
CLUSTERING MOBILE AD HOC NETWORKS

USING GRAPH DOMINATION

Yuanzhu Peter Chen

B.Sc., Peking University, 1999

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F THE REQUIREMENTS FOR THE DEGREE O F

DOCTOR OF PHILOSOPHY

in the School

of

Computing Science

@ Yuanzhu Peter Chen 2004

SIMON FRASER UNIVERSITY

August 2004

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title of thesis:

Yuanzhu Peter Chen

Doctor of Philosophy

Clustering Mobile Ad Hoc Networks Using Graph Domina-

tion

Examining Committee: Dr. Ramesh Krishnamurti

Chair

Date Approved:

Dr. Arthur L. Liestman, Senior Supervisor

Dr. Tiko Kameda, Supervisor

Dr. Joseph G. Peters, Supervisor

Dr. Jiangchuan Liu, SFU Examiner

Dr. Ralf Klasing, External Examiner,

Project MASCOTTE,

INRIA

Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has

granted to Simon Fraser University the right to lend this thesis, project or

extended essay to users of the Simon Fraser University Library, and to

make partial or single copies only for such users or in response to a

request from the library of any other university, or other educational

institution, on its own behalf or for one of its users.

The author has further agreed that permission for multiple copying of this

work for scholarly purposes may be granted by either the author or the

Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain

shall not be allowed without the author's written permission.

The original Partial Copyright Licence attesting to these terms, and signed

by this author, may be found in the original bound copy of this work,

retained in the Simon Fraser University Archive.

Bennett Library
Simon Fraser University

Burnaby, BC, Canada

Abstract

A mobile ad hoc network (MANET) is an infrastructureless wireless communication network

that supports mobile users. Scalability has been a critical issue for mobile ad hoc networks to

become commercially successful. Building and maintaining hierarchies among user devices

help to reduce control overhead and to address the scalability issue. Partitioning networks

into smaller substructures, called clustering, is a fundamental building block for constructing

and maintaining hierarchies.

In this thesis, we propose and test various algorithms to construct and maintain a clus-

tered network structure based on graph domination. We start with two approximation

algorithms for constructing small weakly-connected dominating sets with logarithmic per-

formance ratios. These algorithms are implemented in a distributed setting with certain

parallelism. To further limit the execution of the above distributed algorithms, we propose

a zonal scheme to divide the execution into two levels, i.e. interzonal and intrazonal. The

maintenance is also carried out according to the zonal scheme. We also define gemini sets

to extend the results to directed graphs to model mobile ad hoc networks in the presence of

unidirectional links.

To m y parents from whom I have come,

and m y fiancee with whom I shall proceed.

Acknowledgments

I would like to thank Professor Arthur Liestman, my senior supervisor, for his constant

unconditional support for my thesis work over the years. Being both a mentor and a true

friend, Professor Liestman has made this journey unforgettable and invaluable. Your art of

cultivating pupils has enlightened me the spirit of science - research and propagation.

I gratefully appreciate the School of Computing Science and Simon F'raser University

who gave me the precious opportunity to bury this milestone of my life. Without the

generous support from Professor Liestman, the School, and the University, this thesis would

not have been possible.

Thanks to the Network Modeling Research Group and Professor Joseph Peters, those of

us working on different topics using different methods get to join force in each other. The

group meetings have been a major forum for us to obtain feedback from peers.

The members of the Network Lab and NLACF (Network Lab Association for Consump-

tion of Food) have been a special source of joy and inspiration. Countless research ideas

would have sparkled unseen without the perseverance in culinary search.

Last but not least, I would like to thank NSERC for the sponsorship during my thesis

work that has shielded me from any financial distractions.

Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgments v

Contents vi

List of Tables ix

List of Figures x

1 Introduction 1

1.1 From existing peers to MANET's . 2

1.1.1 Infrastructured wireless technologies 2

1.1.2 Ad hoc networks . 5

1.2 Research issues in ad hoc networks . 6

1.2.1 Medium access control . 6

1.2.2 Routing . 7

1.2.3 Topology control . 9

. 1.2.4 Others 9

1.3 Motivation . 10

1.4 Preliminaries - graph domination . 13

1.5 Modeling Ad Hoc Networks . 15

1.6 Related work - clustering ad hoc networks 17

. 1.6.1 Clustering with independent dominating sets 18

. 1.6.2 Clustering with dominating sets 19

. 1.6.3 Clustering with connected dominating sets 19

. 1.6.4 Clustering with weakly-connected dominating sets 21

. 1.6.5 Clustering by methods other than graph domination 23

. 1.7 About this thesis 24

. 1.7.1 Thesis overview 24

. 1.7.2 Contributions 27

2 Approximation Algorithms 28

. 2.1 Centralized greedy algorithms 29

. 2.1.1 The GWM algorithm 29

. 2.1.2 The GWs algorithm 32

. 2.2 DGWM and DGWs - the distributed implementations 35

. 2.3 Distributed heuristics for small weakly-connected dominating sets 37

. 2.3.1 DWsyNc - synchronous distributed approach 39

. 2.3.2 DWAsyNC - asynchronous distributed approach 42

. 2.4 Comparisons 44

3 Zonal Computation 49
. 3.1 Introduction 49

. 3.2 Graph partitioning 51

. 3.2.1 Approaches to graph partitioning 52

. 3.2.2 Graph partitioning using minimum spanning forests 54

. 3.3 Computing weakly-connected dominating sets of the zones 57

. 3.4 Fixing the Borders 57
. 3.5 Simulation 59

. 3.6 Conclusion 62

4 Maintenance 66
. 4.1 Non-Zonal Maintenance 67

. 4.1.1 Edge-down 67

. 4.1.2 Vertex-down 68

. 4.1.3 Edge-up 70

vii

. 4.1.4 Vertex-up 72

. 4.2 Zonal Maintenance 72

. 4.2.1 Intra-zonal Maintenance 72

4.2.2 Inter-zonal Maintenance . 73

. 4.2.3 Complexity Analysis 74

. 4.3 Simulation 74

. 4.3.1 Settings 75

. 4.3.2 Results 76

5 Clustering in the Presence of Unidirectional Links 84

. 5.1 Introduction 85

. 5.2 Domination in directed graphs 86

. 5.2.1 Preliminaries 86

5.2.2 The gemini set . 87

. 5.2.3 Notes on complexity 88

. 5.3 Approximation algorithms 88

5.3.1 Greedy directed dominating set (GDD) algorithm 88

. 5.3.2 Greedy directed absorbent set (GDA) 90

5.3.3 Greedy directed twin-dominating set (GDT) algorithms 90

5.3.4 GDG algorithm - approximating minimum gemini sets 92

. 5.4 Distributed heuristics for small gemini sets 96

5.4.1 EARc . 97

5.4.2 EARD . 99

. 5.4.3 EARp 102

. 5.5 Comparisons 103

6 Future Work 108

. 6.1 Parallel solutions 108

. 6.2 Digraph sparsity 109

. 6.3 Modeling mobile ad hoc networks 109

. 6.4 Efficient utilization of unidirectional links 110

viii

List of Tables

2.1 Breakdown of DGWM . 36

2.2 Breakdown of DGWs . 37

3.1 Costs of different graph partitioning methods 54

List of Figures

1.1 Hidden terminal problem . 7

1.2 Exposed terminal problem . 7

. 1.3 Hierarchical routing [70] 12

1.4 Dominating set . 14

. 1.5 Connected dominating set 14

. 1.6 Weakly-induced subgraph 15

. 1.7 Weakly-connected dominating set 15

. 1.8 Unmarking conditions 21

. 1.9 Zonal clustering scheme 22

. 1.10 Clique-based clustering 24

. 1.11 Spanning tree-based clustering 24

2.1 A snap shot of pieces . 30

2.2 Greedy scenario of GWM . 32

2.3 Growing the single black piece of GWs . 33

. 2.4 First 2 iterations 38

2.5 Flow chart for a single vertex in DWSYNC . 41

2.6 When two front lines meet . 43

2.7 Dominating set size - average degree 6 . 45

2.8 Dominating set size - average degree 12 . 46

2.9 Average vertex distance - average degree 6 46

2.10 Average vertex distance - average degree 12 47

2.11 Average number of edge-disjoint paths - average degree 6 47

2.12 Average number of edge-disjoint paths - average degree 12 48

. Zonal clustering scheme 51

. Fixing the borders 58

. Bipartite graph for the problem of fixing a border 59

. Dominating set size (a) 62

. Dominating set size (b) 63

. Average path length (a) 63

. Average path length (b) 64

. Average number of edge-disjoint paths (a) 64

. Average number of edge-disjoint paths (b) 65

. 4.1 Edge down 68

. 4.2 Vertex-down 69

. 4.3 Possible scenarios for the presumed loss of the root 70

. 4.4 Edge-up - single coverage 71

. 4.5 Edge-up - combined coverage 71

. 4.6 Updating the bipartite graph 73

. 4.7 Maintenance stability (range = 100) 76

4.8 Maintenance stability (range = 200) . 77

. 4.9 Pairwise vertex distance vs . time (range = 100) 78

. 4.10 Pairwise vertex distance vs . time (range = 200) 78

4.11 Number of edge-disjoint paths vs . time (range = 100) 79

. 4.12 Number of edge-disjoint paths vs . time (range = 200) 80

. 4.13 Dominating set size vs speed 80

. 4.14 Pairwise vertex distance vs speed 81

. 4.15 Number of edge-disjoint paths vs speed 81

. 4.16 Rate of clusterhead change 82

. 4.17 Rate of cluster membership change 83

. 5.1 Vertices u. v can communicate by a pair of directed paths 84

. 5.2 Depicting digraphs 87

. 5.3 When GDTUNIoN beats GDT2PH 91

. 5.4 Proof illustration for Corollary 5.3.4. 92

. 5.5 Proof illustration for Lemma 5.3.5. 93

. 5.6 A gemini set can be much larger than a twin-dominating set 93

. 5.7 Portion of graph G 95

. 5.8 Portion of graph G'. 95

. 5.9 Initial cycle 97

. 5.10 Path in iteration two 98

. 5.11 Cycle C in iteration one 99

. 5.12 Path P in iteration two 100

. 5.13 Absorbed but unaware 101

. 5.14 Dominatinglgemini set size - sparse digraphs 105

. 5.15 Dominatinglgemini set size - dense digraphs 105

. 5.16 Average vertex distance - sparse digraphs 106

. 5.17 Average vertex distance - dense digraphs 106

. 5.18 Average number of arc-disjoint paths - sparse digraphs 107

. 5.19 Average number of arc-disjoint paths - dense digraphs 107

. 6.1 Linear difference 108

xii

Chapter 1

Introduction

Telecommunication has been one of the most dynamic research fields in recent decades and

shapes people's everyday life in many aspects. Wireless communication technology frees

users from being tethered to the fixed communication infrastructure. These users ultimately

desire communication networks with absolutely no constraints. Emerging technologies, such

as cellular telephone systems, satellite networks, and wireless local area networks, give people

much more freedom in communications. However, they are still constrained by ground or

space based stations. Thus, one major goal of research in mobile communications is to

further exploit the potential of mobile communication systems.

A mobile ad hoc network (MANET) is a special type of wireless communication net-

work, which consists solely of mobile hosts and dispenses with infrastructure. This new

networking scheme presents new challenges such as medium access and sharing, routing,

energy conservation, topology control, and security. Despite abundant research results pro-

duced in this area since the early 70's when the first ad hoc networking projects where

launched, the ad hoc networking technology is still not commercially successful. One major

reason is that the current protocols do not scale up well.

Building hierarchies among network nodes helps to abstract the network topology and

hides unnecessary local details from distant parts of the network. From a graph theoretic

point of view, by partitioning vertices into clusters, the network can be viewed as a graph on

these clusters. Graph domination, a branch of graph theory, provides a good methodology

for clustering ad hoc networks.

'Visit http: //w. ietf . org/html . charters/manet-charter . html for the official charter

1

CHAPTER 1. INTRODUCTION 2

In this chapter, we first review the wireless communication schemes that preceded ad

hoc networking. Then, we introduce ad hoc networking and its special challenges and

research issues. In Section 1.3, we motivate the necessity of building hierarchies in ad hoc

networks to solve the scaling problem that has been hindering ad hoc networking from

achieving widespread use. We define the graph domination problem, the essential graph

theoretic notion underlying this thesis, and its variants in Section 1.4. The computational

complexity and approximability of these variants are reviewed. Ad hoc networks can be

modeled for research purposes in different ways, as briefly discussed in Section 1.5, and

we adopt the classic multi-port model in this work. In Section 1.6, we formally define the

clustering problem in ad hoc networks and survey the major clustering algorithms based on

graph domination along with a few algorithms based on other notions. In the last section

(Section 1.7), we provide an overview of this thesis and highlight its contributions.

1.1 From existing peers to MANET's

Computers working together in a network have greater computational capacity than sin-

gle isolated machines. As computer networks, such as the Internet, have grown in recent

decades, the world has become "connected", allowing people around the world to work,

study, and interact with each other in a much more efficient and economical fashion. A

majority of the existing computer networks are connected using guided media, such as un-

shielded twisted pairs, coaxial cables, or optical fibers. Despite the fact that some media

offer much higher capacity than only a few years ago, today's computer network applications

are demanding even more capacity as well as mobility. This mobility requirement forces us

to consider non-wired network technologies. No wires are needed if free space is used to

propagate electromagnetic signals. The term "on-line" has been popular for several years,

while "on-air" is emerging as the next buzzword.

1.1.1 Infrastructured wireless technologies

Several different technologies have been used to implement wireless networks. In each of

these networks, individual users, or subscribers, have some physical device, or subscriber

unit, with which they access the network. For example, a smart cell phone or a personal

computer can be a subscriber unit in a specific wireless network. In addition, the network

may include other physical devices, such as ground-based antennas and communications

CHAPTER 1. INTRODUCTION 3

satellites. These technologies are called infrastructured, because subscriber units cannot

comprise a network by themselves without some supplementary devices.

The first public mobile telephone service was introduced in 1946 in twenty-five U.S.

cities as a centralized radio network. This type of network utilizes a powerful antenna

located on top of a very tall building. Signals from all senders must go through the central

antenna before being relayed to the receiver. The transmission range of this antenna is at

the magnitude of tens of kilometers. In fact, since the subscriber unit must also transmit

to the central antenna, the transmission range of the subscriber unit also limits the range

of communication using this system. Thus, for subscribers to be able to talk to each other

their movements are restricted. Other flaws, besides the small coverage, were observed from

centralized radio networks as follows. With all subscribers sharing the same antenna, the

number of simultaneous users is limited by the total channel bandwidth available. It is power

consuming to force the signal to travel a long distance, especially for portable subscriber

units usually equipped with small batteries. Furthermore, the signals are vulnerable and

error-prone when traveling a long distance. This is commonly referred to as attenuation.

In a newer technology, personal communication system (PCS), the geographical area cov-

ered by the network is divided into regions, called cells. Thus, telecommunication networks

using this technology are also called cellular networks. Each cell contains a control basesta-

tion, with its own antennas. These basestations are usually connected with a dedicated fixed

wired network, and are also connected to the Public Switched Telephone Network (PSTN).

Before a call can be made between two subscribers, the basestation where the sender resides

establishes a switched path to the receiver's basestation. Signals between the sender and

receiver go through this wireless-wired-wireless path. After the call is completed, the path

is released. Compared to the earlier centralized radio network, this technology requires

less power for each unit, allows larger area coverage, and supports many more simultane-

ous users. Since basestations only have to control communications within their own cells,

their transceiver range is not much larger than the radius of their resident cell. Therefore,

non-neighboring cells can use identical sets of frequency bands without interfering with each

other. This is called spatial frequency reuse. As the distance that signals must travel is much

shorter, the subscriber units require much less power. This technology is more complex than

that of a centralized radio network. For example, a sophisticated switching technique called

handofl was proposed to enable users to continue phone calls uninterrupted when crossing

cell boundaries.

CHAPTER 1. INTRODUCTION 4

The use of satellites gives rise to some additional possibilities. Geostationary (GEO)

satellites are able to cover vast areas of the earth's surface. Although cellular networks are

cost-efficient in urbanlsuburban areas and frequently traveled highways, it is cost-prohibitive

to deploy them in sparsely populated areas where there is little demand for communications,

such as in northern Canada, Siberia, and the South Pacific. At an altitude of 35,000 km

above the equator, satellites are stationary relative to the earth's surface. Three equally

spaced GEO satellites positioned over the equator are able to provide wireless communi-

cation capacity for most geographical areas except for those with high latitude, where the

transceiving elevation angle is small. With GEO satellites, the round-trip communication

delay is as much as 230 msec, which is too long for real-time applications such as teleoper-

ation and video conferencing. As with the centralized radio networks, power consumption

and signal attenuation are problems for the GEO satellite technology.

Yet another wireless technology, low earth orbit (LEO) satellites uses satellites deployed

in low earth orbits at an altitude of less than 1,500 km above the earth. These satellites

play the same role as basestations in cellular telephone systems, enabling ground-based

subscriber units to communicate to each other. In practice, LEO offers a much larger

area coverage than either land-based centralized radio networks or cellular networks. With

orbits lower than GEO, LEO signals have a much smaller round-trip delay between ground

units and satellites; a typical delay is 10 msec. The issue of spatial frequency reuse also

arises here as in cellular networks. LEO has increased complexity due to the movement of

the "basestations". Another drawback of the LEO approach is the high cost of designing,

building, and maintaining it. Gvozdjac [36] presented a detailed case study on modeling

information dissemination in LEO satellite networks.

Wireless Local Area Network (WLAN, or Wireless LAN), a more recent technology, is

a flexible data communication system implemented as an extension to, or as an alternative

for, a wired LAN within a building or neighborhood. In a typical WLAN configuration,

a transceiver device, called an access point, connects to the wired network from a fixed

location using standard LAN, such as Ethernet. A single access point can support a small

group of wireless users within a range of tens to hundreds of meters. The access point

can be located anywhere, as long as the desired radio coverage is obtained. Subscribers

access the WLAN through wireless adapters, another example of subscriber units, and are

allowed some movement without disconnecting from it. The IEEE 802.11 and HYPERLAN

are the dominant wireless local area network specifications in North America and Europe,

CHAPTER 1. INTRODUCTION 5

respectively.

Bluetooth [37] is a short-range wireless communication solution initiated by Ericsson. In

the Bluetooth specification, devices can form two types of master-slave structures: piconet

and scatternet. A piconet has a star topology with a master device at the center and a set

of slave devices around. Several piconets can be joined to form a scatternet. To do that, a

slave device can have multiple masters and a master device can be a slave of another master.

1.1.2 Ad hoc networks

One goal of subscribers and of wireless networking scientists and engineers is full mobility.

In other words, a subscriber should be able to use the network at any time and place, even

if the subscriber is moving. One approach to achieve full mobility is the use of mobile ad l~oc

networks, in which only subscriber units are included. Such networks are infrastructureless

as they do not require supplementary devices. A mobile ad hoc network is also called

MANET or ad hoc network. The number of users in the network may vary from tens to

tens of thousands, with all users in an area from hundreds of square meters to hundreds

of square kilometers. The transmission range of a subscriber unit is significantly smaller

than the network diameter, but we still wish to allow users in different parts of the network

to be able to communicate. To achieve this, each subscriber unit must be responsible for

relaying messages for others, that is, playing the role of a "basestation" though no actual

basestations exist. Therefore, all subscriber units can talk to each other even though they

may not be within mutual transmission range. In the future, ad hoc network subscriber

units, such as phone handsets, personal computers, video cameras, PDA's, and other forms

of embedded intelligence, will be deployed globally and a subscriber unit will never stand

alone while turned on. As a first step, the deployment of ad hoc networks in smaller areas

is appealing in scenarios such as disaster relief and battlefield communication, where no

basestation is available or where the communication environment is hostile.

The idea of ad hoc networking has been around for over 30 years. As early as 1972,

DARPA started the pioneering PRNet (Packet Radio Network) project [44]. Subsequently,

various projects sponsored by the military, such as SURAN (Survivable Radio Networks),

TI (Tactical Internet), and GloMo (Global Mobile Information Systems), were launched to

implement the ad hoc networking paradigm [27]. This area was revitalized when many en-

abling technologies, such as wireless signal processing and encoding, distributed computing,

VLSI circuit design and manufacturing, cryptography, positioning services, etc. have been

CHAPTER 1. INTRODUCTION

invented and developed.

1.2 Research issues in ad hoc networks

Research work on mobile ad hoc networks has mostly been focused on how to share the

medium efficiently and fairly, how to relay messages between source and destination, how

to control the network structure to make it scale, how to conserve battery power of the

portable subscriber units, and how to prevent malicious intrusion and impersonation on

multihop routes.

1.2.1 Medium access control

The free space as propagation media is subject to interference when multiple units send

messages simultaneously. Medium access control (MAC) protocols define rules for orderly

access to the shared medium and play a crucial role in efficient and fair sharing of the scarce

wireless bandwidth.

The entire frequency band can be divided into independent sub-channels by some central

frequency allocator so that signals in different sub-channels do not interfere with each other.

This is called frequency division multiple access (FDMA). Similarly, time can be divided by

a central scheduler into periodic time slots so that signals transmitted in different time

slots are free from interfering with each other. This is called t i m e division multiple access

(TDMA) .
However, TDMA and FDMA are not feasible for mobile ad hoc networks, where there

is no such central authority. Instead, units in an ad hoc network must share the medium in

asynchronously. To avoid disrupting an on-going transmission in its vicinity, a vertex that

wants to send a packet must sense the medium until any on-going transmission is finished.

This is complicated when not every vertex can hear everything. Suppose that vertex B

can communicate with vertices A and C but that A and C can not communicate with each

other. If B is receiving a message from C when A wants to send a packet, A believes that

no activity is going on within its vicinity because it can not detect C's transmission. So A

may send a packet which interferes with the packet that B is receiving from C. This is a

classic example called the hidden terminal problem (Figure 1.1). In another example, called

the exposed terminal problem (Figure 1.2), vertex B refrains from sending packets to vertex

CHAPTER 1. INTRODUCTION

Figure 1.1: Hidden terminal problem.

Figure 1.2: Exposed terminal problem.

A even if no interference will occur at the receiver, simply because the sender B hears some

on-going transmission (say from C to D) within its own vicinity.

These two examples shows that straightforward channel sensing protocols will fail in

ad hoc networks. Fortunately, a plethora of medium access control protocols have been

proposed to address the above problems. Among these are the MACAIMACAW [45, 171

protocols, which are the foundation of the MAC layer specification of IEEE 802.11. The

MACAW protocol is essentially a four-way handshaking: RTS/CTS/DATA/ACK between

the sender and receiver, where RTS is request-to-send, CTS is clear-to-send, and ACK is

acknowledgment. Other MAC protocols that can be used to implement mobile ad hoc net-

works include the EY-NPMA protocol for HYPERLAN and the frequency hopping scheme

for Bluetooth.

Research in this area includes work on improving the efficiency, fairness of bandwidth

use, energy conservation, and the support of multicasting.

1.2.2 Routing

A network is called a multihop network if there is at least one pair of members that can

not talk to each other directly. Generally, in a multihop network, messages travel along

CHAPTER 1. INTRODUCTION 8

several links forming a path from the source to the destination. The process of finding an

appropriate path for the message to be sent along is called routing. The intermediate nodes

on the path are responsible for deciding how to forward an incoming message and are called

routers. The primary goal of a routing algorithm is to establish correct and efficient routes.

Such an algorithm incurs costs in both time and channel bandwidth, so route construction

should be done so as to minimize delay and bandwidth consumption.

A simple technique for routing is flooding. In this scheme, when a message arrives at a

particular node for the first time, the node transmits it on all outgoing lines except the one

to the node from which the message was received. With flooding, the message will quickly

arrive at the destination, but the process unnecessarily consumes a large amount of channel

bandwidth. Ni, Chen and Sheu [57] presented a more quantitative analysis, showing that

flooding can be very costly and will result in redundancy, contention and collision.

In practice, wired networks do not utilize the flooding technique. Instead, they send

messages via particular paths. Routers may exchange information about link status, cal-

culate an overall view of the networks and construct routing tables. Note that it is not

necessary to store the complete route for each pair of nodes. Instead, for each pair of nodes,

it is sufficient to know the identity of the next link (or hop) on the route. Routing algo-

rithms are capable of adapting to link failure and network congestion, by making changes

to the routing tables. Routing algorithms vary in how link information is exchanged, how

many routing tables are maintained, what these tables contain, and how network changes

are reported.

Unlike the wired networks, in which the network structure is almost static and link failure

is not frequent, ad hoc networks allow higher mobility, which permits rapid topology change.

Thus, pre-calculated routing information can quickly become stale. Routing algorithms for

ad hoc networks are also constrained by factors such as low bandwidth, limited power

supply, and high error rates. Numerous routing algorithms for ad hoc networks have been

proposed to handle these challenges. Royer and Toh [66] give a good review of current

routing algorithms for ad hoc networks. The majority of the routing algorithms for ad

hoc networks are classified into two categories: table-driven (or proactive) and on-demand

driven (or reactive). In a table-driven routing algorithm, complete routing information is

pre-calculated and ready to use at any time. Typical routing algorithms in this category

include DSDV (Destination-Sequenced Distancevector) [60] and WRP (Wireless Routing

Protocol) [55]. In an on-demand driven routing algorithm, a route is calculated as needed

CHAPTER 1. INTRODUCTION 9

although it may be partially based on some existing routing information. The representat.ive

protocols in this class are AODV (Ad-hoc On-demand Distance Vector) [62], DSR (Dynamic

Source Routing) [43], and TORA (Temporally-Ordered Routing Algorithm) [58]. Other

routing algorithms, such as ZRP (Zone Routing Protocol) [38], incorporate both proactivity

and reactivity and are thus called hybrid.

1.2.3 Topology control

Currently, the biggest challenge in implementing mobile ad hoc networks is scalability.

Given current MAC and routing protocol complexities, network performance will degrade

as new units are added to the network, when units move faster, or when the density of

units increases. Thus, we need to adjust the network structure to a scale in which the

current MAC and routing protocols will work reasonably well. Topology control in ad hoc

networks is the problem of determining an appropriate network structure or simplifying

a given network structure. Readers are referred to Li [48] and Rajaraman [64] for more

information on the topic of topology control.

Topology control schemes are divided into two categories. Schemes in the first category

are based on controlling the number of wireless links in an ad hoc network by adjusting the

power levels of the subscriber units. The quality of the output of a scheme can be evaluated

according to criteria such as connectivity (the number of hops in routing paths) and capacity

(the transportation capability of the network). In the other category, the network structure

is simplified by clustering - the process of defining substructures of the network. Units that

are close to each other form a cluster, and connections between units of different clusters

form connections between clusters. The assumption of clustering is that units within a locus

in a realistic ad hoc network are usually similar in nature and are stationary relative to each

other. Clustering can be applied iteratively to a network topology to obtain a hierarchically

clustered structure. More on clustering will be discussed in Section 1.6.

1.2.4 Others

The subscriber units are usually portable and powered by small batteries. To conserve

battery power for these devices is a central issue. Simply reducing the activities of the

subscriber units is not advisable. First, if nodes are sluggish in sending and receiving

control messages, the ability of a network to respond to network changes is compromised,

CHAPTER 1. INTRODUCTION 10

which in turn may cause many other problems. Second, an ad hoc network is a c~operat~ive

network whose units must relay data for other units. A unit should not conserve its own

power while degrading the performance of the entire network. Therefore, there is a subtle

trade-off between power use and network performance.

Some research activities in ad hoc networking focus on building sensor networks. Micro-

sensors are small modules with sensing, computing, and communication capabilities. These

sensors can be deployed within a geographic area to provide continuous monitoring of en-

vironmental or weather information. Micro-sensors are generally not mobile and with a

relatively small amount of battery power compared to other types of ad hoc networking

devices. Research in the field of sensor networking focuses on device fabrication, energy

conservation, information collection and dissemination, and data protection.

As in other wireless networks, security is an important issue due to the open nature of the

transmission medium. Ad hoc networks must also confront potential threats from malicious

impersonation. A message source has to trust intermediate units to relay its message to the

destination, but the relayed message can be tampered by malicious units. What's more,

routing information propagated through the network can be modified so that data packets

are redirected to false destinations.

Other interesting research issues in ad hoc networking include using directional anten-

nas to improve network capacity, providing quality-of-service guarantees, and incorporating

location information in applications.

1.3 Motivation

The Internet, a large-scale multi-hop wireline communication network, has been a huge

commercial success in the past decade. In contrast, despite the success of many enabling

technologies related to ad hoc networking, one cannot help asking why there are no cost-

effective off-the-shelf commercial ad hoc networking systems. Among the many challenges

for ad hoc network designers and users, scalability is a critical issue. In particular, when a

flat-topology network contains a large number of nodes, control overhead, such as routing

packets, requires a large percentage of the limited wireless bandwidth.

Perkins [63] observed that "aggregating routing information is the key to Internet scal-

ability". In particular, a node's IP address contains hierarchical information related to its

location that can be used in routing. Due to the mobility of nodes in an ad hoc network,

CHAPTER 1. INTRODUCTION 11

this is not as simple to accomplish.

In a multihop packet-switched network, intermediate nodes are required to route packets

between the source and destination if they (the source and the destination) are not directly

connected. For example, in a distance-vector routing protocol, each node participating in

the route calculation stores a routing table and shares it with all neighboring nodes. If the

network has a flat topology (that is, all nodes are treated equally), the size of the routing

table is proportional to the number of nodes in the entire network. Further, as network

size increases, communication costs tend to consume a larger proportion of the bandwidth.

Furthermore, as the rate of the network topology change increases, the exchange of routing

tables between neighboring nodes must be more frequent to keep the routing information

up to date. Other network parameters, such as network node density and traffic load, can

also impair network scalability. Arpacioglu, Small, and Haas [8] have begun a study of the

scalability issue of multihop networks and, in particular, ad hoc networks.

The Internet, a multihop packet-switched communication network, manages to function

with approximately 10' nodes. Each node in the Internet is given a 32-bit IP address that

is assigned in a way such that all the nodes in the same subnet share the same address

prefix. This very important property allows us to build a hierarchy in the Internet topology.

Routing nodes do not need to store the IP addresses of all the nodes in the network; address

prefixes are sufficient to direct packets to the proper subnets for further local routing.

Unfortunately, due to mobility, nodes in an ad hoc network can not be assigned such

aggregate addresses. This is an obstacle for scaling up ad hoc networks.

However, we believe that many substructures in a large-scale, even global, ad hoc network

are relatively stable. Users can indeed be mobile, but their movements are usually confined

within a specific geographical area. For example, students may wander around a region

during the day and commute within a metropolitan area on a daily basis. These movements

cause local topology changes but do not drastically alter the overall structure of the network.

Since many of these changes are confined to a relatively small region, one can abstract the

network to obtain a simpler topology and avoid the need to inform the entire network of

these topology changes. Local portions of the network are represented by super-vertices

in the abstracted topology and connections between them are super-edges. Clustering is a

process of defining such an abstracted structure of a network and can be applied recursively

to obtain a multi-level hierarchy. We will give a more formal definition of clustering in

Section 1.6.

CHAPTER 1. INTRODUCTION

Figure 1.3: Hierarchical routing [70].

After clustering, each node in the hierarchy can be assigned a hierarchical address that

indicates its position in each level of the hierarchy. Routing can easily be carried out using

such addresses. We use an example from Sucec and Marsic [70] to explain this. Figure 1.3

depicts an n-node network with three hierarchy levels created by recursive clustering. We

use the terms Level-0 to refer to the original network, Level-1 to refer to the structure

obtained by clustering once, and Level-2 to refer to the structure obtained by clustering

Level-1. Each node in the network can be assigned a 3-level hierarchical address. For

example, in the figure, node 63 is a member of the level-1 cluster represented by node 68.

Node 68, in turn, is a member of the level-2 cluster represented by node 97. Thus, node

63's hierarchical address is (9T2, 68i, 630)~ where the subscripts indicate address levels. In

such a hierarchy, a node only needs to store a 3 x c matrix to route packets, where c is

the number of sub-clusters within a cluster of the next higher level. Suppose source node

53 (972, 5g1, 530) wants to send a packet to destination node 63 (972, 68i, 630). The packet

is first routed to a node in node 63's level-1 cluster, say node 68 (972, 6g1, 680)~ and then

routed to node 53 within the cluster. In general, if c is a constant order for each level, then

the hierarchy level L = O(1ogn). Therefore, each node only needs to store a routing table

of size O(log n) rather than of size O(n). With this exponential savings from clustering, it is

CHAPTER 1. INTRODUCTION 13

possible for an ad hoc network to scale. (See Steenstrup [68] for more details on hierarchical

routing.)

1.4 Preliminaries - graph domination

We will use graph domination, a subject in graph theory, as a major tool to attack the ad

hoc network clustering problem. Thus, in this section, we introduce some notions related to

graph theory and graph domination, and then briefly study the complexity and algorithmic

aspects of graph domination.

We use the notation G = (V, E) to denote a graph with vertex set V and edge set E .

Sometimes a vertex is also called a node and an edge is also called a link. We use n to

denote the size of V and m for the size of E unless otherwise specified.

Given a graph G = (V, E) , the closed neighborhood N[v] of a vertex v in G consists

of the vertices adjacent to v plus vertex v itself. The closed neighborhood N[S] of the set

S C V is the union UvES N[v]. The closed distance-lc neighborhood, Nk[v], of a vertex v E V

is the set of vertices that are within distance-lc of v. The open neighborhood N(v) of a

vertex v in graph G consists of the vertices adjacent to v is N(v) = N[v] \ v with other open

neighborhood terms defined and denoted analogously. A vertex subset S V is called an

independent set if no vertices in S are adjacent. Given a vertex subset S C V, the subgraph

induced by S, denoted (S), is (S, E n (S x S)). Intuitively, the graph (S) has S as the vertex

set and includes all edges of E that have both endpoints in S. Readers are referred to West

[72] for other graph theoretic concepts and results.

A dominating set of graph G is a subset S C V, such that every vertex v E V is either

in S or adjacent to an element in S . In other words, UVES N[v] = V. If vertex v is in

a dominating set S and vertex u is a neighbor of v, then we say v dominates u and u

is dominated by v. An edge is said to be dominated if either of its endpoints is in the

dominating set; otherwise it is free. The black vertices in the graph in Figure 1.4 form a

dominating set of the graph.

Now we are ready to introduce some important variations of graph domination. An

independent dominating set is a dominating set that is also an independent set. A connected

dominating set, or CDS for short, of graph G is a dominating set of G whose induced

subgraph is connected. In the graph in Figure 1.5, the black vertices form a connected

dominating set and the subgraph induced by these vertices is indicated by black edges.

CHAPTER 1. INTRODUCTION

Figure 1.4: Dominating set. Figure 1.5: Connected dominating set.

The subgraph weakly induced by S (S V) is the graph (S),=(N[S], E n (N[S] x S)).

Intuitively, (S), includes all the vertices in S and their neighbors as the vertex set, and

contains all edges which have at least one endpoint in S . Figure 1.6 illustrates a subgraph

weakly induced by the solid black vertices and the subgraph is indicated by black edges. A

set S is a weakly-connected dominating set, or W C D S for short, of graph G if S is dominating

and (S), is connected. The solid black vertices in Figure 1.7 are an example of a weakly-

connected dominating set.

Haynes, Hedetniemi and Slater [40, 391 is a very good survey in the area of domination

in graphs covering the graph theoretical, computational complexity and algorithmic aspects

of this topic.

We can use the vertices in a dominating set as representatives to simplify the structure

of an ad hoc network. The variations above provide us different levels of connectivity and

independence. To simplify the network structure as much as possible, a minimum sized

dominating set (or dominating set variant) is desired. The domination number y(G) is

defined to be minscv{)SI - I S is a dominating set of G). A minimum dominating set of G

is a dominating set whose cardinality is y(G). The connected domination number yC(G),

weakly-connected domination number y,(G), and independent domination number yi(G)

are defined analogously. When the graph G is understood from context, it can also be

omitted.

CHAPTER 1. INTRODUCTION

Figure 1.6: Weakly-induced subgraph. Figure 1.7: Weakly-connected dominating
set.

Unfortunately, determining any of the values y(G), y,(G), yw(G), or yi(G), or find-

ing a minimum dominating set (or minimum connected dominating set, minimum weakly-

connected dominating set, minimum independent dominating set) is NP-complete [29].

Therefore, researchers have proposed approximation algorithms to provide practical results.

For example, Guha and Khuller [35] propose two approximation algorithms for finding small

connected dominating sets. What is more, due to the close similarity between the minimum

dominating set problem and the set cover problem, it is quite likely that no algorithms with

approximation ratio asymptotically better than O(1ogn) can be found for any of the above

variants of the dominating set problem [26, 511. More algorithms for constructing small

dominating sets (and variants) will be surveyed in Section 1.6.

1.5 Modeling Ad Hoc Networks

Modeling mobile ad hoc networks must deal with a challenging trade-off between complex-

ity and fidelity. The traditional multi-port model used in distributed computing is simple

enough but may lack precision in imitating ad hoc networks; while models that incorpo-

rate MAC issues can be too complicated to manipulate mathematically. By comparing the

multi-port model with two newer models, we believe that it is justified to use the tradi-

tional distributed computing model. An additional benefit from using a classic model is the

possibility of using existing fundamental algorithms in distributed computing.

CHAPTER 1. INTRODUCTION 16

The distributed computing community uses a classic multi-port network model as the ba-

sis for designing and analyzing distributed algorithms for various problems. In that model,

a process (essentially a vertex of the graph) can sendlreceive a message to/from each of its

neighbors in a single round (time unit) in a synchronous network. An asynchronous version

of the model does not require that the message transmission and reception be contained in

fixed time slots. This is not the most realistic model for ad hoc networks because interfer-

ence between links, which is not as serious a problem in wired networks, is not taken into

consideration. Although not a perfect model for ad hoc networks, this model is generally

regarded as reasonable and has been adopted by a large number of researchers in the area.

Bar-Yehuda, Goldreich, and Atai [13] developed a model for ad hoc networks that in-

corporates interference, and this model is further utilized by Kowalski and Pelc [46]. This

model uses undirected graphs with the following scheduling constraints to model ad hoc

networks:

0 An edge e between two vertices indicates that the transmitter of each vertex can reach

the receiver of the other;

0 Vertices send messages in synchronous steps;

In every step, each vertex may act either as a transmitter or a receiver, but not both;

0 A transmitter sends a message that can potentially reach all of its neighbors;

In a given step, a receiver gets a message if and only if exactly one of its neighbors

transmits during the step. (If two or more neighbors transmit at the same time, a

collision occurs.)

The synchronous scheduling scheme used in this model is shown to be very complicated.

Furthermore, this model only allows a single protocol to be executed on an ad hoc network

at once.

Researchers in probabilistic and randomized algorithms use their results in inter-connected

networks and other wired networks for routing and message queuing in ad hoc networks. Be-

cause medium access control (MAC) is well-studied for such networks, these papers generally

use randomized algorithms to solve the routing and queuing (which they call "scheduling")

problems optimally or approximately. The work of Adler and Scheideler [2] is an example.

After integrating MAC, the problem is shown to be much harder. Adler and Scheideler

CHAPTER 1. INTRODUCTION 17

show that to schedule and optimally route a permutation (a one-to-one mapping between

sources and destinations) in their general ad hoc networking model is NP-complete. It is

also NP-complete to approximate it within a ratio of O(nl-€) for any E > 0. To solve the

problem in a less general model, they divide the whole problem into MAC, routing, and

scheduling problems. Using a special, yet sensible, MAC protocol (called LPC, local proba-

bilistic communication), the routing/scheduling problem is much better solved. Intuitively,

the LPC protocol suppresses the probability that each node attempts to access the channel

so that whenever it does so, it succeeds in sendinglreceiving a packet with a probability of

at least 112 (despite the interference from other nodes). Thus they can adapt their results

from wired networks to ad hoc networks. However, the problem with the LPC model is that

the probability that a node attempts to access the channel can be as low as O(l/n).

The multi-port model may seem too optimistic and unrealistic to use. However, it may

be feasible when used for analyzing the time used by a particular protocol in a network

that runs multiple protocols at the same time. That is, it takes about the same time for a

vertex v to send a message to one neighbor compared to the time for v to send a different

message to all of the neighbors. This is true because the MAC layer of a vertex schedules

all the packets from the upper layer independently and the small increase in traffic caused

by this particular protocol can be ignored compared to the significantly large amount of

total traffic. Thus, we will adopt the classic (possibly asynchronous) multi-port model in

this thesis.

1.6 Related work - clustering ad hoc networks

Here, we define the clustering problem as follows. We are given an undirected graph G =

(V, E) representing a communication network where the vertices are the nodes in the network

and the edges are the communication links. The clustering process first divides V into a

collection of (not necessarily disjoint) subsets {Vl, G, . . . , Vk), where V = utZl V,, such that

each subset V, induces a connected subgraph of G. Note that these induced subgraphs can

overlap. Each such vertex subset is a cluster. Ideally, the size of the clusters falls in a desired

range and the induced subgraphs have small diameters. An abstracted graph G' = (V', E')

is constructed, where each vertex v: E V' corresponds to a subset V,. There is an edge from

vi to vi if and only if there is an edge of E from some vertex ui E V, to some vertex uj E V,.
One vertex in each cluster is elected to represent the cluster. This vertex is commonly called

CHAPTER 1. INTRODUCTION 18

the cluster-head or cluster-leader. The abstracted network G1 can also be clustered leading

to a multi-level hierarchy.

A natural way to cluster an ad hoc network is to use the notion of graph domination

or one of its variants. The members of a dominating set are chosen as cluster-heads and

the neighborhood of each cluster-head comprises a cluster. In this section, we focus on

clustering algorithms based on graph domination. We briefly mention other notions used to

define clusters.

1.6.1 Clustering with independent dominating sets

One can produce a relatively small number of clusters of a given graph by insisting that the

dominating set is also an independent set.

Baker and Ephremides [lo] devised one of the earliest clustering algorithms for ad hoc

networks, the linked cluster algorithm. This algorithm is executed in a synchronous ad hoc

network, where each node has a dedicated TDMA time slot to avoid collisions. It takes

IVI time slots for a node to learn the structure of its neighborhood. A vertex v is chosen

as a cluster-head by a neighbor u if v has the highest vertex ID within N(u) . The chosen

vertices form an independent dominating set of G.

Gerla and Tsai [32] proposed two clustering algorithms based on vertex ID and vertex

degree. In the lowest-ID algorithm, each vertex with the lowest ID within its closed neigh-

borhood is selected as a cluster-head. In the highest degree algorithm, each vertex with

the highest degree in its closed neighborhood is selected. The cluster-heads chosen by these

two algorithms form an independent set. However, as noted by Chen, et al. [20], these

algorithms do not work on all graphs. In particular, for some graphs the cluster-heads do

not form a dominating set and, thus, not every vertex has a cluster-head. Lin and Gerla

[50] corrected this flaw and proposed a modified lowest-ID algorithm that constructs inde-

pendent dominating sets. Extending this result, Chen, et al. [20] presented an algorithm

for constructing distance-k dominating sets with the additional property that the members

of the dominating set are at distance at least k + 1 from each other. This algorithm selects

vertices based on the highest-degree within distance-k neighborhoods with the lowest-ID

used to break ties. Basagni generalized this result to show that any meaningful measure

can be used to determine cluster-heads [14].

For some other results on clustering with independent dominating sets, see the papers

of An and Papavassiliou [7], Hou and Tsai [41], and Gerla, Kwon, and Pei [31].

CHAPTER 1. INTRODUCTION

1.6.2 Clustering with dominating sets

The use of independent dominating sets as cluster-heads is problematic when the network

topology changes. In particular, when two cluster-heads move within transmission range of

each other, one of them must defer to the other which can trigger cluster-head changes that

may propagate throughout the network. Such an effect is called chain reaction [31]. By

relaxing the independence condition on dominating sets, this chain reaction effect does not

occur. Thus, it may be of interest to simply consider dominating sets.

Liang and Haas [49] presented a distributed greedy algorithm for dominating sets that

mimics a centralized greedy algorithm. In the centralized algorithm, a dominating set

is constructed by adding, in each iteration, the vertex with the largest number of free

neighbors. This yields a dominating set with approximation ratio O(1og A), where A is

the maximum vertex degree. The authors showed that this algorithm can be distributed so

that, in each iteration, vertices only need to know about the structure of their distance-2

neighborhood. Consequently, both algorithms have the same logarithmic approximation

ratio. Jia, Rajaraman and Sue1 [42] devised a randomized version of this algorithm that

terminates in O(1og (VJ log A) rounds with high probability. The approximation ratio is

expected to be O(log A) and is O(1og (VI) with high probability.

For some other results on clustering with dominating sets, see the papers of Amis,

Prakash, Vuong, and Huynh [6], Belding-Royer [15], and Sivakumar, Sinha, and Bharghavan

~ 7 1 .

1.6.3 Clustering with connected dominating sets

Some researchers argue that better connectivity among the cluster-heads is an advantage

for applications such as message broadcasting. The vertices of a connected dominating

set induce a connected subgraph that can be used as a virtual backbone so that broadcast

redundancy is reduced significantly [69].

As the minimum connected dominating set decision problem is NP-complete in general

graphs, Guha and Khuller [34, 351 proposed two centralized greedy algorithms for finding

suboptimal connected dominating sets in arbitrary connected graphs. In one algorithm,

vertices are added to a connected set so as to maximize the number of newly dominated

vertices. In the other, the connectivity of the subgraph induced by adding each candidate

to the current set is also considered. Both algorithms have an approximation ratio of

CHAPTER 1. INTRODUCTION 20

O(1og A). Due to the close similarity between the connected dominating set problem and

the set cover problem, it is unlikely that an approximation algorithm with performance ratio

asymptotically better than O(1og A) can be found for the connected dominating set problem

[261
Das and Bharghavan [24] provided distributed implementations of the algorithms of

Guha and Khuller [34, 351 for constructing connected dominating sets in ad hoc networks.

These distributed algorithms generate the same connected dominating sets as their central-

ized counterparts and, thus, have exactly the same approximation ratio since they utilize

central coordinators to oversee the entire execution.

To address the issue of non-localized computation in the distributed algorithms of Das

and Bharghavan, Wu and Li [73, 741 presented a localized distributed algorithm for finding

small connected dominating sets in which each node only needs to know its distance two

neighborhood. The algorithm consists of two marking phases. Initially, each vertex is

marked F to indicate that it is not in the connected dominating set. In phase one, a vertex

marks itself T if any two of its neighbors are not directly connected. This process marks all

vertices that can be potentially included in a connected dominating set. In phase two, a T

vertex v changes its mark to F if either of the following conditions is met:

1. 3u E N(v) which is marked T such that N[v] N[u] and id(v) < id(u);

2. 3u, w E N(v) which are both marked T with N[v] C N[u] U N[w] and id(v) <
min{id(u), id(w)).

The left and right examples shown in Figure 1.8 illustrate conditions I and 2, respectively.

The vertices colored black are T vertices and those colored white are F vertices. In both

cases, the vertex v will change its mark to F provided the identity condition holds. This

algorithm constructs a connected dominating set in a localized fashion. However, there is

no known non-trivial upper bound on the size of the connected dominating set generated.

In a more recent paper, Dubhashi, et al. [25] presented a distributed algorithm for

constructing small connected dominating sets and weakly-connected dominating sets with

an O(1og A) approximation ratio. The connected dominating set algorithm first constructs

a dominating set and then adds extra vertices in an economical way such that the resultant

dominating set is connected and has a provable performance ratio. Specifically, the algorithm

CHAPTER 1. INTRODUCTION

Figure 1.8: Unmarking conditions.

utilizes the randomized algorithm of Jia, Rajaraman and Sue1 [42] to construct a dominating

set that is expected to be within a O(1ogA) factor of the minimum size. The algorithm
2

utilizes the observation that a simple undirected graph G on n vertices has at most n1+9-' +n

edges (Lemma 15.3.2 in Matousek [54]), where g is the girth (length of the shortest cycle) of

G. Given a dominating set S of G, an auxiliary graph GI is constructed on S. By removing

cycles of length less than 11 + 210g (SIJ in GI, G' has no more than 2(SI edges left. An

edge e = (u, v) of G' corresponds to a set of paths {Pi(u7 v)) in G of length at most three.

For each pair of such vertices u and v, additional vertices are added to S only if u and v

are neither adjacent nor joined by a path comprised of only dominated vertices in G. At

most two additional vertices on a path are added to S. As this is done for each edge in G',

the total number of vertices added to S is at most 41SJ. Therefore, S becomes a connected

dominating set of expected size at most O(1og A) times the minimum.

In an obstacle-free two-dimensional space where all vertices have the same transmission

range, ad hoc networks can be modeled using unit disk graphs (UDG's) [23]. UDG's are

the intersection graphs of equal sized circles in the plane, that is, there is an edge between

two vertices if their corresponding circles intersect.

Alzoubi, Wan, and F'rieder [3, 41 proposed a localized algorithm for finding small con-

nected dominating sets in UDG's. Initially, a maximal independent set of the given UDG

G is chosen. This set is also a minimal dominating set of G. Other vertices are added

to guarantee that the set is connected. The algorithm takes advantages of some particu-

lar geometric properties of UDG's that guarantees that the size of the chosen connected

dominating set is within a constant factor of the minimum.

1.6.4 Clustering with weakly-connected dominating sets

Chen and Liestman [21] introduced the use of weakly-connected dominating sets for cluster-

ing ad hoc networks. This inherently sparser structure models the scatternet configuration

CHAPTER 1. INTRODUCTION 22

of Bluetooth [37]. In the Bluetooth specification, devices can form two types of master-slave

structure: piconet and scatternet. A piconet has a star topology with a single master device

at the center and a set of slave devices around. Several piconets can be joined to form a

scatternet. A weakly-connected dominating set of a graph faithfully captures the scatternet

topology with the vertices in the dominating set being the master devices.

A series of algorithms was presented by Chen and Liestman [21] with an approximation

ratio of In A + O(1) based on the algorithms of Guha and Khuller [34, 351 for connected

dominating sets. These greedy algorithms construct weakly-connected dominating sets in-

crementally by adding a vertex to the current set in each iteration. As in the connected

dominating set case, a In A + O(1) approximation ratio upper bound can be proved for this

algorithm and it is asymptotically optimal.

Figure 1.9: Zonal clustering scheme.

In order to decentralize these algorithms, Chen and Liestman [22] proposed a zonal

version of these algorithms. In the zonal clustering algorithm, given a zone size control

parameter x, each zone is a connected subgraph of the input network with no more than

2x vertices. A zone has a dedicated vertex known by all zone members as root. The

zonal construction algorithm has two levels: intrazonal and interzonal. In the intrazonal

level, a weakly-connected dominating set is independently constructed for each zone. In

the interzonal level, the root of a zone adds additional vertices to its weakly-connected

dominating set to guarantee that the union of the dominating sets for the individual zones

is a weakly-connected dominating set for the entire network. As an illustration, the network

CHAPTER 1. INTRODUCTION 23

in Figure 1.9 is partitioned into three zones. The solid black vertices are the dominators of

each zone. The hollow black vertex in zone Z1 is added to guarantee the weak connectivity

of the dominating set. The advantage of the zonal approach is that the zone size control

parameter x can be used to control the zone granularity, providing a trade-off between the

extent of network structure simplification and the locality of algorithm execution.

An algorithm of Dubhashi, et al. [25] similar to the one presented in Section 1.6.3

constructs small weakly-connected dominating sets with an O(1og A) approximation ratio.

Alzoubi, Wan and Frieder [5] proposed an algorithm related to their algorithm for con-

nected dominating sets in unit disk graphs (UDG's) [4] that generates weakly-connected

dominating sets of size within a constant factor of the minimum for UDG's (see Sec-

tion 1.6.3).

1.6.5 Clustering by methods other than graph domination

Other algorithms for clustering ad hoc networks have been proposed that are not based on

graph domination.

Krishna, Vaidya, Chatterjee, and Pradham [47] presented a clustering algorithm where

clusters are formed without cluster-heads. A clique in graph G = (V, E) is a subset S of

V, whose induced subgraph is complete. The authors use maximal cliques as clusters as

illustrated in the example of Figure 1.10. A node is called a boundary node if it belongs

to more than one cluster. Nodes in the same cluster can communicate directly with each

other, while nodes in different clusters must rely on boundary nodes to relay messages. This

is similar to the concept of the Internet BGP routing.

Banerjee and Khuller [ll] proposed a protocol based on a spanning tree. In their scheme,

a cluster is a subset of vertices whose induced graph is connected. These subsets are chosen

with consideration to cluster size and the maximum number of clusters to which a node can

belong. The idea is to group branches of a spanning tree into clusters of an approximate

target size. The resulting clusters can overlap and nodes in the same cluster may not be

directly connected. Figure 1.11 shows an example of clusters obtained by this method. In

this figure, the spanning tree is shown in black.

CHAPTER 1. INTRODUCTION

Figure 1.10: Clique-based clustering. Figure 1.11 : Spanning tree-based clustering.

1.7 About this thesis

In this section, we provide an outline of the thesis structure and summarize its major

contributions.

1.7.1 Thesis overview

Chapter One - Introduction

An ad hoc network is usually represented by an undirected graph G = (V, E). (We consider

the problem in directed graphs in Chapter Five.) Clustering ad hoc networks partitions

a given network into smaller connected substructures. Each partition or its representative

(clusterhead) can be viewed as a vertex of an abstracted graph from a higher level and

connections between partitions can be viewed as edges in the abstracted graph.

Graph domination provides a method of selecting clusterheads. A dominating set S of

a given graph is a vertex subset such that all other vertices are adjacent to some vertex in

S. Neighborhoods of such vertices can be regarded as clusters. Connectivity among S is

important for technical reasons. Therefore, we are interested in a particular variant of graph

domination, weakly-connected dominating sets. Here, in addition to being a dominating set,

the edges incident to a vertex in S are required to form a connected subgraph of G.

CHAPTER 1. INTRODUCTION

The decision version of the minimum weakly-connected dominating set problem is NP-

complete even for bipartite or chordal graphs. Although it allows logarithmic approximation

algorithms, it is conjectured that no asymptotically better performance ratios are possible.

In this thesis, we focus on approximation algorithms and heuristics for constructing and

maintaining small weakly-connected dominating sets.

Chapter Two - Approximation Algorithms

We propose two centralized greedy algorithms to approximate the minimum weakly-connected

dominating set problem. These algorithm are based on those for connected dominating sets.

The approximation ratio of these algorithms is In A + 0(1), where A is the maximum ver-

tex degree of the graph. Two distributed versions of these algorithms are also presented.

By using a special vertex in the network to coordinate the distributed algorithms, these

distributed algorithms behave exactly as their centralized counterparts and, thus, inherit

the same approximation ratio. To enhance the parallelism of these distributed implemen-

tations, we dispense with the central coordinator and propose algorithms that construct

weakly-connected dominating sets from multiple starting vertices.

We are not able to show interesting bounds on the approximation ratios of these latter

algorithms. Therefore, we resort to simulations and show that the size of the weakly-

connected dominating set generated by the decentralized algorithms is almost the same as

that generated by the centralized algorithms. We also compare the size of these weakly-

connected dominating sets to the size of connected dominating sets generated by a greedy

algorithm. We also consider other metrics, such as the changes in pairwise vertex distances

and the number of edge-disjoint paths when comparing (S), to G.

Chapter Three - Zonal Computation

In order to further decentralize the distributed algorithms in Chapter Two, we propose

zonal versions of these algorithms. In a zonal clustering algorithm, given a zone size control

parameter x, each zone is a connected subgraph of the input network with no more than

2x vertices. A zone has a dedicated vertex known by all zone members as root. The

zonal construction algorithm has two levels: intrazonal and interzonal. In the intrazonal

level, a weakly-connected dominating set is independently constructed for each zone. In

the interzonal level, the root of a zone adds additional vertices to its weakly-connected

CHAPTER 1. INTRODUCTION 26

dominating set to guarantee that the union of the dominating sets for the individual zones

is a weakly-connected dominating set for the entire network. The advantage of the zonal

approach is that the zone size control parameter x can be used to control the zone granularity,

providing a trade-off between the extent of network structure simplification and the locality

of algorithm execution.

In the experiments, we compare the same set of metrics (dominating set size and change

in vertex distance and in the number of edge-disjoint paths) for different values of the zonal

size control parameter and see how they change with different zone granularities.

Chapter Four - Maintenance

The zonal algorithm for constructing weakly-connected dominating sets in Chapter Three

works well for static ad hoc networks, such as sensor networks. In this chapter, we present an

algorithm that updates the weakly-connected dominating set when the topology changes.

The process of cluster maintenance is logically divided into two layers - intrazonal and

interzonal. We first present a non-zonal update algorithm that can be used to maintain the

weakly-connected dominating set structure resulting from the static algorithms in Chapter

Two. Then we describe a zonal maintenance algorithm utilizing the above algorithm. In

particular, we restrict the execution of the earlier algorithm to zones to accomplish intrazonal

maintenance and add interzonal maintenance procedures to maintain the weakly-connected

dominating set of the entire network.

We present experimental settings and results to test the performance and efficiency of the

maintenance algorithm. The results show that both the size of the weakly-connected domi-

nating set and the connectivity of the abstracted network stabilize after a short simulation

time and these values remain approximately the same as initially.

Chapter Five - Clustering in the Presence of Unidirectional Links

In some ad hoc networks, due to asymmetric device capabilities and interference conditions

at different vertices in the network, wireless links can be simplex (or unidirectional). We

use a digraph G = (V,A) to represent such networks. In this chapter, we extend our

graph-domination based clustering algorithms to digraphs.

First, we generalize the weakly-connected dominating set notion to digraphs. Here, the

weakly-connected dominating set must dominate all other vertices of the graph in both (in

CHAPTER 1. INTRODUCTION 27

and out) directions and the arcs incident on vertices in the set must form a strong subgraph

of G. We use the term gemini set to denote this generalization. We propose centralized

approximation algorithms for constructing small gemini sets. Second, we present a set of

distributed algorithms for constructing small gemini sets of digraphs.

In simulations, we compare the size of the gemini set generated by the centralized ap-

proximation algorithm and that generated by the distributed algorithm, respectively. We

also consider the connectivity change.

Chapter Six - Future Work

We discuss some problems that are left open by this work and some more strategic problems

in the ad hoc networking research.

1.7.2 Contributions

The primary contributions of the thesis are as follows.

We introduce the use of weakly-connected dominating sets to cluster ad hoc networks.

This particular variant of graph domination has a lower connectivity requirement than

connected dominating sets. Furthermore, it captures the scatternet configuration of

Bluetooth faithfully.

Our zonal approach divides the clustering process into two levels: interzonal and in-

trazonal. In the intrazonal level, a weakly-connected dominating set is independently

constructed for each zone. In the interzonal level, the root of each zone adds addi-

tional vertices to its weakly-connected dominating set as needed to guarantee that

the union of the dominating sets for the individual zones is a weakly-connected dom-

inating set for the entire network. The advantage of the zonal approach is that the

zone size control parameter x can be used to control the zone granularity, providing

a trade-off between the extent of network structure simplification and the locality of

algorithm execution. In general, the zonal scheme can be used in solving other dis-

tributed computing problems, where result quality and computation locality need to

be balanced.

We define gemini sets to generalize the notion of weakly-connected dominating sets to

directed graphs. We provide approximation algorithms to find small gemini sets.

Chapter 2

Approximat ion Algorithms

We present a series of approximation algorithms for finding a small weakly-connected dom-

inating set (WCDS) in a given graph to be used in clustering mobile ad hoc networks. The

structure of a graph can be simplified using weakly-connected dominating sets and made

more succinct for routing in ad hoc networks. The GWM and GWs algorithms are based on

the centralized greedy approximation algorithms of Guha and Khuller [35] for finding small

connected dominating sets (CDS's). The theoretical performance ratio of these algorithms

is In A + O(1) compared to the minimum size weakly-connected dominating set, where A

is the maximum degree of the input graph. The DGWM and DGWs algorithms are the

distributed implementations of the GWM and GWs algorithms, respectively, which have

identical performance ratio as their centralized counterparts. The DWsYNC and DWAsyNC

algorithms are distributed heuristics which have been shown to generate weakly-connected

dominating sets of sizes similar to those generated by the GWM algorithm. In the analysis

of the synchronous distributed algorithms, i.e. DGWM, DGWs, and DWsyNc, the classic

multi-port distributed computing model [52] is used (See Chapter 1 for more details on

different model options). Comparisons between our work and some previous work (CDS-

based) are also given in terms of the size of resultant dominating sets and graph connectivity

degradation.

CHAPTER 2. APPROXIMATION ALGORITHMS 29

2.1 Centralized greedy algorithms

In this section, we present two centralized approximation algorithms for finding small weakly

connected dominating sets in an arbitrary graph. For each algorithm we analyze its perfor-

mance by determining the size of the resultant weakly connected dominating sets compared

to a minimum weakly connected dominating set. Both algorithms have a In A + O(1) ap-

proximation ratio. These algorithms form the basis for the upcoming distributed algorithms.

2.1.1 The GWM algorithm

This algorithm is based on Algorithm I1 of Guha and Khuller [35]. It is called GWM (greedy

WCDS algorithm growing multiple black pieces) for reasons that we will see shortly. Given

a graph G = (V, E), we associate a color (white, gray, or black) with each vertex. All

vertices are initially white and change color as the algorithm progresses. The algorithm is

essentially an iteration of the process of choosing a white or gray vertex to dye black. When

any vertex is dyed black, any neighboring white vertices are changed to gray. At the end of

the algorithm, the black vertices constitute a weakly-connected dominating set.

The term piece is used to refer to a particular substructure of the graph. A white piece is

simply a white vertex. A black piece contains a maximal set of black vertices whose weakly

induced subgraph is connected plus any gray vertices that are adjacent to at least one of the

black vertices of the piece. Figure 2.1 illustrates the definitions. The pieces are indicated

by the dotted regions. Vertices 4, 5, 6, and 7 are each white pieces. The other vertices

are divided among the two black pieces, one containing the black vertex 1 and the other

containing the black vertices 2 and 3.

We define the improvement value of a (non-black) vertex u to be the number of distinct

pieces within the closed neighborhood of u. That is, the improvement value of u is the

number of pieces that would be merged into a single black piece if u were to be dyed black.

In each iteration, the algorithm chooses a single white or gray vertex to dye black. The

vertex is chosen greedily so as to reduce the number of pieces as much as possible and the

process is repeated until there is only one piece left. In particular, a vertex with maximum

improvement value is chosen (with ties broken arbitrarily). When the algorithm terminates,

the black vertices are the required weakly-connected dominating set S.

Figure 2.1 illustrates the situation after the third iteration of the algorithm for the given

graph. Dyeing vertex 5 black would merge four pieces, reducing the number of pieces by

CHAPTER 2. APPROXIMATION ALGORITHMS 30

three. Dyeing any of the other vertices black would merge at most 3 pieces. Thus, we choose

vertex 5 to dye black in the next iteration.

,............ ..'..

Figure 2.1: A snap shot of pieces.

Let O P T denote a minimum size weakly-connected dominating set for G and let A de-

note the maximum degree of G. We can bound the size of the weakly-connected dominating

set found by the GWM algorithm as follows:

Theorem 2.1.1 The sire of the weakly-connected dominating set found b y the GWM algo-

r i thm is at most (In A + 1) [O P T I.

Proof: Let ul be an arbitrary vertex of OPT. As ul is of degree at most A, at most

A + 1 distinct vertices can be dominated by ul (including ul itself). As O P T is a weakly-

connected dominating set of G, there must be another element of O P T at distance at most

2 from u1. Let u2 be such a vertex. As at least one vertex in u2's closed neighborhood is

also in the closed neighborhood of ul, at most A new distinct vertices are dominated by u2.

Again, as O P T is a weakly-connected dominating set of G, there must be another element

of O P T at distance at most 2 from either ul or u2. This vertex, called us dominates at

most A new distinct vertices. We repeat this argument until we have included all [OPT1

elements of OPT. Thus, G can contain at most n 5 (A + 1) + A(l0PTI - 1) vertices. It

follows that IOPTl 1 9.
In each iteration of the algorithm, we dye a vertex black and put it in set S. Observe

that the improvement value of any vertex is monotonically non-increasing over time. At the

beginning of the algorithm, the improvement value of every vertex u is equal to its degree.

CHAPTER 2. APPROXIMATION ALGORITHMS 3 1

When a neighboring vertex is colored black, u becomes gray and its improvement value

decreases by at least one. When a neighboring vertex is colored gray, u's improvement value

may decrease but will not increase. When u is dyed black, it no longer has an improvement

value.

Let ai be the number of pieces left after the ith iteration and let a0 = n. Consider the

i + lSt iteration. Since the addition of the (non-black) vertices of O P T would join all of

the remaining ai pieces, decreasing the number of pieces by ai - 1, there is at least one

non-black vertex of O P T which would decrease the number of pieces by at least I&].
Figure 2.2 depicts the situation after 2 iterations on the given graph. In the figure, the

five circled vertices are a minimum weakly-connected dominating set (OPT). At this point,

one vertex u in O P T has already been dyed black. Picking the remaining 4 vertices of O P T

would join the remaining a2 = 10 pieces. Therefore, our greedy algorithm is guaranteed to

decrease the number of pieces at least by I*,] = 2 in the 3rd iteration.

This gives us the recurrence relation,

Solving it, we get the following bound:

Letting i + 1 = [OPT[In e,, we have:

That is, after [OPT1 . In iterations, the number of pieces remaining is at most

IOPTl + 1. For each additional vertex we choose, we will decrease the number of pieces

CHAPTER 2. APPROXIMATION ALGORITHMS

Figure 2.2: Greedy scenario of GWM.

by at least one. Thus, we need only pick at most [OPT[additional vertices to reduce the

number of pieces to one. The total number of vertices that we choose is no more than

[OPT 1 . In + [OPT/ . Since [OPT [2 y, the solution found by our algorithm has at

most [OPT[. (In A + 1) vertices. 0

2.1.2 The GWs algorithm

GWs is a greedy algorithm for constructing small weakly-connected dominating sets by

growing a single black piece, called T . As with the previous algorithm, the vertices of G are

colored white, gray, or black. Initially, all vertices are white and T is empty. When a white

or gray vertex u is dyed black, all white vertices adjacent to u are colored gray. When a

vertex is dyed black, it is placed into T along with all of its newly gray neighbors. During

the execution, a vertex is called a candidate if it is either a gray vertex, or a white vertex

adjacent to some gray vertex.

The algorithm starts by choosing an arbitrary vertex in G to dye black. In each sub-

sequent iteration, either a gray vertex of T or a white vertex adjacent to a gray vertex of

T is chosen to dye black. In the latter iterations, the algorithm considers all of the can-

didate vertices. For each vertex u it counts the number of white vertices that are in u's

closed neighborhood. By coloring u black, this number of vertices will be added to T . The

candidate vertex with the maximum such value is chosen to be dyed.

Figure 2.3 illustrates the situation after the 3rd iteration in the given graph. Black

vertices 1, 2, and 3 are the vertices dyed in the first 3 iterations, respectively. Vertex 4,

CHAPTER 2. APPROXIMATION ALGORITHMS 33

which is at distance two from the black vertex 2, is chosen in the 4th iteration, adding three

vertices to T .

This iterative process continues until all vertices in G are non-white. The set of black

vertices at the termination of the algorithm constitute the desired weakly-connected domi-

nating set.

Figure 2.3: Growing the single black piece of GWs.

To analyze the approximation performance, let S denote the set of black vertices at some

point during the execution of the algorithm. As (S), is always connected and the algorithm

terminates when there are no white vertices remaining, S is a weakly-connected dominating

set of G.

Lemma 2.1.2 The size of the weakly-connected dominating set S found by the GWs algo-

r i thm is at most (In A + 2)y, where y is the domination number of G.

Proof: Let OPTDs = {vl, va, , vy) be a minimum dominating set of G. Partition the

vertices of G into sets Pi, for 1 5 i 5 y, such that vi E Pi and every vertex w of V - OPTDs

is placed into Pi for some i such that vi dominates w.

The proof is based on a charging analysis. Each time we dye a vertex black, we add one

vertex to S and incur a charge of one unit. This charge is equally distributed among all of

the white vertices that are colored in that step. The total charge for the entire process is

ISI, the size of the weakly-connected dominating set. We will show that the total charge

among the vertices of Pi (for any i) is at most In A + 2. Since there are OPTDs such sets

in G, the theorem follows.

CHAPTER 2. APPROXIMATION ALGORITHMS 34

Assume that when we choose a vertex to dye black, we color x white vertices and charge

such vertex i. We now consider the number of charges among the vertices of a single set

Pi. Let uj denote the number of white vertices after iteration j. For the sake of simplicity,

we assume that uo = [Pi[and that some vertices of Pi are colored in each iteration, so the

number of white vertices in Pi decreases in each iteration.

The number of vertices of Pi that are colored in the first iteration is uo - ul. Each of

these vertices is charged at most &. (The actual charge may be smaller since some white

vertices outside of Pi may also be colored in the same iteration.) Once any vertex in Pi is

colored, vertex vi itself is eligible to be chosen. After the j - lSt iteration, choosing vi would

add uj-1 vertices to S, so any vertex chosen must add at least that many to S and, thus,

any vertices of Pi colored in the j th iteration incur a charge of at most &. Therefore, in

the jth iteration, at most Ui;L;Ui charges are incurred among the vertices of Pi. Eventually,

u k = 0 for some k.

Summing the charges within Pi, we get at most

Therefore, the lemma holds.

Knowing y 5 y,, we have the following bound,

Theorem 2.1.3 The performance ratio of the GWs algorithm is 1nA + 2.

CHAPTER 2. APPROXIMATION ALGORITHMS 35

2.2 DGWM and DGWs - the distributed implementations

In an ad hoc network, a subscriber unit is not assumed to be able to know the structure of

the network beyond its own neighborhood before global knowledge is established. In that

sense, a distributed algorithm for weakly-connected dominating sets is more feasible in the

real world. In this section, we present distributed versions of GWM and GWs, denoted

DGWM and DGWs, with the same performance ratios of In A + 1 and In A + 2, respectively,

for finding a small weakly-connected dominating set S of the input graph G = (V, E) .

The centralized versions of both DGWM and DGWs construct their weakly-connected

dominating set S by including a globally best vertex for each iteration. In order to achieve

the same execution results in the distributed scenario, we use a special vertex to be a global

arbitrator to decide which vertex should be included in each iteration.

Both algorithms have three stages:

1. Leader election - to find the global arbitrator of the network.

2. BFS (Breadth-First Search) tree construction - to construct a sparse subgraph of G

with small diameter for information dissemination and collection.

3. Main algorithm - the major distributed greedy procedure for constructing a weakly-

connected dominating set.

The first two stages are standard problems in distributed computing with well-established

solutions. We use the asynchronous multi-port network model and assume a constant upper

bound on the time that a message is delivered. The leader election algorithm we choose for

both DGWM and DGWs is from Awerbuch [9]. The time and communication complexities

are O(n) and O(m + n log n), respectively. We use the LayeredBFS algorithm [52], a simple

asynchronous BFS tree construction algorithm, to construct the BFS trees. The algorithm

takes O(diam&) time units to finish using O(m + n x diamG) messages.

The major procedure of the DGWM algorithm runs on top of the leader election and

BSF tree algorithms as above. In particular, the root r of the BSF tree is generated by the

leader election algorithm. The notions of piece and improvement value are the same as in

GWM. We assume that every vertex knows which vertices are its neighbors, the colors and

piece ID'S of these neighbors, and, consequently, its own current improvement value.

An iteration starts when the root r of the BFS tree broadcasts an improvement-inquiry

message down to all other vertices via the tree edges. This message is issued to determine the

CHAPTER 2. APPROXIMATION ALGORITHMS 36

maximum improvement value within each subtree. When a leaf vertex receives this message,

it reports its improvement value to its parent in the BFS tree. When an internal vertex

has collected the replies from all of its children, it reports the maximum improvement value

within its subtree back to its own parent. The replies are convergecast to r along the tree

edges, so that the root r can determine the globally maximum improvement value and its

location. Then r sends a message to a vertex with maximum improvement value to start the

coloring process. Once a vertex is colored black, it broadcasts the change to its neighbors,

and the white neighbors color themselves gray. Similarly, every time a vertex is colored

gray, it informs its neighbors so that they can update their information. Then the new

black vertex broadcasts its vertex ID along the dominated edges to update the piece ID of

all vertices within its piece. When this is done, a vertex can determine its improvement value

by counting the number of distinct piece ID'S within its neighborhood. After the coloring

and piece ID broadcasting process, the new black vertex sends an acknowledgment message

to r . When r receives this acknowledgment, it is ready to send an improvement-inquiry

message to start the next iteration.

The DGWM algorithm proceeds for IS1 iterations. The improvement inquiry and col-

lection in each iteration takes at most O(diamG) time units using O(n) messages, where

diamG denotes the diameter of graph G. Broadcasting the piece ID along the dominated

edges takes at most O(IS1) time units using at most O(m) messages. Since diarnG = O(ISI),

each iteration is finished in O(IS() time units using O(m) messages. Therefore, including

leader election and BFS tree construction, the time and message complexities of DGWM are

O(ISI2) and O(m x IS1 + n(1og n + diamG)), respectively. This is summarized in Table 2.1.

Table 2.1: Breakdown of DGWM.

Leader election
BFS tree construction
Main procedure

Total

The DGWs algorithm, the distributed implementation of GWs, also runs on top of a

BFS tree rooted at the arbitrary vertex r chosen by a leader election algorithm. As in

Time x d

0 (4
O(diamc)

o(N2)
o (N 2 >

Message
O(m + n log n)
O(m + n x diamG)

O(m x PI>
O(m x 1st + n(1ogn +
diam.9~))

CHAPTER 2. APPROXIMATION ALGORITHMS 37

GWs, a vertex is called a candidate if it is either gray, or white and adjacent to a gray

vertex. DGWs grows a single black piece by coloring black a candidate vertex with the

maximum number of white neighbors in each iteration. To locate such a vertex, root r

sends a best-candidate-inq inquiry message along the tree edges.

As the main procedure of the algorithm involves IS1 iterations and O(n) messages are

needed for each iteration, the message complexity is O(n x IS[). The time complexity

is O(diamG) for each iteration and O(diamG x IS\) for the main procedure. Table 2.2

shows the time and message complexities of the entire algorithm - O(IS1 x diamG) and

O(n x / S I + m + n l o g n) .

I Timexd I Message
Leader election
BFS tree construction

Table 2.2: Breakdown of DGWs.

2.3 Distributed heuristics for small weakly-connected domi-

o(4
O(diam5)

~ (n x IS[)
O(n x 15'1 + m + n logn)

-,

Main procedure ' o(~s[x diamG)

nating sets

O(m + n log n)
O(m + n x diamG)

Total

Although the DGWM and DGWs algorithms have eliminated the requirement of an omni-

scient view using a central arbitrator and decision message passing, they are still sequential

inherently in process since only one vertex can be colored black in each iteration. It is de-

sirable to be able to color multiple vertices black in each iteration in order to speed up the

execution. In other words, different parts of G could have vertices colored black in parallel.

In a fully distributed approach, we grow multiple black pieces in parallel, each of which

using its own internal decision mechanism to determine its own best candidate. Here, any

gray or white vertex may be a candidate. (Recall that in the GWs algorithm a candidate

vertex was either a gray vertex or a white vertex adjacent to some gray vertex.) To be

considered as a candidate, a gray or white vertex must also have the largest improvement

value among any vertex in its closed neighborhood. In each iteration, each piece determine

its own candidate(s). A black piece may have more than one candidate, while a white piece

O(ISI x diamG)

CHAPTER 2. APPROXIMATION ALGORITHMS

(a) Iteration 1, three best candidates. (b) Iteration 2, three best candidates.

Figure 2.4: First 2 iterations.

may have at most one candidate (itself). Each piece selects from its own candidate vertices

the candidate with maximum improvement value, called the best candidate. The chosen

candidate vertex is then colored black, causing neighboring white vertices to be colored

gray and tangent pieces to be merged into a larger one. A tie is broken arbitrarily, say by

using the vertex ID. The piece ID, unique to each piece, of a new piece is broadcast to all

vertices in the new piece and the new piece is ready for next iteration. We assume every

node knows the color and piece ID information of all of its neighbors at any time. The

algorithm terminates when no piece has a candidate with improvement value greater than

one.

Figure 2.4 gives an example of how these best candidates are found in each iteration. The

numbers beside each vertex are vertex ID, improvement pairs. We omit the vertex labels for

those vertices with improvement value of 1. Figure 2.4(a) depicts the scenario of the first

iteration when 3 white vertices (vertices 2, 7, and 15) find themselves to be candidates by

comparing their improvement values with those of their neighbors. When two neighboring

vertices, such as vertices 7 and 10 in our example, have the same improvement value, the

vertex with the lower ID is chosen. The 3 candidates are automatically the best candidates

as they are the only vertices in their (white) pieces, and they decide to color themselves

black. At the end of the first iteration, two larger black pieces are formed, as shown in

Figure 2.4(b). During the second iteration, another two white vertices, vertex 6 and 19,

and one gray vertex, vertex 10, are the best candidates. Note that in Figure 2.4(b), vertex

14 is not a candidate since it does not have the largest improvement value in its closed

CHAPTER 2. APPROXIMATION ALGORITHMS 39

neighborhood.

A spanning tree is maintained for each piece. The root of the spanning tree is responsible

for finding the best candidate according to the messages convergecast to it. The root sends

a message to the best candidate notifying it to color itself black. Coloring a vertex black

causes neighboring white vertices to become gray and the neighboring pieces are merged.

At this moment, the vertices of the piece do not all have the same piece ID, but the piece

consists of the set of vertices reachable from each other using only dominated edges. A

leader election process is executed in the new piece and the ID of the new leader is used as

the piece ID. The leader then initiates the construction of a spanning tree within the piece

by broadcasting a message along the dominated edges. This spanning tree is used to find

the best candidate of the piece in the next iteration.

In the following subsections, we present two distributed algorithms for finding small

weakly-connected dominating sets in the synchronous and asynchronous settings, respec-

tively. These algorithms choose multiple vertices to color black in each iteration.

2.3.1 DWsYNC - synchronous distributed approach

The DWsYNC algorithm assumes a synchronous network, where there is a master clock

that all vertices share. Therefore, all computation and message passing can be divided into

rounds, and each round of the execution (computation and message passing) is coordinated

among all vertices. We use the classic multi-port distributed computing model (See Chap-

ter 1 for more details). To be formal, in each step, a vertex receives zero or one message

from each incident link, carries out internal computation based on its current state and the

input messages, and sends out zero or one message on each incident link. All messages sent

at the end of a round are received at the beginning of the next round successfully assum-

ing the communication channels are reliable. The assumption that at most one message is

sent in each direction along any communication link is not restrictive since we can always

combine multiple messages into a single message. All internal computation is simple and

can be finished within a round, otherwise we can always extend the duration of a round

so that the longest computation can be accommodated. In addition, we assume that each

vertex is aware of the vertex ID'S, piece ID'S and colors of all of its neighbors. The piece

ID can be anything that is unique to each piece. In our algorithm, we use the vertex ID

of a representative vertex in that piece, called the root, to be the piece ID. To enforce the

synchrony of the network, we further assume that each vertex has a reasonable upper bound

CHAPTER 2. APPROXIMATION ALGORITHMS 40

on the number of vertices in the network, denoted n. This bound is used to ensure that

the sub-procedures of the algorithm are synchronized among different pieces. If we restrict

the execution of the algorithm to a certain area of the network, then the upper bound on

the vertices involved can also be determined (see Chapter 3 for more details on this). In

Section 2.1.1, we propose an asynchronous algorithm that does not assume knowledge of n.

Recall that a piece is a substructure of the network and can be either white or black. A

white piece is a white vertex by itself and a black piece is a connected component weakly

induced by the black vertices. Here, a candidate of a piece in the distributed algorithm is a

vertex with the highest improvement value within its neighborhood and the best candidate

of a piece is the candidate with the highest improvement value within that piece. The entire

process of finding a weakly-connected dominating set is divided into iterations, and in each

iteration, the best candidates of all pieces are colored black, forcing their white neighbors

gray, and tangent pieces are merged if they are in the same connected component of the

subgraph weakly induced by the black vertices. See Figure 2.4 as a simple example. Details

of execution and timing of each iteration are described below.

Initially, all vertices are activated and they exchange vertex ID'S and piece ID'S with

their neighbors. At the beginning, the piece ID of a vertex is the same as its own vertex

ID. By counting the number of different piece ID'S within its neighborhood, a vertex is able

to calculate its initial improvement value. Then each vertex broadcasts its improvement

value to all neighbors so that it learns if it is a candidate. The initialization process takes

a constant number of rounds. After this, the algorithm enters its first iteration and this

continues until the pieces of the entire network merge and become a single piece.

At the beginning of each iteration, pieces are stable and can be distinguished by the

piece ID of each vertex. In other words, at this point of an iteration, all vertices in a piece, a

connected component of the subgraph weakly induced by the black vertices, have the same

piece ID. Plus, within each piece, there is a spanning tree rooted at the root vertex. Such a

tree, called a broadcast tree, is used to broadcast and convergecast messages as will be seen

later.

From the first iteration on, each piece root determines its best candidate, the candidate

with the largest improvement value in its piece, by broadcasting a best-candidate-inq and

convergecasting the comparison results via the broadcast tree. Once a root has determined

its best candidate if it has one, it unicasts a please-color-black message to the best

candidate. When the best candidate has received the p l e a s e ~ c o l o r ~ b l a c k message, it

CHAPTER 2. APPROXIMATION ALGORITHMS

1 2 3 4

Stall

candidate ("new-pieccid) sent

"please_color-black unicast relayed;
piece id updated;

color updated; root

(waiting for
best candidate

"best-candidate-inq received search
reported ,report)

7 7
f \

in search of
new-piece-id

(waiting for
response from
children)

Figure 2.5: Flow chart for a single vertex in DWSYNc.

colors itself black and broadcasts a colored-black message to all neighbors. In the next

round, all white vertices receiving the colored-black message color themselves gray and

broadcast a c o l o r e d g r a y message within its neighborhood so that its neighbors can update

their color information. This can be done in at most 3n + O(1) rounds.

After 3n + O(1) rounds, the best candidate selection and color updating are finished. In

the following rounds, tangent pieces are merged into a single piece, a new root is selected,

a broadcast tree rooted at a new leader is constructed and the new piece ID is distributed

in each new piece. To be more specific, each new black vertex generated in this iteration

broadcasts a my-piece-ID message within its new piece. To make sure these messages travel

only within the new piece, they only take dominated edges. When a message reaches a

free edge, it knows it is at the border of a piece and does not go beyond it. After another

n rounds, the broadcast process is completed, and each new black vertex has received a

collection of piece ID'S from all of the new black vertices within the new piece. Of the new

black vertices of the new piece, the one with the lowest ID declares itself root of the new

piece. In the following rounds, the new root broadcasts a new-piece-ID message within its

new piece and forms a new broadcast tree. After yet another n rounds, this iteration is over

and all vertices are ready for the next iteration.

Figure 2.5 shows a flow chart of a vertex's process. The initialization finishes at state

CHAPTER 2. APPROXIMATION ALGORITHMS 42

3. A vertex may or may not become black in the first iteration. After the first iteration,

moving between states 5 and 7 is the basic activity of a vertex unless it becomes a black

vertex. States 4 and 6 depicts the behavior of a new black vertex. Once a new black vertex

finishes locating its own best candidate it goes back to state 5 again and resumes circulating

between states 5 and 7, until is informed by its piece root that the algorithm is completed.

Note that each movement between states 5 and 7 corresponds to an iteration.

The total time of the algorithm is at most IS1 x (5n + 0(1)), since it takes at most IS1

iterations to finish. The total message cost is O(m x ISI) since at most IS1 leader elections

are held, each requiring at most O(m) messages, and this is the most costly process in terms

of messages.

DWsyNc does not, in general, generate the same weakly-connected dominating set as

GWM.

2.3.2 DWAsYNC - asynchronous distributed approach

Here, we use an asynchronous model in which all vertices in the network are autonomous

machines using their own clocks and there is no common clock. We assume that there is a

constant bound on how much time a link can delay message delivery and how much time a

vertex can spend on a single step of execution.

The basic process of our algorithm is as described above. Whenever a vertex is colored

black (from white or gray), it causes all of its white neighbors to be colored gray by sending

an update message. Whenever a vertex changes its color or its piece ID, it informs all of its

neighbors about the change.

The piece ID is used to help calculate the improvement value of vertices. However, due

to propagation delay, vertices in the same piece may appear to have different piece ID's. By

calculating an improvement value without waiting for the piece ID's to be fully propagated,

the improvement value may be calculated incorrectly. In our experiments, this situation

does not occur very often and the size of the weakly-connected dominating set generated by

the DWsYNC algorithm is very close to that generated by GWM (see Section 2.4). Recall

that a root vertex of a piece is the vertex whose vertex ID is used as the piece ID. The

algorithm proceeds as follows: a root vertex broadcasts a best-candidate-inq message

within its piece. When other vertices forward this inquiry, they only use the dominated

edges to make sure that the message does not propagate beyond the piece border. These

out-going messages form a broadcast tree in the piece. Leaves of this tree reply with their

CHAPTER 2. APPROXIMATION ALGORITHMS

Figure 2.6: When two front lines meet.

improvement values and internal vertices of the tree collect results from their children and

forward the best value back up the tree. When the root knows that it has a best candidate

with improvement value of more than 1, it sends a p l e a s e ~ c o l o r ~ b l a c k message to the

corresponding vertex. When that vertex receives the please-color-black message, it colors

itself black and tells all neighbors about this message. The white neighbors color themselves

gray, causing some tangent pieces to merge. The newly colored black vertex becomes the

root of the new piece and sends a new-piece-ID message to all vertices within the larger

piece. The root also sends a best-candidate-inq along with the new-piece-ID message,

starting the next iteration.

Due to the asynchrony and the possibility of multiple simultaneous changes to the struc-

ture of the pieces, it is possible that multiple vertices will declare themselves to be roots of

a single piece and initiate a new search process. We need a mechanism to choose among

the roots as their new-piece-ID messages encounter each other. We define the notion of

the generation of a black vertex. A black vertex that has just been colored from white is a

first gen.eration black vertex. When a root (black) vertex chooses the best candidate of its

piece, the old root assigns the new root to be of generation one greater than its own. The

new-piece-ID messages carry the generation number of the root. When two new-piece-ID

messages meet each other, the later generation message (with the larger generation num-

ber) continues to broadcast while the earlier generation message is dropped. When two

CHAPTER 2. APPROXIMATION ALGORITHMS 44

new-piece-ID messages with the same generation number meet, we favor the smaller piece

ID to break the tie.

In Figure 2.6, we assume that two new black vertices, u and v, broadcast their new-piece-ID

messages within the new black piece and u has a larger generation number. Before the mes-

sages meet, the left side portion of the piece accepts u as the new piece ID and the right

side takes v. Once the two messages meet, the message of u overtakes that of v and pushes

toward v so that the entire piece eventually accepts u as the piece ID.

The algorithm ends when a new black vertex finds that its best candidate has an im-

provement value of one.

2.4 Comparisons

Using the members of a weakly connected dominating set as clusterheads and the closed

neighborhood of each clusterhead as a cluster, we can represent the network as a graph of

clusters from a higher level. Clusterheads can be directly joined by a link or may share

a neighbor that can relay communications between them. Note that links between non-

clusterheads are not included in the higher level graph. Using a weakly-connected dom-

inating set to define clusters helps to simplify the network structure. However, it may

compromise the network structure to some degree as some edges are not included.

To measure the performance of our clustering algorithm, we consider three parameters.

First we consider the size of the dominating set produced. Since our goal is to find a small

weakly-connected dominating set in order to abstract the network structure as much as

possible, we prefer smaller values for this parameter. The second parameter is the average

distance between pairs of vertices in the clustered network (the subgraph weakly induced

by the dominating set). Clustering using weakly-connected dominating sets removes edges

not incident on vertices of the dominating set resulting in a sparser structure. This sparser

structure dilates the network so that the distance between pairs of vertices in the clustered

network may be longer than the corresponding distance in the original network. We do

not wish the dilation to be too large, so smaller average distance is preferred. The third

parameter is the average number of edge-disjoint paths between pairs of vertices in the

clustered network. This parameter measures, in some sense, the capacity of the network.

As we are simplifying the structure and deleting both edges and vertices, we can expect that

this value will be less than in the original graph. However, we would prefer that it does not

CHAPTER 2. APPROXIMATION ALGORITHMS

Expected Degree = 6

20 40 60 80 100 120 140 160 180 200

Vertex Number

Figure 2.7: Dominating set size - average degree 6.

drop significantly.

In our experiments, we generate random graphs repeatedly and run our algorithms and

those of Das and Bharghavan [24], measuring the above parameters. The random graphs

have expected average degree of 6 and 12, providing two levels of density. The size of the

graphs ranges from 20 to 200 vertices and 40 to 200 vertices, respectively. For each graph

size and density level, we repeat the algorithms 100 times. To simulate the structure of ad

hoc networks, we place vertices (subscriber units) randomly in a rectangular area in a 2D-

plane. The coordinates of the vertices are chosen uniformly in each dimension. We assign

each subscriber unit a random transmission range with a predefined expected value. When

two subscriber units are placed within range of each other, an edge is added between the

vertices simulating a reliable link between them. By changing the number of vertices in the

plane and the expected transmission range, one can adjust the network size and density.

For each randomly generated network, we measure the dominating set size resulting from

the two algorithms of Das and Bharghavan [24] and our GWM and DWAsYNc algorithms.

Figures 2.7 and 2.8 show the results obtained by the four algorithms when the graph is

sparse and dense, respectively. In the figures, CDS-S is the "single-black-piece" connected

dominating set algorithm (Algorithm I1 of Das and Bharghavan) CDSM is the "multiple-

black-piece" connected dominating set algorithm (Algorithm I of Das and Bharghavan),

CHAPTER 2. APPROXIMATION ALGORITHMS

Expected Degree = 12

40 60 80 100 120 140 160 180 200

Vertex Number

Figure 2.8: Dominating set size - average degree 12.

Expected Degree = 6

I I I I I I I I I
Original -I

CDS-M ---x--- *...*...
M-ASYNC ---*---

Vertex Number

Figure 2.9: Average vertex distance - average degree 6.

CHAPTER 2. APPROXIMATION ALGORITHMS

Expected Degree = 12

Figure 2.10: Average vertex distance - average degree 12.

7
s

2
2 6
s
3
a
8 ' -

Expected Degree = 6

I I I I I I I I I
Ori inal -+-
cD$M ---n---

......- - . * lW-ASYNC ---*---
.&- *..-- -2 *.... *---x-

..*... *...- w-. *---*-*- - *.-.. - X - - - ~ - - -

I I I I I I I I
I Original -d-

CDS-M ---x---
DW-ASYNC ---*---

20 40 60 80 100 120 140 160 180 200

Vertex Number

!.! .,a!.- -x/

.w.- /-x
#... .x-.-k---

3 - /X' - y-
2

Figure 2.11: Average number of edge-disjoint paths - average degree 6.

1

0

- -

- -

I I I I I I I I I

40 60 80 100 120 140 160 180 200

Vertex Number

CHAPTER 2. APPROXIMATION ALGORITHMS

Expected Degree = 12

I I I I I I I I I

Original -
CDS-M ---x---

DW-ASYNC ---*---

Vertex Number

Figure 2.12: Average number of edge-disjoint paths - average degree 12.

G W J is our centralized greedy algorithm GWM, and DWASYNC is our distributed algorithm

DWASYNC It is apparent that our algorithms generate smaller dominating sets than those

of Das and Bharghavan.

The average distance and number of edge-disjoint paths between vertex pairs are com-

pared between the original graph (Original), Algorithm I of Das and Bharghavan (CDSJ)

and our DWAsyNC algorithm (DWASYNC). Both sparse and dense graphs were considered as

shown in Figures 2.9 to 2.12. These results indicate that the average distance between vertex

pairs increases by about 20% when connected dominating sets are used for clustering and

increases a further 10% when weakly connected dominating sets are used. These increases

are not unreasonable. The average number of edge-disjoint paths is reduced by about 25%

when connected dominating sets are used for clustering and by a further 20% when using

weakly connected dominating sets. Again, these decreases are as expected.

Chapter 3

Zonal Computation

Distributed algorithms for solving ad hoc networking problems are generally expected to be

localized, i.e. individual processes only need to know the information within vicinity. The

localized requirement can make distributed algorithms more efficient and reliable. Interested

readers are referred to the book of Peleg [59] for a detailed elaboration of this topic. A

zonal distributed algorithm is a compromise between execution locality and result quality.

In such algorithms, a network is first divided into overlapping or non-overlapping connected

substructures, called zones. A best-effort non-localized procedure can be executed within

each zone and a localized procedure can be executed in the super-graph on the zones. The

size of the zones in a zonal distributed algorithm is usually controllable. In this chapter, we

present a distributed zonal distributed algorithm for constructing small weakly-connected

dominating sets, denoted ZW, with a single parameter to control the zone granularity.

3.1 Introduction

The greedy algorithms for finding small weakly-connected dominating sets in Chapter 2 have

asymptotically optimal approximation ratios. Their distributed implementations have been

shown to have similar performance by experiments. However, these distributed implemen-

tations are not localized, in the sense that some nodes need to know the distant information

and the execution time becomes increasingly longer as the network gets larger. This is less

desirable especially when the clustering process needs to be executed frequently. In order

to make the clustering process more viable in real distributed environments, such as mo-

bile ad hoc networks, algorithms that only use local information (that is, information from

CHAPTER 3. ZONAL COMPUTATION 50

nodes and links within constant distance) are desired. These algorithms are generally called

localized distributed algorithms. In the context of clustering ad hoc networks, the work

of Wu and Li [73] is a typical localized distributed algorithm for finding small connected

dominating sets.

Wu and Li present a clever localized distributed algorithm for finding small connected

dominating sets to cluster ad hoc networks, in which a node only needs to know information

from within its distance-2 neighborhood. What is more, the execution time is bounded by

0(A3) from above. The penalty, however, for this near-sightedness is that the algorithm

does not guarantee a good approximation ratio. In fact, it was shown by Alzoubi et al. [71]

that the approximation ratio can be as bad as $, where n is the number of nodes in the

network.

In this chapter, we present ZW, a zonal weakly-connected dominating set construction

algorithm. In ZW, a zone is a connected subgraph of the input network that has no more

than 22 vertices, where x is a preset zone size control parameter. A zone has a dedicated

vertex known by all zone members as the root. The zonal construction algorithm has two

levels:

Intrazonal - a weakly-connected dominating set is independently constructed for each

zone;

Interzonal - the root of each zone determines a set of vertices to add to its weakly-

connected dominating set to guarantee that the union of all the zones' dominating

sets is a weakly-connected dominating set for the entire network.

The ZW algorithm consists of three phases. In the first phase, the graph is partitioned

into non-overlapping zones by constructing a spanning forest. At the end of this phase, the

root of each tree in the spanning forest is the zone root and its ID is known by all vertices

of the zone as the zone ID.

In the second phase, the DGWs of Chapter 2 is independently executed in each zone to

find a small weakly-connected dominating set within the zone. The zone root coordinates

this process by collecting zonal progress information and then making and disseminating

decisions throughout the zone.

In the third phase, a weakly-connected dominating set of the entire graph is formed by

adding more vertices (if required) to the union of the weakly-connected dominating sets of

CHAPTER 3. ZONAL COMPUTATION 51

all the zones. In particular, when two zones are adjacent but not connected by a dominated

edge, a dominated vertex is added to the dominating set.

Figure 3.1: Zonal clustering scheme.

Figure 3.1 depicts an example of the zonal clustering scheme. It is a snapshot when the

clustering is initially completed in the given network. The network is partitioned into three

zones, Z1, Z2, and Z3, as indicated by the dashed contours. The solid black vertices belong

to their zone's weakly-connected dominating set after the intrazonal phase. The hollow

black vertex can be added to the weakly-connected dominating set of zone Z1 to "fix" the

border to Z3. Note that the border between zones Z1 and Z2 and that between zones Z2

and Z3 need not be fixed because these borders contain dominated edges.

The advantage of the zonal approach is that the zone size control parameter x can be

used to control the zone granularity, providing a trade-off between the extent of network

structure simplification and the locality of algorithm execution.

Section 3.2 discusses the first phase of clustering - partitioning graphs into zones.

Section 3.3 revisits the approximation algorithms for finding small weakly-connected domi-

nating sets. The border fix phase is investigated in detail in Section 3.4. Experiments and

results are studied in Section 3.5, followed by the conclusion.

3.2 Graph partitioning

Now we concentrate on the first phase of our localized distributed clustering algorithm - the

process of partitioning a given graph G = (V, E) into non-overlapping zones. Let n = IVI

CHAPTER 3. ZONAL COMPUTATION 52

and m = [El. We discuss and compare three different approaches and proceed with the

third one. To analyze the time and communication complexities, we use the synchronous

multi-port network model (Section 1.5).

3.2.1 Approaches to graph partitioning

One approach is to generalize the independent dominating set algorithm of Lin and Gerla

[50]. Here we generate a distance-k dominating set S of G, such that every vertex that is

not in S has a vertex in S within its distance-k neighborhood and, furthermore, each pair

of vertices in S is separated by a distance of at least k + 1. S is generated by performing

distance-k neighborhood broadcasts, in which the broadcast message travels at most k hops

away from the source by setting the TTL (time to live) value of a message to k. At

the beginning, each vertex in V makes a distance-k neighborhood broadcast to advertise

its vertex ID. After this, every vertex knows the vertex ID'S of every other vertex in its

distance-k neighborhood. Each vertex that has the lowest vertex ID within its distance-

k neighborhood proclaims itself a distance-k dominator and broadcasts its status change

within its distance-k neighborhood. Every vertex that has a distance-k dominator within

the distance-k neighborhood changes to the status of distance-k dominatee and broadcasts

this status change within its distance-k neighborhood. Note that a vertex that does not have

the lowest ID within its distance-k neighborhood still has a chance to be a dominator. When

all vertices with lower ID'S within its distance-k neighborhood are known to be dominated,

it becomes a dominator. In the end, a distance-k dominating set S is formed, consisting

of the vertices with distance-k dominator status. Furthermore, every pair of vertices in S

is separated by a distance of at least k + 1. Every dominatee accepts the vertex that first

becomes distance-k dominator within its distance-k neighborhood as its own distance-k

dominator.

The time complexity of this partitioning process is bounded by O(diamG), which is in

turn bounded by O(n). This follows from the fact that diamG is the maximum amount of

time for any status change information to propagate through the graph. Practically, this

time can be much lower since the distance-k broadcast processes can be running in parallel

throughout graph G. The communication cost of the flooding process at a particular relaying

vertex v is d(v) - 1, where d(v) is the vertex degree of v. Thus, for any vertex to complete

a distance-k broadcast, it can generate as many as O((A - l) k) messages, with A being

the maximum vertex degree in graph G. Recall that the number of messages that a single

CHAPTER 3. ZONAL COMPUTATION 53

distance-k broadcast can generate is also trivially bounded by O(m). Every vertex in G does

exactly two distance-k broadcasts, one for the vertex ID advertisement and the other for the

status change announcement. Therefore, the total communication cost of the partitioning

algorithm is bounded by O(n(A - I) ~) .

A second method to partition a network is to use vertex r as a central coordinator of the

network to grow a "hyper spanning tree" (HST) in G. Every node in the HST represents

a partition in G, and r resides in the root of the HST. An HST can be constructed as

follows. The root r first forms a partition of G consisting if all vertices within distance k

of r itself and adds the partition to the tree node set. To do that, r starts a distance-k

broadcast and labels all vertices in its distance-k neighborhood with its ID. Then r chooses

a vertex vl at distance k + 1 and instructs it to form a second partition by labeling the

unlabeled vertices within its distance-k neighborhood with vl's ID. When this is completed,

vl chooses yet another unlabeled vertex vz at distance k + 1, and this process is repeated.

If, for example, v2 can not extend the partitioning, it reports to its parent, vl in this case,

and vl will choose another unlabeled vertex v2 at distance k + 1 from vl to form a partition.

The construction of the HST continues in this fashion and is similar to depth-first search.

Backtracking is performed only when necessary. This approach is can take O(n) time to

form the tree. Its communication cost is at most O(z(A - l)IC) message since only lVHsTl

distance-k broadcasts are needed. Leader election is used to choose r and, if we wish to

finish any leader election process in O(diamG) time units [I], it requires O(m x logdiamG)

messages.

The third approach to partitioning G into zones is by growing a spanning forest in G.

Each tree in the spanning forest corresponds to a partition. The size of each partition is

roughly controlled by a parameter x. The GHS algorithm [28] is an asynchronous distributed

algorithm for finding an MST (minimum spanning tree). The GHS algorithm grows com-

ponents of the MST in parallel until all the components connect to form the MST. Initially,

each vertex is a singleton tree by itself. In this partitioning approach, every vertex runs

the GHS algorithm but terminates immediately after the root of each tree finds that its

size exceeds a given threshold x. By doing this, we guarantee that the size of each tree is

at most 22. The time and message costs for the GHS algorithm for finding an MST are

O(n log n) and O(m + n log n) respectively. Thus, the time complexity of this approach,

which is that used to construct a tree, is O(x log x). The message cost for each tree is no

more than O(mi + xlogx), where mi is the number of edges incident to this tree, so the

CHAPTER 3. ZONAL COMPUTATION 54

Distance-k DS

Time
cost

Table 3.1: Costs of different graph partitioning methods.

HST
Partition 1 Leader election

Message
cost

total message cost is O (m + n log x) . Note that x is a constant indicating the approximate

size of the partitions.

Table 3.1 shows a comparison of the three different approaches. We can see that the

Spanning Forest

O(diamc)

time costs of the first two approaches have global parameters but the third approach can be

finished in a short time with the controllable parameter x set to small values. Therefore, we

utilize the third approach to partition a graph into non-overlapping zones in a non-global

distributed fashion.

O (n (A - 1)" or

0 (4

3.2.2 Graph part it ioning using minimum spanning forests

O w

In this section, we concentrate on the first phase of our zonal distributed clustering algorithm

- the process of partitioning a given graph G = (V, E) into non-overlapping zones by

growing a spanning forest of the graph. At the end of this phase, the subgraph induced by

each tree defines a zone.

Our algorithm for this phase is based on an algorithm of Gallager, Humblet, and Spira

[28] that is based on Kruskal's classic centralized algorithm for Minimum Spanning Tree

(MST), an iterative greedy algorithm. We assume that all edge weights are distinct, breaking

ties using the vertex ID'S of the endpoints. The MST is unique for a given graph with distinct

edge weights. The algorithm maintains a spanning forest. Initially, the spanning forest is

a collection of trees of single vertices. At each step the algorithm merges two trees by

including an edge in the spanning forest. During the process of the algorithm, an edge

can be in any of the three states: tree edge, rejected edge, or candidate edge. All edges

are candidate edges at the beginning of the algorithm. When an edge is included in the

spanning forest, it becomes a tree edge. If the addition of a particular edge would create a

cycle in the spanning forest, the edge is called a rejected edge and will not be considered

further. In each iteration, the algorithm looks for the candidate edge with minimum weight,

and changes it to a tree edge merging two trees into one. During the algorithm, the tree

O (? (A - 1)" or

O (f r n)

O(diamG) 0 (x log x)

0 (m log diamG) O (m + n log x)

CHAPTER 3. ZONAL COMPUTATION 55

edges and all the vertices form a spanning forest. The algorithm terminates when the forest

becomes a single spanning tree. This greedy algorithm finds the optimal solution, i.e., the

MST.

Gallager, Humblet, and Spira [28] presented an asynchronous distributed algorithm,

called the GHS algorithm, for finding the MST in a graph. In their algorithm, vertices in

the graph grow their own trees in the spanning forest in parallel. Each tree in the spanning

forest is called a component. Initially, every vertex is a component by itself. The central

idea of the GHS algorithm is that each component locates its minimum weight outgoing

edge, an edge of minimum weight which connects the component to some other component.

Each vertex PROBEs each of its neighbors to see if the edge connecting them is an outgoing

edge. The root of a component collects the weights of all outgoing edges to locate the

minimum weight outgoing edge, and attempts to merge using the minimum weight outgoing

edge. Some restrictions are applied during the merge process to guarantee balanced growth

among components. The algorithm terminates when no outgoing edge can be found for any

component, at which point the MST has been found.

Our partitioning process consists of a partial execution of the GHS algorithm which

terminates before the MST is fully formed. We control the size of components by picking

a value x. Once a component has exceeded size x, it no longer participates. In particular,

it will not send or accept PROBEs. We call such a component full. Since every merge

joins two components of size of no more than x, the size of a full component is at most

22. Note that a component that has not exceeded the threshold size by the time that all of

the surrounding components become full may be of size x or less. To implement this size

control, the root of each component keeps track of the number of vertices in its component.

When the size x is exceeded, the root broadcasts a FULL message to all vertices of the

component. Having received the FULL message, a vertex refuses the PROBEs from any

neighbor.

The threshold size x provides a mechanism to control the trade-off between the locality

of the algorithm and size of the output weakly-connected dominating sets. When x is small,

the algorithm is fairly localized and its behavior is similar to that of the localized algorithms

for connected dominating sets of Wu and Li [73] and of Alzoubi, et al. [4]. When x is large,

the algorithm is not as localized but tends to produce smaller weakly-connected dominating

sets, as we will see in Section 5. The selection of the value of x is a problem of interest.

The threshold size x can be preset to a particular value before the network is setup, if the

CHAPTER 3. ZONAL COMPUTATION 56

scale and behavior of the network is relatively predictable. In particular, the value of x

may be determined by the size of the network, the density of the nodes, and the locality

requirements of the administrator. Experiments can be used to fine tune the value given

the above parameters.

In Chapter 4, we develop algorithms for maintaining the cluster structure as the network

changes. In this case, the value of x will also need to be changed dynamically. However,

this is beyond the scope of this chapter.

Note that in the centralized greedy algorithm and the original GHS algorithm for MST,

the spanning forest maintained at any time is part of some MST. This condition does

not necessarily hold after adding the size control, since a component only considers edges

leading to non-full components when locating the minimum weight outgoing edge. But this

modification is acceptable as our goal is simply to partition a graph into zones using some

spanning forest with the size control. We do not strictly require a minimum spanning tree.

To calculate the costs of the partitioning phase, let mi denote the number of edges

incident on the vertices within component 2. The time complexity to form this component

using the modified GHS algorithm is O(x log x) and the message cost is O(mi + x log x).

(See the analysis of Gallager, Humblet and Spira [28].) Therefore, the total time required

is the same as that of each individual component, O(x log x), and the message cost is the

sum over all the components, O(m + n log x). The threshold number x is a variable used

to control the approximate size of each partition. As x increases, the partitions become

larger which, intuitively, allows a smaller weakly-connected dominating set, as we can run

the asymptotically optimal approximation algorithm (as we will see in next section) within

larger partitions of the graph.

In principal, any distributed algorithm for constructing spanning trees can be modified

for use here. Among algorithms for minimum spanning trees, the GHS algorithm does not

have optimal time or message costs. However, the GHS algorithm is localized during the

early stages of its execution and thus is easy to extend to our problem. Further, using a

minimum spanning tree algorithm with edge weights obtained from subscriber unit distance

(rather than an arbitrary spanning tree algorithm) tends to give us spanning trees of smaller

heights and thus zones of smaller diameters.

CHAPTER 3. ZONAL COMPUTATION 57

3.3 Computing weakly-connected dominating sets of the zones

Once the graph G is partitioned into zones and a spanning tree has been determined for

each zone, we run the DGWs algorithm (Chapter 2) within each zone. This algorithm is

the distributed implementation of GWs, a centralized greedy algorithm for finding small

weakly-connected dominating sets in graphs.

The DGWs algorithm generates the same weakly-connected dominating set as its cen-

tralized counterpart on any input graph. Without leader election, it can be done in

O(diamG x IS[) time with O(n x IS1 + m) messages in a given graph G = (V, E) (Table 2.2),

where IVI = n and IEI = m.

This algorithm can be run in any zone Zi = (V,, Ei) in time O(diamzi x ISi[), using O(xx

ISi[+ mi) messages, where IV,I = ni, lEil = mi, and Si is the weakly-connected dominating

set produced by Zi. Therefore, within the entire graph the total time is O(x x ISmaxI)

and the message cost is O(n x ISmaxI + m), where Smax is the largest weakly-connected

dominating set produced by all zones.

3.4 Fixing the Borders

After we have calculated a small weakly-connected dominating set Si for each zone Zi of G,

combining these solutions does not necessarily give us a weakly-connected dominating set

of G. We will likely need to include some additional vertices from the borders of the zones

in order to obtain a weakly-connected dominating set of G.

The edges of G are either dominated (that is, they have either endpoint in some dom-

inating set Si) or free (in which case neither endpoint is in a dominating set). Two zones

Zi and Zj adjacent along a dominated edge can comprise a single zone with dominating set

Si U Sj, and do not need to have their shared border fixed.

The root of zone Z can learn, by polling all the vertices in its zone, which zones are

adjacent and can determine which neighboring zones are not adjacent along a dominated

edge. For each such pair of adjacent zones, one of the zones must "fix the border". To break

ties, we assume that the zone with lower zone ID takes control of this process, where the

zone ID is the vertex ID of the zone root. In other words, if neighboring zones Zi and Zj

are not adjacent along a shared dominated edge, the zone with the lower subscript adds a

new vertex from the Zi/Zj border into the dominating set.

CHAPTER 3. ZONAL COMPUTATION

Figure 3.2: Fixing the borders.

For example, in Figure 3.2, the five zones have weakly-connected dominating sets indi-

cated by the solid black vertices. Zone Z1 is adjacent to zones Z2, Z3, z4, and Z5. Among

these, zones Z2 and Z3 do not share dominated edges with Z1. As Z1 has a lower zone ID

than either Z2 or Z3, Z1 is responsible for fixing these borders. The root of Z1 adds u and

v into the dominating set. Z2 is adjacent to two zones, Z1 and Z3, but it is only responsible

for fixing the Z2/Z3 border, due to the zone ID'S. The root of Z2 adds w to the dominating

set.

A detailed description of this process for a given zone Z follows. The goal is for the root

r to find a small number of dominated vertices within Z to add to the dominating set.

Assume that every vertex knows the vertex ID: color, and zone ID of all of its neighbors.

(This can be done with a single round of information exchange.) Root r collects the above

neighborhood information from all of the border vertices of Z. We define a problem zone

with regard to Z to be any zone Z' that is adjacent to Z, is not joined along a dominated

edge, and has a higher zone ID than Z. Zone 2 is responsible for fixing its border with each

problem zone.

We construct a bipartite graph B (X , Y, E) using the collected information for root r .

Vertex set X contains a vertex for each problem zone with regard to Z, and vertex set Y

contains a vertex for every border vertex (a vertex adjacent to vertices of other zones) in Z.

There is an edge between vertices yi and xj if and only if yi is adjacent to a vertex in problem

CHAPTER 3. ZONAL COMPUTATION

Figure 3.3: Bipartite graph for the problem of fixing a border.

zone xi in the original graph. Figure 3.3 shows the bipartite graph constructed by zone Z1

in the example of Figure 3.2. In this bipartite graph, X = (22, &) and Y = {u, y,v). In

this case, {u, v) is a possible solution for Z1 to add to the weakly-connected dominating set

in order to fix its borders with Z2 and Z3. To find the smallest possible set of vertices to

add to the dominating set, r must find a minimum size subset of Y to dominate X.

The decision version of this problem is equivalent to the dominating set problem in split

graphs which is NP-complete (see Golumbic [33] for definition of split graph and Bertossi

[16] for the NP-completeness result). As an optimal solution is not likely, we use a greedy

procedure to find an approximate solution. In each iteration of this greedy procedure, we

remove a maximum degree vertex from Y. Since the calculation for each zone is done by

the zone root, the time and message costs are those incurred by the polling process, i.e. a

broadcast and a convergecast along the tree edges of the spanning tree of each zone. Both

costs can be bounded by O(x) since the size of zones are within O(x). Therefore, the time

and message costs for the entire graph are O(x) and O(n), respectively.

After the root of each zone has executed the above algorithm, the resulting dominating

set is a weakly-connected dominating set of the entire graph G.

3.5 Simulation

At the point, we have not been able to obtain a theoretical bound on the size of the weakly-

connected dominating set produced by the ZW algorithm. Therefore we have performed

simulations to determine the quality of this zonal distributed algorithm for finding small

weakly-connected dominating sets, measuring the dominating set size, the path length, and

the network capacity. We compare this algorithm to the DGWs algorithm of Chapter 2 and

CHAPTER 3. ZONAL COMPUTATION 60

to Das and Bharghavan's algorithm for connected dominating sets [24].

To measure the performance of our zonal algorithm, we consider three parameters. First

we consider the size of the dominating set produced. Since our goal is to find a small

weakly-connected dominating set, we prefer smaller values for this parameter. The second

parameter that we are interested in is the average path length, that is, the average pairwise

vertex distance. In each of the clustered graphs, we compute these distances using only

the edges in the subgraph weakly induced by the dominating set. Small increases of this

parameter are expected, as some edges in the clustered graph are removed. The third

parameter is the average number of edge-disjoint paths between pairs of vertices. This

parameter measures, in some sense, the capacity of the network. As we delete edges, we

expect that this value will decrease, but we do not wish it to decrease too much.

Originally we planned to include the localized algorithms of Wu and Li [73] and of

Alzoubi, et al. [4] in our comparison, but our preliminary experiments showed that for our

data set these localized algorithms produced much larger dominating sets than the non-zonal

distributed algorithm by Das and Bharghavan [24]. Therefore, in this chapter we focus on

comparing the ZW algorithm with the non-localized distributed DGWs algorithm presented

in Chapter 2 and that by Das and Bharghavan [24].

In our experiment we generate random graphs repeatedly and run the ZW algorithm,

the DGWs algorithm, and the connected dominating set algorithm [24], measuring the

above three parameters. The random graphs have expected average degree of 6 and 12,

providing two levels of density. The size of the graphs ranges from 20 to 200 vertices and

40 to 200 vertices for the two densities, respectively. To simulate the structure of ad hoc

networks, we place vertices (subscriber units) randomly in a rectangular area in a 2D-plane.

The coordinates of the vertices are chosen uniformly in each dimension. We assign each

subscriber unit a random transmission range with a precalculated expected value. When

two subscriber units are placed within range of each other, an edge is added between the

vertices simulating a reliable link between them. By changing the number of vertices in the

plane and the expected transmission range, one can adjust the network size and density.

For each pair of number of vertices and expected degree, we generated 100 random

graphs to test the algorithms. In order to investigate the influence of the size of the zones

on the performance of the algorithm, we configured the experiment to run with parameter

z set to the values 10, 20, 40, 80 and 160. Given the sizes of the graphs in our simulations

(up to 200), values 20 and 80 represent two typical locality levels, and these are the results

CHAPTER 3. ZONAL COMPUTATION 6 1

presented in this chapter. Intuitively, when x = 20, the algorithm behaves more locally. In

particular, with average degrees either 6 or 12, we could expect the zone diameter to be 4 or

less. Raising the threshold to 80, we would expect the zone diameter to be closer to 6. As

the zone diameter increases, the locality of the algorithm decreases and it begins to behave

more like the DGWs algorithm.

Figures 3.4 and 3.5 show the size of the weakly-connected dominating sets produced

by the ZW algorithm with the zone size control parameter x set to 20 and 80 (ZW-20 and

ZW-80, respectively) and by the DGWs algorithm (DGW-S), and the size of the connected

dominating sets produced by the connected dominating set algorithm, Algorithm I1 of Das

and Bharghavan [24] (CDS). Connected dominating sets are generally denser than weakly-

connected dominating sets for the same graph, so we expect the size of connected dominating

sets produced by the CDS algorithm to be larger than the others. In Figure 3.4, where the

expected degree is 6, we can see that when the zones contains approximately 80 vertices

(ZW-80) the size of the weakly-connected dominating set produced by the ZW algorithm is

just slightly larger than that produced by the DGWs algorithm (DGWS). For smaller zones

(ZW-20), the size of the dominating set is again larger, but still smaller than the size of the

connected dominating sets (CDS). In Figure 3.5 the expected degree is 12. The difference

from Figure 3.4 is that when using small zones (ZW20), the size of the weakly-connected

dominating sets is larger than that of the connected dominating sets (CDS), though ZW-80 is

still smaller than CDS. In this case, we believe that the graph is fragmented by small zones

because the threshold size is not much larger than average degree.

Figures 3.6 and 3.7 display the average path lengths in the original graph (Original),

those in the graph clustered by weakly-connected dominating sets produced by the ZW

algorithm (ZW-20 and ZW-80), those in the graph clustered by weakly-connected dominating

sets produced by the non-localized algorithm (DGW-S), and those in the graph clustered by

the connected dominating sets produced by the CDS algorithm (CDS). In both Figures 3.6

and 3.7, we can see that the zonal algorithm (ZW-20 and ZW-80) yields a smaller average

path length than the distributed greedy algorithm (DGW-S) . In addition, the zonal algorithm

with small zones (ZW-20) yields smaller average path length than the connected dominating

set algorithm of Das and Bharghavan (CDS).

Figures 3.8 and 3.9 show the average number of edge-disjoint paths in the original graph

(Original), those in the graph clustered by weakly-connected dominating sets produced

by the ZW algorithm (ZW-20 and ZW-80), those in the graph clustered by weakly-connected

CHAPTER 3. ZONAL COMPUTATION

Expected Degree = 6

I I I I I I I I I I
20 40 60 80 100 120 140 160 180 200

Vertex Number

Figure 3.4: Dominating set size (a).

dominating sets produced by the non-localized algorithm (DGW-S), and those in the graph

clustered by the connected dominating sets produced by the CDS algorithm (CDS). In both

Figures 3.8 and 3.9, we can see that the zonal algorithm (ZW-20 and ZW-80) generates a

larger average number of edge-disjoint paths than the distributed greedy algorithm (DGW-S) .
Again counter-intuitively, for small zones (ZW-20), the zonal algorithm generates a larger

number of edge-disjoint paths than the connected dominating set algorithm (CDS) does.

3.6 Conclusion

We presented a zonal distributed algorithm, ZW, for finding small weakly-connected domi-

nating sets for use in clustering MANETs. The algorithm consists of three phases: partition-

ing, executing DGWs within zones, and border fixing. We first partition the input graph into

zones of sizes approximately x using a modified GHS algorithm for constructing spanning

forests. Then the distributed algorithm for weakly-connected dominating sets is executed

in each zone. In the last phase, some additional vertices from zone borders are added in

order to obtain a weakly-connected dominating set of the graph. The execution time of this

algorithm is O(x x (log x + (S,,, 1)) and it uses O(m + n x (log x + [S,,, 1)) messages, where

CHAPTER 3. ZONAL COMPUTATION

Expected Degree = 12

Vertex Number

Figure 3.5: Dominating set size (b).

Expected Degree = 6

I I I I I I I I I I

Original -
CDS ---x--- -

*..-%... DGW-S ---r---
m - 2 0 a
m - 8 0 - . -,

-

I I I I I I I I I I

20 40 60 80 100 120 140 160 180 200

Vertex Number

Figure 3.6: Average path length (a).

CHAPTER 3. ZONAL COMPUTATION

Expected Degree = 12

Vertex Number

Figure 3.7: Average path length (b).

Expected Degree = 6

I I I I I I I I I I

20 40 60 80 100 120 140 160 180 200

Vertex Number

Figure 3.8: Average number of edge-disjoint paths (a).

CHAPTER 3. ZONAL COMPUTATION

Expected Degree = 12

I I I I I 1 1 I I

Original -
CDS ---x---

DGW-S - - -x - - -
m - 2 0 a
m - 8 0

4 :

VerIex Number

Figure 3.9: Average number of edge-disjoint paths (b).

S,,, is the largest weakly-connected dominating set generated by all zones and is of size at

most O(x). This zonal algorithm is regulated by a single parameter x, which controls the

size of zones. When x is small, the algorithm finishes quickly with a large weakly-connected

dominating set. When it is large, it behaves more like the DGWs algorithm and generates

smaller weakly-connected dominating sets. Experiments were designed to test the quality of

this zonal algorithm. Comparisons are made to the DGWs algorithm for weakly-connected

dominating sets and the algorithm for finding small connected dominating sets.

Chapter 4

Maintenance

The algorithms for constructing weakly-connected dominating sets presented in the previous

chapters can only be used in static ad hoc networks, such as sensor networks. In this chapter,

we present an algorithm that updates the WCDS structure in presence of topology changes.

Using the zonal idea, cluster maintenance can be logically divided into two layers -

intrazonal (within zones) and interzonal (along zone borders). As usual, we are given an

undirected graph G = (V, E) to represent the network and S C V is the weakly-connected

dominating set to be maintained. In the figures, solid black vertices represent dominating

vertices and white vertices represent dominated ones.

We assume that the underlying graph always remains connected despite the topology

changes. We also assume that each vertex has a unique ID, such as the hardware address

of the device. For the sake of simplicity, we assume that all the changes occur sequentially

and that we have sufficient time to fix one change before the next begins. In the actual im-

plementation of the protocol, various timeout mechanisms are used to avoid infinite waiting

from simultaneous topology changes (see Subsection 4.2.1 for an example).

In Section 4.1, we present a non-zonal update algorithm that can be used to maintain the

weakly-connected dominating set structure resulting from our static algorithms in Chapter 2.

We classify the possible topological changes into four primitives: edge-down, vertex-down,

edge-up, and vertex-up. In Section 4.2, we describe a zonal maintenance algorithm utilizing

the algorithm of Section 4.1. Here, we restrict the execution of the earlier algorithm to zones

to accomplish intrazonal maintenance and add interzonal maintenance procedures to main-

tain the weakly-connected dominating set of the entire network. We present experimental

settings and results to test the performance and efficiency of the maintenance algorithm in

CHAPTER 4. MAINTENANCE 67

Section 4.3. The results show that both the size of the weakly-connected dominating set

maintained and the connectivity of the abstracted network stabilize after a short simulation

time and these values remain approximately the same as initially. Furthermore, the different

zone sizes also show different emphases between algorithm locality and dominating set size.

4.1 Non-Zonal Maintenance

In this section, we present a non-zonal algorithm to maintain existing weakly-connected

dominating sets in arbitrary graphs. The algorithm can easily be adapted to a zonal algo-

rithm for intrazonal maintenance by restricting the execution to a single zone. The algorithm

uses message flooding along dominated edges to propagate the control messages. We clas-

sify the possible topological changes into four primitives: edge-down (the loss of an edge),

vertex-down (the loss of a vertex), edge-up (the addition of an edge), and vertex-up (the

addition of a vertex).

We first deal with the loss of an edge. We have assumed that the root is known to every

other vertex. The root is responsible for fixing the weakly-connected dominating set if the

loss of an edge breaks the piece into fragments. Before an edge-down event, the graph

contains a single black piece because it has a weakly-connected dominating set. The loss of

a free edge (such as edge (w, v) in Figure 4.2) does not change the subgraph weakly induced

by the dominating set and the maintenance procedure need not be triggered. The loss of

a dominated edge, however, must be reported by the vertices incident upon it, because

the piece may have been broken into two fragments. In particular, when a vertex loses an

incident dominated edge, the root vertex will be notified and will coordinate the procedure

to add a dominated vertex to the dominating set if necessary. The response to an edge-down

event consists of two logical parts. In the first part, piece integrity test, the two vertices

that have detected the edge-down event each broadcast an edge-loss message to determine

if the piece is broken. If so, the root initiates breach suturing to add a dominated vertex to

the dominating set of the zone.

To determine if the piece has been broken, both endpoints broadcast an edge-loss

message along the dominated edges. The edge-loss message must be acknowledged by all

vertices that receive it. If the piece is not broken, each of the endpoints is able to detect the

CHAPTER 4. MAINTENANCE

Figure 4.1: Edge down.

existence of the other. In this case, the endpoint with lower vertex ID sends a message to

the root to indicate that the piece is still intact. If the endpoints do not detect the existence

of the other, one of them is in the same fragment as the root and can notify the root that

fixing is needed.

After the root determines that the piece needs to be rejoined, it broadcasts an improvement -

inquiry message along the dominated edges to find a vertex that has the greatest improve-

ment value. (Here, each vertex knows its improvement value, that is, the number of distinct

fragments within its closed neighborhood.) The improvement-inquiry message carries the

vertex ID of the message originator (the root, in this case) so that reachable vertices (those

in the same fragment as the originator) will use that ID as the fragment ID. For an edge-

down event, the maximum improvement value will be two. When such a vertex is located,

the root instructs it to change to black. This results in a new weakly-connected dominating

set for the entire graph.

The vertex-down event handling can be regarded as a generalized edge-down event. In the

implementation of the distributed algorithm, they are treated identically since a detecting

vertex cannot really distinguish the loss of an edge and the loss of a neighboring vertex.

The vertex-down event triggers a response consisting of a piece integrity test and breach

suturing, if needed.

We define the clustered degree of a vertex v, denoted c , , ~ , to be the number of neighbors

of v in the subgraph weakly induced by a dominating set S. In essence, this is the number

of incident dominated edges of a vertex. If v E S, ~ , s is simply v's degree in the original

CHAPTER 4. MAINTENANCE

Figure 4.2: Vertex-down.

graph. When S is understood from context, we write c, without confusion. For example, in

Figure 4.2, c, = 4. As a contrast to the edge-down event, the loss of vertex v can break the

piece as many as c,,s fragments. When detecting the loss of a neighbor v, each detecting

vertex broadcasts an edge-loss message along the dominated edges. Again, each vertex

receiving this message sends an acknowledgment. The way that a detecting vertex decides

if the original piece has been broken or not is slightly different here. Each detecting vertex

checks to see if there are c,,s detecting vertices in the fragments from the acknowledgments

(rather than two as in the edge-down event). If so, the piece has not been broken and the

detecting vertex with the lowest ID sends a message to the root vertex that the piece is still

intact. Otherwise, the detecting vertex with the lowest ID that has been acknowledged by

the root vertex sends a message to the root along the dominated edges that fixing is needed.

If the piece has been broken into two or more fragments due to the loss of vertex v, the

root decides that more dominated vertices will be added to the dominating set. Unlike the

case of the edge-down event, the root may need multiple iterations to locate these vertices. In

each iteration, the root broadcasts an improvementinquiry message along the dominated

edges to find a vertex that has the greatest improvement value. This process stops when the

maximum vertex improvement value is one, and the dominating set is weakly-connected.

The above assumes that the lost vertex is not the root. For the special case that the

root is down, another vertex take on the role of the root. To achieve that, every root

has a neighbor as a backup. If the loss is discovered by the backup, the backup assumes

the role of the root. If the root was not lost but just the edge between the root and its

backup is lost, both "roots" will try to add a vertex to the dominating set. For example,

CHAPTER 4. MAINTENANCE

Figure 4.3: Possible scenarios for the presumed loss of the root.

the graphs in Figure 4.3 illustrate these situations, where vertex r is the root and u is its

backup in each graph. If the root and its backup are in the same fragment, as in the left

graph of Figure 4.3, vertex u will learn that the original root r is still alive during the

piece integrity test, and thus, will stop acting as a root. If the two vertices in different

fragments, as in the right graph of Figure 4.3, either of vertices u and r will broadcast the

improvementinquiry message in its fragment. However, when a vertex x in u's fragment

that is also adjacent to a vertex y in r's fragment detects that r's ID is used as fragment

ID of y, then x learns that the old root r is still alive. Vertex x will then inform u using the

returning improvementinquiry message so that u will stop acting as a root. Root r will

continue to join these two fragments.

When a new edge is inserted due to, for example, the endpoints moving closer, the weak

connectivity of the dominating set will not be affected. However, adding an edge may cause

some vertices in the dominating set to be redundant. That is, we can remove these vertices

from the dominating set and still have a weakly-connected dominating set. Thus, we focus

on localized procedures for eliminating redundancies caused by the edge-up event.

In event of edge-up, we only consider the case of adding a dominated edge. The addition

of a free edge does not change the neighborhood of any dominating vertex and thus does

not cause any redundancy. For example, in both graphs of Figure 4.4, when a dominated

edge (indicated as dashed lines) is added, vertex 1 becomes redundant because its closed

neighborhood is a subset of that of the neighboring dominating vertex 2. Thus, vertex 1 can

be removed from the dominating set. A vertex v in the dominating set may also become

CHAPTER 4. MAINTENANCE 7 1

redundant if its closed neighborhood is a subset of the union of the closed neighborhocds

of v's dominating neighbors. The addition of an edge can also cause this to occur. For

example, in each of the two graphs in Figure 4.5, vertex 1 becomes redundant when the

respective indicated edge is added.

Figure 4.4: Edge-up - single coverage.

Figure 4.5: Edge-up - combined coverage.

We say that a dominating vertex v is redundant if it has a set T of dominating neighbors,

such that:

1. N[v] & N[T], and

2. id(v) < id(u), for Vu E T.

Note that the weak connectivity of the dominating set is not violated with the removal of

redundant vertices. The second requirement is used to avoid simultaneous abdications of

multiple dominating vertices when they have identical neighborhoods.

The edge-up message is sent to "nearby" dominating vertices to determine if there is

redundancy. Only the endpoints of the new edge and their immediate neighbors need

to consider redundancy. The necessity can be observed from the previous examples. For

sufficiency, we see that a vertex at distance two or more from the new edge does not have any

neighbor whose neighborhood is changed and thus there is no need to calculate redundancies.

Therefore, when a vertex has observes an edge-up event, it only needs to notify its immediate

CHAPTER 4. MAINTENANCE 72

neighbors. Assuming that every vertex knows the members of its neighborhood, a single

round of information exchange among neighbors will suffice to determine redundancy.

The handling of the vertex-up event is very simple. When a new vertex is added, if it has

a neighbor in the dominating set, it is dominated; otherwise, it changes its status to be

dominating. Note that no dominating vertices will become redundant in the latter case as

the newly added dominating vertex is at least two hops away from any other dominating

vertex. Therefore, no redundancy calculation is needed in handling the vertex-up event.

4.2 Zonal Maintenance

In order to maintain the weakly-connected dominating set structure in a more localized

fashion, we divide the maintenance process into two levels, i.e. intra-zonal and inter-zonal.

Intra-zonal maintenance can be accomplished by restricting the execution of the above

algorithm within each zone, assuming that each zone's algorithm only takes care of vertices

within the zone.

4.2.1 Int ra-zonal Maintenance

Occasionally, vertices with the same zone ID may form a disconnected induced subgraph even

though the whole network is connected. Thus, we modify the non-zonal maintenance process

so that connected components of the induced subgraph that do not contain the zone root

can automatically generate a root and form a new zone. To do that, the detecting vertex

with the lowest ID of each fragment waits to be annexed after sending the pieceready

message. If nothing happens within a time-out interval chosen to be proportional to the

zone granularity threshold x, these timed-out vertices of the connected component elect a

root simply by broadcasting their ID'S within the connected component. On the other hand,

when two neighboring zones are both smaller than the threshold size, they merge with each

other to maintain relatively stable zone sizes.

CHAPTER 4. MAINTENANCE 73

4.2.2 Inter-zonal Maintenance

Recall that in the zonal construction algorithm a zone deals only with some neighboring

zones, called problem zones, and this suffices to generate a weakly-connected dominating set

of the entire network. As in the non-zonal scenario, when a border vertex (a vertex adjacent

to vertices of other zone) v loses an edge to a foreign vertex (a vertex of other zones) u,

it can not distinguish whether it was an edge-down event or vertex-down event. Thus, we

treat them identically.

From v's perspective, if it has a zone ID higher than u does, it does nothing. Otherwise,

v will first check to see if it still has another dominated edge incident to u's zone. If so, it

does nothing. Otherwise, it sends a zone-loss message to its zone root r . Upon receiving

this message, r will modify its bipartite graph for the border fix procedure and will add a

dominated vertex to the dominating set of the zone if needed.

Note that if a border vertex is lost, its zone root r must take special care in addition

to the usual intrazonal maintenance. In particular, if the lost border vertex was in the

bipartite graph for border fix maintained by r, then it is removed from the bipartite graph.

As a consequence, some other vertices may be added to the dominating set by r to fix the

broken border. See Figure 4.6 for an example of updating the bipartite graph for a zone

rooted at r. Before vertex y is lost, y and v were added to fix the borders with zones Z1

and Z2. After y is removed, u is added to the dominating set.

Figure 4.6: Updating the bipartite graph.

In the edge-up or vertex-up event, when a vertex v detects a new edge to a problem

zone, v does nothing except to notify its zone root so that it can update the bipartite graph

for future border maintenance.

CHAPTER 4. MAINTENANCE 74

4.2.3 Complexity Analysis

We assume that zone Z has 0 (x) vertices and maintains a weakly-connected dominating

set Sz. Also, we assume that the maximum vertex degree (number of neighbors a vertex

has) is A. All complexity analysis is done from the perspective of zone Z.

We first analyze the time and communication complexities of handling the edge-down

event. In either part of the process, each broadcast message takes O((Sz() time and

O(lSzlA) messages to finish, since it always propagates through dominated edges. As there

are only constant number of such broadcasts involved, the time complexity of this process

is O((Sz() and the communication complexity is O((Sz(A). To handle the vertex-down

event, both parts can be more complicated than the edge-down event. In the piece integrity

test, there can be as many as A detecting vertices, while breach suturing may take A - 1

iterations in the worst case. Therefore, the process can take up to O(JSzJA) time and use

O(I sz lA2) messages to complete.

The most costly operation in the edge-up event handling is the redundancy calculation

that is done when a dominated edge is inserted. In this case, at most 2 4 vertices need

to calculate redundancies, each of which exchanges the neighbor list with all its neighbors

using at most 2A messages in constant time. Thus, the total communication cost for each

(dominated) edge-up event is bounded above by 4A2 and it can be done in O(1) time. The

vertex-up event involves only incurs O(A) messages and constant time.

The most costly event at the interzonal level occurs if a border vertex in a problem zone

of zone Z is down. In that case, at most A - 1 vertices in Z may send the zone-loss

message to the root of Z. Thus, the communication cost is O(xA) and time cost is O(xA).

Note that ISz\ = O(x), SO these costs indeed increase as x does. However, when x is

small, the algorithm is essentially localized. If, on the other hand, the network topology

is expected to be less dynamic, larger x can be used to obtain smaller weakly-connected

dominating sets.

4.3 Simulation

The goals of simulating the proposed maintenance algorithm are to verify its stability and to

determine how the zone size control parameter x affects the size of the abstracted network

and the locality of the algorithm execution. Super-vertices of the abstracted graph represent

the neighborhoods of the vertices in the weakly-connected dominating set. Dominated edges

CHAPTER 4. MAINTENANCE

of the graph correspond to virtual edges between the super-vertices. The abstracted graph

may have lower connectivity than the original network. Thus, we design simulations to

show that, under some typical mobility assumptions, the algorithm keeps the size of the

weakly-connected dominating set approximately the same as the beginning, does not reduce

the network connectivity, and does not cause frequent cluster changes. (Note that the tests

and results for static weakly-connected dominating sets and other domination variants can

be found in earlier papers [21, 221 .)

4.3.1 Settings

Our simulation is done in an 800mx600m rectangular area. The simulated network initially

has 200 vertices with average transmission ranges of 100m and 200m to represent two net-

work density levels. There is an edge between two vertices if and only if their distance is

no more than the smaller of the transmission ranges. We set the zone size threshold x (see

Chapter 3) to be 10, 20 and 40 for different zone localities.

Vertices move according to certain mobility models. (Readers are referred to Camp

et al. [18] for a survey on mobility models used for ad hoc networking research.) In an

entity mobility model, mobile vertices move independently from each other. One entity

mobility model is the Random Waypoint model. In this model, each vertex chooses a

random destination, moves there at a randomly chosen speed, and then pauses for a random

length of time before choosing the next destination. By contrast, in a group mobility model,

vertices are divided into groups, the vertices within a group remain close to each other, but

the groups move independently. One group mobility model is the Reference Point Group

model. Each group has a moving logical center, called the reference point. Each vertex

within the group may wander within a certain range of its reference point.

We use the Random Waypoint and the Reference Point Group mobility models, as

representative entity and group mobility models, respectively. We add random vertex-down

and vertex-up events to these mobility models in order to generate the four event primitives.

To do that, we independently delete and/or insert a vertex at an expected period of 6

seconds. Thus, the expected vertex life span is 20 minutes and the network size remains at

approximately 200 despite the dynamic nature of the network.

In our experiments, we set the pause time of the Random Waypoint model to zero. When

the Reference Point Group model is used, mobile vertices are initially divided into groups

of five. Group reference points move within the rectangular simulation area as entities in

CHAPTER 4. MAINTENANCE

Maintenance Stability over Time (r=100)
70 I I I I I I I I I

RW x=10 -
RW x=20 ---X---
RWx=40 ---*;---

RpG ~~1 0 +..
RPG x=20
RPG x=40

0
0 20 40 60 80 100 120 140 160 180 200

Time (Sec)

Figure 4.7: Maintenance stability (range = 100).

the Random Waypoint model. The vertices of a group are confined within a circular region

of radius lOOm centered at the group reference point. Their movements also follow the

Random Waypoint model relative to the group reference point.

In our first experiments, we fixed the average vertex speed at 5m/s. With this setting,

we determine how several measures (weakly-connected dominating set size, pairwise average

vertex distance, and pairwise number of edge-disjoint paths) vary over time. We observed

that these values stabilize after about 50 seconds of simulated time. In our second exper-

iments, we considered the same measures under speed settings lm/s, 5m/s, 10m/s, and

20m/s, and let each simulation run until the measured value stabilized. In addition, when

the variable speed settings were considered, we noted the rates at which vertices change

their roles as clusterheads and their cluster membership.

4.3.2 Results

We first consider the stability of the maintenance algorithm, that is, whether the weakly-

connected dominating set remains roughly the same size over time. We record the set size

under both mobility models, setting the average vertex speed and reference point speed to

5m/s, for the first 200 seconds of the simulation. The test is done with graphs of initial

size of 200 vertices and average device transmission ranges of 100 and 200, respectively

CHAPTER 4. MAINTENANCE

Maintenance Stability over Time (r=200)
45 I I I I I I 1 I I

Time (Sec)

Figure 4.8: Maintenance stability (range = 200).

(Figures 4.7 and 4.8). Three different zone size control parameters, x = 10, 20 and 40,

are considered. As shown in the figures, during approximately the first 50 seconds of the

simulation, the size of the weakly-connected dominating set slightly increases. Then the

size of the dominating set stabilizes for the rest of the time. Note that the smaller the zone

size control parameter x is, the larger the dominating set. This shows a trade-off between

locality of the algorithm execution and succinctness of the abstracted network. The idea

of controllable zone sizes is a generalization of pure centralized greedy algorithms and pure

localized algorithms. When larger zones and less locality are affordable, smaller abstracted

networks can be generated. It is known that the network density increases to a higher level

when vertices are moving than in the initial distribution [18]. We have observed this in

our data. and, thus, the number of clusterheads needed is smaller. But the maintenance

algorithm pays the price of larger dominating sets to avoid constructing a weakly-connected

dominating set from scratch. The benefit of having a larger dominating set, though, is

to have better connectivity properties as we will see. One other observation is that the

maintenance algorithm behaves similarly under both mobility models. Therefore, from this

point on, we only show the data generated by the Random Waypoint mobility model.

We also consider how the network connectivity of the abstracted graph (using only

dominated edges) changes over time. We test this by measuring the average distance and

CHAPTER 4. MAINTENANCE

Average Distance vs. Time (r=100)

Figure 4.9: Pairwise vertex distance vs. time (range = 100).

Figure 4.10: Pairwise vertex distance vs. time (range = 200)

Average Distance vs. Time (r=200)
5

4 - a
0

- I I I : : I . . I I I ; I I 8 ,

. ,

. . , .
: :
.
. . . . t ,

. . . . > ,
: :

a ,

: :
a ,

- ,
. . 5 , -
: : . . , ,
: :

n ,

. . . . a ,

. . . . # ,

. . . . 8 ,

: :
8 ,

. . . .
: :

8 .

: : . . 8 ,

. , . . n #

. . . . n ,

: :
8 .

: :
8 , - , ,
8 . a ,

1

0

- -
Original -

x=lO ---,,(---

x=20 ...*...
~ = 4 0 a

I I I I I I I I I

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

CHAPTER 4. MAINTENANCE

Average Number of Edge-Disoint Paths vs. Time (r=100)
16 I I I I I I I I I

Figure 4.11: Number of edge-disjoint paths vs. time (range = 100).

average number of edge-disjoint paths between all pairs of vertices in the network under

both network density levels (transmission ranges of 100 and 200). In order to have better

network connectivity, it is desirable to have small average distances and large numbers of

edge-disjoint paths. We compare these values to the same values for the original network.

Figures 4.9 and 4.10 show that, for both network density levels and all zone size control

parameters, the average pairwise vertex distance decreases first and then stabilizes as the

network density does. The spikes on the curves in Figures 4.9 and 4.10 are due to the delay

of the algorithm in rejoining the weakly-connected components after the abstracted graph

has become disconnected. Because our algorithm reacts to topology changes in the network,

these rare disconnections are inevitable. Figures 4.11 and 4.12 show that the average number

of edge-disjoint paths increases slightly at the beginning and then remains roughly stable

as the network density stabilizes.

To determine how the average vertex speed affects the weakly-connected dominating set

size and the connectivity of the abstracted network, we record the same measures after the

network stabilizes, for both network density levels with average vertex moving speeds of 1,

5, 10, and 20m/s. From Figures 4.13, 4.14 and 4.15, we can see that the weakly-connected

dominating set size increases slightly and the network connectivity decreases slightly as the

average vertex speed increases as was expected.

CHAPTER 4. MAINTENANCE

Average Number of Edge-Disoint Paths vs. Time (r=200)
16 I I I I I I I I I

Figure 4.12: Number of edge-disjoint paths vs. time (range = 200).

3
-- 8 - :
0

5 6 - z
4

2

0

Dominating Set Size vs. Speed
70 I I I I

-

-

Original - - x=lO ---x--- -
x=20 ...*...
X = ~ O

I I I I I I I 1 I

O.-.- -.-.-.'.-.e-.-.-.-'-.-.-'-'-~
O-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-

Range=200, x=10
Range=200, x=20

0
0 5 10 15 20

Speed (mlsec)

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

Figure 4.13: Dominating set size vs speed.

CHAPTER 4. MAINTENANCE

Average Distance vs. Speed

...
A...

&.. d.
A.--..

.. * ..* -*.
& ~ z . - . - . - . - . - . - . - . - . - . - . - . - . - . - . - . - . - . - .

-
@ :I:z,z,L~L~i~L:z a .:,= :z::::.L:l:L:L7:.- -. R-a.n-Gee=i o-o;. aiainai P

Range=100, x=10 ---x---
Range=100, x=20 -.-r--- -

...... Range=100, x=40 a-
Range=2OO, Original

Range=200, x=10 -
Range=POO, x=20 ----a- --
Range=200, x=40 --- -A - - -

15 20

Speed (mlsec)

Figure 4.14: Pairwise vertex distance vs speed.

Average Number of Edge-Disoint Paths vs. Speed

Speed (mlsec)

6 -
5 z

4

2

0

Figure 4.15: Number of edge-disjoint paths vs speed.

Range=100, Original -
Range=100, x=10 ---x---

- Range=100, x=20 ---r--- -
Range=100, x=40 a......

Range=200, Original - Range=200, x=10 -
Range=2OO, x=20 - - -*- - -
Range=200, x=40 -- - -o ---

I I

0 5 10 15 20

CHAPTER 4. MAINTENANCE

Rate of Clusterheadship Change vs. Speed

0 5 10 15 20

Speed (mlsec)

Figure 4.16: Rate of clusterhead change.

As the network topology changes, some vertices change status from dominating to dom-

inated, or vice versa (clusterhead changes). Other vertices may move from one cluster to

another (cluster membership changes). These changes affect routing and addressing in a

hierarchical routing scheme. We consider the rates of these changes in the weakly-connected

dominating set as the vertex speed varies. We record all the above changes occurring in each

second with different average vertex speeds of 1, 5, 10, and 20m/s. The results are shown

in Figures 4.16 and 4.17. We find that the change rates increase when vertices move faster

as might be expected and that denser networks generate more such changes than sparser

networks.

CHAPTER 4. MAINTENANCE

Rate of Cluster Membership Change vs. Speed

0 5 10 15 20

Speed (mlsec)

Figure 4.17: Rate of cluster membership change.

Chapter 5

Clustering in the Presence of

Unidirectional Links

Due to the asymmetry of device capabilities and to interference, wireless links can be sim-

plex. That is, it is possible that one vertex can send another but not vice versa. Such

simplex wireless connections are referred to as unidirectional links. Directed graphs can be

used to represent ad hoc networks with unidirectional links. Although some existing ad

hoc network protocols do not allow unidirectional links, they may be worth considering. In

graph theoretic terms, a pair of vertices in a digraph may not have a single bidirectional

path connecting them, but they may still be connected by a pair of oppositely directed paths

and, thus, able to communicate with each other. Consider, for example, a directed cycle, as

shown in Figure 5.1. Vertices u and v are not connected by a bidirectional path, but they

are connected by a pair of unidirectional paths.

Figure 5.1: Vertices u, v can communicate by a pair of directed paths.

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 85

5.1 Introduction

Unidirectional links are not uncommon in wireless communication networks. For example,

in mixed terrestrial-satellite communication networks, satellites can transmit signals to all

of the ground stations, but only a few of the ground stations can send signals back to the

satellites.

Ad hoc networks may also result in unidirectional links although most of the existing

protocols assume only bidirectional links. As in mixed terrestrial-satellite communication

networks, there can be different types of devices in an ad hoc network. Even with identical

devices, factors such as battery power can lead to differing transmission ranges. Also,

interference may cause a device not to be able to properly receive packets although it may

still be able to transmit.

Although utilizing unidirectional links in ad hoc networks is considered costly, they may

be able to provide enhanced connectivity,

The use of unidirectional links in ad hoc networks results in some new protocol issues.

In the data link layer, efficient medium sharing is made difficult. For example, handshaking

in the distributed coordination function in the IEEE 802.11b/g MAC specification fails.

Further, some mechanisms for error control and flow control, such as sliding window, are

not applicable. In the network layer, most existing routing protocols for ad hoc networks

do not work correctly in the presence of unidirectional links. For example, the generic Ad

hoc On-demand Distance Vector (AODV) routing protocol [62, 611 may fail to discover a

route even if there is a bidirectional path between the source and the destination.

To address the problems in the network layer, either new routing protocols can be devised

or existing routing protocols can be modified. Gerla, Kleinrock, and Afek [30] present a

distributed routing algorithm for unidirectional networks. In their proposal, routing tables

are broadcast within the network to compute shortest paths between any strongly connected

vertex pairs. Marina and Das [53] proposed a technique, called Reversepathsearch, to solve

the route discovery problem in the AODV protocol. Others aim to abstract the network

topology so that the unidirectional links appear bidirectional to the upper layers [65, 561.

The basic approach taken by these protocols is to find a reverse path for each unidirectional

link such that the link layer control packets can be "tunneled" back from the downstream

device to the upstream device. The work of Ramasubramanian et al. [65] is based on an

improvement of that of Gerla, Kleinrock and Afek. Broadcasts are limited to distance-r

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 86

neighborhoods, such that the communication overhead is controlled and the length of the

reverse paths is bounded. The other improvement made in this work is the utilization

of "looped around" distance vectors by the reverse distributed Bellman-Ford algorithm.

The next-hop information is obtained after propagating along a cycle that contains the

unidirectional link.

In this chapter, we investigate the problem of clustering ad hoc networks in the presence

of unidirectional links. We first introduce some related terminology, define domination

variants for digraphs, and briefly discuss the computational complexity of these variants. In

Section 5.3, we propose a series of greedy algorithms for these digraph domination variants.

Our goal is to construct small dominating sets in a distributed setting. In Section 5.4, we

present a set of distributed algorithms that can be executed in ad hoc networks with the

presence of unidirectional links. These algorithms make fewer assumptions but we have not

been able to show non-trivial approximation ratios for them. In Section 5.5, we compare

the sets generated by the two types of algorithms.

5.2 Domination in directed graphs

5.2.1 Preliminaries

A digraph G = (V, A) consists of a vertex set V and an arc set A containing ordered pairs

of distinct vertices of set V. That is, G has no loops or multiple (parallel) arcs, but pairs

of oppositely directed arcs are allowed. In the figures, a thick line without an arrowhead

indicates a pair of oppositely directly parallel arcs, i.e. a duplex link. A thin line with an

arrowhead indicates a simplex link. Figure 5.2 shows an example of how we depict a graph

in this chapter. We define the in-set (in-neighborhood) and out-set (out-neighborhood) of a

vertex v to be I(v) = {u : (u, v) E A) and O(v) = {u : (v, U) E A), respectively. II(v)l is

called in-degree of v and IO(v)l is called out-degree of v. The closed in-set and closed out-set

of a vertex v, denoted I[v] and O[v], respectively, are formed by adding the vertex v itself

to the in-set .and out-set.

Given a digraph G, we define the distance function dG(u, v) from vertex u to vertex v to

be the length of a shortest path from u to v in G. We define the distance function dG(u, S)

from vertex u to vertex set S to be minvEs dG(u, v). Similarly, we define dG(S, v) to be

minUEs dG(u, v). The diameter, diamG, of a digraph G is maxU,,,v dG(u, v). When the

digraph is understood from the context without ambiguity, we can also ignore the subscript.

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 87

Figure 5.2: Depicting digraphs.

A digraph is called strongly connected or strong if for each pair of vertices u and v, there

is a directed path from u to v and a directed path from v to u. Given a subset S 5 V, (S),

is the subgraph weakly induced by S, where (S), = (O[S] U I [S], A n (O[S] U I[S]) x S) .

A subset S C V is a dominating set if for all v f S, v is an out-neighbor of some vertex

u E S . A subset S of V is called an absorbent set if for every vertex v f S, v is an in-neighbor

of some vertex u E S. A subset S c V is a twin-dominating set if it is both dominating and

absorbent [19].

An arc (u,v) is dominated by a vertex subset S if u E S. An arc (u, v) is absorbed

by a vertex subset S if v E S . Otherwise, it is free. A vertex v is called dominated if

I[v] r l S # 0. A vertex v is called absorbed if O[v] n S # 8. A vertex is called twin-dominated

if O[v] n I[v] n S # 0. Otherwise, it is free.

5.2.2 The gemini set

In order to cluster ad hoc networks where unidirectional links are present, we wish to choose

a small set of subscriber units to be clusterheads, such that the subgraph weakly induced

by the clusterheads spans the entire graph and is strongly connected. Given a strongly

connected digraph G = (V, A), our goal is to find a small subset S c V such that S is a

twin-dominating set and (S), is a strongly connected spanning subgraph of G. Such a set

S is called a gemini set.

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 88

5.2.3 Notes on' complexity

The decision versions of the dominating set, absorbent set, twin-dominating set, and gemini

set problem in digraphs are all NP-complete because they are polynomially verifiable and

they are at least as hard as the generic dominating set problem in the underlying undirected

graphs. If we denote the sizes of a minimum dominating set, a minimum absorbent set, a

twin-dominating set, and a gemini set by y,t, Tin, 7tzuin, and ygemini, respectively, we

immediately have the following inequality:

As we will see in Lemma 5.3.6, we also have:

%win I Tgemini 5 Ldia: + 3] ?Win - I.

5.3 Approximat ion algorithms

We present a series of approximation algorithms for finding small dominating sets, ab-

sorbent sets, twin-dominating sets, and gemini sets. We first present a greedy algorithm for

constructing small dominating sets of G. This algorithm implies a dual algorithm for con-

structing small absorbent sets of G. Running both of these algorithms in G and combining

the dominating set and absorbent set gives us a twin-dominating set. Alternatively, we can

first construct a dominating set of G and then expand the set so that it is also absorbent. By

connecting the vertices of a twin-dominating set economically, we provide an approximation

algorithm that constructs a small gemini set of G. At the end of the section, we discuss the

difficulties in transforming these algorithms to distributed algorithms.

5.3.1 Greedy directed dominating set (GDD) algorithm

This algorithm for finding small dominating sets in digraphs is a centralized greedy algo-

rithm. It has a provable approximation ratio of 1nAmt + 1, where Amt is the maximum

vertex out-degree in the given digraph G.

This iterative algorithm is based on coloring vertices in G using three colors: white, gray,

and black. All vertices in G are white initially. In each iteration, a white or gray vertex v is

colored black and all white vertices in O(v) are colored gray. We define the out-improvement

of a vertex v to be the number of white vertices in 0 [v] . In each iteration, we chose a white

CHAPTER 5. CLUSTERING IN THE PRESENCE O F UNIDIRECTIONAL LINKS 89

or gray vertex with the largest out-improvement among all such vertices. Ties are broken

unambiguously, say, using vertex ID'S. The iterative process continues until there are no

white vertices left.

This simple centralized greedy algorithm has a logarithmic approximation ratio as shown

in the following lemma: The proof is similar to that of Lemma 2.1.2.

Lemma 5.3.1 Given a digraph G with maximum vertex out-degree Aout, the size of the

dominating set S found by the GDD algorithm is at most (In Aout + l)yat, where y,t is the

domination number of G.

Proof: Let OPTDs = {vl, v2, . . - , v,,,,) be a minimum dominating set of G. Partition

the vertices of G into sets Pi, for 1 5 i 5 yout, such that vi E Pi and every vertex w of

V - OPTDs is placed into Pi for some i such that vi dominates w.

The proof is based on a charging analysis. Each time we color a vertex black, we add

one vertex to S and incur a charge of one unit. This charge is equally distributed among all

of the white vertices that are colored in that step. The total charge for the entire process is

IS[, the size of the dominating set. We will show that the total charge among the vertices

of Pi (for any i) is at most In Aout + 1. Since there are OPTDs such sets in G, the theorem

follows.

Assume that when we choose a vertex to color black, we color x white vertices and charge

such vertex $. We now consider the number of charges among the vertices of a single set Pi.

Let uj denote the number of white vertices in Pi after iteration j . For the sake of simplicity,

we assume that uo = JPil and that some vertices of Pi are colored in each iteration, so the

number of white vertices in Pi decreases in each iteration.

Consider the j th iteration (for j = 1,2, . . .). Choosing vi would add uj-1 vertices to S,

so any vertex chosen must add at least that many to S and thus any vertices of Pi colored in

the j th iteration incur a charge of at most 1. Thus, in the j th iteration, at most u3-1-U1
113-1 U j - l

charges are incurred among the vertices of Pi. Eventually, uk = 0 for some k.

Summing the charges within Pi, we get at most

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 90

Therefore, the lemma holds.

5.3.2 Greedy directed absorbent set (GDA)

The GDA algorithm constructs a small absorbent set for a given digraph. It is identical

to the GDD algorithm except that it considers in-neighbors rather than out-neighbors and

yields the same logarithmic approximation ratio as the GDD algorithm.

Lemma 5.3.2 Given a digraph G with maximum vertex in-degree Ain, the size of the ab-

sorbent set S found by the GDA algorithm is at most (In Ai, + l)yi,, where yin is the

absorbency number of G.

5.3.3 Greedy directed twin-dominating set (GDT) algorithms

A twin-dominating set can be obtained by taking the union of the dominating set and the

absorbent set generated by the GDD and GDA algorithms, respectively. We denote this

algorithm GDTUNION. The following lemma is obtained from the above lemma and the

observation that ?twin >_ max(yin, yout).

Lemma 5.3.3 Given a digraph G with A = rnax(Amt, Ain), the size of the twin-dominating

set S found by the GDTvNIoN algorithm is at most 2(ln A + l)ytwin, where ytwin is the twin-

domination number of G.

Another algorithm, denoted GDTPPH, constructs a twin-dominating set in two phases.

We first find a small dominating set S of G using the GDD algorithm. Since the set S

already absorbs the vertices of I[S], we color the vertices in S black and those in I[S] - S

gray. Then we execute the GDA algorithm beginning with the resulting coloring of G.

One might conjecture that the GDTZPH algorithm always generates smaller twin-dominating

sets than the GDTUNIoN algorithm does. Although our simulation shows that this is true

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 91

for most cases, for some graphs the GDTUNIoN algorithm may actually yield a smaller

twin-dominating set than the GDT2pH algorithm.

Figure 5.3: When GDTUNIoN beats GDTZPH.

In the example in Figure 5.3, we are given a digraph on six vertices with ID'S as indicated.

If ties are broken by favoring vertices with lower ID'S, the GDD algorithm generates the

dominating set {v6) and the GDA algorithm generates the absorbent set {v2, vg). Thus, the

GDTUNIoN algorithm yields SUNION = {v2, vg, v6). On the other hand, after phase one of the

GDTBPH algorithm, vertex v6 is black and vertex v5 is gray. Phase two will select vertices

vl, v2, and v3 to absorb all the other vertices, so GDTZPH yields SZpH = {vl, v2, VQ, v6).

lSUNIoNl < IS2pHI in this example.

The GDD algorithm can be implemented such that each vertex is require to have the

knowledge within a constant radius of itself and the algorithm still constructs a dominating

set with the approximation ratio In A,, + 1. The GDA and GDT algorithms can also be

implemented in this fashion. We describe the modified GDD algorithm and the other two

modifications are similar.

In the modified implementation of the GDD algorithm, in each iteration, any white or

gray vertex v with positive out-improvement value colors itself black if it has the greatest

such value within N2[v], where N2[v] denotes the closed distance-2 neighborhood of v in the

underlying undirected graph of digraph G. Surprisingly, this modified algorithm has the

logarithmic approximation ratio as before.

Corollary 5.3.4 Given a digraph G with maximum vertex out-degree A,,, the size of the

dominating set S found by the modified implementation of the GDD algorithm is at most

(In A,,, + l)yOut, where yo,t is the out-domination number of G.

Proof sketch. The same counting argument as in the proof of Lemma 5.3.1 can be used

here. Consider vertex vi E OPTDs and its partition Pi as before. During the j th iteration,

uj-1 - uj white vertices in Pi change colors due to, possibly multiple, new black vertices

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 92

within N2[vi]. Because each vertex that changes color to black is at distance at least three

from any other such vertex in the underlying undirected graph, its set of white out-neighbors

does not overlap with other such sets. For example, vertices u and w in Figure 5.4 can be

colored black in the same iteration. Therefore, each of the uj-1 - uj white vertices in Pi

that change colors is charged once, and the charge is still no more than A. Consequently,
uj-1

the same charging analysis is valid here. 0

_.....

Figure 5.4: Proof illustration for Corollary 5.3.4.

5.3.4 GDG algorithm - approximating minimum gemini sets

The greedy directed gemini set (GDG) algorithm is a two-phase algorithm that constructs

a gemini set for a given digraph with an approximation ratio of x In A. In the first
1 2 1

phase, an instance of the GDT algorithm is executed to generate a twin-dominating set St.

In the second phase, at most &G+J x lStl - 1 more vertices are added to St so that it
1 2 1

becomes a gemini set, denoted Sg. The central idea of the second phase of the algorithm is

that the vertices of a twin-dominating set lStl are relatively close together so we need only to

add a small number of additional vertices to it to turn it into a gemini set. The correctness

of the algorithm is based on Lemmas 5.3.5 and 5.3.6 and the construction follows from the

mathematical induction in the proof of Lemma 5.3.6.

Lemma 5.3.5 Given a twin-dominating set St of a strong digraph G of size ISt[> 1, then

for any vertex v E St either d(v,St \ v) 5 3 or d(St \ v,v) 5 3.

Proof. Suppose d(v, St \ v) = k (k 2 4). We will show that this forces d(St \ v, v) to be

at most 3. Let vertex u 6 St \ v be a vertex such that d(v, u) = k and let P = vovl . . . vk
be a shortest path from v to u, where v = vo and u = vk. Clearly, none of the intermediate

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 93

Figure 5.5: Proof illustration for Lemma 5.3.5.

vertices of P is in St \v; or, d(v, St \v) would be less than k. Consider vertex vz, as depicted in

Figure 5.5 with k = 4. Since St is a twin-dominating set, v2 is both dominated and absorbed.

Let vertex a be a vertex dominating v2 and a vertex b be a vertex absorbing v2. If v # b,

then there is a path from vertex v to b of length 3, which implies that d(v, St \ v) = 3, a

contradiction. So, we have v = b. We also know that v # a because otherwise d(v, u) = k-1,

a contradiction. Therefore, the path av2v shows that d(St \ v, v) < 3 and the lemma holds.

0

Figure 5.6: A gemini set can be much larger than a twin-dominating set.

The analogous result for undirected graphs is: Given a dominating set S of G of size

IS1 > 1, the for any vertex v E S, d(v, S \ v) = d(S \ v, v) 2 3. That is, the two bounds of

the directed case hold simultaneously in the undirected case. Unfortunately, in the directed

case, we only know that at least one of the bounds holds.

Consider the example of Figure 5.6, in which the black vertices a, b, u, and v form a

twin-dominating set. However, these four vertices do not form a gemini set for G. Note,

in particular, that for any path from a vertex vi to a vertex vj where 1 < i < j < k - 1

to exist in any subgraph of G, all of the edges (vi, vi+l), (~ i + ~ , ~ i + ~) , . . . , (~ j - ~ , vj) must be

included in the subgraph. That is, to be strongly connected, the subgraph must include all

of the horizontal arcs in the figure. Thus, a gemini set must include at least one of each

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 94

consecutive pair of vertices v;, vi+l for 1 5 i 5 k - 2. Thus, at least [F] = 191 vertices

must be added to form a gemini set for this example.

Lemma 5.3.6 Given a twin-dominating set St of a strong digraph G, St can be augmented

to become a gemini set Sg such that ISg\ 5 1-1 x lStl - 1.

Proof. The central idea of the proof is to show that we only need to introduce &x&
1 2 1

more vertices to connect a vertex of St to the rest. To do that, we use mathematical

induction on ISt 1.

1. Basic step. When ISt[= 1, we know that there is a vertex u that is adjacent to

every other vertex and that is adjacent from every other vertex. Thus, St = {u)

and Sg = St is also a gemini set of the graph G. Since diamG 2 1, we have ISg[5
Ldiay~+3j X ISt/ - 1.

2. Induction hypothesis. Given a digraph G and a twin-dominating set of size k , the twin-

dominating set can be expanded to a gernini set of size at most 1 diam ; +3 J x k - 1 .

3. Induction step. Let St be a twin dominating set for G of size k + 1. Let v be an

arbitrary vertex from the twin-dominating set St and let v+ be a vertex of St that is

the closest from v, that is, such that dG(v, v+) is minimized over all v+ E St. Denote

a shortest path from v to v+ by vzlz2.. . z,vf. Let v- be a vertex of St that is the

closest to v, that is, such that dG(v-,v) is minimized over all v- E St. Denote a

shortest path from v- to v by v - ~ 1 ~ 2 . . . ypv. Note that from Lemma 5.3.5, we know

that at least one of these two distances is 5 3 and the other must be 5 diamG.

We now construct a graph GI from G by adding arcs from every element of I(v) to v+,

from v- to every element of O(v), and from every element of I(v) to every element

of O(v). (In all cases, we do not add an arc if it already exists in G.) Then remove v

and any incident arcs to obtain GI.

Observe that GI is strongly connected since G was strongly connected and any path

in G containing v as an intermediate vertex can be replaced by including a "shortcut"

from an element of I (v) to an element of O(v). Observe also that dzamG! 5 d i a m ~ .

Finally, observe that St \ v is a twin-dominating set for GI since vertices that were

dominated by v in G are dominated by v- in G1 and vertices that were absorbed by

v in G are absorbed by v+ in GI.

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 95

Figure 5.7: Portion of graph G. Figure 5.8: Portion of graph GI.

By the induction hypothesis, since)St \ vl = k, St \ v can be augmented to form a

gemini set SA of GI of size at most Id2am20'+3 1 x k - 1. Now consider the set of vertex

SA U {v) in G. Since St C Si U {v), Si U {v) is a twin-dominating set of G, but it is

not necessarily a gemini set of G. We now construct a gemini set Sg of G by adding

vertices to SL U {v).

Consider an arc (a, b) added during the construction of GI. This arc connects two

vertices which are on the path v -y ly~ . . . ypvz1z2.. . zqv+ and, in fact, a precedes b on

the path. To ensure that any such arc in GI can be replaced by a path in the subgraph

weakly induced by Sg, we need only add the even subscripted vertices y2, y4, . . . and

the even subscripted vertices 22, 24, We know that either p < 2 or q < 2 and that

1 vertices to both p < diamG - 1 and p 5 diamG - 1, so we add at most 1 + L d i a m ~ - '
SA U {v) to obtain Sg.

Thus, we have

Since d2amGt 5 diamG, we have

Therefore, the lemma holds.

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 96

Now we are ready to present the approximation ratio result of the GDG algorithm.

Theorem 5.3.7 Given a digraph G, the size of the gemini set generated by the GDG algo-

rithm is at most 2 diam +3 (1, A + 1) times the optimum, where A = max(Ain, Amt). I p J
Proof. According to Lemma 5.3.3, the size of the twin-dominating set (St\ constructed in

the first phase is at most (21n A + 2)ytwin. In the second phase, the twin-dominating set

St is expanded into a gemini set Sg and ISg\ 5 1 La:G+3] x 1st 1 - 1. Since ytwin 5 ygsmini,

we have Sg 5 L d i a ~ G + 3 1 x (2 In A + 2)ygemini - 1 Therefore, the approximation ratio of

2 1dia;G+3 J (ln A + 1) holds.

5.4 Distributed heuristics for small gemini sets

The clustering algorithms presented in the previous section are intended to be implemented

in ad hoc networks with unidirectional links. However, due to unidirectional links, the

neighborhood information exchange in the GDD, GDD, GDT, and GDG algorithms can

not be carried out in a straightforward way. In particular, if there is only a unidirectional

link from vertex u to v, u will not be able to know the existence of v or of v's updated

status. In this section, we address this problem by proposing another set of algorithms for

constructing small gemini sets.

The degree of localization possible in such algorithms is limited. For example, for a

vertex of a directed cycle (depicted earlier in Figure 5.1) to be aware of its down-stream

neighbor, global information is needed. Therefore, in this section, we focus on algorithms

for constructing small gemini sets which may require global operations.

Definition 5.4.1 [I21 A n ear decomposition of a digraph G = (V, A) is a sequence E =

{Po, P I , . . . , Pi), where Po is a cycle and each Pi is a path, or a cycle with the following

properties:

1. Pi and Pj are arc-disjoint when i # j .

2. For each i = 1 , . . . , t : If Pi is a cycle, then i t has precisely one vertex i n common

with V(Gi-l). Otherwise the end-vertices of Pi are distinct vertices of V(Gi-1) and

no other vertex of Pi belongs to V(Gi-l). Here, Gi denotes the digraph with vertices

u & ~ V(Pj) and arcs u;=~ A(Pj).

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 97

Each Pi, 0 5 i 5 t , is called an ear o f f . The number of ears in & is t + 1. A n ear Pi is

trivial if IA(Pi)l = 1. All other ears are non-trivial.

Figure 5.9: Initial cycle.

Three algorithms are presented in this section. The central idea is to construct a subset

S C V iteratively which will become a gemini set. After each iteration, the vertices in S are

strongly connected in (S),. More vertices are added to S in each iteration until all vertices

in V are twin-dominated and, since (S), is strongly connected, S is a gemini set. Vertices

are added to S in the order they appear in an ear-decomposition, that is, beginning with

Po, then PI, etc. When there is still a vertex v that is not twin-dominated at the end of an

iteration, a simple path originating from and ended at a twin-dominated vertex containing

v is located. More vertices on this path are added to S as needed. For example, the current

set S for the digraph in Figure 5.9 consists of three vertices, vl, us, and us. The arcs of

(S), are black and free arcs are gray. Vertices us, vg, and vlo are not twin-dominated in

the example. A simple path that can add more vertices to S is v7vgvlovl.

The first algorithm, EARc, is a centralized algorithm. The second algorithm, EARD, is

distributed and grows S sequentially. The third algorithm, EARp, is distributed and adds

parallelism with constructing multiple strong components of (S), in each iteration. In these

algorithms, we also call choosing a vertex to be included to S "alternate coloring".

Assume that we are given a strong digraph G = (V,A) with a unique root vertex r E V.

The EARc algorithm first finds a simple cycle containing r , say C = viva. . . vk, where

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 98

vl = vk = r . It adds vertices v2i-1 (i = 1,2, . . . , [$I) to S, i.e., it alternately chooses

the vertices on C such that all of the cycle arcs are both dominated and absorbed. In the

example of Figure 5.9, vl is the root, vlv~vg.~4vsvsvl is the cycle, and vertices vl, v3, and vs

are added to S.

In each of the following iterations, a vertex v that is not twin-dominated but has a twin-

dominated out-neighbor, such as vertex vlo in Figure 5.9, is located. We find a shortest path

rulu2. . . ukv from r to v. Let ui be the last vertex on this paths that is twin-dominated

- that is, the vertices ui+l, ui+z, . . ., uk, and v are not twin-dominated. In our example,

the path is v ~ v ~ v ~ v ~ v ~ v ~ v ~ v ~ ~ and ui+l = v7. Choose the vertices alternately so that all of

the edges on the path from ui+l to v are dominated and absorbed. That is, if ui is already

in S, we choose vertices ui+2, ui+4, . . .; otherwise, we choose vertices ui+l, ui+3, In

our example, vertex vg is added to the set S. We repeat this process until all vertices are

twin-dominated.

Figure 5.10: Path in iteration two.

Each iteration of this process is also called an exploration. A cycle C is identified in the

first exploration and a path P is identified in each following exploration. A vertex on C or a

vertex on P that is not twin-dominated is explored when the cycle or path is identified. All

vertices explored in an iteration are strongly connected to all the previously explored vertices

in the subgraph (S), weakly induced by the current set S. Note that, after an iteration,

some other vertices may become strongly connected to the previously explored vertices in

(S), though they are not themselves on any path or cycle of the exploration. These vertices

are also said to be explored. Thus, the set of explored vertices after an iteration are those

newly twin-dominated by S. For example, in Figure 5.10, vertex vs becomes twin-dominated

and strongly connected to the previously explored vertices in (S), when path v7vgvlovl is

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 99

identified. We will explain how this can affect the distributed versions of this algorithm in

the upcoming subsection.

The EARD algorithm is a distributed implementation of the EARc algorithm. The input

is a strong digraph G = (V, A) representing an asynchronous network. Each vertex of G

is a network node and each arc is a reliable unidirectional first-in-first-out (FIFO) channel.

In this construction algorithm, the topology of the network is assumed to be static. From

the viewpoint of an individual vertex, the set of in-neighbors that a vertex can directly hear

from is always the same. A vertex v sends to its out-neighbors a list of vertices from which

it can directly receive messages, i.e., its in-neighbors I(v). By checking if v itself is included

in the in-neighborhood I (u) of an in-neighbor u, v determines if u is also an out-neighbor.

Then v incorporates the link type (in-only or duplex) information to the shared neighbor

list.

We assume that there is a unique root vertex r to coordinate the algorithm. A vertex

has a distinct identity, a membership flag, and a domination status field. We denote the

set of vertices currently being constructed by S. The membership flag of a vertex can be

either i n 3 or not- inS, indicating if it is in S or not. The domination status of a vertex is

recorded as f r e e if it is neither dominated nor absorbed; it is dominated if it is dominated

but not absorbed; it is absorbed if it is absorbed but not dominated; it is twin if it is both

dominated and absorbed. A vertex's membership flag of value in-S implies that its status

is twin. When a vertex v changes its membership flag or status value, it sends a message

to O(v) so that all of its out-neighbors are informed of this change.

Figure 5.11: Cycle C in iteration one.

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 100

In the beginning of the EARD algorithm, root r broadcast a message within G to find

a simple cycle. A vertex forwards this message to all of its neighbors only when it .receives

it for the first time. Each copy of the message records its travel history, i.e., a list of vertex

ID'S that it has traversed. The first copy of the message to return to r reveals a simple cycle,

denoted C. Root r adds every other vertex to S , beginning with r itself. Then r informs

the vertices newly added to S (who change their membership flag to i n S) by sending an

a l t - c o l o r message along C. Routing information for the a l t - c o l o r message is contained

in the message itself so that every vertex receiving it knows whom to forward it to next.

All the vertices on the cycle C change status to twin after receiving this message. Note

that vertices not on C also change their status as a result of update to their neighbors. For

example, in Figure 5.11, let the cycle C be vlv2v~v4v~v6vl and vl, v3, and v5 are added

to S. Vertex v7 changes its status from f r e e to twin after learning that vs is added to S .

Every vertex in S also remembers the path to r when it is initially added to S .

Figure 5.12: Path P in iteration two.

After the a l t - c o l o r message returns to the root r, r broadcasts a p o l l message to see

if any twin vertex u has an in-neighbor v that is not twin. We call such a vertex u open.

If such a vertex is found, the next iteration starts and more vertices will be added. In this

case, vertex u tells one of its absorbing neighbors (or u itself if u E S) to send an o p e n r p t

message to r. Upon receiving this message, r starts another iteration of the algorithm.

The o p e n r p t message from u's absorbing neighbor (or from u itself) to r contains the full

path from r to v , so that r can calculate a path P from a twin vertex to v with none

of its intermediate vertices being twin. In the example in Figure 5.12, consider the path

P = v7vg~10~1. The root r then sends an a l t - co lo r message to add vertices of P to S. It is

possible that r may receive multiple o p e n r p t messages from different sources, but it only

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 101

processes the first received message from the current p o l l message and discards the rest.

Similarly, other vertices forward only the first open rp t message that they receive related

to the current p o l l and discard the others. The a l t -co lor message is sent along P and

returns to r. As in the initial iteration, other vertices may also change status according

to the membership flag changes of their neighbors. After r receives this return al t -color

message, it broadcasts another p o l l in G to see if any non-twin vertices remain. This

process continues until all vertices are twin.

Figure 5.13: Absorbed but unaware.

Note that sometimes a vertex may not be aware of the fact that it is absorbed if none of

its absorbent neighbors is also a dominating neighbor. For example, vertex v in Figure 5.13

only knows that it is dominated by w but not that it is absorbed by u because the path P

with which vertices u and w were explored does not include v. Thus, for v to be able to

know that it is, in fact, absorbed, the root r includes such information in the p o l l message

of the next iteration. To do that, every vertex u added to S in an iteration reports the

subset of I (u) that becomes absorbed for the first time. This report is piggy-backed on

the al t -color message that is sent along the path P back to r. Then, r compiles a list

of vertices that are newly absorbed to send with the next p o l l message. For example, in

the portion of the network depicted in Figure 5.13, vertex u knows that vertex v was not

absorbed until u itself is added to S. When u receives the a l t -co lor message, it attaches

the information that v is newly absorbed to this message. After this message returns to r, r

incorporates the list of all newly absorbed vertices to the p o l l message of the next iteration.

Vertex v will then learn that it is absorbed and change its status from dominated to twin.

With this change, every vertex always has the current domination status of its in-neighbors

when it receives the p o l l message of a new iteration.

When the root r determines that all vertices are twin, the algorithm terminates and the

vertices of S comprise a gemini set of G.

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 102

The EARD algorithm terminates since at least one vertex becomes twin-dominated in

each iteration and there are a finite number of vertices in the input graph G. When the

algorithm terminates, the vertices in S form a gemini set. The union of the initial cycle and

the subsequent exploration paths form a strong subgraph of G. Such a subgraph spans all

the vertices in S . Other vertices that are not on the initial cycle or any exploration path

are strongly connected to and from some vertex in S.

In this subsection, we present another distributed algorithm for constructing small gemini

sets, denoted EARp. Here, we begin with a set of initiating root vertices {rl, rz, . . . , r,),
each of which will begin to construct the gemini set S in parallel. The initiating roots begin

essentially to execute the previous algorithm EARD as if there was only one root. Once

an exploration cycle or path is discovered by root ri and vertices on that cyclelpath are

added to S, all of the vertices on that cyclelpath are known to be in the same strongly

connected component of (S), as ri. Furthermore, if any of the vertices on this cyclelpath

know that they are in the same strongly connected component as another root rj, then all

of the vertices on the cyclelpath are in the same strongly connected component and, in fact,

the two roots are in the same strongly connected component..

Ideally, all vertices in the same strongly connected component would immediately be

informed when the component increases in size, so that subsequent exploration paths (from

any of the roots in the component) are easily recognized.

If we were to use a single "component ID number" to label each strongly connected com-

ponent, we would need to wait for this ID value to be updated and to propagate throughout

the strongly connected component before beginning another iteration to form a new explo-

ration path. To avoid this, we maintain at each vertex v a list of root ID'S R, of those

roots known to be in the same strongly connected component as v. If R, = 0, then v has

not yet been included in any strongly connected component. If Ru n R, # 0, then u and v

are in the same strongly connected component even if Ru # &,. (This can happen due to

propagation delays.) Note that it is possible that R, # 0, R, # 0, and Ru n R, = 0 but u

and v are in the same strongly connected component and simply not aware of it.

When an exploration cyclelpath is discovered, the root ri may learn of some new roots

that are known to be in its strongly connected component, that is, Ki may increase in size.

This new Rri is propagated through the strongly connected component as follows: First,

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 103

hi is sent to all of the vertices on the exploration cycle/path as new elements of S are

added. Note that as hi propagates along the cycle/path, a receiving vertex may, in fact,

have learned of some additional roots. In this case, these roots are added to the set hi
to propagate further. As this message continues around the cycle/path, each vertex also

forwards the root ID list to all of its out-neighbors. If such an out-neighbor w has root ID

list R, that is not identical to but shares elements with the incoming root ID list, then w

forwards the union of these lists to its out-neighbors. This process continues throughout

the strongly connected component.

As we assume that G is strongly connected, the process will continue until no root can

locate a new exploration path and all vertices in G have the same root ID list which will

contain all of the initiating roots.

5.5 Comparisons

Here, we compare the sizes of the twin-dominating sets generated by the approximation

algorithms to those of the gemini sets generated by various algorithms and heuristics. We

also consider the degradation of graph connectivity resulting from using only those arcs

dominated or absorbed by the vertices of the gemini sets. In particular, we investigate the

average vertex distance and the average number of arc-disjoint paths between vertex pairs

in the original graph and in (Sg)w.

As in previous chapters, we generate random digraphs as follows. For any given graph

size n, we place n vertices on an 800 by 600 plane uniformly at random. We assign a random

transmission to a vertex with an expected value pre-calculated to produce a desired graph

density. There is a simplex link from vertex u to vertex v if u's transmission range is at least

as large as the distance between u and v. Two oppositely directed simplex links comprise a

duplex link.

We generated two levels of network density for each graph size. The graph sizes that we

generated in the simulation vary from 20 to 200 for the sparser graphs and from 40 to 200

for the denser graphs. For each graph sizeldensity combination, we repeated the experiment

for 100 times. The transmission ranges in the simulation are the same as those in Chapter 2

to allow comparisons of these results to those for the undirected case. Note that, due

to the introduction of unidirectional (simplex) links, the digraphs are always denser than

undirected graphs. In particular, we observe that about 15% more unidirectional links must

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 104

be added to the undirected graphs of the same size and transmission range.

The twin-dominating set algorithm used in this simulation is GDTsEQ (denoted TWIN

in the data series). The GDG algorithm (denoted GDG) is based on the GDTsEQ algorithm;

it adds more vertices if the twin-dominating set returned by GDTsEQ is not yet a gemini

set. The EARc algorithm (denoted EARC) is the centralized heuristic loosely based on ear-

decomposition. The EARp algorithm (denoted EARP) is the multiple initiator distributed

implementation of EARc. In our implementation of EARp, we randomly choose 5% of the

vertices as the initiating roots.

As illustrated in Figures 5.14 and 5.15, twin-dominating sets are always the smallest. As

the algorithms become less centralized and more parallel, the gemini sets returned become

larger. Note that for the dense digraphs (Figure 5.15), the gemini sets returned by the GDG

algorithm are only slightly larger than the twin-dominating sets returned by the GDTsEQ

algorithm. Indeed, according to our experiments, the twin-dominating sets generated by

GDTsEQ are, in fact, gemini sets in most cases.

We compare the average vertex distances and the average number of arc-disjoint paths

in the original digraphs and the sub-digraphs weakly induced by the gemini sets returned by

GDG, EARc, and EARp in Figures 5.16, 5.17, 5.18, 5.19. Not surprisingly, we again observe

the trade-off between the size of the gemini sets and the connectivity of the weakly-induced

subgraphs.

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 105

Vertex Number

Figure 5.14: Dominatinglgemini set size - sparse digraphs.

Vertex Number

Figure 5.15: Dominatinglgemini set size - dense digraphs.

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 106

Sparse Digraphs

0 1 ' I I I I I I I I I

20 40 60 80 100 120 140 160 180 200

Vertex Number

c

p 12
3
5
2 10

Figure 5.16: Average vertex distance - sparse digraphs.

I I I I I I I I I

- Original --cl
GDG ---x--- -

EARC ---rt---
EARPa

-

Dense Digraphs
I I I

"2;: I

I I I 1 I

- EARC ---r---
EARPa

-

Vertex Number

Figure 5.17: Average vertex distance - dense digraphs.

CHAPTER 5. CLUSTERING IN THE PRESENCE OF UNIDIRECTIONAL LINKS 107

Sparse Digraphs

Vertex Number

Figure 5.18: Average number of arc-disjoint paths - sparse digraphs.

Vertex Number

Figure 5.19: Average number of arc-disjoint paths - dense digraphs.

Chapter 6

Future Work

The thesis has proposed solutions to some interesting problems on clustering mobile ad hoc

networks with duplex and simplex links. There are still many intriguing questions in this

area.

6.1 Parallel solutions

We were not able to show a non-trivial bound on the approximation ratio of the synchronous

parallel algorithm, DWsYNc, presented in Chapter 2. The difficulty seems to lie in the

combination of greediness and parallelism. When multiple vertices are added to the weakly-

connected dominating set being constructed in a single iteration, the techniques used in

proving the performance ratios of GWM and GWs fail.

The implementations of the G WM, GWs , and DWsyNc algorithms generate identical

weakly-connected dominating sets frequently in our experiments. However, we can construct

an example in which the size of the weakly-connected dominating set generated by GWs

and DWsyNc differ significantly. For the graph in Figure 6.1, the first iteration of DWsyNc

Figure 6.1: Linear difference.

108

CHAPTER 6. FUTURE WORK 109

can choose vertices 1, 4, 7, 11, . . ., 3k + 1 by setting the vertex ID'S to favor these vertices.

In later iterations, at least more vertices need to be added. The GWM algorithm may

choose vertices 1, 3, 5, . . ., 21 + 1 in 1 + 1 iterations. The ratio between the sizes of these

two resultant weakly-connected dominating sets is :.
Do these parallel solutions have similar logarithmic approximation ratios as the central-

ized algorithms?

6.2 Digraph sparsity

The central idea of the weakly-connected dominating set algorithm of Dubhashi, et al. [25]

is to connect the vertices in a small dominating set S by adding at most 2191 more vertices.

This is based on a crucial observation that an undirected graph G on n vertices with girth

g has at most nl+& + n edges (Lemma 15.3.2 [54]). Unfortunately, directed graphs do not

have such a nice property to allow the techniques of Dubhashi, et al. to be used to construct

small gemini sets for ad hoc networks with unidirectional links. Simple generalizations of

the notion of "girth" in undirected graphs do not guarantee sparse digraphs.

One natural generalization of girth is the length of the shortest directed cycle. However,

there are digraphs on n vertices and of R(n2) arcs with shortest cycles of length R(n).

For a second generalization of girth, we consider, given an arc (u, v), the length of the

shortest path from u to v not containing arc (u, v). If no arc in a digraph has such a path of

length under some (relatively large) threshold, one would expect the digraph to be sparse.

Again, unfortunately, there are digraphs on n vertices and of at least R(n3I2) arcs with the

lengths of such paths for all arcs being at least R (f i)

Are there any good local or sub-global properties to guarantee the sparsity and connec-

tivity of digraphs at the same time?

6.3 Modeling mobile ad hoc networks

A fundamental problem in ad hoc networking research is to design a single model which

can be used for various problems in this area. Such a general framework would simplify

and standardize research approaches. Ideally, a model should be mathematically succinct

and manipulable and also precise enough to reflect the nature of ad hoc networks. However,

given the inherent complexity of ad hoc networking systems, this does not seem immediately

CHAPTER 6. FUTURE WORK

achievable.

6.4 Efficient utilization of unidirectional links

Unidirectional links may occur in actual ad hoc networks due to the technology. Most

researchers simply do not try to use these links. We have seen that using these links is

possible, although it may incur some overhead. Are there more efficient ways to incorporate

these links?

Bibliography

Hosame Abu-Amara and Arkady Kanevsky. On the complexities of leader election

algorithms. In Proceedings of the Fifth International Conference on Computing and

Information (ICCI'93), pages 202-206, 1993.

Micah Adler and Christian Scheideler. Efficient communication strategies for ad-hoc

wireless networks. In Symposium on Parallelism in Algorithms and Architectures, pages

259-568, 1998.

Khaled M. Alzoubi, Peng-Jun Wan, and Ophir Frieder. Distributed heuristics for con-

nected dominating set in wireless ad hoc networks. KICS Journal of Communications

and Networks, 4(1), March 2002.

Khaled M. Alzoubi, Peng-Jun Wan, and Ophir Frieder. Message-optimal connected

dominating sets in mobile ad hoc networks. In The Third ACM International Sym-

posium on Mobile Ad Hoc Networking and Computing (MobiHoc'02), pages 157-164,

June 2002.

Khaled M. Alzoubi, Peng-Jun Wan, and Ophir Frieder. Weakly-connected dominat-

ing sets and sparse spanners in wireless ad hoc networks. In The 23rd International

Conference on Distributed Computing Systems (IEEE, ICDCS), May 2003.

A.D. Amis, R. Prakash, T.H.P. Vuong, and D.T. Huynh. Max-min d-cluster formation

in wireless ad hoc networks. In Proceedings of IEEE INFOCOM, Tel Aviv, March 2000.

Beongku An and Symeon Papavassiliou. A mobility-based clustering approach to sup-

port mobility management and multicast routing in mobile ad-hoc wireless networks.

International Journal of Network Management, 11(6):387-395, 2001.

BIBLIOGRAPHY 112

[8] Onur Arpacioglu, Tara Small, and Zygmunt Haas. Notes on scalability of wireless

ad hoc networks. IETF Internet draft, draft-irtf-ans-scalability-notes-01.txt, December

2003, (Work in Progress).

[9] Baruch Awerbuch. Optimal distributed algorithms for minimum weight spanning tree,

counting, leader election and related problems (detailed summary). In the 19th A CM

Symposium on Theory of Computing (STOC), pages 230-240, New York City, NY, May

1987.

[lo] Dennis J. Baker and Anthony Ephremides. The architectural organization of a mobile

radio network via a distributed algorithm. IEEE Dansactions on Communications,

COM-29(11):1694-1701, 1981.

[ll] S. Banerjee and S. Khuller. A clustering scheme for hierarchical routing in wireless net-

works. Technical Report CS-TR-4103, University of Maryland, College Park, February

2000.

[12] Jmrgen Bang-Jensen and Gregory Gutin. Digraphs: theory, algorithms and applications.

Springer, London; New York, 2001.

[13] R. Bar-Yehuda, 0 . Goldreich, and A. Atai. On the time complexity of broadcasting in

radio networks: an exponential gap between determinism and randomization. Journal

of Computer and System Sciences (JCSS), 45:104-126, 1992.

[14] Stefano Basagni. Distributed clustering for ad hoc networks. In Proceedings of IS-

PAN'99, International Symposium on Parallel Architectures, Algorithms, and Net-

works, pages 310-315, 1999.

[15] Elizabeth M. Belding-Royer. Multi-level hierarchies for scalable ad hoc routing. Wire-

less Networks, 9(5):461-478, 2003.

[16] Alan A. Bertossi. Dominating sets for split and bipartite graphs. Infomation processing

letters, 19:37-40, 1984.

[17] Vaduvur Bharghavan, Alan J. Demers, Scott Shenker, and Lixia Zhang. MACAW: A

media access protocol for wireless LAN's. In Proceedings of SIGCOMM, pages 212-225,

1994.

BIBLIOGRAPHY 113

[18] Tracy Camp, Jeff Boleng, and Vanessa Davies. A survey of mobility models for ad hoc

network research. Wireless Communication and Mobile Computing: Special Issue on

Mobile Ad Hoc Networking: Research, Trends and Applications, 2(5):483-502, 2002.

[19] Gary Chartrand, Peter Dankelmann, Michelle Schultz, and Henda C. Swart. Twin

domination in digraphs. Ars Combinatoria, 67, 2003.

[20] Geng Chen, Fabian Garcia Nocetti, Julio Solano Gonzalez, and Ivan S tojmenovic.

Connectivity-based k-hop clustering in wireless networks. In Proceedings of the 35th

Hawaii International Conference on System Sciences (HICSS-35), January 2002.

[21] Yuanzhu Peter Chen and Arthur L. Liestman. Approximating minimum size weakly-

connected dominating sets for clustering mobile ad hoc networks. In The Third ACM

International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc'O2),

pages 165-172, June 2002.

[22] Yuanzhu Peter Chen and Arthur L. Liestman. A zonal algorithm for clustering ad hoc

networks. International Journal of Foundations of Computer Science, 14(2):305-322,

2003.

[23] B. N. Clark, C. J . Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Mathe-

matics, 85:165-177, 1990.

[24] Bevan Das and Vaduvur Bharghavan. Routing in ad-hoc networks using minimum

connected dominating sets. In IEEE International Conference on Communications

(ICC797), Vol. 1, pages 376-380, June 1997.

[25] Devdatt Dubhashi, Alessandro Mei, Alessandro Panconesi, Jaikumar Radhakrishnan,

and Aravind Srinivasan. Fast distributed algorithms for (weakly) connected dominating

sets and linear-size skeletons. In Proceedings of ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 717-724, 2003.

[26] U. Feige. A threshold of In n for approximating set cover. In 28th ACM Symposium on

Theory of Computing, pages 314-318, 1996.

[27] James A. Freebersyser and Barry Leiner. A DoD perspective on mobile ad hoc networks.

In Charles Perkins, editor, Ad Hoc Networking. Addison-Wesley, 2001.

BIBLIOGRAPHY 114

[28] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm for minimum-

weight spanning tree. ACM Ransactions on Programming Languages and Systems,

5(1):66-77, January 1983.

[29] M. L. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. F'reeman, San Francisco, 1979.

[30] M. Gerla, L. Kleinrock, and Y. Afek. A distributed routing algorithm for unidirectional

networks. In Proceedings of IEEE GLOBECOM, pages 654-658, 1983.

[31] Mario Gerla, Taek Jin Kwon, and Guangyu Pei. On demand routing in large ad hoc

wireless networks with passive clustering. In Proceedings of IEEE WCNC, September

2000.

[32] Mario Gerla and Jack Tzu-Chieh Tsai. Multicluster, mobile, multimedia radio network.

Wireless Networks, 1(3):255-265, 1995.

[33] Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Academic

Press, San Diego, CA, 1980.

[34] Sudipto Guha and Samir Khuller. Approximation algorithms for connected dominating

sets. Technical Report 3660, University of Maryland, College Park, June 1996.

[35] Sudipto Guha and Samir Khuller. Approximation algorithms for connected dominating

sets. Algorithmica, 2O(4) :374-387, 1998.

[36] Peter Gvozdjac. Modeling communications in low-earth-orbit satellite networks. Tech-

nical report, Ph.D. Thesis. School of Computing Science, Simon F'raser University,

August 2000.

[37] Jaap Haartsen. Bluetooth - the universal radio interface for ad hoc, wireless connec-

tivity. Ericsson Reviews, (3):llO-117, 1998.
,

[38] Zygmunt J. Haas and Marc R. Pearlman. ZRP: A hybrid framework for routing in ad

hoc networks. In Charles Perkins, editor, Ad Hoc Networking. Addison-Wesley, 2001.

[39] Teresa W. Haynes, Stephen T. Hedetniemi, and Peter J . Slater. Domination in graphs,

Advanced Topics. Marcel Dekker, Inc., 1998.

BIBLIOGRAPHY 115

[40] Teresa W. Haynes, Stephen T. Hedetniemi, and Peter J. Slater. Fundamentals of

Domination in Graphs. Marcel Dekker, Inc., 1998.

[41] Ting-Chao Hou and Tsu-Jane Tsai. An access-based clustering protocol for multi-

hop wireless ad hoc networks. IEEE Journal on Selected Areas in Communications,

19(7):1201-1210, July 2001.

[42] Lujun Jia, Rajmohan Rajaraman, and Torsten Suel. An efficient distributed algorithm

for constructing small dominating sets. In Proceedings of the 20th ACM Symposium on

Principles of Distributed Computing (PODC'OI), 2001.

[43] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad-hoc wireless networks.

In Mobile Computing, editor, T. Imielinski and H. Korth, pages 153-181. Kluwer Aca-

demic Publishers, 1996.

[44] Robert E. Kahn, Steven A. Gronemeyer, Jerry Burchfiel, and Ronald C. Kunzelman.

Advances in packet radio technology. Proceedings of the IEEE, 66(11):1468-1496,

November 1978.

[45] Phil Karn. MACA - a new channel access method for packet radio. In Proceedings

of the 9th ARRL Computer Networking Conference, pages 76-84, London, Ontario,

Canada, 1990.

[46] Dariusz R. Kowalski and Andrzej Pelc. Deterministic broadcasting time in radio net-

works of unknown topology. In Proc. 43rd IEEE Symposium on Foundations of Com-

puter Science (FOCS), pages 63-72, 2002.

[47] P. Krishna, N. H. Vaidya, M. Chatterjee, and D. K. Pradhan. A cluster-based approach

for routing in dynamic networks. Computer Communication Review, 49:49-64, 1997.

[48] Xiang-Yang Li. Topology control in wireless ad hoc networks. In Stefano Basagni,

Marco Conti, Silvia Giordano, and Ivan Stojmenovic, editors, Ad Hoc Networking.

IEEE Press, 2003.

[49] Ben Liang and Zygmunt J. Haas. Virtual backbone generation and maintenance in ad

hoc network mobility management. In INFOCOM, pages 1293-1302, 2000.

BIBLIOGRAPHY 116

[50] Chunhung Richard Lin and Mario Gerla. Adaptive clustering for mobile wireless net-

works. IEEE Journal on Selected Areas in Communications, 15(7):1265-1275, Septem-

ber 1997.

[51] Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization

problems. Journal of the ACM, 41:960-981, 1994.

[52] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San

Francisco, California, 1996.

[53] Mahesh K. Marina and Samir Das. Routing performance in the presence of unidirec-

tional links in multihop wireless networks. In The Third ACM International Symposium

on Mobile Ad Hoc Networking and Computing (MobiHoc'02), pages 12-23, June 2002.

[54] Jiri Matousek. Lectures on discrete geometry. Graduate Texts in Mathematics. Springer,

New York, 2002.

[55] Shree Murthy and J. J. Garcia-Luna-Aceves. An efficient routing protocol for wireless

networks. Mobile Networks and Applications, l(2) : 183-197, 1996.

[56] Sanket Nesargi and Ravi Prakash. A tunneling approach to routing with unidirectional

links in mobile ad-hoc networks. In Proceedings of the IEEE International Conference

on Computer Communications and Networks (ICCCN), October 2000.

[57] S.Y. Ni, Y.C. Chen, and J.P. Sheu. The broadcasting storm problem in a mobile ad

hoc network. In Proceedings of MobiCom, pages 151-162, Seattle, 8 1999.

[58] V. D. Park and M. S. Corson. A highly adaptive distributed routing algorithm for

mobile wireless networks. In Proceedings of INFOCOM, April 1997.

[59] David Peleg. Distributed Computing, a Locality-Sensitive Approach. SIAM, Philadel-

phia, PA, 2000.

[60] C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-vector

routing (DSDV) for mobile computers. In Computer Communication Review, pages

234-244, 1994.

[61] C. E. Perkins and E. M. Royer. Ad-hoc on-demand distance vector routing. IETF

Internet draft, draft-perkins-manet-aodvbis-00. txt, October 2003, (Work in Progress).

BIBLIOGRAPHY 117

[62] C. E. Perkins, E. M. Royer, and S. R. Das. Ad-hoc on-demand distance vector routing.

In Proceedings of 2nd IEEE Workshop on Mobile Computing Systems and Applications,

February 1999.

[63] Charles Perkins, editor. Ad Hoc Networking. Addison-Wesley, 2001.

[64] Rajmohan Rajaraman. Topology control and routing in ad hoc networks: A survey.

SIGACT News, 33:60-73, June 2002.

[65] Venugopalan Ramasubramanian, Ranveer Chandra, and Daniel Mosse. Providing a

bidirectional abstraction for unidirectional ad hoc networks. In Proceedings of INFO-

COM, 2002.

[66] Elizabeth M. Royer and Chai-Keong Toh. A review of current routing protocols for

ad-hoc mobile wireless networks. IEEE Personal Communications, 6(2):46-55, April

1999.

[67] Raghupathy Sivakumar, Prasun Sinha, and Vaduvur Bharghavan. CEDAR: a core-

extraction distributed ad hoc routing algorithm. IEEE Journal on Selected Areas in

Communications, 17(8):1454-1465, August 1999.

[68] Martha Steenstrup. Cluster-based networks. In Charles Perkins, editor, Ad Hoc Net-

working. Addison-Wesley, 2001.

[69] Ivan Stojmenovic, Mahtab Seddigh, and Jovisa Zunic. Dominating sets and neighbor

elimination-based broadcasting algorithms in wireless networks. IEEE Transactions on

Parallel and Distributed Systems, 13(1):14-25, January 2002.

[70] John Sucec and Ivan Marsic. Hierarchical routing overhead in mobile ad hoc networks.

IEEE Transactions on Mobile Computing, 3(1):46-56, January-March 2004.

[71] Peng-Jun Wan, Khaled M. Alzoubi, and Ophir Frieder. Distributed construction of

connected dominating set in wireless ad hoc networks. In IEEE INFOCOM, June

2002.

[72] Douglas West. Introduction to Graph Theory - Second edition. Prentice Hall, Upper

Saddle River, N.J., 2001.

BIBLIOGRAPHY

[73] Jie Wu and Hailan Li. On calculating connected dominating set for efficient routing in

ad hoc wireless networks. In DIAL-M'99, pages 7-14, Seattle, 1999.

[74] Jie Wu and Hailan Li. A dominating-set-based routing scheme in ad hoc wireless

networks. Special Issue o n Wireless Networks, Telecommunication Systems Journal,

3:63-84, 2001.

Index

absorbed arc, 87

absorbed vertex, 87

absorbent set, 87

access point, 4

ad hoc network, see mobile ad hoc network

attenuation, 3

backup root, 69

basestation, 3

Bluetooth, 5

border vertex, 58, 73

breach suturing, 67

broadcast tree, 40, 42

candidate, 32, 37

best, 38

CDS, see dominating set, connected

cellular network, 3

centralized radio network, 3

chain reaction, 19

clique, 23

cluster, 17

cluster-head, 18

clustered degree, 68

clustering, 17

connected dominating set, see dominating

set, connected

detecting vertex, 69

DGWM, 35

DGWs, 35

diameter, 86

distance, 86

dominated arc, 87

dominated edge, 13

dominated vertex, 13, 87

dominating set, 13, 87

connected, 13

independent, 13

minimum, 14

twin-, 87

weakly-connected, 14

domination number

connected, y,, 14

independent, yi, 14

weakly-connected, y,, 14

domination number, y, 14

D ~ A S Y N C , 42

DWSYNC, 39

ear decomposition, 96

EARD, 99

EARp, 102

EARc, 97

edge set, 13

entity mobility model, 75

exploration, 98

explored, 98

exposed terminal problem, 6

FDMA, see frequency division multiple ac-

cess

flooding, 8

foreign vertex, 73

fragment, 67

free arc, 87

free edge, 13

frequency division multiple access, 6

GDA, 90

GDD, 88

GDG, 92

GDT, 90

GDT~PH, 90

GDTUNION, 90

gemini set, 87

generation, 43

GEO satellite, 4

GHS algorithm, 53

graph, 13

group mobility model, 75

GWM, 29

GWs, 32

handoff, 3

hidden terminal problem, 6

HST, see hyper spanning tree

hyper spanning tree, 53

improvement, 29, 68

in-degree, 86

in-neighborhood, 86

in-set, 86

closed, 86

independent dominating set, see dominat-

ing set, independent

independent set, 13

induced subgraph, 13

infrastructured, 3

infrastructureless, 5

interzonal, 22, 50

intrazonal, 22, 50

LEO satellites, 4

localized distributed algorithm, 50

MAC, see medium access control

MANET, see mobile ad hoc network

medium access control, 6

minimum spanning tree, 53

mobile ad hoc network, 5

MST, see minimum spanning tree

multi-port network model, 16

multihop, 7

neighborhood, 13

closed, 13

distance-k, 13

neighborhood broadcast

distance-k, 52

open, 100

out-degree, 86

out-neighborhood, 86

out-set, 86

closed, 86

INDEX

personal communication system, 3

piece, 29

black, 29

white, 29

piece ID, 38

piece integrity test, 67

piece root, 39

problem zone, 58, 73

Random Waypoint model, 75

redundant vertex, 70

reference point, 75

Reference Point Group mobility model, 75

reverse path, 85

round, 16

router, 8

routing, 8

hybrid, 9

on-demand driven, 8

proactive, 8

reactive, 8

table-driven, 8

scalability, 10

sensor networks, 10

spanning tree, 23

spatial frequency reuse, 3

strong, see strongly connected

strongly connected, 87

subscriber, 2

subscriber unit, 2

time to live, 52

topology control, 9

TTL, see time to live

twin-dominated vertex, 87

UDG, see unit disk graph

unit disk graph, 21

vertex set, 13

virtual backbone, 19

WCDS, see dominating set, weakly-connected

weakly induced, 87

weakly induced subgraph, 14

weakly-connected dominating set, see dom-

inating set, weakly-connected

Wireless LAN, see wireless local area net-

work

wireless local area network, 4

WLAN, see wireless local area network

zonal computation, 49

zone, 22, 49

zone size control parameter, 22, 50

ZW, 49

TDMA, see time division multiple access

time division multiple access, 6

