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Abstract 

Biological systems are a rich source of new problems in physics, and solving them requires ideas 

from various fields. In this thesis, we focus on the specific biological phenomenon of DNA replica- 

tion, which is tightly regulated by spatio-temporal "programs" during the cell cycle. 

Inspired by a formal analogy between DNA replication and one-dimensional nucleation-and- 

growth processes, we extend the 1 D Kolmogorov-Johnson-Mehl-Avrami (KJMA) model to arbitrary 

nucleation rates I ( t ) .  We then use the KJMA model to extract kinetic parameters from data taken 

from molecular combing experiments. The analysis developed here can help biologists to understand 

and compare temporal programs of DNA replication of different organisms from a unified scheme. 

After developing the kinetic model, we show how underlying physical properties of chromatin, 

in particular its intrinsic stiffness, can explain various long-standing experimental observations. 

These include synchrony and correlations in the initiation of replication origins, as well as deter- 

mination of the origin spacings in the absence of sequence requirements in early embryos. 
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Chapter 1 

Introduction 

. . . then biology was bubbling with activity, changing its ways of thinking, discover- 

ing in microorganisms a new and simple material, and drawing closer to physics and 

chemist?. A rare moment.. . . 

Franqois Jacob, Nobel Lecture, December 1 1 ,  1965 

1.1 Physics and biology united' : a brief overview 

Can physics deliver another biological revolution? This provocative question was the title of the 

editorial in the January 14, 1999, issue of the journal Nature [I] .  When we read the history of 

science, we learn that many major advances happened only when the field was ready - a state 

usually preceded by technological developments and followed by a "paradigm shift" [2]. In that 

respect, one may consider the empirical data that is being obtained at an ever-increasing rate in 

recent years as a prelude to another revolution in biology. But why should people who are trained in 

physical sciences be excited by what is happening in biology? 

In fact, there have always been physicists who have crossed the boundaries: In the early 20th 

century, Max Delbriick proposed a model for the molecular origin of mutations [3], which was pop- 

ularized in the classic book What is Life? by another distinguished physicist, Erwin Schrodinger [4]. 

(Although many of the detailed ideas in the book proved to be wrong, it inspired a generation of biol- 

ogists.) As another example, half of the credit for the discovery of the famous double-helix structure 

 h he original title was Pkyics  and biology united (. . .!). For those who are curious about ". . .:' it was inspired by the 

Chilean song iEl  Pueblo Urzido Jarnas Sera Vencido! 
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of deox~vribonucleic acid (DNA) is shared by the physicist Francis Crick [5] .  And, Walter Gilbert, a 

particle physicist by training, received a Nobel prize for contributions to DNA sequencing [6]. 

On the other hand, some physicists have seen biological systems as a rich source of new prob- 

lems in physics. The energy landscape theory of biomolecules and protein folding [7], membrane 

mechanics [S], neural networks [9], and electrostatics problems inspired by DNA [lo] are just a 

small sample from a long list of examples in the last few decades. 

The recent interdisciplinary work by scientists in physics, biology, computer science, and other 

areas has a different nature from that of the "old schools" mentioned above. In particular, systems 

biology, or "modular biology"' as it is sometimes called, is a field where one needs not only to 

manage data but also new ways of thinking about the data. Here, data and experiments are the 

keywords that distinguish the current research activities and their outcomes from the pioneering but 

less-successful attempts several decades ago. 

Indeed, starting in the 1960s, Michael Savageau and co-workers built a powerful framework 

(which became known as Biochemical Systems Theory, or BST) for a general analysis of interacting 

biochemical processes [12-141. However, it was only much later, at the end of the 1990s, that 

scientists were finally able to tackle important questions in systems biology, using the powerful 

methods of genetic engineering and other techniques that had begun to produce large amounts of 

data [15-191. Without such data, the theoretical work of Savageau and others was "premature" and 

destined to have little infl~ence.~ 

To make an analogy, the current situation in biology resembles the exciting events that occurred 

about four centuries ago in physics, when, by collecting significantly better data, Brahe led Kepler to 

conclude that planetary orbits were ellipses and not circles (with or without epicycles) [21]. Kepler's 

elliptical model said nothing about the physical origins of ellipses, but his kinematic modeling was 

an essential starting point for Newton's work on dynamics 50 years later [22]. 

Although our goals here are much more modest, the theme of this thesis - DNA replication - 

certainly has similar ingredients: The recent development of "molecular combing" [23] and other 

techniques [24, 251 now makes it possible to extract large amounts of data from the replication 

process and, thus, to have detailed and reliable statistics. In other words, in light of systems biology, 

"Tell biology is in transition from a science that was preoccupied with assigning functions to individual protein or 

genes. to one that is now trying to cope with the complex sets of molecules that interact to form functional modules." [ I  I ]  
3 There is a well-documented literature about "premature" scientific ideas that were neglected because it  was not clear 

how to connect the new ideas to empirical data. See. for example, Ref. [20]. 
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Figure 1.1: Double-helix structure of DNA (B- 

form). Rendered using VMD (Visual Molecular 

Dynamics) [26]. 

the field of DNA replication is becoming mature and ready for quantitative modeling - a modeling 

that makes experimentally testable predictions, thus helping researchers to understand their data at 

a deeper level. 

In this thesis, we shall show that recent experiments on DNA replication in Xenopus early em- 

bryos can be modeled via a kinetic description that plays the same role as Kepler's description of 

elliptical orbits. This model then suggests a particular biological mechanism of relevance to DNA 

replication, where physical properties of chromatin loops naturally explain several seemingly un- 

related kinetic parameters. Perhaps more importantly, we are now able to predict how changes in 

certain physical parameters (in this case, the intrinsic stiffness or persistence length of chromatin) 

will affect the kinetics of DNA replication. 

1.2 Getting started: a brief history of DNA replication 

At the end of their historic 1953 paper on the double-helix structure of DNA (Fig. 1.1), Watson and 

Crick noted, "It has not escaped our notice that the specific pairing we have postulated immediately 
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suggests a possible copying mechanism for the genetic material." [5] 

A month later, in their second paper, Watson and Crick published their hypothesis for the repli- 

cation of DNA: "semiconservative replication" [27]. Their basic idea was that, if the order of the 

bases on one of the pairs of chains is given, then the exact order of the bases on the other one is de- 

termined by a specific pairing of complementary bases [adenosine (A) with thymine (T), cystine (C) 

with guanine (G)]. One can then think of the double-stranded DNA molecule as a pair of templates 

for replication, each of which is complementary to the other. In other words, each single strand 

acts as a template for the formation of a complementary DNA strand, so that each daughter DNA 

molecule has the same sequence as the original one. Semiconservative replication was confirmed in 

1958 by an elegant experiment by Meselson and Stahl [28]. 

How does a cell actually replicate DNA? If Watson and Crick were right, there should be an 

enzyme that makes DNA copies from a DNA template. In 1956, Arthur Kornberg and colleagues 

demonstrated the existence of such an enzyme: DNA polymerase I (pol I) of E. coli bacteria, a 

model prokaryote [29]. Indeed, the current paradigm of DNA replication traces back to Kornberg's 

pioneering discovery and his method of enzymology (see below, as well as Ref. [30]). 

Schematically, to be able to replicate, a cell has to unfold and unwind its DNA. (As we shall 

explain shortly, DNA is packed into a compact structure called chromatin.) It also has to separate the 

two strands from each other. The cell has a complex machinery to perform these tasks [Fig. 1.2(a)]. 

When it is time to replicate, special initiator proteins attach to the DNA at regions called replication 

origins. The initiator proteins pry the two strands apart, and a small gap is created at the replication 

origin. Once the strands are separated, another group of proteins that cames out the DNA replication 

attaches and goes to work. 

This group of proteins includes helicase, which serves as an "unzipper" by breaking the bonds 

between the two DNA strands. This unzipping takes place in both directions from the replication 

origins, creating a replication bubble (or "eye").4 The replication is therefore said to be bidirectional. 

Once the two strands are separated, a small piece of RNA, called an RNA primer, is attached to the 

DNA by an enzyme called DNA primase. These primers are the beginnings of all new DNA chains, 

since DNA polymerases cannot start from scratch. It is a self-correcting enzyme and copies the 

DNA template with remarkable fidelity." 

4The terms "replication bubble" or "eye" come from the appearance of DNA in early electron-microscopy work. (See 

Fig. 1.5. below.) 
5 As an example of this fidelity. consider a naive estimate for the base-pairing error rate that uses the free-energy 
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Figure 1.2: Schematic model of replication fork. (a) Various enzymes and proteins that function 

at or near a DNA replication fork (see text for details). The fork is moving upward. (b) Okazaki 

oment. fra, 

The DNA polymerase can read in only one direction (3' to 5'). This gives rise to some trouble, 

since the two strands of the DNA are antiparallel. On the upper strand, which runs from 3' to 

5', nucleotide polymerisation can take place continuously without any problems. This strand is 

called the "leading" strand. But how does the polymerase copy the other strand then when it runs 

in the opposite direction, from 5' to 3'? On this "lagging" strand the polymerase produces short 

DNA fragments, called Okazaki fragments, by using a backstitching technique [Fig. I .2(b)]. These 

lagging strand fragments are primed by short RNA primers and are subsequently erased by pol I 

and replaced by DNA with help of DNA ligase (Fig. 1.2). Meanwhile, as the fork progresses, DNA 

becomes more and more twisted because of its double-helix structure, and it is topoisomerase that 

"untwists" DNA. 

As one can imagine, DNA replication is crucial to life and, thus, highly regulated, both tem- 

difference between correct and incorrect base pairs. Since incorrect base pairs have an enthalpy (bonding + stacking) 

several - l i ~ T  greater than the correct base pairs [?I] ,  one can use the Boltzmann distribution to estimate an error rate 

of e x p ( A E / k s T )  -- - In fact. the observed error rate is lo-'' and is the result of an elaborate active 

"proofreading" and correction scheme I??]. 
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Early embryo 
(before MBT) 

Figure 1.3: Eukaryotic cell cycle. (a) The two critical events of the cell cycle are S and M, which are 

DNA replication (gnthesis) and mitosis (nuclear and cell division), respectively. There are also - gap 

phases between the two. Normally, replication origins are replications are determined ("licensed") 

in GI before the cell enters S phase. GI ,  S, and G2 are collectively referred to as "interphase." (b) 

An embryonic cell cycle lacks the Gap phases. 

porally and spatially. But, when and where does initiation actually occur? How many replications 

origins are there along the genome? 

The answers to many of these questions are well-understood for prokaryotes, which usually have 

circular DNA and a single unique origin [30]. For example, E. coli has a specific site called oriC 

(245 bp long) where a complex of DnaA proteins bind and starts replication. The replication bubble 

then grows bidirectionally (at a rate = 1000 bplsec) and terminates at another site called terC. The 

whole 4.7 million basepairs (bp) are completely duplicated in less than 40 minutes. What about 

eukaryotes? The answer is similar but much more complex. First, eukaryotic cells go through a 

series of stages, called a cell cycle [Fig. 1.3(a)], and DNA is only replicated during one of those 

stages called S phase (not surprisingly, "S" stands for synthesis) [Fig. 1.3(a)]. Second, eukaryotic 

genomes are usually much longer than prokaryotic ones. The human genome, for example, consists 

of 23 (pairs of) chromosomes with a total length of 3 x lo9 bp. Here, "chromosomes" refers to the 

threadlike "packages" of genes in the cell nucleus (Fig. 1.4). In contrast to prokaryotic systems, the 

replication fork velocities are of order I0 bplsec. Because the S phase can be as short as 20 minutes, 

replication must take place simultaneously at many different sites along the DNA. Indeed, with fork 
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velocities 100 times slower and with 1000 times the DNA to replicate, the eukaryotic genome can 

have as many as 1 0 b r i g n s  of replication (Fig. I .5 ) ,  often with different growth rates. 

Because of these complexities, there are still many basic questions waiting to be answered. For 

example, what regulates the spatio-temporal distributions of replication bubbles during the course 

of S phase? What ensures that DNA is replicated once and only once during S phase? Are there 

specific sequences of DNA that are responsible for initiation in eukaryotes? Does a higher-order 

structure of chromatin and/or other structures inside the cell nucleus play a role in DNA replication? 

As a more specific example, we briefly summarize the process of DNA replication in one of 

the best-studied eukaryotic systems. the famous South African clawed toad Xenopus laevis. (For 

detailed reviews, see Refs. [34, 351.) 
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Figure 1.5: Electron micrograph showing multiple replication bubbles of Drosophila nzelanogaster 

DNA. From Fig. 2 in Ref. [33] by Kriegstein and Hogness, with permission. Copyright@ Proceed- 

ings of the National Acaclemy of Sciences USA. 

The fertilized Xenopus egg undergoes 12 synchronous rounds of cell division in about 8 hours. 

During this period, the large egg (= 1 mm) subdivides into 4096 (= 2") smaller cells without 

growing in size. After the first 12 cycles of cleavage, the cell-division rate slows down abruptly, and 

transcription (protein synthesis) of the embryo's genome begins. This change is known as the mid- 

blastula transition (MBT). Since its large eggs are easy to manipulate and see and since its cell cycle 

is rapid and ~ i m p l e , ~  the early-embryo Xenopus is a good model for studying cell-cycle regulation. 

An interesting (and important) fact about Xenop~is early embryos is that, unlike E. coli or another 

simple eukaryote, budding yeast, there is no specific sequence requirement for initiating DNA repli- 

cation [36]. Moreover, these early embryos lack an efficient S M  checkpoint that makes cells delay 

entry into mitosis in the presence of unreplicated DNA [37]. Nevertheless, the Xenopus diploid 

genome ( > 6 billion basepairs!) is completely replicated within the 10-20 minutes of S phase. Ap- 

parently, there is a strict control mechanism, independent of sequence, that regulates the density of 

orisins and time of activation to prevent the "random-completion problem," where any large fluctu- 

ations in the spacing between origins would lead to (fatal) fluctuations in the duration of S phase. 

One of the goals of this thesis is to study the spatio-temporal program of DNA replication in this 

" ~ a c h  cycle consists of only two stayes: Mitosis (cell-division) and S phase: see Fip. 1.3(h). Also. note that durinp S 

phase in early embryos. no proteins are synthesized [33]. 
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Replication foci 

Chromatin 

(b) Chromatin loops 

Figure 1.6: Replication foci and chromatin loops. (a) An image of early S-phase-labeled (BrdU) 

replication sites of HeLa cell nucleus (taken with an Olympus epifluorescent microscope). The 

diameter of the nucleus in this image is approximately 10p,m. 20 molar BrdU was incorporated 

for 7 minutes for pulse labeling. Courtesy of Ronald Berezney and Kishore Malyavantham (State 

University of New York at Buffalo). (b) Chromatin loops at focus ("replication factory"). 

system. 

Finally, many textbook models (e.g., Fig. 1.2) for replication often display polymerases that 

track like locomotives along their DNA templates. However, this idea stems not from any solid 

experimental evidence but from a perception of relative size and from somewhat misleading early 

electron micrographs (such as Fig. 1.5). Although one's intuition is that the smallest object should 

move, recent evidence supports an alternate model in which DNA polymerases are immobilized by 

attachment to a larger structure, where they reel in their looped templates and extrude newly made 

nucleic acids [38]. These polymerases do not act independently; they are concentrated in discrete 

"factories," where they work together on many different templates. Indeed, although the resolution 

is limited, pictures of stable replication foci (where nascent DNA is concentrated), such as shown in 

Fig. 1.6(a), strongly support the factory model. In the latter part of this thesis, we will explore how 

the distribution of replication bubbles (Fig. 1.5) can be regulated by chromatin loops at replication 

factories. 
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1.3 About this thesis 

The main goal of this thesis is to develop and present various tools in theoretical physics that can 

be used to identity the spatio-temporal program of DNA replication from data. We then apply our 

methods to recent experiments on a model system, Xenopus egg extracts, which support all the 

nuclear events of the early embryonic cell-division cycle. 

Our starting point is the electron micrograph of multiple eyes in Fig. 1.5, which we interpret 

as a "snapshot" of a one-dimensional system undergoing nucleation-and-growth processes with an 

unknown nucleation rate I ( t ) .  This mapping of the description of DNA replication onto the de- 

scription of (one-dimensional) crystal-growth kinetics gives us access to a well-developed set of 

the~r ies .~  Thus, in Ch. 2, we introduce the classic Kolmogorov-Johnson-Mehl-Avrami model of 

nucleation and growth [39-43] and extend it to the case of an arbitrary nucleation function I ( t ) .  

In Ch. 3, we study the reverse, i.e., we discuss how to extract I ( t )  from a set of many snapshots 

analogous to Fig. 1.5. In Ch. 4, we apply the kinetic model to data recently obtained by Hemck er 

al. [44]. We then discuss the extracted I ( f )  as a temporal program of replication in Xenopus early 

embryos. 

In the next two chapters, we shift our focus to understanding the biological mechanisms that 

underlie the replication program. This leads us to consider the replication-factory model. (Fig. 1.6) 

Since one of the possible implications of the factory model is that chromatin fibers should attach to 

immobilized factories via looping, the loop sizes should correspond to the origin spacings. As we 

shall show later, the loop-formation probability depends on the intrinsic stiffness (or "persistence 

length") of polymers, and there is a specific length where loops can form most efficiently. In Ch. 5, 

we incorporate these results into the kinetic model to explain the spatial distribution of replication 

bubbles in the experimental data. Two crucial assumptions here are that, first, the loop-formation 

time is much shorter than the typical time-scale of DNA replication such as the duration of S phase. 

Second, we assume that the sizes of loops formed represent those with largest statistical weight, as 

calculated via an equilibrium distribution of loop-sizes. In Ch. 6, we tackle a simplified version of 

the problem, namely, loop-formation dynamics of a single chain with two "sticky" ends. We obtain a 

simple analytical expression to estimate the closing time Tc, and, indeed, a typical 7, for chromatin is 

'we emphasize that one should not interpret Fig. 1.5 as the actual geometry of DNA in a cell nucleus during replication. 

Even so, the one-dimensional topology of alternating replicated and non-replicated domains is still correct, and our model 

will be based on this topology. 
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several orders of magnitude smaller than the duration of S phase. In addition, in certain (biologically 

relevant) limits, the loop-formation rate of polymers is set by the equilibrium distributions of loop 

sizes, thus justifying the results in Ch. 5. 

The results in Ch. 4 and 5 can be considered to provide a mechanism that ensures complete, 

faithful, and timely reproduction of the genome without any sequence dependence of replication 

origins in Xerzopus early embryos. 

Parts of this thesis are based on previously published our work: Ch. 4 on Ref. [59], Ch. 5 on 

Ref. [71], and Ch. 6 on Ref. [155]. 



Chapter 2 

The Generalized 

Kolmogorov- Johnson-Mehl-Avrami 

Model 

2.1 Introduction 

Consider a tray of water that at time t = 0 is put into a freezer. A short while later, the water is all 

frozen. One may thus ask, "What fraction f ( t )  of water is frozen at time t  2 O?" In the 1930s, 

several scientists independently derived a stochastic model that could predict the form of f ( t ) ,  

which experimentally is a sigmoidal curve. The "Kolmogorov-Johnson-Mehl-Avrami" (KJMA) 

model [39-43] has since been widely used by metallurgists and other materials scientists to analyze 

phase transition kinetics [45]. In addition, the model has been applied to a wide range of other 

problems, from crystallization kinetics of lipids [46], polymers [47], the analysis of depositions in 

surface science [48], to ecological systems [49], and even to cosmology [50]. For further examples, 

applications, and the history of the theory, see the reviews by Evans [51], Fanfoni and Tomellini [48], 

and Ramos et al. [52]. 

In the KJMA model, freezing kinetics result from three simultaneous processes: I) nucleation of 

solid domains ("islands"); 2) growth of existing islands; and 3) coalescence, which occurs when two 

expanding islands merge. In the simplest form of KJMA, islands nucleate anywhere in the liquid 

areas ("holes"), with equal probability for all spatial locations ("homogeneous nucleation"). Once 
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an island has been nucleated, it grows out as a sphere at constant velocity 71. (The assumption of 

constant 11 is usually a good one as long as temperature is held constant, but real shapes are far from 

spherical. In water, for example, the islands are snowflakes; in general, the shape is a mixture of den- 

dritic and faceted forms. The effect of island shape - not relevant to the one-dimensional version of 

KJMA studied here - is discussed extensively in [45].) When two islands impinge, growth ceases at 

the point of contact, while continuing elsewhere. KJMA used elementary methods, reviewed below, 

to calculate quantities such as the solid fraction f ( t ) .  Later researchers have revisited and refined 

KJMA's methods to take into account various effects, such as finite system size and inhomogeneities 

in growth and nucleation rates [53-551. 

Although most of the applications of the KJMA model have been to the study of phase trans- 

formations in three-dimensional systems, similar ideas have been applied to a wide range of one- 

dimensional problems, such as RCnyi's car-parking problem [56] and the coarsening of long parallel 

droplets [57]. In this thesis, we shall apply the KJMA model to DNA replication in higher organ- 

isms. We start by observing that the duplication of eukaryotic genomes shares a number of common 

features [58] that can be mapped onto the basic assumptions of the KJMA model [59]: 

1. DNA replication starts at a large number of sites known as "origins of replication." The DNA 

domain replicated from each origin is referred to, informally, as an "eye" or a "replication 

bubble" because of its appearance in electron microscopy. (Fig. 1 S . )  

2. The position of each potential origin that is "competent" to initiate DNA replication is de- 

termined before the beginning of the synthesis part of the cell cycle ("S phase"), when sev- 

eral proteins including the origin recognition complex (ORC) bind to DNA, forming a pre- 

replication complex (pre-RC). 

3. During S phase, a particular potential origin may or may not be activated. Each origin is 

activated not more than once during the cell-division cycle. 

4. DNA synthesis propagates at replication forks bidirectionally, with propagation speed or fork 

velocity v, from each activated origin. Experimentally, 21 is approximately constant throughout 

S phase. 

5. DNA synthesis stops when two newly replicated regions of DNA meet. 

From Fig. 2.1, it is apparent that processes 3-5 have a formal analogy with nucleation and growth 

in one dimension (see also Fig. 1 S) .  We identify ( 1 )  nucleation of islands as activation (initiation) 
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Figure 2.1 : Mapping DNA replication onto the one-dimensional KJMA model. 

of replication origins; (2) growth of the eyes as growth of the islands; and (3) coalescence of two 

expanding eyes as the merging of growing islands. Of course, while DNA is topologically one 

dimensional, it is embedded in a three-dimensional space. 

In an ideal world, one could monitor the replication process continuously and compile domain 

statistics in real time. In the real world, the three billion DNA basepairs (bp) of a typical higher 

eukaryote, which replicate in as many as -10%ites simultaneously, are packed in a cell nucleus 

of radius -1 pm, making a direct, real-time monitoring impossible [32]. In Ch. 4, we analyze an 

experiment that used two-color fluorescent labeling of DNA bases to study replication kinetics indi- 

rectly (Fig. 2.2).' Schematically, one begins (in a test tube) by labeling the bases used in replicating 

the DNA with, say, a red dye. At some time during the replication process (e.g., t l  in Fig. 2.1), 

one floods the test tube with green-labeled bases and allows the replication cycle to go to comple- 

tion. One then stretches the DNA onto a glass slide ("molecular combing" [23]), a process that 

unfortunately also breaks the DNA strands into finite segments. Under a microscope, regions that 

replicated before adding the dye are red, while those labeled afterwards are predominantly green. 

Typical two-color epifluorescence images of the combed DNA are shown in Fig. 2.3. The red-and- 

green regions correspond to eyes and holes in Fig. 2.1, forming a kind of snapshot of the replication 

state of the DNA fragment at the time the second dye was added. Each time point in Fig. 2.1 would 

'The experimental details are described elsewhere [44]. but the approach is similar to DNA fiber autoradiography 

developed by Huberman and Rigps, a method that has been in use for the last 30 years [60.61]. 



CHAPTER 2. GENERALIZED KJMA MODEL 15 

"eye" 

\ 

Xenopus egg extracts 
+ sperm chromatin 

Figure 2.2: Schematic description of the double-labeling experiment. (a) Before replication starts, 

one adds "red dye" (biotin-dUTP) into the solution of Xenopus egg extracts and sperm chromatin. 

(b) "Eyes" then grow while more replication origins fire. (c) At chosen time points, one adds "green 

dye" (dig-dUTP) and waits until the DNA is completely replicated. (d) One then stretches the 

replicated DNA molecules in solution onto a glass surface ("molecular combing"). For more details, 

see text and Ref. [44]. 

thus correspond to a separate experiment. 

The purpose of the present two chapters, then, is as follows: Here, in Ch. 2, we discuss the 

KJMA model and how to generalize it for biological application. In particular, we consider the 

problem of arbitrarily varying origin initiation rate (equivalent to arbitrarily varying nucleation rate 

in freezing processes). Then, in Ch. 3, we discuss a number of subtle but generic issues that arise 

in the application of the KJMA model to DNA replication. The most important of these is that the 

method of analysis runs backward from the usual one. Normally, one starts from a known nucle- 

ation rate (determined by temperature, mostly) and tries to deduce properties of the crystallization 

kinetics. In the biological experiments, the reverse is required: from measurements of statistics 

associated with replication, one wants to deduce the initiation rate I ( t ) .  This problem, along with 

others relating to inevitable experimental limitations, merits separate consideration. 

In the mid-1980s Sekimoto showed that the analysis of the KJMA model could be pushed 

much further if growth occurs in only one spatial dimension [62-641. Sekimoto used methods from 

non-equilibrium statistical physics to describe the detailed statistics of domain sizes and spacings, 

as defined in Fig. 2.1. In particular, he studied the time evolution of domain statistics by solving 
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Figure 3.3: A fluorescence micrograph (bar = 20 pm). Early replicating sequences labeled with 

biotin-dUTP are visualized using red fluorescing antibodies (Texas Red). Later replicating se- 

quences are in addition labeled with dig-dUTP and visualized using green (FITC) fluorescing anti- 

bodies. Courtesy of Aaron Bensimon and John Hemck. 

Fokker-Planck-type equations for island and hole distributions, assuming that the nucleation rate 

I ( t )  is constant. His approach has since been revisited by others (e.g., [65]). 

Below, we review Sekimoto's approach and extend it to the case of an arbitrary nucleation rate 

I ( t ) .  As mentioned above, this case is relevant to the kinetics of DNA replication in eukaryotes. We 

also present an algorithm to simulate ID nucleation-and-growth processes that is much faster than 

more-standard lattice methods [66]. 
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Figure 2.4: Kolmogorov's method for constant nucleation rate I ( t )  = Io. (a) Spacetime diagram. 

In the small square box, the probability of nucleation is I. . AT . At, where I. is the nucleation rate. 

In order for the point X to remain uncovered by islands, there should be no nucleation in the shaded 

triangle in spacetime. (b) Kinetic curve for constant nucleation rate lo: f ( t )  = 1 - exp(-lout2). 

2.2 Theory 

2.2.1 Island fraction f ( t )  

We begin with the calculation of f ( t ) ,  the fraction of islands at time t  in a one-dimensional system. 

We write as f ( t )  = 1  - S( t ) ,  where S ( t )  is the fraction of the system uncovered by islands (i.e., 

the hole fraction). In other words, S ( t )  is the probability for an arbitrary point X at time i; to remain 

uncovered. If we view the evolution via a two-dimensional spacetime diagram [Fig. 2.4(a)], we can 

calculate S  by noting that 

S ( t )  = lim n (1 - IoAzAt) 
ax,at-o 

x , tEA 

Therefore, 
loutZ f ( t ) = l - e -  , 

which has a sigmoidal shape, as mentioned above [see Fig. 2.4(b)]. 

We note that Kolmogorov's method can be straightforwardly applied to any spatial dimension D 

for arbitrary time- and space-dependent nucleation rates I(j-1, t ) .  Similar "time-cone" methods can 

yield f ( t )  in the presence of complications such as finite system sizes [53-551. Unfortunately, this 
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Figure 2.5: Illustration for evolution of ph ( x ,  t ) .  (a) Drift. (b) Annihilation due to nucleation. (c) 

Creation due to nucleation. 

simple method cannot be used to calculate the distributions defined in Fig. 2.1, except that it can 

help solve the time-evolution equation for the hole-size distribution (see below). 

2.2.2 Hole-size distribution ph (x, t )  

We define ph(x, t )  as the homogeneous density of holes of size x at time t .  For a spatially inho- 

mogeneous system, ph,(z, X, t )  would be the density of holes of size x at the genome location X 

at time t .  As mentioned in the text, we consider spatially homogeneous systems only. (For a spa- 

tially homogeneous nucleation function I ( t ) ,  the density ph will also be spatially homogeneous.) 

The hole size x should not be confused with the genome spatial coordinate X. The time evolution 

ph(x, t )  then has the following structure: 

("' t ,  = [dri f t]  + [annihilation] + [creation]. 
at 

In Fig. 2.5, we illustrate each term that describes the evolution of ph(x, t ) :  First, in the absence of 

new nucleation or coalescence, each hole size decreases by 2v.dt during the time interval dt. In other 

words, the size distribution ph,(z, t )  just drifts at a rate 221 without changing its shape [Fig. 2.5(a)]. 

Note that the change in p(z,  t )  has the same sign for both x --+ x + dx and t --+ dt. Second, any 

nucleation on a hole of size J. between t and t + dt makes the hole disappear [Fig. 2.5(b)]. The 

annihilation rate equals the the density of holes of size x times the number of new nucleations at t ,  

namely, -ph ( z ,  t )  x I ( t )  . Third, holes can be created by nucleation in a larger hole of size y > x 
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Figure 2.6: Spacetime diagram. The hole-size distribution ph,(x>.t) is proportional to the probability 

po(x, t )  for no nucleation event occurs in the shaded parallelogram ABCD (see text). 

[Fig. 2.5(c)]. 

Based on the arguments above, we obtain 

where the factor 2 in the last (creation) term comes from the left- and right-symmetry of the nucle- 

ation process. 

Eq. 2.4 was solved by Sekimoto for I(t)=const., while Ben-Naim et al. derived a formal solution 

for arbitrary I ( t )  [67]. Below, we show that the solution of Ben-Naim et al. can also be obtained 

directly by applying Kolmogorov's argument. 

In Fig. 2.6, we see a hole of size x flanked by two islands. In order for such holes to exist at 

time t, there should be no nucleation within the parallelogram ABCD in the spacetime diagram. 

Similar to the calculation of the hole fraction S(t) ,  we obtain the "no nucleation" probability in the 

parallelogram as 

where g(t) = J,' I (t1)dt'. The domain density n(t)  and the hole fraction S( t )  are related by defini- 
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tion as follows: 

Since the hole-size distribution ph(x.  t )  is proportional to po(x,  t ) ,  we can write ph(x,  t )  = c( t )  . 

po(x: t ) .  By integrating this equation and using Eq. 2.6, we obtain c( t )  = n.(t) . g ( t ) / S ( t ) .  Putting 

this back into Eq. 2.4, we obtain an equation for n(t): 

This is a first-order linear equation and can be solved exactly. Using the boundary condition n(0 )  = 

1, we solve Eqs. 2.8 and 2.4 to find 

These are just exponential functions of x ,  with decay constants that monotonically decrease as a 

function of time. 

2.2.3 Island distribution pi (x, t )  

In analogy to Eq. 2.4 and following [63], a time-evolution equation can be obtained for the island- 

size distribution pi(x, t ) .  In this case, the drift term is the same as in Eq. 2.4, except that the sign 

changes because islands always grow. On the other hand, new nucleations contribute to pi(x, t )  

only with sizeless (x = 0)  islands with a rate -b(x)  . I ( t )  x ph(x, t )  dx = - I ( t )  S ( t )  b ( x )  (see 

Eq. 2.6). Finally, coalescence of two islands can both annihilate and create islands of size x: for 

annihilation, either of the islands should have a size x;  for creation, the sum of the sizes of the two 

islands should be x. The resulting equation can be written as 

api(x ,  t )  = -221 
at 

ap ' (x ' t )  + I ( t )  S ( t )  &(x )  + a( t )  [ J x  pi(x - Y ;  t )p i (y ,  t )dy  - 2n(t)pi(x;  t ) ]  , ax 0 
(2.1 1) 

where a( t )  is a prefactor that should be determined. We recall that, in one-dimension, both holes and 

islands have the same domain density n ( t )  = p(x, t )dx .  This means that a( t )  can be determined 
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by applying Jr dz to Eqs. 2.4 and 2.12 and comparing the two, as follows: 

Thus, a( t )  = 221 p(0, t ) /n , ( t )2  and we obtain 

Unfortunately, we cannot solve Eq. 2.1 2 using the simple arguments that worked for ph ( z ,  t ) .  

The main difference is that a hole is created by nuclearion only, while an island of nonzero size 

is created by growth andlor the coalescence of two or more islands. Thus, pi(x, t )  is given by an 

infinite sum of probabilities for an island to contain one seed, two seeds, three seeds, and so on. 

Nevertheless, we can still obtain the asymptotic behavior of pi(x, t )  for arbitrary I ( t )  by Laplace 

transforming the above evolution equation, as in [63]. 

Applying Som dxe-"" to Eq. 2.12, we find 

where pi(s, t )  E JOme-sxpi(x, t )dx,  with initial conditions ,&(s, 0 )  = 0. We can further simplify 

Eq. 2.13 by defining Gi(s ,  t )  = exp [2v g(t')dtt] . h ( s ,  t ) ,  which then obeys 

If we write Gi(s ,  t )  as 

Gi(s,  t )  = s + g( t )  + X ( S ,  t ) ,  

we find that x ( s ,  t )  obeys the (nonlinear) Bernoulli equation [68]: 

Solving Eq. 2.1 6 and substituting back into Eq. 2.15, we find the Laplace transform &(s ,  t ) :  
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We cannot perform the inverse Laplace transform of the above equation, even for the simple 

case of I(t)=const. [i.e., g(t) N t] [63, 651. However, from the form of denominator in Eq. 2.17, 

we observe that pi(s. t )  has a single simple pole along the negative real-axis at 1s = s*(t)l << 1 

for t >> 1, regardless of the form that g(t)  may have. Since the inverse Laplace transform can be 

written formally as the Bromwich integral in the complex plane (~.e., as the sum of residues of the 

integrand [69]), a standard strategy for obtaining an asymptotic approximation to pi(x, t )  for x >> 1 

is to expand pi(s, t )  around s*(t) (Is*(t) 1 << 1) to lowest order. Following Sekimoto's approach, we 

define K(s ,  t )  to be the denominator in Eq. 2.1 7, which becomes 

Around s = s* (t), Eq. 2.1 7 can be approximated as 

e- .hi g(tl)dt' HK(s* (t) ,  t )  1 
pi(% t)  2 - 2v dt  aK(s* ( t ) . f )  js - s*(ql as 

= + 
2v dt s - s* (t) ' 

From Eq. 2.1 8, we amve at the following asymptotic expression for pi (x, t): 

for x ,  t >> 1. Now, both the prefactor and the exponent [the pole s*(t)] can be obtained very easily 

by simple numerical methods. On the other hand, an approximate expression for s*(t) itself can 

be found by first expanding K(s ,  t )  in powers of sf and then solving iteratively using Newton's 

method [70]. (See Fig. 2.7) The result is 

where 

As we shall show below, Eq. 2.19 describes the behavior of pi(x, t )  accurately for x 2 221t. 

2.2.4 Island-to-island distribution Fi2i (x, t )  

While most studies of ID nucleation-growth have focused on ph (x, t )  and pi(x, t )  exclusively, the 

distribution of the distances between the centers of two adjacent islands [the island-to-island dis- 

tribution p ~ i  (x, t)] has important applications. For instance, whether homogeneous nucleation is a 
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Figure 2.7: Plot of s* ( t ) .  The solid line is a direct numerical solution of K(s ,  t )  = 0 and the dashed 

line is Eq. 2.20. 

valid assumption cannot be known a priori. Indeed, in the recent DNA replication experiment that 

motivated this work, the "nucleation" sites for DNA replication along the genome were found to be 

not distributed randomly, a result that has important biological implications for cell-cycle regula- 

tion [71]. 

In the 1D KJMA model, Sekimoto has shown that a constant nucleation function I. cannot 

produce correlations between domain sizes [63, 641. We speculate that the same holds true for any 

local nucleation function I ( x ,  t ) ,  a conclusion that is also supported by computer simulation' [71]. 

Assuming a local nucleation function, we can write the formal expression for pizi(x> t )  directly in 

terms of pi(x, t )  and ph ( x ,  t ) :  

~ i ~ i ( x ?  t )  = c J ( ,  ~ i ( i 1 ,  t ) ~ h ( h ,  t ) p i ( i ~ ,  t ) dS ,  (2.21) 
z~.h.iz)€S 

where S designates the constraint plane shown in Fig. 5.3 [ S  : ( i l  + i2)/2+h=z]. The normal- 

ization coefficient c can be obtained easily from the relation, Sow pizi(x, t ) d z  = Sow pi(x, t ) d z  = 

ph(z: t )dx  = n,(t). From Eq. 2.21 and Fig. 5.3, it is easy to see that sow piai(x, t ) d z  = c[n(t)13, 

and, therefore, c =  TI,(^)]-^. 

' ~ v e n  for a 1D nucleation-and-growth system. spatial correlations can exist. For a theoretical study of deviations from 

the KJMA. see. for example. [72]. Blow er al. [24] and Jun et al. [71] present experimental evidence for size correlations 

of domain statistics in biological systems. 
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Figure 2.8: Constraint plane S : (il + i 2 ) / 2  + h = x. 

Since the full solution for pi(x, t )  is not known, we cannot integrate Eq. 2.21. However, we can 

still obtain an asymptotic expression for pizi(x, t )  using Eqs. 2.9 and 2.19. For x >> 1, talung into 

account the constraint S, we find 

As we shall show later, Eq. 2.22b is an excellent approximation for all x and t .  Note that the first 

term on the right-hand side has the same asymptotic behavior as the hole-size distribution ph(x, t ) ,  

while the exponential factor in the second term comes from the product of island-size distributions - e-Is*(t)l.il and - e-IS*(t)l'i2. The asymptotic behavior of pizi(x, t )  is dominated by ph(x, t )  for 

f < 0.5 and by pi(x, t )  for f > 0.5 (see below). But, at all times, we emphasize that pi2i(x, t )  

is asymptotically exponential for large x. From the mathematical point of view, both pi(x, t )  and 

ph.(x, t )  have exponential tails at large x,  and the integral of the product of exponential functions 

again produces an exponential. 
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Figure 2.9: Schematic description 

of the double-list algorithm. (a) Ba- 

sic set-up for lists {i) and {h').  

Note that {h'}  records cumulative 

lengths. (b) Nucleation. (c) Coales- 

cence due to growth. 



CHAPTER 2. GENERALIZED KJMA MODEL 

2.3 Numerical simulation 

Often, one has to deal with systems for which analytical results are difficult, if not impossible, 

to obtain. For example, the finite size of the system may affect its lunetics significantly, or the 

variation of growth velocity at different regions andlor different times could be important. In such 

cases, computer simulation is the most direct and practical approach. 

For one-dimensional KJMA processes, the most straightforward simulation method is to use an 

Ising-model-like lattice, where each lattice site is assigned either 1 or 0 (or -1, for the Ising model) 

representing island and hole, respectively. The natural lattice size is Ax = o .  At, with 21 the growth 

velocity. At each timestep At of the simulation, every lattice site is examined. If 0, the site can be 

nucleated by the standard Monte Carlo procedure, I.e., a random number is generated and compared 

with the nucleation probability I ( t )  . Ax . At. If the random number is larger than the nucleation 

probability, the lattice site switches from 0 to 1. Once nucleation is done, the islands grow by Ax, 

namely, by one lattice size at each end. 

Although straightforward to implement, the lattice model is slow and uses more memory than 

necessary, as one stores information not only for the moving domain boundaries but also for the 

bulk. Recently, Hemck et al. used a more efficient algorithm [59]. Specifically, they recorded 

the positions of moving island edges only. Naturally, the nucleation of an island creates two new, 

oppositely moving boundaries, while the coalescence of an island removes the colliding boundaries. 

For the present study, we have developed an even more refined algorithm, which has improved 

both simulation and analysis speeds by a factor of up to lo3 (Fig. 2.10). Fig. 2.9 describes schemat- 

ically the new algorithm (hereafter, the "double-list" algorithm): The basic idea is to maintain two 

separate lists of lengths: { i )  for islands, { h )  for holes. "he second list { h )  records the cumulative 

lengths of holes, while { i )  lists the individual island sizes. Using cumulative hole lengths simplifies 

the nucleation routine dramatically. For instance, for times t  ranging between r  and r  + AT, the av- 

erage number of new nucleations is f l  = I (r)  . Ax. At. Since the nucleation process is Poissonian, 

we obtain the actual number of new nucleations N = p ( ~ )  from the Poisson distribution p. We 

then generate N random numbers between 0 and the total hole size, namely, the largest cumulative 

length of holes h,,, (the last element of {h ) ) .  The list { h )  is then updated by inserting the N gen- 

erated numbers in their rank order. Accordingly, { i )  is automatically updated by inserting zeros at 

the corresponding places. If { h )  were to record the actual domain sizes as { i )  does, the nucleation 

'A slightly different way to record individual hole sizes has been used by Ben-Naim et al. [65] .  
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Figure 2.10: Comparison of simulation times for the two algorithms discussed in the text. For 

each system size, the number of Monte Carlo realizations ranges from 5-20. The lines connect the 

average simulation times. The double-list algorithm is two to three orders of magnitude faster. 

routine would become much more complicated because the individual hole sizes would have to be 

taken into account as weighting factors in distributing the nucleation positions along the template. 

Fig. 2.10 compares run times for the standard lattice model to the continuous double-list algo- 

rithm described above. We wrote and optimized both programs using the Igor Pro programming 

language [73], and they were run on a typical desktop computer (Apple Macintosh, 700 Mhz G4 

processor). For both, we used the same simulation conditions: timestep At = 0.1, nucleation rate 

I ( t )  = 10-~ t ,  and growth velocity v = 0.5. Note that the performance of the lattice algorithm is 

O ( N ) ,  whereas the double-list algorithm is roughly N ~ . ~ - ~  for lo5 5 N 5 lo7. The main reason 

is that the double-list algorithm has to maintain dynamic lists {i) and {h,) .  This requires search- 

ing and removing/inserting elements (as well as minor sorting), where each algorithm is linear, or 
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Figure 2.1 1: Theory and simulation results for I ( t )  - t .  Size distributions are calculated at these 

timepoints: t = 50, 75, and 100. (a) Hole-size distribution ph,(x, t ) .  (b) Island distribution pi(x, t ) .  

The inset plots f ( t )  vs. t ,  with the dot at t = 75 (f = 0.5). (c) Island-to-island distribution pini(x, t ) .  

The analytical curves have been obtained by Eq. 2.22b. There is a crossover of the decay constant 

slightly after t=75 (f = 0.5) (see text). The inset shows ph(x, t )  and pini(x, t )  for t = 50. All 

figures have the same vertical range of - (log-scale). 

roughly o ( N ~ )  in overall. However, the double-list algorithm performed almost 3 orders of magni- 

tudes faster even at a system size of lo7, and we did not attempt to improve the efficiency further, 

for example, by using a binary search. By using a more rapid computer and coding the algorithm 

directly in a lower-level language such as C, one could presumably reduce the run time by a further 

factor of - 10. 

Finally, the relative storage requirements for the lattice algorithm compared to the double-list 

algorithm can be estimated by the ratio Nlatt/nm,,, where Nlatt is the total number lattice sites per 

unit length and n,,, is the domain density. Equivalently, one may use tmi,/Ax, where tmi, is the 

minimum island-to-island distance and A x  the lattice size. Since one usually sets up the simulation 

conditions such that tmi, >> Ax ,  the double-list algorithm requires much less memory. 

In the next section, we present the simulation results. 
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2.4 Comparison between theory and simulation 

In Fig. 2.1 1, we compare the various analytical results obtained in the previous sections with a 

Monte Carlo simulation. Shown are ph(x, t ) ,  pi(x. t ) ,  and pizi(x,t)  for I ( t )  = 10-9  at three 

different time points: t = 50, 75, and 100. The system size is lo7 and the growth rate is v = 112. 

The chosen form of accelerating I ( t ) ,  linear in time, is the simplest nontrivial nucleation scenario. 

It is also relevant to the description of DNA replication kinetics in Xenopus early embryos, where 

the I ( t )  extracted from experimental data has a bilinear form [59]. 

The agreement between simulation and analytical results is excellent. In particular, we empha- 

size that the analytic curves in Fig. 2.1 1 are not a fit. Note that, for x >> 1, all three distributions 

decay exponentially as predicted by Eq. 2.9, 2.19, and 2.22b. [The ph ( x ,  t )  distributions are'simple 

exponentials over the entire range of x.] 

One interesting feature of pi(x, t )  is the inflection point in the interval 0 < z < 2ot, where 

pi(x, t )  is slightly convex. Such behavior is even more dramatic when I(t)=const. [63], and pi(x, t )  

is strongly convex. In other words, pi(x, t )  increases as x approaches 2vt-, but suddenly drops 

discontinuously at x = 2vt, decaying exponentially at larger x. This peculiar behavior of pi(x, t )  

originates from the fact that any island larger than 2ut must have resulted from the merger of smaller 

islands. Therefore, for x 5 2vt, pi(x, t )  has an extra contribution from islands that contain only 

a single seed in them, which makes pi(x, t )  deviate from a simple exponential. Although such 

discontinuities are expected at every x = n . 2vt (n.=l, 2, 3, . . .), higher-order deviations decrease 

geometrically and are almost invisible. 

Finally, the island-to-island distribution pizi ( x ,  t )  provides important insight about the "seed dis- 

tribution" and about the spatial homogeneity of the nucleation. Note that pini(x, t )  is not monotonic 

and has a peak at x > 0 [see Fig. 2.1 I (c)]. This is not surprising because pizi(x, t )  -+ 0 as x + 0 

from Eq. 2.21. On the other hand, we see that pizi(x, t )  decays exponentially at large x,  as predicted 

in the previous section (Eq. 2.22b). In contrast to pi(x, t )  and ph(x, t ) ,  however, the decay constant 

is not a monotonic function of time. This can be understood as follows: at early times, the large 

island-to-island distances come from large holes and therefore pizi(x, t )  -- ph(z),  as mentioned ear- 

lier. (The inset of Fig. 2.1 l (c) confirms this.) However, as the island fraction f ( t )  approaches unity, 

the system becomes mainly covered by large islands, and pizi(z, t )  should approach -- pi(z,  t ) 2  

asymptotically (see the second term in Eq. 2.22b). 

In Fig. 2.12, we plot the decay constants for the three different distributions, rh, ri, and 7izi. 
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Time 

Figure 2.12: Decay constants for ph(x, I ; ) ,  pi(x, t ) ,  and piPi(x, t ) .  The symbols are simulations, and 

the solid lines are theory. 

Note that when f < 0.5, rh % Ti2i, as discussed above. As f + 1, the behavior of 7i2i is controlled 

by ri, as suggested by Eq. 20. Because pi2i -- we expect Ti'& + 0.5  IT^; however, the corrections 

to this relationship in Eq. 20 imply that this holds true only for large x and t. Note that the actual 

minimum of 7i2i is at f > 0.5 because pi2i depends on p: and not pi alone. 

One final note about the island-to-island distribution is that, unlike pi(z: t ) ,  it is a continuous 

function of x. The reason for this is that for any island-to-island distance x, the discontinuous 

pi(y < x ,  t )  contributes to pizi(z, t )  in a cumulative way, as can be seen in Eq. 2.21. This implies 

that there is no specific length scale where discontinuity can come in. From a mathematical point 

of view, this is equivalent to saying that the integral of a piecewise discontinuous function (the 

integrand in Eq. 2.21) is continuous. 
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2.5 Conclusion 

To summarize, we have extended the KJMA model to the case where the homogeneous nucleation 

rate is an arbitrary function I ( t )  of time, deriving a number of analytic results concerning the proper- 

ties of various domain distributions. We have also presented a highly efficient simulation algorithm 

for 1D nucleation-growth problems. Both analytical and simulation results are in excellent agree- 

ment. 

In the next chapter, we discuss the application of these results to experiments in general and to 

the analysis of DNA replication kinetics in particular. 



Chapter 3 

Application to DNA Replication Kinetics 

3.1 Introduction 

Since its development in the late 1930s, the phenomenological model of nucleation and growth of 

Kolmogorov, Johnson-Mehl, and Avrami (KJMA) has been widely applied to the analysis of kinetics 

of first-order phase transformations, mostly in two and three spatial dimensions [3943]. The model 

has several exact results given the following basic assumptions: (1 ) The system is infinitely large and 

untransformed at time t=O; (2) nucleations occur stochastically, homogeneously, and independently 

one from one another; (3) the transformed domains grow outward uniformly, keeping their shape; 

and (4) growing domains that impinge coalesce. 

Although the KJMA model is conceptually simple, experiments often have complicating factors 

that make the contact between theory and experiment delicate and lead to deviations from the basic 

model. For example, a principal result of the KJMA model is that the fraction f ( t )  of the transformed 

volume at time t is 
Ata f ( t ) = l - e -  , 

where A and a are constants: A depends upon the growth velocity v, the nucleation rate I, and the 

spatial dimension D, while a is determined by I and D. In the literature, a is called the Avrami 

exponent. "Avrami plots" of - ln[ln(l - f ) ]  vs. ln t  should thus be straight lines of slope a.' 

Unfortunately, Eq. 3.1 often does not fit data well because the experimental conditions do not satisfy 

' Eq. 3.1 comes from the more general expression f ( t )  = 1 -exp[-vD I ( Z ,  t)dDx]. where the integral is performed 

over the so-called extended volume. For D = 3 and I ( Z ,  t )  = I  = const., one obtains f ( t )  = 1 - exp (-: l v3 t4) .  

giving A = 3 Iv3 and a = 4. Note that different values of A are related by rescalings of zl and I .  
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the assumptions of the KJMA theory [54, 74, 751. For example, nucleation can be inhomogeneous 

or correlated [71,76]; real systems are finite; and there is always measurement noise. 

In two- or three-dimensional systems, where only limited theoretical results such as Eq. 3.1 are 

available, it can be difficult to pinpoint the origins of discrepancies between experimental data and 

the predictions of the KJMA model. In one-dimensional systems, however, we have seen in the 

previous chapter that one can push the analysis much further than for the original version of the 

KJMA model [62-65,771. 

In this chapter, we shall show that a detailed theoretical understanding of the KJMA model 

in ID lets us compare theory and experiment more directly. In other words, we can extract the 

kinetic parameters from data under less-than-ideal experimental circumstances. Our discussion will 

be set in the context of recent DNA-replication experiments that have drawn attention from both the 

physics and biology communities [44, 59, 781. 

3.2 Application of the ID-K JMA Model to Experimental Systems 

Although there are many analytical results for the I D-KJMA model, only a very few 1D systems 

that are well-described by this model have been identified (e.g., [57]), and very little detailed anal- 

ysis has been done on those systems. In the previous chapter, however, we have shown that DNA 

replication can be mapped onto the 1 D nucleation-growth model. Equally important, Hemck er al. 

have developed experimental methods that can yield large quantities of data [44], allowing the ex- 

traction of biologically important, detailed statistical quantities (see Sec. 2. I). We can thus extract 

the kinetic parameters I ( t )  and 21 from data using the results obtained in Ch. 2. 

For the ideal case, the procedure is straightforward. For real-world data, on the other hand, one 

has to be cautious because of the generic problems explained above. We have already mentioned that 

the molecular combing process chops the DNA into finite-size segments, which effectively truncates 

the full statistics [44]. Another problem in the experimental protocols is that an in vitro replication 

experiment usually has many different nuclei in the test tube. These nuclei start replication at dif- 

ferent, unknown times and locations along the genome [44, 781. The asynchrony leads to sample 

heterogeneity and creates a starting-time distribution for the DNA replication [59]. Finally, the finite 

resolution of the microscope used to measure domain sizes may affect the statistics. 

Below, we shall examine each of these complicating factors, present empirical criteria for their 

significance, and then discuss the implications of these criteria for the design of experiments. 
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To set the stage, we begin with the problem of extracting experimental parameters from ideal 

data. 

3.2.1 Ideal case 

From the theoretician's point of view, a system can be said to be ideal when it satisfies all underlying 

assumptions of the theory. In the context of DNA replication and the EWMA model, this means that 

the DNA molecule is infinitely long and that the initiation rate I  of replication is homogeneous 

and uncorrelated. Also, statistics should be directly obtainable at any time point t  at arbitrarily 

fine resolution. Because the growth velocity of replicated DNA domains has been measured to be 

approximately constant, we shall limit our analysis to this special case. One can then apply the 

KJMA model to a single experimental realization to extract kinetic parameters such as I ( t )  and v. 

In order to do this, we note that the simulation in Ch. 2 is in practice such a case (system size = 

lo7, v = 0.5, At = 0.1, I ( t )  = I  . t ,  where I  = Using the theoretical results obtained in 

the previous chapter, we can find an expression to invert I ( t )  from data. For example, the domain 

density n ( t )  and the island fraction f ( t )  at time t ,  given a time-dependent nucleation rate I ( t )  are 

In Eq. 3.2, g(t)  = $ I(t1)dt', and S ( t )  is the hole fraction. Note that n(t)-' is equal to the 

average island-to-island distance l iz i( t)  at time t .  On the other hand, the average hole size & ( t )  is 

S ( t ) / n ( t )  = g(t)-l . Since all three domains (island, hole, and island-to-island) have equal densities 

n ( t )  in one dimension, we have the following general relationship among them, which is valid even 

in the presence of correlations between domain sizes: 

czi ( t )  = &(t )  + fh, ( t )  

In other words, there are only two independent quantities among f ( t )  . f i  ( t )  & ( t )  : lini ( t ) ,  and we 
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can calculate &(t)  even if we do not know the exact expression for the island distribution pi(z:  t ) :  

Note that l i ( t )  [& ( t )]  is a monotonically increasing (decreasing) function of time, and therefore, 

Eq. 3.3a implies that C z i ( t )  has a well-defined minimum. We emphasize that Eqs. 3.2 and 3.4 set 

the basic time and length scales, t* and e*, of the system. Because the KJMA model has essentially 

only one scale, it is simpler than other common stochastic models in physics that lack an intrinsic 

scale and hence show fractal behavior (structure at all scales). Since f ( t )  is sigmoidal, varying from 

0 to 1, we define t* to be the time required for the system to reach f = 0.5. On the other hand, we 

define l!* to be the minimum eye-to-eye (island-to-island) distance during the course of replication 

[see Fig. 3.1 (c) and (d)]. 

From Eqs. 3.2 and 3.4, it is straightfoward to invert the mean quantities to obtain the nucleation 

rate I ( t )  and the growth velocity v: 

Eq. 3.5 can then be applied to an ideal set of data, i.e., one for which noise-free measurements 

are made on infinitely long DNA. As Fig. 3.1 shows, we can recover the input parameters from 

simulation results in Ch. 2 accurately: the extracted parameters are I  = (0.99 & 0.04) x and 

v = 0.50 f 0.02. [The errors are the statistical errors from the curve fits in Figs. 3.l(a) and (b)]. 

We note that the fluctuations visible for t 2 75 arise from using direct numerical differentiation in 

Eq. 3.5. One could reduce the noise by appropriate data processing, using for example a smoothing 

spline [70]. However, because any data filtering is a delicate issue, and because direct numerical 

differentiation produced satisfactory results, we have decided to forego any smoothing. 

We also note that there are statistical fluctuations related to the finite-size of the system: as f ( t )  

approaches 1 ,  the number of domains n(t) becomes very small; thus even small changes in n(t) can 

cause significant fluctuations in average domain sizes. However, the finite-size effect in this case 

becomes visible only when the number of new nucleations in each step, N ( t ) ,  is roughly 1 (i; 2 165 
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Figure 3.1 : Parameter extraction from an almost ideal data set. (a) Inferred nucleation rate vs. time; 

(b) Velocity vs. time; (c) Average domain sizes vs. time; (d) Island fraction vs. time; theory and 

extracted f ( t )  overlap. In (c), t* is the minimum average eye-to-to spacing, and sets the basic length 

scale. In (d), t* is the time at which 50% of the genome has replicated. It sets the basic time scale. 

or f 2 0.999). The effect can be ignored for N ( t )  >> 1 for the practically infinite system considered 

here [53,54]. 

In the following sections, we consider the complications that arise from less-ideal experimental 

conditions. 

3.2.2 Asynchrony 

As we mentioned above, data often come from experiments where the DNA from many different 

independently replicating cells is simultaneously present in the same test tube. The individual DNA 

molecules begin replicating at different unknown starting times. In such cases, i t  is simpler to begin 

by sorting data by the replicated fraction f of the measured segment [79]. The basic idea is that, 

for spatially homogeneous replication (namely, nucleation and growth), all segments with a similar 

fraction f are at roughly the same point in S phase. Since f ( t )  is a monotonically increasing function 
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of t ,  we can essentially use f as our initial clock, leaving the conversion to real time t to a second 

step. 

Once the data have been sorted by f ,  we extract the initiation frequency I  as a function of f .  

Using Eqs. 3.2-3.4, one can straightforwardly obtain expressions analogous to Eq. 3.5: 

In Eq. 3.6, ji and & are functions of f .  In other words, we have a direct inversion 1/27) vs. 221t from 

data [Fig. 3.2(a)]. Note that both I  and t  are always accompanied by the factor 221, which has to be 

determined independently (see below). On the other hand, the fluctuations in the extracted 1/22] are 

the result of the direct numerical differentiation in Eq. 3.6 discussed in the previous section. 

In the two-color labeling experiments, we can compile statistics into histograms of the distri- 

bution p ( f ,  ri) of replicated fractions f at time ri [Fig. 3.2(b)], where ri is the timepoint where 

the second dye was added (Fig. 2.1). Note that the spread in p( f ,  ri) is related to the starting-time 

distribution $(r )  via the kinetic curve f ( t ) ,  where r  is the laboratory time that each DNA starts repli- 

cating, and t is the duration of time since the onset of replication. Since $(r)dr = p ( f  ( t ) ,  ri) - d f  ( t ) ,  

where t  = ri - 7,  we obtain 

For a Gaussian starting time distribution $(r) ,  one can in principle fit all p ( f ,  ri)'s using three 

fitting parameters, v, the average starting time rO, and the starting time width a,. Unfortunately, 

this "brute-force" approach did not produce satisfactory results, as the basin of attraction of the 

minimum proved to be relatively small. 

Our strategy, then, was first to obtain a coarse-grained 11 vs. global X 2  plot, shown in Fig. 3.2, as 

follows: 

1. Guess a range of 71 between tlmin and v,,,. 

2. Fix 71 (starting from v = urnin), and trace p( f ,  ri) back in time. For a specific value of f and 

timepoint ri, the corresponding starting time is ri - t ( f )  (Eq. 3.6). Repeat for all p ( f :  T ~ ) ' s  

and reconstruct the starting time distribution $(t).  
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Figure 3.2: Inversion results in the presence of asynchrony and finite-size effects. (a) 1/2v vs. 2vt. 

The arrows indicate where f = 0.8 in f vs. t curves in (d) for three different molecule sizes: 

lo4  (unchopped), 1000 and 250 (chopped). (b) p( f, ri) for six time points 60, 80, 100, 120, 140, 

160 (from left to right). The circles are simulation data; the solid lines are from Eq. 3.7, using 

the extracted parameters in Table 3.1. (c) Optimization results for the starting-time distribution 

d(r).  The solid line is a Gaussian fit. (d) f vs. 2vt for J?, = 250 and J?, = 1000. The solid line 

is the unchopped case (size lo4). (e) Average domain sizes vs. f. The empty circles are for the 

unchopped case, while the dotted and dashed curves correspond to e, = 1000 and 250. (f) Plot of 

log X 2  [p (  f ,  ri)] (arbitrary units) vs. v for size lo4. The complete fit results are shown in Table 3. I. 

See also text. 

3. Fit 4(7) obtained in step 1 to an empirical model. [In the absence of correlations among 

starting times, a Gaussian distribution is a reasonable choice.? One may also know the rough 

form of 4(r)  from an understanding of the origins of the asynchrony.] 

4. Regenerate p( f, ri) using Eq. 3.7 with the parameters obtained in steps 2 and 3. Calculate 

X 2  for p( f, r i )  This is also a global fit, as the X 2  statistic is summed over data from all time 

'since the only relevant parameters of 4 ( ~ )  are its mean and standard deviation. maximum-entropy arguments also 

justify the choice of a Gaussian distribution [SO]. 
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1 1 input I extracted 1 

Table 3.1 : Comparison between input and extracted parameters in the presence of asynchrony (start- 

ing t). Note that the input 70 f a, is the Gaussian fit to a single realization of 1000 molecules, where 

70 = 40 and a, = 1 0 . ~  

'21 

starting t (7" * a,) 

points ri. 

5. Increase v to v+Av and repeat 2-4. If there is a well-defined minimum of the X2(v) (with 

corresponding 70 and a,) [e.g., Fig. 3.2(f)], one can find a more accurate estimate of the 

minimum using a standard optimization technique such as Brent's method [70]."therwise, 

go back to 1 and choose a different range of v. 

0.5 

39.6 f 14.1 

In order to test how well the optimization method described above can work in the face of 

asynchrony, we have repeated the simulation in Ch. 2 with several modifications. First, we have 

used 1000 molecules that started nucleations asynchronously, following a Gaussian distribution of 

average starting time 70 = 40 and of starting time width a, = 1 0 . ~  Second, the size of each 

individual molecule is lo4  instead of lo7. This keeps constant the total number of "DNA basepairs" 

analyzed. 

Since we used the same nucleation rate, the time to replicate to f = 0.9 was roughly 100 

minutes, about the same as for the much larger system [see Fig. 3.l(d) and Fig. 3.2(d)]. We have 

chosen six timepoints (7% = 60,80,100,120,140,160) at which to collect data, and the distributions 

of fraction f are shown in Fig. 3.2(b). The spread in p( f ,  ri) reflects the starting time distribution 

d ( 4 .  
We fit I/2v vs. 2vt using I ( t )  = u + I - t in Fig. 3.2(a), excluding the last few points roughly 

above f = 0.9 to take into account the finite-size effect (see the following section). We then used the 

fit result to obtain the growth rate 11 by the optimization method given above. The results are shown 

0.453 

36.5 f 13.9 

- 

'The "Optimize" function in lgor Pro [73] uses Brent's method. 
4 ~ e  note that the actual realization of starting times in the particular simulation of Table 3.1 is ro = 39.6 and 

a, = 14.1. In other words. there are always errors related to the amount of data used in analysis. but this is a separate 

issue from the extraction methods presented here. 
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in Fig. 3.2 and Table 3.1. In the plot of X 2  VS. '11 [Fig. 3.2(f)], we see a well-defined minimum of X 2  

at t i  = 0.453, 10% below the input value 0.5. Fig. 3.2(b) and (c) are reconstructions of p( f :  r f )  and 

4(r )  using the parameters in Table 3.1. The minor discrepancies in 70 and a, are acceptable, given 

the small number of points of p( f ,  ri) used in the optimization (30 points in each of six histograms). 

Note that the finite size of sampled DNA is responsible for a larger part of the discrepancy with the 

original parameters than was our reconstruction algorithm. 

The success of this method depends on the experimental design, as well; l.e., one has to choose 

the right timepoints ri in order to deduce +(T) accurately [see Fig. 3.2(b) and (c)]. The key parameter 

is the ratio o between the replication time scale t* and the starting-time width a,, respectively: 

cr = t*/a,. For the case considered here (t* x 75 and a, x 14), o L. 5.4. 

Ideally, o >> 1 (better synchrony with slow kinetics), so that p( f ,  ri) has a well-defined peak 

between 0 < f  < 1, and p( f ,  ri) -+ 0 as f  -+ 0 and I .  In this case, even a single p( f ,  ri) can be 

used to reconstruct 4(r )  and extract v accurately. For example, for all timepoints in Fig. 3.2(b) each 

single histogram produced results that are accurate to 15%. 

For o << 1 (high asynchrony with fast kinetics), p( f ,  ri) is spread over 0 _< f  5 1. In this case, 

experimentalists should choose at least N = o,/t* timepoints to cover the whole range of @(r) ,  

where well-chosen ri's spread evenly the peaks of p( f ,  ri) between 0 and 1. 

3.2.3 Finite-size effects 

As mentioned above, the DNA is broken up into relatively short segments during the molecular- 

combing experiments. In order to estimate how the finite segment size affects the estimates of I ( t )  

and v, we have cut the simulated molecules in the previous section into smaller pieces of equal size 

tc.7 Fig. 3.2 shows results for !, = 1000 and 250, with original size lo4. As one can see, there is 

a clear correlation between l, and the statistics. First, the smaller the segments are, the smaller the 

average domain sizes become as f  -+ 1. This is as expected, since one obviously cannot observe 

a domain size larger than l,. Note that an underestimate of average eye and hole sizes, & and 

&, leads to an overestimate of the extracted I ( t ) ,  as implied by Eq. 3.6. Second, as l, becomes 

smaller, the completion times are underestimated. Third, the sharp increase (decrease) in average 

eye (hole) sizes disappears, becoming nearly flat at a characteristic fraction f  *, and the kinetic curve 

7~xperimentally, the size distribution of DNA fragments is log normal. See Fig. 4.8. Similar finite-size effects are 

obtained for any unimodal distribution with the same mean. 
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Figure 3.3: Rescaled graphs for finite-size effects (see text). (a) f vs. tlt*. (b) kt2 vs. tlt*. (c) 

el(* vs. f ,  where e is the average hole (eye) size. 

f ( t )  significantly deviates from its sigmoidal shape, becoming nearly linear. In fact, there is a close 

relationship between these last two effects. The sharp increase in average eye size results from the 

merger of smaller eyes, which dominates the late stage of replication kinetics. Since chopping DNA 

eliminates the large eyes, as shown in Fig. 3.2(e), it effectively increases the number of domains 

n(t)  per unit length in truncated segments and overestimates the replication rate. (The replication 

rate df ldt = 2vn.) 

We emphasize that the first two observations above imply that I!, affects the basic time and length 

scales, t* and e*, of the (chopped) systems introduced in the previous section. In Figs. 3.3(a)-(c), we 

re-plot f ( t ) ,  I ( t ) ,  and 5 and &, using the dimensionless axes. One can clearly see that the chopping 

process straightens the sigmoidal f ( t )  and the average domain size curves. Nevertheless, the basic 

shape of I ( t )  does not change: curves corresponding to different values of e, collapse onto one 

another, and the finite-size effect only makes the up-shooting tails steeper. 

As criteria for significance of finite-size effects, we first define a new parameter P = t,/e*, 

namely, the maximum average number of domains per chopped molecule (around f = 0.5). Then, 

more careful observation of Figs. 3.3(a) and (c) suggests that there might exist a critical value p* (or 

corresponding chopping size I!:), where the finite-size effects severely affect the statistics. In other 

words, for p > p*, one can ignore the finite-size effects by excluding the last few data points close 

to f = 1 (Recall that e* is the minimum average eye-to-eye spacing). To see this clearly, in Fig. 3.4, 

we have plotted t * / t k  vs. P for two different cases: I ( t )  = t and I ( t )  = 0.001, where tZ, 

has been calculated using the basic lunetic curve f ( t )  = 1 - exp[-2a Ji g(t')dtf] (~.e., the system 

is infinitely large) [77] (see also footnote 1 under Eq. 3.1 ). 

Indeed, changes in t* are very slow above P x 10, but drop sharply below this ratio. Since P 
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t*/ t*, 

Figure 3.4: The finite-size effects and changes in the basic time and length scales. Shown are two 

different initiation rates I ( t )  = 1 0 - ~ t  and I ( t )  = 0.001. The vertical line is where the average 

number of domains per molecule is 10. The y-axis has been normalized relative to the initiation rate 

for an infinite system ( p  --+ 00). 

is the average number of domains per molecule, we argue that the KJMA model can be applied to 

data directly when there are enough eyes in individual molecule fragments (roughly, at least 10). On 

the other hand, when 5 10, one would require more sophisticated theoretical methods to obtain 

correct statistics. 

One subtle point is that t*, unlike t*, is not very accessible experimentally and requires data 

processing for accurate extraction [e.g., Fig. 3.2(d) or Fig. 3.5(b)]. 

Finally, we note that the sudden up-shooting in the tails of the extracted I ( t ) /2v  vs. 221t curves 

is yet another kind of finite-size effect related to numerical differentiation (Eq. 3.5). This can be 

simply excluded from the analysis. 
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Figure 3.5: The effect of coarse-graining. (a) f vs. 2vt. From left to right, Ax* = 0, 1, 5. (b) I/221 

vs. 2vt. From top to bottom, the coarse-graining factor Ax* = 0 (no coarse-graining), 1 (comparable 

to optical resolution), and 5. (c) Average domain sizes vs. f .  The empty circles are for no coarse- 

graining, while the dashed lines are for Ax* = 1 and 5 (dotted and dashed, respectively). (d)-(f) 

Rescaled graphs. 

3.2.4 Finite-resolution effect 

Another generic problem is the finite resolution of measurements. In molecular-combing experi- 

ments, for example, epifluorescence microscopy is used to scan the fluorescent tracks of combed 

DNA on glass slides. The spatial resolution (--I kb) means that smaller domains will not be de- 

tectable. Thus, two eyes separated by a hole of size 1 kb will be falsely assumed to be one longer 

eye. We evaluate this effect by coarse-graining the statistics with experimental resolutions Ax*, 

while keeping Ax = ZI  . d t  in simulation much finer. To coarse grain by a factor 6 = Ax*/Ax, we 

have used the raw, "unchopped" data set in the previous finite-size-effect section: after the simula- 

tion, we have scanned the final lists of eyes and holes, {i) and {h), and removed any eyes (holes) 

for 6 < 1, combining them with the two flanking holes (eyes) into a larger hole (eye) that equals the 

size of all three domains. 
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In Figs. 3.5(a)-(c), we show how the statistics change by coarse-graining only (~.e., without 

chopping), where the coarse-graining factors b are 20 and 100. 

The finite-resolution effect biases estimates in a way that is opposite to finite-size effects, l.e., 

converting eyes (holes) for b < 1 to holes (eyes) increases the average domain sizes. As a conse- 

quence, the extracted I ( t )  is slightly underestimated. Nevertheless, the curves in each of f ( t ) ,  I ( t ) ,  

and & and & almost perfectly collapse onto each other when the axes are rescaled using t* and !*, 

confirming that, as with finite-size effects, the main consequence is a change in the basic time and 

length scales of the problem [Fig. 3.5(d)-(01. 

To find criteria for significance of finite-resolution effects, we recall that coarse-graining falsely 

eliminates eyes and holes smaller than the resolution Ax* only (6 < 1). For example, statistics for 

f =O (small eyes) or f %l (small holes) can be affected by coarse-graining. For these two cases, 

however, one can easily avoid a problem by excluding data for f % 0 and 1 from analysis. 

On the other hand, a more serious situation can arise when y = !*/Ax* 5 1, because a res- 

olution comparable to the minimum eye-to-eye distance will seriously alter the mean domain sizes 

.& and jh and thus the extracted I ( t ) ,  as well. Indeed, for y >> 1, the p(f, q) 's  remain essentially 

unchanged (~.e., the optimization result for v remains the same) even at b = 100 (where, y = 70) 

(data not shown). We conclude that y = 1 is the relevant criterion to test the significance of finite- 

resolution effects. 

3.3 Discussion and Conclusion 

In the previous section, we have tested various generic experimental limitations via Monte Carlo 

simulation. When the system is large (lo7 for v = 0.5 and I ( t )  = t), we have been able 

to extract all the input parameters accurately from a single realization of our simulation. As the 

experimental (simulation) conditions become less ideal, however, one requires more sophisticated 

tools. 

In the presence of asynchrony, we have demonstrated that the input parameters can still be 

extracted to reasonable accuracy (roughly 10% for cu = 5.4) using an optimization method. In most 

DNA replication experiments, cr 2 1. In this case, the method presented here can even be applied to 

data p( f ,  T ~ )  for a single well-chosen timepoint ri to extract 21. The accuracy increases as more data 

are collected for different timepoints. Similarly, the significance of finite-size and finite-resolution 

effects can be estimated by the criterion ,O = !*/& % 10 and y = !*/Ax* > 1, respectively. 
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Among the various experimental limitations we have tested, the finite-size effects seem to be 

potentially the most serious problem in the molecular-combing experiments. Fortunately, we expect 

the finite-size effects in the experiments and analysis of refs. [44, 591 and in Ch. 4 to be relatively 

insignificant because ,B > 10. On the other hand, we need more sophisticated theoretical tools to 

correct the finite-size effects for ,B < 10. We recall that the coarse-graining of molecules affects 

the tails in Fig. 3 3 b )  opposite to the way the finite-size of molecules affects them. We thus spec- 

ulate that an intelligent way of annealing finite-sized molecules can reduce or correct the finite-size 

effects. We leave a detailed evaluation of this idea for future work. 

In summary, we have discussed how to apply the KJMA model to data to extract kinetic param- 

eters under various experimental limitations, such as asynchrony, finite-size, and finite-resolution 

effects. For the application to DNA-replication experiments, we have shown that finite-size effects 

can be ignored when the chopped molecules contain enough domains (i.e., ,B 2 10). Even when 

the size of molecules is smaller than the critical value lz, the shape of the nucleation rate I ( t )  is 

not affected when plotted using rescaled parameters. On the other hand, finite-resolution effects are 

insignificant when y >> 1, which is the case for molecular combing experiments of DNA replication. 

In the next chapter, we apply the analysis methods developed here to actual data from recent 

experiments on the Xenopus egg-extract system. 



Chapter 4 

Temporal Program of Xenopus 

Early-Embryo DNA Replication 

4.1 Introduction 

In the previous two chapters, we have introduced the KJMA model of nucleation-and-growth and 

have extended its ID version to the case of arbitrary nucleation rate I ( t )  [77]. We then mapped 

DNA replication processes onto the KJMA model and demonstrated that the "kinetic model" can be 

used to extract parameters such as the frequency of origin firings I ( t )  and fork-growth rate v, which 

govern the kinetics of DNA replication [59, 811. 

As replicon size and the duration of S phase depend on the values of these parameters, this 

information is indispensable for understanding the mechanisms regulating S phase in a given cell 

system [36, 82-87]. In other words, understanding how these parameters are coordinated during the 

replication of the genome is essential for elucidating the mechanism by which S phase is regulated 

in eukaryotic cells. In particular, the extracted I ( t )  can be interpreted as a "temporal" program of 

DNA replication, suggesting a vocabulary that we find useful and intuitive for understanding the 

process of replication of various higher eukrayotes from a single unified theoretical framework. 

As we shall see, the key feature of recent DNA replication experiments is that they have gathered 

much more data than previous experiments could possibly have obtained. In order to appreciate these 

advances, we review briefly some of the experimental methods used to analyze DNA replication. For 

a more detailed review of classic methods, see the book edited by S. Cotterill [88]. 
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In the 1960s, several researchers used autoradiography [60, 891 and electron microscopy [90] 

to visualize DNA fibers of lengths ranging from pm to mm. It soon became obvious that one 

can use these visualization techniques to study DNA replication. Indeed, Huberman and Riggs 

in 1968 labeled replicating DNA molecules in vivo with 3~-thymidine and stretched them out on 

filters or microscope slides and then autoradiographed them [91]. Wherever 3~-thymidine had 

been incorporated into the DNA molecule, a track of silver grains was generated in the overlying 

photographic emulsion (sensitive to the /3-particles given off by 3 ~ ) ,  and the density of silver grains 

in those tracks was proportional to the specific activity of the 3~-thymidine. Thus, by intentionally 

altering the specific activity of the 3~-thymidine during an experiment, they could infer the direction 

of DNA replication fork movement (as well as measure the fork movement rates and distances 

between origins) from the corresponding change in grain density in the final autoradiogram. In 

the mean time, electron micrographs were actively used to study DNA replication. In the 1970s, for 

example, Kriegstein and Hogness confirmed the bidirectional growth of replication forks [33], while 

Blumenthal et al. analyzed spatio-temporal distribution of replication bubbles [79] of Drosophila 

early embryos. 

In the 1980s and 1990s, similar but improved techniques were developed, such as the use of 

fluorescent molecules instead of radioactive thymidine. An important example is fluorescence in 

situ hybridization (FISH) [92, 931. In this technique, the DNA probe is either labeled directly 

by incorporation of a fluorescent-labeled nucleotide precursor, or indirectly by incorporation of a 

nucleotide containing a reporter molecule (such as biotin or digoxigenin) which after incorporation 

into the DNA is then bound to a fluorescently labeled affinity molecule. 

FISH can also be combined with other powerful techniques to achieve high-resolution mapping. 

These techniques usually stretch DNA before hybridization. For example, direct visual hybridization 

(DIRVISH) involves lysing cells with detergent at one end of a glass slide, tipping the slide, and 

allowing the DNA in solution to stream down the slide [24, 25, 94, 951. The molecular-combing 

technique [23] used in the Xenopus experiments of Herrick et al. relies on the action of a receding 

airlwater interface, or meniscus, to uniformly straighten and align DNA molecules on a solid surface 

[see Fig. 2.2(d)]. Molecular combing has the advantage not only of producing large quantities of 

data but also of reproducibly stretching the DNA at a controlled extension. Thus, there is an accurate 

mapping between distances measured on a digital image and lengths along the genome. As explained 

in Sec. 2.1, these techniques can produce "snapshots" of replicating DNA that mimic the space-time 

diagram in Fig. 2.1. (See Fig. 2.3.) 
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Although different from the labeling and stretching techniques mentioned above, 2D-gel eiec- 

trophoresis [96, 971 and DNA microarrays [98-1001 have also been important tools to study repli- 

cation kinetics, including mapping replication origins. For example, 2D gel electrophoresis allows 

the separation of DNA fragments based on both size and shape, thereby separating molecules con- 

taining branches in various arrangements (e.g., bubble or Y shapes) from linear molecules. Thus, 

by using restriction enzymes that cut DNA at specific sequences, one can map replication origins 

using 2D. In particular, the ratio of bubble-shaped molecules to Y-shaped molecules provides a 

qualitative estimate of origin efficiency, the relative fraction of cell cycles in which a given origin is 

activated [86, 101, 1021. 

Finally, microarrays containing an ordered set of unique-sequence DNA probes can be used to 

monitor DNA replication. They are well-suited for giving information about particular sites along 

the genome. For example, in a synchronous population of cells, those genes that have replicated are 

twice as abundant as unreplicated genes. One can then identify the position of replication forks by 

measuring the abundance of each gene, which is proportional to the amount of DNA that hybridizes 

to the may [98]. Similar methods can be extended to construct replication profiles containing 

precise locations of replication origins and fork velocities between neighboring origins [99]. 

These new experimental techniques now make it possible to extract large amounts of data from 

the replication process, giving detailed statistics about numbers and sizes of replicated domains as 

averaged over the genome, as well as many other related quantities. In particular, in the experiments 

by Henick et al. discussed in this thesis [44], over 200 Mb of DNA replication fragments was 

analyzed. 

4.2 Results 

In this chapter, we apply the KJMA formalism developed in the previous two chapters to recent 

experiments on DNA replication in a particular model system of Xenopus egg extracts. Although 

our analysis is particular to this system, we stress that it is easily adaptable to experiments on other 

systems and experimental data described above.' 

Since the lunetics of DNA replication in any cell system depends on two fundamental quantities, 

I ( t )  and v, one of the principal goals of our analysis is to derive accurate values for these quantities, 

'This type of model has also been shown to apply for the case of RecA polymerizing on a single molecule of 

DNA [103]. 
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including any variation, during the course of S phase.' The model, as described in the previous 

chapters, allows us to draw on a number of previously derived results. 

4.2.1 Summary of the Xenopus egg extracts replication experiment 

Here, we describe recent experimental results obtained on the kinetics of DNA replication in the 

well-characterized Xenopus laevis cell-free system [44, 781. One of the main goals of this chapter 

will be to show that, using the theoretical approach described previously, one can extract more 

information - more reliably - than before from such experiments. 

In the Xenopus egg extracts replication experiments, fragments of DNA that have completed one 

cycle of replication are stretched out on a glass surface using molecular combing [23, 105, 1061. The 

DNA that has replicated prior to some chosen time ri is labeled with a single fluorescent dye, while 

DNA that replicated after that time is labeled with two dyes. The result is a series of samples, each 

of which corresponds to a different time t during S phase. Using an optical microscope, one can 

directly measure eye, hole, and eye-to-eye lengths at that time. We can thus monitor the evolution 

of genome duplication from time point to time point, as DNA synthesis advances. (See Fig. 2.1.) 

Cell-free extracts of eggs from Xenopus laevis support the major transitions of the eukaryotic 

cell cycle, including complete chromosome replication under normal cell-cycle control and offers 

the opportunity to study the way that DNA replication is coordinated within the cell cycle. In 

the experiment, cell extract was added at T = 2 min, and S phase began 15 to 20 min later. DNA 

replication was monitored by incorporating two different fluorescent dyes into the newly synthesized 

DNA. The first dye was added before the cell enters S phase in order to label the entire genome. The 

second dye was added at successive time points ri = 25, 29, 32, 35, 39, and 45 min, in order 

to label the later replicating DNA (Fig. 4.1). DNA taken from each time point was combed, and 

measurements were made on replicated and unreplicated re,' 010ns. 

The same approach has recently been adapted to study the regulatory parameters of DNA repli- 

cation in HeLa cells [95]. Molecular combing, however, has the advantage that a large amount of 

DNA may be extended and aligned on a glass slide which ensures significantly better statistics (over 

several thousand measurements corresponding to several hundred genomes per coverslip). Indeed, 

the molecular-combing experiments provide, for the first time, easy access to the quantities of data 

'~l though v = const. is a good approximation for Xertopus early embyos. in general. the fork velocity can vary greatly 

in other eukaryotes depending on the position along the genome [99, 1041, and it would be interesting and important to 

do new experiments testing this approximation in more detail. 
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S phase 

I, (hole) 

Figure 4.1: Schematic representation of labeled and combed DNA molecules. Since replication 

initiates at multiple dispersed sites throughout the genome, the DNA can be differentially labeled, 

so that each linearized molecule contains alternating subregions stained with either one or both dyes. 

The bubbles correspond to sequences synthesized in the presence of a single dye (red). The green 

segments correspond to those sequences that were synthesized after the second dye (green) was 

added. The result is an unambiguous distinction between eyes and holes (earlier and later replicating 

sequences) along the linearized molecules. Replication is assumed to have begun at the midpoints of 

the bubble sequences and to have proceded bidirectionally from the site where DNA synthesis was 

initiated. Measurements between the centers of adjacent eyes provide information about replicon 

sizes (eye-to-eye distances). The fraction of the molecule already replicated by a given time, f ( t ) ,  

is determined by summing the lengths of the bubbles and dividing that by the total length of the 

respective molecule. 

necessary for testing models such as the one advanced in this paper. 
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4.2.2 Generalization of the model to account for specific features of the X. laevis ex- 

periment 

The experimental results obtained on the kinetics of DNA replication in the in vitro cell-free system 

of Xenopus laevis 144, 781 were analyzed using the kinetic model developed in the previous chap- 

ters. In formulating that model, we had to take into account explicitly a number of experimental 

limitations discussed in the previous chapter: 

1 )  One goal of the experiment is to measure the initiation function I ( t ) ,  which is the probability of 

initiating an origin per unit length of unreplicated DNA after time interval t  since the onset of repli- 

cation. The simplest assumptions, in terms of our model, would be that either I is peaked at or near 

t  = 0 (all origins initiated at the beginning of S phase) or I ( t )  = const., (origins initiated at constant 

rate throughout S phase). However, neither assumption turns out to be consistent with the data ana- 

lyzed here; thus, we formulated our model to allow for arbitrary initiation patterns and deduced an 

estimate for I ( t )  directly from the data. We note that initiation is believed to occur synchronously 

during the first half of S phase in Drosophila melanogaster early embryos [79, 851. Initiation in the 

myxomycete Physarum polycephalum, on the other hand, occurs in a very broad temporal window, 

suggesting that initiation occurs continuously throughout S phase [%I. Finally, recent observations 

suggest that, in Xenopus laevis, early embryos nucleation may occur with increasing frequency as 

DNA synthesis advances [24,44,78]. By choosing an appropriate form for I ( t ) ,  one can account for 

any of these scenarios. Below, we show how measured quantities may, using the model, be inverted 

to provide an estimate for I ( t ) .  

2) The basic form of the model assumes implicitly that the DNA analyzed began replication at "lab- 

oratory time" r = 0, but this may not be so, for two reasons: 

i) In the experimental protocols, the DNA analyzed comes from approximately 20,000 indepen- 

dently replicating nuclei. Before each genome can replicate, its nuclear membrane must form, along 

with, presumably, the replication factories. This process takes 15-20 minutes [I 07-1 091. Because 

the exact amount of time can vary from cell to cell, the DNA analyzed at time ri in the laboratory 

may have started replicating over a relatively wide range of times. 
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ii) In eukaryotic organisms, origin activation may be distributed in a programmed manner through- 

out the length of S phase, and, as a consequence, each origin is turned on at a specific time (early 

and late) [ 1 1 01. 

In the current experiment, the lack of information about the locations of the measured DNA seg- 

ments along the genome means that we cannot distinguish between asynchrony due to reasons (i) 

or (ii). We have thus accounted for their combined effects using the starting-time distribution #(r) 

introduced in Ch. 3, which is the probability-for whatever reason-that a given piece of analyzed 

DNA began replicating at time r in the lab. 

3) The combed DNA is broken down into relatively short segments (100-300 kb, typically). Also, 

the experiments are all analyzed using an epifluorescence microscope to visualize the fluorescent 

tracks of combed DNA on glass slides (with spatial resolution FZ 0.3 pm). Thus, we have to estimate 

p = &/!?* and y = [*/Ax* for these effects. (See Sec. 3.2.3.) 

4.2.3 Application of the kinetic model to the analysis of DNA replication in X. Laevis 

Using the generalizations discussed above, we analyzed recent results obtained on DNA replication 

in the Xenopus laevis cell-free system. DNA taken from each time point was combed, and mea- 

surements were made on replicated and unreplicated regions. Statistics from each time point were 

then compiled into six histograms (one for each time point) of the distribution p( f ,  ri) of replicated 

fractions f  at lab time ri (Fig. 4.2). 

One can immediately see from Fig. 4.2 the need to account for the spread in starting times. 

If all the segments of DNA that were analyzed had started replicating at the same time, then the 

distributions would have been concentrated over a very small range of f .  But, as one can see in 

Fig. 4.2(c), some segments of DNA (within the same time point) have already finished replicating 

( f  = 1) before others have even started ( f  = 0). This spread is far larger than would be expected on 

account of the finite length of the segments analyzed. Because of the need to account for the spread 

in starting times, it is simpler to begin by sorting data by the replicated fraction f  of the measured 

segment. We thus assume that all segments with a similar fraction f  are at roughly the same point 

in S phase, an assumption that we can check by partitioning the data into subsets and redoing our 
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Figure 4.2: p ( f ,  ri) distributions for the six time points. The curves show the probability that a 

molecule at a given time point (a)-(f) has undergone a certain amount of replication before the 

second dye was added. The filled circles represent the experimental data. The results of the Monte 

Carlo simulation are shown in open circles; analytical curves are the global fitting. 

measurements on the subsets. In Fig. 4.3(a)-(c), we plot the mean values &, t i ,  and li2i against f .  

We then find f ( t ) ,  I ( t ) ,  and the cumulative distribution of lengths between activated origins of 

replication, ItOt(t). (See Fig. 4.4.) The direct inversion for I ( t )  [Fig. 4.4(b)] shows several surpris- 

ing features: First, origin activation takes place throughout S phase and with increasing probability 

(measured relative to the amount of unreplicated DNA), as recently inferred from a cruder analysis 

of data from the same system using plasmid DNA [78]. Second, about halfway through S phase, 

there is a marked increase in initiation rate, an observation that, if confirmed, would have biolog- 

ical significance. It is not known what might cause a sudden increase (break point) in initiation 

frequency halfway through S phase. The increase could reflect a change in chromatin structure that 

may occur after a given fraction of the genome has undergone replication. This in turn may increase 

the number of potential origins as DNA synthesis advances [I l l ] .  

The smooth curves in Fig 4.3(a)-(c) are fits based on the model, using an I ( t )  that has two 

linearly increasing regions, with arbitrary slopes and "break point" (three free parameters). The fits 
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Figure 4.3: Mean quantities vs. replication fraction. (a) average hole size &( f ) ;  (b) average eye size 

ei(f); (c) average eye-to-eye size tizi( f ) .  Filled circles are data; open circles are from the Monte 

Carlo simulation; the solid curve is a least-squares fit, based on a two-segment I( t ) ;  (d) curves in 

(a)-(c) collapsed onto a single plot, confirming the mean-field relations (Eqs. 3.3a and 3.3b). (The 

discrepancies near f = 0 and 1 reflect measurement errors. Very small eyes or holes may be missed 

because of limited optical resolution; very large eyes or holes may be eliminated because of finite 

segment sizes.) 

are quite good, except where the finite size of the combed DNA fragments becomes relevant. For 

example, when mean hole, eye, and eye-to-eye lengths exceed about 10% of the mean fragment 

size, larger segments in the distribution for &(f), etc., are excluded and the averages are biased 

down. These biases due to finite sizes of the molecules also affect the last few points in the extracted 

I ( t )  (see below). We confirmed this with the Monte Carlo simulations, the results of which are 

overlaid on the experimental data. The finite fragment size in the simulation matches that of the 
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Figure 4.4: (a) Fraction of replication completed, f ( t ) .  The points are derived from the measure- 

ments of mean hole, eye, and eye-to-eye lengths. The curve is an analytic fit (see below). (b) 

Initiation rate I ( t ) .  The large statistical scatter arises because the data points are obtained by taking 

two numerical derivatives of the f ( t )  points in (c). The last several points are artifacts due to finite- 

size effects and were not included in the analysis. (c) Integrated origin separation, ItOt(t), which 

gives the average distance between all origins activated up to time t .  In (a)-(c), the black curves are 

from fits that assume that I  ( t )  has two linear regimes of different slopes. The form we chose for I  ( t )  

was the simplest analytic form consistent with the data in (b). The parameters for the least-squares 

fits (slopes I I  and I*, break point t l )  are obtained from a global fit to the eight data sets in Fig. 

4.2(a)-(f) and Fig. 4.3(a)-(b), i.e., p( f )  from six time points, eh ( f  ), and ti ( f  ). 

experiment, leading to the same downward bias. (See, also, Sec. 3.2.3) In Fig. 4.4, we overlay the 

fits on the experimental data. We emphasize that we obtain I ( t )  directly from the data, with no 

fit parameters, apart from an overall scaling of the time axis. The analytical form is just a model 

that summarizes the main features of the origin-initiation rate we determine via our model, from the 

experimental data. We note that the last few points in Fig. 4.4(b) were excluded in the analysis for 

reasons explained above.' The important result is I ( t ) .  From the maximum of ItOt(t), we find a 

mean spacing between activated origins of 6.3 & 0.3 kb, which is much smaller than the minimum 

3 ~ o  justify this, we first simulated longer molecules and then created a series of data sets by chopping the longer 

molecules. We observed that. as the chopped molecules become smaller. the downward bias in the extracted I ( t )  becomes 

more visible and similar to the one in Fig. 4.4(b). The downward bias observed here results from a different choice of 

algorithm for extracting I ( t )  than was used in Ch. 3. In that chapter, we used Eq. 3.5, while, in this chapter, we used 

I ( t )  = -&$ln[l - f ( t ) ] .  These two methods are identical for ideal systems. but they can lead to different biases (for 

example. upward and downward) in the presence of finite-size effects. 
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Figure 4.5: Starting-time distribution c$(r). Solid curve is a least-squares fit to a Gaussian distribu- 

tion. 

mean eye-to-eye separation 14.4 f 1.5 kb. 

In our model, the two quantities differ if initiation takes place throughout S phase, as coales- 

cence of replicated regions leads to fewer domains, and hence fewer inferred  origin^.^ The mean 

eye-to-eye separation is of particular interest because its inverse is just the domain density (num- 

ber of active domains per length), which can be used to estimate the number of active replication 

forks at each moment during S phase. For example, the saturation value of ItOt corresponds to the 

maximum number (about 480,00O/genome) of active origins of replication. Since there are about 

400 replication foci/cell nucleus, this would indicate a partitioning of approximately 1,200 origins 

(or, equivalently, about 7.5 Mb) per replication focus [107, 1121. The distribution of f values in 

4The minimum average eye-to-eye size is obtained by differentiating &(t) = &e22'19(t" " " ,  where g ( t )  = 

Ji I ( t ) d t .  For a constant initiation rate I ( t )  = lo, one obtains c2% = . m. Also. we recall &(t) = 

& ( t )  + &(t)  = -, which allows one to collapse the experimental observations of all three mean curves onto a single 

one [see Eq. 3.4 and Fig. 4.3(d)]. 
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the p( f ,  ri) plots can be used to deduce the starting-time distribution [4 ( r ) ] ,  along with the fork 

velocity 21 (see Sec. 3.2.2). (Fig. 4.5). The spread in starting times 4 is consistent with a Gaussian 

distribution, with a mean of 15.9 f 0.6 min. and a standard deviation of 6.1 f 0.6 min. For the fork 

velocity, we find 11 = 615 f 35 baseslmin., in excellent agreement with previous estimates - 600 

baseslmin [ I  13, 1 141. As with the f data, we extracted 4(r)  and v from a global fit to data from all 

six time points. 

4.3 Discussion 

4.3.1 Initiation throughout S phase 

The view that we are led to here, of random initiation events occurring continuously during the 

replication of Xenopus sperm chromatin in egg extracts, is in striking contrast to what has until re- 

cently been the accepted view of a regular periodic organization of replication origins throughout 

the genome [83,84,  115, 1161. For a discussion of experiments that raise doubts on such a view, see 

Berezney [104]. The application of our model to the results of Hemck et al. indicates that the kinet- 

ics of DNA replication in the X. laevis in vitro system closely resembles that of genome duplication 

in early embryos. Specifically, we find that the time required to duplicate the genome in vitro agrees 

well with what is observed in vivo. In addition, the model yields accurate values for replicon sizes 

and replication fork velocities that confirm previous observations [36, 1131. Though replication in 

vitro may differ biologically from what occurs in vivo, the results nevertheless demonstrate that the 

kinetics remains essentially the same. Of course, the specific finding of an increasing rate of ini- 

tiation invites a biological interpretation involving a hnd of autocatalysis, whereby the replication 

process itself leads to the release of a factor whose concentration determines the rate of initiation. 

This will be explored in future work. 

4.3.2 Asynchrony, finite-size, and finite-resolution effects 

In Ch. 3, we introduced various parameters to estimate the significance of experimental limitations 

in applying the kmetic model to data. In the data by Herrick et al. used here for analysis, all 

three effects - asynchrony, finite-size, finite-resolution - are present. Fortunately, we have found 

that the asynchrony is well-described by the Gaussian starting-time distribution + ( T ) .  In this case, 

cu = t*/a, % 2.5 (for the duration of S phase t* = 15 mins. and the starting-time width a, of 6.1 
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mins), and the optimization method presented in Ch. 3 can be applied to the data to extract 21 from 

p( f, T ~ )  accurately. 

On the other hand, the significance of finite-size effects can be estimated by the criterion P = 

t*/& x lo. In our case, !* for Xenopus sperm chromatin is roughly 15 kb, while the typical size of 

combed molecules ranges between 100 - 300 kb, thus giving 7 5 P 5 20 and making the finite-size 

effects relatively insignificant. However, we note that the origin spacing of many higher eukaryotes, 

including Xenopus after the mid-blastula transition, can be as large as 100 kb. In such cases, it is of 

critical importance to obtain long combed molecules (> 1 Mb). 

Similarly, finite-resolution effects are insignificant when y = [*/Ax* > 1. This condition is 

satisfied in almost all molecular-combing experiments of DNA replication, since Ax* z 1 kb while 

t* typically ranges between 10 and 100 kb (y x 10 to 100). 

In Table. 4.1, we present a summary showing the relative importance of these "real-world" 

effects. 

4.3.3 Directions for future experiments in X. laevis 

Effect 

asynchrony 

finite size 

finite resolution 

One effect that we did not include in our analysis is a variable fork velocity. For example, v might 

decrease as forks coalesce or as replication factor becomes limiting toward the end of S phase [I 07- 

1091. 

Another important question is to separate the effects of any intrinsic distribution due to early 

and late-replicating regions of the genome of a single cell from the extrinsic distribution caused by 

having many cells in the experiment. One approach would be to isolate and comb the DNA from a 

single cell. Although difficult, such an experiment is technically feasible. The latter problem could 

be resolved by in situ fluorescence observations of the chosen cell. 

Table 4.1 : Summary table concerning the important parameters for experimental limitations. 

Parameter 

a 

P 
Y 

in Xenopus expt. 
- 

2.5 

7-20 

10-100 

Definition 

t * / q  

t* PC 
t*/Ax* 

when significant? 

<< 1 

< 10 

< 1 
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4.3.4 Applications to other systems 

One can entertain many further applications of the basic model discussed above, which can be 

generalized, if need be. For example, Blumenthal et al. interpreted their results on replication in 

Drosophila melanogaster for pzzz(L, f )  to imply periodically spaced origins in the genome [79]. (See 

their Fig. 7.) It is difficult to judge whether their peaks are real or only a statistical happenstance; 

but, if the conclusion is indeed that the origins in that system are arranged periodically, the kinetics 

model could be generalized in a straightforward way (by introducing an I(x, T )  that was periodic in 

2). 

Very recently, detailed data on the replication of budding yeast (Saccharomyces cerevisiae) have 

become available [99]. The data provide information on the locations of origins and the timings of 

their initiation during S phase. These data support the view of origin initiation throughout S phase. 

Unlike replication in Xenopus prior to the mid-blastula transition, origins in budding yeast are as- 

sociated with highly conserved sequence elements (autonomous replication sequence elements, or 

ARSs). Raghuraman et al. [99] also give the first estimates of the distribution of fork velocities dur- 

ing replication. Although broad, the distribution is apparently stationary, and there is no correlation 

between velocities and the time in S phase when the forks are initiated. The model developed here 

could be generalized in a straightforward way to the case of budding yeast. Knowing the sequence 

of the genome and hence the location of potential origins means that the initiation function would be 

an explicit function of position x along the genome, with peaks of varying heights at each potential 

origin. The advantage of the kind of modeling advanced here would be the opportunity to derive 

quantities such as the replication fraction as a function of time in S phase. Raghuraman et al. fit their 

data for this "timing curve" to an arbitrarily chosen sigmoidal function. (See their supplementary 

data, Section 11-5.) Such modeling will make it easier to find meaningful biological explanations of 

the programming of S phase evolution. 

4.3.5 The random-completion problem: part I 

One outstanding issue in DNA replication in eukaryotes is the observation that the replication origins 

cannot be too far apart, as this would prevent the genome from being replicated completely within 

the length of a single S phase [117]. In the case of Xenopus early-embryo replications, most 

solutions suggested so far to prevent the formation fatal long origin spacings concern the density 

and the distribution of pre-replication complexes (pre-RCs) of highly conserved proteins, which 
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Figure 4.6: Licensing and activation of replication origins. MCM2-7 complexes, proteins that are 

believed to be competent to initiate replication, are loaded during late mitosis and GI phase onto 

replication origins by ORC, CDTI, and CDC6 (origin licensing). Pre-replication complexes (pre- 

RC) are activated at the GUS transition by two kinases, CDC7DBF4 and S-CDKs. A key step in 

this transition to replication is the recruitment of CDC45. MCM2-7 dissociate from DNA as S phase 

progresses. Reloading of MCM2-7 is prevented by at least two inhibitors, geminin and the CDKs. 

This inhibition persists until cells pass through mitosis, when geminin and cyclins are destroyed. 

Figure and caption from Ref. [35] by 0 .  Hyrien. Copyright 02003 Wiley-Liss, Inc., a subsidiary of 

John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc. 

assemble at ORC-bound DNA sites before the cell enters S phase (Fig. 4.6) [35]. 

For example, one solution that has been proposed is that there is an excess of pre-RCs (e.g., 

Lucas et al. [78], and references therein). In this case, the position of each potential origin of 

replication (POR) can be distributed randomly, with a statistically insignificant probability of having 

large gaps between PORs. The problem with this solution has been that the average POR spacing 

must be much smaller (less than 1-2 kb) than the reported 7-16 kb spacings of Xenopus ORC 

(XORC), protein complex that has been believed to be directly associated with PORs until recently 

F32, 1 1 81, 

A second proposed solution to the random-completion problem is to invoke correlations in POR 

spacings. In other words, instead of assuming a purely random pre-RC distribution, one imposes 

constraints that force a partial periodicity on the POR spacing, so that most of the origins are spaced 

5-15 kb apart (Blow et al. [24] and references therein). This suppresses the formation of large gaps 

but raises other issues. First, it requires an unknown mechanism to achieve this periodicity of POR 
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Figure 4.7: (a) Histogram of positions of initiation events for holes 8-22 kb in size. The events are 

determined by looking for replicated domains that are small enough that they very likely contain only 

a single replication origin. The state of the molecular fragment is then propagated back in time to 

the moment of initiation, where one records the hole size and relative position of the initiation event 

within the hole. The inset shows a hole flanked by two eyes. The experimental histogram shows 

that it is more likely that a new initiation occurs near the center of a hole, an observation compatible 

with the looping scenario but not with the purely random initiation scenario. (b) Holes larger than 

22 kb. The difference between experiment and simulations (both random and loop formation) is 

much smaller than for small holes in (a). 

spacing. Second, it assumes implicitly that most of the PORs fire during S phase, to prevent the 30 

kb gap that could arise from a origin's failure to initiate. Blow's model is thus not robust in that 

the failure of a single origin to initiate could double the time needed complete replication. Third, if 

origins initiate throughout S phase, then there needs to be some kind of correlation that forces the 

more widely spaced origin groups to initiate early enough in S phase to complete replication in the 

required time. 

Implicitly, our model adopts language consistent with the first solution, but it is straightforward 

to consider the correlations assumed in the second solution. The presence of significant correlations 

in PORs would not invalidate the results presented here, which pertain to mean quantities (e.g., 

Fig. 4.3); however, it would change their interpretation and could change biological models that one 

might try to make to explain the observed kinetic parameters we extract using the KJMA model. 

Indeed, the resolution of the origin-spacing problem in early embryos requires not only the temporal 
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[ I ( t ) ]  but also "spatial" program of DNA replication, and our data also suggest that initiation of 

replication origins is not spatially homogeneous. As an example, Fig. 4.7 shows histograms that 

record the relative position of new origins within a hole. In Fig. 4.7(a), we plot the distribution for 

small holes, 8-22 kb in length."he experimental data shows a strong peak near 0.5, implying a 

tendency for origins to be as far away from other replicating domains as possible. By contrast, the 

experimental data for large holes shows a much more uniform distribution. In simulations that use 

spatially homogeneous initiation, new origins can appear almost anywhere in a hole, regardless of 

its size. This picture fits the large-hole data [Fig. 4.7(b)] but not the small-hole data [Fig. 4.7(a)]. Ey 

contrast, when we put in the effects of suppression of origin initiation by chromatin looping at very 

close spacings and an enhancement of initiation at a larger, characteristic distance, the simulation 

results match more closely the data of Fig. 4.7(a), while continuing to agree with the large-hole case. 

In the next chapter (Sec. 5.3.2), we shall explain how the origin-spacing problem (or, the "random- 

completion" problem) can be solved by understanding the physical properties of chromatin and its 

looping. 

4.4 Conclusion 

So far, we have introduced a class of theoretical models for describing replication kinetics that is 

inspired by well-known models of crystal-growth kinetics. The model allows us to extract the rate 

of initiation of new origins, a quantity whose time dependence has not previously been measured. 

With remarkably few parameters, the model fits quantitatively the most detailed existing experiment 

on replication in Xenopus. It reproduces known results (for example, the fork velocity) and provides 

the first reliable description of the temporal organization of replication initiation in a higher eukary- 

ote. Perhaps most important, the model can be generalized in a straightforward way to describe 

replication and extract relevant parameters in essentially any organism. 

' ~ o l e s  smaller than 8 kb in length showed a bias toward the center in the experimental data and were not included for 

comparison to models lacking such bias. 
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Figure 4.8: Distribution of combed DNA molecules used in the analysis: the average length was 102 

kb and the standard deviation 75 kb. The distribution is approximately log normal. 

4.5 Appendix 

4.5.1 Monte Carlo simulations 

We wrote a Monte Carlo simulation using the programming language of Igor Pro [73] to test various 

experimental effects that were difficult to model analytically. As we discussed in Ch. 3, these in- 

cluded the effects of finite sampling of DNA fragments (on average, 190 molecules per time point), 

the finite optical resolution of the scanned images, and - most important - the effect of the finite 

size of the combed DNA fragments. The size of each molecular fragment in the simulation was 

drawn randomly from an estimate of the actual size distribution of the experimental data (Fig. 4.8). 

This distribution was approximately log-normal, with an average length of 102 kb and a standard 

deviation of 75 kb. 

We used both the lattice model and a variation of the double-list algorithm for our simulations 

(see Ch. 2). The timestep At = 0.2 min, and the lattice size vAt = 123 bp for the measured fork 

velocity ZJ = 615 bplmin. The lattice scale is then roughly the size of origin recognition complex 

proteins. We sampled the simulation results at the same time points as the actual experiments (ri 

= 25, 29, 32, 35, 39, 45 minutes). Each sampled molecule is cut at random site to simulate the 
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combing process. The lattice is then "coarse grained" by averaging over approximately four pixels. 

The coarse lattice length scale is then 0.24 pm, which roughly corresponds to the resolution of the 

scanned optical images. Finally, the coarse-grained fragments were analyzed to compile statistics 

concerning replicon sizes, eye-to-eye sizes, etc. that were directly compared to experimental data. 

We also used the simulation to test a previous algorithm for extracting I (  f ), the initiation rate as 

a function of overall replication fraction. The previous algorithm [44, 1 191 looked for small repli- 

cated regions and extrapolated back to an assumed initiation time. The effects of eye coalescence is 

not taken into account. We tested this algorithm using our Monte Carlo analysis and, as expected, 

found significant bias in the inferred I( f ) ,  while the algorithms we introduce here showed no such 

bias. 

4.5.2 Parameter extraction from data and experimental limitations 

We extracted data from both the real experiments and the Monte Carlo simulations by a global 

least-squares fit that took into account simultaneously the different data collected (i.e., the different 

curves in Figs. 4.2 and 4.3). As discussed above, we fit a two-segment straight line to the I ( t )  curve 

extracted directly from the data for analytic simplicity. Assuming this form for I ( t ) ,  we derive 

explicit formulae for the curves in Figs. 4.2 and 4.3. 

The finite size of the molecular fragments studied (102*75 kb) causes systematic deviation from 

the "infinite-length" formulae. Such deviations could be detected using the Monte Carlo simulations 

by comparing the extracted values of parameters with those input. The deviations show themselves 

mainly in two settings: First, whenever the mean length of holes, eyes, or eye-to-eye distances 

approaches the mean segment length, the observed mean lengths will be systematically too small 

because the larger end of the experimental distributions is cut off by the finite fragment length. We 

dealt with this complication by restricting our fit to areas where the mean length being measured is 

less than 10% of the mean fragment size. The second complication is that the inferred fork velocity 

is systematically reduced (by about 5% for the fragment size in the experiments analyzed here). We 

measured this bias using the Monte Carlo simulations and then corrected the "raw" fork velocity that 

is given by our least-squares fits. Fortunately, these corrections are expected to be minor because 

the data we used satisfies the condition ,8 2 10. For further details, see Sec. 3.2.3. 

One further subtle point in a global fit is the relative weighting to be given to the data in the p( f )  

curves (Fig. 4.2) relative to the data in the mean-value curves (Fig. 4.3). We estimated the weights 
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using the boot-strap method [70]. The basic idea is to create M sets of data by randomly drawing 

data points from the original set. In other words, each created data set will consist of the same 

number of data points as the original one, but it now has a random fraction of the original points, 

typically -- l / e  z 37%. One then analyzes the artificial data sets as data from M independent 

experiments. In a similar spirit, we used repeated Monte Carlo simulations to estimate statistical 

errors in experimentally extracted quantities, I.e., we used our simulation to create an artificial data 

on which we repeated our analysis and extracted nucleation rates, fork velocities, etc. Repeating 

this over a number of runs (typically a few hundred), we could estimate the standard deviations in 

the various parameters. 



Chapter 5 

Spatial Program of Xenopus 

Early-Embryo DNA Replication 

5.1 Introduction 

In the previous chapters, we have focused on extracting the temporal program I ( t )  of DNA replica- 

tion from data. This is a "mean field" view of DNA replication, because a spatially homogeneous 

nucleation rate means that any site along the genome is equally capable of initiating replication and 

that initiation of one origin does not affect initiation of another. In real biological systems, however, 

knowing I ( t )  only is not enough to describe the lunetics of DNA replication. Several extreme exam- 

ples include prokaryotes such as E. coli, simple eukaryotes such as S. cerevisiae, and somatic cells. 

In all these, genome sequence plays an important role in defining origins of DNA replication [117]; 

thus, absolute position z along the genome of replication origins are pre-specified. Also, in S. cere- 

visiae, replication origins have different efficiencies, and an early-firing origin can inhibit initiation 

of its neighboring origins (passive replication) [ I  01, 1021. 

Even for the organisms where origins are not associated with sequence, such as Xetzopus and 

Drosophila early embryos [34, 351, potential origins cannot be distributed randomly along the 

genome (see the origin-spacing problem in Sec. 4.3.5). Otherwise, one expects a geometric (expo- 

nential) distribution of separations. Because the length of S phase is determined by the replication 

of the entire genome, even relatively rare long gaps could prolong S phase beyond its observed du- 

ration of 10-20 minutes for complete duplication of the whole genome (> 6 billion bases) [34, 361. 
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(a) Random-completion problem (b) Origin-redundancy model (c) Fixed-spacing model 

Figure 5.1: Random-completion problem and two suggested solutions. (a) Random-completion 

problem: if origins are distributed randomly, their separations will follow an exponential distri- 

bution, implying large gaps that cannot be replicated in the time allotted to S phase. (b) Origin- 

redundancy model. (c) Fixed-spacing model. 

The problem is all the more acute in that early embryo cells lack an efficient S M  checkpoint [37], 

which is used by many eukaryotic cells to delay entry into mitosis in the presence of unreplicated 

DNA. This problem is formally stated as the "random-completion problem" [116] and, for the rea- 

sons explained above, its solution requires not only a temporal program of replication but also a 

spatial program that regulates origin spacing. 

Roughly, two approaches have been advanced to resolve the random-completion problem (see 

Fig. 5.1) [35]: In the first scenario (the "origin redundancy" model), potential origins exist in abun- 

dance and initiate stochastically throughout S phase. This allows large gaps to be "filled in" during 

the later stages of S phase [59, 781. In the second scenario ("fixed spacing" model), one postu- 

lates a mechanism that imposes regularity in the distribution of potential origins, thus preventing 

the formation of problematic large gaps between origins [24]. In this chapter, we shall show that 

consideration of Henick et al.'s experimental results on early embryo Xenopus replication leads to 

a more nuanced, "intermediate" view that incorporates elements of both scenarios and, more im- 

portant, suggests a biological picture in which the secondary structure of chromatin - looping in 

particular - plays an important biological role in DNA replication. 

In this chapter, we show that the molecular-combing data on DNA replication in early-embryo 

Xenopus laevis are most naturally explained by postulating that chromatin forms loops at "replica- 

tion factories" [120, 1211 and that these loops control origin spacing ("replication factory and loop" 

model; see Fig. 5.2 and also Fig. 1.6).' It is important to note that the size of such a loop is not 

 h he reader should not take the particular illustration of chromatin folding in Fig. 5.2 literally. In other words. we 

do not assume any particular (internal) structure of chromatin. i.e., our interpretation of chromatin is that it is a polymer, 

which has an intrinsic stiffness and, thus. there exists a specific length, where loop-formation probability is maximum 

(see text). 
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Figure 5.2: Replication factory and chromatin loops. Schematic description of how chromatin fold- 

ing can lead to replication factory with loops. The loop sizes are not arbitrary (see text). 

arbitrary. The stiffness of the polymer means that loops that are too small cost too much energy, 

while loops that are too large have too many conformations to explore for the ends to meet and, 

thus, cost too much entropy. Balancing these effects gives an optimal loop size, calculated correctly 

by Shimada and Yamakawa (sY)? in 1984 [122, 1231, which leads to an origin-exclusion zone, since 

origins are connected by at least a single loop. 

The sizes of the postulated loops extracted by fitting to experimental data turn out to be com- 

parable to those obtained independently in single-molecule measurements of chromatin stiffness 

in other systems [124, 1251. Because the size of a polymer loop is controlled by its stiffness, we 

can link the physical properties of chromatin, when considered as a semiflexible polymer, to ori- 

gin spacing during DNA replication. As we shall see, the physical properties of chromatin loops 

can explain both the observed regularity of initiation spacings [24] and the existence of an "origin- 

exclusion zone" [78], where origin firing is inhibited, reconciling apparently contradictory views on 

the nature of the mechanism that ensure rapid and complete genome replication in early embryos. 

Although our results concern one particular system, there is reason to suspect that they may apply 

more generally. 

'~e ta i l ed  physics of single-loop formation. from statics to dynamics. including the Shimada-Yamakawa distribution. 

will be explored in the next chapter. 
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5.2 Results 

In Ch. 4, we drew on basic observations of DNA replication: 

1.  DNA is organized into a sequential series of replication units, or replicons, each of which 

contains a single origin of replication. 

2. Each origin is activated not more than once during the cell-division cycle. 

3. DNA synthesis propagates at replication forks bidirectionally from each origin. 

4. DNA synthesis stops when two newly replicated regions of DNA meet. 

We used these observations to construct a "kinetic model" of DNA replication based on three as- 

sumptions: 

1. The initiation of origins could be described by a function I ( x ,  t )  that gives the probability of 

initiating an origin at position s along the genome at time t during S phase. 

2. Replicating domains expand symmetrically with a velocity a. 

3. Replicating domains that impinge on each other coalesce. 

We then used the mathematical model defined by these assumptions (cf., Ch. 2 and 3) to analyze 

data from the recent experiment on DNA replication by Hemck et al. [44]. In this experiment, cell- 

free early-embryo Xenopus was dual-labelled with two fluorescent dyes. The first was present at 

the beginning of the replication cycle; the second was added at a controllable time point during S 

phase. DNA fragments were then isolated and combed onto substrates, where they were analyzed by 

two-color epifluorescence microscopy. The alternating patterns of labelling then gave a "snapshot" 

of the state of the DNA fragment at the time the second label was added. Statistical analysis of 

such labels gave empirical distributions of replicated domain ("eye") lengths, "hole" sizes between 

replicated lengths, and "eye-to-eye" distances, defined as the distance between the center of one eye 

and the center of a neighboring eye. From the averages of eyes, holes, and eye-to-eye lengths, we 

inferred the spatially averaged initiation rate I ( t ) ,  the temporal program of DNA replication, which 

is defined as the number of new initiations per unit time per unit unreplicated length, at time t .  

Although the previous analysis successfully incorporated information deduced from the averages 

of the various distributions (ph, pi, and pizi), we did not look at the distributions themselves. In 
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particular, the eye-to-eye distribution is an important quantity in that it approximates the origin- 

spacing distribution for small eye-to-eye distances because both eyes involved must also be small 

and thus likely contain just one origin each. Here, we show that analysis of these quantities including 

neighborhood eye-size correlations lead us to refine the assumptions made in the kinetic model, 

shedding light on the long-standing random-completion problem in the process. 

5.2.1 The eye-to-eye distribution predicted using random initiation does not agree 

with experiment. 

We extracted the distribution, pizi, of distances separating centers of neighboring eyes (eye-to-eye 

distances) from the raw experimental data that were also used for analysis in Ch. 4, and compared 

it with the pizi distribution obtained from a numerical simulation that assumed random distribution 

and activation of replication origins (data compiled from 6,300 runs of the simulation described in 

Appendix in Ch. 4) [Fig. 5.3(a)]. 

Notice that there are two clearly distinct regimes. In the first regime (tizi 520 kb), the experimental 

data clearly differ from the simulation (P = 4 x X2 = 165 for n = 6 degrees of freedom). 

Initiations are inhibited over origin-to-origin distances smaller than 8 kb (mostly smaller than 4-5 

kb). This is consistent with both the observation that there is only one origin initiation event on 

plasmids smaller than -1 0 kb [36] and the speculation that an exclusion zone ensures a minimum 

origin-to-origin distance [78]. On the other hand, activation of one origin appears to stimulate 

the activation of neighboring origins each separated by a distance of 8-16 kb (peak at -13 kb). 

This number is consistent with the previously reported origin spacings of 5-15 kb [24, 441 and 

the saturation density of Xenopus Origin Recognition Complexes (XORCs) [82, 11 81 along sperm 

chromatin in egg extracts. 

The second regime (tini 2 20 kb) shows that for simulation and experiment the distribution of 

large eye-to-eye distances is statistically similar (P=0.14; x2=34 for n = 26), which implies that the 

random-initiation hypothesis holds for this regime, even as it fails at smaller origin ~e~ara t ions .~  

'The agreement between the two curves (experiment and random initiation) becomes better as the eye-to-eye distance 

increases. However, we note that the P-value for the two regimes (inhibition and enhancement) are most distinguishable 

when they are divided after the first two oscillations. 1.e.. at around C,2, = 20 kb. On the other hand. we also note that the 

simple random-initiation hypothesis reproduces all mean quantities such as the mean eye size throughout S phase very 

well, as shown in Ref. [59].  
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Figure 5.3: Distribution of replication origins and 

the loop-formation probability. Because the shape 

of the eye-to-eye distribution changes little during 

most of S phase, we pooled the experimental and 

simulation data for f = 10 - 90%, where f is the 

fraction of the genome that has been replicated. 

(a) Eye-to-eye distribution pi2i .  (0) Experiment; 

(H) Random initiation (simulation). (b) Differ- 

ence between the experiment and assumed ran- 

dom initiations, Apiz i  = ~ i 2 i - ~ ~ ~  - pi2i-random. 

In the enhancement region (shaded blue above the 

zero line), more initiations occur than in the ran- 

dom case; in the exclusion zone (shaded red below 

the zero line), new initiations are inhibited. One 

can see that the first two oscillations ( t i s i  5 20 

kb) are statistically significant, while the agree- 

ment between pi2i-exp and pi2i-random becomes 

better as Qi2i increases. (c) Experimental pi2i  and 

the Shimada-Yamakawa loop-formation probabil- 

ity. The dotted curve is a fit to the Shimada- 

Yamakawa approximate distribution, Eq. 6.8, over 

the range 0-35 kb. The fit gives Qp = 3.2 f 0.1 

kb. The fit value of persistence length is biased 

downwards slightly because the SY distribution 

becomes inaccurate beyond a few times the persis- 

tence length [126]. The curve with triangles ( A )  

is the result of a simulation incorporating loops of 

Qp = 3.2 kb, as discussed in the text. 
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5.2.2 Eye-size correlations and origin synchrony. 

We can detect origin synchrony through correlations in the sizes of nearby replicated domains (or 

eye sizes). Adjacent (small) eyes of similar size will have initiated at about the same time. Thus, we 

tested for the presence of correlations between the sizes of nearby eyes. The correlation coefficient 

where si(sj) is the ~Gth 0-th) eye size and brackets ((. . .)) denote average values. The neighborhood 

distance li - jl indicates how far two eyes are apart. For example, C(1) is the correlation coefficient 

for nearest neighbors, C(2) for next-nearest, and so on. Fig 5.4 shows that there is a weak but 

statistically significant positive correlation: larger eyes tend to have larger neighbors, and vice versa. 

Because domains grow at constant velocity, size correlations may be interpreted as origin synchrony. 

The value for the nearest-neighbor correlation, C(1), is consistent with that reported by Blow et al. 

(0.1 6) [XI. 

The observation of eye-size correlations has qualitative significance in that no local initiation 

function I ( x ,  t )  - whatever its form - can produce correlations (see Sec. 2.2.4). Intuitively, the 

presence of eye-size correlations means that the probability of initiating an origin is enhanced by the 

presence of nearby active origins and thus cannot be a function only of x and t (position along the 

genome and time during S phase). In Fig. 5.4, we calculate via Monte-Carlo simulation the eye-size 

correlations assuming that origins are placed at random along the genome (H) and intiations are 

independent from one another. As expected, the correlations are consistent with zero. 

5.2.3 Origin spacing, loops, and replication factories. 

Since the experimental eye-to-eye distribution is not consistent with the random-initiation hypoth- 

esis for short distances (< 20 kb) and since eye-size correlations imply some kind of nonlocal 

interaction between origins, we tested an alternative hypothesis, that chromatin folding can lead to 

a replication factory with loops [104, 120, 1211, against data. In the replication-factory-and-loop 

model, initiations occur at the replication factory, and there must be a correlation between the loop 

sizes and the distances between replication origins. As mentioned earlier, because of the intrinsic 

stiffness of chromatin, loops have a preferred size: activated origins will tend to occur at a charac- 

teristic separation from the replication forks of already activated replication origins. 
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Neighborhood distance li-jl 

Figure 5.4: Eye-size correlation. Eye-size correlation Cli - jl vs. neighborhood distance li - jl 

between eyes for three different cases (data for f = 40 - 60% pooled together): Experiment (O), 
random initiation (m) [59], and replication factory and loop model with loop-formation ( A )  (each 

data set compiled from 400 runs of the simulation). The random-initiation case does not produce 

any correlations, as expected; however, both experiment and the replication-factorylloop-formation 

model produce statistically similar positive correlations. 

To study the effect of adding chromatin loops to our model, we modified the Monte-Carlo sim- 

ulations in Ch. 4 in a number of ways. We accounted for the size of origin proteins in pre-RC 

(- 10 nm; see Fig. 4.6) by using a lattice size Ax = 116 basepairs (bp), which is fixed by set- 

ting the timestep of the simulation At = 0.2 minutes (Ax = v - At, where the fork velocity 

v = 580 bplmin) [59]. The parameters used in the simulation, such as the number and size of 

combed molecules, are the same as in the experiment, which justifies a direct comparison between 

the two. 

The simulation consists of three stages: origin "licensing," "S phase," and "molecular combing." 

In the licensing stage, potential origins are distributed along each molecule (or lattice site). In the 

random-initiation scenario, the potential-origin sites are chosen at random from the unreplicated do- 

mains of DNA. In the loop-formation scenario explored here, they are chosen in a way that depends 
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(a) "Looping + Fixed spacing" 

Potential origins 
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(b) "Looping + Origin redundancy" 

Figure 5.5: Computer simulation rules. Initiation rules for the computer simulations. (a) Looping + 
fixed spacing: there are two replication bubbles and two potential origins (x) 1 and 2. The probability 

of initiation of each potential origin is pl = SY ( L 1 )  and p2 = SY ( L 2 ) ,  respectively, where SY ( L )  

is the loop-formation probability (interpolated Shimada-Yamakawa distribution) of chromatin of 

loop-size L. (See Eq. 6.8, below.) Note that p2 # S Y ( L 3 )  because L3 > L2. We first calculate p's 

for all potential origins, and then we normalize the probabilities and initiate A N ( t )  potential origins 

using standard Monte Carlo procedure. (b) Looping + origin redundancy: initiation rules are the 

same as (a). Again, for an activated potential origin X, the probability of initiation is SY(L,)  not 

SY (Lb > L,). 

on the positions of the moving replication forks (see below and also Fig. 5.5). 

In the S phase stage, origins fire and forks grow bidirectionally, as in previous simulations for the 

random-initiation scenario. In the modified simulation incorporating the replication-factory model, 

there are multiple chromatin loops around each factory. Each potential origin has a different prob- 

ability of initiation depending on how far it is from the two left and right approaching forks. To 

calculate the probability of loop formation for a single loop of size L between a potential origin and 

the closest approaching fork, we used the following equation: 

an approximation that interpolates between the SY and Gaussian-chain distributions (for details, 

see the next chapter). In Eq. 5.2, Go(L/$)  d(L/ep) is the relative number of loops whose scaled 
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contour length is between ( L / l p )  and [ ( L  + dL)/ lp] .  Note that the loop-formation probability is a 

function of the persistence length t p ,  which is the length scale below which (above which) a polymer 

can be considered stiff (flexible), and that, in the SY calculations, the distribution of loop sizes is 

peaked at 3-4 times l p .  For the Xenopus chromatin, the persistence length has not been measured 

under the conditions applying to the present experiment. We fit the SY distribution (Eq. 6.8) to the 

eye-to-eye distribution to obtain an estimate of the persistence length lp [123]. We used the value 

from the fit (3.2 kb) in simulations incorporating the effects of loops. Then we determined how 

many origins to initiate, according to the experimentally determined initiation rate I ( t )  [59]. In 

each time step At,  the number of initiations is A N ( t )  = I ( t )  . At . L', where L  is the length of 

DNA that is unreplicated at time t ,  and the frequency of initiation I ( t )  is the number of initiations 

per unit time per unit length, averaged over the genome. Once the probability of initiation for each 

potential origin and the A N ( t )  are determined, the corresponding number of potential origins is 

chosen for initiation by standard Monte-Carlo procedure (Fig. 5.5). In our computer program, we 

recorded only the positions of the forks themselves, rather than the state of every lattice site; this 

allowed us to carry out lengthy simulations (400-6300 runs; 20-200 Mb of DNA simulated in each 

run) using an ordinary desktop computer. (See Sec. 2.3 for more details.) 

In the final molecular-combing stage, we cut the molecules into fragments whose size distribu- 

tion matches that of the actual experiment (roughly log-normal, with an average of 102 kb). We then 

coarse-grained the simulated molecules by averaging over a length scale of 480 bp (E 0.24 p m )  in 

order to account for the optical resolution of the experimental scanned images of combed molecules. 

The final result is a simulation of the experimental data set that includes the different biologi- 

cal scenarios of interest, in this case chromatin loop-formation. We applied exactly the same data 

analysis to the simulated data set as we did to the experimental data set. 

The results of our modified simulations are shown in Figs. 5.3(c) and 5.4 (data compiled from 

400 runs of the simulation), which shows that incorporating the replication-factory-and-loop model 

into the initiation algorithm makes the p,2, data from the simulation agree with experiment. In 

Fig. 5.4, the simulation data ( A )  show eye-size correlations more consistent with experiment: this 

is an expected result since using the SY distribution as a relative initiation probability of potential 

origins from approaching forks implicitly enforces clustering and rough synchrony of origin firings. 

In Fig. 5.3(c), we plot both the SY and the measured p,z, distributions (dotted and triangular curves, 

respectively). Note that the SY distribution itself should only approximate p,2, for the following 

reasons: The SY distribution gives the probability that the ends of a polymer meet, while the p,2, 
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distribution gives the probability that two points along the DNA meet. Unlike the SY distribution, 

which considers a finite segment of polymer that can form a loop only if the two ends meet, these 

multiple points are constrained to be discrete loci along the DNA wherever there are potential ori- 

gins. In addition, if a long loop containing additional potential origins forms, multiple loops may be 

created by subsequent binding of one of the potential-origin sites interior to the original loop. Such 

possibilities are not considered in the SY distribution. Still, for small loop sizes, neither of these 

effects is important because the high bending-energy cost inhibits subloop formation in loops that 

are already small, and we may compare the SY and pizi distributions in this regime. The fit to the 

distribution result, in Fig. 5.3 (dotted curve), is reasonably consistent with the data over the fit range 

(0-35 kb) and gives a persistence length of 3.2 f 0.1 kb. This persistence length was then used for 

the simulation data (triangles in Fig. 5.3(c) and blue points in Fig. 5.4). The optimal loop size is 

then -1 1 kb [peak of curves in Fig. 5.3(c)], and the exclusion zone is approximately one persis- 

tence length, -3-4 kb. These values are in excellent agreement with the observed average XORC 

saturation density, 7-16 kb along the Xenopus sperm chromatin in egg extracts [82, 1 181, the known 

values of origin-spacings of 5-1 5 kb [24,44] and loop-sizes [I 151 of early embryo Xenopus, as well 

as the average origin-spacing 7.9 kb of transcriptionally quiescent Drosophila early embryos [79]. 

5.3 Discussion 

5.3.1 Persistence length 

The persistence length that we infer for Xenopus sperm chromatin fiber in egg extracts (3.2 f 0. I kb) 

is comparable to that found in other systems. Cui and Bustamante measured the persistence length 

of chromatin fibers under low-salt and in physiological conditions using force-extension curves ob- 

tained by stretching single chicken erythrocyte chromatin fibers [125]. They found lp  = 30 nm, 

which corresponds to 3.5 kb for a typical packing ratio of 40 [126], slightly larger than our value. 

On the other hand, Dekker et al. [I 241 used their "Chromosome Conformation Capture" (3C) tech- 

nique to estimate e, for chromosome I11 in yeast in the GI phase of its cell cycle. They found lp = 

2.5 kb, slightly smaller than our value. Although these measurements are for different systems, their 

similarity suggests that chromatin stiffness may typically be in this range and, also, that the looping 

scenario examined here may apply more generally. 
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5.3.2 The random-completion problem: part I1 

As mentioned in the Introduction and in Sec. 4.3.5, because replication origins in embryos are not 

linked to sequence, the relevant model of DNA replication must be able to address the random- 

completion problem, i.e., it must be able to account for both the observed duration of S phase and 

the relative infrequency of long "fluctuations" of the time to copy the genome. The two scenarios 

discussed above - "origin redundancy" and "fixed spacing" - have issues of concern. One prob- 

lem with the origin-redundancy scenario is that, until recently, potential origins were believed to be 

directly associated with XORCs by assembly of pre-replication complexes (pre-RCs) consisting of 

several proteins (XORC, CDC6, CDTl and MCM2-7) before the start of S phase ("origin licensing"; 

see also Fig. 4.6) [34, 35, 1171. The potential origins are then activated during S phase. The diffi- 

culty is that there are approximately the same number of XORCs as initiated origins. Recent data by 

Edwards et al. [127], however, suggest that all the MCM2-7 complexes, 10-40 of which are recruited 

by each XORC, may be competent to initiate replication and that the choice of MCM complex is 

not made before the start of S phase, implying that a much greater fraction of the genome serves 

as potential-origin sites. (More recently, Harvey and Newport [I281 have shown that, indeed, repli- 

cation initiation sites are coincident with MCM but not ORC, where binding of MCM complexes 

create an "initiation zone" of size larger than 2 kb.) Edwards et al. then showed that CDC45, which 

is essential for initiating replication at MCM complexes (Fig. 4.6), is limiting for DNA replication, 

and, based on this observation, they further speculated that activation of the first MCM complexes 

may lead to inactivation of neighboring MCM complexes, thereby restricting initiation to defined 

intervals. Even so, restricting initiation itself does not prevent the formation of large gaps between 

origins, nor does it explain the significant eye-size correlations, l.e., partial synchrony in origin fir- 

ings. In other words, one still needs a structural basis for regulation of origin spacing and origin 

synchrony. 

The problem with the other scenario (fixed spacing) is its fragility: If even one origin fails to 

fire, the length of S phase would increase significantly (at least of order 10 minutes for approximate 

XORC spacing 10 kb and fork velocity 600 bplmin) [35]. Thus, this fixed-spacing scenario requires 

an unknown mechanism to ensure very high efficiency of origin initiation to prevent two or more 

nearest-neighbor origins from failing to initiate. 

The replication-factory-and-loop model considered here incorporates elements of both scenar- 

ios. Like the origin-redundancy scenario, it is based on the measured, increasing I ( t ) .  But the 
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looping accounts naturally for the origin-exclusion zone, as well as the observation that individual 

origins may be more closely spaced than the typical exclusion-zone size. Like the fixed-spacing 

scenario, there is also regularity in the origin spacing. Note that, here, regularity appears as a natural 

consequence of the stiffness of chromatin, and no other mechanism is required. Both the redundant 

origins and the regularity contribute to making the failure to replicate the entire genome within the 

common duration of S phase unlikely. 

In our case, we tested the replication-factory-and-loop model with various constraints on the dis- 

tribution of potential-origin sites using computer simulations. The results shown here assumed an 

average potential-origin spacing of 7 kb, randomly distributed on a DNA molecule fragment whose 

length is approximately 500-1000 kb before being cut. The numbers reflect previously reported 

values for XORC spacings [82, 1181 and the average origin spacing [24, 441. The small size of 

the DNA fragments also prevents large gaps between origins, thus avoiding the random-completion 

problem. On the other hand, the assumption that MCM complexes completely cover the genome 

and all are competent for initiation also produced a result that is similar to the one presented here 

when looping (and the implicit synchrony rule) is incorporated in regulating initiation. At this point, 

the statistics available in the data of Hemck et al. [44] and the lack of theoretical understanding of 

chromatin behavior make it difficult to invert the data to draw conclusions about the form of the po- 

tential origin-site distribution. However, the wide range of potential origin distributions considered 

above gave results consistent with an important biological role for chromatin looping. 

We emphasize that the replication-factory-and-loop model not only gives a better quantitative 

explanation of the pi2i distributions, it also provides a basis for the correlations between neigh- 

boring eye sizes. Although the increase in initiation rate during S phase [44, 59, 781 can explain 

the observed duration of genome replication, it cannot give rise to correlations on its own. Some 

mechanism wherein the initiation of one origin has effects on the likelihood of nearby initiations is 

required. The detailed analysis of the experimental data presented here shows that inhibition near 

activated origins, coupled with enhancement at a characteristic farther distance, is required. We 

argue that loops are the simplest, most natural mechanism that can satisfy these requirements. 

5.3.3 Chromatin loops and replication kinetics. 

Our findings imply that higher-order chromatin structure may be tightly linked to the kinetics of 

DNA replication in the early-embryo Xenopus laevis in-vitro system. We note that looping is a well- 
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established way for DNA-bound proteins to interact over long distances [129]. At scales of hundreds 

of bases, it plays an important role in gene regulation. For example, the looping of dsDNA ([,=I50 

bp) with intrinsic curvature facilitates greatly the interaction between regulatory proteins at upstream 

elements and the promoter [I 301. Loops are also known to appear in higher-order chromatin struc- 

tures, such as the 30-nm fiber, at scales of thousands of bases or even longer [131]. For example, 

Buonguorno-Nardelli er al. [ I  151 established a correlation between chromosomal loop sizes and the 

size of replicated domains emanating from a single replication origin (replicon). Chromatin loops 

are also an essential part of the replication-factory-and-loop model of DNA replication, where poly- 

merases and their associated proteins are localized in discrete foci, with chromosomes bound to the 

factory complex at multiple nearby points along the genome [120, 1211. 

The natural follow-up to the results presented here would be to assess the generality of our 

results: Do they extend to other early-embryo systems? Are they valid in vivo? Do they apply to 

other transcriptionally quiescent regions of the genome? 

Based on our results, we can also predict how altering chromatin structure should affect DNA 

replication. For example, if the replication-factory-and-loop model is correct, the loop size is 

roughly the origin spacing. Since the optimal loop size is proportional to eP, the duration of S phase 

increases with tP in a way that can be modeled quantitatively using the simulation. One experi- 

mental approach to testing these ideas would be to combine combing and single-molecule elasticity 

experiments (e.g., [125]) on Xenopus, isolating DNA from different regions of the genome. If there 

is heterogeneity in the stiffness of chromatin fibers in the genome, we would predict a corresponding 

heterogeneity in the origin-spacing distribution. 

5.3.4 Loop formation and replication factories. 

Currently, there are no direct experimental observations of the internal structure of replication facto- 

ries. For example, the number of replicons or loops per individual factories or foci is only estimated 

indirectly from various quantities such as total number of origins, number of foci, fork velocities, 

and rough origin spacing. However, replication foci appear to be universal features of eukaryotic 

DNA replication and nuclear structure (e.g., Fig. 1.6). In mammalian cells, they are globally stable 

structures, with constant dimensions, that persist during all cell cycle stages, including mitosis (for 

a review see Ref. [I 041). On the other hand, experimental evidence suggests that chromatin is very 

dynamic within individual foci at the molecular level (see, for example, Ref. [132]), consistent with 
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our computer simulations. 

In Fig. 5.2, a schematic diagram shows how chromatin folding can lead to a replication factory 

with loops (see also footnote 1). Once loops form, they can dynamically fluctuate locally around 

factories throughout interphases, with highest mobility during the G1 phase, while the global struc- 

tures of foci are stable within the nucleus. We note that recent theoretical calculations show that 

such chromatin folding can be very fast - sec), and the loop-formation time is inversely 

proportional to the SY distribution. In other words, loop-formation is fastest when its size is 3-4 

times the persistence length, and it increases exponentially as the loop size becomes smaller than 

the persistence length (see Ch. 6), leading us to further speculate that the origin-spacing in Xenopus 

or Drosophila early embryos may be selected to maximize the loop-formation and contact rate of 

origins. 

On the other hand, the exact physical mechanisms of initiation and its partial synchrony within 

individual replication factory remain for future experiments. For example, although the eye-size 

correlation in our simulation decreases monotonically, the experimental data do not rule out the 

possibility of non-monotonic decay. Also, the correlations from both simulation and experiment are 

significant but weak. This suggests that the synchrony within a replication factory is not perfect, and 

nearest neighbor origins do not necessarily fire simultaneously [104]. 

Regardless of the biological complexity in replication foci, however, we emphasize that the loop 

sizes are determined by the basic physical principles explained above, namely, the balance between 

chromatin energy and entropy. 

5.4 Conclusion 

In Xenopus early embryos, replication origins do not require any specific DNA sequences nor is 

there an efficient S/M checkpoint, even though the whole genome (3 billion bases) is completely du- 

plicated within 10-20 minutes. This leads to the random-completion problem of DNA replication in 

embryos, where one needs to find a mechanism that ensures complete, faithful, timely reproduction 

of the genome without any sequence dependence of replication origins. 

The results presented here provide strong evidence that a combination of redundant origins and 

chromatin loops together provide such a mechanism. We find that the persistence length of chro- 

matin loops plays a biological role in DNA replication, in that it determines the optimal distances 

between replication origins in Xenopus early embryos. Chromatin loops constitute a structural basis 
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for the observed distribution of replication origins in Xenopus early embryos, accounting for both 

origin exclusion zones and origin clustering along the genome. It would also be interesting to see 

whether the same scenario applies to other early-embryo systems such as Drosophila. 

The picture of the replication process presented here also leads naturally to more detailed hy- 

potheses about the role of chromatin, which should stimulate further modeling efforts. 

Finally, it would be highly desirable to vary the persistence length of chromatin, to see whether 

the origin spacings change in a way predicted by our theory. Although such an experiment poses 

formidable challenges, it would be an important step forward in understanding the role of chromatin 

structure in DNA replication. 



Chapter 6 

Looping of Semiflexible Polymers: 

from Statics to Dynamics 

6.1 Introduction 

In Ch. 5, we have used the equilibrium loop-formation probability and the replication-factory-and- 

loop model to explain the eye-to-eye distribution during replication in Xenopus early embryos. One 

crucial assumption was that the timescale of chromatin dynamics, such as the loop-formation time 

r,, is much smaller than the typical timescale of Xenopus early-embryo DNA replication (10-20 

minutes). Otherwise, our use of the equilibrium loop-size distribution cannot be justified. Motivated 

by this question of timescales, we study in this chapter a simplified version of the problem, namely, 

loop formation of a single chain with two "sticky" ends. As we show below, one can obtain a simple 

analytical expression to estimate the approximate rc of biopolymers using the Kramers theory and, 

indeed, rc for chromatin at the length scale relevant to DNA replication is - seconds, 

much smaller than the duration of S phase. 

Indeed, polymer looping is ubiquitous in biological systems. The ability of a biopolymer to form 

a loop (in response to a cellular signal) is crucial for living cells to survive [38]. Polymer looping 

allows contact and chemical reaction between chain segments that would otherwise be too distant to 

interact. In gene regulation, looping allows a DNA-bound protein to interact with a distant target site 

on the DNA, greatly multiplying enzyme reaction rates [126, 1291. In protein folding, two distant 

residues start to come into contact via looping [133,134]. On a more practical side, measurements of 
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loop formation in single-stranded DNA segments with complementary ends have also been used to 

extract elasticity information (e.g., the sequence-dependent stiffness of single-stranded DNA [I 351). 

Biopolymers constantly change their conformation (~.e., their shape) in response to thermal 

fluctuations or even weak perturbations. They are occasionally referred to as "shape-shifting" 

molecules [lo]. Because they are flexible at large length scales, many of their global properties 

are well-characterized by flexible-chain models (e.g., the Gaussian chain model) [136, 1371. On the 

other hand, at short, biologically relevant length scales, biopolymers are stiff. Thus, one expects that 

a complete description of them will involve the notion of a semiflexible chain, i.e., one that is stiff 

below a given length scale (the "persistence length") and flexible beyond it. 

Unlike flexible chains, semiflexible chains are not allowed to bend sharply, and they are locally 

inextensible. The origin of the local inextensibility is that the compression modulus E and the bend- 

ing modulus K of elastic rod of radius A are proportional to Y . and Y . A*, respectively [138]. In 

other words, because of the stronger dependence of K on the rod diameter, it is much easier to bend 

a thin filament than to stretch it [139]. From a mathematical point of view, this local inextensibil- 

ity is very difficult to implement in analytical theories, and only a few properties of a semiflexible 

chain are well-understood. For example, an exact closed-form expression for the average end-to- 

end distance of an ideal semiflexible chain has been obtained as a function of chain stiffness, while 

other quantities of more practical interest such as the end-to-end distribution still elude analysis. 

Imposing any extra constraints, such as a fixed end-to-end distance (cf. Eq. 6.6, below), can dra- 

matically complicate the calculations. Accordingly, a number of approximation schemes have been 

entertained (see [140, 1411 and references therein). Chief among these are mean-field-type approx- 

imations, which amount to replacing the local inextensibility constraint by a global one. In the 

resulting picture, the constraint is enforced only on average. This model has been used extensively 

in describing both the statical and dynamical properties of a linear stiff chain [140-1441. 

In contrast to the case of flexible chains, much less progress has been made in describing the 

loop formation of a stiff chain. To date, there does not even exist a general theoretical approach to 

polymer loops in equilibrium that shows a crossover from the stiff- to flexible-chain limit. While 

the earlier work of Shimada and Yamakawa (SY) accurately describes an equilibrium ring-closure 

probability Go (the probability that the two ends meet) of a rather stiff chain, it becomes less accurate 

in the flexible-chain limit. 

A more general treatment of Go by Liverpool and Edwards captures the essential physics in both 

the stiff and flexible limits. However, it is quantitatively inaccurate in the intermediate regime l?, 2 
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n' Q a (reaction radius) 

Figure 6.1 : Schematic description of looping of a polymer whose reduced contour length is e = L/ lp  

with two "sticky" ends of diameter CY = a/$ ,  where ep is its persistence length. The end-to-end 

distance is r = R/tp.  

L, where Go does not show simple scaling behavior. Despite its relevance to biology, the looping 

dynamics of a stiff chain is poorly understood. Even for the simplest case of an ideally flexible 

polymer with no hydrodynamic effects (i.e., a Rouse chain [137]), there are two rival theoretical 

approaches that lead to contradictory results: Szabo, Schulten, and Schulten (SSS) conclude that 

the time to form a loop (the "closing time" 7,) should scale for moderately large polymer lengths 

L  as rss, N L ~ / ~  [145], while Doi, applying Wilemski-Fixmann (WF) theory [146, 1471, finds 

rDO2 L~ [148]. The discrepancy between the two continues to spur debate [149, 1501. For the 

important case of stiff chains [ I  5 1, 1521, where the polymer length L  is comparable to or smaller 

than the persistence length t p ,  extensive theoretical and numerical studies have only recently been 

carried out [153-1561. The main difficulty arises from the interplay between two seemingly distinct 

processes: chain relaxation and chain closure. This interplay is unique to a polymeric system and 

originates from the chain connectivity of a polymer immersed in a noisy environment. 

In this chapter, we present simple theoretical models that describe the looping of a semiflexible 

chain. One major simplification is that we consider a finite segment of polymer with two "sticky" 

ends (Fig. 6.1), as oppose to the biologically more relevant case of infinitely long chains that are 

sticky everywhere (chromatin fibers can bond to replication factories at any point, as illustrated in 

Fig. 5.2). Also, we limit our discussion to ideal chains, i.e., those in a theta solvent, for which 

there is no excluded volume interaction between chain segments. We shall argue that, despite these 

simplifications, our calculations capture the basic physics of the looping. 

In our calculations, we show how the equilibrium properties of a stiff chain are reflected in its 

looping dynamics. To this end, we compare the time scales of chain relaxation and chain closing. 
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Figure 6.2: Discrete models of polymer. (a) Freely Jointed Chain (FJC) (b) Freely rotating chain. 

For stiff chains, the closing time r, is typically much longer than the global chain-relaxation time 

rR. In this case, a Kramers rate theory [157, 1581, to be developed below, leads to analytical approx- 

imations for rc. The main factor governing the looping in this regime turns out to be the equilibrium 

ring-closure probability. An important result is that, if one considers the loop-formation time for 

polymer chains of different lengths L, then there is a minimum for L = 3 - 4tp. Roughly speak- 

ing, looping of shorter chains require too much energy relative to the thermal energy kBT ,  while 

longer chains need to search too many conformations for ends to "find" each other. We also show 

that consideration of the requirements for Kramers theory to apply leads one naturally to identify 

different regimes governing the closing time rc. This classification shows how the physics of chain 

relaxation is intertwined with that of chain closing and clarifies the above-mentioned controversy 

between the SSS and Doi approaches to loop-formation dynamics. We also discuss briefly some 

biological implications of our results. 
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6.2 Theoretical Approaches to Modeling Polymers 

We first review the overall classification of polymer models, both discrete and continuous. The 

simplest discrete polymer model is the freely jointed chain (FJC). Fig. 6.2(a) shows a model FJC as 

a chain of freely joined vectors of fixed length b. The FJC ignores both monomer interactions and 

finite chain stiffness and can be thought of as a random walk of a fixed step length, where each step 

is independent of the previous trajectory. Usually, the %ze7' of a polymer chains is defined as 6, 
and one can derive a very simple scaling law v@ m N ' / ~  from 

When N  -+ co, the distribution of end-to-end vectors d is Gaussian. In a variant of the FJC, beads 

are separated by freely jointed linear springs, which leads to a Gaussian distribution of bond lengths. 

For large N ,  the distinction between the FJC and this "Gaussian-chain" model disappears. 

A more realistic discrete model polymer, the freely rotating chain (FRC), is shown in Fig 6.2(b). 

The FRC consists of vectors with fixed bond angle but, with completely free dihedral angles, thus 

naturally incorporating finite stiffness. In the FRC, (d2)  can be calculated exactly in a straightfor- 

ward way, and it is easy to show that the FRC also follows the same scaling law in N  as the FJC. 

Next, we define a quantity called the "persistence length" as 

6 

l = lim (R - AF,) = 
b 

(6.2) 
- ~ ' 0 3  1 - cos0' 

which is the average length of the projection of the end-to-end vector along the direction of the first 

bond vector. As we shall show below, the persistence length is a measure of chain stiffness. 

The continuum limit of the FRC is the Kratky-Porod (KP) wormlike chain [ I  591. We define the 

total contour length L = N . b and the contour distance s (0 5 s L) from the zero'th to the 

i'th vector by s = i - b. We then take the limit, N  + co, b -+ 0, and 0 -i 0, with constraints 

that the chain length L and the persistence length lp  remain constant. The discrete chain contour 

then becomes a continuous, differentiable space curve. The statistical properties of the KP wormlike 

chain are then determined by an effective free energy quadratic in the curvature aC(s) /as :  

a q s )  
Ha = 2 1  [=I ds with i l ( s ) l  = 1, 

2 

where K. - lp . kBT is the bending modulus of the polymer, and the unit tangent vector C ( t )  at s 

on the curve is defined as C( t )  = T, with F(s) is the position vector. As we discussed above, 
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imposing the constraint of fixed polymer length, lu'(s)l = 1, is one of the major difficulties in 

handling the model analytically [140, 1601. 

Several quantities, nonetheless, are known exactly. One of the most important is the spatial 

correlation function for unit tangent vectors [ 1 371, 

( z ( s )  - i i ( s l ) )  = exp ( - - Is is") . 

Using Eq. 6.4, we can also calculate ( d 2 )  exactly, 

Eq. 6.5 implies, for L << eP, ( d 2 )  = L2: the rod is rigid. For L >> t p ,  we have ( d 2 )  = 24L ,  

which is identical to Eq. 6.1, if we identify b' = 2QP and N' = L/bl as effective segment lengths and 

polymerization indices, respectively. The behavior in these two limits shows that the KP wormIike 

chain interpolates between the rigid rod and the Gaussian chain. Hence, the persistence length tP 
is a measure of the chain stiffness in the KP model. One often uses a dimensionless chain length, 

t = Lit,. We note that neither the KP nor the lattice models considers the torsional energy of 

a chain, which can lead to complications such as supercoiling and knotting [161]. The helical 

wormlike (HW) chain model has both bending and torsional energies, and it has been very successful 

in applications involving short lengths of DNA. Formally, the HW chain is obtained from a discrete 

chain with coupled rotations (the dihedral-angle distributions are non-uniform) [122]. 

A quantity of particular interest is the end-to-end distribution function defined as an ensemble 

average of 6 (a - &! ii(s)ds) : 

Unfortunately, the constraint I.ii(s)l = 1 makes this integral intractable. One way to tackle this 

difficulty is to impose the hard delta-function constraint only on average. Using this "mean field" 

approach, Thirumalai and Ha (TH) [I 401 have obtained an approximate form for G(r, !) in terms of 

the reduced parameters r  = R / t p  and ! = L/ tp ,  as follows: 

e where the normalization factor n(t)  is fixed by requiring So 47rr2G(r, !)dr = 1. (The other end of 

a polymer of length t must be located within a sphere of radius l of the first end.) Note that a more 
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accurate but more complicated expression recently derived by Winkler [I411 gives essentially the 

same results. The expression for G in Eq. 6.7 becomes exact as e --+ ca but is less accurate for e, 
comparable to L (i.e., ! E 1). Although i t  underestimates the energy cost for tight bending, it is 

accurate to 10%. 

Using G(r, e), we define the ring-closure probability to be G(r' = 0: Q) = Go((). As we shall 

discuss below, Go measures the difficulty in bringing the two chain ends close to each other. It will 

turn out to be a key quantity in the description of loop-formation dynamics. Note that both G(r, e) 
and Go(e) include no constraints on the orientation of the end-point target vectors. In particular, 

Go(() includes "kinked" loops with an orientation discontinuity between the two ends. 

For flexible chains, the ring-closure probability Go(e) is analogous to the probability for a ran- 

dom walk to return to the origin and is given by Go(!) - P 3 I 2  [122]. We can understand this 

scaling, as follows: In this limit, the mean end-to-end distance r, for an ideal flexible chain scales 

as rg - !'I2. The volume occupied by the chain is then given by V - rg3 - t3I2. The probability 

to find the two ends at R = 0 is inversely proportional to V, leading to Go(!) - !-3/2. 

For stiff chains (! 5 I), the first theoretical result for Go(!) was obtained by Shimada and 

Yamakawa (SY) about twenty years ago [123]. The basic idea is to start from a ground-state con- 

formation of a polymer ring and to consider small conformational fluctuations around it. This leads 

Note that the l/E-term in the exponent in Eq. 6.8 solely arises from the bending energy, while the 

other terms come from chain fluctuations about the lowest-energy conformation. In other words, the 

leading term in the exponent (- l/e) is the minimum bending energy of a stiff rod whose two ends 

are glued together without restricting the orientation of the tangents. The preferred angle between 

the tangents for minimum bending energy is called the Yamakawa-Stockmayer angle [I621 and is 

roughly 82". This explains why the leading term is slightly smaller than the bending energy of a 

circular polymer circumference L, which is Eloop/kBT M $!,L(~T/L)~ M 19.7/! (Eq. 6.3). 

It is worth noting that the expression derived by SY does not cross over to the result for a flexible 

chain, Go(t) = F3I2 .  The reason is that, in the flexible limit, fluctuations about the ground state 

become too large to be treated as a perturbation. 

Ringrose et al. [I631 have given an ad hoc expression for Go(!) that is accurate over the entire 
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Figure 6.3: Loop-size distribution for three cases: Shimada-Yamakawa (Eq. 6 4 ,  Ringrose-Rippe 

(Eq. 6.9), and Freely Jointed Chain (FJC). 

range of e: 

No matter which approximation we use, Go(e) should vary non-monotonically: For small e 
(or L 5 e,), chain closing (in equilibrium) is energetically discouraged and hence exponentially 

suppressed, as implied by Eq. 6.8. On the other hand, equilibrium looping is mainly determined by 

the chain entropy in the flexible chain limit t >> 1 (Fig. 6.3). 

6.3 Relaxation of a Stiff Chain 

The previous section concerned equilibrium chain statistics. Here, we describe the process of chain 

equilibration, i.e., the way a chain configurations approach equilibrium as time elapses. To this end, 

we will invoke a simplification that is only qualitatively valid but, nevertheless, provides much of 

the information we need to proceed with our discussion about the looping dynamics. 

The dynamics of each monomer depends on and is complicated by other monomers in the same 

chain. In what follows, we shall focus on the strong-damping (high-friction) limit, as it is the 

relevant case for biomolecules in viscous media (e.g., water). The essential assumption is that the 
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velocity of each monomer dr'(s, t ) / d t  equilibrates much faster than does its position. To quantify 

this statement, let us consider two time scales for a monomer: a velocity-relaxation time (r,) and a 

diffusion time scale over its own size b (7,). A particle of mass m and friction constant < (defined 

by rrr% = - (a)  in a viscous medium moves like a free particle for the time scale t << ru = m/C; 

for f >> r,, however, its motion becomes diffusive. The high-damping limit pertains as long as 

7,) << rD = b 2 / ~ o  or C >> where Do = ksT/ (  is the diffusion constant of each 

monomer. If we assume a spherical monomer of radius b and mass density p is immersed in a 

solvent of viscosity qs, then C = 67rq,b and m = 4 ~ b ~ ~ / 3 .  For a typical biopolymer, we find that 

rD >> r, by several orders of magnitude. In this high-damping limit, the inertia term can thus be 

dropped. 

For the corresponding flexible case, the polymer dynamics can be expressed as the sum over a 

number of independently moving modes, known as Rouse modes [136, 1371. The local inextensibil- 

ity constraint of lu'(s)l = 1, however, complicates the analysis because it couples the normal modes 

to each other. To circumvent this difficulty, we consider a global chain deformation near the rod 

limit. The characteristic time scale for this deformation is essentially the global relaxation time rR 

(or chain equilibration time), as the higher-order modes will relax faster than this deformation. The 

time scale obtained this way is a reasonable estimate of the relaxation time for the slowest mode, i.e., 

rR. Now the physics near the rod limit is dominated by the bending energy Eb of the chain [I 641. 

Since the lowest energy of bending a linear stiff chain is well-approximated in terms of a uniform 

curvature of radius R ,  the bending energy in this case is Eb/kBT = + t p ~ / R 2  - 2 tp (L  - R ) / L ~ .  

The relative position 2 of the two ends of the chain (experiencing a uniform deformation) behaves 

like a particle subject to a constant restoring force f c  = 2 k B ~ e p / ~ 2 .  Inspired by the dumbbell 

model for flexible chains introduced by Kuhn and Pkterlin (see Ch. 6 in Ref. [I361 and references 

therein), which pictures the whole chain as a spring subject to (entropic) elastic force, we can write 

a similar equation for a stiff chain 

where Ctot is a friction constant (see below). From dimensional analysis, Eq. 6.10 leads to a scaling 

relation for the characteristic time for stiff-chain deformation (- L): 

Ctot Ctot L3 
7 - -  L -  --. 

f c  kBT l, 

If we choose CtOt - N = Llb (additivity of friction for individual monomers), we get r - 
A - 2  = Lp, where So and Do are friction and diffusion constants for individual monomers, k B T b E p  D o b l ,  
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respectively. Note that this has the same scaling as the relaxation times of a stiff chain (e.g., [ I  65] ) ,  

which is not surprising, since Eq. 6.10 only concerns the total elongation 2. Also, note that T de- - 
creases as t, increases, because R feels a stronger restoring force for larger &, relaxing faster. In 

principle, hydrodynamic effects can be included in the analysis; however, they only have a marginal 

effect on the longest relaxation time rR in the stiff limit. That is, r, is roughly proportional to 

In N (namely, logarithmic corrections [137, 1661). Although this result is valid only as long as 

L 5 t,, it clearly suggests that stiff chains equilibrate more efficiently than flexible chains, where 

rR - L ~ / D ~ .  In other words, the dynamics of a stiffer chain is less complicated by internal modes 

(degrees of freedom other than the global chain deformation). 

6.4 Looping Dynamics 

In this section, we will introduce a simple theoretical model for describing the looping dynamics of 

a stiff chain. To be specific, we consider a linear chain with two sticky ends, which become reactive 

when they are sufficiently close to each other. Clearly, the looping dynamics is controlled by two 

distinct rates: the rate at which two ends are brought close and the rate at which the two ends react. 

In the diffusion-limited case, which we mainly focus on, the reaction rate between the two ends 

is arbitrarily large: It is assumed that the chain forms a loop as soon as the two ends fall within 

a reaction radius a. This amounts to imposing an absorbing boundary condition on the (possibly 

time-dependent) distribution function of R. The closing time obtained this way is a first-passage 

time and, hence, only a lower bound for closing times in more realistic cases. Our discussion in 

the previous section implies that polymer dynamics is in general complicated by the presence of 

internal modes. As it turns out, the looping dynamics of a polymer is even trickier to formulate. 

The main difficulty arises from the absorbing boundary condition, which is hard to implement and 

which causes the Rouse modes for an ideal flexible chains to become coupled to each other, making 

the looping problem intractable without approximations. 

Our discussion in the previous section implies that the effective potential felt by the two ends of 

a chain depends on how the chain relaxes. In other words, the looping dynamics can be influenced 

by chain relaxation. Similarly, chain relaxation can also be influenced by chain looping. If a is 

sufficiently large, then the chain closes before it relaxes. In other words, the processes of relaxation 

and looping are intertwined. However, for a sufficiently stiff chain, the closing time r, can be 

much longer than r,, a fact that can be tested a posteriori. In this case, we can ignore internal 
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modes and project the looping dynamics onto the one-dimensional reaction coordinate R. Consider 

a chain of reduced length & E L / l p  and end-to-end distance r = R / t p  with two ends that react 

when first brought within a distance a  of each other ("diffusion-limited" loop-formation dynamics) 

(Fig. 6.1). We apply Kramers rate theory [157], viewing the process as a noise-assisted crossing 

over a potential barrier. In this picture, r is the only dynamic variable; even though the chain has 

already relaxed, the two sticky ends in the diffusion limited case are not allowed to equilibrate in the 

potential they create. In this regard, the combined system of the chain and the two sticky ends is said 

to be in "local equilibrium." After first presenting the straightforward calculation, we then consider 

carefully its domain of applicability and give a scaling description of loop formation outside this 

domain. 

The basic idea is to project the internal degrees of freedom of the polymer chain onto a sin- 

gle "reaction coordinate" r and to use the equilibrium distribution function G(r ,  e )  to construct an 

approximate "effective potential" between the two ends 

where P(r, e )  z 4.irr2G(r, e )  is the radial distribution function of reduced end-to-end distances r 

of a polymer of length l? and G(r,  e )  = G ( J 6  - 61; &), the angle-averaged distribution function for 

the end-to-end vector r' = 6 - 6. (For justification of Eq. 6.1 2, see, for example, [141].) Here we 

assume isotropic chemical interactions between end monomers, so that end binding can be modeled 

by adding to U a smooth short-range potential f ( r l a ) ,  with a r a l l p  the scaled interaction range. 

Generalization to an anisotropic case is straightforward, but we consider only the isotropic case 

for simplicity. A typical distribution function and the resulting effective potentials are shown in 

Fig. 6.4. Then, in our "single-variable picture," we postulate that the long-time ( t  >> 7,) dynamics 

are governed by the effective potential U(r ,  e )  and that they obey a Fokker-Planck equation for the 

time evolution of the distribution of r: 

where Deff is the effective diffusion constant for dynamics. 

Because polymers - whatever their stiffness - have a most probable end-to-end separation, there 

is a local minimum in the effective potential at r = rb (bottom), which is - t in the stiff-chain 

limit and - in the flexible-chain limit, neglecting self-avoidance effects. Also notice in Fig. 6.4 

the barrier to chain closing at r = rt = a (top), which is created by the balance of chain entropy 
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Figure 6.4: (a) The radial distribution density P(r, t = 3). The dashed line shows the effect of a 

short-range interaction between the two polymer ends. (b) The resulting effective potential of the 

chain. Arrows denote the top and bottom of the effective potential well, as used in the Kramers 

calculation. 

and bending energy, as implied by U(r, t). The short-range attractive potential then rounds off the 

barrier.' The resulting effective potential has thus the qualitative form often assumed in Kramers- 

rate calculations. 

In the limit of strong damping, the time needed to cross over the barrier (mean first-passage 

time), calculated using Kramers rate theory, is 

where OU is the barrier height (Appedix 6.5). In the presence of the "capture force," the barrier top 

becomes smooth, and the above equation can be further simplified as 

where the effective friction constant Cefl = and the well curvatures w(r) = k,/- 
De ff 

'ln the diffusion-limited first-passage time of a singe particle, the attractive potential can be considered as infinitely 

strong. and one may question the validity of assuming a smooth potential top. For polymers, however. we argue that 

the fluctuation of chain ends is rapid and "compact" (see Doi's argument below), thus smoothing the bamer top. In 

Appendix 6.5.1. we show that a "cusp-shaped bamer also leads to essentially the same T,, for loop formation as does a 

smooth potential bamer. 
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are evaluated at the top and bottom of the effective potential U ( r ,  l).? Here, we do not repeat the 

derivation of this result (see Appendix 6.5.1) but instead state the basic assumptions on which this 

result relies. Besides the strong-damping condition, a steady-state condition was assumed, based on 

AU > k B T .  In other words, when the banier is much higher than the thermal energy k B T ,  the 

barrier-crossing rate is expected to be very small, and, thus, the solution of Eq. 6.1 3, P(r,  t. t ) ,  is 

expected to change very slowly with time, i.e., it remains very close to a steady-state solution. In 

the literature (e.g., [167]),  this is often pictured as a system of non-interacting particles trapped in 

a potential well with a particle "source" and a particle "absorber," which keep the escape current 

constant: As soon as a particle escapes the barrier, it will be removed, and a new particle is then 

injected at the bottom of the potential. Here, the dominant contribution to the escape rate is the 

exponential term, often referred to as the Arrhenius factor. Other factors that also influence the 

Kramers rate are the curvatures (wb and wt)  and friction. Larger friction means slower escape and 

hence longer rKr as evidenced by Eq. 6.15. The curvature dependence of rKr can also be understood: 

wb and wt are, respectively, the frequency of small oscillations around the potential bottom and 

bottom, which can be interpreted as the attempt rate. 

It proves useful to rewrite rKr in Eq. 6.15 as 

Note that the term in brackets is the escape time in the transition-state theory (TST): r,,, = 

& e x p ( A U / k B T )  [158]. (See Appendix 6.5.1) As it turns out, the estimate r,,, errs because it 
W b  

is too much of an equilibrium estimate. It can be obtained by counting particles crossing the barrier 

from right to left per unit time. In the polymer case, this time scale is related to an equilibrium 

ring-closure probability through r,,, -- ~ol - the  number of "particles" escaping the bamer in 

the sense of TST is inversely proportional to Go. The extra factor in Eq. 6.16 implies that barrier 

crossing is further slowed down by diffusion of the particle on the barrier top until it is captured by 

the absorber; in the large friction limit, ceR/wt >> 1 and rKr >> r,,,. In fact, the factor -- 1 is 
a C 

 or intermediate-to-strong damping. the Kramers time T,,. is given by 

The correction term 4;f$$ is % lo-' for DNA monomers and can be neglected. justifying our use of the strong- 

damping limit (Eq. 6.15). This condition is consistent with the one given at the beginning of Sec. 6.3. i.e., : << %, as 
k T 1 long as a > b. which can be easily seen by writing 4Gf$f << 1 as : << = g. 
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proportional to the rate at which a random walk is captured by a spherical absorber of radius a [ I  681. 
1 As a result, rKT ( e )  varies as rKr N - N - This dependence is unique to a random walk in 

aD,a aD,ff' 

the diffusion-limited case, where an absorbing boundary condition is imposed3 and has nothing to 

do with equilibrium chain properties. 

The simple scaling argument based on Eq. 6.16 gives the qualitative features of rKI. More 

careful analysis of the Kramers formula in Eq. 6.1 5 leads to the surprisingly simple result, 

with C [rb, G(rb, e)]  = 2 & 7 r r ~ ~ ( r ~ ,  t ) /  (-$ - w) ' I 2 ,  a dimensionless prefactor that is prac- 

tically a constant for all ! [1551.~ 

Eq. 6.17 is a direct result of our hypothesis (Eq. 6.12) that the closing time may be estimated 

using the static distribution G(r ,  e). As noted earlier, no analytic expression for G(r,  e )  has been 

found that is accurate for all r and e, and one must make do with a pastiche of approximations that 

are applied in different limits for r (and t). For r = 0, we use the interpolative formula due to 

Ringrose et al. [I631 mentioned above, which blends SY with the result for a freely jointed chain, 

Go([)  - e-3/2.  For r > 0, we use the TH approximation [I401 presented in Eq. 6.7. Using TH, 

we find that the dimensionless prefactor C(e) of Eq. 6.17 is 0(10-l), varying less than a factor of 2 

One subtle issue of the single-variable picture, such as the one considered in this chapter, is the 

choice of Dea. In general, DeR can have a non-trivial dependence on the chain length !. In what 

follows, we adopt the recent result DeR = 200 (where, Do is the diffusion constant for individual 

monomers), summarized in Refs. [149, 1501. Briefly, DeR = 200  is the relative diffusion constant 

of the chain ends, which is consistent with the interpretation of Eq. 6.16 that the friction-independent 

3 ~ o r  a smooth short-range potential of range a, the curvature at the top must be -- l/a by dimensional analysis. We 

note that many simulations assume reaction upon first passage through the distance a. Despite the seeming difference 

between our Kramers' approach and simulations that track the time for particle ends to first pass through the r = a 

sphere. the "particle" (in a single-particle picture) in both cases is not allowed to equilibrate within the reactive region 

r % a. Thus, in each case, one expects 7, N l/a for a << 1 (cf. Eq. 6.17). If we had assumed kinetic-limited looping. 

then the particle would sample most of the reactive region. resulting in T, -- l/a2 [145]. 
4 ~ e  note that the numerical prefactors in Eq. 6.17 and 6.18 depend on the form of capture force f (rla). while their 

scalings are not affected by the form of short-range attractive forces (Appendix 6.5.1). Here, we have used a direct 

differentiation of Eq. 6.12 to calculate wt. 
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Figure 6.5: Closing time Tc vs. chain length. (a) Brownian Dynamics simulation [I 531 (empty cir- 

cles) and Kramers theory (eq. 6.17) are shown. For direct comparison, we used the same parameters 

as in the Ref. [I531 (bead size = 3.18 nm for DeE = 2Do = 1.54 x 10-"m2/s and a = 0.1) with ep 
= 50nm. For Go(l), we used an interpolation by Ringrose et nl. [ I  631 (see text). Relaxation times 7,  

for these parameters are also shown (triangular symbols), with the e4 and e2 scaling regimes apparent 

in the inset. (b) Single-"particle" MC simulations of T, with the potential U / ~ B T  = - log[P(r, k')]  

taken from Fig. 6.4b. Here, T, is a first-contact time averaged over about 2000 realizations of the ini- 

tial position randomly selected from P( r ,  e). We have chosen cr = 0.25,0.5,0.75,1.0. As expected, 
p3/2 r, - - (inset). 

r,,, explains the the time required to bring the "particle" near the barrier top, while the friction- 

dependent capture rate 2 explains the diffusion (in our case, the fluctuations of the chain ends) of 

the particle at the barrier top. 

In Fig. 6.5(a), we plot the rKr (e) that results from Eq. 6.17, using the various approximations 

to G(r, l )  discussed above. The solid curve uses the Ringrose expression for all e. The two curves 

compare well with recent simulations using parameters appropriate to dsDNA [153, 156, 1691. Note 

that the material parameters of the simulation were used (see caption). Considering the heuristic 

nature of the arguments, the agreement is excellent. 

One striking feature of the plot of rKT (k') is the existence of a minimum at t? = 3.4, where 
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In Eq. 6.1 8, the prefactor 0.78 is calculated by a Monte Carlo simulation of G ( r .  e ) ,  done in units 

of seconds. It is about 10% less than the prefactor obtained using the TH approximation.~s men- 

tioned above, the existence of a minimum in rKr reflects a balance between the energy of bending 

and the entropy of conformations that must be searched for two ends to meet. 

For the above Kramers-rate calculation to hold (i.e., for the closing-time rc to equal r A r ) ,  three 

conditions must be satisfied: ( I )  The damping must be sufficiently strong. ( 2 )  The bamer height 

AU must be large compared to ksT  (recall that this alone approximately ensures a steady-state 

condition as is assumed in the Kramers approach). And (3) the global chain-relaxation time rR must 

be much shorter than the Kramers time rKT. 

The first condition is normally satisfied for molecules in solution. For the second, since there is 

a minimum in the effective potential at rb, we require that a << 7-6 so that the barrier height is large. 

The condition A U / k B T  = 1 is shown in Fig. 6.6 as a dotted line in the t - cr parameter plane, using 

a diffusion constant appropriate to dsDNA. To the left of the dashed line, the barrier height is larger 

than kBT.  

The third condition, rR << rKr, is more subtle and requires discussion. In using a "one-particle" 

description of chain-closing dynamics, we are assuming that all internal degrees of freedom of the 

polymer chain have relaxed. As a result, the end-to-end distance r is the only dynamic variable (cf. 

Eq. 6.22). This assumption of local equilibrium is equivalent to assuming that the effective potential 

felt by the particle is derivable from the time-independent distribution G ( r ,  e) .  For A U / k B T  >> 1, 

the particle in local equilibrium will relax in the potential well, except around r = a in our diffusion- 

limited case. If the chain relaxation times are too long, our one-particle picture breaks down, because 

the chain dynamics are not well-characterized by a single timescale, such as the Rouse time. This 

will not only influence the L dependence but also the cr dependence of the closing time (see below). 

We thus compare the scaling behavior of r, (e )  with rKr(e) and 7,-(e) in both the flexible (f! >> 1)  

and stiff-chain (l 5 1) limits. 

In the flexible limit, we can use the Rouse model to estimate the longest relaxation time, which 

gives rR -- e2, in units of the basic time scale l g / ~ ~ .  By contrast, at large e, Eq. 6.17 gives 

rKr - e3I2/a. (This is just the result of SSS [145, 1491 and has been confirmed by single-"particle" 

simulations-see Fig. 6.5(b) and the caption.) Thus, when e > l / a 2 ,  the third condition is violated 

'TO calculate the end-to-end distribution G(r, !). we have used a standard Kratky-Porod-type model for Monte Carlo 

simulation. In other words, a randomly selected monomer rotates an arbitrary angle about the axis defined by the vector 

connecting the two nearest-neighbor monomers. See, for example, the simulation methods in Ref. [156]. 
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and the Kramers calculation does not hold. In this case, we can still estimate the upper-limit of r, as 

follows: The closing time is at most the time necessary for the slowest "random walker" to travel, 

by diffusion of the entire chain (DCM - Doll, where CM stands for center-of-mass), the mean 
r2 t 2  

end-to-end distance r,. Since r, - &, we have r, < 9 - - 7,. In other words, when the 
DCM 

third condition does not hold, rc is not rKr but is set by the Rouse time rR.  On the other hand, the 

a-dependence of the closing time of a Rouse chain is a delicate issue. 

In an important paper [148], Doi has shown that r, - rR and is independent of the reaction 

radius a, for 1 << a << rg (the "~oi-~ondition").~ Doi's basic reasoning is that, if one expresses the 

end-to-end vector r'(t) in terms of the normal modes, the first normal mode represents a random walk 

in a harmonic potential and dominates the long-time behavior of r'(t). On the other hand, the higher 

modes correspond to a stronger harmonic potential, relaxing faster; they are rapid compared to the 

first mode and can be considered as the fluctuation of r'(t), which is very small (i.e., br << Ir'(t) I ) .  
If br << a, then the fluctuation does not affect the looping dynamics and r, m l la .  If 6r 1 

a, however, the reaction takes place as soon as Ir'(t)l becomes smaller than br (not a),  since the 

motion of F(t)  is very fast and "compact" in the sphere of radius br. Later, de Gennes explained the 

reaction-radius-independence and dependence of reaction rate in terms of compact vs. non-compact 

exploration, respectively [170]. 

As the chain stiffness increases, the looping dynamics enters the regime of noncompact explo- 

ration. In other words, the a dependence of rc in the stiff-chain limit is not complicated by internal 

modes. To see this, note that chain stiffness leads simultaneously to faster relaxation times rR and 

higher energy barriers, which implies that the Kramers calculation should be valid. As shown in the 
L4 previous section, for L < tp, rR - and the third condition (rR << rKT) is always satisfied: 

the lower limit of rc is given by the time scale for a random walk to travel a distance R L; thus, 

To summarize, rR - L~ for t < 1 and - L2 for t >> 1: contrary to what one may ex- 

pect, the looping dynamics is much more subtle for flexible chains than for semiflexible chains. In 

other words, for large-enough e, rR becomes larger than the Kramers estimate [165],' as shown in 

Fig. 6.5(a) and in the inset. 

In Fig. 6.6(a), we summarize the above arguments schematically in a closing-time tree. In 

' ~ o t e  also that the condition P > l / a2  in previous paragraph implies that r ,  2 l / a ,  since r ,  - P1/'. 
'using the results in this referencee. we have derived an approximate interpolation, accurate for all l :  T,?(!) = 

( 2 / 3 ~ ~ ) ( ~ : / ~ ~ h , , , )  kl. This interpolation is used in Fig. 6.5(a) (inset). 
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Figure 6.6: Closing time: Kramers time vs. Rouse time (see text). (a) Tree diagram. (b) Scaling 

regimes in the !-cu for DNA. Region I is the Kramers regime, with r, > 7,; Region I1 is the 

dynamic-fluctuation regime. Region I11 is the intermediate regime. Crudely speaking, this is a 

region that separates Regions I and 11. Also note that the boundary between regions I1 and 111 for 

large t was constructed with the aid of the Doi's condition (see the text). On the other hand, the 

boundary for small t was constructed based on the following physics ground: As t decreases, br 

decreases, implying that the intermediate region is narrower for smaller e. In the primed regions to 

the right of the dashed line, A U / k B T  < 1. The black region is unphysical: a > L. 

Fig. 6.6(b), we also qualitatively plot r, (t) = rKT (t) in the t-cu plane. The white area is Region 

I (Kramers Regime), where rKr > rR, and therefore rc - rKr. The shaded area is Region I1 

("dynamical fluctuation" or "Doi" Regime, see below), where rKT < rR and rc - rR. Areas I' and 

11' show where AU < kBT. The black region, defined by cu > e, is unphysical. Finally, Region I11 

is the intermediate regime, where rR > rKr and rc - r R / a  
In Region 11, the relaxation and closing processes are coupled. In this case, one may have 

to solve an N-particle diffusion problem, subject to a boundary condition that is difficult to im- 
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pose [146-1491. Nevertheless, much insight can still be obtained from the simple scaling analysis 

of random walks given above. In this view, a chain can close because the two ends randomly 

meet each other while freely relaxing. The existence of such a dynamical-fluctuation or "Doi" 

regime, where T, - rR, is a unique feature of flexible chains (Fig. 6.6) - the dynamic fluctuation 

SR(t) = J ( [ R ( ~ )  - R(0)I2) grows up to R as t + T~ and thus can assist chain closing. For a 

Rouse chain, SR(t) can be given as a sum of Rouse modes [136, 1481 and, in our simple scaling 

analysis, T, can be inferred by analyzing this. The short-time behavior of 6R(t) reflects the internal 

motion and varies as 6R(t) - for t << 7,. (See Appendix 6.5.2). We argue, however, that this 

will not appreciably influence T,, as bR(t) -+ R only when t + T ~ .  In other words, T, is governed 

by the slowest mode and our assertion of T, - T, will not be invalidated by the internal motion, 

which is important at time scales much smaller than rc (or 7,) - according to our earlier discussion, 

the internal motion in the flexible-chain limit only influences a dependence of 7,. In the stiff-chain 

limit, this dynamical fluctuation regime disappears. Note that the boundaries between Regions I and 

I1 are not sharp but are crossovers. Loop-formation kinetics in the crossover area will likely combine 

aspects of both regimes, as indicated in recent simulations [149] and by results that show that r,,, 

and rDO2 are respectively lower and upper bounds for rc [I 501. 

As the Doi-condition 1 << a << rg for Region I1 is violated, T, becomes dependent upon 

1/a [148]. Indeed, based on their BD simulation results, Podtelezhnikov et al. [171] suggested that 

T, N ~ ~ / a  when 1 z a << T .  In Fig. 6.6, this is Region 111. 

Our discussion has neglected hydrodynamic effects and excluded-volume interactions. Both can 

influence chain relaxation and closing simultaneously. The hydrodynamic effect will not change 

rK,, since it is a function of the equilibrium distribution G(r. l ) .  However, the hydrodynamic inter- 

action tends to promote chain relaxation (e.g., in the Zimm model, rR -- e3I2, in contrast to rR -- e2 
in the Rouse model considered here [136]) by increasing the mobility of the chain, resulting in a 

wider Kramers regime than implied by Fig. 6.6. On the other hand, the excluded-volume interaction 

both decreases DCM and reduces Go [136, 1721. But for loops of just a few persistence lengths, 

which are the most physically relevant (see below), both effects are expected to be minor. A fi- 

nal caveat is that we have assumed isotropic binding interactions. While mathematically simpler 

and relevant to simulations 11.531, most real polymers have directional bonding. In the Kramers 

calculation, this would modify Go(l).  

The Kramers calculation holds in Region I of the l - a parameter space shown in Fig. 6.6. What 

are the physically relevant values of a and e? The interaction distance a = atp will be the thickness 



CHAPTER 6. LOOPING OF SEMIELEXIBLE POLYMERS 

of the polymer, or less. For polymers of biological interest, the persistence length will be typically 

at least this size and often much larger. For example, for double-stranded DNA, the monomer size 

is 0.34 nm while the persistence length is 50 nm. For chromatin, the thickness is 30 nm, comparable 

to its persistence length [124].' Thus, we generally expect cu < 1 and sometimes cu << 1. 

What are the relevant values of f? Although polymers in principle may have any length, the 

existence of a minimum closing time T:.~ (Eq. 6.18) leads one to speculate that where looping is 

biologically relevant, polymer lengths near t x 3 - 4 might be favored because they minimize T,. 

In this regime, the Kramers calculation will be valid, for small a. Thus, biological selectivity may 

arise from a physical mechanism. Indeed, in Ch. 5 we have shown that the typical spacings between 

replication origins in early embryo Xenopus are 3-4 times the t, of chromatin, the DNA-protein 

complex present during replication. It is then natural to speculate that origins are related by looping 

and that the spacing may have been selected to maximize the contact rate of origins, optimizing 

replication efficiency. 

In conclusion, we have shown that Kramers rate theory gives a straightforward order-of-magnitude 

estimate of the closing time of a semiflexible polymer. We have examined how the static chain 

properties are reflected in the looping dynamics. Although phenomenological, the calculation ex- 

plains the existence of a minimum closing time and accurately reproduces numerical simulations. 

Moreover, considering the requirements for the calculation to hold shows how the intertwining of 

the relaxation time with the closing time explains the apparently conflicting results for rC (SSS and 

Doi). Fortunately, the physically relevant cases are precisely the ones where the Kramers calculation 

is expected to hold. They may even be selected biologically through evolution. Finally, although we 

have neglected the possibility of formation of multiple loops (Fig. 5.2 vs. Fig. 6.1), we emphasize 

that, even in such cases, the intrinsic stiffness of polymer implies the existence of characteristic loop 

size, where the loop-formation probability is maximum and rc is minimum. 

"ote that the value of the persistence length of chromatin fibers is still controversial. See endnote 30 of Dekker et 

a/. [124]. 
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Figure 6.7: Illustration of the trapping potential U ( x ) .  The current j gives the flux of particles 

tunneling from the bottom well over the top. 

6.5 Appendix 

6.5.1 Review of the Kramers problem 

Kramers treatment of the escape of a particle over a potential barrier extended an earlier theory 

known as the Transition-State Theory (TST). We begin with a review of TST and then show how to 

add the effects introduced by Kramers [I 58, 173, 1741. 

The transition-state theory (TST) 

Imagine a classical particle placed in the vicinity of the bottom x  = xb of the potential U ( x )  in 

Fig. 6.7, where the potential barrier height W = U ( x t )  - U ( x b )  is larger than the average energy 

(E) - ksT of the particle. (Here, x is a reaction coordinate coupled to an environment.) In 

other words, the particle is trapped. In the presence of thermal fluctuations, however, this particle 

can escape from the potential well, since there is always a non-zero probability - exp ( - E / k B T )  

that the particle can acquire enough energy E > W from the environment. More precisely, the 

environment provides the thermal noise whose fluctuations can kick the particle over the barrier. If 

the thermal energy ksT is much smaller than the barrier height W, the particle will escape from the 

trap after a long time re,,, when the accumulated action of the random force has driven it over the 

barrier. In this case, a particle inserted into the trap initially equilibrates in the potential well in a 
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time req << rest, approaching the Boltzmann distribution 

At short times, the normalization constant Z can be calculated as 

where we have used the quadratic approximation U(x) z U(xb) + $mw2(x - x ~ ) ~  for the potential 

U in the vicinity of x = xb, where the main weight of the integral over x is located. We also extend 

the upper limit of the integral from xt to ca, an approximation that is accurate as long as the bamer 

height is much larger than kBT.  

From Eq. 6.19, we can obtain a first estimate of the escape rate by calculating the current j of 

right-moving probability, 

This is the result of the classical transition-state theory (TST) [I%], where the escape rate is pro- 

portional to the "attempt rate" wb and the Boltzmann factor ksT .  The TST rate is always an upper 

bound to the true rate because it is based on the following two assumptions: (i) Thermodynamic 

equilibrium prevails throughout the entire system for all degrees of freedom. Any deviation from 

the equilibrium distribution is neglected. (ii) Once the particle crosses the barrier, it never diffuses 

back. 

In the Kramers escape problem, one treats the trapped particle via Langevin dynamics. Below, 

we derive the escape rate for the strong-damping case. 

The flux-over-population method 

We start with the Langevin equation for the particle, 
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where the prime indicates differentiation with respect to x. The fluctuating force [ ( t )  denotes Gaus- 

sian white noise with zero mean, obeying the fluctuation-dissipation theorem, 

(m) = 0 

( ( ( t )  . ( ( t t ) )  = 2 m y k ~ T  b(t - t ' ) .  

In the strong-damping case, one drops the inertial term mx in Eq. 6.22. From Eqs. 6.22-6.23b, 

one can then obtain the time evolution of the probability p(x2 t )  (the so-called Smoluchowski equa- 

tion) [137] 
a p ( ~ ,  t )  - 1 a 
- - - [ - u ( ~ )  + T -  p ( ~ ,  t ) .  

at my ax  ax2 " I 
+ - 

Note that Eq. 6.24 has the structure of the continuity equation + V . j ( x ,  t )  = 0,  where j (r ,  t )  

is identified as -& [ ~ ' ( x )  + k B ~ & ]  p(x,  t ) .  

In rate theory, a common procedure to calculate the escape rate is to consider a stationary sit- 

uation in which a steady probability current from xt, to xt is maintained by sources and sinks of 

particles [158]. The sources supply the potential well with particles at energies that are a few k B T  

below the barrier-height W. These particles first equilibrate before they eventually leave the well 

over the barrier. Beyond the barrier, the particles are removed immediately by sinks. The total prob- 

ability flux j over the barrier is then given by the product of the escape rate k from xt, to xt, and the 

population of the well no, I.e., 
j li = 7-1 = -. 

esc 
no 

We place the source at x- < xt, and the sink at x+ > xt. The stationary solution p(x) then carries 

the current j and obeys the absorbing boundary condition p(x = x+) = 0. Thus, p(x) is given by 

This equation is easy to solve by noting that it has an integrating factor, 

Thus, the stationary solution of the distribution is obtained as 

while the population no is simply no = dx p(x). Therefore, we obtain the following average 

escape time 
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which can be integrated by parts as follows: 

For smooth bottom and top of barriers that can be approximated as U ( x )  = U ( X ~ , ~ )  & i m w i t ( x  - 

xb,t)2, it is straightforward to show using Eq. 6.30b that 

Re-derivation of scaling in Eq. 6.17 [I751 

Note that Eq. 6.30 does not depend on the shape of the potential top, while Eq. 6.31 assumed a 

parabolic shape. In other words, wb and wt are the curvatures at x  = xb and x  = at, respectively. 

In Eq. 6.17 in Sec. 6.4, the l / c u  dependence came from the curvature wt at the potential top 

( r  = a); however, if there is no attraction between the two sticky ends of the polymer, it is more 

appropriate to consider the first-passage time when the ends first are within a distance a of each 

other. In this case, the effect is to truncate the potential at xt,  implying that there is a cusp at xt 

rather than a smooth top. One may then question whether the scaling in TK,  is still valid. In fact, 

Eq. 6.17 is a general result. To see this, for Eq. 6.12 [U(r ,  e )  = -kBT In P(r ,  e ) ] ,  we note that the 

integrand in the first integral Il in Eq 6.30b is 

Then, Il becomes 
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and we recover the scaling in Eq. 6.17, which is valid even for a non-parabolic potential top (i.e., in 

the absence of artificial attractive potentials in Fig. 6.4). 

6.5.2 Reaction-radius dependence and compact vs. non-compact exploration 

To understand the a-independence of rc - TR for e >> 1,9 it is worth considering first the much 

simpler case of free random walks, which are characterized by diffusive motion: 

The rate at which a random walk is captured by an absorbing sphere of radius a in a steady-state 

is proportional to aD. Note that the rate at which two random walks of radius a collide into each 

other also varies as aD. This simply states how effectively the random walk "searches7' the volume 

available to it [177]. For a time t ,  the random walk has searched through a total volume of - 
aDt. This implies that the collision rate or the absorbing rate is proportional to aD, reminiscent of 

7;: - aD. It is instructive to compare this with the corresponding collision rate of molecules in a 

gaseous phase, which is proportional to l / a 2 .  The main difference between these two cases is that 

the path of a random walk is denser. Random walks are hence correctly referred to as space-filling 

objects [I 771. 

To further proceed with this line of reasoning, consider the general case for which the time 

evolution of particles follows Sx( t )  -- trI2.l0 Let us introduce the density of volume searched by a 

particle during a time t as p(t) ,  which equals the ratio of the total volume explored to the (distance 

the particle has travelled13. Clearly, p(t) - t /  ( 1 7 1 ~ ) ~  - tlP37l2. When y < 213, p(t) diverges as 

t -+ m. This divergence implies that any volume fraction 6V will be visited infinitely often (this 

phenomenon is termed "compact exploration7' [170]). It is not hard to imagine that the a-dependence 

of the collision or absorbing rate is dictated by the exponent y; we have already seen the difference 

between the cases y = 2 (gaseous molecules) and y = 1 (free random walk). For y < 213, the rate 

is expected to become insensitive to a, since the paths of the particles overlap many times over the 

length scale of a: When two such particles separated by a distance d have travelled a distance - d, 

their paths have certainly crossed (i.e., reacted) each other, no matter how small a is. 

'This section reports recent results of Bae-Yeun Ha [ I  761. 
' ' ~ o t e  that the exponent is not intrinsic to the random walk. It is determined by such factors as space dimensions or 

the presence of disorder in the medium in which the random walk takes place. 
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Figure 6.8: The function [f (t)] as a function of t /rR along with a short-time (ct1l2) and long- 

time approximation (fl(f)). The constant c is chosen so that the two curves match each other for 

sufficiently small t. Fort < $rR, +(t) varies as (t/rR)'I2, while fort > $rR, f (t) rz fl(t) .  In each 

region, f (t) and its approximation essentially collapse onto each other. (Courtesy of Bae-Yeun Ha.) 

We now turn to the polymer problem. For simplicity, we only consider a Rouse chain (ideal 

flexible chain) here. In contrast to the previous random-walk case, polymer dynamics is complicated 

by the competition between various internal modes; a single exponent cannot fully characterize end 

fluctuations defined by 6R2 ( t )  ( [ ~ ( t )  - R(0)12). In terms of normal modes: 

6R2(t) = bR& - f (t), (6.34) 

where 
1 - e - t ~ 2 / ~ ~ )  (6.35) 

P 

and bR& E bR2(t = GO) = 2 (R2) and p = l , 3 , 5  .... 

We find that f (t) N (t /rR) 'I2 (see Fig. 6.8 and the caption) and hence 6R(t) - b ~ ~ ( t 1 . r ~ )  
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(subdiffusive) fort 5 $rR, while 6R(t) % 6R,fl(t) for 1 2 irR. where f l ( Z )  = 1 - $ e - t l T ~  ". 

This means the path of E(t) is compact when it is observed over short time scales t 5 4rR. Much be- 

yond this, the end fluctuation gets saturated at its equilibrium value: 6R,. The characteristic radius 

of Doi's sphere (inside which the path is compact) is then RDoi % : 6 ~ ( t  % $rR) % +R = $a. 
Note that this is somewhat larger than Doi's original estimate based on equilibrium considera- 

tions [148]; internal modes are underestimated in the latter, leading to a smaller RDoi % 0.2R. 

Following Doi [148], a-dependence of re depends whether RDoi is larger than a or not. When 

RDoi >> a (or rg >> a) ,  then the interaction range is set by RDoi rather than a. 

As it turns out, the condition rg >> a is only a necessary condition for re to be independent of 

a: rc N r ~ .  Recall that, for subdiffusive motion, p(t) + cm in the limit t + oo. On the other hand, 

the end fluctuation of a polymer gets saturated as t /rR + m. This implies that the limit p(t) -+ oo 

is not realized in this analysis. If a is much larger than b, the smallest length scale in the system, 

however, the paths of the two ends will more likely overlap each other when they fall in the range 

RDoi. Hence Doi's condition is summarized by 1 << cr << rg for a Rouse chain. 

''Strictly speaking. Eq. 6.35 (hence f ( t )  -- t1 /2  for small t )  holds in the continuum limit: N --+ oo and b - 0 so that 

L = Nb. For a chain consisting of a finite number of chain segments, f ( t )  can be shown to vary as t  for small t  [148]. 

This implies that the Doi's regime is realized only for sufficiently large N. 
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Conclusion 

In this thesis, we have introduced several problems in theoretical physics that were inspired by the 

phenomenon of DNA replication. The 1D KJMA model has been extended to the case of arbitrary 

nucleation rate I ( t ) ,  and we have obtained various analytical results for evolution of domain-size 

distributions. We also have presented a new simulation algorithm that is faster than more standard 

methods by a factor of lo2 - lo3. The simulation and the analytical results are in excellent agree- 

ment. 

In addition, using the Kramers escape rate theory, we have obtained a simple analytical expres- 

sion to estimate the closing time 7, of biopolymers in the diffusion-controlled case. An interesting 

point is that the intrinsic stiffness of polymers implies a minimum chain closing time rC. Shorter 

chains require too much energy relative to the thermal energy kBT, while longer chains need to 

search too many conformations for ends to find each other. The energy and entropy balance when the 

chain length is approximately 3-4 times its persistence length, giving the minimum loop-formation 

time and the maximum loop-formation probability. 

Equally important, these theoretical tools have then been employed to tackle problems in DNA 

replication itself. First, DNA replication processes have been modeled as a 1D nucleation-and- 

growth problem, and the extended 1D KJMA model has been applied to extract the temporal pro- 

gram [ I ( t ) ]  of Xenopus early embryos. The extracted I ( t )  from actual data of molecular-combing 

experiments shows striking features: replication origins fire throughout S phase, and the initiation 

rate suddenly increases in the middle of S phase. 

Second, we have demonstrated that looping of chromatin can solve the long-standing "random- 

completion problem" in early embryonic DNA replication. In other words, origins of replication 
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in early embryos are distributed non-randomly along the genome, with typical spacings of 5-15 

kb. In the absence of a sequence requirement, biologists have not been able to understand what 

exactly regulates the origin spacing. We have explained the distribution of origin-spacing based 

on chromatin looping, quantitatively. In particular, we have shown that the 5-15 kb origin-spacing 

corresponds to the typical loop-size of chromatin. Also, the persistence length 3.2 k 0.1 kb of 

Xenopus sperm chromatin fiber deduced using the Shimada-Yamakawa distribution is consistent 

with experimental results for other organisms such as chicken erythrocyte and Yeast chromosome. 

The successful interplay between theory and experiment presented in this thesis encourages 

us to to extend our methods even further. From the theoretical point of view, it would be highly 

desirable to generalize the kinetic model to include correlation ( e g ,  origin-interference effects) and 

sequence information in the nucleation rate I, as well as variable fork velocity v, to construct a 

complete replication profile. Such information can be obtained by molecular-combing experiments 

on a single-nucleus experiment, which is a formidable task but technically feasible. 

Also, we have noted that the looping problem discussed in this thesis, that of a finite-sized chain 

with two reacting ends, is only the first step toward understanding the true chromatin dynamics 

during the cell cycle, especially during DNA replication. In real systems, many protein complexes 

distributed along a practically-infinitely-long chain interact with replication factories, forming mul- 

tiple loops. In this case, we expect the loop-size distribution to decay exponentially (as opposed 

to the e-3/2-algebraic decay of a single chain) and the corresponding dynamics to be much more 

complicated. We thus have to find a way to extend our results to the case of multiple-loop formation. 

Perhaps a more important implication of our results is not that one can find interesting physics 

problems in biological systems but that we now have a model that makes quantitative predictions 

in DNA replication that can be tested experimentally. Indeed, with the recent progress on single- 

molecule manipulation techniques and genetic engineering, one can hope to see whether varying the 

persistence length of chromatin will change the kinetics of DNA replication of early embryos in the 

way that our theory predicts. In addition, because of the current detailed understanding of cell-cycle 

regulation and DNA replication, the kinetic model can be used as a tool to extract and compare repli- 

cation profiles of various organisms. For example, understanding the replication kinetics of cancer 

cells and how this kinetics differs from that of normal cells would be one of the many important 

practical applications that one can entertain using the kinetic model. 

Finally, we emphasize that, without the recent availability of large quantities of data such as 

were provided by the Xenopus experiment, a kinetic model based on the formal analogy between 
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the ID KJMA model and DNA replication would have been just another "premature" calculation. 

In this thesis, I hope to have convinced the reader that our work on DNA replication is illustrative 

of a mature interaction between theory and experiment that will continue to bear fruit in the years 

ahead. 
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