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Abstract 

Fractional factorial designs are commonly used in industrial and experiments to iden- 

tify factors affecting a response or process. The focus of this thesis is on two-level 

orthogonal designs, however, the methods we consider can be generalized to non- 

orthogonal designs. Orthogonal designs can be classified into two broad categories: 

regular designs, which have a simple aliasing structure, in that any two effects are 

orthogonal or fully aliased; and non-regular designs which have a complex aliasing 

structure, in that there exist effects that are neither orthogonal nor fully aliased. 

This thesis focuses on the study of non-regular designs. 

In many industrial settings robust parameter designs are performed as a strategy 

for variance reduction. In these situations the experimenter is mainly interested in 

the estimation of control-by-noise interactions. For non-regular fractional factorial 

designs, the "goodness" of the design can be judged using the generalized aberration 

criteria. We extend the definitions of generalized aberration to emphasize the control- 

by-noise interactions. Theoretical results are used to show how one can construct 

the set of all non-isomorphic multi-factor designs from the existing set of all non- 

isomorphic designs. We then use the set of all non-isomorphic multi-factor designs to 

construct a catalog of generalized minimum aberration robust parameter designs. 

Next, we focus attention on factorial designs and introduce the projection estima- 

tion capacity sequence and use this new criterion to select good non-regular designs. 

Two theoretical results are presented that will be practically useful when searching 

for good designs. Based on these results, a simple search procedure is implemented 

to find such designs. Catalogues of designs are constructed for 20, 24 and 28 runs. 



Finally, we discuss topics for future research. Firstly, we show how projection esti- 

mation capacity can be modified and used to rank robust parameter designs. Secondly, 

we show how one could use the projection estimation capacity to select follow-up runs 

in a factorial experiment. The selection of additional runs is briefly discussed and it 

is shown how one can select follow-up runs to ensure the overall design is orthogonal. 
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Chapter 1 

Introduction 

Designed experiments are widely used in many forms of scientific investigation as a 

systematic way to investigate the effect of a large number of factors on a process. An 

experimental design consists of a series of trials where the level settings of some of 

the factors are changed and the effect of this change is measured on the outcome of 

the process. The series of experimental trials aids the investigator in modelling the 

effect of the input variables on the output of the process. 

Factorial experiments date back to the work of Fisher (1935) and Yates (1937), 

where they were used in agricultural and biological investigations. These investiga- 

tions tended to take a long time to complete, and the primary interest was in the 

comparison of factors which increased crop yield. The time concerns of perform- 

ing these experiments led to the development and use of fractional factorial designs 

(FFD's). The latter half of the century has seen an increased interest in factorial 

experiments, and in particular FFD's, for use in industrial investigations. (see Box, 

Hunter and Hunter, 1978). Industrial experiments are often costly to perform and 

the primary interest of the investigation is for process optimization. 

In recent years, emphasis has been put on the use of designs for variation reduction, 

(see Taguchi, 1986, Welch, Yu, Kang and Sacks, 1990, and Shoemaker, Tsui and Wu, 

1991). Taguchi (1986) advocated the use of Robust Parameter Designs (RPD's) as a 

strategy for making a process less sensitive to variation which is hard to control. The 

factors of interest in this case are divided into two broad categories: control factors, 
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whose values can be fixed during the experiment and under normal operating condi- 

tions and noise factors, which are hard to control during normal operating conditions, 

but can be held fixed during the experiment. The goal of the experiment is to change 

the control factor settings to make the process robust to differing levels of the noise 

factors. Typically this can be done by observing the control-by-noise interactions. 

In many investigations the experimenter is interested in testing the effect of a 

large number of factors on the process. Of particular concern in designing many 

investigations is the selection of a fraction of the runs from the full factorial design. 

When the cost of running the experiment is of particular concern it is advantageous 

to select the smallest subset of runs that still allows for the estimation of the effects 

of interest. There are often many design choices that can be used to accomplish these 

goals. 

The most common and widely used design choice is a regular FFD (Box and 

Hunter, 1961 and Fries and Hunter, 1981). Regular FFD's are constructed by assign- 

ing additional factors to the higher-order interactions of a full factorial design. In this 

manner the experimenter gains the ability to consider additional factors by sacrificing 

the ability to estimate higher-order interactions. That is, the estimate of the main 

effect is made to be indistinguishable from the estimate of the interaction column to 

which it was assigned, in this case we say that the two effects are fully aliased. For a 

particular run size and a fixed number of factors there are a large number of possible 

FFD's that can be used. In this case it is important to select a "good" design among 

the set of possible designs. Box and Hunter (1961) introduced the concept of resolu- 

tion to rank the many possible FFD's. Fries and Hunter (1980) introduced minimum 

aberration (MA) as a refinement of resolution. 

In recent years, non-regular FFD's have received considerable attention as an 

alternative strategy to regular FFD's. Non-regular designs can be characterized as 

having main effects that are partially aliased with two factor interactions (2fi's). The 

most common and widely used non-regular designs are the Plackett-Burman designs 

(Plackett and Burman, 1946), which are usually advocated as main effects plans, i.e. 

assume all interactions are zero. However, in many experimental situations the validity 

of this assumption is questionable. When some interactions are assumed active, main 
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effects will be aliased with a large number of two-factor interactions. This makes 

more difficult as there are many models to choose from and very few of these 

models will be fully distinguishable. However, when only a few of the two-factor 

interactions are active, the iterative method proposed by Hamada and Wu (1992) 

&owed that two-factor interactions could be identified and estimated with reasonable 

  recision. Due to the success of the method employed by Hamada and Wu (1992), 

and subsequent analysis strategies for non-regular designs (see Box and Meyer, 1993 

and Chipman, Hamada and Wu, 1997) non-regular designs have become more widely 

used in industrial settings. Non-regular orthogonal designs can be found for any run 

size that is a multiple of four, as opposed to regular designs which have run sizes which 

are a power of two. Thus, non-regular designs are sometimes advocated since they 

provide greater flexility in the choice of run-size or design and they can entertain more 

models. Recently, generalized resolution and generalized aberration (Tang and Deng, 

1999) were introduced to extend the notions of resolution and MA to non-regular 

designs. These new criteria were used to construct sets of good non-regular designs. 

When selecting a good design, the experimenter will usually search for the design 

among the class of all non-isomorphic designs. Two designs are said to be isomorphic 

if the second design can be obtained from the first design by relabelling the rows, 

relabelling the columns, and exchanging the levels of a column. Thus, the set of non- 

isomorphic designs represents the entire class of designs and can also be viewed as the 

smallest such set of all designs. 

The objective of this thesis is to study two loosely related topics involving the 

selection of non-regular designs. First, we consider the selection of non-regular RPD7s 

with generalized MA. As noted previously, in RPD's the experimenter places greater 

importance on the estimation of control-by-noise interactions. Secondly, we introduce 

the projection estimation capacity of a design and use this new criterion to select good 

designs for screening experiments. The term projection simply indicates that a subset 

of factors from the original design is considered. In essence, the projection estimation 

capacity sequentially maximizes the number of models that allow for the estimation 

of k main effects and all the associated 2fi7s between them. Thus, we are interested in 

studying 2fi7s associated with a subset of factors from the original design. In Chapter 
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2, regular FFD's, regular RPD's and non-regular FFD's are introduced in detail. 

In Chapter 3, we introduce the non-regular RPD and use the new methodology to 

create a catalog of non-regular RPD's with MA. The projection estimation capacity 

is introduced in Chapter 4. In Chapter 5 we discuss future work, and extend the 

definition of projection estimation capacity to study RPD's. 



Chapter 2 

Factorial Designs 

Cats is Dogs, and Rabbits is Dogs, and so's Parrots; but this 'ere Tortoise 

is an Insect, so there ain't no charge for it! 

-Charles Keene, 1869 

Two-level full factorial designs and two-level FFD's are commonly used in indus- 

trial (see Box, Hunter and Hunter, 1978) and agricultural (see Kempthorne, 1952) 

experiments as a systematic method to sift through a large number of factors that 

may affect the process. Selection of an appropriate two-level design usually balances 

the need for as much information about the factors and the experimenters' desire to 

perform as few runs as possible. Selection of a regular 2"-P FFD is typically based 

on Resolution (see Box and Hunter, 1961) and Minimum Aberration (see Fries and 

Hunter, 1981). The next section introduces the full factorial design and motivates the 

need for a FFD. Next the FFD and ranking criterion for these designs are reviewed. 

In recent years there has been increased attention on the use of non-regular designs 

in industrial experiments. Non-regular designs can be found for any run-size which is 

a multiple of four. In the last section we introduce the non-regular designs and the 

concept of generalized resolution and generalized aberration (Tang and Deng, 1999). 
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2.1 Two-Level Full Factorial Designs 

In many industrial experiments it is of interest to test the effect of a large number of 

factors on a process. It is common in screening for a small number of important factors 

or effects to consider each of these factors at only two-levels. In general, if we consider 

m factors then an experimental plan that considers all possible combinations of the 

m factors would require 2" runs. When the 2" runs are performed in a completely 

random order the design is referred to as a full factorial, or just a factorial design. 

These designs are performed to determine which factors have a significant impact on 

the process. The significant factors can then be used to achieve an optimal setting 

for the process, or can be considered in more detail in a more focused follow-up 

experiment. In more complicated situations it may be desirable to set the level of a 

factor to minimize the effect of another factor. Discussion of analysis and estimation 

of effects is illustrated through the use of an example. 

Example 2.1 Box, Hunter and Hunter, (1978, pg. 307). 

Consider the yield from a particular chemical reaction where it is believed 

that temperature (T), concentration (C) and catalyst (K) may affect the 

response, chemical yield, which is denoted by the vector y. 

An experiment was designed to test each of these factors at two levels, 

high (+I) and low (- 1). If all combinations of the three factors are to 

be performed, the experiment would require z3 = 8 runs. The set of level 

combinations for this experiment are shown in the design matrix X. 
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The columns of the design matrix X indicate the levels of the factors that are 

set for each run (row) of the experiment, and can be used to estimate the effect of 

these factors on the process. In some contexts the level settings in X are replaced 

by 1 (high) and 0 (low) or the factor values that are to be performed. Note that the 

choice of symbols to represent the two levels of the factors is unimportant, provided 

that a consistent notation is used throughout the experiment. The f 1 coding is used 

for two reasons. Firstly, the f 1 coding can be used to easily obtain effect estimates 

from the experiment. Secondly one can obtain contrast coefficients for estimating the 

interaction between two variables by simply multiplying the level settings for each run 

of the design. For example, the main effect of temperature on the experiment can be 

calculated as 
1 

ME(T) = - 2m1 x & ~ 7  

where XT is the column of the design matrix corresponding to the factor T. 

If we wish to estimate the mean, the main effects and all possible interaction effects 

between the three factors, the full factorial design matrix would require z3 - 1 = 7 

columns for the effects and one additional column for the mean. If the mean is denoted 

as ( I) ,  the main effects are denoted as C, K, and T and the interactions as CK,  CT, 

K T  and CKT, the 23 full factorial design matrix is 
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(1) C K T C K  C T  KT C K T  

In general, for a 2m full factorial design, we consider the normal linear model, 

where y is a 2m x 1 response vector, X is the full factorial design matrix and ci 

N(0, a2) ,  iid. All of the columns of X are orthogonal, i.e. X'X = 2"I, where I is the 

2m x 2m identity matrix. From (2.2), an estimate of ,B = (Po, PI, . . . , Pn-l)' is 

where Bo is an estimate of the mean and PI, . . . , ,&-I, is the usual ordinary least 

squares estimates of (A, A,. . . , &-I) and n = 2m. Note that the factorial effects are 

calculated as twice the value of the ordinary least squares estimate. Using the value 

of twice the ordinary least squares estimate leads to an interpretation of a factorial 

effect being the average response at the high level minus the average response at the 

low level. For example, M E  (C) = y (C+) - J(C-), where ME(C)  denotes the main 

effect of factor C, y(C+) is the average of the response at the high level of C and 

D(C-) is the average of the responses at  the low level of C. 
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2.2 Regular Two-level Fractional Factorial Designs 

In many experiments it is not possible, due to operational restrictions or cost, to run 

a full factorial experiment. In these situations it may be desirable to perform only a 

fraction of the runs from a full factorial experiment. When a fraction of runs is to be 

performed, it is usually desirable to select the subset of runs such that the resulting 

FFD is still orthogonal. The most common situation is to assign an additional p 

factors to certain interaction columns of a 2m-P full factorial design matrix. In this 

manner the first m-p factors are assigned to the independent columns of the 2"-p full 

factorial design matrix, and the additional p factors are assigned to certain interactions 

formed by the first m - p factors. 

In order to illustrate the use of FFD's, we consider an example. Suppose a 26-3 

FFD is to be performed. Denoting the 6 factors by A, B, C, D, E and F ,  we would 

first assign factors A, B and C to the columns of the 23 full factorial design matrix 

in (2.1). The remaining three factors are assigned to selected interaction columns 

of the full factorial design matrix. For example, one possible assignment would be 

D = AB, E = AC and F = BC. This implies that the level settings for D, E and F 

are determined by the interactions AB, AC and BC, respectively. Letting I denote a 

column of + 1 's, we have three relations defined by 

I = ABD = ACE = BCF. 

That is, when we multiply X A  by XB, we get XD, the multiplication of XA, XB and 

X D  will yield a column of +l's, and similarly for the other two relations. The three 

relations above are referred to as fractional generators, or simply generators of the 

design. It is important to note that a 2m-p FFD is completely determined by the 

generators. 

The generators D = AB and E = AC together imply a third relation 

D E  = AABC, 

but multiplying X A  by XA will result in a column of +l's and the relation can be 

simplified to D E = BC, or equivalently I = BCD E. The multiplication of any of 
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the generators will imply another relation in the group. The entire set of relations 

is referred to as the Definzng contrast subgrou~ (DCS), and an element of the group 

is referred to as a word. In general, the DCS for a 2m-p FFD will have 2" words, 

including the mean I. Therefore, the DCS for the above example would be 

I = ABD = ACE = B C F  = D E F  = BCDE = ACDF = ABEF. 

A 26-3 FFD can be used to explore the effect of six factors on the process without 

performing the 64 runs of the 26 full factorial design. However, the reduction in 

run-size does not come without a cost. For example, the level settings of D were 

determined by the AB interaction from the full 23 design. As a consequence the 

effect estimate of factor D will be indistinguishable from the effect estimate of the 

AB interaction. In this case we say that D is aliased with AB. In addition, if we 

multiply every element in the DCS by factor D we find that 

D = AB = EF = ACF = B C E  = ACDE = B C D F  = ABDEF. 

In order to estimate the effect of D, one must assume that the AB, EF, BCE, 

ACF, ACDE, B C D F  and ABDEF interactions are all negligible. In general, we 

can compute a similar list of aliased effects for every factor in the experiment and we 

will refer to the list as an alias string. 

Based on the above discussion, it is of interest to note that words of length three 

cause main effects to be aliased with 2fi's. Four letter words cause main effects to be 

aliased with three factor interactions, and 2fi's to be aliased with other 2fi7s. Similarly, 

words of length five cause main effects to be aliased with four factor interactions and 

2fi's to be aliased with three factor interactions. However, in many experimental 

settings interactions involving three or more factors are assumed to be negligible. For 

example, if there are words of length five or higher in the DCS for a FFD, then all 

main effects and 2fi's are aliased with three factor or higher-order interactions, which 

can be assumed negligible. In this sense, one can perform only a fraction of runs and 

still obtain all of the desired information about a process. 

In many experimental situations, there are three empirical rules that are often 

used when choosing and subsequently analyzing FFD's. 
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1. Effect Sparsity (Box and Meyer, 1986). Only a few of the factorial effects are 

active. 

2. Effect Hierarchy (Box, Hunter and Hunter, 1978, pg. 374). Main effects are 

more likely to be important than 2fi1s and 2fi's are more likely to be important 

than three factor interactions and so forth. Effects of the same magnitude are 

equally likely to be significant. 

3. Effect Heredity (Hamada and Wu, 1992). An interaction is more likely to be 

significant if at least one of its parents is significant. 

The above rules help provide a justification for running a FFD. However, they can 

also be used to aid the experimenter in deciding how to assign the additional factors 

to the interaction columns of the full factorial design. 

Box and Hunter (1961) introduced the concept of resolution, the length of the 

shortest word in the DCS, in order to distinguish between two competing designs. 

Based on the above discussion, it is clear that designs with higher resolution will be 

preferred to designs with smaller resolution, due to effect hierarchy. However, designs 

with the same resolution may not have the same properties. Fries and Hunter (1980) 

introduce the concept of aberration to distinguish between designs with the same 

resolution. 

Let Ai be the number of words of length i in the DCS of a FFD and define its 

Word Length Pattern (WLP) to be 

The resolution is defined to be the smallest i such that Ai # 0. The definition of 

minimum aberration (MA) (Fries and Hunter, 1980) can be written as: 

Definition 2.1 (Minimum Aberration FFD 's.) 

For any two 2m-p FFD's, Dl and D2, we say that Dl has less aberration than D2 if 

there exists an  r such that, Ai(D1) = Ai(D2) for all i 5 r - 1 and A, (Dl) < A, (D2). 

If no  other design has less aberration than Dl, then Dl is  the minimum aberration 

FFD. 
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The MA criterion provides a good general rule for selecting a FFD. As such, the 

criterion can be used to help decide how to assign additional factors to the interaction 

columns in a full factorial design. Typically, when all factors are treated equally and 

resources do not permit running the full factorial design, an experimenter will select 

an MA FFD. 

The MA criterion has also been suitably adapted for more complex experimental 

situations. For example Bingham and Sitter (2003) and Zhu (2000) adapted the MA 

criterion for robust parameter designs, and Deng and Tang (1999) and Tang and Deng 

(1999) extended the MA notion to non-regular designs. Both of these situations will 

be discussed in the following sections. 

2.2.1 Robust Parameter Designs 

RPD is a strategy for running planned experiments with the goal of identifying the 

level settings of the control factors so that the system is robust to random variation 

in the noise factor settings. Control factors are variables whose values can be held 

fixed during the experiment and under normal operating conditions. They are often 

described as the factors of interest within the process. Noise factors are hard to control 

during normal operating conditions, but can be held fixed during the experiment. 

These factors are often external to the process, such as temperature, heat, light and 

humidity, or even customer usage factors. Generally, during the experiment the noise 

factors are varied systematically to represent the variation that would be expected 

during normal operating conditions. 

Typically, a two-level FFD is performed and models for both the mean and vari- 

ance are constructed. A standard method for identifying which factors impact the 

mean and variance is the response model approach where significant control-by-noise 

interactions are used to choose settings of control factors that make the process robust 

to variation in the noise factors (see, Welch, Yu, Kang and Sacks, 1990, and Shoe- 

maker, Tsui and Wu, 1991). As a result, estimation of control-by-noise interactions is 

viewed as more important than, say, estimation of noise-by-noise interactions. In light 

of the asymmetric ranking of importance of effects of the same order, the selection of 
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a good experiment plan is more complicated than standard settings where all effects 

of the same order are treated equally. So, for example, selecting a MA FFD (Fries 

and Hunter, 1980) may not be optimal. 

A two-level FF RPD is denoted as 2(m1+m2)-(p1+p2) , where ml is the number of 

control factors and mz is the number of noise factors, pl is the degree of fractionation 

for the control factors and p, is the degree of fractionation for the noise factors. It 

is appropriate to note that a fractional factorial (FF) RPD is not necessarily of the 

form 2ml-P1 @ 2m2-P2 where @ is the Kronecker product and 2"l-p1 is a FFD for the 

control factors and 2m2-P2 is a FFD for the noise factors. 

The design matrix for a FF RPD is identical to that of a FFD. The difference 

lies in the existence of two types of factors in the RPD. We can borrow results from 

FFD's and adapt them to FF RPD's. 

In order to account for the asymmetric ranking of effects, Bingham and Sitter 

(2003) propose a new MA criterion for 2(m1+m2)-(p1+p2) FF RPD's to reflect the in- 

creased interest in the control-by-noise interactions via changing the definition of 

word lengths in the DCS as presented in Table 2.1. Zhu (2000) proposed a different 

Table 2.1:. Word Lengths for RPD's Proposed by Bingham and Sitter (2003) 

Word Length Words 
1 C, N 

C N  
CC, N N  
CCN, C N N  
CCC, CCNN 
CCCN, C N N N  
CCCC, NNN, CCCNN, CCNNN 
CCCCN, C N N N N  
CCCCC, NNNN, CCCNNN, CCNNNN, CCCCNN 
CCCCCN, CNNNNN 
CCCCCC, NNNNN, CCCNNNN, CCCCNNN, 
CCCCCNN. CCNNNNN 
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alternate word length definition for 2(ml+m2)-(~1+~2) FF RPD, S, 

1 I f M a x ( j , k ) = l  

w(jl k) = j I f j > k a n d j > l  , (2.3) 

k +  112 If j 5 k and k 2 2 

where j is the number df control factors and k is the number of noise factors. Let 2) 

be a 2(m1+m2)-(p1+~2) FF RPD and define the RPD WLP as 

where B, is the number of words of length q according to the definition in Table 2.1 

or alternatively (2.3). Using the RPD WLP, an MA FF RPD is defined as follows: 

Definition 2.2 (Minimum Aberration FF RPD7s.) 

For any two 2(m1fm2)-(p1+p2) FF RPD7s, Dl and D2, we say that Dl has less aberration 

than D2 if there exists an r such that, Bi(D1) = Bi(D2) for all i 5 r - 1 and B,(Dl) < 
BT(D2). If no other design has less aberration than Dl, then Dl is the minimum 

aberration FF RPD. 

Although we focus attention on the alternative word lengths proposed by Bingham 

and Sitter (2003) and Zhu (2000) it is important to mention that the methodology 

outlined could be applied to different ranking schemes chosen by the experimenter. 

2.3 Non-Regular Two-level Fractional Factorial 

Designs 

In recent years, the class of non-regular designs has received considerable attention. A 

non-regular design can be characterized as an orthogonal array with 4n runs, where 

main effects are partially aliased with 2fi1s. Non-regular designs are often selected 

from the class of Hadamard matrices, which include the well known Plackett-Burman 

designs (Plackett and Burman, 1946). 

An advantage of non-regular designs, in addition to the flexibility of run-size, is 

that some of the factorial effects are only partially aliased. Consequently, it may be 
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possible to jointly estimate more than one effect in a particular alias string. In the 

regular FFD case, effects are either fully aliased or independent, thus joint estimation 

of effects in an alias string is not possible. Several methods for analyzing non-regular 

designs are available (see Wu and Hamada, 2000, chapter 8). 

Recently, Deng and Tang (1999) proposed G-aberration as a way to rank non- 

regular designs. Tang and Deng (1999) further proposed G2-aberration as a relaxed 

version of G-aberration to rank non-regular FFD's. Fontana, Pistone and Rogantin 

(2000) introduced the indicator function as a useful tool for studying factorial designs. 

Ye (2003) further expanded this work and discovered how it could be used to rank 

designs according to the Gz-aberration criterion. 

Let V be a 2" full factorial design. A design point (run) of V is denoted by 

x = (xl, . . . , xm), where the collection of all design points x of V are the solutions to 

That is, the design points in V are the collection of all possible combinations of f 1 

for the m factors. 

In general, a FFD F with m factors will consist of a subset of n < 2" runs from 

V. The indicator function for a FFD can now be introduced. 

Definition 2.3 (Ye, 2003). 

Let V be a 2" full factorial design. The indicator function of a fraction F from V is 

where rx  is the number of times the given run x appears in the design, and V - F is 
the set of all points in V that are not contained in F. 

For a given design, V, and a run, x E V, define a contrast 

where J E P and P is the set of all subsets of {1,2, . . . , m). Note that the empty set, 

0, is an element of P. 
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It is well known that {XJ; J E P )  forms a basis of R ~ ~ ,  and thus, any polynomial 

function can be written as 

where 

be = n/2" and X0 = I corresponds to a column of ones. Since x: = 1 the above form 

is free of squared terms, which leads to the coefficients bJ having unique solutions. It 

is important to note that the b terms are a measure of the correlation of the effect X j  

with the mean XO, therefore, these terms will be useful in terms of ranking designs. 

We say that X j  and XK are fully aliased if bJuK = bO. If the two effects are not 

fully aliased then - 1 < b JUK/bO < 1. A design F is said to be a non-regular design if 

there exists at least one b such that -1 < bJ/bO < 1. 

If I bJ/bO 1 = 1 for all bJ # 0 the design is regular and the effect X j  is said to be 

a word of the design. Note that, we say that the column X j  is a word of the design, 

which is analogous to saying that the J interaction is a word in the DCS. If I b j /bO 1 # 1 

then X j  is a fractional word (or simply a word) of the design F. 

Example 2.2 

Consider the 2"' FFD from section 2.2. The indicator function of the 

design is 

For a given run x = (xA, x ~ ,  XC, XD, XE, xF) the function F(x) is zero 

if the run is not in the design and 1 if the run is in the design. Since 

F(x) can be written in terms of basis elements Xj ,  J E P, the term 

XAXBXD = XABD(x) corresponds to the column XABD where bABD = 118. 
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In addition, I bABD/bO 1 = 1, which implies that A is fully aliased with BD, 

B is fully aliased with AD and D is fully aliased with AB. 

Example 2.3 

Consider the two non-isomorphic 12-run designs with 6 factors, as shown 

in Table 2.2. The indicator functions for the two designs are respectively, 

Table 2.2: 2 Non-Isomorphic 12-run Designs. 

Design 1 Design 2 
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and 

The term ~ ~ ~ 2 x 3  in the indicator function represents the 123 interaction 

Xla3, where b123 = 1/16. For ease of discussion we will simply refer to 

the term xlx2x3 as a 3-factor word in the design. The two indicator 

functions are almost identical except for the 6-factor word in (2.4) and the 

5-factor word in (2.5). Therefore, conventional wisdom would favour the 

first design over the second, since words of larger length are preferred. 

Minimum G-aberration is a generalization of the MA criterion to non-regular de- 

signs (Deng and Tang, 1999). The G-aberration defined for a FFD can also be ex- 

pressed in terms of the indicator function (Li, Lin and Ye, 2002). 

Definition 2.4 Let F be a FFD with indicator function F(x)  = EJ,, b jXj .  If bJ # 
0, X j  is  a word of length 11 Jll + (1 - IbJ/bOl), where 1 1  Jll is  the number of letters of 

the word XJ, and IbJ/bOl is  a measure of the degree of confounding for the word XJ. 

It can be shown that IbJ/bol = l / t  where t = n/4 for some I = 1, .  . . , t - 1 (Deng 

and Tang, 1999). From this, an extended word length pattern of a design F can be 

defined. 
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Definition 2.5 Given a design F with indicator function F (x) = J,, b jX j ,  where 
X j  is a word of the design F, let fi+llt be the number of words of length (i + lit), 
where 1 = 1, . . . , t - 1. Then the extended word length pattern (EWLP) is 

(f3, . . f3+(t-l)/t, . . - f m ,  . . . ,  fm+(t-l)/t). 

Based on the EWLP, Tang and Deng (1999) defined the generalized resolution as 

Definition 2.6 Given a design F with EWLP 

the generalized resolution of F is the smallest i + l/t such that fi+llt # 0. 

Example 2.4 

Reconsider the designs in Table 2.2. The EWLP's will be of the form 

(in order to assist in readability we group words whose floor, largest integer 

less than or equal to this value, is the same within brackets). 

Therefore the two EWLP's are [(O, 0,20), (0,0,15), (0,0, O),  (0,1, O)] for 

Design 1 and [(O, 0,20), (0,0,15), (0,1, O), (0,0, O)] for Design 2 and we say 

that Design 1 has less G-aberration than Design 2, since f5.33(D2) < 
f5.33(D2), and f,(V1) = f,(D2) for all r < 5.33. 

The EWLP can be viewed as a smooth transition from words of length i to length 

i + 1, starting with words with the maximal degree of confounding and ending with 

words with the least degree of confounding (i + l/t E [i, i + 1)). 

In addition to ranking designs using G-aberration, Tang and Deng (1999) propose 

the use of Ga-aberration which is a relaxed version of G-aberration. 

Definition 2.7 Given a design F with indicator function F(x)  = jEP ~ J X J ,  let 
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where 1 1  J11 is the number of letters of the word XJ. The generalized word length pattern 

(GWLP) is then 

(a3(F), > ~ r n ( W  

Notice that the GWLP of a regular FFD is equivalent to the usual WLP. As shown 

in Ye (2003), G2-aberration may be preferable since it has the additional property, 

well known for regular FFD's, that 

if F has no replicates. 

Given two FFD's, Fl and F2, we say that Fl has less G-aberration than F2 if 

there exists an r such that fq(Fl) = fq(F2) for all q 5 r - 1 and f, (Fl) < f, (F2) 

and less G2-aberration if there exists a t such that aq(Fl) = aq(F2), for all q 5 t - 1 

and at(&) < at(F2). A design has minimum G- or G2-aberration if there is no other 

design with less aberration. 

Although the discussion has focused on orthogonal arrays, the indicator function 

and the definitions of G- and G2-aberration can be applied to any design. In the 

following chapter we modify the definition of G- and G2-aberration can be modified 

for FF RPD's. 



Chapter 3 

Non-Regular Robust Parameter 

Designs 

In Chapter 2, regular FF RPD's were introduced and it was shown how these designs 

can be ranked using the MA criterion. However, an open question is how to rank 

non-regular FFD's for robust parameter experiments. In this chapter we consider 

the selection of optimal RPD's from two-level orthogonal arrays, where the effect 

estimates are either orthogonal, partially aliased, or fully aliased. That is, we develop 

new methodology for ranking both regular and non-regular FF RPD's. 

The indicator variable approach is used to study non-regular RPD's and also de- 

velop methodology for selecting optimal FF RPD's. In section 3.2, a theoretical result 

is developed that implies one can use the class of all non-isomorphic two-level orthog- 

onal arrays to find the MA FF RPD, based on either G- or G2-aberration. Finally, we 

consider the selection of optimal 12-, 16- and 20-run FF RPD's. Theoretical results 

are developed that aid in finding MA FF RPD's from existing catalogs of designs. 

The methodology is demonstrated through the construction of a catalog of designs 

for 12, 16 and 20 runs. 
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3.1 Indicator Functions and Robust Parameter 

Designs 

In this section, the indicator function approach (Ye, 2003) is adapted to consider both 

control and noise factors so that the properties of a RPD can be studied. Begin by 

considering a two-level full factorial RPD, D, denoted as 2(m1+m2), where ml refers to 

the number of control factors and ma refers to the number of noise factors. Let Dc 

be the 2"l full factorial design for the control factors and DN be the 2", full factorial 

design for the noise factors. Then D r DC @DN will be the 2"l+", full factorial RPD. 

A design point of D will be denoted by x = (xl, . . . , x,,, x,,+l,. . . , x,,), where the 

collection of all design points x of D are the solutions to {x: - 1 = 0, . . . , x&, - 1 = 

2 0, Xrn1+1 - 1 = 0, .  a -  , x~,+,, - 1 = 0) (i.e., the points in 27 are the collection of all 
possible combinations of f 1 for the ml + mz factors). 

In general, a FF RPD is any design F with ml + ma factors consisting of a subset 

of n 5 2(m1+m2) runs from D. It is appropriate to note that a FF RPD is not 

necessarily of the form Fc @ FN where Fc is a FFD with ml control factors and FN 

is a FFD with m2 noise factors. For the remainder of this chapter, we will restrict 

attention to two-level orthogonal designs, but the indicator function approach and 

ranking methodology apply to non-orthogonal designs as well. 

The design matrix for a FFD is identical to that of a FF RPD. The difference lies 

in the existence of two types of factor in the RPD. Therefore, we can borrow results 

from FFD's and adapt them to FF RPD's. Consequently, we need only consider 

fractions of a 2, = 2m1+m2 design unless it is important to distinguish the control 

and noise factors. Therefore, the indicator function for a FF RPD is identical to the 

indicator function of a FFD, see equation (2.4). 

For a given design, D, and a run, x E D, define a contrast 

where L E P and P is the set of all subsets of {1,2,. . . , m). Further, define PC 
to be the set of all subsets of {1,2,. . . , ml) and PN to be the set of all subsets of 
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{1,2, . . . , mz),  where an element of P is of the form L = J U K where J E pc and 

K E PN. Note that the empty set, 0, is an element of p, PC and PN. This adaptation 

of the indicator variable approach is useful for distinguishing between the control and 

noise factors and allows for the study and comparison of FF RPD's. 

Similar to the development in section 2.3, {XL; 1 E P) forms a basis of R2", and 

thus, any polynomial function can be written as 

LEP 

where 

b0 = n/2m and X0 corresponds to a column of ones. 

Recall from Chapter 2 that XJ and XK are fully aliased if b JUK = bO. If the two 

effects are not fully aliased then -1 < bJUK/bO < 1. If IbL/bO 1 = 1 for all bL # 0 

the design is regular and the effect XL is said to be a word of the design. This is 

analogous to saying that XL is a term (i.e. word) in the defining contrast sub-group. 

If I bL/bO 1 # 1 then XL is a fractional word (or simply a word) of the design F. 
Motivated by the non-regular FFD and the regular FF RPD, we now consider 

how to rank a non-regular FF RPD. Recall that Bingham and Sitter (2003) and Zhu 

(2000) propose alternative rankings for the words in a regular FF RPD. The same 

redefinitions of the word length can be applied to the fractional words of the non- 

regular FF RPD. 

Recall, that the EWLP can be viewed as a smooth transition from words of length 

i to length i + 1, starting with words with the maximal degree of confounding and 

ending with words with the least confounding. Keeping this smooth transition in 

mind, we now define the EWLP of a FF RPD. 

Definition 3.1 Let F be a RPD with indicator function 



If b j u ~  # 0 then XjUK is a word of the design F with word length r+ (1 - IbJUK/bO 1)/2, 

where IbJuK/bOl is a measure of the degree of confoundingfor the word XjUK. Further 

let gr+l/2t be the number of words of length r + 1/2t, where r = 2.0,2.5,3.0,3.5,. . . 
according to Table 2.2 or r = W ( j ,  k )  from (2.3), depending on the ranking chosen b y  

the experimenter. Then the RPD E WLP is 

Notice that the word-length in the RPD case is scaled by a fraction of one half to 

allow for a smooth transition from words of length r to r + 112. 

Example 3.1 

Consider the designs in Table 2.2 as RPD's with 1 control factor and 5 

noise factors. If the first five columns of both designs are used for the noise 

factors and the remaining column for a control factor, using the definition 

of word length in Table 2.1, then the EWLP's will be of the form 

In order to save space the word length pattern begins with the first non- 

zero word. 

For design 1, the EWLP is 

and for design 2, the EWLP is 

Observe that Design 2 has smaller RPD G-aberration than Design 1, in 

contrast to the non-RPD situation, where Design 1 had less G-aberration 

then Design 2. Now consider assigning the control factor to column 1 and 

the noise factors to the remaining 5 columns. The EWLP for Design 1 

remains unchanged whereas the EWLP for Design 2 becomes 



CHAPTER 3. NON-REGULAR ROBUST PARAMETER DESIGNS 25 

There are two important things to take away from this example. Firstly, the MA 

FFD may not lead to an MA FF RPD, thus complete searches over the class of all 

non-isomorphic designs must be done to ensure that the MA FF RPD has been found. 

Secondly, the assignment of control and noise factors to the columns of the design can 

also result in designs with different properties. 

Using a similar strategy to that of the EWLP, the GWLP for a FF RPD can be 

defined. 

Definition 3.2 Given a RPD F with indicator function 

let % ( F )  = C, ( b ~ ~ l b ~ ) ~ ,  where W, is the set of all J U K with length r as in 

Table 2.1, or r = W ( j ,  k )  from (2.3). The RPD GWLP is (y2.0(F), . . . , ym(F)).  

Based on the RPD EWLP and following the path of Tang and Deng (1999) we 

define the generalized resolution of an FF RPD as follows: 

Definition 3.3 Given an FF RPD F with EWLP 

the generalized resolution of F is the smallest q + ilt such that g,+i/t # 0. 

Non-regular FF RPD's can now be ranked using these generalizations of the ex- 

isting methodologies. Given two FF RPD's, Fl and F2, we say that Fl has less G- 

aberration than F2 if there exists a q such that gr(Fl) = gr(F2) for all r 5 q - 1 and 

gq(Fl) < gq(F2) and less G2-aberration if there exists a t such that yr(Fl) = yr(F2), 

for all r < t - 1 and yt(Fl) < yt(F2). A design has minimum G- or G2-aberration if 

there is no other design with less aberration. 

Based on these definitions, designs can be ranked and ordered. However, actually 

obtaining the MA FF RPD's is another matter. In the next section, we develop results 

that help find optimal FF RPD's from existing catalogs of two-level orthogonal arrays. 
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Non-Isomorphic Robust Parameter Designs 

In this section, a method for finding the minimum G-aberration and G2-aberration 

FF RPD is discussed. In order to ensure that the globally optimal design has been 

achieved an exhaustive search over all non-isomorphic RPD's must be performed. 

However, it is possible to take advantage of existing algorithms and lists of non- 

isomorphic non-regular two-level orthogonal arrays (see, Sun, Li and Ye, 2003) to 

find the class of non-isomorphic FF RPD's. We specifically consider the 12-, 16- 

and 20-run orthogonal arrays since these are the most common non-regular two-level 

designs. 

Let C be the set of all n x m two level orthogonal arrays for some fixed n = 4t ,  t = 

1,2, . . . and m 5 (n - I), and let ml + m2 = m, where ml is the number of control 

factors and m2 is the number of noise factors. Also assume without loss of generality 

that the first ml columns of any design in C are used for the control factors. 

Definition 3.4 C1 E C is FF isomorphic to a design C2 E C if design C2 can be 

obtained from C1 by performing any combination of: 

row exchanges 

0 column exchanges 

column level exchanges 

where a column level exchange consists of changing the high level to a low level and 

the low level to a high level within a column of the design. 

Definition 3.5 C1 E C is multi-factor (MF) isomorphic to a design C2 E C if design 

C2 can be obtained from C1 by performing any combination of: 

0 row exchanges 

0 column level exchanges 

column exchanges on the first ml columns and column exchanges on the remain- 

ing ma columns. 
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The column exchange for FF isomorphism can be viewed as a two-step process 

where the first step is a column exchange of the first ml columns with the last m2 

columns, and the second step is a column exchange among the first ml columns and 

a column exchange among the remaining mz columns. 

Result 3.1 If two designs C1 and C2 are MF isomorphic, they are FF isomorphic. 

Proof: The result follows directly from the fact that the set of allowable operations 

in the definition of MF isomorphism is a subset of the allowable operations in the 

definition of FF isomorphism. 0 

Result 3.2 It follows that any two designs Cl and C2 that are FF non-isomorphic 

are MF non-isomorphic. 

Based on these two results we are now ready to discuss how to find the set of MF 

non-isomorphic designs from the set of all FF non-isomorphic designs. 

Theorem 3.1 Let B denote the set of all FF non-isomorphic n x m FFD's and A be 

the set of all MF non-isomorphic n x (ml + m2) FF RPD's, where m = ml + m2. I f  

A* is the set of all FF RPD's obtained by taking all possible column exchanges of the 

first ml columns with the remaining ma columns of every design i n  B then A A*. 

Proof: Assume there exists an A E A such that A $ A*. If the distinction between 

control and noise factors is ignored this implies that A $ B which is a contradiction 

since B is the class of all FF non-isomorphic designs. 0 

This theorem is important since it allows us to take the set of all non-isomorphic 

two-level orthogonal arrays, which can be found using the algorithm in Sun, Li and 

Ye (2003) or from the set of 12-, 16- and 20-run non-isomorphic designs obtained from 

these authors, and obtain the set of all non-isomorphic RPD's by simply performing 

every possible exchange of the first ml columns with the remaining m2 columns. This 

set can then be used to find the minimum G-aberration or G2-aberration FF RPD. 
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3.3 Selection of Robust Parameter Designs 

3.3.1 12-Run Plackett-Burman Design 

In this section, three theorems are presented. Discussion is based on the Plackett- 

Burman design since every 12-run orthogonal array is isomorphic to the Plackett- 

Burman design, or can be found from a subset of columns from the Plackett-Burman 

design. The first two theorems together imply that one need only take the MA 12-run 

Plackett-Burman design with m factors and consider all possible assignments of ml 

as control factors and m2 as noise factors to obtain an MA RPD (except for the single 

case where ml = 1, m2 = 5 and one uses the word-length definition in Table 2.1), 

whether using G- or G2-aberration. The last theorem argues that for m 5 5 any ml, 

m2 combination and either definition of word length (Table 2.1 or (2.3)), any such 

assignment will do. 

Theorem 3.2 Let A be a 12-run R P D  min imum aberration (G or G2) two-level 

orthogonal design according to  the definition in Bingham and Sitter (2003), with ml 

control factors and m2 noise factors. If the ml control factors and the ma noise factors 

are treated equally then A will be a M A  FFD, except for the single case ml = 1, m2 = 5 .  

Proof: There is exactly one FF non-isomorphic 12-run design for m = 2,3,4,7, 

8,9,10,11 columns. For each of these cases the theorem holds, since, if the factors 

are treated equally, every RPD will reduce to this non-isomorphic choice. For the 

case of 5 and 6 factors there are two FF non-isomorphic designs. Consider the case 

of 5 factors where the indicator functions for the MA FFD and the one other FF 

non-isomorphic design are, respectively, 
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and 

Consider (3.1) and notice that all ten possible 3-factor words and all five possible 

4-factor words appear, represented in the design by the terms xixjxk and xixjxkxl, 

respectively, and have identical absolute coefficient values for each of these terms. 

This implies that any labelling of ml factors as control factors and m2 factors as noise 

factors will result in the same RPD indicator function. Now consider (3.2) and notice 

it is identical to (3.1) except for the additional term ~ 1 x 2 ~ 3 ~ 4 ~ 5 .  Using a similar 

argument as above, any labelling of ml control factors and ma noise factors will result 

in the same RPD indicator function. Since the first fifteen terms in each indicator 

function are identical, the RPD EWLP and the RPD GWLP for each design will be 

the same for any choice of ml control and m2 noise factors, except for the additional 

five factor term in (3.2). This additional term results in the MA FFD in (3.1) having 

less RPD aberration than (3.2). 

Consider the case of 6 factors where the indicator function of the MA FFD and the 

one other FF non-isomorphic design, shown in Table 2.2, are represented by (2.4) and 

(2.5) respectively. Both designs contain all twenty 3-factor words and all fifteen 4- 

factor words each with the same absolute value of the coefficient. Thus, any labelling 

of these factors to control and noise will result in the same RPD indicator function, 

except for the contribution of the term ~ 1 x 2 ~ 3 ~ 4 ~ 5 ~ 6  in (2.4) and the term ~ 1 x 2 ~ 3 ~ 4 ~ 5  

in (2.5). Looking at the ranking in Table 2.1, we see that any word with five factors 

always has a smaller rank than a word with six factors, provided ml # 1. Therefore 

using the ranking scheme in Bingham and Sitter (2003) it must be the case that (2.4) 

has less aberration than (2.5) regardless of the assignment of ml control factors and 

m2 noise factors to the columns of the design, provided ml # 1. 
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Theorem 3.3 There exists a 12-run R P D  M A  (G or G2) orthogonal design A ac- 

cording to the definition i n  Zhu (2000), with ml control factors and ma noise factors 

such that, if the ml control factors and the ma noise factors are treated equally, A 
will be an  M A  FFD. 

Proof: There is exactly one FF non-isomorphic 12-run design for m = 2,3,4,7, 

8,9,10,11 columns. For each of these cases the theorem holds, since, if the factors are 

treated equally, every RPD will reduce to this non-isomorphic choice. For the case 

of 5 and 6 factors there are two FF non-isomorphic designs. For the case of 5-factors 

the proof is the same as the proof in Theorem 3.2. 

Considering the case of 6 factors, (2.4) is the MA FFD. It must be shown that 

(2.4) will be one of the MA RPD's using the definition in Zhu (2000). As shown in 

Theorem 3.2 the only terms that have to be considered in (2.4) and (2.5) are the five 

factor word in (2.5) and the six factor word in (2.4). Looking at the ranking scheme 

proposed by Zhu (2000), and given in (2.3), one of the two RPD indicator function 

choices from (2.5) will result in the 5 factor word having a rank smaller than the 

rank of the 6 factor word from (2.4). The other case from (2.5) will result in the 

5 factor word having the same rank as the 6 factor word from (2.4). For example, 

consider the case of 3 control and 3 noise factors, the 6 factor word from (2.4) would 

have W(3,3) = 3.5 from (2.3). The 5 factor word in (2.5) will have W (3,2) = 3 or 

W(2,3) = 3.5. Thus the two 6 factor FF non-isomorphic designs will lead to both 
(2.4) and (2.5) being minimum aberration. 0 

The above two theorems show that the MA FFD will always result in a MA RPD 

for a particular labelling of ml control factors and m2 noise factors (except for the case 

ml = 1, m2 = 5 using the word lengths in Table I). This result can be strengthened 

for m 5 5 .  

Theorem 3.4 If A is a M A  12 x m FFD with m < 5 any assignment of ml factors 

as control and m2 factors as noise will result i n  an  M A  (G or G2)  R P D  according to  

the definition in Bingham and Sitter (2003) and Zhu (2000). 

Proof: Consider the case of 5-factors. Using the same argument as in Theorem 3.2, 

the result follows. For the case of 2-factors the design is equivalent to 3 replicates 
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of a full factorial with 2 factors and hence the theorem holds. For the case m = 3, 

the 3-factor word is the only term in the indicator function. Hence, any labelling of 

control and noise factors results in the same RPD indicator function. For the case 

m = 4, the indicator function contains all four 3-factor words and the 4-factor word 

and all coefficients have the same absolute value, hence using the same argument as 

for the case of 5 factors the theorem holds. 

Result 3.3 If A is the Minimum G-aberration FF RPD according to the definition in 

Bingham and Sitter (2003) or Zhu (2000) then A will be the minimum G2-aberration 

RPD. 

Proof: A complete enumeration, aided by the above results, of all 12-run orthogonal 

arrays was performed to verify that the minimum G- and minimum G2-aberration 

designs are the same. 

Table A.l and Table A.2 present the best G-aberration designs for 7 through 

11 factors for the definitions in Bingham and Sitter (2003) and Zhu (2000). Table 

A.2 only presents the cases where the design differs from those in Table A.1. Since 

there is only one non-isomorphic design for 7 through 11, it is sufficient to show 

the columns used for control factors or the columns used for the noise factors. If 

ml 5 m2 (ml > m2), the ml control (ma noise) factor columns will be shown. Since 

any subset of 7 or greater columns from the 12-run Plackett-Burman results in the 

same design, the first s = 7, . . . ,11 columns have been selected to represent the design. 

The definition of word-length in Zhu (2000) usually leads to the same designs as those 

found using the definition of word-length in Bingham and Sitter (2003) and only difier 

for assignments of 3 through 5 control factors. 

3.3.2 16-Run Orthogonal Arrays 

In this section, the results found from a complete search of all 16-run orthogonal arrays 

using Theorem 3.1 are discussed. There are five non-isomorphic 16-run orthogonal 

arrays, one of which is a regular FFD and the remaining are non-regular. These five 

designs can be found in Hall (1961) (see also Wu and Hamada, 2000). As in Hall (1961) 



CHAPTER 3. NON-REGULAR ROBUST PARAMETER DESIGNS 

these are labelled as designs I, 11, 111, I V  and V, where I denotes the regular design. 

Tables A.3 and A.4 contain the MA FF RPD's based on the definitions in Bingham 

and Sitter (2003) and Zhu (2000), respectively. The design columns represent which 

non-isomorphic design is used and the first ml columns are used as control factors 

and the remaining m2 columns are used for the noise factors. As shown in Tang and 

Deng (1999)' the only possible correlation of words in a 16-run design are 0 or 112. 

Thus the EWLP is presented as [(ga.o, g2.25), (~2.5, g2.75), . . .]. 
There are a few interesting things to notice from the tables. If the definition of 

word-length in Bingham and Sitter (2003) is used, all designs are regular FFD's for 

7 factors or less and all designs are non-regular for 9 or more factors. Whereas using 

the definition in Zhu (2000) all designs are non-regular FFD's for 7 or more columns 

and overall for only 3 cases are the best designs regular. Secondly, the two different 

critera tended to locate and rank different designs as minimum G-aberration. 

When ranking the designs using G2-aberration the best designs can always be 

found from the regular design, except for the case of 8 factors where both definitions 

of word-length found the best design from design I I I .  Complete tables of 16-run 

G2-aberration designs can be obtained from the author upon request. 

3.3.3 20-Run Orthogonal Arrays 

Based on the catalog of non-isomorphic orthogonal arrays obtained from Sun, Li, 

and Ye (2003), a catalog of MA RPD's was obtained using the definitions of G- and 

G2-aberration and application of Theorem 3.1. In order to save space, these have 

been omitted from the text, however, complete tables of 20-run G- and G2-aberration 

designs can be obtained from the author upon request. There are a few interesting 

features of note from this search. Firstly, a small number of minimum G- or G2- 

aberration designs, based on the definition in Bingham and Sitter (2003) and Zhu 

(2000) were the same as the minimum G- or G2-aberration FFD. The majority of 

minimum G2-aberration RPD's were the same as the minimum G-aberration RPD's 

based on both definitions of word length. For all designs with 5 factors or less, the 

G- and G2-aberration designs were equivalent using both definitions of word length. 
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3.4 Discussion 

In this chapter, the definitions of the indicator function, EWLP and GWLP are 

extended to non-regular FF RPD's and are used to rank such designs. The extension 

developed is specifically applied to the case of non-regular FF RPD's, however the 

results in section 3 hold for any experiment where there are two different factor types. 

It was shown that different assignments of control and noise factors to the columns I 
1 

of a design may result in RPD's with different properties. The key result in Theorem 4 

3.1 allows the use of existing tables of non-isomorphic non-regular FFD's to more 

easily obtain the minimum G- and G2-aberration designs. The tabled results for 

12, 16 and 20 runs focus only on the word-length definitions suggested by Bingham 

and Sitter (2003) and Zhu (2000) but the methodology outlined could be applied to 

other ranking schemes chosen by an experimenter. For 12-run designs, three theorems 

were presented which showed how to quickly find the minimum G- or G2-aberration 

designs. 



Chapter 4 

Projection Properties of 

Non-Regular Designs 

In many industrial applications screening experiments are performed at the initial 

stages of the experimental process to test the significance of a large number of main 

effects and some 2fi's. Typically, the experimenter chooses a design with a relatively 

small number of runs that will allow for the estimation of a large number of main effects 

and some 2fi's, assuming that only a few of the main effects are active. The difficulty 

with most experimental situations can be viewed as two-fold: often the experimenter 

has no prior knowledge of which effects are important, thus it is desirable to select a 

design that allows for joint estimation of all main effects and the associated 2fiis, and 

cost usually limits the number of experimental trials that can be performed. 

A regular 2m-P resolution V design is often the best design choice and is selected 

based on two important properties. Firstly, the design projects onto a full factorial 

in any subset of four factors (Box and Hunter, 1961). That is, any subset of size four 

from the m factors will form a 2* full factorial design. This geometric projection result 

has an important statistical consequence in that any model containing four factors 

and the associated interactions can be estimated. Secondly, a resolution V design 

allows for the joint estimation of all main effects and 2fi's. However, if the design is 

not Resolution V, it will have poor projection properties. For example, a resolution 

I V  design has projections onto four factors that do not allow for the estimation of all 
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main effects and all 2fi's. 

Unlike regular designs, non-regular designs often enjoy some very attractive pro- 

jection properties. Cheng (1995) showed that if a non-regular design has a run-size 

that is not a multiple of eight, then any projection onto four factors allows estimation 

of all main effects and all 2fi's. Bulutoglu and Cheng (2003) showed that the same 

projection holds provided the design is generated cyclically (Paley construction). 

Motivated by the above work, in this chapter we formulate a criterion of projection 

estimation capacity that can be systematically used to select designs with good pro- 

jection properties. We are able to find designs that closely resemble regular resolution 

V designs, in terms of projection estimation properties. 

4.1 Projection Estimation Properties 

The focus of this chapter is on two-level orthogonal arrays, with n runs and m factors. 

In the discussion that follows we assume that the n runs are performed in a completely 

random order, and for ease of discussion we will refer to an n x m two-level orthogonal 

array as an n x m design. Although discussion is focused on orthogonal arrays run 

in a completely random order the methodology discussed can be applied to non- 

orthogonal arrays, and arrays with more than two-levels. The criterion can also be 

suitably modified for RPD's and designs with restriction on randomization. Some of 

these concepts are further elaborated on in Chapter 5. 

4.1 .I Projection Estimation Capacity 

Given an n x m design V, we say that model can be estimated if all of the effects can 

be jointly estimated under D. 

Definition 4.1 Given V ,  an n x m array, let pk(D) be the number of estimable models 

containing k main  egects and their associated 2fi's. Further define 

and call (p1,p2,. . . ,p,) the Projection Estimation Capacity (PEC) sequence of V .  
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Since it is desirable to have pk(D) as large as possible we will use the PEC to 

rank designs. We propose a ranking strategy that sequentially maximizes the PEC 

sequence. 

Definition 4.2 Given two n x m designs, Dl and D2, Dl is  more desirable than D2 

if there exists an  integer k such that pj(D1) = pj(D2) for j = 1, .  . . , k and pk(D1) > 
pk(D2). If no other design is more desirable than Dl we will say that Dl is  the 

Maximum Projection Estimation Capacity (MPEC) design. 

Designs with resolution V or higher are the only experimental plans that have 

pi = 1 for all i = 1, . . . , m. However, if an experimenter believes in factor sparsity 

then only k 5 m of the factors are assumed to be active. Assuming effect heredity 

and effect hierarchy it is not unreasonable to assume that the 2fi's among the set of 

k active factors may be important. Thus a design with pi = 1 for i = 1, . . . , k would 

provide almost the same information as a resolution V design. When it is not possible 

to estimate all models with k main effects and the associated 2fi's, then the design 

that allows for maximum number of estimable models would be preferred. Thus, the 

MPEC n x m orthogonal array is the design that most closely resembles a resolution 

V design. 

The projection properties of non-regular designs have been discussed in many 

articles. For example Lin and Draper (1992) and Box and Bisgaard (1993) showed that 

some small run Plackett-Burman designs when projected onto three factors contain 

a complete 23 design and a half-replicate of the Z3 design. Wang and Wu (1995) 

studied the projections of certain n x m orthogonal arrays onto 4 and 5 factors. When 

every projection allowed for the estimation of all main effects and 2fi's they said that 

the design had a hidden projection property. Li, Deng and Tang (2004) studied the 

projection properties of 20-run orthogonal arrays and ranked designs based on the 

number of estimable models containing 5 main effects and the associated 2fi's and 

the average D-efficiency of these designs. Although related, the previous work has 

not considered a systematic approach for ranking designs based on their desirable 

projection properties. In order to aid in the selection of n x m arrays, we begin by 

considering some properties of the PEC sequence. 



For orthogonal arrays of strength 2, obviously we have pl = p2 = 1, and trivially, 

p3 = 1 if and only if there are no words of length 3. In addition pi = 0 for i = k, . . . , m 

where k + (i) > n - 1. That is, any model containing more parameters than degrees 

of freedom is non-estimable. We will focus attention on situations where pl = p2 = 

p3 = 1. 

Lemma 4.1 (Cheng, 1995 and Bulutoglu and Cheng, 2003) 

Given an n x m orthogonal array, if n is not a multiple of eight or n > 8 and the 

design is generated cyclically (Paley construction), then p4 = 1. 

In addition to the projection estimation onto four factors, some results have been 

shown for projections onto five factors. The following lemma by Cheng (1998) extends 

the result of Diamond (1995) on the fold-over of the 12-run Plackett Burman design. 

Lemma 4.2 (Cheng, 1998) 

Given an n x rn orthogonal array of strength three, if n is not multiple of 16 then 

p5 = 1. 

In order for a regular design to have p3 = 1 the design is necessarily resolution 

IV. In addition, exact expressions for p4 and p:, have been found for resolution IV 

designs: 

Lemma 4.3 If V is a 2yip design with WLP (a4, . . . , a,) then 

Proof: 

Since V is a resolution IV design, there are two possibilities when projecting onto 

4 factors: i) the 4 factors do not form a word of length 4 in the DCS; or ii) the four 

factors form a word in the DCS. In case i), the model containing the 4 main effects 

and their 2fi's is obviously estimable. In case ii), the model containing the 4 main 

effects and 2fi's will not be estimable, since some of the 2fi's involving the 4 factors 
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will be aliased with other 2fi1s involving the 4 factors. In case ii), there are a4 subsets 

of 4 factors that appear as words in the DCS, hence p4 = (T) - a4 and 

If D is projected onto 5 factors there are two 

of 5 factors: i) No set of 4 of the 5 factors form 

possibilities of interest for the set 

a 4 letter word in the DCS ; and 

ii) one set of 4 of the 5 factors form a 4 letter word in the DCS. Note, if the set 

of 5 factors form more than one word of length 4 in the DCS this would result in a 

design with resolution less than IV.  In case i) the model containing 5 main effects 

and their associated 2fi's will be obviously estimable. In case ii) the model containing 

5 main effects and their associated 2fi1s will not be estimable since some of the 2fi1s 

are aliased with other 2fi's. 

In order to count the number of non-estimable models for case ii), consider a given 

subset of four factors that form a word in the DCS and add a fifth column to form 

a projection onto five factors. The addition of any of the remaining m - 4 factors to 

the existing four factors will lead to a model which cannot be estimated. Therefore 

there is a total of (m - 4)a4 non-estimable models. Hence p5 = ( y )  - (m - 4)a4 and 

Contained in the first two lemmas, there is a strong message that non-regular 

designs provide ample opportunity for finding designs with good projection properties. 

In fact, we have found designs of 28 runs that have ps = 1 (see section 4.3). While the 

third lemma, suggests that regular designs will not have the same desirable projection 

properties. 

The PEC has many advantages over the traditional method for ranking designs 

introduced in Chapter 2. The first advantage is that the same criterion can be used 

to rank both regular and non-regular designs. The PEC can also be used to judge if 

the design will provide sufficient information about main effects and 2fi1s for the pro- 

cess under consideration. Lastly, the PEC allows an experimenter to easily compare 
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designs with different run sizes and different number of factors. In order to illustrate 

these points we consider two examples. 

Example 4.1 

Suppose an experimenter wishes to test the effect of 7 factors on a process, 

where the primary interest is on the estimation of models containing main 

effects and 26's. They begin by considering two choices. 

1. Dl is the MA z7-l resolution VI I  64-run FFD. 

2. D2 is the MA 27-2 resolution IV 32-run FFD. 

The PEC for Dl is (1,1,1,1,1,1, I) ,  since Dl is resolution VII .  Since 

D2 is a resolution IV design we apply the results of Lemma 4.3 to find 

p4 = 0.971 and p5 = 0.857. The full PEC sequence was found to be 

(1,1,1,0.971,0.857,0.571,0). 

Comparing the two designs, Dl would definitely be preferable in terms of PEC, to 

V2, since any model from Dl containing k main effects and 2fi's is estimable. On the 

other hand D2 does not allow for the estimation of all models containing four factors. 

If run-size economy is a concern then Dl with 64-runs is a fairly large experiment, but 

sacrificing 32 runs leads to a design with worse PEC. However, Lemma 4.1 suggests 

that a non-regular design could be used and it would allow for the estimation of all 

models containing 4 factors. 
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Example 4.2 

Consider, V3, a 20 x 7 orthogonal array, with design matrix 

The PEC is (1,1,1,1,1,0,0). Note that using Lemma 4.1, p4 = 1. In addi- 

tion there are insufficient degrees of freedom to estimate models containing 

more than 5 factors and the associated 2fi's, hence p6 = p7 = 0. 

Comparing the three designs, we notice that V3 has a superior PEC than V2 

except for the entry p6 which is greater than zero for V2. However, if factor sparsity 

is assumed true it is unlikely that more than 5 of 7 factors will be active. Thus it could 

be argued that V3 will provide the same information as V1 in most situations, and 

will provide more information than V2. In addition V3 has a much smaller run-size 

than both Dl and V2 making it a particularly attractive choice for many experimental 
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situations. In section 4.2, we will see that non-regular designs usually offer a viable 

alternative to running a resolution V design. 

4.1.2 Useful Theoretical Results 

Ideally, if one were to consider the selection of a MPEC design the search would start 

from the class of all n x m non-isomorphic orthogonal arrays. In general, the class 

of all non-isomorphic n x m designs is unavailable; however, as an alternative one 

could start with the class of non-isomorphic Hadamard matrices and search for the 

MPEC design that is a projection of a Hadamard matrix. This approach will not 

yield every n x m design (see Li, Deng, and Tang, 2004) but it still provides a large 

class of designs to consider. For run-sizes larger than twenty this search can still be 

computationally infeasible unless some simplifications are made. The new ranking 

criterion lends itself well to reducing computations based on some theoretical results. 

Theorem 4.1 Given an n x m array pj 2 pk for j < k .  

Proof: Let be the number of non-estimable models containing i main effects and 

their associated 2fi's. Then pi + qi = (7). 
Consider, a two stage projection where we first project the n x m array onto a 

subset of k factors, and calculate pr, and qk, then project this set of n x k arrays onto 

j factors and calculate pj and Q from pk and qk. Notice that projecting in a two stage 

fashion will yield (r) ( i )  designs, whereas projecting in one stage yields (7) designs. 

Now, each of the (7) subsets of size j ,  say Ai, i = 1,. . . , (7) appears a multiple 

number of times when selected in two stages, where the multiple is the number of sets 

of size k that contain Ai. For a fixed Ai there are m - j elements remaining and we 

must select k - j of these elements, thus each set Ai appears (:I:) times. 

Thus each n x j design found from the one-stage projection appears (TI:) times. 

Secondly, it is important to note that if the model containing k factors is estimable 

then the model containing j factors is estimable. Lastly, if the model containing k 

factors is non-estimable it may be possible to estimate some of the models containing 
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j factors. Combining these results 

That is, we scale pk up by the number of projections of k factors onto j factors, 

and p, up to account for the (:I;) copies of each (7) design. The inequality in the 

relationship accounts for the fact that some of the non-estimable models containing 

k factors may be estimable when projecting onto j factors. 

Finally, 

= pj. 

0 

As a consequence, if there exists an n x m array with pk = 1, then pj = 1 for all 

j < k. A second result that will be useful in searching designs is stated and proved 

below. 

Theorem 4.2 Given an  n x (m + p) array D2 with p 2 1. There exists a projection 

of D2 onto Dl, a n  n x m array consisting of a subset of columns from D2 such that 

~ . i ( D l )  > p.i(D2). 

Proof: Similar to the proof of Theorem 4.1, we consider projecting D2 in two stages. 

At the first stage, construct the (m$) = t ,  n x m designs B1, . . . , B,, and at stage 

two project each of these designs onto j factors. This yields a total of (m$) ( y ) ,  n x j 

designs, where each n x j design will be repeated (m:!7i) times. 

For each Bi, calculate pj(Bi). Then 
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That is, the total number of estimable projections found from a two-stage projection 

is the same as the number of estimable projections from a one-stage projection scaled 

up by the number of times each n x j design is repeated in 

This leads to 

the two-stage procedure. 

where 6 is the average value of pj(Bi) for i = 1, .  . . t. 
Let V 1  be the n x m projection design, Bi such that pj(Bi) is a maximum then, 

Corollary 4.1 Given a n  n x m army  Dl, and an  n x ( m  + p)  array V 2  with p 2 1, 

if Dl and V 2  are the max imum projection estimation capacity designs, then pj(V1) 2 

~j(v2)- 

Proof: From Theorem 4.2 there exists an n x m projection design Bi consisting of 

m columns from V 2  such that pj(Bi) 2 pj (V2) .  Since Dl is the MPEC design 

0 

It is worth mentioning that these theorems are extremely general and will apply 

to both orthogonal and non-orthogonal arrays. In addition, the above theorems will 

prove useful when searching for designs with larger run sizes. For example, consider 

the selection of a 24 x 12 orthogonal array. Since no complete catalogue of non- 

isomorphic designs is available, one would search for a design that is a projection 

of a Hadamard matrix. There are 60 non-isomorphic 24-run Hadammd matrices 

and approximately 1.3 million projections onto 12 factors. Thus a complete search 
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of all projections would require searching more than 81 million designs. Based on 

the above theorems, we propose a simple search procedure to reduce the number of 

computations. At step one of the search, compute the projection estimation capacity 

sequence for each non-isomorphic n x (n - 1) Hadamard matrix, and find the top 

twenty designs among this class. At step two, project the top twenty designs onto 

n - 2 columns, compute the projection estimation vector and find the top twenty 

designs. Sequentially applying this search will allow one to quickly find a design with 

n - k factors. For example, if the methodology was applied to find a design with 12 

columns it would require searching 6120 designs and will not only yield a good design 

with 12 factors but a table of designs for 23 through 12 factors. In addition, if the 

experimenter were to find a n x (n - I c )  design with pi = 1 then any of the projections 

of this design onto a smaller number of factors will also have pi = 1. This procedure 

may not yield the optimal design which is a projection of a Hadamard matrix, but 

will hopefully provide a "good" design. 

4.2 Maximum Projection Estimation Capacity 

Designs with 20 runs 

The previous section introduced the concept of a MPEC design. In this section, 20- 

run MPEC designs are tabled for use by the practitioner, and other issues in design 

selection are discussed. 

4.2.1 Complete Catalog of 20-run Designs 

The new ranking method for non-regular designs is first applied to the complete 

catalogue of non-isomorphic 20 x m orthogonal designs found by Sun, Li and Ye 

(2003). In the case of twenty runs, there are enough degrees of freedom to permit 

estimation of models that contain at most five main effects and their associated 2fi's. 

Applying Lemma 4.1, p4 = 1 and thus the PEC sequence is (1 , 1, 1, 1, p5, 0, - ,0)  

Therefore, designs are ranked on the basis of p5 and to save space we do not present 

the full PEC sequence. Table B.l presents the top 5 designs ranked by their PEC 
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sequence. If the design can be found from a projection of a Hadamard matrix, the 

Hadamard matrix is given and the columns used to construct the design are provided. 

In the case of 20 runs, there are three non-isomorphic Hadamard matrices (available 

on Neil Sloan's webpage) and are denoted as Had.20.k, for k = 1,2,3. When the 

design cannot be found from the projection of a Hadamard matrix, an integer code 

for the runs is provided. Consider a run which consists of +l's and - 1's. Changing 

the -1's to 0's gives rise to a binary sequence which will be represented in base ten. 

For example, a run (- 1, - 1, - 1, +1, +l) is represented by the integer 3 and a run 

(+1,+1,-1, -1,+1,-1) is represented by the integer 50. For an n x m array, the 

integer codes of the runs will be between 0 and 2m - 1. For convenience the integer 

codes of the runs are presented in ascending order. 

Table 4.1 provides a summary of the results found by searching all non-isomorphic 

20 x k arrays for all k 2 6. Notice from Table 4.1 that there exists a 20 x 6 and a 

Table 4.1: MPEC designs with 20 runs. 

Maximum ps Minimum p~ Number of Designs 
with the maximum p5 

1 0 11 
1 0 2 

0.929 0 2 
0.873 0 6 
0.857 0.429 2 
0.848 0.584 1 
0.826 0.622 1 
0.821 0.648 1 
0.797 0.663 1 
0.785 0.67 1 
0.777 0.675 1 
0.773 0.676 1 
0.765 0.676 1 
0.761 0.676 1 

20 x 7 array that allow for the joint estimation of any model containing up to 5 main 

effects and their associated 2fi's. See Example 4.2 for a discussion of the 20 x 7 case. 
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To further illustrate, suppose there are 14 factors. As an alternative, the exper- 

imenter could choose the 32-run MA 2:;~' design (see, Wu and Hamada, 2000, pg. 

195), where 62 percent of all models containing 5 factors and the associated 2fi's can 

be estimated. By comparison, 80 percent of all models containing 5 main effects and 

the associated 2fi's can be estimated for the 20 x 14 design in Table 4.1. In this case, 

dropping 12 runs actually results in a design with superior PEC. In fact, notice that 

for designs with 14 or more factors more than 76 percent of all models containing 5 

factors and the associated 2fi7s can be jointly estimated. 

4.2.2 Other Issues in Design Selection 

In this section we focus attention on the 11, 20 x 6 arrays in Table 4.1 with pg = 1. 

One logical question to ask is how would one can distinguish between these 11 arrays. 

One possibility is to choose the array with minimum G-aberration (See section 2.3). 

A second possibility would be to choose the design with the highest average efficiency. 

Using a strategy similar to Sun (1993) we compute the efficiency of all estimable 

designs and average over all possible models. 

Definition 4.3 Given an  n x m orthogonal array, let .F be the class of models con- 

taining k ma in  eflects and their associated 2ji7s, let 

where p is  the number of parameters zn the model (i.e. p = 1 + k + (i)), and call 

( d l ,  . . . , dm) the projection information capacity (PIC). 

We now take a closer look at the non-isomorphic 20 x 6 arrays. In addition to 

computing pg and d5, we also rank the designs according to G-aberration. There are 

75 non-isomorphic 20 x 6 orthogonal arrays. Table 4.2 presents the top 11 designs 

based on ps, the associated d5 values and (the last column) the rank of the 11 designs 

with pg = 1 according to G-aberration from the entire set of 75 designs. 

The first thing to notice is that the top three designs correspond to the designs with 

smallest G-aberration and also have the highest efficiency. The remaining designs, 
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Table 4.2: Top 11, 20 x 6 orthogonal arrays. 

p5 d5 G-aberration 
Rank 

1.0 0.8614 1 
1.0 0.8602 2 
1.0 0.8248 3 
1.0 0.8237 5 
1.0 0.8054 14 
1.0 0.8042 17 
1.0 0.7871 8 
1.0 0.7677 20 
1.0 0.7494 10 
1.0 0.7494 11 
1.0 0.7494 39 

although having worse G-aberration than the top three designs, have high efficiency. 

Thus, in order to distinguish between competing designs it would be useful to take 

the design with the highest rank according to either D-efficiency or minimum G- 

aberration. In order to reduce the computational burden of the search procedure we 

choose to use D-efficiency as the secondary sorting criterion. Notice that the value 

of dk can be easily calculated when finding pk, that is pk is found by checking if the 

determinant is zero for each projection onto k factors, and thus the determinant must 

be calculated anyways. Whereas, computing the G-aberration would require finding 

the EWLP for each design in the search, which is more computationally intensive. 

4.2.3 20-run Designs Using the Search Procedure 

For evaluative purposes, the search method proposed in section 4.1.2 is modified 

and applied to the 20-run designs. Since there are only three non-isomorphic 20-run 

Hadamard matrices, we first project each of these onto 18 factors and compute p5 and 

d5 for each projection. The top twenty designs with different values of p ~ ,  and d5 are 

selected and then used to find a good 17 factor design. This method is sequentially 

applied to find designs with 6 through 18 factors. 
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In addition to retaining the top twenty designs in the search procedure, we also 

performed the same procedure retaining the top 10, 30 and 40 designs. In order to 

save space, these results have been omitted, but it is important to note that retaining 

only the top 10 designs resulted in designs with smaller values of p5 and led to a large 

number of designs that were not the MPEC design. In addition, retaining the top 30 

and top 40 designs resulted in similar results to those found using only the top 20 

designs. 

Table 4.3 presents the minimum value of p ~ ,  obtained by this search and the dif- 

ference between the search result and the true value of p5 found from the complete 

search (Table 4.1). 

Table 4.3: 20-run PEC designs, using the search procedure 

As can be seen, the search method works exceedingly well. With the encouraging 

k 

results from 20-runs we now focus our attention on the 24- and 28-run designs, where 

P5 p5 difference 
Search True 

no complete search is yet possible, due to the large number of possible designs. 
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4.3 Projection Estimation Capacity Designs with 

24 and 28 Runs 

In the case of 24 and 28 runs there are enough degrees of freedom to permit estimation 

of models containing at most six main effects and their associated 2fi's. In the case 

of 24 runs, there are 60 non-isomorphic 24-run Hadamard matrices (which are readily 

available from Neil Sloan's webpage). Since n is a multiple of eight, applying Lemma 

4.1, p4 = 1 if the design in generated cyclically. This is true for the Plackett-Burman 

design but is not true for the majority of designs in the catalog. The PEC sequence 

is therefore of the form (1,1,1, p4, p5, P6,0, . . . , 0) and in order to save space only the 

values (p4, p5, p6) are presented. Table B.2 presents a catalog of the top three designs 

for m = 6 , .  . . ,23. Designs for m = 6, .  . . ,22 were found using the simple search 

procedure proposed in section 4.2.3. The catalog was constructed by taking the top 

20 designs with different values of (p4, p5, pg , d4, d5, d6) at step k + 1 and searching all 

projections of these designs onto k factors. Using the same notation as Neil Sloan 

we denote the non-isomorphic Hadamard matrices, as Had.24.k,for k = 1, . . . ,60 and 

give the columns used to construct designs for m = 6, . . . ,22 factors. 

As can be seen in Table B.2, the best Hadamard matrix with 23 factors (23.1) 

has a value of p4 = 1 and p5 = 0.919, indicating that all models containing four 

main effects and the associate 2fi's are estimable and that approximately 92 percent 

of all projections onto 5 factors will allow for the estimation of 5 main effects and 

their associated 2fi's. Consider 19 factors. The best 24 x 19 design has a value of 

pg = 0.925, while the best 20 x 19 design has p5 = 0.761. Thus, the additional 4 runs 

provides a significant improvement over the competing 20-run case. 

It is interesting to note that in Table B.2 the values of p6 decrease from a maximum 

value of approximately 40 percent for the 24 x 19 array to as small as zero for the 

24 x 12 array. The decrease is a result of the simple search procedure that was 

implemented. Consider a 24 x ( k  + 1) design with a PEC sequence (p4, p5, ~ 6 )  and find 

all of the ("I) projections onto a 24 x k design and examine the sequence (pi, p;, pk), 

for each 24 x k design. Theorem 4.2 guarantees that there exists at least one 24 x k 

design where pi > pj, for j = 4,5, and 6, however the theorem does not guarantee 



CHAPTER 4. PROJECTION PROPERTIES OF NON-REGULAR DESIGNS 50 

that remaining values in the sequence will all be larger for the chosen 24 x k design. 

Hence, it is possible that the top twenty 24 x k projection designs with the largest 

value of pi will have smaller values of pk and pk than the 24 x ( k  + 1 )  design. Note, 

that a consequence of Theorem 4.2 guarantees that every pi found from the 24 x k 

projection designs will equal 1 if pj = 1 for the 24 x ( k  + 1 )  design. As can be seen 

in Table B.2, the search finds the largest value of p4 = 1 and then tries to maximize 

p5 while sacrificing information on p6. Finally once p5 = 1 we see that the values of 

pg start increasing. 

In order to help alleviate this problem, we consider three modifications of the 

search procedure. First, we consider simply taking the top 40 designs at each step 

instead of the top 20 designs. Table B.3 presents the designs which differ on PEC 

sequences from those found in Table B.2. Comparing Table B.2 and Table B.3 the 

best 24 x 9 array found by searching the top 40 designs had a much larger value of p6. 

In general retaining the 40 designs did not lead to a significant improvement in the 

PEC sequence. Second, we consider taking a weighted average p = (3p4 + 2p5 +p6) /6  

and using the top twenty designs with the largest value of p at step k + 1 to find 

the best designs at step k. Table B.4 presents the catalog of designs found using the 

weighted average search. As can be seen, using a simple weighted average tends to find 

designs with slightly smaller values of p4 and p5 and much larger values of pg. Thus, if 

the experimenter is interested in models with 6 main effects and their associated 2fi's 

these designs will provide a much better alternative to the previous designs. Lastly, 

we considered taking the top twenty designs that sequentially maximized the sequence 

(p6 ,  p5, p4). Using the result in Theorem 4.1, we know that a design with a large value 

of pg will necessarily have larger values of p4 and pg, and from Theorem 4.2 we know 

that the value of p6 will increase as we move from step k + 1 to step Ic in the search. 

As opposed to sacrificing information on p6 to increase p5 we use a search procedure 

that will always increase p6 and ensure that p4 and p5 are also as large as possible. 

Table B.5 presents the catalog of designs based on searching the top twenty designs 

with the largest values of p6. Comparing Table B.2 and Table B.5 it is interesting to 

note that for limited sacrifice on the estimation of models containing 4 and 5 factors 

designs with much larger values of p6 have been found. 
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Comparing the results from each search we notice that a different set of designs 

was found for each procedure proposed. The experimenter has a choice when deciding 

which design to run. If estimation of models containing only 4 and 5 factors is of 

utmost importance then the designs in Table B.2 and Table B.3 would be the best 

choice of experimental plan. However, if there is some concern that the possible 

models will contain 6 factors then the designs in Table B.4 and Table B.5 will provide 

a good choice of design. 

In the case of 28-runs, there are 487 non-isomorphic Hadamard matrices, which 

can be found on Neil Sloan's webpage. Applying Lemma 4.1, pc = 1 since 28 is 

not a multiple of eight, and we consider maximizing the sequence (p5, p6). Table B.6 

presents a catalog of designs based on searching the top 20 designs and maximizing 

the sequence (p5, p6). 

The results in this case are even more encouraging than those for the 20- and 24- 

run cases. First there exists a 28 x 27 design with p5 = 1 and the other designs allow 

for approximately 99.8 percent of all models containing 5 factors and the associated 

2fi's to be estimated. In addition, for the best 28 x 27 design, approximately 97 

percent of all models containing 6 factors and the associated 2fi's can be estimated. 

Also, for limited sacrifice in terms of the estimation of 5 factor models this can be 

improved to as high as 98.1 percent. 

Based on the results from the 24-run searches we saw that simply taking the top 

twenty designs and sequentially maximizing the PEC may lead to designs with poor 

estimation of models containing 6 factors. Since we are only maximizing the sequence 

(p5, p6) and both of these values are initially large we expect that the search above will 

perform reasonably well. However, we notice in Table B.6 that for a limited sacrifice 

in p5 a larger value of p6 can be found for 25 or more factors. In the case of 24 or 

fewer factors only the designs with p5 = 1 are found. Table B.7 presents the catalog 

of designs found from searching the top twenty designs that maximized the sequence 

(p6, p5). Comparing the two tables it is interesting to notice that the designs with 

less than 22 factors in Table B.7 are superior to those in Table B.6. In addition for 

designs with 23 or more factors, a very limited sacrifice on the estimation of models 

containing 5 factors leads to designs with larger values of p6. 
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The above results suggest that the simple search procedure that was implemented 

will not perform as well when the PEC sequence has more than one non-zero value 

of p. Development of more sophisticated algorithms to search for designs will be left 

for future research. 

4.4 Projection Estimation of Regular Designs 

In this section we show how to find p3 and p4 for a regular resolution 111 design. 

Lemma 4.4 If '-D is a 2z;p design with WLP (a3, . . . , a,) then 

a3 (rn - 3)a3 + a4 
p 3 = 1 - -  (9 and p4 = - (2 

Proof: 

If V is projected onto 3 factors then there are two possibilities that can arise: i) 

the 3 factors do not form a word of length 3 in the DCS; or ii) the 3 factors form a 

word in the DCS. In case i), the model containing the 3 main effects and their 2fi's 

will be estimable. In case ii), the model containing 3 main effects and 2fi1s will not 

be estimable, since some of main effects will be aliased with 2fi7s. In case ii), there 

are a3 subsets of 3 factors that appear as words in the DCS, hence p3 = ( y )  - a3 and 

If V is projected onto 4 factors there are four possibilities for the set of 4 factors: 

i) no set of 3 of the 4 factors form a word of length 3 in the DCS; ii) the 4 factors 

do not form a word of length 4 in the DCS; iii) one set of 3 of the 4 factors form a 3 

letter word in the DCS, and iv) the 4 factors form a word in the DCS. 

In cases i) and ii), the model containing 4 main effects and the 2fi1s will be es- 

t imable. 

In case iii) the model containing 4 main effects and their 2fi's will not be estimable 

since some of the main effects will be aliased with 2fi1s. In order to count the number 

of non-estimable models for case iii), consider a given subset of 3 factors that form 

a word in the DCS and add a fourth column to form a projection onto four factors. 
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The addition of any of the remaining m - 3 factors to the existing 3 factors will 

lead to a model which cannot be estimated. Therefore there is a total of (m - 3)a3 

non-estimable models. In case iv), the model will not be estimable since 2fi's will be 

aliased with other 2fiis, and there are a total of a4 non-estimable models. Note that 

if the three factors form a word of length three then the four factors cannot also form 

a word of length 4. Hence p4 = ( y )  - (m - 3)a3 + a4 and 

When a resolution 111 design is projected onto five factors, there are five possi- 

bilities: i) no set of 3 or 4 or all 5 of the factors form a word in the DCS; ii) the 

5 factors form a word in the DCS with 5 or more factors; iii) at least one set of 3 

of the 5 factors form a single 3 letter words in the DCS; iv) at least one set of 4 of 

the 5 factors form a word in the DCS, and v) the 5 factors form 2 word in the DCS 

each of length 3 and one word of length 4. In cases i) and ii), the models will be 

estimable, in cases iii), iv) and v), the models will not be estimable. If we try and use 

a similar argument to the proof of Lemma 4.4 to count the number of non-estimable 

models in cases iii), iv) and v), we discover that the number of length-three words 

and the number of length-four words will provid insufficient information. In case v), 

only the model containing the five factors will be non-estimable, and in case iii) there 

are (m - 4)(m - 3) non-estimable models that will arise from a single word of length 

3. Similarly, in case iv) their are (rn - 4) non-estimable models that will arise from a 

single word of length 4. In this situation, knowledge on the number of three and four 

letter words and the aliasing structure will be required. A complete treatment of this 

problem is left for future research. 

4.5 Discussion 

In this chapter we introduced the PEC sequence and demonstrated how it can be used 

to find good 2-level orthogonal arrays. Two theorems were presented which showed 

properties of the PEC for any design (orthogonal or not). In addition, the definition 
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of the PEC sequence does not require that the design be a 2-level orthogonal array. 

With suitable modification one could apply the PEC criterion to find good three-level 

designs, good mixed-level designs, or designs of higher-order. A modification of the 

PEC to rank RPD's will be discussed in the next chapter. 



Chapter 5 

Future Work 

5.1 Projection Estimation Capacity for Robust 

Parameter Designs 

In this section we consider how one might extend the notion of projection estimation 

capacity to robust parameter designs. Recall, for a factorial design the projection esti- 

mation capacity sequentially maximizes the number of estimable models containing k 

main effects and their associated 2fi's. When the design is regular, the model contain- 

ing k main effects and the associated 2fi's will be estimable if the k main effects and 

2fi's can be estimated clear of other effects when 3 and higher-order interactions are 

assumed negligible. In the case of non-regular designs, the estimation of main effects 

and 2fi's will not be clear of other interactions since main effects are partially aliased 

with 2fi's. However, the partial aliasing can still result in a model that is estimable. 

In order to further distinguish between competing designs, the design with the largest 

PIC is selected. When the design is regular, dr, = 1 for all k = 1, . . . , m and in the 

case of non-regular designs dl, # 1. The non-regular design with the largest value of 

dk will be the design that most closely resembles a regular design. 

In order to extend PEC to RPDis, one must decide on a class of important mod- 

els. Although there are many possible choices for an important model, the selected 

model should allow for the estimation of control-by-noise interactions. Recall that the 
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control-by-noise interactions will be used to determine how to adjust the value of the 

control factors so that the process is robust to random variations in the noise factors. 

Therefore, any ranking criterion proposed by the experimenter, should incorporate 

this importance of control-by-noise interactions. 

One possible choice of important models is those that allow for the joint estimation 

of control main effects, noise main effects and control-by-noise interactions. Consider 

a n x (ml + m2) RPD with ml control factors and m2 noise factors, and let u ~ , , ~ ,  be 

the number of models that allow for the estimation of kl control main effects, k2 noise 

main effects and thirr kl x k2 associted control-by-noise interactions, and 

the corresponding proportion. 

appropriate ranking criterion. 

factors and 2 noise factors and 

The difficulty with this definition is deciding on an 

For example, consider a model containing 3 control 

an alternative model containing 2 control factors and 

3 noise factors. Both models have 1 + 2 + 3 + 6 = 12 parameters but represent different 

model choices. Investigating model differences at this level would be difficult. When 

no prior information on the process is available, the experimenter is looking for the 

design that will provide the most amount of information on all models of interest. 

Thus one possibility is to consider 
- 

where (7) = 1 and construct the sequence (pi,.  . . ,pml+m2 * ). That is, consider the 

proportion of all estimable models containing at least one control-by-noise interaction 

for a fixed number of main effects. In order to further distinguish between competing 

designs one could use the PIC as a secondary criterion. 

Although the above sequence tries to capture the models of interest, it may not 

provide enough information in some settings. For example, in many RPD's the exper- 

imenter is not only interested in estimating control-by-noise interactions, but would 

like some information on the control-by-control interactions as well. In order to accom- 

modate this concern, one could consider refining the search criterion by considering 
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the proportion of projections that allow for the estimation of the main effects and 

their associated 2fi1s provided that the model contains at least one control-by-noise 

interaction. That is let piltk2 be the number of models that allow for the estimation of 

kl control main effects, kz noise main effects, klkz control-by-noise interactions, (:) 
control- by-control interact ions and (2)  noise-by-noise interactions, and let 

In order to select a good RPD, one would first maximize the values of p i ,  then 

maximize the associated dk values and finally maximize the values of pi .  That is, 

we wish to find the most efficient design that allows for the estimation of all models 

containing control-by-noise interactions, and then from this set of designs select the 

design that provides the most amount of information about the other effects of interest. 

As seen in Chapter 3, the assignment of control and noise factors to the columns of 

the design can lead to RPD's with different properties. The same will be true for the 

definitions and the ranking criterion proposed here. Thus a complete treatment of 

the subject would require searching the complete catalog of non-isomorphic designs 

and trying every possible relabelling of control and noise factors. 

5.2 Larger-Scale Experiments and Non-ort hogonal 

Arrays. 

In this section, we briefly discuss a few results related to designing larger scale exper- 

iment s and finding non-ort hogonal arrays with good projection properties. In sect ion 

4.2, we discussed and implemented a search procedure for finding good designs with 

24 and 28 runs. In order to select good designs, one must start from the class of 

all non-isomorphic arrays. However, for larger scale experiments and non-orthogonal 

arrays the class of all non-isomorphic arrays is not readily available. Thus, we con- 

sider augmenting an already existing array with a set of additional runs to find good 

designs for larger-scale experiments. 
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Theorem 5.1 Let V be an n x m array with PEC sequence (pl,. . . , p,). If a set of 

k runs is added to V, the resulting (n + j )  x m array, V*, will have a PEC sequence 

(pT, . . . , P;) where p; > pk for all k = 1, . . . , m. 

Proof: Recall that if an n x m array X has rank r then any (n + j )  x m array X* 

that contains the n rows of X will have a rank that is greater than or equal to r .  

Consider design V and V*. Take any projection onto k factors, and construct the 

array with columns: all +lls, the k main effects and the associated (:) possible 2fi's 

between the k main effects, and call the resulting designs X and X*, where X* will 

always contain the runs in X .  If the rank of X is larger than r = 1 + k + (:) the 

model will be estimable. Therefore all estimable models from V will also be estimable 

from V*, since the rank of X* for any given projection will be larger than the rank of 

X.  If the rank of X is less than r, the model will not be estimable, however the rank 

of X* may be larger than r, thus implying that the number of estimable models from 

V* will be greater than or equal to the number of estimable models from V. Hence, 

pi > p k  for k = 1, . . . ,  m. 0 

The above theorem provides a justification for adding runs to an existing design to 

find designs with larger runs sizes. If the experimenter is not concerned with adding 

runs so that the resulting array is orthogonal, then any additional set of runs will 

allow more models to be estimated. For example, to find a 30-run two-level design 

with 24 factors, we could start with the best 28 x 24 run orthogonal array and add 

two additional runs. There are a total of 224 possible runs that could be added and 

hence (2r) possible sets of size two. In order to reduce the computation of searching 

all possible sets of size two, one could randomly select any two possible runs and 

compute the PEC. Repeating this a large number of times and selecting the design 

with largest PEC will result in a "good" design. 

Adding runs in an orthogonal manner is slightly more difficult. It may not be 

possible to add 4 runs to an existing orthogonal array so that resulting array is still 

orthogonal. However, if a set of orthogonal runs is added to the existing n x m 

design then the resulting (n + 4r) x m array will be orthogonal. One possible way to 

ensure the additional runs are orthogonal is to select the smallest r such that 4r > m. 
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This procedure will generally result in arrays with much larger run sizes, however the 

additional runs will always lead to an improvement of the PEG. 



Chapter 6 

Conclusion 

FFD's are commonly used in industrial and agricultural experiments to identify factors 

affecting a process or response. In many applications, the experimenter wishes to test a 

large number of main effects and still have the ability to detect two factor interactions. 

In these cases, non-regular designs often allow for the estimation of more models and 

have a smaller run size than the competing regular FFD's. The aim of this thesis 

was to study non-regular designs and show how they can be used in many practical 

situations as an alternative to regular FFD's. 

In review Chapter 2, FFD's were introduced as an alternative to full factorial 

designs. FFD's are employed in many situations since they have much smaller run 

sizes than the full factorial design. We demonstrated how the aliasing structure of 

a regular FFD can be used to rank designs via resolution and aberration. Next 

we considered non-regular FFD's and discussed how to rank these design. We saw 

that a non-regular design is not defined in terms of a set of defining relations and 

instead used the indicator function to characterize the properties of such designs. 

More specifically, we introduced generalized resolution, G-aberration and the relaxed 

version G2-aberration as possible methods for ranking non-regular designs. 

In Chapter 3, we considered a modification of the indicator function that allowed 

for the study of multi-factor non-regular designs. The indicator was then used as a 

tool to study RPD's. We showed how one could extend the notions of G- and Ga- 

aberration to rank non-regular FF RPD's. A theorem was presented that showed 
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how one could obtain the set of all non-isomorphic FF RPD's by considering every 

possible relabelling of control and noise factors to the columns of the designs in the 

set of non-isomorphic FFD's and thus build upon previous work on FFD's. Finally, 

tables of generalized MA FF RPD's were found for 12- and 16-run orthogonal arrays. 

In Chapter 4, the PEC sequence was introduced and used to rank non-regular 

designs. We considered how a simple search procedure could be implemented to find 

designs with larger run sizes. In particular, the search procedure was used to find a 

catalog of good designs for orthogonal arrays with 24 and 28 runs. In addition, we 

illustrated how one could find the percentage of estimable models for a regular design 

from the number of words of length three and four in the defining contrast subgroup. 

Finally, in Chapter 5 we discussed two topics for future research. First, we focused 

on possible ways of extending PEC to rank RPD's. We saw that this extension will 

depended on the types of models the experimenter wishes to estimate. We proposed 

one extension, where we select the most efficient designs that allow for the estimation 

of models containing all main effects and 2fi's from the set of designs that provide 

maximal information on models containing control main effects, noise main effects 

and control-by-noise interactions. Secondly, we showed how the PEC sequence could 

be used to find designs with large run sizes where no catalog of designs is readily 

available via adding additional runs. 



Appendix A 

Non-Regular MA FF RPD's 

A.l  12-run MA FF RPD's 

Table A.l:  G- and G2-Aberration* for 12-Run Designs Using Bingham-Sitter's Defi- 
nition 

s1 + s 2  Columns** 

1 + 6  (1) 
2 + 5  (1,2) 
3 + 4 (1,2,3) 
4 + 3  (4,5,7) 
5 + 2  (5,7) 
6 + 1 (7) 

1 + 7  (1) 
2 + 6  (1,7) 

3 + 5  (1,2,3) 
4 + 4  (1,2,3,6) 
5 + 3 (5,7,8) 
6 + 2  (6,8) 
7 + 1  (8) 

-- 

[(O, 0,21), (O,O, 351, (0,0,35), (O,O, 35), (0,5, O), (0,3,0)1 
* G- and G2-aberration designs are the same. 
**If s l  5 sa (sl > s2), the s l  control (s2 noise) factor columns are given. 
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**If sl 5 sz (sl > sz), the sl control (s2 noise) factor columns are given. 
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Table A.2: G- and G2-Aberration* for 12-Run Designs, Zhu's Defintion 

A.2 16 run MA FF RPDSs 

Table A.3: G- Aberration for 16-Run Designs Using Bingham and Sitter's Definition 

2 + 3 I(4,87 1,273) 
3 + 2 I(1, 2,4, 8,15) 
4 + 1 274,8715) 

1 + 5 I(8, 1,2,3,4,5) 
2 + 4 1(4,8,1,2,3,13) 
3 + 3 I(4,8,13, l ,  2,3) 
4 + 2 4 7 11) 
5 + 1 4 77 1 

[(O, 01, (0, O), (O,O), (LO)] 
[(O, 01, (O,O), (O,O), (LO)] 
[(O, O), (O,O), (O,O), (07 O), (1,O)I 
[(O, O), (O,O), (0, O), (27 O), (0, O), (LO)] 
[(O, O), (1, O), (0, O), (2' O), (0, O), (0,O)I 
[(O, O), (0, O), (1,0), (2, O), (0,0), (0,O)I 
[(O,O), (LO), (2,0), (0, O), (O,O), (0,O)I 
[(O, O), (0, O), (2, O), (1, O), (O,O), (0,O)I 

*The roman numeral indicates which of Hall's designs. The first sl listed columns 
are assigned to control factors and the remaining sa columns to noise factors. 
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(Table A.3 continued) 

sl + s2 Columns* 

1 + 6 1(8,1 ,2 ,3 ,4 ,5 ,6)  
2 + 5 1(8,14,1,2,3,4,5) 
3 + 4 I(1,2,4,7,8,11,13) 
4 + 3 I ( l , 2 , 4 , 8 , 7 , l l ,  13) 
5 + 2 1(1,2,4,7,8,11,13) 
6 + 1 1(1,2,4,7,8,11,13) 

1 + 7  1(8,1 ,2 ,3 ,4 ,5 ,6 ,7)  
2 + 6  111(1,10,2,4,7,8,12,14) 

3 + 5  1(1,2,4,7,8,11,13,14) 
4 + 4  1(1,2,4,8,7,11,13,14) 
5 + 3  1(1,2,4,7,8,11,13,14) 
6 + 2 111(2,4,7,8,12,14,1,10) 
7 + 1  1(1,2,4,7,8,11,13,14) 

1 + 8  11(8,1,2,3,4,5,6,7,12) 
2 + 7  11(8,12,1,2,3,4,5,6,7) 
3 + 6  11(8,11,12,1,2,4,5,6,7) 
4 + 5  11(8,11,12,15,1,2,4,5,6) 
5 + 4 11(4,5,8,10,12,6,7,9,11) 
6 + 3  11(1,2,4,5,6,7,8,11,12) 
7 + 2  11(1,2,3,4,5,6,7,8,12) 
8 + 1 11(4,5,6,7,8,9,10,12,11) 

1 + 9 I I I ( l O , l ,  2,3,4,5,8,9,12,13) 

2 + 8  111(8,10,1,2,3,4,5,6,7,12) 
3 + 7 111(8,10,12,1,2,3,4,5,6,7) 
4 + 6  11(8,11,12,15,1,2,4,5,6,7) 
5 + 5  IV(6,8,10,12,14,1,2,3,4,5) 
6 + 4  II(l,2,4,5,6,7,8,11,12,15) 
7 + 3  111(1,2,3,4,5,6,7,8,10,12) 
8 + 2  11(1,2,4,5,6,7,8,12,11,15) 
9 + 1 111(2,3,4,5,8,9,10,12,13,11) 
1 + 10 V(4,1,2,3,8,9,10,11,12,13,14) 
2 + 9  IV(10,12,1,2,3,4,5,6,7,8,9) 
3 + 8  V(8,9,10,1,2,3,4,5,6,7,12) 

4 + 7  V(8,9,10,12,1,2,3,4,5,6,7) 
5 + 6 111(8,9,10,11,12,2,3,4,5,6,7) 
6 + 5  III(2,3,4,5,6,7,8,9,10,11,12) 
7 + 4  111(1,2,3,4,5,6,7,8,10,12,14) 
8 + 3  V(1,2,3,4,5,6,7,8,9,10,12) 
9 + 2 I I I ( l , 2 ,4 ,8 ,9 , lO ,  11,12,13,7,14) 
10 + 1 V(1,2,4,8,9,10,11,12,13,14,7) 

1 + 11 V(4,1,2,3,8,9,10,11,12,13,14,15) 
2+10 V(8,12,1,2,3,4,5,6,7,9,10,11) 
3 + 9  IV(10,12,14,1,2,3,4,5,6,7,8,9) 
4 + 8  V(8,9,10,11,1,2,3,4,5,6,7,12) 
5 + 7  V(8,9,10,11,12,1,2,3,4,5,6,7) 
6 + 6 111(2,3,8,10,12,15,4,5,9,11,13,14) 
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(Table A.3 continued) 

sl + s2 Columns* 

7 4 5  V(1,2,3,4,5,6,7,8,9,10,11,12) 
8 + 4  V(1,2,3,4,5,6,7,12,8,9,10,11) 
9 + 3  IV(2,3,4,5,6,8,9,10,12,7,11,13) 
l O + 2  V(1,2,4,8,9,10,11,12,13,14,7,15) 
11 + 1 V(l ,  2,4,8,9,10,11,12,13,14,15,7) 
1 + 1 2  IV(12,1,2,3,4,5,6,7,8,9,10,11,14) 
2 + 1 1  IV(12,14,1,2,3,4,5,6,7,8,9,10,11) 
33.10 V(8,9,10,1,2,3,4,5,6,7,11,12,13) 
4 + 9  V(8,9,10,12,1,2,3,4,5,6,7,11,13) 
5 + 8  V(8,9,10,11,12,1,2,3,4,5,6,7,13) 
63-7  V(8,9,10,11,12,13,1,2,3,4,5,6,7) 
7 + 6  V(1,2,3,4,5,6,7,8,9,10,11,12,13) 
8 + 5  V(1,2,3,4,5,6,7,8,9,10,11,12,13) 
9 + 4  V(1,2,3,4,5,6,7,8,10,9,11,12,13) 
l 0 + 3  IV(2,3,4,5,6,8,9,10,12,14,7,11,13) 
1 1 + 2  IV(2,3,4,5,6,7,8,9,10,12,14,11,13) 
12 + 1 IV(2,3,4,5,6,7,8,9,10,11,12,14,13) 

1 + 1 3  IV(14,1,2,3,4,5,6,7,8,9,10,11,12,13) 
2  + 12 IV(2,4,3,5,6,7,8,9,lO, 11,12,13,14,15) 
3 + 1 1  V(8,9,10,1,2,3,4,5,6,7,11,12,13,14) 
4 + 1 0  V(8,9,10,12,1,2,3,4,5,6,7,11,13,14) 
5 + 9  V(8,9,10,11,12,1,2,3,4,5,6,7,13,14) 
6 + 8  V(8,9,10,11,12,13,1,2,3,4,5,6,7,14) 
7 + 7  V(8,9,10,11,12,13,14,1,2,3,4,5,6,7) 
8 + 6  V(1,2,3,4,5,6,7,8,9,10,11,12,13,14) 
9 + 5  V(1,2,3,4,5,6,7,8,9,10,11,12,13,14) 
10 + 4  IV(2,3,4,5,6,8,10,11,12,14,7,9,13,15) 
1 1 + 3  IV(2,3,4,5,6,7,8,9,10,12,14,11,13,15) 
12 + 2  IV(2,3,4,5,6,7,8,9,10,11,12,14,13,15) 
1 3 + 1  IV(2,3,4,5,6,7,8,9,10,11,12,13,14,15) 

1 + 1 4  V(8,1,2,3,4,5,6,7,9,10,11,12,13,14,15) 
2 + 1 3  V(8,9,1,2,3,4,5,6,7,10,11,12,13,14,15) 
3 + 1 2  V(8,9,10,1,2,3,4,5,6,7,11,12,13,14,15) 

4 + 1 1  V(8,9,10,12,1,2,3,4,5,6,7,11,13,14,15) 
5 + 1 0  V(8,9,10,11,12,1,2,3,4,5,6,7,13,14,15) 
6  + 9  V(8,9,10,11,12,13,1,2,3,4,5,6,7,14,15) 
7 + 8  V(8,9,10,11,12,13,14,1,2,3,4,5,6,7,15) 
8  + 7  V(8,9,10,11,12,13,14,15,1,2,3,4,5,6,7) 
9 + 6  V(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) 
l O + 5  V(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) 
1 1 + 4  V(1,2,3,4,5,6,7,8,9,10,12,11,13,14,15) 
1 2 + 3  V(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) 
1 3 + 2  V(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) 
1 4 + 1  V(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) 
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Table A.4: G- Aberration for 16 Run Designs, Zhu's Definition 

si + sz Columns* 

1+4 1(8,1,2,4,7) 
2 + 3 II(1,2,4,8,12) 
3 + 2 II(4,8,12,1,2) 
4 + 1 1(1,2,4,7,8) 
1 + 5 III(1,2,4,8,10,12) 
2 + 4 III(l,2,4,8,lO, 12) 
3 + 3 1(1,2,3,4,8,12) 
4 + 2 11(4,5,6,7,8,12) 
5 + 1 III(2,4,8,10,12,1) 
1 + 6 IV(1,2,4,6,8,10,12) 
2 + 5 IV(1,2,4,6,8,10,12) 
3 + 4 III(l,2,3,4,8,lO, 12) 
4 + 3 III(2,3,4,5,8,10,12) 
5 + 2 11(1,4,5,6,7,8,12) 
6 + 1 IV(2,4,6,8,10,12,1) 
1 + 7 III(10,1,2,4,7,8,12,14) 
2+6 III(1,10,2,4,7,8,12,14) 
3 + 5 111(1,2,4,7,8,10,12,14) 
4 + 4 III(1,2,4,10,7,8,12,14) 
5+3 III(1,2,4,7,10,8,12,14) 
6 + 2 111(2,4,7,8,12,14,1,10) 
7+1 . III(l,2,4,7,8,12,14,10) 
1+8 V(4,1,2,3,8,9,10,12,14) 
2+7 V(2,4,1,8,9,10,11,12,14) 
3+6 IV(1,2,3,4,6,8,10,12,14) 
4+5 V(1,2,4,7,8,9,10,11,12) 
5+4 III(1,2,3,4,5,8,10,12,15) 
6+3 III(2,3,4,5,6,7,8,10,12) 
7+2 II(1,2,3,4,5,6,7,8,12) 
8+1 V(1,2,3,8,9,10,12,14,4) 
1+9 V(4,1,2,3,8,9,10,11,12,14) 
2+8 V(1,2,4,8,9,10,11,12,13,14) 

3+7 V(1,2,3,4,8,9,10,12,13,15) 
4+6 V(1,2,4,7,8,9,10,11,12,13) 
5+5 V(1,2,3,4,5,8,9,10,12,15) 
6+4 III(2,3,4,5,6,7,8,10,12,15) 
7+3 111(1,2,3,4,5,6,7,8,10,12) 

8 + 2 III(1,2,3,4,5,6,7,8,10,12) 
9+1 V(1,2,3,8,9,10,11,12,14,4) 

RPD EWLP 

[(O, O), (0, O), (0, O), (0, O), (O,O), (L0)I 
[(O, 01, (O,O), (O,O), (0,411 
[(O, 01, (O,O), 
[(O, 01, (O,O), (O,O), (O,O), (L0)l 
KO, o), (0, o), (o,o), (0,s~ (0~0)~ (0,411 
[(O,O), (0,4), (O,O), (0,8), (O,O), (0,O)I 
[(O, 01, (0,01, (LO)? (2,O))I 
[(O, O), (0,4), (0,4), (0, O), (1, "))I 
[(O, O), (0, O), (O,% (O,O), (0741, (0,O)I 
[(O, O), (O,O), (O,O), (0,16), (O,O), (0,12)1 
KO, 01, (0,s~ (o,o), (0,16), (o,o), (0,411 
[(O, O), (0,8), (1, 01, (0,161, (O,O), (0,O)I 
[(O, 01, (0,16), (O,% (O,O), (LO))] 
[(O, 01, (0,8), (2,4), (O,O), (1,4), (0,O)I 
[(O, 01, (0, O), (0,16), (0,01, (0,12), (0,O)I 
[(O, 01, (O,O), (O,O), ( 0 , W  (O,O), (2,2411 
KO, o), (0, o), (o,o), (2,24), (0, o), (0,24)1 
[(O, 01, (0,101, (2,2), (0,24), (0, O), (0,1211 
KO, 01, (0,14), (1,8), (0,241, (0,O)I 
KO, o), (0~4)~ ( 0 , m  (o,o), (1,6), (O,O)I 
[(O, 01, (0, O), (2,24), (O,O), (0,241, (0,O)I 
[(O, 01, (0701, (0,121, (0, O), (2,24), (0,O)I 
[(O, 01, (0,4), (O,O), (1,361, (O,O), (1,4011 
[(O, 01, (0,24), (O,O), (0,36), (O,O), (3,24)1 
[(O, 01, (0,24), (1, O), (0,641, (O,O), (0,2411 
[(O, 01, (0,561, (0,241, (O,O), (1,0), (2,3211 
[(O, 01, (0,481, (2,321, (O,O), (1,161, (3,011 
[(O, 01, (0% 361, (4,241, (0, O), (3,24), (0,O)I 
[(O, 01, (0,161, (7,161, (0, O), (7,16), (0,011 
[(O, 41, (0, O), (l,36), (O,O), (1,40), (0,O)I 
[(O, O), (0,8), (O,O), (1,521, (0, O), (3, GO)] 
[(o, 01, (0,361, (O,O), (0,48), (0, O), (7,48)] 
[(o, 01, (0948), (1,0), (0,72), (0, O), (6,48)] 
[(O, 01, (0,84), (0,361, (O,O), (1, O), (6,96)] 
[(o, 01, (0,841, (2,48), (0, O), (1,24), (4, GO)] 
[(O, 01, (0,72) (4,4811 (0, O), (3,48), (7, O)] 
I(0, O), (0,481, (7,481, (0, O), (7,48), (0, O)] 
[(o, 8), (0,16), (7,40), (O,O), (7,481, (0,O)I 
[(0,8), (0, O), (1,52), (0, O), (3, GO), (0,O)I 
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(Table A .4 continued) 

sl + s2 Columns* 
l + 1 0  V(4,1,2,3,8,9,10,11,12,13,14) 

2 + 9 V(1,2,4,8,9,10,11,12,13,14,15) 
3 + 8  V(1,2,3,4,8,9,10,11,12,13,14) 
4 + 7  V(1,2,4,7,8,9,10,11,12,13,14) 

5 + 6  V(1,2,3,4,5,8,9,10,11,12,15) 

6 + 5  V(1,2,3,4,5,6,8,9,10,13,14) 
7 + 4  V(1,2,3,4,5,6,7,8,9,10,12) 
8 + 3  V(1,2,3,4,5,6,7,8,9,10,12) 
9 + 2  IV(1,2,3,4,5,6,7,8,9,10,12) 
lO+1 V(1,2,3,8,9,10,11,12,13,14,4) 

1 + 11 V(4,1,2,3,8,9,10,11,12,13,14,15) 

2 + 10 V(1,4,2,3,8,9,10,11,12,13,14,15) 
3 + 9  V(1,2,3,4,8,9,10,11,12,13,14,15) 
4 + 8  V(1,2,4,7,8,9,10,11,12,13,14,15) 
5 + 7  V(1,2,3,4,5,8,9,10,11,12,13,14) 
6 + 6  V(1,2,3,4,5,6,8,9,10,11,12,15) 
7 + 5  V(1,2,3,4,5,6,7,8,9,10,11,12) 
8 + 4  V(1,2,3,4,5,6,7,12,8,9,10,11) 
9 + 3  IV(1,2,3,4,5,6,7,8,9,10,12,14) 
lO+2 V(1,2,3,4,5,6,7,8,9,10,11,12) 

V(2,4,1,3,5,8,9 ,  lo, 11,12,13,14,15) 
V(1,2,3,4,5,8,9,10,11,12,13,14,15) 
IV(1,2,3,12,4,5,6,7,8,9,10,11,14) 
V(l,2,3,4,5,8,9,10,l1,12,13,14,15) 
V(1,2,3,4,5,6,8,9,10,11,12,13,14) 
V(1,2,3,4,5,6,7,8,9,10,11,12,13) 
V(1,2,3,4,5,6,7,8,9,10,11,12,13) 
V(l ,  2,3,4,5,6,7,8,10,9,11,12,13) 
V(1,2,3,4,5,6,7,8,9,10,11,12,13) 
IV(1,2,3,4,5,6,7,8,9,10,11,12,14) 
IV(1,2,3,4,5,6,7,8,9,10,11, 12,14) 
IV(14,1,2,3,4,5,6,7,8,9,10,11,12,13) 
IV(1,14,2,3,4,5,6,7,8,9,10,11,12,13) 
V(1,2,3,4,5,6,8,9,10,11,12,13,14,15) 
IV(1,2,3,14,4,5,6,7,8,9,10,11,12,13) 
IV(1,2,3,10,11,4,5,6,7,8,9,12,13,14) 
V(l ,2 ,3 ,4 ,5 ,6 ,8 ,9 ,  lo, 11,12,13,14,15) 
V(1,2,3,4,5,6,7,8,9,10,11,12,13,14) 
V ( l ,  2,3,4,5,6,7,8,9,10,11,12,13,14) 
V(1,2,3,4,5,6,7,8,9,10,11,12,13,14) 
V(l,2,3,4,5,6,7,8,9,10,11,12,13,14) 
V(l,2,3,4,5,6,7,8,9,10,12,11,13,14) 
IV(2,3,4,5,6,7,8,9,10,11,12,14, l lpt,  15) 
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(Table A.4 continued) 

sl + sz Columns* 



Appendix B 

Projection Estimation Capacity 

B. l  20-run MPEC Orthogonal Arrays 

Table B.l: 20-Run MPEC Designs 

Design 
6.1 
6.2 
6.3 
6.4 
6.5 
7.1 
7.2 
7.3 
7.4 
7.5 
Design 

p5 Runs/Had.20.k{Columns) 
1 {0,1,7,11,12,19,20,26,29,30,34,39,40,45,46,48,53,54,57,59} 
1 {0,1,6,11,12,19,21,26,28,31,34,39,41,45,46,48,53,54,56,59) 
1 1 {1,2,4,5,9,17} 
1 1 {I, 2,4,5,17,18} 
1 1 {1,2,3,4,6,10) 
1 1 {1,2,4,5,13,17,18} 
1 1 {1,2,4,6,8,10,19) 
0.952 1 {I, 2,4,5,10,11,16} 
0.952 1 {1,3,4,6,7,11,16} 
0.952 1 {1,2,3,5,11,16,18} 
. j, is the j best 20 x k Orthogonal array 
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(Table B .1 continued.) 

Design 
8.1 
8.2 

8.3 
8.4 
8.5 
9.1 
9.2 
9.3 
9.4 
9.5 
10.1 
10.2 
10.3 
10.4 
10.5 
11.1 
11.2 
11.3 
11.4 
11.5 
12.1 
12.2 
12.3 
12.4 
12.5 
13.1 
13.2 
13.3 
13.4 
13.5 
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(Table B. 1 continued.) 

Design 
14.1 
14.2 
14.3 
14.4 
14.5 
15.1 
15.2 
15.3 
15.4 
15.5 
16.1 
16.2 
16.3 
16.4 
16.5 
17.1 
17.2 
17.3 
17.4 
17.5 
18.1 
18.2 
18.3 
18.4 
18.5 
19.1 
19.2 
19.3 
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B.2 24-run PEC Orthogonal Arrays 

Table B.2: 24-run PEC designs, Top 20 Search 

:::4. (I, 0.948,0.394) 58{2,4,6; 13,14,15,16,17,19,20,21,22,23,24} 
(1,0.952,0.387) 58{2,4,5,13,14,15,16,17,18,19,20,21,22,23,24} 

15.2 (1,0.952,0.386) 58{2,4,6,13,14,15,16,17,18,19,20,21,22,23,24) 
15.3 (1,0.937,0.406) 58{2,4,5,7,13,14,15,16,17,18,19,20,21,22,24) 

16.1 (1,0.940,0.402) 58{2,4,5,7,13,14,15,16,17,18,19,20,21,22,23,24} 
(1,0.940,0.401) 58{2,4,6,7,13,14,15,16,17,18,19,20,21,22,23,24} 

16.3 ( (l,O.94O,O.4Ol) 58{2,4,5,6,l3,l4,l5,l6,l7,l8,l9,2O, 21,22,23,24) 
Design k . j ,  is the j best 24 x k Orthogonal array, found using the search method. 
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(Table B.2 continued.) 

Table B.3: 24-run PEC designs, Top 40 Search 

Design 
17.1 

17.2 

17.3 

18.1 
18.2 

18.3 

19.1 

19.2 

19.3 

20.1 

20.2 

20.3 

21.1 
21.2 

21.3 

22.1 
22.2 

22.3 

23.1 
23.2 

23.3 

( ~ 4 ,  ~ 5 ,  p6) Had.24. k{Columns} 

(1,0.932,0.407) 58{2,4,5,6,7,13,14,15,16,17,18,19,20,21,22,23,24} 
(1,0.932,0.406) 58{2,3,4,5,6,13,14,15,16,17,18,19,20,21,22,~~~ 24) 

(1,0.932,0.406) 58{2,3,4,6,7,13,14,15,16,17,18,19,20,21,22,~~,~~} 
(1,0.928,0.408) 58{2,4,5,6,7,9,13,14,15,16,17,18,19,20,21,22,232~} 
(1,0.928,0.408) 58{2,3,4,5,6,7,13,14,15,16,17,18,19,20,21,22,2324} 

(1,0.928,0.408) 58{2,3,4,6,7,9,13,14,15,16,17,18,19,20,21,22,23,24} 
(1,0.925,0.409) 58{2,3,4,5,6,7,9,13,14,15,16,17,18,19,20,21,22,23,24} 

(1,0.925,0.408) 58{2,3,4,5,6,7,8,13,14,15,16,17,18,19,20,21,22,23,24} 
(1,0.925,0.408) 58{2,3,5,6,7,8,10,13,14,15,16,17,18,19,20,21,22,23,24} 
(1,0.923,0.408) 58{2,3,4,5,6,7,8,9,13,14,15,16,17,18,19,20,21,22,23,24} 
(1,0.923,0.408) 58{2,3,4,5,6,7,8,10,13,14,15,16,17,18,19,20,21,22,23,24} 
(1,0.921, 0.406) 58{2,3,4,5,6,7,8,9,10,13,14,15,16,17,18,19,20,21,22,23} 

(1,0.922,0.407) 58{2,3,4,5,6,7,8,9,10,13,14,15,16,17,18,19,20,21,22,23,24} 
(1,0.919, 0.402) 58{2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23} 
(1,0.915,0.394) 58{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22} 
(1,0.920,0.404) 58{2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24} 
(1,0.917,0.398) 58{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23} 
(1,0.902,0.439) 60{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23} 
(1,0.919,0.401) 58 
(1,0.902,0.439) 60 

(0.997,0.940,0.549) 57 

Design 
8.1 
8.2 
8.3 
9.1 
9.2 
9.3 

10.1 
10.2 
10.3 

( ~ 4 ,  P5 7 ~ 6 )  Had.24.k{Columns) 
(1,1,0.786) 58{2,3,13,16,17,19,20,23) 
(1,1,0.786) 58{2,5,8,9,14,17,20,23) 
(1,1,0.786) 58{3,5,6,9,13,14,16,22} 

(1,1,0.667) 58{3,5,6,7,13,16,17,18,22) 
(1,1,0.000) 58{13,14,15,16,17,18,19, 20,211 
(1,0.992,0.655) 58{2,3,13,14,16,17,19,20,23) 
(1,1,0.000) 58{13,14,15,16,17,18,19,20,21,22) 
(1,0.996,0.619) 58{3,5,6,7,8,13,16,17,18,22) 
(1,0.988,0.362) 58{2,13,14,15,16,17,18,19,20,21) 

Designs with different PEC than those found using the top 20 
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Table B.4: 24-run PEC designs, 3p4 + 2p5 + p 6  Weighted Average Search 

Design 

6.1 
6.2 
6.3 

7.1 
7.2 
7.3 

8.1 
8.2 
8.3 

9.1 
9.2 
9.3 
10.1 
10.2 
10.3 

11.1 
11.2 
11.3 

12.1 
12.2 
12.3 

13.1 
13.2 
13.3 

14.1 
14.2 
14.3 

15.1 
15.2 
15.3 

16.1 
16.2 

16.3 
17.1 
17.2 
17.3 

18.1 
18.2 
18.3 

Design 

( ~ 4  P5 , ~6 ) Had.24. k{Columns) 

(1, 1,l.OOO) 52{5,6,8,10,11,15) 
(1, 1,l.OOO) 52{5,6,8,10,11,20) 
(1, 1,l.OOO) 52{5,6,8,10,15,20) 

(1, 1,l.OOO) 52{5,6,8,lO,ll, 15,201 
(1, 1,l.OOO) 52{5,6,8,10,11,15,24} 
(1, 1,l.OOO) 52{5,6,8,lO,ll, 20,241 

(1,1,0.929) 52{5,6,8,10,11,15,20,24) 
(1,1,0.929) 52{2,6,8,10,12,15,19,24} 
(1,1,0.929) 52{4,5,7,8,11,20,23,24) 

(1,0.992,0.845) 52{5,6,8,10,11,15,20,23,24) 
(1,0.992,0.845) 52{2,6,8,10,12,15,19,20,24) 
(1,0.992,0.845) 52{4,5,7,8,11,19,20,23,24} 
(1,0.984,0.786) 52{5,6,8,10,11,15,19,20,23,24} 
(1,0.984,0.786) 52{2,6,8,10,12,15,19,20,23,24) 
(1,0.984,0.786) 52{4,5,7,8,11,15,19,20,23,24) 

(1,0.978,0.708) 52{5,6,8,10,11,15,16,19,20,23,24} 
(1,0.978,0.708) 52{2,6,8,10,12,15,17,19,20,23,24) 
(1,0.978,0.708) 52{4,5,7,8,11,15,19,20,21,23,24) 
(1,0.974,0.689) 52{2,5,6,8,10,11,15,16,19,20,23,24) 
(1,0.974,0.689) 52{2,6,7,8,10,12,15,17,19,20,23,24) 
(1,0.974,0.689) 52{4,5,7,8,10,11,15,19,20,21,23,24} 
(1,0.970,0.677) 52{2,5,6,7,8,10,11,15,16,19,20,23,24) 

(1,0.970, 0.677) 52{2,6,7,8,10,11,12,15,17,19,20,23,24) 
(1,0.970,0.677) 52{2,4,5,7,8,10,11,15,19,20,21,23,24) 
(1,0.966,0.658) 52{2,5,6,7,8,10,11,15,16,17,19,20,23,24) 
(1,0.966,0.658) 52{2,6,7,8, lo, 11,12,15,17,18,19,20,23,24} 
(1,0.966,0.658) 52{2,4,5,7,8,10,11,15,16,19,20,21,23,24) 
(0.999,0.960,0.649) 52{2,5,6,7,8,10,11,15,16,17,18,19,20,23,24) 
(O.999,0.960,0.649) 52{2,6,7,8,lO, 11,12,15,17,18,19,20,22,23,24} 
(0.999,0.960,0.649) 52{2,4,5,7,8,10,11,15,16,17,19,20,21,23,24} 
(0.999,0.959,0.634) 52{2,5,6,7,8,10,11,12,15,16,17,18,19,20,23,24} 
(0.999,0.959,0.634) 52{2,6,7,8,9,10,11,12,15,17,18,19,20,22,23,24} 
(0.999,0.959,0.634) 52{2,4,5,6,7,8,10,11,15,16,17,19,20,21,23,24} 

(0.999,0.956,0.626) 52{2,4,5,6,7,8,10,11,12,15,16,17,18,19,20,23,24} 

(0.999,0.956,0.626) 52{2,5,6,7,8,9,10,11,12,15,17,18,19,20,22,23,24} 
(0.999,0.956,0.626) 52{2,4,5,6,7,8,9,10,11,15,16,17,19,20,21,23,24} 

(0.999,0.954,0.617) 52{2,4,5,6,7,8,10,11,12,15,16,17,18,19,20,2~, 23,241 
(0.999,0.954,0.617) 52{2,5,6,7,8,9,10,11,12,15,16,17,18,19,20,22,23,24} 
(0.999,0.954,0.617) 52{2,4,5,6,7,8,9,10,11,15,16,17,19,20,21,22,23,24} 

k.j, is the j best 24 x Ic Orthogonal array, found using the search method. 
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Table B.5: 24-run PEC designs, Maximizing (p6, p5, p4) 

(Table B .4 continued) 

Design 

6.1 
6.2 

6.3 

7.1 
7.2 
7.3 

8.1 
8.2 
8.3 

9.1 
9.2 
9.3 

10.1 
10.2 
10.3 

11.1 
11.2 
11.3 

12.1 
12.2 
12.3 

13.1 
13.2 
13.3 

Design 

( ~ 4 ,  ~ 5 ,  ~ 6 )  Had.24.k{Columns) 
(1, 1,l.OOO) 42{4,5,8,9,20,23) 
( l , l ,  1.000) 42{3,14,18,20,21,23) 
(1, 1,l.OOO) 42{4,8,11,16,20,21} 

(1, I ,  1.000) 42{4,5,8,9,16,20,23) 
(1, 1,l.OOO) 42{4,5,8,9,14,16,20) 
(1, 1,l.OOO) 42{3,5,14,18,20,21,23} 

(1,1,0.964) 42{4,8,9,11,16,18,20,21} 
(1,1,0.964) 42{3,4,5,14,18,20,21,23) 
(1,1,0.964) 42{4,8,11,13,16,19,20,21) 

(1, 1,0.881) 42{4,5,8,9,11,19,20,21,23) 
(1,1,0.869) 42{3,4,5,9,14,18,20,21,23) 
(1,1,0.869) 42{2,3,5,8,9,14,16,20,23} 
(1,0.988,0.814) 42{3,4,5,9,14,18,19,20,21,23} 
(1,0.988,0.800) 42{4,5,6,8,11,13,16,19,20,21) 
(1,1,0.795) 42{3,4,5,9,13,14,18,20,21,23) 
(0.996,0.976,0.753) 42{3,4,5,9,13,14,18,19,20,21,23) 
(0.996,0.971,0.753) 42{3,4,5,8,9,14,18,19,20,21,23) 
(1,0.982,0.747) 42{3,4,5,8,9,11,18,19,20,21,23) 

(0.993,0.957,0.705) 42{3,4,5,8,9,13,14,18,19,20,21,23) 
(0.997,0.959,0.703) 42{2,3,4,5,8,9,14,18,19,20,21,23) 
(0.997,0.965,0.702) 42{4,5,6,11,13,14,16,17,19,20,21,23} 

(0.998,0.962,0.674) 42{2,3,4,5,8,9,14,16,18,19,20,21,23) 
(1,0.967,0.670) 42{2,3,4,5,8,9,14,16,17,18,20,21,23) 
(0.998,0.961,0.670) 42{4,5,6,8,11,13,14,16,17,19,20,21,23) 

k.j, is the j best 24 x k Orthogonal array, found using the search method. 
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(Table B.5 continued.) 

Design 
14.1 
14.2 
14.3 

15.1 
15.2 
15.3 

16.1 
16.2 
16.3 

17.1 
17.2 
17.3 

18.1 
18.2 
18.3 

19.1 
19.2 
19.3 

20.1 
20.2 
20.3 

21.1 
21.2 
21.3 

22.1 
22.2 
22.3 

23.1 
23.2 
23.3 
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B.3 28-Run PEC Orthogonal Arrays 

Table B.6: 28-run PEC designs, Top 20 search 

Design I ( p 5 ,  p s )  Had.28.k{Columns) 
6.1 1 (1,l.OOO) 487{3,7,10,13,14,22) 

16.3 ( (1,0.982) 487{2,3,5,7,9,10,11,12,13,14,15,18,19,21,22,24} 
Design k. j ,  is the j best 28 x k Orthogonal array, found using the search method. 
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(Table B .6 continued.) 

Design 
17.1 
17.2 
17.3 

18.1 
18.2 
18.3 

19.1 
19.2 
19.3 

20.1 
20.2 
20.3 

21.1 
21.2 
21.3 

22.1 
22.2 
22.3 

23.1 
23.2 
23.3 

24.1 
24.2 
24.3 

25.1 
25.2 
25.3 

26.1 
26.2 
26.3 

27.1 

( ~ 5 ,  p6) Had.28.k{Columns} 

(1,0.980) 487{2,3,5,7,8,9,10,11,12,13,14,15,18,19,21,22,24} 
(1,0.980) 487{2,3,4,5,7,8,9,10,11,12,13,14,15,17,21,22,24} 
(1,0.979) 487{2,3,5,7,8,9,10,11,12,13,14,15,18,19,21,22,23} 

(1,0.979) 487{2,3,4,5,7,8,9,10,11,12,13,14,15,17,19,21,22,24} 
(1,0.978) 487{2,3,5,6,7,9,10,11,12,13,14,15,17,18,21,22,23,24} 
(1,0.978) 487{2,3,5,7,8,9,l0,11,12,13,14,15,18,19,21,22,23,24} 

(1,0.977) 487{2,3,5,6,7,8,9,10,11,12,13,14,15,17,18,21,22,23,24} 
(1,0.977) 487{2,3,4,5,6,7,8,9,10,11,12,13,14,17,18,20,23,24,26} 
(1,0.977) 487{2,3,5,7,8,9,10,11,12,13,14,15,17,18,19,21,22,23,24} 

(1,0.976) 487{2,3,4,5,6,7,8,9,10,11,12,13,14,17,18,19,20,23,24,26} 
(1,0.976) 487{2,3,5,6,7,8,9,10,11,12,13,14,15,17,18,19,21,22,24,26} 
(1,0.976) 487{2,3,5,6,7,8,9,10,11,12,13,14,15,17,18,19,21,22,23,24} 

(1,0.975) 487{2,3,5,6,7,8,9, lo, 11,12,13,14,15,17,18,19,21,22,23,24,26} 

(1,0.975) 487{2,3,4,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,23,24,26} 
(1,0.975) 487{2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,19,21,22,23,24,26} 

(1,0.974) 487{2,3,4,5,6,7,8,9,10,11,12,13,14,17,18,19,20,21,22,23,24,25} 

(1,0.974) 487{2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,21,22,23,24,26} 
(1,0.974) 487{2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,21,22,23,24,25} 
(1,0.974) 487{2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25} 

(1,0.974) 487{2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,26} 
(1,0.974) 487{2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,20,21,22,23,24,25,26} 
(1,0.974) 487{2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26} 
(1,0.974) 487{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26} 
(1,0.974) 487{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25} 
(1,0.974) 487 {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26} 
(0.999,0.983) 376{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,25,26,27} 
(0.999,0.983) 376{2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27} 
(1,0.974) 487 {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27} 

(0.999,0.983) 376{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27) 
(0.999,0.983) 480{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27} 
(1,0.974) 487 
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Table B.7: 28-run PEC designs, Maximizing (p6, p5) 

Design 

6.1 
6.2 
6.3 

7.1 
7.2 
7.3 

8.1 
8.2 
8.3 

9.1 
9.2 
9.3 

10.1 
10.2 
10.3 

11.1 

11.2 
11.3 

12.1 
12.2 
12.3 

13.1 
13.2 
13.3 
14.1 
14.2 
14.3 

15.1 
15.2 
15.3 

16.1 
16.2 
16.3 

17.1 
17.2 
17.3 

Design 
(1,0.993) 376{2,3,4,5,6,7,10,11,14,19,20,21,22,23,24,25,27} 
i ,  is the j best 28 x k Orthogonal array, found using the search method. 
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(Table B.7 continued.) 
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