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ABSTRACT 

One major goal of research on Natural Language Processing (NLP) is to process 

and understand multiple languages. There is arguably a close link between understanding 

language and the hierarchical analysis of linguistic utterances or sentences. To achieve 

this goal, much research in NLP has focused on an intermediate task, text chunktng, 

which is the task of finding non-recursive phrases in a given sentence of natural language 

text. Most of the successful text chunking methods proposed in the last decade have been 

achieved using machine learning techniques. 

Recent research shows the combination approach, using simple majority voting or 

more complex techniques like boosting, is more successful than a single learning model. 

Voting can be in terms of system combination or data representation (DR) combination. 

In this project, we consider the hypothesis that voting between multiple data 

representations can be more accurate than voting between multiple learning models. To 

show the power of the data representation combination, we present that a simple learning 

method, in our case a simple trigram Hidden Markov Model (HMM), combined with DR 

voting techniques can achieve a result better than the best on the CoNLL-2000 text 

chunking data set. Without using any additional knowledge sources, we achieved 94.01 

FpZ1 score for arbitrary phrase identification which is equal to previous best comparable 

score of 93.91 and 95.23 FB=1 score for Base NP phrase identification which is better 

than the current comparable state-of-the-art score of 94.22. In addition, our chunker is 



considerably faster and simpler than comparably accurate methods in training as well as 

decoding. 
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CHAPTER ONE: 
INTRODUCTION 

1.1 Motivation 

A major goal of research on Natural Language Processing (NLP) is to process and 

understand multiple languages. However, not all NLP applications require a complete 

syntactic analysis. A full parse often provides more information than needed and 

sometimes less. For example, in Information Retrieval, it may be enough to find simple 

noun phrases and verb phrases. In Information Extraction, Language Summarization, and 

Question Answering, researchers are only interested in information about some specific 

syntactic or semantic relations such as agent, object, location, time, etc (basically, who 

did what to whom, when, where and why), rather than elaborate hierarchical or recursive 

syntactic analyses. The CoNLL-2003 shared task, for example, is only interested in 

persons, locations, organizations, and other entities. E.g.: 

[U.N.-ORG] [official-0] [Ekeus-PER] [heads-0] [for-0] [Baghdad-LOCI. 

In above example, there are four Name Entity Recognition (NER) tags. Tag ORG 

is for organizations; Tag PER is for persons; Tag LOC is for locations; and Tag 0 is for 

others we are not interested in. 

To achieve above goals, much research in NLP has focused on intermediate tasks 

that make sense of some of the structure inherent in language without requiring complete 

understanding. 



1.2 Shallow Parsing 

Shallow parsing, the task of recovering only a limited amount of syntactic 

information from natural language sentences - has proved to be a useful technology for 

written and spoken language domains. For example, within the Verbmobil project, 

shallow parsers were used to add robustness to a large speech-to-speech translation 

system [Wahoo]. Shallow parsers are also typically used to reduce the search space for 

full-blown, 'deep' parsers [Co196]. Yet another application of shallow parsing is 

question-answering on the World Wide Web, where there is a need to efficiently process 

large quantities of (potentially) ill-formed documents [BDOI] [SL99]. More generally all 

text mining applications can be viewed as applications of shallow parsing, e.g. from 

biology and health literature [SPT98] [HOA+02]. 

Due to the fact that the phrases are assumed to be non-overlapping, the phrase 

boundaries can be treated as labels, one per word in the input sentence, and sequence 

learning or sequence prediction techniques such as the viterbi algorithm can be used to 

find the most likely sequence of such labels. Hence, we can consider shallow parsing as a 

sequence learning task. 

Sequence learning is simply defined as assigning a sequence of classes to some 

given sequences. The following well-known tasks are considered sequence learning tasks. 

o Part-of-Speech tagging 

o Chunking 

o Name Entity Recognition 

o Word Segmentation 



For example, in Chinese, there is no space between words. To parse this Chinese 

sentence, we have to identify the boundaries between words. The technique developed to 

deal with this problem is called Chinese word segmentation. We can treat Chinese word 

segmentation as a sequence learning problem by tagging each Chinese character with a 

certain symbol to show its word boundary. The following sentence is the example result 

after segmentation, where symbol B is for the beginning of a Chinese word and symbol I 

is for the rest character within a Chinese word. 

+ @+€!Y+8i%fit$%$%i8@X&%BZ 
China 's open border cities marked economic achievements 

Figure 1 Example of Chinese word segmentation. 

1.2.1 Part-of-Speech (PoS) Tagging 

Part-of-speech (PoS) tagging, or simply tagging, is the task of labelling (or 

tagging) each word in a sentence with its appropriate part of speech. E.g.: 

[He-PRP] [closes-VBZ] [the-DT] [door-NN]. 

Data-driven PoS tagging has benefited a lot from machine learning techniques, 

i.e. the annotation of words with the contextually appropriate PoS tags, often including 

morphological features. The main advantage with data-driven PoS taggers is that they are 

language and tag set independent and thereby methods are easily applicable to new 

languages and domains [Meg02]. The average accuracy reported for state-of-the-art data- 

driven PoS taggers lies between 95% and 98% depending on the corpus and language. 

However, it is important to realize that this impressive accuracy figure is not quite as 



good as it looks, because it is evaluated on a per-word basis. For instance, in many genres 

such as newspapers, the average sentence is over twenty words, and on such sentences, 

even with a tagging accuracy of 96%, this means that there will be on average over one 

tagging error per sentence. Even though it is limited, the information we get from tagging 

can be quite useful. For example, tagging results can be used to solve shallow parsing 

tasks. 

1.2.2 Text Chunking 

In the past years, some attempts have been made to build data-driven shallow 

parsers. The main goal of the data-driven shallow parsers is, above all, to find the phrase 

structure of the sentence. As a first step in building corpus-based parsers, a considerable 

amount of research has been carried out to find syntactically related non-overlapping 

groups of words, so-called chunks. A chunk is a major phrase category consisting of the 

phrasal head and its modifiers on the left hand side. The example below illustrates three 

different chunk types NP (noun phrase), VP (verb phrase) and PP (prepositional phrase) 

for the sentence "He reckons the current account deficit will narrow to only $1.8 billion 

in September." 

[He-IN] [reckons-VP] [the current account deficit-NP] [will narrow-VP] 

[to-PP] [only $1.8 billion-W] [in-PP] [September-NP] . 

Text chunlung was suggested as a pre-processing step of a parser by [Abn91]. Ten 

years later, most statistical parsers contained a chunking phase (e.g. [Rat98]). 

Text chunking is defined as given the words and their morphosyntactic class, 

decide which words can be grouped as chunks (noun phrases, verb phrases, complete 



clauses, etc). The goal of text chunking is to divide each sentence of a given text into 

non-overlap syntactic units. Text chunking can help solve many NLP tasks, such as 

information extraction, text summarization and spoken language understanding. 

The chunking task is divided into two subtasks: finding only noun phrases (Base 

NP chunking or Noun Phrase Chunking) and identifying arbitrary chunks (Text Chunking 

or Arbitrary Phrase Chunking). 

Machine learning approaches towards noun phrase chunking started with work by 

[Chu88] who used bracket frequencies associated with POS tags for finding noun phrase 

boundaries in text. In an influential paper about chunking, [RM95] show that chunking 

can be regarded as a tagging task. Even more importantly, the authors propose a training 

and test data set that is still being used for comparing different text chunking methods. 

These data sets were extracted from the Wall Street Journal part of the Penn Treebank I1 

corpus (Marcus et al., 1993). Sections 15-18 are used as training data and section 20 as 

test data. The Penn Treebank Project annotates naturally-occuring text for linguistic 

structure. Most notably, they produce skeletal parses showing rough syntactic and 

semantic information -- a bank of linguistic trees. They also annotate text with part-of- 

speech tags [San90]. The Treebank bracketing style is designed to allow the extraction of 

simple predicatelargument structure. Over one million words of text are provided with 

this bracketing applied. In principle, the noun phrase chunks present in the material are 

noun phrases that do not include other phrases, with initial material (determiners, 

adjectives, etc.) up to the head but without post-modifying phrases (prepositional phrases 

or clauses) [RM95]. 



The noun phrase chunking data produced by [RM95] contains a couple of 

nontrivial features. First, unlike in the Penn Treebank, possessives between two noun 

phrases have been attached to the second noun phrase rather than the first. An example in 

which round brackets mark chunk boundaries: 

( Nigel Lawson ) ( 's  restated commitment ): the possessive 's has been moved 

from Nigel Lawson to restated commitment. 

Second, Treebank annotation may result in unexpected noun phrase annotations: 

British Chancellor of ( the Exchequer ) Nigel Lawson in which only one noun chunk has 

been marked. The problem here is that neither British Chancellor nor Nigel Lawson has 

been annotated as separate noun phrases in the Treebank. Both British . . . Exchequer and 

British ... Lawson are annotated as separate noun phrases in the Treebank. But these 

phrases could not be used as noun chunks because they contain the smaller noun phrase 

the Exchequer. 

The major researches of data-driven text chunking have been directed to 

recognize base NP chunks (e.g. [Chu88], [CP98], [SB98]) and detect other chunk types 

(e.g. [RM95], [ADK98], [Bra99], [BVD99], [Vee99], [OsbOO], [Megola], [MP02], 

[TKS02], [KMOI], and [ZDJ02]). The first area is focused on recognition methods for 

simple, non-recursive noun phrases. These phrases play an important role in many 

application areas, such as information retrieval, information extraction and question 

answering. The latter pays attention to develop promising methods to detect other chunk 

types, such as prepositional phrases (PP), adverb phrases (ADVP), adjective phrases 

(ADJP) and verb phrases (VP). In general, researchers put their most energy on 

combining linguistic information (e.g. Lexical information) with chunk detection 



methods, extending studies to deal with various language corpora, and applying different 

learning methods (e.g. Rule-based learning, Transformation-based Learning, Memory- 

based Learning, Hidden Markov Models, Maximum Entropy, Support Vector Machines, 

Winnow, etc.). 

1.3 Project Contribution 

In this project, we consider the hypothesis that voting between multiple data 

representations can be more accurate than voting between multiple learning models. The 

main contribution of this paper is that a single learning method, in our case a simple 

trigram Hidden Markov Model can use voting between multiple data representations to 

obtain results equal to the best on the CoNLL-2000 text chunking data set. Using no 

additional knowledge sources, we achieved 94.01 FBz1 score for arbitrary phrase 

identification compared to the previous comparable best score of 93.91 [KMOl]. The 

highest score reported on this data set is 94.17 [ZDJ02], but this result used a full-fledged 

parser as an additional knowledge source. Without the parser, the result obtained was 

93.57. There have been over 30 publications with different methods on this CoNLL-2000 

data set with result from 77.07 to 94.17. It is therefore a very competitive data set with 

small significant difference likely to have an impact on many sequence learning 

problems. In addition, we achieved 95.23 Fp=, score for Base NP phrase identification 

compare to the previous comparable best score of 94.22 [KMOl]. By the paired 

McNemar test, we showed our result is significantly different from [KMOl] on this task. 

Based on our empirical results, we show that choosing the right representation (or 

the types of features used) can be a very powerful alternative in sequence prediction, 

even when used with relatively simple machine learning methods. 



1.4 Project Organization 

The remainder of this project is organized as follows: Chapter 2, gives an 

overview of the CoNLL-2000 (Conference of Natural Language Learning 2000) shared 

task for data-driven text chunking. Chapter 3, describes some important concepts related 

in this study. Chapter 4, presents the combined chunking approach. Chapter 5, describes 

the experiments on various lexical features and combinations. Chapter 6, concludes the 

project. Chapter 7, draws out the implications for the future work. 



CHAPTER TWO: 
OVERVIEW OF CONLL-2000 SHARED TASK 

2.1 Task Background 

The early idea of chunking is initially described by Arvin Joshi in 1957. He first 

developed a parser by using chunking technique. Later on in 1990's, chunking was, 

again, recognized as an important intermediate approach toward a full parsing. Lance 

Ramshaw and Mitch Marcus have approached chunking by using a machine learning 

method [RM95]. Their work has inspired many others to study the application of learning 

methods to noun phrase chunking. Other chunk types are considered less useful than NP 

chunks. The most complete work is [BVD99] which presents results for NP, VP, PP, 

ADJP and ADVP chunks. [Vee99] works with NP, VP and PP chunks. [RM95] have 

recognized arbitrary chunks but classified every non-NP chunk as a VP chunk. The 

CoNLL-2000 shared task attempts to fill this gap [CoN03] [NP02]. 

2.2 Dataset 

The CoNLL-2000 dataset for this task is available online [CoN03]. This dataset 

consists of the same partitions of the Wall Street Journal corpus (WSJ) as the widely used 

data for noun phrase chunking: sections 15-18 as training data (211727 tokens) and 

section 20 as test data (47377 tokens). The annotation of the data has been derived from 

the WSJ corpus by a program written by Sabine Buchholz from Tilburg University, The 

Netherlands. 



The training and test data consist of three columns separated by spaces. Each 

word has been put on a separate line and there is an empty line after each sentence. The 

first column contains the current word, the second its part-of-speech tag as derived by the 

Brill tagger and the third its chunk tag as derived from the WSJ corpus. The chunk tags 

contain the name of the chunk type, for example I-NP for noun phrase words and I-VP 

for verb phrase words. Most chunk types have two types of chunk tags, B-CHUNK for 

the first word of the chunk and I-CHUNK for each other word in the chunk. This chunk 

representation is in IOB2 format. We will describe it in detail in Section 3.2. Here is an 

example of the file format: 

Word 
He 
Reckons 
The 
Current 
Account 
Deficit 
Will 
Narrow 

Table 1 PoS and chunk tagging example. 

PoS Tag [Sang01 
PRP 
VBZ 

To 
Only 
# 
1.8 
Billion 
In 
September 

2.3 Performance Evaluation Metric 

The performance on this task is measured with three rates. First, the percentage of 

Chunk Tag 
B-NP 
B-VP 

DT 
JJ 
NN 
NN 
MD 
VB 

detected phrases that are correct - Precision. Second, the percentage of phrases in the data 

- - 

B-NP 
I-NP 
I-NP 
I-VP 
B-VP 
1-VP 

TO 
RB 
# 
CD 
CD 
IN 
NNP 

that were found by the chunker - Recall. And third, the Fp=, rate which is equal to 

- . -  

B -PP 
B-NP 
I-NP 
I-NP 
I-NP 
B -PP 
B-NP 



(P2  + 1) x precision x recall 
with P=1 [Rij75]. The latter rate has been used as the target 

recall + P2 x precision 

for optimization. 

2.4 Chunk Types 

The chunk types are based on the syntactic category part of the bracket label in 

the Treebank (cf. [BFK+95] p.35). Roughly, a chunk contains everything to the left of 

and including the syntactic head of the constituent of the same name. Some Treebank 

constituents do not have related chunks. The head of S (simple declarative clause) for 

example is normally thought to be the verb, but as the verb is already part of the VP 

chunk, no S chunk exists in our example sentence. Besides the head, a chunk also 

contains pre-modifies (like determiners and adjectives in NPs), but no post-modifiers or 

arguments. This is why the PP chunk only contains the preposition, and not the argument 

NP, and the SBAR chunk consists of only the complementizer [SBOO]. 

2.5 Approach Summary 

[SBOO] divided the systems that have been applied to the CoNLL-2000 shared 

task into four groups: 

o Rule-based systems: derive a set of rules (or regular expressions), from the 

training data, which corresponds to chunking decisions to be made. 

o Memory-based systems: classify data based on their similarity to data that 

they have seen earlier. (e.g. MBL) 

o Statistical systems: apply various machine learning models to make the 

chunking decision. (e.g. HMM, ME, Winnow, and SVM) 



o Combined systems: apply more than one technique to make chunking 

decision. 

Recent research shows many state-of-the-art works are focused on including more 

features (e.g. position features between words orland tags) to train a discriminative model 

(e.g. SVM and Winnow) rather than to train a generative model (e.g. traditional HMM). 

This change leads to the big improvement of chunking accuracy. The representative of 

this approach is [KMOl] and [ZDJ02]. The common part of these approaches is that they 

all treat sequence learning problem as a classification task and involves more features. 

The difference is that [KMOl] proposed to train eight different SVM classifiers, two for 

each InsideIOutside representation (forward and backward parsing), then vote among 

their results. They achieved 93.91 Fp=, score. However, [ZDJ02] applied generalized 

Winnow with enhanced features in the training process. With the enhanced feature, they 

achieved 94.17 Fp=, score, while without the enhanced feature, they obtained 93.57 Fp=, 

score. These enhanced features are based on English Slot Grammar (ESG), which does 

not produce the same bracketed representation as that used in the CoNLL-2000 shared 

task. Also, ESG has the capability to produce multiple ranked parses for a sentence, a full 

parser, which is totally different compared with other approaches without the knowledge 

of a full parse of a sentence. Thus, we consider their method not to be directly 

comparable with ours. 



2.6 Results 

[Paper ISystem I Method I Precision I Recall I F,, I 
I I lZDJO2l I Statistical 

I I I I '  

I Gen. Winnow w/ full ~a r se r  1 94.28% 1 94.07% 1 94.17 1 
[KMOl] 
TZDJ021 
[CM03] 
rKMOOl 

Statistical 
Statistical 

[Ha1001 
[TKSOO] 
[MP02] 
[ZSTOO] 
[DejOO] 
[KoeOO] 
[OsbOO] 
WBOOl 

Statistical 
Statistical 

[PMPOO] 
rJohOOl 

Table 2 Results based on CoNLL-2000 shared task. 

SVM wlvoting 
Gen. Winnow w/o full ~arser  

Combined 
Combined 
Statistical 
Combined 
Rule 
Statistical 
Statistical 
Statistical 

[VDOO] 
Baseline 

2.7 Base NP Chunking Background 

Unlike arbitrary phrase identification, Base NP phrase identification, or simply 

Perceptrons 
SVM 

Statistical 
Rule 

NP chunking, deals with identifying the chunks that consist of noun phrases (NPs). NP 

93.89% 
93.54% 

WPDV(Comb) 
MBL(Comb) 
Specialized HMM 
HMM w/ MBL 
Rule-based 
ME 
ME 
MBL 

Rule 

chunking task is initially introduced by Ramshaw and Marcus in 1995. 

94.19% 
93.45% 

HMM 
Rule-based 

2.7.1 Data and Evaluation 

NP chunlung dataset, like CoNLL-2000 dataset, consists of the section 15-18 of 

93.92% 
93.60% 

93.13% 
94.04% 
91.96% 
91.99% 
91.87% 
92.08% 
91.65% 
91.05% 

Rule-based 
Most Freauent Chunk Tag 

WSJ as training data and the section 20 of WSJ as test data. The PoS is again derived 

93.91 
93.57 

93.29% 
93.51% 

90.63% 
86.24% 

from a tagger written by Sabine Buchholz from Tilburg University, The Netherlands. 

93.74 
93.48 

93.51% 
91.00% 
92.41% 
92.25% 
92.31% 
91.86% 
92.23% 
92.03% 

88.82% 
72.58% 

However, instead of using representation IOB2 in CoNLL-2000 dataset, this dataset use 

93.32 
92.50 
92.19 
92.12 
92.09 
91.97 
91.94 
91.54 

89.65% 
88.25% 

representation IOB 1 as its correct chunk tag. 

90.14 
87.23 

82.91% 
82.14% 

85.76 
77.07 



The data format and evaluation method are exactly the same as introduced in 

CoNLL-2000 dataset section. 

Table 3 Results based on Base NP chunking task. 

2.7.2 Results 

2.8 Chapter Summary 

This chapter introduced CoNLL-2000 shared task, text chunking, and Base NP 

chunking task, which consists of dividing a sentence into syntactical units. Text 

Fp=l 
94.22 
93.86 
93.26 
92.80 
92.40 
92.37 
92.03 
79.99 

Paper 

[KMo 1 1 
[TDD+OO] 
[TKSOO] 
[MPR+99] 
[XTAG99] 
[TV99] 
[RM95] 
Baseline 

chunking is an intermediate step towards full parsing. The goal of this task is to come 

forward with machine learning methods which after a training phrase can recognize the 

Precision 

94.15% 
94.18% 
93.63% 
92.40% 
91.80% 
92.50% 
91.80% 
78.20% 

arbitrary chunk segmentation of the test data as well as possible. 

Recall 

94.29% 
93.55% 
92.89% 
93.01% 
93.00% 
92.25% 
92.27% 
8 1.87% 

The CoNLL-2000 shared task and Base NP chunking task has the same part of the 

Wall Street Journal corpus (WSJ), section 15-18 as training data and section 20 as test 

data. However, their correct chunk type representation is different. CoNLL-2000 dataset 

uses IOB2, while Base NP dataset uses IOB 1. 

The chunker for both dataset is evaluated with Fp,, score, 

2 * precision * recall 
Fp=l = [Rij79], where precision is the percentage of detected 

recall + precision 



phrases that are correct and recall is the percentage of phrases in the data that were found 

by the chunker. 

All the chunking methods are fall into four groups: rule-base systems, memory 

based systems, statistical systems, and combined systems. The FB=l score of text 

chunking is ranged from 77.07 to 94.17 and Fp=, score of Base NP chunking is ranged 

from 79.99 to 94.22. 



CHAPTER THREE: 
BACKGROUND TO THE APPROACH 

3.1 Markov Chains 

Markov processes/chains/models were first developed by Andrei A. Markov (a 

student of Chebyshev). Their first use was actually for a linguistic purpose - modeling 

the letter sequences in works of Russian literature (Markov 1913) - but Markov models 

were then developed as a general statistical tool [MS99]. 

A Markov chain is a sequence of random values whose probabilities at a time 

interval depend on the value of the number at the previous time. Thus, if 

X = (X,, ..., X,) is a sequence of random variables talung values in some finite set 

S = { s ,  ,..., s, ) , the state space, then the Markov chain has following properties: 

(1) Limited Horizon, the transition probabilities at a time interval depends on its 

previous time. P(X,+, = s, I X, ,..., X,) = P(X,+, = s, I X,) 

(2) Time invariant, the transition probabilities is independent of time interval and 

does not vary with time. P(X,+, = s, I XI ,..., X,) = P(X, = s, I X,) 

3.2 Hidden Markov Model 

Hidden Markov Models was published by Baum-welch. Often we want to 

consider a sequence (perhaps through time) of random variables that are not independent, 

but rather the value of each variable depends on previous elements in the sequence. For 



many such systems, it seems reasonable to assume that all we need to predict the future 

random variables is the value of the past random variable, and we do not need to know 

the values of all the past random variables in the sequence. That is, future elements of the 

sequence are conditionally independent of past elements, given the present element. In a 

Visible Markov Model (VMM) or Markov Chain, we know what states the machine is 

passing through, so the state sequence or some deterministic function of it can be 

regarded as the output, while in a HMM, you do not know the state sequence that the 

model passes through, but only some probabilistic function of it. 

In the following example, there are two states q and r. Two pairs of emission 

probabilities represented as a and b respectively in the Figure 1. ni represents the initial 

probabilities. The probabilities on the transition curves are transition probabilities 

[Sar03]. 

Figure 2 Example of Hidden Markov Model. 



P (emit ( q ,  x ) )  = P (emit ( q ,  a ) )  + P (emit ( q ,  b ) )  = 1 .O 
X 

In above two equations, Si represents state; 0, represents output; x represents 

hidden state [Sar03] [MS99]. The first equation expresses the total transition probabilities 

started from the initial state is 1 and, similarly, the second one describes the sum of the 

total emission probabilities is 1. 

Given a certain observation sequence O,,,,, , we can find the model parameters y 

that maximize P ( 0  I y) using Maximum Likelihood Estimation, arg max P(Otmining I p)  . 
P 

This maximization process is often referred to as training the model. 

Given the observation sequence 0 and a model y , we can efficiently compute 

P ( 0  I y) - the probability of the observation given the model. This process is often 

referred to as decoding. 

HMMs are useful when one can think of underlying events probabilistically 

generating surface events. HMM is as a language model: compute probability of a given 

observation sequence, HMM is as a parser: compute the best sequence of states for a 

given observation sequence, and HMM is as a learner: given a set of observation 

sequences, learn its distribution [Sar03] [MS99]. 

3.2.1 Viterbi Algorithm 

The Viterbi algorithm is based on HMMs and used to find the most likely 

complete path for a given observation sequence through a trellis. The Viterbi algorithm is 

linear in input rn for n states, 0 ( m n 2 )  . Alternatively, we can enumerate all paths, 

however, this takes exponential time, O(nm)  . One widespread use of the Viterbi algrithm 



is tagging - assigning parts of speech (or other classes) to the words in a text. We think of 

there being an underlying Markov chain of parts of speech from which the actual words 

of the text are generated. This can be applied to text chunking (or shallow parsing task) in 

the same way. In this project, we used an existing tagger, TnT, which is implemented 

based on this idea - Best Path (Viterbi) algorithm. In order to find the most likely 

complete path, that is (where p represents the model parameters) 

To do this, it is sufficient to maximize for a fixed 0, 

The key idea of this algorithm to compute this trellis is storing the best path up to 

each state. Using dynamic programming, we can calculate the most probable path 

through the whole trellis [MS99] [Sar03]. E.g.: 

Figure 3 Example of Viterbi Algorithm. 



The above trellis is an array of states against times. A node in the trellis can store 

information about state sequences up to this node. The lines show the possible transitions 

between states at each time step. Here we have a fully interconnected HMM where one 

can move from any state to any other at each step [MS99] (This is called having the 

ergodic property). 

Viterbi algorithm can be easily applied to solve text chunking tasks. The running 

time complexity is the same as Viterbi algorithm mentioned before, 0(mn2),  while 

doing a full parsing with Context-Free Grammar takes at least 0(m3),  which is much 

slower, since the number of input words m is often much larger than the number of the 

states n. 

Another reason is that they are one of a class of models for which there exist 

efficient methods of training through the use of the Expectation Maximization (EM) 

algorithm - this algorithm allows us to automatically learn the model parameters that best 

account for the observed data. In addition, we can use HMM in generating parameters for 

linear interpolation of n-gram models. 

3.3 Data Representation 

3.3.1 InsideIOutside 

In 1995, Ramshaw and Marcus proposed to encode all chunks with 3 tags, I, 0 

and B [RM95]. This representation enables to solve chunking problem as a trainable PoS 

tagging task. 

I - for words inside a noun chunk 

0 - for words outside a noun chunk. 



B - for the initial word of a noun phrase immediately follows another one. 

Thereafter, [SV99] developed three variants based on the Ramshaw and Marcus 

representation. They named the variants IOB2, IOEl and IOE2 and used IOBl as the 

name for the Ramshaw and Marcus representation. IOB2 is the same as IOB1, except that 

every initial word of a noun phrase receives tag B. IOEl differs from IOBl in the fact 

that rather than the tag B, a tag E is used for the final word of a noun chunk, which is 

immediately followed by another noun phrase. IOE2 is a variant of IOEl in which each 

final word of a noun phrase is tagged with E. 

3.3.2 Starand (O+C) 

[SV99] showed that bracket representations 0 and C can also be regarded as two 

tagging representation with two streams of brackets, where tag 0 ,  open bracket, is for 

initial word of a chunk. Tag C, close bracket, is for final word of a chunk. Tag , period, 

is for words outside of any chunk. After merging these two representations, we get a new 

data representation with 5 tags. This representation was renamed as Start/End data 

representation in [KMOl]. In this project, we follow tag naming convention used in 

[KMOl]. This representation is defined as follows. 

B - for chunk-initial words 

E - for chunk-final words 

I - for chunk-inside words 

S - for single word within a chunk 

0 - for words outside of any chunk 



Table 4 contains example tag sequences for all five tag sequences for the example 

sentence. 

Word 
In 
early 
trading 
in 
Hong 
Kong 
Monday 
9 

gold 
was 
quoted 
at 
$ 

Table 4 The noun chunk tag sequences for the example sentence, In early trading in Hong Kong 
Monday, gold was quoted at $366.50 an ounce. 

3.4 Voting Techniques 

Multiple data representations are interesting because a learner will make different 

IOB 1 
0 
I 
I 
0 
I 
I 
B 
0 
I 
0 
0 
0 
I 

366.50 
an 
ounce 

errors when trained with data encoded in a different representation. This means we can 

I 
B 
I 
0 

I 
B 
I 
0 

improve chunking performance with combination techniques. 

IOB2 
0 
B 
I 
0 
B 
I 
B 
0 
B 
0 
0 
0 
B 

[Ha1981 explored five voting methods. They assign weights to the output of the 

individual systems and use these weights to determine the most probable output tag. 

IOEl 
0 
I 
I 
0 
I 
E 
I 
0 
I 
0 
0 
0 
I 

E 
B 
E 
0 

8 

Since the classifier generate different output formats, all classifier output has been 

E 
I 
I 
0 

converted to the 0 and the C representations. The simplest voting method assigns 

IOE2 
0 
I 
E 
0 
I 
E 
E 
0 
E 
0 
0 
0 
I 
E 
I 
E 
0 

uniform weights and picks the tag that occurs most often - Majority Voting. A more 

O+C 
0 
B 
E 
0 
B 
E 
S 
0 
S 
0 
0 
0 
B 

advanced method is to use as a weight the accuracy of the classifier on some held-out part 



of the training data, the tuning data - TotPrecision. One can also use the precision 

obtained by a classifier for a specific output value as a weight - TagPrecision. 

Alternatively, [TKS02] use as a weight a combination of the precision score for the 

output tag in combination with the recall score for competing tags - Precision-Recall. The 

most advanced voting method examines output values of pairs of classifiers and assigns 

weights to tags based on how often they appear with this pair in the tuning data - TagPair 

[Ha198]. 

[TKS02] showed system combination improved performance: the worst result of 

the combination techniques is still better than the best result of the individual systems. 

Furthermore, data encoded with InsideIOutside data representations trained by a learner 

leads to similar results, while data encoded with StartIEnd (O+C) data representation 

trained by a learner consistently obtains higher Fp,, rates. They also found the 

performance differences among the different voting techniques are small. Thus, Majority 

Voting becomes attractive, since it is the simplest of the voting techniques 

3.4.1 Majority Voting 

When different machine learning systems are applied to the same task, they will 

make different errors. The combined results of these systems can be used for generating 

an analysis for the task that is usually better than that of any of the participating system. 

For example: suppose we have five different data representations, DR1-5, which assign 

binary classes to patterns. Their output for five patterns, patternl-5, is as follows: 



Table 5 Example of majority voting results among five data representations (DRs) . 

Each of the five representations makes an error. We then use a combination of the 

five by choosing the class that has been predicted most frequently for each pattern. This 

means that we can train one learner with five data representations and obtain five 

different analyses of the data that we can combine with majority voting techniques. Thus 

different data representations can enable us to improve the performance of the chunker, 

and the combined results of these data representations (DRs) can be used for generating 

an analysis for the task that is usually better than that of any of the participating data 

representations. This approach will eliminate errors that made by a minority of the data 

representations. The table 5 showed that combined systems are usually better than single 

system. 

3.5 Chapter Summary 

This chapter introduced some background information to our basic approach. 

Hidden Markov Models (HMMs) are useful when one can think of underlying 

events probabilistically generating surface events. HMM is as a language model: compute 

probability of given observation sequence, a decoding process, HMM is as a parser: 

compute the best sequence of states for a given observation sequence, a training process, 

and HMM is as a learner: given a set of observation sequences, learn its distribution. One 



application of HMMs is Viterbi algorithm, used to find the most likely complete path 

through a trellis by dynamic programming in linear time to its input. 

Data representations (DRs) for text chunking are divided into two subgroups: 

InsideIOutside (IOBl/IOB2/IOEl/IOE2) and Start/End (O+C). InsideIOutside DRs 

have three chunk tags each, where I for words inside a chunk, B for words starting a 

chunk, 0 for words outside any chunk, E for words ending a chunk. Start/End DR has 

five chunk tags, including all the tags in InsideIOutside, In addition, S for single word 

inside a chunk. 

Two voting techniques is described in this chapter: simple Majority Voting, 

assigning equal weights to all representations, or various Weighted Voting, assigning 

different weights to each representation based on different conditions. 



CHAPTER FOUR: 
TEXT CHUNKING APPROACH 

Our approach is based on two ideas. First, solving chunking tasks as a PoS 

tagging problem for each data representation based on Specialized Hidden Markov 

Model (HMM) developed by [MP02]. Second, voting between multiple data 

representations. 

4.1 Specialized HMM Chunking 

For each individual data representation, we followed the approach of [MP02]. 

They considered text chunking to be a tagging problem and then solved tagging as a 

maximization problem. 

Let 0 be a set of output tags and I the input vocabulary of the application. Given 

an input sentence I = il, ..., iT, where i j  E I :  b'j, the process consists of finding the 

sequence of states of maximum probability on the model. That is, the sequence of output 

tags, 0 = o, ,..., o, , where o j  E 0 :  tjj .  This process can be formalized as follows: 

Due to the fact that this maximization process is independent of the sequence, and 

taking into account the Markov assumptions, the problem is reduced to solving the 

following equation (2):  



The parameters of equation (2) can be represented as a second-order HMM whose 

states correspond to a tag pair. In a first-order HMM or simply HMM, each state 

corresponds to one tag, which means predicting current tag only depends on the previous 

tag. In second-order HMM, predicting the current tag depends on the previous two tags. 

Contextual probabilities, P(o, I o j-, , o j-,) , represent the transition probabilities between 

states and P(i I o ) represents the output probabilities. 

The formalism has been widely used to efficiently solve part-of-speech (PoS) 

tagging in ([Chu88], [Mer94], [BraOO]), etc. In PoS tagging, the input vocabulary is 

composed of words and the output tags are PoS or morphosyntactic tags. The 

segmentation produced by some different shallow parsing tasks, such as text chunking or 

clause identification, can be represented as a sequence of tags as mentioned above. 

Therefore, these problems can also be carried out in a way similar to PoS tagging. 

PoS tagging considers only words in the input. In contrast, chunking can consider 

words and PoS tags. However, if all this input information is considered, the input 

vocabulary of the application could become very large, and the model would be poorly 

estimated. 

On the other hand, in order to avoid generating an inaccurate model due to the 

generic output tag set. They consider a more fine-grained output tag set by adding lexical 

and PoS information to the output tags. This aspect has also been tackled in PoS tagging 

([KLR99], [LTROO], [PMO I]), by lexicalizing the models, that is, by incorporating words 

into the contextual model. 



In the work, they proposed a simple function that encoded the given data format 

into the model without changing the learning or the tagging processes. This method 

consists of modifying the original training data set in order to consider only the relevant 

lexical and POS information and to extend the output tags with additional information, 

since adding all the words leads to poor performance and no improve at all. 

This transformation is the result of applying a specialization function f s  on the 

original training set to produce a new one. This function transforms every training tuple 

(w, ,  p i ,  chi)  to a new tuple ( p i  ,chi) or ( p i  chi,  wi . pi . chi) . That is, only a set of 

certain relevant words belong to certain lexical set (w,) were considered in the 

contextual language model and defined the following specialization function: 

Input 

Table 6 Example of specialization where the words belong to the predefined lexical set Ws . 

Output = f s  (Input) 

Wi 

YOU 
will 
start 
to 
see 
shows 
where 
viewers 
program 
the 
program 

Pi 
PRP 
MD 
VB 
TO 
VB 
NNS 
WRB 
NNS 
VBP 
DT 
NN 

chi 
B-NP 
B-VP 
I-VP 
I-VP 
I-VP 
B-NP 
B-ADVP 
B-NP 
B-VP . 
B-NP 
I-NP 

pi or wi . pi 
PRP 
MD 
VB 
TO 
VB 

NNS 
where-WRB 

NNS 
VBP 

DT 
NN 

pi . chi or wi . pi chi 

PRP-B-NP 
MD-B-VP 

VB-I-VP 
TO-I-VP 
VB-I-VP 

NNS-B-NP 
where-WRB-B-ADVP 

NNS-B-NP 
VBP-B-VP 

DT-B -NP 
NN-I-NP 



Table 6 shows an example of the application of this function on a sample of the 

training set used in the chunking task, where symbol "-" is a connection symbol used to 

connect between words, PoS, or chunk type. For example, the tuple (YOU - PRP, B - NP) 

is transformed to the new tuple (PRP, PRP- B - NP), considering only POS 

information. On the other hand, the tuple (where, WRB, B - ADVP) , considering also 

lexical information, is transformed to the new tuple 

(where - WRB, where - WRB - B - ADVP) . 

From this new training set, we can learn the Specialized HMM by maximum 

likelihood in the usual way. The tagging process is carried out by Dynamic Programming 

Decoding using the Viterbi algorithm. This decoding process is not touched. Thus, the 

only thing we need to worry about is the decisions taken into account in the specialization 

process. That is, to consider the relevant information in the output of specialization. 

The model is called SP if only the part-of-speech tag is involved in specialization, 

while the model is called SP+Lex-XXX if there is more lexical information involved 

based on some lexical rule Lex-XXX defined by [MP02]. 

The selection of the set W, produces various kinds of lexicalized HMM models. 

To generate lexical set Lex-WTE, we use a development set consisting of a heldout or 

deleted set of 10% from the training set in order to pick elements for W, . The heldout set 

consists of every loth sentence. The remaining set is used as the training data. 

We used the following lexical specialization models defined by [MP02]. 



o Lex-WHE: W, contains the words whose frequency in the training set was 

higher than a certain threshold. In order to determine which threshold 

maximized the performance of the model (that is, the best set of words to 

specialize the model), we tuned it on the development partition with word 

sets of different sizes. The threshold obtained in my experiments was 100. 

o Lex-WCH: W, contains the words that belong to certain chunk types with 

higher frequency threshold. In our work, we pick chunk types NF,VP,PP 

and ADVP with a threshold of 50. 

o Lex-WTE: W, contains the words whose chunk tagging error rate was 

higher than a certain threshold in development set. Based on the 

experiments in [MP02], we pick a threshold of 2. 

The experiments in [MP02] showed that specialization can improve performance 

considerably. By combining the Lex-WCH and Lex-WTE conditions, the output tag set 

increases from the original set of 22 to 1341, with 225 words being used as lexical 

material in the model and the accuracy on the CoNLL-2000 data increases to 92.19% 

using exactly the same trigram-based HMM model. 

4.2 Voting Between Multiple Data Representations 

The notion of specialization is a good example of how the data representation can 

lead to higher accuracy. We extend this idea further by voting between multiple 

specialized data representations. 

The model we evaluate in this paper is simple majority voting on the output of 

various specialized HMM models (described above). The HMM model is trained on 



different data representations, and the test data is decoded by each model. The output on 

the test data is converted into a single data representation, and the final label on the test 

data is produced by a majority vote. 

We experimented with various weighted voting schemes -- setting weights for 

different representations based on accuracy on the heldout set and using a don't care tag 

to ignore certain chunk type for certain data representations. However, no weighting 

scheme provided us with a significant increase in accuracy over simple majority voting. 

4.3 Chapter Summary 

This chapter introduced the chunlung approach used in this project. It is divided 

into two parts: Specialized HMM Chunking and Majority Voting. 

o In Specialized HMM Chunking process, for each data representation, we 

first apply a specialization function f, on the original training set and 

outputs a new one and then use this output to train a trigram HMM model. 

This function transforms every training tuple (w,, pi ,chi) to a new tuple 

(pi,  chi) or (pi . chi, wi - pi - chi) . That is, only a set of certain relevant 

words belong to certain lexical set (w, ) were considered in the contextual 

language model and defined the following specialization function: 

o In Majority Voting process, we simply take equal weight vote among all 

these five data representations (IOB 1/IOB2/IOE1/IOE2/0+C). 



CHAPTER FIVE: 
CHUNKING EVALUATION 

Chapter four introduced how specialized HMM approach with voting between 

multiple data representations works. In this Chapter, we will test this approach on the 

CoNLL-2000 dataset and Base NP dataset, then we compare our results with the ones of 

other major approaches. 

In first experiment, arbitrary phrase chunking (or text chunking), to obtain various 

data representations, we convert the corpus in IOB2 format into the other four data 

representations (IOB1, IOE1, IOE2 and O+C), where O+C is StartIEnd representation, 

and then convert each data representation into the format defined by the specialized 

HMM approach. 

We tested various specialization models discussed in last chapter. In addition, to 

generate a specialized model - SP+Lex-WHE, we split original training set into a new 

training set (90% of the original training set) and a development set (10% of the original 

training set) for each data representation. Also, to keep the sentence distribution, we set 

ten sentences as a unit, and for each unit, put first nine sentences into the new training set 

and the last one into the development set. Now we are ready to chunk. 

Once we have all five different data representations chunked, we start to use 

majority voting technique to combine them into one file. In order to evaluate the 

accuracy, we have to transform the result into the CoNLL-2000 output format. Then, we 



remove the enriched information from the output and convert the results into the CoNLL- 

2000 output format - IOB2. 

In second experiment, Noun Phrase Chunking (or Base NP chunking), the process 

is similar as the previous one, except that the original chunk representation is in IOBl 

format, thus we convert it into other four data representations and finally evaluate the 

result in this format. 

5.1 Dataset 

5.1.1 Arbitrary Chunking Dataset (CoNLL-2000 Dataset) 

We used the dataset defined in the shared task of CoNLL-2000. The 

characteristics of this task were described by [TBOO]. It used the same Wall Street 

Journal (WSJ) corpus sections defined by [RM95]. The set of chunks was derived from 

the full parsing taking into account certain assumptions and simplification. The PoS 

tagging was obtained using the Brill tagger without correcting the tagger output. 

5.1.2 Base NP Dataset (Base NP Chunking Dataset) 

Base NP dataset is defined in [NP02] and was first introduced by Ramshaw and 

Marcus [RM95]. Same as the text chunking dataset, it consists of section 15-18 of WSJ 

of the Penn Treebank as training data, section 20 of that as test data, and the PoS tagging 

was obtained using the Brill tagger. However, the correct chunk format is defined in 

IOBl representation instead of IOB2 in chunking dataset of CoNLL-2000 shared task. 

5.2 TnT Tagger 

All the training and tagging tasks were conducted by using the TnT tagger 

developed by [BraOO] without making any modification to its source code. 



TnT, developed by Brants, is an efficient statistical part-of-speech tagger 

independent of language, domain and tagset. TnT is the short form of Trigrams'n Tags. 

The component for parameter generation trains on tagged corpora. 

The TnT tagger is an implementation of the Viterbi algorithm for second order 

Markov models. The main paradigm used for smoothing is linear interpolation, the 

respective weights are determined by deleted interpolation. Unknown words are handled 

by a suffix trie and successive abstraction. In [MP02], they used this smoothing setting in 

their chunlung process. In order to compare with their results, we will follow this setting 

in our experiments. The programs are run under Solaris in ANSI C using the GNC C 

compiler. 

TnT comes with three models, one for German and two for English. The German 

model is trained on the Saarbrucker, German newspaper corpus, using the Stuttgart- 

Tubingen-Tagset. The English model are trained on the Susanne Corpus and the Penn 

Treebank respectively [BraOO]. 

5.2.1 File Formats 

There are four types of files: n-gram file, lexicon file, the untagged input file and 

the tagged output file. Optionally, the user can specify a mapping of tags used by the 

tagger to an output tagset. 

Each line starting with two percentage signs (%%) marks a comments and is 

ignored by the programs. The tokens are encoded using all characters with codes 

0x21.. .OxFF and each line with white space is ignored by the programs [BraOO]. 



Untagged format 
%%Brown Corpus 
%% File N11. Sent 3 

- 

Tagged format 
%%Brown Corpus 
%% File N l l .  Sent 3 

YOU 

Will 
YOU PRP 
will MD 

Start 
To 

start VB 
to TO 

See 
Shows 

see VB 
shows NNS 

Where 
viewers 

where WRB 
viewers NNS 

program 
The 

Table 7 Format of lexicon, untagged and tagged files. 

program VBP 
the DT 

program 

Lexicon format 
%% Lexicon created from the Brown comus 

program NN 

%% ... 
thaw 6 NN 3 VB 3 

I 

thawed 3 VBN 3 
thawing; 2 VBG 2 
The 625 DT 624 IN 1 
theaf 1 NN 1 

Table 8 Format of lexicon files. 

%% n-gram, Brown corpus 
%% 

NNP CC CD 26 
NNP CC NN 76 

NNP . CD CC 23 
NNP CD CD 7 

Table 9 Format of n-gram files. 



5.2.2 Running TnT 

The application of TnT consists of two steps [BraOO]: 

o Parameter generation, creates the model from a tagged training corpus. 

E.g.: tnt-para [options] <corpusfile> 

o Tagging, applies the model to new text and performs the actual tagging. 

E.g.: tnt [options] model corpus 

5.2.3 Evaluation 

TnT's performance is evaluated under following aspects [BraOO]. 

o Determining the averaged accuracy over ten iterations, overall accuracy 

and separate accuracies for known and unknown words are measured. 

o Presenting learning curves to indicate the performance comparison with 

different corpus. 

o Assigning tags to words with optional probabilities to rank different 

assignment. 

5.3 Experimental Results 

5.3.1 Text Chunking (Arbitrary Phrase Chunking ) 

In order to obtain various data representations, we converted the corpus in IOB2 

format into other four data representations: IOB1, IOE1, IOE2 and O+C. We then 

converted each data representation into the format defined by specialized HMM 

approach. 

In the results shown in this section, 

o SP represents specialized HMM approach without lexical information. 



o SP+Lex-WCH represents specialized HMM approach with lexical 

information defined based on Lex-WCH. 

o 5DR represents five data representations (DR), which is IOB1, IOB2, 

IOE1, IOE2,O+C and we pick O+C as the default DR. 

o 3DR represents IOB 1, IOB2, IOEl and we pick IOB2 as the default DR. 

o Majority represents majority voting. 

Table 10 gives the text chunhng (arbitrary phrase chunking) results for each 

setting. Table 11 and 12 shows the results of the specialized model SP+Lex-WCH in 

IOB2 and IOE2 evaluation format respectively, where all represents the results obtained 

after 3DR or 5DR majority voting respectively. Our results show the performance of 5DR 

voting is better than 3DR voting. 

I Specialization criteria I Precision(%) I Recall(%) I F ~ = ~  

Baseline 
Trigram HMM (no words) 

Table 10 Text chunking results for each setting. 

SP 
SP+Lex-WTE (3DR, Majority) 
SP+Lex-WCH (3DR, Majority) 
SP+Lex-WCH (5DR. Maioritv) 

72.58 
84.3 1 
89.57 
92.49 
93.54 
93.89 

82.14 
84.35 

77.07 
84.33 

89.54 
93.00 
92.97 
94.12 

89.56 
92.75 
93.25 
94.01 



I Chunk type I Precision(%) I Recall(%) I F ~ = l  I 
ADJP 
ADVP 
CONJP 
INTJ 

75.54 
80.80 

NP 
PP 
PRT 
SBAR 

Table 11 Text chunking results of 5DR majority voting with SP+Lex-WCH in IOB2 format. 

60.00 
50.00 

I Chunk type I Precision(%) I Recall(%) I Fs=l 

71.92 
79.21 

95.46 
97.69 
66.02 
77.25 

VP 
All 

I ADJP 1 77.94 1 71.00 1 74.31 I 

73.68 
80.00 

66.67 
50.00 

94.16 
94.12 

92.69 
93.89 

63.16 
50.00 

95.67 
96.61 
64.15 
85.05 

93.42 
94.01 

95.57 
97.15 
65.07 
80.96 

ADVP 
CONJP 
INTJ 
NP 
PP 

Table 12 Text chunking results of 3DR majority voting with SP+Lex-WCH in IOB2 format. 

80.12 
66.67 

PRT 
SBAR 
VP 
all 

In Table 13, we find when an InsideIOutside representation is converted into 

Starfind representation, the accuracy is increased and if we do the other way, the 

accuracy will decrease. [TKSOO] also reported O+C (StartfEnd) obtained higher Fp=l 

accuracy with high precision and lower recall and [XS03] presented a so called LMR 

tagging to solve Chinese word segmentation problem is another example Start/End 

representation improves the performance, since the role of LMR in Chinese word 

segment is just like that of StartfEnd in Text chunking. The reason is because Start/End 

representation with five tags catches more context information, while InsideIOutside 

50.00 
94.85 
97.52 

78.18 
66.67 

64.29 
76.11 
92.65 
93.54 

79.14 
66.67 

50.00 
94.03 
96.47 

50.00 
94.44 
96.99 

59.43 
83.36 
93.39 
92.97 

61.76 
79.57 
93.02 
93.25 



representation only has three tags. Hence, Start/End representation is more discriminative 

than the insideloutside representations. 

Also we find even the difference among different representations within 

InsidelOutside representations is smaller than that with the Start/End representation, we 

still can observe the representation format conversion will affect the accuracy. Thus, 

picking a best result other than standard test format IOB2 as their final result is incorrect, 

since it is not comparable with other approaches. Moreover, the testing corpus should not 

be touched somehow. Converting the test corpus is not the right way to do the testing. 

Errors may be introduced and lead to incomparable results. 

Table 13 Text chunking accuracy for all DRs in five evaluation formats. Note each column represents 
the evaluation format and each row represents the training and testing format. 

Table 14 and 15 give the final results in IOB2 and IOE2 respectively. 

O+C 
94.72 
94.47 
94.64 
94.43 
94.28 
94.92 
95.05 

IOB 1 
IOB2 
IOEl 
IOE2 
O+C 
3DR 
5DR 

I Voting format I Precision(%) I Recall(%) I F ~ = ~  

IOB 1 
92.68 
92.82 
92.82 
92.53 
92.45 
93 .03 
93.92 

Table 14 Text chunking accuracy for all DRs evaluated in IOB2 format. Note that voting format is 
the format when conducting majority voting, all the DRs are converted into this format. 

IOB 1 
IOB2 

IOB2 
93.07 
92.63 
92.82 
92.53 
92.45 
93.25 
93.76 

93.89 
93.69 

IOEl 
92.66 
92.82 
92.87 
92.53 
92.49 
92.82 
93.90 

IOE2 
92.68 
92.82 
92.87 
92.53 
92.35 
93.07 
94.01 

93.95 
93.82 

93.92 
93.76 



Voting format I Precision(%) I Recall(%) I F,?=~ 

IOB 1 
IOB2 

Table 15 Text chunking accuracy for all DRs evaluated in IOEl format. 

5.3.2 Base NP Chunking (Noun Phrase Chunking) 

We first convert dataset in IOBl format into IOB2/IOE1/IOE2/0+C. For each 

93.81 
93.69 

IOEl 
IOE2 
O+C 

representation, we perform specialization based on lexical rule SP+Lex-WCH before 

93.93 
94.12 
94.00 

93.87 
93.89 
93.84 

learning process. Finally, we apply voting in each format and evaluate it in IOBl format. 

93.79 
93.82 

93.90 
94.01 
93.92 

Table 16 shows the final results in IOBl representation after 5DR voting. 

93.80 
93.76 

However, some other experiment results are obtained in other representations. For 

example, in [KMOl], they picked IOB2 as their final evaluation representation. We know 

there is no significant difference between IOBl and IOB2, but the chunk representation 

of original training and test data from [NP02] is defined in IOB 1, thus we decide to pick 

IOB 1 as our final evaluation representation. 

Voting format 

IOB 1 

Table 16 Base NP chunking accuracy for all DRs evaluated in IOBl format. 

IOB2 
IOEl 

5.4 Results Comparison 

5.4.1 Text Chunking Comparison 

Precision(%) 

95.11 
95.05 
94.96 

Recall(%) 

95.35 
F p = ~  

95.23 
95.34 
95.11 

95.19 
95.04 



Table 17 compares the results with other major approaches. We achieved 94.01 

on Fp=, score for both formats, which is slightly higher than [KMOl], but still lower than 

[ZDJ02] in Table 17. However, [ZDJ02] used a full parser, detailed in Section 2.5, which 

we do not use in our experiments. 

I Approach 

Generalized Winnow w/ full parser [ZDJ02] 
Specialized HMM w/voting: between multi~le DR 

94.17 
94.01 

SVM wlvoting between multiple DR [KMOl] 
Generalized Winnow w/o full warser TZDJ021 

I Specialized HMM [MP02] 1 92.19 

93.91 
93.57 

WPDV wlvoting between multiple models [Ha1001 
MBL wlvoting; between multiwle models rTKSOOl 

Table 17 Comparison of text chunking accuracy with major approaches. 

93.32 
92.50 

The above table shows the text chunking results rank on CoNLL-2000 dataset. All 

approaches, except [Ha1001 and [TKSOO], used a single learner and among of them, those 

approaches with voting between multiple data representations obtained better results than 

other approaches ([ZDJ02] is the only exceptional, since they used a full parser, which is 

not comparable with other's). The reason single learner with voting between multiple 

data representation performs better than that without voting is obvious, since voting 

between multiple data representations can correct minority errors. Moreover, the above 

results also showed single learner with voting between multiple data representations 

seems better than voting between multiple learning models. The reason why voting works 

is because the partners involved in voting are information compensable. Also, we know 

creating multiple syntactically complementary data representations is much easier than 

developing multiple complementary learning models. Hence, our finding -- a single 



learner with voting between multiple data representations outperforms voting between 

multiple learning models seems reasonable. 

5.4.2 Base NP Chunking Comparison 

Table 18 compares the Base NP chunking results with other major approaches. 

We achieved 95.23 on Fp=l score, which is the best state-of-the-art score so far. 

I Approach I F ~ = ~  1 

Table 18 Comparison of Base NP chunking accuracy with major approaches. 

Specialized HMM wlvoting between multiple DR 
SVM wlvoting between multiple DR [KMOl] 
Voting between multiple learning model[TDD+OO] 
Voting between multiple learning model[TKSOO] 

[SP02] developed a discriminative model, conditional random field (CRF). Like 

other discriminative models, such as [KMOl], they also involve position features between 

tags and words. To remove the overfitting, they used an addition development set 

(Section 21 of WSJ) to tune the results. Strictly speaking, their dataset is not the same as 

the other Base NP chunking approaches, since section 21 is not a part of standard Base 

NP chunking dataset. They achieved 94.38 on Fp=, score. In [SP02], they do not indicate 

if they apply a Base NP chunking or an arbitrary phrase chunking. We guess they take the 

arbitrary chunking process, since they pick CoNLL-2000 dataset and compare their NP 

results with others extracted from arbitrary phrase chunking approaches. Thus, we 

consider their score is not comparable with our Base NP results, but their results are 

comparable with an even higher FBrl score, 95.57, which we obtained through an 

95.23 
94.22 
93.86 
93.26 

arbitrary chunking process in the previous section. In addition, we find NP F-score in an 

arbitrary phrase chunking is slightly higher than that in a standard Base NP chunhng and 



[KMOl] has the same phenomenon. We can easily explain this phenomenon from a 

classification perspective. That is, an arbitrary phrase chunlung model (multiple-class 

model) describes the dataset more accurate than a Base NP chunking model (two-class 

model). This is obviously true if we look at the syntactic content of the dataset. However, 

we clearly know this change is not significant. 

5.4.3 Comparison with Kudo and Matsumoto [KMOl] 

The common parts between our approach and Kudo's approach are that we all 

train a statistical learner with voting between multiple data representations, treat chunk 

tagging task as a sequence learning problem, and achieve equal state-of-the-art 

performance. The differences are that our approach uses a simpler learner based on 

specialized HMM, which runs linear time on input words, while [KMOl] trains eight 

different SVM classifiers, the algorithm requires k x (k - 1) 12 classifiers considering all 

pairs of k classes. Each SVM training uses a quadratic programming step. Secondly, we 

apply simple majority voting between five data representations (InsideIOutside and 

StartEnd), while Kudo's approach only apply weighted voting between InsideIOutside 

representations, since their learner restricted them to vote between different data 

representation types. In our experiments, we find Start~End representation usually catch 

more information than that of InsideIOutside representations and in turn improve our 

performance. 

To examine the assumption that our approach and [KMOl] are different is valid, 

we applied McNemar Test and assumed the errors are independent. The distributions of 

the errors for arbitrary phrase chunking (text chunking) and Noun phrase chunking (Base 

NP chunking) are listed in the following Table 19 and 20 



I Correct 1 Incorrect I Total 

Table 19 Text chunking Error distribution between SP+Lex-WCH wlvoting and [KMOl]. 

SP+Lex-WCH 
W/ voting 

I SP+L~X-WCH I Correct 
I I 

1 11557(nnn) 1 11759 

Correct 

Incorrect 

Total 

[KMO 1 I 
Correct I Incorrect 

I I I I . . 

I Total 1 11631 1 693 1 12324 

Total 

Table 20 Base NP chunking Error distribution between SP+Lex-WCH wlvoting and [KMOl]. 

22093 ( no, ) 

309 ( n,, 
22402 

With this distribution, we can directly compute a 2-tailed P value based on the 

following formula defined in [GC89], 

k 1 
P = 2 2 [  ) ( i ) k  , where k = nlo + no, 

m=O m 

356 (no, 

1094 b,,) 
1450 

I Task I Null hv~othesis I D-value 

22449 

1403 

23852 

Table 21 McNemar's test between Specialized HMM wl voting and [KMOl] on two chunking tasks. 

Arbitrary Chunking 
Base NP Chunlunrr 

In arbitrary phrase chunking task, we have to say the difference between our 

approach and [KMOl] is not statistically significant, which means this two approaches 

have the equal performance on the arbitrary phrase chunking task, while Table 21 shows 

Specialized HMM wlvoting and [KMOl] are significantly different on Base NP chunking 

Specialized HMM wlvoting vs. [KMOl] 
S~ecialized HMM wlvotine vs. rKMOll 

task. 

0.0745 
~0 .001  



Moreover, our approach is much faster. As showed in figure 4, our approach takes 

more than 15 times faster than Kudo's approach for a data representation chunking 

process. Furthermore, [KMOl] trained eight SVM classifiers, thus it took much longer 

time overall. Thus, our simple voting system is considerably faster and produces 

comparable results. 

Running Time Comparison for single data 

1 EI Series 

TKMOI 1 SP+Lex-WCH 

Approach 

Figure 4 Running time comparison for single data representation between SP+Lex-WCH and 
[KMOl] on arbitrary chunking task. 

5.5 Analysis 

Previous approaches that use voting have all used voting as a means of system 

combination, i.e. taking multiple machine learning methods and taking a multiple 

machine learning methods and taking a majority vote or weighted vote combining their 

output [TKSOO]. This kind of system combination can be done using voting or stacking. 



Voting as system combination has been applied to CoNLL-2000 data set as well: 

[Ha1001 obtains an Fp=,of 93.92. [TICS021 combines the output of several systems but 

also does voting by exploiting different data representations. However, to our knowledge, 

there has not been a study of voting purely between multiple data representations using a 

single machine learning method. Our results seem to indicate that even simple majority 

voting between multiple data representations does better than voting for system 

combination. 

Superficially, it seems that [KMOl] also does voting on multiple data 

representations. However, the multiple data representations are only used to discover 

which representation works better with the SVM classifier. The approach uses multiple 

classifiers (as stated earlier), in order to enable multi-class classification using a two-class 

SVM classifier (instead of using error-correcting codes or other methods for multi-class 

classification). This is quite different from voting between multiple data representations. 

[SFB+98] provide some insight into the power of voting by stating that voting 

between multiple representations can be seen as a form of smoothing over a hidden 

posterior distribution over the true labels in the test data. If we see voting as being a 

smoothing method, one way we can choose an appropriate representation to participate in 

voting is to check the goodness of the representation based on methods used to evaluate 

smoothing methods in language modelling. A representation can be added if the addition 

reduces perplexity on the training set. 

There is another theoretical approach that can be used to analyze this result: the 

bias-variance tradeoff could be used to discover that the multiple representations are all 

increasing bias while reducing variance in the labelling task. 



We plan to' explore these alternate analysis methods as well in the near future. 

5.6 Chapter Summary 

This chapter has described the approach experiments and results. The following 

are some of the highlights of this chapter. 

The Dataset is the part of the Wall Street Journal corpus (WSJ), section 15-18 as 

training data (211727 tokens) and section 20 as test data (47377 tokens), defined in the 

shared task of CoNLL-2000. 

All the training and tagging tasks were conducted by using TnT tagger developed 

by [BraOO] without malung any modification. TnT is an implementation of Viterbi 

algorithm for second order Markov models. 

We achieved 94.01 in FB=1 score on arbitrary phrase chunlung and slightly higher 

than 93.91 obtained by [KMOl], the second best result. Based on McNemar Test, we 

have to say this slight difference is not statistical significant. Additionally, they trained 

eight different SVM classifiers and took considerable longer time than our approach. The 

best result is achieved by [ZDJ02], they obtained 94.17 with a full parser. Since we do 

not have this knowledge, we consider their result is not comparable with ours. Without a 

full parser, they obtained 93.57. 

In addition, we obtained 95.23 in FB=1 score on the Base NP chunking task and 

our score is higher than the current best score 94.22 obtained by [KMOl]. By the paired 

McNemar test, our approach vs. [KMOl], we showed this difference is significant. 

To our knowledge, there has not been a study of voting purely between multiple 

data representations using a single machine learning method. Our results seem to indicate 



that even simple majority voting between multiple data representations does better than 

voting for system combination. 



CHAPTER SIX: 
CONCLUSION 

The main contribution of this study is that a single learning method, a simple 

trigram HMM can use voting between multiple data representations to obtain results 

equal to the best on the CoNLL-2000 text chunking data set. Using no additional 

knowledge sources, we achieved 94.01 Fp=, score on arbitrary phrase chunking 

compared to the previous best comparable score of 93.91. Based on the McNemar test, 

we find the difference between our approach with the comparable state-of-the-art 

approach is not statistical significant, which means we have the equal performance on the 

CoNLL-2000 dataset. Secondly, we achieved 95.23 FBE1 on the Base NP chunlung, 

which is better than the current comparable state-of-the-art score of 94.22 and we showed 

our approach is significantly different with the current comparable state-of-the-art 

approach on the Base NP chunking task by the McNemar test. In addition, our text 

chunker is considerably faster than comparably accurate methods in training as well as in 

decoding. 



CHAPTER SEVEN: 
FUTURE WORK 

[SFB+98] prc ~vided some insight into the power of voting by starting that voting 

between multiple data representations can be seen as a form of smoothing. Hence, we can 

try to choose an appropriate representation based on its perplexity on the training set. 

Secondly, the bias-variance tradeoff could be used to discover that the multiple 

representations are all increasing bias while reducing variance in the labelling task. 

Lastly, our research also shows voting between multiple data representations can 

improve performance and we can continue to improve it if we have more data 

representations. We may recursively create more data representations to capture more 

context information. In the following example, we create a new representation by 

considering the previous word information for each word tagged as 0. However, we are 

not sure if the new created data representations are syntactically meaningful. 

He is the man , 
B O B  I 0  (IOB 2) 
B 0-B B I 0-1 (A new representation) 

Figure 5 Example of a new representation. 
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