
 

VALIDATION OF NORMAL INVERSE GAUSSIAN DISTRIBUTION  

FOR SYNTHETIC CDO PRICING 

 
 

by 
 

 
Shirley Xin 

Bachelor of Management, Nanjing Audit University 2008 

 

Hui Wang 

Bachelor of Economics, South-Central University for Nationalities, 2008 

 
 
 

PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

 
MASTER OF ARTS 

 

In the Faculty 

of 

Business Administration 

Financial Risk Management Program 

 

 

© Shirley Xin and Hui Wang 2010 

SIMON FRASER UNIVERSITY 

Summer 2010 

 

All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be 

reproduced, without authorization, under the conditions for Fair Dealing. Therefore, limited reproduction 

of this work for the purposes of private study, research, criticism, review and news reporting is likely to be 

in accordance with the law, particularly if cited appropriate. 



ii 

Approval  

Name: Shirley Xin and Hui Wang 

Degree: Master of Arts 

Title of Project: Validation of Normal Inverse Gaussian Distribution  

 for Synthetic CDO Pricing 

Supervisory Committee: 

   _______________________________________  

 Peter Klein 
Senior Supervisor 
Professor of Finance 

   _______________________________________  

 Jijun Niu 
Second Reader 
Assistant Professor of Finance 

Date Approved:   _______________________________________  

  



iii 

Abstract 

How to determine the default loss distribution of the whole credit portfolio is the most 

critical part for pricing CDOs. This paper follows Kalemanova et al (2007) and assesses 

the pricing efficiency of both one-factor Gaussian Copula model the Normal Inverse 

Gaussian (NIG) Copula model during the turbulent market condition by using data in 

2008 and 2009. In addition, we test the price impact of the skewed NIG distribution by 

adjusting the value of the two parameters. The results show that NIG Copula performs 

much better than Gaussian Copula, and the introduction of the asymmetry factor in NIG 

distribution can further improve the modeling results. 

 

Keywords: Synthetic CDO; One Factor Copula Model; Normal Inverse Gaussian 

distribution  

 

  



iv 

Executive Summary 

In this paper, we follow the philosophy in Kalemanova et al (2007) and assess the pricing 

efficiency of both Gaussian and Normal Inverse Gaussian Copula Model during the 

turbulent market condition in 2008 and 2009. Meanwhile we examine the price impact of 

the skewed NIG distribution by adjusting the value of the two parameters. 

The first part of the paper shows a brief introduction of synthetic CDO pricing method 

and a review of the latest literature on standard model amendments.  

The second part of the paper presents the modeling process of synthetic CDO pricing. 

Following the steps in Kalemanova et al (2007), we first show the general semi-analytic 

approach for synthetic CDO pricing, and the critical assumption of Large Homogeneous 

Portfolio (LHP) Model. Then in the section of One Factor Copula Model, we take 

Gaussian Copula for instance to derive the tranche expected loss. Normal Inverse 

Gaussian is discussed in the end as an alternative distribution assumption. 

The third part of the paper describes the market data, and defines the value of all 

parameters embedded in each model. The comparison of the market data to the output of 

each model shows the empirical observation, which is partly against the conclusion in 

Kalemanova et al (2007). Based on this, the further testings on NIG (1) and NIG (2) are 

made to evaluate the pricing impact of the tail heaviness and Asymmetry of NIG 

distribution on the pricing efficiency.  

 

The last part of the paper contains the conclusion based on all the models’ performance.   
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1 Introduction 

In early 1990s when financial institutions such as banks were still the dominant players of 

the market, credit derivatives e.g. credit default swap (CDS) and collateralized debt 

obligation (CDO) were mainly used as a powerful risk management tool to mitigate the 

credit exposure associated with the lending transactions. Although it remained the 

ostensible purpose of creating this type of activities, gradually more and more hedge 

funds and individual asset managers saw the arbitrage opportunities and began to 

speculate. In 1999, the International Swap and Derivatives Association (ISDA) issued the 

Credit Derivatives Definition and standardized the CDS contract. Since then we could see 

a dramatic growth of the credit derivative market; the notional amount of the outstanding 

contracts almost doubled from $ 34.2 trillion at 2006 year-end to  $62.3 trillion dollars at 

2007 year-end1, and among all the credit derivative products, index trades and synthetic 

CDOs together have taken up 46% of the market. (Refer to Appendix A: Figure 1.2) 

                                                             
1 Source: Reuters: FACTBOX - Credit derivatives market in facts, figures. Feb.5, 2009. 

(http://www.reuters.com/article/idUSL544102220090205) 

Figure 1.1: Global Credit Derivative Market 
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Unlike the value of financial instruments such as equity stocks and options, the value of a 

CDO is largely determined by credit risk. Based on different valuation criteria we could 

manually divide CDOs into two types, cash CDO and synthetic CDO. The underlying 

assets of cash CDO are usually fixed income securities with less liquidity. We cannot 

observe the debtor’s default probability from market quotes; therefore the valuation 

process relies heavily on the rating agencies. A synthetic CDO is a portfolio of CDS. It is 

structured in a way that default losses on the portfolio are allocated to tranches2, and the 

debtor’s default probability of synthetic CDO could be implied from market quotes. This 

gives such instrument an apparent advantage over cash CDO. In this paper, we only 

consider the pricing model for synthetic CDOs. 

From the quantitative perspective, how to account for the default loss distribution of the 

whole credit portfolio is critical for the valuation process. Sophisticated numerical 

techniques such as Monte Carlo simulation were used in order to fit the loose 

assumptions. Ever since Gaussian Copula, a semi-analytical approach of CDO pricing 

model, was introduced by Li (2000), it has been widely adopted by market practitioners. 

This formula allows people to build unbelievable structures into the market. Its simplicity 

and computational efficiency therefore made the model as the industrial standard.  

However, the limitations of Gaussian Copula were hardly concerned. In late 2007, the 

financial market began to behave beyond the model’s expectation, and high-risk credit 

derivatives which were widely held by all kinds of financial institutions in the U.S. 

subprime mortgage market quickly became worthless. Li’s model was then blamed as a 

                                                             
2 Hull, J., Options, Futures, and Other Derivatives, 7th edn. New Jersey: Pearson Prentice Hall, 2009, pp. 

532. 
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“recipe for disaster”3: typically, (1) it does not consider the dynamic changes of the 

debtor’s credit situation when calculating the expected loss distribution of the portfolio, 

and (2) it cannot fit the fat tail feature of the loss distribution. Therefore, when we 

calculate the implied correlation using market quote of different tranches of the same 

CDO, we could observe the “correlation smile” phenomena. 

In this paper we elaborate on an amended synthetic CDO pricing model based on a more 

fat-tailed distribution assumption called Normal Inverse Gaussian distribution. The 

structure of the paper is as follows: In Section One we conduct a brief literature review 

on synthetic CDO pricing models. Followed by a short summary of the general semi-

analytical approach and the large homogeneous portfolio (LHP) assumption, we then 

present the pricing formulas using one factor Gaussian Copula and NIG Copula models 

respectively. The third section shows the estimated results as well as the comparative 

analysis of the two models. Conclusion is finally summarized in the last section. 

1.1 Literature Review 

Currently there are primarily three methods to amend the standard one-factor CDO 

pricing model. The first one is to extend the model by adding further stochastic factors. 

Andersen and Sidenius (2005) believed that the correlation between debtors was a 

stochastic process. It therefore used the random factor loading (RFL) model, and also 

tested the spread payment of different tranches using random recovery rate. The second 

one is to describe the correlation structure by using different copula functions, for 

example, Schönbucher and Schubert (2001), Laurent and Gregory (2005), Schloegl and 

                                                             
3 Salmon, F, “Recipe for Disaster: The Formula That Killed Wall Street”, Wired Magazine, March 2009. 
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O’Kane (2005) used Student t-copula; Hull and White (2006) employed an implied 

copula approach, which was a backward computation of conditional default probability 

and hence the correlation structure using available market quote. The third one is to 

replace the normal distribution assumption in the standard copula with other fat-tailed 

distributions. Typical examples include double-t distribution in Hull and White (2004), 

the one-factor heavy-tailed copula in Wang, Rachev and Fabozzi (2007). Burtschell, 

Gregory and Laurent (2009) conducted a comparative analysis of the pricing efficiency of 

standard Gaussian Copula, Student t-Copula, Double t-Copula, Clayton Copula, 

Marshall-Olkin Copula and two RFL models. They concluded that the modeling outcome 

of Double t-Copula and two RFL models were closer to the market quote of synthetic 

CDO, and also solved the “correlation smile” better than other models.  

However, due to the instability of the double-t distribution4 under convolution5, the 

pricing formula of synthetic CDO cannot be solved analytically. Instead, additional 

numerical methods have to be applied in order to calculate the quantiles of the 

distribution, i.e. the default thresholds. Recently, the generalized hyperbolic distribution 

(GH) has been introduced into CDO pricing models. Common forms include Normal 

Inverse Gaussian (NIG) distribution in Kalemanova, Schmid and Werner (2007), 

Variance Gamma distribution in Moosbrucker (2006), GH distribution in Eberlein and 

Frey (2007). Particularly NIG distribution, which was first introduced in the field of 

financial modeling by Brandorff-Nielsen (1997), has already been widely used in the 

industrial practice. Its two special characteristics made it very suitable for CDO pricing: 

                                                             
4 It can also be called as bivariate t distribution. 
5 Convolution is a mathematical operation on two functions, producing a third function that is typically 

viewed as a modified version of one of the original functions.  
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(1) it can reflect the tail-heaviness and asymmetry using two parameters; and (2) it is 

stable under convolution so that numerical computation could be significantly reduced. 

Kalemanova, Schmid and Werner (2007) compared modeling results using Gaussian 

Copula, Double t-Copula with degrees of freedom of 3 and 4, NIG Copula with one and 

two free parameters. They then concluded that the standardized symmetric NIG 

distribution fit CDO second tranche exactly, while the skewed NIG distribution with two 

free parameters brought only a very slight improvement. 

1.2 Purpose of the Paper 

In this paper, we follow the philosophy in Kalemanova et al (2007) and define the pricing 

efficiency as the size of the absolute error between modeling outcome and actual market 

quote of all CDO tranches. The major purpose of this paper is to assess the pricing 

efficiency of both Gaussian Copula and NIG Copula Model during the turbulent market 

condition in 2008 and 2009, to see whether the conclusion in Kalemanova et al (2007) 

still holds. Furthermore, we aim to examine the price impact of the skewed NIG 

distribution by adjusting the value of the two free parameters. 
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2 Modeling  

In this section, we present the modeling process of synthetic CDO pricing. Following the 

steps in Kalemanova et al (2007), we first show the general semi-analytic approach for 

synthetic CDO pricing, and the critical assumption of Large Homogeneous Portfolio 

(LHP) Model. Then in the section of One Factor Copula Model, we take Gaussian Copula 

for instance to derive the tranche expected loss. Normal Inverse Gaussian is discussed in 

the end as an alternative distribution assumption. 

2.1 General Semi-analytic Approach for Synthetic CDO Pricing 

Basically, the purpose of pricing a synthetic CDO is to determine the fair value of each 

tranche in the same structure.  The protection buyer of CDO tranche pays periodic spread 

payments to the protection seller at pre-settled payment dates, and the spread payment is 

determined by the outstanding notional principal of each tranche. In case of a default 

event, the compensation will be paid on the loss due to default event to the protection 

buyer. 

Suppose that  are payment dates with  and .  and  are the 

attachment and detachment points of the tranche, which means this tranche is responsible 

to cover the portfolio loss from  to . With the assumption that interest rate, , is 

constant, the discount factor is: 

  (1) 
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Moreover, the percentage loss of the tranche  to  is denoted as , and 

under the risk neutral condition, the expected tranche loss at time  is  . 

The premium leg of the tranche is the sum of the present value of expected periodic 

payments at each payment date: 

  (2) 

where , and  is the breakeven tranche spread.  

The protection leg refers to the difference between the residual principles between time  

and . In reality, the compensation will be made immediately after the default happened. 

For simplicity, we assume that the compensation is paid only on the payment date. 6 

Therefore, the protection leg is:  

  (3) 

The breakeven spread on the tranche occurs when the present value of the payments 

(Premium Leg) equals the present value of the payoffs (Protection Leg) or 7 

  (4) 

                                                             
6 Kalemanova et al. “The Normal Inverse Gaussian Distribution for Synthetic CDO Pricing”, Journal of 

Derivatives,  Spring 2007, pp. 5. 
7 Note (2), pp. 534-535. 
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Therefore the breakeven spread of the tranche covering the portfolio loss of  to  is: 

  (5) 

In order to calculate tranche spread in Eq.(5), we need the series of tranche expected loss 

at each the payment date. 

When the portfolio suffer a loss of L(ti), the corresponding loss of the tranche  to  is:  

  (6) 

If the continuous portfolio loss distribution function, , is given, then the expected 

loss on the tranche is: 

  (7) 

Thus, the central problem in the pricing of a CDO tranche is to derive the loss distribution 

of the reference portfolio.8 

2.2 Large Homogeneous Portfolio Assumption 

During the estimation process of the continuous portfolio loss distribution function, it is 

critical to assume that the reference portfolio is composed by infinite number of 

                                                             
8 Note (4), pp. 6. 
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homogeneous assets with the same pairwise default correlation. Then the portfolio has 

follow traits: 

a) The unsystematic risk of the reference portfolio is diversified away because of the 

infinite number of the underlying assets.  

b) All the underlying assets in the portfolio are equally weighted and share the same 

spread and recovery rate.  

c) The default dependence structure follows the One Factor Copula Model, whose 

form is characterized by different distribution assumptions. 

d) The pairwise default correlation is constant for the whole structure, so that the 

correlation can be implied from equity tranche to price other mezzanine tranches 

and senior tranches. 

2.3 One Factor Gaussian Copula Model 

The LHP approach is based on a One Factor Gaussian Copula Model of correlated 

defaults.9 It has been approved that One Factor Copula Model is useful in describing the 

joint default probability among different credit entities. One Factor Gaussian Copula 

Model was introduced by Li (1999, 2000), and then was developed as the market standard 

model. The following section shows how to derive the loss distribution of the reference 

portfolio by using this model.  

                                                             
9 Note (4), pp. 7. 
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We assume that the portfolio is composed of  equally weighted underlying assets. As the 

default indicator, the asset return of the i-th instrument can be expressed as follows: 

  (8) 

where for  to ,  is the common factor, and  is the individual factor. Both 

the common factor and individual factor are independent random variables which follow 

Gaussian distribution. The covariance of  and  is . Meanwhile, due to the 

stability of Gaussian distribution under convolution,  follows Gaussian distribution as 

well. Then the default threshold can be derived efficiently: 

  (9) 

where  is the default probability of i-th asset before time . If , this will 

lead to a default event on this asset.  

Hence the default probability of i-th asset is: 

  (10) 

LHP assumes that all the underlying assets are homogeneous, so that , and 

. Hence the conditional default probability becomes: 

  (11) 
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For the recovery rate , if  of  underlying instruments default, the conditional 

default probability of  percentage loss of the portfolio is: 

 (12) 

The unconditional default probability of  percentage loss of the portfolio therefore is:  

  (13) 

where  is the conditional distribution function of . 

The cumulative default probability that the portfolio percentage loss is less than , for 

 is:  

  (14) 

Eq.(14) can be rearranged by substitute : 

  (15) 

Under LHP assumptions,  will runs into infinite, and then the cumulative default 

probability with infinite underlying CDSs is: 

 
(16)
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Since  

  (17) 

the cumulative distribution function of the portfolio loss is given: 

  (18) 

The expected loss of tranche based on One Factor Gaussian Copula Model can be 

computed analytically: 

  (19) 

where  is the bivariate normal distribution, and  is the covariance matrix: 

  (20) 

Fortunately, this algorithm can be implemented easily using the Matlab build-in function 

MVNCDF( ). Sample code is demonstrated in Appendix C (I). 

In the case of non-zero recovery rate,  can be substituted by , so that the tranche 

expected loss becomes: 

  (21) 
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2.4 Alternative Distribution Assumptions 

One advantage of One Factor Copula Model is that the common factor and individual 

factor can capture any distribution assumptions to develop different characters of default 

dependence structure. Since Gaussian distribution overlooks the tail heaviness trait of the 

financial market, some other distributions with fat tails could be introduced in order to fit 

this characteristic of the financial market.  

In the following section, we replace the Gaussian distribution with the Normal Inverse 

Gaussian (NIG) distribution, and construct a different One Factor Copula Model. With the 

general semi-analytic approach and LHP assumptions, we can compare the default 

dependence of NIG Copula with that of Gaussian Copula and determine whether NIG 

distribution provides a greater improvement on pricing CDO tranches.10 

2.4.1 The Main Properties of the NIG Distribution 

Normal Inverse Gaussian distribution is generated by the Normal distribution and Inverse 

Gaussian (IG) distribution. It is a special case of the generalized hyperbolic distribution 

(GH) and it has four real parameters to control the properties. 

To show the process of deriving Normal Inverse Gaussian distribution, we need a random 

variable Y. If , which is called Inverse Gaussian distribution, and 

, its density function is: 

                                                             
10 This improvement is measured by the absolute error between the modeling outcome and the market quote 

of CDO tranches.  
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   (22) 

If a random variable , 

 

Then the density function, , is  

  (23) 

where  is the tail heaviness,  is the asymmetry parameter,  is the location,  is the 

scale parameter, and 

  

 is the modified Bessel function. 

The main properties of NIG distribution are: 

  (24) 

and in case of two independent variables:   and 

,  

  (25) 

The mean, variance, skewness, and kurtosis of this density function are: 
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2.4.2 The NIG Copula Model with LHP Assumption 

To form NIG Copula Model, the asset return, , is required to follow the standard NIG 

distribution, which has the zero mean and unit variance. The common factor and 

individual factor in Copula Model are of the following forms: 

  (26) 

  (27) 

Then we have: 

  (28) 

  (29) 

Since  

  (30) 

and with the property of NIG distribution under convolution (refer to Eq.(24) and Eq.(25)), 

 is derived as:  

  (31) 

whose mean and variance are: 
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The default threshold based on NIG distribution is derived from: 

  (32) 

where  is the default probability of each underlying instrument. 

The default event on the i-th asset occurs when  and the default probability of 

i-th asset is: 

  (33) 

Following the similar steps of the deviation of Gaussian Copula Model, the portfolio loss 

distribution of large homogeneous portfolio is implied as:  

  (34) 

where  denotes the distribution function for 

 
 is the portfolio loss, and .  

Based on Eq.(7), the expected loss can be rearranged as: 

  (35) 

and the integration part can be calculated as follows: 
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  (36) 

where 

  

The implication of this algorithm in Matlab is demonstrated in Appendix C (II). 
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3 Market Data 

In this paper, 5-year Dow Jones CDX.NA.IG index is employed in order to compare the 

effects of different distribution assumptions on test results. CDX family contains North 

American and Emerging Market companies. It is a standardized index, which is 

composed by 125 equally weighted CDSs of investment grade entity. The successive 

tranches have attachment or detachment points at 0%, 3%, 7%, 10%, 15%, and 30%. All 

the underlying CDSs are assumed to share the same recovery rate and default probability, 

which are consistent with the index.  

The ninth series of Dow Jones CDX.NA.IG index has the effective date on 21-

September-2007 and the maturity date on 20-December-2012, and rolls every 6 months in 

March and September. The market quote of this CDS index portfolio is 156.5 basis points 

on 22-September-2008 and is 271.0 basis points on 20-March-2009. 

If we assume it is a continuously paid default swap spread, under constant default 

intensity model, we could get the following relationship between the index spread, , and 

the hazard rate, , from time 0 to T: 

  

  (37) 

where  is the risk-free discount factor. Hence the default probability, , could then 

be calculated using the follow formula: 
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  (38) 

The default threshold, , based on Gaussian Copula or NIG Copula can then be 

calculated from Eq.(9) or Eq.(32). ,  in Eq.(7) are attachment and detachment points 

of each tranche tested. The constant recovery rate, 40%, is the known number of 5-year 

Dow Jones CDX.NA.IG index and is also used in Kalemanova et al (2007). 

With the assumption of constant default correlation for each tranche of the same CDS 

index portfolio, the pairwise correlation, , becomes the only estimated parameter in the 

Gaussian Copula, which in this case is implied from the spread of equity tranche11. For 

simplicity, in this paper, we only calculate the implied compound correlation.12  

Besides the parwise correlation, NIG Copula requires two more parameters, , the tail-

heaviness factor, and , the asymmetry factors. The value determination of these two 

parameters would certainly affect the shape and the moments of NIG distribution, and 

hence is critical during the modeling process.  

During the test, the value of  and  estimated in Kalemanova et al (2007) is initially 

employed in order to test whether or not it could return the fair prices of the CDX 

tranches. Then we make further amendments to adjust the value of NIG distribution 

parameters, and check whether there is a significant improvement on the pricing 

efficiency of NIG Copula.  

                                                             
11 The market quote of equity tranche is different from that of the others. The market quote of equity 

tranche is in terms of percentage of outstanding notional principal. And the periodic payments on equity 
tranche equal to outstanding notional principal times the sum of the spread and plus 500 basis points. 

12 For a tranche ( ), this is the value of the correlation, , that leads to the spread calculated from the 
model being the same as the market quote of the tranche spread. (See Note (2), pp. 539.) 
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In NIG (1), besides the pairwise correlation , we only have one free parameter , and 

, which means this is a standard symmetric NIG distribution. To test the effect of 

the skewness of NIG distribution on the pricing efficiency of the model, NIG (2) is 

introduced. NIG (2) frees the second parameter , therefore is a more generalized skewed 

NIG distribution. 

3.1 Modeling Outcome and Comparative Analysis 

3.1.1 Validation of the Estimation in Kalemanova et al (2007)  

As we can see, in Appendix A: Figure 3.1 the expected loss of the equity tranche (in term 

of percentage loss of the reference portfolio) on 22-September-2008 increases through 

time and becomes smooth when the time is close to maturity date. The increasing trend of 

the expected loss is consistent with the corresponding default probability of each 

underlying CDS (refer to Appendix A: Figure 3.2). However, the Gaussian Copula 

overlooked the fat tail trait of the financial market. The expected loss based on Gaussian 

Copula is higher than those based on NIG Copulas at the beginning, after all the expected 

losses intersect when time lies between 1.75 years to 2 years, the expected loss based on 

Gaussian Copula is among the lowest comparing with the two NIG Copulas. With the 

increase of the tail heaviness, the expected loss becomes higher when time is close to 

maturity. This phenomenon of the expected loss and corresponding default probability on 

22-September-2008 is similar to that on 20-March-2009 (refer to Appendix A: Figure 3.3 

and Figure 3.4). Appendix B: Table 3.5 to Table 3.7 present further detailed data of the 

default probability of each underlying CDS in the reference portfolio, the default 

threshold, and the expected loss of the equity tranche. 
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Table 3.1 shows the comparison of market quotes on 22-September-2008 to the outputs of 

each model. In general, the Gaussian Copula and the two NIG Copulas all overprice the 

mezzanine tranches, and underprice the senior tranche. Comparing with the Gaussian 

Copula, the two NIG Copula models return more accepted test result based on the size of 

the absolute error. The introduction of  in NIG (2) doesn’t bring so much improvement to 

the test result; it only shows a slightly better fit on the second tranche. Despite the fact that 

the pricing efficiency of NIG copula is improved for the whole structure of the CDS index 

portfolio, we find 89.91% of the error in NIG (1) is resulted from the second tranche, and 

that in NIG (2) is 76.65%. Using the same parameter values on NIG (1) and NIG (2) in 

Kalemanova et al (2007), the overprice on second tranche is completely against their 

conclusion, which is that NIG Copula could exactly match the market quote of the second 

tranche. 

Table 3.1: The Market Quote and Modeling Outcome of Each Tranche 

22-September-2008 (bp) 

 

Market 
Quote13 

Gaussian NIG(1) NIG(2) 

CDX Index 156.5000 
   

0-3% 65.7950% 65.7950% 65.7950% 65.7950% 

3-7% 869.5000 1886.7908 1703.6568 1614.6424 

7-10% 395.5100 724.2516 462.3443 549.6528 

10-15% 187.5550 250.3531 190.4495 245.5106 

15-30% 91.7650 22.3734 67.9534 76.8759 

Absolute Error  1478.2222 927.6972 972.1300 

Rho 
 

0.110107 0.189630 0.199591 

Alpha 
  

0.4794 0.6020 

Beta   0 -0.1605 

                                                             
13 Source from: Bloomberg. 
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On 20-March-2009, the test result is consistent with that on 22-September-2008. (Refer to 

Table 3.2) In general, the two NIG Copulas show great improvements on the absolute 

error compared with Gaussian Copula, but still significantly overprice the second tranche 

to the corresponding market quotes. The absolute error on second tranche takes up to 

63.85% of the total absolute error for NIG (1), and it makes up 59.55% of the total 

absolute error. Again this result challenges the conclusion made in Kalemanova et al 

(2007). 

Table 3.2: The Market Quote and Modeling Outcome of Each Tranche 

20-March-2009 (bp) 

  Market Quote Gaussian NIG(1) NIG(2) 

CDX Index 271.0000 

0-3% 79.9550% 79.955% 79.955% 79.955% 

3-7% 50.7000 2958.0301 2477.4382 2309.6472 

7-10% 19.6600 1656.3466 1201.3093 1184.8680 

10-15% 591.0500 960.0521 640.5660 732.2856 

15-30% 139.2750 280.9085 282.0227 367.1109 

absolute error  5054.6524 3800.6511 3793.2267 

rho 0.219201 0.379211 0.394263 

alpha 0.4794 0.6020 

beta   0 -0.1605 

Furthermore, in terms of the total absolute error, there is a significant degradation on the 

pricing efficiency of both Gaussian Copula and NIG Copula on 20-March-2009; the total 

absolute error of Gaussian Copula is 3.4 times of that on 22-September-2008, and errors of 

the two NIG Copulas almost quadrupled. This is a good indication that during the financial 
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crunch in 2008 and 2009, the market has reacted way beyond the models’ estimation 

capacity. The industry is now in urgent need of further amendment. 

3.1.2 Further Testing 

One reasonable guess about the malfunction of the two NIG Copula models is that the 

estimated parameter value in Kalemanova et al (2007) could no longer capture the 

characteristics of the volatile market. In order to assess the price impact of the two free 

parameters,  and , we further compare testing results with the actual market quotes by 

changing their values14.  

Table 3.3: The Market Quote and The Test Result of NIG(1) 

22-September-2008 

  Market Quote NIG(1) NIG(1) Test 1 NIG(1) Test 2 

CDX Index 156.5000       

0-3% 65.7950% 65.7950% 65.7950% 65.7950% 

3-7% 869.5000 1703.6568 1746.0453 1596.9507 

7-10% 395.5100 462.3443 500.3086 376.9297 

10-15% 187.5550 190.4495 197.6258 172.9966 

15-30% 91.7650 67.9534 62.6488 78.4021 

Absolute Error   927.6972 1020.5309 773.9524 

Rho   0.189630 0.174187 0.227033 

Alpha   0.4794 0.5500 0.3500 

Beta   0 0 0 

Table 3.3 presents our further testings of NIG (1) on 22-September-2008. We find the 

absolute error increases when adding tail-heaviness. Meanwhile, NIG (1) Test 2 shows a 

                                                             
14 The determination of the value of  and  is based on trial. 
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significant improvement of the whole structure; the absolute error dropped 153.74 bp 

when  changed from 0.4794 to 0.35. The second tranche is now less overpriced, while 

the senior tranche is less underpriced.  

Table 3.4: The Market Quote and The Test Result of NIG(2) 

22-September-2008 

 

Market 

Quote 
NIG(2) 

NIG(2) 

Test 1 

NIG(2) 

Test 2 

NIG(2) 

Test 3 

NIG(2) 

Test 4 

CDX Index 156.5000 
     

0-3% 65.7950% 65.7950% 65.7950% 65.7950% 65.7950% 65.7950% 

3-7% 869.5000 1614.6424 1525.3812 1412.6082 1339.5984 1456.9597 

7-10% 395.5100 549.6528 492.1974 423.0968 387.6944 467.6698 

10-15% 187.5550 245.5106 238.1101 229.3854 225.1476 233.8689 

15-30% 91.7650 76.8759 94.2907 117.4674 129.3901 96.4300 

Absolute Error 
 

972.1300 805.6494 638.2276 553.1317 710.5984 

rho 
 

0.199591 0.231102 0.267960 0.287730 0.248468 

alpha 
 

0.6020 0.5000 0.4000 0.4000 0.7020 

beta 
 

-0.1605 -0.1605 -0.1605 -0.2000 -0.3605 

Table 3.4 shows the test result of NIG (2) on 22-September-2008. We still could observe 

the modeling improvement by decreasing the value of  only. The absolute error dropped 

333.9 bp by changing it from 0.6020 to 0.4, primarily due to the improvement of result for 

second tranche. Then based on the results we get from NIG(2) Test 2, Test 3 shows a 

further improvement of the model by increasing the absolute value of the asymmetry 

factor , i.e. adding more left skewness of this NIG distribution. Although this time the 

senior tranche is more overvalued, it is cancelled out by the amelioration in other tranches. 

Interestingly, NIG (2) Test 4 amends the model from another direction. If we want to add 

more fat-tail feature into the model, we need to add more left skewness of the distribution. 
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This might be a reasonable clue showing that there is a non linear relationship between the 

spread payment of the tranches and the parameter value of  and . 

There is a same phenomenon in test result of both NIG (1) and NIG (2): decreasing the 

value of  improves the modeling results of NIG Copula. In Table 3.3, the adjustment of  

from 0.4794 to 0.3500 causes a decrease in absolute error from 927.6972 bp to 773.9524 

bp. And in Table 3.4, by making  fixed at -0.1605, we could observe that the change of  

from 0.6020 to 0.4000 leads to the absolute error decrease dramatically from 972.1300 bp 

to 638.2276 bp. 

The difference between the market data used in this paper and that in Kalemanova et al 

(2007) can be one possible explanation to the phenomenon that less fat tail feature 

improves the result of both NIG (1) Copula and NIG (2) Copula. In Kalemanova et al 

(2007), 5-year iTraxx Euro index is applied as the market data. This index is is composed 

by 125 equally weighted CDSs of investment grade entities in Europe, rather than in North 

America.  And it is possible that Dow Jones CDX.NA.IG index portfolio has less fat tail 

feature than that of iTraxx Euro index. 
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4 Conclusion 

The main purpose of this paper is to compare the effect of NIG distribution to that of 

Gaussian distribution on Synthetic CDO Pricing, and to further test the pricing efficiency 

of One Factor Copula Model based on the skewed NIG distribution. 

Basically, NIG Copula brings the fat tail trait into the model, and therefore it produces 

better result to fit the market quote than Gaussian Copula. The standard NIG distribution 

captured by One Factor Copula Model has two parameters to define its tail heaviness and 

symmetry. Moreover, there is one advantage of NIG distribution: due to the stability of 

NIG distribution under convolution, the computation of default threshold is time efficient.  

In this paper, we employ the parameter value of NIG distribution estimated in Kalemanova 

et al (2007), and get an unfavorable result on the second tranche. This differs from their 

conclusion. By making further adjustments on the two parameters, we observe that 

decreasing the tail heaviness and increasing the left skewness of NIG (2) lead to a 

significant improvement to the test result. Therefore, the key issue about using NIG 

Copula is how to estimate the tail heaviness and asymmetry of the NIG distribution.  

For further development of this paper, there are at least two points should be considered: 

1) how to determine the optimal value of the tail heaviness and asymmetry of the NIG 

distribution to fit the market quote; 2) is the result sensitive to the value of the recovery 

rate. 
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Appendix A 

Figure 1.2: Credit Derivative Product Range 

 

 

 

Source: Barrett, Ross and John Ewan. Credit Derivatives Report 2006. British Bankers’ Association. 
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Figure 3.1: The Expected Losses on Equity Tranche  

(Implied from the market quote on 22-September-2008) 

 

Figure 3.2: The Default Probability of Each Underlying CDS in CDX index  

(Implied by the market quote on 22-September-2008) 
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Figure 3.3: The Expected Losses on Equity Tranche  

(Implied from the market quote on 20-March-2009) 

 

 

 

Figure 3.4: The Default Probability of Each Underlying CDS in CDX index  

(Implied by the market quote on 20-March-2009) 
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Figure 4: The Portfolio Loss Distribution from LHP Model 

(Based on market quote on 22-September-2008) 
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Figure 5: The Distribution of Asset Return  

(Based on market quote on 22-September-2008) 

 

(a) The Probability Density Function of Gaussian and NIG 

 

(b) The Cumulative Distribution Function of Gaussian and NIG 
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(c) The Probability Density Function of NIG (1) 

 

 

(d) The Cumulative Distribution Function of NIG (1) 
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(e) The Probability Density Function of NIG (2) 

 

(f) The Cumulative Distribution Function of NIG (2) 
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Appendix B: 

Table 3.5:  The time series data of Default probability 

 (Implied by the market quote on 22-September-2008 and 20-March-2009) 

 

t 22-Sep-08 20-Mar-09 

0.25 0.0065 0.0112 

0.5 0.0130 0.0223 

0.75 0.0194 0.0333 

1 0.0257 0.0442 

1.25 0.0321 0.0549 

1.5 0.0384 0.0655 

1.75 0.0446 0.0760 

2 0.0508 0.0864 

2.25 0.0570 0.0966 

2.5 0.0631 0.1068 

2.75 0.0692 0.1168 

3 0.0753 0.1267 

3.25 0.0813 0.1365 

3.5 0.0872 0.1462 

3.75 0.0932 0.1558 

4 0.0991 0.1653 

4.25 0.1049 0.1747 

4.5 0.1107 0.1839 

4.75 0.1165 0.1931 

5 0.1223 0.2021 
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Table 3.6:  The Time Series Data of Default Threshold  
based on Gaussian Copula and NIG Copula 

(Implied by the market quote on 22-September-2008 and 20-March-2009) 

22-Sep-08 20-Mar-09 

t D(t)_Gaussian D(t)_NIG(1) D(t)_NIG(2) D(t)_Gaussian D(t)_NIG(1) D(t)_NIG(2) 

0.25 -2.4838 -2.9555 -3.2848 -2.2826 -2.7179 -3.0420 

0.5 -2.2275 -2.4864 -2.7474 -2.0078 -2.1621 -2.4038 

0.75 -2.0669 -2.2182 -2.4392 -1.8343 -1.8554 -2.0496 

1 -1.9474 -2.0309 -2.2236 -1.7043 -1.6468 -1.8077 

1.25 -1.8511 -1.8874 -2.0581 -1.5991 -1.4904 -1.6258 

1.5 -1.7699 -1.7713 -1.9242 -1.5101 -1.3661 -1.4810 

1.75 -1.6994 -1.6739 -1.8118 -1.4325 -1.2636 -1.3614 

2 -1.6369 -1.5902 -1.7150 -1.3634 -1.1767 -1.2599 

2.25 -1.5805 -1.5168 -1.6302 -1.3010 -1.1015 -1.1720 

2.5 -1.5290 -1.4514 -1.5548 -1.2439 -1.0354 -1.0947 

2.75 -1.4816 -1.3926 -1.4869 -1.1911 -0.9765 -1.0259 

3 -1.4376 -1.3392 -1.4251 -1.1420 -0.9234 -0.9639 

3.25 -1.3965 -1.2902 -1.3685 -1.0961 -0.8752 -0.9075 

3.5 -1.3579 -1.2450 -1.3164 -1.0528 -0.8311 -0.8560 

3.75 -1.3214 -1.2031 -1.2679 -1.0118 -0.7905 -0.8086 

4 -1.2868 -1.1639 -1.2228 -0.9730 -0.7528 -0.7647 

4.25 -1.2539 -1.1273 -1.1805 -0.9359 -0.7177 -0.7239 

4.5 -1.2226 -1.0928 -1.1408 -0.9005 -0.6849 -0.6857 

4.75 -1.1925 -1.0602 -1.1033 -0.8666 -0.6541 -0.6499 

5 -1.1637 -1.0294 -1.0678 -0.8340 -0.6250 -0.6161 
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Table 3.7:  The Time Series Data of Expected Loss on Equity Tranche 
based on Gaussian Copula and NIG Copula 

(Implied by the market quote on 22-September-2008 and 20-March-2009) 

22-Sep-08 20-Mar-09 

t EL(t)_Gaussian EL(t)_NIG(1) EL(t)_NIG(2) EL(t)_Gaussian EL(t)_NIG(1) EL(t)_NIG(2) 

0.25 0.1294 0.1126 0.1123 0.2017 0.1537 0.1559 

0.5 0.2524 0.2197 0.2235 0.3556 0.2944 0.3026 

0.75 0.3639 0.3221 0.3288 0.4743 0.4225 0.4313 

1 0.4621 0.4195 0.4268 0.5675 0.5370 0.5401 

1.25 0.5468 0.5110 0.5167 0.6416 0.6359 0.6301 

1.5 0.6190 0.5961 0.5967 0.7012 0.7177 0.7030 

1.75 0.6802 0.6731 0.6674 0.7496 0.7813 0.7610 

2 0.7316 0.7405 0.7283 0.7892 0.8281 0.8066 

2.25 0.7749 0.7968 0.7796 0.8218 0.8613 0.8422 

2.5 0.8111 0.8411 0.8220 0.8488 0.8849 0.8699 

2.75 0.8414 0.8742 0.8564 0.8713 0.9021 0.8917 

3 0.8668 0.8981 0.8840 0.8901 0.9148 0.9088 

3.25 0.8880 0.9155 0.9059 0.9059 0.9246 0.9224 

3.5 0.9058 0.9284 0.9232 0.9192 0.9323 0.9333 

3.75 0.9206 0.9381 0.9369 0.9305 0.9385 0.9421 

4 0.9331 0.9457 0.9477 0.9401 0.9436 0.9493 

4.25 0.9436 0.9517 0.9563 0.9482 0.9479 0.9553 

4.5 0.9523 0.9566 0.9632 0.9552 0.9515 0.9603 

4.75 0.9597 0.9607 0.9687 0.9611 0.9546 0.9645 

5 0.9659 0.9640 0.9732 0.9662 0.9573 0.9680 
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Appendix C: Matlab Code 

(I) Gaussian Copula 

1) EL_NormSDist.m 
-------------------------------------------------------------------------------- 
 
function EL_bivn=EL_NormSDist(K1,K2,R,C,a) 
  
% This function is developed to measure the expected loss of synthetic CDO 
% using LHP approach, which is based on one factor Gaussian copula model of 
% correlated defaults. 
% Author: Shirley Xin, Arvin Wang 
% Segal Graduate School of Business, Simon Fraser University 
% Date: July 18, 2010 
  
X1=-norminv(K1/(1-R),0,1); 
X2=-norminv(K2/(1-R),0,1); 
X3=C; 
  
BiVar1=[X1;X3]; 
BiVar2=[X2;X3]; 
Mu=[0;0]; 
Sigma=[1 -sqrt(1-a^2);-sqrt(1-a^2) 1]; 
  
Phi1=mvncdf(BiVar1,Mu,Sigma); 
Phi2=mvncdf(BiVar2,Mu,Sigma); 
  
EL_bivn=(Phi1-Phi2)/((K2/(1-R))-(K1/(1-R))); 
  
end 
 
 
 
 
2) Spread_Gaussian.m 
-------------------------------------------------------------------------------- 
 
clc 
clear all 
format long 
  
% This Script is developed to calculate the spreadpayment of synthetic CDO 
% tranches, based on one factor Gaussian Copula 
% Author: Shirley Xin, Arvin Wang 
% Segal Graduate School of Business, Simon Fraser University 
% Date: July 18, 2010 
  
load CDXSpreadAvg.mat 
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% Set parameters 
K1=0; 
K2=0.03; 
R=0.4; 
Mat=5; 
a=sqrt(0.219201); 
rf=0.01670135; 
dt=0.25; 
  
% Calculate the discount factor 
DiscFact=ones(21,1); 
for i=1:1:Mat*4 
    DiscFact(i+1)=exp(-rf*i*0.25); 
end 
  
% Calculate the expected loss of the tranche 
EL=zeros(21,1); 
for i=1:1:Mat*4 
    EL(i+1)=EL_NormSDist(K1,K2,R,C_gaussian_d2(i),a); 
end 
  
% Protection Leg 
ProtectLeg=sum(diff(EL).*DiscFact(2:end)); 
% Premium Leg 
PremiumLeg=sum((1-EL(2:end)).*DiscFact(2:end)*dt); 
% Spread payment 
SpreadPayment=ProtectLeg/PremiumLeg 
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(II) Matlab Code for NIG Copula 

*The Matlab toolbox of NIG distribution is available at Matlab Center File Exchange 

1) intfunc.m 
-------------------------------------------------------------------------------- 
 
function y=intfunc(x,K1,R,C,a,alpha,beta,df) 
  
% Function developed in order to calculate the Expected Loss 
%   y=intfunc(x,K1,R,C,a) 
%       x = Unknown parameter 
%       K1 = Attachment point of the tranche 
%       R = Recovery 
%       C = default threshold 
%       a = sqrt(rho), where rho is the pairwise correlation of default 
% 
% Author: Shirley Xin, Arvin Wang 
% Segal Graduate School of Business, Simon Fraser University 
% Date: July 21, 2010 
  
s=sqrt(1-a^2)/a; 
gamma=sqrt(alpha^2-beta^2); 
mu=beta*gamma^2/alpha^2; 
delta=gamma^3/alpha^2; 
  
temp1=nigcdf(x,s*alpha,s*beta,-s*mu,s*delta)-(K1/(1-R)); 
temp2=nigpdf((C-sqrt(1-a^2)*x)/a,df*alpha,df*beta,-df*mu,df*delta)*(sqrt(1-a^2)/a); 
  
y=temp1.*temp2; 
  
end 
 
 
 
 
2) Spread_NIG.m 
-------------------------------------------------------------------------------- 
 
clc 
clear all 
format long 
  
% This Script is developed to calculate the spreadpayment of synthetic CDO 
% tranches, based on one factor NIG Copula 
% Author: Shirley Xin, Arvin Wang 
% Segal Graduate School of Business, Simon Fraser University 
% Date: July 20, 2010 
  
% NIG toolbox developed by Kalemanova et al is available at Matlab Center 
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% File Exchange. 
  
load CDXSpreadAvg.mat 
  
% Set parameter values 
K1=1.000000000000000e-074;  % attachment point of the tranche 
K2=0.03;                    % detachment point of the tranche 
R=0.4;                      % recovery rate 
Mat=5;                      % time to maturity 
a=sqrt(0.394263);            % a=sqrt(rho), where rho is default correlation 
rf=0.01670135;              % 5yr government zero rate 
dt=0.25; 
  
alpha=0.6020;   % tail heavyness 
beta=-0.1605;         % asymmetry parameter 
df=2;           % NIG(df) 
gamma=sqrt(alpha^2-beta^2); 
s=sqrt(1-a^2)/a; 
  
mu=beta*gamma^2/alpha^2; 
delta=gamma^3/alpha^2; 
  
% Calculate the discount factor & Default threshold 
DiscFact=ones(21,1); 
C_NIG=zeros(20,1); 
for i=1:1:Mat*4 
    DiscFact(i+1)=exp(-rf*i*0.25); 
    C_NIG(i)=niginv(DefProb_d2(i),alpha/a,beta/a,-(1/a)*mu,(1/a)*delta); 
end 
  
% Determine the expected loss EL(t) 
lowerbound=niginv(K1/(1-R),s*alpha,s*beta,-s*mu,s*delta); 
upperbound=niginv(K2/(1-R),s*alpha,s*beta,-s*mu,s*delta); 
  
FtK2=zeros(20,1); 
intFtK1=zeros(20,1); 
EL=zeros(21,1); 
for i=1:1:Mat*4 
    FtK2(i)=1-nigcdf((C_NIG(i)-sqrt(1-a^2)*upperbound)/a,df*alpha,df*beta,-df*mu,df*delta); 
    intFtK1(i)=quad(@(x)intfunc(x,K1,R,C_NIG(i),a,alpha,beta,df),lowerbound,upperbound); 
    EL(i+1)=((1-R)/(K2-K1))*intFtK1(i)+(1-FtK2(i)); 
end 
  
% Protection Leg 
ProtectLeg=sum(diff(EL).*DiscFact(2:end)); 
% Premium Leg 
PremiumLeg=sum((1-EL(2:end)).*DiscFact(2:end)*dt); 
% Spread payment 
SpreadPayment=ProtectLeg/PremiumLeg 
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(III) Calculation of Absolute Error 

1) Abs_error.m 
-------------------------------------------------------------------------------- 
 
function absError=Abs_error(para,df,DefProb,quote) 
  
% This Script is developed to calculate the absolute error bewteen market 
% quote and NIG(x) modeling outcome 
% Author: Shirley Xin, Arvin Wang 
% Segal Graduate School of Business, Simon Fraser University 
% Date: July 31, 2010 
  
% Parameter value 
% para=[alpha; beta; rho]; 
  
% Calculate the modeling outcome 
SpreadPmt=zeros(5,1); 
SpreadPmt(1)=Spread_func(1.000000000000000e-074,0.03,para(1),para(2),para(3),df,DefProb); 
SpreadPmt(2)=Spread_func(0.03,0.07,para(1),para(2),para(3),df,DefProb); 
SpreadPmt(3)=Spread_func(0.07,0.1,para(1),para(2),para(3),df,DefProb); 
SpreadPmt(4)=Spread_func(0.1,0.15,para(1),para(2),para(3),df,DefProb); 
SpreadPmt(5)=Spread_func(0.15,0.3,para(1),para(2),para(3),df,DefProb); 
  
% Compare to the market quote 
% Equity_Error=abs(quote(1)-SpreadPmt(1)); 
absError=sum(abs(SpreadPmt-quote)); 
  
% error=[Equity_Error;Abs_Error]; 
  
end 
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Appendix D: CDS Index Member List 

Index: MARKIT CDX.NA.IG.9* 12/12 

Spread Ticker: IBOXUG59 

RED Code: 2165BYCG8 

Effective Date: 09/21/07 

Maturity Date: 12/20/12 

Settlement Currency: USD  

Fixed Rate: 40% per annum 

Fixed Day Count Fraction: Actual / 360 

Fixed Rate Payer Payment Dates: Each March 20, June 20, September 20 and December 
20, commencing on September 21, 2007 

Credit Events: Bankruptcy, failure to pay, restructuring 

 

 
 

Name Weight 
Equity 
Ticker 

Corp 
Ticker 

5 Yr CDS 
Ticker 

ACE Ltd 0.8 ACE US ACE CACE1U5 

Aetna Inc 0.8 AET US AET CAET1U5 

Rio Tinto Alcan Inc 0.8 AL CN RIOLN CAL1U5 

Alcoa Inc 0.8 AA US AA CAA1U5 

Altria Group Inc 0.8 MO US MO CMO1U5 

American Electric Power Co Inc 0.8 AEP US AEP CAEP1U5 

American Express Co 0.8 AXP US AXP CAXP1U5 

American International Group Inc 0.8 AIG US AIG CAIG1U5 

Amgen Inc 0.8 AMGN US AMGN CAMG1U5 

Anadarko Petroleum Corp 0.8 APC US APC CAPC1U5 

Arrow Electronics Inc 0.8 ARW US ARW CARW1U5 

AT&T Inc 0.8 T US T CSBC1U5 

AT&T Mobility LLC 0.8 24004Z US T CCNG1U5 

AutoZone Inc 0.8 AZO US AZO CAZO1U5 

Baxter International Inc 0.8 BAX US BAX CBAX1U5 

Belo Corp 0.8 BLC US BLC CBLC1U5 

Boeing Capital Corp 0.8 8891Z US BA CBACC1U5 

Bristol-Myers Squibb Co 0.8 BMY US BMY CBMY1U5 

Burlington Northern Santa Fe LLC 0.8 BNI US BRK CBNI1U5 
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Campbell Soup Co 0.8 CPB US CPB CCPB1U5 

Capital One Bank USA NA 0.8 8125Z US COF CCOF1U5 

Cardinal Health Inc 0.8 CAH US CAH CCAH1U5 

Carnival Corp 0.8 CCL US CCL CCCL1U5 

Caterpillar Inc 0.8 CAT US CAT CCAT1U5 

CBS Corp 0.8 CBS US CBS CVIA1U5 

Centex Corp 0.8 CTX US PHM CCTX1U5 

CenturyLink Inc 0.8 CTL US CTL CCTL1U5 

CIGNA Corp 0.8 CI US CI CCI1U5 

CIT Group Inc/Old 0 CITGQ US CIT CCITG1U5 

Comcast Cable Communications LLC 0.8 15659Z US CMCSA CCCC1U5 

Computer Sciences Corp 0.8 CSC US CSC CCCS1U5 

ConAgra Foods Inc 0.8 CAG US CAG CCAG1U5 

ConocoPhillips 0.8 COP US COP CCOC1U5 

Constellation Energy Group Inc 0.8 CEG US CEG CCEG1U5 

Countrywide Home Loans Inc 0.8 8191Z US BAC CCCR1U5 

COX Communications Inc 0.8 COX US COXENT CCOX1U5 

CSX Corp 0.8 CSX US CSX CCSX1U5 

CVS Caremark Corp 0.8 CVS US CVS CCVS1U5 

Darden Restaurants Inc 0.8 DRI US DRI CDRI1U5 

Deere & Co 0.8 DE US DE CDE1U5 

Devon Energy Corp 0.8 DVN US DVN CDVN1U5 

Dominion Resources Inc/VA 0.8 D US D CDR1U5 

Duke Energy Corp 0.8 DUK US DUK CDUK1U5 

EI du Pont de Nemours & Co 0.8 DD US DD CDD1U5 

Eastman Chemical Co 0.8 EMN US EMN CEMN1U5 

Embarq Corp 0.8 EQ US CTL CX361172 

Federal Home Loan Mortgage Corp 0 FMCC US FHLMC CFHLM1U5 

Federal National Mortgage Association 0 FNMA US FNMA CFNMA1U5 

FirstEnergy Corp 0.8 FE US FE CFE1U5 

Fortune Brands Inc 0.8 FO US FO CFO1U5 

Gannett Co Inc 0.8 GCI US GCI CGCI1U5 

General Electric Capital Corp 0.8 GELK US GE CGECC1U5 

General Mills Inc 0.8 GIS US GIS CGIS1U5 
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Goodrich Corp 0.8 GR US GR CGR1U5 

Halliburton Co 0.8 HAL US HAL CHAL1U5 

Hewlett-Packard Co 0.8 HPQ US HPQ CHWP1U5 

Honeywell International Inc 0.8 HON US HON CHON1U5 

IAC/InterActiveCorp 0.8 IACI US IACI CX354186 

Ingersoll-Rand Co 0.8 IR CT761912 

International Business Machines Corp 0.8 IBM US IBM CIBM1U5 

International Lease Finance Corp 0.8 ILFC US AIG CILFC1U5 

International Paper Co 0.8 IP US IP CIP1U5 

iStar Financial Inc 0.8 SFI US SFI CT351304 

JC Penney Co Inc 0.8 JCP US JCP CJCP1U5 

Jones Apparel Group Inc 0.8 JNY US JNY CJNY1U5 

Kraft Foods Inc 0.8 KFT US KFT CKFT1U5 

Lennar Corp 0.8 LEN US LEN CLEN1U5 

Ltd Brands Inc 0.8 LTD US LTD CLTD1U5 

Liz Claiborne Inc 0.8 LIZ US LIZ CLIZ1U5 

Lockheed Martin Corp 0.8 LMT US LMT CLMT1U5 

Loews Corp 0.8 L US L CLTR1U5 

Macy's Inc 0.8 M US M CFD1U5 

Marriott International Inc/DE 0.8 MAR US MAR CMAR1U5 

Marsh & McLennan Cos Inc 0.8 MMC US MMC CMMC1U5 

MBIA Insurance Corp 0.8 16302Z US MBI CMBIN1U5 

McDonald's Corp 0.8 MCD US MCD CMCD1U5 

McKesson Corp 0.8 MCK US MCK CMCK1U5 

MeadWestvaco Corp 0.8 MWV US MWV CMWV1U5 

MetLife Inc 0.8 MET US MET CMET1U5 

Motorola Inc 0.8 MOT US MOT CMOT1U5 

National Rural Utilities Cooperative 
Finance Corp 0.8 2381A US NRUC CNRUC1U5 

Newell Rubbermaid Inc 0.8 NWL US NWL CNWL1U5 

News America Inc 0.8 14408Z US NWSA CNCP1U5 

Nordstrom Inc 0.8 JWN US JWN CJWN1U5 

Norfolk Southern Corp 0.8 NSC US NSC CNSC1U5 

Northrop Grumman Corp 0.8 NOC US NOC CNOC1U5 

Omnicom Group Inc 0.8 OMC US OMC COMC1U5 
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Progress Energy Inc 0.8 PGN US PGN CPGN1U5 

Pulte Group Inc 0.8 PHM US PHM CPHM1U5 

Quest Diagnostics Inc/DE 0.8 DGX US DGX CDGX1U5 

RR Donnelley & Sons Co 0.8 RRD US RRD CX359760 

Radian Group Inc 0.8 RDN US RDN CRDN1U5 

Raytheon Co 0.8 RTN US RTN CRTN1U5 

Rohm and Haas Co 0.8 ROH US DOW CROH1U5 

Safeway Inc 0.8 SWY US SWY CSWY1U5 

Sara Lee Corp 0.8 SLE US SLE CSLE1U5 

Sempra Energy 0.8 SRE US SRE CSRE1U5 

Simon Property Group LP 0.8 12968Z US SPG CSPG1U5 

Southwest Airlines Co 0.8 LUV US LUV CLUV1U5 

Sprint Nextel Corp 0.8 S US S CT357422 

Starwood Hotels & Resorts Worldwide 
Inc 0.8 HOT US HOT CHOT1U5 

Target Corp 0.8 TGT US TGT CTGT1U5 

Textron Financial Corp 0.8 3339Z US TXT CTXTF1U5 

Allstate Corp/The 0.8 ALL US ALL CALL1U5 

Chubb Corp 0.8 CB US CB CCB1U5 

Dow Chemical Co/The 0.8 DOW US DOW CDOW1U5 

Hartford Financial Services Group Inc 0.8 HIG US HIG CHIG1U5 

Home Depot Inc 0.8 HD US HD CHD1U5 

Kroger Co/The 0.8 KR US KR CKR1U5 

Sherwin-Williams Co/The 0.8 SHW US SHW CSHW1U5 

Walt Disney Co/The 0.8 DIS US DIS CDIS1U5 

Time Warner Inc 0.8 TWX US TWX CAOL1U5 

Toll Brothers Inc 0.8 TOL US TOL CTOL1U5 

Transocean Inc 0.8 3196976Z US RIG CRIG1U5 

Union Pacific Corp 0.8 UNP US UNP CUNP1U5 

Universal Health Services Inc 0.8 UHS US UHS CT357677 

Valero Energy Corp 0.8 VLO US VLO CVLO1U5 

Verizon Communications Inc 0.8 VZ US VZ CVZGF1U5 

Wal-Mart Stores Inc 0.8 WMT US WMT CWMT1U5 

Washington Mutual Inc 0 WAMUQ US WM CWM1U5 

Wells Fargo & Co 0.8 WFC US WFC CWFC1U5 
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Weyerhaeuser Co 0.8 WY US WY CWY1U5 

Whirlpool Corp 0.8 WHR US WHR CWHR1U5 

Wyeth 0.8 WYE US PFE CAHP1U5 

XL Group Plc 0.8 XL US XL CXL1U5 

 


