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Abstract 

In a packet voice application, source speech is coded and packetized and is sent through 

the network to the receiver, where the packet is decoded. The transfer of speech 

packets through a packet network introduces a variable transport delay. Packets may be 

lost and they may take different paths resulting in packets that arrive out of order. This 

arrival time variance (or jitter), packet loss, reordering and duplicating, must be 

handled properly to avoid gaps of degradation in the re-constructed speech. A jitter 

control module is required to cope with the asynchronous arrival of packets from the 

network. 

A jitter control module is a key component of the speech service of a packet voice 

application. The packet received from the network will be held within a storage 

location referred to as the jitter buffer. The jitter control module is responsible for 

managing the release time of the packets stored within the jitter buffer to the speech 

decoder, where the speech will be reconstructed. The jitter buffer also works closely 

with the packet loss concealment algorithm (PLC) and the comfort noise generator 

(CNG) to ensure that the reconstructed speech is of the highest quality, while 

minimizing the end-to-end delay. 

This document reports my work on the project - Integration of a jitter control module 

into the LDX at Broadcom Canada LTD. The project involves the integration of a jitter 

control algorithm into a Voice over Internet Protocol (VoIP) application with low 

channel density developed by Broadcom Canada called Low Density Xchange (LDX). 

The algorithm was originally developed for another Broadcom packet voice gateway 

solution with high channel density. The jitter control module was found to be vital for 

the quality of the reconstructed speech from LDX when operating over a jittery 

network. Data memory requirements have been optimized to ensure that the resource 

requirements of the jitter control module are acceptable on the target platform. 
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1 Introduction 

The field of packet voice communications over Internet Protocol (IP) networks has been 

growing rapidly in the recent years. In a packet voice application, source speech is coded 

and packetzied. The packetized speech is then sent through the network to the receiver, 

where the received packets are decoded so that the person on the receiver side can hear it. 

The success of a digital packet voice application relies on the provision of high speech 

quality while minimizing the end-to-end delay. 

The following diagram explains how the encoded voice packets get transmitted from one 

end to the other in a packet voice application. 

sender receiver 

Figure 1: Transmission of encoded voice packets from one end to the other 

The transfer of speech packets through a packet network introduces a variable transport 

delay. Packets may be lost and they may take different paths resulting in packets that 

arrive out of order. This arrival time variance (or jitter), packet loss, reordering and 

duplicating, must be handled properly to avoid gaps of degradation in the re-constructed 

speech. A jitter control module is required to cope with the asynchronous arrival of 

packets from the network. 

1.1 Problemstatement 

The purpose of this project is to integrate a jitter control algorithm into a Voice over 

Internet Protocol (VolP) application with low channel density developed by Broadcom 

Canada called Low Density Xchange (LDX). The algorithm was originally developed 



for another Broadcom packet voice gateway solution with high channel density. The 

target platform is Broadcom Canada's Hausware xChange Packet Voice Exchange (PVE) 

service, operating on the Broadcom BCMl lox silicon family. 

LDX is a suite of embedded Digital Signal Processing (DSP) algorithms for 

telecommunications applications. These algorithms can be combined to provide 

solutions of packet voice, fax and high-speed modem data over general networks. 

1.2 Thesis Contribution 

In a three-month period, I successfully integrated the jitter control module as part of the 

PVE service of LDX. Extensive testing has been done to prove that the newly integrated 

jitter control module provides a solution to cope with the network jitter in different 

situations. Minimal or no voice degradation is expected with the application of this jitter 

control module in LDX. Several optimizations have been done as an extension of the 

integration to minimize the data memory required by the jitter control module. 

1.3 Thesis Organization 

In Chapter 2, we go through basic theories of jitter and how it can affect voice quality in 

a packet voice application. It is followed by a description of how the jitter control 

module operates in the LDX Packet Voice Exchange service, and a high level description 

of the algorithm. Chapter 5 presents a detailed analysis of the performance of the jitter 

control module with some high level descriptions of the testing procedure. Optimizations 

to reduce memory requirement of the jitter control module is discussed in Chapter 6, 

followed by concluding remarks in Chapter 7. 



2 Basic Theory of Jitter 

Delay is a well-known problem that telephone network planners have had to manage 

since the early days of telephony [I]. Today's telephone networks have been designed to 

keep jitter effects imperceptible for most customers. However, when carrying voice over 

IP, it becomes much more difficult to control delay. Designing an acceptable service thus 

requires sophisticated technology and optimization of all components. 

2.1 Media Path of IP Telephony 

The media path of IP telephony calls can be modeled as shown in Figure 2 

AID AID 

+ DIA Egress signal processing 

4 
DIA 

IP network P 
I I I I 

Figure 2: Media path of IP telephony calls 

IP stack 

Figure 2 indicates a situation when a call is setup between two parties over a network. 

The LDX VoIP application works with digital speech samples provided by the analog to 

digital converter (AID). The ingress signal processing of the VoIP application consists of 

different voice encoders. Incoming digital voice samples are compressed by one of the 

voice encoder algorithms into compressed voice frames. Compressed voice frames are 

sent to the network through the IP stack. 

IP stack 

After encoded voice frames are transmitted across the network, they are received by the 

IP stack of the receiving party. The voice frames are then decoded by one of the voice 

decoder algorithms of the egress signal processing part of the VoIP application. The 



reconstructed speech samples are converted back to analog signal by the digital to analog 

(DIA) device so the client can hear. 

2.2 What is Jitter? 

Jitter on a particular packet refers to the difference between the actual arrival time and the 

arrival time if the packet traversed the network with minimal delay. 

Ta (n) = Ts ( n )  + Rn + J(n) Equation 1 

where: 

Ta (n) = arrival time of the nth packet 

T s  ( n )  = send time of the nth packet 

Tm = minimum transit time over all n packets (i.e., minimum of Ta(n) - Ts(n) 

over all n) 

J (n) = random delay (jitter) associated with the nth packet 

Jitter may change over time because of network traffic conditions. If jitter stays constant, 

we are referring to the situation when the random delay (jitter) associated with all the 

packets stays within a constant range throughout the call period. In other words, the 

difference between maximum and minimum delays is the same throughout the call period 

when the jitter stays constant. Normally, the maximum difference between the maximum 

and minimum delays is taken as the jitter encountered by the packets on the network. 

In the absence of jitter, packets are received from a network connection at regular 

intervals, assuming T s  (n) is regular. The arrival of each packet at its destination is 

delayed from the time of its origination at the far-end of the network by the fixed network 

delay. It is reasonable to release each packet to the active decoder as soon as it is 

received so delay is minimized at the destination. This trivial case is illustrated below in 

Figure 3. 
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Figure 3: Packet timeline for zero jitter condition 

The above condition will only happen in an ideal situation or on an isolated network. In 

normal situations, there is always some randomness in the propagation delay in addition 

to the fixed network delay, resulting jitter. The randomness in propagation may be a 

result of network traffic congestion, variation in processing time of different the IP stack, 

et cetera. In such a case, packets arrived with minimum delay must be held for a period 

at least equal to the known jitter. 
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Figure 4: Packet timeline for known constant jitter 

In Figure 4, the second packet sent to the network by the sender at time 5 ms has 

encountered an extra 10 ms delay compared to all the other packets. We say that there is 

10 ms jitter associated with the network where the packets are sent across. If packets are 

released to the active decoder once they are received from the network, there will be a 10 

ms gap (between time 25 to 35 ms) in the reconstructed speech. 

In a packet voice application, packets are held in a place called the jitter buffer on the 

egress side. A jitter control module is used to control the release of the packets to the 

active decoder. If packets were held in the jitter buffer for duration shorter than the 

known jitter (10ms in the above example), an underrun would occur and there will be 

gaps in the reconstructed speech. 

Sometimes packets will be sent through different paths to the destination, resulting in 

packets arriving out of order. The out of order packet appears to be "lost" but eventually 

arrives late. The situation of packets arriving out of order is illustrated in Figure 5. 
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Figure 5: Packets arrive out of order 

In Figure 5, the highlighted packet arrived late can either be deleted or inserted into the 

queue of packets stored in the jitter buffer, depending on the jitter buffer status. How the 

jitter control module handles out of order packets is dependent on the design specification 

of the particular voice application. 

Other than the random delay caused by network transmission, clock drift is another type 

of source for variation of packet arrival time [3]. Clock drift is a result of system clock 

mismatch between the two systems involved in the call. The system with a faster clock 

will decode the packets at a faster rate compared to rate at which packets arrive from the 

network. The jitter buffer on the faster side is likely to undermn more frequently. On the 

other hand, the slower side will decode the packets at a slower rate compared to the rate 

at which packets arrive from the network, resulting in the building up of the jitter buffer. 

Equation 1 is a simplified equation of the packet arrival time that ignores the effect of 

clock drift. If clock drift is take into account, the packet arrival time will change over 

time, regardless of the network condition. 

Ta  ( n )  = T s  ( n )  + Trn + J (n)  + D(n) Equation 2 

where D ( n )  is the delay caused by clock drift. This delay changes with time and is 

determined by the amount of clock drift between the two calling parties. If the receiving 



end is slower than the sender, D ( n )  will be smaller than D (n+ 1 ) because the sender is 

sending packets at a faster rate compare to the receiver's clock. 

The variation in packet arrival time due to clock drift is less significant than the other 

components of jitter and it will only show up in calls with very long durations. The exact 

equation of determining the relation between D ( n  ) and D ( n+ 1 ) is complicated and is 

outside the scope of this document. The other components of jitter are discussed in the 

following sections. 

2.3 Delay in a VolP Telephone Network 

Digital speech samples are compressed using different voice coders before being sent out 

across the network. Compressed speech is sent through the IP network in units called 

packets. The packets encounter five major types of delay [2]. 

1) packetization delay at the source 

2) queuing delay at the IP stack 

3) a fixed processing delay 

4) transmission and propagation delay 

5) a jitter compensation or depacketization delay at the destination 

The following sections will provide brief descriptions of the different types of delay 

shown in the above list. 

2.4 Packetization Delay at the Source 

Most voice coders are frame oriented [I]. This means that they compress fixed-size 

chunks of linear samples, rather than apply compression on a per sample basis. Therefore 

the audio data stream needs to be accumulated until it reaches the chunk size, before 

being processed by the voice coder. This sample accumulation takes time, and therefore 

adds to the end-to-end delay. In addition some coders need to know more samples than 

those contained in the frame they will be coding (this is called lookahead). 



In order to reduce delays on an ideal network, the chosen voice coder should thus have a 

short frame length. Unfortunately coders with larger frame sizes tend to be more 

efficient, and have better compression rates. Another factor is that each frame is not 

transmitted "as is" through the network - a lot of overhead is added by the transport 

protocols for each packet transmitted through the network. If each compressed voice 

frame is transmitted in a packet of its own, this overhead is added for each frame, and for 

some coders, the overhead will be comparable to if not greater than the useful data. To 

lower the overhead to an acceptable level, most VoIP applications choose to transmit 

multiple frames in each packet. A superpacket is a network packet with multiple voice 

frames concatenated in it. The idea of superpackets is illustrated in Figure 6. 

coder output 

Figure 6: Superpacketization of encoded data 

single frame per packet header 

superpacket 

The packetization delay depends on the type of voice coder being used and the size of the 

superpacket being chosen. As long as the voice coder and the superpacket interval are 

unchanged, the packetization delay will remain constant. 

compressed voice frame header 

2.5 Queuing Delay at Each IP Stack 

A packet suffers queuing delay when there are other packets that arrived earlier or 

simultaneously to the IP stack and the Ethernet driver. It may need to wait in a queue 

until the stack and the driver finish processing the packets arrived earlier. The delay is 

random and depends on the traffic load and on the stack architecture [2 ] .  

compressed voice frame 

header compressed voice frame compressed voice frame 



2.6 Processing Delay 

In addition to the queuing delay, the packet undergoes an almost deterministic processing 

delay at the sending and receiving end caused by the encoding and decoding process. 

Processing delay on the encoder side refers to the time needed by the processor to 

generate the voice frame provided that the raw speech samples are available. Processing 

delay on the decoder side refers to the time required by the processor to decode the 

received compressed voice frame from the network. 

Although this processing delay is referred to as deterministic, it varies on processors with 

different speed and depends on the complexity of the active voice coder. For example, 

both G.728 and G.711 are 5 ms voice coders. G.728 encoder takes 28 million cycles per 

second (MCPS) while G.711 encoder only takes less than 0.35 MCPS. The processing 

delay of G.728 encoder is 1.4 ms while that of G.711 is less than 0.2 ms while running 

within a 5 ms thread on a 100 MHz processor. 

The processing delay of the same encoder or decoder may have a slight variation, 

depending on the type of input signal. For example, the processing delay of the G.728 

encoder is longer when the encoder is handling active speech signal, while the processing 

delay is shorter when the input signal is silence. The variation is caused by the difference 

in computation resource to handle different types of input signal; and less MCPS is 

required to handle silence in most cases. The variation of processing delay based on 

input signal only applies to complex voice coders such as G.729, G.728 and G.723.1, it is 

not applicable to stateless sample-based voice coders like G.711. 

2.7 Transmission and Propagation Delay 

Transmission and propagation delay refers to the time required to transmit the network 

superpackets from the source to the destination through the IP network. This delay is 

dependent on the network traffic as well as the quality of the equipment. 



Among the above four types of delays described in Sections 2.4 to 2.7, only the queuing 

delay and the propagation delay are random and may change over time, these are the 

major sources of what we referred to as jitter in Section 2.2. 

2.8 Jitter Compensation Delay 

Other than network jitter and clock drift, some other network impairments include packet 

lost and packet duplication. In order to cope with all these network impairments, packets 

are held in the jitter buffer, resulting in delay for jitter compensation. How long the 

packets are held within the jitter buffer depends on the network conditions, the jitter 

control algorithm, as well as the size of the jitter buffer. 



3 Structure of Packet Voice Exchange service 

The Packet Voice Exchange (PVE) service is part of the LDX VoIP application. The 

service provides ingress and egress processing of the speech signal. Please refer to 

Figure 7 in the following sections. 

t Network superpaackets 

forming 

compressed voice frames 
or SlDs 

voice encoder L; 
raw speech samples 

lnress speech 
processing 

Network superpaackets 1 
breaking down the 

network 

compressed voice frames 
or SlDs 

jitter 
compensation 

decoder * reconstructed samples speech 

Egress speech 
processing 

Figure 7: Ingress and egress signal processing of the PVE service 

3.1 PVE Ingress Signal Processing 

The digital raw speech samples are provided by the AID converter. When enough raw 

speech samples have been accumulated, they will be sent to the PVE service for ingress 

signal processing. The Voice Activity Detector (VAD) will first examine the incoming 

voice signal. If the signal contains no active voice, a Silence Insertion Descriptor (SID) 

will be generated and the voice encoder will not be called. If the incoming signal 

contains active voice, the voice encoder will be called to generate compressed voice 

frame. 

The individual compressed voice frames are sent to the packetization module of the PVE 

service, where they will be grouped together to form network superpackets (with 



appropriate header information attached). The superpackets are now ready to be sent to 

the network. 

The size of a SID is small compared to a compressed voice frame. Also, normal voice 

conversation is silent (contains no active speech) more than half of the time. As a result, 

using a VAD algorithm results in a more efficient use of the bandwidth available. 

3.2 PVE Egress Signal Processing 

When a network superpacket arrives at the PVE, it will first be broken down into native 

compressed voice frames by the depacketization module. The native frames will then be 

held in the jitter buffer for jitter compensation, where the jitter control module is 

responsible for controlling the release time of the voice frames. 

The elements stored in the jitter buffer can either be SIDs or native compressed voice 

frames. There may be gaps in the packet stream as a result of packets lost or packet 

reordered. A Comfort Noise Generator (CNG) will be called when SIDs are received 

indicating that the far-end is having an inactive signal input. A voice decoder is called to 

decode the normal voice frames. In cases of other network impairments like lost or re- 

ordered packets, a Packet Loss Concealment (PLC) algorithm will be called to bridge the 

gaps in the decode speech samples. 

Based on the elements stored in the jitter buffer and the algorithm being used, the jitter 

control module decides whether the CNG, the PLC or the voice decoder will be called. 

Linear Pulse Code Modulation (PCM) samples will be generated upon calling one of the 

three modules. Samples generated will be sent to the D/A converter for output. 



4 Jitter Control Algorithm 

As seen in Chapter 2, a jitter control module is required to handle the asynchronous 

arrival of packets from the network interface. The jitter control module must determine 

when to release speech frames to the speech decoder, when to play comfort noise, when 

to perform packet repeats to cope with lost frames or to extend the depth of the jitter 

queue, and when to perform packet deletions in order to decrease the depth of the jitter 

queue [4]. 

The challenge in jitter control is to ensure that the synthesized decoded voice is 

reproduced without delay variation whilst minimizing the end-end delay. These are 

competing priorities, and so a properly designed system along with an acceptable 

engineering trade-off between quality and delay is required. 

Before we go over the high level description of the jitter control algorithm, there are 

some terms that are commonly used in discussions related to jitter. 

4.1 Glossary Related to Description of Jitter Control Module 

The far-end - is the originator of the network packets relative to the egress voice path 

where the jitter control module is situated. 

The near-end - is the consumer of network packets relative to the egress voice path. 

Packet timestamp - a number associated with each received packet that is generated by 

the far-end, which is incremented at regular intervals with respect to time and dependent 

on the active encoder being used. 

Jitter bu .e r  underrun - a condition where the jitter buffer is empty during an active 

speech period (non-silence), or when packets are expected. 



Underrun duration - the duration of the period when the jitter buffer is empty until the 

arrival of the first packet following the underrun. 

Jitter bufier overrun - a condition where either the number of packet exceeds the 

maximum number that can be stored in the jitter buffer, or the total playout time of the 

packets held in the jitter buffer exceeds the maximum allowable buffered playout time of 

the jitter buffer. 

4.2 Jitter Control Module Operation Modes 

A jitter control module usually has two modes of operation: variable holding time and 

fixed holding time. 

4.2.1 Variable Holding Time 

Adaptive jitter control is provided using holding time compensation and clock drift 

compensation. The holding time of packets in the jitter buffer changes with time, 

depending on the network conditions and clock drift between the calling parties. Packet 

deletions and packet repeats are used to adapt the packet holding times within the jitter 

buffer. 

With an adaptive jitter control algorithm, jitter compensation delay discussed in Section 

2.8 is longer when the packets encounter higher levels of jitter. 

4.2.2 Fixed Holding Time 

The fixed holding time mode provides no adaptive jitter control. Packets are held in the 

jitter buffer for fixed period of time, which is usually based on the worst-case jitter 

scenario. Packet deletions will only take place in an overrun condition. Packet repeats 

are used in an underrun condition. In this mode, the holding time of packets within the 

jitter buffer will not change regardless of the network conditions. 



The fixed holding time mode of the jitter control module is used when quality of the 

decoded speech is the biggest concern. Since the packet holding time within the jitter 

buffer is based on the worst-case scenario, packet repeats or packet deletions are not 

likely to take place during the call because the jitter buffer is not likely to overrun or 

underrun. However, this fixed holding time mode results in long jitter compensation 

delay. 

Under normal circumstances, an adaptive system offers a much better solution compared 

with a fixed system. This advantage is especially true in cases such as VoIP where the 

worst-case delay variation can be on the order of hundreds of milliseconds. 

Delay measurements shown in Section 5.4 will indicate that an adaptive jitter control 

module is preferred in any network condition when small voice gaps during jitter buffer 

adaptation is allowed. 

4.3 Performance Requirement of the Jitter Control Module 

The primary goal is to maximize perceived voice quality under network changing 

conditions while minimizing either the end-to-end delay, or the jitter compensation delay. 

These are contrasting requirements, so a trade-off is required, especially since jitter is not 

something that is constant or time invariant. 

Other important requirements are documented in Table 1: 



Table 1: Requirements of the jitter control module 

Requirements 

Rapid convergence of the depth of the jitter buffer queue. 

Absolute minimum delay in stationary condition. 

The jitter control module should be able to bride any silence gaps with no 

reconstructed phase jitter. 

Bridging of gaps due to lost packets. This entails controlling the PLC and 

ensuring that there is no phase jitter. 

Handling of out of order packets and redundant packets. 

Robustness to packet timestamp anomalies, steps in delay and clock drift. 

Under the condition of initial high level of network jitter followed by a period of 

low level of network jitter, the holding time of the packets within the jitter buffer 

should decrease at a rate of 1 ms per 1 second to minimize the jitter 

compensation delay. The decrease rate was chosen arbitrarily, based on the 

requirement that the jitter buffer size should not decrease too rapidly to minimize 

the glitches caused by packet deletes. 

The holding time of the packets within the jitter buffer should increase quickly in 

response to increased network delays, which will result in underrun conditions. 

The holding time of the packets should increase with a step size as large as the 

underrun duration, limited by the depth of the jitter buffer. 

Under the condition of maximum jitter, the jitter control module should aim for a 

holding time of packets within the jitter buffer less than or equal to the network 

jitter. 

The adaptive jitter control module should have a mode of fixed packet holding 

time, as described in Section 4.2.2, for situations where voice quality is critical 

and no packet repeat or packet deletion is allowed. 

The jitter control module should compensate for clock drift between 0 to 200 

parts per million (ppm). 



I I Requirements 

I 1 of VAD on the far-end. Adaptive behavior should not be dependent on whether 
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I I the far-end VAD is activated. 

The jitter buffer must tolerate all packet arrival scenarios occurring due to the use 

4.4 Design Issues of the Jitter Control Module 

Major issues for consideration in the design of the adaptive jitter control module are 

discussed in Sections 4.4.1 to 4.4.3. 

4.4.1 Release Time of First Packet 

The decision of when to release the first packet held within the jitter buffer is paramount 

and is based on the estimated level of network jitter made using the timestamps of 

received packets. The packet with the earliest timestamp is released to the active decoder 

after being held in the jitter buffer for a predefined target holding time. This packet can 

be released earlier if subsequent arrivals can prove that the first packet was actually 

delayed. 

4.4.2 Holding Time Adaptation 

The holding time of the packets in the jitter buffer should adapt quickly to jitter buffer 

underruns, since this scenario indicates that the network delay is at a higher level than 

estimated by the jitter control module. On the other hand, the holding time of the packets 

within the jitter buffer should slowly reduce when the jitter control module estimates that 

the packets are being held too long in the jitter buffer compared to the current network 

jitter. 

Packet repeats and packet deletions are used to increase or decrease the packet holding 

time within the jitter buffer respectively. Packet repeats will result in the PLC being 

called to bridge the gaps within the reconstructed speech. Whenever possible, packet 

deletions and repeats should be deferred until a period of relative silence to minimize the 



impact on perceived voice quality. Extending the silence gaps from, for example, 1.2 

seconds to 1.205 seconds is inaudible. 

The speed of adaptation of the packet holding time within the jitter buffer is listed in the 

jitter control module specification in Section 4.3. However, the adaptation speed of the 

jitter control module in different applications may vary based on different customer 

requirements. For example, some customers prefer the holding time to increase slowly 

and to decrease quickly. This particular configuration avoids holding time increases 

when the jitter is occasionally bursty, with a tradeoff in voice quality when the jitter 

buffer underruns due to a jitter burst. The jitter control algorithm must be flexible 

enough to cope with different customer requirements. 

4.4.3 Debug Information Provided by the Jitter Control Module 

The jitter control module should provide debug statistics including packet repeats and 

deletions information. Jitter control module statistics are important to service modules 

such as the Echo Canceller (ECAN) and the Call Discriminator (CDIS). Jitter control 

module statistics will be discussed in detail in Section 4.10. 

4.5 Key Variables within the Jitter Control Module 

The key variables within the jitter control module include: 

CT -the current holding time of packets within the jitter buffer. This variable 

contains an up-to-date estimation of the worst-case jitter. 

maxT - maximum holding time of packets observed throughout the call 

duration. 

minT - minimum holding time of packets observed throughout the call 

duration. 



The minT and maxT parameters are used as long-term indicators of jitter. Both variables 

are used to determine if cT  needs to be adjusted. Upon start up condition, CT will be set 

to a predefined register value (set by the client) and adapts up or down from there. The 

predefined register value is set based on known network conditions. If the network 

conditions are unknown, cT can be initialized to zero, which means the first arrived 

packet will be released right away. The jitter control module should be able to increase 

or decrease cT  based on the network jitter condition regardless of the predefined register 

setting. Having a correct predefined register setting eliminates the gaps in the 

synthesized speech caused by jitter buffer adaptation upon startup. Once the jitter control 

module is synchronized, the three parameters, cT, minT and maxT, should remain 

relatively constant as long as the network conditions are stable. 

4.6 An overview of the Jitter Control Module algorithm 

An overview of the jitter control module algorithm is provided in Sections 4.6.1 and 

4.6.2. 

4.6.1 Unknown network conditions 

Assuming that the current network conditions are unknown, the packet holding time (CT) 

will be initialized to zero and the packet that arrives first will be released right away. If 

the network jitter is non-zero, then the jitter buffer will underrun when the packets are 

being held not long enough in the jitter buffer. cT  will increase based on the undenun 

duration as described by the requirements number 8 stated in Table 1. After the jitter 

control module is synchronized, all parameters should be stable unless the network 

conditions change, and cT  and maxT should be very close to (if not the same as) the 

network jitter level. Tracking parameter minT should be very close (if not equal) to 

zero, indicating the packets that experienced the longest network delay are just held long 

enough in the jitter buffer to avoid underrun. If the network conditions change and the 

network jitter level decreases, then the tracking parameter minT will be non-zero and the 

packet holding time within the jitter buffer should decrease at the rate specified in 



requirement number 7 of Table 1. Test results indicating how cT, maxT and minT work 

are provided in Section 5.3.1. 

4.6.2 Known network conditions 

If the network conditions are known, the client can preset a register value to be used as 

the initial packet holding time within the jitter buffer. Upon start up condition, CT will 

be set to the predefined register value and adapts up or down based on requirements 

stated in Table 1. cT will never decrease below the predefined register value because it 

is assumed that this is the known network conditions and the end-to-end delay caused by 

this particular jitter buffer size is accepted. However, it will increase when the jitter 

buffer underruns, which indicates that the preset register value is too low and jitter buffer 

size increase is necessary to maintain voice quality. In cases where cT has been 

increased, it is possible to decrease it based on the same algorithm as described in 4.6.1 

when the network condition changes and the network jitter level decreases. 

Presetting the initial packet holding time of the jitter buffer helps prevent gaps in the 

synthesized speech in the beginning of a call caused by the holding time adaptation. 

However, gaps cannot be avoided if the preset value is too low, meaning that jitter buffer 

underrun can still occur. In addition, the end-to-end delay will be undesirably high if the 

initial packet holding is preset to a value that is unnecessarily high. This means that the 

initial packet holding time should not be preset unless the user has a complete 

understanding of the network conditions. In most applications, it is recommended that 

the user should not preset the initial packet holding time and should allow the jitter 

control module to adapt depending on the network conditions. By default, the initial 

packet holding time is set to zero. 

The algorithm of the adaptive jitter control module is summarized in Figure 8. 
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Figure 8: Block diagram of the adaptive jitter control module algorithm 

4.7 Difference Between the Two Modes of Operation 

As discussed in Section 4.2, the jitter control module has two modes of operation: 

variable holding time (adaptive) and fixed holding time. The adaptive mode is the 

operation mode when the jitter control module tracks the network jitter and adjusts the 

size of the jitter buffer accordingly. The fixed holding time mode is the operation mode 

when the holding time of the packets are fixed, packets will be held at least a certain 

amount a time in the jitter buffer before being played out by the voice decoder. 



4.7.1 Jitter Buffer Underruns 

The jitter buffer will underrun when voice packet is not available when expected. This 

means that the jitter buffer is not built large enough to handle the current network jitter. 

When the jitter control module is operating in the adaptive mode, a jitter buffer undermn 

will occur whenever the network jitter increases to a level higher than the level estimated 

by the jitter control module. In other words, when the jitter control module is operating 

in the fixed holding time mode, the jitter buffer will only underrun when the network 

jitter is higher than the preset fixed packet holding time. Since the packet holding time of 

the fixed holding time mode is set based on the estimated worst case network jitter, a 

jitter buffer underrun will occur more likely in the adaptive mode. However, this is only 

limited to the beginning of a call when the jitter buffer is synchronizing to the current 

network condition. The jitter buffer should not undenun even when operating in adaptive 

mode after it has synchronized, unless the network condition changes. 

4.7.2 Jitter Buffer Overruns 

Jitter buffer overrun occurs when the memory allocated for the jitter buffer is all used up, 

or in order words, when the jitter buffer can no longer queue up the new incoming 

packets. This situation usually occurs when a burst of packets arrive from the network. 

With the current implementation of the jitter control module, each channel of the system 

is assigned a fixed sized array that forms the jitter buffer. The memory allocated for the 

jitter buffer is defined at compile time and will not be changed regardless of the run-time 

network condition. 

If currently there is x ms or data stored within the jitter buffer, and the memory allocated 

can store y ms of data, an overrun situation will only occur when a burst of data bigger 

than (y-x) ms arrives at the same time. This means that as the smaller the jitter buffer is 

built up, the larger the burst of packet it can receive at the same time. 



Figure 9 summarized the memory usage of the jitter buffer managed by the jitter control 

module. The headroom mentioned in the figure is a measure of the size of the packet 

burst the jitter buffer can handle without overrun. 

part of memory filled headroom that can receive a burst 
with packets of packet without overrun 

4 b 
fixed size memory allocated for jitter buffer use 

Figure 9: Memory Organization of the jitter buffer managed by the jitter control module. 

When the jitter buffer is operating in the fixed holding time mode, the jitter buffer is 

expected to be built largest because the packet holding time is defined based on the 

known worst case jitter. In other words, there is a higher chance that the jitter buffer will 

overrun when the jitter buffer is operating in fixed holding time mode, when a big burst 

of packet arrive. However, the above only applies to the case when the actual network 

jitter is less than the worst case. When the jitter control module is operating in adaptive 

mode in network with the worst case jitter, the jitter control module will build up a large 

jitter buffer, jitter buffer.ovenun will still occur when a big burst of packets arrive at the 

same time. 

4.8 The Size of the Jitter Buffer vs End-to-end Delay 

The end-to-end delay of the voice path is dependent on components discussed in Sections 

2.3 and 2.8, among which only the jitter compensation delay is affected by the jitter 

control module. The jitter compensation delay is dependent solely on the target holding 

time of the packets within the jitter buffer, as determined by the jitter control module 

based on the network conditions. If the jitter control module determines that the packets 



should be held longer within the jitter buffer, a larger jitter buffer will be maintained and 

the jitter compensation delay will be longer as a result. 

Basically, the size of memory allocated for the jitter buffer storage will not affect the 

jitter compensation delay, except that it limits the size of the jitter buffer, which only 

plays a part when the worst-case jitter exceeds the maximum allowed jitter buffer size. 

The memory allocated for the jitter buffer storage limits the maximum size of the jitter 

buffer, which in turn limits the maximum jitter compensation delay. 

4.9 Details on Memory Allocated for the Jitter Buffer 

When a jitter buffer is claimed to be an x ms jitter buffer, this means that when the jitter 

buffer has tracked the network jitter correctly, it can operate in a network with x ms of 

network jitter without overflowing or underrunning. When the size of the memory 

allocated for the jitter buffer storage cannot store the entire jitter buffer needed for the 

current network condition, overrun will happen and packets that cannot be stored will be 

discarded. The voice quality is expected to be poor in such a case because gaps will be 

introduced in the synthesized speech. 

In order to support an x ms jitter buffer, the memory that is able to store two times x ms 

of data needs to be allocated. Two times the memory is required because we need to 

ensure that the jitter buffer will not overflow when the jitter buffer has adapted to x ms 

(storing x ms worth of data), while another burst of x ms of data arrive at the same time. 

The above situation would happen when suddenly the network condition changes and the 

all packets a transmitted through the network with minimum network delay (jitter level 

drops to zero ms). 

4.10 Jitter Control Module Statistical Variables 

Statistical variables are important in analyzing the status of the jitter control module. It 

also shows if the jitter control module is operating as expected. Table 2 summarizes the 

important jitter control module statistical variables. 



Table 2: Jitter control module statistical variables 

Variable Name 

peak holding time since last statistics query 

the number of packets received from the network 

the number of packets added to the tail of jitter buffer, this 

refers to the normal case when packets arrive in order 

the number of packets arrived out of order 

decoder overrun count, this refers to the time the jitter buffer is 

full 

the number of duplicate packets deleted. 

the number of packets with timestamps too far from the 

timestamps of the packets currently stored within the jitter 

buffer, this refers to the case when the jitter buffer is not 

storing enough packets for jitter compensation. The holding 

time (cT) is expected to increase in this case. 

the number of packets cannot be decoded, this refers to packets 

with a bad packet header 

the number of jitter buffer underruns 

the number of packet deletes done to reduce packet holding 

time 

number of packet repeats done to either increase holding time 

or due to lost frame 

the number of times the jitter buffer re-initialized. The jitter 

buffer usually re-initialized after overrun 

the number of times the jitter buffer inserted a phase 

discontinuity, this include doing a frame repeat or a frame 

deletes 



4.1 1 Instance Memory Organization of PVE 

The PVE service has to allocate data memory to save the state variables of the service. 

This chunk of memory is called the instance memory and is allocated on a per channel 

basis. The jitter buffer used by the jitter control module to store the incoming encoded 

voice frame is part of the instance memory of the PVE service. The organization of the 

PVE instance memory is summarized in Figure 10. 

PVE control variables l-----I 
Encoder State 

memory 

Decoder State 
memory 

Jitter Buffer Storage 

Figure 10: PVE service instance memory organization 

The PVE control variables are variables and register values that control the operation of 

the service. This control variable set includes the configurations of the active encoder 

and decoder, the superpacket setting, the configuration of the jitter control module, et 

cetera. The size of this variable set is independent of the active voice coder. 

The encoder state memory and the decoder state memory are instance memories of the 

active voice coder. The instance memory requirement is directly dependent on the 

complexity of the voice coder. For example, the encoder instance memory requirement 

of G.711 is only 2 bytes while the requirement of a G.729E encoder is 1986 bytes. 

The memory required by the jitter buffer storage depends on the size of the jitter buffer 

supported by the jitter control module (the number of entries in the jitter buffer). The 

storage requirement is also dependent on the size of the encoded voice frames stored in 

the jitter buffer (the size of each entry in the jitter buffer). 



5 Testing and Results 

In Sections 5.1 and 5.2, we are going to discuss the two major testing environments we 

have implemented to test the newly integrated jitter control algorithm: simulation on a 

personal computer (PC) and real time testing in the Quality Assurance (QA) department. 

Results from both environments have been utilized to verify the performance of the 

newly integrated jitter control module. However, due to limitations of the real time test 

setup in the QA department, we can only perform jitter test cases with periodic disruption 

using the real time test setup. The PC simulation environment will be used to perform 

more complicated testing: including jitter test cases with random disruptions and test 

cases with changing levels of network jitter. 

Test results will be studied in Sections 5.3 and 5.4 based on three major aspects: 

statistical results based on the statistics variables of the jitter control module discussed in 

Table 2, voice quality measurement of the synthesized speech, and measured results 

based on the end-to-end delay of the voice path. 

5.1 Testing Using PC Simulations 

A PC application calling the C model of LDX was written. The application was written 

to provide a non-real time PC simulation environment for the developer. This software is 

particularly useful because running real time tests on the target platform is time 

consuming. The application is separated into two parts: ingress signal processing and 

egress signal processing. 

The ingress signal processing part reads linear PCM data as input (to simulate the AID 

converter). The speech service will then take this data and create encoded speech frames, 

which are written out to a file as output by the PC application. Timing information 

indicating when the encoded voice frames are generated is included in the output file. An 

example of an entry in the output file from the ingress signal processing simulation is 

shown in Figure 1 1. 



generation time of packet packet header encoded data 

Figure 11: Output from ingress signal processing part of PC simulation 

The egress signal processing simulation reads in compressed voice frames from a file as 

input. The format of the input file to the egress signal processing part is the same as 

shown in Figure 11. Timing information is included in the input file to indicate when is 

the time to read in a voice frame. The input voice frames will be handled by the speech 

service for jitter compensation and voice decoding. Synthesized speech will be written 

out to a file (in linear PCM format) for voice quality analysis. 

In a jitter free scenario, the output file from the ingress processing simulation is used 

directly as the input file to the egress signal processing simulation. In this way, the 

packet generation time in the output file will be the time when the packet is being 

handled by the egress signal processing simulation. 

The output file from the ingress simulation can be modified before being used as input to 

the egress simulation. The timing information in the first column can be modified 

(increased or decreased) to simulate network jitter. Also, entries in the file can be 

reordered, duplicated or deleted to simulate other network impairments. Individual test 

cases will be set up for different types of impairments to ensure that the jitter control 

module can handle different types of impairments. Test cases with all sorts of 

impairments applied at the same time will also be included to ensure that the jitter control 

module can handle different types of impairments at the same time. 

Figure 12 shows an example of inserting network impairments to the output file from the 

ingress simulation. The left part of the figure is the original output file from the ingress 

processing simulation; and the right part of the figure represents the input to the egress 

simulation after network impairments have been inserted. 



The first column indicates the timing information, represented in units of samples (at an 8 

kHz sampling rate). The timing information has been modified to simulate a jittery 

network. The packet rate being used in the above example is 10 ms (80 samples at an 8 

kHz sampling rate), so in a jitter-free test scenario, we are expecting packets to arrive at 

lOms intervals, so the entries in the first column are incrementing at step sizes of 80 

samples. The entries in the fifth column, highlighted in blue, are the timestamps of the 

encoded voice frames and are expected to increment at 80 samples intervals. As 

indicated in pink, if there is no jitter, encoded voice frame with packet timestamps 1360 

and 2240 samples should arrive at time 1680 and 2520 respectively. The arrival time of 

the packets is delayed by 120 and 160 samples (15 ms or 20 ms) respectively after 

inserting 20ms jitter to the packet stream. Also an encoded voice frame with timestamp 

1520 samples has been deleted from the file to simulate a lost packet scenario. 

The second to the fourth column represents other information contained in the packet 

header, including the encoder being used, the packet type (whether it is an encoded voice 

packet or a SID) and the size of the packet. The data stated from the sixth column 

onwards indicates the encoded voice. The number of columns required to represent the 

encoded voice depends on the encoder being used. 



Original output file from the ingress simulation input file to egress simulation with network impairments 
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Figure 12: Inserting network impairment to the output file from ingress simulation program 

5.2 Real Time Testing as a Whole System 

The test environment described in Section 5.1 is a non-real time simulation running on 

the PC. It is not sufficient to run tests on the PC only because the timing variation is 

different on the target platform. Also, many algorithms are coded in assembly language 

for efficient use of the DSP resources, while the PC simulation is running the C models 

of all the algorithms. This difference means that much of the code running in the real 

time system is not tested in the PC simulation. It is always necessary to run real time test 

on the target platform to ensure that the system is trouble free. 

To test the newly integrated jitter control module, a test application that is able to 

generate network traffic congestion has been created. On the ingress signal processing 

part, different sizes of blank User Datagram Protocol (UDP) packets are generated by the 

test application. These blank UDP packets will be injected to the out-going packet 

stream generated by the LDX system to the network. The blank UDP packets are there to 

consume part of the available bandwidth and create network congestion. The blank UDP 

packets cannot simulate congestion caused by different network traffic, but other sources 



of traffic congestion are not used in order to keep the testing environment simple. The 

blank UDP packets will be filtered out when they get to the egress side of the receiver 

running the same test application. Only the encoded voice frames will be passed down to 

the LDX system for egress signal processing. 

A network emulation package that runs on Linux called NIST Net, provided by the 

National Institute of Standards and Technology, is being used in the above test 

environment [5 ] .  The NIST Net network emulator is a general-purpose tool for 

emulating performance dynamics in IP networks. By operating at the IP level, NIST Net 

can emulate the critical end-to-end performance characteristics of the networks. The tool 

is designed to allow controlled, reproducible experiments with network performance 

sensitive or adaptive applications and control protocols in a simple laboratory setting. 

In this test application, all packets, both encoded voice frames and the blank UDP 

packets, are sent across the network controlled by NIST Net. The NIST Net emulator is 

used to control the available bandwidth of the network. NIST Net uses a big internal 

buffer to hold all the packets it receives from the sender. The amount of data that it will 

send to the receiver is based on the configured bandwidth of the network under control. 

If the amount of data NIST Net received from the sender temporarily exceeds the 

available bandwidth, the extra data is stored temporarily within the NIST Net internal 

buffer, and those extra data will be sent to the receiver later when bandwidth is available. 

In this test application, blank UDP packets with different sizes can create different jitter 

scenarios based on proper NIST Net configurations. Figure 13 summarizes the test setup 

used to run the real time test on the jitter control module. 
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Figure 13: Architecture of real time test setup 
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Figure 14 shows the network traffic congestion caused by the blank UDP packets 

t t 

generated by the test application. 
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Figure 14: Effect of inserting blank UDP packet to cause network congestion 

When a competing UDP packet is traveling across the network, it causes the encoded 

voice frames to be held up. Once the UDP packet has gone across the network, the 

buildup of the encoded voice frames are then flushed down the network. Therefore the 

amount of jitter is dependent upon the size and time that it takes for the blank UDP 

packets to travel to the destination. 

The size of the blank UDP packets is configured by the desired amount of jitter based on 

the available bandwidth. Just as an example, if NIST Net provides 128 kbps of 

bandwidth, 1840 bytes of blank UDP packets will be generated at a 1 second interval to 

create approximately 120 ms of jitter when the superpacket interval is set to 20ms. Blank 

UDP packets of 1840 bytes are used because about 140 ms is required to transmit 1840 



bytes of data at the 128 kbps bandwidth available. The packets are expected at 20ms 

interval in a jitter free scenario, the packets sent immediately after the blank UDP packet 

will experience 140ms delay, meaning that it is delayed by 120 ms extra. Packets 

following this particular packet will be blocked in the temporary buffer of NIST Net. 

After the blank UDP packet is sent to the destination, all the packets held in the NIST Net 

temporary buffer will be flushed down the network, meaning that some packets will 

experience a lower network delay. 

Both the peak jitter and the distribution of jitter times are important: the peak jitter is 

important to ensure that the jitter control module provides an accurate estimation of the 

current network situation; the distribution of jitter times (when the blank UDP packets are 

sent) are important to ensure that the adaptation rate (especially the decrease rate) of the 

packet hold time is as expected. In a jitter free situation, packets should arrive at a 

regular interval, depending on the configured superpacket interval. With the test setup 

configured to generate approximately 120ms jitter and the superpacket interval set to be 

20ms, the distribution of the inter-packet arrival time is shown in Figure 15. 

lnterpacket arrival time (ms) 

Figure 15: Inter-packet arrival time when the test setup is configured for 115ms network jitter 



The above test case is used to simulate network situations when packets arrival is bursty, 

which is very common in an IP network. Other network situations are hard to simulate 

and those test cases are still under implementation. 

In the test setup, NIST Net is configured to provide a network with a bandwidth or 128 

kbps. We need to make sure that the bandwidth required by the encoded voice frames 

plus the blank UDP packets does not exceed the available bandwidth provided by NIST 

Net, or else too much jitter will be created. The bandwidth requirements of the encoded 

voice frames are listed as in Table 3. Note that G.711 20ms superpackets are used in this 

example. 

Table 3: Bandwidth requirement of encoded voice frames 

Network packet component I Bandwidth requirement 
I 

G.7 1 1 payload 1 64 kbps 
I 

RTP packet header (6 words per superpacket) 1 4.8 kbps 
I 

UDP packet header (4 words per superpacket) 1 3.2 kbps 
I 

IP header (10 words per superpacket) 1 8 kbps 
I 

Ethernet header (7 words per superpacket) 1 5.6 kbps 

In the above example, the encoded voice frames will take up 85.6 kbps of the available 

bandwidth. As a result, the blank UDP packets can only take up to 42.4 kbps. Blank 

UDP packets of size 1840 bytes being sent at 1-second intervals will take 15.1 kbps 

including all the headers. If the 1840 UDP packets are generated at a 250 ms intervals 

instead, it will take 60.4 kbps of the bandwidth and this will exceed the available 

bandwidth provided by NIST Net. 

Note that due to limitation in NIST Net and the test environment, the real time test setup 

for the jitter control module can only do simple test cases with periodic disruption as 

indicated in Figure 15, more complicated testing will be performed using the PC 

simulation test environment. 



5.3 Test Results Analysis 

Both C simulation and the real time test described in Sections 5.1 and 5.2 have been 

utilized to verify the performance of the newly integrated jitter control module. Three 

important measurements, the jitter control module statistics, the voice quality 

measurement and the end-to-end delay measurement are being used to analyze the test 

results. 

5.3.1 Jitter Control Module Statistics 

The jitter control module statistics described in Section 4.10 are important measures of 

the jitter control module performance. Based on requirements listed in Table 1, if the 

adaptive jitter control algorithm is being used, the packet holding time within the jitter 

buffer should quickly adapt and should be stable after it adapts, as long as the network 

jitter condition remains stable, which means that the jitter statistics are constant, and the 

network delay experienced by the voice packets only fluctuates within a constant range. 

Also, the packet holding time within the jitter buffer should never exceed the estimated 

network jitter. Packet deletes and packet repeats should be performed only during the 

holding time adaptation, after the jitter control module adapts, no packet repeats or 

deletes should be performed unless there is a packet lost scenario, or when the network 

condition changes. 

Figure 16 is a plot of the peak packet holding time (peakHoldingTime in Table 2 )  and the 

tracker variable minT described in Section 4.5 within the jitter buffer while the test 

conditions are controlled by NIST Net as described in Figure 15, so the network jitter is 

controlled to be 120ms. peakHoldingTime and minT in Figure 16 are plotted at 1-second 

intervals when packets are arriving from a network with 120 ms jitter. The network 

conditions have not been changed throughout the call, so it is expected that 

peakHoldingTime and minT should remain at about 120 ms after it adapts. The 

adaptation parameters used by the jitter buffer is listed in Table 1. Based on the 

specification listed in Table 1, peakHoldingTime should not decrease throughout the call 



because the blank UDP packets are sent at constant interval throughout the call to create 

jitter. 

Except in the first second when the jitter control module is adapting to the network jitter, 

peakHoldingTime stays at 110 ms throughout the call. The packet holding time adapts up 

by performing packet repeats. In this test, the G.711 voice coder with a 5 ms frame rate, 

was used and 22 packet repeats were recorded to adapt the packet holding time from 0 ms 

to 110 ms. After the jitter buffer size adapts to 1 lOms, no further frame repeats or frame 

deletes was observed. Also, note that the tracker variable minT stays 0 throughout the 

call duration, meaning that the packets are held just long enough in the jitter buffer and 

the jitter control module is tracking the network jitter accurately. 

Note that peakHoldingTime does not read 120ms but only read 1 lOms instead is because 

of effect of superpacket interval is taken into account by the jitter control module. With 

voice data received in units of 20ms superpacket, 15 ms jitter is created because the 

native frame rate of G.711 is only 5ms and the packets now come in burst of 20ms 

superpackets. The jitter control module considers the effect of superpackets (15ms) by 

reducing the peakHoldingTime reading accordingly by 15ms, leaving the 

peakHoldingTime reading to be 1 lOms (round up from 105ms) instead. 
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Figure 16: Packet holding time within jitter buffer at 115ms jitter 

The jitter control module statistics from the PC simulation matches the statistics 

recordings from the real time test when the above same test was run. 



The packet holding times vary depending on different network jitter conditions. For 

example, the holding time should adapt to and remain stable at a higher level in a test 

case with higher level of network jitter, or the packet holding time should decrease if the 

network jitter decreases in the middle of the call. 

Figure 17 is a plot of the peak packet holding time (peakHoldingTime in Table 2) and the 

tracker variables minT and maxT described in Section 4.5 within the jitter buffer while 

the test condition are controlled by the PC simulation as described in Section 5.1. The 

network jitter is aimed to be changing throughout the call. Within the call under test, 20 

ms jitter was inserted to the call for 1 second, after that the jitter level was decreased to 

zero. The jitter level stays zero for 20 seconds and them it was bumped up to 50 ms. The 

jitter level only stayed at 50 ms for another second before it was decreased back to zero 

again. 

As we can see from Figure 17, the peak holding time tracks the simulated network jitter 

accurately. The adaptation rate of the packet holding time and the packet deletion 

mechanism for jitter buffer adaptation (when the jitter level decreases) was discussed in 

Section 4.6.1. 
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Figure 17: Jitter control variables when network jitter is changing 

The jitter control module statistics are used in other test cases to ensure that the 

specifications on jitter buffer adaptation rates and the expected performance in other 



network impairments are satisfied. The test case described above is only part of the test 

performed on the jitter control module. Other test cases to stress the system is still under 

construction and verification. 

5.3.2 Voice Quality Measurement 

The jitter control module statistics only verifies that the requirements of the jitter control 

module listed in Table 1 are satisfied. However, problems sometimes exist in the 

modules interacting with the jitter control module. Voice quality is a critical 

measurement in determining the success of the voice application and is included as part 

of the jitter control module testing. As before, voice quality analysis can be performed 

on the PC simulation as well as on the real time system. 

In the real time test, a node plays a reference speech stimulus file to the AID of the LDX 

system. The speech signal is encoded and the encoded voice frames are sent across the 

bandwidth-limited network with the blank UDP packets present to simulate congestion. 

The LDX system on the receiving side performs jitter compensation and decoding on the 

incoming packets. Synthesized speech is recorded and voice quality of the degraded 

speech is validated using the Perceptual Evaluation of Speech Quality (PESQ) method [6] 

[7]. PESQ is an enhanced perceptual quality measurement for voice quality in 

telecommunications approved as part of ITU-T recommendation P.862. The PESQ 

analysis shows the voice quality in terms of PESQ scores ranged from 0 to 4.5, from 

lowest to highest. The voice quality analysis of the LDX system in a jittery network with 

different levels of fixed jitter is listed in Table 4. The test conditions are controlled by 

the blank UDP packets and NIST Net in the same way as described in Figure 15. The 

jitter control module was set in adaptive mode and adaptation specifications listed in 

Table 1 are used to generate the following results. 



Table 4: Voice quality analysis of real time jitter test 

voice coder ( jitter free ( 25 ms ( 50 ms ( 115ms 1 135ms 1 175ms 

I I 1 I I I 

G.726 24 kbps 1 3.85 1 3.84 1 3.83 1 3.84 1 3.82 1 3.83 
I I I I I I 

G.726 32 kbps 4.14 4.15 4.15 4.15 4.12 

Table 4 summarizes the result of voice quality measurement when the jitter control 

module is configured to operate at adaptive mode as described in Section 4.2.1; the voice 

quality measurement is exactly the same when the jitter control module is configured to 

operate at fixed mode as described in Section 4.2.2. This means that the voice quality is 

not affect by the different modes of operation the jitter control module. 

As we can see from Table 4, the voice quality is not affected by the fixed level of jitter on 

the network. Only the end-to-end delay has been increased because the jitter 

compensation delay has been increased as the jitter control module adapts to higher jitter 

levels. Please refer to Section 5.4 for details on end-to-end delay measurements. 

I I L 

The above test case only stresses that the jitter control module is able to track different 

levels network jitter accurately. Other test cases to stress the jitter control module in 

drastic network condition is still under construction. It is expected that the voice quality 

will decrease due to gaps in the synthesized speech when the jitter level is high enough to 

cause jitter buffer to ovefflowlunderflow. 

To show the effect of the jitter control module, non-real time PESQ analysis has been 

performed on synthesized speech of the PC simulation when the jitter control module is 

G.723.1 6.3 kbps 1 3.74 3.75 3.76 3.75 3.76 3.75 



disabled. By disabling the jitter control module, this means that the decoder will play out 

the latest incoming voice frame received from the network. Timestamp information of 

the packets will not be considered. If more than one encoded voice frame arrived from 

the network at the same time, only the voice frame arrived last within the frame tick will 

be decoded, earlier arrivals will be discarded. 

The results of the analysis are shown in Table 5. For simplicity, only G.711 u-law voice 

coder is used in this analysis. 

Table 5: Voice quality analysis when jitter control module is disabled 

jitter level PESQ I 

As we can see from Table 5, the jitter control module is vital in providing speech with 

acceptable quality in a VoIP application. 

The configuration of the real-time test case is quite limited and the same configurations 

needed to be used throughout the voice call, this means the network conditions need to 

remain stable throughout the voice call in the real-time test cases. 

5.4 End-to-end Delay Measurement 

Other than the jitter control module statistics and the voice quality measurement, the end- 

to-end delay of the voice path is also an important measure of the jitter control module. 

Since the real time network conditions are difficult to control, the PC simulation 

environment is used for measuring the end-to-end delay of the voice path. 



The network jitter (and also the simulated jitter inserted in the simulation environment) 

only results in fluctuations of packet arrival times, the average packet arrival time, or the 

average end-to-end delay of the signal path is unchanged by the jitter level, provided that 

the jitter compensation delay mentioned in Section 2.8 is not in the picture. As a result, 

the end-to end delay of the voice path is directly related to the holding time of the packets 

within the jitter buffer. If the minimum end-to-end delay of the simulation environment 

in a jitter free scenario is x milliseconds, the end-to-end delay of the voice path when y 

milliseconds of network delay is inserted should be equal to x plus y milliseconds. If the 

measured end-to-end delay of the voice path is less than x plus y milliseconds, then the 

packets are not being held long enough within the jitter buffer and underruns are 

expected. On the other hand, if the end-to-end delay of the voice path is more than x plus 

y milliseconds, this means that packets are held unnecessarily long within the jitter 

buffer, which is also undesirable. 

The PESQ voice analysis tool provides an option for delay measurement. Delay 

measurements can also be performed on a per utterance basis so the variations in the end- 

to-end delay throughout the call can be analyzed. 

5.4.1 End-to-end delay when jitter level is stable 

Figure 18 shows the end-to-end delay on a per utterance basis of a speech file with 42 

utterances when the jitter level was zero. Each utterance is approximately 1 second in 

length and the same speech file is used in the following measurements for easy 

comparison. 



Figure 18: End-to-end delay when jitter level is zero 

Figure 18 shows that the minimum end-to-end delay of the PC simulation model is about 

27 ms and this quantity will be used as the guideline to show the depth of the jitter buffer 

in the following measurements. 

Figure 19 and Figure 20 are end-to-end delay measurements when the jitter level is set to 

30ms and 120ms. As indicated in Figure 19 and Figure 20, the end-to-end delay of the 

voice path is 57ms and 147 ms when the network jitter is 30ms and 120ms respectively. 

This means that the packets are held just long enough in the jitter buffer since the end-to- 

end delay is 27ms in a jitter free scenario. 
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Figure 19: End-to-end delay when network jitter is at 30111s 

Figure 20: End-to-end delay when jitter level is at 120111s 

5.4.2 End-to-end delay when network conditions are changing 

In this particular test case, the PC simulation test script is implemented to insert different 

levels of network jitter at different time and requirements listed in Table 1 are used in this 

test case. 



Figure 21 shows how the end-to-end delay changes when the network jitter is changing as 

controlled by the PC simulation test script. The jitter level was originally set to 30ms 

when the call just starts and we can see that the jitter control module tracks that correctly 

because the end-to-end delay is about 60ms (as compared to 27ms when there is Oms 

network jitter, indicating that the depth of the jitter buffer is about 30ms). After 1 

second, the jitter level is set to zero and the jitter control module controls the end-to-end 

delay to drop slowly at a rate of about 5 ms per 5 seconds (each utterance is about 1 

second in length) by decreasing the packet hold time within the jitter buffer. Packet 

deletes are used to decrease the packet holding time within the jitter buffer. 

The jitter level stayed at Oms for 20seconds, this means that the jitter control module only 

has time to decrease the jitter buffer size by 20ms. As we can see in Figure 21, the end- 

to-end delay only drops to about 37 ms, meaning that the jitter buffer size is still about 10 

ms (as compared to 27ms when there is Oms network jitter). 

After leaving the jitter level at Oms for 20 seconds, 50ms jitter is inserted into the packet 

stream. As indicated in the figure, the jitter control module quickly picks it up by 

increasing the size of the jitter buffer to 50ms after the jitter buffer tracks the increased 

network jitter level (due to jitter buffer underflow after the network delay has been 

increased). The end-to-end delay is increased to about 80ms, indicating the depth of the 

jitter buffer size is 50ms. The jitter level drops back to zero after 1 second, and the end- 

to-end delay slowly decays at the rate of 5ms per 5 seconds. 



Figure 21: End-to-end delay when jitter level is changing 

5.4.3 Adaptive versus fixed jitter control module 

As discussed in Section 4.2, the jitter control module has two modes of operation: 

variable holding time (adaptive) and fixed holding time. The adaptive jitter control 

module is preferred in most cases because it correctly tracks the network jitter and 

packets will not be held unnecessarily long in the jitter buffer as compared to the fixed 

mode jitter control module configured for the worst-case jitter scenario. 

Figure 22 and 21 show the end-to-end delay of the voice path when the jitter control 

module is in the fixed mode configured at 150ms target size. We can see that the end-to- 

end delay is longer than that seen in Figure 19 and Figure 20 when the jitter control 

module is in adaptive mode. 

Also, as seen from Figure 22 and Figure 23, we can see the end-to-end delay is not 

directly related to the network jitter. The end-to-end delay of the voice call when the 

jitter level is 120ms is only about 30 ms longer than the case when the jitter level is 



50ms. This result is because the packet holding time within the fixed mode jitter buffer 

depends on the time when the first packet arrives. If the first packet arrives early, the 

first packet will be released to the decoder early (after being held in the jitter buffer for 

the fixed target holding time). If the first packet arrives late, the first packet will be 

played out late, meaning the end-to-end delay of the voice path will be increased. 

Figure 22: End-to-end delay with fixed mode jitter control module with 50ms jitter 



Figure 23: End-to-end delay with fixed mode jitter control module with 120ms jitter 

As a result, in any case, the adaptive jitter control module is preferred. The fixed mode 

jitter control is used only when glitches in the synthesized speech are not allowed, as in 

the case of modem connection, when a single gap in the decoded signal would result in a 

modem disconnect when the modem is not configured to support error correction. 

5.5 Jitter Control Module Resource Requirements 

5.5.1 Memory Requirements 

The program memory requirement of the jitter control module is about 3000 words of 

program memory. The data memory required by the algorithm itself is minimal because 

it only consists of several lookup tables. 

The data memory required for the jitter buffer storage is allocated on a per channel basis, 

with the size of the jitter buffer depending on the level of network jitter supported by the 

application. The jitter level on an IP network is typically in the order of hundreds of 



milliseconds; so large jitter storage is required for jitter compensation. The size of the 

jitter buffer also depends on the encoded frame size of the active decoder. The memory 

requirement of a jitter buffer that stores 300ms worth of packet data is summarized in 

Table 6. For simplicity, only the decoder family is being quoted. For example, G.726 16 

kbps, 24 kbps, 32 kbps and 40 kbps are all grouped into G.726 family, and the largest 

encoded frame size among the family members (40 kbps in this particular example) will 

be taken as the voice frame size. The jitter buffer size for storing 300 ms worth of data is 

used in the following example since this is the LDX requirement. 

Table 6: Jitter buffer storage requirement for different decoders 

Voice decoder 1 frame size I number of frames in 300 ms I jitter buffer size 

G.726 (40 kbps) 1 17 words 1 6o 
I 1020 

I I I 

G.729 (E) 112words 130 1 360 

G.711 24 words 

G.728 1 9 words 1 6o 
1 540 

60 

With the PVE instance memory organization shown in Figure 10, the largest requirement 

will be allocated for each component of the PVE instance memory. As a result, 1440 

words will be allocated for jitter buffer storage in each channel since G.711 is the default 

voice coder for LDX. 

1440 

G.723.1 (6.3 kbps) 

5.6 Computation Resource Requirements 

The computation cycle requirement of the jitter control module is not big and varies 

depends on the network jitter level. More computation cycles will be required when the 

jitter control module is maintaining a large jitter buffer while the requirement is minimal 

when the jitter buffer is of zero size. On average, the jitter control module is using less 

than 1.5 MCPS. This number is acceptable, since the LDX is a low channel density voice 

application on a target platform with more than 100 MCPS of computation resources. An 

average ITU standard complex voice decoder will take an average of about 5 MCPS on 

10 160 



the target platform. Although the MCPS consumption of the jitter control module is 

significant compared to that of the speech coder, optimization is not of top priority 

because the target platform has available resources to handle the load. 



6 Optimization 

Optimization in the instance memory usage of the PVE service is a very important 

portion of this project. Optimization has been done in two major areas so that the jitter 

control module can run efficiently on two different types of platforms supported by LDX. 

Two types of target platforms are supported by LDX: the platform on which the DSP has 

access to external Synchronous Dynamic Random Access Memory (SDRAM) and the 

platform on which the DSP has no access to external memory. 

6.1 Optimization on Plaiforms with Access to External Memory 

6.1.1 Implementation on the BCM1100 Platform 

The BCM1100 chip is one of the target platforms supported by the LDX. The BCMl lox 

silicon family is a single-chip system with integrated MIPS and ZSP DSP processors, 

which is designed specifically for low-density VoIP applications. Both processors on the 

BCM1100 have access to a common SDRAM. The ZSP processor has direct access to a 

small internal memory, while it has access to the slow external SDRAM at the same time. 

However, access time to the external memory is very slow compared to ZSP internal 

memory. A Direct Memory Access (DMA) is available to ease the transmission of data 

in and out of the SDRAM on the ZSP. The MIPS processor has direct access to the 

SDRAM, so no DMA is necessary for modules running on the MIPS. 

The PVE service is separated into two parts on the BCMllOO architecture: the MIPS part 

and the ZSP part. The part of the PVE service running on the MIPS handles all the 

network packets before passing them to the part of the PVE service running on the ZSP. 

The part of the PVE service running on the ZSP is responsible for jitter compensation and 

decoding the voice frames for synthesized speech. 

The internal memory map of the ZSP processor is only 16K words and, as indicated in 

Table 6, the large storage requirement of the jitter buffer is the limiting factor for channel 

density. The LDX running on the BCMl100 architecture stores the whole jitter buffer 



for each channel on the SDRAM. Each time the jitter control module runs, the whole 

jitter buffer is brought in to the ZSP internal memory for jitter compensation. After the 

jitter control module has done its job, the whole jitter buffer is brought back to the 

SDRAM until the next time the control module runs again. 

Although DMA is being used in the memory transmission, bringing such a large piece of 

data memory in and out of the SDRAM still requires many computation cycles and this 

becomes the limiting factor for channel density. On average, about 3 cycles are required 

to transmit 1 word of memory from the external SDRAM to the fast internal DSP 

memory on the target platform; the same amount of computation resources are required 

for the reverse direction. As a result, 8640 cycles are required to transmit the jitter buffer 

from and back to the SDRAM each time the jitter control module is called. The jitter 

control module is called at the same rate as the current active decoder. For example, if 

G.711 is being used, the jitter control module and the G.711 decoder are called at a 5 ms 

intervals, which means that 1.728 MCPS will be required for the memory transmission to 

and from the SDRAM for each channel. This large overhead is not acceptable since the 

jitter control module algorithm itself is taking less than 1.5 MCPS. 

An entry in the jitter buffer is a native encoded voice packet, consisting of a packet 

header and the encoded speech. The jitter control module only studies the packet headers 

for controlling the release time of the packets and jitter adaptation. The encoded speech 

is not needed until the packet gets to the decoder for playout. As a result, the jitter buffer 

storage can be split into two sections, the header section and the encoded speech section, 

with each section residing in different areas of memory. The header section is stored in 

the fast internal memory for jitter compensation; the encoded speech is stored in the slow 

external SDRAM. The jitter buffer storage will be re-defined as stated in Figure 24. 
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Figure 24: Jitter buffer storage split into fast and slow sections 

When the header and payload are stored together, the whole jitter buffer needs to reside 

in fast memory so the jitter control module can refer to the packet header information. 

The memory required for the header information is small (4 words for G.711 packet 

headers) in comparison to the memory required for the whole packet (24 words for G.711 

encoded speech with header). 

When the PVE running on the MIPS receives a packet from the network, it first breaks up 

the network superpacket into the native voice packets. The encoded speech part of each 

native voice packets will be written to the shared SDRAM, only the header part is sent 

down to the ZSP PVE jitter control module. The ZSP PVE performs jitter compensation 

based on the header information and accesses the SDRAM for the encoded speech of that 

particular packet when the packet needs to be decoded. The egress voice signal- 

processing path on the BCM1100 chip is summarized in Figure 25. 
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Figure 25: Egress voice signal-processing path on BCMllOO 

With this implementation, only the header information is stored in the ZSP internal 

memory and the memory requirement of the jitter buffer is now 240 words, a reduction of 

1200 words. 

To reduce the requirement of the ZSP internal memory, this jitter buffer containing the 

header information could also be stored in the external SDRAM. However, the amount 

of data memory brought in and out of the SDRAM reduces from 1440 words to 240 

words each time the jitter control module runs, and the computation cycles spent on 

DMA is greatly reduced from 1.728 MCPS to 0.288 MCPS. 

6.1.2 Extension to other Platforms with Access to External Memory 

The above implement can be extended on any single processor chip with access to 

external memory. The PVE service will not be split in this case and the network 

superpackets will get directly to the ZSP. After the superpacket is split into the native 

encoded speech frames by the PVE service, the encoded speech data will be written to the 

external memory while the header information will be retained in internal memory for 

jitter compensation. This implementation can be summarized in Figure 26. 
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Figure 26: Egress voice signal-processing path on single processor chips with external memory 

6.2 Optimization on Platforms without Access to External Memory 

When the jitter control module is running on a platform with no access to external data 

memory, the header and the encoded speech data will be stored together in a single jitter 

buffer as indicated in the right most model of Figure 24. 

As shown in Figure 10, the instance memory required by the egress signal-processing 

part of the PVE service is composed of two main components: 

the decoder state memory 

the jitter buffer storage 

Both the size of the jitter buffer and the decoder state memory are directly related to the 

complexity of the decoder. When the decoder is more complex, the decoder state 

memory will be bigger to store the more complex decoder state variables. However, the 

jitter buffer storage requirements for complex decoders are usually smaller because 

complex voice coders provide better voice compression. When the PVE instance 

memory is organized as shown in Figure 10, the largest decoder state memory required 

by the most complex decoder and the largest jitter buffer required by the least complex 

decoder will be allocated as part of the PVE instance memory. The instance memory 



organization for the PVE egress signal processing service can be summarized in Figure 

Decoder state 
memory 

Jitter buffer 
storage 

PVE instance 
memory 

organization 

G.711 decoder 
state memory 

unused 

. . . . . . . . . . . . . 

G.71 1 jitter 
buffer storage 

When G.711 
decoder is active 

G.728 decoder 
state memory 

G.728 jitter 
buffer storage 

unused 

When G.728 
decoder is active 

Figure 27: Original organization of PVE egress signal processing instance memory 

Table 7 describes the sizes of the jitter buffer and the corresponding state memory for all 

decoders LDX currently supports. Again, the jitter buffer storage requirement is based 

on a jitter buffer that stores 300 ms worth of encoded speech. 

Table 7: PVE egress signal-processing instance memory requirement 

Voice decoder jitter buffer I decoder state memory I combined requirement 

G.726 family 9 8 11 18 I 
G.729 family 1 360 1 832 1 1192 I 

As we can see in Table 7, the instance memory requirement of the PVE service egress 

signal-processing part in the original implementation is 2478 words (1440 words of 

G.711 jitter buffer plus 1038 words of G.728 decoder state memory). In the new 

G.723.1 family 160 208 368 



implementation, a sliding boundary is implemented between the decoder state memory 

and the jitter buffer storage. Each time a new decoder is being used, the boundary 

between the decoder state memory and the jitter buffer will be reset for that particular 

decoder. With the new implementation, only 1578 words is required for each channel of 

PVE egress service, a net saving of 900 words per channel is achieved. Also, the amount 

of unused instance memory at any time can be significantly reduced. The above 

implementation can be summarized in Figure 28. 
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Figure 28: New organization of PVE egress signal processing instance memory 

With this new approach, the jitter buffer will be flushed and the PVE egress instance 

memory will be re-initialized every time the PVE receives a new encoded voice frame 

that does not belong to the current active decoder. The boundary between the jitter buffer 

and the decoder state memory will be reset properly for the new active decoder. 

The jitter buffer will be flushed every time there is a decoder rate switch. All the existing 

packets within the jitter buffer will be deleted. A glitch will be resulted in the 

synthesized speech during decoder rate switch. However, this problem is not critical 

because there will be phase differences when the decoder changes. 



7 Conclusions 

Optimizing the program memory requirement of the jittw control module should be an 

exciting next step. The jitter control module was originally implemented on a high 

channel-density gateway platform where program memory requirement is not a limiting 

factor. There is a lot of repetitive code that was intentionally to reduce the MCPS 



requirement of the jitter control module. Optimizing these repetitive routines should 

reduce the program memory requirement at the cost of increasing the MCPS requirement. 
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