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ABSTRACT 

A traditional assumption that underlies most economic theory is the postulate of agent 

rationality. In an environment where agents are fully informed about their respective 

environments, agents are assumed to instantaneously optimize their objective functions. This 

assumption is arguably extreme since it overestimates the computational ability of agents to solve 

complex optimization problems. This paper relaxes this assumption in a tax evasion setting. 

Through the use of Genetic Algorithm learning, it is shown that even in an environment where 

tax authorities lack the explicit ability to optimize, theoretically optimal enforcement strategies 

can be learned through a process resembling natural selection. This approach not only leads to 

theoretically valid results, but it does so in a manner that more accurately reflects the adaptive 

behaviour and innovative flair of humanity. 
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1 INTRODUCTION 

A traditional assumption that underlies most economic theory is the postulate of 

agent rationality. Part of this assumption entails that fully informed agents 

instantaneously optimize their objective functions through the selection of optimal choice 

However, this assumption is strong and gives too much credit to the 

computational ability of agents when making decisions. As result, it disregards the 

dynamic learning process that potentially occurs even in what appear to be simple 

decisions. In contrast to full rationality, it seems that decisions are made with a general 

recognizance of our surrounding environment. In particular, we Iearn from the actions of 

others, adopting the choices that worked well for them, while at the same time 

experimenting with our choices in hope that better results emerge. Sometimes, incorrect 

choices are adopted, but given enough time, through trial and error the correct decisions 

tend to be made. In a sense this brings static optimization into a dynamic framework. 

This paper relaxes this assumption of full rationality in a tax evasion setting. It 

shows that in an environment where tax enforcement authorities lack the explicit ability 

to optimize, theoretically optimal enforcement strategies can be learned in process that 

captures the adaptive and innovative flair of human behaviour. 

The paper first outlines the justification of using tax evasion as a basis of study, 

and follows with a survey of traditional tax evasion and enforcement models. The genetic 

algorithm learning mechanism is introduced and applied to the decision making process 

of the tax enforcement agency, simulations and interpretation conclude. 



2 WHY SHOULD WE STUDY TAX EVASION? 

Tax evasion is often viewed as an insignificant subtopic within the realm of the 

of crime. However, certain implications that result from tax evasion spill over 

in to public economics that make it worth studying. By definition, tax evasion is the 

intentional failure of individuals to declare taxable economic activity to the authorities. 

This is an illegal practice as opposed to tax avoidance, where individuals reduce their 

own tax payments in ways unintended by the taxing authority but permissible under law 

(Franzoni, 1 998). 

Tax evasion itself stems from the existence of imperfect information. The tax base 

(taxable activity) is often unobservable by the tax authority, and thus the true tax liability 

is uncertain without a costly auditing system. In contrast, individual taxpayers are 

informed of their true taxable income, abstracting from inadvertent measurement errors, 

and can take advantage of this to elude taxes for a potential financial gain. 

The negative implications of evasion are not immediately apparent since 

individual agents arguably increase their well being through the failure to report income. 

However, the traditional role of the government is to maximize the level of social 

welfare. In order to attain this goal, often through the provision of public goods and a 

redistribution of income among individuals, taxes must be collected to finance these 

activities. Under the assumption that taxes are set optimally in order to just satisfy the 

government's budget constraint, evasion activities result in the under provision of public 

goods, which in turn harms the well being of the general public. However this implication 



hinges on the assumption that the extra income garnered from evasion is not reinvested in 

taxable activities that would increase the tax base (Myles, 1995). 

2.1 The Extent of Tax Evasion 

BY nature, the amount of tax evaded in an economy is a concealed value. It is 

difficult to measure the true amount of evasion, since true income is never fully revealed. 

Nonetheless, estimates of the magnitudes of evasion have been made throughout the 

world, and the numbers are quite significant. A leading indicator of evasion is the tax 

gap, or the differential between what is actually owed and what is paid voluntarily. In the 

US, from the years 1973 - 1992, the nominal tax gap increased by a multiple of five, from 

$22.7 B to $95.3 B. Using the Taxpayer Compliance Measurement Program (TCMP) of 

the Internal Revenue Service (IRS), this significant level of evasion can be attributed to 

the estimate that 40 percent of U.S. households underpaid their taxes for the year, and a 

quarter underpaid by a significant amount (over $1,500) (Andreoni et al, 1998) 

The TCMP is not the only measure of evasion, nor is evasion unique to the 

American economy. For example, Rey (1965), in an analysis of the Italian General Sales 

Tax found evasion of over 50 percent of the actual tax yield. Feige (1 979) found that 

undeclared economic activity was equivalent to 15 percent of GNP. In Pissarides and 

Weber (1989) study, unreported economic activity amounted to roughly 5.5 percent of 

the GNP. Although these measurements may be imprecise, they do highlight the amount 

of unreported activity, and hence the tax evasion in the economy, and therefore justifies 

fUrther study in the subject. 



3 LITERATURE REVIEW AND THE BASIC MODEL 

3.1 Basic Model 

The application of a genetic algorithm learning mechanism to the economics of 

tax evasion necessitates first a review of the theoretical models of compliance and 

enforcement from which this paper is based. In particular, primary interest rests in an 

analysis of the standard expected utility model of tax compliance, and the determination 

of the corresponding enforcement rules. 

Tax evasion can be viewed in the form of a principal-agent framework. The agent 

(taxpayer) decides whether or to what degree he commits a crime. This decision is made 

subject to the principal's (enforcement agency's) imposition of disincentives used in order 

to curb the undesired behaviour. One of the early models in this field of tax compliance is 

attributed to the pioneering work of Allingham and Sandmo (1972). In their model, the 

extent to which taxes are evaded is modelled as a portfolio allocation decision or a choice 

under risk. 

The construction of Allingham and Sandmo's model relied heavily on Becker's 

(1968) theoretical analysis of the economics of crime and punishment, and was inspired 

from his assertion that his model was applicable to 'white collar' crimes such as tax 

evasion. From this basis, Allingham and Sandmo modelled the taxpayer's decision with 

the following functional form. 

EU(x) = (1 - p)U(c) + pCT(c - Se) 

where disposable income is c = y - zx 



and income evaded is e = y - x  

AS a portfolio allocation decision, a risk adverse agent decides how much of his 

exogenously determined taxable income y to report to the government, or equivalently 

how much of their tax burden they are willing to evade e. In essence, this is equivalent to 

the decision to invest in a risky asset. There is always a chance that the agent is the victim 

of an audit and therefore subject to a sanction or a fine above and beyond the tax value of 

their unreported income (Franzoni, 1998). If the agent is audited, it is assumed that the 

enforcement agency accurately uncovers their true tax liability and that they are 

convicted with 100 percent probability. If the taxpayer is very risk adverse, he reports his 

full income, and pays his taxes in full (e=O); otherwise he reports a fraction of his true 

income and risks audit. It is clear that this model directly integrates what Becker deemed 

to be the two most important variables that alter the agent's criminal behaviour- detection 

probabilities and punishments. In particular, it is the probability of audit that determines 

the degree of risk the agent faces at any given period. 

The agent maximizes the above von Neumann-Morgenstern utility function 

through the choice of income, where expected utility is assumed to increase solely in the 

level of net income. Furthermore, government imposed tax rates z, the probability of 

detection or auditp and sanction levels S are publicly announced and known to the 

taxpayers prior to their decision-making. 

3.2 Theoretical Results 

Allingham and Sandmo's primary motivation in undertaking their study was to 

examine the relationship between the level of tax compliance and the government tax 

rate. On the basis of the agent's choice function, the effect is ambiguous. An increase in 



the tax rate has two offsetting effects on compliance levels. First, increased tax rates 

lower the disposable income garnered from full compliance. Under the assumption of 

decreasing absolute risk aversion, the agents are more risk averse to evasion with any 

decrease in disposable income, hence would likely cheat less. However, increased tax 

rates with a constant sanction level imply that the returns from cheating have increased, 

which in turn encourages further cheating (Andreoni et al, 1998). However, Yitzhaki 

(1974) has shown that under the assumption that the sanction is proportional to the 

amount of tax evaded, the effect on the evasion level is unambiguously negative. 

Finally, they show that the level of tax evasion is inversely related to both the 

audit rates and the sanction levels. Although, this result was of secondary importance to 

Allingham and Sandmo, it plays a primary role in this paper and the implementation of 

the genetic algorithm. It should also be noted that the unambiguous disincentive effect of 

the enforcement policy conforms to Becker's analysis. 

In order to 'close' this model, the role of the tax enforcement agency and how 

optimal enforcement policies are chosen should be reviewed. It was stated that the 

government needed to satisfy certain revenue constraints to attain their social goals. 

Therefore, taxes must be enforced in a way that taxpayers are induced to limit or cease 

altogether their practice of evasion. It is sometimes assumed that a single taxing authority 

jointly determines the tax rates and enforcement of taxes. However, in practice the taxing 

authority appoints an independent enforcement agency, for example the IRS, to collect 

taxes (Myles, 1995). In turn, this agency chooses an enforcement policy that consists of 

independently determined audit and sanction rates to maximize their objective function 

that is assumed here to be a revenue function. 



Under the assumption that the tax authority and the enforcement agency are 

independent entities, the government can choose a tax rate that they believe maximizes 

social welfare. This tax rate is assumed chosen in order to just finance their government 

spending levels and becomes an exogenous variable imposed on both the taxpayer and 

the enforcement agency. Hence, through the optimization of the revenue function, the 

enforcement agency indirectly maximizes the level of social welfare. 

The enforcement agency thus optimizes the following revenue function, solving 

for optimal levels of audit rates and sanctions. 

R =zx+pSe-C(p) 

The total government revenue in this case is a function of the taxes collected on 

reported income x. In addition, the government collects a fraction of the unreported 

income in the form of sanctions, where this fractionp is determined by the vigilance of 

enforcement agency, and corresponds to the probability of audit. Finally, revenues take 

into account the cost of detection C, which itself is a function of the audit ratep. 

The specification of this enforcement model engrains the traditional assumption 

that detection is a costly venture while moving from one sanction level to another is 

costless (Myles, 1995). The auditing procedure itself is assumed to require higher levels 

of expenditure as the agency chooses to be more vigilant in their enforcement to catch the 

marginal evaders. This follows from the argument that increasing detection rates 

necessitates both increased policing efforts and more expensive technologies. Hence, 

following Becker's assumption, the marginal cost of apprehension is an increasing 

function of the audit rate, hence C1(p)>O. 



On the basis of this specified environment, in order to minimize evasion, or to 

maximize revenues, it follows that the optimal enforcement strategy is to increase both 

the audit rates and the corresponding sanctions. However, since increases in the audit rate 

requires public expenditures, while sanctions do not, the optimal strategy is to set 

maximum sanctions with detection rates just sufficient to induce agents to follow the law. 

3.3 Extensions of the basic model 

While the expected utility framework of Allingham and Sandmo seems simplistic 

in nature, it has nevertheless remained the primary building block for future studies. In 

particular, the level of income y has been endogenized through the incorporation of the 

labour supply. However, the introduction of labour supply, has led to ambiguous effects 

of the enforcement variables. For example, increased enforcement levels decrease the 

effective wage rate faced by the taxpayer, inducing them to lower their supply. However, 

given a backward bending supply curve, increased enforcement may lead to increase 

labour supply and thus higher levels of evasion (Andreoni et al, 1998). 

Furthermore, with an extension to dynamic modelling, Engel and Hines (1 998) 

endogenized the probability of detection (or enforcement audit) that they modelled to be 

dependent on past evasion behaviour. Under this model, current evasion is a decreasing 

function of past evasion, where if caught in one year they may be penalized for the prior 

years behaviour. This allows for a more complex structure that further enriches the 

original model. 



3.4 Criticisms 

Although Allingham and Sandmo present an attractive model to depict agent 

behaviour in an economy with tax evasion, it has been duly criticized on the grounds that 

it is not representative of the empirics of evasion. Under the portfolio allocation model, 

the agent determines the magnitude of evasion rather than a binary choice of whether or 

not to evade. In order to maintain high levels of tax compliance, it has been shown that 

optimal policies consist of both high sanctions and relatively low audit rates. However, 

empirical evidence suggests that penalties are never set this high, and are usually in the 

range of 25 percent of the unpaid liabilities (Engel and Hines, 1998). Furthermore, it can 

be inferred from the fact that only 1 percent of tax returns are typically audited, the 

probability that an agent is caught is extremely slim. It should therefore be expected that 

given these high incentives, tax compliance should be low. Previously, it has been shown 

that evasion in general is an increasing problem within the global economy. However, the 

actual magnitude is much lower than what is implied by the above model since a majority 

of all agents do truthfully report their income, and pay their taxes. 

As a result, the specification of this model that assumes decision making based 

purely on financial self-interest and perfectly amoral agents is overtly limited. In order to 

realistically model the tax compliance environment, there necessitates the integration of 

non-economic factors and variables that influence the agent behaviour in a moral sense. 

In particular, critics would argue that of great importance is the idea of social norms and 

role of the stigma that accompanies disobedience as a primary explanation. 

The addition of social norms necessitates introduction of social interaction among 

agents (Cowell, 1990). In particular, the idea that tax evasion creates an externality effect 



in terms of social stigma that is attributed to the violation of social norms. In an economy 

where the majority of agents pay their taxes, compliance becomes the social norm. The 

act of tax evasion carries with it a large stigma effect that discourages evasion. Evasion in 

this case lowers the corresponding utility levels. However, the integration of social norms 

also introduces multiple equilibria; high and low levels of evasion. If agents evade in 

larger numbers, the stigma effect is low, hence, evasion becomes a new social norm and 

evasion is not discouraged. The stigma attached to tax evasion decreases, and non- 

compliance actually spreads to a larger fraction of the population. Thus, it is implied that 

the level of tax evasion inferred is attributed to an economy that follows the former 

environment. Furthermore the importance of norms creates a third tool for the 

enforcement agency or the government. It can implement new policies to promote these 

types of tax norms that increase this stigma effect (Edlund and Aberg, 2002). 

However, empirical analysis of the effect of social norms is difficult given that it 

is not an easily measurable variable, and necessitates inefficient proxies. In order to test 

this theory, a macroeconomic framework is commonly used, where social norms are 

measured as a country specific attribute. Edlund and Aberg (2002) use OECD data to 

show that social tax norms are insignificant in the determination of tax evasion. 

Furthermore, they state that any tax norm is seldom strong enough in the minds of 

individuals to counteract their self-interested tendencies. However, adopting an 

experimental methodology, Sanchez and Juan (1995) argue that a substantial difference 

in tax evasion behaviour exists between individuals in Spain and the United States. Given 

the similarity in results attributable of their other incentives, for example the 

implementation of public goods, sanctions and audit rates, they attribute the residual to 



the social norms prevalent in each country. They further find as expected that agents 

clearly respond to the financial disincentives of audit rates and sanctions. 

Although Allingham and Sandmo's model may be oversimplified, given the 

measurability problems and the ambiguous effects of other social determinants, it 

nonetheless is a valid platform to analyze the topic at hand. 

Criticisms have also arisen from the simple enforcement model. Although Engel 

and Hines (1 998) model tax evasion as determined by past evasion behaviour, there 

remains the problem with assuming a random audit structure. Each agent faces the same 

probability of detection; however, it is probable that detection rates are determined by 

economic status. The authorities likely target some occupations more so than others, 

hence detection rates are not uniform in nature, and this should be reflected in the model 

(Andreoni, 1991). 

Just as the audit rates may be non-uniform, the case may be true for sanction 

levels. The above enforcement-compliance model assumes a constant sanction rate; 

however, it may be more realistic to have it dependent on the level of evasion e. This 

follows from the relaxation of the strong assumption made about enforcement policy 

decisions. Although the specification of a government appointed agency enforcing taxes 

through independently chosen sanction and audit rates is more accurate than placing this 

responsibility into the hands of the taxing authority, it may still be too simple. Rather, it 

may be more realistic to incorporate a judicial system that imposes the sanction levels on 

the enforcement agency, which then needs only to choose optimal detection probabilities. 

Using this specification of the enforcement-compliance framework, Andreoni 

(1991) could partly explain why sanction and audit levels would not be as high as the 



traditional model would predict. In particular, he argues that the probability of audit and 

the sanction levels are not independent variables. Rather, as the sanction levels increase 

the audit or conviction rates would fall. This is due to the aversion of the jury to Type I1 

errors or the conviction of agents for crimes which they may be innocent of. Hence, for 

small crimes they are unwilling to impose stiff penalties. In short this model predicts that 

penalties fit the severity of the crimes, which is more representative of the real world. 

Thus far, the importance of studying tax evasion and the traditional models used 

to explain the problem have been discussed. Clearly, the above extensions to both 

Allingham and Sandmo's (1972) tax compliance model and the enforcement model 

create a richer environment which to work. However, the simple environment outlined 

above is an adequate platform to show whether an enforcement agency can learn to 

implement optimal policies in a traditional albeit simplified framework. If optimal 

policies can be learned, future research can integrate intricacies such as the presence of 

judicial systems or social norms discussed above. 



4 FUNCTIONAL FORM OF THE MODEL 

Following the above discussion, the model used in this paper is comprised of two 

economic agents; the risk adverse individual taxpayer and a government appointed tax 

enforcement agency. This is a two-stage decision process where the taxpaying agent 

initially reports some level of their taxable income to the government. This follows with 

the response by enforcement agency that chooses and optimal enforcement policy. 

Individual taxpayer 

The agent chooses the level of income to report in order to maximize their 

expected utility, which is assumed to increase solely as a function of net income. It is also 

assumed that government imposed tax rates z, probability of detection or audit p and 

sanction levels S are publicly announced and hence known to the taxpayers prior to their 

decision-making. The objective of the taxpayer is therefore to maximize the following 

expected utility function: 

MaxEU(x) = (1 - p) ln(y - a) + p ln(y - zx - S(y - x)) (1) 

which yields an optimal value of reported income x, for the agent of: 



Tax en forcement agency 

The enforcement agency thus maximizes the following revenue function, solving 

for optimal levels of detection and sanctions. The reported income of agents is assumed 

to be contemporaneously exogenous. 

Furthermore, it is assumed that it becomes increasingly difficult to catch marginal 

evaders; hence the cost of increasing the probability of detection increases at an 

increasing rate of 2p. 

From the specification of this revenue function and solving for first order 

conditions, the optimal choice for the enforcement agency is to set sanctions at maximal 

levels, with relatively low detection rates (see Myles, 1995 and Becker, 1968). The 

question that follows is if the postulate of full agent rationality is relaxed, can optimal 

enforcement policies be learned over time? To answer this, a genetic algorithm learning 

mechanism is employed. 



5 THE GENETIC ALGORITHM 

5.1 Introduction of the Genetic Algorithm 

The genetic algorithm is an adaptive learning mechanism developed by Holland 

(1975) where optimization of an objective function occurs through processes that imitate 

natural selection and genetics. Optimization occurs through an adaptation of behaviour 

that did well in the past with the occasional process of experimentation. Often, this 

process converges to values comparable to those yielded by first-order conditions when 

solving optimization problems provided that they exist (Brooks, 2000). 

In general, there are 3 applications of the genetic algorithm in the literature. In 

applications of estimation, the algorithm is used to solve high dimension optimization 

problems that do not necessarily have closed forms. Furthermore, where multiple 

equilibria exist, the genetic algorithm provides a method to decide between different 

maxima, meaning the global as opposed to local maxima is converged upon. For the 

purpose of this paper, the genetic algorithm as a behavioural metaphor of learning is of 

importance. The genetic algorithm is arguably more realistic in portraying the adaptive 

reasoning and learning process that characterizes human behaviour while necessitating 

minimal levels of mathematical competence. 

As opposed to solving complicated mathematical formulas for optimal values, 

agents in the genetic algorithm framework act on the basis of imitation and 

experimentation. In a behavioural sense, this means that agents are aware of the choices 

made by others around them. They attempt to mimic ideas (or decision rules) that 



performed well in the past, while disregarding those that were the least fruitful. 

Furthermore, the elements of ambition and innovation that characterize human behaviour 

are well represented in this learning model. Agents can further experiment with these 

adopted ideas with the intention of creating better ideas. However it is clear that 

innovation does not always lead to better results, and may entail a regression in 

performance. These aspects of behavioural learning are well represented using the genetic 

algorithm methodology; in particular, using the replication, crossover and mutation 

operators. 

However, it is unclear why agents trying to optimize would adopt strategies 

resulting from innovation that have higher probabilities of being inferior given their 

present information. Hence, through the introduction of Arifovic's (1994) election 

operator it is assumed that agents have the intelligence to compare the outcomes of the 

original idea with the potential outcomes of the newly created ones. They then adopt 

those that yield better performance. The implementation of this election operator yields 

the Augmented Genetic Algorithm (Arifovic, 1994). 

5.2 Application of the Genetic Algorithm 

In this application of the genetic algorithm to the tax evasion and enforcement 

behaviour, the assumption of taxpayer rationality is maintained. Taxpayers optimally 

choose levels of taxable income to report to the government that maximize their expected 

utility. This assumption is relaxed for the enforcement authority, which must learn over 

time what constitute optimal detection probabilities and sanction levels to implement. It 

seems that the structure of the enforcement agency would lend itself to decision making 

by trial and error. As in many firm based scenarios, it is probable that there exist multiple 



sub-departments that essentially work on the same issues, for example, how to counteract 

tax evasion. It is realistic to assume that these departments are in continuous contact with 

each other, adopting each other's strategies that worked well while maintaining their own 

level of research and development. Furthermore, the structure of the department is not 

necessarily static. If employees perform poorly, those that populate the high-performance 

department potentially replace them. This movement of agents in and out of the 

population also means fresh thinking and innovation. As a result, learning at the agency 

level seems an appropriate stage to showcase the genetic algorithm. Although there is 

little reason not to have both agents learning, the purpose of this research is to model the 

enforcement agencies learning process. Furthermore, since the taxpayer needs only to 

optimize with respect to a single variable while the agency is optimizing a single equation 

with two unknown variables, it seems more plausible that taxpayer rationality can be 

maintained. 

The GA discussed above is slightly modified in order to be a more realistic 

representation of the economy. Both a single tax enforcement agency and a representative 

taxpayer populate the economy. The agency has mutually competing ideas about what 

enforcement policies to implement in a given environment. For practical purposes, these 

ideas may be thought of as a collection of rules proposed by the various sub-departments 

and those used by other enforcement agencies in the world. From this collection, the 

director of the agency can implement only one enforcement policy at any given time. It is 

this set of competing ideas that is subject to the genetic algorithm learning operations of 

reproduction, mutation and election. 



Two n-sized initial populations of chromosomes represent the competing ideas or 

decision rules at a given time period t, and denoted A, and B, . Each of these individual 

chromosome (A,,, , B,,,) are a binary string of a finite length I, where each value (a,,, , b,,j) 

in the string is written over the (0, I )  alphabet. The decoding and normalization of these 

strings yield potential values for the choice variables, where A,,, decode to detection 

probabilities p,,, and B,,, represent different sanction levels S,,, For example, in the 

following set of populations of arbitrary string length I, 

A,,t : 1001 01 01 B,,, : 00001 01 0 

A,,, : 01 001 I00 B,,, : 101 001 00 

there exist two potential enforcement policies (detection probability and sanction 

combinations). The first enforcement policy at time period t is represented by the set 

{ A,,, , B,,, ) while the second policy set is { A,,, , B,,, ) 

For a string i of exogenously determined length I, the decoding works in the 

following way: 

i=l,.., n 

j=l,.., I 

where a:, (b:,) is the bit value (0, I )  taken at the kth position in the string. After the 

string is decoded to a set of values z,,, , it is normalized in order to obtain a set of real 

numbers that represent the potential detection probabilities and sanctions that the 



enforcement agency can impose on taxpayers. The normalization takes the following 

form: 

where K is the maximum value that the bit string can decode to. For example, a string of 

length 1=5, has a maximum string value defined by: 

A= 11111 

the decoding equation (4) yields a value of K =3 1 

From the normalization of these decoded strings, the potential revenue associated 

with each combination of the decision rules can be determined. These potential revenue 

levels solved at time period t using the taxpayers previous reported income levels xt-, are 

known as the fitness pi, ,  where i=l,  ..., n. 

2 
P .  I , (  = R. 1,t = + ~i,rSi,r (Y - X t - ~  ) - Pi,t (6) 

The enforcement agencies decision rules are then updated using the replication, 

mutation and election operators. The crossover operator is omitted from this GA 

application for reasons explained later in the paper. 

5.2.1 Replication 

The replication operator makes copies of the individual sets of chromosomes on 

the basis of thepotentialfitness of the decision rule sets. Replication occurs through the 

implementation of a biased lottery, which uses the fitness values as the criterion for 

chromosomes to be introduced into the new set of potential decision rules. The higher the 

fitness value that an enforcement policy decodes to yield a higher probability of being 



chosen. The probability that an enforcement policy ( A,,, , B,,, ) is copied into the 

population set ( Al!,,, Bl!,, ), is given by 

This lottery is repeated n times, until n strings from the old populations of audit 

and sanction rates are chosen. This creates the new pool of strings that undergoes the 

mutation and election operators. It may be questioned why the best performing strings are 

not automatically copied into the new pool, and why the poorly performing strings have 

any chance at all. However, this is a good metaphor to model the risk aversion of agents. 

Arguably, they are taking into consideration the small probability those last periods best 

performing rules may not do as well in the following period. Hence, they do not wish to 

rid themselves of all rules that may be preferable in a different environment. 

5.2.2 Mutation 

The mutation operator, which is used as a metaphor to incorporate agent 

innovation, is performed by random modifications to the individual bit values of a 

chromosome. The potential that any single bit in a string will be altered is small, and 

occurs at an exogenously determined rate ofpmut. The change in any bit occurs 

independently of changes to any other bit value in the string. This mutation operator 

affects both the strings representing detection probabilities and sanction levels. 

As opposed to the replication operator that reduces the variation of the rules, the 

mutation operator introduces new diversity into the population; the degree of which 

determined by the probability of mutation (Arifovic, 1994). This mutation operator 

allows the agent to search for optimal rules within the entirety of the potential rule space. 



This is necessary since the assumption that the optimal policy exists within the initial 

population and therefore can be learned purely through replication is unrealistic. 

5.2.3 Election 

After replication and mutation, the final process is to implement the election 

operator. The role of this operator is to reduce the deviation of decision rules from their 

optimal quantities. This occurs by comparing the fitness values of the set of decision 

rules in the post-replication pool denoted the parents and those that could result if the 

mutated strings, the offspring, existed in the same environment as the parents. If the 

offspring yield a better potential fitness than the parents, they in turn take the parents 

place in the mating pool otherwise they are discarded. 

To exemplify the election operator used in this study, assume that an enforcement 

policy from the replicated population consists of: 

A,,y 10010101 B,,,: 00001010 

Mutation of these strings may yield: 

Al! : 11 01 101 1 B,!,, : 11 0001 11 

It is assumed that agents are equipped with enough intelligence to realize that old 

(new) audit rates may work well with new (old) sanction rates. This yields three potential 

enforcement policies or offspring to be compared with the parent string. 

1. (A,,, , Bi,, ) 

2. (Al!,[ 7 Bi,, ) 

3 (A,,, , Bl!J ) 

4. (Al!,, , Bl!,, ) 



Enforcement policies 2-4 are decoded and used to solve their potential fitness 

values using equation (6) that would prevail if they existed in their parent's 

(Ai,, , B,,,) environment. These enforcement policies are then ranked according to their 

potential fitness values. The offspring with the highest potential fitness value replaces the 

parent string, providing that its potential fitness is higher than the parent's actual fitness. 

Otherwise, all of the offspring are discarded, and the parent rule remains in the 

population. This is repeated n times for each of the parent-offspring combinations. This 

new population of strings that emerges becomes the initial population in the following 

time period. 

Once this GA learning has been completed for an individual time period, a single 

decision rule set (p,, S t )  is selected from the new string population on the basis of its 

relative fitness levels. These detection probabilities and sanction are announced to the 

taxpayer who then optimizes their level of reported income according to their following 

first order condition derived from (1): 

This reported income becomes known information to the enforcement agency and 

used in the following period of enforcement learning which a repeat of the above GA 

application. As these decision rules approach optimal values, due to the inclusion of the 

election operator, the variation of the population rules approach zero since any mutation 



of the strings yield potential fitness values inferior to those of the parent population of 

strings (Arifovic, 1994). 

5.3 The Crossover 

As stated prior, the crossover operator has purposely been omitted from this 

study. However, it usually plays a prominent role in the attempt to explain the 

behavioural learning process as agents reach optimal solutions. Hence, its application 

should be explained briefly. The crossover operator is a metaphor for the interactions that 

take place between different rules. In particular, it attempts to portray how agents learn to 

mix and match different aspects of the potential rules in their population set in order to 

create "better" rules. 

This operator is implemented on the new set of chromosomes after replication has 

occurred. The sets of chromosomes (the different enforcement policies in the case of this 

study) are then mated through a random exchange of their parts. However, this exchange 

is probabilistic in nature, and occurs at an exogenously determined rate ofpcross. If a 

randomly paired set of the chromosomes is not chosen for crossover, they remain in the 

new set as is. However, if they are chosen for crossover, they enter this new set as a 

combination of different aspects of the successful past decisions. This occurs by choosing 

a random cut point g, which is an integer between I and string length 1. The elements on 

one side of this cut point in a chromosome is exchanged with those of another. In the 

following example, with a random cut point g=2, and string length 1=7 the two sets of 

chromosomes are 



where the : represents the cut point. This yields the post-crossover chromosomes 

10:11011 

01:01101 

which enters the new pool and is subject to the mutation operator. 

The use of a crossover operator to model this part of human behaviour is 

attractive. However, it is omitted from this study on the basis that it may take the 

metaphor of learning too far. In particular, it does not give any merit to under what 

criteria the agent would choose to pair up part of old decisions to make new ones. In 

particular, why is the cut point a random integer rather than a choice for the agent? This 

crossover operator gives no consideration of how these rules may actually be matched up. 

As Brooks (2000) argues, it is the equivalent to the claim that tearing two old shopping 

lists in half, and taping them together would yield a better list of groceries than 

previously. It is thus a discretionary choice to omit this operator. This omission has little 

effect on the final results with the exception of omitting a behavioural metaphor. 

Although the crossover operator brings diversity to the model, the mutation operator 

substantiates the loss, with the exception of necessitating more iteration for convergence. 

Of course, the use of the genetic algorithm is not without its criticisms. In 

particular, the way that the genetic algorithm has been modelled places strict bounds on 

the amount of information that an agent can store. The net entry or exit of rules or ideas 

in an agent's population of potential rules must always be zero. Furthermore, and 

particularly in the discussion of the crossover operator, the algorithm may overstep the 

accepted bounds of the learning metaphor for economic behaviour. In spite of these flaws 



however, the genetic algorithm seems to represent human behaviour more realistically 

than traditional models that assume instantaneous optimization. 



6 SIMULATIONS, RESULTS & INTERPRETATIONS 

The simulations in this study were conducted for two reasons; to observe the 

convergence ability of the augmented genetic algorithm and to interpret the process by 

which it approaches optimal values. Hence, this section examines the technical aspects of 

the genetic algorithm results, the interpretation of the path, and any policy implications 

that it may entail. 

Simulations in this study were conducted under the augmented genetic algorithm 

framework over a time period of 2000 iterations under various mutation rates. The 

exogenous tax rate was set at 0.3 for all iterations while the cost of the audit was 

maintained atp2. In each case, the enforcement agency converged to a distinct 

enforcement policy with sanctions S = 1 and audit ratesp =0.2617, after an initially 

volatile period of learning. These enforcement policies conformed relatively well to 

Becker's theoretically implied results. In particular, the sanction level converged to its 

maximum attainable values. This implies that the authorities confiscate the entire evaded 

wealth of the agent. However, if this restriction in the simulation were relaxed in order to 

have greater sanctions, it would not change the qualitative implication of this result. It is 

still the maximum to impose on an evading agent. In contrast, the audit rates were 

substantially less in relative terms, which are attributed to the cost of increasing detection 

rates. 

Two sets of simulations were conducted under different environments. First, 

sanctions were maintained at their maximum attainable levels, simplistically modelling 



an environment where the decisions regarding punishments and detections were made by 

independent entities. The judicial system would impose the sanctions, while the 

enforcement agency's job would be only to detect those that broke the law. The second 

environment follows that which is described in the majority of this paper; a single agency 

whose capacities including enforcing the law through detection and administering 

sanctions to those who break it. The results of these simulations are as follows: 

Table 1: Result of the Simulations conducted in Environment 1 

(time period (mutation rate (0.003 10.01 10.04 1 

Table 2: Result of the Simulations conducted in Environment 2 

time period 

t=!-2000 

GI-250 

t=I-2000 

mutation rate 

sanction 

audit 

a, 

0 0  

revenue 

a, 

0.003 

1 

0.2617 

0.0171 

0.0462 

0.2114 

0.0073 

0.01 

1 

0.2617 

0.0169 

0.0458 

0.2114 

0.0069 

0.04 

1 

0.2617 

0.0098 

0.0275 

0.2114 

0.0054 



First, on the basis of the time series plots (refer to figure sets 1 and 2 in Appendix 

I), it should be apparent that convergence towards an optimal policy is not an immediate 

phenomenon. This is clear in any of the revenue (or fitness) plots. The tax revenue 

continuously fluctuates as it reacts to the policies learned by the enforcement agency 

during each iteration. However, there is a positive trend in the movement of the revenue 

levels which reflects the continual search by the enforcement dgency for better 

performing policies. The path to optimality is not smooth though, which reflects the fact 

that mistakes are made, but reactions to reverse the problem are relatively quick The 

genetic algorithm moves gradually towards the convergence levels, and in cases such as 

the audit rates, it over and undershoots its final target. This captures the behavioural 

learning process that is central in this paper and seems realistic given that audit rates in 

one period may not be optimal in the next period if sanctions are also changing. This 

causes the behaviour of the evading taxpayer to change, which entails a further 

adjustment of the audit rates. If the enforcement agency was explicitly optimizing, there 

would be no over or undershooting. The genetic algorithm therefore resembles the 

mistakes being made in the process of policy implementation before full information 

exists. Furthermore, it seems realistic to believe that through trial and error, the 

differences between the implemented policies and their optimal values will become 

minimized over time (Brooks, 2000). This is clearly represented in the simulations, and is 

directly attributed to implementation of the election operator. 

Furthermore, the learning agents decipher quite quickly that optimal levels of the 

costless sanctions are in fact maximal. However, there is a greater learning curve in the 

time it takes to learn the optimal audit rates. This of course is due to trade-off between the 



amounts of additional revenue that can be generated by increases in the audit as opposed 

to how much of a cost increase it entails; this is very much like balancing the marginal 

revenues to the marginal costs of enforcement. One should not overemphasize the 

magnitudes of the standard deviations of the above table. In all cases it seems that higher 

levels of mutation entail lower standard deviations. However, this is in part due to the 

election operator that controls the deviation away from the optimal value as well as the 

quicker convergence rate of high mutation strings. 

In all of the simulations there were no differences in the levels of convergence 

between the two environments. However, differences did manifest themselves in the 

speed of convergence. In the environment with an exogenously set sanction levels, 

convergence occurred quicker, and with much less deviation in the early simulations. 

However, the difference was negligible since the learning agent was able to decipher 

quickly that maximum levels of sanctions were optimal in the second environment. After 

reaching this level, the role of the genetic algorithm was to search for the best potential 

audit rates. However, since there was simultaneous learning occurring, the genetic 

algorithm was already on its way to finding optimal solutions, on the basis of the 

increasing values of the sanction levels. In some sense, simultaneous learning seems 

preferable. Otherwise, if more than a single learning agent was imposed, we would have 

sequential learning, where the enforcement agency would need to wait for instruction by 

the sanctioning committee who would also need to learn. 

With respect to the convergence speed of the genetic algorithm, higher mutation 

rates were generally associated with quicker convergence. The reason being that by 

increasing the diversity in the string at a higher rate, the genetic algorithm can search for 



substantially better rules with the mutation operator. This occurs without fear that rules 

that are substantially sub optimal will enter the population, which is a product of the 

election operator. If the election operator were not in place, the algorithm would still 

converge quicker with higher mutation rates. However, it would be characterized by large 

deviations away from the optimal position or 'noisy convergence' since all strings 

whether beneficial or detrimental would be allowed into the population. The unattractive 

strings in this case could only be disposed of through the replication process. 

In essence, what this implies is that the enforcement agency should grant 

substantial freedom of innovation to its departments. With greater emphasis on research 

and development, convergence upon optimal levels are quicker, hence this decreases 

much of the losses attributed from operating away from the optimal levels prior to 

convergence. Under a strict, and slow evolving regime, the agency can still reach the 

same convergence levels, however, they also must incur the extra cost of inefficient 

operation during the learning path. 

It should be noted that the ability to converge was dependent on the minimal 

intelligence levels granted to the enforcement agency. In preliminary simulations, the 

enforcement agency lacked the ability to innovate only one of its tools, either sanctions or 

audit rates, while holding the other constant. The implications of this were clear; under 

different mutation rates, the enforcement agency settled or was getting "stuck" in 

different policies. For example, if sanctions reached optimal levels in one period, it was 

improbable that the detection rates in the next period could be improved through 

innovation without there also being a negative effect on sanctions. Hence, new rules 

would never be accepted, and through the replication process, a single rule would 



emerge, which would in turn be self-fulfilling optimal values given that the taxpayer 

would in turn optimize to these choice values. In order to test this, simulations were 

conducted using less intelligent agents with shorter chromosomes of string length 1=7, 

since there was a higher probability in this case that one string would be untouched by 

mutation while slight changes in the other would be possible. This did indeed improve 

the convergence ability of the simulations; however, to decrease string length entailed a 

trade-off of precision in results. Although the actual converged values in this paper are 

not of primary importance since the model has not been calibrated to real data, in other 

applications of the genetic algorithm it would be, hence a logical rethinking of the agency 

intelligence was appropriate. 

It should be noted that in some instances, a genetic algorithm would not converge 

even under the intelligence specified in this paper due to its explicit design. Examining 

equation (3) in the application of the genetic algorithm, in any given chromosome, 

greater importance is placed on the latter bits in the string as opposed to the initial values. 

If the structure of these latter bits enables the chromosome to decode to values that are 

close to optimal values, this chromosome may be "stuck" in a search space. Although the 

mutation operator would work to increase the diversity in the string, if bit values at the 

beginning of chromosome switch to values that yield better performance ceteris paribus, 

it means little if the latter bits mutate to sub-optimal levels. 

This problem would be more apparent with the use of extremely low or extremely 

high mutation rates; extremely high mutation means that almost all of the bits in the 

strings would switch, while too low of a mutation rate may entail convergence over too 

long of a period. The election operator would ensure that these mutated chromosomes are 



not allowed into the general population. Hence, given a population of chromosomes of a 

long string length sub-optimal convergence is possible. 

6.1 Transitions from different Tax Rates 

Given the above analysis, the final set of simulations was to test how well the 

enforcement agency could adjust its policies in light of a change in the tax rate. The 

purpose of this experiment was to show the necessity of the mutation or innovation 

operator in the learning process. As expected, in light of the literature on mutation rates 

in the genetic algorithm framework, the highly innovative agents can search out a new 

equilibrium much quicker than the slow learning agents. This is clearly depicted in 

Figures 3.1-3.2 with mutation rates of 0.1 in contrast to Figures 4.1- 4.2 with lower 

innovation rates of 0.003. In figure 3.2, it takes approximately 300 iterations to converge 

to the new equilibrium, however, under the low mutation rate this takes nearly 700 

iterations. Furthermore, it should be noted that under high mutation rates, the genetic 

algorithm reaches the general area of optimality sooner, and due to the election operator 

and replication sees much smaller variation. Sanctions were not an issue of importance in 

these simulations, since maximum sanctions learned under the first tax rate are 

maintained at the maximum levels under the other. In essence, the enforcement agency 

learns in a quicker time interval that taxpaying agents do in fact change their behaviour 

when exogenous variables such as the tax rates change. 

Once the tax rate has changed, due to their high levels of experimentation with 

different rule sets, the highly innovative enforcement agency can quickly find better rules 

that work in this new environment. However, the agency that is stuck in the same mode 

of thinking will still move towards a new policy regime, albeit at a slower and more 



inefficient rate. What occurs is that when the tax rate changes, these slow learning agents 

experiment with small changes to their rule set. These slightly better performing rules are 

replicated throughout the population, subject to future experimentation. Slowly but 

surely, the agency will learn policies that give maximum attainable tax revenues. 

Again, this sheds more light on how agents may actually behave when changes 

occur to their environment, rather than taking for granted the basic assumption of full 

rationality. Furthermore, what can be taken from this is that in order for the enforcement 

agency to react in a more efficient manner to exogenous changes in its environment, it 

should be granted a high level of innovative freedom. Without innovation, if agents have 

purely adaptive reasoning (learning purely by replication), they will never be able reach 

their true potential in an ever-changing environment. 



7 CONCLUSION 

The primary emphasis of this paper was to showcase the idea that agent learning 

might be a more realistic representation of agent behaviour than the assumption of full 

rationality. In order to model such behaviour in an economic framework, the genetic 

algorithm has been employed as the tool of analysis. It has been shown that under this 

method of learning and assuming a minimal level of intelligence, the enforcement agency 

can learn policies that will optimize their revenue functions through a process of 

imitation and experimentation. Although many of the drawbacks of the genetic algorithm 

framework have been outlined in the body of this paper, there should be little doubt that it 

depicts some of the flair of humanity that the traditional analysis sorely misses. 

If optimization is a process rather than an instantaneous reaction, the genetic 

algorithm gives us insight on how we can minimize the revenue losses incurred in the 

searching for optimal values in an economy with tax evasion. In particular, in the 

environment depicted in this paper, the implementation of higher rates innovation on the 

part of the enforcement agency arguably yields better performance. This lessens the 

amount by which there is an under-provision of public goods, which entails higher social 

utility. Finally, much of the power of the genetic algorithm can be seen in how agents can 

react to changes in their exogenous environment. Under full rationality, there is seldom 

an explanation far how we reach new equilibriums. In contrast, in a genetic algorithm 

environment, the question pertaining to how we get to this point is of utmost importance. 

The answer is through learning. 



Admittedly, there are quite a few limitations in this paper that should be dealt 

with in future research. Clearly, the model used in this paper is the most basic in the 

evasion literature, and does not incorporate many of the intricacies explained in the 

literature survey. As a result, it may not capture the empirical properties of the economics 

of evasion. To correct for this entail a much richer model that can incorporate the stigma 

effects of evasion accurately. Furthermore, the genetic algorithm itself may be too simple 

of a basis to model learning, when many other sophisticated forms of artificial 

intelligence are available. Finally, in order to capture further realism, the next step is to 

implement a learning taxpayer as opposed to our assumed optimizing agent. This allows 

modelling the full learning environment, and is a path for future research. 



APPENDIX 1 

ENVIRONMENT 1 

Figure 1.1. 1 Time series plot for audit t = 1:2000 pmut=0.003 
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Figure 1.1.3 Time series plot for audit t = 1:250 pmut=0.003 
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Figure 1.1.4 Time series plot for revenue t = 1:250 pmut=0.003 
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Figure 1.2.2 Time series plot for revenue t = 1:2000 pmut=0.01 

Figure 1.2.3 Time series plot for audit t = 1:250 pmuF0.01 
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Figure 1.3.1 Time series plot for audit = 1:2000 pmut=0.04 

Figure 1.3.2 Time series plot for audit t = 1:2000 pmut=0.04 
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Figure 1.3.4 Time series plot for revenue t = 1:250 pmut=0.04 
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Figure 2.1.2 Time series plot for audit t=1:2000 pmut = 0.003 
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Figure 2.1.3 

Figure 2.1.4 

Figure 2.1.5 

Time series plot for sanction levels t=1:250 pmut = 0.003 

Sanction f e v e t s  

Time series plot for audit t=1:250 pmut = 0.003 

Probabirity of detection 
I 

Time series plot for revenue t=1:250 pmut = 0.003 



Figure 2.2. 1 Time series plot for sanction levels t=1:2000 pmut = 0.01 
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Figure 2.2.6 Time series plot for revenue t=1:250 pmut = 0.01 



Figure 2.3. 1 Time series plot for sanction levels t=1:2000 
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Figure 2.3.4 Time series plot for sanction levels t=1:250 pmut = 0.04 
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Figure 3.1. 1 Time series plot for audit t=1:2000 pmut = 0.1 
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Figure 3.1.4 Time series plot for revenue t= 1050:1600 pmut = 0.1 
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Figure 4.1.3 Time series plot for auditt=1100:1980 pmut = 0.003 
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APPENDIX 2 

Matlab Code for the Simulations in environments 1 & 2. Section 6 in the paper. 

Environment 1 
% PREPARED BY BRYAN VINCENT YU 
% SIMON FRASER UNIVERSITY 

% FOC that the agents will abide by follow the form 
% X = (1 -(P*(S-t)/t*(l -P))-S)*M/((l -P*(S-t)lt*(l -P))*t-S) 

% The objective function for the government 
% R = t*X +P*S*(M-X)-[P*CIA2\ 

% parameter values 
x = I; % This is the initial random reported income 
tax = 0.3; % Setting the tax rate constant across all periods (assumed dictated by govt) 
d = 2; % this is the place for the decoded string (normalized) 
M = I; % Total income is normalized to one 

% GA parameter values 

pmut = 0.003; % rate of mutation. 
n = 100; % number of stringsldivide by two to find the number of potential rules that the government has in its repertoire. 
k = 30; % string length. 
T = 2000; % number of simulation periods. 
seed = 0; % seed value for random number generator. 
election = 1; % FLOW CONTROL. SET TO "1" FOR ELECTION, "0" FOR BASIC. 

% Initialize random number generators 

%rand('statel, seed); 

% create the vectors 
populationg= zeros(n,k+d); % population for the audit 
population-s = zeros(n,k+d); % population for the sanction 
p-audit = zeros(1 ,n); 
sanction = zeros(l ,n); 
revenue = zeros(l ,n); 
pot-revenue = zeros(l ,n); 

replicate = zeros(n,k+d); 
matrix-hold = zeros(4,(2*k+l)); 
ww = zeros(4,(2*k+l)); 

% time vectors 
rep-inc = zeros (I ,T); 
prob-audit = zeros(l ,T); 
Sanc = zeros(1 ,T); 
revenue-time = zeros(l ,T); 

% (le). Initialization of rules. 

% replicates hold cell 
% used in tournament and election 

% used in tournament and election 

for i = 1:n 
forj = l:k 

if (rand > 0.5) 
populationg(i,j) = 1 ; 

else 
populationg(i,j) = 0; 

end 



population-s(i,j) = I; 
end 

end 

% ( I f ) .  Calculate normalization parameter, 'K' 

K-bar = 0; 
forj = 1:k 

K-bar = K-bar + 2"Q- 1 ); 
end 
K-bar = K-bar; 

for t=l 
rep-inc(1 ,t) = x; 

end 
fort = 2:T 
Time = t 

% decode initially for the probability of audit (note: this is less than 1) 
for i = 1 :n 

sum = 0; 
for j = l:k 

sum = sum + populationg(i,j)*2"(j-l ); 
end 
p-audit(1 ,i)= sudK-bar; 
populationg(i,k+l) = sum/K-bar; 

end 
% sanction 

for i = 1 :n 
sum = 0; 
forj = 1:k 

sum = sum + population-s(i j)*2"Q-I); 
end 
sanction(1 ,i)= sum/K-bar; 
population-s(i,k+l) = sumiK-bar; 

end 
% from this the fitness of the strings can be deciphered. 
for i= 1 :n 

revenue(1 ,i) = tax*rep-inc(1 ,t-l)+p-audit(1 ,i)*sanction(l ,i)*(M-rep-inc(1 ,t-1))-p-audit(1 ,i)^2; 
if revenue(1 ,i) < 0 

revenue(1 ,i)=O; 
end 

end 
% put in the fitness values 

for i= l :n 
populationg(i,k+d) = revenue(1 ,i); 
population-s(i,k+d) = revenue(1 ,i); 

end 

% need to do the toumament selection for the strings 
first = zeros(n,k+d); 
second = zeros(n,k+d); 

for i= l :n 
for j = 1 :k+d 

first(i j) = populationg(i j); 
second(i j) = population-s(ij); 

end 
end 

sum=O; 
for i=l :n 

sum = sum + first(i,k+d); 
end 

% find the relative fitness for this toumament cell 
relative = zeros(n,l); 

for i=l :n 



relative(i.1) = first(i,k+d)/sum; 
end 

for i = 1 :n 
count = 0; 
click = 0; 
stop =rand; 
while (count<=stop) 

click = click + I ;  
count = count + relative(click,l); 

end 
for j = l :k+d 

replicateg(i j )  = first(c1ickj); 
replicate-s(i,j) = second(click j); 

end 
end 

% t h ~ s  is the replicate cell based on the roulette wheel, now we need to change it into long column 

% after having this tournament-cell can now make the replicates 
% ok the replicates are made ... 

% mutation operators 
if election == 0 

for i= I :n 
for j=l:k 

if (rand < pmut); 
if replicate-p(i j )  == 1; 

replicateg(i j )  = 0; 
else 

replicateg(i j )  = I; 
end 

end 
end 

end 
end % THIS END THE ELECTION == 0 
if election == 1 

election-holdg = zeros(n,k+d); 
election-hold-s = zeros(n,k+d); 
for i=l :n 

for j=l :k 
election-holdg(i j) = replicateg(i,j); 
election-hold-s(i,j) = replicate-s(i,j); 

end 
end 

% mutation operator with the election operator 

for i = 1 :n 
for j=l :k 

if (rand < pmut); 
if election-holdg(i j )  = 1 ; 

election-holdg(i,j) = 0; 
else 

election-hold-p(ij) = 1 ; 
end 

end 
end 

end 
96 given this election hold cell, the potential fitness of the strings can be looked at 
% going to need to decode these strings as well and use the past values of x observed in market as starting poin 
for i = 1 :n 

sum = 0; 
forj = l:k 

sum = sum + election-hold-p(i,j)*2"Cj-I); 
end 
election-hold-p(i,k+l )= sum/K-bar; 

sum = 0; 
f o r j =  1:k 

sum = sum + election-hold-s(i j)*2A(j-1); 



end 
election-hold-s(i,k+l)= (surniK-bar); 

end 
% now need to check for the potential fitness of these new strings 
for i=l :n 

for j= l :k 
matrix-hold(l j)=replicateg(i j); 
matrix-hold(l j+k)=replicate-s(i,j); 
matrix-hold(2 j)=replicateg(i j); 
matrix-hold(2 j+k)=election-hold-s(i,j); 
matrix-hold(3 j)=election-hold-p(i,j); 
matrix-hold(3 j+k)=replicate-s(i,j); 
matrix-hold(4 j)=election-holdg(i,j); 
matrix-hold(4 j+k)=election-hold-s(i j); 

end 

% this finds the relative fitness and imposes the election operator 
matrix_hold(l,2*k+l) = replicateg(i,k+d); 
matrix_hoId(2,2*k+l) = tax*rep-inc(l,t-l)+replicateg(i,k+l)*election-hold-s(i,k+l)*(M-rep-inc(l,t-l))- 

replicateg(i,k+l)"2; 

ww = sortrows(matrix-hold,2*k+l); 
for j=l:k 

replicateg(ij) = ww(4,j); 
replicate-s(i j )  = ww(4,j+k); 

end 
replicateg(i,k+d) = ww(4,2*k+l); 
replicate-s(i,k+d) = ww(4,2*k+l); 
if replicateg(i,k+d)<O; 

replicateg(i,k+d) = 0; 
end 
if replicate-s(i,k+d)<O; 

replicate-s(i,k+d) = 0; 
end 

end 
end 

% this in theory should have created the new set of binary strings that we will base stuff on now use the roulette wheel in order to 
choose one single string to use 

fitness = zeros(n,l); 
for i=l :n 

fimess(i,l) = replicateg(i,k+d); 
end 
sum-fitness=O; 
for i= l :n 

sum-fitness= sum-fitness +fitness(i,l); 
end 
relative-fitness = zeros(n,l); 
% find the relative fitness 
for i=l :n 

relative-filness(i,l) = fitness(i,l)/sum-fitness; 
end 
% at the end make sure to convert back 

% using this relative fitness try to implement the roulette wheel 

count=O; 
click=O; 
stop=rand; 

while (count<=stop) 
click=click+l ; 
count= count + relative-fitness(click,l); 

end 
% We can now use this counter to pick the appropriate parameters for use in the next period 



% first convert these replicates back into to actual population for use in next time period 

for i=l :n 
for j=l :k+d 

populationg(i j )  = replicateg(i j); 
population-s(i j )  = replicate-s(ij); 

end 
end 
% create a new holding cell for the rule set that the agents will choose this time around 
pick-cell=zeros(2,k); 
for j= I: k+d 

pick-cell(l j)= replicateg(click,j); 
pick_cell(2j)= replicate-~(clickj); 

end 

% given this, decode for actual probability of audit and the sanction that is learned from the 
% constant tax rates (note that the odd number here are the probab~lity of audit while the sanction are even numbered rows 

% need to decode these to find the final government choices 
%first decode for the tax levels 

prob-audit(l,t) = pick-cell(l ,k+l); 
P = prob-audit(l ,t); 

% decode for the actual reported income that maximizing agents would choose in this case 
rep = (1 -(P*(S-tax)/tax*(l -P))-S)*M/((tax-P*(S-tax)/(l -P))-S); 
if rep > l 

rep = 1; 
end 
ifrep < O  

rep = 0; 
end 
rep-inc(l ,t) = rep; 

% calculate the actual revenue that will prevail 
revenue-time(l ,t) = tax*rep-inc(l ,t)+prob-audit(l ,t)*Sanc(l ,t)*(M-rep-inc(l ,t))-prob-audit(1 ,t)"2; 
end 

figure(3) 
plot(2:T, rep-inc(2:T)) 
xlabel('time1, 'fontsize', 12); 
ylabel('reported income','fontsize',l2); 
titlecreported income','fontsize',14); 



figure(8) 
plot(2:250, revenue_time(2:250)) 
xlabel('time', 'fontsize', 12); 
ylabel('revenue','fontsize', 12); 
title('revenue','fontsize',l4); 

sanc = Sanc(1 ,T) 
prob = prob-audit(1 ,T) 
revenue = revenue-time(l ,T) 

sanc-std = std(Sanc(2:T)) 
prob-std = std(prob-audit(2:T)) 
revenue-std = std(revenue-time(2:T)) 

sanc-std-short = std(Sanc(2:250)) 
prob-std-short = std(prob_audit(2:250)) 
revenue-std-short = std(revenue-time(2:250)) 

Environment 2 
% parameter values 
x = I ;%rand; % This is the initial random reported income 
tax = 0.3; % Setting the tax rate constant across all periods (assumed dictated by govt) 
d = 2 ;  % this is the place for the decoded string (normalized) 
M = l ;  % Total income is normalized to one 

% GA parameter values 

pmut = 0.01; % rate of mutation. 
n = 100; % number of strings 
k = 10; % string length. 
T = 2000; % number of simulation periods. 
seed = 0; % seed value for random number generator. 
election = 1; % FLOW CONTROL. SET TO "1" FOR ELECTION, "0" FOR BASIC 
c=l;  

% Initialize random number generators 

rand('statel, seed); 

% create the vectors 
populationg= zeros(n,k+d); % population for the audit 
population-s = zeros(n,k+d); % population for the sanction 
p-audit = zeros(l ,n); 
sanction = zeros(1 ,n); 
revenue = zeros(l ,n); 
pot-revenue = zeros(l ,n); 

replicate = zeros(n,k+d); 
matrix-hold = zeros(4,(2*k+l)); 
ww = zeros(4,(2*k+l)); 

% replicates hold cell 
% used in tournament and election 

% used in tournament and election 

% time vectors 
rep-inc = zeros (1 ,T); 
prob-audit = zeros(l ,T); 
Sanc = zeros(l ,T); 
revenue-time = zeros(l ,T); 



% (le). Initialization of rules 

for i = I :n 
forj = l:k 

if (rand > 0.5) 
populationg(ij) = I; 

else 
populationg(i,j) = 0; 

end 
if (rand > 0.5) 

population-s(i j) = I; 
else 

population-s(ij) = 0; 
end 

end 
end 

% (If). Calculate normalization parameter, 'K' 

K-bar = 0; 
forj = l:k 

K-bar = K-bar + 2•‹C-I); 
end 
K-bar = K-bar; 

for t=l 
rep-inc(l ,t) = x; 

end 
for t = 2:T 

Time = t 

% decode initially for the probability of audit (note: this is less than 1) 
for i = l :n 

sum = 0; 
f o r j = l : k  

sum = sum + populationg(i,j)*2"(j-l ); 
end 
p-audit(] ,i)= sudK-bar; 
populationg(i,k+l) = surn1K-bar; 

end 
% sanction 

for i = 1 :n 
sum = 0; 
forj = l:k 

sum = sum + population-s(i j)*2"6-I); 
end 
sanction(1 ,i)= sudK-bar; 
population-s(i,k+l) = sudK-bar; 

end 
% from this the fitness of the strings can be deciphered. 
for i= l :n 

revenue(1 ,i) = tax*rep-inc(1 ,t-l)+p-audit(l ,i)*sanction(l ,i)*(M-rep-inc(l ,t-l ))-(c*p-audit(l ,i))"2; 
if revenue(1 ,i) < 0 

revenue(1 ,i)=O; 
end 

end 
% put in the fitness values 

for i=l :n 
populationg(i,k+d) = revenue(1 ,i); 
population-s(i,k+d) = revenue(l,i); 

end 

% need to do the tournament selection for the strings 
first = zeros(n,k+d); 
second = zeros(n,k+d); 

for i= l :n 



for j = 1 :k+d 
first(i j )  = populationg(i j); 
second(i j )  = population-s(ij); 

end 
end 

sum=O; 
for i=l :n 

sum = sum + first(i,k+d); 
end 

% find the relative fitness for this tournament cell 
relative = zeros(n,l); 

for i=l :n 
relative(i,l) = first(i,k+d)/sum; 

end 

for i = I :n 
count = 0; 
click = 0; 
stop = rand; 
while (count<=stop) 

click = click + 1; 
count = count + relative(click,l); 

end 
for j = 1 :k+d 

replicateg(i,j) = first(clickj); 
replicate-s(ij) = second(c1ickj); 

end 
end 

% this is the replicate cell based on the roulette wheel, now we need to change it into long column 

% after having this tournament-cell can now make the replicates 
% ok the replicates are made ... 

% mutation operators 
if election == 0 

for i= 1 :n 
for j=l:k 

if (rand < pmut); 
if replicate-p(i j) == I; 

replicateg(i j )  = 0; 
else 

replicateg(ij) = 1; 
end 

end 
if (rand < pmut); 

if replicate-s(i j) = 1 ; 
replicate-s(ij) = 0; 

else 
replicate-s(ij) = 1 ; 

end 
end 

end 
end 

end % THlS END THE ELECTION == 0 
if election == 1 

election-holdg = zeros(n,k+d); 
election-hold-s = zeros(n,k+d); 
for i=l :n 

forj=l :k 
election-holdg(i j )  = replicateg(i,j); 
election-hold-s(i,j) = replicate-s(ij); 

end 
end 

% mutation operator with the election operator 

for i = 1 :n 



for j=l :k 
if (rand < pmut); 

if election-holdg(i j )  = 1 ; 
election-hold-p(i,j) = 0; 

else 
election-hold-p(i,j) = 1 ; 

end 
end 
if (rand < pmut); 

if election-hold-s(ij) == 1 ; 
election-hold-s(ij) = 0; 

else 
election-hold-s(i j )  = 1 ; 

end 
end 

end 
end 
% given this election hold cell, the potential fitness of the strings can be looked at 
% going to need to decode these strings as well and use the past values of x observed in market as starting poin 
for i = I :n 

sum = 0; 
forj = l:k 

sum = sum + election-holdg(i,j)*2"(j-I); 
end 
election-holdg(i,k+l )= surniK-bar; 

sum = 0; 
forj = l:k 

sum = sum + election-hold-s(i j)*2"(j-1); 
end 
election-hold-s(i,k+l)= (sumKbar);  

end 
% now need to check for the potential fitness of these new strings 
for i=l :n 

for j= l :k 
matrix-hold(l j)=replicateg(i j); 
matrix-hold(l j+k)=replicate-s(i,j); 
matrix-hold(2 j)=replicateg(ij); 
matrix-hold(2 j+k)=election-hold-s(i j); 
matrix-hold(3 j)=election-hold-p(i,j); 
matrix-hold(3 j+k)=replicate-s(i,j); 
matrix-hold(4 j)=election-holdg(ij); 
matrix-hold(4 j+k)=election-hold-s(i j); 

end 

% this finds the relative fitness and imposes the election operator 
matrix-hold(l,2*k+l) = replicateg(i,k+d); 
matrix_hold(2,2*k+l) = tax*rep-inc(1 ,t-l)+replicateg(i,k+ l)*election-hold-s(i,k+l )*(M-rep-inc(l ,t- I))- 

(c*repIicateg(i,k+l))"2; 

ww = sortrows(matrix~hold,2*k+ I); 
for j=l:k 

replicateg(i,j) = ww(4j); 
replicate-s(i j )  = ww(4,j+k); 

end 
replicateg(i,k+d) = ww(4,2*k+l); 
replicate-s(i,k+d) = ww(4,2*k+l); 
if replicate-p(i,k+d)<O; 

replicateg(i,k+d) = 0; 
end 
if replicate-s(i,k+d)<O; 

replicate-s(i,k+d) = 0; 
end 

end 



end 

% this in theory should have created the new set of binary strings that we will base stuff on now use the roulette wheel in order to 
choose one single string to use 

fitness = zeros(n,l); 
for i=l :n 

fitness(i,l ) = replicateg(i,k+d); 
end 
sum-fitness=O; 
for I= l :n 

sum-fitness= sum-fitness +fitness(l,l); 
end 
relative-fitness = zeros(n,l); 
% find the relative fitness 
for i= l :n 

relative-fitness(i,l) = fitness(i,l)/sum-fitness; 
end 
% at the end make sure to convert back 

% using this relative fitness try to implement the roulette wheel 

count=O; 
click=O; 
stop=rand; 

while (count<=stop) 
click=click+l ; 
count= count + relative-fitness(click,l); 

end 
% We can now use this counter to pick the appropriate parameters for use in the next period 
% first convert these replicates back into to actual population for use in next time period 

for i=l :n 
for i=l :k+d 

population-p(i j )  = replicateg(i j); 
population-s(ij) = replicate-s(ij); 

end 
end 
% create a new holding cell for the rule set that the agents will choose this time around 
pick-cell=zeros(2,k); 
for j=l :k+d 

pick-cell(l j)= replicate-~(clickj); 
pick-cell(2,j)= replicate-~(clickj); 

end 

% given this, decode for actual probability of audit and the sanction that is learned from the 
% constant tax rates (note that the odd number here are the probability of audit while the sanction are even numbered rows 

% need to decode these to find the final government choices 
%first decode for the tax levels 

prob-audit(1 ,t) = pick-cell(1 ,k+l); 
P = prob-audit(1 ,t); 

Sanc(l ,I)= pick_cell(2,k+l); 
S = Sanc(l,t); 
if t > 1250 

tax = 0.5; 
end 
% decode for the actual reported income that maximizing agents would choose in this case 
rep = (I -(P*(S-tax)/tax*(l -P))-S)*M/((tax-P*(S-tax)/(I -P))-S); 
i frep> l 

rep = I; 
end 
ifrep < 0 

rep = 0; 
end 
rep-inc(l ,t) = rep; 

% calculate the actual revenue that will prevail 
revenue-time(1 ,t) = tax*rep-inc(l ,t)+prob-audit(l ,t)*Sanc(l ,t)*(M-rep-inc(l ,t))-(c*prob-audit(l ,t))^2; 



figure(2) 
plot(2:T, prob-audit(2:T)) 
xlabel('time', 'fontsize', 12); 
ylabel('Probability','fontsize', 12); 
title('Probabi1ity of detection','fontsize',14); 

figure(3) 
plot(2:T, rep-inc(2:T)) 
xlabel('time', 'fontsize', 12); 
ylabel('reported income','fontsize',12); 
title('reported income','fontsize',l4); 

figure(4) 
plot(2:T, revenue-time(2:T)) 
xlabel('time', 'fontsize', 12); 
ylabel('revenue','fontsize', 12); 
title('revenue','fontsize', 14); 

figure(5) 
plot(2:250, Sanc(2:250)); 
xlabel('timet, 'fontsize', 12); 
ylabel('Sanction','fontsize', 12); 
title('Sanction levels','fontsize',14); 

sanc = Sanc(1 ,T) 
prob = prob-audit(l ,T) 
revenue = revenue-time(l ,T) 

sanc-std = std(Sanc(2:T)) 
prob-std = std(prob-audit(2:T)) 
revenue-std = std(revenue-time(2:T)) 

sanc-std-short = std(Sanc(2:250)) 
prob-std-short = std(prob_audit(2:250)) 
revenue-std-short = std(revenue_time(2:250)) 
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