
EFFICIENT JAVA INTERFACE INVOCATION

USING IZONE

Xiaojing Wu

B.Sc., Fudan University, 1999

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F T H E REQUIREMENTS F O R T H E DEGREE O F

MASTER OF SCIENCE

in the School

of

Computing Science

@ Xiaojing Wu 2004

SIMON FRASER UNIVERSITY

June 2004

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author

APPROVAL

Name:

Degree:

Title of thesis:

Xiaojing Wu

Master of Science

Efficient Java Interface Invocation Using IZone

Examining Committee: Dr. Fred Popowich

Chair

Date Approved:

Dr. Robert Cameron, Senior Supervisor

Dr. Uwe Glasser, Supervisor

,Dr. Lou Hafer, SFU Examiner

Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has

granted to Simon Fraser University the right to lend this thesis, project or

extended essay to users of the Simon Fraser University Library, and to

make partial or single copies only for such users or in response to a

request from the library of any other university, or other educational

institution, on its own behalf or for one of its users.

The author has further agreed that permission for multiple copying of this

work for scholarly purposes may be granted by either the author or the

Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain

shall not be allowed without the author's written permission.

The original Partial Copyright Licence attesting to these terms, and signed

by this author, may be found in the original bound copy of this work,

retained in the Simon Fraser University Archive.

Bennett Library
Simon Fraser University

Burnaby, BC, Canada

Abstract

This thesis addresses the problem of improving the efficiency of interface invocation in the

Java Virtual Machine (JVM). In current JVM implementations, interface method invocation

is not so efficient as virtual method invocation, because of the need to support multiple

interface inheritance in Java. This leads to the mistaken impression that Java interface

invocation is inherently inefficient. This thesis will show that, with proper implementation,

the performance of interface invocation can be substantially improved.

A new approach - IZone based interface invocation - is proposed in this thesis. IZone is

a new data structure associated with an interface type in the method area. It is composed

of several implementation lookup areas, one for each subclass of the interface. IZone is

populated as subclasses are loaded and resolved, ensuring that the lookup areas within it

are arranged in the resolution order of the corresponding subclasses. A fully constructed

IZone contains pointers to different subclasses' implementation of the interface methods.

Within a lookup area, the pointers are arranged according to the corresponding methods'

declaration order by the interface. By taking advantage of class resolution orders and

method declaration orders, IZone provides a quick access to the implementation of interface

met hods. As the experimental results demonstrate, with moderate space overhead, IZone-

based interface invocation is the fastest approach after lightweight optimizations, and the

second fastest after heavyweight optimizations.

To my parents!

Acknowledgments

I would like to express my sincere gratitude and appreciation to all those who gave me the

possibility to complete this thesis.

I am deeply indebted to my senior supervisor Dr. Robert Cameron. He has inspired my

efforts through his own sincere interest in the areas of software engineering. His stimulating

suggestions, encouragement and support helped me in all the time of research for and writing

of this thesis. I learned many things from him, and it was a great pleasure for me to conduct

this thesis under his supervision.

I want to thank my supervisor Dr. Uwe Glasser who encouraged me to go ahead with

my thesis and gave me constructive comments during my defense time as well as on the

preliminary versions of this thesis.

I am obliged to the examiner Dr. Lou Hafer who read my thesis so carefully and gave

me so much valuable advice on approach evaluation and test case refinement. The chair Dr.

Fred Popowich was of great help in my thesis defense. The defense would not have gone so

smoothly without his coordination.

Especially, I would like to give my special thanks to my husband Leo whose patient love

and unrelenting support enabled me to complete this work. He has made this time in my

life a truly wonderful experience.

Contents

Approval

Abstract

Dedication

Acknowledgments

Contents

List of Tables

List of Figures

List of Programs

1 Introduction

2 Java Virtual Machine

2.1 JVM Instruction Set
2.2 JVM Runtime Data Areas
2.3 Method Invocation and Method Table

3 Problem Definition

. . . 3.1 Method Invocation in Single Class Inheritance

3.2 Method Invocation in Multiple Interface Inheritance

ii

iii

iv

v

vi

ix

X

xi

1

3

. 4

. 6

. 7

11

. 12

. 15

4 Previous Approaches 19

. 4.1 Naive Implementation 19

. 4.2 Interface Table 19

. 4.2.1 Searched ITable 20

. 4.2.2 Directly Indexed ITable 21

. 4.3 Selector Indexed Table 23

. 4.3.1 Sparse Interface Virtual Table in SableVM 24

. 4.3.2 Interface Method Table in Jikes RVM 25

. 4.4 C++ Solution for Multiple Inheritance 28

5 Proposed Approach 29

. 5.1 Interface Zone 29

. 5.2 Class Resolution Order 31

. 5.3 Method Declaration Order 32

. 5.4 Dispatch Mechanism Based on IZone 33

. 5.5 Pseudocode 35

. 5.5.1 IZone Construction 35

. 5.5.2 IZone Updating 37

. 5.5.3 Interface Invocation 37

6 Approach Evaluation 39

. 6.1 Jikes RVM 39

. 6.1.1 Object Model 39

. 6.1.2 Compiler 41

. 6.2 Approaches for Comparison 42

. 6.3 Real World Test Case 42

. 6.4 Artificial Test Cases 44

. 6.5 Time Cost with Baseline Compiler 46

. 6.6 Time Cost with Optimizing Compiler 50

. 6.6.1 Lightweight and Heavyweight Optimizations 50

6.6.2 Experimental Results with Lightweight Optimizations 53

6.6.3 Experimental Results with Heavyweight Optimizations 55

6.7 Space Cost . 57

vii

7 Future Work

8 Conclusion 6 1

A Modifications to Jikes RVM 62

A . 1 com.ibm. JikesRVM.VM-Configuration . 62

A.2 com.ibm. JikesRVM.VM-TIBLayoutConstants 63

A.3 com.ibm. JikesRVM.VM-Entrypoints . 65

A.4 com.ibm. JikesRVM.classloader.VM-Class . 66

A.5 com.ibm. JikesRVM.classloader.VM-Method 68

A.6 com.ibm. JikesRVM.classloader.VM~Interface1nvocation 69

A.7 com.ibm. JikesRVM.VM-Compiler (IA32 version) 76

A.8 com.ibm. JikesRVM.opt.OPT~ConvertToLowleveR 78

B XML Files 80

C Artificial Test Cases 86

C.l Interface Invocation: Test Case 1 . 86

C.2 Interface Invocation: Test Case 2 . 93

C.3 Interface Invocation: Test Cases 3 N 6 . 100

C.4 Virtual Invocation: Test Case v-1 . 101

C.5 Virtual Invocation: Test Case v-2 . 108

Bibliography 117

viii

List of Tables

. 6.1 Parse results of DOMCount 43

. 6.2 Parse results of SAXCount 44

. 6.3 Artificial test cases 45

6.4 Average execution time with baseline compiler 48

6.5 Average execution time after lightweight optimizations 54

6.6 Stable execution time after heavyweight optimizations 56

6.7 Space overhead comparison . 59

List of Figures

2.1 How a Java program is executed . 4

2.2 JVM runtime data areas . 8

2.3 invokeinterface instruction . 9

2.4 invokevirtual / invokespecial / invokestatic instructions 10

3.1 Method table of a non-abstract class that implements no interface 14

3.2 Method table of a non-abstract class that implements one or more interfaces 15

3.3 Method tables of classes A and B in Program 3.2 17

4.1 Searched itable . 20

4.2 Directly indexed itable . 22

4.3 Selector indexed table . 24

4.4 IMT dictionary with 5 entries . 26

4.5 IMT table with 5 entries . 26

5.1 Interface zone . 30

5.2 How to find the correct IZone given an interface call 31

5.3 Java class file format . 33

6.1 Object model of Jikes RVM . 40

. 6.2 Execution time of 5,00 0.iteration inner loop with baseline compiler 47

6.3 Execution time of inner loop in test 1 with optimizing compiler 51

6.4 Execution time of 5,00 0.iteration inner loop with optimizing compiler 52

6.5 Execution time of 5,000,00 0.iteration inner loop with optimizing compiler . . 53

List of Programs

. 3.1 Example program for virtual method invocation 13

. 3.2 Example program for interface method invocation 16

. 4.1 A conflict resolution stub for four interface methods 27

. 5.1 Program for IZone construction 36

. 5.2 Program for IZone updating 37

. 5.3 Program for interface invocation 38

. 6.1 The nested loop in the test cases 45

Chapter 1

Introduction

Over the last several years, Java [21] has become one of the most popular object-oriented

programming languages. Java programs are compiled into class files before execution. On

a specific platform, class files are loaded and linked by a runtime system called the Java

Virtual Machine (J V M) [23], and then translated into bytecode instructions for execution.

As the main source for Java platform independence, the JVM is the cornerstone of Java

technology. Platform independence does not come for free; it is achieved at the cost of

slow execution speed. As generally understood, Java programs are not so fast as programs

compiled to native machine code from languages like C++.

Multiple inheritance is a controversial issue in object-oriented programming languages.

In C++, a class may have multiple direct superclasses. This inheritance mechanism adds

both complexity and ambiguity to the languages. Java defines an alternative: a class may

have multiple direct superinterfaces, but only one direct superclass. Early experience with

the Java language has encouraged the assumption that Java interface invocation is not so

efficient as virtual method invocation. This is not necessarily correct. Although the imple-

mentation of interface dispatch is not efficient in the current Java Virtual Machines, it is not

inherently inefficient. The thesis demonstrates a new technique for efficient implementation

of interface invocation.

The remaining part of this thesis includes 7 chapters.

Chapter 2 reviews background information on the Java Virtual Machine. It describes

how a typical JVM works, the data types it supports, its instruction set and runtime data

areas.

CHAPTER 1. INTRODUCTION 2

Chapter 3 compares multiple interface inheritance and single class inheritance, and ana-

lyzes the efficiency problems of interface invocation. By examining the dispatch mechanism

of virtual and interface invocation, the main source for interface invocation inefficiency is

revealed: variable interface method offsets in method tables.

Chapter 4 describes the previous approaches for Java interface invocation. They are

classified into three categories: naive implementation, itable, and selector-indexed table.

The itable category is further broken down into searched itable and directly indexed itable.

For selector-indexed table category, sparse interface virtual table of SableVM and interface

method table (IMT) of Jikes RVM are reviewed. This chapter also describes the C++

solution for multiple inheritance.

Chapter 5 proposes a new approach - IZone based interface invocation. An IZone is a

data structure associated with an interface. It is built up during the resolution of the inter-

face's subclasses. The new approach suggests that the JVM records class resolution orders

and method declaration orders, and updates IZone entries to contain the appropriate virtual

method pointers based on the order information. The pseudocode for IZone construction,

IZone updating, and IZone-based interface invocation is given at the end of the chapter.

Chapter 6 evaluates the proposed approach by comparing it with 5 previous approaches.

The experimental results show that the IZone approach is efficient in terms of both interface

invocation speed and space overhead.

Chapter 7 proposes other possible ways in which interface invocation could be improved.

Chapter 8 concludes that the misimpression about interface invocation is not necessarily

correct.

Chapter 2

Java Virtual Machine

The Java programming language is a general-purpose, concurrent, class-based, object-

oriented language with three unique features: platform independence, security, and network

mobility [26]. The same Java code can be transferred across a network and run on all the

computers and devices. The built-in security framework of Java helps to build trust in a

distributed system. Because of its platform independence, Java is intended to be a language

for networked computing environments.

At the heart of Java's network-orientation is the Java Virtual Machine (JVM), which

makes the three features of Java possible. The JVM is an abstract computing machine. It

does not assume any particular implementation technology, host hardware, or host operating

system. The JVM specification [23] defines the features that should be possessed by every

Java Virtual Machine, but gives designers the freedom to choose the method of implemen-

tation, or, to add new features not addressed by the specification. Like a real computing

machine, the JVM has an instruction set - bytecode instructions - and manipulates various

memory areas at run time, which are called runtime data areas [23, 261.

The main responsibility of a Java Virtual Machine is to load class files and execute

the bytecode instructions [23] they contain. The JVM executes a bytecode instruction by

interpreting it into native codes that are executable on the system upon which JVM is

running. Bytecode instructions are platform-independent, but the native codes are not.

By supplying different versions of JVM for different platforms, the platform dependence of

native code is hidden behind the JVM, and transparent to Java applications. The Java

Virtual Machine promises that Java programs are "compile once, run everywhere".

CHAPTER 2. JAVA VIRTUAL MACHINE 4

Figure 2.1 shows the procedure in which Java programs are executed on a specific plat-

form. Java source files (*.java) are compiled, by a Java compiler, into binary files (*.class),

which include type information and bytecode instructions. On a specific platform, the Java

Virtual Machine loads and links class files, and then executes bytecode instructions.

I Operating System I
Figure 2.1: How a Java program is executed

Like the Java programming language, the Java Virtual Machine operates on two kinds

of data types [23]:

Primitive types: including byte, short, int, long, char, float, double, boolean, and

returnAddressl.

0 Reference types: including class, interface and array.

The Java Virtual Machine contains explicit support for objects [21]. An object is either a

dynamically allocated class instance or an array. An object of class or interface type is called

scalar object, and an object of array type is called array object. The value of a reference type

is a reference (pointer) to an object, i.e., a dynamically created class instance, an array, or

a class instance or an array that implements the interface, respectively. A reference value

may also be the special null reference.

2.1 JVM Instruction Set

The instructions of the Java Virtual Machine are called bytecode instructions. A bytecode

instruction consists of a one-byte opeode and zero or more operands. The opcode specifies

'The value of a returnAddress type is a pointer to the opcode of a Java Virtual Machine instruction.
returnAddress is the only JVM primitive type that is not directly associated with a Java programming
language type.

CHAPTER 2. JAVA VIRTUAL MACHINE 5

the operation to be performed, and the operands supply arguments or data that are used by

the operation. The operands may be generated at compile time and embedded within the

instructions, as well as calculated at run time and supplied on the operand stack2. Many

instructions have no operands, consisting only of an opcode. Limiting the opcode to a byte

makes the code compact, while at the same time, limits the size of the instruction set.

Most of the opcodes encode type information about the operands on which they operate.

For instance, the iload instruction loads the contents of an int variable onto the operand

stack. The fEoad instruction does the same with a float value. These two instructions may

be implemented in an identical way, but have distinct opcodes.

Bytecode instructions can be divided into the following categories [23]:

Load and store instructions: to transfer values between the local variables and the

operand stack.

Arithmetic instructions: to compute a result that is typically a function of two values

on the operand stack, and, push the result back on the operand stack.

Type conversion instructions: to convert a value between Java Virtual Machine nu-

meric types (byte, short, int, long, char, float, and, double).

Object creation and manipulation instructions: to create and manipulate class in-

stances and arrays, such as, to access instance or static fields of classes, to load array

components onto the operand stack, etc.

Operand stack management instructions: to manipulate the operand stack directly,

such as popping or duplicating top word on the stack.

Control transfer instructions: to cause conditional or unconditional execution of Java

Virtual Machine instructions.

Method invocation and return instructions: to invoke class / instance / interface

methods and to return.

0 Exception and finally instructions: to throw an exception, and, to implement the

finally keyword.

'See section 2.2 on page 6.

CHAPTER 2. JAVA VIRTUAL MACHINE 6

a Synchronization instructions: to support synchronization of methods, or, sequences of

instructions within a method.

2.2 JVM Runtime Data Areas

When the Java Virtual Machine executes a program, it needs to store a number of things

in the memory: objects, method parameters, return values, local variables, intermediate

results, and so on. A typical Java Virtual Machine organizes the memory it needs into

several runtime data areas. Some of them are used by individual threads and the others are

shared among all threads. Per-thread data areas are created when a thread is created and

destroyed when the thread exits. Shared data areas are created when the JVM starts and

destroyed when it exits. Five types of runtime data areas are typically defined inside the

Java Virtual Machine:

Method area: this area is shared among all threads; it contains the class data for all

the types loaded by the JVM. The class data of a type includes type information3,

constant pool4, field information5, method data6, all non-final class variables declared

in the type7, etc.

a Heap: this area is also shared among all threads; it contains all the objects instantiated

by the program. For each object, it includes the instance variables declared in the

object's class and all its superclasses, and some kind of pointer into the method area.

a PC (program counter) register: this area is used by a single thread; it contains the

address of the current JVM instruction being executed by the thread.

Java stack: this area is used by a single thread; it stores a thread's state in discrete

frames. A Java stack frame is created for each method being invoked. Each stack

3Type information includes the fully qualified name of the type, its direct superclass and direct superin-
terfaces, whether or not the type is a class or an interface, the type's modifier, etc.

4Constant pool is an ordered set of constants used by the type.

'Field information includes the field names, types and modifiers.

'Method data include the method names, return types, parameters, modifiers, bytecode instructions,
exception tables, local variable sections of the stack frame, etc.

7The final class variables are in the constant pool.

CHAPTER 2. JAVA VIRTUAL MACHINE

frame includes local variables8, operand stack, and frame datag

0 Native method stack: this area is used by a single thread; it supports the execution

of native methods that are written in a programming language other than Java.

The JVM specification [23] does not impose restrictions on how these areas are imple-

mented inside the Java Virtual Machine. The structural details of runtime data areas are

decided by the designers of individual implementations.

Figure 2.2 gives an example on the structures of the runtime data areas and how they are

correlated with each other. In this figure, class C's object is stored in the heap and its class

data are stored in the method area. The Java program only deals with C's reference, which

is a pointer to the corresponding object in the heap. The object contains instance variables,

together with a pointer to the method area. Following the pointer, it is easy to find the

class data of C. The class data contains type information, constant pool, field information,

method data, and so on. When C's method, m, is called, a new stack frame is created

and pushed into the current Java stack. The new frame contains necessary information for

method execution, including pointers to the method data of m. During the execution of

m, the PC register of the thread in which m is invoked is always pointing to the bytecode

instructions of m, so that, when the current instruction finishes, the virtual machine knows

which instruction should be executed next.

2.3 Method Invocation and Method Table

In the JVM instruction set, four opcodes are used for method invocation:

0 invokevirtual: to invoke an instance method of an object.

invokeinterface: to invoke a method that is declared by an interface and implemented

by a non-abstract class.

0 invokespecial: to invoke an instance method that requires special handling, such as an

instance initialization method, a private method, and a superclass method.

'Local variables include the reference to the class instance upon which the method is invoked, the method
parameters, and other local variables inside the method.

'Frame data include a pointer to constant pool, a pointer to method exception table, and the data for
debugging and method completion.

CHAPTER 2. JAVA VIRTUAL MACHINE

Reference of class C

(Pointer to object (

superclasses

Instance variables of 1 class c

PC register

Method area Class data of C

)/A Field info 11
Method table Method data of
of class C superclasses
Pointer to class data /I y;et:F data of I Pointers to instance
methods inherited from
superclasses I / IGzr-I
Pointers to instance class variables
methods declared by C

Java stacks
Stack of thread 1

Local variables

Operand stack

Frame data

itack of thread 2
.

Frame

Frame

Frame
of C.m

Native method stacks

Figure 2.2: JVM runtime data areas

CHAPTER 2. JAVA VIRTUAL MACHINE

invokestatic: to invoke a class (static) method.

Taking invokeinterface as an example, its instruction format and execution effect on the

operand stack are shown in Figure 2.3.

Format

Operand stack
. . . , objre f , [argl, [arg2, . . .]] ===+- . . .

Figure 2.3: invokeinterface instruction

The opcode for interface method invocation is Oxb9; invokeinterface is the mnemonic.

The unsigned indexbytel and indexbyte2 operands are used to construct an index into the

runtime constant pool of the current class, where the value of the index is (indexbytel <<
8) (indexbytea. The runtime constant pool entry at that index must be a symbolic reference

to an interface method, which gives the name and descriptor of the interface method, as

well as a symbolic reference to the interface, in which the method is declared. The count

operand gives the number of arguments. The fourth operand byte exists to reserve space

for an additional operand used in certain of Sun's implementations.

The interface method invocation begins by having objref (the reference to the object

upon which the interface method is invoked) and args (method arguments) on the top of the

operand stack. Before execution, the actual method to be invoked is to be found and then

resolved. As a result of the execution of the invokeinterface instruction, objref and args are

popped from the operand stack, with the remainder of the operand stack unaffected.

The instructions invokevirtual, invokespecial and invokestatic have simpler formats than

invokeinterface. Their execution effects on the operand stack are similar to that of invokein-

terface.

In order to speed up the access to an instance method invoked on an object - while at the

same time keeping the miscellaneous types of data in the method area - method tables (see

Figure 2.2) are used in many implementations of Java Virtual Machine, although it is not a

CHAPTER 2. JAVA VIRTUAL MACHINE

Format

invokespecial (Oxby) /

Operand stack
. . . , objre f , [argl, [arg2, . . .]] + . .

Figure 2.4: invokevirtual / invokespecial / invokestatic instructions

necessary component required by the specification. The method table of a class is an array

of direct references to all the non-private instance methods, i.e., virtual methods, that may

execute with respect to an object of the class. The methods are either declared by the class,

or, inherited from its superclass. Since the methods in the table are all virtual methods, it

is also called virtual method table (VMT). A virtual method table does not help in the case

of abstract classes or interfaces, because they do not contain concrete implementations of

methods.

A method table is generated when a non-abstract class is resolved by the JVM, and

stored in the method area as part of the class information. When a non-private instance

method is invoked for the first time, the symbolic reference to this method in the constant

pool of the current class is resolved to a concrete value: the method's offset in the method

table. If the same instance method is invoked for the second time, the JVM just follows the

concrete value in the constant pool to find the corresponding entry in the method table,

and then, follows the reference in that entry to find the instructions of the method.

Chapter

Problem Definition

The network mobility of Java does not come for free. It comes at the cost of slower ex-

ecution speed compared with other programming languages such as C++. Since the first

Java Virtual Machine by Sun in 1995, the designers have been struggling on improving the

performance of the Java Virtual Machine. With the advances of virtual machine technol-

ogy in the recent years, the speed gap is shrinking, but not vanishing altogether. Interface

invocation is one of those problems that needs solutions for better efficiency.

A Java interface is a reference type whose members are publicly accessible constants and

abstract methods. In current JVM implementations, interface method invocation is not so

effective as virtual method invocation. This problem comes from the multiple interface

inheritance in Java: a class extends exactly only one class, but, can implement zero or more

interfaces.

Some object-oriented programming languages like C++ allow a class to have multiple

direct superclasses [16]. This form of inheritance, which is called multiple inheritance, is

very controversial [9, 311, because of the complexities added to the syntax, the expensive

implementation, and the ambiguities that occur when deriving an identically named member

from different classes.

Java supports multiple interface inheritance, which proves to be an attractive alternative

to multiple inheritance. In the multiple interface inheritance of Java, a class may have

multiple direct superinterfaces, but only one direct superclass. Since no method code appears

in the interfaces, there is no problem with name clashes or inheriting the same interface in

multiple ways. If a class implements two distinct interfaces that declare the same method

signature, it satisfies both interfaces by providing a single implementation of this method.

CHAPTER 3. PROBLEM DEFINITION 12

If an interface inherits more than one field with the same name, then a single ambiguous

member results. This situation does not in itself cause a compile-time error. Only the

attempt to use this ambiguous member by its simple name will result in a compile-time

error.

3.1 Method Invocation in Single Class Inheritance

Before the Java Virtual Machine can execute the virtual method of a class, it should first

locate the data structures in the method area that contain sufficient data to enable the

virtual machine to invoke the method. In the implementations that support method table

dispatch, the Java Virtual Machine will first find the invoked method in the method table,

and then, follow the pointer in the method table to find the actual executable code in the

method data of the class.

Figure 3.1 shows the method table of a non-abstract class, C, which does not implement

any interface. The method table contains pointers to the virtual methods inherited from

its superclass as well as that declared by class C itself, with the superclass methods placed

before the methods of C. For the methods of either C or its superclass, pointers are stored

in the order they appear in the corresponding class. If C overrides a superclass method,

the pointer for the overridden method appears in the entry where it first appears in the

superclass; the entry points to the method data of C, instead of that of the superclass.

When the Java Virtual Machine invokes a virtual method upon an object for the first

time, it looks up the method in the method table that is associated with the type of the

object, and resolves the symbolic reference of the method to a method table offset. In the

subsequent invocations of the same method, the Java Virtual Machine can always depend on

the offset, because single class inheritance implies that a method's offset in the superclass

method table is always equal to its offset in the subclass method table, no matter the

method is overridden or not. Therefore, given a virtual method and an object that the

method is invoked upon, the method always occupies the same entry in certain method

tables, irrespective of the actual type of the object.

Program 3.1 gives an example on virtual method invocation. Class A declares three

virtual methods aO, a l , mO. Class B is a subclass of A. B overrides A's method mO by

defining its own implementation.

When class C is compiled, the two a.mO() instructions in its main function will be both

CHAPTER 3. PROBLEM DEFINITION

public class A {
public void aO() { System.out.println("A: aO");)
public void a l () { System.out.println("A: al");)
public void mO() { System.out .println(llA: mO") ;)

public class B extends A {
public void bO() { System.out.println("B:
public void bl() { System.out.println("B:

bO");)
bl");)

public void mO() { System.out.println("B: m0")f)
1

public class C {
public static void main(String[] args) {

A a;
a = new A();
a.mO();
a = new B();
a.mO();

Program 3.1: Example program for virtual method invocation

CHAPTER 3. PROBLEM DEFINITION

Pointer to method 1

.

. Method data
Pointer to method i of

(declared by superclass; superclass
overridden by C)

.

.
Pointer to method k

(declared by C)
class C

(inherited from superclass) /

Pointer to method k+l Method data
(declared by C) of

...... class C

I Pointer to method k+n
I (declared by C) I

Figure 3.1: Method table of a non-abstract class that implements no interface

translated to the bytecode instruction: invokevirtual indexbytel indexbyte2. indexbytel and

indexbyte2 together point to the symbolic reference of method A.mO in the constant pool

of class C. When the first invokevirtual instruction is executed, the symbolic reference of

A.mO is resolved to its offset, supposing k, in A's method table. Since the object reference of

class A is already pushed onto the operand stack, the Java Virtual Machine will deduce its

type, A, from the object reference, and then, load the method pointed to by the kth entry

in A's method table. A's implementation of method mO is executed. When the second

invokevirtual instruction is executed, symbolic reference resolution will not be performed

again, since the symbolic reference is already replaced by an offset. Although the offset is

with respect to the method table of A instead of B, the Java Virtual Machine can depend

on it, since mO must occupy the same offset in B's method table. Then, the Java Virtual

Machine deduces the type B from the object reference on the operand stack, and loads the

method pointed to by the kth entry in B's method table. This time, B's implementation

of method mO is executed.

CHAPTER 3. PROBLEM DEFINITION 15

3.2 Method Invocation in Multiple Interface Inheritance

Interface method invocation is quite different from virtual method invocation, due to the

inherent difference between single class inheritance and multiple interface inheritance.

The method table of a non-abstract class, C, which implements one or more interfaces is

as in Figure 3.2. It contains pointers to the methods inherited from the superclass, declared

by C itself, as well as that declared by the superinterface(s). The superclass methods are

placed ahead of the methods of C, and the methods declared by superinterfaces are treated

as part of C's methods. For the methods of either class C or its superclass, the pointers

are stored in the order that they appear in the corresponding class. The pointers for the

methods that are declared by superinterfaces and implemented by C point to the method

data of C, because the corresponding superinterfaces do not contain implementation for

abstract methods.

Pointer to method 1
(inherited from superclass) Method data

.
Pointer to method k

(inherited from superclass)

I Pointer to method k+n V

Pointer to method k+l
(declared by C)

.

.
Pointer to method k+i

I (declared bv 0 I

C

Figure 3.2: Method table of a non-abstract class that implements one or more interfaces

of
superclass

11
I I b

There is no guaranteed offset for an interface method in the method table. The offset

of an interface method in the method table of a class depends on its appearance order

in the class. As it may appear in different orders in different subclasses, the interface

method is not necessarily at the same entry in all the subclass method tables. That is, the

Method data
of

(declared by superinterface;
implemented by C)

. ,

class C

CHAPTER 3. PROBLEM DEFINITION 16

method table offset is not always the same when an interface method is called several times.

Therefore, symbolic reference resolution must be performed every time the Java Virtual

Machine invokes an interface method.

Unlike the superclass methods, the superinterface methods are not placed ahead of the

subclass methods in the method table, due to the potential multiple interface inheritance:

even if they are placed ahead of the subclass methods, their offsets are not fixed in all

method tables, if every subclass implements more than one interfaces.

Program 3.2 illustrates the problem associated with interface invocation. Interface I

declares one abstract method mO. Two classes, A and B, both implement I by giving their

implementations for mO. The method tables for class A and B are shown in Figure 3.3.

public interface I {
public void mO();

)

public class A implements I {
public void mO() { System.out.println("A: mO");)
public void a l () { System.out.println("A: al");)
public void a2() { System.out.println("A: a2");)

}

public class B implements I {
public void bl() { Sy~tem.out.println(~'B: bll ');)
public void b2() { System.out.println(LLB: b2");)
public void mO() { System.out .println(L'B: m0");)

)
public class C {

public static void main(String[] args) {
I i;
i = new A();
i.mO();
i = new B();
i.mO();

1
)

Program 3.2: Example program for interface method invocation

CHAPTER 3. PROBLEM DEFINITION 17

Since every class has java.lang. Object as a superclass (not necessarily a direct super-

class), the first 11 entries (offset 0 -- 10) in a method table contain the non-private instance

methods declared by java.lang. Object, while the remaining entries contain methods de-

clared by the class. In the example, mo is at offset 11 in the method table of A, and at

offset 13 in the method table of B. When class C is compiled, the two i.mO() instructions

in the main function will both be translated to the bytecode instruction: znvokeinterface

indexbytel indexbyte2. indexbytel and indexbyte2 together point to the symbolic reference

of method I.mO in the constant pool of class C. When executing the first invokeinterface

instruction, the Java Virtual Machine resolves the symbolic reference of I.mO to method

table offset 11 by searching the method table of class A. A's implementation of mO is loaded

and executed. However, the offset is not constant. When the second invokeinterface instruc-

tion is executed, the naive implementation will perform searching again, and the symbolic

reference is resolved to an offset, 13, into B's method table. This offset is different from the

previous one. This time, B's implementation of mO is loaded and executed.

Method table of class A Method table of class B

Method data
of

Pointers to methods : java.lang.Object
inherited from

java.lang. Object

Pointer to mO --
Pointer to a1 of
Pointer to a2 class A

class B

Pointers to methods
inherited from

java. lung. Object

Pointer to b l
Pointer to b2

Pointer to mO

I I
Figure 3.3: Method tables of classes A and B in Program 3.2

In summary, the overhead of naive interface method invocation over virtual method

invocation is that the Java Virtual Machine cannot simply resolve the symbolic reference

CHAPTER 3. PROBLEM DEFINITION 18

of an interface method to a fixed method table offset and depend on it in the following

invocations. Instead, it has to search the appropriate method table for the implementation

every time it encounters a method invoked upon an interface reference.

Chapter 4

Previous Approaches

To eliminate the overhead of interface invocation, research has been done in both academic

and industrial settings. A number of solutions have been proposed, which can be classified

into three categories: naive implementation, interface table [17, 221 and selector-indexed

table [14, 19, 41.

4.1 Na'ive Implementation

The naive implementation provides a straightforward but time-consuming solution for in-

terface invocation, with the virtual method table used for interface dispatch. This approach

has already been described in section 3.2. Whenever a method is invoked upon an inter-

face reference, the JVM finds the appropriate virtual method table based on the object on

the operand stack, searches the table to find the appropriate method that implements the

interface method, and then executes it. The nai've implementation has no space overhead,

since no additional data structure is needed. But its time overhead is high: as there is

no guarantee that the interface will occupy the same entry in the virtual method tables of

different subclasses, the JVM has to search one virtual method table each time an interface

method is invoked.

4.2 Interface Table

The interface table (itable) approach is the most commonly used mechanism for interface

invocation in high performance Java implementations. An itable is a virtual method table

CHAPTER 4. PREVIOUS APPROACHES 20

for a (class, interface) pair, with each entry containing a pointer to the executable code of

a method. This table is restricted to those methods that are declared by an interface and

implemented by a class. Usually, the itable is an array in the method area; the pointers in

it are arranged in the order that the corresponding methods are declared by the interface.

4.2.1 Searched ITable

The basic scheme of itable is called Searched ITable [17]. For each interface that is directly

or recursively implemented by a class, the JVM constructs an itable in the method area.

Each class that implements any interface is associated with an itable array, which contains

pointers to the itables for every (class, interface) pair. The itable array is also in the method

area, with size equal to the number of implemented interfaces. Usually, the itable array is

directly referenced from the virtual method table of the class.

Figure 4.1 shows the structure of the searched itable. For a class C that implements k

.... interfaces 11, 12, Ik, the itable array contains pointers to the itables for the pairs (C,

. . . . 11), (C, 12), (C, Ik). The entries in each itable point to C's implementations of the

corresponding methods. C's virtual method table contains a pointer to the itable array.

Figure 4.1: Searched itable

Method data of
itable for (C, 11)

itable array of class C Method table of class C
class C Pointer to itable 1 Executable code of

When an interface method is invoked, the Java Virtual Machine will locate the itable

.
Pointer to itable array

.

.

.

. Pointer to itable 2 Pointer to itable 3 : Executable code of
.

.
Pointer to itable k

Executable code of

Pointer to method 1

Class C implements interfaces Z1,12, ... ,

CHAPTER 4. PREVIOUS APPROACHES 2 1

array based on the object reference on the operand stack, search the array for the itable

that corresponds to the appropriate (class, interface) pair, and then load the desired method

from an appropriate offset. An interface method is at the same offset in all the itables for the

interface, as the methods in an itable are typically arranged in their declaration orders1 by

the interface. The itable offset of a method can be determined from its declaration order, or,

by searching the itable. In spite of this, the symbolic reference of an interface method cannot

be replaced by an itable offset, as the offset itself does not provide information about the

itable to which it applies; in the other words, itable search cannot be eliminated in searched

itable approach, even though an interface method has a guaranteed itable offset. Thus,

symbolic reference resolution must be performed every time when an interface method is

invoked.

The overheads of searched itable-based interface invocation over virtual method invoca-

tion are: a) extra space for the itable array and itables, b) one extra dispatch for locating

the itable array from the virtual method table, c) extra time spent on searching for an

appropriate itable, and, d) extra time spent on deciding the method offset. It is obvious

that the average of itable search time increases with the number of implemented interfaces.

In order to reduce the search expense, some form of itable cache algorithm [15] has been

exploited. One method of itable cache implementation is to let the first element of the itable

array always point to the most recently constructed itable. Nevertheless, the search time is

still significant in case of a cache miss.

The time overhead of the searched itable approach is mainly due to itable search. This

approach outperforms the naive implementation when dealing with an itable array that

is smaller than the virtual method table. Since a class usually has much less number of

superinterfaces than virtual methods, searched itable approach beats naive implementation

in almost all the cases.

4.2.2 Directly Indexed ITable

To reduce the time cost involved in searched itable scheme, another itable scheme is intro-

duced, which is called Directly Indexed ITable [22]. This mechanism eliminates itable search

by creating an entry in the itable array for each loaded interface, thus, the itable array con-

tains pointers to the itables for each (class, loaded interface) pair. The itables are indexed

'See section 5.3 on page 32.

CHAPTER 4. PREVIOUS APPROACHES 22

by interface ids, globally unique integral ids sequentially assigned to interfaces after they are

loaded. If the class does not implement an interface, the corresponding itable is null, and,

the corresponding itable array entry is empty. With a mostly empty itable array, the Java

Virtual Machine can easily locate the appropriate itable from the itable array according to

the interface id, with no need for searching.

Figure 4.2 gives an example for the directly indexed itable. Class C implements k

..., . . . , interfaces: Ii,, I;,, Ii,; i l , i2, ik are their ids. The Java Virtual Machine has so

far loaded n interfaces: lo, 11, 12, 1,-1 (k 5 n, 0 5 il < iz < . . . < ik 5 n - 1). The

itable array of class C contains pointers to the itables for the pairs (C, lo), . . . , (C, Ii,),

. . . , (C, .Ti,), (C, Iik), (C, InPl), with the itables for some pairs being null. The

size of itable array is equal to the number of interfaces already loaded. Some of the entries

in the itable array are empty if C does not implement the corresponding interfaces.

itable array of class C itable for (C, Zi l) Method data of
Method table of class C
class C I

I I e m ~ t v
Pointer to itable array

Class
JVM

Executable code of
. method 1

.
Executable code of

Pointer to itable ik itable for (C, Zik) Executable code of

. Pointer to method 1 method 3
.

empty
Pointer to method 2
Pointer to method 3 Executable code of

n- 1 empty method 4
Pointer to method 4 C implements interfaces Zir, Ziz, ... , z i k

. has loaded interfaces Zo, 11, .. ., In-I -

Figure 4.2: Directly indexed itable

Whenever an interface method is invoked, the Java Virtual Machine finds the itable

array based on the object reference on the operand stack, locates the appropriate itable

based on the interface id, calculate the method's offset in the itable, and then, loads the

desired method. The interface id can be deduced from the interface that is indicated by the

symbolic reference of the interface method. The itable offset of a method can be determined

from its declaration order, or, by searching the itable.

CHAPTER 4. PREVIOUS APPROACHES 23

The overheads of directly indexed itable based interface invocation over virtual method

invocation are: a) extra space for the itable array and itables, b) one extra dispatch for

locating the itable array from the virtual method table, and, c) extra time spent on deciding

the method offset. The directly indexed itable mechanism avoids itable search by sacrificing

more space on itable array. Resultantly, the performance of this approach is not much

affected by the number of interfaces.

The CACAO JVM [22] is one of the implementations that employ the directly indexed

itable approach. To reduce the space cost on the mostly empty itable array, CACAO trun-

cates all the empty entries after the last non-empty one. This optimization saves considerable

space when a class implements interfaces with small ids.

4.3 Selector Indexed Table

The Selector Indexed Table [14, 19, 41 is sometimes called Signature Indexed Table. The

signature of a Java method consists of its name and descriptor2, and a selector is a unique

integral id assigned to the interface method signature. Every class that implements any

interface is associated with a selector indexed table, which is a table indexed by interface

method selector. The table entry either points to the executable code of the class' virtual

method, if the class implements the corresponding interface method, or, is empty, if the

class does not implement it. The size of the table is equal to the number of selector values

assigned to the interface method signatures. As a result, the selector indexed table is sparse,

with most of the entries empty. Usually, the selector indexed table is directly referenced

from the virtual method table of a class. In some implementation, this table is embedded

in the virtual method table [4].

Figure 4.3 illustrates the main idea of this approach. Suppose the Java Virtual Machine

has assigned n selectors (0,1,2, . . . , n - 1) to interface methods; class C implements k

interface methods ml, mz, . . . , mk (k 5 n). The selector indexed table of C has n entries:

k of them contain pointers to C's implementation of the corresponding interface methods,

and the other n - k entries are empty.

Whenever a method is called upon an interface reference, JVM first finds the appropriate

selector index table based on the object reference on the operand stack, locates the entry in
--

'A method descriptor represents the parameters that the method takes and the value that it returns. See

1231.

CHAPTER 4. PREVIOUS APPROACHES

Selector indexed table Method data of

Method table of of class C class C
class C 0

Pointer to selector
1

indexed table 2

n- 1

Figure 4.3: Selector indexed table

the table according to the selector of the method, and then, loads the desired method. The

overheads of selector indexed table based interface invocation over virtual method invocation

are: a) large space consumed by the sparse selector indexed table, and, b) one extra dispatch

for locating the selector indexed table, if applicable.

Comparing with itable approaches, selector indexed table is much more space-intensive.

In order to reduce the space overhead, several solutions have been explored, such as the

sparse interface virtual table in SableVM [19], and the interface method table [4] in Jikes

R V M ~ [2].

4.3.1 Sparse Interface Virtual Table in SableVM

The sparse interface virtual table in SableVM is a sparse array indexed by interface method

id (selector). It is created at the same time when a class' normal virtual method table is

created, and grows down from the normal virtual method table of the class. The size of the

interface virtual table is equal to the largest id of all methods declared in the direct and

indirect superinterfaces of the class. For any method declared by a superinterface, its entry

in the table contains a pointer to the class' implementation of it. For all other methods, the

3Jikes RVM is an enhanced open source version of the code developed under the IBM Jalapeiio research
project since October 2001.

CHAPTER 4. PREVIOUS APPROACHES

entries in the table are empty, since they are not implemented by the class.

To reduce the space overhead in the interface virtual table, the free space is recycled to

the memory manager to store class loader related data structures. This kind of recycling

mechanism adds complexities to both memory allocation and garbage collection.

4.3.2 Interface Method Table in Jikes RVM

The Jikes RVM reduces the space cost of the selector indexed table by hashing multiple

interface method ids (selectors) into the same entry of a constant-sized selector indexed

table and creating a conflict resolutzon stub to differentiate them [4]. The constant-sized

table is called Interface Method Table (IMT). Each class that implements any interface is

associated with one IMT. The IMT may be part of the virtual method table of the class,

or, directly referenced from the virtual method table. In these cases, the IMTs are called

embedded I M T and indirect IMT, respectively.

In the current implementation of Jikes RVM, a very simple function is used for hashing:

the interface method id, modulo the IMT size, is mapped directly into IMT entry. Therefore,

all the methods whose ids are congruent modulo the IMT size are hashed into the same IMT

entry. Obviously, the smaller the IMT, the more the conflicts.

An I M T dictionary is used to facilitate the construction of the IMT for a class. The IMT

dictionary is an array with the equal size as the related IMT. Each entry in the dictionary

points to a linked list [lo]. Every linked list contains one or more references to the interface

method signatures whose ids are congruent modulo the IMT size. The signatures within a

linked list are arranged in the ascending order of their ids. The IMT dictionary only contains

the signatures of those interface methods implemented by the class. Methods declared by

different interfaces may be stored in the same linked list. Figure 4.4 gives an example for

IMT dictionary with five entries.

Once all the implemented interface methods have been linked into the IMT dictionary,

the Jikes RVM constructs the IMT for the class based on its IMT dictionary. For a linked

list containing only one signature, the IMT entry, at the same index as the linked list in the

dictionary, points to the class' virtual method which implements the corresponding interface

method. If a linked list contains more than one signature, a conflict resolution stub will be

generated, and the IMT entry will point to the stub. Figure 4.5 shows the IMT table that

is constructed from the dictionary in Figure 4.4.

The main responsibility of a conflict resolution stub is to decide which virtual method is

CHAPTER 4. PREVIOUS APPROACHES

signature signature
id = 12) (id = 32)

0

Figure 4.4: IMT dictionary with 5 entries

-

3 - signature signature
(id = 13) (id = 18)

2 - Conflict resolution
- stub

Method data

signature
(id = 38)

3 Conflict resolution
stub

signature
(id = 6)

--
1

Figure 4.5: IMT table with 5 entries

.

signature
(id = 5)

- -'

signature
(id = 20) 1

CHAPTER 4. PREVIOUS APPROACHES 27

to be executed based on the input method id. The pseudocode of a conflict resolution stub

for four interface methods ml-4 [4] is shown in Program 4.1.

// Register s l contains id of the interface
// method being called;
// idl < id2 < id3 < id4;
compare sl with id2 (id of m2)
if (s l < id2) branch to L1
if (s l > id2) branch to L2
load VMT entry for ma
move m2 address to pc register
branch to this address

L1: load VMT entry for ml
move ml address to pc register
branch to this address

L2 : compare s l with id3 (id of m3)
if (sl > id3) branch to L3
load VMT entry for m3
move ms address to pc register
branch to this address

L3 : load VMT entry for m4
move ms address to pc register
branch to this address

Program 4.1: A conflict resolution stub for four interface methods

The conflict resolution stub works in a binary search-like manner. Given an interface

method id, a conflict resolution stub for n methods will perform at most [logZnl comparisons

and branches before it finds the desired method. For instance, Program 4.1 will perform 2

comparisons and 2 branches before it finds the method me.

When an interface method is invoked, the Jikes RVM hashes its id into an IMT offset,

and then loads the virtual method, or, the conflict resolution stub, that is pointed to by the

IMT entry. The overheads of IMT based interface invocation over virtual method invocation

are: a) extra space for the IMT dictionary and IMT table, b) extra time for executing the

conflict resolution stub in case of conflicts, c) extra time spent on calculating the IMT offset

of the invoked method, and, d) one extra dispatch for locating the IMT, in case of indirect

IMT. The performance of the IMT approach is affected by the IMT size and the number of

implemented interface methods. As the IMT size decreases or the interface method number

CHAPTER 4. PREVIOUS APPROACHES 28

increases, more conflicts occurs, and more methods are hashed into the same IMT entry. As

a result, more comparisons and branches in average may be needed for the conflict resolution

stub to find the desired method.

Embedded IMT

The embedded IMT is part of the TIB (Type Information Block, the Jikes RVM analog of

virtual method table) of a class, therefore, it can be directly accessed from an object.

Indirect IMT

The indirect IMT is different from the embedded IMT only in that the IMT is not part of

the TIB but a separate table that can be accessed from TIB by following an IMT pointer in

it. Thus, the overhead of indirect IMT over embedded IMT is one extra indirect dispatch

for locating the IMT.

4.4 C++ Solution for Multiple Inheritance

Different from Java, the C++ programming language allows inheritance of multiple direct

superclasses, and inheritance of different implementations of methods with the same signa-

ture [16]. To support multiple inheritance, a C++ class is associated with multiple method

tables, with one table for each direct superclass [25]. For a class, C, which has k direct

superclasses, its object is composed of k + 1 contiguous sub-objects: the first k sub-objects

for the superclasses, and the last one for class C itself [25]. A sub-object contains the fields

of the corresponding class and a pointer to the method table of that class. The relative

position of a sub-object inside the full object is known to the compiler.

Before the execution of a method, the object pointer is adjusted to point to the beginning

of the appropriate sub-object, according to the actual type of the object reference. Object

pointer adjustment is trivial as every sub-object's relative position is already known. After

the adjustment, virtual method dispatch in multiple inheritance is identical to that in single

inheritance.

Chapter 5

Proposed Approach

This thesis proposes an approach which substantially reduces the overhead of naive interface

invocation by introducing a new data structure - interface zone (IZone) - into the method

area, and taking into account class resolution order and method declaration order. The

proposed approach is called IZone-Based Interface Invocation.

5.1 Interface Zone

An interface zone, or, IZone, is associated with an interface that is implemented by at least

one class. IZone is not constructed for a class, or, an interface that is not implemented by

any class. By adding one more field, IZone pointer, into the virtual method table of an

interface, the IZone can be directly accessed from the interface's virtual method table.The

IZone of an interface is composed of several class implementation lookup areas, one for each

subclass of the interface. A lookup area contains pointers to the corresponding subclass'

implementation (executable code) of the interface methods. Its size is equal to the number of

methods declared by the interface. Inside a lookup area, the pointers are arranged according

to the interface method declaration orders, therefore, the same interface method will be at

the same offset in different lookup areas.An IZone is not necessarily of fixed size. It may

expand dynamically when more subclasses are loaded and resolved by the Java Virtual

Machine. A priori knowledge about the subclasses is not necessary for IZone construction.

The lookup areas are constructed in the resolution phase of the subclasses, and, arranged

according to the subclass resolution order. As each subclass of an interface is loaded and

resolved, one more lookup area is installed into its IZone. Figure 5.1 shows the IZone of

CHAPTER 5. PROPOSED APPROACH 30

an interface, I, that declares j methods and has k subclasses. Each class implementation

lookup area has j entries, with one for each interface method. The IZone of interface I has

(j x k) entries in total.

Method data of class CI

Method table of

C2 's implementation

Method data of class Ck

Pointer to Ck.mi 7
Pointer to Ck.m Ck 's implementation Executable code of k I I lookup area

! r1
Executable code of mj

.
Interface I declares j methods: ml, mz, . . . , mj
I is implemented by k classes: CI, Cz, . . . , Ck

Figure 5.1: Interface zone

Given an interface method call, the appropriate IZone could be found following the

procedure described in Figure 5.2. Suppose the interface method 1.m is called in method

a of class C. Figure 5.2 shows part of the runtime data areas associated with class C

and interface I. The bytecode of C. a contains an invokeinterface instruction, within which,

the operands indexbyte1 and indexbyte2 give the index of I.mls symbolic reference in C's

constant pool. The declaring class, I, of the method 1.m is indicated by its symbolic

reference. It is easy to locate the method table, and then the IZone of the declaring class I.

The IZone approach is different from either itable or selector indexed table approach in

the following aspects: a) The IZone is associated with an interface instead of a class, b) The

IZone only contains the methods declared by one interface, c) The IZone entries point to

multiple classes' implementations of interface methods, and, d) an interface method's offset

CHAPTER 5. PROPOSED APPROACH

I ,

bytecode of C. a() Constant pool of C ; Method table of Z IZone of Z
I I I I : izone pointer invokeintet$ace

. symbolic reference :
indexbytel

. indexbyte2

.
.

I , count I I
.

I I
I ,

Figure 5.2: How to find the correct IZone given an interface call

in IZone is decided by its declaration order, as well as the resolution order of its implementing

class.

5.2 Class Resolution Order

The class resolution order is with respect to a specific superinterface of the class. It rep-

resents an interface's view on the order in which a subclass is resolved. For a class that

implements multiple interfaces, it may have different resolution orders with respect to dif-

ferent interfaces.

In order to record the resolution orders, each class, C, is associated with a resolution

order dictionary indexed by interface ids. The dictionary is an integer array, int orderDictfl,

with the element at index i being the interface i (i d = i)'s view on C's resolution order.

The resolution order begins from 1, while 0 represents an invalid order. If several classes

implement the same interface I, from the viewpoint of I, the first resolved subclass has order

1, the second one has order 2, and so on. Since interface id begins from 0, the size of a

resolution order dictionary is equal to the maximum id of the superinterfaces plus one. If

the element at any index in the order dictionary has value 0, it implies that the class does

not implement the corresponding interface. Apparently, the resolution order dictionary is

"sparse". Most of the elements in it are of invalid values 0s. Interface types do not need an

CHAPTER 5. PROPOSED APPROACH

order dictionary, as they do not implement any superinterface.

Every interface maintains a variable nextorder: the resolution order that will be assigned

to the next subclass. It has an initial value 1. Every time when one more subclass of the

interface is resolved, its current nextorder value is assigned to that class, and then, it

increases by 1. Using this assignment scheme, it is guaranteed that the resolution order is

sequentially assigned to all the subclasses. The class stores the newly obtained order at the

appropriate entry in its order dictionary for the future usage.

5.3 Method Declaration Order

The method declaration order represents the order in which a method appears in its declaring

class or interface. It is assigned to a method when its declaring class or interface is being

loaded. The Java Virtual Machine loads a class by reading in its .class file and then retrieving

the type, constants, fields, and, methods-related information.

A Java class file is a binary form of Java program that can be run by the Java Virtual

Machine. It plays a critical role in supporting Java's platform independence and network

mobility. Carrying type information and bytecode instructions, the Java class file gives the

definition for a class or interface even though it knows little about underlying hardware

platforms and operating systems. The pseudostructure of a Java class file [23] is shown in

Figure 5.3.

In the Java class file format, the item methods is a table containing all methods de-

clared by this type, including static methods, instance methods, instance initializer <init>,

and, classlinterface initializer < c h i t > if any. Each element in the table is a methodinfo

structure, which gives a complete description for a method: the access permission to and

properties of the method, its simple name, descriptor, and attributes. The length of the

methods table, i.e., the total number of declared methods, is defined by the item meth-

ods-count.

When a class is being loaded, the Java Virtual Machine will read in all the items in

the class file, and save some of them in predefined formats in its internal data structures.

The proposed approach adds declaration order assignment into the loading phase of a class:

when the methods table is being processed, every method is assigned a declaration order

that is equal to its index in the methods table. The method declaration order begins from

0. The first method in the table has order 0, the second one has order 1, and so on.

CHAPTER 5. PROPOSED APPROACH

ClassFile {
u4 magic;
u2 minor-version;
u2 major-version;
u2 constant~pool~count;
cpinfo constant~pool[constant -pool-count- l] ;
u2 access-flags;
u2 this-class;
u2 super-class;
u2 interfaces-count;
u2 interfaces[interfaces-count];
u2 fields-count;
fieldinfo fields [fields-count] ;
u2 methods-count ;
methodinfo methods[methods~count] ;
u2 attributes-count ;
attributeinfo attributes[attributes-count];

}

Figure 5.3: Java class file format

5.4 Dispatch Mechanism Based on IZone

Like the itable or selector indexed table approach, the central issue in IZone-based interface

invocation is how to locate the correct entry in the appropriate IZone given an invokein-

terface instruction. Locating the IZone is as Figure 5.2 has shown. In order to find the

correct entry for the invoked method in the IZone, this approach utilizes a very simple and

straightforward formula for offset calculation, instead of a search process.

Suppose a method m, declared by interface I, is called upon an object of class C, then

the correct entry for m is at the following offset in the IZone of I :

offset = (corder - 1) x nMethods + mOrder (5.1)

where, corder is interface 1's view on class Cis resolution order (1, 2, 3,. . .), nMethods is

the number of methods declared by I (0, 1, 2, . . .), and mOrder is the invoked method's

declaration order (0, 1, 2, . . .). The entry at the calculated offset contains a pointer to class

C9s implementation of interface method m , the actual code to be executed.

In the implementation, the expensive multiplication operation is replaced by a cheaper

CHAPTER 5. PROPOSED APPROACH 34

left shift operation. To support this change, nMethods is incremented to the nearest integer

that is a power of 2 and no less than nMethods, and the offset calculation is changed to:

ofSset = (corder - 1) << l g + rnOrder (5.2)

where, lg is the smallest integer that is no less than the logarithm (base 2) of nMethods, i.e.,

l g = pog2nMeth0dS1. AS a result, the size of each implementation lookup area is extended
nMethods

from nMethods to 2'9, or, 2 [lo& 1.

Now the benefits of dividing an IZone into multiple implementation lookup areas are

revealed: since every lookup area contains the same number of entries, it is easy to calculate

the relative position of a lookup area based on the resolution order of the corresponding

class; and, since the pointers within a lookup area are arranged in the interface method

declaration order, it is easy to calculate the offset of the invoked interface method based on

its declaration order and the relative position of the corresponding lookup area. In short, the

implementation lookup areas make it possible to take advantage of class resolution orders

and method declaration orders.

Given an invokeinterface instruction, IZone-based interface invocation works in the fol-

lowing main steps:

1. Find the symbolic reference of the invoked method in the constant pool

2. Deduce the declaring interface of the invoked method

3. Find the IZone of the declaring interface

4. Obtain the object reference, upon which the method is invoked, from the operand

stack

5. Deduce the class type of the object reference

6. Calculate the offset of the invoked method in the IZone

7. Follow the pointer at the calculated IZone offset to load the virtual method which

implements the interface method

8. Execute the virtual method

Although the symbolic reference of an interface method is resolved to a concrete IZone

offset before execution, the symbolic reference can not be replaced by the offset for the

CHAPTER 5. PROPOSED APPROACH 35

future use, as the offset is not constant. Next time when the same interface method is

invoked again, symbolic reference resolution has to be performed for the second time.

The overheads of IZone-based interface invocation over virtual method invocation are:

a) extra space for the IZone and order dictionary, b) extra time spent on calculating the

IZone offset for the invoked method, and, c) one extra dispatch for locating the IZone.

The performance of the IZone approach does not change much with either the number of

declared interface methods, or the number of subclasses, since the appropriate IZone offset

is calculated using a simple formula rather than a search.

5.5 Pseudocode

Before an interface method can be invoked, the IZone of the related interface should have

already been constructed and the appropriate class implementation lookup area should

have already been installed. When the machine code of a virtual method is updated, the

corresponding entries in IZones should also be updated. This section describes how an

IZone is constructed and updated and how an interface method is invoked by supplying

pseudocode. The pseudocode is written in Java-like notation.

5.5.1 IZone Construction

When a non-abstract class, C, is being resolved, the Java Virtual Machine will execute

Program 5.1 to obtain a resolution order for it from each of its direct and indirect superin-

terfaces, initialize IZones for the superinterfaces as needed, and install C 's implementation

lookup areas into those IZones. This process is called IZone construction. Program 5.1 only

lists the main steps for IZone construction. Type checking, such as method accessibility and

property checking, is omitted to save the space.

For each interface, I, that class C directly implements or recursively inherits from its

superclass or superinterfaces, the Java Virtual Machine will perform the following checks

and take actions accordingly:

1. Check whether I declares any method. If it does not, no method will be called upon its

reference during the Java program execution, therefore, no IZone will be constructed

for it.

2. Check I ' s view on class C's resolution order. If it is non-zero, i.e., a valid order,

CHAPTER 5. PROPOSED APPROACH

// C: the non-abstract class that is being resolved
for (each interface I implemented by C)

if (I declares no method) return;
if (I ' s view on C's resolution order != 0) return;
obtain nextorder from I and add it to C's resolution order dictionary;
obtain the value of lg from I ;
if (IZone of I == null) create IZone for I with size = 1 << lg;
else expand IZone of I to size (current size + 1 << lg);
for (each method m declared by I)

if (m is class initializer) continue;
find C's virtual method vm which implements m;
calculate the offset of m in the IZone of I;
let the IZone entry for m point to vm's code;

Program 5.1: Program for IZone construction

it indicates that C has already obtained a resolution order from I and stored it

in its order dictionary. Since lookup area installation is immediately following the

obtainment of resolution order (see step 3), it can be concluded that C's lookup area

has already been installed into the IZone of I. Otherwise, it indicates that C has not

obtained a resolution order from I yet. C should obtain an order first, and then,

further actions should be taken as follows.

3. Check whether the IZone of interface I has been initialized. If not, it implies that

C is the first resolved class that implements I; initialize I ' s IZone to have the exact

number of entries for a lookup area. Otherwise, C is not the first resolved subclass;

expand the IZone so that it can contain one more lookup area, with the new entries

appended at the end and the old entries not affected.

4. Find C's implementation for each method declared by I, and let the corresponding

IZone entry point to the implementation. In order to find the implementation for an

interface method, the virtual method table of C will be searched from the beginning,

until a method is found with the same name and descriptor as the interface method.

Program 5.1 just illustrates how the IZones of all the superinterfaces are affected by the

resolution of a single class. From the perspective of a single interface, its IZone is constructed

gradually as its direct and indirect subclasses are resolved one after another: the IZone is

CHAPTER 5. PROPOSED APPROACH 37

initialized when the first subclass is being resolved; one more implementation lookup area

is installed during the resolution of a subclass; the complete IZone is built up after all the

subclasses are resolved.

5.5.2 IZone Updating

During the execution of a Java program, the virtual method of a class may be updated, for

instance, the bytecode of the method is recompiled into more efficient machine code by an

optimizing compiler [2]. As a result, the corresponding entries in some IZones are pointing

to an out-of-date address. If such a situation occurs, Program 5.2 will be executed by the

Java Virtual Machine to update the IZone entries.

// C : the class whose virtual method has been updated
// vm: the updated virtual method of C
for (each interface I implemented by C)

find its declared method, im, which is implemented by vm;
if (im does not exist) continue;
calculate the offset of im in the IZone of I;
update the IZone entry for im to point to vm's code;

Program 5.2: Program for IZone updating

In case that a virtual method of a class is updated, the Java Virtual Machine will check

each interface that the class directly or indirectly implements, to see whether any of its

method is implemented by the updated virtual method, i.e., whether it declares a method

with the same name and descriptor as the virtual method. If no such method exists, no

change will be made to its IZone; otherwise, update the corresponding IZone entry to point

to the new code of the virtual method. Since, in multiple interface inheritance, a virtual

method may have satisfied multiple interface methods, this procedure will continue until all

the implemented interfaces have been examined.

5.5.3 Interface Invocation

Program 5.3 gives the pseudocode for dispatching interface invocation. Before the interface

method is executed, the object reference upon which the method is invoked, together with

method arguments, would already be on the top of the operand stack, with the arguments

CHAPTER 5. PROPOSED APPROACH 38

above the object reference. By looking into the interface method descriptor, the Java Virtual

Machine can get the types and the number of arguments the method takes, and then, based

on them, calculate the offset of the object reference in the stack. Then, it is easy to locate

the object reference in the operand stack. The class type will then be deduced from the

object reference, and, the method declaring class will be deduced from the invoked interface

method. Knowing the class type of the object and the declaring class of the interface

method, it is easy to obtain the class resolution order, invoked method declaration order,

and the size of each lookup area, and then, calculate the IZone offset using the formula

presented in section 5.4.

// m: the interface method being invoked
locate the object reference upon which m is invoked;
C = class type of the object reference;
I = declaring class of m;
corder = I ' s view on C's resolution order;
obtain the lg value from I ;
mOrder = m's declaration order;
m's offset in 1 's IZone = (corder - 1) << lg + mOrder;
locate the IZone of I;
follow the pointer at the IZone offset to run the method;

Program 5.3: Program for interface invocation

Chapter 6

Approach Evaluation

This chapter assesses the IZone-based interface invocation approach by comparing it with

five previous ones: searched itable, directly indexed itable, embedded IMT, indirect IMT,

and naive implementation. Experiments are conducted on a modified Jikes RVM [2] that

deploys these six approaches, and the experimental results are analyzed to study the nature

of different approaches and evaluate their performance in terms of both time and space cost.

6.1 Jikes RVM

The Jikes RVM is a virtual machine for Java servers. It is the first self-hosted virtual

machine written in the Java language [3]. By assembling the fundamental core services -

class loader, object allocator, and, compiler - into an executable boot image prior to running

the virtual machine, the Jikes RVM can get started and load all remaining services required

for normal operation. Unlike the JVM that runs on top of another JVM, the Java code of

Jikes RVM runs on itself without requiring a second virtual machine.

6.1.1 Object Model

In the Jikes RVM, a scalar object is composed of an object header and several instance

fields; an array object is composed of an object header and all the array elements. An

object header contains GC information, a pointer to a Type Information Block (TIB), status

information, and some other miscellaneous fields. TIB is the Jikes RVM's analog of a virtual

method table, but it contains more information than a typical method table does. A TIB

CHAPTER 6. APPROACH EVALUATION 40

contains type description, superclass information, superinterface information, (pointer to)

interface dispatch data structure1, pointer to array element T I B ~ , and, a virtual method

table. Figure 6.1 gives an example for the object and TIB of a class. Since an IZone is only

associated with an interface, the TIB in the example does not contain pointer to IZone.

The "pointer to IZone" occupies the same slot in an interface TIB as the "pointer to itable

/ indirect IMT" in a class TIB.

Object reference Object of class C TIB of class C ITable / indirect IMT

Figure 6.1: Object model of Jikes RVM

For a class type, its fields and method pointers span different data structures: instance

fields are in the object of the class, pointers to virtual methods are in the TIB, static fields

and pointers to static methods are in the Jzkes RVM Table of Contents (JTOC). Unlike a

TIB, a per-type data structure, the JTOC is share by all types. Besides static fields and

static method pointers from all the classes, the JTOC contains pointers to the TIBs of each

type in the system as well. Since different types of data are stored in the JTOC, another

equal-sized array is used to describe the elements in the JTOC. Based on different data

'I

GC header

Misc header

TIB pointer

Status

Field 0
Field 1
.
.

Field n- 1

structures, the dispatch mechanism differs for static and virtual methods.

l ~ o r the embedded IMT approach, TIB contains the whole IMT table; for the IZone, itable, or, indirect
IMT approach, TIB contains a pointer to those data structures.

2 ~ f this is an array type.

Type information

Superclass
Superinterface(s)

Pointer to itable /
indirect IMT

Embedded IMT

P

Virtual method table -

......

.

.

.

.

'
:

Method data
of

CHAPTER 6. APPROACH EVALUATION

6.1.2 Compiler

The Jikes RVM supports two architecture families: IA-32 [13] and PowerPC [20]. Before ex-

ecuting a program, the compiler inside the Jikes RVM first compiles bytecode into machine

code that conforms to the underlying architectures. The Jikes RVM adopts a dynamic, or

"lazy", class loading strategy: when the compiler encounters a bytecode, such as involcevir-

tual, that refers to a class not yet loaded, it does not load the class immediately; instead, the

compiler emits code that, when executed, first ensures that the referenced class is loaded,

resolved and instantiated, and then performs the operation.

The Jikes RVM employs two different, but cooperating, compilers - the baseline compiler

and the optimizing compiler [8] - that address distinct design points. The baseline compiler

is a quick compiler that does not generate high-performance machine code. The optimizing

compiler generates high-performance code for the hottest methods. The cost of running the

optimizing compiler is quite expensive, therefore, it is called on a method only after the

method has executed many times.

During the optimization of a method, the bytecode is transformed into HIR (high-

level intermediate representation), LIR (low-level intermediate representation), MIR (ma-

chine intermediate representation), and finally into machine code [2]. HIR instructions are

closely patterned after bytecode, except that HIR instructions operate on symbolic register

operands instead of an implicit stack, and that HIR contains separate operators to check

for runtime exceptions. LIR expands HIR instructions into operations that are specific to

Jikes RVM's object layout and parameter-passing conventions. MIR instructions reflects

the IA-32 or PowerPC architecture.

Various optimizing transformations are performed at each level of IR (intermediate rep-

resentation) [2]. In the bytecode-to-HIR transformation, some on-the-fly optimization is

performed, such as copy propagation, constant propagation, register renaming for local

variables, dead code elimination, etc. HIR optimization includes: common expression elimi-

nation, redundant exception check elimination, redundant load elimination, flow insensitive

optimization across extended basic blocks [12], and in-line expansion of method calls [6]. LIR

optimization includes local common subexpression elimination and dependence graph [ll]

construction. MIR optimization includes live variable analysis and linear scan global register

allocation [%I.

When a method is executed for the first time, it is compiled with the baseline compiler.

CHAPTER 6. APPROACH EVALUATION 42

It is the adaptive optimization system [5] that makes decision on whether a method should

be recompiled using the optimizing compiler and when. The adaptive optimization system

keeps track of method execution using on-line measurement such as profiling and sampling.

When a certain threshold is reached, an optimization plan is be built to describe which

methods should be recompiled with what optimization levels. Then, the optimizing compiler

is invoked automatically and the methods are compiled accordingly.

6.2 Approaches for Comparison

Six interface invocation approaches are experimented in this chapter: IZone, searched itable,

directly indexed itable, embedded IMT, indirect IMT, and naive implementation. They

are implemented in Jikes RVM v2.3.0. Their performance is evaluated from two aspects:

the time they spend on executing interface methods, and, the extra space they consume

compared with virtual method invocation.

Different IMT sizes 5,40, and 100 (IMT-5/40/100) are tried in IMT approaches, in order

to explore how the IMT size affects the approach performance. In the two itable approaches,

method declaration order is utilized to decide a method's offset in the itable.

All the experimental results reported below are obtained on a Pentium-I11 computer

with 655 MHz CPU and 512M RAM. The operating system installed is Red Hat Linux 9.0,

which runs in single user mode [la] to minimize the interference from other processes.

6.3 Real World Test Case

We verify the implementation correctness by running a real world Java application, Xerces-

J Parser 1.4.4 [I], on top of the modified Jikes RVM versions that adopt the six interface

invocation approaches.

Xerces-J Parser 1.4.4 is an XML parser written in Java. It supports W3C's XML Schema

recommendation version 1.0 [28, 29, 301, DOM Level 2 version 1.0 [27], and SAX Version 2 [7].

Tree-based DOM and event-based SAX are two most popular interfaces for programming

XML. Xerces- J Parser provides two types of parsers: DOM parser and SAX parser, which

are invoked by the classes DOMCount and SAXCount respectively. Both DOMCount and

SAXCount parse input XML files and output the total parse time, along with counts of

elements, attributes, text characters, and ignorable whitespace characters.

CHAPTER 6. APPROACH EVALUATION 43

Xerces-J Parser involves intensive interface invocation. In the package org.w3c.dom,

there are 17 interfaces and only 1 class. In the package org.xml.sax, there are 11 interfaces

and 6 classes. In total, Xerces-J Parser has about 334 classes and 162 interfaces. Many

classes implement more than one interfaces, many interfaces are implemented by multiple

classes, and many methods are invoked upon interface references. All these make this

software is a very good testbed for verifying implementation correctness.

Table 6.1 and 6.2 shows the parse results of DOMCount and SAXCount when working

with the XML file for periodic table allelements.xm13 from ibiblio.org. Both tables show

that all the interface invocation approaches implemented in the Jikes RVM (with optimizing

compiler) can generate the same output (except the parse time) as the standard Sun JVM.

Additional tests with other xml files also prove the implementation correctness.

I JVM versions O u t ~ u t of DOMCount
Sun J2SDK 1.4.1
Jikes RVM (IZone)
Jikes RVM (directly indexed itable)
Jikes RVM (searched itable)

, I Jikes RVM (naive implementhtion) 2327 ms '(1897 elem;, 936 attrs, 0 spaces, 25523 chars)
Note: all the Jikes RVM versions in this table are with optimizing compiler

1207 ms (1897 elems, 936 attrs, 0 spaces, 25523 chars)
510 ms (1897 elems, 936 attrs, 0 spaces, 25523 chars)
499 ms (1897 elems, 936 attrs, 0 spaces, 25523 chars)
524 ms (1897 elems. 936 attrs. 0 maces. 25523 chars)

Jikes RVM (embedded IMT-5)
Jikes RVM (embedded IMT-40)
Jikes RVM (embedded IMT-100)
Jikes RVM (indirect IMT-5)
Jikes RVM (indirect IMT-40)
Jikes RVM (indirect IMT-100)

Table 6.1: Parse results of DOMCount

8 A

507 ms (1897 elems, 936 attrs, 0 spaces, 25523 chars)
519 ms (1897 elems, 936 attrs, 0 spaces, 25523 chars)
522 ms (1897 elems, 936 attrs, 0 spaces, 25523 chars)
505 ms (1897 elems, 936 attrs, 0 spaces, 25523 chars)
497 ms (1897 elems, 936 attrs, 0 spaces, 25523 chars)
502 ms (1897 elems. 936 attrs. 0 maces. 25523 chars)

The modified Jikes RVM versions which support the baseline compiler only, also run

DOMCount and SAXCount on the XML test file, and the output proves implementation

correctness as well.

3See Appendix B on page 80.

CHAPTER 6. APPROACH EVALUATION 44

JVM versions
Sun J2SDK 1.4.1
Jikes RVM (IZone)
Jikes RVM (directlv indexed itable)

(Jikes RVM (embedded IMT-40) 1 260 ms (1897 elems, 936 attrs, 0 spaces, 25523 chars)

Output of SAXCount
746 ms (1897 elems, 936 attrs, 0 spaces, 25523 chars)
264 ms (1897 elems, 936 attrs, 0 spaces, 25523 chars)
258 ms (1897 elems. 936 attrs. 0 maces. 25523 chars)

Jikes RVM (searched itable) '

Jikes RVM (embedded IMT-5)

, A

258 ms (1897 elems; 936 attrs, 0 spaces; 25523 chars;
265 ms (1897 elems, 936 attrs, 0 spaces, 25523 chars)

Jikes RVM (embedded IMT-100)
Jikes RVM (indirect IMT-5)

Table 6.2: Parse results of SAXCount

258 ms (1897 elems, 936 attrs, 0 spaces, 25523 chars)
265 ms (1897 elems, 936 attrs, 0 spaces, 25523 chars)

Jikes RVM (indirect IMT-40)
Jikes RVM (indirect IMT-100)
Jikes RVM (na'ive implementation)

6.4 Artificial Test Cases

261 ms (1897 elems, 936 attrs, 0 spaces, 25523 chars)
261 ms (1897 elems, 936 attrs, 0 spaces, 25523 chars)
1538 ms (1897 elems, 936 attrs, 0 spaces, 25523 chars)

Six artificial test cases, tests 1-6~, are adopted to evaluate the time cost of the six interface

invocation approaches. In each test, 20 interfaces (Interface 1-20) are defined with the

same number of declared methods; all the interfaces are implemented by two classes A and

B. Using the same notations as in [4], the class' implementation of interface methods are

either trivial calls (simply return a integer value between 0 and 1200) or normal calls (either

return an integer between 0 and 1200 or call another method, based on the true / false value

of an instance field of the class). All the interface methods are implemented either as trivial

calls or as normal calls in every test case. Table 6.3 below gives the descriptions for the 6

test cases.

The number of methods declared by each interface in the six test cases are 1, 1, 100,

100, 200, 200, respectively. In tests 1, 3, and 5, all the interface methods are implemented

as trivial calls, while in tests 2, 4, and 6, all the interface method implementations are

normal calls. For the experiments in the following sections, an instance field of the class is

always set to true in run time so that the normal calls in tests 2, 4, and 6 always return an

integral value without calling another method. However, setting the instance field to true

in run time does not mean the branch in a normal call is eliminated after compilation, as

the value of the instance field is not known at compile time and may change in run time.

Note: all the Jikes RVM versions in this table are with optimizing compiler

*See the source code in Appendix C on page 86.

CHAPTER 6. APPROACH EVALUATION

I Test I Number of methods declared I Interface methods
cases

1
2
3

Table 6.3: Artificial test cases

Thus, normal call has more bytecode instructions than trivial calls. The tests will study the

performance of interface invocation approaches with trivial calls and normal calls, and how

they are affected by the number of interface methods.

The core of the test cases is a nested loop: the outer loop runs 10 iterations, while the

inner loop runs 5,000 or 5,000,000 iterations5. The 10 execution times of the inner loop are

recorded for further analysis. Program 6.1 shows the nested loop in the test cases.

by each interface
1
1

100
normal calls
trivial calls
normal calls

4
5
6

for (int i = 0; i < 10; i ++) { // outer loop
long result = 0;
for (int j = 0; j < 5000; j ++) { // inner loop

implemented as
trivial calls
normal calls
trivial calls

100
200
200

......
result+=inl.al(); result+=in2.b2(); result+=in3.c3();
result += in4.d4(); result += in5.e5(); result += in6.f6();
result += in7.g7(); result += in8.h8(); result += in9.i9();
result += inlO.jlO(); result += inll .mll(); result += in12.n12();
result += in13.~13(); result += in14.q14(); result += in15.r15();
result += in16.s16(); result += in17.t17(); result += in18.u18();
result += in19.v19(); result += in20.w20();

Program 6.1: The nested loop in the test cases

'When experimenting with baseline compiler, the inner loop runs 5,000 iterations; for the experiments
with optimizing compiler, both 5,000 and 5,000,000 iterations will be tried. See the following sections for
details.

CHAPTER 6. APPROACH EVALUATION 46

Within the inner loop, the invoked methods a l , b2, . . . , w20 are declared by Interface

1, Interface 2, ..., Interface 20, respectively, and, implemented by both class A and B. The

variables inl-20 are all interface references, which are casted from the same class reference.

The object that the class reference points to is of either class A or class B type, which can

be decided only at run time. Therefore, none of the interface invocations will be virtualized

or inlined by the Jikes RVM optimizing compiler. The execution time of the inner loop is

affected not only by the interface invocations in the test cases, but also by the Jikes RVM

versions, as interface invocations occur inside the Jikes RVM as well.

A few simpler test cases have also been tried, although not included in the thesis: the

interface methods are always called upon a fixed object. After intensive optimization, the

interface invocation takes similar time, regardless of which approach is used, as it has been

converted to an appropriate virtual invocation (virtualization), and, takes almost the same

time as the virtual method.

6.5 Time Cost with Baseline Compiler

For a Jikes RVM version that includes only a baseline compiler, each method will be compiled

into machine code by the baseline compiler the first time it is invoked, and afterward, the

same segment of machine code is executed every time the method is called. No optimization

will be ever applied to the method. Thus, the execution time of the method body (not

including the compilation time) will remain the same no matter how frequently the method

is invoked.

In order to compare the performance of the six approaches with the baseline compiler,

tests 1 ~ 6 are executed, with the inner loop running 5,000 iterations and the outer loop

running 10 iterations. The execution time of the inner loop are recorded. Theoretically,

among the 10 times of the inner loop, the first one should be larger, and the other 9 ones

are almost the same with each other, no matter which approach is used. The first time is

larger as it includes the time for compiling the method into machine code: the method is

compiled before the first execution. As the same machine code is executed in the subsequent

invocations, the other 9 times are almost the same. Figure 6.2 testifies this statement. It

shows the execution time (measured in millisecond) of the inner loop in tests 1-6 when using

the IZone and directly index itable approaches. The execution time with other approaches

demonstrates the same tendency.

CHAPTER 6. APPROACH EVALUATION

- IZone -
Test 1: 339, 325, 327, 326, 326, 327, 328, 327, 327, 327
Test 2: 347, 330, 329, 329, 331, 330, 330, 329, 329, 330
Test 3: 448, 335, 336, 337, 336, 336, 336, 336, 337, 336
Test 4: 452, 337, 337, 336, 337, 336, 336, 336, 336, 336
Test 5: 582, 330, 330, 330, 330, 335, 330, 329, 330, 329
Test 6: 590, 333, 334, 336, 332, 333, 332, 333, 333, 331

- Directly indexed itable -
Test 1: 556, 545, 543, 545, 545, 544, 544, 545, 546, 544
Test 2: 567, 550, 546, 549, 551, 550, 550, 551, 552, 552
Test 3: 664, 551, 553, 550, 551, 550, 550, 551, 550, 550
Test 4: 672, 553, 552, 554, 553, 554, 553, 553, 554, 553
Test 5: 777, 521, 522, 521, 521, 522, 521, 523, 521, 521
Test 6: 788, 525, 525, 524, 524, 524, 524, 525, 524, 524

Figure 6.2: Execution time of 5,000-iteration inner loop with baseline compiler

By calculating the average of the last 9 times, we get the average execution time of the

inner loop, which does not include method compilation time. The average execution time

(in millisecond) of the inner loop with each approach is in Table 6.4. The average execution

time of virtual methods is also recorded when invoking the trivial or normal calls directly

in the similar nested loop.

From Table 6.4, it is easy to see the following facts about the execution time of each test

case:

Tests 1, 3, and 5 only contain trivial calls, while tests 2, 4, and 6 only contain normal

calls. Trivial calls contain less bytecode than normal calls, so, generally speaking, they take

less time than normal calls, no matter which approach is used.

Condition (6.2) applies to IMT and naiie implementation only. In tests 1 and 2, the

number of methods per interface is only 1; in tests 3 and 4, the number is 100; in tests 5

and 6, the number is 200. For embedded / indirect IMT approach (with a specific IMT

size), more interface methods mean more conflicts, i.e., more methods are handled by a

CHAPTER 6. APPROACH EVALUATION

I I I I I I

Na'ive implementation 1 839 1 848 (33,393 1 18,624 1 60,461 1 60,783
I

Table 6.4: Average execution time with baseline compiler

conflict resolution stub. On average, therefore, it takes longer time to jump to a desired

method in the resolution stub. For naive implementation, more interface methods mean

more time spent on searching for a desired method in a larger virtual table. Therefore,

both the IMT and na'ive approaches need more time to execute an interface method as the

number of methods per interface increases. The execution time of the itable and IZone

approaches does not change much with interface method number, since the offset of an

interface method in itable or IZone is calculated from its declaration order, or, from both its

declaration order and the proper subclass resolution order, which are already known before

the method is executed. By calculating the offset, the entry for the method can be easily

located without searching any table.

Based on the experimental data in Table 6.4, we rank the approach performance as

follows, with ">" meaning "faster than" :

Dispatch mechanism
Virtual invocation
Embedded IMT-5
Embedded IMT-40
Embedded IMT-100
Indirect IMT-5
Indirect IMT-40
Indirect IMT- 100
IZone
Directly indexed itable
Searched itable

I M T > IZone > directly indexed itable > searched itable > naiire (6.3)

virtual invocation > inter face invocation (6.5)

Test 1 I Test 2 1 Test 3 1 Test 4 1 Test 5 1 Test 6
trivial calls: 146; normal calls: 150

Among all the interface invocation approaches, IMT has the best performance with the

baseline compiler, because of the nature of the conflict resolution stub. The conflict resolu-

tion stub is a short piece of machine code, while all the other approaches are implemented

273
269
265
273
268
272
333
524

243
245
245
247
242
255
326
544

I 714 I 714 I 720 I 722 I 721 I 723

247
24 1
247
247
245
256
329
551

255
264
259
257
260
265
336
550

257
264
264
260
267
269
336
553

272
265
264
271
263
270
330
521

CHAPTER 6. APPROACH EVALUATION 49

in the Java language, involving intensive method calls and method returns, and being trans-

lated to a long segment of machine code, if no optimization applied. Furthermore, all the

6 test cases do not impose a big burden on the "branches" inside the conflict resolution

stub. For IMT-5 that handles 200 interface methods, each conflict resolution stub deals

with 40 methods. Since the conflict resolution stub uses a form of binary search, at most 6

(40 < 64 = 26) "branch" operations are performed before the appropriate method is found.

However, in the case that a conflict resolutions stub has to deal with a large enough number

of methods, IMT performance might be worst than the itable and IZone approaches, as the

execution time of these two approaches are not affected much by the method number. The

embedded IMT and indirect IMT approaches have quite similar performance as the only

difference between them is one extra indirect dispatch. This difference will become more

obvious in case of optimizing compilation (see section 6.6 on page 50).

The naiire implementation has the' worst performance because it is too "naive": every

time an interface method is called, this approach will search the whole virtual method table

of the implementing class linearly from the very beginning.

Condition (6.4) applies to both the embedded and indirect IMT approaches. With a

fixed number of interface methods, a smaller IMT size leads to more methods that are

handled by a conflict resolution stub, and therefore, a larger average execution time for

interface invocation. This is not so obvious for tests 1 and 2 with IMT-40 and IMT-100,

because each interface has only 1 method in tests 1 and 2, and thus, no conflict ever occurs

between interface methods and conflict resolution stub is not needed. But for tests 3 N 6,

with interface method number being 100 or 200, conflicts occur with IMT-5, IMT-40 and

IMT-100, and resolution stubs are generated to resolve conflicts; it is not difficult to find

that a smaller IMT size leads to a larger execution time.

When working with the baseline compiler, all the interface invocation approaches are

slower than virtual invocation: directly invoking trivial calls upon a class object is much

faster than invoking the corresponding interface methods in test 1, 3, or 5; directly invoking

normal calls upon a class object is much faster than invoking the corresponding interface

methods in tests 2, 4, and 6. This is because that the virtual method offset is reliable,

but interface method offset is not. All the approaches here have to search for the interface

method or calculate its offset in the appropriate table every time it is invoked.

One point that is obvious, though not demonstrated by the experimental data in Ta-

ble 6.4, is that the performance of IZone and directly indexed itable is not affected by the

CHAPTER 6. APPROACH EVALUATION 50

number of interfaces implemented by a class. This can be easily inferred from their dis-

patch mechanism. More implemented interfaces mean more implementation lookup areas

for a class in the IZone approach, or, more non-empty itables for a class in the directly

indexed itable approach. Nevertheless, the IZone approach calculates method offset based

on the known class resolution order, method declaration order, etc.; the directly indexed

itable approach locates the invoked method based on the interface id and then the method

declaration order. Both of them don't have to do searching. Therefore, no matter how

many interfaces are implemented by a class, or, how many lookup areas or itables have been

constructed for a class, it does not affect the time used for interface invocation. This does

not apply to the IMT or searched itable approach, since more implemented interfaces mean

more methods to be handled by each conflict resolution stub in the IMT approach, or, a

larger itable array to be searched in the searched itable approach.

6.6 Time Cost with Optimizing Compiler

For a Jikes RVM version that supports both a baseline and an optimizing compiler, the

situation is totally different. When a method is called for the first time, it is compiled into

machine code by the baseline compiler. Afterward, if there are enough invocations of the

method, it, or the method it will further call, will be passed to the optimizing compiler

for optimization. In the first optimization pass, the method may be optimized at a modest

level. As it is called again and again, it will be passed to the optimizing compiler again for

optimization at a higher level, and so on. Higher level optimization needs more compilation

time, but the resultant method takes less execution time.

6.6.1 Lightweight and Heavyweight Optimizations

Since more than one level of optimization may be applied to the same method, the 10

execution times of the inner loops in the 6 test cases may not be stable after the first

iteration, which is different from the baseline compiler case. Figure 6.3 testifies this point.

Figure 6.3 gives the 10 execution times (in millisecond) of the inner loops in test 1 with

the IZone and directly indexed itable approaches. The inner loops run 5,000 / 10,000 /
50,000 / 100,000 / 500,000 / 1,000,000 / 5,000,000 iterations for both approaches, and the

execution time is recorded. The number in brackets are the iterations of the inner loops.

The following tendencies are observed based on the experimental data in the figure:

CHAPTER 6. APPROACH EVALUATION

- IZone -

(5,000) 47, 45, 45, 46, 45, 46, 45, 45, 46, 45
(10,000) 93, 91, 91, 90, 91, 91, 90, 91, 91, 90
(50,000) 453, 452, 453, 453, 480, 823, 454, 455, 454, 503
(100,000) 908, 906, 1288, 904, 904, 905, 904, 667, 308, 306
(500,000) 4923, 4568, 2078, 1502, 1501, 1493, 1491, 1485, 1487, 1515
(1,000,000) 5935, 3006, 2998, 2994, 3012, 3014, 2994, 2972, 2972, 2995
(5,000,000) 24605, 15905, 16040, 15707, 15664, 15800, 15458, 15521, 15650, 15659

- Directly indexed itable -

(5,000) 68, 65, 65, 66, 66, 65, 66, 66, 66, 65
(10,000) 135, 134, 133, 133, 134, 133, 134, 134, 133, 134
(50,000) 670, 667, 683, 747, 660, 660, 242, 134, 134, 134
(100,000) 1338, 1430, 1326, 1315, 1301, 1136, 223, 220, 215, 213
(500,000) 4120, 1120, 1018, 993, 984, 966, 965, 992, 987, 987
(1,000,000) 6728, 2010, 1994, 1998, 2002, 2028, 2080, 2069, 2065, 2064
(5,000,000) 14985, 10006, 9969, 9535, 9619, 9475, 9415, 9409, 9396, 9408

Figure 6.3: .Execution time of inner loop in test 1 with optimizing compiler

0 The execution time with both approaches does not change proportionally with the

iterations of the inner loop. This is because more iterations lead to more optimization

passes on the methods, and therefore, less execution time for the methods.

If the inner loop runs 10,000 iterations or less, the 10 execution times do no demon-

strate much difference. This is because the optimizations at low levels did not bring

noticeable change to the execution time.

0 If the inner loop runs 50,000 iterations or more, the 10 execution times demonstrate a

decreasing tendency: the first time is relatively larger while all the others are smaller;

the preceding time is usually larger than all the succeeding ones. The reason is: a

method which has been optimized at a lower level may be sent to the optimizing

compiler again for optimization at a higher level, if it has been invoked for enough

times, thus, its execution time could be further reduced.

Although only the IZone and directly indexed itable approaches are cited as examples here,

all the other approaches demonstrate the similar tendency as well.

CHAPTER 6. APPROACH EVALUATION 52

If the inner loop runs 10,000 iterations or less, the resultant optimizations do not ob-

viously change the method execution time. This kind of optimization behavior is called

lightweight optimization is this thesis. If the inner loop runs for 50,000 iterations or more,

the optimizations triggered lead to 10 decreasing execution times of the inner loop. This

kind of optimization behavior is called heavyweight optimization here.

The 5,000- and 10,000-iteration inner loops result in lightweight optimizations not in

test 1 only , but in all the six test cases, no matter which approach is used. Similarly, the

50, OOOf -iteration inner loops result in heavyweight optimizations in all the test cases for

whatever approach. Figure 6.4 and Figure 6.5 testify this statement.

- IZone -
Test 1: 47, 45, 45, 46, 45, 46, 45, 45, 46, 45
Test 2: 73, 70, 69, 70, 69, 70, 69, 70, 70, 69
Test 3: 66, 50, 50, 50, 50, 51, 50, 50, 50, 51
Test 4: 89, 68, 68, 68, 68, 69, 68, 68, 68, 68
Test 5: 100, 51, 50, 50, 51, 50, 51, 50, 51, 50
Test 6: 122, 69, 82, 69, 68, 68, 68, 68, 77, 66

- Directly indexed itable -
Test 1: 68, 66, 66, 66, 66, 66, 65, 66, 66, 65
Test 2: 69, 65, 65, 65, 65, 66, 65, 65, 65, 65
Test 3: 80, 65, 65, 65, 65, 65, 65, 65, 65, 65
Test 4: 9.1, 71, 72, 71, 72, 71, 71, 72, 70, 71
Test 5: 110, 64, 64, 64, 64, 64, 65, 64, 64, 64
Test 6: 119, 70, 71, 77, 81, 68, 68, 68, 68, 71

Figure 6.4: Execution time of 5,000-iteration inner loop with optimizing compiler

Figure 6.4 gives the 10 execution times (in millisecond) of the 5,000-iteration inner loop.

All the times in the figure are smaller than the corresponding times in Figure 6.2 for the

baseline compiler. For both IZone and directly indexed itable approach, the first execution

time is larger, while the other 9 times are quite similar with each other, as the lightweight

optimizations have not substantially reduced execution time.

Figure 6.5 gives the 10 execution times (in millisecond) of the 5,000,000-iteration inner

loop. Every test demonstrates the same tendency: the first time is the largest one, while

all the other times decrease gradually. For the IZone approach, the last execution times are

16173, 17682, 18060, 20249, 19073, 20569 in tests 1, 2, . . . , 6; for the directly indexed itable

CHAPTER 6. APPROACH EVALUATION

- IZone -
Test 1: 24605, 15905, 16040, 15707, 15664, 15800, 15458, 15521, 15650, 15659 - 15659
Test 2: 21415, 18176, 18308, 18188, 18139, 17970, 17870, 17972, 18131, 17587 - 17587
Test 3: 22650, 16192, 16511, 16535, 16115, 16091, 16091, 15971, 15972, 15990 - 15990
Test 4: 25397, 18817, 18911, 18889, 18723, 18704, 18842, 18771, 18496, 18111 - 18111
Test 5: 29822, 17440, 17795, 17710, 17838, 17746, 17117, 16999, 17102, 17251 - 17251
Test 6: 24564, 19386, 19295, 19328, 19107, 19136, 19371, 19273, 19401, 19276 - 19276

- Directly indexed itable -
Test 1: 14985, 10006, 9969, 9535, 9619, 9475, 9415, 9409, 9396, 9408 - 9408
Test 2: 13601, 11080, 11018, 10899, 11140, 10811, 10703, 10603, 10599, 10639 - 10639
Test 3: 17078, 9227, 9295, 9745, 9253, 9109, 9101, 9101, 9114, 9102 - 9102
Test 4: 16145, 11422, 11247, 10866, 10772, 10896, 10943, 11092, 11051, 11001 - 11001
Test 5: 19726, 9580, 9413, 9480, 9601, 9189, 9115, 9129, 9137, 9185 -- 9185
Test 6: 13945, 11650, 11582, 11397, 11384, 11159, 11264, 11311, 11203, 11040 - 11040

Figure 6.5: Execution time of 5,000,000-iteration inner loop with optimizing compiler

approach, the last execution time is 8298, 9642, 8311, 9673, 8355, 9773, respectively. The

numbers after "-" give the last execution time.

In the following two sections, the performance of the six interface invocation approaches

are evaluated with both lightweight and heavyweight optimizations.

6.6.2 Experimental Results with Lightweight Optimizations

In order to evaluate the six approaches' performance with lightweight optimizations, 6 test

cases are executed with the inner loop running 5,000 iterations. All the 6 approaches

demonstrate the similar tendency: the first execution time is the largest while the other 9

are similar with each other. By calculating the average of the last 9 times, we get the average

execution time of the 5,000-iteration inner loop, which excludes the baseline compilation

time, but includes the appropriate optimization compilation time.

The average execution time (in millisecond) of each approach is in Table 6.5. The

shortest execution time for each test is enclosed in square brackets. The execution time

in Table 6.5 is much smaller than that in Table 6.4, because the lightweight optimization

reduces the method execution time, though not so much as the heavyweight optimization.

The following facts can be deduced from the table about the execution time of the 6 test

CHAPTER 6. APPROACH EVALUATION 54

Dispatch mechanism I Test 1 I Test 2 1 Test 3 1 Test 4 1 Test 5 1 Test 6 1
I Virtual invocation trivial calls: 30; normal calls: 33

IZone
Directly indexed itable
~mbedded IMT-5
Embedded IMT-40
Embedded IMT-100
Indirect IMT-5

Table 6.5: Average execution time after lightweight optimizations

cases:

1451
65

Indirect IMT-40
Indirect IMT-100
Searched itable
Naiire implementation

Condition (6.6) holds since trivial calls take less time than normals calls.

Condition (6.7) applies to the IMT and naive approaches only, as their performance is

affected by the number of methods declared by the interface. The execution time of the

IZone and itable approaches does not vary much with the number of interface methods.

The execution time with the IZone, directly indexed itable, and searched itable ap-

proaches does not increase with the number of implemented interfaces, just like the case for

the baseline compiler.

Based on the experimental data in Table 6.5, we rank the approach performance as

follows, with ">" meaning "faster than7':

53
51
52
54

IZone > directly indexed itable, I M T > searched itable > naive (6.8)

69
65

53
53
77

444

embedded I M T > indirect I M T (6.9)

5 7
50

1501
59

virtual invocation > interface invocation (6.11)

[sol
65

51
5 1
8 1

483

66
68
60
68

[68I
71

72
57
80

9.766

73
80
74
75

1501
64

89
73
83

3,989

1701
7 1

72
72
66
78

84
89
85
88

75
68
82

19,476

93
8 1
92

12,320

CHAPTER 6. APPROACH EVALUATION 55

The IZone, directly indexed itable and IMT approaches are faster than the searched

itable approach, which in turn is faster than nake implementation. Based on the overall

performance, IZone is the fastest approach, as it beats all the other approaches in 5 tests (1,

3 N 6). Directly indexed itable beats embedded and indirect IMT approaches in the tests

3 6, while IMT approaches beat directly indexed itable only in the tests 1 and 2, when

when very few conflicts occur: after lightweight optimization, the conflict resolution stub

which is written in machine code is no longer an advantage for IMT approaches.

After optimization, the difference between embedded IMT and indirect IMT approaches

becomes more apparent. Indirect IMT is a little slower than embedded IMT, since it involves

one extra indirect dispatch.

Both the embedded IMT and indirect IMT approaches work better with a larger IMT

table, as each conflict resolution stub deals with less interface methods.

After lightweight optimizations, interface invocation is still much slower than virtual

invocation, as the low level optimizations do not substantially reduce method execution

time.

6.6.3 Experimental Results with Heavyweight Optimizations

In order to evaluate the six approaches' performance with heavyweight optimizations, the

test cases are executed with inner loop running 5,000,000 iterations. By collecting the last

execution time, we get the execution time (in millisecond) of the 5,000,000-iteration inner

loop after heavyweight optimizations, as in Table 6.66. This time excludes the baseline

compilation time, but includes the appropriate optimization compilation time. The shortest

execution time for each test is enclosed in square brackets.

From Table 6.6, we could deduce the following fact:

Timetestl < Timetests < Timetests, Timetest2 < Timetest4 < Timetests (6.13)

Condition (6.12) holds as trivial calls are faster than normal calls. Condition (6.13)

applies to the IMT and naive implementation, as their performance are affected by the

number of interfaces methods.

 he nayve approach has not been tested with the tests 3 ~ 6 , as the execution times are too long (more
than 10 hours). For the 100,000-iteration inner loops in the tests 3 ~ 6 , their execution times with the nayve
approach are already larger than the other approaches

CHAPTER 6. APPROACH EVALUATION 56

Dispatch mechanism (Test 1 I Test 2 1 Test 3 (Test 4 (Test 5 1 Test 6

Table 6.6: Stable execution time after heavyweight optimizations

Virtual invocation
Directly indexed itable
IZone
Embedded IMT-5
Embedded IMT-40
Embedded IMT-100
Indirect IMT-5
Indirect IMT-40
Indirect IMT-100
Searched itable
Na'ive implementation

Based on the experimental data in Table 6.5, we rank the approach performance as

follows, with ">" meaning "faster than" :

trivial calls: 6.873. normal calls: 8.965

directly indexed itable > IMT, IZone > searched itable > na;ve (6.14)

embedded I M T > indirect I M T (6.15)

9,408
15,659
10,405

[7,450]
7,615
9,640
8,496
8,179
39,917
61,245

Directly indexed itable has the best overall performance. It is faster than all other

approaches with the tests 3 N 6, although it is a little slower than certain IMT approaches

with the tests 1 and 2.

IMT approaches are faster than directly indexed itable and IZone when there are very

few conflicts between interface methods, for instance, in the tests 1 and 2. With large enough

IMT tables, the time cost of the embedded IMT approaches (embedded IMT-40/100) with

the tests 1 and 2 is close to that of virtual invocation: with IMT table sized 40 or 100, no

conflict occurs in these two tests, therefore, the conflict resolution stub is eliminated, and

2 indirect dispatches are needed to find the method implementation, starting from the TIB

of a class. In contrast, directly indexed itable needs 3 indirect dispatches from the TIB

to the method implementation, while IZone needs 2 indirect dispatches besides the offset

calculation.

Nevertheless, the performance of IMT is largely affected by the number of interface

methods while IZone is not. IZone beats IMT when the IMT table size is too small compared

[11,040]
19,276
32,430
26,585
19,641
33,625
25,678
20,561
41,642

-

10,639
17,587
10,670
10,081

[9,683]
11,426
10,326
10,492
42,196
66,649

[11,001]
18,111
16,814
24,386
15,763
17,530
26,127
13,810
41,839

-

, !

[9,102]
15,990
23,228
22,167
12,588
23,823
23,327
11,736
40,283

-

[9,185]
17,251
30,299
22,787
16,660
30,974
23,728
17,140
40,254

-

CHAPTER 6. APPROACH EVALUATION 57

with the total number of interface methods. For example, IZone is faster than IMT in the

tests 5 and 6. It is faster than embedded and indirect IMT-5/40 in the tests 3 and 4. IZone

is slower than directly indexed itable in all test cases.

The searched itable approach is faster than the naive approach only.

After heavyweight optimization, the difference between the embedded and indirect IMT

approaches becomes even more evident.

6.7 Space Cost

This section studies the space overhead of interface invocation over virtual invocation using

different approaches. To make things simple, we just look at the extra space associated

with a single class for interface invocation. If there are multiple classes residing in the Java

Virtual Machine, it is easy to calculate the total extra space for interface invocation.

First of all, we make the following assumptions:

The JVM has loaded m interfaces: 11, 12, . . . ,Im, with id: idl, id2,. . . ,idm (0 5

idl,, < m)

A class C directly and recursively implements k interfaces: Ii,, Ii2, . . . , Iik (k < m, 1 <
i l < i2 < . . . < ik < m), which declare n l , n2,. . . , nr, methods respectively.

Among the methods declared by Ii,, Ii2, . . . , Iik, no two methods have the same sig-

nature.

The space overhead of the searched itable approach comes from: C's itable array which

contains pointers to the itables for the implemented interfaces, and, the itables for each (C,

Iij) pair (j = 1,2, ..., k). Since the itable for the pair (C, Ii3) has n j entries, the total size of

the itables is x?=, n j The size of the itable array is equal to the number of implemented

interfaces, k. Therefore, the size of the extra space associated with class C is:

The space overhead of the directly indexed itable approach comes from: C's itable array

which contains pointers to all the interfaces loaded so far, and, the itables for each (C, Iij)

pair (j = 1,2, ..., m). The total size of the itables is the same as with the searched itable

CHAPTER 6. APPROACH EVALUATION 58

approach, but, the size of the itable array is equal to the number of loaded interfaces by

the JVM, not the number of implemented interfaces by C. Therefore, the size of the extra

space associated with class C is:

The space overhead of the embedded or indirect IMT-p approach (p is IMT size) comes

from the IMT table and IMT dictionary. The IMT table is of a fixed size, p, and the size

of the IMT dictionary is equal to the size of the linked list pointer array which is the same

as that of IMT table, plus the size of the links for all the interface methods implemented

by C. The total number of implemented interface methods is zk1 nj, so the size of the

links is z:=l n j x linksize. In the current implementation of Jikes RVM, a link in the

IMT dictionary has the following fields: a pointer to the signature of an interface method,

a pointer to the virtual method that implements the interface method, and a pointer to the

next link, thus, linksize is 3. The size of extra space associated with class C is:

For the IZone approach, the space overhead comes from: C's implementation lookup

areas in the IZones of interface I,, , I%, , . . . , Ii, , and, C's resolution order dictionary. C's

implementation lookup area in the IZone of IiJ has a size that is equal to the number of

methods declared by Ii3, nj, if the formula (5.1) is used to calculate the IZone offset, or,

2 l l o g 2 l , if the formula (5.2) is used. The size of C's resolution order dictionary is equal to

the maximum id of the implemented interfaces plus one. Since an integer type occupies the

same number of bytes as a pointer inside the JVM, the size of the extra space associated

with class C is:

where, t E [k, m]

The space overheads of the six approaches are listed in Table 6.7.

CHAPTER 6. APPROACH EVALUATION

I Dispatch mechanism I Space overhead I
I Na'ive implementation I 0 I

Searched itable

IZone

Table 6.7: Space overhead comparison

Ic C j = l nj + k

c$=~ nj + t , or, z $ = ~ + t
t E \k. ml

Directly indexed itable
Embedded / indirect IMT-p

The na'ive implementation is the only approach with zero space overhead. The space

overhead of searched itable is no greater than that of directly indexed itable. In real practice,

k is far less than m (k << m), so, searched itable has quite lower space overhead than directly

indexed itable.

IZone has different space overhead by using different formulas for offset calculation. If the

L ' 1

CL1 nj + m
3 x (C;=l nj) + 2~

formula (5.1) is used, the space overhead depends on the maximum id of the implemented

interfaces: with the maximum id equal to the number of implemented interfaces minus

one, i.e., the implemented interfaces having continuous ids starting from 0, IZone's space

overhead is equal to that of searched itable; otherwise, it is higher than searched itable,

but never exceeding that of directly indexed itable; only when the maximum id is m - 1,

the space overhead of IZone is the same as directly indexed itable. On average, the space

overhead of IZone is on halfway between that of searched itable and of directly indexed

itable. If the formula (5.2) is used, it may use more space than needed in order to accelerate

the offset calculation.

IMT has the highest space overhead, mainly due to the space consumed by the links in

the IMT dictionary. IMT space overhead increases with the size p.

The comparison of the space overhead for different approaches illustrates the trade-off

between space and execution time: if memory space is most concerned, execution time has

to be sacrificed; on the other hand, in order to achieve faster execution, more memory space

will be used. As computer memory becomes cheaper day after day, space is no longer a big

issue for the decision of performance improvement.

Chapter 7

Future Work

Most of the approaches investigated in this thesis try to reduce the overhead of invokeinter-

face by introducing new data structure(s) into the method area. The new data structures

facilitate interface dispatch, but lead to time and space overheads at the same time. Since

Java programs are "compile once, run everywhere", the resultant overheads are unavoidable

in every execution of interface methods.

A possible alternative is to optimize the Java compiler, so that, whenever an interface

method is invoked upon an object reference whose type is known at compile time, it is trans-

lated into invokevirtual instruction instead of invokeinterface instruction, and the constant

pool contains the symbolic reference to a virtual method instead of an interface method. To

achieve this, the compiler should perform flow analysis and type checking before assembling

the invokevirtual instruction. This compile-time virtualization conforms to the specifica-

tions of both the Java compiler and the Java Virtual Machine. Although it introduces some

overhead to Java program compilation, it eliminates the time and space overhead demon-

strated by the approaches examined in this thesis: interface invocation will be equivalently

efficient as virtual method invocation. Considering the overheads avoided in every execution

of method, the overhead introduced to the one-time compilation is insignificant.

For the IZone, itable and IMT approaches studied in this thesis, some of the entries

in the dispatching data structures may not be ever used when the application exits, if the

corresponding method has never been called by the program. Although it leads to unused

memory space, it saves the lookup time as trade-off. How to keep the dispatching structure

compact so that it only contains the methods to be called, while at the same time keeping

the lookup equally efficient, is another possible future work of this research.

Chapter 8

Conclusion

This thesis studies the main source of inefficient interface invocation, overviews previous

work on this problem, and proposes a new approach - IZone based interface invocation.

IZone is a per-interface structure. It is built up gradually as the subclasses are being

resolved. Based on the subclass resolution orders and interface method declaration orders,

methods in IZone are arranged in special order for easy locating.

The IZone approach is evaluated together with five previous approaches: directly in-

dexed itable, searched itable, embedded IMT, indirect IMT and naive approaches. They

are compared in terms of both time and space costs that are involved in interface method

executions. IZone-based interface invocation proves efficient: with modest space cost, it is

faster than three other approaches and slower than two approaches after baseline compila-

tion; it is the fastest after lightweight optimizations, and the second fastest after heavyweight

optimizations. IZone approach presents a new way for optimizing Java interface invocation,

and disproves the long-time mistaken impression that Java interface invocation is inherently

inefficient.

Appendix A

Modifications to Jikes RVM

Eight classes in Jikes RVM have been modified in order to support IZone-based interface

invocation:

1. com.ibm. JikesRVM.VM_Configuration

2. com.ibm.JikesRVM.VM~T1BLayoutConstants

3. com.ibm.JikesRVM.VM_Entrypoints

4. com.ibm.JikesRVM,classloader.VM~Class

5. com.ibm. JikesRVM.class1oader .VM-Met hod

6. com.ibm.JikesRVM.classloader.VM~Interface1nvocation

7. com.ibm. JikesRVM.VM-Compiler (IA32 version)

8. com.ibm. JikesRVM.opt .OPT~ConvertToLowlevelIR

Part of the source code of the above eight classes are given below, with modification

highlighted in italic and bold.

This class defines configuration settings for Jikes RVM, such as the hardware architecture

and operating system that the virtual machine is built upon, the compiler to be supported,

the interface invocation approach to be used, etc. The public static fields BuildForIMTIn-

terfacelnvocation and BuildForlTablelnterfaceInvocation are to indicate whether the IMT

or itable approach is to be used for interface invocation.

A public field of boolean type, BuildForIZoneInterfaceInvocation, is added to the set-

tings. When set to true, it instructs the virtual machine that IZone approach should be

APPENDIX A. MODIFICATIONS TO JIKES RVM

used for interface invocation.

.
public static final boolean BuildForIMTInterfaceInvocation = false;

public static final boolean BuildForIndirectIMT = true &&

BuildForIMTInterfaceInvocation;

public static final boolean BuildForEmbeddedIMT = !BuildForIndirectIMT &&

BuildForIMTInterfaceInvocation;

public static final boolean BuildForITableInterf aceInvocation = false ;

public static final boolean DirectlyIndexedITables = true &&

BuildForITableInterfaceInvocation;

public static final boolean BuildForIZoneInterfaceInvocation = true;

This class defines the format of a Type Information Block. An IZone pointer is inserted into

the TIB, which occupies the same entry as the indirect IMT pointer or itable pointer. A

new field of integer type, TIBJZONE-TIBINDEX, is added to to record the offset of the

IZone pointer in the TIB. The value of the field TIBJTABLES-TIBJNDEX, which gives

the offset of the itable pointer, is changed accordingly after the IZone pointer is inserted.

// Number of slots reserved for interface method pointers.

static final int IMT-METHOD-SLOTS =

VM.BuildForIMTInterfaceInvocation ? 100 : 0;

static final int TIB-INTERFACE-METHOD-SLOTS =

VM.BuildForEmbeddedIMT ? IMT-METHOD-SLOTS : 0;

// First slot of tib points to VM-Type (slot 0 in above diagram).

static final int TIB-TYPE-INDEX = 0;

APPENDIX A. MODIFICATIONS TO JIKES RVM

// A vector of ids for classes that this one extends.

// (see vm/classLoader/VM-DynamicTypeCheck. j ava)

static final int TIB-SUPERCLASS-IDS-INDEX = TIB-TYPE-INDEX + 1;

/ / "Does this class implement the ith interface?"

// (see vm/classLoader/VM-DynamicTypeCheck. j ava)

static final int TIB-DOES-IMPLEMENT-INDEX = TIB-SUPERCLASS-IDS-INDEX + 1;

// The TIB of the elements type of an array (may be null in fringe cases

// when element type couldn't be resolved during array resolution).

// Will be null when not an array.

static final int TIB-ARRAY-ELEMENT-TIB-INDEX = TIB-DOES-IMPLEMENT-INDEX + 1;

// If VM.BuildForIZoneInterfaceInvocation, then allocate 1 TIB entry to

// hold an IZone (this entry is only valid for an interface)

static final in t TIB-IZONE-TIB- INDEX = TIB-DOES- IMPLEMENT-INDEX +
(VM.Bui1dForIZoneInterfaceInvocation ? 1 : 0);

// If VM.ITab1eInterfaceInvocation then allocate 1 TIB entry to hold

// an array of ITABLES

static final int TIB-ITABLES-TIB-INDEX = TIB-IZONE-TIB-INDEX +
(VM.BuildForITableInterfaceInvocation ? 1 : 0);

// If VM.BuildForIndirectIMT then allocate 1 TIB entry to hold a

// pointer to the IMT

static final int TIB-IMT-TIB-INDEX =

TIB-ITABLES-TIB-INDEX + (VM.Bui1dForIndirectIMT ? 1 : 0);

// Next group of slots point to interface method code blocks

// (slots 1..K in above diagram).

static final int TIB-FIRST-INTERFACE_METHOD_INDEX = TIB-IMT-TIB-INDEX + 1;

// Next group of slots point to virtual method code blocks

// (slots K+1. .K+N in above diagram).

static final int TIB-FIRST-VIRTUAL-METHOD_INDEX =

APPENDIX A. MODIFICATIONS T O JIKES RVM

TIB-FIRST-INTERFACE-METHOD-INDEX + TIB-INTERFACE-METHOD-SLOTS;

/ / Special value returned by VM-ClassLoader.getFieldOffset() or

// VM-ClassLoader.getMethodOffset() to indicate fields or methods that

// must be accessed via dynamic linking code because their offset is not

// yet known or the class's static initializer has not yet been run.

/ /
// We choose a value that will never match a valid jtoc-, instance-,

// or virtual method table- offset. Zero is a good value because:

// slot 0 of jtoc is never used

// instance field offsets are always negative w.r.t. object pointer

/ / virtual method offsets are always positive w.r.t. TIB pointer

/ / 0 is a "free" (default) data initialization value

/ /
public static final int NEEDS-DYNAMIC-LINK = 0;

This class defines the fields and methods of the virtual machine that are needed by compiler-

generated machine code.

A new field, invokelnterfaceIZoneOn1yMethod, is introduced to this class to facilitate the

invocation of the method invokeInterfaceJZoneOnly. This method is declared in the class

com.ibm. JikesRVM.classloader. VM-Interfacelnvocation, and called from the class

com.ibm. JikesRVM.classloader. VM-Compiler by its method emit-invokeinterface.

public static final w e t h o d invokeInterfaceIZoneOnlyMethod =

getMe thod ("Lcom/ibm/JikesRVM/classloader/VM~~nterf ace~nvoca tion; ",
ninvokeInterface-IZoneOnly ",

(L java/lang/Object ; 11 I Lcom/ibm/ Ji kesRVM/VM-CodeArray; If) ;

APPENDIX A. MODIFICATIONS T O JIKES RVM

This class represents a Java "class" or LLinterface" type. It provides functions for class

loading, resolution, instantiation, initialization, etc.

The class loading function is revised so that the methods declared by the current class

or interface are assigned declaration orders when it is being loaded.

A resolution order dictionary (int orderDict[]) is used to record the resolution orders of

the class represented by the current VM-Class instance. An integral field nextorder is

used for resolution order assignment. The resolution order dictionary is valid with a class

type, and the nextorder field is valid only with an interface type. Some supporting functions

are added to manage and retrieve order information in/from the order dictinary.

VM-Class(VM-TypeReference typeRef, DataInputStream input)

throws ClassFormatError, IOException (

.
int numMethods = input. readunsignedshort () ;

if (numMethods == 0) C

declaredMethods = emptyVMMethod;

) else C
declaredMethods = new VM-Method CnumMethodsI ;

for (int i = 0; icnumMethods; i++) (

int mmodifiers = input.readUnsignedShort0;

VM-Atom methodName = getUtf (input. readunsignedshort ()) ;

VM-Atom methodDescriptor = getUtf (input. readunsignedshort 0) ;
VM-MemberReference memRef = VM-MemberReference.findDrCreate(

typeRef , methodName, methodDescriptor) ;
VM-Method method =

VM-Method.readMethod(this, memRef, mmodifiers, input);

APPENDIX A. MODIFICATIONS TO JIKES RVM

declaredMethods [il = method;

if (method. isCLassInitializer 0)
classInitializerMethod = method;

3
3

private int nextorder = 1; // next order to be assigned to a subclass
// valid only when this is an interface

// the initial size of an IZone = (IZONE_INITIAI-TIMES) *
// (# of method declared by the interface), i.e., the initial size can

// contain the implementation lookup areas of (IZONE-INITIAL_TIMW)

// classes.

public static final int IZONE-INITIAL-TIMES = 1;

public final synchronized int getNextOrder0 E
return nextorder++;

1

/* the following field and methods are valid only when this is a class,
not an interface

* /

// superinterfaces' view of this class' order; the order is indexed by

// interface id, i.e., orderDictCi1 is the interface (with id = i)'s

// view on this class' order. The initial value of the array elements

// is 0; valid order begins from 1.

private int orderDictf1 = new intf1001;

public int get0rder~romDict(V141~Class ainterface) {

fnt id = ainterface.getInterfaceId0;
return getOrder~rnm~ict(id);

1
public int getOrderFrom~ict(int interfacerdl f

APPENDIX A. MODIFICATIONS TO JIKES RVM

if(interfaceId < orderDict.length) return order~ict[interfaceIdl;
else return 0;

3

public void addOrderTo~ict(VM_Class ainterface, int order) C

int id = ainterface.getInterfaceId0;

if(id >= orderDict.length1 E
intfl tmg = new intfinterfaces.length1;

System.arraycopy(orderDict, 0, tmp, 0, orderDict.1ength);

orderDict = tmp;

3

orderDi ct [id] = order;

3

// the smallest integer that is not less than the logarithm (base 2)

// of # declared methods; -1 reprsents a invalid value.

private int adjustecWDeclaredMethodsLg = -1;

// Set the value of adjustedNDeclaredMethodsLg

// parameter num: # of methods declared by this class

// if num = 0, keep adjustedNDeclaredMethodsLg as -1

public void setAdjustedNDeclaredMethodsLg(int num) E

if (num > 0) adjustedNDeclaredMethodsLg =

(int) Math.cei1 (Math. log(num) / Math. log(2)) ;

3

public int getAdjustedNDeclaredMethodsLg() f

return adjustedNDeclaredMethodsLg;

1

This class represents the Java methods. It provides functions for method resolution and

compilation.

One more field, declaringorder, is added to record the current method's declaration

order by its declaring class or interface. Two functions are added to set or get the value of

APPENDIX A. MODIFICATIONS TO JIKES RVM

the declaration order.

protected vM-Method(VM-Class declaringclass, VM-MemberReference memRef,

int modifiers, VM-TypeReference[] exceptionTypes) (

super(declaringClass, memRef, modifiers & APPLICABLE-TO-METHODS);

memRef.as~ethodReference().setResolvedMember(this);

this.exceptionTypes = exceptionTypes;

this.declaring0rder = -1; // -1 is invalid value; set to valid value
// during class loading

// the order that the declaring class declares this method;

// the first declared method has order 0; the secondly has order 1

grivat e int decl aringorder;

public void setDeclaringOrder(int order) {

this. declaringorder = order;

3

public int getDeclaringOrder0 {

return this.declaringOrder;

3

This class defines runtime system mechanisms and data structures to implement interface

invocation.

A few functions are added to this class for IZone construction, implementation lookup

area installation, IZone based interface invocation, and IZone entry updataing.

The old implementation of the function getlTableIndex is replaced by a more efficient

one. Rather than searching the itable to.determine an interface method's offset, the new

implementation calculates the offset using the method declaration order.

APPENDIX A. MODIFICATIONS TO JIKES RVM

.
public static VM-CodeArray invokeInterface(0bject target, int mid)

throws IncompatibleClassChangeError (

VM-MethodReference mref = VM-MemberReference.getMemberRef(mid1.

asMethodRef erence 0 ;

VM-Method sought = mref.resolveInterfaceMethod0;

VM-Class I = sought.getDeclaringClass();

VM-Class C = VM-Magic . getObj ectType (target) . asclass () ;

if (VM.BuildForIZoneInterfeceInvocation~ {

Object[] tib-i = I.getTygeInformationBlock();

Object [I iZone = (Object [I tib-i [TIB-IZOmTIB-INDEX];
return (VM-CodeArray) iZone [ge tIndexInIZone (C. ge tOrderFromDict (I),

I.getAdjustedNDeclaredMethodsLg(), sought.get~eclaringOrder())l;

3

else if (VM.~uildForITable~nterfaceInvocation) E

Object[] tib-c = C . g e t ~ e I n f o r m a t i o n B l o c k 0 ;

Object [I iTable = findITable(tib-c, I.getInterfaceId0);

re turn (VM_CodeArrayl i Tab1 e [ge tITabl eIndex (sough t) I ;

3

else (// naive implementation

if (!VM-~untime. is~ssignableWith(1, C))

throw new IncompatibleClassChangeErrorO;

VM-Method found = C . f indVirtualMethod (sought. get Name () ,
sought. getDescriptor 0 ;

if (found == null) throw new Incompat ibleClassChangeError () ;

return found.getCurrentInstructions0;

public static WCodeArray invoke~nterface~~~one~nly(Object target,

int declaringIn terfaceId, int morder) E

VM-Class C = VM-~agic.get~bject'Syge(target) .asclass();

K c l a s s I = ~~_~lass.get~nterface(declaringInterfaceId);

Object[] tib-i = ~.get~yge~nfonnationBlock();

APPENDIX A. MODIFICATIONS TO JIKES RVM

Object [I iZone = (Object [I) tib-i [TIB-IZONE_TIB-INDEX];

int idx = get~ndexInIZone(~.get~rder~ranr~ict(declaringInterfaceId),
I.getAdjustecWDeclaredMethodsLg0, mOrderl;

return (VM-CodeArray) iZone [idxl ;

1

public static void initializeDispatchStructures(VM~Class klass) (

// if klass is abstract, we'll never use the dispatching structures.

if (klass.isAbstract0) return;

VM-Class [I interfaces = klass . getA11ImplementedInterf aces 0 ;
if (interfaces.length == 0) return;

if (VM.BuildForIMTInterfaceInvocation) (

IMTDict d = buildIMTDict(klass, interfaces);

if (VM.BuildForEmbeddedIMT) (

populat eEmbeddedIMT (klass , d) ;
3 else (

populateIndirectIMT(klass, d) ;

3
3
else if (~~.DirectlyIndexedITables) (

populateITables (klass , interfaces) ;

3

else if (VM.~uildForIZoneInterfaceInvocation) {

populateIZones (klass, interfaces) ;

3

/**
* Populate IZones for all interfaces that "thisw class implements
* @param klass the klass that implements some interfaces
* @param super-interfaces the interfaces that klass implements
*/

private static void populateIZones(VM_Class klass,

APPENDIX A. MODIFICATIONS TO JIKES RVM

W C l a s s [I super-interfaces) f

for (int i = 0; i < super-interfaces.length; i ++) {

synchronized (super-interfaceslil) f

installIZone (klass, super-interfaces lil) ;

1

3

3

/**
* Install IZone for an interface that "thisrf class implements
* @param klass the klass that implements some interfaces
* @param super-interface an interface that klass implements
*/

private static void installIZone(VM_Class klass,

W C l a s s super-interface) {

int lg = super~interface.getAdjustedNDec1aredMethodsLg~);
// no IZone will be created if the interface declares no method

if (lg == -1) return;

int corder = klass.getOrderFromDict(super~interface);

if(c0rder != 0) return; // the order is already in the dictionary

// add order into the dictionary

corder = super-interface.getNextOrder();

klass.addOrderToDict(super~interface, corder);

Object tibl] = suger~interface.getTyge~nformation~lock~);

// iZone is associated with super-interface, not klass

Object iZone [I = (Object [I I tibfTIB-IZONE-TIB-INDEX];

int iZoneInitSize = (1 << lg) * VM_Class.IZONE_INITIAL-TIMES;
if (iZone == null) f // initialize IZone if it is null

iZone = new ~bject[iZoneInitSizel;

tib lTIB-IZONE_TIB-INI7EXI = i Zone;

3 else if ((corder << lgl > iZone.length) {

// expand IZone if needed

Object tm~[] = new 0bjectfiZone.length + iZoneInitSize1;

APPENDIX A. MODIFICATIONS TO JIKES RVM

System. arraycopy(iZone, 0, tmp, 0, iZone, length) ;

iZone = tmp;
tib [TIB-IZOM-TIB-INDEX] = iZone;

// create klass' lookup area in super-interface's IZone

w e t h o d iMethods[l = super~interface.getDeclaredMethods0;

for (int i = 0; i < iMethods.length; i ++) f

Vlll-Method im = iMethodsti1;

if (im.isClassInitializer0) continue;

if (Vlll. ~ e r i fyAssertions)

VM.-assert (im.isPublic 0 && im.isAbstract 0 1 ;

w e t h o d vm = klass. findvirtual~ethod (im. getName 0 ,

im.getDescriptor0);

if (vm == null / / vm.is~bstract 0) f

vm = VM_Entrygoints.raiseAbstractMethodError;

3 else if (!vm.isPublicO) f

vm = VM_Entrygoints.raiseIllegalAccessError;

3

in t indexInIZone = get IndexInIZone (corder, lg, i ;

if (vm.isStatic0) f

vm.compile0;

i~one[indexInIZone] = vm.get~urrent~nstructionsO;

3 else f

Object tib-c[l = k l a s s . g e t ~ e I n f o r m a t i o n B l o c k 0 ;

izone [indexInIZonel =

(VM-CodeArray) tib-c [vm. getof f set 0 >>LOG-BYTES-IN-ADDRESS] ;

I

1

3

/**
* @param corder the resolution order of the class which implements
* this interface method

* @garam adjustedNMethodsLg the smallest integer that is no less than

APPENDIX A. MODIFICATIONS TO JIKES RVM

* the log (base 2) of # of methods that the interface has declared

* @garam mOrder the interface method's declaring order

* @return the interface method's index in the IZone

*/
griva te static int get IndexInIZone (int corder, in t ad justedN&fethodslg,

int mOrder) f

return ((corder-1) << adjustedNMethodsLg) + mOrder;
3

/**
* Return the index of the interface method im in the itable
* Using declaring order makes this method more efficient.
*/

public static int getITableIndex(VM_Method im) f

if (VM. ~ e r i fyAssertions)

VM.~assert(VM.Build~or~~ableInterfaceInvocation);

if (VM. veri fyAssertionsl

VM.-assert (im.getDeclaringClass 0 .isInterface 0 1 ;

return im.get~eclaringOrder0 + 1;
1

* If there is an an IZone or IMT or ITable entry that contains compiled
* code for the argument method, then update it to contain the c,urrent
* compiled code for the method.
*
* @param klass the VM-Class who's IMT/ITable is being reset, or who
* implements an interface method by declaring m (IZone)

* @param m the method that needs to be updated, klass' virtual method.

* This method is only called by VM-Class.updateTIBEntry(VM-Method m)
*/

public static void updateTIBEntry(VM-Class klass, VM-Method m) (

if (VM.~uild~or~~one~nterfaceInvocation~ {

if (klass.isAbstract 0) return;

VM-Class [I interfaces = klass. getAllImglementedInterfaces I) ;

APPENDIX A. MODIFICATIONS TO JIKES RVM

for (int i = 0; i < interfaces.length; i ++) E

K c l a s s itf = interfaces Iil;

VM-Method iMethod = it f . findDeclaredMethod (m. getName () ,
m. getllescriptor (1 1 ;

if (iMethod == null continue;

int index = get~ndex~n~~one(klass.get~rder~rnm~ict(itf),

itf.get~djustedNDeclaredMethodsLg(),

i~ethod.getDeclaringOrder());

Object[] tib = itf.getType~nfonnationBlockO;

Object [I izone = (Object [I) tib [TIB-IZONE-TIB-INDEX] ;

i&one[indexl = m.get~urrent~nstructions();

else if (VM.BuildForIMTInterfaceInvocation) C
Object [I tib = klass .getTypeInf ormationBlock() ;

VM-Method[] map = klass.noIMTConf1ictMap;

if (map != null) C
for (int i = 0; i<IMT-METHOD-SLOTS; i++) (

if (map Cil == m) (

if (VM. BuildForIndirect IMT) (

VM-CodeArray C1 IMT =

(VM-CodeArray [I) tib CTIB-IMT-TIB-INDEX1 ;

IMT Cil = m. getCurrentInstructions 0 ;

3 else C
tib [i+TIB-FIRST-INTERFACE-METHOD-INDEX] =

m.getCurrentInstructions~);

3
return; / / all done -- a method is in at most 1 IMT slot

3
1

3
3
else if (VM.BuildForITableInterfaceInvocation) (

Object [I tib = klass . getTypeInf ormationBlock() ;

APPENDIX A. MODIFICATIONS TO JIKES RVM

if (tib [TIB-ITABLES-TIB-INDEX] ! = null) (

Object [I iTables = (Object [I)tib [TIB-ITABLES-TIB-INDEX] ;
VM-Atom name = m.getName0;

VM-Atom desc = m.getDescriptor();

for (int i=O; i<iTables.length; i++) (

Object [] iTable = (Object [I) iTables [il ;
if (iTable != null) C

VM-Class I = (VM-Class) iTable CO1 ;

VM-Method [I interf aceMethods = I. getDeclaredMethods 0 ;
for (int j=O; jcinterf aceMethods . length; j++) C

VM-Method im = interf aceMethods [j] ;

if (im.getName() == name && im.getDescriptor0 == desc) 1

A.7 com.ibm. JikesRVM.VM-Compiler (IA32 version)

This is the baseline compiler class for the IA32 architecture. It translates bytecode instruc-

tions into IA32 machine code.

The method emit-invokeinterface is modified so that it is able to translate the bytecode

instruction invokeinterface into the machine code that are specific to the IZone approach.

.
protected final void emit-invokeinterface(VM-MethodReference methodRef) (

.
// (2) Emit interface invocation sequence.

APPENDIX A. MODIFICATIONS TO JIKES RVM

if (W . ~uild~or~~one~nterfaceInvoca tion) f

if (resolvedMethod == null) f

int methodRefId = methodRef.getId0;
asm. emi tPUSH-RegDisp (SP, (count -1) <<LG-WORDSIZE) ;

// "thisn parameter is obj

asm. emitPUSH-Innn (methodRef Id) ; // id of method to call

genParameterRegisterLoad(2); // pass 2 parameter words

asm. emi tCALL-RegDisp (JTOC,

~~_~ntrypoints.invokeInterfaceMethod.getOffset~));

// invokeinterface(obj, id) returns address to call

a m . emi tMOV-Reg-Reg (SO, TO) ; // SO has address of method

genParameterRegisterLoad(methodRef, true);

asm. emitCALL-Reg(S0) ; // the interface method

1 else f

int declaringInterfaceId =

resolvedMethod.get~eclaringClass~~.getInterfaceId();

int mOrder = resolvedMethod.getDeclaringOrder~~;

a m . emi tPUSH-RegDisp (SP, (count -1 l <<LO-WORDSIZE) ;

asm. emi tPUSH-Imm (declaringInterfaceId) ;

// id of the declaring interface

a m . emi tPUSH-Innn (mOrder) ; // declaration order

gen~arameter~egisterLoad(3); // pass 2 parameter words

asm . emit CALL-RegDisp (JTOC,
VM_Entrygoints.invokeInterfaceIZoneOnlyMethod.getOffset~));

// call invokeinterface-~ZoneOnly(obj, id, morder)

a m . emitMOV-Reg-Reg (SO, TO) ;

genparamet erRegisterLoad (methodRef, true) ;

asm. emi tCALL_Reg (SO) ;

1

1

else if (VM.BuildForIMTInterfaceInvocation) (

APPENDIX A. MODIFICATIONS TO JIKES RVM

This class is to convert the instructions with HIR-only operators into an equivalent se-

quence of LIR operators. The method callHelper is modified so that it could generate LIR

instructions that are specific to the IZone approach.

.
s t a t i c OPT-Instruction callHelper(OPT~Instruction v , OPT-IR ir) C

if (VM.Bui1dForIZoneInterfaceInvocation) {

OPT-Registeroperand realAddrReg =
ir. regpool .makeTamg (VM_llgeReference. CodeArray) ;

W-Me thod target ;

OPT-Instruction vp;

if (! meth0p.hasTarget 0 E
// Create an instruction of the Call instruction format

// with 2 variable arguments

target = VM-Entrygoints.invokeInterfaceMethod;

vp = Call.create2(CALL, realAddrReg, I(target.getOffset0).
OPT-Methodoperand. STATIC (target),

Call .getparam (v, 0) .asRegister 0 .copyU2U(),

I(methOp.getMemberRefO.getId0));

1 else C

target = VM_Ent~oints.invokeInterfaceI~oneOnly~ethod;

vp = Call.create3(CALL, realAddrReg, I(target.getOffset0).

OPT-Me thodoperand. STATIC (target).

Call .getParam(v, 0) .asRegisterO .copy~2U

I (methop.getTarget 0 .getDeclaringClass ()

I(methop.getTargetO.getDeclaringOrder0

I
vg.position = v.position;

vp . bcIndex = R LmTTIME-SERVICES-BCI;

// Insert vg immediately before v in the instruction stream

v. f nsertBack (-1;

callHelper (vg, ir) ;

Call. setAddress (v, realAddrReg. copyD2U ()) ;

APPENDIX A. MODIFICATIONS T O JIKES RVM

3 else if (VM.BuildForIMTInterfaceInvocation) (

Appendix B

XML Files

Implementation correctness is verified by running Xerces-J Parser 1.4.4 on the Jikes RVM

versions that adopt one of the six interface invocation approaches. XML files are feed to the

DOM and SAX parsers and the outputs are compared with that generated by the standard

Sun JVM.

We only show one file allelements.xml here. This file stores the periodic table in XML

format. It is archived on the website ibiblio.org. It has 110 kilobytes in total.

<ATOM>

<NAME>Actinium</NAME>

<ATOMIC-WEIGHT>227</ATOMIC_WEIGHT>

(ATOMIC-NUMBER>89</ATOMICCNUMBER>

~OXIDATION~STATES>3~/OXIDATION~STATES>

(BOILING-POINT UNITS="Kelvin">3470~/BOILING~POINT>

<SYMBOL>Ac</SYMBOL>

(DENSITY UNITS="grams/cubic centimeterM><!-- At 300K -->

10.07

</DENSITY>

(ELECTRON-CONFIGURATION>[Rn] 6dl 7s2 </ELECTRON-CONFIGURATION>

<ELECTRONEGATIVITY>I.~(/ELECTRONEGATIVITY>

APPENDIX B. XML FILES

(BOILING-POINT UNITS="Kelvin">274O~/BOILING~POINT>

<DENSITY UNITS="grams/cubic centimeterH><!-- At 300K -->

2.7

</DENSITY>

(ELECTRON-CONFIGURATION>[Nel 3s2 pl </ELECTRON-CONFIGURATION>

(COVALENT-RADIUS UNITS="Angstroms">1.18</COVALENT-RADIUS>

APPENDIX B. XML FILES

(HEAT-OF-FUSION UNITS="kilojoules/mole">

10.7

</HEAT-OF-FUSION>

<IONIZATION~POTENTIAL>5.986~/IONIZATION~POTENTIAL>

<SPECIFIC-HEAT-CAPACITY UNITS="Joules/gram/degree KelvinM>

0.9

</SPECIFIC-HEAT-CAPACITY>

(THERMAL-CONDUCTIVITY UNITS="Watts/meter/degree Kelvinu>

<!-- At 300K -->

237

</THERMAL-CONDUCTIVITY>

</ATOM>

<ATOM STATE="GASM>

<NAME>Argon</NAME>

<ATOMIC-WEIGHT>39.948</ATOMIC_WEIGHT>

(ATOMIC-NUMBER>18</ATOMIC-NUMBER>

(BOILING-POINT UNITS="Kelvin">87.45~/BOILING~POINT>

(MELTING-POINT UNITS="Kelvin">83.95</MELTING-POINT>

<SYMBOL>Ar</SYMBOL>

(DENSITY UNITS="grams/cubic centimetern><!-- At 300K -->

1.784

</DENSITY>

(ELECTRON-CONFIGURATION>CNel 3s2 p6 </ELECTRON-CONFIGURATION>

(COVALENT-RADIUS UN1TS="Angstroms">0.98</C0VALENT~RAD1US>

<ELECTRONEGATIVITY>O(/ELECTRONEGATIVITY>

<ATOMIC-RADIUS UNITS=11Angstroms">0.88(/ATOMIC~RADIUS>

<HEAT-OF-VAPORIZATION UNITS="kilojoules/mole">

APPENDIX B. XML FILES

6.506

</HEAT-OF-VAPORIZATION>

<ATOMIC-VOLUME UNITS="cubic centimeters/mole">

24.2

</ATOMIC-VOLUME>

(HEAT-OF-FUSION UNITS="kilojoules/mole">

1. I88

</HEAT-OF-FUSION>

<IONIZATION~POTENTIAL>15.759~/IONIZATION~POTENTIAL>

<SPECIFIC-HEAT-CAPACITY UNITS="Joules/gram/degree Kelvinu>

0.52

</SPECIFIC-HEAT-CAPACITY>

(THERMAL-CONDUCTIVITY UNITS="Watts/meter/degree Kelvinuu>

<!-- At 300K -->

O.Ol77

</THERMAL-CONDUCTIVITY>

</ATOM>

<ATOM>

<NAME>Zinc</NAME>

(ATOMIC-WEIGHT>65.39</ATOMIC-WEIGHT>

(ATOMIC-NUMBER>30</ATOMIC-NUMBER>

<OXIDATION-STATES>2</0XIDATION-STATES

(BOILING-POINT UNITS="Kelvin">1180~/BOILING~POINT>

(MELTING-POINT UNITS="Kelvin">692.73</MELTING-POINT>

<SYMBOL>Zn</SYMBOL>

(DENSITY UNITS="grams/cubic centimeterH><!-- At 300K -->

7.13

</DENSITY>

(ELECTRON-CONFIGURATION>CArl 3d10 4s2 </ELECTRON-CONFIGURATION>

APPENDIX B. XML FILES

(COVALENT-RADIUS UNITS="Angstroms'1>l.25~/COVALENT~RADIUS>

<ELECTRONEGATIVITY>1.65</ELECTRONEGATIVITY>

(ATOMIC-RADIUS UNITS="Angstroms">l.38~/ATOMIC~RADIUS>

<HEAT-OF-VAPORIZATION UNITS="kilojoules/mole">

115.3

</HEAT-OF-VAPORIZATION>

(ATOMIC-VOLUME UNITS="cubic centimeters/mole">

9.2

</ATOMIC-VOLUME>

<HEAT-OF-FUSION UNITS="kilojoules/molel~>

7.38

</HEAT-OF-FUSION>

~IONIZATION~POTENTIAL>9.394~/IONIZATION~POTENTIAL~

<SPECIFIC-HEAT-CAPACITY UNITS="Joules/gram/degree Kelvinn>

0.388

</SPECIFIC-HEAT-CAPACITY>

<THERMAL-CONDUCTIVITY UNITS="Watts/meter/degree Kelvinu>

<!-- At 300K -->

, 116

</THERMAL-CONDUCTIVITY>

</ATOM>

<ATOM>

<NAME>Zirconium</NAME>

~ATOMIC-WEIGHT>91.224</ATOMIC_WEIGHT>

<ATOMIC-NUMBER>40</ATOMIC-NUMBER>

~OXIDATION~STATES>4~/OXIDATION~STATES>

(BOILING-POINT U N I T S = " K ~ ~ V ~ ~ ~ ~ > ~ ~ ~ ~ < / B O I L I N G ~ P O I N T >

(MELTING-POINT UNITS="Kelvin">2128</MELTING-POINT>

<SYMBOL>Zr</SYMBOL>

(DENSITY UNITS=llgrams/cubic centimeteru><!-- At 300K -->

6.51

</DENSITY>

APPENDIX B. XML FILES

(ELECTRON-CONFIGURATION>CKrl 4d2 5s2 </ELECTRON-CONFIGURATION>

(COVALENT-RADIUS UNITS="Angstroms">l.45</COVALENT~RADIUS>

~ELECTRONEGATIVITY>1.33</ELECTRONEGATIVITY>

(ATOMIC-RADIUS UNITS="Angstroms">l.6~/ATOMIC~RADIUS>

<HEAT-OF-VAPORIZATION UNITS="kilo j oules/mole">

590.5

</HEAT-OF-VAPORIZATION>

(ATOMIC-VOLUME UNITS="cubic centimeters/mole">

~IONIZATION~POTENTIAL>6.84~/IONIZATION~POTENTIAL>

<SPECIFIC-HEAT-CAPACITY UNITS="Joules/gram/degree Kelvinn>

0.278

</SPECIFIC-HEAT-CAPACITY>

(THERMAL-CONDUCTIVITY UNITS="Watts/meter/degree Kelvin1'>

Appendix C

Artificial Test Cases

C.l Interface Invocation: Test Case 1

Test case 1 defines 20 interfaces Mylnterfacel-20, and two classes MyClassA and My-

ClassB. M y I n t e r f a c e l ~ 2 0 are the direct superinterfaces for both classes. Each interface

declares only one method, which is implemented as a trivial call by both classes.

in te r face MyInterf ace1 (

public i n t a O 0 ;

1

in te r face MyInterface2 (

public i n t bO 0 ;

1

in te r face MyInterface3 (

public i n t C O O ;

in te r face MyInterf ace4 (

public i n t do() ;

1

APPENDIX C. ARTIFICIAL TEST CASES

in te r face MyInterface5 (

public i n t eO0 ;

1

in te r face MyInterf ace6 (

public i n t f O 0 ;

1

in te r face MyInterface7 (

public i n t g o 0 ;

1

in te r face MyInterf ace8 {

public i n t hO0 ;

3

in te r face MyInterf ace9 (

public i n t i O 0 ;

3

in te r face MyInterfacelO (

public i n t j O 0 ;

3

in te r face MyInterf ace11 {

public i n t mO () ;

3

in te r face MyInterfacel2 (

public i n t n o 0 ;

3

in te r face MyInterf ace13 (

APPENDIX C. ARTIFICIAL TEST CASES

public int p O 0 ;

3

interface MyInterf ace14 (

public int qO 0 ;

3

interface MyInterf ace15 C

public int rO 0 ;

3

interface MyInterf ace16 C

public int s O 0 ;

3

interface MyInterfacel7 C

public int t O 0 ;

3

interface MyInterfacel8 C

public int uO () ;

3

interface MyInt erf ace19 C

public int vO 0 ;

>

interface MyInterface20 C

public int W O O ;

1

class MyClassA implements MyInterfacel, MyInterface2, MyInterface3,

APPENDIX C. ARTIFICIAL TEST CASES 89

MyInterface4, MyInterface5, MyInterface6, MyInterface7,

MyInterface8, MyInterface9, MyInterfacelO, MyInterfacell,

MyInterfacel2, MyInterfacel3, MyInterfacel4, MyInterfacel5,

MyInterfacel6, MyInterfacel7, MyInterfacel8, MyInterfacel9,

MyInterf ace20 C
public boolean b = false;

public int a00 C return 0;)

public int bO0 (return 1;)

public int COO (return 2;)

public int do0 C return 3;)

public int eO0 (return 4;)

public int f O 0 (return 5;)

public int go() { return 6;)

public int hO0 (return 7;)

public int iO0 (return 8;)

public int jO0 (return 9;)

public int mO0 C return 10;)
public int no0 (return 11;)

public int pO0 (return 12;)

public int qO() (return 13;)

public int rO 0 1 return 14;)
public int so0 (return 15;)

public int to0 C return 16;)

public int uO() (return 17;)

public int vO0 C return 18;)

public int WOO C return 19;)

public void mya0 0 (System. out. println("0") ; 3
public void myalo (System.out.println("1");)

public void mya20 CSystem.out.println("2");)

public void mya30 (System.out.println("3");)

APPENDIX C. ARTIFICIAL TEST CASES

public void mya4() (System.out.println(4);)

public void mya5() (System.out.println("5");)

public void mya6() (System.out.println("6");)

public void mya7() (System.out.println("7");)

public void mya8() (System.out.println("8");)

public void mya9 0 (System. out .println("9") ; 3

public int myb00 (

mya00; mya10; mya20; mya30; mya40;

mya50; mya60; mya70; mya80; myago;

return 100;

class MyClassB implements MyInterface20, MyInterfacel9, MyInterfacel8,

MyInterfacel7, MyInterfacel6, MyInterfacel5, MyInterfacel4,

MyInterfacel3, MyInterfacel2, MyInterfacell, MyInterfacelO,

MyInterface9, MyInterface8, MyInterface7, MyInterface6,

MyInterface5, MyInterface4, MyInterface3, MyInterface2,

MyInterf ace1 {

public boolean b = false;

public int WOO (return 119;)

public int vO0 C return 118;)
public int uO0 (return 117;)

public int to0 € return 116;)

public int so0 (return 115;)

public int r O 0 (return 114;)

public int qO0 (return 113;)

public int pO0 (return 112;)

public int no() (return 111;)

public int mO0 1 return 110;)

public int j O 0 1 return 109;)

APPENDIX C. ARTIFICIAL TEST CASES

public int iO0 (return 108;)

public int hO0 (return 107;)

public int go0 C return 106;)

public int f O 0 (return 105;)

public int eO0 { return 104;)

public int d o 0 (return 103;)

public int COO { return 102;)

public int bO0 { return 101;)

public int a00 { return 100;)

public void mya0 () (System. out .println("~") ; 3

public void myalo (system. out .println(ltltl) ; 3

public void mya20 {Sy~tem.out.~rintln("2");)

public void mya3 () {system. out .~rintln("3") ; 3
public void mya4 0 {System. out. ~rintln("4") ; 3
public void mya5() {Sy~tem.out.~rintln("5");)

public void mya60 (S y ~ t e m . o u t . ~ r i n t l n (" 6 ") ; 3

public void mya70 (System. out .~rintln("7") ; 3
public void mya8() (Sy~tem.out.~rintln("8");~

public void mya9() (Sy~tem.out.~rintln("9");3

public int myb00 {

mya00; myal0; mya20; mya30; mya40;

mya50; mya60; mya70; mya8(); myago;

return 100;

public class Testl (

public static void main(stringC1 args) (

Testl mytest = new Test10 ;

mytest. aaa(1nteger. parseInt (args [OI)) ;

3

APPENDIX C. ARTIFICIAL TEST CASES

public void aaa(int rounds) (

Object classArrayC1 = new Object [2] ;

MyClassA myA = new MyClassAO; myA.b = true;

MyClassB myB = new MyClassBO; myB.b = true;

classArray COl = myA;

classArray [ll = myB;

MyInterfacel 1 MyInterface2 in2; MyInterface3 in3;

MyInterface4 in4; MyInterface5 in5; MyInterface6 in6;

MyInterface7 in7; MyInterface8 in8; MyInterface9 in9;

MyInterfacelO inlo; MyInterfacell inll; MyInterfacel2 in12;

MyInterfacel3 in13; MyInterfacel4 in14; MyInterfacel5 in15;

MyInterfacel6 in16; MyInterfacel7 in17; MyInterfacel8 in18;

MyInterfacel9 in19; MyInterface20 in20;

long times [I = new long [lo] ;

for (int i = 0; i < times.length; i ++) (

long result = 0;

long time-1 = System.currentTimeMillis();

for (int j = 0; j < rounds; j ++) (

Object ob = classArray Cj%21;

in1 = (MyInterfacel) ob; in2 = (MyInterface2) ob;

in3 = (MyInterface3) ob; in4 = (MyInterface4) ob;

in5 = (MyInterface5) ob; in6 = (MyInterface6) ob;

in7 = (MyInterface7) ob; in8 = (MyInterface8) ob;

in9 = (MyInterface9) ob; in10 = (MyInterfacelO) ob;

inll = (MyInterfacell) ob; in12 = (MyInterfacel2) ob;

in13 = (MyInterfacel3) ob; in14 = (MyInterfacel4) ob;

in15 = (MyInterfacel5) ob; in16 = (MyInterfacel6) ob;

in17 = (MyInterfacel7) ob; in18 = (MyInterfacel8) ob;

in19 = (MyInterfacel9) ob; in20 = (MyInterface20) ob;

APPENDIX C. ARTIFICIAL TEST CASES

long time-2 = System.currentTimeMi1lis~);

C.2 Interface Invocation: Test Case 2

Test case 2 defines 20 interfaces MyInterfacel-20, and two classes MyClassA and My-

ClassB. Mylnterfacel-20 are the direct superinterfaces for both classes. Each interface

declares only one method, which is implemented as a normal call by both classes.

interface MyInterf ace1 (

public int a0 (1 ;

3

interface MyInterf ace2 (

public int bO 0 ;

3

interface MyInterf ace3 (

public int C O O ;

3

APPENDIX C. ARTIFICIAL TEST CASES

interface MyInterface4 (

public i n t do 0 ;

3

interface MyInterface5 C
public i n t eO0 ;

3

interface MyInterf ace6 (

public i n t f 0 0 ;

3

interface MyInterf ace7 C
public i n t g o o ;

3

interface MyInterf ace8 C

public i n t hO0 ;

>

interface MyInterface9 C
public i n t i O 0 ;

3

interface MyInterf ace10 <
public i n t j O 0 ;

3

interface MyInterf ace11 (

public i n t mO () ;

3

interface MyInterf ace12 C

APPENDIX C. ARTIFICIAL TEST CASES

publ ic i n t no 0 ;

i n t e r f a c e MyInterfacel3 I
publ ic i n t pO0 ;

3

i n t e r f a c e MyInterf ace14 (

publ ic i n t qO () ;

3

i n t e r f a c e MyInterfacelS C

publ ic i n t r O 0 ;

3

i n t e r f a c e MyInterf ace16 (

publ ic i n t s O 0 ;

3

i n t e r f a c e MyInterf ace17 (

publ ic i n t t O 0 ;

3

i n t e r f a c e MyInterfacei8 (

publ ic i n t uO0 ;

3

i n t e r f a c e MyInterfacel9 C
publ ic i n t vO0 ;

3

i n t e r f a c e MyInterface20 (

publ ic i n t wO 0 ;

APPENDIX C. ARTIFICIAL TEST CASES

class MyClassA implements MyInterfacel, MyInterface2, MyInterface3,

MyInterface4, MyInterface5, MyInterface6, MyInterface7,

MyInterface8, MyInterface9, MyInterfacelO, MyInterfacell,

MyInterface12, MyInterfacelS, MyInterfacel4, MyInterfacel5,

MyInterfacel6, MyInterfacel7, MyInterfacel8, MyInterfacelS,

MyInterf ace20 (

public boolean b = false;

public int a00 C if (b) return 0;

public int boo (if (b) return 1;

public int COO (if (b) return 2;

public int do() (if (b) return 3;

public int eO0 (if (b) return 4;

public int f O 0 C if (b) return 5;

public int goo C if (b) return 6;

public int hO0 C if (b) return 7;
public int iO0 (if(b) return 8;

public int jO0 C if (b) return 9;

public int mO 0

public int n o 0

public int pO0

public int qO0

public int rO 0
public int SO()

public int to0

public int uO0

public int vO0

public int WOO

C if (b) return 10;

C if (b) return 11;

C if (b) return 12;

C if (b) return 13;

C if (b) return 14;
(if (b) return 15;

if (b) return 16;

(if (b) return 17;

I if (b) return 18;
(if (b) return 19;

else return myb00 ; 3

else return myb0 () ; 3

else return myb0 0 ; 3
else return myb0 0 ; 3

else return myb0 () ; 3
else return mybO();)

else return rnyb00;)

else return myb0 () ; 3
else return myb0 () ; 3

else return myb0 () ; 3

else return myb0 () ; 3
else return myb0 0 ; 3
else return myb0 0 ; 3
else return myb0 () ; 3
else return myb0 0 ; 3
else return myb0 0 ; 3
else return myb0 0 ; 3
else return myb00;)

else return myb0 0 ; 3

else return myb00 ; 3

APPENDIX C. ARTIFICIAL TEST CASES

public void mya00 (System.out.println("0");)

public void myalo {~ystem.out.println(~~l~~);3

public void mya20 (System.out.println("2");)

public void mya30 ~System.out.println("3");)

public void mya4() (Sy~tem.out.~rintln("4");)

public void mya50 (System.out.println("5");3

public void mya6 0 {System. out .println("6") ; 3
public void mya7() (System.out.println("7");)

public void mya80 (System. out. println("8") ; 1
public void myago (System. out .println("gt1) ;>

public int myb00 C

mya00; mya10; mya20; mya30; mya40;

mya50; mya60; mya70; mya80; myago;

return 100;

3
3

class MyClassB implements MyInterface20, MyInterfacel9, MyInterfacel8,

MyInterfacel7, MyInterfacel6, MyInterfacel5, MyInterfacel4,

MyInterface13, MyInterfacel2, MyInterfacell, MyInterfacelO,

MyInterface9, MyInterface8, MyInterface7, MyInterface6,

MyInterface5, MyInterface4, MyInterface3, MyInterface2,

MyInterf ace1 (

public boolean b = false;

public int wO 0 { if (b) return 119; else return myb0 0 ; 1
public int vO0 { if(b) return 118; else return myboo;)

public int uO0 1 if(b) return 117; else return myb00;3

public int t o 0 C if (b) return 116; else return myb00 ;)

public int SO() (if (b) return 115; else return myb00 ;)

public int rO() { if(b) return 114; else return myb00;)

public int qO0 C if (b) return 113; else return myb00 ;I
public int PO() (if (b) return 112; else return myb00;)

APPENDIX C. ARTIFICIAL TEST CASES

public int no0 (if (b) return 111; else return myb00 ; 3

public int moo (if(b) return 110; else return myb00;)

public int j O 0

public int iO()

public int h O 0

public int go ()

public int f O 0

public int eO 0

public int do ()

public int COO

public int bO()

public int a0 ()

C if (b) return 109; else return myb0 0 ; 1

(if (b) return 108 ; else return myb0 () ;)

(if(b) return 107; else return myboo;)

(if (b) return 106; else return myb00 ; 3

(if (b) return 105; else return myb00 ;)

(if (b) return 104; else return myb00;)

(if (b) return 103; else return myb00 ;)

(if (b) return 102; else return myb00 ;)

{ if (b) return 101; else return myb00 ;)

(if (b) return 100; else return myb0 0 ; 3

public void myaO() (Sy~tem.out.~rintln("Cl");)

public void myal() (System.out .~rintln("l") ; 3
public void mya2() (System. out .println("2") ; 1
public void mya3() (System.o~t.~rintln("3");>

public void mya4() (~~stern.out.~rintln("4");)

public void mya5() {~ystem.out.~rintln("5*);)

public void mya6() {System. out .~rintln("6") ;3
public void mya7() (~~stern.out.~rintln("7");)

public void mya8() (~ystem.out .println('t8'1) ;3
public void mya9() (System.out.println("9");~

public int myboo (

mya00; mya10; mya20; mya30; mya40;

mya50; mya60; mya70; mya80; myago;

return 100;

public class Test2 (

public static void main(String[] args) (

APPENDIX C. ARTIFICIAL TEST CASES

Test2 mytest = new Test2();

mytest. aaa(1riteger. parseInt (args [O])) ;

>

public void aaa(int rounds) -(

Object classArray [I = new Object [2] ;

MyClassA myA = new MyClassAO; myA.b = true;

MyClassB myB = new MyClassB(); myB.b = true;

classArray[O] = myA;

classArray Cll = myB;

MyInterfacel 1 MyInterface2 in2; MyInterface3 in3;

MyInterface4 in4; MyInterface5 in5; MyInterface6 in6;

MyInterface7 in7; MyInterface8 in8; MyInterface9 in9;

MyInterfacelO inlo; MyInterfacell inll; MyInterfacel2 in12;

MyInterfacel3 in13; MyInterfacel4 in14; MyInterfacel5 in15;

MyInterfacel6 in16; MyInterfacel7 in17; MyInterfacel8 in18;

MyInterfacel9 in19; MyInterface20 in20;

long times [I = new long [lo] ;

for (int i = 0; i < times .length; i ++) (

long result = 0;

long time-1 = System.currentTimeMil1is~);

for (int j = 0; j < rounds; j ++) (

Object ob = classArray [j%21;

in1 = (MyInterfacel) ob; in2 = (MyInterface2) ob;

in3 = (MyInterface3) ob; in4 = (MyInterface4) ob;

in5 = (MyInterface5) ob; in6 = (MyInterface6) ob;

in7 = (MyInterface7) ob; in8 = (MyInterface8) ob;

in9 = (MyInterface9) ob; in10 = (MyInterfacelO) ob;

inll = (MyInterfacell) ob; in12 = (MyInterfacel2) ob;

in13 = (MyInterfacel3) ob; in14 = (MyInterfacel4) ob;

APPENDIX C. ARTIFICIAL TEST CASES

in15 = (MyInterfacel5) ob; in16 = (MyInterfacel6) ob;

in17 = (MyInterfacel7) ob; in18 = (MyInterfacel8) ob;

in19 = (MyInterfacel9) ob; in20 = (MyInterface20) ob;

result += inl. a00 ; result += in2. b0() ; result += in3. COO ;

result += in4. d0 () ; result += in5. e0 0 ; result += in6. f 0 0 ;

result += in7. g0 () ; result += in8. h0 () ; result += in9. i0 0 ;

result += in10. j0() ; result += in11 .moo ; result += inl2.noO ;

result += inl3. p0 () ; result += inl4. q0 () ; result += inl5. r0 0 ;

result += inl6. SO () ; result += in17 . t0 () ; result += inl8. u0 0 ;
result += in19 . v0 () ; result += in20. WO (1 ;

3

long time-2 = System.currentTimeMi1lis~);

times [i] = time-2 - time-1;

System. out. print (result) ;

3

C.3 Interface Invocation: Test Cases 3 6

Test cases 3 ~ 6 define 20 interfaces M y I n t e r f a c e l ~ 2 0 , and two classes MyClassA and

M y ClassB. M y I n t e r f a c e l ~ 20 are the direct superinterfaces for both classes. Each in-

terface declares 100, 100, 200, 200 methods respectively in the 4 test cases, i.e., both classes

implement 2000, 2000, 4000, 4000 interface methods respectively. The interface methods in

test cases 3 and 5 are implemented as trivial calls, and the interface methods in test cases

4 and 6 are implemented as normal calls.

The source code of these 4 test cases is omitted in order to save space.

APPENDIX C. ARTIFICIAL TEST CASES

C.4 Virtual Invocation: Test Case v-1

The objective of the test case v-1 is to get the execution time of virtual methods, which are

all trivial calls. It is very similar with the test case 1 (for interface invocation), except that

every method is invoked upon a class reference, instead of an interface reference.

in te r face MyInterf ace1 (

public i n t a 0 0 ;

3

in te r face MyInterf ace2 {

public i n t bO0 ;

3

in te r face MyInterface3 (

public i n t C O O ;

3

in te r face MyInterf ace4 (

public i n t d o 0 ;

3

in te r face MyInterface5 C
public i n t e O 0 ;

3

in te r face MyInterf ace6 C
public i n t f O 0 ;

3

in te r face MyInterf ace7 (

public i n t go 0 ;

3

APPENDIX C. ARTIFICIAL TEST CASES

interface MyInterf ace8 C
public i n t hO (1 ;

3

in te r face MyInterface9 (

public i n t i O 0 ;

3

in te r face MyInterf ace10 C
public i n t j O 0 ;

3

in te r face MyInterf ace11 (

public i n t m o o ;
3

in te r face MyInterf ace12 (

public i n t no (1 ;

3

in te r face MyInterf ace13 C
public i n t pO0;

3

in te r face MyInterf ace14 (

public i n t qO 0 ;

3

in te r face MyInterfacel5 C
public i n t r O 0 ;

1

in te r face MyInterfacelG (

APPENDIX C. ARTIFICIAL TEST CASES

public i n t s O 0 ;

3

in te r face MyInterf ace17 (

public i n t t O 0 ;

1

in te r face MyInterf ace18 C
public i n t uO0 ;

3

in te r face MyInterf ace19 (

public i n t vO () ;

>

in te r face MyInterf ace20 (

public i n t wO 0 ;

3

c lass MySuperClass C
public i n t a0 0 C re turn 0; 3

public i n t bO0 C re turn 0;)

public i n t COO { re turn 0;)

public i n t do 0 C re turn 0; 1
public i n t eO0 C re turn 0;)

public i n t f O 0 C re turn 0;)

public i n t go() (re turn 0;)

public i n t hO0 C re turn 0;)

public i n t i O 0 C re turn 0;)

public i n t jO() (re turn 0;)

public i n t m O 0 C re turn 0;)

public i n t n o 0 C re turn 0;)

APPENDIX C. ARTIFICIAL TEST CASES

public int PO() (return 0;)

public int qO() (return 0;)

public int rO0 (return 0;)

public int s o 0 C return 0;)
public int to0 C return 0;)
public int uO() { return 0;)

public int vO0 C return 0;)
public int WOO C return 0;)

1

class MyClassA

extends Mysuperclass

implements MyInterfacel, MyInterface2, MyInterface3,

MyInterf ace4, MyInterf ace5, MyInterf ace6, MyInterf ace7,

MyInterface8, MyInterface9, MyInterfacelO, MyInterfacell,

MyInterfacel2, MyInterfacel3, MyInterfacel4, MyInterfacel5,

MyInterfacel6, MyInterfacel7, MyInterfacel8, MyInterfacel9,

MyInterf ace20 C

public int a00 C return 0;)
public int bO0 C return 1;)
public int COO C return 2;)
public int do0 C return 3;)

public int eO0 C return 4;)

public int f O 0 C return 5;)

public int go0 C return 6;)
public int hO0 C return 7;)
public int iO0 C return 8;)

public int jO0 C return 9;)

public int mO0 { return 10;)

public int no0 C return 11;)
public int pO0 C return 12;)

APPENDIX C. ARTIFICIAL TEST CASES

public int qO0 I return 13;)
public int r O 0 (return 14;)

public int SO() (return 15;)

public int too (return 16;)

public int uO0 (return 17; 3

public int vO() (return 18;)

public int WOO (return 19;)

public void myaO() (System.out.println("0");)

public void myal () (System. out. println("18') ;

public void mya2() CSystem.out.println("2");)

public void mya3() (System.out.println("3");)

public void mya4() (System.out.println("4");)

public void mya5() (System.out.println("5");3

public void mya6() (~ystem.out.println("6");)

public void mya7() (~ystem.out.println("7");)

public void mya8() (System.out.println("8");)

public void mya9() (System.out.println("9");3

public int myb00 (

mya00; myal0; mya20; mya30; mya40;

mya50; mya60; mya70; mya80; myago;

return 100;

3
3

class MyClassB

extends MySuperClass

implements MyInterface20, MyInterfacel9, MyInterfacel8,

MyInterfacel7, MyInterfacel6, MyInterfacel5, MyInterfacel4,

MyInterfacel3, MyInterfacel2, MyInterfacell, MyInterfacelO,

MyInterface9, MyInterface8, MyInterface7, MyInterface6,

MyInterface5, MyInterface4, MyInterface3, MyInterface2,

MyInterf ace1 1

APPENDIX C. ARTIFICIAL TEST CASES

public int WOO (return 119;)

public int vO0 C return 118;)
public int uO0 (return 117;)

public int too (return 116;)

public int s O 0 (return 115;)

public int roo (return 114;)

public int qO0 (return 113;)

public int pO0 C return 112;)
public int no0 (return 111;)

public int moo return 110;)

public int j O 0 (return 109;)

public int iO0 (return 108;)

public int hO0 (return 107;)

public int go0 (return 106;)

public int f O 0 C return 105;)
public, int eO0 (return 104;)

public int do0 (return 103;)

public int COO (return 102;)

public int bO0 (return 101;)

public int a00 (return 100;)

public void mya00 (System. out .println(ltO1l) ; 3

public void mya10 C 3 y s t e m . o u t . p r i n t l n (Y) ;)

public void mya20 (System.out.println("2");)

public void mya30 (System.out.println("3");)

public void mya40 CSystem.out.println("4");)

public void mya5() (System.out.println("5");)

public void mya60 (System.out.println("6");)

public void mya70 (System.out.println("7");)

public void mya8() (System.out.println("8");)

public void mya90 (System.out.println("9");)

APPENDIX C. ARTIFICIAL TEST CASES

public class VTest1 (

public static void main(String[] args) (

VTestl mytest = new VTestlO ;

mytest. aaa(1nteger .parseInt (args LO])) ;

'l

public void aaa(int rounds) (

MyClassA myA = new MyClassAO;

MyClassB myB = new MyClassB () ;

MySuperClass classArray [I = new MySuperClass [2] ;

classArray [Ol = myA;

classArray [I] = myB;

MyInterfacel i n MyInterface2 in2; MyInterface3 in3;

MyInterface4 in4; MyInterface5 in5; MyInterface6 in6;

MyInterface7 in7; MyInterface8 in8; MyInterface9 in9;

MyInterfacelO inlo; MyInterfacell inll; MyInterfacel2 in12;

MyInterface13 in13; MyInterfacel4 in14; MyInterface15 in15;

MyInterfacel6 in16; MyInterfacel7 in17; MyInterfacel8 in18;

MyInterfacel9 in19; MyInterface20 in20;

long times [I = new longC101;

for (int i = 0; i < times.length; i ++) (

long result = 0;

long time-1 = System.currentTimeMillis0;

APPENDIX C. ARTIFICIAL TEST CASES

for (int j = 0; j < rounds; j ++) {

MySuperClass ob = classArrayCj%21 ;

in1 = (MyInterfacel) ob; in2 = (MyInterface2) ob;

in3 = (MyInterface3) ob; in4 = (MyInterface4) ob;

in5 = (MyInterface5) ob; in6 = (MyInterface6) ob;

in7 = (MyInterface7) ob; in8 = (MyInterface8) ob;

in9 = (MyInterface9) ob; in10 = (MyInterfacelO) ob;

in11 = (MyInterfacell) ob; in12 = (MyInterfacel2) ob;

in13 = (MyInterfacel3) ob; in14 = (MyInterfacel4) ob;

in15 = (MyInterfacel5) ob; in16 = (MyInterfacel6) ob;

in17 = (MyInterfacel7) ob; in18 = (MyInterfacel8) ob;

in19 = (MyInterfacel9) ob; in20 = (MyInterface20) ob;

C.5 Virtual Invocation: Test Case v-2

The objective of the test case v-2 is to get the execution time of virtual methods, which are

all normal calls. It is very similar with the test case 2 (for interface invocation), except that

every method is invoked upon a class reference, instead of an interface reference.

APPENDIX C. ARTIFICIAL TEST CASES

interface MyInterf ace1 (

public int a 0 0 ;

3.

interface MyInterface2 (

public int bO () ;

3

interface MyInterface3 (

public int C O O ;

>

interface MyInterf ace4 (

public int do 0 ;

3

interface MyInterface5 (

public int e O 0 ;

1

interface MyInterf ace6 {

public int f O 0 ;

interface MyInterface7 (

public int go 0 ;

1

interface MyInterf ace8 C
public int hO 0 ;

1

interface MyInterface9 (

APPENDIX C. ARTIFICIAL TEST CASES

publ ic i n t i O 0 ;

>

i n t e r f a c e MyInterf ace10 (

publ ic i n t j O 0 ;

3

i n t e r f a c e MyInterf ace11 (

publ ic i n t m O 0 ;

>

i n t e r f a c e MyInterf ace12 (

publ ic i n t n o 0 ;

3

i n t e r f a c e MyInterf ace13 (

publ ic i n t pO 0 ;

3

i n t e r f a c e MyInterfacel4 (

publ ic i n t qO () ;

1

i n t e r f a c e MyInterf ace15 (

publ ic i n t rO() ;

3

i n t e r f a c e MyInterf ace16 (

publ ic i n t s o 0 ;

>

i n t e r f a c e MyInterf ace17 (

publ ic i n t t o 0 ;

APPENDIX C. ARTIFICIAL TEST CASES

i n t e r f a c e MyInterf ace18 (

publ ic i n t uO () ;

1

i n t e r f a c e MyInterf ace19 (

publ ic i n t vO () ;

3

i n t e r f a c e MyInterf ace20 (

publ ic i n t W O O ;

3

c l a s s MySuperClass (

publ ic i n t a 0 0 (r e t u r n 0 ;)

publ ic i n t bO0 1 r e t u r n 0 ;)

publ ic i n t C O O C r e t u r n 0;)

publ ic i n t d o 0 C r e t u r n 0 ;)

publ ic i n t e O 0 (r e t u r n 0 ;)

publ ic i n t f O 0 C r e t u r n 0;)

publ ic i n t g o 0 C r e t u r n 0;)

publ ic i n t hO0 C re tu rn 0;)

publ ic i n t i O 0 C re tu rn 0 ;)

publ ic i n t j O 0 (re tu rn 0 ;)

publ ic i n t m O 0 (re tu rn 0 ;)

publ ic i n t n o 0 (re tu rn 0 ;)

publ ic i n t pO0 { re tu rn 0 ;)

publ ic i n t qO0 (re tu rn 0;)

publ ic i n t r O 0 (r e t u r n 0 ;)

publ ic i n t s o 0 (r e t u r n 0 ;)

publ ic i n t t o 0 1 r e t u r n 0;)

APPENDIX C. ARTIFICIAL TEST CASES

public int uO() (return 0;)

public int vO0 (return 0;)

public int WOO (return 0;)

1

class MyClassA

extends MySuperClass

implements MyInterfacel, MyInterface2, MyInterface3,

MyInterface4, MyInterface5, MyInterface6, MyInterface7,

MyInterface8, MyInterface9, MyInterfacelO, MyInterfacell,

MyInterfacel2, MyInterfacel3, MyInterfacel4, MyInterfacel5,

MyInterfacel6, MyInterfacel7, MyInterfacel8, MyInterfacel9,

MyInterf ace20 (

public boolean b = false;

public int aO() (if(b) return 0; else return myb00;)

public int bO() (if(b) return 1; else return myb00;)

public int cO () (if (b) return 2; else return myb0 () ;)

public int do () (if (b) return 3; else return myb0 ; 1
public int eO () (if (b) return 4; else return myb0 () ;)

public int f 0 () (if (b) return 5; else return myb0 () ;)

public int go () (if (b) return 6; else return myb0 () ;)

public int hO () (if (b) return 7; else return myb0 () ; 3

public int iO() (if(b) return 8; else return myb0();3

public int j 0 () (if (b) return 9; else return myb0 () ;)

public int mO () (if (b) return 10; else return myb0 () ; 3

public int no () (if (b) return 11; else return myb00 ; 3

public int pO () (if (b) return 12; else return myb0 () ;)

public int qO () (if (b) return 13; else return myb0 () ; 3

public int rO () (if (b) return 14; else return myb0 () ;

public int SO () (if (b) return 15; else return myb0 ;

public int to() (if (b) return 16; else return myb00 ;)

APPENDIX C. ARTIFICIAL TEST CASES

public int uO0 (if (b) return 17; else return myb00 ; I
public int vO 0 C if (b) return 18; else return myb00 ; 1
public int wO 0 C if (b) return 19; else return myb00 ; 1

public void mya00 (Sy~tem.out.~rintln("o");)

public void myalo (System. out .~rintln("l") ;I
public void mya20 (System.out.println("2");)

public void mya30 (System. out .println("3") ;I
public void mya40 (Sy~tem.out.println(~~4~~);)

public void mya50 CSystem.out.println("5");)

public void mya60 CSystem.out.println("6");)

public void mya7() (Sy~tem.out.~rintln("7");)

public void mya8() (Sy~tem.out.~rintln("8");)

public void mya9 () (System. out .println("9") ;>
public int myb00 C

mya00; myal0; mya20; mya30; mya40;

mya50; mya60; mya70; mya80; myago;

return 100;

1
1

class MyClassB

extends MySuperClass

implements MyInterface20, MyInterfacel9, MyInterfacel8,

MyInterfacel7, MyInterfacel6, MyInterfacel5, MyInterfacel4,

MyInterfacel3, MyInterfacel2, MyInterfacell, MyInterfacelO,

MyInterface9, MyInterface8, MyInterface7, MyInterface6,

MyInterface5, MyInterface4, MyInterface3, MyInterface2,

MyInterf ace1 {

public boolean b = false;

public int WOO C if(b) return 119; else return myb00;)

public int vO0 C if(b) return 118; else return myb00;)

APPENDIX C. ARTIFICIAL TEST CASES

public int uO0

public int too

public int so0

public int rO ()

public int qO 0
public int pO0

public int no0

public int mO 0

return 117; else return myb00;)

return 116; else return myboo;)

return 115; else return myb0 0 ; 1

return 114; else return myboo;)

return 113; else return myboo;)

return 112; else return myboo;)

return Ill; else return myb00 ;)

return 110; else return myb00 ;)

public int jO 0 (if (b) return 109; else return myb00 ; 3

public int iO() (if(b) return 108; else return myb00;)

public int hO() (if(b) return 107; else return myb00;)

public int go () (if (b) return 106; else return myb00 ; 3

public int f O 0 (if (b) return 105; else return myb00 ;)

public int eO () (if (b) return 104; else return myb00 ;)

public int do 0 (if (b) return 103; else return myb0 0 ;)

public int COO (if (b) return 102; else return myb00 ;)

public int bO0 (if(b) return 101; else return myboo;)

public int a00 (if(b) return 100; else return myb00;)

public void mya00 (System.out.println("0");)

public void myalo (System.out.println("1");)

public void mya2() (System.out.println(2);)

public void mya30 (System.out.println("3");)

public void mya40 (System. out. println("4I1) ;

public void mya50 (System.out.println(5);)

public void mya6() (System.out.println("6");)

public void mya7() (System.out.println("7");)

public void mya80 (System.out.println("8");)

public void mya9 () (System. out. println("9") ;)

public int myb00 (

mya0 () ; mya10 ; mya20 ; mya30 ; mya40 ;

mya50; mya60; mya70; mya80; mya90;

APPENDIX C. ARTIFICIAL TEST CASES

return 100;

public class Test2 <
public static void main(StringC1 args) <
Test2 mytest = new Test20;

mytest. aaa(1nteger .parseInt (args [Ol)) ;

3

public void aaa(int rounds) <
MyClassA myA = new MyClassA(); myA.b = true;

MyClassB myB = new MyClassBO; myB.b = true;

MySuperClass classArray [I = new MySuperClass [21 ;

classArray COl = myA;

classArray ClI = myB;

MyInterfacel inl; MyInterface2 in2; MyInterface3 in3;

MyInterface4 in4; MyInterface5 in5; MyInterface6 in6;

MyInterface7 in7; MyInterface8 in8; MyInterface9 in9;

MyInterfacelO inlo; MyInterfacell inll; MyInterfacel2 in12;

MyInterfacel3 in13; MyInterfacel4 in14; MyInterfacel5 in15;

MyInterfacel6 in16; MyInterfacel7 in17; MyInterfacel8 in18;

MyInterfacel9 in19; MyInterface20 in20;

long times Cl = new longC101 ;

for (int i = 0; i < times.length; i ++) {

long result = 0;

long time-1 = System.currentTimeMillis();

for (int j = 0; j < rounds; j ++) (

MySuperClass ob = classArray [j%21 ;

in1 = (MyInterfacel) ob; in2 = (MyInterface2) ob;

APPENDIX C. ARTIFICIAL TEST CASES

in3 = (MyInterface3) ob;

in5 = (MyInterface5) ob;

in7 = (MyInterface7) ob;

in9 = (MyInterface9) ob;

in11 = (MyInterfacell) ob;

in13 = (MyInterfacel3) ob;

in15 = (MyInterfacel5) ob;

in17 = (MyInterfacel7) ob;

in19 = (MyInterfacel9) ob;

in4 = (MyInterf ace4) ob;

in6 = (MyInterface6) ob;

in8 = (MyInterf ace8) ob;

in10 = (MyInterfacelO) ob;

in12 = (MyInterfacel2) ob;

in14 = (MyInterfacel4) ob;

in16 = (MyInterfacel6) ob;

in18 = (MyInterfacel8) ob;

in20 = (MyInterface20) ob;

result += ob. a00 ; result += ob. boo ; result += ob coo ;

result += ob. do () ; result += ob. e00 ; result += ob. f 0 0 ;

result += ob.gO() ; result += ob. h00 ; result += ob. i00 ;

result += ob . j 0 () ; result += ob .mO 0 ; result += ob. no 0 ;

result += ob . p0 () ; result += ob . q0 0 ; result += ob. roo ;

result += ob. () ; result += ob. to () ; result += ob. u0 0 ;

result += ob. v0 () ; result += ob. w0 0 ;

3
long time-2 = System.currentTimeMi1lis~);

times[i] = time-2 - time-1;

System. o u t . print (result) ;

3
3

3

Bibliography

[I] The Apache XML Project. 2001. h t t p : //xml . apache. org/xerces- j /

[2] B. Alpern, C. R. Attanasio, J. J . Barton, M. G. Burke, P. Cheng, J.-D. Choi, A. Cocchi,
S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. Mergen,
T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. Shepherd, S. E. Smith, V. C.
Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeiio virtual machine. IBM System
Journal, 39(1):211-238, 2000.

[3] Bowen Alpern, Dick Attanasio, John J . Barton, Anthony Cocchi, Susan Flynn Hummel,
Derek Lieber, Mark Mergen, Ton Ngo, Janice Shepherd, and Stephen Smith. Imple-
menting Jalapeno in Java. In Proceedings of the 14th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pages 314-324,
1999.

[4] Bowen Alpern, Anthony Cocchi, Stephen J. Fink, David Grove, and Derek Lieber.
Efficient implementation of Java interfaces: Invokeinterface considered harmless. In
Proceedings of the 16th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 108-124, 2001.

[5] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney.
Adaptive optimization in the Jalapeno JVM. In Proceedings of the 15th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
pages 47-65, 2000.

[6] Matthew Arnold, Stephen Fink, Vivek Sarkar, and Peter F. Sweeney. A comparative
study of static and profile-based heuristics for inlining. In Proceedings of the ACM
SIGPLAN Worlcshop on Dynamic and Adaptive Compilation and Optimization, pages
52-64, 2000.

[7] David Brownell. SAX2 O'Reilly, 2002. h t t p : / /www . saxpro j e c t . org/.

[8] Michael Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind, Vivek
Sarkar, Mauricio Serrano, V.C. Sreedhar, and Harini Srinivasan. The Jalapefio dynamic
optimizing compiler for Java. In Proceedings of the ACM Conference on Java Grande,
pages 129-141, 1999.

BIBLIOGRAPHY 118

[9] Tom A. Cargill. Controversy: The case against multiple inheritance in C++. USENIX
Computing Systems, 4(1):69-82, 1991.

[lo] Frank M. Carrano and Janet Prichard. Data Abstraction and Problem Solving with
Java: Walls and Mirrors, chapter 4. Addison-Wesley, 2001.

[ll] Craig Chambers, Igor Pechtchanski, Vivek Sarkar, Mauricio J . Serrano, and Harini
Srinivasan. Dependence analysis for Java. In Languages and Compilers for Parallel
Computing, pages 35-52, 1999.

[12] Jong-Deok Choi, David Grove, Michael Hind, and Vivek Sarkar. Efficient and precise
modeling of exceptions for the analysis of Java programs. In Workshop on Program
Analysis For Software Tools and Engineering, pages 21-31, 1999.

[13] Intel Corporation. IA-32 Intel Architecture Software Developer's Manual, volume 1:
Basic Architecture. 2004. http : //www . intel . com/design/pentium4/manuals/.

[14] Brad J. Cox and Andrew J. Novobilski. Object-Oriented Programming: A n Evolutionary
Approach. Addison-Wesley, second edition, 1991.

[15] Paul F. Dietz and Daniel D. Sleator. Two algorithms for maintaining order in a list.
In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages
365-372, 1987.

[16] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley, 1990.

[17] Robert Fitzgerald, Todd B. Knoblock, Erik Ruf, Bjarne Steensgaard, and David Tarditi.
Marmot: An optimizing compiler for Java. Software - Practice and Experience,
30(3):199-232, 2000.

[18] Johnray Fuller. Red Hat Linux Reference Guide, chapter 1. 2003.

[19] Etienne M. Gagnon and Laurie J. Hendren. SableVM: A research framework for the ef-
ficient execution of Java bytecode. In Proceedings of the Java Virtual Machine Research
and Technology Symposium, pages 27-40, 2001.

[20] Motorola Incorporation. PowerPC Microprocessor Family: The Programmer's Refer-
ence Guide. 1995.

[21] Bill Joy, Guy Steele, James Gosling, and Gilad Bracha. The Java Language Specifica-
tion. Java Series. Addison-Wesley, second edition, 2000.

[22] Andreas Krall and Reinhard Grafl. CACAO - A 64-bit JavaVM just-in-time compiler.
Concurrency: Practice and Experience, 9(11):1017-1030, 1997.

[23] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Java Series.
Addison-Wesley, second edition, 1999.

BIBLIOGRAPHY

12.51 Bjarne Stroustrup. Multiple inheritance for C+f - In Proceedings of the Spring 1987
European Unix Users Group Conference, 1987.

[26] Bill Venner. Inside the Java Virtual Machine, chapter 5. MCGraw-Hill, second edition,
1999.

[27] World-Wide Web Consortium (W3C). Document Object (DOM) Level 2 Core
Specification. 2000. http : //www. w3. org/~~/~~M-Leve1-2-C0re/.

[28] World-Wide Web Consortium (W3C). XML Schema Part 0: Primer. 2001. http:
//www.w3.org/~~/xmlschema-0/.

1291 World-Wide Web Consortium (W3C). XML Schema Part 1: Structures. 2001. http:
//WWW. w3. org/TR/xmlschema-l/.

1301 World-Wide Web Consortium (W3C). XML Schema Part 2: Datatypes. 2001. http:
//www.w3.org/TR/xmlschema-2/.

1311 Jim Waldo. 'Controversy: The case for multiple inheritance in C++. USENIX Com-
puting Systems, 4(2):157-171, 1991.

