
DATA-BASED FAULT DETECTION AND ISOLATION 
(FDI) METHODS FOR A NONLINEAR SHIP 

PROPULSION SYSTEM 

by 

Fang Liu 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

O F  T H E  REQUIREMENTS F O R  T H E  DEGREE O F  

MASTERS OF APPLIED SCIENCE 

in the School 

of 

Engineering Science 

@ Fang Liu 2004 

SIMON FRASER UNIVERSITY 

July 2004 

All rights reserved. This work may not be 

reproduced in whole or in part, by photocopy 

or other means, without the permission of the author. 



.' 
APPROVAL 

Name: Fang Liu 

Degree: Masters of Applied Science 

Title of Thesis: Data-based Fault Detection and Isolation (FDI) Methods 

for a Nonlinear Ship Propulsion System 

Examining Committee: Dr. Paul K.M. Ho, Chair 

Professor, School of Engineering Science 

Simon Fr aser University 

Date Approved: 

Dr. Mehrdad Saif, Senior Supervisor 

Professor, School of Engineering Science 

Simon Fraser University 

Dr. William A. Gruver, Supervisor 

Professor, School of Engineering Science 

Simon Fraser University 

Dr. John D. Jones, Examiner 

Associate Professor, School of Engineering Science 

Simon Fraser University 



Partial Copyright Licence 

The author, whose copyright is declared on the title page of this work, has 

granted to Simon Fraser University the right to lend this thesis, project or 

extended essay to users of the Simon Fraser University Library, and to 

make partial or single copies only for such users or in response to a 

request from the library of any other university, or other educational 

institution, on its own behalf or for one of its users. 

The author has further agreed that permission for multiple copying of this 

work for scholarly purposes may be granted by either the author or the 

Dean of Graduate Studies. 

It is understood that copying or publication of this work for financial gain 

shall not be allowed without the author's written permission. 

The original Partial Copyright Licence attesting to these terms, and signed 

by this author, may be found in the original bound copy of this work, 

retained in the Simon Fraser University Archive. 

Bennett Library 
Simon Fraser University 

Burnaby, BC, Canada 



Abstract 

In recent years there has been increasing interest in designing highly reliable systems 

that are safe and economical. Developed in the past decades, fault detection and 

isolation (FDI) techniques have played an important role in improving the reliability 

of dynamic systems. There have been various developments in this area for linear 

as well as nonlinear systems both in theory and applications. The present thesis is 

a novel attempt to  study and compare the performance of fuzzy model-based, signal 

processing and pattern recognition FDI approaches on a nonlinear ship propulsion 

benchmark. This research focuses on data-based FDI methods; that is, they rely 

on no prior knowledge and limited mathematical information about the benchmark 

system. 

A pattern-recognition-method-based FDI compares calculated minimum distances 

between an unknown pattern and each faulty sample pattern. As a result, the un- 

known pattern is considered to belong to the faulty pattern to which the smallest 

distance is derived. This method is applied to the FDI on three faults. 

A fuzzy model is built from the historical data. To enhance the model accuracy, 

a real-coded genetic algorithm (GA) is implemented to search for optimal model 

parameters. Simulations are presented which focus on the building of an accurate 

fuzzy model and the successful FDI scheme on three faults in the system. 

Wavelet signal processing methods are capable of revealing signal characteristics in 

time-frequency (time-scale) domains by monitoring and analyzing particular signals. 

It is shown that sensor faults, including abrupt and incipient faults, can be detected 

by this approach. 

The research reveals the advantages and disadvantages of the above-mentioned 

methods: Dynamic Time Warping is a simple method, however, it is only suitable 



for off-line implementations; the GA fuzzy model-based method is effective when a 

great deal of attention is paid to build an accurate model; the wavelet decomposition 

approach works well with sensor faults, while it is not able to detect other faults. It 

is also shown that the combination of the wavelet signal processing and fuzzy model- 

based approaches offers a significant improvement in detecting and isolating all the 

six prototypical faults in the ship propulsion benchmark. 
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Chapter 1 

Introduction 

Modern control systems are becoming more and more complex, usually including a 

large number of components (such as sensors, actuators, and computers, etc.). They 

require more reliable operations since system malfunctions may cause serious safety 

problems. It is well known that the Chernobyl nuclear disasters caused great loss of 

life and severe health problems for the victims. Economic and environmental factors 

also demand that stabilities of most systems are improved. A series of missile launch 

failures cost the United States over $300 million during a short time period from 

August 1998 to May 1999. In order to  maintain a high level of safety, quality and 

reliability in controlled systems, it is very important that abnormal system operations 

and component faults are detected promptly. Therefore, there has been a surge of 

interest in research and applications on fault detection and isolation (FDI) techniques 

in the last three decades. Since early development in 1970's, this area has matured 

with the conception of various FDI methods. The main purpose of all FDI methods 

is to  monitor system operations and, in the case of faults, accommodate the source of 

the faults so that timely corrective actions are taken. System reconfiguration can be 

accomplished afterwards by human operators or automatic configurations to maintain 
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nearly normal operations. However this topic is beyond the scope of this thesis. This 

thesis presents effective FDI solutions for a nonlinear system applications. 

1.1 Fault Diagnosis: Definitions and 

Methodologies 

A fault in a system can be considered as an undesired change which tends to degrade 

the overall system performance [32]. Some faults, when not treated properly and 

promptly, will lead to serious system breakdown, which is known as a failure. From 

the fault diagnosis point of view, faults can be divided into three groups [46]: 

1. Actuator faults: faults associated with the actuator, such as damage in the 

bearings, deficiencies in force or momentum and so on. 

2. Sensor faults: faults occurring with sensors, such as scaling errors, drift, dead 

zones, and so on. 

3. Component faults: faults happening in the framework of the process, such as a 

struck valve, a broken or leaking pipe and so on. 

Faults also can be categorized into additive faults and multiplicative faults, in 

terms of how the faults influence the system variables. Additive faults influence the 

variables additively, such as offsets of sensors; while multiplicative faults usually affect 

the system parameters by a product factor. Another way of categorizing faults is 

time-based, namely abrupt faults and incipient faults. An abrupt fault represents an 

undesired and sudden change, while an incipient fault is a fault that causes undesirable 

drifts away from healthy operating value and gradually grows with time. 
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Fault detection simply involves a decision based on the monitored data as to 

whether there is a fault or the system is running normally. Fault isolation is then 

executed to identify the type and location of a fault after the fault detection has trig- 

gered an alarm so that corrective actions can be made. These two steps combined are 

known as fault detection and isolation (FDI). The term fault identification in some 

literature refers to identifying the fault magnitude and the time of occurrence. An- 

other frequently used term, fault diagnosis, is generally referred to as the combination 

of fault detection, isolation and identification. Figure 1.1 is a general framework for 

a fault diagnosis system. Firstly, adequate process data needs to be collected. Then 

the symptoms of the faults are extracted by various methods. A symptom is defined 

as a deviation of an observable variable from normal conditions 1361. It presents the 

primary information about the faults. Symptoms can be taken as different variables, 

parameters or functions in various FDI methods. For example, in model-based FDI 

approaches, a well used symptom is the residual, which is further described in Chap- 

ter 3. The symptoms obtained from the previous efforts help to distinguish different 

faults when a fault has been reported. Detailed information about the fault, including 

the fault magnitude and time of occurrence, is derived from further studies by the 

procedure of fault identification. 

In order to compare various FDI approaches, it is useful to identify a set of criteria, 

as introduced in [40]. To mention a few: 

1. Quick detection: The FDI system should be able to detect and isolate faults 

quickly enough to avoid severe damage during abnormal situations. 

2. Isolability: The system is capable of distinguishing between different faults based 

on the monitored process data. 
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Figure 1.1 : General framework for fault diagnosis 
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3. Robustness: The ability of the system to make a correct decision within the 

tolerance of system uncertainty and noise. 

The effectiveness of the FDI method is also affected by factors other than faults, 

such as system uncertainties, noise and model mismatch. These might not influence 

the system operation very much under normal conditions, but can be very problematic 

to FDI. It is no surprise that there are trade-offs between robustness and the other two 

criteria, quick detection and isolability. How to detect and isolate faults quickly and 

correctly while being insensitive to uncertainties and noise is an important challenge 

to FDI approaches. In addition, incipient faults tend to be hidden by disturbances. 

Incipient faults do not necessarily cause immediate damage. However, if unheeded, 

they might lead to more serious problems. 

The various FDI methods can be broadly classified into three categories: 1) model- 

based approaches, 2) classification methods, and 3) signal processing approaches. An 
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Inputs +q- 
Model G 

Figure 1.2: Scheme for the model-based fault detection 

exhaustive classification and review can be found in [40] and [41]. 

1.1.1 Model-based FDI Techniques 

As suggested by the name, model-based FDI approaches are based on models of the 

system. They are also associated with analytical redundancy, where the available 

inputs or measurements and a system model are used to cross-check the signal infor- 

mation so as to  detect faults. Figure 1.2 depicts the general model-based FDI scheme. 

A system model is used to  estimate the system behavior under normal operation. The 

deviations between model outputs and real system measurements generate the resid- 

uals. The residuals would be zero or small enough when the system is fault-free 

but noticeable when faults occur. The residuals are analyzed and evaluated for fault 

detection and isolation purposes. 

There are two classes of model-based approaches to  FDI: mathematical models 

based on the physics of the system and data-based models. In the former class, output 

observers, parity equations, and parameter estimations, etc. use static and dynamic 

relations among system variables to describe the system's behavior in physical or 

mathematical terms [36]. These approaches are based on the assumption that a fault 

causes changes to certain model parameters or states and detecting and isolating 

faults is possible by monitoring the estimated parameters or states. They make use 
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of mathematical functions and equations to estimate the system and its changes. One 

characteristic of these methods is that they require a comprehensive understanding 

and prior knowledge of the system physics and dynamics. In reality, the task of fault 

diagnosis is sometime difficult when prior understanding about the system is insuf- 

ficient or incomplete. However, since the mathematical models reflect fundamental 

information of the system, these approaches are capable of detecting faults quickly, 

even incipient faults, which might not be easily noticed by other methods. 

From a modelling perspective, there are data-based methods that do not assume 

any form of physics information and rely only on process history data to build the 

appropriate model. Among various data-based modelling methods, neural networks 

(NNs) have been an active area of research due to their learning ability, their "black 

box" properties, and their capability to model nonlinear systems [3]. Fuzzy systems 

also attract a lot of attention because of their interpretability over neural networks. 

The combination of neuro-fuzzy networks are actually fuzzy systems implemented 

using neural structures. Details are provided in [8]. Neural networks and fuzzy models 

are derived from the system's historical data so they can be viewed as "data-based 

models". These methods are attractive because the physical or mathematical models 

for complex systems are usually hard to obtain. 

Since system parameters may change with time, and disturbances and noise which 

can affect the system behavior are unknown, it is not possible to  obtain a perfect 

system model in practice. One important task of model-based FDI techniques is to 

deal with the model mismatch caused by inaccurate modelling, and the robustness 

problem caused by system uncertainties. 
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1.1.2 Classification Met hods 

The principle of the classzficatzon method is to classify the data into groups based on 

some specific features of each group. They are also referred to as pattern recognition 

methods since they are often applied to recognition problems [24]. The classifications 

are based on historical and monitored data. There are two main categories of clas- 

sification: supervised and unsupervised classifications. The former needs reference 

patterns for learning. These reference patterns have been classified and labelled by 

prior work or experience. In the latter, there are no reference or sample patterns and 

we seek to find groups in the data and features which discriminate the groups. 

There are many classification methods, including geometric, statistical, neural and 

fuzzy classifiers. Geometric classifiers use the notion of geometric distance. Distances 

between a certain symptom vector of the unknown pattern and that of different fault 

groups are calculated and the pattern is considered to  belong to the group with the 

shortest distance [24, 251. 

Multivariate statistical methods such as Principal Component Analysis (PCA) 

or Partial Least Squares (PLS) models are mainly used in on-line process monitoring 

[49]. Relative data processing algorithms are developed [lo] to resolve outlier problems 

when PCAs are implemented. Dynamic process monitoring based on neural networks 

and PCA is implemented in [9]. Dynamic time warping has been used on speech 

recognition and is also applied in the fault diagnosis area [ll, 221. 

Neural networks and fuzzy inference systems use nonlinear discriminant methods 

and have also been applied in the field of FDI. They generate classification results by 

evaluating the input variables based on NNs or fuzzy systems, which are trained by 

the provided classification samples. 
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1.1.3 Signal Processing Technique Based Approaches 

Signal processing approaches are another group of well-established methods used in 

practice. The signals which carry most information about faults of interest are stud- 

ied and some particular symptoms are derived to  represent features of the faults. 

Further decision making is then straightforward. These methods use the correlation 

function, covariance, power spectral densities or auto-regressive-moving-average mod- 

els. Frequency analysis is suitable for detecting the signals which contain particular 

meaningful frequency information such as power system current. The wavelet trans- 

form is used in detecting abrupt sensor faults [47, 501. Wavelet networks combine 

the attributes of the wavelet transform and neural networks and have applications in 

fault detection [52]. 

Signal processing methods focus on particular signal characteristics without both- 

ering to reveal the system structure or properties in a deeper manner. They are 

capable of dealing with noise and can be used either independently or jointly with 

model-based approaches. 

Thesis Outline 

In this thesis, three different approaches to FDI for a nonlinear ship propulsion system 

are presented. This thesis is organized as follows: 

In Chapter 2, a brief description of the ship propulsion system, which is the bench- 

mark used throughout this thesis, and a fault scenario including six prototypical faults 

is given, and relevant research is reviewed. The following three chapters present FDI 

research on this benchmark from three perspectives. In Chapter 3, the principle and 

application of a pattern recognition method referred to as Dynamic Time Warping 
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(DTW) is introduced and then a simulation is implemented to detect and isolate 

specific faults in the ship propulsion system. 

For a model-based approach, a genetic fuzzy model is derived in Chapter 4. Basic 

algorithms for building fuzzy models from numerical data, and an optimization scheme 

using a genetic algorithm working on a tentative model are illustrated. Generated 

residuals go through a residual evaluation process for detection and isolation decisions. 

Chapter 5 develops a wavelet-decomposition-based signal processing method for 

detecting sensor faults. The goal of detecting all six faults is achieved using the 

combination of the fuzzy model-based approach and wavelet decomposition, which 

provides a complete and effective diagnosis. This concept can be extended to other 

applications. 

In each chapter, the relative background knowledge is first introduced. Applica- 

tions to FDI are illustrated and followed with simulation results on the ship propulsion 

system. 

The differences, advantages and deficiencies of the three approaches are discussed 

in Chapter 6, then followed by concluding remarks and comments on future work. 



Chapter 2 

Ship Propulsion Benchmark 

Many different FDI approaches for nonlinear systems have been developed, but only 

a few have been implemented. To evaluate various approaches, a nonlinear ship 

propulsion system is introduced in this thesis as a benchmark. The simulation model 

of the ship propulsion benchmark was defined and developed by Izadi-Zamamnabadi 

and Blanke at the University of Aalborg. The complete description of the benchmark 

is found in [18]. All the data used in this benchmark have been generated by a 

Simulink model of the ship propulsion system. In this chapter, the system description 

is first presented. Then the system fault scenario is described. 

2.1 Ship Propulsion System Description 

The ship propulsion benchmark has one engine and one propeller for a marine vehicle. 

The structure of the system is depicted in Figure 2.1. 

The ship propulsion system consists of six main sections: 

0 The coordinated control part: calculates the set-points for the shaft speed nr,f 

and the propeller pitch OreP 

10 



Chapter 2. Ship Propulsion Benchmark 11 

Figure 2.1: Structure of the ship propulsion System 

Propeller pitch control system: controls propeller pitch 8. 

Governor: controls the fuel index Y of the diesel engine. 

Diesel engine: generates torque Qeng which is then transformed to the shaft 

speed. 

Shaft dynamics: describes the shaft speed n based on the difference between 

engine torque Qeng and propeller torque Q,,. 

Propulsion characteristics: describes the propeller thrust T,, and torque Q,,, 

based on shaft speed n, propeller pitch 8, and water speed V,. 

Ship speed dynamics: generates ship speed U based on the propeller thrust T,,,, 

external force TeZt and hull resistance. 

The purpose of ship propulsion system is to maintain the ship's ability to propel 

and maneuver itself. There are two basic control loops in the propulsion system: the 

propeller pitch control loop and the shaft speed control loop (governor, diesel dynamics 

and the shaft dynamics). The later is coupled to the former through propulsion 
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I Co-ordinated control 

Shaft dynamm 

Gam fault 

dynamics 

Figure 2.2: Detailed structure of the ship propulsion system with generic faults indi- 
cated 

characteristics. 

There are two known inputs for the propulsion system: the shaft speed set point 

n,,f and the propeller pitch set point B r e f  There are unknown inputs like external 

force Text and the friction torque Q f .  Measured outputs include the diesel engine 

shaft speed n,f, the fuel index Y,, the propeller pitch position emf ,  and the ship 

speed Urn. Figure 2.2 shows a more detailed system block diagram with the generic 

faults. 

Figure 2.3 shows the input and output signals of the healthy system when the 

simulation runs for 3500 seconds. 
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Figure 2.3: Simulated system inputs and outputs 



Chapter 2. Ship Propulsion Benchmark 14 

Fault I Type I Magnitude( Time period I End-effect I Consequences Severity leve I 
Aehigh 

~e~~~ 

Table 2.1: Six faults in the fault scenario 

2.2 Fault Scenario 

he;,, 

~ 1 % ~ ~  

Anlow 

A 

Various fault scenario could happen in a real ship propulsion system. The following 

fault cases are considered in the benchmark simulation: 

Pitch position faults: the propeller pitch position measurement could have the 

following faults: a constant "too low" signal AOl,, and a constant "too high" signal 

nohigh. They are abrupt and additive faults. 

0 Propeller pitch slowly drifting away : At$,, is an incipient and additive fault. 

0 Shaft speed measurement faults: a maximum signal Anhigh and a minimum 

signal Anl,,. They are abrupt and additive faults. 

0 Faults related to  diesel engine: one or more cylinders are out of function Aky, 

an abrupt and multiplicative fault. 

Table 2.1 lists six types of faults in the fault scenario, their magnitudes and time 

durations, as well as the end-effects, consequences, and the severity levels caused by 

the considered faults. 

For various FDI schemes, the following requirements are introduced as criteria: 

high 
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incipient 

high 

low 

low 
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1. Quick detection: According to the severity of each fault type, sensor feedback 

faults (ABlo,, nohigh, Anlo,, Anhigh) should be preferentially detected within 2 

time samples. The incipient fault A&, should be detected within 100 time 

samples, and the gain fault Alc, within 5 time samples. 

2. Low false detection possibility. 

3. Low missed detection possibility. 

4. Robustness: FDI should be robust to system uncertainties and noise, which 

have been considered and simulated in this model. 

2.3 System Models 

The nonlinear models and detailed descriptions are given for the six subsystems. 

2.3.1 Coordinated Control 

As mentioned in section 2.1, the objective of the coordinated control part is to generate 

the reference control signals nr,f and 19,~~. Figure 2.4 illustrates the four main parts 

of the coordinated control subsystems. 

Combinator curve: sets coordinated command shaft speed ncom and propeller 

pitch 0,- according to the handle position and the selected mode. 

where h stands for the handle position and mode is the selected mode between econ- 

omy operation and maneuvering operation. Economy operation mode is used during 

long-distance voyage and cruise, and maneuvering operation mode is mainly used 
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---- ............................................................................. ................................................................... ------------------. I " 
From Governor 

i 
To Governor 

1 eref 
To Propeller pitch controller 

Figure 2.4: Structure of the coordinated control subsystems 
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when the ship is approaching harbor or sailing out of a harbor. Fcoor will generate 

different command values under the two modes for different voyage situation. 

Ship speed control: maintains a set ship speed Uref based on the measured speed 

Urn and the handle position h. 

0 Efficiency optimizer: determines the set command values n,,, and 0,,, based 

on measured values Y,, n,, 19, and the desired ship speed Uref to achieve optimal 

efficiency. The reference variable for the optimal efficiency could be the average shaft 

power, the fuel index or the propeller efficiency qprop. 

where E is either the average shaft power or the fuel index. 

0 Overload control: generates new signals nref and Qref to avoid too big n,,, and 

0,,,, which could bring the diesel engine to its torque limit. The fuel index Yrn is 

used to determine an approaching overload condition. 

For a thorough and detailed description of the functions, readers are referred to [20]. 

2.3.2 Propeller Pitch Control 

The propeller pitch control subsystem use a P-controller to determine the propeller 

pitch 8, as Figure 2.5 shows. 

The following equations illustrate the relationship between the measured propeller 

pitch Om, measurement noise "0, the leakage fault A&,,, and the pitch sensor fault A0. 
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Physical Dynamics Physical Controller 
limitations limitations 

Figure 2.5: Structure of the propeller pitch control subsystem 

Figure 2.6: Structure of the governor subsystem 

o,,, and bmin are the rate limits set by the hydraulic pump capacity and geometry, 

while 0,,, and Omin are the physical limits for propeller blade travel. 

2.3.3 Governor 

The governor is basically a PI controller as shown in Figure 2.6. It uses the difference 

between the shaft speed reference nref and the measured shaft speed n, as inputs 

and generates the output fuel index Y. An anti-windup gain K is included to  prevent 

the integrator from building up to  a large value which will result in large overshoots. 

The PI controller has the following functions. 
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where vn represents the measurement noise, X b  and Yub are the lower and upper 

bounds, respectively, for the saturation of the actuator, and An is the measurement 

fault. 

2.3.4 Diesel Engine 

Diesel engine dynamics generate a torque Qeng based on the fuel index Y. The fol- 

lowing equations illustrate the relationships between Qeng and Y. 

Qeng ( k y  + Aky)e-Ts 
- ( s )  = 
Y 1 + 7,s 

where T, denotes the time constant and k, is the gain constant. The calculation of 

time delay T is provided in [20]. 

2.3.5 Shaft Dynamics 

The following differential equation illustrates the shaft speed n based on the engine 

torque Q,,,, the propeller torque Q,,,, and the friction torque Qf.  

2.3.6 Propulsion Characteristics 

The developed propeller thrust and propeller torque are determined by the equations: 
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where V, denotes the velocity of the water, and Qo represents the torque produced 

by the CP-propeller when the pitch is zero. The coefficients qnln, qnlva, QInln, QInlVa 

are complex functions of the pitch angle 19. 

2.3.7 Ship Speed Dynamics 

The ship speed dynamics are described by the nonlinear differential equations: 

where R(U) is the hull resistance of the ship in the water and Xi, denotes the added 

mass in surge. The Text represents the external force imposed on the ship motion by 

wind and waves, Tl0,, is the excess drag force to the rudder, and uu is the measurement 

noise. 

2.4 Prior Research on The Ship Propulsion 

Benchmark 

There has been a considerable amount of research on the implementation of the ship 

propulsion benchmark to test various FDI and fault tolerant control methods. Among 

them some work focuses on FDI of three faults, including the two shaft speed sensor 

faults and diesel engine gain fault. Bemdtsen and Izadi-Zamanabadi in [3] trained a 

neural network to model the input-output relationships of the structure. Residuals 

were then derived and an adaptive cumulative sum value (CUSUM) algorithm was de- 

signed to isolate the shaft speed sensor faults and diesel engine gain fault. There were 

no details about the detection time in this paper. The statistical method CUSUM 
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was also used by Blanke [4] with the emphasis on analyzing re-configuration possi- 

bilities. Izadi-Zamanabadi, Blanke, and Katebi [21] built a neural fuzzy logic system 

based on structural modelling, then applied an adaptive threshold to a residual to 

detect faults. Their simulation showed that it is possible to isolate gain and shaft 

speed faults from this single residual under certain assumptions and knowledge of the 

possible occurrence of the two faults. This paper did not provide any information on 

detection and isolation time for these two faults. In works of Blanke and Lootsma, 

adaptive observers were designed for detecting and isolating the three faults [5]. Good 

detection was found possible though isolation was only possible if assumptions were 

made about the fault signature. Nonlinear observers were also implemented on FDI 

of the three propeller pitch sensor faults. The detection results were compared by 

Schreier in [33]. 

There is also research concerning all the six faults. Geometric approaches have 

been used to implement on FDI for ship propulsion system [25, 261. Five of the six 

faults were detected; however, noise pollution was not considered and the incipient 

fault was not detected. Only two of the detected five faults met the required detection 

time. An adaptive two-stage extended Kalman filter was built and a set of statistical 

detection variables were formed by Zhang [53] to detect the occurrence of a fault and 

furthermore, to identify the fault type. Their work fulfilled some of the benchmark 

requirements in the face of some prescribed perturbations in the model and distur- 

bances of external signals. In addition, Amann et.al [I] designed five fuzzy output 

observers and compared the results from the five observers in detecting different types 

of faults. The results showed that the fuzzy observers provided satisfactory properties 

in the detection of sensor faults, but did not enable the detection of other faults. 



Chapter 3 

Pattern-Recognition-Based FDI 

By definition, pattern recognition refers to the discrimination between different classes. 

From the perspective of pattern recognition, many instances of the problems being 

studied can be represented as patterns containing specific characteristics, and our task 

is to discriminate between them. This can also be referred to as classz'fication. Pattern 

recognition problems are very often encountered in industry as well as in our daily life. 

For example, classifying a thousand people into three groups of a) seniors, b) middle- 

aged persons, c) children is a simple pattern recognition task. The application of 

pattern recognition to industry and research is to explore mathematical and technical 

aspects of different patterns, and to create various techniques to discern them. It is an 

interdisciplinary area covering engineering, artificial intelligence, computing science, 

biology and many other fields. 

Pattern recognition techniques can be broadly divided into two families: super- 

vised classification (discrimination) and unsupervised classification (clustering) (451. 

In supervised classification we have a set of data samples with associated labels or 

class types. In unsupervised classification, the raw data have no labels and known 

characteristics, so we have to discover the data features which distinguish different 
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Process data 4 Feature Classes 
Classification 

extraction I-- 
Figure 3.1: General scheme of pattern recognition 

data types. Pattern recognition can be considered as a method for performing data- 

mining tasks, which is especially true for the unsupervised pattern recognition. 

The process of pattern recognition generally consists of two parts: feature extrac- 

tion and classification, as presented in Figure 3.1. After a set of data associated with 

the problem of interest has been collected, feature extraction identifies the character- 

istic of each class to distinguish among them. A feature extractor is used to perform 

this critical step. The next step is to design a decision scheme that uses the extracted 

features to classify the patterns in an optimal way. A classifier performs this classifi- 

cation. The information extracted by the feature extractor may suggest what type of 

classifier to use for a given application. 

The following classification methods have been used to solve FDI problems [24]: 

Statistical Classifiers : When the statistical distribution functions of the classes 

are known, a statistical classifier is an appropriate approach. The well-known Bayes 

classifier, based on Bayes formula from probability theory, minimizes the expected 

probability of misclassification. A Priori knowledge of pattern distribution functions 

for each class is needed to perform Bayes classification. Multivariate statistical meth- 

ods, and in particular Principle Component Analysis (PCA) and Partial Least Squares 

(PLS) are designed to model correlation structures among the process variables. The 

correlation structures are imposed by the physical mechanism which governs the pro- 

cess operation. These methods optimally reduce the large number of correlated vari- 

ables into a small number of fictitious uncorrelated variables (i.e. principal compo- 

nents), so that the evolution of the process can be observed in the space of principal 
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components. 

0 Geometric Classifiers: These are based on computation of geometric distances. A 

minimum distance classifier is adopted if each class is represented by a single prototype 

and a new pattern belongs to  the class with the minimum distance prototype. The 

nearest-neighbor classifier distinguishes a new pattern by measuring its distances from 

the sample patterns and choosing the class to which the nearest neighbor belongs. 

0 Fuzzy Classifiers: Fuzzy classifiers are good at dealing with uncertainties in 

pattern recognition. A pattern may belong to  several classes with various grades 

of membership from 0 to 1. Fuzzy clustering algorithms perform the classification 

by giving each unknown pattern a set of grades of membership which determine the 

degree to which it belongs to the corresponding classes [7, 421. 

0 Neural networks: Neural networks are built with a structure of a input layer, an 

output layer, and hidden layers. A neural network is trained with a sample pattern 

by adjusting the weights of the network. It can be used to  classify arbitrary unknown 

patterns [39]. 

To implement the FDI using pattern recognition, a general framework requires the 

following steps: 

1. The collection of the historical data (i.e. patterns) from the normal operation 

and from all the faults of interest. 

2. The extraction of the features from collected historical data. 

3. Based on features derived from the previous step, a decision is made about 

which particular class a new pattern belongs to. The FDI task is performed 

by deciding whether the new pattern belongs to  a healthy class or a particular 

faulty class. 
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Since building an accurate dynamic nonlinear model and stochastic disturbance 

model is a large task for many industrial processes, pattern recognition has significant 

advantages and is a widely used method in FDI. Pattern recognition methods need 

no insight into system models and inner structures. They perform the FDI task 

based on collected data. Therefore, adequate data are necessary to extract required 

characteristics from the data. When the mathematical model of a system is not 

readily available, while historical data (both healthy and faulty) is easy to get, pattern 

recognition can be a good approach. 

3.1 The Principle of Dynamic Time Warping 

The Dynamic Time Warping (DTW) method is a flexible pattern matching method, 

originally used in speech recognition for identifying isolated and connected words [37] .  

It is capable of compensating for the temporal mismatch caused by different speech 

speeds. The principle of DTW is to compare two dynamic patterns that may not 

be perfectly aligned and measure the similarity by calculating a minimum distance 

between them. Patterns to be tested are considered to have similar, but possibly 

expanded or contracted temporal correlations. DTW uses the principle of dynamic 

programming to nonlinearly warp the patterns and shift, extend or compress the 

patterns in such a way that the similar characteristics are captured to an optimal 

extent. 

Suppose two time sequences, x and y,  possess similar characteristic shapes but 

these shapes do not line up on the time axis. In Figure 3.2 (a), the traditional Eu- 

clidean distance generates a pessimistic similarity measure because of the assumption 

that the ith point in one sequence is aligned with the ith point in the other sequence, 

where the dashed lines show the aligned pairs. In order to find the similarity between 
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Figure 3.2: Similarity measurements by: (a)Euclidean distance (b) Dynamic time 
warping 
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these two sequences, we need to "warp" the time axis of one sequence to achieve a 

better alignment. DTW is able to find an alignment between the two sequences that 

allows a more sophisticated distance measure to be calculated. Rather than compar- 

ing the value of the sequence x at point i to the sequence y at the same point i ,  DTW 

searches the space of mappings between points from the time sequence x to that of y, 

as Figure 3.2 (b) depicts. For example, we may find that point i in sequence x corre- 

sponds to i + 6 in sequence y, and j in sequence x corresponds to j - 2 in sequence y. 

As a result, a minimum distance is eventually generated between two sequences and 

the similarity is symbolized by the distance, which doesn't have a physical meaning 

in this figure. 

Suppose there are two time sequences of patterns S and U, of length m and n,  

respectively: 

and 

U = {u1,u2,. . . , U j ,  . .  . ,U,) (3.2) 

Firstly, DTW constructs an m-by-n matrix D where the (ith, jth) element of the 

matrix contains the local distance d(si, uj) between the two points si and uj. Each 

matrix index (i, j) corresponds to the alignment between the point si and uj. The 

local distance is calculated by: 

The warping path R of length K is a continuous set of matrix indices [i, j] that 

defines a mapping between S and U. 

R = r l ,  7-2,. . . , rk, . . . , TK and max(m, n)  5 K 5 m + n (3.4) 
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Figure 3.3: Warping path of an &point time sequence S and a 5-point time sequence 
U 

The kth element of R is defined as: 

As a simple example, consider an 8 point time sequence S and a 5 point time 

sequence U ,  as shown in Figure 3.3. The element of D(4,3) is the distance between s4 

and us. The warping path, which is subject to certain constraints and is searched by 

the principle of dynamic programming, contains 10 points in this figure. The point 

r5 = [4,3] demonstrates that the alignment (or mapping) between s4 and us is on the 

warping path. 

The warping path is typically subject to several constrains: 

0 Endpoint constraints: The first and the last point of the two patterns are 

matched together, therefore: 
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Monotonicity constrains: The patterns should be compared in time order. Given 

r k  = [i, j] and r k + ~  = [if, j'], if > i and j' 2 j is satisfied. 

Local continuity constraints: This restricts the allowable steps in the warping 

path to  adjacent points (including diagonally adjacent points). Given r k  = [i, j] and 

r k f l  = [i', j'], the following is satisfied: if - i < 1 and jf - j < 1. This constrains 

the warping path, such that local point (i, j) can only be reached from points ((i - 

l),.d,((i - I), (J' - l)), or (4 (J' - 1)). 

Figure 3.4 is a sample of two univariate patterns under the above mentioned 

constraints. There are many warping paths satisfying these constraints. The principle 

Figure 3.4: DTW comparison between two univariate patterns under the endpoint, 
monotonicity and local continuity constraints 

of dynamic programming is used to search the warping path iteratively and for each 

iteration, a minimum distance is calculated. 

The cumulative distance D, at  point (i, j )  is defined as the weighted sum of the 

local distance d(si,  u j )  and the minimum of the cumulative distances in the previous 
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cells. This can be expressed as: 

where the weight 2 is used for cumulative distance calculation when the current point 

in warping path is reached via a diagonally adjacent cell. The initial condition is: 

The final accumulated distance is defined as: 

This algorithm can be extended to multivariate time sequences S and U: 

S = {sl, s2, .  . . , si, . . . , s,) (3.10) 

where si and uj are vectors with the same number of variables. 

3.2 Dynamic-Time-Warping-Based FDI 

Faults or abnormal events in continuous processes usually generate dynamic patterns 

consisting of a large number of process variables. Classification methods can be used to 

assess these dynamic patterns. To extract the corresponding feature from a particular 

faulty case, one needs to investigate the process variables and data. However, it is 

unlikely that every occurrence of a fault will make the process deviate from the normal 
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operating condition in exactly the same way. From the fault diagnosis point of view, 

one challenge is that the patterns arising from the same fault may last for different 

times and exhibit different magnitudes. Thus, our pattern recognition methods should 

be able to discriminate the faults despite varying characteristics, i.e. two sets of data 

arising from the same fault should be put in the same group even though the fault 

occurred at different times and has different magnitudes. 

Several pattern recognition methods have been proposed to address these require- 

ments. Neural networks (NNs) and Principal component analysis (PCA) have been 

successfully applied to FDI in large industrial systems. Since many of these methods 

assume steady-state conditions, when the dynamics of the system change erroneous 

fault diagnosis may occur [22]. DTW has been used to successfully isolate the faults in 

dynamic multivariate processes where fault detection has already been performed[22]. 

The data is preprocessed before being calculated by the DTW algorithm, so as 

to fit the algorithm better. For a distance measurement based algorithm like DTW, 

step or abrupt ramp signals of different magnitudes tend to increase the distance 

measurements unnecessarily. Furthermore, as mentioned in the previous section, this 

algorithm should be able to classify the patterns independently of the magnitude of 

the fault. Therefore, measures should be taken to get rid of the magnitude and time 

difference while distorting the original patterns to the minimum extent. A traditional 

way to scale a set of data is to subtract the average and divide by the standard 

deviation. The "averagenand the "standard deviationnof a step-type signal depend 

on how many data points are included before and after the occurrence of the step. 

Subtracting the estimated "average" and dividing the raw data by the "standard 

deviation" will render the scaling procedure dependent on the duration of the pattern. 

This is an undesirable side effect since the method should be independent of the 
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duration of the pattern. A desirable method is able to remove the nonstationarity 

independent of the duration of the signal. For example, a high-pass filter can remove 

low frequency components like steps or ramps from a signal. After the high-pass 

filtering, the data are normalized to a standard deviation of one. This is to remove 

the effect of the magnitude of the remaining frequency components and the engineering 

units. Since white noise will degrade the algorithm performance, data also need to be 

processed to remove the high frequency noise. A low pass filter is then employed to 

deal with high frequency noise. 

The unknown pattern must go through these preprocessing steps before the DTW 

algorithm is applied. Consequently, the similarity assessment scheme works with 

patterns that are different from those present in the raw data. 

Generally, DTW based FDI performs the comparison as follows: 

1. The unknown pattern, a healthy pattern, and a set of dynamic patterns of 

known past faults are collected. 

2. All the patterns are filtered with a high-pass filter. 

3. All the patterns are normalized to a standard deviation of one. 

4. All the patterns are filtered with a low-pass filter. 

5. The preprocessed unknown pattern is compared with each of the preprocessed 

faulty and the healthy pattern to get a series of distance measurements. 

6. The unknown pattern is considered to belong to the group with which it has 

the smallest distance. Further details may be found in [22]. 
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3.3 DTW Algorithm Applied to Ship Propulsion 

Benchmark 

The above-mentioned method is applied to the ship propulsion benchmark. We con- 

sider three types of faults in the simulation: velocity measurement "too high" Anhigh, 

velocity measurement "too low" Anl,,, and gain fault Ak,. 

In this research, the sample patterns are created by simulating 1000 seconds with 

only one fault happening during the simulation time. Four sample patterns are col- 

lected in S1, S2, &,and Sq. The fault type, duration, and magnitude of these sample 

patterns are shown in Table 3.1. The magnitude of the fault in each sample pattern 

is chosen based on the fault scenario described in Chapter 2. The healthy data is also 

collected as a fourth pattern. Thus, by comparing dynamic patterns with the four 

existing patterns, the unknown pattern is classified as the type corresponding to the 

sample from which it has the smallest distance. 

Table 3.1: Sample pattern descriptions 

Sample Pattern 

S1 

S2 

S3 

S4 

The output variables in the three considered faulty cases of Anhigh, Anlow, and 

Ak, are studied for the purpose of detection and isolation. In order to be computa- 

tionally efficient, only n,f is analyzed and taken as the one-dimensional pattern for 

this approach. Figure 3.5 depicts the simulated n,f of the four sample patterns: 

Fault 

A n  high 

An LOW 

None 

Fault time 
duration 

300s-600s 

200s-600s 

500s-900s 

NIA 

Magnitude 

13 

5 

0.2 

NIA 

Simulation 
time (s) 

1000 

1000 

1000 

1000 
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Figure 3.5: Simulated nmf signals of the four sample patterns 

The nmf signal of faulty cases and healthy case are stored in a vector group S's, 

and that of the unknown data is stored in vector U's. The algorithms go through the 

following steps: 

1. All the patterns are filtered by a high-pass filter. There is a tradeoff between 

filtering out the unwanted low frequency components and keeping the other 

parts of the data. The first-order high-pass filter does not have a sharp frequency 

response, but produces smoother output signals with the least distortion of the 

other components. Therefore, a first-order Butterworth filter is chosen for this 

purpose with cut-off frequency of 0.02 Hz. The transfer function is: 

2. All the patterns are normalized to a standard deviation of one. 



Chapter 3. Pattern-Recogni tion-Based FDI 35 

3. The patterns are low pass filtered with a cut off frequency of 0.28 Hz to remove 

measurement noise. The transfer function is: 

4. The distance value between the unknown pattern U and the first sample vector 

in S is calculated. This procedure is repeated until the comparison between the 

unknown pattern and all the sample patterns have been calculated. 

5 .  In the decision making stage, the smallest distance between the unknown pattern 

and the sample patterns determines the diagnosis of the unknown pattern. 

3.4 Simulation Results and Discussion 

The simulation runs 10 times to randomly generate 10 different patterns, each with 

varied fault conditions, varied fault durations, and varied fault magnitudes. Table 3.2 

presents the detailed information of these patterns and the simulation results. For each 

unknown pattern U, the first four columns of the table describe the fault information. 

The fifth to eighth columns are the calculated minimum distance to the four sample 

patterns S1, S2, S3, and S4, respectively. The smallest distance is underlined in each 

row. The details of four sample patterns are shown in Table 3.1. The last column 

in Table 3.2 is the decision of the fault isolation based on the minimum distance. It 

shows that in the 10 simulated runs, decisions based on the cumulative distance are 

correct. 

Figure 3.6 is the warping path for calculating the distance between unknown pat- 

tern U9 and four sample patterns. 

There are several points we need to pay attention to for this approach: 
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Table 3.2: DTW results for three possible fault cases and healthy case 
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Figure 3.6: Warping path for calculating the DTW of unknown pattern U9 
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1. There are no special requirements on choosing the four sample patterns. Each 

sample pattern of a reasonable time duration symbolizes a particular fault pat- 

tern. The time duration for these sample patterns are not necessarily the same. 

Since only one fault is included in one pattern, the time duration of 1000 seconds 

is chosen only for the reason of simplicity. 

- 

2. While some FDI methods assume that the system is in a steady state, this 

method is capable of dealing with dynamic problems. 

600. 

5 400. 

0 200 400 600 800 1000 0 200 400 600 800 1000 
sample 53 sample S4 

3. The results show that DTW can perform fault detection and isolation in one 

step by including the healthy pattern as one of the sample patterns. Otherwise 

a separate detection step may be required while DTW is used to perform fault 

isolation. 
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4. The smallest distance should be significantly smaller than the rest of distances. 

If the DTW results show several samples with distances smaller than the rest of 

the samples, and among which distances are similar, then it could imply a new 

unknown pattern or more consideration needs to be taken into account for the 

right decision. The DTW distance between the unknown sample and each fault 

sample is a random variable, as is the difference between these distances. The 

statistical distribution of these random variables and the differences between 

them will determine the best choice of criteria both for detecting and isolat- 

ing the correct fault, and for deciding when there is insufficient information to 

do so. Hence, developing rigorous statistical criteria to improve the isolation 

performance is recommended as future work. 

5. The disadvantage of DTW method is that it is an off-line approach. This is 

because the pattern recognition methods need entire information of the fault, 

including starting states and ending states to classify the pattern. Thus it is not 

suitable for a real-time implementation. However, it is a useful tool to analyze 

the system off-line and to find the right patterns. 



Chapter 4 

Genetic Fuzzy Model-Based FDI 

The model-based FDI method has attracted a great amount of research interest. As 

illustrated in Chapter 1, the main concern with this method is building an accurate 

model to estimate the system's normal behavior. Since complex industrial systems 

are generally nonlinear, the focus has been on nonlinear modelling. 

There are many different ways to build a nonlinear model to predict the system's 

behavior based on numerical data. Neural networks (NNs) and fuzzy systems are two 

areas where considerable progress has been made in the past decades [15, 39, 421. 

NNs consider a fixed topology of neurons connected by links in a predefined way. 

The weights between these connections are initialized by random numbers. The 

weights are refined by the training data and an optimal solution is sometimes achieved. 

However, since the knowledge is encoded within a "blackbox", it lacks the ability to 

explain itself in a human-comprehensible way. 

Fuzzy systems express the relationship between variables in the form of "if-then" 

rules. A fuzzy system as a universal approximator is capable of uniformly approximat- 

ing any nonlinear function on a compact universe to any degree of accuracy [6, 431. It 

has also been proven that fuzzy systems are functionally equivalent to a class of radial 
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basis function networks [30]. The ease of interpretability of fuzzy systems makes them 

more understandable to humans and, therefore, their knowledge could be helpful for 

further utilizations and decisions by people. However, there is a tradeoff between the 

interpretability and accuracy of a fuzzy model [43]. 

Designing a fuzzy model from data can be decomposed into two main phases: 1) 

rule generation and 2 )  system optimization [15]. The rule generation can be further 

divided into two steps: a) rule induction and b) rule-base optimization. The former 

generates a basic system and a rule base, and the latter aims to refine the rule base. 

System optimization for complex multivariate systems involves selecting variables, 

reducing the rule base and optimizing the number of fuzzy sets. 

In this chapter, a genetic fuzzy model-based fault diagnosis method and its imple- 

mentation for the ship propulsion benchmark are presented. An optimization method: 

genetic algorithm (GA) is used for the fuzzy rule-base optimization. Figure 4.1 shows 

a GA-fuzzy model based FDI scheme, which is summarized in the following steps: 

Step 1- Data collection. First of all, in order to get an accurate model, it is impor- 

tant to collect adequate data for the problem of interest. Numerical data are 

obtained from the system inputs and measurable outputs. The selected inputs 

and outputs are sampled and the generated data are preprocessed to remove 

noise. 

Step 2- Model structure selection. This includes the selection of input and output 

variables from the collected data, and the structure of the model. Prior knowl- 

edge, combined with some statistical techniques, such as correlation analysis, 

can be used to determine the appropriate structure of input and output vari- 

ables. Input, output, and product spaces are determined thereafter. 
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Figure 4.1: A GA fuzzy model-based FDI scheme 
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Step 3- Fuzzy clustering. Fuzzy clustering is a method used to decompose the prod- 

uct space into several partial fuzzy regions so that a rule base can be built which 

represents the input-output relationships. Each region in the product space will 

be represented by a rule in the fuzzy rule base. An appropriate number of clus- 

ters is adopted to determine how many partial fuzzy regions the product space 

is classified into. Cluster centers and the corresponding degrees of membership 

obtained through the clustering algorithm indicate the extent that a data set 

belongs to each cluster. The generated degrees of membership of different clus- 

ters are projected onto the input and output space. A predefined membership 

function is used and the antecedent parameters of each rule are approximated 

by means of projection. 

Step 4- Least squares parameter estimation. After the antecedent parameters of the 

rule base have been decided, the output space is represented by either a set of 

fuzzy sets or a system of linear equations, depending on what type of fuzzy sys- 

tem has been chosen. In this implementation, as the outputs are approximated 

by linear equations of the inputs, the parameters of the equations are searched 

using the method of least squares estimation. Step 3 and step 4 together perform 

the task of rule induction. 

Step 5- Genetic optimization. So far, the rule base and parameters have been ob- 

tained. An optimization method, namely the genetic algorithm, is now devel- 

oped to refine the antecedent and consequent parameters so that model accuracy 

is improved. This step performs rule optimization. Since the nonlinear system 

being studied has only a few measured variables, system optimization is not 

necessary. 
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Step 6- Residual generation. The fuzzy model built by the previous steps is used 

to predict the behavior of the process under normal operating conditions. The 

difference between the output of fuzzy systems, i.e. estimated results, and the 

observed values are usually referred to as residuals in the fault diagnosis litera- 

ture. 

Step 7- Residual evaluation. The residuals generated from the previous stage are 

further evaluated and the FDI decision is then made. The system dynamics 

and other uncertainties are taken into consideration in the fault detection and 

isolation decision. 

The principle of fuzzy identification is introduced in the first section of this chapter. 

The detailed concepts and principles involved in step 2 to 5 are then presented, fol- 

lowed by FDI simulation results of residual generation and evaluation with the ship 

propulsion benchmark. 

4.1 Fuzzy Identification 

Fuzzy identification usually refers to the process of deriving fuzzy models from data. 

The modelling framework considered in this thesis is based on rule-based fuzzy models, 

which describe relationships between variables by means of "if-then" rules. There are 

two types of rule-based fuzzy models: Mamdani and Takagi-Sugeno fuzzy models. 

In this section, the fundamental concepts of these two fuzzy models, including fuzzy 

sets, fuzzy rule bases and fuzzy logic systems, are introduced. 
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4.1.1 Fuzzy Sets and Fuzzy Logic Systems 

A fuzzy set is in contrast to an ordinary set where a crisp decision is derived regarding 

whether or not a member belongs to the set. It is employed to represent the notion 

of fuzziness, which is often encountered in language description, in a mathematical 

way. A fuzzy set U is characterized by a membership function p : U + [O, 11, where 

any member in U is represented by the degree it belongs to U : p E [ O , l ] .  The values 

0 and 1 indicate no membership and full membership respectively. Grades between 0 

and 1 indicate that the data point has partial membership in a fuzzy set U. 

Medium 

........-........ .... - 5- XI 5+ 9 

Very light Light Heavy Very heavy 

'ery low Low Moderate High Very high 

Figure 4.2: Grid partitioning fuzzy sets in a 2-input 1-output system 

In Figure 4.2, the domain [x;, x:] of input variable xl is partitioned into three 

fuzzy sets: small, medium and large. Similarly, variable xz has 4 fuzzy sets in domain 

[x,, x t ] .  The domain [y-, y+] of output y is decomposed into 5 fuzzy sets. These 
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fuzzy sets are derived by equally partitioning the corresponding domain into different 

numbers of subregions. 

There could be an if-then rule describing the relationship between output y and 

inputs (xl, x2) such as: 

If xl is Medium and x2 is  Heavy, then y is  High (4.1) 

where the "if" part is called the antecedent and the "then" part is called the conse- 

quent. 

A basic fuzzy logic system consists of a fuzzy rule base and a fuzzy inference 

system (FIS) [43]. The fuzzy rule base includes a series of fuzzy if-then rules, and the 

FIS maps the input fuzzy sets to the output fuzzy sets according to  the fuzzy rule 

base principles. Suppose the training data set contains N data pairs. Each pair is 

composed of an n-dimensional input vector x and an m-dimensional output vector 

y. So that x = [xl, x2,. . . , xnIT and y = [yl, y2,. . . , ym]T . The fuzzy rule base of a 

Mamdani-type model is made of R if-then rules described as: 

If xl is Ail and . . . and x, is Ain, 

then yl is  Bil and . . . and ym is  Bim, i = 1,. . . , R. 
(4.2) 

where Ail, . . . , Ain and Bi, . . . , Bim are antecedent and consequent fuzzy sets, respec- 

t ively. 

In a Mamdani fuzzy system with inputs and outputs being real-valued variables, 

there needs to  be a fuzzifier and a defuzzifier to accomplish the transformation between 

real values and fuzzy sets, as depicted in Figure 4.3. 

Each crisp datum xj  is first fuzzified to a membership function value pij(xj) for 

fuzzy set Aij before the fuzzy rules can be applied. The outputs inferred from the 

inference system are defuzzified into crisp values by defuzzifiers, such as the center 

average defuzzifier and the maximum defuzzifier [43]. 
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Figure 4.3: Basic configuration of a Mamdani fuzzy logic system with fuzzifier and 
defuzzifier 

I I J . -.., I I .\ .. 
\ .I .. :,' 

The FIS uses the rule base to evaluate the fuzzy inputs based on a number of ways 

to interpret the if-then rules in (4.2). Details are provided in [43]. 

Fuzzy Sets in , 
Input Space 

4.1.2 Takagi-Sugeno Fuzzy Models 

In contrast to the Mamdani model which derives the output from the if-then rules 

with both antecedents and consequents using fuzzy membership functions, the Takagi- 

Sugeno (TS) model [38] makes use of antecedent fuzzy sets and a consequent linear 

equation of the input variables to form the rule base, as illustrated in Equation 4.3. 

Takagi-Sugeno (TS) fuzzy model has been successfully applied to many practical 

problems. Figure 4.4 depicts the structure of a TS fuzzy system with real-valued 

input x. 

Fuzzy Inference 
System 

where x = [xl, 22,. . . , xnlT is the input vector, and Ail,. . . , Ain are the antecedent 

fuzzy sets. The consequent part of the i th rule gi is a linear combination of the inputs 

and Pill . . . , pi(,+l) are real-valued parameters. 

Fuzzy Sets in 
Output Space 
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Rule 1 : 

I fx ,  isA, ,and ... andx , ,  is A,,, 
then ~ , = P , , x ,  +... +P,,,x,, +PI(,,+,, 

Fuzzifier -c 
Figure 4.4: Basic configuration of a Takagi-Sugeno fuzzy logic system 

Aggregate the 
rule 

contributions 

The model output is computed by aggregating the individual rule contributions: 

Y 
- b 

where wi is the degree of activation of the ith rule calculated by using the product 

operator: 
n 

A 

wi=JJpij(zj),i= 1 , 2  , . . . ,  R. (4.5) 
j=1 

The TS model approximates a nonlinear system using the combination of several 

linear systems. The input space is decomposed into several regions. Then each region 

w~ 
RuleR: 

is represented by a linear equation. The consequent parameters can be optimized by 

gn 

means of nonlinear optimization methods. 

-r 

There are two tasks for fuzzy modelling: structure identification and parameter 

adjustment. The former is to determine the partitioning of the input-output space, the 

Ifx, isA, ,  and ... and xn  is A ,  
then g ,  =P,, x I+...+PRnXn +PR("+,, 

antecedent and consequent parameters, and the initial position of membership func- 

- 

tions. The latter deals with optimizing the parameters under the structure identified 

by the former step [30]. 
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As previously mentioned, there is a tradeoff between readability and precision for 

a fuzzy model. Although more rules render greater precision, they are more difficult 

for users to  interpret. The TS model is more suitable for situations where accuracy is 

considered more important than linguistic interpretability, while the Mamdani model 

has both antecedents and consequents as fuzzy sets and offers high interpretability. 

4.2 Model Structure Selection 

In step 2 of Figure 4.1, a common approach to  modelling a dynamic system is to  

represent the identification of a dynamic system as a static regression problem. The 

followings are the three most commonly used model types [2]. 

0 Nonlinear Finite Impulse Response (NFIR) model which uses the past input 

data to predict the future output data. 

where $(k + 1) represents the predicted output, and y(k) and u(k) are respec- 

tively the system output and input at time instance k. Parameter nu is the 

model order which should be chosen based on the particular problem. The 

function F denotes the relationship which is mapped by the fuzzy model. 

0 Nonlinear Auto Regressive with exogeneous Input (NARX) model which estab- 

lishes a relation between the past input-output data and the predicted data. 

where n, denotes the order of past output data used as model input. 
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Nonlinear Auto-Regressive Moving Average (NARMA) model which includes 

the past prediction errors e(k) = $(k) - y(k) into the equation. 

Choosing appropriate inputs, outputs, and the regression order requires prior 

knowledge of particular problems or statistical analysis of them. Unsuitably small 

order of the regression system results in inaccurate modelling, whereas an inappro- 

priately large selection of the regression order causes modelling system "overfitting". 

Once the model structure has been decided, the product space, which is composed 

of input space and output space, is readily obtained. 

4.3 Fuzzy Clustering 

4.3.1 Product Space Partitioning 

For a fuzzy model to be constructed from numerical data, a set of fuzzy rules is 

generated from the desired input-output pairs and these fuzzy rules are used as a 

mapping from inputs to  outputs. During the stage of rule induction, the product 

space is divided into fuzzy regions and fuzzy rules are consequently developed. 

There are two kinds of methods for rule induction. The first one is called grid 

partitioning. Suppose the domain intervals are [x-, x+] and [y-, yf],  for input x and 

output y, respectively. The grid partitioning defines a number of fuzzy sets for each 

variable and these fuzzy sets are shared by all the rules. A common way to do grid 

partitioning is to  divide each input variable domain into a given number of subsets and 

assign each subset a fuzzy membership function, as showed in Figure 4.2. This type 
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of partitioning does not necessarily involve any physical meaning and the membership 

functions and rules generated thereafter can be considerably many, which degrades 

the interpretability of the fuzzy model. Hence the usual procedure is to  optimize the 

grid structure as well as the rule consequent parameters. Orthogonal transformation 

methods and similarity measures have been used to  simplify the rule base to  lower 

the system complexity and preserve accuracy as much as possible [35, 481. 

Fuzzy clustering is a second unsupervised classification method used to deal with 

region partitioning and fuzzy membership function construction. The principle of 

product space clustering is to approximate a nonlinear regression problem by decom- 

posing it into several local linear subproblems [2]. The data pairs are gathered into 

homogeneous groups, called clusters, by fuzzy clustering and a rule is associated with 

each group. More similarity can be found between members in the same cluster than 

between members belonging to different clusters. f i zzy  clustering allows the data 

to belong to  several clusters simultaneously with different degrees of membership for 

each of these clusters. Different from the grid method, fuzzy sets are not shared by 

all the rules. Instead, each of them is used only in a particular rule. 

4.3.2 Fuzzy C-means Clustering 

A large family of fuzzy clustering methods is based on the optimization of the f izzy 

c-means function. The Fuzzy c-means clustering (FCM) was first introduced by Dunn 

in 1973 [12]. It partitions data into homogeneous groups and a rule is associated with 

each group. Suppose there are N data pairs which need to  be clustered into c groups. 

The similarity in FCM clustering is measured by a distance norm from the kth data 

pair to  the ith cluster: 
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where A is a norm-inducing matrix, commonly chosen as the identity matrix so that 

Euclidean distance is achieved. Distances are calculated from the lcth data vector zk 

in the product space to a prototype vector vi of the ith cluster. The prototype is 

sought and updated interactively in the partitioning process. 

For a data matrix Z, the FCM algorithm yields U and V which minimize the 

c-means objective function as shown in (4.10): 

where m is a weighting exponent determining the fuzziness of the resulting clusters, 

usually set to  2. Matrix U = consists of membership functions, with the (i, k)th 

element being the degree of membership from the kth data pair to the ith cluster 

under the probabilistic constraint: 

where V is the matrix of the prototype vectors for c clusters. 

Suppose that the data set is Z and the number of clusters is c. The following 

are the procedures used in performing FCM clustering: firstly, initialize the partition 

matrix U, then repeat the following steps with I = 1,2, . . . until 1 Iu(') - u('-~)I 1 < E 

where e is a small number used to  indicate when sufficient accuracy is achieved. 

1. Compute the cluster prototype(means): 
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2. Compute the distance: 

3. Update the partition matrix: 

If DikA > 0 for 1 < i < c, 1 < k < N 

otherwise 

The FCM algorithm is suitable for clusters with comparable size and shape or 

when the clusters are well separated [15]. It imposes a spherical shape on the clusters, 

regardless of the actual data distribution. 

4.3.3 Gustafson-Kessel Clustering 

Gustafson-Kessel (GK) algorithm is an extension of the FCM algorithm which employs 

an adaptive distance norm [16]. In order to detect clusters of different geometrical 

shapes, it makes use of the fuzzy covariance matrix Fi as shown below: 

The norm inducing matrix is then reformed as: 
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where pi denotes the cluster volume, usually fixed as 1. Similar to the steps of the 

FCM algorithm, the procedure in partitioning by GK algorithm is simply using the 

new Ai for cluster i at  each iteration of step 2 in section 4.3.2. 

An advantage of the GK algorithm over the FCM is that it can divide the data 

set into groups of different shapes and orientations, geometrically, while the FCM 

algorithm can only be used to classify the data into the same types of shapes. It has 

been shown that the GK algorithm is especially suitable for the TS fuzzy model [2]. 

4.3.4 Projection and Membership Function Selection 

After unsupervised clustering, the data pairs have been classified into c groups in the 

product space. Membership functions are then generated by projecting the clusters 

onto each variable direction. For details, please refer to [2, 171. 

Figure 4.5 illustrates how to project the classified clusters onto two-dimensional 

space, where el1, ~ 1 2 ,  c13 and czl,czz, C23 are the projection of cluster centers on each 

dimension. It is assumed that in the two dimensional product space [ z y ] three 

clusters are generated by fuzzy clustering. The FCM and the GK clustering both re- 

turn not only the matrix of centers of the clusters, but also the degree of membership 

matrix U. The c x N dimensional matrix U contains the grades of membership of 

each data pair to  each cluster. The membership grades are plotted for each variable 

in dashed curves as shown in Figure 4.5. To construct the fuzzy inference system 

based on the fuzzy clustering, one has to transfer the membership grades to the 

fuzzy membership functions, and further build a fuzzy rule base on them. Triangular, 

trapezoidal, and Gaussian membership functions are the most widely used member- 

ship functions. The triangular membership function, shown in (4.18), was chosen in 
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Figure 4.5: Project the clusters onto two dimensional space and use the triangular 
membership function to initialize the fuzzy system 
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this approach. 
x - a  c - x  

p(x; a, b, c) = max(0, min(-, -)) 
b - a  c - b  

where a ,  b, c, are the three vertices of each triangular membership function. They are 

determined by projecting the membership grades from product space to each variable 

direction. For simplicity, the three cluster centers are taken as the three vertices 

having membership grade of 1. The leftmost or the rightmost vertices are simply set 

to a much bigger (or smaller) number than the boundary of the variable domains. 

The fuzzy rule base is constructed from the 3 clusters in Figure 4.5 as follows: 

Rule 1: if x is Al then y is B1 

Rule 2: if x is A2 then y is B2 

Rule 3: if x is A3 then y is B3 

4.4 Least Squares Estimate for Selection of 

Consequent Parameters 

The consequent parameters pi, of each individual rule are obtained as the result of 

least square estimation. Define 0: = [ pi, . . . pi, . . . pin 1, let X, denote 

the matrix [X 11 of N x (n + 1) dimensions with input space X of: 

& = [ X  l ] = [ x l  xz . . .  xn 11 (4.19) 

The kth row of matrix X, is [ xkl xk2 . . . xkn 1 1 ,  and the output y = 

[ y1 yz . . . y~ IT. Let W i  denote: 
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The N x N matrix W i  has its kth diagonal element wi(xk) as the degree of 

activation of the kth row data of matrix X regarding ith rule. The consequents of the 

ith rule is the weighted least squares solution of y = XeOi + E [2], which gives: 

4.5 Genetic Algorithm Optimization 

Since model accuracy is critical for a model-based FDI, and some of the system infor- 

mation might not be captured completely by initial fuzzy clustering and projection, 

an optimization approach is required to enhance the model performance. The Genetic 

Algorithm (GA) is an optimization technique which has received much attention in 

recent literature and it is appealing for powerful and parallel searching. The GA has 

found various applications in fields of pattern recognition and neural networks. In 

this section, a GA optimization method is applied on both antecedent and conse- 

quent parts of the fuzzy model to improve the model performance [34]. 

The Genetic Algorithm is a stochastic process performing parallel search over 

a complex space [31]. It maintains a population of P( t ) ,  a set of individuals, for 

generation t and uses a performance criterion fitness to evaluate each individual. Each 

individual represents a potential solution to the problem at hand. During the search 

for a global optimum, some individuals undergo stochastic transformations by means 

of genetic operators to form new individuals. New individuals, called child O(t), are 

evaluated. Next, a new population is formed by selecting more fit individuals from 

the parent individuals and the child individuals. The GA recursively updates the 

optimization in each generation t until it converges to the best individual. A general 

structure for the GA is as follows [13]: 
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begin 

t t o ;  

initialize P (t) ; 

evaluate P (t) ; 

while (not termination condition) do 

begin 

recombine P (t) to  yield O (t) ; 

evaluate O (t) ; 

select P( t+l)  from P(t) and O(t) ; 

t t t + l  ; 

end 

end 

In GAS, an encoded individual set xl, x2, .  . . , xh, which consists of h parameters 

to be optimized is usually presented by a chromosome. In a binary coded GA, a 

chromosome containing h segments of bit strings takes the form as follows: 

It also can be seen as an encoded possible solution to the problem of interest. A real- 

coded GA has chromosomes represented as decimal number strings and is considered 

in this thesis for its better performance on multidimensional and continuous prob- 

lems over binary GAS [29]. For simplicity, examples in this section are shown in the 

format of binary strings. A set of chrornosomes compose a population. In each gener- 

ation, the initial population could be chosen as randomly generated or suboptimum 

chromosomes. 

There are three genetic operators in GAS: selection, crossover and mutation. 
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1. Selection: the selection process copies chromosomes, known as parent chromo- 

somes, and puts them into the mating pool for further genetic operations. The 

chance that a chromosome will be copied is based on the chromosome's fitness 

value. Good chromosomes are chosen and further operations work on them to 

locate possibly better solutions. Several methods are available for the selection 

operator such as Roulette wheel parent selection, linear selection and tournament 

selection. 

2. Crossover: once the parents are chosen, the next operator is the crossover of 

the parents. Crossover, as the analog from the biological term, refers to the 

blending of the genetic information of parent chromosomes and the production of 

offsprings for the next generation. The GA decides whether or not the crossover 

should take place by a predefined parameter called crossover probability. When 

a randomly generated number is less than the crossover probability, the GA 

decides not to perform crossover. Otherwise, crossover will take place and a 

random splicing point is chosen in a string. Thus, two new strings are created by 

swapping all the characters from the splicing position to the end of the string. 

For example, if the splicing number is randomly generated as 5, the crossover 

between: 

001011011010 and 

011101101100 

will result in two new strings: 

001011101100 and 

011101011010 

These child strings are then placed in the child population. 

3. Mutation: even though the selection and crossover operations have enlarged the 
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searching space, the GA employs another operator called mutation to further 

enlarge the searching space and keep the GA away from local optima. A mutation 

probability determines the frequency at which mutations occur. For example, 

a mutation of the string 001011101100 could result in a new chromosome of 

001011111100, as the eighth bit is flipped. 

The selection and crossover operations produce a large number of different indi- 

viduals. A mutation, even occurring with a very small probability, helps prevent the 

population from stagnating. The power of a GA comes from the fact that it contains 

a rich set of individuals of great diversity. 

The iteration repeats again with selection for the next generation. This iterative 

process continues until all user-specified criteria are met (for example, one hundred 

generations, or a string is found to have a fitness exceeding a certain threshold). 

4.6 Simulation Results and Discussion 

4.6.1 Fuzzy Model of The Ship Propulsion Benchmark 

As noted in Chapter 2, the input signals for the benchmark are the shaft speed set 

point n,,f and the propeller pitch 8ref. Measured outputs are the diesel engine shaft 

speed nmf, the fuel index Y,, the propeller pitch position Qmf, and the ship speed Urn. 

As in Chapter 3, three faults are considered in this chapter: velocity measurement 

"too high" Anhigh, velocity measurement "too low" Anl,,, gain fault Ak,. 

According to Figure 4.1, to employ the GA-fuzzy model based FDI on this partic- 

ular problem the first step is the data collection. To achieve that, simulation of the 

ship propulsion model run for 3500 seconds and a set of training data was collected 

and stored in a Matlab data file. Figure 4.6 presents the output signal. 



Chapter 4. Genetic Fuzzy Model-Based FDI 

9 1 I I I I I I 

0 500 1000 1500 2000 2500 3000 
Time 

Figure 4.6: Output of the training data 

The output signal is preprocessed by a low-pass filter to remove noise. The next 

step for building the fuzzy model is to choose an appropriate model structure, i.e. 

determine input and output signals for this problem. Generally speaking, statistical 

properties such as covariance and correlation can be used to determine the number 

of useful signals for modelling. In this particular problem, an analysis of structure 

models of the ship propulsion system leads to  identifying several subsystems carrying 

possible redundant information [21]. Further analysis of the torque sub-system and 

knowledge about the intended use of the model suggested the following model: 

Since the dynamics of the ship speed are much slower than the shaft speed, for 

the purpose of the analysis in this paper, including U,(k) in the input variables is 
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sufficient, instead of using both U(k) and U(k - 1) [21]. Therefore, the fuzzy model 

has the output of nmf for the purpose of detecting and isolating the three faults. 

Input signals are chosen as Urn, Ym and Omf. 

Consistent with (4.22), a second order NFIR model is adopted and nmf(k + 1) 

needs to be estimated by the inputs: Omf (k - I), Bmf (k), Um(k), Ym(k - I), and 

Ym(k). The final model was chosen as: 

where iimf(k + 1) is the predicted value of nmf at the time instance k. Therefore, the 

input space X in our fuzzy model is: 

The output space y consists of nmf only. The product space Z is then built so that 

it can be decomposed by fuzzy clustering: 

z =  [ x Y I = [ Omf(k- 1) omf(k) Um(k) Ym(k- 1) Ym(k) nmf(k+ I)] 

(4.25) 

The following step used the FCM and GK algorithms to classify the product space 

into several clusters. In the preceding discussion in Section 4.3.2, prior knowledge of 

the number of clusters (and rules) c is assumed. Regarding this FDI problem, some 

trial and error has been performed to obtain an appropriate number c. To avoid 

a complex structure for the fuzzy system, the cluster numbers should be limited. 

Nevertheless, choosing too small a number will not result in a model with satisfactory 

accuracy. Given the system model structure as previously defined, numbers 3,4 and 5 

were utilized separately as the cluster numbers and the corresponding fuzzy systems 

were built. 
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The antecedent parameters of the TS model rules are approximated by the pro- 

jection of the fuzzy clusters onto input and output directions as illustrated in Section 

4.3.4. Triangular membership functions are chosen for each of the generated fuzzy 

sets (i.e. clusters), as in Figure 4.5. The consequent values of the TS model are then 

finalized by the maximization of the reciprocal of mean-square error: 

where 

where the k starts from 3 due to the fact that the second order regression system 

is adopted. The choice of performance measure in (4.26) is consistent with the fitness 

criterion selected for the genetic algorithm discussed later in this section. 

The performance of the inferred fuzzy system with 3,4, and 5 clusters is summa- 

rized in Table 4.1. According to  the evaluation criteria, an accurate fuzzy model will 

present a large value of P. It is obvious that 3 clusters is the best solution among these 

three choices and the GK clustering considerably outperforms the FCM clustering as 

expected. 

- -- -- - 

Table 4.1: Performance value P using FCM and GK algorithms with 3,4, and 5 clusters 

Number of clusters 

3 

4 

5 

Since the product space of the problem consists of 5 input variables, and the 

number of fuzzy clusters has been chosen as 3, the projection generates 3 triangular 

P (by FCM algorithm) 

1.2252x103 

603.0551 

49.9896 

P (by GK algorithm) 

5.369Ox1O3 

1.3395x103 

54.5786 
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membership functions for each variable. For the j th variable in the product space, 

a series of membership parameters and further fuzzy sets are derived: parameters 

(alj, blj, clj) represent fuzzy set Ay, parameters (aaj, b2j, cZj) represent fuzzy set Aaj, 

and (a3j, b3j, cgj) represent fuzzy set A3j. The consequent parameters Qi with the same 

format in Section 4.4 for each rule are determined by least-square estimation. 

So far, the antecedent and consequent parameters of the TS fuzzy system have 

been derived. It is then possible to build the fuzzy rule base which consists of 3 fuzzy 

rules, each rule explaining the extent to which a particular data pair belongs to the 

corresponding cluster. The fuzzy system has a rule base of the following format: 

If xl is  Ail and..  . and x5 is  Ai5, 
(4.28) 

then g i=p i lx l+  . . .+p i5  x 5 + p i ~ ,  i = 1 , 2 , 3 .  

As shown in Figure 4.1, a real-coded GA is implemented on the generated fuzzy 

model to enhance the system accuracy. In this particular problem, the initial chro- 

mosome is built by the fuzzy rule antecedent and consequent parameters derived by 

FCM (or GK) and the least squares algorithm. In the first generation, the population 

consists of the initial chromosome and other randomly generated chromosomes. Their 

parameters are uniformly distributed in the neighboring area of the parameters in the 

initial chromosome. For instance, a chromosome is presented as: 

where aij, bij, cij are the triangular membership function parameters of the ith rule 

and the j th  variable. The consequent parameter vector Oi contains the consequent 

parameters [ pil pi2 pi3 pi4 pi5 l)i6 ] of the ith rule. 

The fitness criterion of a good chromosome is a large P calculated as in (4.26) 

and (4.27). Mean-square-error J and the fitness criterion P are calculated for each 

chromosome in a population. 
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The selection function used is tournament selection. In tournament selection a 

number, Tour, of chromosomes is chosen randomly from the population and the best 

chromosome from this group is selected as parent. The parameter Tour has the value 

of 2 in this simulation. 

A simple arithmetic crossover operator and a uniform mutation operators are 

chosen, and the crossover and mutation probabilities are set to be 0.95 and 0.05 

respectively. 

Two constraints are considered to keep the physical meaning of the triangular 

memberships: 

Since the three number group of ( a ,  b, c) represents the triangular membership 

function, a < b < c should be ensured for each fuzzy set. Each new population should 

be constrained to meet this requirement. 

To avoid the optimization points from drifting too far away from the original 

points, the scope limit is set to be 0.35; i.e, the searching scope is about one third of 

the fuzzy set length, centered around the original points. 

The original and new membership functions have been generated after 10000 gen- 

erations as shown in Figure 4.7 and Figure 4.8. The system performance has been 

improved to P = 6.6317e+005. The re-organization and simplification of the updated 

membership functions can improve the interpretability of the fuzzy model. However, 

it is beyond the scope of this thesis. 

Another set of data was collected as checking data for this fuzzy model. The 

output signal and estimated errors for this checking data are shown in Figure 4.9. 

Part (a) shows the system output signal nmf. It can be seen from part (b) of this 

figure that the estimated error: e = f imf  - nmf is quite small during most of the 

simulation time. The resulting P value for the checking data is 2.7810e + 005. There 

exist some time instances when the errors can not be ignored. This is because the 
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Figure 4.7: Fuzzy sets and membership functions before the GA 

Figure 4.8: Fuzzy sets and membership functions after execution of GA 
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model can not capture the system's dynamics immediately. With the fault evaluation 

scheme presented in the next section, a satisfactory FDI method is performed without 

considering this little handicap. 

-1 t ' System dynamic changes' 

1.5 I I I I I 

Figure 4.9: (a)Output signal n,f of checking data, (b)Estimated error of checking 
data 

1 

0.5 

4.6.2 Residual Generation and Evaluation 

- I estimated error by checking data I 
- 

- 

After the model has been built, the residuals are generated by feeding input data into 

the fuzzy model, monitoring the corresponding estimated outputs from the model 

and comparing the model outputs with the actual measured values. The errors are 

considered as the residuals. Once the residual has crossed over a certain threshold, 

an alarm will be triggered, indicating a fault has occurred. 
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There are three fault scenarios and problems presented in this section. The cor- 

responding information is listed in Table 4.2, in which fault scenario 1 is consistent 

with [20]. 

Table 4.2: Three fault scenarios presented in this chapter 

Fault 

Anhigh 

Anlow 

% 

The measured signal nmf goes through a first-order low-pass filter to remove the 

noise. The real value of nmf and the estimated value of n,f are depicted in Figure 

4.10 (a). Part (b) is the generated residual. 

It can be seen from part (b) that with a threshold of 0.4 and -0.4, the three faults 

can be detected successfully. The three faults can be detected at 681, 2641, and 3002 

seconds. They meet the quick detection requirements in Chapter 2. Figure 4.10 show 

changes in system dynamics also increase the residuals. However, compared to the 

residual magnitude when a fault occurs, these increase are small. Faults are readily 

distinguished from changes in system dynamics using a simple threshold criteria. 

It can be observed that the magnitude of the residual caused by the Anhigh fault 

is negative and falls sharply when crossing the threshold line, whereas the magnitude 

of the residuals caused by the Anl,, fault is positive and rises sharply when crossing 

the threshold line. In addition, the residual caused by the Ak, fault is positive and 

has relatively small but constant magnitude. A decision scheme is adopted that if the 

magnitude of residual is bigger than 0.4 and has a change rate over 2, it is assumed to 

be caused by Anhigh. In contrast, if the magnitude of residuals is smaller than -0.4 

Fault scenario 1 

680s-7 10~113 

2640s-2670~15 

3000s-3500~10.2 

Fault scenario 2 

1120s-1140~116 

1620s-1660~17 

2780s-3300~10.2 

Fault scenario 3 

1020s-1060~115 

21 10s-2150~15 

2900s-3300~10.2 
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Figure 4.10: (a)Estimated value and real value of n,f (b) Generated residual in fault 
scenario 1 
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and has a change rate less than -2, it is assumed to be caused by Anlow. Otherwise, 

when it is bigger than 0.4 and has a comparatively small change rate, it is considered 

a fault caused by Ak,. Based on observations on the residual and the rate of residual 

changes in the presence of the three faults, fault isolation can be implemented by a 

fuzzy inference system with following rules: 

1. If residual is bigger than thresh and resrate is large then the fault is Anlow; 

2. If residual is smaller than -thresh and resrate is neglarge then the fault is Anhigh; 

3. If residual is bigger than thresh and resrate is small then the fault is Ak,; 

where resrate demonstrates (residual(k) - residual(k - l ) ) /AT  and thresh = 0.4. 

The fuzzy sets are depicted in Figure 4.11. 

Neglarge NegMedium Small Medium Large 

2 - 1 . 5  - 0 . 3  0 0 . 3  1.5 2 
resrate 

Figure 4.11: Fuzzy sets of the fuzzy interference system for fault isolation 

Figure 4.12, 4.13 present the residuals in fault scenario 2 and 3, respectively. In 

Figure 4.13, it is noticed that the residual right after the Anhigh fault exceeds the 

threshold. This may lead to false alarms. As the chance that a fault happens right 
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Figure 4.12: (a)Estimated value and real value of filtered n,f (b) Generated residual 
in fault scenario 2 
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Figure 4.13: (a)Estimated value and real value of filtered n,f (b) Generated residual 
in fault scenario 3 
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after another fault is detected is very low, this possible alarm could be avoided by 

monitoring several more samples of the signal to make the final decisions. 

4.7 Chapter Summary 

The results in this chapter show that the GA fuzzy model-based FDI is able to detect 

and isolate three faults in the ship propulsion benchmark. The required time limits 

have been achieved and the three faults can be isolated successively. This demon- 

strates that the represented method of building the fuzzy model based on numerical 

data and the application to FDI renders satisfactory results. This method can be gen- 

eralized to other FDI problems. Below are some considerations for the ship propulsion 

benchmark problem: 

1. The training data used in building the fuzzy system contains 3500 input-output 

data pairs. Including more training data will take more computing resources and 

may result in the "overfitting" problem. 

2. The training and checking data are preprocessed by a first order low pass filter 

with the transfer function of H ( s )  = - to remove the influence of high 

frequency noise. Any monitored real-time data should be preprocessed by a 

similar LPF before the residuals are generated. 

3. It has also been noted that the dynamics in this system have not been completely 

captured by the GA-fuzzy model. Fortunately, the threshold selected in this 

chapter is able to tolerate the errors caused by system dynamic changes. An 

alternative solution could be an adaptive threshold turning smaller in steady 

states and larger in dynamic change points. 

4. Only one fuzzy model was built, thus only one residual is generated and taken 
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into consideration. This model functions well to detect and isolate the three 

faults. The work suggests that the task of detecting other three faults may be 

achieved using similar models. More fuzzy models of additional signals contain- 

ing information about other possible faults can be constructed. For example, 

to detect faults Adhigh and Adl,,, studies on signal dmf  and relative modelling 

would be necessary. Using fuzzy modelling to detect incipient faults is left as 

promising future work. Since this thesis is intended to reveal properties of various 

FDI approaches, we will move on to a new approach in the next chapter. 



Chapter 5 

Wavelet Signal Processing 

Combined with Model-based 

Method 

As discussed in Chapter 1, signal processing-based FDI methods have been investi- 

gated for linear and nonlinear systems. Because they are comparatively simple, these 

methods are suitable for many systems where accurate models are not available or 

are difficult to obtain. Wavelet analysis has perhaps been one of the most exciting 

developments in the last decades, bringing together researchers from several different 

fields such as image compression, signal processing, speech recognition, and so on. 

In the field of fault detection and isolation, wavelet based approaches have also been 

studied and interesting results have been derived [23, 501. The wavelet transform 

accurately localizes the characteristics of a signal in both the time and frequency do- 

mains, where the multiscale representation of the signal helps identify the occurring 

instants of abrupt faults. The differences in the distribution of the signal energy on 

decomposed wavelet scales of the signal before and after the occurring instants of 
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faults are used to  isolate various sensor faults [50]. In Kim's paper[23], the wavelet 

decompositions are used for nonstationary signal feature extraction in the process of 

a NN model based fault diagnosis. The wavelet neural network is introduced as an 

extension of a regular wavelet basis. It is a consistent function estimator having uni- 

versal and L2 approximation properties [51, 521. Wang [44] trained a dynamic wavelet 

neural network, which carries out fault prognosis tasks and predicts future failures. 

Various research shows that wavelet analysis is a flexible and effective method to 

handle fault detection involving nonstationary signal information. 

I b 

ym 
GA-Fuzzy 

Model 
"m 

Evaluation 

Figure 5.1: Scheme of the combined FDI method on the ship benchmark 

In this chapter, the principle of wavelet analysis and its applications to FDI for the 

ship propulsion system are presented. There are five faults that can be successfully di- 

agnosed by continuous or discrete wavelet time transform or decomposition, including 

an incipient fault. To detect and isolate all the six possible faults in this benchmark, 

a fuzzy model is included as an effective FDI approach for the fault which can not 

be detected by wavelet transform methods. The FDI scheme of wavelet transform 
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combined with model-based method is adopted as illustrated in Figure 5.1. The three 

detector outputs are A, B, and C. The detection and isolation logic is listed in the 

format of truth table in Table 5.1, where 1 denotes a triggered alarm, 0 denotes no 

alarm, and x denotes "don't care". It can been seen from this truth table that: 1) 

the outputs of CWT detector perform fault detection of four abrupt sensor faults, 2) 

the output of DWT detector indicates the incipient sensor fault, 3) when the CWT 

detector does not trigger an alarm and the residual from the GA-fuzzy model is bigger 

than the threshold, a gain fault is considered to have occurred. 

Table 5.1: Fault detection and isolation logic for combined FDI system 

A 

This scheme will be elucidated in greater detail in the following sections. First, 

the principle of wavelet transform is introduced in the next section. 

5.1 The Principle of Wavelet Analysis 

B 

5.1.1 Continuous Time Wavelet Transform 

Wavelet analysis is a new and promising set of time-scale (time-frequency) domain 

tools and techniques applicable to a wide range of signals. This section provides an 

introduction to wavelet transform theory. The beginning of the wavelet transform 

can be traced back to a paper by Grossman and Morlet [14]. They started to model 

a certain signal by a combination of translations and dilations of a simple, oscillatory 

C Fault diagnosis 
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function of finite duration called a wavelet. The work is referred to as the continuous 

wavelet transform (CWT). There are other wavelet analysis techniques which have 

been developed based on CWT. Wavelet analysis allows the use of long time intervals 

where more precise low-frequency information is desired, and shorter intervals where 

high-frequency information is desired. 

Let L2(R) denote the Hilbert space of measurable, square-intergrable one- 

dimensional functions. A function f ( t ) ~  L2 (R) satisfies: 

The continuous-time wavelet transform of f (t) with respect to a wavelet $(t) is 

defined as the sum over all time of the signal multiplied by scaled, shifted versions of 

function $(t) [14]: 

where $*(t) denotes the complex conjugation of the mother wavelet, which is a real 

or complex-valued continuous-time function with the following two properties: 

0 The function $(t) is a function with zero average, i.e: 

0 The function $(t) is a square-integrable function, i.e. it satisfies Equation 5.1. A 

mother wavelet is a waveform where most energy is confined to a finite duration. 

There are an infinite number of functions which qualify as mother wavelets. 

The variable s is referred to as the scale or dilation variable, demonstrating stretch- 

ing or compressing of the mother wavelet. The variable u is called time shift or trans- 

lation, referring the delaying or hastening of the signal onset. The function $*(?) is 
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then the dilation and translation of the mother wavelet function $(t). Thus wavelet 

analysis produces a time-scale view of a signal. 

Let qs(t) = &$ (-i), then the continuous wavelet transform can also be written 

as a convolution product: 

Wf (s, 4 = f * &(4 (5.4) 

where * denotes convolution. 

The result of applying CWT to a signal is a wavelet coefficient vector, which is a 

function of scale and translation. Each coefficient represents how closely correlated a 

scaled wavelet is with a portion of the signal which is determined by the translation. 

Continuous wavelet transform coefficients are precisely the time-scale view of the 

signal. On the other hand, the CWT also offers insight into both time and frequency 

domain properties of the signal. Since higher scales correspond to the most "stretched" 

wavelets, the more stretched the wavelet, the longer the portion of the signal with 

which it is compared, and thus the coarser the signal features measured by the wavelet 

coefficients. These coarser features, called approximations, providing basic shapes and 

properties of the original signal, correspond to  low frequency components, whereas the 

low scale components capture the high frequency information and are called details 

in wavelet literature. 

5.1.2 Discrete Time Wavelet Decomposition 

Calculating continuous wavelet coefficients at  every single scale is a fair amount of 

work and generates a lot of data. The discrete wavelet transform (DWT) is based on 

the wavelet analysis at particular scales and translations that are powers of two, such 

as 2,4,8,16, and so on. It is much more efficient and just as accurate as the CWT. 
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Figure 5.2: Scheme of multiple stage wavelet decomposition 

The approximations of signals provide basic trends and characteristics of the orig- 

inal signal, whereas the details provide the flavor of the signal. The DWT reveals the 

approximation and detail properties of a signal at different stages (scales) through the 

process shown in Figure 5.2. The original signal passes through two complementary 

filters, whose characteristics are determined by the selected wavelet, and then emerges 

as two signals. The purpose of followed downsampling is to keep the generated C, 

and Cd each half as long as the original signal, so as to avoid winding up with twice 

as much data. The outcome of the discrete wavelet transform is an approximation 

coefficient vector C, and a detail coefficient vector Cd, respectively representing the 

approximations and details of the analyzed signals. This process is also called wavelet 

decomposition. If the decomposition is repeated on the approximations in each stage, 

then the multiple stage DWT will break down one signal into many successively lower 

resolution components, as shown in Figure 5.2. At each stage, the approximation 
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coefficient Ca represents the signal trend and the detail coefficient Cd includes the in- 

formation of noise or nuance. Because of the downsampling performed in each stage, 

the length of C, and Cd is shortened in exponents of 2 for each stage. For example, 

Ca6 is cut off to  1 /P  to its original length. 

The original signal can be reconstructed from the approximations and details by 

the process of applying inverse discrete wavelet transform (IDWT). 

5.2 Wavelet Analysis Combined With Model-Based 

FDI 

5.2.1 The Modulus Maximum and Singularity 

In the literature of the wavelet transform, the term "modulus maximum" refers to any 

point (so, uo) such that I W f (so, u) I is locally maximum at u = uo. This implies: 

awf (so, uo) 
= 0 

du 

This local maximum should be a strict local maximum in either the right or the 

left neighborhood of uo, to  avoid any local maximum when IW f (so, u)l is constant. 

If the mother wavelet $(t) is chosen as the first-order derivative of the Gaussian 

low pass function ((t), let Ss(t) = $( (T), then qS(t) = s y  and: 

It is shown in Figure 5.3 that the CWT of f (t) is equivalent to the process of 

low-pass filtering f (t)  first, and then taking the first-order derivative of the resulting 

signal. The wavelet modulus maxima are the maxima of the first-order derivative of f 

smoothed by <, . The CWT of the signal f (t) has modulus maxima around the singular 
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Figure 5.3: Original signal f(t), smoothed signal f * &(u), and wavelet transform 

W f  (s, 4 

points. This can be used in distinguishing between the signal singular points and noise 

[28]. It has been proven that the mean value of continuous wavelet coefficient of a 

stationary random signal is zero. In addition, when the scale variable s increases, the 

variance of the coefficient converges to  zero [47]. As an instance of stationary random 

signals, stationary noise has the characteristic that the wavelet transform modulus 

maxima will quickly decay with increasing scale. Since the monitored signals usually 

consist of deterministic signals and noise, the wavelet transform of monitored signals 

is the sum of the wavelet transform of these two parts. The modulus maxima which 

correspond to  singularity points of deterministic signals will increase or slowly decay, 

whereas the modulus maxima which correspond to  noise will quickly decay. 

The singularities and edges of a signal are detected by checking the wavelet trans- 

form modulus maxima at various scales. Thus, abrupt sensor faults occurring on a 

signal are detectable by finding the abscissa where the wavelet modulus maxima con- 

verge at large scales [27]. The wavelet transform has proven to  be particularly useful 
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in detecting abrupt sensor faults [47, 501. 

5.2.2 CWT for Detecting Sensor Faults in The Ship 

Propulsion Benchmark 

The fault scenario described in Table 2.1 is considered in this chapter, in which there 

are four abrupt sensor faults: Anhigh, Anl,,, AOhigh and AO,,,, and an incipient 

sensor faultAk, and a gain fault 

As presented in Figure 5.1, the continuous wavelet transform is implemented to 

detect abrupt sensor faults according to the properties illustrated in Section 5.2.1. 

Figure 5.4 respectively shows the monitored signals Omf and nmf in fault scenario 

shown in Table 2.1. 

4 1 I I I I I I 
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(b) 
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Figure 5.4: (a)Monitored Omf in the fault scenario (b) Monitored nmf in the fault 
scenario 



Chapter 5.  Wavelet Signal Processing Corn bined with Model- based Method 83 

One can observe that the nmf signal is not only affected by the faults of Anhigh 

and Anlow, but also by the faults of and A&,,; while emf is only affected by 

the faults of nohigh and AQlow. This is explained by the system structure in which the 

shaft speed control loop is coupled to the propeller pitch control loop, as illustrated 

in section 2.1. 
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Figure 5.5: Wavelet coefficients of emf at scales 2,4, 8 and 16 

The CWT coefficients of the monitored signals on different scales are calculated 

separately and presented in Figure 5.5 and 5.6. The test has been done on the 

output signal nmf and emf at different scales of 2,4,8 and 16. The first derivative 

of the Gaussian function,'dbl', is chosen as the mother wavelet function for these 

transformations. 
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Figure 5.6: Wavelet coefficients of n,f at scales 2,4, 8 and 16 
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The series of CWT diagrams show an easy method to phase out the effects of 

noise on the monitored data based on modulus maximum values of CWT coefficients. 

From Figure 5.5 we can see that the modulus maxima of the wavelet transform at 

fault occurring points (AOhzgh and AO1,,) gradually grow with increasing scale. At 

the same time, the amplitudes of CWT of noise decay. From Figure 5.6, it can be seen 

that the modulus maxima of the wavelet transform at fault-occurring points (Anhzgh, 

Anlow and AOhtgh, Aelow) also keep the same value or gradually grow with increasing 

scale. It is noticeable in both figures that at a comparatively larger scale, the wavelet 

transform modulus also grows a little larger at some points other than fault-occurring 

points. These points are system-dynamic-changing points. 

The following considerations are key in addressing the FDI problem for the ship 

propulsion benchmark. 

Firstly, two adaptive thresholds, namely The for emf, and Th, for signal nmf, are 

used with a scale of 16 to ensure that only the modulus maxima at fault-occurring 

points will be detected, rather than falsely detecting system dynamic change points. 

The thresholds used are as follows: 

and 

where AT is a 

benchmark system. 

time interval. The nTef and Oref are two 

After some trial and error, the Thno or Theo 

(5.8) 

input signals in the 

were set to f 0.4 and 

f 0.2 respectively on the two figures of scale 16. For both Th, and The, one positive 

and one negative threshold are generated. To get a positive threshold for either Thn 

or The, a positive value of corresponding Thno or Theo needs to  be used. At the same 

time, + should be selected as the sign of the second factor in (5.7) and (5.8), and vice 
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versa. The adaptive thresholds go through a low-pass filter with transform function 

0.04 to make their behavior smoother. At system-dynamic-change points, H ( s )  = m 
the thresholds become larger so as to tolerate the system dynamic changing, thereby 

avoiding possible false alarms. Figure 5.7 shows the adaptive thresholds on a wavelet 

transform of scale 16 on monitored signal Qmf: 

Figure 5.7: Wavelet transform coefficients of Qmf at scale 16 

-1 

-1.5 

Four types of faults Anhigh , Anlou, , nohigh and AOL,, are detectable by mon- 

itoring the CWT of n,f. Similarly, two types of faults, nohigh and ABL,, can be 

detected by monitoring the CWT of the signal Qmf. These faults can be detected very 

promptly, all within one second. 

For the purpose of fault isolation between two different fault types: AQ and An,  

- I 

I I I I I I 
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"low 

\ 

Figure 5.8: Wavelet transform coefficients of n,f a t  scale 16 
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the wavelet transforms of Omf and n,f need to be considered jointly. The following 

possibilities exist during the FDI process: 

1. When the CWTs of both signals detect faults at  the same time, which means 

either nohigh or AOlOw has happened, check the CWT on scale 16 of the signal 

Omf. If the coefficients are crossing the negative threshold at the point when 

the fault is being detected, a fault of Adhigh is considered to have occurred. In 

contrast, if the signal is higher than the positive threshold when the fault is being 

detected, a fault of AO1,, has occurred. 

2. When only the CWT of the nmf detects faults, which means either Anhigh or 

Anlow has happened, check the CWT on scale 16 of the n m f  If the signal is 

decreasing with time and crosses the negative threshold, a fault of Anhigh is 

considered to have occurred. In contrast, if the signal crosses over the positive 

threshold, a fault of Anl,, has occurred. 

The other two types of faults Alc, and A&,, can not be detected by this method 

because they cause no significant changes in output signals. 

To demonstrate the feasibility of the approach, another set of checking data with 

different inputs and fault scenarios, listed in Table 5.2, is tested. The wavelet trans- 

form of each signal Omf and nmf is shown in Figure 5.9. 

Table 5.2: Fault scenario for checking the CWT approach 

This method is easy and accurate, and even though the fault magnitude itself 

Time duration 
I Magnitude 

Fault 
Time duration 
/Magnitude Fault 
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Figure 5.9: Test the CWT approach: (a)Wavelet transform coefficients of Omj  at  scale 
16 (b)Wavelet transform coefficients of nmf at scale 16 



Chapter 5. Wavelet Signal Processing Combined with Model- based Method 90 

is small, the modulus maxima of the CWT coefficients are significantly large. This 

technique can readily be applied to  other fault detection problems. 

5.2.3 DWT for Detecting and Identifying Incipient 

Faults 

Detecting incipient faults is always a challenge in FDI because they tend to  be un- 

noticed amidst the system uncertainties and noise. Serious damage could result to 

a system due to the delayed detection and the failure to follow-up with corrective 

solutions. 

One reason for the difficulty in detecting incipient faults is because gradual changes 

are so much submerged in signals polluted by noise and uncertainty that an appropri- 

ate detection criteria is difficult to set. Wavelet analysis is useful in de-noising signals 

and revealing signal trends that are otherwise hidden by noise. The overall trends are 

recovered and the subsequent comparison and detection could be performed. In terms 

of wavelet analysis, trend is the lowest frequency part of the signal and corresponds 

to the greatest scale value. As the scale increases, the resolution decreases, producing 

a better estimate of the unknown trend. Another way to  think of this is in terms of 

frequency. Since successive approximations progressively possess less high-frequency 

information, with the higher frequencies removed, what is left is the overall trend of 

the signal. 

In this section, a discrete time wavelet decomposition based FDI approach for the 

incipient fault A&,, is presented. The assumptions are that all the sensor faults have 

been detected by the CWT as shown in section 5.2.2 and the incipient fault happens 

in the steady state. Since the sensor faults have been detected by the method based 

on the CWT, what remains is to detect the leakage incipient fault A&,, and the gain 
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fault Ak,, as shown in Figure 5.1. As the propeller pitch control loop is not coupled 

with other control loops, it can be readily seen that the fault Alc, does not affect 

the signal Omf,  while there is no doubt that As,,, will affect the sensor measurement 

signal Om f. 

In this section, we use the DWT as a tool to analyze the properties of signal emf 
and derive a feasible method to detect A&,. The signal Omf is first studied in healthy 

and faulty cases and meaningful observations are made on it. From section 5.1.2, the 

multiple level wavelet decomposition is capable of revealing the signal trend, which 

is represented by the approximation Ca. The more stages the decomposition has, the 

more fundamental shape the Ca represents. 

A 6-level wavelet decomposition is performed on signal Omf and the mother wavelet 

is selected as the first-order derivative of the Gaussian function. Since the length of the 

resulting approximation coefficient vector Ca6 has been shortened to  $ of the length 

of its original, to  compare and reveal the original signal's trend, the approximation 

vectors are reconstructed to the original length of the signal being analyzed. 

In Figure 5.10 and Figure 5.11, the upper box 's' shows the original signal Omf in 

the healthy and faulty case, respectively. There is hardly any perceivable differences 

during the time period 800s-1500s when A&,, happens. The a6 in the second row is 

the reconstructed approximation coefficient ca6, and dl , .  . . , d6 are the reconstructed 

detail coefficients of Cdl,. . . , Cd6. The original signal 's' is composed of the sum of 

the sixth level reconstructed approximation a6 and reconstructed details from all the 

six levels, i.e. s = a6 + d6 + d5 + dq + d3 + d2 + dl. To better analyze the signal a6, 

a finer description of a6 of Omf in the faulty case is presented in Figure 5.12. The 

reconstructed a6 presents a stair-like structure which reveals the overall trends of the 

signal. The dotted line between 800s and 1500s is the a6 approximation in the healthy 
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Decomposition at level 6 : s = a6 + d6 + d5 + d4 + d3 + d2 +d l  . 

Figure 5.10: Six level wavelet decomposition of Omf in a healthy case 
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Decomwsition at level 6 : a = a6 + d6 + d5 + d4 + d3 + d2 + d l  

Figure 5.11: Six level wavelet decomposition of emf in the fault scenario 
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case. 

Time 

Figure 5.12: Reconstructed sixth level approximation a6 of emf in the fault scenario 
(zoomed in) 

Comparison of a6's in the time interval 800s-1500s shows that the incipient fault 

causes the reconstructed approximation to decrease slowly while in the same time 

interval of healthy case the reconstructed approximation keeps a constant value. 

The observations of the faulty signal show that the leakage incipient fault has 

two properties which can be used to distinguish it from the healthy operation and 

other fault cases. During the steady state, in the absence of incipient fault A&,,, 

the mean value of the reconstructed approximation signal a6 stays at a steady level. 

The incipient fault causes the a6 of signal emf to  degrade gradually. In addition, the 

slope of a6 in the faulty part stays a t  a constant level. A detection and isolation 

approach can be derived based on the preceding characteristics of signal a6 in this 
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ship propulsion benchmark: 

1. The value of the reconstructed approximation a6 of the monitored signal n,f at 

time k is compared to that value of the preceding time instance. 

2. If the value is decreasing monotonically, a moving window with 50 consecutive 

a6 samples is created. Then a linear fitting is performed to obtain a linear 

approximation of the windowed slope. 

3. With the window shifting, if a consecutive number of slopes stay around a con- 

stant value, or the deviation of these slopes is around or less than 2 percent of 

the preceding slope, the slope is considered a constant. In this case, an incipient 

fault is assumed to have occurred. 

This consecutive number of constant slopes required to trigger an alarm could be 

fixed at 100 so that the criteria for detection time could be met. However, to avoid 

the false detection, this number is chosen as 200. There is a tradeoff between the false 

detection probability, missed detection probability, and required detection time limits. 

The detection time could be shorter and meet the time requirement if the incipient 

fault is considered to be sufficiently serious that the price of a higher probability of 

false detection can be afforded. Since the severity of the incipient fault is not so high, 

the detection time is therefore set to be 200. 

5.2.4 Fuzzy Model Based FDI 

The wavelet signal analysis methods are able to detect and isolate five faults that occur 

in the ship propulsion benchmark, as illustrated in the preceding sections. There are 

still some faults which do not exhibit significant influence on a particular measurable 

signal. Therefore, they tend to be difficult to detect by the signal processing methods, 
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such as fault Ak, in this problem. A previously illustrated fuzzy model-based FDI 

is implemented in this section to detect the Aky fault, as shown in Figure 5.1. The 

basic principles of the GA-fuzzy model-based FDI approach have been provided in 

Chapter 4. The inputs to a GA-fuzzy model are still the same emf, Y,, U,, and the 

model output is the t imf.  The difference between the model output fimf and measured 

signal n,f generates the residual. 

From the discussion in last chapter, it is clear that the large residuals of this 

model are caused by three possible faults: Anhigh, Anl,, and Aky. Hence, if the 

CWT sounds a sensor alarm indicating either of these two sensor faults, the residual 

of fuzzy model will not be taken into consideration. When the CWT does not detect 

any sensor faults and the residual of GA-fuzzy model exceeds the threshold, a gain 

fault Aky is considered to have occurred, as summarized in Table 5.1. This saves 

efforts of employing another fuzzy system to distinguish the three faults as what has 

been done in Chapter 4. The simulation results are similar to that in Chapter 4. 

5.3 Chapter Summary 

There are following discussions and concerns regarding the implementation of the 

wavelet analysis method and combined FDI system on the ship propulsion system. 

1. The wavelet analysis methods are accurate and timely in diagnosing sensor faults. 

It combines the information from time, scale and frequency domains in analyzing 

the signal. 

2. For simplicity, we seek to use as few scales as possible to clearly show the evo- 

lution of the continuous wavelet coefficient to make faults distinguishable from 

the noise and system dynamic change points. 
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3. Distinguishing between the two An faults and two A0 faults is not always neces- 

sary. Knowing that a fault is occurring on shaft speed measurement is sufficient 

to  locate the problem and take corrective actions. The same reason applies to 

A0 faults. 

4. There are no requirements on prior mathematical or mechanical knowledge of the 

system so this method is relatively easy to implement for sensor faults. However, 

because of the lack of mathematical insight into the system, it might not be as 

powerful and complete when used in detecting faults in which many signals are 

involved. 

5. Where combined models are used to isolate faults, relative timing must be con- 

sidered. In this case this is not an issue for two reasons. Firstly, the CWT 

method is fast to detect abrupt sensor faults which need very prompt correction 

actions. Secondly, the gain fault has a severity level "medium" and allows a 

longer detection time than the abrupt sensor faults. Even though the gain fault 

decision is delayed until the CWT decision is made, it is still safe and within the 

detection time requirements. 

6. As shown in Figure 5.1, the six faults can be detected and isolated by the wavelet 

analysis and model-based combination. The combined signal processing and 

model-based FDI uses appropriate methods to detect different faults. This has 

been shown to be a successful approach in terms of ease of implementation, 

promptness of response and completeness in types of faults detected for the ship 

propulsion benchmark. 



Chapter 6 

Summary and Future Work 

Three different FDI methods, the dynamic time warping (DTW), the GA-fuzzy model 

based approach, and wavelet signal processing method have been applied to a non- 

linear ship propulsion benchmark. Comparisons and conclusions have been made on 

these three approaches: 

1. Pattern recognition methods reveal a significant insight into FDI problems. In- 

cluding DTW, they perform supervised and unsupervised classifications, without 

knowledge of the particular system's mathematical properties. Instead, certain 

other features such as statistical or geometrical criteria play an important role 

in helping the classification. DTW, as presented in Chapter 3, is capable of ex- 

tracting the pattern similarity by calculating a minimum distance and therefore, 

successfully classifying the fault patterns. Since it needs a significantly long time 

period of data to complete the distance calculation, its application to real time 

systems is limited. 

2. The GA-fuzzy model based FDI presented in this thesis builds a fuzzy system 

based on numerical data. The fuzzy model was optimized by a GA to search for 
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a global minimum. The generated fuzzy rules can be expressed in if-then format 

to supply the user with human-comprehensible knowledge. This knowledge can 

be stored as expert knowledge for future studies of the same system. 

3. Even though in building the GA-fuzzy model in this thesis, some structural 

analysis was considered, it is not necessary to  assume structural analysis in 

practice. A purely data-driven model could be built using statistical methods in 

selecting suitable model structures. In reality, it is very difficult, if not impossible, 

to obtain the full model of a complex system. This makes the data-driven, fuzzy 

model based methods a promising area for future work. 

4. The signal processing approaches, particularly wavelet signal processing, suc- 

cessfully solve the FDI problem for abrupt sensor faults. Wavelet analysis allows 

monitoring of the changes and reveals the properties of relative signals in time, 

frequency and scale domains. Wavelet analysis methods come up with FDI de- 

cisions promptly and precisely. 

Detecting incipient faults is usually a challenge for FDI. It is difficult to diagnose, 

even with observers. This thesis presents a new thought based on DWT and its 

application to  the ship propulsion benchmark. It is able to detect the incipient 

fault by taking advantage of the fact that wavelet decomposition approximation 

coefficients show the basic trend of the signal. 

5 .  Table 6.1 is the summary of the three methods implemented on the ship propul- 

sion benchmark. This thesis presents simulation results that the DTW and GA- 

fuzzy-model-based approaches can detect and isolate three faults, and wavelet 

analysis is capable of detecting and isolating five sensor faults. The applications 

of DTW and GA-fuzzy model approaches to  the other three faults are left as 

future work. It is promising that the GA-fuzzy model approach can detect the 
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DTW GA-fuzzy model Wavelet analysis 

Table 6.1: Detection results for the three methods on ship propulsion benchmark 

A0 faults if the correct model structure and residual are selected. Detecting the 

incipient fault will be a challenge for the DTW and GA-fuzzy model methods. 

6. Chapter 5 also provides a new concept for a hybrid system to perform the multi- 

ple fault detection and isolation tasks. The continuous wavelet transform method 

at different scales can be used to detect the sensor faults, and the different be- 

haviors of these signals at fault-occurring points are used to help isolate them. 

The incipient sensor fault is detectable after certain wavelet decomposition and 

reconstruction. A fuzzy model is built to detect the Alcy fault, since the statis- 

tical or frequency changes caused by this fault are not significant enough to use 

the wavelet decomposition approach. It is a good result since all the six faults 

are detected and isolated using the above procedures. 

It is recommended that future work includes: 

1. A rigorous investigation of the statistics of fault detection and isolation decision 

criteria, including optimal settings of decision thresholds and the tradeoff be- 

tween false detection probabilities and missed detection probabilities, is a good 

area for future work. 
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2. A moving windowed Dynamic Time Warping approach could be investigated 

to detect and isolate faults in a short time interval. This would overcome the 

primary disadvantage that the DTW method requires a considerable amount of 

data before any comparison and conclusion can be reached, leaving it suitable 

only for off-line applications. The window is of specific length and the calculation 

of the minimum distance with sample patterns is repeated each shift. The shorter 

the window, the faster the DTW will detect faults. 

3. More residuals could be generated by more GA-fuzzy models to predict the 

system behavior on different variables. Hence, more faults could be detected 

and isolated based on analysis and consideration of these additional residuals. 

4. As it can be seen from the hybrid system in Chapter 5, both the combining of 

methods to yield better performance and the matching of a particular method to 

a particular class of faults depending on the fault characteristics are promising 

areas for future research. 
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