nrows
DO j =I, ncols

gen(i, j>=O
END DO
END DO
do i=l,addnum
do j=l,ncols

mat(i, j>=O
end do

end do
DO i=l,ncol
DO j =l , addnum+MM
~pmat (i, j)=0
ppmat2(i, j)=0
ppmat3(i, j>=O
ppmat4(i, j)=0
ppmatall(i, j)-0

END DO
END DO
Do i=i,addnum

bits=FLOOR(LOG10(real(design(l,i))))+l+l
DO b=bits,2,-1
IF(b .EQ. bits)THEN
mat(i, l)=FLOOR(real(design(l,i))/real(lO**(b-1-1)))
ELSE
sm=SUM((/(mat(i,bits-bb+l)*lO**(bb-1-11 ,bb=bits,b+l,-I)/))
m a t (i, bits-b+l)=FLOOR(real (design (1, i) -sm)/real (lo+* (b-2)))
END IF

END DO
m a t (i, bits)=design(2, i)

END DO
gen(1, :)=wmat(l, :)
gen(2, :)=mat(2, :)
call gene(gen(l,:),gen(2,:),gen(3,:))
r=3
IF(addnum .GE. 3)THEN
DO i=3,addnum
r=r+ 1
gen(r,:)=mat(i,:)

DO j j=r+l,r+2**(i-11-1
if (jj .EQ. r+2**(i-l)-1)THEN
call gene(gen(jj-r,:),gen(r,:),gen(jj,:))

APPENDIX C. FORTRAN PROGRAM 1SOCHECK.FSO

END DO
END DO

END IF
DO i=1,r
j=1
DO WHILE(gen(i, j) .NE. 0)
j=j+l

END DO
digit (i)=j-1

END DO
DO i=l,ncols
wlp(i)=O

END DO
DO i=l,r
wlp(digit(i))=wlp(digit (i))+l
END DO
numb=O
DO i=l,r

j=1
IF(digit(i) .Eq.4)THEN
numb=numb+l

END IF
DO WHILE(digit (i) .EQ.4 .AND. gen(i, j) .NE. 0)
ppmat (numb, gen(i , j))=I
j=j+l

END DO
END DO
numb2=0
DO i=l,r

jf ive=l
IF(digit (i) .EQ. 5)THEN
numb2=numb2+1

END IF
DO WHILE(digit(il.EQ.5 .AND. gen(i,jfive).N~. 0)
ppmat2(numb2,gen(i, jf ive))=l
jf ive-jf ive+l

END DO
END DO
numb3=0
DO i=l,r

jsix-1
IF(digit(i) .EQ.G)THEN
numb3=numb3+1

END IF
DO WHILE(digit(i).EQ.G .AND. gen(i,jsix).NE. 0)

APPENDIX C. FORTRAN PROGRAM 1SOCHECK.FSO

ppmat3(numb3,gen(i,jsix))=l
jsix=jsix+l

END DO
END DO
numb4=0
DO i=l,r
j seven=i
~~(digit(i) .EQ.7)THEN
numb4=numb4+1

END IF
DO WHILE(digit (i) . EQ. 7 .AND. gen(i, jseven) . NE. 0)
ppmat4 (numb4, gen (i , j seven)) -1
jseven=jseven+l

END DO
END DO
Do i=l,r
j=1
Do WHILE(gen(i, j) .NE.O>
ppmatall(i,gen(i, j))=l
j=j+l
END DO

END DO
END SUBROUTINE lpattern

...
!program to generate a new generator which is product of two generators

SUBROUTINE gene(rl,r2,rlr2)
INTEGER::i,j
INTEGER,PARAMETER::ncols=20
~~~~~ER,DIMENSION(ncols)::rl,r2,rlr2,csu 
INTEGER,DIMENSION(~,~CO~S)::~~~~ 

DO i=1,2 
DO j=1 ,ncols 
imat(i, j>=0 
END DO 

END DO 
i-1 
DO WHILE(rl(i1 .NE. 0) 
imat(l,rl(i))=l 
i=i+l 

END DO 
i=1 
DO WHILE(r2(i) .NE. 0) 
imat(2,r2(i))=l 
i=i+l 

END DO 
DO i=l,ncols 

csum(i)=imat (I ,i)+imat (2,i) 
END DO 



APPENDIX C. FORTRAN PROGRAM ISOCHECK.FS0 

j=l 
DO i=l,ncols 
~F(csum(i) .EQ. 1)THEN 
rlr2cj)-i 
j=j+l 

END IF 
END DO 

END SUBROUTINE gene 
....................................................................... 
! * subroutine to calculate transpose of a matrix 

subroutine xtransp2(x,n,p,xt) 
integer::i,j,n,p 
integer x (n,p) , xt (p, n) 

do i=l,n 
do j=l,p 

xt(j ,i>=x(i, j) 
end do 

end do 
return 
end 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

! *  subroutine to multiply two matrices 
subroutine multxy2(x,y,nx,px,py,xy) 
integer::nx,px,py,i,j,prod 
integer,dimension(nx,px)::x 
integer,dimension(px,py)::y 
integer,dimension(nx,py)::xy 

do i=l,nx 
do j=l ,py 

prod=O . 
do k=l,px 

prod=prod+x(i,k)*y(k,j) 
end do 
xy(i, j)=prod 

end do 
end do 
return 

end 
....................................................................... 

subroutine deseq2(desl,des2,bm,p,diff) 
! * Copyright James C Clark. May 7th 1988. 
! * James.B.Clark(Paero.org (Jim Clark) 
! * dean. 900s~. edu (Angela Dean) 
! *  deseq1.f and deseq2.f are used to determine design equivalence. 
! * deseq1.f should be run first - it performs several tests for 
! * equivalence. deseq2.f can be run concurrently - it tries to find 



APPENDIX C. FORTRAN PROGRAM ISOCHECK.FS0 

the permutations showing the equivalence. Much time may be wasted 
if this second search is done without starting the tests of deseq1.f. 
deseq2. f 
Given matrices xi and x2 (stored in design1 and design2, 
with the first line containing the number of rows and the 
number of columns) a row permutation matrix r and a colum~~ 
permutation matrix c are found such that xl=rx2cl, where 
1 is a diagonal matrix of +/- 1's. 1 can be found by then 
equating the first row of xi and rx2c. 
The program has been adapted. 
First an r matrix is found by comparing xlxl' and ~2x2': 
integer,parameter::nrow=128 
integer n,i,j,~0~,col,curcol(nrow),ma~stage,bits,b,bb,sml,~m2,bm,p 
integer xlxlp(nrow,nrow) ,x2x2p(nrow,nrow) ,r (wow ,mow) 
integer ri (O:nrow, 0 : nrow ,O:nrow) ,x2t (nrow ,mow) 
integer xl (mow ,nrow) ,x2(nrow ,mow) ,xlt brow ,nrow) 
integer,dimension(2,p-bm)::desl,des2 
integer,dimension(bm)::bitsvec 
logical diff,done 
done=.FALSE. 
n=2**bm 
DO i=l,bm 

DO j=0, (2**(bm-i)-1)*2**(i-1) ,2** (i-1) 
xl((l+2*j) : (2**(i-1)+2*j) ,i)=l 
x1((1+2**(i-l)+2+j) : (2**i+2*j) ,i)=-1 

END DO 
END DO 
DO j=bm+l ,p 
bits is the digits of designl(1, j-bdPbasiceff 

bits=~~00~(~0~10(real(desl(~, j-bm) 1) )+I 
DO b=bits,i,-1 

IF(b .EQ. bits)THEN 
bitsvec (b)=~~OOR(real (desl(1, j-bm) ) /real (lo** (b-1) ) )  

ELSE 
sm~=~~~((/(bitsvec(bb)*lO**(bb-l),bb=bits,b+l,-~)/)) 
bitsvec(b)=FLOOR(real(desl(l, j-bm)-sml)/real(lo**(b-1)) ) 

END IF 
END DO 

xl(~:2**bm,j)=product(~l(l:2**bm,bitS~ec(1:bits)),~1~=2) 
END DO 

! bits+l is the digits of design2(j-bm) 
bits=~~00~(~OGlO(real(des2(1, j-bm))) )+l 
DO b=bits,l,-1 
IF(b .EQ. bits)THEN 
bitsvec (b)=FLOOR(real (des2(l, j-bm)) /real (lo** (b-1))) 

ELSE 



APPENDIX C. FORTRAN PROGRAM ISOCHECK.FS0 

sm2=SUM( (/(bitsvec(bb)*lo**(bb-1) ,bb=bits,b+l ,-I)/)) 
bitsvec (b)=FLOOR(real (des2 (1, j-bm) -sm2) /real (lo** (b-1) 1) 

END IF 
END DO 
x2(1 :2**bm, j)=product(x2(1:2**bm,bitsvec(i:bits~~ ,DIM=2) 
END DO 

Calculate ~1x1' and ~2x2' 

call xtransp(x1 ,n,p,xlt ,mow) 
call multxy (xi ,xlt ,n,p,n,xlxlp ,nrow) 
call xtransp (~2, n, p, x2t, nrow) 
call multxy ( ~ 2 ,  x2t ,n ,p ,n, x2x2p, nrow) 

Clear the vector of the current row permutation 
do i=i,n 

curcol (i) =0 
end do 

Initialize the potential r matrices. 
call rcand(xl,x2,n,p,r,nrow) 
do i=l,n 

do j=l,n 
ri(O,i, j)=r(i, j) 

end do 
end do 

Find an r matrix 
row=l 
do while (row.ge.1) 

col = curcol(row)+1 
do while ((abs(r(row,col)).lt.O.l).and.(col.le.n)) 

col = col+l 
end do 
if (col.eq.n+l) then 

do i=row-l,n 
do j=l,n 

r(i, j>=ri(row-2,i, j) 
end do 

end do 
row=row- 1 

else 
curcol (row)=col 
do i=row+l,n 

curcol (i)-0 
end do 
do j=l,n 

if(j.ne.row) r(j,col)=O. 
if(j.ne.co1) r(row,j)=O. 



APPENDIX C. FORTRAN PROGRAM ISOCHECK.FS0 

end do 
do j=row+l ,n 

do i=l,n 
if (abs(xlxlp(row,j)-x2x2p(col,i)) .gt.O.l) r(j,i)=O. 

end do 
end do 
do i=l,n 

do j=l,n 
ri(row,i, j)=r(i, j) 

end do 
end do 
if(r0w.eq.n) then 

row = row-1 
call fi~dc(xl,x2,curcol,r,n,p,maxstage,~0~,done) 
if (done) then 
go to 99 
end if 

else 
row=row+l 

end if 
end if 

end do 
diff=.TRUE. 

gg end subroutine deseq2 

....................................................................... 
!xi and x2 are word matrices of design1 and design2,respectively 
!the same principle as deseq2 

subroutine wcheck(wl,w2,bm,p,wl,diff) 
logical diff,done 
integer, parameter::nrow=64 
integer p,wl 
integer i , j ,row, col , curcol (nrow) 
integer n ,maXStage 
integer wl (wl ,p) ,w2(wl ,p) 
integer xlxlp(nrow , nrow) , ~ 2 x 2 ~  b o w ,  nrow) , r (nrow ,nrow) 
integer ri (0 :mow, 0 :mow, 0 : nrow) , x2t (nrow , nrow) 
integer xl (nrow ,nrow) ,x2 (nrow,nroW), xlt (nrow ,nrow) 
n=wl 
Calculate xlxl' and ~2x2' 
done-. false . 
xl (l:n,l:p)=wl 
x2(1:n,l:p)=w2 
call xtransp(x1 ,n ,p,xlt ,nrow) 
call multxy (xl,xlt,n,p,n,xlxlp,nrow) 
call xtransp(x2 ,n, p, x2t ,nrow) 
call multxy (x2, x2t ,n, P , n, x2x2p, nrow) 

Clear the vector of the current row permutation 



APPENDIX C. FORTRAN PROGRAM ISOCHECK.FS0 

do i=i,n 
curcol (i)=0 

end do 

Initialize the potential r matrices. 
call rcand(xl,x2,n,p,r,nrow) 
do i=l,n 

do j=l ,n 
ri(O,i, j)=r(i, j) 

end do 
end do 

Find an r matrix 
row=l 
do while (r0W.ge.l) 

col = curcol(row)+l 
do while ((abs(r(row,col)) .It .o. 1) .and. (col.1e.n)) 

col = col+i 
end do 
if (col.eq.n+l) then 

do i=row-l,n 
do j=l,n 

r(i, j)=ri(row-2,i, j) 
end do 

end do 
row=row-1 

else 
curcol (row) =col 
do i=row+l,n 

curcol(i)=O 
end do 
do j=l,n 

if (j.ne.row) r(j,col)=o. 
if(j.ne.co1) r(row,j)=o. 

end do 
do j=row+l ,n 

do i=l ,n 
if(abs(xlxlp(row,j)-x2x2p(col,i)).gt.0.l) r(j,i)=O. 

end do 
end do 
do i=1 ,n 

do j=l,n 
ri(row,i, j)=r(i, j) 

end do 
end do 
if (row. eq. n) then 

row = row-1 
call f indc (xl ,x2, curcol ,r,n,p,maxstage ,nrow,done) 
if (done) then 



APPENDIX C. FORTRAN PROGRAM ISOCHECK.FS0 

go to 9999 
end if 

else 
row=row+l 

end if 
end if 

end do 
diff=.TRUE. 

9999 end subroutine wcheck 

! *  Subroutine to find a c matrix for a given r matrix 
subroutine f indc (xl,x2, curcol,r,n,p,maxstage,nrow,done) 
integer nrow,done 
integer xl (mow ,nrow) , x2 brow ,mow) ,r(nrow ,mow) 
integer stage ,p,n,deLcols (mow), j ,mastage, curcol (nrow) 
logical valid,test-fails 

do j=l,p 
del-cols (j) =0 

end do 

! *  Search through the tree to find a c: 
maxstagezl 
stages1 
do while(stage.1t.p) 

del-cols (stage)=p+l 
test-fails=.true. 
do while(test-f ails) 

del-cols(stage)=del-cols(stage)-1 
do while(del,cols(stage).eq.O) 

stagelstage-1 
if (stage. eq. 0) then 

return 
end if 
del-cols (stage)=del-cols(stage) -1 

end do 
valid = .false. 
do while( (.not .valid). and. (del-cols(stage) .gt .o)) 

valid=.true. 
do j=stage-1 ,I, -1 

if(de1-cols(stage).eq.del-cols(j)) valid=.false. 
end do 
if (.not. valid) then 

del-cols(stage)=del-cols(stage)-1 
end if 

end do 
if (del-cols(stage).eq.O) then 



APPENDIX C. FOlWRAN PROGRAM ISOCHECK.FS0 

del-cols (stage)=l 
else 

call test(xl ,x2 ,n,p,del-cols,r, stage, test-f ails ,nrow) 
end if 

end do 
stage=stage+l 
if (stage. gt . mast age) mastage=stage 

end do 
call equal (r , del-cols ,n, p ,mastage, nrow, done) 
end 

.............................................................. 
! *  If the last stage is successful, designs are equivalent 

subroutine equal (r ,del-cols ,n,p ,maxstage ,nrow,done) 
integer nrow 
integer r brow , nrow) 
integer del-~01s (nrow) ,mastage 
integer i ,n, p, rperm (nrow) , cperm(nrow) 
logical done 

! * Determine the' row permutation 
do i=l,n 

j=1 
do while (nint(real(r(i,j))).eq.O) 

j=j+l 
end do 
rperm(i>=j 

end do 

! *  Determine the column permutation 
cperm (1) =0 
do i=p,2,-1 

cperm(i)=del-cols(p-i+1) 
cperm(i)=cperm(l)+cperm(i) 

end do 
cperm(l)=P* (p+l)/2-cperm(1) 
done=.TRUE. 

I write(*,*) 'Passes stage ',maxstage 
! write(*,*) 'Equal' 
I write(*,*) 'Column perm~tation',(cperm(i),i=l,~) 
! write(*,*) 'Row PermutationJ,(rperm(i),i=l,n) 

end 
............................................................. 
! * At each stage, tests if xlslxl'= rx2sx2'rJ, where sl and s 
! * are diagonal matrices of 0's and 1's that select the 
! * appropriate columns for each stage. 

subroutine test(xl,x2,n,p,de~~cols,r,stage,test~fails,nrow~ 
integer nrOW 
integer xl (nrow ,mow) , x2(nrow ,mow) , r (nrow ,mow) , s brow ,nrow) 



APPENDIX C. FORTRAN PROGRAM ISOCHECK.FS0 

integer xlt h o w  ,mow) , x2t brow ,mow) , mxl (nrow ,nrow) 
integer m2(nrowJnrow) ,mx2(nrow,nrow) ,m3(nrow,nrow) ,rt (nrow,nrow) 
integer dif 
integer n,p, del-CO~S (nrow) ,stage 
logical test-fails 

Calculate s according to which columns were deleted 
do i=l,p 

do j=l,P 
s(i, j>=O. 

end do 
s(i,i)=l. 

end do 

Calculate mx2 = rx2sx2'r2 
call multxy(r,x2,n,n,p,rn2,nrow) 
call multxy(m2,s,n,p,p,m3,nrow) 
call xtransp ( ~ 2 ,  n , p ,  x2t, mow) 
call multxy (m3, x2t ,n ,p ,n,m2 ,nrow) 
call xtransp(r ,n,n ,rt ,nrow) 
call multxy(m2,rt,n,n,n.,mx2,nrow) 

Test if mxl = mx2. Looks for large Sum of Squares of differences. 
dif =0. 
do i=l,n 

do j=l,n 
dif=dif+(mxl(i, j)-mx2(i, j))**2 

end do 
end do 
if (dif.lt.1.) test-fail~=.false. 
return 
end 

.............................................................. 
! * Find candidate r matrices 

subroutine rcand(x1 ,x2 ,n,p ,r ,nrow) 
integer nrow 
integer xl (nrow,nrow) , x2 (nrow,nrow) ,r (nrow ,nrow) 



APPENDIX C. FORTRAN PROGRAM 1SOCHECK.FSO 

integer xlt (nrow,nrow), x2t (mow ,mow) 
integer xlxlt (nrow,nrow), x2x2t (nrow,nrow) 
integer countsxl (nrow ,nrow) , countsx2 (nrow ,mow) 
integer k,jj,i,j,n,p,match(nrow,nrow) 

call xtransp(x1 ,n,p,xlt ,mow) 
call multxy (xl ,xlt ,n,p,n,xlxlt ,mow) 
call xtransp(x2 ,n ,p, x2t ,mow) 
call multxy (x2,x2t ,n,p,n,x2x2t ,mow) 
call rowcounts(xlxlt ,n,p, countsxl ,mow) 
call rowcounts (x2x2t ,n,p, countsx2 ,nrow) 

do i=l,n 
do j=l,n 

match(i, j) =0 
r(i, j)=O 

end do 
end do 

do i=l,n 
j j=l 
do j=l,n 

k= 1 
do while (countsxl(i,k) .eq.countsx2(j ,k) .and. (k.le.p+l)) 

k=k+ 1 
end do 
if (k. ge. p+l) then 

match(i, jjl-j 
j j-j j+l 

end if 
end do 

end do 

do i=l,n 
do j=l,n 

if (match(i,j) .ne.O) r(i,match(i,j))=l 
end do 

end do 
return 
end 

................................................................... 
! *  Subroutine to calculate the frequency of the integers in each 
! * row of X X ' ;  e.g., if first row is [3 1 -1 -31, the row count 
! *  for that row is [l 1 1 11. 

subroutine rowcounts (xxt, n, p, counts,nrow) 
integer nrow 
integer i, j, jj, n, p, counts(nrow,nrow) 
integer xxt(nrow,nrow) 



APPENDIX C. FORTRAN PROGRAM ISOCHECK. FSO 

do i=l,n 
do j=l ,p+l 

counts(i, j) = 0 
end do 
do j=l,n 

jj=(xxt(i, j)+p)/2+1 
counts(i,jj) = counts(i,jj)+l 

end do 
end do 
return 
end 

................................................................ 
! *  subroutine to calculate transpose of a matrix 

subroutine xtransp(x.n,p,xt ,nrow) 
integer nrow 
integer x(nrow , nrow) , xt (nrow, nrow) 
integer i,j,n,p 

do i=l,n 
do j=l,p 

xt(j ,i)=x(i,~) 
end do 

end do 
return 
end 

................................................................ 
!* subroutine to multiply two matrices 

subroutine multxy (x, Y ,nx,~x ,PY XY, nrow) 
integer nrow 
integer x (nrow, nrow) , y (nrow,nrow) , xy brow ,mow) 
integer nx,px,py,i,j 
integer prod 

do i=l,nx 
do j=l ,py 

prodlo. 
do k=l,px 

prod=prod+x(i ,k)*y(k, j) 
end do 
xy(i, j)=prod 

end do 
end do 
return 
end 



Bibliography 

Bingham, D. & Sitter, R. R. (1999) Minimum aberration fractional factorial ~ p l i t - ~ l ~ t  
designs. Technometrics, 41, 62-70. 

Block, M. R. & Mee, W. R. (2004) Resolution iv designs with 128 runs. Unknown, 41. 

BOX, G. E. P. & Hunter, J. S. (1961) The 2" fractional factorial design. Technometrics, 
3, 311-449. 

Chen, J. (1992) Some results on 2n-k fractional factorial designs and search for mini- 
mum aberration designs. Ann. Statist., 20, 2124-2141. 

Chen, J. & Lin, D. K. J. (1990) On the identity relationships of a 2 " ~  design. J .  

Statist. Plan. Infer., 28, 95-98. 

Chen, J., Sun, D. X. & WU, C. F. J. (1993) A catalogue of two-level and three-level 
fractional factorial designs with small runs. International Statistical Review, 6 1  ( I ) ,  
131-145. 

Clark, J. B. & Dean, A. M. (2001) Equivalence of fractional factorial designs. Statist. 
Sinica, 11, 537-547. 

Draper, N. R. & Mitchell, T. J. (1968) Construction of the set of 256-run designs 
of resolution > 5 and the set of even 512-run designs of resolution 2 6 with special 
reference to the unique saturated designs. Ann. Math. Statist., 39, 246-255. 

Draper, N. R. & Mitchell, T. J. (1970) Construction of the set of 512-run designs of 
resolution > 5 and the set of even 1024-run designs of resolution 2 6. Ann. Math. 
Statist., 41, 876-887. 

Franklin, M. F. (1985) Selecting defining contrasts and confounded effects in pn-m 
factorial experiments. Technometrics, 27, 165-172. 

Fries, A. & Hunter, W. (1980) Minimum aberration 2k-p designs. Technometrics, 22, 
601-608. 



BIBLIOGRAPHY 63 

Ma, C. X., Fang, K. T. & Lin, D. K. J. (2001) On the isomorphism of fractional factorial 
designs. Journal of Complexity, 17, 86-97. 

Montgomery, C. D. (2001) Experiment Design. John Wiley And Sun. INC, NEW 
YORK, U.S. 

Sun, D. X., Li, W. & Ye, Q. (2002). An algorithm for sequentially constructing non- 
isomorphic orthogonal designs and its applications. Technical report SUNYSB-AMS. 

Wu, C. F. J. & Hamada, M. (2000) Experiments Planning, Analysis, and Parameter 
Designs Optimization. NEW YORK, U.S: Wiley-Interscience Publication. 


