
Integration of a Jitter Control Module
into a Packet Voice Application

Wing Yee Winnie Lee
BASc Simon Fraser University, 2000

A PROJECT SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING

in the School of Engineering Science

O Wing Yee Winnie Lee 2003
SIMON FRASER UNIVERSITY

November, 2003

All rights reserved. This work may not be reproduced in whole or in part, by

photocopy or other means, without permission of the author.

Approval

Name: Wing Yee Winnie Lee

Degree: Master of Engineering

Title of Project: Integration of a Jitter Control Module into a Packet Voice
Application

Supervisory Committee:

.L - -

Dr. ~ a c ~ u e ; Vaisey U
Senior Supervisor
Associate Professor
School of Engineering Science, SFU

I
r
/ , , \ \

Professor
School of Engineering Science, SFU

Date Approved: 5 f i 28-

PARTIAL COPYRIGHT LICENCE

I hereby grant to Simon Fraser University the right to lend my thesis, project or

extended essay (the title of which is shown below) to users of the Simon Fraser

University Library, and to make partial or single copies only for such users or in

response to a request from the library of any other university, or other educational

institution, on its own behalf or for one of its users. I further agree that permission for

multiple copying of this work for scholarly purposes may be granted by me or the

Dean of Graduate Studies. It is understood that copying or publication of this work

for financial gain shall not be allowed without my written permission.

Title of Project: GRA OF A Jit7ER CcrRirROL B c l o D U
I i ~ ~ o R pp,&ET \ ode ~ ~ C l t ~ ~ o ~

(Date Signed)

Abstract

In a packet voice application, source speech is coded and packetized and is sent through

the network to the receiver, where the packet is decoded. The transfer of speech

packets through a packet network introduces a variable transport delay. Packets may be

lost and they may take different paths resulting in packets that arrive out of order. This

arrival time variance (or jitter), packet loss, reordering and duplicating, must be

handled properly to avoid gaps of degradation in the re-constructed speech. A jitter

control module is required to cope with the asynchronous arrival of packets from the

network.

A jitter control module is a key component of the speech service of a packet voice

application. The packet received from the network will be held within a storage

location referred to as the jitter buffer. The jitter control module is responsible for

managing the release time of the packets stored within the jitter buffer to the speech

decoder, where the speech will be reconstructed. The jitter buffer also works closely

with the packet loss concealment algorithm (PLC) and the comfort noise generator

(CNG) to ensure that the reconstructed speech is of the highest quality, while

minimizing the end-to-end delay.

This document reports my work on the project - Integration of a jitter control module

into the LDX at Broadcom Canada LTD. The project involves the integration of a jitter

control algorithm into a Voice over Internet Protocol (VoIP) application with low

channel density developed by Broadcom Canada called Low Density Xchange (LDX).

The algorithm was originally developed for another Broadcom packet voice gateway

solution with high channel density. The jitter control module was found to be vital for

the quality of the reconstructed speech from LDX when operating over a jittery

network. Data memory requirements have been optimized to ensure that the resource

requirements of the jitter control module are acceptable on the target platform.

Acknowledgements

Thank you to Dr. Wilfred LeBlanc and Mr. Philip Houghton who provided me with

good advice along the whole project. Thanks also to Dr. Jacques Vaisey and Dr. James

Cavers for sitting on my committee and providing feedback on the project. Last but not

the least, thanks to my family for their continuous love and support throughout my

studies.

Table of Contents
. . Approval .. 11

... Abstract .. 111

Acknowledgements .. iv

Table of Contents ... v

... List of Tables .. V I ~ I

List of Figures .. ix

List of Acronyms ...xi

1 Introduction .. 1

... 1.1 Problem Statement 1

.. 1.2 Thesis Contribution 2
. . .. 1.3 Thesis Organization 2

2 Basic Theory of Jitter ... 3

Media Path of IP Telephony ... 3

What is Jitter? ... 4

Delay in a VoIP Telephone Network .. 8

Packetization Delay at the Source .. 8

Queuing Delay at Each IP Stack ... 9

Processing Delay ... 10

Transmission and Propagation Delay ... 10

... Jitter Compensation Delay 11

.. 3 Structure of Packet Voice Exchange service 12

.. 3.1 PVE Ingress Signal Processing 12

3.2 PVE Egress Signal Processing ... 13

... 4 Jitter Control Algorithm 14

4.1 Glossary Related to Description of Jitter Control Module 14

4.2 Jitter Control Module Operation Modes .. 15

4.2.1 Variable Holding Time ... 15

... 4.2.2 Fixed Holding Time 15

4.3 Performance Requirement of the Jitter Control Module 16

4.4 Design Issues of the Jitter Control Module .. 18

4.4.1 Release Time of First Packet .. 18

... 4.4.2 Holding Time Adaptation 18

4.4.3 Debug Information Provided by the Jitter Control Module 19

.. 4.5 Key Variables within the Jitter Control Module 19

4.6 An overview of the Jitter Control Module algorithm 20

4.6.1 Unknown network conditions .. 20

.. 4.6.2 Known network conditions 21

.. 4.7 Difference Between the Two Modes of Operation 22

4.7.1 Jitter Buffer Underruns ... 23

4.7.2 Jitter Buffer Overruns .. 23

... 4.8 The Size of the Jitter Buffer vs End-to-end Delay 24

4.9 Details on Memory Allocated for the Jitter Buffer .. 25

.. 4.10 Jitter Control Module Statistical Variables 25

... 4.11 Instance Memory Organization of PVE 27

5 Testing and Results .. 28

... 5.1 Testing Using PC Simulations 28

5.2 Real Time Testing as a Whole System ... 31

... 5.3 Test Results Analysis 36

5.3.1 Jitter Control Module Statistics .. 36

5.3.2 Voice Quality Measurement ... 39

... 5.4 End-to-end Delay Measurement 41

... 5.4.1 End-to-end delay when jitter level is stable 42

..................... 5.4.2 End-to-end delay when network conditions are changing 44

... 5.4.3 Adaptive versus fixed jitter control module 46

.. 5.5 Jitter Control Module Resource Requirements 48

... 5.5.1 Memory Requirements 48

.. 5.6 Computation Resource Requirements 49

6 Optimization ... 51

6.1 Optimization on Platforms with Access to External Memory 51

6.1.1 Implementation on the BCM 1 100 Platform ... 5 1

............ 6.1.2 Extension to other Platforms with Access to External Memory 54

.................. 6.2 Optimization on Platforms without Access to External Memory 55

... 7 Conclusions 58

References ... 60

vii

List of Tables

Table 1: Requirements of the jitter control module ... 17

Table 2: Jitter control module statistical variables ... 26

Table 3: Bandwidth requirement of encoded voice frames .. 35

Table 4: Voice quality analysis of real time jitter test .. 40

Table 5: Voice quality analysis when jitter control module is disabled 41

Table 6: Jitter buffer storage requirement for different decoders 49

Table 7: PVE egress signal-processing instance memory requirement 56

viii

List of Figures

Figure 1: Transmission of encoded voice packets from one end to the other 1

Figure 2: Media path of IP telephony calls .. 3

Figure 3: Packet timeline for zero jitter condition ... 5

Figure 4: Packet timeline for known constant jitter .. 6

Figure 5: Packets arrive out of order .. 7

Figure 6: Superpacketization of encoded data ... 9

Figure 7: Ingress and egress signal processing of the PVE service 12

Figure 8: Block diagram of the adaptive jitter control module algorithm 22

Figure 9: Memory Organization of the jitter buffer managed by the jitter control

module .. 24

Figure 10: PVE service instance memory organization ... 27

Figure 11: Output from ingress signal processing part of PC simulation 29

Figure 12: Inserting network impairment to the output file from ingress simulation

program .. 31

Figure 13: Architecture of real time test setup ... 33

Figure 14: Effect of inserting blank UDP packet to cause network congestion 33

Figure 15: Inter-packet arrival time when the test setup is configured for 115ms
. . .. network jitter 34

Figure 16: Packet holding time within jitter buffer at 115ms jitter 37

Figure 17: Jitter control variables when network jitter is changing 38

Figure 18: End-to-end delay when jitter level is zero .. 43

Figure 19: End-to-end delay when network jitter is at 30ms ... 44

Figure 20: End-to-end delay when jitter level is at 120ms .. 44

Figure 21: End-to-end delay when jitter level is changing .. 46

... Figure 22: End-to-end delay with fixed mode jitter control module with 50ms jitter 47

Figure 23: End-to-end delay with fixed mode jitter control module with 120ms jitter . 48

Figure 24: Jitter buffer storage split into fast and slow sections 53

Figure 25: Egress voice signal-processing path on BCM1100 54

Figure 26: Egress voice signal-processing path on single processor chips with external

memory ... 55

Figure 27: Original organization of PVE egress signal processing instance memory ... 56

Figure 28: New organization of PVE egress signal processing instance memory 57

List of Acronyms

IP - Internet Protocol

VoIP - Voice over Internet Protocol

LDX - Low Density Xchange

PVE - Packet Voice Exchange

DSP - Digital Signal Processing

MCPS - Million Cycles Per Second

PPM - Parts Per Million

A D - Analog to Digital

DIA - Digital to Analog

VAD - Voice Activity Detector

SID - Silence Insertion Descriptor

CND - Comfort Noise Generator

PLC - Packet Loss Concealment

ECAN - Echo Cancellation

CDIS - Call Discrimination

PC - Personal Computer

QA - Quality Assurance

PCM - Pulse Code Modulation

UDP -User Datagram Protocol

PESQ -Perceptual Evaluation of Speech Quality

SDRAM - Synchronous Dynamic Random Access Memory

DMA - Direct Memory Access

ATM - Asynchronous Transfer Mode

1 Introduction

The field of packet voice communications over Internet Protocol (IP) networks has been

growing rapidly in the recent years. In a packet voice application, source speech is coded

and packetzied. The packetized speech is then sent through the network to the receiver,

where the received packets are decoded so that the person on the receiver side can hear it.

The success of a digital packet voice application relies on the provision of high speech

quality while minimizing the end-to-end delay.

The following diagram explains how the encoded voice packets get transmitted from one

end to the other in a packet voice application.

sender receiver

Figure 1: Transmission of encoded voice packets from one end to the other

The transfer of speech packets through a packet network introduces a variable transport

delay. Packets may be lost and they may take different paths resulting in packets that

arrive out of order. This arrival time variance (or jitter), packet loss, reordering and

duplicating, must be handled properly to avoid gaps of degradation in the re-constructed

speech. A jitter control module is required to cope with the asynchronous arrival of

packets from the network.

1.1 Problemstatement

The purpose of this project is to integrate a jitter control algorithm into a Voice over

Internet Protocol (VolP) application with low channel density developed by Broadcom

Canada called Low Density Xchange (LDX). The algorithm was originally developed

for another Broadcom packet voice gateway solution with high channel density. The

target platform is Broadcom Canada's Hausware xChange Packet Voice Exchange (PVE)

service, operating on the Broadcom BCMl lox silicon family.

LDX is a suite of embedded Digital Signal Processing (DSP) algorithms for

telecommunications applications. These algorithms can be combined to provide

solutions of packet voice, fax and high-speed modem data over general networks.

1.2 Thesis Contribution

In a three-month period, I successfully integrated the jitter control module as part of the

PVE service of LDX. Extensive testing has been done to prove that the newly integrated

jitter control module provides a solution to cope with the network jitter in different

situations. Minimal or no voice degradation is expected with the application of this jitter

control module in LDX. Several optimizations have been done as an extension of the

integration to minimize the data memory required by the jitter control module.

1.3 Thesis Organization

In Chapter 2, we go through basic theories of jitter and how it can affect voice quality in

a packet voice application. It is followed by a description of how the jitter control

module operates in the LDX Packet Voice Exchange service, and a high level description

of the algorithm. Chapter 5 presents a detailed analysis of the performance of the jitter

control module with some high level descriptions of the testing procedure. Optimizations

to reduce memory requirement of the jitter control module is discussed in Chapter 6,

followed by concluding remarks in Chapter 7.

2 Basic Theory of Jitter

Delay is a well-known problem that telephone network planners have had to manage

since the early days of telephony [I]. Today's telephone networks have been designed to

keep jitter effects imperceptible for most customers. However, when carrying voice over

IP, it becomes much more difficult to control delay. Designing an acceptable service thus

requires sophisticated technology and optimization of all components.

2.1 Media Path of IP Telephony

The media path of IP telephony calls can be modeled as shown in Figure 2

AID AID

+ DIA Egress signal processing

4
DIA

IP network P
I I I I

Figure 2: Media path of IP telephony calls

IP stack

Figure 2 indicates a situation when a call is setup between two parties over a network.

The LDX VoIP application works with digital speech samples provided by the analog to

digital converter (AID). The ingress signal processing of the VoIP application consists of

different voice encoders. Incoming digital voice samples are compressed by one of the

voice encoder algorithms into compressed voice frames. Compressed voice frames are

sent to the network through the IP stack.

IP stack

After encoded voice frames are transmitted across the network, they are received by the

IP stack of the receiving party. The voice frames are then decoded by one of the voice

decoder algorithms of the egress signal processing part of the VoIP application. The

reconstructed speech samples are converted back to analog signal by the digital to analog

(DIA) device so the client can hear.

2.2 What is Jitter?

Jitter on a particular packet refers to the difference between the actual arrival time and the

arrival time if the packet traversed the network with minimal delay.

Ta (n) = Ts (n) + Rn + J(n) Equation 1

where:

Ta (n) = arrival time of the nth packet

T s (n) = send time of the nth packet

Tm = minimum transit time over all n packets (i.e., minimum of Ta(n) - Ts(n)

over all n)

J (n) = random delay (jitter) associated with the nth packet

Jitter may change over time because of network traffic conditions. If jitter stays constant,

we are referring to the situation when the random delay (jitter) associated with all the

packets stays within a constant range throughout the call period. In other words, the

difference between maximum and minimum delays is the same throughout the call period

when the jitter stays constant. Normally, the maximum difference between the maximum

and minimum delays is taken as the jitter encountered by the packets on the network.

In the absence of jitter, packets are received from a network connection at regular

intervals, assuming T s (n) is regular. The arrival of each packet at its destination is

delayed from the time of its origination at the far-end of the network by the fixed network

delay. It is reasonable to release each packet to the active decoder as soon as it is

received so delay is minimized at the destination. This trivial case is illustrated below in

Figure 3.

60 65 70 75 80 85 90 95 100 rns
, , , . , , . , . . , . . , : I

, , . , , , . , , , , , , , , , , , , , , , , , , , : I : . . , . . . , , , . , , , , , , , , . , , , , , , , , , , , , , , , , , , , ,
I : : : : : : : :
: : : : : : : : : , , , , , , , , , , , , , . , . , , , , , j j : : : : : : : : : , , , , , , . . , : : : : : : : : : , , . . , , , , . !
, . . . , : I . I , , , . , , . . . , . . : : , , . . , . , . ,

i , i , i , i . j , i , i , . iArriveTirne ,
, , . . , , , . .
i j j j j j i j i

. . , , , . . , , , . , , . . , , , , . , , , . , , , , , , , : : , , , . , , , , . , , , . , , . , % , , , . , , . , . , , I , , . . , :

Release Time

backet first iacket

transmit arrival

(far-end) and
release

zero jitter compensation delay is introduced in this case

(near-end)

M
network fixed delay

Figure 3: Packet timeline for zero jitter condition

The above condition will only happen in an ideal situation or on an isolated network. In

normal situations, there is always some randomness in the propagation delay in addition

to the fixed network delay, resulting jitter. The randomness in propagation may be a

result of network traffic congestion, variation in processing time of different the IP stack,

et cetera. In such a case, packets arrived with minimum delay must be held for a period

at least equal to the known jitter.

, , , ,

i , ;Transmit , Time
, , , , , , , , , ,

, , , , , ,

Release Time
I I

first backet first first
transmit packet packet
(far-end) arrival release first packet is held for certain period (according to

the network jitter) before releasing to the decoder

network
fixed delay

Figure 4: Packet timeline for known constant jitter

In Figure 4, the second packet sent to the network by the sender at time 5 ms has

encountered an extra 10 ms delay compared to all the other packets. We say that there is

10 ms jitter associated with the network where the packets are sent across. If packets are

released to the active decoder once they are received from the network, there will be a 10

ms gap (between time 25 to 35 ms) in the reconstructed speech.

In a packet voice application, packets are held in a place called the jitter buffer on the

egress side. A jitter control module is used to control the release of the packets to the

active decoder. If packets were held in the jitter buffer for duration shorter than the

known jitter (10ms in the above example), an underrun would occur and there will be

gaps in the reconstructed speech.

Sometimes packets will be sent through different paths to the destination, resulting in

packets arriving out of order. The out of order packet appears to be "lost" but eventually

arrives late. The situation of packets arriving out of order is illustrated in Figure 5.

0 5 10 15 20 25 30 35 40 45 50 55 60 rnS

, , , , , , , , , , , . , , . , , . , , .

packet arrived late and out of order

Figure 5: Packets arrive out of order

In Figure 5, the highlighted packet arrived late can either be deleted or inserted into the

queue of packets stored in the jitter buffer, depending on the jitter buffer status. How the

jitter control module handles out of order packets is dependent on the design specification

of the particular voice application.

Other than the random delay caused by network transmission, clock drift is another type

of source for variation of packet arrival time [3]. Clock drift is a result of system clock

mismatch between the two systems involved in the call. The system with a faster clock

will decode the packets at a faster rate compared to rate at which packets arrive from the

network. The jitter buffer on the faster side is likely to undermn more frequently. On the

other hand, the slower side will decode the packets at a slower rate compared to the rate

at which packets arrive from the network, resulting in the building up of the jitter buffer.

Equation 1 is a simplified equation of the packet arrival time that ignores the effect of

clock drift. If clock drift is take into account, the packet arrival time will change over

time, regardless of the network condition.

Ta (n) = T s (n) + Trn + J (n) + D(n) Equation 2

where D (n) is the delay caused by clock drift. This delay changes with time and is

determined by the amount of clock drift between the two calling parties. If the receiving

end is slower than the sender, D (n) will be smaller than D (n+ 1) because the sender is

sending packets at a faster rate compare to the receiver's clock.

The variation in packet arrival time due to clock drift is less significant than the other

components of jitter and it will only show up in calls with very long durations. The exact

equation of determining the relation between D (n) and D (n+ 1) is complicated and is

outside the scope of this document. The other components of jitter are discussed in the

following sections.

2.3 Delay in a VolP Telephone Network

Digital speech samples are compressed using different voice coders before being sent out

across the network. Compressed speech is sent through the IP network in units called

packets. The packets encounter five major types of delay [2].

1) packetization delay at the source

2) queuing delay at the IP stack

3) a fixed processing delay

4) transmission and propagation delay

5) a jitter compensation or depacketization delay at the destination

The following sections will provide brief descriptions of the different types of delay

shown in the above list.

2.4 Packetization Delay at the Source

Most voice coders are frame oriented [I]. This means that they compress fixed-size

chunks of linear samples, rather than apply compression on a per sample basis. Therefore

the audio data stream needs to be accumulated until it reaches the chunk size, before

being processed by the voice coder. This sample accumulation takes time, and therefore

adds to the end-to-end delay. In addition some coders need to know more samples than

those contained in the frame they will be coding (this is called lookahead).

In order to reduce delays on an ideal network, the chosen voice coder should thus have a

short frame length. Unfortunately coders with larger frame sizes tend to be more

efficient, and have better compression rates. Another factor is that each frame is not

transmitted "as is" through the network - a lot of overhead is added by the transport

protocols for each packet transmitted through the network. If each compressed voice

frame is transmitted in a packet of its own, this overhead is added for each frame, and for

some coders, the overhead will be comparable to if not greater than the useful data. To

lower the overhead to an acceptable level, most VoIP applications choose to transmit

multiple frames in each packet. A superpacket is a network packet with multiple voice

frames concatenated in it. The idea of superpackets is illustrated in Figure 6.

coder output

Figure 6: Superpacketization of encoded data

single frame per packet header

superpacket

The packetization delay depends on the type of voice coder being used and the size of the

superpacket being chosen. As long as the voice coder and the superpacket interval are

unchanged, the packetization delay will remain constant.

compressed voice frame header

2.5 Queuing Delay at Each IP Stack

A packet suffers queuing delay when there are other packets that arrived earlier or

simultaneously to the IP stack and the Ethernet driver. It may need to wait in a queue

until the stack and the driver finish processing the packets arrived earlier. The delay is

random and depends on the traffic load and on the stack architecture [2] .

compressed voice frame

header compressed voice frame compressed voice frame

2.6 Processing Delay

In addition to the queuing delay, the packet undergoes an almost deterministic processing

delay at the sending and receiving end caused by the encoding and decoding process.

Processing delay on the encoder side refers to the time needed by the processor to

generate the voice frame provided that the raw speech samples are available. Processing

delay on the decoder side refers to the time required by the processor to decode the

received compressed voice frame from the network.

Although this processing delay is referred to as deterministic, it varies on processors with

different speed and depends on the complexity of the active voice coder. For example,

both G.728 and G.711 are 5 ms voice coders. G.728 encoder takes 28 million cycles per

second (MCPS) while G.711 encoder only takes less than 0.35 MCPS. The processing

delay of G.728 encoder is 1.4 ms while that of G.711 is less than 0.2 ms while running

within a 5 ms thread on a 100 MHz processor.

The processing delay of the same encoder or decoder may have a slight variation,

depending on the type of input signal. For example, the processing delay of the G.728

encoder is longer when the encoder is handling active speech signal, while the processing

delay is shorter when the input signal is silence. The variation is caused by the difference

in computation resource to handle different types of input signal; and less MCPS is

required to handle silence in most cases. The variation of processing delay based on

input signal only applies to complex voice coders such as G.729, G.728 and G.723.1, it is

not applicable to stateless sample-based voice coders like G.711.

2.7 Transmission and Propagation Delay

Transmission and propagation delay refers to the time required to transmit the network

superpackets from the source to the destination through the IP network. This delay is

dependent on the network traffic as well as the quality of the equipment.

Among the above four types of delays described in Sections 2.4 to 2.7, only the queuing

delay and the propagation delay are random and may change over time, these are the

major sources of what we referred to as jitter in Section 2.2.

2.8 Jitter Compensation Delay

Other than network jitter and clock drift, some other network impairments include packet

lost and packet duplication. In order to cope with all these network impairments, packets

are held in the jitter buffer, resulting in delay for jitter compensation. How long the

packets are held within the jitter buffer depends on the network conditions, the jitter

control algorithm, as well as the size of the jitter buffer.

3 Structure of Packet Voice Exchange service

The Packet Voice Exchange (PVE) service is part of the LDX VoIP application. The

service provides ingress and egress processing of the speech signal. Please refer to

Figure 7 in the following sections.

t Network superpaackets

forming

compressed voice frames
or SlDs

voice encoder L;
raw speech samples

lnress speech
processing

Network superpaackets 1
breaking down the

network

compressed voice frames
or SlDs

jitter
compensation

decoder * reconstructed samples speech

Egress speech
processing

Figure 7: Ingress and egress signal processing of the PVE service

3.1 PVE Ingress Signal Processing

The digital raw speech samples are provided by the AID converter. When enough raw

speech samples have been accumulated, they will be sent to the PVE service for ingress

signal processing. The Voice Activity Detector (VAD) will first examine the incoming

voice signal. If the signal contains no active voice, a Silence Insertion Descriptor (SID)

will be generated and the voice encoder will not be called. If the incoming signal

contains active voice, the voice encoder will be called to generate compressed voice

frame.

The individual compressed voice frames are sent to the packetization module of the PVE

service, where they will be grouped together to form network superpackets (with

appropriate header information attached). The superpackets are now ready to be sent to

the network.

The size of a SID is small compared to a compressed voice frame. Also, normal voice

conversation is silent (contains no active speech) more than half of the time. As a result,

using a VAD algorithm results in a more efficient use of the bandwidth available.

3.2 PVE Egress Signal Processing

When a network superpacket arrives at the PVE, it will first be broken down into native

compressed voice frames by the depacketization module. The native frames will then be

held in the jitter buffer for jitter compensation, where the jitter control module is

responsible for controlling the release time of the voice frames.

The elements stored in the jitter buffer can either be SIDs or native compressed voice

frames. There may be gaps in the packet stream as a result of packets lost or packet

reordered. A Comfort Noise Generator (CNG) will be called when SIDs are received

indicating that the far-end is having an inactive signal input. A voice decoder is called to

decode the normal voice frames. In cases of other network impairments like lost or re-

ordered packets, a Packet Loss Concealment (PLC) algorithm will be called to bridge the

gaps in the decode speech samples.

Based on the elements stored in the jitter buffer and the algorithm being used, the jitter

control module decides whether the CNG, the PLC or the voice decoder will be called.

Linear Pulse Code Modulation (PCM) samples will be generated upon calling one of the

three modules. Samples generated will be sent to the D/A converter for output.

4 Jitter Control Algorithm

As seen in Chapter 2, a jitter control module is required to handle the asynchronous

arrival of packets from the network interface. The jitter control module must determine

when to release speech frames to the speech decoder, when to play comfort noise, when

to perform packet repeats to cope with lost frames or to extend the depth of the jitter

queue, and when to perform packet deletions in order to decrease the depth of the jitter

queue [4].

The challenge in jitter control is to ensure that the synthesized decoded voice is

reproduced without delay variation whilst minimizing the end-end delay. These are

competing priorities, and so a properly designed system along with an acceptable

engineering trade-off between quality and delay is required.

Before we go over the high level description of the jitter control algorithm, there are

some terms that are commonly used in discussions related to jitter.

4.1 Glossary Related to Description of Jitter Control Module

The far-end - is the originator of the network packets relative to the egress voice path

where the jitter control module is situated.

The near-end - is the consumer of network packets relative to the egress voice path.

Packet timestamp - a number associated with each received packet that is generated by

the far-end, which is incremented at regular intervals with respect to time and dependent

on the active encoder being used.

Jitter bu .e r underrun - a condition where the jitter buffer is empty during an active

speech period (non-silence), or when packets are expected.

Underrun duration - the duration of the period when the jitter buffer is empty until the

arrival of the first packet following the underrun.

Jitter bufier overrun - a condition where either the number of packet exceeds the

maximum number that can be stored in the jitter buffer, or the total playout time of the

packets held in the jitter buffer exceeds the maximum allowable buffered playout time of

the jitter buffer.

4.2 Jitter Control Module Operation Modes

A jitter control module usually has two modes of operation: variable holding time and

fixed holding time.

4.2.1 Variable Holding Time

Adaptive jitter control is provided using holding time compensation and clock drift

compensation. The holding time of packets in the jitter buffer changes with time,

depending on the network conditions and clock drift between the calling parties. Packet

deletions and packet repeats are used to adapt the packet holding times within the jitter

buffer.

With an adaptive jitter control algorithm, jitter compensation delay discussed in Section

2.8 is longer when the packets encounter higher levels of jitter.

4.2.2 Fixed Holding Time

The fixed holding time mode provides no adaptive jitter control. Packets are held in the

jitter buffer for fixed period of time, which is usually based on the worst-case jitter

scenario. Packet deletions will only take place in an overrun condition. Packet repeats

are used in an underrun condition. In this mode, the holding time of packets within the

jitter buffer will not change regardless of the network conditions.

The fixed holding time mode of the jitter control module is used when quality of the

decoded speech is the biggest concern. Since the packet holding time within the jitter

buffer is based on the worst-case scenario, packet repeats or packet deletions are not

likely to take place during the call because the jitter buffer is not likely to overrun or

underrun. However, this fixed holding time mode results in long jitter compensation

delay.

Under normal circumstances, an adaptive system offers a much better solution compared

with a fixed system. This advantage is especially true in cases such as VoIP where the

worst-case delay variation can be on the order of hundreds of milliseconds.

Delay measurements shown in Section 5.4 will indicate that an adaptive jitter control

module is preferred in any network condition when small voice gaps during jitter buffer

adaptation is allowed.

4.3 Performance Requirement of the Jitter Control Module

The primary goal is to maximize perceived voice quality under network changing

conditions while minimizing either the end-to-end delay, or the jitter compensation delay.

These are contrasting requirements, so a trade-off is required, especially since jitter is not

something that is constant or time invariant.

Other important requirements are documented in Table 1:

Table 1: Requirements of the jitter control module

Requirements

Rapid convergence of the depth of the jitter buffer queue.

Absolute minimum delay in stationary condition.

The jitter control module should be able to bride any silence gaps with no

reconstructed phase jitter.

Bridging of gaps due to lost packets. This entails controlling the PLC and

ensuring that there is no phase jitter.

Handling of out of order packets and redundant packets.

Robustness to packet timestamp anomalies, steps in delay and clock drift.

Under the condition of initial high level of network jitter followed by a period of

low level of network jitter, the holding time of the packets within the jitter buffer

should decrease at a rate of 1 ms per 1 second to minimize the jitter

compensation delay. The decrease rate was chosen arbitrarily, based on the

requirement that the jitter buffer size should not decrease too rapidly to minimize

the glitches caused by packet deletes.

The holding time of the packets within the jitter buffer should increase quickly in

response to increased network delays, which will result in underrun conditions.

The holding time of the packets should increase with a step size as large as the

underrun duration, limited by the depth of the jitter buffer.

Under the condition of maximum jitter, the jitter control module should aim for a

holding time of packets within the jitter buffer less than or equal to the network

jitter.

The adaptive jitter control module should have a mode of fixed packet holding

time, as described in Section 4.2.2, for situations where voice quality is critical

and no packet repeat or packet deletion is allowed.

The jitter control module should compensate for clock drift between 0 to 200

parts per million (ppm).

I I Requirements

I 1 of VAD on the far-end. Adaptive behavior should not be dependent on whether

12

I I the far-end VAD is activated.

The jitter buffer must tolerate all packet arrival scenarios occurring due to the use

4.4 Design Issues of the Jitter Control Module

Major issues for consideration in the design of the adaptive jitter control module are

discussed in Sections 4.4.1 to 4.4.3.

4.4.1 Release Time of First Packet

The decision of when to release the first packet held within the jitter buffer is paramount

and is based on the estimated level of network jitter made using the timestamps of

received packets. The packet with the earliest timestamp is released to the active decoder

after being held in the jitter buffer for a predefined target holding time. This packet can

be released earlier if subsequent arrivals can prove that the first packet was actually

delayed.

4.4.2 Holding Time Adaptation

The holding time of the packets in the jitter buffer should adapt quickly to jitter buffer

underruns, since this scenario indicates that the network delay is at a higher level than

estimated by the jitter control module. On the other hand, the holding time of the packets

within the jitter buffer should slowly reduce when the jitter control module estimates that

the packets are being held too long in the jitter buffer compared to the current network

jitter.

Packet repeats and packet deletions are used to increase or decrease the packet holding

time within the jitter buffer respectively. Packet repeats will result in the PLC being

called to bridge the gaps within the reconstructed speech. Whenever possible, packet

deletions and repeats should be deferred until a period of relative silence to minimize the

impact on perceived voice quality. Extending the silence gaps from, for example, 1.2

seconds to 1.205 seconds is inaudible.

The speed of adaptation of the packet holding time within the jitter buffer is listed in the

jitter control module specification in Section 4.3. However, the adaptation speed of the

jitter control module in different applications may vary based on different customer

requirements. For example, some customers prefer the holding time to increase slowly

and to decrease quickly. This particular configuration avoids holding time increases

when the jitter is occasionally bursty, with a tradeoff in voice quality when the jitter

buffer underruns due to a jitter burst. The jitter control algorithm must be flexible

enough to cope with different customer requirements.

4.4.3 Debug Information Provided by the Jitter Control Module

The jitter control module should provide debug statistics including packet repeats and

deletions information. Jitter control module statistics are important to service modules

such as the Echo Canceller (ECAN) and the Call Discriminator (CDIS). Jitter control

module statistics will be discussed in detail in Section 4.10.

4.5 Key Variables within the Jitter Control Module

The key variables within the jitter control module include:

CT -the current holding time of packets within the jitter buffer. This variable

contains an up-to-date estimation of the worst-case jitter.

maxT - maximum holding time of packets observed throughout the call

duration.

minT - minimum holding time of packets observed throughout the call

duration.

The minT and maxT parameters are used as long-term indicators of jitter. Both variables

are used to determine if cT needs to be adjusted. Upon start up condition, CT will be set

to a predefined register value (set by the client) and adapts up or down from there. The

predefined register value is set based on known network conditions. If the network

conditions are unknown, cT can be initialized to zero, which means the first arrived

packet will be released right away. The jitter control module should be able to increase

or decrease cT based on the network jitter condition regardless of the predefined register

setting. Having a correct predefined register setting eliminates the gaps in the

synthesized speech caused by jitter buffer adaptation upon startup. Once the jitter control

module is synchronized, the three parameters, cT, minT and maxT, should remain

relatively constant as long as the network conditions are stable.

4.6 An overview of the Jitter Control Module algorithm

An overview of the jitter control module algorithm is provided in Sections 4.6.1 and

4.6.2.

4.6.1 Unknown network conditions

Assuming that the current network conditions are unknown, the packet holding time (CT)

will be initialized to zero and the packet that arrives first will be released right away. If

the network jitter is non-zero, then the jitter buffer will underrun when the packets are

being held not long enough in the jitter buffer. cT will increase based on the undenun

duration as described by the requirements number 8 stated in Table 1. After the jitter

control module is synchronized, all parameters should be stable unless the network

conditions change, and cT and maxT should be very close to (if not the same as) the

network jitter level. Tracking parameter minT should be very close (if not equal) to

zero, indicating the packets that experienced the longest network delay are just held long

enough in the jitter buffer to avoid underrun. If the network conditions change and the

network jitter level decreases, then the tracking parameter minT will be non-zero and the

packet holding time within the jitter buffer should decrease at the rate specified in

requirement number 7 of Table 1. Test results indicating how cT, maxT and minT work

are provided in Section 5.3.1.

4.6.2 Known network conditions

If the network conditions are known, the client can preset a register value to be used as

the initial packet holding time within the jitter buffer. Upon start up condition, CT will

be set to the predefined register value and adapts up or down based on requirements

stated in Table 1. cT will never decrease below the predefined register value because it

is assumed that this is the known network conditions and the end-to-end delay caused by

this particular jitter buffer size is accepted. However, it will increase when the jitter

buffer underruns, which indicates that the preset register value is too low and jitter buffer

size increase is necessary to maintain voice quality. In cases where cT has been

increased, it is possible to decrease it based on the same algorithm as described in 4.6.1

when the network condition changes and the network jitter level decreases.

Presetting the initial packet holding time of the jitter buffer helps prevent gaps in the

synthesized speech in the beginning of a call caused by the holding time adaptation.

However, gaps cannot be avoided if the preset value is too low, meaning that jitter buffer

underrun can still occur. In addition, the end-to-end delay will be undesirably high if the

initial packet holding is preset to a value that is unnecessarily high. This means that the

initial packet holding time should not be preset unless the user has a complete

understanding of the network conditions. In most applications, it is recommended that

the user should not preset the initial packet holding time and should allow the jitter

control module to adapt depending on the network conditions. By default, the initial

packet holding time is set to zero.

The algorithm of the adaptive jitter control module is summarized in Figure 8.

4 algorithm starts

release packet L
call voice decoder a

-71 underrun?

f
Exit call PLC or CNG to
A fill the gap

no
AL

buffer size

Figure 8: Block diagram of the adaptive jitter control module algorithm

4.7 Difference Between the Two Modes of Operation

As discussed in Section 4.2, the jitter control module has two modes of operation:

variable holding time (adaptive) and fixed holding time. The adaptive mode is the

operation mode when the jitter control module tracks the network jitter and adjusts the

size of the jitter buffer accordingly. The fixed holding time mode is the operation mode

when the holding time of the packets are fixed, packets will be held at least a certain

amount a time in the jitter buffer before being played out by the voice decoder.

4.7.1 Jitter Buffer Underruns

The jitter buffer will underrun when voice packet is not available when expected. This

means that the jitter buffer is not built large enough to handle the current network jitter.

When the jitter control module is operating in the adaptive mode, a jitter buffer undermn

will occur whenever the network jitter increases to a level higher than the level estimated

by the jitter control module. In other words, when the jitter control module is operating

in the fixed holding time mode, the jitter buffer will only underrun when the network

jitter is higher than the preset fixed packet holding time. Since the packet holding time of

the fixed holding time mode is set based on the estimated worst case network jitter, a

jitter buffer underrun will occur more likely in the adaptive mode. However, this is only

limited to the beginning of a call when the jitter buffer is synchronizing to the current

network condition. The jitter buffer should not undenun even when operating in adaptive

mode after it has synchronized, unless the network condition changes.

4.7.2 Jitter Buffer Overruns

Jitter buffer overrun occurs when the memory allocated for the jitter buffer is all used up,

or in order words, when the jitter buffer can no longer queue up the new incoming

packets. This situation usually occurs when a burst of packets arrive from the network.

With the current implementation of the jitter control module, each channel of the system

is assigned a fixed sized array that forms the jitter buffer. The memory allocated for the

jitter buffer is defined at compile time and will not be changed regardless of the run-time

network condition.

If currently there is x ms or data stored within the jitter buffer, and the memory allocated

can store y ms of data, an overrun situation will only occur when a burst of data bigger

than (y-x) ms arrives at the same time. This means that as the smaller the jitter buffer is

built up, the larger the burst of packet it can receive at the same time.

Figure 9 summarized the memory usage of the jitter buffer managed by the jitter control

module. The headroom mentioned in the figure is a measure of the size of the packet

burst the jitter buffer can handle without overrun.

part of memory filled headroom that can receive a burst
with packets of packet without overrun

4 b
fixed size memory allocated for jitter buffer use

Figure 9: Memory Organization of the jitter buffer managed by the jitter control module.

When the jitter buffer is operating in the fixed holding time mode, the jitter buffer is

expected to be built largest because the packet holding time is defined based on the

known worst case jitter. In other words, there is a higher chance that the jitter buffer will

overrun when the jitter buffer is operating in fixed holding time mode, when a big burst

of packet arrive. However, the above only applies to the case when the actual network

jitter is less than the worst case. When the jitter control module is operating in adaptive

mode in network with the worst case jitter, the jitter control module will build up a large

jitter buffer, jitter buffer.ovenun will still occur when a big burst of packets arrive at the

same time.

4.8 The Size of the Jitter Buffer vs End-to-end Delay

The end-to-end delay of the voice path is dependent on components discussed in Sections

2.3 and 2.8, among which only the jitter compensation delay is affected by the jitter

control module. The jitter compensation delay is dependent solely on the target holding

time of the packets within the jitter buffer, as determined by the jitter control module

based on the network conditions. If the jitter control module determines that the packets

should be held longer within the jitter buffer, a larger jitter buffer will be maintained and

the jitter compensation delay will be longer as a result.

Basically, the size of memory allocated for the jitter buffer storage will not affect the

jitter compensation delay, except that it limits the size of the jitter buffer, which only

plays a part when the worst-case jitter exceeds the maximum allowed jitter buffer size.

The memory allocated for the jitter buffer storage limits the maximum size of the jitter

buffer, which in turn limits the maximum jitter compensation delay.

4.9 Details on Memory Allocated for the Jitter Buffer

When a jitter buffer is claimed to be an x ms jitter buffer, this means that when the jitter

buffer has tracked the network jitter correctly, it can operate in a network with x ms of

network jitter without overflowing or underrunning. When the size of the memory

allocated for the jitter buffer storage cannot store the entire jitter buffer needed for the

current network condition, overrun will happen and packets that cannot be stored will be

discarded. The voice quality is expected to be poor in such a case because gaps will be

introduced in the synthesized speech.

In order to support an x ms jitter buffer, the memory that is able to store two times x ms

of data needs to be allocated. Two times the memory is required because we need to

ensure that the jitter buffer will not overflow when the jitter buffer has adapted to x ms

(storing x ms worth of data), while another burst of x ms of data arrive at the same time.

The above situation would happen when suddenly the network condition changes and the

all packets a transmitted through the network with minimum network delay (jitter level

drops to zero ms).

4.10 Jitter Control Module Statistical Variables

Statistical variables are important in analyzing the status of the jitter control module. It

also shows if the jitter control module is operating as expected. Table 2 summarizes the

important jitter control module statistical variables.

Table 2: Jitter control module statistical variables

Variable Name

peak holding time since last statistics query

the number of packets received from the network

the number of packets added to the tail of jitter buffer, this

refers to the normal case when packets arrive in order

the number of packets arrived out of order

decoder overrun count, this refers to the time the jitter buffer is

full

the number of duplicate packets deleted.

the number of packets with timestamps too far from the

timestamps of the packets currently stored within the jitter

buffer, this refers to the case when the jitter buffer is not

storing enough packets for jitter compensation. The holding

time (cT) is expected to increase in this case.

the number of packets cannot be decoded, this refers to packets

with a bad packet header

the number of jitter buffer underruns

the number of packet deletes done to reduce packet holding

time

number of packet repeats done to either increase holding time

or due to lost frame

the number of times the jitter buffer re-initialized. The jitter

buffer usually re-initialized after overrun

the number of times the jitter buffer inserted a phase

discontinuity, this include doing a frame repeat or a frame

deletes

4.1 1 Instance Memory Organization of PVE

The PVE service has to allocate data memory to save the state variables of the service.

This chunk of memory is called the instance memory and is allocated on a per channel

basis. The jitter buffer used by the jitter control module to store the incoming encoded

voice frame is part of the instance memory of the PVE service. The organization of the

PVE instance memory is summarized in Figure 10.

PVE control variables l-----I
Encoder State

memory

Decoder State
memory

Jitter Buffer Storage

Figure 10: PVE service instance memory organization

The PVE control variables are variables and register values that control the operation of

the service. This control variable set includes the configurations of the active encoder

and decoder, the superpacket setting, the configuration of the jitter control module, et

cetera. The size of this variable set is independent of the active voice coder.

The encoder state memory and the decoder state memory are instance memories of the

active voice coder. The instance memory requirement is directly dependent on the

complexity of the voice coder. For example, the encoder instance memory requirement

of G.711 is only 2 bytes while the requirement of a G.729E encoder is 1986 bytes.

The memory required by the jitter buffer storage depends on the size of the jitter buffer

supported by the jitter control module (the number of entries in the jitter buffer). The

storage requirement is also dependent on the size of the encoded voice frames stored in

the jitter buffer (the size of each entry in the jitter buffer).

5 Testing and Results

In Sections 5.1 and 5.2, we are going to discuss the two major testing environments we

have implemented to test the newly integrated jitter control algorithm: simulation on a

personal computer (PC) and real time testing in the Quality Assurance (QA) department.

Results from both environments have been utilized to verify the performance of the

newly integrated jitter control module. However, due to limitations of the real time test

setup in the QA department, we can only perform jitter test cases with periodic disruption

using the real time test setup. The PC simulation environment will be used to perform

more complicated testing: including jitter test cases with random disruptions and test

cases with changing levels of network jitter.

Test results will be studied in Sections 5.3 and 5.4 based on three major aspects:

statistical results based on the statistics variables of the jitter control module discussed in

Table 2, voice quality measurement of the synthesized speech, and measured results

based on the end-to-end delay of the voice path.

5.1 Testing Using PC Simulations

A PC application calling the C model of LDX was written. The application was written

to provide a non-real time PC simulation environment for the developer. This software is

particularly useful because running real time tests on the target platform is time

consuming. The application is separated into two parts: ingress signal processing and

egress signal processing.

The ingress signal processing part reads linear PCM data as input (to simulate the AID

converter). The speech service will then take this data and create encoded speech frames,

which are written out to a file as output by the PC application. Timing information

indicating when the encoded voice frames are generated is included in the output file. An

example of an entry in the output file from the ingress signal processing simulation is

shown in Figure 1 1.

generation time of packet packet header encoded data

Figure 11: Output from ingress signal processing part of PC simulation

The egress signal processing simulation reads in compressed voice frames from a file as

input. The format of the input file to the egress signal processing part is the same as

shown in Figure 11. Timing information is included in the input file to indicate when is

the time to read in a voice frame. The input voice frames will be handled by the speech

service for jitter compensation and voice decoding. Synthesized speech will be written

out to a file (in linear PCM format) for voice quality analysis.

In a jitter free scenario, the output file from the ingress processing simulation is used

directly as the input file to the egress signal processing simulation. In this way, the

packet generation time in the output file will be the time when the packet is being

handled by the egress signal processing simulation.

The output file from the ingress simulation can be modified before being used as input to

the egress simulation. The timing information in the first column can be modified

(increased or decreased) to simulate network jitter. Also, entries in the file can be

reordered, duplicated or deleted to simulate other network impairments. Individual test

cases will be set up for different types of impairments to ensure that the jitter control

module can handle different types of impairments. Test cases with all sorts of

impairments applied at the same time will also be included to ensure that the jitter control

module can handle different types of impairments at the same time.

Figure 12 shows an example of inserting network impairments to the output file from the

ingress simulation. The left part of the figure is the original output file from the ingress

processing simulation; and the right part of the figure represents the input to the egress

simulation after network impairments have been inserted.

The first column indicates the timing information, represented in units of samples (at an 8

kHz sampling rate). The timing information has been modified to simulate a jittery

network. The packet rate being used in the above example is 10 ms (80 samples at an 8

kHz sampling rate), so in a jitter-free test scenario, we are expecting packets to arrive at

lOms intervals, so the entries in the first column are incrementing at step sizes of 80

samples. The entries in the fifth column, highlighted in blue, are the timestamps of the

encoded voice frames and are expected to increment at 80 samples intervals. As

indicated in pink, if there is no jitter, encoded voice frame with packet timestamps 1360

and 2240 samples should arrive at time 1680 and 2520 respectively. The arrival time of

the packets is delayed by 120 and 160 samples (15 ms or 20 ms) respectively after

inserting 20ms jitter to the packet stream. Also an encoded voice frame with timestamp

1520 samples has been deleted from the file to simulate a lost packet scenario.

The second to the fourth column represents other information contained in the packet

header, including the encoder being used, the packet type (whether it is an encoded voice

packet or a SID) and the size of the packet. The data stated from the sixth column

onwards indicates the encoded voice. The number of columns required to represent the

encoded voice depends on the encoder being used.

Original output file from the ingress simulation input file to egress simulation with network impairments

pink (1600, 1800, etc) - mod~fied tlrn~ng information
blue (1 120, 1200, etc) - packet timestamps

I) - timestamp of lost packet

Figure 12: Inserting network impairment to the output file from ingress simulation program

5.2 Real Time Testing as a Whole System

The test environment described in Section 5.1 is a non-real time simulation running on

the PC. It is not sufficient to run tests on the PC only because the timing variation is

different on the target platform. Also, many algorithms are coded in assembly language

for efficient use of the DSP resources, while the PC simulation is running the C models

of all the algorithms. This difference means that much of the code running in the real

time system is not tested in the PC simulation. It is always necessary to run real time test

on the target platform to ensure that the system is trouble free.

To test the newly integrated jitter control module, a test application that is able to

generate network traffic congestion has been created. On the ingress signal processing

part, different sizes of blank User Datagram Protocol (UDP) packets are generated by the

test application. These blank UDP packets will be injected to the out-going packet

stream generated by the LDX system to the network. The blank UDP packets are there to

consume part of the available bandwidth and create network congestion. The blank UDP

packets cannot simulate congestion caused by different network traffic, but other sources

of traffic congestion are not used in order to keep the testing environment simple. The

blank UDP packets will be filtered out when they get to the egress side of the receiver

running the same test application. Only the encoded voice frames will be passed down to

the LDX system for egress signal processing.

A network emulation package that runs on Linux called NIST Net, provided by the

National Institute of Standards and Technology, is being used in the above test

environment [5] . The NIST Net network emulator is a general-purpose tool for

emulating performance dynamics in IP networks. By operating at the IP level, NIST Net

can emulate the critical end-to-end performance characteristics of the networks. The tool

is designed to allow controlled, reproducible experiments with network performance

sensitive or adaptive applications and control protocols in a simple laboratory setting.

In this test application, all packets, both encoded voice frames and the blank UDP

packets, are sent across the network controlled by NIST Net. The NIST Net emulator is

used to control the available bandwidth of the network. NIST Net uses a big internal

buffer to hold all the packets it receives from the sender. The amount of data that it will

send to the receiver is based on the configured bandwidth of the network under control.

If the amount of data NIST Net received from the sender temporarily exceeds the

available bandwidth, the extra data is stored temporarily within the NIST Net internal

buffer, and those extra data will be sent to the receiver later when bandwidth is available.

In this test application, blank UDP packets with different sizes can create different jitter

scenarios based on proper NIST Net configurations. Figure 13 summarizes the test setup

used to run the real time test on the jitter control module.

Network f i

frames

blank UDP packets

to filter out blank UDP
packets

test application
ingress encoed voice frames 1 encoed voice

ingress analog signal analog signal of synthesized speech

LDX Ingress

Figure 13: Architecture of real time test setup

LDX Egress

Figure 14 shows the network traffic congestion caused by the blank UDP packets

t t

generated by the test application.

encoded voice frames generated by LDX 0 0 0 0 n n n 0
insertion of blank UDP packets 0 0

filter out the UDP packets

Figure 14: Effect of inserting blank UDP packet to cause network congestion

When a competing UDP packet is traveling across the network, it causes the encoded

voice frames to be held up. Once the UDP packet has gone across the network, the

buildup of the encoded voice frames are then flushed down the network. Therefore the

amount of jitter is dependent upon the size and time that it takes for the blank UDP

packets to travel to the destination.

The size of the blank UDP packets is configured by the desired amount of jitter based on

the available bandwidth. Just as an example, if NIST Net provides 128 kbps of

bandwidth, 1840 bytes of blank UDP packets will be generated at a 1 second interval to

create approximately 120 ms of jitter when the superpacket interval is set to 20ms. Blank

UDP packets of 1840 bytes are used because about 140 ms is required to transmit 1840

bytes of data at the 128 kbps bandwidth available. The packets are expected at 20ms

interval in a jitter free scenario, the packets sent immediately after the blank UDP packet

will experience 140ms delay, meaning that it is delayed by 120 ms extra. Packets

following this particular packet will be blocked in the temporary buffer of NIST Net.

After the blank UDP packet is sent to the destination, all the packets held in the NIST Net

temporary buffer will be flushed down the network, meaning that some packets will

experience a lower network delay.

Both the peak jitter and the distribution of jitter times are important: the peak jitter is

important to ensure that the jitter control module provides an accurate estimation of the

current network situation; the distribution of jitter times (when the blank UDP packets are

sent) are important to ensure that the adaptation rate (especially the decrease rate) of the

packet hold time is as expected. In a jitter free situation, packets should arrive at a

regular interval, depending on the configured superpacket interval. With the test setup

configured to generate approximately 120ms jitter and the superpacket interval set to be

20ms, the distribution of the inter-packet arrival time is shown in Figure 15.

lnterpacket arrival time (ms)

Figure 15: Inter-packet arrival time when the test setup is configured for 115ms network jitter

The above test case is used to simulate network situations when packets arrival is bursty,

which is very common in an IP network. Other network situations are hard to simulate

and those test cases are still under implementation.

In the test setup, NIST Net is configured to provide a network with a bandwidth or 128

kbps. We need to make sure that the bandwidth required by the encoded voice frames

plus the blank UDP packets does not exceed the available bandwidth provided by NIST

Net, or else too much jitter will be created. The bandwidth requirements of the encoded

voice frames are listed as in Table 3. Note that G.711 20ms superpackets are used in this

example.

Table 3: Bandwidth requirement of encoded voice frames

Network packet component I Bandwidth requirement
I

G.7 1 1 payload 1 64 kbps
I

RTP packet header (6 words per superpacket) 1 4.8 kbps
I

UDP packet header (4 words per superpacket) 1 3.2 kbps
I

IP header (10 words per superpacket) 1 8 kbps
I

Ethernet header (7 words per superpacket) 1 5.6 kbps

In the above example, the encoded voice frames will take up 85.6 kbps of the available

bandwidth. As a result, the blank UDP packets can only take up to 42.4 kbps. Blank

UDP packets of size 1840 bytes being sent at 1-second intervals will take 15.1 kbps

including all the headers. If the 1840 UDP packets are generated at a 250 ms intervals

instead, it will take 60.4 kbps of the bandwidth and this will exceed the available

bandwidth provided by NIST Net.

Note that due to limitation in NIST Net and the test environment, the real time test setup

for the jitter control module can only do simple test cases with periodic disruption as

indicated in Figure 15, more complicated testing will be performed using the PC

simulation test environment.

5.3 Test Results Analysis

Both C simulation and the real time test described in Sections 5.1 and 5.2 have been

utilized to verify the performance of the newly integrated jitter control module. Three

important measurements, the jitter control module statistics, the voice quality

measurement and the end-to-end delay measurement are being used to analyze the test

results.

5.3.1 Jitter Control Module Statistics

The jitter control module statistics described in Section 4.10 are important measures of

the jitter control module performance. Based on requirements listed in Table 1, if the

adaptive jitter control algorithm is being used, the packet holding time within the jitter

buffer should quickly adapt and should be stable after it adapts, as long as the network

jitter condition remains stable, which means that the jitter statistics are constant, and the

network delay experienced by the voice packets only fluctuates within a constant range.

Also, the packet holding time within the jitter buffer should never exceed the estimated

network jitter. Packet deletes and packet repeats should be performed only during the

holding time adaptation, after the jitter control module adapts, no packet repeats or

deletes should be performed unless there is a packet lost scenario, or when the network

condition changes.

Figure 16 is a plot of the peak packet holding time (peakHoldingTime in Table 2) and the

tracker variable minT described in Section 4.5 within the jitter buffer while the test

conditions are controlled by NIST Net as described in Figure 15, so the network jitter is

controlled to be 120ms. peakHoldingTime and minT in Figure 16 are plotted at 1-second

intervals when packets are arriving from a network with 120 ms jitter. The network

conditions have not been changed throughout the call, so it is expected that

peakHoldingTime and minT should remain at about 120 ms after it adapts. The

adaptation parameters used by the jitter buffer is listed in Table 1. Based on the

specification listed in Table 1, peakHoldingTime should not decrease throughout the call

because the blank UDP packets are sent at constant interval throughout the call to create

jitter.

Except in the first second when the jitter control module is adapting to the network jitter,

peakHoldingTime stays at 110 ms throughout the call. The packet holding time adapts up

by performing packet repeats. In this test, the G.711 voice coder with a 5 ms frame rate,

was used and 22 packet repeats were recorded to adapt the packet holding time from 0 ms

to 110 ms. After the jitter buffer size adapts to 1 lOms, no further frame repeats or frame

deletes was observed. Also, note that the tracker variable minT stays 0 throughout the

call duration, meaning that the packets are held just long enough in the jitter buffer and

the jitter control module is tracking the network jitter accurately.

Note that peakHoldingTime does not read 120ms but only read 1 lOms instead is because

of effect of superpacket interval is taken into account by the jitter control module. With

voice data received in units of 20ms superpacket, 15 ms jitter is created because the

native frame rate of G.711 is only 5ms and the packets now come in burst of 20ms

superpackets. The jitter control module considers the effect of superpackets (15ms) by

reducing the peakHoldingTime reading accordingly by 15ms, leaving the

peakHoldingTime reading to be 1 lOms (round up from 105ms) instead.

120
E I loo

80 c
5; 60
0 ,
c 40

+ Mn holding time

g 20
0 m 0

Figure 16: Packet holding time within jitter buffer at 115ms jitter

The jitter control module statistics from the PC simulation matches the statistics

recordings from the real time test when the above same test was run.

The packet holding times vary depending on different network jitter conditions. For

example, the holding time should adapt to and remain stable at a higher level in a test

case with higher level of network jitter, or the packet holding time should decrease if the

network jitter decreases in the middle of the call.

Figure 17 is a plot of the peak packet holding time (peakHoldingTime in Table 2) and the

tracker variables minT and maxT described in Section 4.5 within the jitter buffer while

the test condition are controlled by the PC simulation as described in Section 5.1. The

network jitter is aimed to be changing throughout the call. Within the call under test, 20

ms jitter was inserted to the call for 1 second, after that the jitter level was decreased to

zero. The jitter level stays zero for 20 seconds and them it was bumped up to 50 ms. The

jitter level only stayed at 50 ms for another second before it was decreased back to zero

again.

As we can see from Figure 17, the peak holding time tracks the simulated network jitter

accurately. The adaptation rate of the packet holding time and the packet deletion

mechanism for jitter buffer adaptation (when the jitter level decreases) was discussed in

Section 4.6.1.

-+- rrinT

--F peak hoMing time

Figure 17: Jitter control variables when network jitter is changing

The jitter control module statistics are used in other test cases to ensure that the

specifications on jitter buffer adaptation rates and the expected performance in other

network impairments are satisfied. The test case described above is only part of the test

performed on the jitter control module. Other test cases to stress the system is still under

construction and verification.

5.3.2 Voice Quality Measurement

The jitter control module statistics only verifies that the requirements of the jitter control

module listed in Table 1 are satisfied. However, problems sometimes exist in the

modules interacting with the jitter control module. Voice quality is a critical

measurement in determining the success of the voice application and is included as part

of the jitter control module testing. As before, voice quality analysis can be performed

on the PC simulation as well as on the real time system.

In the real time test, a node plays a reference speech stimulus file to the AID of the LDX

system. The speech signal is encoded and the encoded voice frames are sent across the

bandwidth-limited network with the blank UDP packets present to simulate congestion.

The LDX system on the receiving side performs jitter compensation and decoding on the

incoming packets. Synthesized speech is recorded and voice quality of the degraded

speech is validated using the Perceptual Evaluation of Speech Quality (PESQ) method [6]

[7]. PESQ is an enhanced perceptual quality measurement for voice quality in

telecommunications approved as part of ITU-T recommendation P.862. The PESQ

analysis shows the voice quality in terms of PESQ scores ranged from 0 to 4.5, from

lowest to highest. The voice quality analysis of the LDX system in a jittery network with

different levels of fixed jitter is listed in Table 4. The test conditions are controlled by

the blank UDP packets and NIST Net in the same way as described in Figure 15. The

jitter control module was set in adaptive mode and adaptation specifications listed in

Table 1 are used to generate the following results.

Table 4: Voice quality analysis of real time jitter test

voice coder (jitter free (25 ms (50 ms (115ms 1 135ms 1 175ms

I I 1 I I I

G.726 24 kbps 1 3.85 1 3.84 1 3.83 1 3.84 1 3.82 1 3.83
I I I I I I

G.726 32 kbps 4.14 4.15 4.15 4.15 4.12

Table 4 summarizes the result of voice quality measurement when the jitter control

module is configured to operate at adaptive mode as described in Section 4.2.1; the voice

quality measurement is exactly the same when the jitter control module is configured to

operate at fixed mode as described in Section 4.2.2. This means that the voice quality is

not affect by the different modes of operation the jitter control module.

As we can see from Table 4, the voice quality is not affected by the fixed level of jitter on

the network. Only the end-to-end delay has been increased because the jitter

compensation delay has been increased as the jitter control module adapts to higher jitter

levels. Please refer to Section 5.4 for details on end-to-end delay measurements.

I I L

The above test case only stresses that the jitter control module is able to track different

levels network jitter accurately. Other test cases to stress the jitter control module in

drastic network condition is still under construction. It is expected that the voice quality

will decrease due to gaps in the synthesized speech when the jitter level is high enough to

cause jitter buffer to ovefflowlunderflow.

To show the effect of the jitter control module, non-real time PESQ analysis has been

performed on synthesized speech of the PC simulation when the jitter control module is

G.723.1 6.3 kbps 1 3.74 3.75 3.76 3.75 3.76 3.75

disabled. By disabling the jitter control module, this means that the decoder will play out

the latest incoming voice frame received from the network. Timestamp information of

the packets will not be considered. If more than one encoded voice frame arrived from

the network at the same time, only the voice frame arrived last within the frame tick will

be decoded, earlier arrivals will be discarded.

The results of the analysis are shown in Table 5. For simplicity, only G.711 u-law voice

coder is used in this analysis.

Table 5: Voice quality analysis when jitter control module is disabled

jitter level PESQ I

As we can see from Table 5, the jitter control module is vital in providing speech with

acceptable quality in a VoIP application.

The configuration of the real-time test case is quite limited and the same configurations

needed to be used throughout the voice call, this means the network conditions need to

remain stable throughout the voice call in the real-time test cases.

5.4 End-to-end Delay Measurement

Other than the jitter control module statistics and the voice quality measurement, the end-

to-end delay of the voice path is also an important measure of the jitter control module.

Since the real time network conditions are difficult to control, the PC simulation

environment is used for measuring the end-to-end delay of the voice path.

The network jitter (and also the simulated jitter inserted in the simulation environment)

only results in fluctuations of packet arrival times, the average packet arrival time, or the

average end-to-end delay of the signal path is unchanged by the jitter level, provided that

the jitter compensation delay mentioned in Section 2.8 is not in the picture. As a result,

the end-to end delay of the voice path is directly related to the holding time of the packets

within the jitter buffer. If the minimum end-to-end delay of the simulation environment

in a jitter free scenario is x milliseconds, the end-to-end delay of the voice path when y

milliseconds of network delay is inserted should be equal to x plus y milliseconds. If the

measured end-to-end delay of the voice path is less than x plus y milliseconds, then the

packets are not being held long enough within the jitter buffer and underruns are

expected. On the other hand, if the end-to-end delay of the voice path is more than x plus

y milliseconds, this means that packets are held unnecessarily long within the jitter

buffer, which is also undesirable.

The PESQ voice analysis tool provides an option for delay measurement. Delay

measurements can also be performed on a per utterance basis so the variations in the end-

to-end delay throughout the call can be analyzed.

5.4.1 End-to-end delay when jitter level is stable

Figure 18 shows the end-to-end delay on a per utterance basis of a speech file with 42

utterances when the jitter level was zero. Each utterance is approximately 1 second in

length and the same speech file is used in the following measurements for easy

comparison.

Figure 18: End-to-end delay when jitter level is zero

Figure 18 shows that the minimum end-to-end delay of the PC simulation model is about

27 ms and this quantity will be used as the guideline to show the depth of the jitter buffer

in the following measurements.

Figure 19 and Figure 20 are end-to-end delay measurements when the jitter level is set to

30ms and 120ms. As indicated in Figure 19 and Figure 20, the end-to-end delay of the

voice path is 57ms and 147 ms when the network jitter is 30ms and 120ms respectively.

This means that the packets are held just long enough in the jitter buffer since the end-to-

end delay is 27ms in a jitter free scenario.

p' MI

Figure 19: End-to-end delay when network jitter is at 30111s

Figure 20: End-to-end delay when jitter level is at 120111s

5.4.2 End-to-end delay when network conditions are changing

In this particular test case, the PC simulation test script is implemented to insert different

levels of network jitter at different time and requirements listed in Table 1 are used in this

test case.

Figure 21 shows how the end-to-end delay changes when the network jitter is changing as

controlled by the PC simulation test script. The jitter level was originally set to 30ms

when the call just starts and we can see that the jitter control module tracks that correctly

because the end-to-end delay is about 60ms (as compared to 27ms when there is Oms

network jitter, indicating that the depth of the jitter buffer is about 30ms). After 1

second, the jitter level is set to zero and the jitter control module controls the end-to-end

delay to drop slowly at a rate of about 5 ms per 5 seconds (each utterance is about 1

second in length) by decreasing the packet hold time within the jitter buffer. Packet

deletes are used to decrease the packet holding time within the jitter buffer.

The jitter level stayed at Oms for 20seconds, this means that the jitter control module only

has time to decrease the jitter buffer size by 20ms. As we can see in Figure 21, the end-

to-end delay only drops to about 37 ms, meaning that the jitter buffer size is still about 10

ms (as compared to 27ms when there is Oms network jitter).

After leaving the jitter level at Oms for 20 seconds, 50ms jitter is inserted into the packet

stream. As indicated in the figure, the jitter control module quickly picks it up by

increasing the size of the jitter buffer to 50ms after the jitter buffer tracks the increased

network jitter level (due to jitter buffer underflow after the network delay has been

increased). The end-to-end delay is increased to about 80ms, indicating the depth of the

jitter buffer size is 50ms. The jitter level drops back to zero after 1 second, and the end-

to-end delay slowly decays at the rate of 5ms per 5 seconds.

Figure 21: End-to-end delay when jitter level is changing

5.4.3 Adaptive versus fixed jitter control module

As discussed in Section 4.2, the jitter control module has two modes of operation:

variable holding time (adaptive) and fixed holding time. The adaptive jitter control

module is preferred in most cases because it correctly tracks the network jitter and

packets will not be held unnecessarily long in the jitter buffer as compared to the fixed

mode jitter control module configured for the worst-case jitter scenario.

Figure 22 and 21 show the end-to-end delay of the voice path when the jitter control

module is in the fixed mode configured at 150ms target size. We can see that the end-to-

end delay is longer than that seen in Figure 19 and Figure 20 when the jitter control

module is in adaptive mode.

Also, as seen from Figure 22 and Figure 23, we can see the end-to-end delay is not

directly related to the network jitter. The end-to-end delay of the voice call when the

jitter level is 120ms is only about 30 ms longer than the case when the jitter level is

50ms. This result is because the packet holding time within the fixed mode jitter buffer

depends on the time when the first packet arrives. If the first packet arrives early, the

first packet will be released to the decoder early (after being held in the jitter buffer for

the fixed target holding time). If the first packet arrives late, the first packet will be

played out late, meaning the end-to-end delay of the voice path will be increased.

Figure 22: End-to-end delay with fixed mode jitter control module with 50ms jitter

Figure 23: End-to-end delay with fixed mode jitter control module with 120ms jitter

As a result, in any case, the adaptive jitter control module is preferred. The fixed mode

jitter control is used only when glitches in the synthesized speech are not allowed, as in

the case of modem connection, when a single gap in the decoded signal would result in a

modem disconnect when the modem is not configured to support error correction.

5.5 Jitter Control Module Resource Requirements

5.5.1 Memory Requirements

The program memory requirement of the jitter control module is about 3000 words of

program memory. The data memory required by the algorithm itself is minimal because

it only consists of several lookup tables.

The data memory required for the jitter buffer storage is allocated on a per channel basis,

with the size of the jitter buffer depending on the level of network jitter supported by the

application. The jitter level on an IP network is typically in the order of hundreds of

milliseconds; so large jitter storage is required for jitter compensation. The size of the

jitter buffer also depends on the encoded frame size of the active decoder. The memory

requirement of a jitter buffer that stores 300ms worth of packet data is summarized in

Table 6. For simplicity, only the decoder family is being quoted. For example, G.726 16

kbps, 24 kbps, 32 kbps and 40 kbps are all grouped into G.726 family, and the largest

encoded frame size among the family members (40 kbps in this particular example) will

be taken as the voice frame size. The jitter buffer size for storing 300 ms worth of data is

used in the following example since this is the LDX requirement.

Table 6: Jitter buffer storage requirement for different decoders

Voice decoder 1 frame size I number of frames in 300 ms I jitter buffer size

G.726 (40 kbps) 1 17 words 1 6o
I 1020

I I I

G.729 (E) 112words 130 1 360

G.711 24 words

G.728 1 9 words 1 6o
1 540

60

With the PVE instance memory organization shown in Figure 10, the largest requirement

will be allocated for each component of the PVE instance memory. As a result, 1440

words will be allocated for jitter buffer storage in each channel since G.711 is the default

voice coder for LDX.

1440

G.723.1 (6.3 kbps)

5.6 Computation Resource Requirements

The computation cycle requirement of the jitter control module is not big and varies

depends on the network jitter level. More computation cycles will be required when the

jitter control module is maintaining a large jitter buffer while the requirement is minimal

when the jitter buffer is of zero size. On average, the jitter control module is using less

than 1.5 MCPS. This number is acceptable, since the LDX is a low channel density voice

application on a target platform with more than 100 MCPS of computation resources. An

average ITU standard complex voice decoder will take an average of about 5 MCPS on

10 160

the target platform. Although the MCPS consumption of the jitter control module is

significant compared to that of the speech coder, optimization is not of top priority

because the target platform has available resources to handle the load.

6 Optimization

Optimization in the instance memory usage of the PVE service is a very important

portion of this project. Optimization has been done in two major areas so that the jitter

control module can run efficiently on two different types of platforms supported by LDX.

Two types of target platforms are supported by LDX: the platform on which the DSP has

access to external Synchronous Dynamic Random Access Memory (SDRAM) and the

platform on which the DSP has no access to external memory.

6.1 Optimization on Plaiforms with Access to External Memory

6.1.1 Implementation on the BCM1100 Platform

The BCM1100 chip is one of the target platforms supported by the LDX. The BCMl lox

silicon family is a single-chip system with integrated MIPS and ZSP DSP processors,

which is designed specifically for low-density VoIP applications. Both processors on the

BCM1100 have access to a common SDRAM. The ZSP processor has direct access to a

small internal memory, while it has access to the slow external SDRAM at the same time.

However, access time to the external memory is very slow compared to ZSP internal

memory. A Direct Memory Access (DMA) is available to ease the transmission of data

in and out of the SDRAM on the ZSP. The MIPS processor has direct access to the

SDRAM, so no DMA is necessary for modules running on the MIPS.

The PVE service is separated into two parts on the BCMllOO architecture: the MIPS part

and the ZSP part. The part of the PVE service running on the MIPS handles all the

network packets before passing them to the part of the PVE service running on the ZSP.

The part of the PVE service running on the ZSP is responsible for jitter compensation and

decoding the voice frames for synthesized speech.

The internal memory map of the ZSP processor is only 16K words and, as indicated in

Table 6, the large storage requirement of the jitter buffer is the limiting factor for channel

density. The LDX running on the BCMl100 architecture stores the whole jitter buffer

for each channel on the SDRAM. Each time the jitter control module runs, the whole

jitter buffer is brought in to the ZSP internal memory for jitter compensation. After the

jitter control module has done its job, the whole jitter buffer is brought back to the

SDRAM until the next time the control module runs again.

Although DMA is being used in the memory transmission, bringing such a large piece of

data memory in and out of the SDRAM still requires many computation cycles and this

becomes the limiting factor for channel density. On average, about 3 cycles are required

to transmit 1 word of memory from the external SDRAM to the fast internal DSP

memory on the target platform; the same amount of computation resources are required

for the reverse direction. As a result, 8640 cycles are required to transmit the jitter buffer

from and back to the SDRAM each time the jitter control module is called. The jitter

control module is called at the same rate as the current active decoder. For example, if

G.711 is being used, the jitter control module and the G.711 decoder are called at a 5 ms

intervals, which means that 1.728 MCPS will be required for the memory transmission to

and from the SDRAM for each channel. This large overhead is not acceptable since the

jitter control module algorithm itself is taking less than 1.5 MCPS.

An entry in the jitter buffer is a native encoded voice packet, consisting of a packet

header and the encoded speech. The jitter control module only studies the packet headers

for controlling the release time of the packets and jitter adaptation. The encoded speech

is not needed until the packet gets to the decoder for playout. As a result, the jitter buffer

storage can be split into two sections, the header section and the encoded speech section,

with each section residing in different areas of memory. The header section is stored in

the fast internal memory for jitter compensation; the encoded speech is stored in the slow

external SDRAM. The jitter buffer storage will be re-defined as stated in Figure 24.

I header I
information u

payload
storage

section residing in section residing in
fast memory slow memory

payload

I header I

when header and
payload are

stored together

Figure 24: Jitter buffer storage split into fast and slow sections

When the header and payload are stored together, the whole jitter buffer needs to reside

in fast memory so the jitter control module can refer to the packet header information.

The memory required for the header information is small (4 words for G.711 packet

headers) in comparison to the memory required for the whole packet (24 words for G.711

encoded speech with header).

When the PVE running on the MIPS receives a packet from the network, it first breaks up

the network superpacket into the native voice packets. The encoded speech part of each

native voice packets will be written to the shared SDRAM, only the header part is sent

down to the ZSP PVE jitter control module. The ZSP PVE performs jitter compensation

based on the header information and accesses the SDRAM for the encoded speech of that

particular packet when the packet needs to be decoded. The egress voice signal-

processing path on the BCM1100 chip is summarized in Figure 25.

network
packets

PVE on the MIPS Native packet

network packets

PVE on the MIPS
Native packet

SDRAM
PVE on the DSP -

PVE jitter
,/ Native packet

payload access

Figure 25: Egress voice signal-processing path on BCMllOO

With this implementation, only the header information is stored in the ZSP internal

memory and the memory requirement of the jitter buffer is now 240 words, a reduction of

1200 words.

To reduce the requirement of the ZSP internal memory, this jitter buffer containing the

header information could also be stored in the external SDRAM. However, the amount

of data memory brought in and out of the SDRAM reduces from 1440 words to 240

words each time the jitter control module runs, and the computation cycles spent on

DMA is greatly reduced from 1.728 MCPS to 0.288 MCPS.

6.1.2 Extension to other Platforms with Access to External Memory

The above implement can be extended on any single processor chip with access to

external memory. The PVE service will not be split in this case and the network

superpackets will get directly to the ZSP. After the superpacket is split into the native

encoded speech frames by the PVE service, the encoded speech data will be written to the

external memory while the header information will be retained in internal memory for

jitter compensation. This implementation can be summarized in Figure 26.

network 1 packets
I

PVE jitter
buffer

active
decoder

. - - - - - - - -

storage

., packet payload
', storage

\
\ I

packet payload
access

Figure 26: Egress voice signal-processing path on single processor chips with external memory

6.2 Optimization on Platforms without Access to External Memory

When the jitter control module is running on a platform with no access to external data

memory, the header and the encoded speech data will be stored together in a single jitter

buffer as indicated in the right most model of Figure 24.

As shown in Figure 10, the instance memory required by the egress signal-processing

part of the PVE service is composed of two main components:

the decoder state memory

the jitter buffer storage

Both the size of the jitter buffer and the decoder state memory are directly related to the

complexity of the decoder. When the decoder is more complex, the decoder state

memory will be bigger to store the more complex decoder state variables. However, the

jitter buffer storage requirements for complex decoders are usually smaller because

complex voice coders provide better voice compression. When the PVE instance

memory is organized as shown in Figure 10, the largest decoder state memory required

by the most complex decoder and the largest jitter buffer required by the least complex

decoder will be allocated as part of the PVE instance memory. The instance memory

organization for the PVE egress signal processing service can be summarized in Figure

Decoder state
memory

Jitter buffer
storage

PVE instance
memory

organization

G.711 decoder
state memory

unused

.

G.71 1 jitter
buffer storage

When G.711
decoder is active

G.728 decoder
state memory

G.728 jitter
buffer storage

unused

When G.728
decoder is active

Figure 27: Original organization of PVE egress signal processing instance memory

Table 7 describes the sizes of the jitter buffer and the corresponding state memory for all

decoders LDX currently supports. Again, the jitter buffer storage requirement is based

on a jitter buffer that stores 300 ms worth of encoded speech.

Table 7: PVE egress signal-processing instance memory requirement

Voice decoder jitter buffer I decoder state memory I combined requirement

G.726 family 9 8 11 18 I
G.729 family 1 360 1 832 1 1192 I

As we can see in Table 7, the instance memory requirement of the PVE service egress

signal-processing part in the original implementation is 2478 words (1440 words of

G.711 jitter buffer plus 1038 words of G.728 decoder state memory). In the new

G.723.1 family 160 208 368

implementation, a sliding boundary is implemented between the decoder state memory

and the jitter buffer storage. Each time a new decoder is being used, the boundary

between the decoder state memory and the jitter buffer will be reset for that particular

decoder. With the new implementation, only 1578 words is required for each channel of

PVE egress service, a net saving of 900 words per channel is achieved. Also, the amount

of unused instance memory at any time can be significantly reduced. The above

implementation can be summarized in Figure 28.

G.728 decoder
state memory

G.71 1 jitter
buffer storage

G.728 jitter
buffer storage

unused

When G.711 When G.728
decoder is active decoder is active

Figure 28: New organization of PVE egress signal processing instance memory

With this new approach, the jitter buffer will be flushed and the PVE egress instance

memory will be re-initialized every time the PVE receives a new encoded voice frame

that does not belong to the current active decoder. The boundary between the jitter buffer

and the decoder state memory will be reset properly for the new active decoder.

The jitter buffer will be flushed every time there is a decoder rate switch. All the existing

packets within the jitter buffer will be deleted. A glitch will be resulted in the

synthesized speech during decoder rate switch. However, this problem is not critical

because there will be phase differences when the decoder changes.

7 Conclusions

Optimizing the program memory requirement of the jittw control module should be an

exciting next step. The jitter control module was originally implemented on a high

channel-density gateway platform where program memory requirement is not a limiting

factor. There is a lot of repetitive code that was intentionally to reduce the MCPS

requirement of the jitter control module. Optimizing these repetitive routines should

reduce the program memory requirement at the cost of increasing the MCPS requirement.

References

Oliver Hersent, David Gurle and Jean-Pierre Petit, "IP Telephony - Packet based

multimedia communications systems". Pearson Education Limiter, 2000, Chapter

4.

Jean Walrand and Parvin Varaiya, "High-performance Communication Networks",

Morgan Kaufmann Publishers Inc., 1996, pp 203-207.

Altmann Micro Machines, "Welcome to Jitter.deW,

www.~itter.de/english/engc navfr.htm1, accessed: April 30", 2003.

Broadcom Canada Ltd. LDX document, "Adaptive Jitter Control Module Design",

2002.

National Institute of Standards and Technology, "Nist Net Home Page",

http://dns.antd.nist.gov/itg/nistnet/, accessed: April 17'~, 2003.

British Telecommunications, "News about PESQ", http://www.pesq.orcs/, accessed

April 3oth, 2003.

International Telecommunication Union Standardization Sector, "Recommendation

P.862 - Perceptual Evaluation of Speech Quality (PESQ), an objective method of

end-to-end speech quality assessment of narrow-band telephone networks and

speech codecs", February 2001.

