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Abstract 

In this thesis, we study the cyclotomic polynomials of degree N - 1 with coefficients restricted to the 

set ($1, -1). By a cyclotomic polynomial we mean any monic polynomial with integer coefficients 

and all roots of modulus 1. 

By a careful analysis of the effect of Graeffe's root squaring algorithm on cyclotomic polynomials, 

P. Borwein and K.K. Choi give a complete characterization of all cyclotomic polynomials with odd 

coefficients. They also prove that a polynomial p(x) with coefficients f 1 of even degree N - 1 is 

cyclotomic if and only if 

where N = plp2.. .pr and the pi are primes, not necessarily distinct. Here a,(%) := is 

the pth cyclotomic polynomial. Based on substantial computation, they also conjecture that this 

characterization also holds for polynomials of odd degree with f 1 coefficients. 

We consider the conjecture for odd degree here. Using Ramanujan's sums, we solve the problem 

for some special cases. We prove that the conjecture is true for polynomials of degree 2tpT - 1 with 

odd prime p or separable polynomials of any odd degree. We also give a simpler proof of Borwein 

and Choi's result. 
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Chapter 1 

Introduction and Preliminaries 

1.1 Introduction 

We are interested in studying polynomials with coefficients restricted to the set {+I, -1). This 

particular set of polynomials has drawn much attention and there are a number of difficult old ques- 

tions concerning it. Littlewood raised a number of these questions and so we call these polynomials 

Littlewood polynomials. A Littlewood polynomial of degree n has L2 norm on the unit circle 

equal to m. Many of the questions raised concern comparing the behavior of these polynomials 

in other norms to the L2 norm. One of the older and more intriguing of these asks whether such 

polynomials can be "flat". Specifically, do there exist two positive constants Cl and C2 SO that for 

each n there is Littlewood polynomial of degree n with 

for each z of modulus 1. 

The size of the L, norm of Littlewood polynomials has been studied from a number of points of 

view. The problem of minimizing the L4 norm has also attracted a lot of attention. 

Mahler raised the question of maximizing the Mahler measure of Littlewood polynomials. The 

Mahler measure is just the Lo norm on the circle and one would expect this to be closely related to 

the minimizing problem for the L.4 norm above. 

In [2] P. Borwein and K.K. Choi address the question of characterizing the cyclotomic Littlewood 

polynomials of even degree. By a cyclotomic polynomial we mean any monic polynomial with integer 

coefficients and all roots of modulus 1. They show in [2] that a polynomial P(x) with coefficients 

f 1 of even degree N - 1 is cyclotomic if and only if 
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where N = plp2.. .pr and the pi are primes, not necessarily distinct. Here a,(%) := is the 

pth cyclotomic polynomial. They also give an explicit formula for the number of such polynomials. 

Their analysis in [2] is based on a careful treatment of Graeffe's root squaring algorithm. It transpires 

that all cyclotomic Littlewood polynomials of fixed degree have the same fixed point on iterating 

Graeffe's root squaring algorithm. This gives a characterization of all cyclotomic polynomials with 

odd coefficients. After substantial computations, P. Borwein and K.K. Choi conjecture that the above 

characterization of Littlewood cyclotomic polynomials of even degree also holds for odd degree. 

In this thesis, we will give a simpler proof for P. Borwein and K.K. Choi's result which is based 

on properties of Ramanujan's sum. We will also prove that their conjecture holds for some special 

cases. We prove that the conjecture is true for polynomials of degree 2tp' - 1 with odd prime p or 

separable polynomials of any odd degree. 

This thesis is organized as follows. In chapter 1, we recall some basic and elementary results in 

number theory which will be used in later chapters. In chapter 2, we present P. Borwein and K.K. 

Choi'a work on cyclotomic polynomials with odd coefficients and their result on characterization of 

cyclotomic polynomials of even degree with f 1 coefficients. In chapter 3, we first give a new and 

simpler proof for the result mentioned in chapter 2. Then we discuss the conjecture for odd degree 

case and prove our result on characterization of cyclotomic polynomials of some special odd degree 

with f 1 coefficients. 

1.2 Polynomia.1~ and Newton's Identity 

The main object to be studied in this thesis is the polynomials of one variable over the complex 

numbers. The most basic and important theorem concerning polynomials is the Fundamental The- 

orem of Algebra. This tells us that every polynomial can be factored completely over the complex 

numbers. 

Theorem 1.2.1 (Fundamental Theorem of Algebra). If 

then there exist a1 , aq, . . . , an E @ such that 

The complex numbers a l , .  . . , a n  are called the zeros (or roots) of P(x)  so that P ( a i )  = 0. The 

multiplicity of the zero at  ai is the number of times it repeats. So, for example, 
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is a polynomial of degree 5 with a zero of multiplicity 3 at 1 and with a zero of multiplicity 2 at -i. 

The polynomial 

is called monic if its leading coefficient, a,, equals 1. 

Let Sk be the sum of the kth power of all zeros of P(x). Newton's identity below gives the 

relation between the coefficients and Sk. 

Theorem 1.2.2 (Newton's Identity).  Let 

For non-negative integer k, let 
k k Sk := a1 +a; + . - .  +an. 

We have 

for k 5 n and 

k-l  

for k > n. Here an empty sum is understood to be 0. 

Proof. A standard proof of this classical result can be found in many textbooks, e.g. [6].  So we omit 

the proof here. 

1.3 Mobius and Euler Totient Functions 

Let n be a positive integer having prime divisors pl , . . . ,pk. The Mobius function, p(n), is defined 

by 

if p: I n for some i; 
p(n) := 

(- 1) otherwise. 

In other words, p(n) is non-zero only when n is square-free and if n = p l .  . . pk  for distinct primes 

p j  then p(n) = (- 1) k .  
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Proposition 1.3.1. The Mobius function satisfies the following identity 

1 i f n = l ;  

din 0 otherwise, 

where Cdln denotes the summation over all divisors, d ,  of n. 

Proof. The result is clear if n = 1. For n > 1, let n = prl . - .pi"e the unique factorization of n as 

a product of distinct prime powers. Let N = pl . . . pk. Then 

since the Mobius function vanishes on the non-square-free numbers. Any divisor of N corresponds 

to a subset of { p l ,  ... , p k ) .  Thus, for n > 1, 

An arithmetic function f is a complex-valued function defined on the natural numbers. 

One of the most important results about the Mobius function is the celebrated Mobius inversion 

formula. 

Theorem 1.3.2 (Mobius Inversion Formula). Let f ( n )  and g(n) be arithmetic functions. Then, 

we have 

if and only if 

if and only if 
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Proof. Suppose 

We have 

since the last inner summation is zero unless n/e = 1 by Proposition 1.3.1. 

The converse can be easily established as follows. Suppose 

I t  follows that 

by Proposition 1.3.1 again. This proves part (i). The proof of part (ii) follows immediately from the 

proof of part (i) if we replace the sum by products and the multiples by powers. 0 

An arithmetic function f (n) is said to be multiplicative if 

whenever (n, m) = 1, where (n, m) is the greatest common divisor of n and m. 

Lemma 1.3.3. I f f  (n) is multiplicative, then the function 

is a multzplicative function of n. 
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Proof. Let g(n) = Cdln f (d). Suppose (n, m) = 1. Then 

This proves the lemma. 

Lemma 1.3.4. The Mobius function p(n) is multiplicative. 

Proof. Suppose (n, m) = 1. If n or m is not square-free, so is nm. In that case 

Otherwise n and m are square-free, say 

where the pi and q j  are all distinct. Then 

so that p(n) = ( - ~ ) ~ , p ( m )  = (-I), and 

Hence p(n) is multiplicative. 0 

T h e  Euler totient function, #(n), is the number of the positive integers less than n and 

relatively prime to n, namely, 

m(n) := 1. 
l<j_<n 
(j;2)=1 

Proposition 1.3.5. We have 

Proof. Let N(d) denote the number of integers 1 5 m 5 n that are divisible by d. Suppose m is an 

integer between 1 and n. In the expression p(d)N(d), the integer m is counted in those N(d)  for 
d l n  
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which both d I rn and d I n. It  is counted with weight p(d). Note that N(d) = n/d when d 1 n. 
dln,m 

In view of Proposition 1.3.1, we see that 

1 if (n,m) = 1; C 44 = C ~ ( 4  = 
dlnm dl(n+) 0 otherwise. 

This proves 

Hence #(n) is multiplicative by Lemmas 1.3.3 and 1.3.4. Now the second equality of (1.3.2) follows 

from the multiplicative property of the function Cdln p(d)/d because 

1.4 Cyclotomic Polynomials 

A nth root of unity is a solution of zn = 1 in C. There are precisely n solutions for zn = 1, namely, 

eZxiln, e2xi2/n, - - . , eZainln. We often write Jn for eZnifn SO that J,, Jk, - - . , J: are the n roots of 

zn = 1. 

A nth root of unity is said to be primitive if it is of the form Jk with k and n relatively prime, 

i.e., (k, n) = 1. A primitive nth root of unity, <, has the property that it does not satisfy any equation 

of the form zm = 1 with m < n ,  and Jk ,  1 5 k 5 n are precisely all the nth root of unity. There 

are precisely $(n) primitive nth roots of unity. The nth roots of unity form a (multiplicative) cyclic 

group of order n and the primitive roots correspond to the generators of this group. 

Definition 1.4.1. The n t h  cyclotomic polynomial is the monic polynomial 
n 

whose roots are precisely the primitive nth roots of unity. 

Examples. (2) = x - 1 and @2 (x) = x - (-1) = x + 1. 

and G4(x) = (x - i)(x + i) =.x2 + 1. 

Definition 1.4.2. A cyclotomic polynomial is a monic polynomial whose roots lie on the unit 

circle. 
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We will see in Proposition 1.4.3 below that @,(x) is irreducible. Clearly, any cyclotomic polyno- 

mial is a product of irreducible cyclotomic polynomials. 

Proposition 1.4.3. Let n be a positive integer and @,(x) the nth cyclotomic polynomial. Then we 

have 

(2) zn - 1 = ndln @d(x); 

(ii) The coeficients of @,(x) are integers; 

(iii) @,(x) is of degree r#(n); 

(iv) @,(x) is irreducible i n  Z[x]. 

Proof. 

(i) Let E be a primitive nth root of unity. Consider the cyclic group G of all nth roots of unity 

and observe that G contains all dth roots of unity for every divisor d of n. Clearly q E G is a 

primitive dth root of unity (where d I n) if and only if ord(q) = d. Here ord(q) is the order of 

q in G, i.e, the smallest positive integer m, such that qm = 1. Therefore for each divisor d of 

(ii) We prove this part by induction on n. Clearly @l(x) = x - 1 E %[XI. Assume that (ii) is 

true for all k < n and let f (x) = 11 ad(x). Then f E Z[x] by the induction hypothesis and 
din 
d<n 

xn - 1 = f (x) Gn (x) by (i). On the other hand xn - 1 E Z[x] and f (x) is rnonic. Consequently 

the division algorithm in Z[x] implies that xn - 1 = f (x) h(x) + r (x) for some h(x) , T (x) E %[XI. 
Therefore by the uniqueness of quotient and reminder of the division algorithm in %[XI we must 

have T(X) 0 and @,(x) h(x) E Z[x]. This completes the induction. 

(iii) The degree of @,(x) is clearly the number of primitive nth roots of unity. Let J be such a 

primitive nth root of unity so that every root of unity is a power of J. Then 9 (1 5 i 5 n) is 

a primitive root of unity if and only if (i, n) = 1 and the number of such i is precisely $(n). 

(iv) Let h(x) be an irreducible factor of @,(x) in Z[x] with deg(h) 2 1 where deg(h) is the degree of 

h(x). Then @,(x) = f (x) h(x) with monic polynomials f (x), h(x) E Z[x]. Let 5' be any root of 

h(x) and p any prime number such that (p, n) = 1. We shall first show that Jp is a root of h(x). 

Since J is a root of @,(x), J is a primitive nth root of unity. From the proof of (iii), JP is also a 
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primitive nth root of unity and therefore a root of either f (x) or h(x). Suppose Jp is not a root 
r r 

of h(x). Then P is a root of f (x) = bizi and hence J is a root of f(zP) = bixip. Since 
i=O i = O  

h(x) is irreducible in Z[x] and has J as a root, h(x) must divide f (xp), say f (xp) = h(x)k(x) 

with k(x) E Z[x]. Recall that the canonical projection Z + Zp (denoted on elements by 
t t 

b I+ 6)  induces a ring epimorphism Z[x] i Zp[x] defined by g = x e i x %  ij = =&xi. 
- 

i=O i=O 
Consequently, in Zp[x], f (xp) = h(x)i(x). But in Zp[x], ~ ( x P )  = f(x)p. Therefore, 

Consequently, some irreducible factor of h(x) of positive degree must divide f(x)p and hence 

f(x) in Zp[x]. On the other hand, since @,(x) is a factor of xn - 1, we have xn - 1 = 

@,(x)T(x) = f (x)h(x)~(x) for some T(X) E %[XI. Thus in Zp[x] 

Since f(x) and h(x) have a common factor, xn - I must have a multiple root. This contradicts 

the fact that the roots of xn - are all distinct since (p, n) = 1. Therefore <p is a root of h(x). 

If T E Z is such that 1 5 T 5 n and (r,n) = 1, then r = p:l .-.& where ki > 0 and each pi 

is a prime such that (pi, n) = 1. Repeating the same argument for JPi whenever J is a root 

of h(x), it follows that 5' is a root of h(x). However, the (1 < T < n and (r,n) = 1) are 

precisely all of the primitive roots of unity from the proof of (iii). Thus h(x) is divisible by 

11 (x - r )  = @,(x) whence @, (x) = h(x). Therefore @,(x) is irreducible. 
l<r<n 
(r,n)=l 

We should note that @,(x), n E N, are all of the irreducible cyclotomic polynomials. 

The nth cyclotomic polynomial, @,(x), can be written as 

We have seen that an(k) 6 Z in Proposition 1.4.3 (iii). Note that 

By applying the Mobius inversion formula, one infers that 

In view of (1.4.2), we now have 
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Corollary 1.4.4. Let n > 1 be an  integer and @,(x) the n t h  cyclotomic polynomial. Then 

Theorem 1.4.5. The cyclotomic polynomials @,(x) have the following properties. 

( i )  If p is prime and k > 1, then @,k (x) = @,(xpk-' ). 

(ii) If n = pi' . . . p p  with distinct primes pi and ri > 0 then 

(iii) If n is odd, then @2n = an(-2). 

(iv) If p is prime and p + n,  then @,, (x) = @, (xp)/@,(x) 

Proof. 

(i) This is a special case of (ii). 

(ii) We have 

m, (x) = n ( x d  - I ) + / ~ )  

din 

If p(n/d) # 0 then by the definition of Mijbius function there is no square factor in n / d .  So 

. . .pp-l divides d. Let d = d'pi'-l . . .p;"-l. We have 

(iii) Let n be an odd integer. By (1.4.2) 

Since n is odd, p ( F )  = 0 if and only if p(g) = 0. If p(%)  = (-l)k then p ( F )  = (-l)k+l. 

So we have 
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Now suppose that n has k # 0 distinct prime factors. Then the number of d for which 

p (n /d )  # 0 is 2k ,  which is an even integer. We can rewrite (1.4.3) as 

(iv) By (1.4.2) 

Since p (  n, p ( 7 )  = ( - l ) p ( $ ) .  So we can rewrite (1.4.4) as 

Theorem 1.4.5 implies that 

if A 1 k ;  
an(k)  = r (n) 

otherwise; 

where an(k)  is defined in (1.4.1) and y (n )  = n p l n p  is the square free kernel of n .  Also 

a2n ( k )  = (- l ) k a n  ( k )  for n > 1 and 2 'j n 

The size of the coefficients of the nth cyclotomic polynomial has been widely studied. It has 

been observed that the coefficients are quite often in the set ( 0 ,  f 1) .  Indeed, only for n 2 105 some 

coefficients outside this range appear. Amazement over the smallness of an (m)  was expressed by D. 

Lehmer [ll].  Mogotti showed in 1883 that ap,(i) E (0, f 1 ) ,  with p and q odd primes. On the other 

hand, E. Lehmer showed that ap,,(i) can be arbitrarily large when p, q and r are odd primes. There 

are more related details in [12]. 
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Let B(k) = maxn21 (an(k)l. Bachman [I] showed that 

JiF log log k 
log B(k) = Co 

(log k)lI4 

for some constant CO . Here f (x) = O(g (x)) or f (x) < g (x) means If  (x) 1 5 Cg(x) for some constant 

C > 0. 

Now put A(n) = max, lan(m)l. Erdos has shown that there exist c > 0 and infinitely many n 

such that 
clog n 

log A(n) >> exp (-) log log n . 

On the other hand, it is known that 

(log 2 + o(1)) - 
log log n ' 

logn 

where the constant log 2 is the best possible and f (x) = o(1) means lim,++, f (x) = 0. 

Jiro Suzuki [9] proved the following result. 

Theorem 1.4.6. We have {an(k) : n, k E N) = Z. 

1.5 Ramanujan's Sums 

The Ramanujan's sum cn(m) is defined as 

where e(t) = e2rit and m, n are positive integers. Note that cn(m) is the sum of mth powers of the 

roots of 9,(x). 

Proposition 1.5.1. Let p(n) be the Mobius function. We have 

(iii) cn(m) = ,u(n/d)q5(n)/q5(n/G), where 6 = (n, m). 

Proof. 
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(i) Let 

Since this is a sum of a geometric progression, we find that 

n i f n l m ;  
g(n) = 

0 otherwise. 

However, we can write 

= C C e ( % ) ,  
dln I l h ~ < n ~  

where h = dhl and n = dnl with (hl, nl)  = 1 in the last summation. Thus, 

By the Mobius inversion formula, we get 

Therefore, using (1 .ELI), we have 

as required. 

(ii) Result follows by putting m = 1 in part (i). 

(iii) By part (i), we have 

where b = (n, m) and n = 6nl. Now, 

A w e )  = 
otherwise. 



14 
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and hence the result follows. 

Although cq(m) is not a multiplicative function of m,it is a multiplicative function of q and this 

gives a complete evaluation of cq (m) below. 

Lemma 1.5.2. We have 

and 

Proof. Since (q1,q2) = 1. so for every integer h we write h = q2hl + qlh2, and if (h, q1q2) = 1, we 

must have (hl, ql) = 1 and (h2,q2) = 1. We write 

and this proves (1.5.2). 
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Because of the multiplicative property, we only need to prove (1.5.3) for the case q = pl. Note 

that i f q = p l ,  12 1, wehave 

Here p1 11 m means pl(m but pl+l 1. m. So in any case we always have 

Then (1.5.3) follows from (1.5.2). 

Lemma 1.5.3. For n > 1 and m $ 0  (mod n), we have 

Proof. We first note that the above summation is the sum of the mth power of all the roots of 

the polynomial ndln ad(%) which equals xn - 1 by Lemma 1.4.3 (i). Since all the coefficients of 

the polynomial xn - 1 are 0 except the first and the last coefficients, so by Newton's identity, the 

summation in (1.5.4) is zero. 0 
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Chapter 2 

Cyclotomic Polynomials With Odd 

Coefficients 

2.1 Factorization over Zp [x] and Graeffe's Algorithm 

In this section, we summarize the results about the factorization of cyclotomic polynomials with odd 

coefficients as a product of irreducible cyclotomic polynomials in [2]. These results are essential to 

our results in the next chapter. For the sake of completeness, we record and reorganize most of the 

proofs here. 

Let p be a prime. 

Lemma 2.1.1. Suppose n and m are distinct positive integers relatively prime to p. Then @,(x) 

and @, (x) are relatively prime in Zp[x] . 

Proof. Suppose e and f are the smallest positive integers such that 

pe = 1 (mod n) and pf 1 (mod m). 

Let Fpk be the field of order pk.  Then Fp. contains exactly +(n) elements of order n and over Zp, 

@,(x) is a product of + ( n ) / e  irreducible factors of degree e and each irreducible factor is a minimal 

polynomial for an element in Fpe of order n over Z,. So @,(x) and @,(x) cannot have a common 

factor in Zp[x] since their irreducible factors are minimal polynomials of different orders. 0 

Definition 2.1.2. For each prime p let Tp be the operator defined over all monic polynomials in  
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for every P(x) = n,N=, (X - ( ~ i )  i n  Z[X]. 

By Newton's identity T,[P(x)] is also a monic polynomial in Z[x]. The operator T,[.] can be 

extended to be defined over the quotient of two monic polynomials in Z[x] by T,[(P/Q)(x)] := 

T,[P(x)]/T,[Q(x)]. This operator takes a polynomial to the polynomial whose roots are the pth 
power roots of P(x). This is referred as Graeffe's root squaring algorithm if p = 2. 

Lemma 2.1.3. Let n be a positive integer relatively prime to p and i 2 2. Then we have 

Proof. If (n,p) = 1 then T, just permutes the roots of @,(x) and this proves (i). To prove (ii) and 

(iii), we consider 

Thus (ii), (iii) follow from (i) and Lemma 1.4.5. 

Definition 2.1.4. For each prime p let M, be the natural projection from Z[x] onto Z,[x]. S o  

When P(x) is cyclotomic, the iterates T,"[P(x)] converge in a finite number of steps to a fixed 

point of T, and we define this to be the fixed point of P(x) with respect to T,. 

Lemma 2.1.5. If P(x) is a monic cyclotomic polynomial i n  Z[x], then 

Proof. Since both T, and M, are multiplicative, it suffices to consider the primitive cyclotomic 

polynomials @,(x). Let n be an integer relatively prime top.  Then (2.1.1) is true for P(x) = @,(x), 

by (i) of Lemma 2.1.3. For P(x) = @,,(x), we have 
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by (ii) of Lemma 2.1.3. However, 

in Zp[x]. This proves that (2.1.1) is also true for P(x)  = @,,(x). Finally, if P(x)  = @,;,(x) then 

by (iii) of Lemma 2.1.3. This completes the proof. 0 

Lemma 2.1.5 shows that if Tp[P(x)] = T,[Q(x)] then Mp[P(x)] = Mp[Q(x)]. In the next theorem 

we see that the converse is also true. 

Theorem 2.1.6. P(x) and Q(x) are monic cyclotomic polynomials in Z[x] and Mp[P(x)] = Mp[Q(x)] 

in Zp[x] if and only if both P(x)  and Q(x) have the same fixed point with respect to iteration of T,. 

Proof. Suppose 

p(x)  = JJ (x) m y  (x) . . . me(pzd) ptd (x) 

and 

where t, e(j),  e(j)' 2 0 and 3 is a set of positive integers relatively prime to p. Then using Lemma 

2.1.3, we have for 1 2 t 

T;[P(X)] = n @ d ( ~ ) ' ( ~ )  and T:[Q(X)] = @d(~) ' (~ ) '  (2.1.2) 
dED dED 

where 

and 

From Lemma 2.1.5, we have 

t 

f (d) = e(d) + (p - 1) xp'- 'e@i'd) 
j=1 

t 

f (d)' = e(d)' + ( p  - 1) zp ' - ' e@id) '  
j=1 

Mp[Gd (x)] and Mp[@i(x)] are relatively prime if d # dl. So we must However, with Lemma 2.1.1, 

have f (d) = f (d)' for all d E D and hence from (2.1.2), P(x) and Q(x) have the same fixed point 

with respect to T,. 0 

The following lemma tells us which @,(x) can possibly be factors of polynomials with odd 

coefficients. 
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Lemma 2.1.7. Suppose P(x)  is a polynomial with odd coefficients of degree N - 1. If am(%) divides 

P(x), then  m divides 2N. 

Proof. Since 9,(x) divides P(x), am(%) also divides P(x)  in Z2[x]. However, in Z~[X],  P(x)  equals 

to 1 + x + . - - + xN-l and can be factored as 

where N = 2tM, t 2 0 and M is odd. In view of Lemma 2.1.1, md,(x) and ad,(x) are relatively 

prime in Z2[xl if dl and d2 are distinct odd integers. So if m is odd, then am(%) is a factor of P(x) 

and hence m = d for some d I M. On the other hand, if m is even and m = 2lm' where 1 2 1 and 

m' is odd, then 

in Zz[x]. Thus, we must have m' = d for d 1 M and 1 5 t + 1. Hence in both case, we have m divides 

2N. 

2.2 Characterization of Cyclot omic Polynomials with Odd 

Coefficients 

In this section, we will characterize the cyclotomic polynomials with odd coefficients in Corollary 

2.2.2 below. In view of Lemma 2.1.7, every cyclotomic polynomial, P(x) ,  with odd coefficients of 

degree N - 1 can be written as 

P(x) = (x), 
d12N 

where e(d) > 0. 

Now we characterize the monic cyclotomic polynomials by their image in Z,[x] under the projec- 

tion M,. They all have the same fixed point under T,. In particular, when p = 2 we have: 

Corollary 2.2.1. All monic  cyclotomic polynomials with odd coeficients of degree N - 1 have the 

same fixed point under  iteration of T2. Specifically, if N = 2tM where t 2 0 and (2, M )  = 1 then  

the fixed point occurs at  the t + 1- th  step of the iteration and equals 

Proof. The first part follows directly from Theorem 2.1.6 and the fact that 

M2[P(x)] = 1 + x + - - - + zN-' 
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in & [ X I  if P ( x )  is a monic polynomial with odd coefficients of degree N - 1. If N = 2 t M ,  then from 

(2.2.1), 
e(2'+'d) P ( x )  = n.y)(x)m;fd)(x) . . . .2t+ld (x). 

dl M 

Over 2 2  [ X I ,  
I + x + . . .  + x ~ - ~  = m1(x)-l  JJ 

dlM 

SO 

t+l 2t for d I M , d > 1; 
f ( d )  = e (d )  + C 2 ' - l e ( 2 ' d )  = 

i= 1 2 t - 1  f o r d = l .  

Therefore, from (2.2.2) and Lemma 2.1.3, we have 

T:+' [ ~ ( x ) ]  = n ( x )  
dlM 

= m,(x)-l n .:'(x) 
dlM 

= ( x M  - 1 ) ~ ' ( x - 1 ) - ~ .  

Corollary 2.2.1, when N is odd (t = 0 ) ,  shows that T 2 [ P ( x ) ]  equals to 1 + x + - - .  + xN-l for all 

cyclotomic polynomials with odd coefficients and from (2.2.1) and (2.2.2) , we have the following 

characterization of cyclotomic polynomials with odd coefficients. 

Corollary 2.2.2. Let N = 2 t M  with t 2 0 and ( 2 ,  M )  = 1. A polynomial, P ( x ) ,  with odd coefi- 

cients of degree N - 1 is cyclotomic i f  and only zf 

and the e ( d )  satisfy the condition (2.2.2). Furthermore, if N is odd, then any polynomial, P ( x ) ,  with 

odd coefficients of even degree N - 1 is cyclotomic if and only if 

where the e (d )  are non-negative integers. 

In view of Corollary 2.2.2, we are able to compute the number of cyclotomic polynomials with 

odd coefficients. Let p ( n )  be the number of partitions of n into a sum of terms of the sequence 

{1,2 ,4 ,8 ,16, .  - .  }. Then p(n)  has generating function 

It follows from (2.2.2) and Corollary 2.2.2 that 
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Corollary 2.2.3. Let N = 2tM with t 2 0 and (2, M) = 1. The number of cyclotomic polynomials 

with odd coeficients of degree N - 1 is 

where d(M) denotes the number of divisors of M. Furthermore, 

Proof. Formula (2.2.5) follows from (2.2.2) and Corollary 2.2.2. To prove (2.2.6), we use de Brujin's 

asymptotic estimate for p ( n )  in [4], 

p(n) exp((log nI2/ k 4 ) .  

f (x) Here f (x) - g(x) means lim - = 1. Now (2.2.6) follows from this and (2.2.5). 0 
"-++a g(x) 

2.3 Characterization of Littlewood Cyclotomic Polynomials 

Among all cyclotomic polynomials, we are particularly interested in Littlewood polynomials, i.e., 

with f 1 coefficients. In this section, we consider the characterization of such polynomials. In [2], 

Borwein and Choi proved Theorem 2.3.1 below. Since we will give a simpler proof of this result in 

the next chapter, so we simply quote the result without proof here. 

Theorem 2.3.1. Suppose N is  odd. A Littlewood polynomial, P(x), of degree N - 1 is cyclotomic 

if and only if 

where N = plp2 . - . p, and the pi are primes, not necessarily distinct. 

Corollary 2.3.2. Suppose N is odd. Then P(x) is a Littlewood cyclotomic polynomial of degree 

N - 1 i f  and only if 

where E = 0 or 1, No = 1, Nt = N and Ni-l is a proper divisor of Ni for i = 1, 2,. . - , t .  

Proof. From Theorem 2.3.1 P(x) is a Littlewood cyclotomic polynomial if and only if 
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where N = p l - .  .p,, . Since Gp(x) = a, X-1 (2.3.2) becomes 

where No = 1 and Ni = pl - - .pn; for i = 1,. . - , t. This proves the corollary. 0 

P. Borwein and K.K. Choi conjecture that Theorem 2.3.1 also holds for polynomials of odd degree. 

They computed up to degree 210 (expect for the case n - 1 = 191). The computation was based on 

computing all cyclotomic polynomials with odd coefficients of a given degree and then checking which 

were actually Littlewood and setting that this set matched the set generated by the conjecture. For 

example, for N - 1 = 143 there are 6773464 cyclotomic polynomials with odd coefficients of which 

416 are Littlewood. 

Conjecture 2.3.3. A Littlewood polynomial, P ( x ) ,  of degree N - 1 is cyclotomic i f  and only if 

P ( x )  = f a p ,  (f x)GP, (Axp1)  . . . Gpp (&xP1P2"'Pp-1 ), (2.3.3) 

where N = pip2 . - . p, and all pi are primes, not necessarily distinct. 

Using Corollary 2.3.2, we can count the number of cyclotomic Littlewood polynomials of given 

even degree. For any positive integer N and t ,  define 

r(N,t):=#{(Nl,N2,.-.,Nt): N l ( N 2 ( - . . I N t ,  l < N l < N z < - . - < N t = N ) ;  

and for i > 1, 

where do ( N )  = 1. 

Lemma 2.3.4. For 1,  t 2 0 and p prime, we have 

Proof. We prove the lemma by induction on t. Equality (2.3.5) is clearly true for t = 0 because 

do(N)  = 1. We then suppose (2.3.5) is true for t - 1 where t > 1. Then 

So dt(pL) is the coefficient of xt-l in 

(z + 1y-l + ( x  + l ) t  + . - .  + ( x  + l)l+t-] 

;L 

Hence dt (p l )  is the coefficient of xt in ( x  + l)"t - ( x  + l)t-l.  Therefore, clt(p) = ("Zt).  
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Since dt ( N )  is a multiplicative function of N, we have 

Corollary 2.3.5. I f  N = p y  . . -p: where ri  > 1 and pi are distinct primes, then 

Lemma 2.3.6. For any positive integer N and t ,  we have 

Proof. The proof is by induction on t. It is clear from the definition that r (1 ,  t )  = 0 and r ( N ,  1 )  = 1 

for any t ,  N 1 1. We then suppose N > 1 and (2.3.6) is true for t - 1 where t > 2. Then 

t 

= ~ ( - 1 ) ~ - ~  (t) di-l ( N )  
i=l 

2 

from (2.3.4) and the fact that (:I:) + = (t). 0 

Corollary 2.3.7. The number of Littlewood cyclotomic polynomials of degree N - 1 where N = 
. . . prs , , ri  2 1 and the pi are distinct odd primes, is 

Proof. From Corollary 2.3.4, the number of Littlewood cyclotomic polynomials of degree N - 1 is 

The corollary now follows from Corollary 2.3.5 and Lemma 2.3.6. 



Chapter 3 

Litt lewood Cyclotomic Polynomials 

3.1 Littlewood Cyclotomic Polynomials 

In this chapter, we consider Littlewood cyclotomic polynomials of odd degree and prove that Con- 

jecture 2.3.3 is true for certain special cases. 

Let P ( x )  = a0 + alx  + . + a ~ - l x ~ - l ,  ai = f 1 and N = 2 tM with 2 1 M .  Without loss of 
generality, assume a0 = a1 = +1, by replacing by -P(x )  or P(-x)  if necessary. Now consider 

with bo = a0 = 1 and bN = -aN-1 = f 1 but bl, b2,. . . , blv-l E {-2 ,0 ,2) .  Also since a1 = 1,  so 

bl = 0. 

We now suppose 

bo = 1, bl = . a .  = bi-l = 0, bi = -2, 

for some i 2 2. By Corollary 2.2.2, 

where for any d J M  
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Let Sj be the sum of the j th  power of all the roots of Q ( x ) .  Since the sum of the jth power of 

all the roots of @,(x) is c,(j), so 

From Newton's identity, we have 

for j 5 N - 1. For j = 1, we have Sl + bl = 0. However, bl = 0 and hence Sl = 0. For j = 2, since 

bl  = b2 = 0, so 

S2 = -blSl - 2b2 = 0. 

Inductively, we have 

For j = i, we have 

Lemma 3.1.1. Let N = 2tM with 2 j M. Suppose (N, k) = m = (N, m). Then 

(2jd, k) = (2jd, m) for j = 0,1, . - . , t and d I M. 

Proof. For any 1 I N,  we claim that 

(1, k) = (4 m). 

Indeed, since m I k, so (1, m) ( (1, k). Suppose there is pa I (1, k) but pa (1, m). Then pa { m. 
However, since ( 1 ,  k) 1 (N, k), it follows that pa I (N, k) = (N, m) and hence pa I m. Contradiction 

arises. So (1, m) = (1, k) and hence (2jd, m) = (2jd, k) for j = 0,1,. . - , t and d [ M. 0 

Lemma 3.1.2. Let N = 2tM with 2 1 M. If 2t+1 { k and (N, k) = m = (N, m) then (2t+1d, k) = 

(2t+1d, m) for any d I M. 

Proof. Since m = (N, k), so m I k and for any dlM, we have 

(2tf 'd, m) I (2t+1d, k). 

It remains to prove that 

(2t+1d, k) ( (2t+1d, m). 

Let p be an odd prime. If pa I (2t+1d, k) then pa 1 (d, k). Since d 1 N,  p" 1 (N, k). Since 
(N, k) = (N, m), therefore pa ( (N, m) and hence pa I m. Now we know that pa divides both d 

and m. So pa I (2t+1d, m). If 2" 1 (2t+1d, k) then 2" ( k. Because 2t+1 j k we get a < t. Since 

N = 2tM, so 2" 1 N. Now we know that 2a divides both N and k. So 2" 1 (N, k) = m. Therefore, 

2" I (2t+1d, m) and hence (2t+1d, k) I (2t+1d,m). This completes the proof. 0 
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Recall (1.5.3) that 

Lemma 3.1.3. If 2t+1 i k, then 

Sk = S ( N , ~ )  

Proof. If 2t+1 1. k, then suppose (N, k) = m. Then (N, k) = m = (N, m) and (2jd, k) = (2jd, m) for 

j = 0 , 1 , . - .  , t + 1  a n d d l  M by Lemmas3.1.1and3.1.2. Hence 

Lemma 3.1.4. If 2t+1 1 k and k < N - 1, then Sk = 0. 

Proof. Let k = 2t+1k'. Then for any j E {O,l,. . - , t + 1) and d I M ,  we have 

by (3.1.4) and Lemma 1.5.3 because k $ 0 (mod M) otherwise Nlk and k 2 N.  
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Lemma 3.1.5. We have i / N ,  where i is defined in (3.1.2) 

Proof. Since Si # 0, by Lemma 3.1.4, 2t+1 i. By Lemma 3.1.3, Si = S ( N , ~ ) .  If (N,i) < i then 

S ( N , ~ )  = 0 # Si by (3.1.2). Hence (N,i) = i and i I N. 0 

We wish to show that 

S j  = 0 for all j  f 0 (mod i). 

Suppose (3.1.7) is proved. Then we claim that 

bj = 0 for all j  $ 0 (mod i). 

For, by Newton's identity, if j  $ 0 (mod i), then 

For 1 < I < j  - 1, either I $ 0  (mod i) or j  - I $ 0  (mod i) because j  $ 0 (mod i). By (3.1.7) and 

the induction assumption, we have bzSj-1 = 0 for 1 < I < j  - 1. Hence S j  + jbj = 0. From (3.1.7) 

again, bj = 0. This proves the claim. 

Therefore, we aim to prove (3.1.7) and hence we have the next proposition. 

Proposition 3.1.6. If the set { j  : Sj # 0, i I /  j }  is empty then Conjecture 2.3.3 is true. 

Proof. Since { j  : S j  # 0,i 1. j }  is empty, we have bz = 0 for all I $ 0  (mod i) or by (3.1.1) 
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It then follows that 

P(x) = (1 + x + - - .  + x i - l ) ~ ( x i )  

where the coefficients of F(x) are +1 or -1. Indeed, since F(xi) is a factor of P(x), so F(x) is 

cyclotomic. Now the induction assumption applies to F(x) and by induction on the degree of the 

polynomials, we prove the proposition. El 

From now on, we may assume the set {j : Sj # 0, i 'j j) is non-empty and let j be the least 

positive integer in this set. From the definition of j ,  if there exists 1 < j such that SL # 0, then ill. 

Lemma 3.1.7. W e  have j I N.  

Proof. Since Sj # 0, so 2t+1 { j by Lemma 3.1.4 and hence by Lemma 3.1.3, Sj = S(j,N). So, if 

(j, N) < j then by the definition of j, i I (j, N). It follows that i 1 j which contradicts the definition 

of j. Therefore, (j,  N) = j and hence j I N. 0 

Lemma 3.1.8. For any k < j and i { k ,  bk = 0. 

Proof. For any k < j and i 1. k, by the definition of j ,  we have Sk = 0. By Newton's identity, 

Since i 'j k ,  so either i { I or i 1. k - E .  That is either bl = 0 or Sk-l = 0 by the definition of j and the 

induction assumption. So Sk + kbk = 0 and hence bk = 0. 0 

Lemma 3.1.9. W e  have Sj = -jibj. 

Proof. By Newton's identity, we have 

and by Lemma 3.1.8, 

But i { j - il because i { j, Sj-il = 0. Thus Sj + j b j  = 0 and hence Sj = -jbj. 

Lemma 3.1.10. We have Si+j # 0 

Proof. By Newton's identity, 
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Now we note that since bl = . . - = bi-l = 0, so 

For 1 _< 1 _< j - i - 1, then i + 1 < j .  So if i '( I, then by Lemma 3.1.8, bi+l = 0; if ill then i '( j - 1 

and by the definition of j, we have Sj-1 = 0. Thus 

For 1 5 1 5 i - 1, we have i + i - 1 and hence Si-1 = 0. We conclude that 

Since Si = 2i and Sj = - j b j  by Lemma 3.1.9 and (3.1.6), we get 

If Si+j = 0 then 2bj + bi+j = 0. Since bhi = f 1, so i + j # N and hence bi+j E {-2,0, +2). 

Because Sj = - jb j  # 0, so bi+j # 0 and hence 

bi+j = k 2  = 2 (mod 4). 

Therefore, 

0 E bi+j + 2bj (mod 4) 

2+2bj (mod 4). 

It follows that 1 + bj r 0 (mod 2) and hence bj 1 (mod 2). This contradicts bj E {-2,0,+2). 0 

Lemma 3.1.11. We have i + j I N. 

Proof. Since Si+j # 0, so 2tS1 + N by Lemma 3.1.4 and Si+j = S[~,i+j) by Lemma 3.1.3. If 

k = (N, i + j )  < i + j then since i + j < 2j, every proper divisor of i + j is less than j. In particular, 

k < j but Sk = Si+j # 0 by the definition of j. So ilk and hence ilj. This contradiction shows that 

k = ( N , i + j ) = i + j a n d i + j l N .  0 

In summary, we let 

and ilN. Suppose the set {j : Sj # 0, i { j) is non-empty and let j be the least positive integer in 

this set. Then we have jlN,i + j lN and Sj = -bj # O,Si+j # 0. We also have for any 1 < j and 

i { 1, SL = 0. 
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3.2 Littlewood cyclotomic polynomials of even degree 

In this section, we recover Borwein-Choi's result Theorem 2.3.1. 

Proposition 3.2.1. Suppose N is odd. Then Szk = 0 for 1 5 k 5 N - 1. 

Proof. Since N is odd, from (3.1.3) we have 

where e (d )  + e(2d) = 1 . If 1 5 k 5 N - 1, then 

by (1.5.3) and Lemma 1.5.3. 

Theorem 3.2.2. Suppose N is odd. A Littlewood polynomial, P(x), of degree N - 1 is cyclotomic 

if and only i f  

where N = plpz . . . p, and the pi are primes, not  necessarily distinct. 

Proof. It is clear that if P(x) is in the form of (2.3.1), then P(x)  is a cyclotomic Littlewood poly- 

nomial. Conversely suppose that P(x) is a cyclotomic Littlewood polynomial. As before we may 

assume that a0 = a1 = . . . = ai-1 = 1 and ai = -1. So Si # 0 as we proved before. Now let 

A = { j  : Sj  # 0,i  j )  and if A is empty by Proposition 3.1.6 we are done. Suppose A is not 

empty, let j be the least positive integer in A. By Lemma 3.1 .lo, Si+j # 0 as well as Si and Sj .  By 

Proposition 3.2.1 i, j ,  i + j must be all odd, but this is impossible. So A must be empty. Therefore, 

by Proposition 3.1.6, this proves the theorem. 0 

3.3 Separable Littlewood Cyclotomic Polynomials 

In [lo], R. Thangadurai proves that Conjecture 2.3.3 is true for separable polynomials of degree 

N - 1 = 2Tp1 - 1. There is apparently a typographical error in the abstract of [lo] where the word 

"separable" is forgotten to be written. In this section we prove that Conjecture 2.3.3 is true for all 
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separable polynomials, which improves Thangadurai's result. In the next section we will give a proof 

for polynomials of degree N - 1 = 2~l .1~ - 1 without the restriction of being separable. 

Theorem 3.3.1. Conjecture 2.3.3 is true for separable Littlewood cyclotomic polynomials. 

Proof. Suppose P(x)  is a separable cyclotomic Littlewood polynomial of degree N - 1  with N = 2tM, 

t 2 0 and odd M. Then 

where e(1) is either 0 or 1 (because P(x)  is separable) and satisfies 

For d = 1, we have 

e(1) + e(2) + 2e(4) + . - - + 2te(2t+1) = 2t - 1. 

Since e ( j )  is either 0 or 1, so e(2t+1) = 0 and 

for some polynomial Fl ( x )  in Z[x]. For d > 1, we have 

So either 

or 

So (X).~j12~) (2)  . . 

e(d) + e(2d) + 2e(4d) + - . + 2te(2t+1d) = 2t. 

e(2t+1d) = 1 and e(d) = - . -  = e(2td) = 0 

e(2t+1d) = 0 and e(d) = - .  = e(2td) = 1. 

@ $ ~ l ~ d l d '  ( x )  is either 

@ 2 t + l d ( ~ )  = @2d(x2') 

@d ( ~ ) @ 2 d  (2) . ' ' @2~d(x) = ~2 ( x 2 )  

for some F2(x) in Z[x]. In either case, it is in the form of F2(x2) for some F2(x) in Z[x]. Therefore, 

P ( x )  = @2(f x)F(x2)  

for some polynomial F ( x )  in Z[x]. Hence induction applies to F[x] and this proves the theorem. 17 
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3.4 Cyclotomic Littlewood polynomials of odd degree 

In this section, we prove that Conjecture 2.3.3 is true for some special cases of N. 

Theorem 3.4.1. Conjecture 2.3.3 is true when N is a power of 2. 

Proof. By Corollary 2.2.2, we have 

e(2'+') P(X) = $;(I) (x)m;(2) . . - m2.+, . 

Again we assume a0 = a1 = 1. Since G ~ ( X ) @ ~ ( X )  = x2 - 1 and 

$21 (x) = @2(x2'-') 

for 1 2 2, we have e(2) - e(1) = 1 and hence 

for some cyclotomic Littlewood polynomial R(x). Therefore by induction, P(x) satisfies (2.3.3). 

Theorem 3.4.2. Conjecture 2.3.3 is true for the Littlewood cyclotomic polynomials of degree N - 1 

where N = 20p0 and p is an odd prime. 

Proof. Let i and j be as above. Since i ,  j I N ,  we have i = 201# and j = 2"2@ where 0 < q, a2 < 
a! and 0 5 Pl,P2 5 P. Since i i  j ,  either cq > a 2  or PI > P2. 

If i = 2Ol then a 2  < a1 (since = 0) and ,R2 # 0 otherwise j I i .  Then 

By Lemma 3.1.11, i + j ( N, but 202 (2OlWa2 + f l )  { 2O#. So by Proposition 3.1.6, Conjecture 2.3.3 

is true for N = 2O9. 0 

We will end this thesis by proving Theorem 3.4.4 which gives a general critetion to verify Con- 

jecture 2.3.3 in particular cases. Before stating Theorem 3.4.4, we prove 

Lemma 3.4.3. We can find divisors of N, i l ,  - - .  ,in, all greater than 1, such that if Sk # 0 then 

il k for some 1 < 1 < n. 

Proof. Suppose that Sal , - . . , Sam are all nonzero Sk and a1 < a2 < . . . < a,. We give an algorithm 

to find il, - .  . ,in, divisors of N ,  such that if Sk # 0 then it I k for some 1 5 1 5 n. 

Put il  = al .  By Lemma3.1.5, a1 = i and al I N. 

Now suppose that il ,  ..- , il are chosen and all of them divide N.  If for every Sk # 0, one can 

find x, 1 5 x < I ,  such that i, I k, we will stop here. Otherwise pick the least j such that Saj # 0 
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and i l  t a j , . . .  ,il 'j aj. Put il+1 = aj. By Lemma 3.1.4, since Sit+, # 0, so 2t+1 ( il+1 and by 

Lemma 3.1.3, we have S(N,it+I) = Sir+*. Suppose that (N, il+1) < il+1 so at least one of il, i2 - - . , il 
must divide (N, &+I) by the way that we choose il+l. This contradicts il ( aj ,  - . . , il + aj. Therefore 

(N,il+l) = i l+ l  and il+l I N. Since N has only finitely many divisors, this process must stop at 

some point. 0 

Let il, - . . , in be the same as in Lemma 3.4.3 and i = gcd(il, - . , in). Then we have 

Sj = 0 for all j $ 0 (mod i). 

Theorem 3.4.4. Let il, . - .  ,in be as in Lemma 3.4.3. Ifgcd(i1,. ,in) # 1 then Conjecture 2.3.3 
is true. 

Proof. Let i = gcd(i1, - - - , in)  # 1. Since {j : Sj # 0, i ( j )  is empty, then Conjecture 2.3.3 is true 

by Proposition 3.1.6. 0 
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