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Abstract

Two fractional factorial designs are isomorphic if one can be obtained from the other
by reordering the treatment combinations, relabeling the factor levels and relabeling the
factors. By defining a word-pattern matrix, we are able to create a new Isomorphisim
check which is much faster than existing checks for certain situations. We combine this
with a new, extremely fast, sufficient condition for non-isomorphism to avoid checking
certain cases. We then create a faster search algorithm by combining the Bingham and
Sitter (1999) search algorithm, the isomorphism check algorithm of Clark and Dean
(2001) with our proposed isomorphism check. The algorithm is used to extend the
known set of existing non-isomorphic 128-run designs to situations with 12, 13, 14, and

15 factors.
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Chapter 1

Introduction

Fractional factorial designs are commonly used in many areas of science and engineering.
Supposc we wish to perform an experiment which considers A factors (variables), each
at ¢ levels. A full factorial would run the experiment at every possible combination of
factor level settings (treatment or a run), i.e., ¢*. For example. if ¢ = 2 and & = 3. there
are 2% possible factor level combinations as depicted in the first 3 columns of Table 1.1,
where the ‘4’ and ‘=" denote the high and low level of a factor, respectively, and each
row of the first 3 columns represents a run at a possible factor level combination.

To carry out the experiment, a design matrix is used to describe the experimental
plan by using standard notation for levels such as ‘+" and ‘~" (or ‘1", and *=1"). For a
design with & factors and n runs, its n x & design matrix has n rows for the experimental
runs and & columns for the factors.

Two important properties of the 2* full factorial designs are balance and orthogo-
nality (sec Wu and Hamada (2000, p. 102), references therein). A design is balanced
if cach factor level appears in the same number of runs. Two factors are termed to be
orthogonal if all their possible level combinations appear in the same munber of runs.
A design is orthogonal if all pairs of its factors are orthogonal. Cousider the first three

columns in Table 1.1. The 2* design is balanced since for each factor. the levels “+°
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2
and ‘=’ each appear in four runs. It is also orthogonal because each of the four level
combinations (—, =), (=, +), (+, —) and (+, +) appears in two runs for each pair of

factors.

To illustrate the concepts in the full factorial design, we consider an example given
by Montgomery (2001 p. 308).

Ezample 1: A factorial experiment is carried out in a pilot plant to study the factors
thought to influence the filtration rate of a chemical product which is produced in a

pressure vessel, each at two levels:

A. Temperature
B. Pressure
C. Concentration of-formaldehyde

D. Stirring rate.

Table 1.1: Design Matrix and Data for Example 1.
Run A B C D=ABC Response(y;)

1 ——— - 45
2 4+ -—— 4+ 100
3 —+ -+ 45
4 ++- - 65
5 ——+ 1 75
6 +—+ - 60
7T —++ - 80
8 +++ + 96

Let y; denote the response for the 7-th run (last column of Table 1.1). To measure
the average effect of a factor, for example A, compute the difference between the average
of the y;’s at A+ (the high, +, level of factor A) and the average of the y;'s at A— (the
low, —, level of factor A). This difference is termed the Main Effect (ME) of A. i.c..

ME(A) = §(A+) = y(A-).
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The interaction effect of two factors A and B, AB, is defined as
1 1
INT(AB) = 5(ME(B|A+) — ME(B|A-)) = E(ME(AlB—f—) — ME(A|B-)),

where ME(B|A+) is the conditional ME of B at A+, ME(B|A-) is the conditional ME
of B at A—, ME(A|B+) is the conditional ME of A at B+, ME(A|B—) is the conditional
ME of A at B—.

For Example 1, based on the given definition above, we can obtain

96+60+65+100_80+75+45+45 _

ME(A) = ; y =19

ME(B) = 96+80:65+45_60+754;1100+45:15

ME(C) = 96+80:60+75_65+454;1100+45=14
INT(AB) = é(9642—65_604;100_(8042—45_75;45)):_1
INT(AC) = %(60;96“452100_(80;75_4542—45))2_13.5
INT(BO) = %(80;96_45;65_(6042—75_452100)):19.

Running a full factorial design may be undesirable and/or too costly. Instead, one
could run a fraction of the full factorial design, which is known as a fractional factorial
(FF) design. One common way to do this is to assign the levels of p of the factors to the
columns of the interactions of .remaining columns from a full factorial with k — p factors,
denoted as a ¢*P design. For example, suppose that it is too expensive to conduct all 16
runs of the 2% full factorial design in Example 1. We could run a 24~! design with factor
D assigned to the ABC interaction column of a 2° full factorial (see Table 1.1). If so,
the column of D is used for estimating the ME of D and also for the interaction effect
among A, B, and C. i.e., the data from such a design is not capable of distinguishing the
estimate of D from the estimate of ABC. Therefore, the ME of D is said to be aliased
with the ABC interaction. Notationally, this aliased relation or defining relation is
denoted by

D=ABC or [=ABCD,



CHAPTER 1. INTRODUCTION 4

where I here refers to the overall mean, a column of +’s. Similarly, A is aliased with
the BCD interaction, B is aliased with ACD interaction, C is aliased with ABD, AB
is aliased with CD, etc. If two effects are aliased with each other, we cannot distinguish
between their effects. However, according to the hierarchical ordering principle, that
ME'’s are more likely to be important than 2-factor interactions (2fi), which are more
likely to be important than 3-factor interactions (3fi), etc., the effect of 3fi’s is often
assumed negligible and the estimate is attributed to the ME or 2fi. For Example 1, the

estimates of effects and alias structure are shown in Table 1.2.

Table 1.2: Estimate of Effects and Alias Structure of Example 1.
Estimate  Alias Structure
la =19 Iy — A+BCD
lB =15 lB — B+ACD
lc =14 Ilc — C+ABD
Ilp =16.5 Ip — D+ABC
lAB = -1 lAB — AB+CD
lAC = 13.5 lAC — AC+BD
lAD =19 lAD — AD+BC

Those fractions defined through such defining relations are called group-generated
fractions, and the corresponding designs are called regular designs since any two
factorial effects either can be estimated independently of each other or are fully aliased.
Otherwise, a design is termed a non-regular design, which includes many so-called
Plackett-Burman designs and mixed-level orthogonal arrays. In this thesis, we only
consider the orthogonal designs. Those group-generated fractions are determined by
the p generators or defining words, which are all the columns that are equal to the
identity column I. A word consists of letters which are labels of factors denoted by 1,
2, ..., kor A, B, .... The number of letters in a word is termed the word length.
The defining contrast subgroup for the design consists of all the columns that are

equal to the identity column I. These include the generators and interactions of the
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generators. As an example, consider a 2772 design. Suppose we have I=ABCF and
I=BCDEG as the generators. In this case, the defining contrast subgroup of the design
is

I = ABCF = BCDEG = AEFG,
where AEFG is obtained by multiplying ABCF and BCDEG such that any letters in

common disappear. The vector

(Apy. s Ar) (1.1)

is the word-length pattern, where A; denotes the number of words of length 7 in the
defining contrast subgroup.

Box and Hunter (1961) define the resolution of a fractional factorial (FF) design to
be the smallest 7 such that A, > 1 and argue that a design with highest resolution is
better as it aliases ME’s with highest-order interactions. Thus maximum resolution is a
useful and convenient criterion for selecting practical designs in terms of the hierarchical
ordering principle.

If two designs have the same resolution, they are not necessarily equivalent and we
need a further criterion to characterize or discriminate FF designs. Fries and Hunter
(1980) propose the following criterion. It has been a popular and most commonly used

criterion to select a good design.

Minimum Aberration Criterion: For any two 257 designs d, and ds, let r be
the smallest integer such that A.(d;) # A.(dz2). Then d; is said to have less aberration
than dp if A,(d)) < Ar(dz). If there is no design with less aberration than d, then d,

has minimum aberration(MA).

Ezample 2: The following two 272 designs,

d:1 = ABCF = BCDEG = ADEFG
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dy: I =ABCF = ADEG = BCDEFG,

both have resolution IV, but they have different word-length patterns,
d, :(0,0,0,1,2,0,0), and d3:(0,0,0,2,0,1,0).

Based on the MA criterion, the first design is a better design.

For a given k and p, a MA design always exists but is not always unique. Chen et al.
(1993) suggest a competing criterion for design selection, the number of clear effects.
A ME is eligible if it is not aliased with other ME’s and clear if it is also not aliased
with any 2fi’s. This concept can also be extended to interactions of any order as follows.
A g-factor interaction is eligible if it is not aliased with any effects of order less than g.
An eligible g-factor interaction is clear if it is also not aliased with any other g-factor
interaction. A ME or 2fi is strongly clear if none of its aliases are ME’s, 2fi’s, or 3fi’s.

Clearly, we can derive the following important and useful rules from the definition

of clear effects:
1. In any resolution IV design, the ME’s are all clear.
2. In any resolution V design, the ME’s are strongly clear and the 2fi’s are clear.

3. Among the resolution IV designs with given & and p, those with the largest number

of clear 2fi’s are the best.

To further illustrate the criterion, let us consider two 26~ designs. The first design,

d), has defining contrast subgroup

I =1245 = 1236 = 3456

and the second design, dy,

I =136 = 1245 = 23456.

From the definition introduced above, we know that d, has resolution IV and six clear

ME’s but no clear 2fi’s while d; has resolution III and only three clear ME’s 2,4, and
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5 but six clear 2fi’s 23, 26, 34, 35, 46, and 56. Since d2 has only three clear ME’s and
ME?’s are usually more important than 2fi’s based on the hierarchial ordering principle,
one may say ds is inferior to d;. On the other hand, d; has more clear effects than d.
If in an investigation, only three factors and some of their two-factor interactions are

believed to be important a priori, d; will be a preferred choice.



Chapter 2

Existing Methods for Checking

Isomorphism

2.1 A Brief Review

A regular FF design is uniquely determined by its defining words and design matrix. Two
designs are said to be isomorphic or equivalent if one can be obtained from the other
by relabeling the factors having the same number of levels, reordering the treatment
combinations and/or relabeling the levels of one or more factors. Otherwise, these two
designs are non-isomorphic (non-equivalent). In other words, isomorphic designs can be
transferred into each other by the usual randomization of factor labels and level labels.
Since isomorphic designs share the same statistical properties in classical ANOVA models
and essentially are the same, it is necessary to include only one of them in any catalogue
of designs, or if possible to avoid considering more than one of them in any search for
optimal designs and thus avoid unnecessary computations. To obtain a catalogue of
designs, a straightforward approach does not work. For example, in a 22~ design,
there are 5 independent factors and 15 additional factors, and yet they can be defined in

(g’(l):g) = 7,726,160 combinations. It is impractical to identify isomorphic designs among
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all the 7,726,160 designs because of the computational difficulties involved in determining
whether any two designs are isomorphic. The identification of the isomorphism of two
designs is a vitai combinatorial problem. For two k-factor (each having q levels) n-
run designs, a complete search compares n!k!(g!)* designs based on the definition of
isomorphism. It is known as an NP problem, when n and k increase.

The isomorphism of two regular FF designs has been discussed extensively in the
literature. Draper and Mitchell (1968) develop a “sequential conjecture” method for
testing the isomorphism of two designs. The method tests isomorphism by comparing the
word-length patterns of designs. Unfortunately, it has since been determined that two
designs could be non-isomorphic even though they have the same word-length pattern.
For example, there exist two 21273 FF designs that have identical word-length patterns
but are not isomorphic. Also, in Draper and Mitchell (1968)’s stage-by-stage procedure,
a design which has the same word-length pattern as the one previously found would
automatically be discarded, even if the two designs are not isomorphic. Therefore, the
set of designs constructed using the word-length pattern comparison to test isomorphism
is not necessarily a complete set of non-isomorphic designs of the specified type. Of
course, the word-length pattern completely determines aberration and resolution, but
for specific design situations, there are various other ways to rank designs. For example,
the MA design may be far from the best design in terms of clear effects as we mention
in Chapter 1.

Draper and Mitchell (1970) propose a more sensitive test for isomorphism using a
“letter pattern comparison.” Let a;; be the number of words of length j in which letter
i appears, then A=(a;;)kxk is the letter pattern matrix of the design with k factors.
They then declare two designs, d; and da, to be isomorphic if and only if 4;, = P(Ag,),
where P(Ag,) is some permutation of the rows of Ay, and where A, and Ay, are the
letter pattern matrices corresponding to d; and d., respectively. However, Chen and

Lin (1990) show that this is not an isomorphism test by giving two non-isomorphic
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23115 designs with identical letter pattern matrices. Thus the letter pattern does not
uniquely determine a FF design either. Note that the use of letter pattern is a finer
representation of a design than using the word-length pattern since the word-length
pattern of a design can be written as (Y5, @ity .-, rey @ij/F,- - Sk L aw/k ), which
implies that two designs having identical letter pattern matrices necessarily have the
same word-length pattern.

Chen (1992) discusses the isomorphism of 2¥~7 FF designs in terms of the existence of
a relabeling map between two frequency vectors together with an appropriately defined
matrix X. With the help of this frequency representation, Chen (1992) proves that
any 2P FF design with p=1 or 2 is uniquely determined by its word-length pattern
and further proves that the word-length pattern uniquely determines any MA 2*¥-? FF
design when p=3 or 4. Chen et al. (1993) propose a sequential algorithm for constructing
complete sets of FF designs by exploring the algebraic structure of the FF designs. A
collection of FF designs with 16, 32, and 64 runs is given.

Clark and Dean (2001) present a method of determining isomorphism of any two
factorial designs (non-regular as well as regular). Two designs are isomorphic if the
factors can be relabeled so that the Hamming distance between a pair of corresponding
points runs is the same for the two designs in all possible dimensions. The method
gives a necessary and sufficient link between isomorphism and the Hamming distance
matrices of two designs. They also provide an algorithm for checking the isomorphism
of FF designs when all the factors have two levels which saves considerable time for
detecting non-isomorphic designs.

Ma et al. (2001) propose a new algorithm based on the centered Lo-discrepancy(C D),
a measure of uniformity, for detecting the isomorphism of FF designs and show it can
significantly reduce the complexity of the computation. For two higher-level designs,
they create a uniformity criterion for isomorphism (UCI). However, UCI is only a nec-

essary condition for design isomorphism. They conjecture that UCI is also a sufficient
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condition, but are unable to prove it thus far.

Sun et al. (2002) present an algorithm for sequentially constructing non-isomorphic
regular and non-regular orthogonal designs. The algorithm is based on a minimal col-
umn base. They introduce an extended word-length pattern criterion, the definition of
minimal column base, column base and its properties. Finally, they successfully obtain
the complete catalog of orthogonal designs of 12, 16 and 20 runs.

Block and Mee (2004) present the results of an enumeration of n=128 run resolution
IV designs. Rather than determining whether a new candidate design is isomorphic to
the existing designs based on a complete permutation check, they retain all the designs
that differ in their projections. Resolution IV designs are tabulated for k=12,... 40
factors in 128-run designs. Since their criterion is not a sufficient and necessary condition,
they still cannot claim that the designs that they provide are a complete non—isorhorphic

set.

2.2 Isomorphism Checking Algorithms

In this section, we examine three of the isomorphic checking algorithms in more detail.
These are the Chen, Sun and Wu Algorithm (Chen et al., 1993), the Clark and Dean
Algorithm (Clark and Dean, 2001), and the Block and Mee Algorithm (Block and Mee,
2004).

2.2.1 The Chen, Sun and Wu Algorithm

To define a 2¢7? FF design, Chen (1992) divides the k letters into 2P~! subsets. Let f;
be the number of letters in the i-th subset such that Zf:l fi =k, and let f=(f,, fo,.

ey

far—1) be called the frequency vector of the design. Chen (1992) constructs a matrix,
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I, B
X= (2.1)
B' B'B
where I, is a p X p identity matrix and B is a p X (27 — p — 1) matrix which contains
all the distinct and nonzero linear combinations (modulo 2) of column vectors of I,.
If V; is a column vector of X, (V;,f) equals the length of the i-th word. Chen (1992)
suggests the following testing method with the help of this frequency representation

(Chen’s Theorems 5 and 6):

THEOREM 2.2.1. Let f=(f1,..., for—1)" and g=(g1, ..., g20—1)" be two frequency vec-
tors, X be given by (2.1) such that (X, f) and (X, g) are two 2¥=P FF designs. If there
exists a relabeling map ¢ for (1,2,...,2P — 1), such that for any i and j,

L f =gy
2. V(i) * Vu(4) = Vu(),where V;xV; =V,

where Vi, V; are row vectors of X and * denotes the sum modulo 2, then f and g are

equivalent, otherwise, they are not.

THEOREM 2.2.2. Any 2¥°? FF design with p=1 or 2 is uniquely determined by its
word-length pattern.

Consider two 2572 FF designs with defining contrast subgroups,
I =124 =135= 2345

I =124 = 1235 = 345.

Both designs have word-length pattern (0, 0, 2, 1). Furthermore, A4, = P(Ag,), where
Ay, and Ay, are the letter patterns of design d; and dj, respectively. From the definition

of frequency vector, we can easily obtain f=(2, 2, 1), g=(1, 2, 2), and
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1 01
X=1011
110

’

and thus V=(1, 0, 1), V,=(0, 1, 1) and V3=(1, 1, 0). Obviously, there exists a map v
for (1, 2, 3). That is,

1=1(3),2 =v(2),3=1v(1)
h= gy(1), fo = gy, fa= Gy(3)
Vot * V) = Vo, when  Vix V; =V, for any i and j.

As a result, we conclude that design d; and design ds are isomorphic.

Subsequently, Chen et al. (1993) present a more detailed and executable algorithm
to detect the isomorphism of two FF designs.

Each 25?7 design has a design matrix. Thus it can be viewed as submatrices of
regular Hadamard matrices. A regular Hadamard matrix of order 29 (g=k-p) is a 29 x 2¢
orthogonal matrix of £1’s with the additional property that the entrywise product of
any two columns is among the 29 columns. By replacing —1 by 1 and 1 by 0 and using
addition over GF(2), these 29 columns form an elementary Abelian group over GF (2),
where GF(2) is the Galois Field with two elements. Except for the column corresponding

to the identity element in the group, we may write the remaining columns as
C={C,...,Co_}. (2.2)

Within C, we can find ¢ independent columns that generate all the columns in C. A
2%—P design can be viewed as a subset of C with k columns.

To identify isomorphic designs, Chen et al. (1993) divide all designs into different
categories according to their word-length patterns and letter patterns. Designs with dif-

ferent word-length patterns or letter patterns are obviously non-isomorphic. Therefore,
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they only need to check the isomorphism of designs with the same letter patterns. By
applying the algorithm mentioned above, this can be done.
Their isomorphism check can be illustrated by a simple example. Suppose we have

two 2772 designs with defining relation
dy: I = abe = abdf = bdcg
dy: I =ace = acdf = abedg.
These two designs have the following three properties in common:

1. The set of C:
{ a, b, ab, ¢, ac, bc, abc, d, ad, bd, abd, cd, acd, bed, abed }

2. Word-length pattern: (0, 0, 2, 3, 2)

3. Letter pattern:

0012100)

0012100

0002200
A=lo0012100 (2.3)

0020200

0012100

\0 002200

They apply the following algorithm to do the isomorphism check.

1. Select four independent columns from dy, for example, {a, b, ac, abcd}, There are

a total of (Z) choices.

2. Select a relabeling map from {a, b, ac, abed} to {A, B, C, D}, i.e., A=a, B=b, C=ac,
D=abcd. There are 4! = 24 choices.
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3. Write the remaining columns {c,d, acd} in d; as interaction of {A, B,C, D}, i..,
¢ = AC, d= BCD, acd = BD. Therefore, d; can be written as {A, B, C, D, AC,
BCD, BD}.

4. Compare the new representation of d, with that of d;. If they match, d; and d,
are isomorphic and the process stops. Otherwise, go to step 2 and try another
map of {4, B,C, D}. When all the relabeling maps are exhausted, go to step 1

and choose another 4 independent columns.

2.2.2 The Clark and Dean Algorithm

Let T, be an n x k design matrix of a 25=7 FF design, and define the Hamming distance
matrix Hy to have (i, j)-th element
k .,
Zl:l 6[Td]é,j LF
[Hd),; = (2.4)
0 i=
where 6[Td]ﬁ,j is equal to 1 if in the [-th column of Ty, the symbols in the i-th and j-th
rows are different, and equal to zero if they are the same. The (4, j)-th element of H,
counts the number of dimensions in which the i-th and j-th points fail to coincide. The
distance matrix Hy is invariant to the permutation of columns and relabeling of levels

within columns of Ty.

THEOREM 2.2.3. Designs d, and d are isomorphic iff there ezists an n X n permu-

tation matriz R and a permutation {c1,co,...,c} of {1,2,...,k} such that, for every

¢=1,2,..., k, H* 0 =RH R

PROOF: Clark and Dean (2001).

When all the factors in the design have two levels, coded as -1 and 1,

Hy= (kJ, — T,TY)/2.
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,,,,,

{c1,¢2,...,¢q} of Ty. Based on the theorem mentioned above, the following corollary

can be obtained.

COROLLARY 2.2.1. Designs dy and dy are isomorphic iff there exists an n x n
permutation matriz R and a permutation {c1,ca,...,ck} of {1,2,...,k} such that, for

every ¢=1,2,..., k,

Td{11,2,...,q}Td{xl,2,...,q} T _ R(Td{;l,c2,...,cq}Td{;l,cg,...,cq} T)RT.

Based on this corollary, Clark and Dean (2001) provide two FORTRAN programs
(deseql.f and deseq2.f) for identifying the isomorphism of any two 2-level designs. For
two isomorphic 2-level designs, T;, =RTy,CL, where R and C are permutation matrices
and L is a diagonal matrix with L? = I. Therefore, the first program (deseql.f) does an
initial check for non-isomorphism by checking whether for each ¢=1, 2, ..., k, there is
some subset {c1,cs, - .., ¢q} of {c1,¢2,...,ck} such that the rows of HE"""’} and Higl"“‘cq}
contain the same set of distances with the same multiplicity. If there exists g=1, 2, ..,
k such that there is no subset of {c1,¢2,...,¢;} of {c1,¢z,...,ck} making the rows of
H E""’q} and Hi:l""’c"} contain the same set of distances with the same multiplicity,
then designs d; and d; are non-isomorphic. However, two non-isomorphic designs could
pass this initial test, thus requiring the second program to do a complete comparison.
The second program (deseq2.f) looks through all row and column permutations that
transform one design to the other. If we cannot find any row and column permutation,

then the two designs are non-isomorphic.

2.2.3 The Block and Mee Algorithm

Block and Mee (2004) list all resolution IV designs for n=64 and show their projections.

They observe that every 2'1“‘_,” design of size 64 has a unique set of delete-one-factor
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projections. As an example (given in their paper), a design with the generators G=ABC,

H=ADE and J=ABDF, has nine factors and nine delete-one-factor projections:

e Design with word-length pattern=(0,2,1) if one deletes factor A
e Design with word-length pattern=(1,1,0,1) if one deletes factor B or D
o Design with word-length pattern=(1,2) if one deletes factor C, E, G, or H

e Design with word-length pattern=(2,0,1) if one deletes factor F' or J.

Block and Mee (2004) conjecture that for resolution IV designs with n=128, if two
designs have isomorphic delete-one-factor projection sets, then there exists a permutation
of the columns and rows of one design to make it identical to the other, i.e., they are
isomorphic. This test is more discriminating than word-length pattern and letter pattern.
It is still a conjecture, however, and if the conjecture is false, they have not enumerated

the complete catalogue of non-isomorphic designs with n=128.

2.3 Introduction of Existing Search Algorithms

In the following section, we introduce some existing search algorithms for obtaining
collections of non-isomorphic two-level FF designs. These are the Franklin-Bailey Al-
gorithm (Franklin and Bailey, 1977), the Chen, Sun and Wu Algorithm (Chen et al.,
1993), the Bingham and Sitter Combined Algorithm (Bingham and Sitter, 1999).

2.3.1 The Franklin-Bailey Algorithm

Das (1964) defines k — p of the factors as basic factors and the remaining p factors
as added factors in a 2k=P FF design. The group of size 2¢-7 containing all the main
effects and interactions among the k — p basic factors is called the basic effects group.

Originally a search algorithm uses the search-table data structure to identify designs that



CHAPTER 2. EXISTING METHODS FOR CHECKING ISOMORPHISM 18

Table 2.3.1: Search table for 26=2 designs
B) 6
12 125 126
13 135 136
14 145 146
23 235 236
24 245 246
34 345 346
123 1 1235 | 1236
124 | 1245 | 1246
134} 1345 | 1346
234 | 2345 | 2346
1234 | 12345 | 12346

allow estimation of a requirements set of factors and interactions given that all other
interactions are negligible. The algorithm can be adapted to our problem as follows.
Step 1. Construct a two-way search table. The table has 257 — (k — p) — 1 rows, headed
by the generalized interactions of the basic factors, and p columns, headed by the added
factors. The elements of the table are the generalized interactions between the row and
column headers. The rows are sorted by word-length. For example, for 26-2 the search
table is given in Table 2.3.1. Step 2. Select a generator from the i-th column, where i=1.
Step 3. For i1=2,..., p, select a generator which is not in the same row of the search
table as the previous columns. That is, because selecting generators from the same row
of the search table results in designs with resolution less than III, which is usually not
of interest, avoid such selections.

Franklin (1985) notes that the search table can be used to construct the set of non-
isomorphic FF designs. All possible combinations of generators obtained by the above
algorithm contain the set of all non-isomorphic FF designs and many isomorphic designs.
By applying the isomorphism test to compare designs, this set of designs can be reduced

to the set of all non-isomorphic FF designs.
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2.3.2 The Chen, Sun and Wu Sequential Algorithm

To create a catalogue of MA FF’s, Chen et al. (1993) present a sequential construction
algorithm to get all non-isomorphic designs.

Let Df , be the set of non-isomorphic 25?7 designs with resolution > r (for the
remainder of the discussion, it is assumed that r=III and the 7 superscript is suppressed
for convenience). Suppose we begin with Dy, ,, the set of of all non-isomorphic 2¥1-P1 FF
designs, then Dy, 4+1,,+1 is constructed as follows. Assign the additional factor to one of
the unused columns in each of the designs in Dk, p,. Since there are 2¥'=P1 —k; —1 unused
columns available, there are at most 2¥~P1 — k; — 1 ways to assign this factor. After
removing designs with resolution less than III, we obtain a class of designs, denoted
by 5k1+1_p1+1. Obviously, Dk +1p+1 C Dklﬂyplﬂ because Ekﬁl,pl“ contains many
isomorphic designs. Perform isomorphism checking to remove all isomorphic designs to
get Dy, +1,p,+1. Similarly, Dy, 125, +2 can be constructed. This procedure continues until

all the non-isomorphic designs with k factors and p generators are obtained.

2.3.3 The Bingham and Sitter Combined Algorithm

Bingham and Sitter (1999) propose combining the ideas in the Franklin-Bailey algorithm
and the Chen, Sun and Wu algorithm to find all non-isomorphic 2*1*+*2=P1=P2 fractional
factorial split-plot (FFSP) designs, with 2¥:=P1 the whole-plot design and 2¥2~72 the sub-
plot design. By setting k; and p; equal to 0, their algorithm can be used to search for
all the non-isomorphic 277 FF designs.

Let Dy, », be the set of non-isomorphic 2k1=P1 designs with resolution > r, create
Dy, 41,p,+1 by selecting all non-isomorphic generators in the first column of the search
table. There are as many non-isomorphic generators as there are different lengths of
generators in the first column of the search table by Theorem 2.2.2.

Next, create Dy, +2p,+2 by selecting a design in Dy, 41,41 and adding generators

from the second column and compare each design chosen to those already in Dy, 42.p,42
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to see if it is isomorphic to any in Dy, 425,+2. If it is isomorphic to the designs already
in Dy, 42,,+2, the design is discarded; otherwise it is included into Dy, ,2,,+2. Bingham
and Sitter (1999) prove that one need only consider the generators in the second column
of the search table that are below the generators from the first column. The notion of
adding factors to the design by considering generators below the fixed design generators
also is applied for all added columns. This helps significantly reduce the number of
designs considered with respect to other methods. They continue adding factors until

they obtain Dy, p,.

2.4 Summary and Discussion

1. The Search Algorithms. There are three existing search algorithms. These
are the Franklin-Bailey search table algorithm (Franklin and Bailey, 1977), the
Chen, Sun and Wu sequential algorithm (Chen et al., 1993) and the Bingham and
Sitter combined algorithm (Bingham and Sitter, 1999). For a 2¥-? FF design, the
Franklin-Bailey search table algorithm requires consideration of Ny = []7_, (27—
(k — p) — ) designs. The Chen, Sun and Wu sequential algorithm reduces the
number of designs considered since it adds another factor based on the set of non-
isomorphic designs. The combined algorithm significantly reduces the number of
designs considered with respect to the other algorithms. For example, Table 2.4.1
(recreated from Bingham and Sitter, 1999), gives the number of designs considered

by each algorithm for various n=32 FF designs.

2. Isomorphism Checking. So far, there are five proposals for checking isomor-
phism. These are Chen et al. (1993), Clark and Dean (2001), Ma et al (2001),
Sun et al. (2002), and Block and Mee (2004). For n-run and k-factor designs,
a complete search needs n!k!2* reordering and remodelings. Chen et al. (1993)

reduce this to (kfp)(k — p)! comparisons. Clark and Dean (2001) require k(k!)?
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Table 2.4.1: Number of Designs Entertained in Creating Catalogs of FF designs with 5
Basic Factors

algorithm 27-%2 283 204 210-5
search 650 15,600 358,800 7,893,600
sequential 96 184 330 609
combined 45 89 273 282

comparisons in the worst case. Each comparison requires O(n!) operations. Ma
et al. (2001) require O(n?k2*) to compare 2¥*! C'D, values in the worst case. No

similar information is available for Sun et al. (2002) and Block and Mee (2004).

3. Discussion. Chen et al. (1993) obtain the complete collection of 16-, 32- and
64-run FF designs by their proposed search algorithm and isomorphism checking
algorithm. This is a complete catalog since their isomorphism check is iff. Block
and Mee (2004) combine the Chen, Sun and Wu search algorithm and their pro-
posed sufficient condition for non-isomorphism test. Thus, no one has combined
the efficient iff isomorphism test of Clark and Dean (2001) with the most efficient
search algorithm of Bingham and Sitter (1999). In the next chapter, we first intro-
duce a new isomorphism check which is more efficient than Clark and Dean (2001)
for some situations and then combine this with the Bingham and Sitter search

algorithm and Clark and Dean isomorphism check.
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Proposed Isomorphism Check and

Algorithm

3.1 The Basic Idea

A 2%-P design is uniquely determined by its p defining relations. In other words, the
defining contrast subgroup determines a 2%=P design. Therefore, we focus on design
isomorphism through its defining contrast subgroup. It turns out that this will yield
some computational advantages in some cases.

Recall that for a 2P design, the defining relation is
I:’LU1=’LU2=...=’LU2p_1

and the word-length pattern is (A, Ao, ..., Ax), where A, is the number of words of
length g. Let W, be an A, by k matrix with elements

1, if the j-th letter shows up in the i-th word with length g¢;

Wi; =
’ 0, otherwise. (3.1)

Thus, for a 2¥~P design with resolution r, it has the set of matrices W, Wi,

..., Wn, where m is the maximum non-zero word length. For instance, consider the

22
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27-3 design with resolution III and defining contrast sub-group
I =125 =136 = 2356 = 1237 = 357 = 267 = 1567.

The design has word-length pattern (0, 0, 4, 3, 0, 0, 0) and the set

1100100
1010010

W3=
0010101
01000011
and
0110110
We=11110001

1000111

Let W be formed by stacking all of the W;s and called word-pattern matrix. In this

example,

1100100)

1010010

0010101

W=|0100011

0110110

1110001

\1000111

Obviously, for a 2577 design, the W, matrix always has k columns for every q and the

sum of each row is equal to g.
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3.2 Hamming Distance Method When Using W Ma-
trix

Let §[W]; ;=1 if in the l-th column of W the symbols in the i-th and j-th rows are
different, and =0 if they are the same. Similar to Clark and Dean (2001), we define the
distance matrix H but in our case for W instead of the design matrix. Let the (i, j)-th

element of H be equal to

k
[Hlij =Y 6[W), for i#j (3.2)
=1

and equal to 0 if t=j. The distance matrix H is invariant to permutations of columns
and to switching the role of 0 and 1 so that 1 represents the presence of a factor and 0 the
absence, but not to the re-ordering of the rows (words). We can get a similar theorem to
Clark and Dean (2001)’s Hamming distance matrix theorem. Before we state and prove

Theorem 3.2.1 below, we introduce a useful lemma.

LEMMA 3.2.1. Two 2577 FF designs d, and dy are isomorphic if Wy, = RW,,C for

some permutation matrices R and C.

PROOF: Follows obviously from the fact that W is uniquely determined by defining
contrast subgroup.

Note, it is possible to have two isomorphic but not identical design matrices which
yield the same W. Thus, by viewing W, we have implicitly eliminated some isomorphic
designs.

As to how to find C technically, refer to Chen et al. (1993) (p.10) or section 2.2.1.
Lemma 3.2.1 tells us that if a design d; can be obtained by another design d; by relabeling
the factor labels in the defining contrast subgroup, then d; is isomorphic to do. With the

help of Lemma 3.2.1 above, we are now able to state and prove Theorem 3.2.1 below.

THEOREM 3.2.1. 257 designs d; and dy are isomorphic iff there exists an s x s
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permutation matriz R and a permutation {c1,¢co,...,ck} of {1,2,...,k} such that, for

1=1,2,... k H? % = R{H{V 2N R where s = 27 — 1.
PROOF:

1. Suppose that design d) and d; are isomorphic. Then we can write Wy, = RW,,C
or Wd{ll’z""’k} = RW};"Q’””C"} by Lemma 3.2.1, where C is the permutation matrix
corresponding to the permutation {c;,cs,...,cx} that maps the factor labels of ds
to those of d;, and R is the permutation matrix that reorders the words in d, into

the same order as those in d;. Thus for 1 < ¢ <k,

v

(HP)y = 6Wa, )7 = S[RWL,CNY = 6[RW,, ) = (B, ..
Therefore, for each [ =1,2,...,k,

l
1,2,...,0
HMA = Y (HP
g=1

l

= Z [H2{Cq}]7‘i,7‘j

q=1
l
= D RIH IR,
q=1
= [R{H;"*)R),,. (3.3)

2. Let {cy,ca,...,Ck} be a fixed permutation of {1,2,...,k} and let HéCI'Cz ..... o} be
the distance matrix corresponding to the columns {c;,c,,. ..,¢} of Wy,, then
RH%Cl <2t} p1 s the distance matrix corresponding to the columns {e1, e, 0}
of RW,, for some given permutation R since

[RHz{m,cz ..... CI}R,]i,j = [Hz{cl,cz ..... C[}]T,',Tj = Ef;=l 6[Wd2]if?ri = Zf;:l 5[RWd2]i{;q}‘ For

a given permutation matrix R, for any [ < k,
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-1
[RH2{c1,62 ..... cl}Rl]i,j — Zé[RWdZ]{cq}_{_é[RWdz]l{c,}
q=1

1,7 \J
_ [RH2{c1,c2,...,cL—1}R/]i,j + [RHQ{CI}RI]i,j- (34)

thus, for a fixed sequence of distance matrices RH{“v> R/ | — 1,2,...,k,
(3.4) implies a fixed sequence RHQ{C‘}R’, l=1,2,...,k, and we may consider each
column of the word-pattern matrix separately. Let Wy, be an s x k word-pattern
matrix with first row the same as the first row of Wy, C ({¢1, ¢z, . .., ¢} of the first
row of Wy,). For each | € {1,2,...,k}, we construct the I-th column of Wy, as
follows. For i = 2,...,s, if [RHQ{C’}R'],-,]:O for some j =1,2,...,i — 1, then set
the symbol in the i-th row of column [ of Wy, to be the same as the symbol in
the j-th row, i.e., Wy gy = [Wa ]y Otherwise set Wy, (1) equal to a different
symbol. Remember the symbol here can only be 0 or 1. Thus, the I-th column of
Wy, is the same as the ¢;-th column of RWy,. Therefore Wy, is identical to Wy,
up to a permutation of rows and columns, which means that Wa,=RW,,C, ie.,

designs d; and d; are isomorphic.

COROLLARY 3.2.1. 2%7? designs d and dy are isomorphic iff there exists an s X s

permutation matriz R and a permutation {c1,ca,...,ck} of {1,2,...,k} such that, for

l=1,2,...,k, Hl{l} = R(Hz{Cl})RI, where s = 2P — 1.

Recall that applying Clark and Dean (2001)’s method requires k(k"\? comparisons
and each comparison requires O(n!) operations in theory for the worst case. In our check,
we only need O(s!) operations. Therefore, if s =27 —1 < 2kP = je, p< k —p, as
n increases, a larger p can be used to satisfy this inequality so that we can take more

advantage by using Theorem 3.2.1.
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3.3 Eigenvalue and Eigenvector Criterion

To boost the speed to identify the non-isomorphism of two designs, we also intro-
duce the eigenvalue and eigenvector of a matrix Z; = ,1/171-’,1/12, where W; is the sub-
set of {W,,W,i1,...,Wk_p}. For example, let k — p=5 and r=3, then Wi could be
Wa, W, W, (32), (42), (%), and

Ws

W,

W
and we let W, = Wy, Wy = W,, W3 = Wy, Wy = (wj) and so on.

Before proceeding to the main result given in Theorem 3.3.1 below, we introduce
concepts in linear aléebra and a useful lemma. Let V' be a vector space over the field F
and let T be an n xn matrix on V. An eigenvalue of T is a scalar c in F such that there
is a non-zero vector a in V with Ta = ca and the matrix T — ¢/ is singular. If ¢ is an
eigenvalue of T', then any « such that Ta = ca is called an eigenvector of T associated
with the eigenvalue c. Since c is an eigenvalue of T iff det(c/ —~ T) = 0, we form the
matrix (z/ — T') with polynomial entries, and consider the polynomial f = det(zl — T).
Clearly the eigenvalues of T are just the scalars ¢ such that f(c) = 0. This f is called
the characteristic polynomial of 7. Two matrices A and B are similar if there exists

an invertible matrix P such that B = P~1AP.

LEMMA 3.3.1. Similar matrices have the same characteristic polynomial.

PROOF: If B = P~ !AP, then

det(z] — B) = det(z] — P"'AP)
= det(P~'(zI ~ A)P)
= det(P™!) - det(z] — A) - det(P)
= det(z] - A).
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In other words, similar matrices have identical eigenvalues.

Now we are ready to state the main result of this section. Let A(g,%) = (Agi1, Agi2,
..+, Agik) be the vector of eigenvalues of Z; of design ¢, where i = 1,.. ., 2k—p-r+l _ 1
g =12, and Agi1 2> Agi2 = ... = Agik Let I'(g,7) = (Vg1 Vai2s - Vgik) denote
the corresponding matrix of eigenvectors, where vg; ; is the corresponding eigenvector

of /\q,i,j fOI‘j—': 1,2,...,/{?.

THEOREM 3.3.1. If two 257P resolution r designs d, and d2 are isomorphic, then

there exists a k x k permutation matriz C such that, for alli=1, 2, ..., (2kP=7t1_1)
(a). Al,i = Az)i
(b) Fl,i = Clrg‘i.

PROOF:
Let Wu and ng represent the /V[\Z matrices for designs d; and ds, respectively. If d; and

d, are isomorphic, then they have the same word-length patten and satisfy
Wi = RiWaC,
where R; and C are row and column permutation matrices. Then clearly,

Zy = WiWy
= (RWuC) R;WyC
= C'W,WaC
= C1ZyC. (3.5)

(a) Follows from Lemma 3.3.1 since Zj; and Zy; are similar matrices. (b) Based on
the definition of eigenvalues and eigenvectors and equation (3.5), we obtain Zyv1,;; =
C/ZQZ'CI/I,,;J‘ = /\1‘1;‘]'1/1‘1;,]' SO that ZQ,'CI/L,"]' = /\l,i,jCVl,i,j since Z21'I/2'1;,j = /\2,i,jl/2,i,j and

/\l,i,j = /\2‘,',]'. This means CVl,i,j = V21,5 i.e., Fl,i = C/FQ,,‘.
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Theorem 3.3.1 only gives a condition for checking the isomorphism of two designs.
However, it can be used to efficiently and straightforwardly detect the non-isomorphism
of two designs. In other words, if two designs do not satisfy either (a) or (b) in Theorem
3.3.1, then two designs are non-isomorphic. If they satisfy (a) and (b), we must resort

to further checking. Thus, it is similar in spirit to the Block and Mee check.

3.4 Sequential Construction of Non-isomorphic 27
Designs

To construct a complete catalogue of non-isomorphic 2%-P designs, we propose the follow-
ing sequential approach which combines the search method proposed by Bingham and
Sitter (1999) which extends the algorithms of Franklin and Bailey (1977) and Franklin
(1985), the isomorphism check of Clark and Dean (2001), and the results of sections
3.1-3.3.

Proposed Algorithm:

1. Construct a search table, which has added factors as columns, and all possible
interactions of basic factors as rows, and the interaction of corresponding row and
column as elements. The elements are thus words. For example, for 26-2, the

search table is given in Table 2.3.1.

2. For the first column, we pick up generators with different length as non-isomorphic
designs. Thus the number of non-isomorphic designs for a 2¥~! design is identical
to the number of designs with different word-length patterns by Theorem 2.2.2.

Let Di, be the set of all the non-isomorphic 257 designs (with at least resolution

10).

3. Assume that we have all the 2P non-isomorphic designs, Di_p+1,1. To construct

Di_pi2.2, we select one design from Di_p+1,1 and add the generators from the next
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column of the search table. Note we only pick up the generators in the next column
of the search table that are below the generator from the current column. Compare
each successive design chosen to those already in Di_pi92 to determine whether
it is isomorphic to an already obtained design. We do the following isomorphic

check for each two selected designs.

(a) Compute the word-length patterns. Compare them, if they are different, these

two designs are non-isomorphic, otherwise go to (b).

(b) Compute the vector of eigenvalues of W!W,. If any two vectors are different,

these two designs are non-isomorphic, otherwise go to (c).

() If s =2"-1<2*~p=nm,ie, p <k~ p, use the subroutine "wcheck’
in the FORTRAN program isocheck.f90 in Appendix C which implements
Theorem 3.2.1, otherwise use the subroutine ’deseq2’ which is the second
program (deseq2.f) of Clark and Dean (2001), if the row permutation and
column permutation are found, these two designs are isomorphic, otherwise,

they are non-isomorphic.

If the design is isomorphic to some design in the Dy_p.9 5, discard it; otherwise,

this design is added to Dg_p2,2.

4. Repeat Step 3 to construct the complete set of all non-isomorphic designs Dg_p+q,q,

qg=3,4,...

A FORTRAN program is given in Appendix C and the following is an example to
illustrate the algorithm.
FEzample 3: 16-run FF Designs
Firstly, based on the algorithm mentioned above, we can easily get Ds 1 ={(125), (1235),
(12345)}. Secondly, to get Dg 2, we select a generator from Ds and consider generators

from the second column that are below it in Table 2.3.1. For example, we select the
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generator w; =125, and consider the first generator in the second column, w,=136. Since
Dg 5 is empty, the design should be added to Dg,. We then consider the second gener-
ator in the second column 146, however {(125,146)} and {(125,136)} are isomorphic.
Similarly, we find that {(125,236)}, {(125,246)} are isomorphic to {(125, 136)}. When
we consider (125,346), we find that this design has different word-length pattern from
{(125,136)}. Thus Ds is expanded to {(125,136), (125,346)}. Next, we pick the design
{(125,1346)}, and compare it to (125, 136). Since they are non-isomorphic, we continue
and compare it to (125, 346) and find they are also non-isomorphic. Therefore, Dg 5 be-
comes {(125,136), (125,346), (125,1346)}. The same steps continue until we reach the
last design (1235, 12346). After completing this search and comparison in the second
column, the algorithm stops and Dg o ={(125, 136), (125, 346), (125, 1346), (1235, 1246)}.
The FORTRAN program continues through the columns until we get D5 11.

3.5 128-run Resolution IV Designs

So far, the appended FORTRAN program has helped us obtain the complete catalogue
of 128-run designs with up to 15 factors, Table 3.5.1 lists the number of possible non-
isomorphic FF 128-run resolution IV designs with k¥ < 15 factors. A collection of these
designs are available. The numbers in Table 3.5.1 do correspond to those given in Block
and Mee (2004), where they conjecture that they are the complete set of non-isomorphic
designs, thus supporting their claim up to designs with 15 factors. For k > 12 factors,
FF designs of resolution V and more do not exist. In Appendix B, we list the best
ten designs based on MA criterion for £ < 15, where the columns of each design are
columns of the matrix in Appendix A used for the generators. For example, &k = 9,
the best design has columns 31 and 103. In Appendix A, we can find the 31-th column
corresponds to generator 12345, since rows 1, 2, 3, 4 and 5 of column 31 contain a 1.

Similarly, the 103-th column is 12367.
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Table 3.5.1: Number of Non-isomorphic 2= FF Resolution IV Designs with n = 128
k No. of Designs

8 5
9 13
10 33
11 92
12 249
13 623
14 1535
15 3522

3.6 Discussion

Comparing two isomorphic designs is computer intensive but the really bad situation is
two non-isomorphic designs which pass the non-isomorphic checks. The reason is that,
if two designs are isomorphic we merely need to consider row and column permutations
until we get one from the other, but if two designs are non-isomorphic and pass all
the non-isomorphism tests, we need to try all possible row and column permutations to
be sure that they are not isomorphic. Our proposed isomorphism check algorithm can
identify all non-isomorphic designs up to 15 factors since the non-isomorphic FF designs
with k < 15 have different vectors of eigenvalues for some W, matrix, thus helping a
great deal in the real search and comparison.

We only prove that the eigenvalue and eigenvector criterion is a necessary condition
to detect the isomorphism between two designs, which is the reason why we still use
subroutine ‘deseq2’ or 'wcheck’ (try all possible relabelings of rows and columns in both
subroutines) to do a complete identification. On the other hand, our proposed algorithm
is beneficial for p < k — p thanks to using the W matrix instead of the design matrix.
This can be supported by Table 3.6.1, where s, m, h and d represent seconds, minutes,

hours and days, respectively. The W matrix is (27 — 1) x k, thus its dimension changes
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with the number of factors instead of run size. In other words, it may be efficient to get

non-isomorphic 256 or bigger run FF designs by our proposed algorithm.

Table 3.6.1: Time Spent when Using Design Matrix and W Matrix with p < k — p for
128-run Designs

matrix 29—2 210—-3 211—4 212—5 213—6

Design matrix 2m46s 29m 12h 16h 1d10h
W matrix 0.57s 4.7s 36s 5m3s 40m




Chapter 4

Future Work

The isomorphism of regular FF designs has been extensively discussed in the literature
(section 2.1). The most efficient search algorithm is given by Bingham and Sitter (1999).

However, there are a number of other considerations that could be made.

4.1 General

Firstly, the ratio of the number of the non-isomorphic designs to the number of designs
considered in the most efficient search algorithm is still small. For example, Table 4.1.1
lists the number of designs entertained in creating catalogs of FF designs with 5 basic
factors and the number of corresponding non-isomorphic designs. The percent is the
ratio of number of the non-isomorphic designs and number of designs entertained in the
combined Bingham and Sitter search algorithm. We can see all the percents are less
than 20%. Therefore, an interesting work is to reduce the number of designs considered
in search algorithm.

Secondly, the speed of detecting the isomorphism of two designs may still have po-
tential room to improve. Therefore, if either the search algorithm or the isomorphism

check can be made more efficient, one could combine the most eflicient search algorithm
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Table 4.1.1: Number of Designs Entertained in Creating Catalogs of FF designs with 5
Basic Factors and Number of Corresponding Non-isomorphic Designs

algorithm 97=2 98=3 99-4 9I0-3
combined 45 89 273 282
non-isomorphic 8 15 29 46
percent 17.78 18.85 10.62 16.31

and isomorphism check to obtain the catalogue of FF designs.

4.2 Our Proposal

We may apply this eigenvalue and eigenvector criterion to g-level (¢ > 3) and mixed-level
FF, FFSP or non-regular designs. The criterion may have greater benefits in higher-level
or mixed-level designs.

From the catalogue of all non-isomorphic designs, one can show that the word-length
pattern (A, As, ..., Ag) of a 257 design with resolution r is uniquely determined by
Ar, Arsr, .- -y Ak—p, When k-p=3, 4, 5, 6. For k-p=7, it is also true for the obtainable
non-isomorphic designs. This fact tells us that to check the word-length pattern of two
designs we only need to check the first k — p word-lengths for 8, 16, 32, 64-run regular
designs. For p > k — p, we actually do not need to write down the complete defining
contrast subgroup. It is enough to write down the generators and the at most up to the
(k — p)-th interactions of the generators in order to compare the word-length pattern of
two designs. We conjecture that this is also true for k-p> 7.

Furthermore, we conjecture that the algorithm proposed in section 3.4 excluding part
(c) of step 3 is sufficient to obtain the catalogue of non-isomorphic two-level FF designs.
Thus it would only implement the word-length pattern comparison and eigenvalue cri-
terion and would not look for any row, column and level permutations. Therefore, we

call it the eigenvalue criterion algorithm (E.C.A in Table 4.2.1). We obtain the same
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Table 4.2.1: Time Using Proposed Algorithm and Eigenvalue Criterion Algorithm for
128-run Designs

algorithm 20-2 210-3 9I=4 gI3=5  13-0 old=7 — oI5-8 5169

P.A. 0.57s 4.7s 36s 5m3s 40m 10d 40d -

E.CA. 0.44s 2.5s 27s 5ms 22m42s 2h18m 14h18m 118h

number of non-isomorphic 128-run designs with k& < 16 as that given by Block and Mee
(2004). The reason we stop at k = 16 is not because of the speed of isomorphism check
but rather because there are a huge number of non-isomorphic 128-run designs. Table
4.2.1 lists the time using the proposed algorithm (P.A. in Table 4.2.1) in section 3.4 and
the eigenvalue criterion algorithm. S, m, h, and d in Table 4.2.1 represent seconds, min-
utes, hours and days, respectively. One can see the speed of E.C.A is about 1000 times
faster than that of P.A. Almost certainly, the time can be further reduced by at least
10 times via astute programming since we have not taken full advantage of the Fortran
programming language and faster computer facilities. Since the non-isomorphic designs
are a small part of the designs considered in creating the catalogue of FF designs and
the percentage of the number of non-isomorphic designs will be smaller as the number of
factors increases, E.C.A will have greater benefit in creating the catalogue of FF designs
with more factors.

In the proposed algorithm, we compute the vector of eigenvalues of all Wi’Wi, where
Wi’s are the subset of {W,,W,41,...,Wi_p}. It will be interesting to think about
whether the vector of eigenvalues of W;WS may determine the vector of eigenvalues of
WC’WC, where W,’s are some W; and W.’s are the remaining subsets. In other words, is
it possible that if the vectors of eigenvalues of W;Ws for two designs are the same, the
corresponding vectors of eigenvalues of WC’WC will be the same? Exploring the existence

and components of W s seems worthwhile.



Appendix A

Matrix for 128-run Design

1234567 8 910111213141516171819202122232425

1010101010101 010101010101

6110011001100 °1

10011001100

0000111100
1 0000000011

1

10000111

000000O0C1I1T11111

000111

1111111

1

000000O0O0CO0O0OO0CO0OO0OOO0OTI1 1

000000O0COCODOOOOCOOOOOOOCOOOG® OO

000000O0CODO0O0O0OO0O0OOOOOOOOOOO0O0TO0
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

0101010101 01010101010101°0
11 001100110011 00110011001
0011110000111 100001111000

111111000000001111111100°0
1111110000000 000000000111

111111111

000000O0OCOO0COOOOOOOOCOOOOOOOG

1

00000O0GC1111111111

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 7273 74 75
1010101010101010101010101

1001100110011 0011001100°T11

1000011110000

0000011111111 000000001111

1

01111000011

0000CO0O0ODODODODODOOUD

1111111111111 000O0O0O0O0O0OO0OO00O0

00000O0O0OO0ODOCOOOO01

11111111

1

1111

111

1

1111111

NOTE: The independent columns are in boldface and numbered 1, 2, 4, 8, 16, 32, 64.
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APPENDIX A. MATRIX FOR 128-RUN DESIGN

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

0 0 0

0

6 0 0

0

116 117 118 119 120 121 122 123 124 125 126 127




Appendix B

Minimum Aberration 128-run
Designs With k£ < 16

NOTE: The MA 26— designs listed below are obtained from Eigenvalue Criterion Algorithm
(see section 4.2).

k Columns (As, As,...)
8 127 00001
8 63 00010
8 31 00100
8 15 01000
8 7 10000

31103 003000
15115 011100
15113 020010
15 51 021000
7123 100200
7121 101010
759 102000
7120 110001
757 110100
727 120000

OO O OO WW YO
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APPENDIX B. MINIMUM ABERRATION 128-RUN DESIGNS WITH K < 16

k  Columns (A4, 4s,...)

10 1551 85 0331000

10 1551 92 0420100

10 7 59 93 1060000

10 757 90 1222000

10 727 109 1222000

10 727 105 1311100

10 727 120 1320010

10 7 27 101 1400200

10 727 99 1410001

11 1551 85 106 06621000

11 75790 108 14640000

11 72745120 15620100

11 72745113 16422000

11 72799 45 16520010

11 7274578 16610001

11 7 27 45 86 17402100

11 756 91 109 201201000
11 7567585 24441000

11 756 27 109 24441000

11 72543116 24441000
12 75790108119 1812810001
12 7274511378 11010540010
12 72799 45 86 11011422100
12 7567585102 2712711010
12 7567585110 2810810200
12 7562710793 2812414000
12 7254383101 2108452000
12 7254385102 2108452000
12 7562777102 21010412200

12

7 56 27 45 115

2118351010
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k  Columns (A4, 4s,..)

13 75627 77 102 115 216181094220

13 756 27 45 107 117 216208584000

13 756 27 107 93 118 312248312001

13 72598 45 85 126 314171482320

13 725 42 83 101 127 314181276201

13 72543 75101 118 315171185310

13 7254283 53 124 315171185310

13 72598 4383125 3161510124120

13 7 56 27 45 107 93 316168118001

13 7254375101 115 317157127110

14 756 27 45 107 117 94 32436112412010

14 725428353124 111 424302019161040

14 72597 42 84 78 114 522302217181021

14 72597 42 83 77 63 52327232213950

14 725 42 84 75 54 108 52327232213950

14 725428353101 127 5242620251664 1

14 7 25 42 84 99 78 60 5242620251664 1

14 711 49 83 45 78 124 5242620251664 1

14 7114929 101 94 123 52426202516641

14 7112945113 78 127 52428162324403

15 725974284 78 114 127 7325240354828850

15 7259742 84 78 114 63 73446424538261430

15 7 11 49 83 45 78 60 93 73844 28515620452

15 7259742 82 77 54 61 8315042354830641

15 72597 42 84 78 63 125 83244484532281620

15 72597 42827794 123 83249403748308201

15 71149 81 99 29 109 127 83249403748308201

15 7259742 82 77 60 123 833444445382812210

15 71149 824577 116 110 833444445382812210

15 7 11 49 82 29 101 46 127 833444445382812210

15 7 11 49 82 29 101 46 123 833444445382812210

15 711 21 41 51 101 122 95 833444445382812210

16 725974284 7811463125 1048 728090807248100001
16 72597 42 82 7754 61 117 1144 8272711127624 13420
16 7114982100294692 127 1147727787947234133010
16 71149821002910546119 11487076919272369420
16 7114981992946116109 115066 72103926040132200
16 71149 84 104 29 45102 90 11 50 68 68 99 104 60 28 17 6 0
16 71149 84 104 291029063 11 52 66 64 103 104 60 3213420
16 71121568377 46 54 94 11 56 66 48 103 128 60 16 138 20
16 7259742827762118125 12408088 7088804012000 1
16 711 21 97 56 83 46 93 126 12 46 68 81 9388 6838142010
16 7 1149821002945 106 124 12466881 9388683814201 0

16

711 21 41 100 51 78 86 120

1246 68 81 9388683814201 0
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Appendix C

Fortran Program Isocheck.f90

PROGRAM alldesign

tget the all the non-isomorphic design for the two level
Idiffdesign : save the non-isomorphic designs for add k-th step
idiffmatrix:ith column is the position of non-isomorphic design ’s basic
leffect for ith step

tidiff : the number of old non-isomorphic designs

tnew_idiff : the number of new non-isomorphic designs

IMM : the number of basic factors

1KK : the number of added factors

tnn: the number of runs

1lenvec: the cumulative number of words for i-length

tnew_ii is from 1 to new_idiff

tdesign2 is a design from the exiting non-isomorphic design
Ipick up a new design from the search table,denoted as designil

| -
INTEGER: : jstep,idiff,new_ii,new_idiff,nn,ii,jii,ifile,p,infor
INTEGER: : infor2,infor3,infor4

LOGICAL: :diff,first

CHARACTER(20) : :filenames

CHARACTER#*10: :b(3)
INTEGER,PARAMETER::MM=7,diffrows=3530,kcols=20,ncol=260
INTEGER, PARAMETER: : 1lwork=130

INTEGER: : KK,nrow,jjii,k,i,]

INTEGER,DIMENSION(8): :date_time
INTEGER,DIMENSION(MM-1)::lenvec
INTEGER,DIMENSION (kcols) : :addeff

INTEGER,DIMENSION(5%kcols):: basiceff
REAL,DIMENSION(1work) : :work,work2,work3,work4
INTEGER,DIMENSION(2,kcols): :designl,design2

INTEGER,DIMENSION (diffrows,kcols)::diffmatrix
INTEGER,DIMENSION (diffrows,2,kcols)::diffdesign,new_diffdesign
INTEGER,DIMENSION(2,kcols): :wlp
REAL,DIMENSION(2,kcols)::eigenval,eigenval2,eigenvalc
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REAL,DIMENSION(2,kcols)::eigenval22,eigenval32, eigenvald2
INTEGER,DIMENSION(2,ncol,kcols) : :wmatrix
INTEGER,DIMENSION(2,ncol kcols) : : pparr , pparr2, pparr3, pparrd, cpparr
INTEGER,DIMENSION(2,kCOlS,nCOl)Zthp,tpr,tpp3,tpp4,tcpp
INTEGER,DIMENSION(2,kCOlS,kCOlS)Z:tpppp,tpppr,tppppa,tpppp4’tcpppp

OPEN(150,file="searchtable128.txt")
nn=2%*MM
OPEN(1,file="design128_1.out")
READ(150,*) (lenvec(i),i=1,MM-2)
DO i=1,lenvec(MM-2)
READ (150, *)basiceff (i)
END DO
DO i=1,kcols
addeff (i)=MM+i
END DO
tthe first step is to get the non-isomorphic 28-1 designs
DO i=1,MM-2
IF(i .EQ. 1) THEN
diffdesign(i,1,1)=basiceff (1)
diffdesign(i,2,1)=addeff (1)
diffmatrix(i,1)=1
ELSE
diffdesign(i,1,1)=basiceff(lenvec(i-1)+1)
diffdesign(i,2,1)=addeff (1)
diffmatrix(i,1)=lenvec(i-1)+1
END IF
END DO
call date_and_time(b(1),b(2),b(3),date_time)
WRITE(1,*) "The current time :: ", b(1),b(2)
jstep=1
idiff=MM-2
DO i=1,idiff
WRITE(1,*)diffdesign(i,1,1)
END DO
close(1)
jstep=jstep+l
idiff=MM-3
DO WHILE(jstep .LT. 9)
ifile=jstep
p=jstep+MM
SELECT CASE(ifile)
CASE(2)
filenames="design128_2.out"
CASE(3)
filenames="design128_3.out"
CASE(4)
filenames="design128_4.out"
CASE(5)
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filenames="design128_5.out"
CASE(6)
filenames="design128_6.out"
CASE(T)
filenames="design128_7.out"
CASE(8)
filenames="designl28_8.out"
CASE(9)
filenames="design128_9.out"
END SELECT
open(ifile,file=filenames)
call date_and_time(b(1),b(2),b(3),date_time)
WRITE(ifile,*) "The current time :: ", b(1),b(2)
DO ii=1,idiff
first=.TRUE.
DO jii=diffmatrix(ii, (jstep-1))+1,lenvec(MM-2)
IF(ii .EQ. 1 .AND. first)THEN
first=.FALSE.
new_diffdesign(l,:,1:(jstep-l))=diffdesign(1,:,1:(jstep—1))
new_diffdesign(1,1, jstep)=basiceff(jii)
new_diffdesign(1,2, jstep)=addeff (jstep)
diffmatrix(1, jstep)=diffmatrix(1,jstep-1)+1
new_idiff=1
END IF
designl(:,1:(jstep-1))=diffdesign(ii,:,1:(jstep~1))
designl (1, jstep)=basiceff (jii)
design1(2, jstep)=addeff (jstep)
new_ii=1
IF(jstep .LE. 11)THEN
call lpattern(designi(:,1:jstep),MM,jstep,wlp(1,:),pparr(l,:,1:p),&
pparr2(1,:,1:p),pparr3(1,:,1:p),pparrd(1,:,1:p),wmatrix(1,:,1:p))
END IF
IF(wlp(1,3) .NE.O)THEN
go to 998
END IF
if(wlp(1,4) .ne.0)then
call xtransp2(pparr(1,1:wlp(1,4),1:p),wlp(1,4),p,&
tpp(1,1:p,1:wlp(1,4)))
call multxy2(tpp(1,1:p,1:wlp(1,4)),pparr(1,1:wlp(1,4),1:p),&
p,wlp(1,4),p,tpppp(1,1:p,1:p)) ‘
call SSYEV(’N’,’U’,p,real(tpppp(1,1:p,1:p)),p,&
eigenval2(1,1:p),work,lvork,infor)
end if
if(wlp(1,5) .NE.O)then
call xtransp2(pparr2(1,1:wlp(1,5),1:p),wlp(1,5),%&
p,tpp2(1,1:p,1:uwlp(1,5)))
call multxy2(tpp2(1,1:p,1:wlp(1,5)),pparr2(1,1:wlp(1,5),1:p),&
p,wlp(1,5),p,tpppp2(1,1:p,1:p))
call SSYEV(’N’,’U’,p,real{(tpppp2(1,1:p,1:p)),p,&
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eigenval22(1,1:p),work2,1lwork,infor2)

end if

if (wlp(1,6) .NE.0)then

call xtransp2(pparr3(1,1:wlp(1,6),1:p),wlp(1,6),&
p,tpp3(1,1:p,1:wlp(1,6)))

call multxy2(tpp3(1,1:p,1:wlp(1,6)),pparr3(1,1:wlp(1,6),1:p),&
p,wlp(1,6),p,tpppp3(1,1:p,1:p))

call SSYEV(’N’,’U’,p,real(tpppp3(1,1:p,1:p)),p,&
eigenval32(1,1:p),work3,lwork, infor3)

end if

if (wlp(1,7) .NE.O)then

call xtransp2(pparr4(1,1:wlp(1,7),1:p),wlp(1,7),&
p,tpp4(1,1:p,1:wlp(1,7)))

call multxy2(tpp4(1,1:p,1:wlp(1,7)),pparrd(1,1:wlp(1,7),1:p),%&
p,wlp(1,7),p,tpppp4(1,1:p,1:p))

call SSYEV(’N’,’U’,p,real (tpppp4(1,1:p,1:p)),p,&
eigenvald2(1,1:p),workd,lvork, infor4)

end if

DO

diff=.FALSE.
design2(:,1:jstep)=new_diffdesign(new_ii,:,1:jstep)
IF(jstep .LE.11)THEN
call lpattern(design2(:,1:jstep),MM,jstep,wlp(2,:),pparr(2,:,1:p)&
,pparr2(2,:,1:p),pparr3(2,:,1:p),pparrd(2,:,1:p) ,wmatrix(2,:,1:p))

END IF

IF(wlp(2,3) .NE.O)THEN
go to 998

END IF

jjii=0

IF (sum(abs (w1p(1,1:p)-wlp(2,1:p))) .GT. 1.91) THEN

diff=.TRUE.

ELSE .

if (wlp(2,4) .ne.0 .and. (.not. diff))then

call xtransp2(pparr(2,1:wlp(2,4),1:p),wlp(2,4),&
p,tpp(2,1:p,1:wlp(2,4)))

call multxy2(tpp(2,1:p,1:wlp(2,4)),pparr(2,1:wlp(2,4),1;p),&
p,wlp(2,4),p,tpppp(2,1:p,1:p))

call SSYEV(’N’,’U’,p,real(tpppp(2,1:p,1:p)),p,&
eigenval2(2,1:p),work, lvork, infor)

IF (sum(abs (eigenval2(1,1:p)-eigenval2(2,1:p))) .GT. 1) THEN

diff=.TRUE.
else
do i=jjii+1,jjii+wlp(1,4)
do k=1,p

cpparr(1,i,k)=pparr(1,i-jjii,k)
cpparr(2,i,k)=pparr(2,i-jjii,k)
end do
end do
jjii=jjii+wlp(1,4)
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end if
end if
if (wlp(2,5).ne.0 .and. (.not. diff))then
call xtransp2(pparr2(2,1:wlp(2,5),1:p),wlp(2,5),p,&
tpp2(2,1:p,1:wlp(2,5)))
call multxy2(tpp2(2,1:p,1:wlp(2,5)),pparr2(2,1:wlp(2,5),1:p),&
p,wlp(2,5),p,tpppp2(2,1:p,1:p))
call SSYEV(’N’,’U’,p,real(tpppp2(2,1:p,1:p)),p.&
eigenval22(2,1:p),work2, lwork,infor2)
IF(sum(abs(eigenval22(1,1:p)-eigenval22(2,1:p))) .GT. 0.5) THEN

diff=.TRUE.
else
do i=jjii+1,jjii+wlp(1,5)
do k=1,p

cpparr(1,i,k)=pparr2(1,i-jjii,k)
cpparr(2,i,k)=pparr2(2,i-jjii,k)
end do
end do
jjii=jjii+wlp(1,5)
end if
end if
if (wlp(1,4).ne.0 .and. wlp(1,5).ne.0 .and. (.not.diff))then
call xtransp2(cpparr{(1,1:jjii,1:p),jjii,p,tcpp(l,1:p,1:33ii))
call multxy2(tcpp(1,1:p,1:jjii),cpparr(1,1:jjii,1:p),&
p,jjii,p,tcpppp(l,1:p,1:p))
call SSYEV(’N’,’U’,p,real (tcpppp(1,1:p,1:p}),p,& eigenvalc(1,1:p),work4,lwork, infor4)
call xtransp2(cpparr{(2,1:jjii,1:p),jjii,p,tcpp(2,1:p,1:jjii))
call multxy2(tcpp(2,1:p,1:jjii),cpparr(2,1:jjii,1:p),p,&
jjii,p,tepppp(2,1:p,1:p))
call SSYEV(’N’,’U’,p,real(tcpppp(2,1:p,1:p)),p,&
eigenvalc(2,1:p),work4,lwork,infor4)
IF (sum(abs (eigenvalc(1,1:p)-eigenvalc(2,1:p)}) .GT. 0.5) THEN
diff=.TRUE.
end if
end if
if(wlp(2,6).ne.0 .and. (.not.diff))then
call xtransp2(pparr3(2,1:wlp(2,6),1:p),wlp(2,6),%
p,tpp3(2,1:p,1:wlp(2,6)))
call multxy2(tpp3(2,1:p,1:wlp(2,6)),pparrd(2,1:wlp(2,6),1:p),&
p,wlp(2,6),p,tpppp3(2,1:p,1:p))
call SSYEV(’N’,’U?,p,real (tpppp3(2,1:p,1:p)),p.&
eigenval32(2,1:p),work,lwork,infor)
IF(sum(abs(eigenva132(1,1:p)-eigenval32(2,1:p))) .GT. 0.5) THEN

diff=.TRUE.
else
do i=jjii+1,jjii+wlp(1,6)
do k=1,p

cpparr(1,i,k)=pparr3(1,i~jjii,k)
cpparr(2,i,k)=pparr3(2,i~jjii,k)
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end do
end do
jjii=jjii+wlp(1,6)
call xtransp2(cpparr(1,1:jjii,1:p),jjii,p,tecpp(1,1:p,1:jjii))
call multxy2(tcpp{1,1:p,1:jjii),cpparr(i,1:jjii,1:p),&
p,jjii,p,tcpppp(l,1:p,1:p))
call SSYEV(’N’,’U’,p,real (tcpppp(1,1:p,1:p)),&
p,eigenvalc(1l,1:p),work4,lvork,infor4)
call xtransp2(cpparr(2,1:jjii,1:p),jjii,p,tepp(2,1:p,1:jjii))
call multxy2(tepp(2,1:p,1:jjii),cpparr(2,1:jjii,1:p),&
p,jjii,p,tepppp(2,1:p,1:p))
call SSYEV(’N’,’U’,p,real(tcpppp(2,1:p,1:p)),p.&
eigenvalc(2,1:p),work4,lvork,infor4)
IF(sum(abs (eigenvalc(1,1:p)-eigenvalc(2,1:p))) .GT. 0.5) THEN
diff=.TRUE.
end if
end if
end if
if (wlp(2,7).ne.0 .and. (.not. diff))then
call xtransp2(pparr4(2,1:wlp(2,7),1:p),wlp(2,7),&
p,tpp4(2,1:p,1:wlp(2,7)))
call multxy2(tpp4(2,1:p,1:wlp(2,7)),pparrd(2,1:wlp(2,7),1:p),&
p,wlp(2,7),p,tpppp4(2,1:p,1:p))
call SSYEV(’N’,’U’,p,real(tpppp4(2,1:p,1:p)),p,&
eigenvald2(2,1:p),work,lwork, infor)
IF(sum(abs (eigenvald2(1,1:p)~eigenvalq2(2,1:p))) .GT. 0.5) THEN

diff=.TRUE.
else
do i=jjii+1,jjii+wlp(1,7)
do k=1,p

cpparr(1,i,k)=pparr4(1,i-jjii,k)
cpparr(2,i,k)=pparrd(2,i-jjii,k)
end do
end do
jjii=jjii+wlp(1,7)
call xtransp2(cpparr(1,1:jjii,1:p),jjii,p,tcpp(1,1:p,1:jjii))
call multxy2(tcpp(l,1:p,1:jjii),cpparr(1,1:jjii,1:p),&
p,jjii,p,tcpppp(1,1:p,1:p))
call SSYEV('N’,’'U’,p,real(tcpppp(1,1:p,1:p)),&
p,eigenvalc(1,1:p),work4,lvwork, infor4)
call xtransp2(cpparr(2,1:jjii,1:p),jjii,&
p,tcpp(2,1:p,1:33jii))
call multxy2(tcpp(2,1:p,1:jjii),cpparr(2,1:jjii,1:p),&
p,jjii,p,tcpppp(2,1:p,1:p))
call SSYEV(’N?’,’U’,p,real(tcpppp(2,1:p,1:p)),&
p,eigenvalc(2,1:p),work4,lwork,infor4)
IF(sum(abs(eigenvalc(1l,1:p)-eigenvalc(2,1:p))) .GT. 0.5) THEN
diff=.TRUE.
else
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if(jstep .LE. MM)then
call wcheck(wmatrix(1,1:(2%*jstep-1),1:p),&
wmatrix(2,1:(2*xjstep-1),1:p),MM,p,2%*jstep-1,diff)
else
call deseq2(designi(:,1:jstep),design2(:,1:jstep) ,MM,p,diff)
end if
end if
END IF
END IF
END IF
IF(.NOT. diff) THEN
go to 998
ELSE
new_ii=new_ii+l
END IF
IF(new_ii .EQ. (new_idiff+1)) THEN
new_idiff=new_idiff+1
nev_diffdesign(new_idiff,1:2,1:jstep)=designi(1:2,1:jstep)
diffmatrix(new_idiff, jstep)=jii
go to 998
END IF
END DO
998 END DO
END DO
idiff=new_idiff
diffdesign=new_diffdesign
DO i=1,idiff
WRITE(ifile,*)diffdesign(i,1,1:jstep)
END DO
call date_and_time(b(1),b(2),b(3),date_time)
WRITE(ifile,*) "The current time :: ", b(1),b(2)
jstep=jstep+l :
close(ifile)
END DO
999 END PROGRAM alldesign
!***t*****t********tt********************************t**t*****t*tt*****
1this is the program to produce wlp
lgen is the matrix with row for generators
lwmat[i,]) is ith generator ’s letters

SUBROUTINE lpattern(design,MM,addnum,wlp,ppmat,ppmat2,&
ppmat3,ppmat4,ppmatall)
INTEGER::i,j,bits,sm,b,bb,r,k,jj,l,addnum,jfive,jsix,jseven
INTEGER: : numb, numb2, numb3,numb4
CHARACTER(20): :1pfile,ppfile
INTEGER,PARAMETER: :ncols=20,nrows=260,nco1=260
INTEGER,DIMENSION(2,addnum) : :design
INTEGER, DIMENSION(ncols): :wlp
INTEGER,DIMENSION(nrows)::digit
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INTEGER,DIMENSION (addnum,ncols) : :wmat
INTEGER,DIMENSION(nrows,ncols): :gen
INTEGER,DIMENSION(ncol,addnum+MM)::ppmat,ppmat2,ppmat3,ppmat4,ppmat311

DO i=1,nrows
digit(i)=0
END DO
DO i=1,nrows
DO j=1,ncols
gen(i,j)=0
END DO
END DO
do i=1,addnum
do j=1,ncols
wmat (i, j)=0
end do
end do
DO i=1,ncol
DO j=1,addnum+MM
ppmat (i, j)=0
pprat2(i, j)=0
pprmat3(i, j)=0
ppmat4(i, j)=0
ppmatall(i, j)=0
END DO
END DO
Do i=1,addnum
bits=FLOOR(LOG10(real(design(1,i))))+1+1
DO b=bits,2,-1
IF(b .EQ. bits)THEN
wmat (i,1)=FLOOR(real(design(1,i))/real (10**(b-1~1)))
ELSE
sm=SUM((/ (wmat (i,bits-bb+1)*10%*(bb-1-1) ,bb=bits,b+1,-1)/))
wmat (i,bits-b+1)=FLOOR (real(design(1,i)-sm)/real (10%*(b-2)))
END IF
END DO
wmat (i,bits)=design(2,i)
END DO
gen(1,:)=wmat(1,:)
gen(2,:)=wmat(2,:)
call gene(gen(1,:)
r=3
IF( addnum .GE. 3)THEN
DO i=3,addnum
r=r+1
gen(r,:)=wmat(i,:)
DO jj=r+1,r+2xx(i-1)-1
if(jj .EQ. r+2*x(i-1)-1)THEN
call gene(gen(jj-r,:),gen(r,:),gen(jj,:))

,gen(2,:),gen(3,:))
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r=r+2%*(i-1)-1
ELSE
call gene(gen(jj-r,:),gen(r,:),gen(jj,:))
END IF
END DO
END DO
END IF
DO i=1,r
j=1
DO WHILE(gen(i,j) .NE. 0)
5=3+1
END DO
digit(i)=j-1
END DO
DO i=1,ncols
wlp(i)=0
END DO
DO i=1,r
wlp(digit(i))=wlp(digit(i))+1
END DO
numb=0
DO i=1,r
j=1
IF(digit(i) .EQ.4)THEN
numb=numb+1
END IF
DO WHILE(digit(i).EQ.4 .AND. gen(i,j).NE. 0)
ppmat (numb,gen(i, j))=1
j=jt1
END DO
END DO
numb2=0
DO i=1,r
jfive=1
IF(digit(i) .EQ.5)THEN
numb2=numb2+1
END IF
DO WHILE(digit(i).EQ.5 .AND. gen(i,jfive).NE. 0)
ppmat?2(numb2,gen(i, jfive))=1
jfive=jfive+1
END DO
END DO
numb3=0
DO i=1,r
jsix=1
IF(digit(i) .EQ.6)THEN
numb3=numb3+1
END IF
DO WHILE(digit(i).EQ.6 .AND. gen(i,jsix).NE. 0)

a0
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ppmat3(numb3,gen(i, jsix))=1
jsix=jsix+1
END DO
END DO
numb4=0
DO i=i,r
jseven=1
IF(digit(i) .EQ.7)THEN
numb4=numb4+1
END IF
DO WHILE(digit(i).EQ.7 .AND. gen(i, jseven).NE. 0)
ppmat4 (numb4,gen(i, jseven))=1
jseven=jsevent+l
END DO
END DO
Do i=i,r
j=1
DO WHILE(gen(i,j).NE.O)
ppmatall(i,gen(i,j))=1
j=j+1
END DO
END DO
END SUBROUTINE lpattern

!***********************’hhk********************************************
!program to generate a new generator which is product of two generators
SUBROUTINE gene(rl,r2,rir2)
INTEGER::1,j
INTEGER,PARAMETER: :ncols=20
INTEGER,DIMENSION(ncols)::ri,r2,rir2,csum
INTEGER,DIMENSION(2,ncols) ::imat

DO i=1,2
DO j=1,ncols
imat (i, j)=0
END DO
END DO
i=1
DO WHILE(ri(i) .NE. 0)
imat(1,r1(i))=1
i=i+1
END DO
i=1
DO WHILE(r2(i) .NE. 0)
imat(2,r2(i))=1
i=i+l
END DO
DO i=1,ncols
csum(i)=imat(1,i)+imat(2,1)
END DO
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j=1
DO i=1,ncols
IF(csum(i) .EQ. 1)THEN
rir2(j)=i
j=3+1
END IF
END DO

END SUBROUTINE gene
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1% subroutine to calculate transpose of a matrix

subroutine xtransp2(x,n,p,xt)

integer::i,j,n,p

integer x(n,p), xt(p,n)

do i=1,n
do j=1,p
xt(j,1)=x({1,
end do
end do
return

end
1 3 o o o ok o o 3K o o ok 3 o e ok 3ok ok kK ok K ok o o ok 3 3 ok s o ok koK o o ok ok ok ok 3K ok 3 ok oK ok ok ok koK o o ok ok ok K oK ok ok K ok oK

1% subroutine to multiply two matrices
subroutine multxy2(x,y,nx,px,py,xy)
integer::nx,px,py,i,j,prod
integer,dimension(nx,px)::x
integer,dimension(px,py)::y
integer,dimension(nx,py)::xy

do i=1,nx
do j=1,py
prod=0.
do k=1,px
prod=prod+x(i,k)*y(k,j)
end do
xy (i, j)=prod
end do
end do
return
end

!**********************************************************************
subroutine deseq2(desl,des2,bm,p,diff)

1% Copyright James C Clark. May 7th 1988.

Ix James.B.Clark@aero.org (Jim Clark)

1% dean.9@osu.edu (Angela Dean)

! % deseql.f and deseq2.f are used to determine design equivalence.
1% deseql.f should be run first - it performs several tests for

I * equivalence. deseq2.f can be run concurrently - it tries to find
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(£
1%
1%
1%
I %
| %
1%
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[E]
1%
1%

the permutations showing the equivalence. Much time may be wasted
if this second search is done without starting the tests of deseql.f.
deseq2.f

Given matrices x1 and x2 (stored in designl and design2,

with the first line containing the number of rows and the

number of columns) a row permutation matrix r and a column
permutation matrix ¢ are found such that x1=rx2cl, where

1 is a diagonal matrix of +/- 1’s. 1 can be found by then
equating the first row of x1 and rx2c.

The program has been adapted.

First an r matrix is found by comparing x1x1’ and x2x2’:
integer,parameter: :nrow=128

integer n,i,j,row,col,curcol (nrow),maxstage,bits,b,bb,sml,sm2,bm,p
integer x1xlp(nrow,nrow),x2x2p(nrow,nrow),r{(nrow,nrow)

integer ri(O:nrow,0:nrow,0:nrow) ,x2t(nrow,nrow)

integer x1(nrow,nrow),x2(nrow,nrow),xlt(arow,nrow)
integer,dimension(2,p-bm)::des1,des2
integer,dimension(bm)::bitsvec

logical diff,done

done=.FALSE,

n=2%*bm
DO i=1,bm

DO j=0, (2%*(bm-i)-1)*2k*(i-1),2%*(i-1)
x1((142%3) 1 (2%% (i-1)+2+3) ,1)=1
X1((142%%(1-1)+2%j) : (2¥%i+2%j) ,1)=-1

END DO
END DO
DO j=bm+1,p

bits is the digits of designl(l,j—bm)=basiceff
bits=FLOOR(LOG10(real (des1(1,j-bm))))+1
DO b=bits,1,-1
IF(b .EQ. bits)THEN
bitsvec (b)=FLOOR(real(des1(1,j-bm))/real (10**(b-1)))
ELSE
sm1=SUM((/(bitsvec(bb)*10**(bb-1) ,bb=bits,b+1,~1)/))
bitsvec(b)=FLOOR(real(des1(1, j-bm)-sm1)/real (10%x(b-1)))
END IF
END DO
x1(1:2%*bm, j)=product(x1(1:2**bm,bitsvec(1:bits)),DIM=2)
END DO

x2(1:2%xbm, 1:bm)=x1(1:2%%bm, 1:bm)
DO j=bm+1,p

| bits+l is the digits of design2(j-bm)

bits=FLOOR(LDG10(real(des2(1,j~bm))))+1
DO b=bits,1,-1
IF(b .EQ. bits)THEN
bitsvec(b)=FLOOR(real(des2(1,j-bm))/real(10**(b-1)))
ELSE
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sm2=SUM((/(bitsvec (bb)*10**(bb-1) ,bb=bits,b+1,-1)/))
bitsvec(b)=FLOOR(real (des2(1,j-bm)-sm2)/real (10%*(b-1)))
END IF
END DO
x2(1:2%*bm, j)=product (x2(1:2+*bm,bitsvec(1:bits)),DIM=2)
END DO

Calculate x1x1’ and x2x2’

call xtransp(x1,n,p,x1t,nrow)
call multxy(xl,x1t,n,p,n,x1x1p,nrow)
call xtransp(x2,n,p,x2t,nrow)
call multxy(x2,x2t,n,p,n,x2x2p,nrow)

Clear the vector of the current row permutation
do i=1,n

curcol(1)=0
end do

Initialize the potential r matrices.
call rcand(x1,x2,n,p,r,nrow)
do i=1,n
do j=1,n
ri(0,1i,j)=r(i,j)
end do
end do

Find an r matrix
row=1
do while (row.ge.l)
col = curcol(row)+1
do while ((abs(r(row,col)).1lt.0.1).and.(col.le.n))
col = col+l
end do
if (col.eq.n+1) then
do i=row-1,n
do j=1,n
r(i,j)=ri(row-2,1,j)
end do
end do
row=row-1
else
curcol (row)=col
do i=row+l,n
curcol(i)=0
end do
do j=1,n
if(j.ne.row) r(j,col)=0.
if(j.ne.col) r(row,j)=0.
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end do

do j=row+l,n
do i=1,n

if (abs(x1x1p(row, j)-x2x2p(col,i)) .gt.0.1) r(j,i)=0

end do ’ '

end do

do i=1,n
do j=1,n

ri(row,i,j)=r(i,j)

end do

end do

if(row.eq.n) then
row = row-1
call findc(xl,x2,curcol,r,n,p,maxstage,nrow,done)
if(done)then
go to 99
end if

else
row=row+1

end if

end if
end do
diff=.TRUE.
99 end subroutine deseq2

1 ko o s o o e o e oo R oo o e ks ok s o s sk ok R i k a a  aoko k se ako  o  k ok  ok ak o ak ok sk
'x1 and x2 are word matrices of designl and design2,respectively
!the same principle as deseq2

subroutine wcheck(wl,w2,bm,p,wl,diff)

logical diff,done

integer, parameter::nrow=64

integer p,wl

integer i, j,row,col,curcol (nrow)

integer n,maxstage

integer wi(wl,p),w2(wl,p)

integer x1x1lp(nrow,nrow),x2x2p(nrow,nrow),r(nrow,nrow)

integer ri(0:nrow,0:nrow,0:nrow),x2t(nrow,nrow)

integer x1(nrow,nrow),x2(nrow,nrow),xlit(nrow,nrow)

n=vl
! x Calculate x1x1’ and x2x2’

done=.false.

x1(1:n,1:p)=wl

x2(1:n,1:p)=w2

call xtransp(x1,n,p,x1t,nrow)

call multxy (x1,x1t,n,p,n,xlxlp,nrow)

call xtransp(x2,n,p,x2t,nrow)

call multxy (x2,x2t,n,p,n,x2x2p,nrow)

1 % Clear the vector of the current row permutation

99
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do i=1,n
curcol (i)=0
end do
1% Initialize the potential r matrices.
call rcand(x1,x2,n,p,r,nrow)
do i=1,n
do j=1,n
ri(0,i,j)=r(i,j)
end do
end do
1% Find an r matrix
row=1

do while (row.ge.1)
col = curcol(row)+1
do while ((abs(r(row,col)).1t.0.1).and.(col.le.n))
col = col+l
end do
if (col.eq.n+1) then
do i=row-1,n
do j=1,n
r(i,j)=ri(row-2,1i,3j)
end do
end do
row=row-1
else
curcol (row)=col
do i=row+l,n
curcol(i)=0
end do
do j=1,n
if(j.ne.row) r(j,col)=0.
if(j.ne.col) r(row,j)=0.
end do
do j=row+l,n
do i=1,n
if (abs(x1x1p(row, j)-x2x2p(col,i)).gt.0.1) r(j,i)=0.
end do
end do
do i=1l,n
do j=1,n
ri(row,i,j)=r(i,j)
end do
end do
if(row.eq.n) then
row = row-1
call findc (x1,x2,curcol,r,n,p,maxstage,nrow,done)
if (done)then
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go to 9999
end if
else
row=row+1
end if
end if
end do
diff=.TRUE.

9999 end subroutine wcheck
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1% Subroutine to find a ¢ matrix for a given r matrix
subroutine findc (x1,x2,curcol,r,n,p,maxstage,nrow,done)
integer nrow,done
integer x1(nrow,nrow), x2(nrow,nrow),r{(nrow,nrow)
integer stage,p,n,del_cols(nrow), j,maxstage,curcol (nrow)
logical valid,test_fails

do j=1,p
del_cols(j)=0
end do

1% Search through the tree to find a c:
maxstage=1
stage=1
do while(stage.lt.p)
del_cols(stage)=p+1
test_fails=.true.
do while(test_fails)
del_cols(stage)=de1_cols(stage)—l
do while(del_cols(stage).eq.0)
stage=stage-1
if(stage.eq.0) then
return
end if
del_cols(stage)=del_cols(stage)-1
end do
valid = .false.
do while((.not.valid).and.(del_cols(stage).gt.O))
valid=.true.
do j=stage-1,1,~1

end do
if (.not.valid) then
del_cols(stage)=del_cols(stage)~1
end if
end do
if (del_cols(stage).eq.0) then

if(del_cols(stage).eq.del_cols(j)) valid=.false.

o7
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del_cols(stage)=1
else
call test(x1,x2,n,p,del_cols,r,stage,test_fails,nrow)
end if
end do
stage=stage+l
if (stage.gt.maxstage) maxstage=stage
end do
call equal(r,del_cols,n,p,maxstage,nrow,done)

end
1 e e e sk e o ok 3 o o e o e ok o K ok ok o ok ok ok o ok ok ok 3Kk sk o 3K oK ok i oK oKk o ok o oK ok ok ok koK ok

I % If the last stage is successful, designs are equivalent

subroutine equal(r,del_cols,n,p,maxstage,nrow,done)
integer nrow
integer r{(nrow,nrow)
integer del_cols(nrow),maxstage
integer i,n,p,rperm(nrow),cperm(nrow)
logical done
1* Determine the row permutation
do i=1,n
j=1
do while (nint(real(r(i,j))).eq.0)
j=j+t
end do
rperm(i)=j
end do

I % Determine the column permutation
cperm(1)=0
do i=p,2,-1
cperm(i)=del_cols(p-i+1)
cperm(1)=cperm(1)+cperm(i)
end do
cperm(1)=P*(p+1)/2~cperm(1)
done=.TRUE.
write(*,*) ’Passes stage ’,maxstage
write(*,*) ’Equal’
write(*,*) ’Column permutation’, (cperm(i),i=1,p)
write(*,*) ’Row Permutation’, (rperm(i),i=1,n)

end
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Ix At each stage, tests if x1slx1’= rx2sx2’r’, where si and s
L+ are diagonal matrices of 0’s and 1’s that select the
1% appropriate columns for each stage.

subroutine test(x1,x2,n,p,del_cols,r,stage,test_fails,nrow)

integer nrow
integer xi(nrow,nrow), x2(nrow,nrow), r(nrow,nrow),s(nrow,nrow)
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integer x1t(nrow,nrow), x2t(nrow,nrow), mxl(nrow,nrow)

integer m2(nrow,nrow),mx2(arov,nrow),n3(nrow,nrow),rt(arow,nrow)
integer dif

integer n,p, del_cols(nrow),stage

logical test_fails

1 * Calculate mx1l = xlsixl
test_fails=.true.
call xtransp(xl,n,p-stage,x1t,nrow)
call multxy(x1,x1t,n,p-stage,n,mx1,nrow)

1% Calculate s according to which columns were deleted
do i=1,p
do j=1,p
s(i,j)=0.
end do
s(i,i)=1.
end do

i=1

do while(del_cols(i).ne.0)
s(del_cols(i),del_cols(i))=0.
i=i+l

end do

t* Calculate mx2 = rx2sx2’r’
call multxy(r,x2,n,n,p,m2,nrow)
call multxy(m2,s,n,p,p,m3,nrow)
call xtransp(x2,n,p,x2t,nrow)
call multxy(m3,x2t,n,p,n,m2,nrow)
call xtransp(r,n,n,rt,nrow)
call multxy(m2,rt,n,n,n,mx2,nrow)

I* Test if mxl = mx2. Looks for large sum of squares of differences
dif=0. '
do i=1,n

do j=1i,n
dif=dif+(mx1(i,j)-mx2(i,j)) **2
end do
end do
if (dif.1t.1.) test_fails=.false.
return
end
!*************************************************************
1% Find candidate r matrices

subroutine rcand(x1,x2,n,p,r,nrow)

integer nrow
integer x1(nrow,nrow), x2(nrow,nrow),r(nrow,nrow)
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integer x1t(nrow,nrow), x2t(arow,nrow)

integer x1x1t(mrow,nrow), x2x2t (nrow,nrow)
integer countsxi(nrow,nrow), countsx2(nrow,nrow)
integer k,jj,i,j,n,p,match(nrow,nrow)

call xtransp(xl,n,p,xit,nrow)

call multxy (x1,xit,n,p,n,xixit,nrow)
call xtransp(x2,n,p,x2t,nrow)

call multxy (x2,x2t,n,p,n,x2x2t,nrow)
call rowcounts(xlxit,n,p,countsxl,nrow)
call rowcounts(x2x2t,n,p,countsx2,nrow)

do i=1,n
do j=i,n
match(i,j) =0
r(i,j)=0
end do
end do

do i=1,n
jj=1
do j=1,n
k=1
do while (countsxi(i,k).eq.countsx2(j,k).and.(k.le.p+1))
k=k+1
end do
if(k.ge.p+1) then
match(i,jj)=j

ji=iiv1
end if
end do
end do
do i=1,n
do j=1,n
if (match(i,j).ne.0) r(i,match(i,j))=1
end do
end do
return
end
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Ix Subroutine to calculate the frequency of the integers in each
1% row of XX’; e.g., if first row is [3 1 -1 -3], the row count
I for that row is [1 1 1 1].

subroutine rowcounts (xxt, n, p, counts,nrow)

integer nrow
integer i, j, jj, n, p, counts(nrow,nrow)

integer xxt(nrow,nrow)
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do i=1,n
do j=1,p+1
counts(i,j) = 0
end do
do j=1,n
ji=(xxt(i,j)+p)/2+1
counts(i,jj) = counts(i,jj)+1

end do
end do
return
end
!#**************************************************************
% subroutine to calculate transpose of a matrix

subroutine xtransp(x,n,p,xt,nrow)

integer nrow
integer x(nrow,nrow), xt(nrow,nrow)

integer i,j,n,p

do i=1,n
do j=1,p
xt(j,i)=x(1i,3)
end do
end do
return
end
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D subroutine to multiply two matrices

subroutine multxy (x,y,nx,px,py,Xy,nrow)

integer nrow

integer x(nrow,nrow), y(nrow,nrow), xy(nrow,nrow)
integer nx,px,py,i,]j

integer prod

do i=1,nx
do j=1,py
prod=0.
do k=1,px
prod=prod+x(i,k)*y(k,j)
end do
xy(i,j)=prod
end do
end do
return
end
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