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Abstract 

Two fractional factorial designs are isomorphic if one can be obtairled fro111 t,he ot,ller 

by reordering the treat,rilerit cornbinations, relabeling the factor levels and relabeliq t.lle 

factors. By defining a word-pat,tern matrix, we are able to c reak  a new iso1riorpliis1ll 

check which is much fast,cr than existing checks for certain ~i tuat~ions.  We co r~ ib in~  this 

with a new, ext,rerrlely fast, sufficient condition for non-isomorpliisnl t,o avoid checking 

certain cases. We then create a faster search algorithm by combining the Bingliam and 

Sitter (1999) search algoritlini, the isomorphism check algorit'hni of Clark and De;w 

(2001) with our proposed isomorpliism check. The algoritliril is used t.o extend tllp 

known set of exist,ing nori-isomorphic 128-run designs to  situat,ions wit,li 12. 13. 14. all(] 

15 factors. 
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Chapter 1 

Introduction 

Fractional factorial designs arc cornnionly used in rriany areas of scicncc arid enginctarillg. 

Slipposc we wish to perforni an experirnent which considers k factors (variables). end l  

;it (I 1 ~ ~ ~ 1 s .  A full factorial would run the experiment at every possiblc conibiliatlori of 

factor lcwl settings (treatment or a run). i.e.. q h .  For example. if q = 2 and k = 3. tllcrt 

;lr(l 2" possible factor level combinations as depicted in the first 3 columns of Table 1 1. 

where the '+' and '- ' denote the high and lour level of a factor, respectivclv, and each 

row of the first 3 columns represents a run at a possible factor level co1nt)ination. 

TO carry out the experiment, a design matrix is used to describe tht. esperlnlcIltnl 

plarl by using standard notation for levels such as '+' and ' - '  (or ' l ' ,  alld ' -  1'). For a 

design wit11 X; factors and n runs, its 11 x k design rmtrix has r1 rows for tllc esperinlelltal 

rulls and X; c~olunins for the factors. 

Two i~rl~)ortant properties of the 2"dl factorial designs are balance and orthogo- 

nality (see Wu and Haniada (2000, p. 102), references therein). A design is balanced 

if cacli factor level appears in the same nurrlber of runs. Two factors are terrlled to 1 , ~  

orthogonal if all their possible level combinat,ioris appear ill the same number of runs. 

A drlsign is orthogonal if all pairs of its factors are orthogonal. Colislder tlic first tllrclt. 

colllrriiis ill Table 1.1. The 2" design is b;~laricd sinw for cwh fact01 . t lip l e s r r l s  .+' 
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and '-' each appear in four runs. It is also orthogonal because each of the four 1~vcl 

combinations (-, -), (-, +), (+, -) and (+, +) appears in two runs for each pair of 

factors. 

To illustrate the concepts in the full factorial design. we consider an exanlple givcw 

by hlontgorriery (2001 p. 308). 

Example 1: A factorial experiment is carried out in a pilot plant to stlidy thc factors 

thought to influence the filtration rate of a chemical product which is produced in a 

pressure vessel, each at  two levels: 

A. Temperature 

B. Pressure 

C. Concentrat,ion of formaldehyde 

D. Stirring rate. 

Table 1.1: Design Matrix and Data for Example 1 
Run A B C D=ABC Response(y,) 

Let y, denote the response for the I-th run (last colurnn of Table 1.1). To rricasurc 

the average effect of a factor, for example .4, compute the difference between the avcr;lg(l 

of the y,'s a t  A+ (the high, +, level of factor A) arid thc average of thc y, 's at .4- (tho 

low, -, level of factor A). This difference is termed the Main Effect (ME) of A.  1 t' . 
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The interaction effect of two factors A and B,  AB, is defined as 

where ME(BIA+) is the conditional ME of B at A+, ME(BIA-) is the conditional ME 

of B at A-, ME(AIB+) is the conditional ME of A at B+, ME(A1B-) is the conditional 

For Example 1, based on the given definition above, we can obtain 

Running a full factorial design may be undesirable and/or too costly. Instead, one 

could run a fraction of the full factorial design, which is known as a fractional factorial 

(FF) design. One common way to do this is to assign the levels of p of the factors to the 

columns of the interactions of remaining columns from a full factorial with ]c - p factors, 

denoted as a q k - p  design. For example, suppose that it is too expensive to conduct all 16 

runs of the Z4 full factorial design in Example 1. We could run a 24-1 design with factor 

D assigned to the ABC interaction column of a 23 full factorial (see Table 1.1). If so, 

the column of D is used for estimating the ME of D and also for the interaction effect 

among A, B, and C. i.e., the data from such a design is not capable of distinguishing the 

estimate of D from the estimate of ABC. Therefore, the ME of D is said to be aliased 

with the ABC interaction. Notationally, this aliased relation or defining relation is 

denoted by 

D = ABC or I = ABCD, 
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where I here refers to the overall mean, a column of +'s. Similarly, A is aliased with 

the B C D  interaction, B is aliased with ACD interaction, C is aliased with ABD, AB 

is aliased with C D ,  etc. If two effects are aliased with each other, we cannot distinguish 

between their effects. However, according to the hierarchical ordering principle, that 

ME'S are more likely to be important than 2-factor interactions (2fi), which are more 

likely to be important than 3-factor interactions (3fi), etc., the effect of 3fi1s is often 

assumed negligible and the estimate is attributed to the ME or 2fi. For Example 1, the 

estimates of effects and alias structure are shown in Table 1.2. 

Table 1.2: Estimate of Effects and Alias Structure of Example 1. 
Estimate Alias Structure 
1, = 19 1 ,  -t A+BCD 
l g  = 1.5 l B  -+ B+ACD 
lc  = 14 I c  + C+ABD 
l D  = 16.5 l D  -+ D+ABC 
l A B  = -1 l A B  -+ AB+CD 
LAC = 13.5 lAC + A C f B D  
l A D  = 19 l A D  -+ AD+BC 

Those fractions defined through such defining relations are called group-generated 

fractions, and the corresponding designs are called regular  designs since any two 

factorial effects either can be estimated independently of each other or are fully aliased. 

Otherwise, a design is termed a non-regular design, which includes many so-called 

plackett-Burman designs and mixed-level orthogonal arrays. In this thesis, we only 

consider the orthogonal designs. Those group-generated fractions are determined by 

the p generators  or defining words, which are all the columns that are equal to the 

identity column I. A word consists of le t te rs  which are labels of factors denoted by 1, 

2, . . . , k or A, B ,  . . . . The number of letters in a word is termed the word length.  

The defining contrast  subgroup for the design consists of all the columns that are 

equal to the identity column I. These include the generators and interactions of the 
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generators. As an example, consider a 27-2 design. Suppose we have I=ABCF and 

I=BCDEG as the generators. In this case, the defining contrast subgroup of the design 

is 

I = ABCF = BCDEG = AEFG,  

where AEFG is obtained by multiplying ABCF and BCDEG such that any letters in 

common disappear. The vector 

( 4 , .  . . 1 Ak) (1.1) 

is the word-length pa t t e rn ,  where Ai denotes the number of words of length i in the 

defining contrast subgroup. 

Box and Hunter (1961) define the resolution of a fractional factorial (FF) design to 

be the smallest r such that A, 1 1 and argue that a design with highest resolution is 

better as it aliases ME'S with highest-order interactions. Thus maximum resolution is a 

useful and convenient criterion for selecting practical designs in terms of the hierarchical 

ordering principle. 

If two designs have the same resolution, they are not necessarily equivalent and we 

need a further criterion to characterize or discriminate FF designs. Fries and Hunter 

(1980) propose the following criterion. It has been a popular and most commonly used 

criterion to select a good design. 

Min imum Aberra t ion  Criterion: For any two 2 " ~  designs dl and d2, let r be 

the smallest integer such that &(dl) # Ar(d2). Then dl is said to have less aberration 

than d2 if A,(dl) < A,(d2). If there is no design with less aberration than dl,  then dl 

has minimum aberration(MA) . 

Example 2: The following two 27-2 designs, 

dl : I = A B C F  = BCDEG = ADEFG 
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d2 : I = ABCF = ADEG = BCDEFG, 

both have resolution IV, but they have different word-length patterns, 

Based on the MA criterion, the first design is a better design. 

For a given k and p, a MA design always exists but is not always unique. Chen et al. 

(1993) suggest a competing criterion for design selection, the number of clear effects. 

A ME is eligible if it is not aliased with other ME'S and clear if it is also not aliased 

with any 2fi's. This concept can also be extended to interactions of any order as follows. 

A q-factor interaction is eligible if it is not aliased with any effects of order less than q. 

An eligible q-factor interaction is clear if it is also not aliased with any other q-factor 

interaction. A ME or 2fi is strongly clear if none of its aliases are ME'S, 2fi's, or X ' s .  

Clearly, we can derive the following important and useful rules from the definition 

of clear effects: 

1. In any resolution IV design, the ME'S are all clear. 

2. In any resolution V design, the ME'S are strongly clear and the 2fi's are clear. 

3. Among the resolution IV designs with given k and p, those with the largest number 

of clear 2fi's are the best. 

To further illustrate the criterion, let us consider two 26-3 designs. The first design, 

dl,  has defining contrast subgroup 

and the second design, d2, 

I = 136 = 1245 = 23456. 

From the definition introduced above, we know that dl has resolution IV and six clear 

ME's but no clear 2fi's while d2 has resolution III and only three clear ME'S 2, 4, and 
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5 but six clear 2fi's 23, 26, 34, 35, 46, and 56. Since d2 has only three clear ME's and 

ME's are usually more important than 2fi's based on the hierarchial ordering principle, 

one may say d 2  is inferior to d l .  On the other hand, d2 has more clear effects than d l .  

If in an investigation, only three factors and some of their two-factor interactions are 

believed to be important a priori, d 2  will be a preferred choice. 



Chapter 2 

Existing Met hods for Checking 

2.1 A BriefReview 

A regular FF design is uniquely determined by its defining words and design matrix. Two 

designs are said to be isomorphic or equivalent if one can be obtained from the other 

by relabeling the factors having the same number of levels, reordering the treatment 

combinations and/or relabeling the levels of one or more factors. Otherwise, these two 

designs are non-isomorphic (non-equivalent). In other words, isomorphic designs can be 

transferred into each other by the usual randomization of factor labels and level labels. 

Since isomorphic designs share the same statistical properties in classical ANOVA models 

and essentially are the same, it is necessary to include only one of them in any catalogue 

of designs, or if possible to avoid considering more than one of them in any search for 

optimal designs and thus avoid unnecessary computations. To obtain a catalogue of 

designs, a straightforward approach does not work. For example, in a 220-15 design, 

there are 5 independent factors and 15 additional factors, and yet they can be defined in 

(::I:) = 7,726,160 combinations. It is impractical to identify isomorphic designs among 
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all the 7,726,160 designs because of the computational difficulties involved in determining 

whether any two designs are isomorphic. The identification of the isomorphism of two 

designs is a vital combinatorial problem. For two k-factor (each having q levels) n- 

run designs, a complete search compares n!k!(q!)k designs based on the definition of 

isomorphism. It is known as an NP problem, when n and k increase. 

The isomorphism of two regular FF designs has been discussed extensively in the 

literature. Draper and Mitchell (1968) develop a "sequential conjecture" method for 

testing the isomorphism of two designs. The method tests isomorphism by comparing the 

word-length patterns of designs. Unfortunately, it has since been determined that two 

designs could be non-isomorphic even though they have the same word-length pattern. 

For example, there exist two 212-3 F F  designs that have identical word-length patterns 

but are not isomorphic. Also, in Draper and Mitchell (1968)'s stage-by-stage procedure, 

a design which has the same word-length pattern as the one previously found would 

automatically be discarded, even if the two designs are not isomorphic. Therefore, the 

set of designs constructed using the word-length pattern comparison to test isomorphism 

is not necessarily a complete set of non-isomorphic designs of the specified type. Of 

course, the word-length pattern completely determines aberration and resolution, but 

for specific design situations, there are various other ways to rank designs. For example, 

the MA design may be far from the best design in terms of clear effects as we mention 

in Chapter 1. 

Draper and Mitchell (1970) propose a more sensitive test for isomorphism using a 

"letter pattern comparison." Let aij be the number of words of length j in which letter 

i appears, then A=(aij)k,k is the letter pattern matrix of the design with k factors. 

They then declare two designs, dl and d2, to be isomorphic if and only if Adl = P(Ad2),  

where P(Ad,) is some permutation of the rows of Adz and where Ad, and Adz are the 

letter pattern matrices corresponding to dl and d2, respectively. However, Chen and 

Lin (1990) show that this is not an isomorphism test by giving two non-isomorphic 
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231-15 designs with identical letter pattern matrices. Thus the letter pattern does not 

uniquely determine a F F  design either. Note that the use of letter pattern is a finer 

representation of a design than using the word-length pattern since the word-length 
k pattern of a design can be written as (c:=, ail,. . . , ~ f = ~  aij/j l . .  . ,x,=l aik/k ), which 

implies that two designs having identical letter pattern matrices necessarily have the 

same word-length pattern. 

Chen (1992) discusses the isomorphism of 2k-p F F  designs in terms of the existence of 

a relabeling map between two frequency vectors together with an appropriately defined 

matrix X. With the help of this frequency representation, Chen (1992) proves that 

any 2k-p F F  design with p=l  or 2 is uniquely determined by its word-length pattern 

and further proves that the word-length pattern uniquely determines any MA 2k-p F F  

design when p=3 or 4. Chen et al. (1993) propose a sequential algorithm for constructing 

complete sets of F F  designs by exploring the algebraic structure of the F F  designs. A 

collection of FF designs with 16, 32, and 64 runs is given. 

Clark and Dean (2001) present a method of determining isomorphism of any two 

factorial designs (non-regular as well as regular). Two designs are isomorphic if the 

factors can be relabeled so that the Hamming distance between a pair of corresponding 

points runs is the same for the two designs in all possible dimensions. The method 

gives a necessary and sufficient link between isomorphism and the Hamming distance 

matrices of two designs. They also provide an algorithm for checking the isomorphism 

of F F  designs when all the factors have two levels which saves considerable time for 

detecting non-isomorphic designs. 

Ma et al. (2001) propose a new algorithm based on the centered Lz-discrepancy(CD2), 

a measure of uniformity, for detecting the isomorphism of F F  designs and show it can 

significantly reduce the complexity of the computation. For two higher-level designs, 

they create a uniformity criterion for isomorphism (UCI). However, UCI is only a net- 

essary condition for design isomorphism. They conjecture that UCI is also a sufficient 
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condition, but are unable to prove it thus far. 

Sun et al. (2002) present an algorithm for sequentially constructing non-isomorphic 

regular and non-regular orthogonal designs. The algorithm is based on a minimal col- 

umn base. They introduce an extended word-length pattern criterion, the definition of 

minimal column base, column base and its properties. Finally, they successfully obtain 

the complete catalog of orthogonal designs of 12, 16 and 20 runs. 

Block and Mee (2004) present the results of an enumeration of n=128 run resolution 

IV designs. Rather than determining whether a new candidate design is isomorphic to 

the existing designs based on a complete permutation check, they retain all the designs 

that differ in their projections. Resolution IV designs are tabulated for k=12,. . . ,40 

factors in 128-run designs. Since their criterion is not a sufficient and necessary condition, 

they still cannot claim that the designs that they provide are a complete non-isomorphic 

set. 

2.2 Isomorphism Checking Algorithms 

In this section, we examine three of the isomorphic checking algorithms in more detail. 

These are the Chen, Sun and Wu Algorithm (Chen et al., 1993), the Clark and Dean 

Algorithm (Clark and Dean, 2001), and the Block and Mee Algorithm (Block and Mee, 

2004). 

2.2.1 The Chen, Sun and Wu Algorithm 

To define a 2k-p F F  design, Chen (1992) divides the k letters into 2p-I subsets. Let fi 

be the number of letters in the i-th subset such that c::;' fi = k ,  and let f = (  f,, f2,.  . . , 

f2P-1) be called the frequency vector of the design. Chen (1992) constructs a matrix, 
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where I, is a p x p identity matrix and B is a p x (2p - p - 1) matrix which contains 

all the distinct and nonzero linear combinations (modulo 2) of column vectors of I,. 

If V ,  is a column vector of X, (V,, f )  equals the length of the i-th word. Chen (1992) 

suggests the following testing method with the help of this frequency representation 

(Chen's Theorems 5 and 6): 

THEOREM 2.2.1. Let f=( f l ,  . . . , f2p-l)t  and g=(gi, . . . , g2p-l)t be two frequency vec- 

tors, X be given by (2.1) such that (X, f) and (X, g) are two 2k-p FF designs. If there 

exists a relabeling map $ for (1,2, . . . ,2p - I), such that for any i and j, 

1. f i  = S*(i) 

2. V*(i) * V+(j) = V+(l), where V,  * V, = 

where V,,  V, are row vectors of X and * denotes the sum modulo 2, then f and g are 

equivalent, otherwise, they are not. 

THEOREM 2.2.2. Any 2k-p FF design with p=l or  2 is uniquely determined by its 

word-length pattern. 

Consider two 25-2 F F  designs with defining contrast subgroups, 

Both designs have word-length pattern (0, 0, 2, 1). Furthermore, Ad, = P(Ad2),  where 

Adl and Ad2 are the letter patterns of design dl and d 2 ,  respectively. From the definition 

of frequency vector, we can easily obtain f=(2, 2, I ) ,  g = ( l ,  2, 2), and 
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and thus Vl=(l, 0, I ) ,  V2=(0, 1, 1) and V3=(l, 1, 0). Obviously, there exists a map $ 

for (1, 2, 3). That is, 

As a result, we conclude that design dl and design d2 are isomorphic. 

Subsequently, Chen et al. (1993) present a more detailed and executable algorithm 

to detect the isomorphism of two F F  designs. 

Each 2k-p design has a design matrix. Thus it can be viewed as submatrices of 

regular Hadamard matrices. A regular Hadamard matrix of order 24 (q=k-p) is a 29 x 24 

orthogonal matrix of f 1's with the additional property that the entrywise product of 

any two columns is among the 2q columns. By replacing -1 by 1 and 1 by 0 and using 

addition over GF(2), these 2q columns form an elementary Abelian group over GF(2), 

where GF(2) is the Galois Field with two elements. Except for the column corresponding 

to the identity element in the group, we may write the remaining columns as 

Within C ,  we can find q independent columns that generate all the columns in C .  A 

2k-p design can be viewed as a subset of C with k columns. 

To identify isomorphic designs, Chen et al. (1993) divide all designs into different 

categories according to their word-length patterns and letter patterns. Designs with dif- 

ferent word-length patterns or letter patterns are obviously non-isomorphic. Therefore, 
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they only need to check the isomorphism of designs with the same letter patterns. By 

applying the algorithm mentioned above, this can be done. 

Their isomorphism check can be illustrated by a simple example. Suppose we have 

two 27-3 designs with defining relation 

dl : I = abe = abdf = bdcg 

dz : I = ace = acdf = abcdg. 

These two designs have the following three properties in common: 

1. The set of C: 

{ a, b, ab, c, ac, bc, abc, d l  ad, bd, abd, cd, acd, bcd, abcd ) 

2. Word-length pattern: (0, 0, 2, 3, 2) 

3. Letter pattern: 

They apply the following algorithm to do the isomorphism check. 

1. Select four independent columns from d2,  for example, {a, b, ac, abcd), There are 

a total of (i) choices. 

2. Select a relabeling map from {a, bl ac, abcd) to { A ,  B, C, D), i.e., A=a, B=b, CZclc, 

D=abcd. There are 4! = 24 choices. 
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3. Write the remaining columns {c, d, acd) in 4 as interaction of {A, B, C, D) ,  i.e., 

c = AC, d = BCD, acd = BD. Therefore, d2 can be written as { A ,  B, C, D,  AC, 

BCD,  BD). 

4. Compare the new representation of d2 with that of dl. If they match, dl and d2 

are isomorphic and the process stops. Otherwise, go to step 2 and try another. 

map of { A ,  B, C, D). When all the relabeling maps are exhausted, go to step 1 

and choose another 4 independent columns. 

2.2.2 The Clark and Dean Algorithm 

Let Td be an n x k design matrix of a 2k-p FF design, and define the Hamming distance 

matrix Hd to have (i, j)-th element 

where s[Td]fj is equal to 1 if in the 1-th column of Td, the symbols in the i-th and j-th 

rows are different, and equal to zero if they are the same. The (i, j)-th element of Hd 

counts the number of dimensions in which the i-th and j-th points fail to coincide. The 

distance matrix Hd is invariant to the permutation of columns and relabeling of levels 

within columns of Td. 

THEOREM 2.2.3. Designs dl and d2 are isomorphic iff there exists an n x n permu- 

tation matrix R and a permutation {ci, ~ 2 , .  . . , ck) of {1 ,2 , .  . . , 1;) such that, for every 

g = l , ~ , .  . . , k, = R ( H J ~ l ~ ~ 2 ~ . . + % }  
2 

) R'. 

PROOF: Clark and Dean (2001). 

When all the factors in the design have two levels, coded as -1 and 1, 
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{ ~ 1 , ~ 2 , . . . , ~ q }  where J,, is an n x n matrix of 1's. Let Td be a matrix consisting of q columns 

{cl, c2,. . . , cq) of Td. Based on the theorem mentioned above, the following corollary 

can be obtained. 

COROLLARY 2.2.1. Designs dl and d2 are isomorphic iff there exists an n x n 

permutation matrix R and a permutation {cl, cz, . . . , ck) of {1,2, .  . . , k) such that, for 

every q=1,2,. . . , k, 

Based on this corollary, Clark and Dean (2001) provide two FORTRAN programs 

( d e ~ e ~ 1 . f  and deseq2.f) for identifying the isomorphism of any two 2-level designs. For 

two isomorphic 2-level designs, Tdl =RTd2CL, where R and C are permutation matrices 

and L is a diagonal matrix with L2 = I. Therefore, the first program (deseql .f) does an 

initial check for non-isomorphism by checking whether for each q=l ,  2, . . . , k, there is 

some subset {cl, c2, . . . , c,} of {cl, c2, . . . , ck} such that the rows of HL:""'~} and HL;' . .~'~} 
contain the same set of distances with the same multiplicity. If there exists q=l ,  2, . . . , 

k such that there is no subset of {cl, cz, . . . , cq} of (cl, c2,. . . , ck) making the rows of 

{cl'-"cql contain the same set of distances with the same multiplicity, H::~....'} and Hd2 

then designs dl and d2 are non-isomorphic. However, two non-isomorphic designs could 

pass this initial test, thus requiring the second program to do a complete comparison. 

The second program (deseq2.f) looks through all row and column permutations that 

transform one design to the other. If we cannot find any row and column permutation, 

then the two designs are non-isomorphic. 

2.2.3 The Block and Mee Algorithm 

Block and Mee (2004) list all resolution IV designs for n=64 and show their projections. 

They observe that every 2:;' design of size 64 has a unique set of delete-one-factor 
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projections. As an example (given in their paper), a design with the generators G=ABC, 

H=ADE and J=ABDF,  has nine factors and nine delete-one-factor projections: 

0 Design with word-length pattern=(0,2,1) if one deletes factor A 

Design with word-length pattern=(l,l,O,l) if one deletes factor B or D 

Design with word-length pattern=(1,2) if one deletes factor C ,  El G, or H 

0 Design with word-length pattern=(2,0,1) if one deletes factor F or J. 

Block and Mee (2004) conjecture that for resolution IV designs with n=128, if two 

designs have isomorphic delete-one-factor projection sets, then there exists a permutation 

of the columns and rows of one design to make it identical to the other, i.e., they are 

isomorphic. This test is more discriminating than word-length pattern and letter pattern. 

It is still a conjecture, however, and if the conjecture is false, they have not enumerated 

the complete catalogue of non-isomorphic designs with n=128. 

2.3 Introduction of Existing Search Algorithms 

In the following section, we introduce some existing search algorithms for obtaining 

collections of non-isomorphic two-level F F  designs. These are the Franklin-Bailey Al- 

gorithm (Franklin and Bailey, 1977), the Chen, Sun and Wu Algorithm (Chen et al., 

1993), the Bingham and Sitter Combined Algorithm (Bingham and Sitter, 1999). 

2.3.1 The Franklin-Bailey Algorithm 

Das (1964) defines k - p of the factors as basic factors and the remaining p factors 

as added factors in a 2k-p FF design. The group of size 2 " ~  containing all the main 

effects and interactions among the k - p basic factors is called the basic effects group. 

Originally a search algorithm uses the search-table data structure to identify designs that 
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Table 2.3.1: Search table for 26-2 designs 

allow estimation of a requirements set of factors and interactions given that all other 

interactions are negligible. The algorithm can be adapted to our problem as follows. 

Step 1. Construct a two-way search table. The table has 2 " ~  - (k - p) - 1 rows, headed 

by the generalized interactions of the basic factors, and p columns, headed by the added 

factors. The elements of the table are the generalized interactions between the row and 

column headers. The rows are sorted by word-length. For example, for 26-2, the search 

table is given in Table 2.3.1. Step 2. Select a generator from the i-th column, where i= l .  

Step 3. For i=2,. . . , p , select a generator which is not in the same row of the search 

table as the previous columns. That is, because selecting generators from the same row 

of the search table results in designs with resolution less than 111, which is usually not 

of interest, avoid such selections. 

Franklin (1985) notes that the search table can be used to construct the set of non- 

isomorphic F F  designs. All possible combinations of generators obtained by the above 

algorithm contain the set of all non-isomorphic F F  designs and many isomorphic designs. 

By applying the isomorphism test to compare designs, this set of designs can be reduced 

to the set of all non-isomorphic F F  designs. 
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2.3.2 The Chen, Sun and Wu Sequential Algorithm 

To create a catalogue of MA FF's, Chen et al. (1993) present a sequential construction 

algorithm to get all non-isomorphic designs. 

Let D ; ,  be the set of non-isomorphic 2k-P designs with resolution > r (for the 

remainder of the discussion, it is assumed that r=III and the r superscript is suppressed 

for convenience). Suppose we begin with Dkl,pl , the set of of all non-isomorphic 2 k l - p l  F F  

designs, then Dkl+l,pl+l is constructed as follows. Assign the additional factor to one of 

the unused columns in each of the designs in Dkl ,p l .  Since there are 2 k 1 - ~ l -  k1 - 1 unused 

columns available, there are at most 2k1-p1 - k1 - 1 ways to assign this factor. After 

removing designs with resolution less than 111, we obtain a class of designs, denoted 
- - - 

by Dk,+l,pl+l. Obviously, Dkl+l,pl+l C Dkl+i ,p l+~ because Dlcl+l,pl+l contains many 

isomorphic designs. Perform isomorphism checking to remove all isomorphic designs to 

get Dkl+l ,pl+l .  Similarly, Dk1+2,p1+2 can be constructed. This procedure continues until 

all the non-isomorphic designs with k factors and p generators are obtained. 

2.3.3 The Bingham and Sitter Combined Algorithm 

Bingham and Sitter (1 999) propose combining the ideas in the Franklin-Bailey algorithm 

and the Chen, Sun and Wu algorithm to find all non-isomorphic 2 k l + k 2 - ~ l - ~ 2  fractional 

factorial split-plot (FFSP) designs, with 2 k 1 - p 1  the whole-plot design and 2 k 2 2 - ~ 2  the sub- 

plot design. By setting k2 and p2 equal to 0, their algorithm can be used to search for 

all the non-isomorphic 2 k - p  F F  designs. 

Let DklYP1 be the set of non-isomorphic 2k1'-p1 designs with resolution > r ,  create 

Dkl+l,pl+l  by selecting all non-isomorphic generators in the first column of the search 

table. There are as many non-isomorphic generators as there are different lengths of 

generators in the first column of the search table by Theorem 2.2.2.  

Next, create Dk1+2,p2+2 by selecting a design in Dkl+l,pl+l and adding generators 

from the second column and compare each design chosen to those already in Dk1+2,p1+2 
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to see if it is isomorphic to any in Dk1+2,p1+2. If it is isomorphic to the designs already 

in Dk1+2,p1+2, the design is discarded; otherwise it is included into Dk1+2,pl+2. Bingham 

and Sitter (1999) prove that one need only consider the generators in the second column 

of the search table that are below the generators from the first column. The notion of 

adding factors to the design by considering generators below the fixed design generators 

also is applied for all added columns. This helps significantly reduce the number of 

designs considered with respect to other methods. They continue adding factors until 

they obtain Dkl,pl. 

2.4 Summary and Discussion 

1. The Search Algorithms. There are three existing search algorithms. These 

are the Franklin-Bailey search table algorithm (Franklin and Bailey, 1977) , the 

Chen, Sun and Wu sequential algorithm (Chen et al., 1993) and the Bingham and 

Sitter combined algorithm (Bingham and Sitter, 1999). For a 2k-p F F  design, the 

Franklin-Bailey search table algorithm requires consideration of N1 = nT='=, (2k-p - 

(k - p) - i) designs. The Chen, Sun and Wu sequential algorithm reduces the 

number of designs considered since it adds another factor based on the set of non- 

isomorphic designs. The combined algorithm significantly reduces the number of 

designs considered with respect to the other algorithms. For example, Table 2.4.1 

(recreated from Bingham and Sitter, 1999), gives the number of designs considered 

by each algorithm for various n=32 F F  designs. 

2. Isomorphism Checking. So far, there are five proposals for checking isomor- 

phism. These are Chen et al. (1993), Clark and Dean (2001), Ma et a1 (2001), 

Sun et al. (2002), and Block and Mee (2004). For n-run and k-factor designs, 

a complete search needs n!kQk reordering and remodelings. Chen et al. (1993) 

reduce this to (,!$(k - p)!  comparisons. Clark and Dean (2001) require k(k!)2 
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Table 2.4.1: Number of Designs Entertained in Creating Catalogs of F F  designs with 5 
Basic Factors 

algorithm 27-2 28-3 29-4 

search 650 15,600 358,800 7,893,600 
sequential 96 184 330 609 
combined 45 89 273 282 

comparisons in the worst case. Each comparison requires O ( n ! )  operations. Ma 

et al. (2001) require 0 ( n 2 k 2 k )  to compare 2"' CD2 values in the worst case. No 

similar information is available for Sun et al. (2002) and Block and Mee (2004).  

3.  Discussion. Chen et al. (1993) obtain the complete collection of 16-, 32- and 

64-run FF designs by their proposed search algorithm and isomorphism checking 

algorithm. This is a complete catalog since their isomorphism check is iff. Block 

and Mee (2004) combine the Chen, Sun and Wu search algorithm and their pro- 

posed sufficient condition for non-isomorphism test. Thus, no one has combined 

the efficient iff isomorphism test of Clark and Dean (2001) with the most efficient 

search algorithm of Bingham and Sitter (1999). In the next chapter, we first intro- 

duce a new isomorphism check which is more efficient than Clark and Dean (2001) 

for some situations and then combine this with the Bingham and Sitter search 

algorithm and Clark and Dean isomorphism check. 



Chapter 3 

Proposed Isomorphism Check and 

Algorithm 

3.1 The Basic Idea 

A 2k-p design is uniquely determined by its p defining relations. In other words, the 

defining contrast subgroup determines a 2'-~ design. Therefore, we focus on design 

isomorphism through its defining contrast subgroup. It turns out that this will yield 

some computational advantages in some cases. 

Recall that for a 2k-p design, the defining relation is 

and the word-length pattern is (All A2,. . . , Ak), where A, is the number of words of 

length q. Let W, be an A, by k matrix with elements 

Thus, for a 2'"-p design with resolution r, it has the set of matrices WT, W,,l, 

. . . , W,, where m is the maximum non-zero word length. For instance, consider the 

22 
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27-3 design with resolution I11 and defining contrast sub-group 

The design has word-length pattern (0, 0, 4, 3, 0, 0, 0) and the set 

and 

Let W be formed by stacking all of the Wis and called word-pattern matrix. In this 

example, 

W =  

Obviously, for a 2k-p design, the W, matrix always has k columns for every q and the 

sum of each row is equal to q. 
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3.2 Hamming Distance Method When Using W Ma- 

trix 

Let d [ ~ ] f , ~ = l  if in the I-th column of W the symbols in the i-th and j-th rows are 

different, and =O if they are the same. Similar to Clark and Dean (2001), we define the 

distance matrix H but in our case for W instead of the design matrix. Let the ( 2 ,  j)-th 

element of H be equal to 

k 

[ H ] i j  = C 6 [ ~ ] : ,  for i # j 
1=1 

and equal to 0 if i=j .  The distance matrix H is invariant to permutations of columns 

and to switching the role of 0 and 1 so that 1 represents the presence of a factor and 0 the 

absence, but not to the re-ordering of the rows (words). We can get a similar theorem to 

Clark and Dean (2001)'s Hamming distance matrix theorem. Before we state and prove 

Theorem 3.2.1 below, we introduce a useful lemma. 

LEMMA 3.2.1. Two 2 " ~  FF designs d l  and d2 are isomorphic if Wd, = RWd,c for 

some permutation matrices R and C. 

PROOF: Follows obviously from the fact that W is uniquely determined by defining 

contrast subgroup. 

Note, it is possible to have two isomorphic but not identical design matrices which 

yield the same W. Thus, by viewing W, we have implicitly eliminated some isomorphic 

designs. 

AS to how to find C technically, refer to Chen et al. (1993) (p.10) or section 2.2.1. 

Lemma 3.2.1 tells us that if a design d l  can be obtained by another design d 2  by relabeling 

the factor labels in the defining contrast subgroup, then d l  is isomorphic to d,. With the 

help of Lemma 3.2.1 above, we are now able to state and prove Theorem 3.2.1 below. 

THEOREM 3.2.1. 2k-p designs d l  and d2 are isomorphic i f  there exists an s x s 
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permutation matrix R and a permutation {cl, ~ 2 , .  . . , ck) of {1,2, .  . . , k) such that, for 
{l 2 1) - R { H i c l ? ~ 2 > , . . ! ~ l }  1 = l , 2 ,  . . . , k, H1 ' ""' - )R1, where s = 2P- 1. 

PROOF: 

1. Suppose that design dl and d2 are isomorphic. Then we can write Wdl = RWd2C 
or W~l,2,....*) = R W { c l ~ ~ 2 ~ . . . ~ ~ k )  

1 dz by Lemma 3.2.1, where C is the permutation matrix 

corresponding to the permutation {q, c2, . . . , ck) that maps the factor labels of d2 

to those of dl, and R is the permutation matrix that reorders the words in d2 into 

the same order as those in dl. Thus for 1 5 q 5 k, 

Therefore, for each 1 = 1 ,2 , .  . . , k, 

2. Let {cl, c2,.  . . , ck) be a fixed permutation of {1,2,.  . . , k) and let ~ i ~ ~ ~ ' ~ - ~ ~ )  be 

the distance matrix corresponding to the columns {cl, c2, . . . , q) of Wd2, then 

R H $ ~ ~ ~ ~ ~ ~ - . ~ ~ ~ } R ~  is the distance matrix corresponding to the columns {cl, c2, . . . , CL) 

of RWd2 for some given permutation R since 
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thus, for a fixed sequence of distance matrices R H ~ ~ ~ ' ~ ~ ~ . . ~ * ~ ~ )  Rt, 1 = 1,2  , . . . ,  k, 

(3.4) implies a fixed sequence R H ~ ~ " R ~ ,  1 = 1 ,2 , .  . . , k, and we may consider each 

column of the word-pattern matrix separately. Let Wdl be an s x k word-pattern 

matrix with first row the same as the first row of Wd2C ({cl, c2, . . . , ck) of the first 

row of Wd2). For each 1 E {1,2,.  . . , k), we construct the 1-th column of Wdl as 

follows. For i = 2, .  . . , s, if [RH~"'R']~,~=o for some j = 1 , 2 , .  . . , i - 1, then set 

the symbol in the i-th row of column 1 of Wdl to be the same as the symbol in 

the j-th row, i.e., [Wdl]{i,l) = [Wdlltj,l). Otherwise set [Wdl]{i,l) equal to a different 

symbol. Remember the symbol here can only be 0 or 1. Thus, the I-th column of 

Wdl is the same as the cl-th column of RWd,. Therefore Wdl is identical to Wd2 

up to a permutation of rows and columns, which means that Wdl=RWd,C, i.e., 

designs dl and d2 are isomorphic. 

COROLLARY 3.2.1. 2k-p designs dl  and d2 are isomorphic igP there exists a n  s x s 

permutation matrix  R and a pernutat ion {cl, ~ 2 , .  . . , ck) of  {1,2, .  . . , k) such that,  for 

1 = 1,2,  . . . , k, H,(') = R(H,("))Rt, where s = 2' - 1. 

Recall that applying Clark and Dean (2001)'s method requires k(k!)2 comparisons 

and each comparison requires O(n!) operations in theory for the worst case. In our check, 

we only need O(s!) operations. Therefore, if s = 2P - 1 < 2 " ~  = n ,  i.e., p < k - p,  as 

n increases, a larger p can be used to satisfy this inequality so that we can take more 

advantage by using Theorem 3.2.1. 
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3.3 Eigenvalue and Eigenvector Criterion 

To boost the speed to identify the non-isomorphism of two designs, we also intro- -- 
duce the eigenvalue and eigenvector of a matrix Zi = W;Wi, where Ei is the sub- 

set of {W,, W,+l,. . . , Wk-p}. For example, let k - p=5 and r=3, then % could be 

and we let El = W3, E2 = Wg, E3 = W5, E4 = (2) and so on. 

Before proceeding to the main result given in Theorem 3.3.1 below, we introduce 

concepts in linear algebra and a useful lemma. Let V be a vector space over the field F 

and let T  be an n x n matrix on V. An eigenvalue of T  is a scalar c in F such that there 

is a non-zero vector a in V with Ta  = ca and the matrix T  - cI is singular. If c is an 

eigenvalue of T ,  then any ac such that Ta = ca is called an eigenvector of T  associated 

with the eigenvalue c. Since c is an eigenvahe of iff det(c1 - T) = 0, we form the 

matrix ( X I  - T) with polynomial entries, and consider the polynomial f = det(xI - T ) .  

Clearly the eigenvalues of T  are just the scalars c such that f (c) = 0. This f is called 

the characteristic polynomial of T .  Two matrices A and B are similar if there exists 

an invertible matrix P such that B = P-'AP. 

L E M M A  3.3.1. Similar matrices have the same characteristic polynomial. 

PROOF: If B = PV1AP, then 

det(xI - B )  = det(xI - P-'AP) 

= det(P-'(XI - A) P )  

= d e t ( ~ - ' )  . det(xI - A) . det(P) 

= det(xI - A). 
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In other words, similar matrices have identical eigenvalues. 

Now we are ready to state the main result of this section. Let A(q, i )  = (Xq,i , l ,  Xq,i,2, 

. . . , Xg,i,k) be the vector of eigenvalues of Zi of design q, where i = 1,.  . . , 2k-p-T+1 - 1, 

= 1, 2, and Xg,i,l > Xq,i,2 . . . > & , i , k  Let r(q, 2 )  = (vq,i,l, vq,i,2, . . . , vq,i,k) denote 

the corresponding matrix of eigenvectors, where vq,i,j is the corresponding eigenvector 

of for j = 1 , 2 , .  . . , k. 

T H E O R E M  3.3.1. If two 2 " ~  resolution r designs dl and d2 are isomorphic, then 

there exists a k x k pennutation matrix C such that, for all i= 1, 2, . . . , (2k-p-T+1 - I), 

PROOF: - 
Let zli and zzi represent the Wi matrices for designs dl and d2, respectively If dl and 

d2 are isomorphic, then they have the same word-length patten and satisfy 

where R, and C are row and column permutation matrices. Then clearly, 

(a) Follows from Lemma 3.3.1 since Zli and Z2i are similar matrices. (b) Based on 

the definition of eigenvalues and eigenvectors and equation (3.5), we obtain Zlivl,i,j = 

C'Z2iCvl,i,j = Xl,i,jvl,i,j SO that Z2iC~l , i , j  = Xl,i,jC~l,i,j since Z2iv2,i3j = Xz,i,jvn,i,j and 

= X2,i,j. This means = v2,i,j, i.e., Fl,i = C1r2,i. 
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Theorem 3.3.1 only gives a condition for checking the isomorphism of two designs. 

However, it can be used to efficiently and straightforwardly detect the non-isomorphism 

of two designs. In other words, if two designs do not satisfy either (a) or (b) in Theorem 

3.3.1, then two designs are non-isomorphic. If they satisfy (a) and (b), we must resort 

to further checking. Thus, it is similar in spirit to the Block and Mee check. 

3.4 Sequential Construction of Non-isomorphic 2 k - p  

Designs 

To construct a complete catalogue of non-isomorphic 2 " ~  designs, we propose the follow- 

ing sequential approach which combines the search method proposed by Bingham and 

Sitter (1999) which extends the algorithms of Franklin and Bailey (1977) and Franklin 

(1985), the isomorphism check of Clark and Dean (2001), and the results of sections 

3.1-3.3. 

Proposed Algorithm: 

1. Construct a search table, which has added factors as columns, and all possible 

interactions of basic factors as rows, and the interaction of corresponding row and 

column as elements. The elements are thus words. For example, for 26-2, the 

search table is given in Table 2.3.1. 

2. For the first column, we pick up generators with different length as non-isomorphic 

designs. Thus the number of non-isomorphic designs for a 2"l design is identical 

to the number of designs with different word-length patterns by Theorem 2.2.2. 

Let DkVp be the set of all the non-isomorphic 2 " ~  designs (with at least resolution 

111). 

3. Assume that we have all the 2 " ~  non-isomorphic designs, Dk-p+l,l. TO construct 

Dk-p+2,2, we select one design from Dk-p+l,l and add the generators from the next 
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column of the search table. Note we only pick up the generators in the next column 

of the search table that are below the generator from the current column. Compare 

each successive design chosen to those already in Dk-p+2,2 to determine whether 

it is isomorphic to an already obtained design. We do the following isomorphic 

check for each two selected designs. 

(a) Compute the word-length patterns. Compare them, if they are different, these 

two designs are non-isomorphic, otherwise go to (b). 
-- 

(b) Compute the vector of eigenvalues of W,!Wi. If any two vectors are different, 

these two designs are non-isomorphic, otherwise go to (c). 

(c) If s = 2P - 1 < 2k - p = TI, i.e., p 5 k - p, use the subroutine 'wcheck' 

in the FORTRAN program isocheck.f90 in Appendix C which implements 

Theorem 3.2.1, otherwise use the subroutine 'deseq2' which is the second 

program (deseq2.f) of Clark and Dean (2001), if the row permutation and 

column permutation are found, these two designs are isomorphic, otherwise, 

they are non-isomorphic. 

If the design is isomorphic to some design in the Dk-p+2,2, discard it; otherwise, 

this design is added to Dk-p+2,2. 

4. Repeat Step 3 to construct the complete set of all non-isomorphic designs Dk-p+q,q, 

q = 3 ,4 , .  . .. 

A FORTRAN program is given in Appendix C and the following is an example to 

illustrate the algorithm. 

Example 3: 16-run FF Designs 

Firstly, based on the algorithm mentioned above, we can easily get D ~ J  ={(125), (l235), 

(12345)). Secondly, to get D6,2r we select a generator from D ~ J  and consider generators 

from the second column that are below it in Table 2.3.1. For example, we select the 
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generator wl=125, and consider the first generator in the second column, w2=136. Since 

D6,2 is empty, the design should be added to D6,2. We then consider the second gener- 

ator in the second column 146, however ((125,146)) and ((125,136)) are isomorphic. 

Similarly, we find that ((125,236)), ((125,246)) are isomorphic to ((125,136)). When 

we consider (125,346), we find that this design has different word-length pattern from 

((125,136)). Thus DsI2 is expanded to ((125,136), (125,346)). Next, we pick the design 

((125,1346)), and compare it to (125, 136). Since they are non-isomorphic, we continue 

and compare it to (125, 346) and find they are also non-isomorphic. Therefore, DsY2 be- 

comes ((125,136), (125,346), (125,1346)). The same steps continue until we reach the 

last design (1235, 12346). After completing this search and comparison in the second 

column, the algorithm stops and D6,2 =((125,136), (125,346), (125,1346), (1235,1246)). 

The FORTRAN program continues through the columns until we get D ~ ~ , I I .  

3.5 128-run Resolution IV Designs 

So far, the appended FORTRAN program has helped us obtain the complete catalogue 

of 128-run designs with up to 15 factors, Table 3.5.1 lists the number of possible non- 

isomorphic F F  128-run resolution IV designs with k i 15 factors. A collection of these 

designs are available. The numbers in Table 3.5.1 do correspond to those given in Block 

and Mee (2004), where they conjecture that they are the complete set of non-isomorphic 

designs, thus supporting their claim up to designs with 15 factors. For k 2 12 factors, 

F F  designs of resolution V and more do not exist. In Appendix B, we list the best 

ten designs based on MA criterion for Ic 5 15, where the columns of each design are 

columns of the matrix in Appendix A used for the generators. For example, k = 9, 

the best design has columns 31 and 103. In Appendix A, we can find the 31-th column 

corresponds to generator 12345, since rows 1, 2, 3, 4 and 5 of column 31 contain a 1. 

Similarly, the 103-th column is 12367. 
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Table 3.5.1: Number of Non-isomorphic 2 " ~  FF Resolution IV Designs with n = 128 
k No. of Designs 

3.6 Discussion 

Comparing two isomorphic designs is computer intensive but the really bad situation is 

two non-isomorphic designs which pass the non-isomorphic checks. The reason is that, 

if two designs are isomorphic we merely need to consider row and column permutations 

until we get one from the other, but if two designs are non-isomorphic and pass all 

the non-isomorphism tests, we need to try all possible row and column permutations to 

be sure that they are not isomorphic. Our proposed isomorphism check algorithm can 

identify all non-isomorphic designs up to 15 factors since the non-isomorphic FF designs 

with k < 15 have different vectors of eigenvalues for some Ei matrix, thus helping a 

great deal in the real search and comparison. 

We only prove that the eigenvalue and eigenvector criterion is a necessary condition 

to detect the isomorphism between two designs, which is the reason why we still use 

subroutine 'deseq2' or 'wcheck' (try all possible relabelings of rows and columns in both 

subroutines) to do a complete identification. On the other hand, our proposed algorithm 

is beneficial for p _< k - p thanks to using the W matrix instead of the design matrix. 

This can be supported by Table 3.6.1, where s, m, h and d represent seconds, minutes, 

hours and days, respectively. The W matrix is (2p - 1) x k, thus its dimension changes 
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with the number of factors instead of run size. In other words, it may be efficient to get 

non-isomorphic 256 or bigger run FF designs by our proposed algorithm. 

Table 3.6.1: Time Spent when Using Design Matrix and W Matrix with p 5 k - p for 
128-run Designs 

matrix 29-2 2 l 0 - ~  211-4 212-5 213-6 

Design matrix 2m46s 29m 12h 16h ldlOh 
W matrix 0.57s 4.7s 36s 5m3s 40m 



Chapter 4 

Future Work 

The isomorphism of regular F F  designs has been extensively discussed in the literature 

(section 2.1). The most efficient search algorithm is given by Bingham and Sitter (1999). 

However, there are a number of other considerations that could be made. 

4.1 General 

Firstly, the ratio of the number of the non-isomorphic designs to the number of designs 

considered in the most efficient search algorithm is still small. For example, Table 4.1.1 

lists the number of designs entertained in creating catalogs of F F  designs with 5 basic 

factors and the number of corresponding non-isomorphic designs. The percent is the 

ratio of number of the non-isomorphic designs and number of designs entertained in the 

combined Bingham and Sitter search algorithm. We can see all the percents are less 

than 20%. Therefore, an interesting work is to reduce the number of designs considered 

in search algorithm. 

Secondly, the speed of detecting the isomorphism of two designs may still have po- 

tential room to improve. Therefore, if either the search algorithm or the isomorphism 

check can be made more efficient, one could combine the most efficient search algorithm 
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Table 4.1.1: Number of Designs Entertained in Creating Catalogs of F F  designs with 5 
Basic Factors and Number of Corresponding Non-isomorphic Designs 

algorithm 27-2 28-3 29-4 210-5 

combined 45 89 273 282 
non-isomorphic 8 15 29 46 
percent 17.78 18.85 10.62 16.31 

and isomorphism check to obtain the catalogue of F F  designs. 

4.2 Our Proposal 

We may apply this eigenvalue and eigenvector criterion to q-level (q 2 3) and mixed-level 

FF, FFSP or non-regular designs. The criterion may have greater benefits in higher-level 

or mixed-level designs. 

From the catalogue of all non-isomorphic designs, one can show that the word-length 

pattern (A1, Az, . . . , Ak) of a 2k-p design with resolution r is uniquely determined by 

A,, AT+1, . . . , Ak-p, when k-p=3, 4, 5, 6. For k-p=7, it is also true for the obtainable 

non-isomorphic designs. This fact tells us that to check the word-length pattern of two 

designs we only need to check the first Ic - p word-lengths for 8, 16, 32, 64-run regular 

designs. For p > k - p, we actually do not need to write down the complete defining 

contrast subgroup. It is enough to write down the generators and the at most up to the 

( k  - p)-th interactions of the generators in order to compare the word-length pattern of 

two designs. We conjecture that this is also true for k-p2 7. 

Furthermore, we conjecture that the algorithm proposed in section 3.4 excluding part 

(c) of step 3 is sufficient to obtain the catalogue of non-isomorphic two-level F F  designs. 

Thus it would only implement the word-length pattern comparison and eigenvalue cri- 

terion and would not look for any row, column and level permutations. Therefore, we 

call it the eigenvalue criterion algorithm (E.C.A in Table 4.2.1). We obtain the same 
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Table 4.2.1: Time Using Proposed Algorithm and Eigenvalue Criterion Algorithm for 
128-run Designs 

algorithm 29-2 210-3 212-5 213-6 214-7 215-8 216-9 

P. A. 0.57s 4.7s 36s 5m3s 40m 10d 40d - 

E.C.A. 0.44s 2.5s 27s 5ms 22m42s 2h18m 14h18m 118h 

number of non-isomorphic 128-run designs with lc 5 16 as that given by Block and Mee 

(2004). The reason we stop at k = 16 is not because of the speed of isomorphism check 

but rather because there are a huge number of non-isomorphic 128-run designs. Table 

4.2.1 lists the time using the proposed algorithm (P.A. in Table 4.2.1) in section 3.4 and 

the eigenvalue criterion algorithm. S, m, h, and d in Table 4.2.1 represent seconds, min- 

utes, hours and days, respectively. One can see the speed of E.C.A is about 1000 times 

faster than that of P.A. Almost certainly, the time can be further reduced by at least 

10 times via astute programming since we have not taken full advantage of the Fortran 

programming language and faster computer facilities. Since the non-isomorphic designs 

are a small part of the designs considered in creating the catalogue of F F  designs and 

the percentage of the number of non-isomorphic designs will be smaller as the number of 

factors increases, E.C.A will have greater benefit in creating the catalogue of F F  designs 

with more factors. -- 
In the proposed algorithm, we compute the vector of eigenvalues of all WiW,, where 

K ' s  are the subset of {W,, W,+I,. . . , WL-~) .  It will be interesting to think about -- 
whether the vector of eigenvalues of W,'Ws may determine the vector of eigenvalues of -- - - 
WAW,, where Zs ' s  are some Wi and Wc's are the remaining subsets. In other words, is -- 
it possible that if the vectors of eigenvalues of W,'Ws for two designs are the same, the -- 
corresponding vectors of eigenvalues of WLW, will be the same? Exploring the existence 

- 
and components of W s  seems worthwhile. 



Appendix A 

Matrix for 128-run Design 

NOTE: The independent columns are in boldface and numbered 1, 2, 4 ,  8, 16, 32, 64. 



APPENDIX A .  MATRIX FOR 128-RUN DESIGN 



Appendix B 

Minimum Aberration 128-run 
Designs With k < - 16 

NOTE: The MA 216-' designs listed below are obtained from Eigenvalue Criterion Algorithm 
(see section 4.2). 

k Columns (A4, A5, . . .) 
8 127 0 0 0 0 1  



APPENDIX B. MINIMUM ABERRATION 128-RUN DESIGNS WITH K 5 16 40 

k Columns (&,Ar.  . .) 
10 15 51 85 0 3 3 1 0 0 0  



APPENDIXB. MINIMUMABERRATlON128-RUNDESIGNS W I T H K S  16 41 

k Columns (&A5, .  . .) 
13 7562777102115 2 1 6 1 8 1 0 9 4 2 2 0  
13 7  56 27 45 107 117 2 1 6 2 0 8 5 8 4 0 0 0  
13 7  56 27 107 93 118 3 1 2 2 4 8 3 1 2 0 0 1  
13 7  25 98 45 85 126 3 1 4 1 7 1 4 8 2 3 2 0  
13 7  25 42 83 101 127 3 1 4 1 8 1 2 7 6 2 0 1  
13 7  25 43 75 101 118 3 1 5 1 7 1 1 8 5 3 1 0  
13 7  25 42 83 53 124 3 1 5 1 7 1 1 8 5 3 1 0  
13 7  25 98 43 83 125 3  16 15 10 12 4  1  2  0  
13 7  56 27 45 107 93 3 1 6 1 6 8 1 1 8 0 0 1  
13 7  25 43 75 101 115 3 1 7 1 5 7 1 2 7 1  1 0  
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Fortran Program 1socheck.fSO 

PROGRAM alldesign 

!get the all the non-isomorphic design for the two level 
!diffdesign : save the non-isomorphic designs for add k-th step 
!diffmatrix:ith column is the position of non-isomorphic design 's basic 
!effect for ith step 
!idiff : the number of old non-isomorphic designs 
!new-idiff : the number of new non-isomorphic designs 
!MM : the number of basic factors 
!KK : the number of added factors 
!m: the number of runs 
!lenvec: the cumulative number of words for i-length 
!new-ii is from 1 to new-idiff 
!design2 is a design from the exiting non-isomorphic design 
!pick up a new design from the search table,denoted as design1 
1---------------------------------------------------------------- 

INTEGER::jstep,idiff,new-ii,new-idiff,nn,ii,jii,ifile,p,infor 
INTEGER::infor2,infor3,infor4 
LOGICAL::diff,first 
CHARACTER(20)::filenames 
CHARACTER*IO : : b(3) 
INTEGER,PARAMETER::MM=7,diffrows=3530,kcols=2O,ncol=26O 
INTEGER,PARAMETER::lwork=I30 
INTEGER:: KK,nrow,jjii,k,i,j 
INTEGER,DIMENSION(8)::date-time 
INTEGER,DIMENSION(MM-~)::~~~V~C 
INTEGER,DIMENSION(kcols)::addeff 
INTEGER,DIMENsIoN(~*~co~s):: basiceff 
REAL,DIMENSION(lwork)::work,work2,~0rk3,~0~k~ 
INTEGER,DIME~sION(2,kcols)::designl,design2 
~ ~ ~ ~ ~ ~ ~ , ~ ~ ~ ~ ~ ~ ~ ~ ~ ( d i f f r o w s , k c o l s ) : : d i f f m a t r i ~  
INTEGER,DIMENSION(diffrows~2,kcols)::diffde~ign,ne~~diffdesign 
INTECER,DIMENSION(2,kcols)::wlp 
RE~L,~IME~~I0N(2,kcols)::eigenval,eigenval2,eigenvalc 
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REAL, DIMENSION (2,kcols) : : eigenval22, eigenval32, eigenval42 
INTEGER,DIMENSION(~ ,ncol, kcols) : :wmatrix 
INTEGER,DIMENSION (2, n d ,  kcols) : : pparr ,pparr2 ,pparr3, pparr4, cpparr 
INTEGER,DIMENSION(~, kcols ,ncol) : : tpp, tpp2, tpp3, tpp4, tcpp 
INTEGER ,DIMENSION (2, kcols ,kcols) : : tpppp, tpppp2, tpppp3, tpppp4, tcpppp 

0~~N(150,file="searchtable128.txt~~) 
nn=2**MM 
0p~~(l,file="designl28-l.out") 
READ(I~O,*) (lenvec(i1, i=l ,MM-2) 
DO i=l,lenvec(MM-2) 
~~~~(150,*)baSiceff (1) 

END DO 
DO i=l,kcols 
adde f f ( i ) =MM+ i 
END DO 

ithe first step is to get the non-isomorphic 28-1 designs 
DO i=1, MM-2 
IF(i .EQ. 1) THEN 
diffdesign(i, I, l)=basicef f (1) 
diffdesign(i ,2,1)=addeff (1) 
diffmatrix(i,l)=l 
ELSE 

diffdesign(i,I,l)=basiceff (lenvec(i-l)+1) 
diffdesign(i,2,1)=addeff (I) 
diffmatrix(i,l)=lenvec(i-l)+l 

END IF 
END DO 
call date-and-time (b(l), b(2), b(3) ,date-time) 
WRITE(I,*) "The current time : : " , b(1) ,b(2) 
j step=l 
idif f =MM-2 
DO i=l,idiff 
w~~T~(l,*)diffdesign(i,l,l) 
END DO 
close(1) 
j step- j step+l 
idiff-MM-3 
DO WHILE(jstep .LT. 9) 

if ile-jstep 
p= jstep+MM 
SELECT cASE(if ile) 
CASE(2) 
filenames="designl28-2.0uto1 

CASE(3) 
filenames=11design128-3.0ut" 
CASE(4) 
f ilenames="design128-4. out" 
CASE(5) 
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filenames="design128-5.0utM 
CASE(6) 
filenames="designI28-6.0ut~~ 

CASE(7) 
filenames="designl28-7.out" 
CASE(BI 
f ilenames="design128-8. out" 
CASE(9) 
f ilenames="designl28-9. out" 

END SELECT 
open(ifile,filetfilename~) 
call date-and-time(b(1) ,b(2) ,b(3) ,date-time) 
 WRITE(^^ ile, *) "The current time : : , b(1) ,b(2) 
DO ii=l,idiff 

first=.TRUE. 
DO jii=diffmatrix(ii,(jstep-l))+l,lenvec(MM-2) 
IF(ii .EQ. 1 .AND. first)THEN 
first=.FALSE. 
new~diffdesign(l,:,l:(jstep-l))=diffdesign~lJ:,l:~jstep-l)) 
new-diffdesign(1, I, jstep)=basiceff (jii) 
new-diffdesign(l,2,jstep)=addeff(jstep) 
diffmatrix(1, jstep)=diffmatrix(l, jstep-l)+l 
new-idiff=l 

END IF 
designl(:,l:(jstep-l))=diffdesign(ii,:,l:(jstep-1)) 
designl(l,jstep)=basiceff(jii) 
design1 (2, jstep)=addef f (jstep) 
new-ii=l 

IF(jstep .LE. 11)THEN 
call lpattern(designl(: ,1:jstep) ,MM,jstep,wlp(l, : I  ,pparr(l,: ,I:P) ,& 

pparr2(1,: ,1:p),pparr3(1,: ,1:p),pparr4(IJ: ,l:p),wmatrix(l,: ,1:~)) 
END IF 
IF(wlp(l,3) .NE.O)THEN 

go to 998 
END IF 
if(wlp(1,4).ne.O)then 
call xtransp2(pparr(lJl:wlp(1,4),1:p),wlp(1,4),p,& 

tpp(l,l:p,l:wlp(l,4~)) 
call multxy2(tpp(l,l:p,l:~lp(1,4)) ,pparr(l,l:wlp(1,4) ,1:~) ,& 

p,wlp(l,4) ,p,tpppp(l,l:p,l:p)) 
call SSYEVONJ ,'UJ,p,real(tpppp(l,l:p,l:p)) ,p,& 

eigenval2 (1,l: p) ,work, lwork, inf or) 
end if 
if(wlp(l,5).NE.O)then 
call xtran~~2(~~arr2(1,1:wlp(1,5) $1:~) ,wlp(L5) ,& 

p,tpp2(1,1:p,l:wlp(1,5))) 
call multxy2(tpp2(1,1:p,l:~lp(l,5)) ,pparr2(1 J ~ : ~ ~ P ( ~ ~ ~ )  J i : ~ )  ,& 

p,wlp(l,5) ,p,tpppp2(I,l:p,l:p)) 
call SSYEV('NJ, 'UJ ,p,rea1(tpppp2(1,1:p,l:p)),pJ& 
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eigenval22(1,1:p),work2,lwork,infor2) 
end if 
if(wlp(l,6).NE.O)then 
call xtransp2(pparr3(1,1:wlp(1,6) ,1:p) ,wlp(l,6) ,& 

p,tpp3(1,1:p,l:wlp(l,6))) 
call multxy2(tpp3(1,1:p,l:wlp(l,6)),pparr3(1,1:wlp~l,6~ ,l:p) ,& 

p,wlp(l,6) ,p,tpppp3(l,l:p,l:p)) 
call SSYEV('NJ , 'U' ,p,real(tpppp3(1,1:p, 1:p)) ,p,& 

eigenval32(1,1:p),work3,lwork,infor3) 
end if 
if (wlp(i,7) .NE.O)then 
call xtransp2(pparr4(1,1:wlp(1,7) ,l:p) ,wlp(1,7) ,& 

p,tpp4(1,1:p,l:wlp(l,7))) 
call multxy2(tpp4(1,1:p,l:wlp(1,7)),pparr4(1,1:wlp(1,7) ,1:p) ,& 

p,wlp(l,7) ,p,tpppp4(l,l:p,1:p)) 
call ~~~EV('N','U',p,real(tpppp4(l,l:p,l:p)),p,& 

eigenva142 (1,l: p) , work4, lwork , inf or4) 
end if 
DO 
diff=.FALSE. 
design2(: ,1: jstep)=new-diffdesignbew-ii ,  : ,I : jstep) 

IF(jstep .LE. 11)THEN 
call lpattern(design2(:, 1: jstep) ,MM, jstep,wlp(2, : ) ,pparr(2, : , I:P)& 

,pparr2(2, : ,1:p) ,pparr3(2, : ,l:p) ,pparr4(2, : ,l:p) ,wmatrix(2, : ,l:p)) 
END IF 
1~(wlp(2,3) .NE.O)THEN 

go to 998 
END IF 
j j ii=O 
~~(sm(abs(wlp(l,l:p)-wlp(2,l:p))) .GT. 1.91) THEN 
diff=.TRUE. 
ELSE 
if(wlp(2,4).1~.0 .and. (.not. diff))then 
call xtransp2(pparr (2,l: wlp(2,4), 1 :P) , wlp(2 ,4) ,& 

p,tpp(2,1:p,l:wlp(2,4))) 
call multxy2(tpp(2,1:p,l:wlp(2,4)),pparr(2,1:wlp(2,4) ,1:p) ,& 

p,wlp(2,4) ,p,tpppp(2,1:p,l:p)) 
call SSYEV('NY ,'UJ ,p,real(tp~pp(2,1:p,l:p)) ,p,& 

eigenva12(2, 1 :PI, work,lwork, inf or) 
IF(sm(abs (eigenval2(1,1 :p)-eigenval2(2, p ) .GT. 1) THEN 

diff=.TRUE. 
else 
do i=jjii+l,jjii+wlp(l,4) 
do k=l,p 

cpparr(l,i,k)=pparr(l,i-jjii,k) 
cpparr(2,i,k)=pparr(2,i-jjii,k) 

end do 
end do 
jjii=jjii+wlp~l,4~ 
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end if 
end if 
if(wlp(2,5).ne.O .and. (.not. diff))then 

call xtransp2(pparr2(2,1:wlp(2,5),1:p),wlp(2,5),p,% 
tpp2(2,1:p,l:wlp(2,5))) 

call multxy2(tpp2(2,1:p,l:wlp(2,5)),pparr2(2,l:wlp(2,5),1:p),% 
p,wlp(2,5) ,p,tpppp2(2,1:p,1:p)) 

call SSYEV('NJ, 'U',p,real(tpppp2(2,1:p,l:p)),pS% 
eigenva122 (2,l: p) , work2, lwork , inf or21 

1~(sum(abs(eigenval22(1,1:p)-eigenva122(2,1:p))) .GT. 0.5) THEN 
diff=.TRUE. 

else 
do i=jjii+l,jjii+ulp(l,5) 
do k=l,p 

cpparr(l,i,k)=pparr2(1,i-jjii,k) 
cpparr(2,i,k)=pparr2(2,i-jjii,k) 

end do 
end do 
j jii=jjii+wlp(1,5) 

end if 
end if 
if(wlp(1,4).ne.0 .and. wlp(l,5).ne.O .and. (.not.diff))then 
call xtransp2(cpparr(l,l:jjii,l:p),jjii,p,tcpp(l,l:p,l:jjii)) 
call multxy2(tcpp(l,l:p,l:jjii),cpparr(l,l:jjii,l:p),& 

p, jjii,p,tcpppp(l,l:p,l:p)) 
call sSYEV('NJ, 'U',p,real(tcpppp(l,I:p,I:p)),p,& eigenvalc(l,l:p),work4,1work,infor4) 
call xtransp2(cpparr(2,1:jjii,l:p),jjii,p,tcpp(2,1:p,l:jjii)) 
call multxy2(t~pp(2,1:p,l:jjii),cpparr(2,1:jjii,l:~) ,p,& 

jjii,p,t~pppp(2,1:p,l:p)) 
call SSYEV('NJ, 'UJ ,p,real(tcpppp(2,1:p,l:p)) ,p,% 

eigenvalc(2,1:p),work4,1work,infor4) 
~~(~um(abs(eigenvalc(l,l:p)-eigenvalc(2,:p .GT. 0.5) THEN 

diff=.TRUE. 
end if 
end if 
if(wlp(2,6).ne.O .and. (.not.diff))then 
call xtransp2 (pparr3(2,1: wlp(2,6) ,1 ,wlp(2,6) ,% 

p,tpp3(2,1:p,l:wlp(2,6))) 
call multxy2(tpp3(2,1:p,l:~lp(2,6)) ,pparr3(2,1:wlp(2,6) ,I:P) ,% 

p,wlp(2,6) ,p,tpppp3(2,1:~,1:~)) 
call SSYEV('NJ, 'U',p,real(tpppp3(2,1:~,l:p)) ,p,% 

eigenval32 (2,1 :PI, work, lwork, inf or) 
IF (sum (abs (eigenval32 (1,1: p) -eigenva132 ( 2 ,  : p ) ) . GT . 0.5) THEN 

diff=.TRUE. 
else 
do i=jjii+l, jjii+wlp(l,6) 
do k=l,p 

cpparr(l,i,k)=pparr3(1,i-jjii,k) 
cpparr(2,i,k)=pparr3(2,i-jjii,k) 
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end do 
end do 
jjii=jjii+~lp(l,6) 
call xtransp2(~pparr(l,l:jjii,l:~),jjii,~,tc~~(l,l:~,l:jjii)) 
call multxy2(tcpp(l,l:p,l:jjii) ,cpparr(l,l:jjii,l:p) ,& 

p,jjii,p,tcpppp(l,l:p,l:p)) 
call SSYEV('N', 'U' ,p,real(tcpppp(l, l:p,l:p)) ,& 

p,eigenvalc(l,l:p),work4,1work,infor4) 
call xtransp2(cpparr(2,1: jjii,l:p),jjii,p,tcpp(2,1:p,l:jjii)) 
call multxy2(tcpp(2,1:p,l: jjii),~~~arr(2,l:jjii,l:~),& 

p,jjii,p,tcpppp(2,1:pSl:p)) 
call SsYEV('NJ ,'U',p,real(tcpppp(2,1:p,l:p)) ,p,& 

eigenvalc(2,1:p),~~rk4,1work,infor4) 
IF(sm(abs (eigenvalc (1 , 1 :p) -eigenvalc ( 2 ,  : p ) . GT. 0.5) THEN 

diff=.TRUE. 
end if 
end if 

end if 
if(wlp(2,7).ne.O .and. (.not. diff))then 
call xtransp2(pparr4(2,1:wlp(2,7) ,l :p) ,wlp(2,7) ,& 

p,tpp4(2,1:p,l:wlp(2,7))) 
call multxy2(tpp4(2,i:p,l:~lp(2,7)) ,pparr4(2,1:wlp(2,7),1:p),& 

p,wlp(2,7) ,p,tpppp4(2,1:p*l:p)) 
call SSYEV('N','U' ,p,real(tpppp4(2,1:~,1:p)) ,p,& 

eigenval42 (2,l: p) ,work, lwork , inf or) 
1~(sm(abs(eigenval42(1,1:p)-eigenva142(,:p .GT. 0.5) THEN 

diff=.TRUE. 
else 

do i=jjii+l, jjii+wlp(l,7) . 
do k=l,p 
cpparr(l,i,k)=pparr4(1,i-jjii,k) 
cpparr(2,i,k)=pparr4(2,i-jjii,k) 
end do 
end do 
jjii=jjii+~lp(1,7) 

call xtransp2(cpparr(l,l: j jii,l:p) ,jjii,p,t~pp(l,l:~,l:jjii)) 
call multxy2(tcpp(l,l:p,l:jjii) ,cpparr(l,l:jjii,l:~) ,& 

p,jjii,p,tcpppp(l,l:p,l:p)) 
call SSYEV( 'N', 'U',p,real(tcpppp(l,l:p,l:p)) ,& 

p, eigenvalc (1,l: p) , work4, lwork, inf or41 
call xtransp2(cpparr(2,1:jjii,l:p),jjii,& 

p,tcpp(2,1:p,1:jjii)) 
call multxy2(tcpp(2,l:p,1: jjii) ,cpparr(2,1: jjii,l:p) ,& 

p, jjii,p,tcpppp(2,1:p,l:p)) 
call SSYEV('N' ,'UJ ,p,real(tcpppp(2,1:p,l:p)) ,& 

p, eigenvalc (2,l :p) ,work4, lwork, inf 01-41 
1~(sum(abs(eigenvalc(l,l:p)-eigen~a~c(2,1:p .GT. 0.5) THEN 

diff=.TRUE. 
else 
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if (jstep . LE. MMIthen 
call ~check(wmatrix(l,1:(2**jste~-l),1:~),& 

wmatrix(2,l: (2**jstep-1) ,l:p) ,MM,p,2**jstep-1,diff) 
else 
call deseq2(designl( : , 1 : jstep) ,design2( : , 1 : jstep) ,MM,p,dif f) 

end if 
end if 
END IF 
END IF 
END IF 
IF(.NOT. diff) THEN 

go to 998 

ELSE 
new-ii=new-ii+l 

END IF 
IF(new-ii .EQ. (new-idiff+l)) THEN 

new-idiffznew-idiff+l 
new-diffdesignbew-idiff ,1:2,1: jstep)=designl (I: 2, I: jstep) 
diffmatrixbew-idiff,jstep)=jii 
go to 998 

END IF 
END DO 

998 END DO 
END DO 
idiff=new-idiff 
diffdesign=new-diffdesign 
DO i=l,idiff 
~~~~~(ifile,*)diffdesign(i,l,l:jstep) 
END DO 
call date-and-time(b(1) ,b(2) ,b(3) ,date-time) 
WRITE(if ile, *) "The current time : : " , b(1) ,b(2) 
jstep=jstep+l 
close(if ile) 
END DO 

999 END PROGRAM alldesign 
....................................................................... 
!this is the program to produce wlp 
!gen is the matrix with row for generators 
!wmat[i,] is ith generator 'S letters 

SUBROUTINE lpattern (design, MM, addnum, wlp, ppmat , ppmat2, & 
ppmat3, ppmat4 ,ppmatall) 

INTEGER: :i, j,bits,sm,b,bb,r,k,jj,l,addn~,jfi~e, jsix,jseven 
INTEGER::numbJnumb2,numb3,numb4 
CHARACTER(20)::lpfile,ppfile 
INTEGER,PARAMETER::ncols=20,nrows=260,ncol=260 
I N T E G E R , D I M E N s I o N ( ~ , ~ ~ ~ ~ ~ ~ ) : : ~ ~ ~ ~ ~ ~  
INTEGER,DIMENSION(~CO~S) : : wlp 
INTEGER,DIMENSION(nrows) : :digit 
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DO i=l,nrows 
digit (i)=0 

END DO 
DO i=l,nrows 
DO j =I, ncols 

gen(i, j>=O 
END DO 
END DO 
do i=l,addnum 
do j=l,ncols 

mat(i, j>=O 
end do 

end do 
DO i=l,ncol 
DO j =l , addnum+MM 
~pmat (i, j)=0 
ppmat2(i, j)=0 
ppmat3(i, j>=O 
ppmat4(i, j)=0 
ppmatall(i, j)-0 

END DO 
END DO 
Do i=i,addnum 

bits=FLOOR(LOG10(real(design(l,i))))+l+l 
DO b=bits,2,-1 
IF(b .EQ. bits)THEN 
mat(i, l)=FLOOR(real(design(l,i))/real(lO**(b-1-1))) 
ELSE 
sm=SUM((/(mat(i,bits-bb+l)*lO**(bb-1-11 ,bb=bits,b+l,-I)/)) 
m a t  (i, bits-b+l)=FLOOR(real (design (1, i) -sm)/real (lo+* (b-2))) 
END IF 

END DO 
m a t  (i, bits)=design(2, i) 

END DO 
gen(1, :)=wmat(l, : )  
gen(2, :)=mat(2, :) 
call gene(gen(l,:),gen(2,:),gen(3,:)) 
r=3 
IF( addnum .GE. 3)THEN 
DO i=3,addnum 
r=r+ 1 
gen(r,:)=mat(i,:) 

DO j j=r+l,r+2**(i-11-1 
if (jj .EQ. r+2**(i-l)-1)THEN 
call gene(gen(jj-r,:),gen(r,:),gen(jj,:)) 
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END DO 
END DO 

END IF 
DO i=1,r 
j=1 
DO WHILE(gen(i, j) .NE. 0) 
j=j+l 

END DO 
digit (i)=j-1 

END DO 
DO i=l,ncols 
wlp(i)=O 

END DO 
DO i=l,r 
wlp(digit(i))=wlp(digit (i))+l 
END DO 
numb=O 
DO i=l,r 

j=1 
IF(digit(i) .Eq.4)THEN 
numb=numb+l 

END IF 
DO WHILE(digit (i) .EQ.4 .AND. gen(i, j) .NE. 0) 
ppmat (numb, gen(i , j ) )=I 
j=j+l 

END DO 
END DO 
numb2=0 
DO i=l,r 

jf ive=l 
IF(digit (i) .EQ. 5)THEN 
numb2=numb2+1 

END IF 
DO WHILE(digit(il.EQ.5 .AND. gen(i,jfive).N~. 0) 
ppmat2(numb2,gen(i, jf ive))=l 
jf ive-jf ive+l 

END DO 
END DO 
numb3=0 
DO i=l,r 

jsix-1 
IF(digit(i) .EQ.G)THEN 
numb3=numb3+1 

END IF 
DO WHILE(digit(i).EQ.G .AND. gen(i,jsix).NE. 0) 
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ppmat3(numb3,gen(i,jsix))=l 
jsix=jsix+l 

END DO 
END DO 
numb4=0 
DO i=l,r 
j seven=i 
~~(digit(i) .EQ.7)THEN 
numb4=numb4+1 

END IF 
DO WHILE(digit (i) . EQ. 7 .AND. gen(i, jseven) . NE. 0) 
ppmat4 (numb4, gen (i , j seven) ) -1 
jseven=jseven+l 

END DO 
END DO 
Do i=l,r 
j=1 
Do WHILE(gen(i, j) .NE.O> 
ppmatall(i,gen(i, j))=l 
j=j+l 
END DO 

END DO 
END SUBROUTINE lpattern 

....................................................................... 
!program to generate a new generator which is product of two generators 

SUBROUTINE gene(rl,r2,rlr2) 
INTEGER::i,j 
INTEGER,PARAMETER::ncols=20 
~~~~~ER,DIMENSION(ncols)::rl,r2,rlr2,csu 
INTEGER,DIMENSION(~,~CO~S)::~~~~ 

DO i=1,2 
DO j=1 ,ncols 
imat(i, j>=0 
END DO 

END DO 
i-1 
DO WHILE(rl(i1 .NE. 0) 
imat(l,rl(i))=l 
i=i+l 

END DO 
i=1 
DO WHILE(r2(i) .NE. 0) 
imat(2,r2(i))=l 
i=i+l 

END DO 
DO i=l,ncols 

csum(i)=imat (I ,i)+imat (2,i) 
END DO 
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j=l 
DO i=l,ncols 
~F(csum(i) .EQ. 1)THEN 
rlr2cj)-i 
j=j+l 

END IF 
END DO 

END SUBROUTINE gene 
....................................................................... 
! * subroutine to calculate transpose of a matrix 

subroutine xtransp2(x,n,p,xt) 
integer::i,j,n,p 
integer x (n,p) , xt (p, n) 

do i=l,n 
do j=l,p 

xt(j ,i>=x(i, j) 
end do 

end do 
return 
end 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

! *  subroutine to multiply two matrices 
subroutine multxy2(x,y,nx,px,py,xy) 
integer::nx,px,py,i,j,prod 
integer,dimension(nx,px)::x 
integer,dimension(px,py)::y 
integer,dimension(nx,py)::xy 

do i=l,nx 
do j=l ,py 

prod=O . 
do k=l,px 

prod=prod+x(i,k)*y(k,j) 
end do 
xy(i, j)=prod 

end do 
end do 
return 

end 
....................................................................... 

subroutine deseq2(desl,des2,bm,p,diff) 
! * Copyright James C Clark. May 7th 1988. 
! * James.B.Clark(Paero.org (Jim Clark) 
! * dean. 900s~. edu (Angela Dean) 
! *  deseq1.f and deseq2.f are used to determine design equivalence. 
! * deseq1.f should be run first - it performs several tests for 
! * equivalence. deseq2.f can be run concurrently - it tries to find 
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the permutations showing the equivalence. Much time may be wasted 
if this second search is done without starting the tests of deseq1.f. 
deseq2. f 
Given matrices xi and x2 (stored in design1 and design2, 
with the first line containing the number of rows and the 
number of columns) a row permutation matrix r and a colum~~ 
permutation matrix c are found such that xl=rx2cl, where 
1 is a diagonal matrix of +/- 1's. 1 can be found by then 
equating the first row of xi and rx2c. 
The program has been adapted. 
First an r matrix is found by comparing xlxl' and ~2x2': 
integer,parameter::nrow=128 
integer n,i,j,~0~,col,curcol(nrow),ma~stage,bits,b,bb,sml,~m2,bm,p 
integer xlxlp(nrow,nrow) ,x2x2p(nrow,nrow) ,r (wow ,mow) 
integer ri (O:nrow, 0 : nrow ,O:nrow) ,x2t (nrow ,mow) 
integer xl (mow ,nrow) ,x2(nrow ,mow) ,xlt brow ,nrow) 
integer,dimension(2,p-bm)::desl,des2 
integer,dimension(bm)::bitsvec 
logical diff,done 
done=.FALSE. 
n=2**bm 
DO i=l,bm 

DO j=0, (2**(bm-i)-1)*2**(i-1) ,2** (i-1) 
xl((l+2*j) : (2**(i-1)+2*j) ,i)=l 
x1((1+2**(i-l)+2+j) : (2**i+2*j) ,i)=-1 

END DO 
END DO 
DO j=bm+l ,p 
bits is the digits of designl(1, j-bdPbasiceff 

bits=~~00~(~0~10(real(desl(~, j-bm) 1) )+I 
DO b=bits,i,-1 

IF(b .EQ. bits)THEN 
bitsvec (b)=~~OOR(real (desl(1, j-bm) ) /real (lo** (b-1) ) )  

ELSE 
sm~=~~~((/(bitsvec(bb)*lO**(bb-l),bb=bits,b+l,-~)/)) 
bitsvec(b)=FLOOR(real(desl(l, j-bm)-sml)/real(lo**(b-1)) ) 

END IF 
END DO 

xl(~:2**bm,j)=product(~l(l:2**bm,bitS~ec(1:bits)),~1~=2) 
END DO 

! bits+l is the digits of design2(j-bm) 
bits=~~00~(~OGlO(real(des2(1, j-bm))) )+l 
DO b=bits,l,-1 
IF(b .EQ. bits)THEN 
bitsvec (b)=FLOOR(real (des2(l, j-bm)) /real (lo** (b-1))) 

ELSE 
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sm2=SUM( (/(bitsvec(bb)*lo**(bb-1) ,bb=bits,b+l ,-I)/)) 
bitsvec (b)=FLOOR(real (des2 (1, j-bm) -sm2) /real (lo** (b-1) 1) 

END IF 
END DO 
x2(1 :2**bm, j)=product(x2(1:2**bm,bitsvec(i:bits~~ ,DIM=2) 
END DO 

Calculate ~1x1' and ~2x2' 

call xtransp(x1 ,n,p,xlt ,mow) 
call multxy (xi ,xlt ,n,p,n,xlxlp ,nrow) 
call xtransp (~2, n, p, x2t, nrow) 
call multxy ( ~ 2 ,  x2t ,n ,p ,n, x2x2p, nrow) 

Clear the vector of the current row permutation 
do i=i,n 

curcol (i) =0 
end do 

Initialize the potential r matrices. 
call rcand(xl,x2,n,p,r,nrow) 
do i=l,n 

do j=l,n 
ri(O,i, j)=r(i, j) 

end do 
end do 

Find an r matrix 
row=l 
do while (row.ge.1) 

col = curcol(row)+1 
do while ((abs(r(row,col)).lt.O.l).and.(col.le.n)) 

col = col+l 
end do 
if (col.eq.n+l) then 

do i=row-l,n 
do j=l,n 

r(i, j>=ri(row-2,i, j) 
end do 

end do 
row=row- 1 

else 
curcol (row)=col 
do i=row+l,n 

curcol (i)-0 
end do 
do j=l,n 

if(j.ne.row) r(j,col)=O. 
if(j.ne.co1) r(row,j)=O. 
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end do 
do j=row+l ,n 

do i=l,n 
if (abs(xlxlp(row,j)-x2x2p(col,i)) .gt.O.l) r(j,i)=O. 

end do 
end do 
do i=l,n 

do j=l,n 
ri(row,i, j)=r(i, j) 

end do 
end do 
if(r0w.eq.n) then 

row = row-1 
call fi~dc(xl,x2,curcol,r,n,p,maxstage,~0~,done) 
if (done) then 
go to 99 
end if 

else 
row=row+l 

end if 
end if 

end do 
diff=.TRUE. 

gg end subroutine deseq2 

....................................................................... 
!xi and x2 are word matrices of design1 and design2,respectively 
!the same principle as deseq2 

subroutine wcheck(wl,w2,bm,p,wl,diff) 
logical diff,done 
integer, parameter::nrow=64 
integer p,wl 
integer i , j ,row, col , curcol (nrow) 
integer n ,maXStage 
integer wl (wl ,p) ,w2(wl ,p) 
integer xlxlp(nrow , nrow) , ~ 2 x 2 ~  b o w ,  nrow) , r (nrow ,nrow) 
integer ri (0 :mow, 0 :mow, 0 : nrow) , x2t (nrow , nrow) 
integer xl (nrow ,nrow) ,x2 (nrow,nroW), xlt (nrow ,nrow) 
n=wl 
Calculate xlxl' and ~2x2' 
done-. false . 
xl (l:n,l:p)=wl 
x2(1:n,l:p)=w2 
call xtransp(x1 ,n ,p,xlt ,nrow) 
call multxy (xl,xlt,n,p,n,xlxlp,nrow) 
call xtransp(x2 ,n, p, x2t ,nrow) 
call multxy (x2, x2t ,n, P , n, x2x2p, nrow) 

Clear the vector of the current row permutation 
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do i=i,n 
curcol (i)=0 

end do 

Initialize the potential r matrices. 
call rcand(xl,x2,n,p,r,nrow) 
do i=l,n 

do j=l ,n 
ri(O,i, j)=r(i, j) 

end do 
end do 

Find an r matrix 
row=l 
do while (r0W.ge.l) 

col = curcol(row)+l 
do while ((abs(r(row,col)) .It .o. 1) .and. (col.1e.n)) 

col = col+i 
end do 
if (col.eq.n+l) then 

do i=row-l,n 
do j=l,n 

r(i, j)=ri(row-2,i, j) 
end do 

end do 
row=row-1 

else 
curcol (row) =col 
do i=row+l,n 

curcol(i)=O 
end do 
do j=l,n 

if (j.ne.row) r(j,col)=o. 
if(j.ne.co1) r(row,j)=o. 

end do 
do j=row+l ,n 

do i=l ,n 
if(abs(xlxlp(row,j)-x2x2p(col,i)).gt.0.l) r(j,i)=O. 

end do 
end do 
do i=1 ,n 

do j=l,n 
ri(row,i, j)=r(i, j) 

end do 
end do 
if (row. eq. n) then 

row = row-1 
call f indc (xl ,x2, curcol ,r,n,p,maxstage ,nrow,done) 
if (done) then 
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go to 9999 
end if 

else 
row=row+l 

end if 
end if 

end do 
diff=.TRUE. 

9999 end subroutine wcheck 

! *  Subroutine to find a c matrix for a given r matrix 
subroutine f indc (xl,x2, curcol,r,n,p,maxstage,nrow,done) 
integer nrow,done 
integer xl (mow ,nrow) , x2 brow ,mow) ,r(nrow ,mow) 
integer stage ,p,n,deLcols (mow), j ,mastage, curcol (nrow) 
logical valid,test-fails 

do j=l,p 
del-cols (j) =0 

end do 

! *  Search through the tree to find a c: 
maxstagezl 
stages1 
do while(stage.1t.p) 

del-cols (stage)=p+l 
test-fails=.true. 
do while(test-f ails) 

del-cols(stage)=del-cols(stage)-1 
do while(del,cols(stage).eq.O) 

stagelstage-1 
if (stage. eq. 0) then 

return 
end if 
del-cols (stage)=del-cols(stage) -1 

end do 
valid = .false. 
do while( (.not .valid). and. (del-cols(stage) .gt .o)) 

valid=.true. 
do j=stage-1 ,I, -1 

if(de1-cols(stage).eq.del-cols(j)) valid=.false. 
end do 
if (.not. valid) then 

del-cols(stage)=del-cols(stage)-1 
end if 

end do 
if (del-cols(stage).eq.O) then 



APPENDIX C. FOlWRAN PROGRAM ISOCHECK.FS0 

del-cols (stage)=l 
else 

call test(xl ,x2 ,n,p,del-cols,r, stage, test-f ails ,nrow) 
end if 

end do 
stage=stage+l 
if (stage. gt . mast age) mastage=stage 

end do 
call equal (r , del-cols ,n, p ,mastage, nrow, done) 
end 

.............................................................. 
! *  If the last stage is successful, designs are equivalent 

subroutine equal (r ,del-cols ,n,p ,maxstage ,nrow,done) 
integer nrow 
integer r brow , nrow) 
integer del-~01s (nrow) ,mastage 
integer i ,n, p, rperm (nrow) , cperm(nrow) 
logical done 

! * Determine the' row permutation 
do i=l,n 

j=1 
do while (nint(real(r(i,j))).eq.O) 

j=j+l 
end do 
rperm(i>=j 

end do 

! *  Determine the column permutation 
cperm (1) =0 
do i=p,2,-1 

cperm(i)=del-cols(p-i+1) 
cperm(i)=cperm(l)+cperm(i) 

end do 
cperm(l)=P* (p+l)/2-cperm(1) 
done=.TRUE. 

I write(*,*) 'Passes stage ',maxstage 
! write(*,*) 'Equal' 
I write(*,*) 'Column perm~tation',(cperm(i),i=l,~) 
! write(*,*) 'Row PermutationJ,(rperm(i),i=l,n) 

end 
............................................................. 
! * At each stage, tests if xlslxl'= rx2sx2'rJ, where sl and s 
! * are diagonal matrices of 0's and 1's that select the 
! * appropriate columns for each stage. 

subroutine test(xl,x2,n,p,de~~cols,r,stage,test~fails,nrow~ 
integer nrOW 
integer xl (nrow ,mow) , x2(nrow ,mow) , r (nrow ,mow) , s brow ,nrow) 
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integer xlt h o w  ,mow) , x2t brow ,mow) , mxl (nrow ,nrow) 
integer m2(nrowJnrow) ,mx2(nrow,nrow) ,m3(nrow,nrow) ,rt (nrow,nrow) 
integer dif 
integer n,p, del-CO~S (nrow) ,stage 
logical test-fails 

Calculate s according to which columns were deleted 
do i=l,p 

do j=l,P 
s(i, j>=O. 

end do 
s(i,i)=l. 

end do 

Calculate mx2 = rx2sx2'r2 
call multxy(r,x2,n,n,p,rn2,nrow) 
call multxy(m2,s,n,p,p,m3,nrow) 
call xtransp ( ~ 2 ,  n , p ,  x2t, mow) 
call multxy (m3, x2t ,n ,p ,n,m2 ,nrow) 
call xtransp(r ,n,n ,rt ,nrow) 
call multxy(m2,rt,n,n,n.,mx2,nrow) 

Test if mxl = mx2. Looks for large Sum of Squares of differences. 
dif =0. 
do i=l,n 

do j=l,n 
dif=dif+(mxl(i, j)-mx2(i, j))**2 

end do 
end do 
if (dif.lt.1.) test-fail~=.false. 
return 
end 

.............................................................. 
! * Find candidate r matrices 

subroutine rcand(x1 ,x2 ,n,p ,r ,nrow) 
integer nrow 
integer xl (nrow,nrow) , x2 (nrow,nrow) ,r (nrow ,nrow) 
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integer xlt (nrow,nrow), x2t (mow ,mow) 
integer xlxlt (nrow,nrow), x2x2t (nrow,nrow) 
integer countsxl (nrow ,nrow) , countsx2 (nrow ,mow) 
integer k,jj,i,j,n,p,match(nrow,nrow) 

call xtransp(x1 ,n,p,xlt ,mow) 
call multxy (xl ,xlt ,n,p,n,xlxlt ,mow) 
call xtransp(x2 ,n ,p, x2t ,mow) 
call multxy (x2,x2t ,n,p,n,x2x2t ,mow) 
call rowcounts(xlxlt ,n,p, countsxl ,mow) 
call rowcounts (x2x2t ,n,p, countsx2 ,nrow) 

do i=l,n 
do j=l,n 

match(i, j) =0 
r(i, j)=O 

end do 
end do 

do i=l,n 
j j=l 
do j=l,n 

k= 1 
do while (countsxl(i,k) .eq.countsx2(j ,k) .and. (k.le.p+l)) 

k=k+ 1 
end do 
if (k. ge. p+l) then 

match(i, jjl-j 
j j-j j+l 

end if 
end do 

end do 

do i=l,n 
do j=l,n 

if (match(i,j) .ne.O) r(i,match(i,j))=l 
end do 

end do 
return 
end 

................................................................... 
! *  Subroutine to calculate the frequency of the integers in each 
! * row of X X ' ;  e.g., if first row is [3 1 -1 -31, the row count 
! *  for that row is [l 1 1 11. 

subroutine rowcounts (xxt, n, p, counts,nrow) 
integer nrow 
integer i, j, jj, n, p, counts(nrow,nrow) 
integer xxt(nrow,nrow) 
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do i=l,n 
do j=l ,p+l 

counts(i, j) = 0 
end do 
do j=l,n 

jj=(xxt(i, j)+p)/2+1 
counts(i,jj) = counts(i,jj)+l 

end do 
end do 
return 
end 

................................................................ 
! *  subroutine to calculate transpose of a matrix 

subroutine xtransp(x.n,p,xt ,nrow) 
integer nrow 
integer x(nrow , nrow) , xt (nrow, nrow) 
integer i,j,n,p 

do i=l,n 
do j=l,p 

xt(j ,i)=x(i,~) 
end do 

end do 
return 
end 

................................................................ 
!* subroutine to multiply two matrices 

subroutine multxy (x, Y ,nx,~x ,PY XY, nrow) 
integer nrow 
integer x (nrow, nrow) , y (nrow,nrow) , xy brow ,mow) 
integer nx,px,py,i,j 
integer prod 

do i=l,nx 
do j=l ,py 

prodlo. 
do k=l,px 

prod=prod+x(i ,k)*y(k, j) 
end do 
xy(i, j)=prod 

end do 
end do 
return 
end 
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