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Abstract 

A cellular automaton (CA) is a discrete microscopic dynamical system widely used 

to investigate and understand the mechanisms of complex systems such as reaction- 

diffusion systems based on cell-cell interactions. We introduce two CA models for 

Turing-type pattern formation. These are a moving average CA and lattice-gas CA. 

For a moving average CA, the construction of the local CA rules from the reaction- 

diffusion partial differential equations relies on a moving-average procedure to imple- 

ment the diffusive step and a probabilistic table lookup for the reactive step. We apply 

this method to the 2D Brusselator system. The corresponding 11-state CA model is 

able to capture the Hopf and Turing birfucation. For a lattice-gas CA, we introduce 

a modified reaction rule for an activator-inhibitor system and combine it with the 

propagation rule and shuffling rule. A variety of dynamics arise in this LGCA model. 

Numerical simulations of both CA models are presented and analyzed. 
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Chapter 1 

Introduction 

A cellular automaton (CA) is a discrete dynamical system which consists of a collec- 

tion of cells on a lattice of specified shape that evolves through a number of discrete 

t,ime steps according to a set of rules based on the states of neighboring cells. First 

introduced by von Neumann in the early 1950s to develop an abstract model of self- 

reproduction in biology, CA have been widely developed and used to model different 

complex systems in physics, computer science, biology, etc.. Comprehensive studies 

of cellular automata have been performed by Wolfram starting in the 1980s, and his 

fundamental research in the field can be found in [2]. One of the most interesting 

features of CA modeling is that the complexity and the global behavior of a system 

emerge just from local interactions of cells following simple local rules. 

The CA is also used to simulate and investigate reaction-diffusion systems ([I] [7] [8]), 

which provides a way to investigate and analyze the spatio-temporal dynamics, espe- 

cially the Turing pattern formation, at a microscopic level. In 1952, Turing pointed out 

that diffusion plays a very important role in the loss of stability of a spatially homoge- 

neous stable steady state of a reactive system. This type of instability is called Turing 

instability. A spatially heterogeneous pattern may arise in this situation, which is usu- 

ally referred to as Turing pattern formation. Turing-type pattern (Diffusion-driven 

pattern) formation can be well captured and interpreted by macroscopic continuous 

models such as reaction-diffusion partial differential equations (PDEs) ([4]). Different 

from PDEs, a CA is a discrete model in space, time and state. It is characterized by 
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the lattice C, the state set I, the interaction neighborhood N and the evolution rule 

C. In the CA modeling, the reaction and diffusion process are simulated by introduc- 

ing different evolution rules with the help of C, I, and N.  In the framework of CA, 

the patterns can be seen as the emergent behaviors of the system only due to local 

interactions between cells following local rules. The CA provides an alternative way 

instead of a replacement of PDEs approach to investigate and analyze Turing pattern 

formation problems at  a microscopic level. 

In this thesis, we firstly apply a so-called Moving average CA (MACA) method to 

simulate a two dimensional activator-substrate system, the Brusselator. To mimic the 

diffusion process, we average the local sum in a Moore neighborhood or an extended- 

Moore interaction neighborhood using a very efficient algorithm called the moving 

average method ([8]). A reaction rule is obtained from the nonlinear functions in the 

PDEs. A probabilistic truncation rule is also introduced to make the states of each 

cell represented by integers. A two-dimensional two-component CA model for the 

Brusselator is then constructed based on these rules. This CA model can be seen 

as a special finite-difference discretization to the PDEs which only involves integer 

operations. Numerical simulations show that this CA model is able to capture the 

Hopf instability and Turing instability and is qualitatively correct when compared 

with the results obtained by an IMEX finite-difference scheme, involving second or- 

der backward differentiation formula (2-SBDF). We secondly investigate the Turing 

pattern formation in reaction-diffusion systems using another type of CA, the lattice 

gas CA (LGCA). With the help of channels introduced for each cell, the diffusion 

process can be realized by combining the Propagation rule P and Shuffling rule M 

([I] [7] [lo] ). We then design a Reaction rule R which is based on the rule for 

an activator-inhibitor system described in [I]. Compared with the original rule, this 

modified rule R has more control of the LGCA system and is able to generate more 

complex and interesting behaviors and patterns. We focus on how a LGCA model for 

an activator-inhibitor model based on rule R is characterized by the lattice C, state 

I and interaction neighborhood N. For C, we start with a one-dimensional lattice 

and then extend to a two-dimensional lattice. For I, we investigate the difference 
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between a LGCA model with a rest channel and a LGCA model without a rest chan- 

nel, i.e., the role of a rest channel in the LGCA model for a Turing pattern formation 

problem. Different JV are introduced for the same model in one- and two-dimensions 

and the corresponding dynamics are simulated and analyzed. This LGCA model also 

shows qualitatively similar results to those observed in a reaction-diffusion system 

modeled by PDEs. We compare this LGCA model with the Gray-Scott model in 

one-dimension. Similar structures such as self-reproduction, a traveling pulse, and a 

standing pulse arise in the LGCA model. The commutativity of the three rules P ,  

M and R is also investigated through numerical simulations. 

The layout of this thesis is as follows. In Chapter 2, we briefly review the basic 

ideas and some classical examples of CA and Turing pattern formation. In Chapter 

3, we investigate a two-dimensional activator-substrate model, the Brusselator, using 

the MACA method and the 2-SBDF method. In Chapter 4, a LGCA model for an 

activator-inhibitor system is constructed based on a modified reaction rule. Different 

dynamics are simulated and discussed. Comparison with the one-dimension Gray- 

Scott model is given and analyzed. The commutativity of the evolution operators P ,  

M and R is also studied. Conclusions are made in Chapter 5. 



Chapter 2 

Cellular Automata and Pattern 

Format ion 

In this chapter, we briefly review the main ideas and some classical examples of 

cellular automata and Turing pattern formation. Most of this material is taken from 

the standard references [l] [2] [3] [4]. 

2.1 Cellular Automat a 

In general, a cellular automaton (CA) is specified by the following definition (see for 

instance [I]),  

: a regular discrete lattice of cells and boundary conditions, 

E :  a finite set of states that characterize the cells, 

N:  a finite set of cells that defines the interaction neighborhood of each cell, and 

C: a rule that determines the dynamics of the states of the cells. 
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From the definition we can see that cellular automata can be seen as a class of discrete 

models. The meaning of discrete is: 

Space: They consist of a discrete one-, two- or three-dimensional spatial lattice of cells. 

Time: They evolve in discrete time steps following simple local interaction rules. 

State: Each cell only has a finite discrete set of possible values. 

The CA considered in this thesis has three important features. One is the homogene- 

ity of CA, which means that all cells are identical and equivalent. Another is the 

parallelism of CA evolution, i.e., each cell follows the same simple local interaction 

rule simultaneously at each discrete time step. The last is the locality of CA, which 

means that the state of each cell at time t + 1 only depends on the states of itself and 

its nearby neighbors at time t. 

2.1.1 Classical Cellular Automata 

The simplest nontrivial CA [2] is the one-dimensional CA which consists of a line of 

cells, and each cell only has two states denoted by O or 1. At every time step there is 

then a definite rule that determines the state of a given cell from the states of itself 

and its two immediate neighbors, the left one and the right one. Mathematically, 

we have a one-dimensional lattice C which consists of L cells, L E N. Each cell is 

labeled by its position r E C. The state of cell r at time t is denoted by x(r ,  t ) ,  

where x ( r , t )  E E = {0,1), t E N. X(r ,  t )  = (x(r - 1 , t ) ,  x(r, t) ,  x(r + 1, t ) )  f (0, lI3, 
a Boolean vector, denote the state of N(r), where N(r) = {r - 1 , r ,  r + 1) is the 

interaction neighborhood. There are 23 = 8 possible states for a N(r), i.e., 

so there are 2* = 256 possible rules for determining x(r,  t + l), the state of cell r at 

time t + 1. For example, the Rule 1 says if X( r , t )  = ( O , O , O ) ,  then x ( r , t  + 1) = 1, 

otherwise x(r, t + 1) = 0. The Rule 4 says if X( r ,  t )  = (0,1, 0), then x(r, t + 1) = 1, 

otherwise x(r,  t + 1) = 0. Figure 2.1 shows a graphical representation of Rule 1 and 
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Rule I 

Rule 4 

Figure 2.1: An illustration of Rule 1 and Rule 4 

Rule 4, where we use black to denote 1 and white to denote 0. The numbering of 

the Rules is determined by the possible states of x(r,  t + 1 ) ;  for example, Rule 250 

and Rule 90 are named so because in binary, 250 and 90 are written as 11111010 and 

0101 1010, respectively, as shown in Figure 2.2. From the illustration of Rule 250 and 

Rule 90, the difference between them is very small, but the long time behaviors are 

quite different. Figure 2.3 shows that Rule 90 generates a fractal structure pattern 

while Figure 2.4 shows that Rule 250 generates a checkerboard structure pattern. The 

initial condition is a single cell started in state 1 (black), the others in 0 (white). The 

CA generated by Rule 1 is usually called Rule 1 CA, and so on. Another interesting 

pattern is generated by Rule 30 CA which shows similar pattern to some seashells, 

like the one in Conus and Cymbiola Genus as shown in Figure 2.5. 

Despite the simple construction of CA, they are capable of generating very complex 

dynamics or patterns, and such dynamics only arise from the local interactions. In 

[2], Wolfram qualitatively classifies the behaviors of CA into four basic classes based 

on his systematical investigations of the simplest one-dimensional deterministic CA: 

Class 1: limit point 

Class 2: limit cycle 

Class 3: chaotic - "strange" attractor 

Class 4: more complex behaviour 
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Rule 250 

Rule 90 

Figure 2.2: An illustration of Rule 250 and Rule 90 

Figure 2.3: Fractal structure in CA system Figure 2.4: Checkerboard structure in CA 
generated by Rule 90 after 100 time steps. system generated by Rule 250 after 16 time 

steps. 



CHAPTER 2. CELLULAR AUTOMATA AND PATTERN FORMATION 8 

time 

Figure 2.5: Patterns generated by Rule 30 after 100 time steps. 

Class 1 cellular automata 

After a finite number of time-steps, evolution leads to a homogeneous state from 

(nearly) all possible initial configurations. 

Class 2 cellular automata 

Evolution leads to either simple stable states or periodic and separated structures. 

Class 3 cellular automata 

From nearly all initial configurations, evolution leads to chaotic patterns which are a 

kind of self-similar fractal curves. 

Class 4 cellular automata 

After finite steps of time, evolution leads to  complex, localized propagating structures. 

Another example is called Conway's Game of Life which is one of the first appli- 

cations showing that CA are capable of producing dynamic patterns and structures. 

It is a two-dimensional CA with binary cell states. The rules introduced by John 

Horton Conway are described by the following: 

1. A cell that is dead (0) at  time step t ,  becomes alive (1) at  time t + 1 if exactly 

three of the eight neighboring cells at  time t are alive. 

2. A cell that is alive at  time t dies at  time t + 1 if at  time t fewer than two or more 
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Figure 2.6: Conway's Game of Life: Glider. It  consists of 5 live cells and reproduces 
itself in a diagonally displaced position every four time steps. 

than three neighboring cells are alive. 

One of the most intriguing patterns in Conway's Game of Life is a so-called glider, 

which shows an oscillatory propagating pattern, as seen in Figure 2.6. 
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2.1.2 Lattice Gas Cellular Automata 

In this section, a special type of Cellular Automaton, a lattice-gas Cellular Automaton 

(LGCA), is introduced and discussed. The key differences between the classical CA 

and LGCA are the introduction of channels at each cell on the lattice in the LGCA 

system and the propagation of particles in the channels. In the LGCA system, each 

cell can have several channels and particles can only reside in channels. There are 

two types of channels: velocity channesl and rest (zero velocity) channels. Particle 

residing on a velocity channel will jump to  another velocity channel according to the 

speed and the direction of the channel. Particle residing on rest channel will not 

move. The presence of a rest channel is not necessary in some LGCA models, but 

the rest channel plays a very important role in the pattern formation problems in 

the LGCA system. Without it the LGCA system for pattern formation may exhibit 

checkerboard structure, which is artificial and doesn't have any interpretable meaning 

in the real system. 

In general, a LGCA is specified by the following definition (see for instance [I]): 

L: a regular discrete lattice of cells and boundary conditions. Velocity and rest 

channels are associated with each cell, 

& a finite set of states that characterize the cells, 

N:  a finite set of cells that defines the interaction neighborhood of each cell, and 

C: a rule that determines the dynamics of the states of the cells. 

A lattice L c Rd consists of a set of cells, where the cell is labeled by its position 

r E L. Each cell possesses s channels which are labeled by (r, ci) , i = 1, . . . , s. An 

exclusion principle is imposed which requires that no more than one particle can 

reside on the same channel (r, ci) for all r E L ,  i = 1, .. . , s. Thus, each cell can possess 

at most s particles. The state of channel (r, ci) at  time t is denoted by q,(r, t )  with 

1 presence of a particle in channel (r, ci) at  time t 
~i (TI  t )  = 

0 absence of a particle in channel (r, ci) at  time t .  
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Figure 2.7: Example of a one-dimensional LGCA with five cells and two velocity 
channels and one rest channel on each cell. Filled dot represents the presence of a 
particle in the channel. Arrows represent the moving directions of a particle in that 
channel. 

The state of a cell r at time t is then given by a Boolean vector ~ ( r ,  t) with 

Thus, for a LGCA the set of elementary states •’ of a single cell r is given by 

The total number of particles (concentration) of cell r at time t is given by 

n ( ~ ,  t )  := C qi (r, t).  

Figure 2.7 shows an example of a one-dimensional LGCA which consists of five cells 

and three channels (two velocity channels and one rest channel) on each cell. Figures 

2.8 and 2.9 give an example of a cell in a two-dimensional LGCA with five channels 

(four velocity channels and one rest channel) and 4 channels (4 velocity channels and 

no rest channel), respectively. 

The time evolution of a LGCA system occurs at  discrete time steps and follows 

from the iterated application of an evolution operator C, 
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Figure 2.8: A 2D LGCA cell with 4 ve- Figure 2.9: A 2D LGCA cell with 4 ve- 
locity channels and 1 rest channel. Filled locity channels and no rest channel. Filled 
dot represents the presence of a particle in dot represents the presence of a particle in 
the channel. Arrows represent the moving the channel. Arrows represent the moving 
directions of a particle in that channel. directions of a particle in that channel. 

which can be decomposed into two basic operations: Propagation P and local Inter- 

action Z 
C = P o Z .  (2.3) 

The dynamics of a LGCA arises from repetitive applications of superpositions of Z 

and P applied simultaneously at all lattice cells at  each discrete time step under the 

exclusion principle restriction. 

During propagation, each particle moves from its channel to the corresponding 

channel of a neighbor cell in the direction of their velocity; i.e., a particle residing in 

channel (r, ci) at time t jumps to channel (r + mci, ci) at  time t + 1. The states of 

channels (r + mci, ci) after propagation are then given by 

where m E N is the speed of the particle. 

Figure 2.10 shows an example of particles propagating in a one-dimensional LGCA 

with periodic boundary conditions. More information about the periodic boundary 

conditions for LGCA will be given in Chapter 4. 
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Figure 2.10: An example of the propagation process with speed m = 1 in a one- 
dimensional LGCA with five cells and two velocity channels and one rest channel on 
each cell. Filled dot represents the presence of a particle in the channel. 3 particles 
are labeled by different colors. Periodic boundary conditions are applied. 
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The state of cell r is also governed by the local Interaction operator Z which 

determines the state of cell r based on the information from itself and its neighboring 

cells. The interaction neighborhood JZ/(r), a set of cells defined for each cell r E L,  is 

then introduced. The state of cell r is dependent of the states of the cells in N ( r ) .  

Using v:(r, t )  to denote the postinteraction state of cell r at time t, the state of channel 

( r  + mci, ci) after local interaction and propagation is given by 

2.2 Turing Pattern Formation 

In [5], Turing pointed out diffusion plays a very important role in the loss of stability 

of a spatially homogeneous stable steady state of a reactive system. This type of 

instability is called Turing instability. A spatially heterogeneous pattern may arise in 

this situation, which is usually referred to as Turing pattern formation. 

2.2.1 PDE Approach 

Turing-type pattern (Diffusion-driven pattern) formation can be well captured and 

interpreted by macroscopic continuous models such as reaction-diffusion partial dif- 

ferential equations (PDEs). Consider a general one-dimensional system of reaction- 

diffusion PDEs, 

where u = u(x, t ) ,  v = v(x, t ) ,  x E [0, L], D,, D, are constants, and f (u, v), g(u, v) 

usually are nonlinear functions obtained from reaction rate laws. The system can be 

written in the vector form, 

with D = / 
O 1 . 0 Dv 

L J 

The spatially uniform steady state, denoted by u7f = (G, G )  can be obtained by solving 
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+ + 
f (-;l') = 0, i.e., f (G) = 0. To obtain the conditions for Turing instability we 

linearize (2.7) around G. Letting u = ii - G, u = ij - 8, where i i ,6 are small, 

substituting into (2.7) and dropping high order terms, we then have 

-+ where w = (21,ij) and J = [: :I (C.) 

Assuming the solution of the perturbed system (2.8) has the form of z ( x ,  t )  = 
- - f .  wezkxeXt  , then we have 

and 

Substituting these into (2.8) and cancelling the common factor eikxext gives 

i.e., A ,  the growth rate, is an eigenvalue of A = J- k2D = 
gv - D,k2 

with 

Solving for X gives 
1 

A,,, = p ( A )  * a), 
where A = Tr (A)2 - 4det (A), Tr (A) = f, + g, - k2 (D, + D,) and det (A) = D, D, k4 - 

(Dug, + Dvgu)K2 + (fugv - fugu). 

For Turing instability, the system should be linearly stable in the absence of diffusion 

(k = 0), which means that two eigenvalues X I ,  X2 are both negative. We have the first 

two conditions for Turing instability , 
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For Turing instability (diffusion-driven instability), the spatially uniform stable steady 

state then loses its stability in the presence of diffusion which gives another condition 

for Turing instability, 

det(A) = D , D , ~ ~  - (Dug, + D , ~ , ) K ~  + ( f,g, - f,g,) < 0, for some k # 0. 

Letting h(k2) = det(A) = D,D,k4 - (Dugv + D, f,)k2 + ( f,g, - f,g,), since (f,g, - 

f,g,) > 0 (Turing condition 2) and D,D,k4 > 0, the necessary condition for h(k2) < 0 

is Dug,+ D,f, > 0 or Dog,+g, > 0 with Do = 2. 
Differentiating h(k2) with respect to k2 and letting the derivative be zero yields k i  = 

D"l't,"~fu . Substituting into h(k2) gives h(kf ) = f,g, - f,g, - ( D u s V + D ~ f ~ l 2  4 0 %  Dv < 0, i.e., 

D u ~ ~ + D ~ f u > ~ J ~ , ~ ~ ( f , g ~ - f , g , )  or g , + ~ 0 f , > 2 J ~ o ( f , g , - f ~ g , ) ,  

where f,g, - f,g, > 0 (Turing condition 2). 

In summary, Turing conditions for Turing instability are 

Turing condition 1: f, + g, < 0, (2.9) 

Turing condition 2: f,g, - fvg, > 0, (2.10) 

Turing condition 3: Do f, + g, > 0, (2.11) 

Turing condition 4: g, + Do f, > 2 Jo0(fug, - filsu), (2.12) 

where Do = 2. 
If a reaction-diffusion system which has a spatially uniform steady state satisfies these 

four conditions, any spatially inhomogeneous perturbations to  the spatially uniform 

steady state may lead to  a spatially inhomogeneous steady solution which corresponds 

to  a spatially inhomogeneous stationary pattern, i.e., Turing pattern formation. This 

analysis can be generalized to  a two-dimensional reaction-diffusion system. We will 

investigate a two-dimensional reaction-diffusion system in Chapter 3. More detailed 

analysis of Turing pattern formation can be found in [3] and [4]. 

2.2.2 Activator-Inhibitor System 

Multiplying (2.9) by (2.11) gives DO f: + g: + (1 + Do) f,g, < 0, which implies that 
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f u s v  < 0. 

This means that f ,  and g, must have opposite signs. From (2.10) we have 

since f,g, < 0, which means that f ,  and g,  must have opposite signs, too. This leal - - 
to four possibilities for the Jacobian matrix J = I k  :I 
The first two matrices correspond to an activator-inhibitor system, where one species 

activates itself and the other, while the second species inhibits itself and the first. 

The last two correspond to  an activator-substrate system, where one species activates 

itself and inhibits the second, while the second activates the first and inhibits itself. 

Assuming species u is the activator and species v the inhibitor, i.e., f ,  > 0 and g, < 0, 

then (2.9) and (2.11) become 

which leads to 

This means that for Turing instability the inhibitor should diffuse faster than the acti- 

vator. An schematic representation for an activator-inhibitor system and an activator- 

substrate system are shown in Figure 2.11 and Figure 2.12, respectively. 

2.2.3 CA Approach 

The CA can also be used to model a reaction-diffusion system for the Turing pattern 

formation problem. In the framework of CA, the Turing pattern can be seen as a 

consequence of the local interactions between cells following certain rules. In contrast 
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Species U: Activator 

Species V: Inhibitor Species V: Substrate 

Figure 2.11: Graphical representation of Figure 2.12: Graphical representation of 
the scheme of an activator-inhibitor sys- the scheme of an activator-substrate sys- 
tem. tem. 

to the PDE approach, the CA model is totally discrete in time, space and state. Only 

a few states are used for each cell, and they are represented by integers. The CA 

model is not a replacement of the PDE model but an alternative way to investigate 

and analyze Turing pattern formation problems. In the next two chapters we will 

construct a CA model and a LGCA model for an activator-substrate system and 

an activator-inhibitor system, respectively. We will also compare the results with 

those obtained by solving a reaction-diffusion system using numerical methods in a 

qualitative way. 



Chapter 3 

Moving Average Cellular 

Automat a 

In this chapter, a cellular automata model for a reaction-diffusion system is intro- 

duced. We investigate 2D reaction-diffusion systems using so-called Moving Average 

CA first introduced in [8] for Turing-type pattern formation. The construction of 

the local CA rules can be obtained from a finite-difference-like discretization to the 

reaction-diffusion partial differential equations (PDEs), which relies on a moving- 

average procedure to implement the diffusive step and a probabilistic table lookup 

for the reactive step. A truncation rule is also introduced to force the operations 

to only involve integers. We apply this method to the two-dimensional Brusselator 

model. Turing-type patterns can emerge for well-chosen values of the parameters. The 

model is also simulated using the Second Order Backward Differentiation Formula for 

comparison. 

3.1 Brusselator Model 

The Brusselator model is an abstract model to  demonstrate chemical oscillations and 

patterns. The reaction mechanism proposed by Prigogene and Lefever is 
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where the kis are the rate constants, and the reactant concentrations of A and B are 

kept constant. The governing ordinary differential equations for the concentrations of 

X and Y are 

In [6],  the corresponding reaction-diffusion PDEs are written in nondimensional form 

as 

3.1.1 Linear Stability Analysis 

The spatially homogeneous steady state ( E ,  G )  = ( a ,  b la)  is obtained by solving the 

system 
f ( u , v )  = a  - (b + l)u+ u2v  = 0 

g(u ,  v )  = bu- u2v  = 0. 

To study the stability of this spatially homogeneous steady state , we linearize (3.2) 

around (i i ,  6 )  = ( a ,  b la ) ,  which gives 

+ + Assuming the solution of the perturbed system (3.4) has' the form of w ( x  , t )  = 
+ .-'+ + 
W e z  eAt, where T' = ( x ,  y ) ,  k  = ( k l ,  k 2 ) ,  then we have 
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+ 
where k:=l k  I = d m .  Substituing these into (3.4) and cancelling the common 

factor ez"e" gives 

X w '  = ( J  - k Z D ) $ ,  

i.e., A, the growth rate, is an eigenvalue of A = J -  lc2D = 
9, - D,k2 

with 

X 2  - T r ( A )  X + det ( A )  = 0. 

Solving for X gives 
1  

X1 ,2  = Z ( T r ( A )  f a), 
where A = T T ( A ) ~  - 4det (A) ,  with 

T r ( A ) =  b - 1 - a 2 - k 2 ( ~ , + D , )  and d e t ( A ) = k 4 ~ , ~ , + l c 2 [ ( 1 - b ) D , + a 2 D U ] + a 2 .  

In the absence of diffusion, i.e., k  = 0, since de t (A)  = a2 > 0, the uniform state 

is linearly stable when T r ( A )  < 0 or b  < 1  + a2. At b  = bH = 1  + a2,  we have 

T r ( A )  = 0, det (A)  > 0, which gives 

Re(X)  = 0, I m ( X )  = f ia. 

Therefore, the Hopf bifurcation occurs at lc = 0, b  = b:, and oscillation corresponding 

to the periodic solution in time exists for b  > bH. In the presence of diffusion, i.e., 

lc # 0, an unstable mode exists if de t (A)  < 0 or de t (A)  3 0, T r ( A )  > 0. For a Turing 

bifurcation, because T r ( A )  = b  - 1  - a2 - lc2(D, + D,) < 0 if b  < b: = 1  + a2 at the 

onset of instability, one eigenvalue should be zero and the other real and negative, 

which results in de t (A)  = 0. Letting h ( k 2 )  = d e t ( A ) ,  finding its minimum gives 

(bD, - D, - u ~ D , ) ~  
min h ( k 2 )  = a2 - = 0. 

4DUDU 

Solving for b yields 
c 



CHAPTER 3. MOVING AVERAGE CELLULAR AUTOMATA 2 2 

Therefore, a Turing bifurcation occurs at  k # 0, b = b:. In summary, linear stability 

analysis around the uniform steady state gives 

H 2 Hopf bifurcation: b, = 1 + a , (3.5) 
2 

Turing bifurcation: b: = (I + a g )  . 

Assuming 0 < < 1, letting b r  = b r ,  and solving for a gives 

So b r  > b: if a > a,, and Turing instability appears first as b increases, while b; < b: 
if 0 < a < a,, and Hopf instability appears first as b increases. For more detailed 

study of this stability analysis see [3] and [4]. Thus, the condition for Turing pattern 

formation is 

b: < b < b?. (3.7) 

Figure 3.1 shows the bifurcation diagram of the Brusselator for 2 = $ in the a - b 

plane. From it we can see that lines b:, b r  and a, divide the plane into 6 different 

regions, A, B, C, Dl E, F. We will investigate the dynamics of the Brusselator by 

choosing different values of the parameters (a, b) in these 6 regions, numerically using 

the 2-SBDF method and moving average CA method. According the linear stability 

analysis, if start with (a, b) in region A, the system should be linearly stable. But as 

we increase the value of b with fixed a,  Hopf bifurcation should appear first as b enters 

region B or C. Similarly, if we start with ( a ,  b) in region D, the system is linearly 

stable. As we increase the value of b with fixed a,  theTuring bifurcation should appear 

first and Turing patterns will be formed. 

In the following sections we will first use 2-SBDF, an Implicit-Explicit finite dif- 

ference method, to investigate the dynamics of Brusselator. Then, we will review the 

ideas of the Moving Average method for the reaction-diffusion system and use it to 

construct a CA model for the 2D Brusselator to investigate its dynamics for different 
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Bifurcation Diagram of Brusselator D ~ ~ D ~  = 1 fi 
1 I I I 

Turing Bifurcation 
L 1 Hopf Bifurcation ( 

x F 

Figure 3.1: Bifurcation Diagram of Brusselator. The Turing-type pattern emerges 
when (a,b) lies in region that is above the solid line and below the dashed line. 
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values of the parameters. Some comparisons between these two methods are also 

given. 
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3.2 Numerical Simulation For Brusselator Using 

Finite Difference Method 

In this section we study the numerical solution of system (3.2) using an Implicit- 

Explicit numerical scheme. This class of methods was systematically studied in [9]. 

Here system (3.2) is discretized by a Second Order Backwards Differentiation Formula 

(2-SBDF) by which the reaction terms are treated explicitly while the diffusion terms 

are treated implicitly [9], i.e., 

where Ah  is the laplacian operator 

for the interior points. 

Applying (3.8) to  (3.2) gives 

(31 - 2AtD,Ah)Un+' = 4Un - Un-' + 4 A t  f (un, Vn) - 2At f (Un-', Vn-') 

(31 - 2AtD,Ah)VnS' = 4Vn - Vn-' + 4Atg(Un, Vn) - 2Atg(Un-', Vn-'). 

(3.9) 
Linear systems (3.9) are solved by the matlab built-in PCG (Preconditioned Con- 

jugate Gradient) method at each time step with Neumann boundary conditions. We 

choose At  = 0.0125, Ax = Ay = h = 0.02 for all simulations, and the domain is 

discretized in a lOOXlOO mesh. Several simulations are performed for different (a, b) 

chosen in region A to  region F. For investigating the Hopf bifurcation, i.e., onset of 

temporal oscillations of a spatially uniform state, we plot the average of 21 over the 

domain in the t - ZL plane instead of a contour of u in the x - y plane. For investigating 

the Turing bifurcation, we plot the contour of u in the x - y plane. 

We first investigate Hopf instability. We start with a = 1 < a, and initial condition 

uo = a + O.la, vo = bla + O.lb/a. When b is chosen to be in region A, all perturbations 

die out and 21 goes back to the homogeneous steady state as shown in Figure 3.2. 
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Figure 3.2: Evolution of u when (a, b) = ( 1 , l )  in region A with initial condition 
u0 = a + O.la, vo = bla + O.lb/a. 

As we increase b with fixed a ,  a Hopf bifurcation occurs first. For example, when 

b = a2 + 1 + E ,  E = 0.01, which means b is slightly above b: and is in region B, 

we observe oscillations, and u is getting closer and closer to the asymptotic solution 

u = a + eisin(wt) and the frequency w is equal to a. If we keep increasing b to region 

C, we still observe oscillations as shown in Figure 3.4. 

Then we investigate the Turing instability. We start with a = 3 > a, and the 

initial condition u0 = a + O.la, vo = bla + O.lb/a. When b is chosen to be in regions D 

and E, b = 4 and b = 8 for instance, numerical simulations show that u goes back to 

the uniform steady state eventually since the system is linearly stable to homogeneous 

perturbations. 

From linear theory we know that in regions E and F the system is linearly 

stable to spatially homogeneous perturbations but unstable to spatially inhomoge- 

neous perturbations which gives rise to Turing patterns. Numerical simulations con- 

firmed this. We choose (a, b) = (3 ,s )  and (a, b) = (3,16). The initial condition is 

uo = a + O.lrand, vo = bla + O.lrand, where rand is a sequence of random numbers 

uniformly generated in (0 , l )  by the matlab. Stationary patterns emerge in this case 
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Figure 3.3: Evolution of u when ( a ,  b) = Figure 3.4: Evolution of u when (a ,  b) = 

( 1 , 2  + E ) ,  E = 0.01 in region B with initial ( 1 , 6 )  in region C with initial condition 
condition uo = a + O.la, vo = bla + O.lb/a. uo = a + 0 . 1 ~ ~  vo = bla + O.lb/a. 
Hopf bifurcation occurs first. Numerical 
solution approaches asymptotic solution as 
time evolves. 

Figure 3.5: Evolution of u when ( a ,  b) = Figure 3.6: Evolution of u when ( a ,  b) = 

(3 ,4 )  in region D with initial condition ( 3 , 8 )  in region E with initial condition 
uo = a + O.la, vo = bla + O.lb/a. uo = a + O.la, vo = bla + O.lb/a. 



CHAPTER 3. MOVING AVERAGE CELLULAR AUTOMATA 2 8 

as shown in Figure 3.7 and Figure 3.8. Nunlerical simulations show that the Brusse- 

U at lime ~100.W00 U attime t-100.000 

Figure 3.7: Concentration of u when Figure 3.8: Concentration of u when 
(a, b) = (3,8) in region E with initial con- (a, b) = (3,16) in region F with initial con- 
dition uo  = a+O.lrand, uo = b/a+O.lrand. dition uo = a+O.lr-and, uo = b/a+O.lrand. 

lator is capable of generating Turing type patterns with the right choice of values of 

the parameters. In the next section we will give another type of discretization of the 

Brusselator model by cellular automata which also can capture the Turing bifurcation 

and Hopf bifurcation. 

3.3 A MACA Model for 2D Brusselator 

In this section we will investigate the 2D Brusselator model using the so-called Moving 

Average CA which was first introduced in [8].  The core part of CA modeling is the 

construction of CA updating rules. So, first of all, we will briefly review the ideas of 

deriving CA updating rules for Moving Average CA. Then we will utilize these rules 

to construct a CA model for the 2D Brusselator. 
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3.3.1 CA Updating Rules 

Consider the system 

2 = D,V2u + f (u, V )  

= D,V'V + g(u, v), 

where u = u(x, y, t ) ,  v = v(x, y, t ) ,  D,, D, are constants, and f (u, v), g(u, v) are 

nonlinear functions obtained from reaction rate laws. The complete dynamics of the 

CA are given by the repetitive application of three operators: 7, R, V to each cell 

simultaneously. 

Diffusion Rule V 

The CA rules for the diffusive part can be obtained from a modified finite difference 

scheme [8]. Let's start from the one-dimenstional diffusion equation 

Discretizing in time and space gives 

which can be rewritten as 

nt where b-1 = bl = A, bo = 1 - 2X, X = D- nx2 ' 

Generalizing this discretization and using more general coefficients ai yields, 

R 

u(x, t  + At)  = x ai . u ( x  + i .   AX,^). (3.13) 
i=-R 

Taylor expanding u(x + i . Ax,  t)  on the right-hand side in space gives, 
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Plugging this back into (3.13) produces 

R R au 1 
R 

d2 u 
U(X, t + At)  = x a i .  u(x, t )  + x (iAx)a, . - + x ( i A ~ ) ~ a i  . - + 0(Ax3) .  

iz -R i z - R  ax i=-R ax2 

If we let 

we obtain a ,n approximation to the diffusion equation (3.10). Now we ca 

Diffusive operator D as 

1 du2 
D(u(x, t ) )  = u(x, t )  + -73-. 

2 a2x 

~n define the 

A special case is obtained by making all ai equal [8]. In this case, equation (3.13) 

becomes 

From equation (3.16) we have 

Notice that the diffusion coefficient D can be controlled by R. So for a multispecies 

problem, we just use different values of R (interaction neighborhood) to get different 

diffusion coefficients provided that Ax,  A t  are the same for all species. The advantage 

of this choice of coefficients is the calculation of the new value u(x, t + A t )  for each r 

only involves one addition and one subtraction per cell instead of (2R+1) additions, 

i.e., 

U(X + AX, t + At)  = U(X,  t + At)  + a .  (U(X + (R + l ) A x ,  t )  - U(X - RAx, t)) .  (3.20) 
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In 2D, u = u(x, y, t ) ,  we can have similar results 

u(x, Y ,  t+At) = ai ,p(x+iAx,  y+jAy, t )  = a. u(x+iAr,  y+jAy, t ) ,  

where 

So in order to compute the right-hand side of equation (3.21), the local average, we 

only need to calculate a moving sum in the x-direction first, then in the y-direction, 

and finally divide it by the normalization coefficient a, i.e., 

In x-direction: C(x + Ax, y, t )  = G(x, y, t )  + u(x + (R + l ) h ,  y, t) - ~ ( x  - RAx,  y, 

In y-direction: G(z, + Ay, t )  = G(x, y ,  t )  + G(x, y + (R  + l )Ay,  t )  - C(X, y - R a y ,  1 

( Normalization: u(z,  y, t + At) = aB(x, y, t )  

(3.23) 

where C(x, y, t )  represents the horizontal local average of cell (x, y) in (x - RAx, x + 
RAz) at  time t and ( x ,  y, t )  represents the vertical local average of updated cell 

(x, y), i.e., the local average of cell (x, y )  in the (2 R $1)x(2R + 1) neighborhood. To 

make this updating process more clear, we give an example of calculating the local 

average of each cell in 2D for R = 2 with periodic boundary conditions using this 

so-called Moving average method. 

R=2 

Assume lattice LC: contains ( N  + 1)x(N + 1) cells. The state of cell (i,j) is represented 

by u(i, j ) ,  where i, j = 0,1, ..., iV. Since R = 2, the interaction neighborhood is an 

extended Moore neighborhood which means each cell has (2R + 1)x(2R + 1)= 25 

neighbors. Instead of simply adding the values of all (2R + 1)x(2R + 1)=25 cells in 

the neighborhood for each cell ,we first calculate the horizontal average of each cell. 

We start from cell (2,O) as shown in Figure 3.9. The horizontal local average of cell 

(2, 0), denoted as G 2 , ~ ,  is computed which is G2,0 = UO,O + UI,O + UZ,O + U3,0 + U4,0. Then, 

according to (3.23)) we have C3,0 = G2,0 + u g , ~  - U O , ~  SO instead of doing 2R + 1 = 5 
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Figure 3.9: The local average is calculated in the horizontal direction. 
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Figure 3.10: The local average is calculated in the vertical direction. Value of each 
cell has been updated by horizontal sum. 



CHAPTER 3. MOVING AVERAGE CELLULAR AUTOMATA 34 

additions, it only involves two additions. Based on this algorithm, we can just "move" 

along the x-axis and calculate the horizontal sum of each interior cell as long as we 

know what the horizontal sum G2,j  is for each j = 1,2,  .. .. , N. This algorithm can be 

applied to boundary cells u ~ , ~ ,  i = 0,1, K - 1, N , j  = 0, ...: N, if periodic boundary 

conditions, ui,j = U N + ~ + ~ , ~  for i = -1, -2 and j = 0, ..., N and ~ ~ - 1 , ~  = u ~ + ~ , ~  for 

i = 1,2  and j = 0, . . . , N are applied. Next, we will use the horizontal sum to calculate 

the vertical sum of each cell. Similarly, we first calculate the vertical sum of cell (0,2) 

as shown in Figure 3.10, which gives tto,2 = Go,o + Gall + G0,2 + + Notice 

that the value of each cell has been updated by the horizontal average in the previous 
- - 

step. Then, according to (3.23), we have = + - Go,0. Again, instead of 

doing 2R + 1 = 5 additions, it only involves two additions. Based on this, we can just 

"move" along the y-axis and calculate the vertical sum as long as we know what the 
- 

vertical sum iii,j is for each i = 1, . .., N.. Boundary terms are treated similarly to the 

previous case. Figure 3.9 and Figure 3.10 give an illustration of these two updating 

processes. So we can see that the advantage of using this method is that we only need 

four additions per cell instead of 25 to calculate the local sum. The local average is 

then normalized by a to complet,e mimicing the diffusion process for one time step. 

Reaction Rule 

The Reaction operator also comes from a finite-difference-like discretization in time 

and space to the Reaction-Diffusion system [8] and is defined as 

Combining this with the diffusive operator V defined by (3.17), we have 
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Truncation Rule 7 

Here we notice that the output of operator R might not be integers any more. Since 

the new state of each cell has to be represented by an integer, we need to introduce 

another operator to truncate the results. In general, the truncation rule is of two 

kinds: deterministic and probabilistic. The simplest case of a deterministic rule could 

be a rule that round the state of each cell to the nearest integer that is either greater 

than it or less than it. However, when testing this rule for the MACA model for t,he 

Brusselator, we have found that commonly it leads to the checkerboard instability for 

each cell. So we introduce a simple probabilistic rule which is defined as ([8]) 

with probability I - p 
I(u) = 

[u] + 1 with probability p 

where p = u - [u] and [u] is the nearest integer that is less than u. 

Two tables are needed for this rule, one giving [u], the other giving p, for each possible 

output of the diffusion operator D. The complete dynamics of the MACA is then given 

by 7 o R o V .  

3.3.2 Construction of MACA model for Brusselator 

For modeling the 2D Brusselator by the MACA we need two two-dimensional latt,ices 

for species u and v, respectively. Each lattice contains the same number of cells. 

There is no channel at each cell, which differs from the lattice gas CA. The state 

of each cell is represented by an integer number in [0, MI, where M is the largest 

integer number each cell can have. So the state of each lattice can be represented by 

a two-dimentional matrix whose entries are only integer numbers in [0, MI. Different 

interaction neighborhoods are chosen for each species, which in turn gives different 

diffusion coefficients. Here we choose a Moore Neighborhood (R, = 1) and an Ex- 

tended Moore Neighborhood (R, = 2). The CA updating rules are what we defined 

in the previous section. To make the updating process clearer, we give an algorithm 

for the MACA method: 
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Figure 3.11: Moore Neighborhood Figure 3.12: Extended Moore Neighbor- 
hood 

1. Initialize u,  v and set values of all parameters, 

2. Calculate the horizontal sum using (3.23) for each cell and update each cell with 

the horizontal sum, 

3. Calculate the vertical sum using (3.23) based on the updated values of each cell, 

4. Rescale the value of each cell using (3.23), 

5. Add the contribution from the reaction part, 

6. Truncate the result>s using the proper rule to make sure each cell only contains 

an integer, 

7. Update the values of all cells and go back to Step 2 

Figure 3.13 shows an example of this updating process from time t = 0 to t = A t  

based on the above algorithm. For simplicity, uo = 2, vo = 1. We choose A t  = 0.01, 

a = 3, b = 9, R, = 1 and R, = 2, which means each cell of u and v has (2R, + 1)2 = 9 

neighbors and (2R, + 1)2 = 25 neighbors, respectively. The horizontal sum is first 

calculated and then the vertical sum by which the values of all cells are updated. Next, 
1 2 - 1  1 2 -  1 the values of all cells of u, v are rescaled by a, = - 9 and a, = - - 

25 ' 
respectively. The contribution from reaction terms are then computed for u and v ,  

which gives Atf (u, v)  = -0.13 and Atg(u, v) = 0.14. Last, the values of all cells are 

truncated using probabilistic rule (3.26) and look-up tables. 
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Species u (R=l) 

Initial u 

lqFRzl 

Horizontal Sum 4 
6 6 6 6 6  

Vertical Sum 4 

Rescaling and Reaclion C 

Truncating by look-up table + 

Species v ( F I Z Z )  

Vertical Sum + 

Rescal~ng and Reaction + 

Truncatmg by look-up fable + 

Figure 3.13: An example of MACA updating process from t = 0 to t = At. 
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3.3.3 Numerical Simulations using MACA 

In this section several numerical simulations for the Brusselator using the MACA 

method are performed and the results are compared with those obtained by the 2- 

SBDF method in a qualitative way. We choose R, = 1, I$, = 2 for species 11 and v, 

respectively, which gives us 2 = i. The initial conditions is uo = a + O.la, vo = 
b , + 0.1 $ or uo = a + 0. l rand,  vo = + 0. l rand,  and periodic boundary conditions are 

applied. The Length of the lattice is L = 250 and contains NxN cells (N = 250), i.e., 

the spatial domain is discretized in a 250x250 mesh where Ax = Ay = 1 and time 

step At = 0.01. The discretization level is chosen to be M, = ML = 10, which means 

the CA model we construct only has 11 states for each cell. Concentratio~~s of species 

u are plotted for different choices of parameters. Similarly, we plot the average of u 

over the domain in the u - t plane and the contour plot of u in the x - y plane t o  

show the evolutions of u . 

Firstly, we investigate the Hopf instability of the system by choosing a < a, and 

increasing b with fixed a. The initial condition is uo = a + O.la,vo = ; + 0.1;. 

By the linear analysis a Hopf instability should appear as b passes b:. We choose 

(a, b) = (1, I ) ,  (a, b) = (1,3) and (a, b) = (1,9) in regions A, B and C of Figure 3.1, 

respectively. The average of u is plotted for each choice of parameters. Numerical 

simulations show that all perturbations vanished and u goes back to the spatially 

steady state a = 1 for all three examples. The (a, b) = ( 1 , l )  case confirms the linear 

stability analysis since the system is linearly stable to small perturbations. However, 

a Hopf instability does not occur as b passes b:, the Hopf bifurcation line, since 

no oscillations are observed in Figure 3.15 and Figure 3.16. To investigate Hopf 

instability further, we change the value of a to  be a = 1.1 and choose (a, b) = (1.1,5) 

and (a, b) = (1.1,9). We do not see Hopf instability immediately as b passes b:, the 

Hopf bifurcation line. However, as we keep increasing b till it passes b:, the Turing 

bifurcation line, a Hopf instability occurs first as shown in Figure 3.18 and Figure 

3.19. 

Secondly, we investigate the Turing instability. We choose (a, b) = (3,4), (a, b) = 
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Figure 3.14: Evolution of average of u Figure 3.15: Evolution of average of u 
when ( a ,  b )  = ( 1 , l )  in region A with initial when ( a ,  b) = ( 1 , 3 )  in region B with initial 
condition uo = a + O.la, vo = b/a + O.lb/a condition uo = a + O.la, vo = bla + O.lb/a 

Figure 3.16: Evolution of average of Figure 3.17: Evolution of average of u 
when ( a ,  b) = ( 1 , 9 )  in region C with initial when ( a ,  b) = ( 3 , 4 )  in region D with initial 
condition uo = a + O.la, vo = b/a + O.lb/a condit,ion uo = a + O.la, uo = bla + O.lb/a 
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Figure 3.18: Evolution of average of ZL Figure 3.19: Evolution of average of *u 

when (a, b) = (1.1,5) in region C with ini- when (a, b) = (1.1,9) in region C with ini- 
tial condition uo = a + O.la, vo = b /a  + tial condition uo = a + O.la, vo = b/a + 
O.lb/a O.lb/a 

(3,9) and (a, b) = (3,12), (a, b) = (3,18) in regions D, E and F of Figure 3.1, respec- 

tively. When (a, b) = (3,4), Figure 3.17 shows that starting with uo = a + O.la, vo = 

k + 0.1:, u is going back to the spatially steady state a = 3 with small oscillations 

(50.05). Starting with uo = a+O.lrand, vo = $ + ~ . l r a n d ,  we observe that the Turing 

instability occusr and stationary pat,terns are generated as b passed b:, the Turing 

bifurcation line, as shown in Figure 3.20, Figure 3.21 and Figure 3.22, which confirms 

the linear stability analysis. 

Lastly, we also find that Turing patterns are observed when (a, b) is in region C. 

We choose (a, b) = (1.5,9). The initial condition is uo = a +  0. l rand,  vo = +o. lrand. 

Isolated spot-like patterns are generated as shown in Figure 3.23. 

From the above simulations we sec that the MACA   nod el is capable of capturing 

the Turing and Hopf instability with well-chosen values of the parameters a and b, and 

it gives the qualitatively the same results as t,hose obtained by the 2-SBDF method. 

To our knowledge, this is the first numerical study of the Brusselator based on the 

MACA method and corresponding comparisons. All of the simulations are computed 

in Matlab, and the matlab codes for the MACA model can be found in the Appendix. 
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Figure 3.20: Concentration of u when Figure 3.21: Concentration of u when 
( a ,  b)  = (3,9)  in region E with initial con- ( a ,  b) = ( 3 , 1 2 )  in region F with initial con- 
dition uo = a+O.lrand, vo = b/a+O.lrand. dition uo = a+O.lrand, vo = b / a + O . l ~ a n d .  

u a1 lime t=6l .D3l u at time 1=214 10m 

Figure 3.22: Concentration of u when Figure 3.23: Concentration of u when 
( a ,  b) = ( 3 , 1 8 )  in region F with initial con- ( a ,  b) = (1 .5 ,9)  in region C with initial con- 
dition uo = a+O.lrand, vo = b/a+O. l r a n d .  dition uo = a+O. l r a n d ,  vo = b/a+O. l r a n d .  



Chapter 4 

LGCA for Turing Pattern 

Format ion 

In the previous chapter, we introduced a MACA model for the 2D Brussellator 

reaction-diffusion system. We started with the reaction-diffusion system, and uti- 

lized a MACA to  discretize the system. In some sense, the MACA method can be 

seen as a special kind of numerical method for reaction-diffusion PDEs which only 

involves integer operations. In this chapter, we use another type of CA to  model and 

analyze pattern formation problems: the Lattice Gas CA (LGCA). The LGCA has 

been widely used to model and simulate problems in hydrodynamics and in reaction- 

diffusion systems ([7] [lo] [I]). From Chapter 2 we have seen the key difference between 

classical CA and LGCA is the introduction of channels. In the LGCA system, each 

cell contains several channels, on which particles residing will propagate following the 

Propagation rule P. It  is found and demonstrated that with the help of a particular 

random permutation of the channel occupation (Shuffling rule M)  at each cell, each 

particle performs a random walk and the macroscopic behavior of the particle density 

is expected to be diffusive (see [7] [lo]). For modeling reaction-diffusion systems, Re- 

action rule R is constructed and combined with the Propagation rule and shuffling 

rule to give the complete dynamics. Reaction rule R can be designed by using the 

knowledge of the chemical reaction equations (see for instance [7]) or using the knowl- 

edge of the mechanisms and properties of the system that is to  be modeled (see for 
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insta.nce [I]). From the definition of the LGCA system mentioned in Chapter 2, we 

know that the dynamics of a LGCA system also depends on three other things: lattice 

C, sta.te E and interaction neighborhood JV by which the system is characterized. 

In this chapter, firstly, we design a reaction rule based on the rule described in 

[I] and construct a LGCA model for an activator-inhibitor system in one- and two- 

dimensions using this modified reaction rule. This rnodified reaction rule incorporates 

the rule defined in [I] and is capable of showing more different and interesting patterns. 

An algorithm for constructing such a model is also presented. Secondly, using this 

rule, we investigate different dynamics and patterns in this LGCA model in one- and 

two-dimensions with different C, E and N .  The role of the rest channel in the LGCA 

system is also investigated through numerical simulations. Comparisons between the 

LGCA model with a rest channel and without a rest channel in 1D and 2D are 

given, from which we shall see that the absence of the rest channel may cause the 

checkerboard instability, and that such instability could be eliminated by extending 

N .  Comparisons between different n/ are also given. Through these simulations and 

analysis we shall see how this LGCA model is characterized by the lattice C, state E 

and interaction neighborhood N .  Lastly, we will study the co~rimutativity of rules P, 
M and R through the numerical simulations. To our knowledge, this is the first study 

of such models based on the modified reaction rule with corresponding comparisons. 

4.1 Construction of LGCA Model for R-D System 

In order to mimic the reaction-diffusion process of the pattern formation problem 

in the framework of LGCA, the construction of updating rules for the reaction and 

diffusion process is the key part. In Section 2.2.2, we know that the evolution of the 

LGCA system is determined by C that is the co~riposite of Propagation rule P and 

Interaction rule 1, i.e., 
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For modeling a reaction-diffusion process, the Interaction rule 1 is decomposed into 

two rules, Shuffling rule M and Reaction rule R. To mimic the diffusion process, 

Shuffling rule M is introduced and combined with Propagation rule P .  Reaction 

rule R can be designed by using chemical react'ion equations of a particular chemical 

reaction (see [7]) or using the knowledge of the mechanism and properties of the 

system that is to  be modeled (see [I]). Then the dynamics of the LGCA system can 

be described by 

[stateItf1 = C[stateIt, 

where C consists of 3 steps: Propagation P ,  Shuffling M and Reaction R 

In this chapter, our simulations and discussions are based on the order P O M  OR. In 

fact, based upon our simulations, the order of these operators does not qualitatively 

affect the long time behaviors of the LGCA system. We will investigate this in the 

last section. 

4.1.1 Random Walk in LGCA System 

In this section we will numerically show that in a non-reactive 1D LGCA, R = identity, 

each particle executes a discrete random walk through the repeated application of M 

and P, where M acts as follows ([I]): 

1. Before the propagation step at each cell, each particle randomly and indepen- 

dently selects a new velocity (including the velocity it has now and zero velocity 

if a rest channel is present) among the values permitted by the lattice. 

2. No more than one particle at each cell can select the same velocity or rest 

channel (Exclusion principle). 

Consider the LGCA system that has s channels on each cell. At each time step, before 

propagating, particles will interchange their velocities randomly and independently at 

each cell, where independently means this process ignores the state and location of 
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each cell. There are s! ways of shuffling at each cell. In order to realize this process, 

a sequence of Boolean random variables 

is generated in order to select a permutation matrix. Notice that for every t the 

random variables are independent of the past evolution of the automaton and at a 

given node r and time step t only one of the & is equal to 1, which means only one 

permutation is selected at each cell r and each time step t, i.e., 

The state of channel (r, ci) at time t after the shuffling process, denoted by @(r, t) ,  

is then given by 

Here a; is a matrix element of Aj, and Aj E A,, where A, is the set of all s by s 

orthonomal permutation matrices that is defined as 

A, = {A E RsxXr : 3rr E &a2 = un(",Vi = 1, ....., s} = {AI ,  ....., A,!) 

where uj are unit vectors with s components, j = 1, ....., s: aj is the ith column vector 

of A,  and IIs is the set of all permutations of s elements. 

Combining with propagation step (2.4), the complete dynamics of the non-reactive 

LGCA system can be described by 

Using (4.2) and (4.3) we can easily get the new state of each channel on lattice C. Next, 

we will numerically show that a I D  LGCA system whose dynamics are determined 

by the above Propagation rule and Shuffling rule can mimic the random walk, and 

the macroscopic behavior can be expected to be diffusive. 
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Let's consider a 1D LGCA system with N = 101 cells and each cell has s = 3 channels 

(including 2 velocity channels and 1 rest channel). Initially, we have a particle residing 

on channel (0, cs) which is the rest channel at r = 0. At Nt  = 0, this particle will 

rando~rily choose a velocity channel or stay where it is. From Nt  = 0 to Nt  = 1, it 

will jump to left or right or stay depending on the channel it chose at Nt  = 0 with the 

same probability p=i .  To investigate this process further, we do several simulations 

using Matlab with this initial condition. Figures 4.1 and 4.2 give four random walks 

with Nt  = 100 time steps for different m, the speed of the particle. Statistical analysis 

is also given in order to show this process is random. We first calculate the average 

straight-line distance between start and finish point at different time step Nt  for 

Niter = 1000, where Niter is t,he number of simulations. Figures 4.3 and 4.4 show 

that the average straight-line distance between start and finish points of Nt  steps is on 

the order of v'% and behaves like the theoretical value m @ m ,  where m = 1,2. 

Another thing we observe is the Gaussian structure in this LGCA system. We start 

Figure 4.1: Four random walks starting 
at r = 0 in ID LGCA system with m = 
1, Nt  = 100, N = 101. 

Figure 4.2: Four random walks starting 
at r = 0 in 1D LGCA systern with rn = 
2, Nt  = 100, N = 101. 

with the single particle at channel (0, c3) ,  and for each N t  = 5,25,50, Niter = 10000 

simulations are performed with m = 1 and N = 101. The probability density function 

p(r,  t )  of the particle is then computed, where p(r, t )  := P(n(r, t )  = 1) represents the 

probability of the appearance of the particle a t  cell r at time t.  Figure 4.5 shows the 
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Figure 4.3: Mean distance between start Figure 4.4: Mean distance between start 
and finish point with m = 1 for different and finish point with m = 2 for different 
time steps. time steps. 

Figure 4.5: Gaussian Structure in LGCA system with N 
[5,25,50], Niter = 10000. 
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probability density functions for different time step t  = Nt .  

Equation (4.3) models a random walk for each particle on lattice C .  Since the 

interaction between random walkers is strictly local, the macroscopic behavior of the 

system can be expected to be diffusive ([7][10] ). 

4.1.2 Multicomponent LGCA System 

For modeling an activator-inhibitor system, there are two species of interest involved: 

activator A and inhibitor I .  Similar to the MACA model for the Brusselator, we 

need a lattice L A  and a lattice C I  for species A and I, respectively. For simplicity, we 

assume L A  and C I  are identical, i.e., they have the same number of cells and channels. 

Particles of species a can only reside in the channels of species a and propagate with 

the speeds m,, where a = { A ,  I}. Thus, based on the Shuffling rule M,  each particle 

of species a performs a random walk on the lattice C,  independently. Since the 

propagation and shuffling process of one species are independent of those of the other 

species, the dynamics of a multicomponent LGCA system arises from the interactions 

between particles of the two species during the reaction process. The creation or 

destruction of particles at  each cell of one species is determined by not only itself but 

the particles of the other species. Thus, the dynamics of a two-component LGCA 

system can be described by 

where VEi(r, t )  represents the state of channel (r, ci) of species a at time t after the 

reaction and (VEi(r, t ) )M represents the state of channel (r, ci) of species a after the 

reaction and shuffling. 

4.1.3 Reaction Rule for A-I System 

The reaction rule in the LGCA system determines the construction or destruction of 

a particle in each channel on a lattice. The interaction neighborhood plays a very 

important role here since for a multicomponent LGCA system, the construction or 

destruction of a particle of one species in a channel may depend on the particles at 
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the same cell and the particles at the neighboring cells of the other species. Different 

dynamics arise in the LGCA system with different interaction neighborhoods. Here 

we present a modified reaction rule for the Activator-Inhibitor system based on the 

rule for the Activator-Inhibitor system described in [I]. We have 

s with probability pl if D(r ,  t )  > 0 
R with probability p2 if D(r, t) < 0 (4.5) 

n ~ ( r ,  t )  otherwise 

and 

i s with probability p3 if D(r,  t )  > 0 
R n, (r, t) = 0 with probability p4 if D(r,  t )  < 0 (4.6) 

n,, (r, t)  otherwise 

where nF(r ,  t )  represents the total number of particles of species a at cell r and time t 

after reaction, s is the number of channels each cell possesses, D(r,  t )  = nA(N(r) ,  t )  - 

cnI(N(r) ,  t ) ,  n,(N(r),  t )  represents the total number of particles of species a in the 

interaction neighborhood N(r) at time t ,  and c is a positive constant. 

In order to  capture the main characteristics of the activator-inhibitor system discussed 

in Chapter 2 and gain more control of the system, 5 parameters, pl,p2,p3,p4,c, are 

involved. At each cell on the lattice at time t ,  species A activates itself and species I 

with the probabilities pl and p3, respectively, when the concentration of species A is 

greater than the weighted concentration of species I over the interaction neighborhood 

N(r). In the meantime, species I inhibits species A and itself with the probabilities 

p;? and p4, respectively, when the concentration of species A is less than the weighted 

concentration of species I over N ( r ) .  If the concentrations over N(r) of both species 

are equal, no destruction or construction of particles will happen. Compared with the 

original rule, 3 more parameters are introduced and the interaction neighborhood is 

extended, which gives more freedom of controlling the system. The original rule can 

be seen as a special case of this modified rule, where pl = p3, p2 = p4, c = 1, and 

N(r) = {r). More different and interesting patterns emerge from this modified rule, 

as we see later. 
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Species A: Activator 

Species I :  Inhibitor k--- 

Figure 4.6: An illustration of reaction rule R for the Activator-Inhibitor System. 
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4.1.4 An Algorithm of LGCA Model for A-I System 

In this section, we present a general algorithm for constructing a LGCA system based 

on the above description and analysis. The algorithm is as follows: 

1. Initialization 

2. During the reaction process at time t = k, compute the post-reaction states of 

all channels of species A and I using Reaction rule R (4.5) and (4.6) and replace 

the state of each channel of both species by the post-reacction state. Boundary 

conditions are applied here. 

3. During the shuffling process at  time t = k, compute the post-shuffling states 

of all channels of species A and I using Shuffling rule M (4.2) and replace the 

state of each channel of both species by the post-shuffling state. 

4. During the propagation process at time t = I c ,  using (4.4), the state of channel 

(r + nz,ci, ci) of species 0 is updated by the state of channel (r, ci) of species a 

and then we obtain the new state of each channel at time t = k + 1. Boundary 

conditions are applied here. 

5. Let k = k + 1 and go to step 2. 

In the following sections, we will construct a 1D and 2D LGCA model for the A-I 

system based on the above algorithm. 

4.2 1D LGCA Model for A-I System 

In this section, a 1D two-component LGCA model for the activator-inhibitor system is 

constructed based on the rules and algorithm described in the previous sections. Con- 

sider two identical one dimensional lattices LA and LI for activator A and inhibitor I, 

respectively, which have the same number of cells L = \CAI = ILII. Each cell of both 

species possesses s = 3 channels (two velocity channels and one rest channel). Then 

the state of each cell of species a is given by qa(r, t )  = ( ~ , ~ ( r ,  t ) ,  q,,2(r, t ) ,  qus3(r, t ) )  
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at  cell r time t which is characterized by & = (0, lI3, where r = 0,1, ..., L - 1 and 

a = { A ,  I). The two velocity channels of species a are labeled by (r,  cl), and (r,  cz), 

with cl = 1 and c2 = -1 ,wliich represents that particles in (r, cl), and (r, cz), will 

move to the right and left, respectively. The speed of particles of species a is m, 

and r n ~  3 r n ~  = 1. The rest channel of species a is labeled by (r, Q),) with CQ = 0 

when the particle residing there will not move. For this model we choose four dif- 

ferent interaction neighborhoods Nl = {r), N2 = {r, r + I ) ,  N3 = {r - 1, r) and 

N4 = {r - 1, r, r + 1) for cell r .  Periodic boundary conditions are applied for both 

species, i.e., 

4.2.1 Numerical Simulations of 1D LGCA 

In this section, numerical simulations for different Nt(r), i = 1 ,2 ,3 ,4 ,  and values of the 

parameters are given. The simulations are computed by Matlab. Our simulations and 

discussions will be focused on the conditions for generating stationary patterns and 

the comparison between different Ni(r) with the same values of the parameters. When 

there emerges a stationary pattern, the wave number, denoted by k N ,  is computed 

using a discrete Fourier transform numerically in Matlab. We choose the lattice size 

L = 100, the time step N t  = 300 and the initial condition is %,i(r, 0) = (rand > 0.5), 

= { A ,  I}, i = 1,2,3,  r = 0, ..., L - 1, where rand is a random number, chosen 

from a uniform distribution on the interval (0, 1). This initial condition is randomly 

generated and saved, so the simulations are using the same initial condition when not 

stated otherwise. 

Firstly, we investigate under what conditions a stationary pattern will emerge. 

Through the numerical simulations we find that no stationary pattern emerges for all 

cases if 1 6 r n ~  6 m.4. Two examples are given as shown in Figure 4.7 and Figure 

4.8. This confirms our analysis since the speed of the inhibitor should be greater than 

that of the activator. As we increase the value of r n ~  with fixed value of 7 n ~  = 1 and 
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Figure 4.7: Evolution of species A at t = Figure 4.8: Evolution of species A at t = 
300 with (mA, mI)  = ( 3 , 3 ) ,  N ( r )  = Nl ( r )  300 with (mA, mI )  = ( 1 ,  I ) ,  N ( r )  = N ( r :  
and c = l , p l  = p2 = pg = p4 = 1. and c =  l , p l  =pa  =pg =p4 = 1. 

p  = pi = 1 ,  i = 1 ,  .., 4 ,  a stationary pattern emerges when m~ 3 3  for Nl, N2 and 

N3 and when m~ 2 2 for N 4 .  Four examples are given as shown in Figures 4.9, 4.10, 

4.1 1  and 4.12. From these four examples we can also see that the different patterns 

emerge for the same values of the parameters but different N 

Figure 4.9: Evolution of species A at t = Figure 4.10: Evolution of specie 
300 with (VLA,  mI )  = ( 1 , 8 ) ,  N ( r )  = Nl ( r )  300 with (mA, mI )  = ( 1 , 8 ) ,  N(7 
and c =  l , p l  = p 2  = p 3  = p4 = 1. k N  = 6 .  and c = l , p l  = p 2  = p 3  = p 4  = 1 

Secondly, we investigate the relationship between the wave number k N  and the 

parameters. An approximation was firstly found for Nl in (11. We find that this 
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Figure 4.11: Evolution of species A at t = Figure 4.12: Evolution of species A at t = 

300 with ( m ~ ,  mr) = (1,8), N(r) = N~(T) 300 with (mA, mI) = (1,8), N(r) = N3(r) 
a n d c = 1 , p l = p 2 = p 3 = p 4 = 1 .  k N = 6 .  a n d c = l , p , = p 2 = p 3 = p 4 = 1 .  k N = 6 .  

approximation is also working for N2 and N3, i.e., the wave number k N  can be ap- 

proximated by 
N L k  =[-I for r n ~ = l , m : 3 3  

2m1 
for Nl,  & and N3, where 1x1 denotes the integer closest to  s E W. This is also shown 1 
in Figures 4.9, 4.11, 4.12, with k N  = 6 = [%I. I 
Another thing we find is that for Nq we always have perfect straight patterns for any 1 
values of the parameters but for Nl we have perfect straight patterns only when k N  I 
is an integer factor of the lattice size L as shown in Figures 4.13 and 4.14. I 

Thirdly, simulations are performed with m: = 2mA for Ni, i = 1,2 ,3 ,4 .  We find 1 
that the LGCA shows checkerboard instability for Ni, i = 1,2,3.  The state of each I 
cell is alternating from 0 t,o 1, as shown in Figures 4.16 and 4.17. But this instability 1 
disappears by extending the interaction neighborhood. When we choose N4, station- 1 
ary patterns (perfect straight stripes) emerge instead of checkerboard structure as I 
shown in Figure 4.15. 
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Figure 4.13: Perfect straight stripes of 
species A a t  t = 300 with (mA, m I )  = 
( 1 , 1 0 ) ,  N ( r )  = N l ( r )  a n d c =  l , p ,  = p ~  = 

p3=p4 = 1. k N  = 5. 

Figure 4.14: Perfect straight stripes of 
species A at t = 300 with (mA,mI)  = 
(1,9), N(r)  = N4 ( r )  and c = 1, p, = pz = 
p3 =p4  = 1. k N  = 6.  

Figure 4.15: Perfect straight stripes of species A at t = 300 with (mA, mI )  = ( 1 , 2 ) ,  
N (T )  =N4(r) and c =  l , p l  = p z  =p3  =p4 = 1. k N  = 17. 
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Figure 4.16: Checkerboard structure of Figure 4.17: Magnified version of the left 
species A a t  t = 300 with (rn,A, mr)  = figure. 
(1,2), N ( r )  = Nl( r )  and c = l , p l  = p2 = 
p3 =p4 = 1. 

Lastly, we investigate how the system performs as pi, i = 1 , 2 , 3 , 4  changes with 

the other values of the parameters fixed. There are two extreme cases here. The first 

case is pi = 0, i = 1,2 ,3 ,4 ,  which means no reaction occurs. This corresponds to 

the random walk case, which shows no stationary pattern emerges. The other case is 

pi = 1, i = 1,2 ,3 ,4 ,  which means the reaction process is deterministic. The reaction 

occurs at each time step a t  each cell on the lattices. Some examples have been shown 

above. So what interests us here is when pi # 0 , l .  In [l] the authors show the 

existence of a crit'ical p, = pi = 0.247, i = 1,2 ,3 ,4  with (mA, mI)  = (1,7), L = 100. 

If p is less than p,, there is less chance to get a stationary pattern by the analysis 

in [I]. What we find here is that we can still observe very clear stationary patterns 

when p is very small and close to 0 for Ni, i = 2,3,4. We have not found this critical 

p, theoretically, however, such critical p must be less than p, and close to zero based 

on the numerical simulations. Four simulations are shown in Figures 4.18, 4.20, 4.21 

and 4.19, from which we observe that stationary patterns emerge when we choose 

Nil i = 2,3,4 and no stationary pattern emerges when we choose n/l with p = 0.1 < p,. 
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Figure 4.18: Evolution of species A at t = Figure 4.19: Evolution of species A a t  t = 
300 with ( m ~ ,  mI) = ( 1 , 7 ) ,  N ( r )  = n/, ( r )  300 with (mA, mr)  = ( 1 , 7 ) ,  N ( r )  = % ( r )  
and c =  1 , p ,  = p 2  = p 3  = p q  = 0.1. and c = l , p l  = p2 = p3 = pq = O.l.kN = 7  

Figure 4.20: Evolution of species A a t  t = Figure 4.21: Evolution of species A a t  t = 

300 with ( m ~ ,  m ~ )  = ( l , 7 ) ,  N ( r )  = & ( r )  300 with (mA, ,mI) = ( 1 , 7 ) ,  N ( r )  = & ( r )  
and c = l , p l  = p2 = p3 = p4 = O.l.kN = G and c = l , p l  = p2 = p3 = p4 = 0.l.kN = 6 
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4.2.2 The Role of Rest Channel in I D  LGCA 

In the previous section we observe that the LGCA system with two velocity channels 

and one rest channel exhibits checkerboard structure when mr = 2mA for N = Nl = 

{ r ) .  In this section we shall see that the lack of the rest channel can also cause 

checkerboard instability for almost all values of the parameters, and this instability 

can be eliminated either by introducing the rest channel or extending the interaction 

neighborhood. 

The presence of a rest channel in the LGCA model sometimes plays a very impor- 

tant role. Here we investigate the LGCA system for the A-I system without the rest 

channel and compare it with the LGCA model with the rest channel discussed in the 

previous section. In this model, only two velocity channels are involved. The state 

of each cell is characterized by & = (0, 1 j2 .  Numerical simulations are performed 

with the initial condition m , ~ ( 5 0 , 0 )  = 1 and L = 100, N t  = 600. From Figures 4.22 

and 4.23 we observe that the LGCA system shows a checkerboard structure when 

the rest channel is absent. This checkerboard structure disappears if the rest chan- 

nel is present as shown in Figure 4.24 with the same initial condition and values of 

the parameters. The checkerboard structure can also be eliminated by extending the 

interaction neighborhood Ni as shown in Figures 4.25, 4.26 and 4.27. We will also 

investigate this phenomenon for the 2D case in the following sections. 

Figure 4.22: Checkerboard structure of 
species A at t = 600 in the LGCA model 
without rest channel. (mA, m1) = (1,7), 
N(r) = Nl ( T )  and c = 1, pl = pz = p3 = 

P4 = 1 

Figure 4.23: Magnified version of the left 
figure. 
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Figure 4.24: Evolut,ion of species A at 
t = 600 in the LGCA model with one rest 
channel. (7nA1 mI) = (1,7), N ( r )  = Nl (r) 
and c =  l , p l  =pz = p 3  = p 4 =  1. k N  = 6 .  

Figure 4.25: Evolution of species A a 
t = 600 in the LGCA model without res 
channel. ( m ~ ,  m ~ )  = (1: 7), N(r) = N4(r)  
and c  = l ,p l  = p2 = p3 = p4 = 1. k N  = 1. 

Figure 4.26: Evolution of species A at 
t = 600 in the LGCA model without rest 
channel. ( m ~ ,  mf ) = (1,7), N(r) = N2(r) 
and c =  l ,p l  =pa =p3 =p4 = 1. k N  = 1. 

Figure 4.27: Evolution of species A a1 
t = 600 in the LGCA model without resi 
channel. (mA, mI) = (1,7), N(r) = N3(r: 
and c = l , p l  =p2 =p3  =p4 = 1. k N  = 1. 

4.2.3 The Gray-Scott Model and LGCA Model 

In this section, we will see some interesting spatio-temporal dynamics such as self- 

replication, a standing pulse, and a traveling pulse which are observed in a reaction- 

diffusion system are also found in the LGCA system. We firstly introduce the Gray- 

Scott model, and it is then solved numerically using the 2-SBDF method in 1D with 
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Neumann boundary conditions and different initial conditions and values of the pa- 

rameters. Numerical solutions are then compared with those obtained from the 1D 

LGCA model. 

The chemical reaction U + 2V -+ 3V and V -+ P in a gel reactor can be described 

by the following PDEs [I 11: 

where u and v are concentrations of the chemical materials U and V, respectively, Du 

and D ,  are the diffusion coefficients, p and k are constants. 

This model is first introduced by P. Gray and S.K. Scott and is known as Gray- 

Scott (GS) model. The GS model shows very rich behaviors for different values 

of p and k, such as self-replication, spikes, traveling waves, spatio-temporal chaos, 

etc.([ll] [12]). Here we omit the details of the discretization of this model and focus 

on the numerical results and comparisons with the LGCA model. The GS model 

is discretized using the 2-SBDF method with Neumann boundary conditions. The 

evolution of species v is plotted in the t - x plane for different values of the parameters 

and initial conditions. 

For studying the self-replicating dynamics, we choose u(x, 0) = 1 - 0.5 sinloO(i.rx) 

and v(x, 0) = 0 . 5 ~ i n ' ~ ~ ( n x ) ,  a single pulse centered a t  x = 0.5 for each species u 

and v, ( p ,  k) = (0.04,0.06) and domain size L = 1. Figure 4.29 shows that this 

single pulse keeps splitting and self-relicating, and a stationary pattern with 8 stripes 

evolves eventually. This type of pattern is also found in the 1D LGCA models with 

the rest channel and without the rest channel. Here we show an example for the ID 

LGCA model with a rest channel. We start with a single seed at channel (50, c3), 

i.e., q3(50,0) = 1 and the other channels are all 0. We choose (mA, mI)  = (1,5), 

N(T) = Nl(r) and c = l , p i  = 1, i = 1,2 ,3 ,4 .  From Figure 4.28 we observe that this 

single seed is self-replicating and a stationary pattern with kN = 8 stripes eventually 

emerges. 

For the standing pulse dynamics, we choose (p ,  k) = (0.05,0.062), and the other 

conditions remain the same for the GS model. A standing pulse evolves in this case 
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as shown in Figure 4.31. Similar dynamics are observed in the LGCA model when 

we change the interaction neighborhood to be N4 and keep the other conditions un- 

changed, as shown in Figure 4.30. 

For the traveling pulse dynamics, we choose (p, k) = (0.025,0.0544) and L = 1 

for the GS model. A right traveling pulse and a left traveling pulse, as shown in 

Figure 4.32 and Figure 4.34, emerge in this model with the initial condition u(x, 0) = 

1 - 0 . 5 s i n ~ ~ ~ ( ~ x ) ,  v(x,O) = 0 . 5 ~ i n ~ ~ ~ ( ~ x )  and u(x,O) = 1 - 0 . 5 s i n ~ ~ ~ ( ~ ( x  + 0.5)) 

and u(x, 0) = 0.5 ~ in '~~ ( . r r ( x  + 0.5)), respectively. The LGCA model also shows similar 

dynamics. We choose N2 and start with a single seed at channel (0, c3), i.e., q3(0, 0) = 

1, and a right-going pulse emerges as shown in Figure 4.34. Then we choose N3 and 

start with a single seed at channel (100, c3), i.e., q3(100, 0) = 1, and a left-going pulse 

emerges as shown in Figure 4.32. 

Figure 4.28: Self-replicaton of species A Figure 4.29: Self-replication of u in the GS 
in the LGCA model. (mA,mI)  = (1,5), model. p = 0.04, k = 0.06, L = 1. 
N(r) = N;(r) and c = l , p l  = pz = p3 = 
p4 = 1, L = 100. kN = 8. 
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Figure 4.30: Standing pulse of species A Figure 4.31: Standing pulse of v in the GS 
in the LGCA model. (mA, mr)  = (1,5), model. p = 0.05, k = 0.062, L = 1. 
N ( T )  = N4 (r)  and c = 1, p, = pz = ps = 
p, = 1, L = 100. 

Figure 4.32: Right traveling pulse of Figure 4.33: Right traveling pulse of v in 
species A in the LGCA. (mAl  mr) = (1,5), the GS model. p = 0.025, k = 0.0544, 
N ( r ) = N 2 ( r ) a n d c = l , p l  = p a = p , =  L = 0 . 5 .  
pL, = l , L  = 100. 
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Figure 4.34: Left traveling pulse of species Figure 4.35: Left traveling pulse of v in the 
A in the LGCA. (mA, mI) = (1,5), N(r) = GS model. p = 0.025, k = 0.0544, L = 0.5. 
N3(r) and c = l , p l  = p2 = p3 = p4 = 
1, L = 100. 

4.3 2D LGCA Model for A-I System 

In this section we extend our analysis and simulations to  two dimensions. A 2D 

two-component LGCA model for an activator-inhibitor system is constructed based 

on the updating rules and algorithm described in the previous sections. Consider 

two identical two dimensional lattices LA and LI for activator A and inhibitor I, 

respectively, which have the same number of cells L2 = [,CAI = (CII. Each cell of 

both species possesses s = 5 channels (four velocity channels and one rest chan- 

nel). Then the state of a cell of species is given by a Boolean vector ~ ( r ,  t )  = 

(qu,l (T ,  t )  , Q , ~  (r, t),  qu,g (r, t ) ,  ~ , ~ ( r ,  t) ,  (r, t ) )  at cell r time t which is character- 

ized by •’ = (0, lj5, where r = (x, y) with x = 0, ..., L - 1, y = 0, ..., L - 1. 

The four velocity channels are labeled by (r, q),, (r, c ~ ) ~ ,  (r, c3), and (r, c4), with 

CI = 1, c2 = 1, c3 = -1, cq = -1, which represents that a particle in (r, q),, 

(r, ~ 2 ) ~ ,  (r, c3),,(r, ~ 4 ) ~  will move to the right, up, left, and down, respectively. The 

speed of particles of species a is mu wit'h r n ~  3 r n ~  = 1. The rest channel of 

species a is labeled by (r, c ~ ) ~  with c5 = 0 when the particle residing there will not 

move. For this model we choose three different interaction neighborhoods, Nl = {r), 

N2 = {r,r + (0,1) ,r  + (0 , -1) , r  + (-1,0) ,r  + (1,O)) and N3 = N2/{r) = {T + 
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( 0 , l )  , r + (0, -I), r + (- 1, O), r + (1,O)). Periodic boundary conditions are applied for 

both species, i.e., 

4.3.1 Numerical Simulations of 2D LGCA 

In this section, numerical simulations for different Ni(r), i = 1,2 ,3 ,  and values of the 

parameters are performed. The simulations are computed by Matlab. Our simula- 

tions and discussions will be focused on the comparison between the 1D LGCA model 

and 2D LGCA model in pattern formation, the comparison between different N,(r) 
and some interesting patterns generated with some special values of parameter c in- 

troduced in the reaction rules 4.5 and 4.6. We choose lattice size L = L, = L, = 100, 

time step N t  = 100, and the initial condition is a single seed at channel ((50,50), 5)A, 

i . e . , ~ j ~ ~ ( 5 0 , 5 0 , 0 )  = 1. If not stated otherwise, the simulations will start with the 

same initial condition. 

Firstly, we investigate the pattern formation in 2D. We find that no stationary 

pattern emerges if mr = r n ~  or r n ~  = 2mA for all Ni, i = 1,2,3.  This is a little 

different from the results in ID, where if rnr = 2mA, the LGCA is still capable of 

generating a stationary pattern when N is extended t o  {r - 1, r, r + 1). As we increase 

the value of ml, a stationary pattern emerges as shown in Figures 4.36, 4.37, 4.38 and 

4.39. 
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Figure 4.36: Evolution of activator A at 
t = 20 with (mA,ml)  = (1,9),  JV = n/, 
and c =  l , p l  =p2  = p 3  =pq  = 1. 

Figure 4.37: Evolution of activator A a t  
t = 40 with (mA,mI)  = ( 1 , 9 ) ,  JV = n/, 
and c =  l , p l  = p 2  = p 3  = p q  = 1. 

Figure 4.38: Evolution of activator A at Figure 4.39: Evolution of activator A a t  
t = 100 with (mA, ml)  = ( 1 , 9 ) ,  Af = JVl t = 500 with (m,n, mr) = ( 1 , 9 ) ,  JV = Nl 
and c =  l , p l  = p 2  = p 3  = p q  = 1. and c = l , p l  = pa = pg = pq = 1. 
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Figure 4.40: Evolution of activator A at t = 500 with (mn, mI )  = ( 1 , 9 ) ,  N = N3 and 
c =  1,pl  = p 2  =p3  =p4 = 1. 

Secondly, we investigate the system with different A(. Different patterns emerge 

for different Ni as shown in Figures 4.41, 4.42 and 4.40. Comparing Figure 4.39 

and Figure 4.41, we also observe that different patterns emerge even when the initial 

configurations are the same. If we rotate Figure 4.39 by 90 degrees counter-clock wise 

we essentially obtain Figure 4.41. 

Figure 4.41: Evolution of activator A at 
t = 500 with (mA, ml) = ( 1 , 9 ) ,  N = Nl 
and c =  l , p l  =pp  = p 3  = p4 = 1. 

Figure 4.42: Evolution of activator A at 
t = 500 with (mA,mI)  = ( 1 , 9 ) ,  N = N2 
and c =  l , p l  = p g  =pj = p 4  = 1. 
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Lastly, we find that  symmetric patterns emerge as we change the value of c in the 

2D LGCA system. An example of the evolution of a symmetric stationary pattern is 

shown in Figures 4.43, 4.44, 4.45 and 4.46. 

Figure 4.43: Evolution of activator A a t  
t = 3  with (mAl mI )  = ( 1 , 9 ) ,  N = N2 and 
c =  1 . 1 , ~ ~  = p2 = pg =p4 = 1. 

Figure 4.44: Evolution of activator A a t  
t = 20 with (mAlmI)  = ( 1 , 9 ) ,  N = N2 
and c = 1 . 1 , ~ ~  = p2 = p3 = p4 = 1. 

Figure 4.45: Evolution of activator A a t  
t = 40 with (mA,mr) = ( 1 , 9 ) ,  N = N2 
and c =  1 . 1 , ~ ~  = p 2  = p 3  =p4  = 1. 

Figure 4.46: Evolution of activator A a t  
t = 100 with (mA,ml)  = ( 1 , 9 ) ,  N = N2 
and c = 1 . 1 , ~ ~  = p2 = pg = p4 = 1. 
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Figure 4.47: Evolution of activator A a t  t = 500 in the LGCA model without rest 
channel. (mA,mI) = ( 1 , 9 ) , N = N 2  and c =  l , p l  =p2 = p 3  = p 4  = 1. 

4.3.2 The Role of Rest Channel in 2D LGCA 

Similarly to  the 1D case, the absence of the rest channel in the 2D LGCA system may 

cause a checkerboard structure, and such structure can be eliminated by extending the 

interaction neighborhood. Figures 4.48 and 4.49 show that we still get the stripe-like 

stationary pattern for the LGCA model without a rest channel, but the checkerboard 

structure is observed inside the stripes. Figure 4.47 shows this structure disappear if 

N = N2. The same values of the parameters are chosen for these three simulations. 

Figure 4.48: Checkerboard structure of ac- 
tivator A at t = 500 in the LGCA model 
without the rest channel. (mA,mI) = 

(1,9), N(r) = Nl(r) and c = l , p l  = p2 = 
P3 = P4 = 1 

Figure 4.49: Magnified version of the left 
figure. 
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4.4 Commutativity of Updating Operators 

The above simulations and discussions are based on the fact that the three updating 

operators are in the order of P o M o R, where R is the first. In this section, we 

investigate the commutativity of these three operators through numerical simulations. 

Firstly, we investigate the commutativity of P and M. In section 4.1.1 we discuss 

the random walk of a particle by the PM dynamics. Since the dynamics of the 

LGCA system arises from the repetitive applications of these two operators, if we let 

Dl = PM and D2 = MP, after n iterations we have 

Since M does not change the spatial position of a particle (a particle residing on cell 

r is still in cell r after the shuffling process) and a particle residing on the rest channel 

at t = 0 will not propagate a t  the first time step, then (4.10) can be reduced to 

So a particle will also perform a random walk by the MP dynamics. The mean 

distance and the probability density function for MP dynamics are computed as 

shown in Figures 4.50 and 4.51. 

Figure 4.50: Mean distance in the MP dy- 
namics. 

Figure 4.51: Gaussian Structure in the 
M P dynamics. 
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Secondly, we investigate the commutativity of V 1  and R through numerical sim- 

ulations in ID. A 1D LGCA model with V I R  dynamics and R D l  dynamics is con- 

structed. The numerical wave number is also calculated for each case. From Figure 

4.53 and Figure 4.52 we observe that  these two LGCA systems give similar structure 

and the same wave number k N .  Lastly, the LGCA system also shows qualitatively 

Figure 4.52: Stationary Patterns in the Figure 4.53: Stationary Patterns in the 
LGCA system with RV1 dynamics. k N  = LGCA system with V I R  dynamics. k N  = 
6. 6 .  

Figure 4.54: Stationary Patterns in the Figure 4.55: Stationary Patterns in the 
LGCA system with M R P  dynamics. LGCA system with PRM dynamics. 
k N  = 6. k N  = 6 .  

similar results as R and M  or R and P  exchange, i.e., the LGCA system with PRM 

dynamics or M R P  dynamics is still capable of generating Turing-type patterns as 

shown in Figures 4.54 and 4.55. 
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In this chapter, we have constructed a LGCA model in 1D and 2D for an activator- 

inhibitor system based on a modified reaction rule R. It should be noticed that only 3 

or 4 states are used for each cell in the 1D LGCA (corresponding to the LGCA model 

without a rest channel and with a rest channel) and 5 or 6 states for each cell in the 

2D LGCA (corresponding to the LGCA model without a rest channel and with a rest 

channel). Despite the simplicity of construction, this model shows very rich dynamics 

and patterns such as Turing patterns, traveling wave, standing wave, self-replication, 

symmetric stationary patterns and checkerboard patterns in 1D and 2D based on the 

reaction rule we defined. From the numerical simulations and analysis, we have found 

that the dynamics of this LGCA model are characterized not only by the parameters 

in the local reaction and diffusion rule, but the interaction neighborhood and the 

rest channel. Without a rest channel, a LGCA model may easily show checkerboard 

instabilities. We also have found that such instability can be removed by introducing 

a new neighborhood. We investigated four different interaction neighborhoods for the 

1D LGCA and three for the 2D LGCA. Different dynamics arise for these interaction 

neighborhoods, such as a traveling wave, a standing wave, or self-replication in ID, 

which shows qualitatively similar results to the Gray-Scott model. The commutativity 

of the three operators P, M and R is also studied through the numerical simulations. 

It turns out that the order of these three operators does not affect the global and long 

time behavior of the LGCA system. All the numerical simulations are performed in 

Matlab, and the 1D and 2D LGCA (with one rest channel) codes can be found in the 

Appendix. 
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Conclusions 

In this thesis, we present a MACA model and a LGCA model for investigating Turing 

pattern formation in an activator-substrate system and an activator-inhibitor system. 

In the framework of CA, the Turing patterns can be seen as the emergent behaviors 

of the system due only to local interactions between cells. 

One of the keys of the CA modeling for reaction-diffusion systems is the con- 

struction of a reaction rule and a diffusion rule. For the MACA model, the diffusion 

rule comes from a special discretization of the diffusion equation and the reaction 

rule comes from a finite-difference-like discretization of the reaction-diffusion PDEs 

[8]. The diffusive step is implemented by a moving-average procedure based on the 

discretization. A probabilistic truncation rule is introduced to  make the state of 

each cell represented only by an integer in [ O ,  101, i.e., there are 11 states in the CA 

model represented by integers from 0 to  10. We then apply this method to the 2D 

Brusselator to investigate the Hopf bifurcation and Turing bifurcation. Numerical 

simulations show that this ll-state CA model can capture the Hopf bifurcation and 

Turing bifurcation of the Brusselator in a qualitatively correct way compared with 

the results obtained by solving the reaction-diffusion PDEs using an IMEX scheme, 

Second Order Backward Differentiation Formula [9]. 

For the LGCA model, with the help of the introduction of channels for each cell and 

the propagation of particles residing in corresponding channels, the diffusion rule can 

be constructed by combining the Propagation rule P and Shuffling rule M [1][7] [lo]. 
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the rule defined in [I]. This modified reaction rule R incorporates the original rule 

and the LGCA system is able to show more complex and interesting patterns with 

rule R in 1D and 2D. Complete dynamics of the LGCA system is realized by the 

repetitive applications of these three operators applied to each cell simultaneously. 

Based on these rules, we construct a LGCA model with different lattice L, state set 

& and interaction neighborhood N .  It turns out that the LGCA model (3-state or 

4-state) in 1D and the LGCA model (5-state or 6-state) in 2D are able to generate 

Turing-type patterns and other kinds of instability such as checkerboard structure. 

The conditions for Turing pattern formation in the LGCA model are discussed and 

given. Last, we focus on how this LGCA system is characterized by the lattice L, 

state set E and interaction neighborhood N. We investigate the Turing patterns in the 

1D LGCA and 2D LGCA systems, the role of the rest channel in the LGCA system, 

and the influences of interaction neighborhood. We find that the absence of the rest 

channel may cause a checkerboard instability in 1D and 2D LGCA systems and such 

instability can be eliminated by extending or changing the interaction neighborhood. 

Comparisons between the dynamics of a 1D 4-state LGCA model and the 1D Gray- 

Scott model are given and discussed. Structures found in the 1D Gray-Scott model, 

such as traveling waves, standing waves and self-reproductions, are also found in this 

1D LGCA model. Although our simulations and discussions are based on the order 

of PMR, we argue that in fact these three operators are commutative through the 

numerical simulations. 

Our simulations, for the Brusselator problem and the Gray-Scott problem have 

We numerically show that each particle performs a random walk and the movement 

of each particle displays a Gaussian structure in the non-reactive LGCA system. We 

then define a Reaction rule R for an activator-inhibitor system which is based on 

been largely phenomenological, and the rich solution behaviors have often been found 

only after extensive experiments. Nevertheless, we believe that the ability of CA mod- 

els to qualitatively capture the solution behaviors of reaction-diffusion PDEs shows 

sufficient promise to warrant a more systematic, analytical investigation. 

I 
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Appendices 

In this Chapter, some matlab codes for the MACA and the LGCA are attached. 

6.1 MACA Code 
In this section, a matlab code of the MACA for t h e  2D Brusselator is shown below. 

%MACA driver for 2D Brussellator 

%Periodic BCs 

clf 

clear all 

close all 

clc 

global aa 

global bb 

%Initialization 

dt =.01; % Time step 

R-u = 1; %(3X3) neighbourhood for u 

R-v = 2; %(5X5) neighbourhood for v 

n = 250 ; % Number of cells 

a-u = 1/((2*R-u+l)-2); 

a-v = 1/((2*R-v+l)-2); 

Mu =lo; Mv = 10; % Discretization leve1,usually in [0,1001 

cells-u=z; Hsum-u=z; Vsum-u=z; temp-u = z; 

cells-v=z; Hsum-v=z; Vsum-v=z; temp-v = z; 

% Initial Conditions 

aa = 3;bb=12; 

cells-u = aa*zz+.l*rand(n,n); 

cells-v = (bb/aa)*zz+.l*rand(n,n); 
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imagesc (cells-u) 

pause(1) ........................ LLLLLLLLLLLL1,LLLLALLLLLL 
for iter=l: 10000 

time = iter*dt 

%Compute horizontal sum .................... LLLLLLLLLLLLLLLLLLLL 
for i = l:n % i represent the y-axis 

Hsum_u(i,2) = cells-u(i,l) + cells-u(i,2)+ cells-u(i.3) ; 

Hsum-v(i.3) = cells-v(i.1) + cells_v(i,2)+ cells-v(i.3) + cells-v(i,4)+ 

cells_v(i,5) ; 

for j = 3:n-1 

Hsum-u(i,j) = Hsum-u(i,j-1 ) + cells-u(i,j+l) - cells-u(i,j-2); 
end 

for j = 4:n-2 

Hsum-v(i, j) = Hsum-v(i, j-1 ) + cells-v(i, j+2) - cells-v(i, j-3) ; 
end 

end ...................... LLLLLXLLLLLLLLLLLLLLLL 
%Compute vertical sum 

for j = 1:n 

Vsum-u(2,j) = Hsum-u(l,j)+ Hsum-u(2.j)+ Hsum-u(3.j); 

Vsum-v(3,j) = Hsum-v(l,j)+ Hsum-v(2,j)+ Hsum-v(3,j) + Hsum-v(4,j)+ 

Hsum-v(5,j); 

for i = 3:n-1 

Vsum-u(i,j)=Vsum-u(i-1.j) + Hsum-u(i+l,j) - Hsum-u(i-2,j); % u 

>From row 3 to row n-1 

end 

for i = 4:n-2 

Vsm-v(i,j)=Vsum-v(i-1.j) + Hsum_v(i+2,j) - Hsm-v(i-3,j); % v 

>From row 4 to row n-2 
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end 

.............................. LLLLLLLLLLLLLLLLLLLL/.LLLLLL/.LL 
% Construct look-up tables 

temp-u(l:n,l:n) =a-u*Vsum-u(l:n,l:n) + 

dt*fuv(cells~u(l:n,l:n),cells~v(l:n,l:n)~; 

temp-v(l:n,l:n) =a-v*Vsum-v(l:n,l:n) + 

dt*guv(cells-u(l:n,l:n) ,cells-v(l:n,l :n)) ; 

X-u = floor(temp-u); 

P-u = temp-u - X-u ; 

X-v = floor(temp-v); 

P-v = temp-v - X-v ; 

for iii= l:n 

for jjj = l:n 

Random = rand; 

if Random <= P-u(iii,jjj) 

cells-u(iii,jjj) = X-u(iii,jjj) +I; 

else 

cells-u(iii, jj j) = X-uciii, jjj) ; 

end 

end 

end 

for iii = l:n 

for jjj = l:n 

Random = rand; 

if Random <= P-v(iii,jjj) 

cells-v(iii,jjj) = X-v(iii,jjj) +I; 

else 

cells-v(iii,jjj) = X-v(iii,jjj); 

end 



CHAPTER 6. APPENDICES 

end 

end ................................. LLLLLLLLLXLLLLLLLLLLLL/./.LLLLL/.LLL 
%plot the results 

if mod(iter,5*10)==0 

image(cells~u,'cdatamapping','scaledJ); 

drawnow 

colorbar 

colormap(C0 0 0 ; .5 .5 .5; .8 .8 .8;.9 .9 .9 1) 
title( [ u at time t=', num2str(time,'%9.4f ' ) I  ) ;  

xlabel ('\bf x ' )  

ylabel('\bf y') 

end 

end 

............................. LLLLLL/.LLLLLLXLLLLL/.LLLLLLLLL 
function [fuvl = fuv(u,v) 

global aa 

global bb 

fuv = u.-2.*v - ( bb + l)*u + aa; 
. . .a .  ....................... LLLLLLLLLLLLLLLLLLLLLLLLLLLL 
function [guvl = guv(u,v) 

global aa 

global bb 

guv = bb*u - u.-2.*v; ........................... LLLLLLLLLLLLL/.LLLLLL/.LLLLL/. 

6.2 1D LGCA Codes 

In this section, the matlab codes for the 1D LGCA (with two velocity channels and 

one rest channel) are attached. 

6.2.1 Propagation Rule 
% Propagation rule (2.4) 

% Input: 1. The states of all cells before propagation 

7. 2. Propagation speed m 

% Output: The states of all cells after propagation 

.............................. 

function CDeta]=PROP(Meta,m) 
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N = length(Meta); 

for r = 1:N-m 

Deta(r+m,l) = Meta(r.1); 

end 

for r = l:m 

Deta(r,l) = Meta(N-m+r,l); 

end 

............................. 
for r = m+l:N 

Deta(r-m,2) = Meta(r.2); 

end 

for r = l:m 

Deta(N-m+r,2) = Metacr ,2) ; 

end 

.............................. 

for r = 1:N 

Detacr, 3) = Meta(r.3); 

end 

6.2.2 Shuffling Rule 
%huff ling Rule (4.2) 

% Input: The states of all cells before shuffling. 

% Output: The states of all cells after shuffling. 

function [Metal = SHUFFceta) 

N = lengthceta); 

for r = 1:N 

ksi=zeros(l,6) ; 

Meta(r,l) = ksi-l*eta(r,l)+ksi-2*eta(r,l)+ksi_3+eta(r,2)+ksi-4*eta(r.2)+ 

ksi_5*eta(r,3)+ksi_6*eta(r,3) ; 

Metah, 2) = ksi_l*eta(r,2) +ksi-2*eta(r,3)+ksi-3*eta(r, l)+ksi-4*eta(r,3)+ 

ksi_5*eta(r,2)+ksi_6*eta(r,l); 

Meta(r,3) = ksi-l*eta(r,3)+ksi-2*eta(r.2)+ksi-3*eta(r,3)+ksi-4*eta(r.l)+ 

ksi-5*eta(r,l)+ksi-6*eta(r,2); 

end 

6.2.3 Reaction Rule 1 

%ID Reaction rule (4.5) and (4.6) interaction neighborhood Nl={r). 
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%Input: 1. The states of all cells of species A and I before reactions. 

% 2. Probability p (vector) and a constant c which control the reactions. 

%Output: The states of all cells of species A and species I after reactions. 

function [Retal, Reta21 = REAl(etal,eta2,c,p) 

N=length(etal) ; 

nA =zeros(N, 1) ; 

nI =zeros(N, 1) ; 

Retal=zeros(N,3) ; 

Reta2=zeros(N,3); 

Vone = 11 1 11 ; 

Oone = 10 0 01 ; 

nA(:) = etal(:,l)+etal(:,2)+etal(:,3); 

nI(:) = eta2(:.l)+eta2(:,2)+eta2(:,3); 

Diff = nA - c*nI; 

for r = l:N 

if Diff(r)>O & (rand>(l-~(1))) 

Retal(r,:) = Vane(:); 

elseif Diff(r) <O % (rand>(l-~(2))) 

Retal(r.:) = Oonec:); 

else 

Retal(r,:) = etal(r 

end 

if Diff (r)>O % (rand> 

Reta2(r,:) = Vane( 

elseif Diff (r) (0 % (rand>(l-~(4))) 

Reta2(r,:) = Oone(:); 

else 

Reta2(r,:) = eta2(r,:); 

end 

end 

6.2.4 Reaction Rule 2 
%1D Reaction rule (4.5) and (4.6) for interaction neighborhood N2=(r,r+l). 

%Input: 1. The states of all cells of species A and I before reactions. 

% 2. Probability p (vector) and a constant c which control the reactions. 

%Output: The states of all cells of species A and species I after reactions. 

function [Retal, Reta21 = REA2(etal,eta2,c,p) 

N=length(etal); 

nA =zeros (N. 1) ; 
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nI =zeros (N, 1) ; 

Retal=zeros(N.3) ; 

Reta2=zeros (N,3) ; 

Vone = [l 1 11; 

Done = 10 0 01 ; 

for r = 1:N-1 

nA(r) =etal(r,l)+etal(r,2)+etal(r,3)+etal(r+l,l)+et~l(r+l,2)+etal~r+l,3~; 

nI(r) =eta2(r,l)+eta2(r,2)+eta2(r,3)+eta2(r+l,l)+eta2(r+l,2)+eta2(r+l,3); 

end 

nA(N) = etal(N.l)+etal(N,2)+etal(N,3)+etal(l,l)+etal~l,2~+etal~l,3~; 

nI(N) = eta2(N,l)+eta2(N.2)+eta2(N,3)+eta2(1,1)+eta2(1,2)+eta2(1.3); 

Diff = nA - c*nI; 

for r = l:N 

if Diff (r)>O & (rand>(l-~(1))) 

Retalh,:) = Vonec:); 

elseif Diff (r) <O & (rand>(l-~(2))) 

Retal (r , :) = Done( :) ; 

else 

Retalcr,:) = etal(r,:); 

end 

if Diff(r)>O & (rand>(l-~(3))) 

Reta2(r,:) = Vane(:); 

elseif Diff(r) <O & (rand>(l-~(4))) 

Reta2(r,:) = Done(:); 

else 

Reta2(r,:) = eta2(r,:); 

end 

end 

6.2.5 Reaction Rule 3 
%ID Reaction rule (4.5) and (4.6) for interaction neighborhood N3={r-1,r). 

%Input: 1. The states of all cells of species A and I before reactions. 

% 2. Probability p (vector) and a constant c which control the reactions. 

%Dutput: The states of all cells of species A and species I after reactions. 

function [Retal, Reta21 = REA3cetal ,eta2,c,p) 

N=length(etal); 

nA =zeros(N, 1) ; 

nI =zeros(N, 1) ; 

Retal=zeros(N,3); 
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Reta2=zeros (N,3) ; 

Vone = [I 1 11; 

Done = [O 0 01 ; 

for r = 2:N 

nA(r) =etai(r,l)+etal(r,~)+etal(r,3)+etal(r-l, 1)+etal(r-l,~)+etal(r-1,3) ; 

nI(r) =eta2(r, l)+etaZ(r ,2)+eta2(r ,3)+eta2(r-1 ,l)+eta2(r-l,~)+eta~(r-l,3) ; 

end 

nA(l) = etal(N,l)+etal(N,2)+etal(~,3)+etal(l,l)+etal~l,2~+eta1~~,~~; 

nI(1) = etaZ(N,l)+eta2(N,2)+eta2(~,3)+eta2(1,l)+eta2(1,2)+eta2(1,3); 

Diff = nA - c*nI; 

for r = 1:N 

if ~iff(r)>O & (rand>(l-~(l))) 

Retal(r,:) = Vane(:); 

elseif Diff (r) (0 & (rand>(l-~(2))) 

Retal(r, :) = Oonec:) ; 

else 

Retal(r,:) = etalcr,:); 

end 

else 

Reta2(r,:) = etaZ(r.:); 

end 

end 

6.2.6 Reaction Rule 4 

%1D Reaction rule (4.5) and (4.6) for interaction neighborhood N4=Cr-l,r,r+l). 

%Input: 1. The states of all cells of species A and I before reactions. 

% 2. Probability p (vector) and a constant c which control the reactions. 

%Output: The states of all cells of species A and species I after reactions. 

function [Retal, Reta21 = REAB(etal.eta2,c.p) 

N=length(etal) ; 

nA =zeros(N, 1) ; 

nI =zeros(N, 1) ; 
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Retal=zeros(N,3); 

Reta2=zeros(N,3); 

Vone = [I 1 11; 

Oone = [O 0 01 ; 

for r = 2:N-1 

nA(r) = etal(r-l,l)+etal(r-l,2)+etal(r-1,3)+etal(r,l)+etal(r,2)+ . . .  
+etal(r,3)+etal(r+l,l)+etal(r+l,2)+etal(r+1,3) ; 

nI(r) = eta2(r-l,l)+eta2(r-l,2)+eta2(r-l,3)+eta2(r,l)+eta2(r,2)+. . . 
+eta2(~,3)+eta2(r+l,l)+eta2(~+1,2)+eta2(r+l,3) ; 

end 

nA(1) = etal(N,l)+etal(~,2)+etal(~,3)+etal(l,l)+eta1(1,2)+eta1(1,3)+ . . .  
+eta1(2,l)+eta1(2,2)+eta1(2,3); 

nA(N) = etal(N,l)+etal(~,2)+etal(~,3)+etal(~-l,l)+eta1(~-1,2)+etal(N-1,3)+ ... 
+etal(l,l)+etal(l,2)+etal(l,3); 

nI(1) = eta2(N,l)+eta2(~,2)+eta2(~,3)+eta2(1,1)+eta2(1,2)+eta2(1,3)+ ... 
+eta2(2,l)+eta2(2,2)+eta2(2,3); 

nI(N) = eta2(N,l)+eta2(~,2)+eta2(N,3)+eta2(~-l,l)+eta2(N-l,2)+ . . .  
+eta2(N-1,3)+eta2(1,l)+eta2(1,2)+eta2(1.3); 

Diff = nA - c*nI; 
for r = 1:N 

if Diff(r)>O R (rand>(l-~(1))) 

Retalcr,:) = Vonec:); 

elseif Diff (r) <O & (rand>(l-~(2))) 

Retalh,:) = Oone(:); 

else 

Retalcr,:) = etal(r,:); 

end 

if Diff (r)>O & (rand>(l-~(3))) 

Reta2(r,:) = Vane(:); 

elseif Diff(r) <O R (rand>(l-~(4))) 

Reta2(r,:) = Oone(:); 

else 

Reta2(r,:) = eta2(r,:); 

end 

end 

6.2.7 1D LGCA Driver 
clear;clc;close all 
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%Length of lattices L-a = L-i 

%Number of time steps 

%Number of cells 

%Speeds of Activator A and Inhibitor I 

etaI=zeros(N,3) ; 

etaA(50,3)=1; %Initial condition 

for t=l:Nt ................................................... LLLLLLLLLLLLLLLLLLLLLLLLL/.LLLLLLLLL/.LLLLLLLLL/.LLLLL 
11. Reaction Process 

[RetaA,RetaIl=RECl(etaA,etaI,c,p); ................................................... LLLLLLLLLLLLLLLLLLLLLLLLLLL/.LLLLLLLLLLLLLLLLLLL/./.LL 
Y.2. Shuffling Process 

MetaA = SHUFF(RetaA); 

MetaI = SHUFF(Reta1); ................................................... LLLLLLLLLLLLLLLLLLLLLL/./.LLLLLLLLLLLLLLLLLLL/.LLLLLLL 
%3. Propagation Process 

etaA = PROP(MetaA,m-A) ; 

eta1 = PROP(Meta1 ,m-I) ; ................................................... LLLLLLLLLLLLLLLLLLLLLLLLLLLLL/,LLLLLLLLL/.LLLLLLLLL/.L 
%4. Concentration of species A 

solA(:,t) = etaA(:.l)+etaA(:.2)+etaA(:,3); ................................................... LLLLLLLLLLLLLLLLLLLL/,LLLLLLLLL/,/.LLLLLLLLL/.LLLLLLLLL 
end 

%5. Plot the evolution of the Activator A 

title(['Evolution of species A at time=',num2str(t)l) 

colormap([l 1 1; .8 .8 .8; .5 .5 .5; 0 0 0; 1 0  11); 

xlabel('Timel) 

ylabel('SpaceJ) 

6.3 2D LGCA Codes 

In this section, the matlab codes for the 2D LGCA (with four velocity channels and 

one rest channel) are attached. 

6.3.1 2D Propagation Rule 
%Propagation process 
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function CPAl = PROP2D(A,m) 

SIZE= size(A) ; 

N=SIZE(2); 

channel=SIZE(l) ; 

PA = zeros(chame1 ,N,N) ; 

end 

%Vertical propapation 

for i = 1:N 

PA(2,i,l+m:N) = A(2,i,l:N-m); 

PA(2,i,l:m) = A(2,i,N-m+l:N); 

PA(4,i,l:N-m) = A(4,i,m+l:N); 

PA(4,i.N-m+l:N) = ~(4,i,l:m); 

end 

%Rest channel 

for j= l:N 

PA(5,l:N.j) = A(5,l:N.j); 

end 

6.3.2 2D Shuffling Rule 
% Shuffling process 

function [MI=SHUFF2D(R) 

SIZE= size (R) ; 

N=SIZE(2) ; 

channel=SIZE(l) ; 

M = zeros(chamel,N,N); 

for i = l:N 

for j = 1:N 

temp = randperm(chame1); 

P=zeros(channel,channel); 

for jj = 1:channel 

P(jj,temp(jj)) = 1; 

end 

M(:,i,j) = P*R(:,i,j); 

end 

end 
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6.3.3 2D Reaction Rule 1 

%2D Reaction rule (4.5) and (4.6) interaction neighborhood Nl=.Ii,j). 

%Input: 1. The states of all cells of species A and B before reactions 

% 2. Probability p (vector) and a constant c which control the reactions. 

%Output: The states of all cells of species A and species B after reactions. 

function [RA,RB]=REA2DNl(A,B,p, C) 

SIZE= size(A); 

N=SIZE(2) ; 

channel=SIZE(l) ; 

RA = zeros(channel,N,N) ; 

RB = zeros(channel,N,N) ; 

nA=RA;nB=nA;Diff=nA-nB; 

Vone = C1 1 1 1 11; 

Oone = [O 0 0 0 01 ; 

for i = l:N 

for j = l:N 

nA(i,j) = sum(A(:,i,j)); 

nB(i,j) = sum(B(:,i,j)); 

Diff(i,j) = nA(i,j) -c*nB(i,j); 

end 

end 

for i = l:N 

for j=l:N 

if Diff(i,j) >O & (rand>(l-~(1))) 

RA(:,i.j) = Vone; 

elseif Diff (i, j) <O Q (rand>(l-~(2))) 

RA(:,i,j) = Oone; 

else 

RA(:,i,j) = A(:,i,j); 

end 

if Diff(i,j) >O Q (rand>(l-~(3))) 

RB(:,i,j) = Vone; 

elseif Diff(i,j) <O Q (rand>(l-~(4))) 

RB(:,i.j) = Oone; 

else 

RB(:,i,j) = B(:,i,j); 

end 

end 

end 

6.3.4 2D Reaction Rule 2 
%2D Reaction rule (4.5) and (4.6) 
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%Interaction neighborhood N2= ((i,j),{i-l,j),(i+l,j).(i,j-l>,(i,j+l)). 

%Input: 1. The states of all cells of species A and B before reactions. 

% 2. Probability p (vector) and a constant c which control the reactions. 

%Output: The states of all cells of species A and species B after reactions. 

function [RA,RB]=REA2DN2(A,B,p,c) 

SIZE= size(A); 

N=SIZE(2) ; 

channel=SIZE(l); 

RA = zeros(channel,N,N); 

RB = zeros(channel,N,N); 

nA=RA;nB=nA;Diff=nA-nB; 

Vone = 11 1 1 1 11; 

Oone = [O 0 0 0 01 ; 

for i = 2:N-1 

for j = 2:N-1 

nA(i,j) = sum(A(:,i, j))+sum(A(: ,i,j+l))+sum(A(: ,i,j-l))+sum(A(: ,i-l,j))+sum(A(: ,i+l,j)); 

nB(i,j) = sum(B(: ,i,j))+sum(B(: ,i,j+l))+sum(B(:,i,j-l))+sum(B(: ,i-l,j))+sum(B(: ,i+l,j)); 

end 

end 

nA(1,l) = sum(A(:,l,l))+ sum(A(:,1,2))+sum(A(:,2,l))+sum(A(:,l,N))+sum(A(:,N,1)); 

nA(1,N) = sum(A(: ,1,N))+ sum(A(: ,l,N-l))+sum(A(: ,l,l))+sum(A(: ,2,N))+sum(A(: ,N,N)); 

nA(N,l) = sum(A(: ,N,1))+ sum(A(: ,N,2))+sum(A(: ,N,N))+sum(A(: ,N-l,l))+sum(A(: ,l,1)); 

nA(N.N) = sum(A(: ,N,N))+ sum(A(: ,~,l))+sum(A(: ,N,N-l))+sum(A(: ,N-l,N))+sum(A(: ,l,N)); 

nB(1,l) = sum(B(:,l,l))+ sum(B(:,1,2))+sum(B(:,2,l))+sum(B(:,1,N))+~m(B(:,N,l)); 

nB(1.N) = sum(B(: ,1,N))+ sum(B(: ,l,N-l))+sum(B(: ,l,l))+sum(B(: ,2.,N)); 

nB(N,1) = sum(B(:,N,l))+ sum(B(:,N,2))+sum(B(:,N,N))+sum(B(: ,N-l,l))+sum(B(:,l,l)); 

nB(N,N) = sum(B(: ,N.N))+ sum(B(: ,N,l))+sum(B(:,N,N-l))+sum(B(: ,N-l,N))+sum(B(: .l,N)); 

for j=2:N-1 

nA(1.j) =sum(A(:,l,j))+ sum(A(:,l,j+l))+sum(A(:,l,j-1)) + sum(A(:,N,j))+sum(A(:,2,j)) ; 

+sum(A(: ,N-l,j))+sum(A(: ,l,j)); 

+ sum(B(: ,N, j))+sum(B(: ,2, j)) ; 

+sum(B(: ,N-l,j))+sum(B(: ,l,j)); 

nA(N,j) =sum(A(:,N,j))+ sum(A(:,N,j+l))+sum(A(:,N,j-1)) 

nB(1,j) =sum(B(:,l,j))+ sum(B(:,l,j+l))+sum(B(:,l,j-1) 

nB(N, j) =sum(B(: .N, j))+ sum(B(: ,N, j+l))+sum(B(: ,N.j-1)) 

end 

for i=2:N-1 

nA(i,l)= sum(A(: ,i,l))+ sum(A(: ,i,2))+sum(A(: ,i,N))+ sum(A(:.i-l,l))+sum(A(:,i+l,l)); 

nA(i,N)= sum(A(:.i,N))+ sum(A(:,i,l))+sum(A(:,i,N-l))+ sum(A(:,i-I,~))+sum(A(:,i+l,N)); 

nB(i,l)= sum(B(: ,i,l))+ sum(B(: ,i,2))+sum(B(: ,i,N))+ sum(B(: ,i-l.l))+sum(B(: ,i+l,l)); 

nB(i,N)= sum(B(:,i,N))+ sum(B(:,i,l))+sum(B(:,i,N-l))+ sum(~(:,i-l,~))+sum(~(:,i+l,~)); 

end 

Diff = nA-onB; 

for i = 1:N 

for j=l:N 

if Diff(i,j) >O & (rand>(l-~(1))) 

RA(:,i,j) = Vone; 

elseif Diff(i,j) (0 & (rand>(l-~(2))) 

RA(:,i,j) = Oone; 

else 
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RA(:,i,j) = A(:,i,j); 

end 

if Diff(i,j) >O & (rand>(l-~(3))) 

RB(:,i,j) = Vone; 

elseif Diff(i,j) <O & (rand>(l-~(4))) 

RB(:,i,j) = Oone; 

else 

RB(: ,i,j) = B(:,i,j); 

end 

end 

end 

6.3.5 2D LGCA Driver 
% 2D 2-Component Lattice Gas CA for Activator-Inhibitor System based on the 

% modified reaction rule (4.5) and (4.6) . 
% A: Activator 

% B: Inhibitor 

% Interacation neighborhood N = N1 = {i,j). 

% s= 5; Four velocity channels and one rest channel. 

clear; close all; clc 

% Initialization 

m-A=l; m-B=ll;p = [1 1 1 1 ];c=l;% Parameters from local interaction rules. 

N = 100; % size of lattice 

Nt= 500; % # of time steps 

channel = 5; % # of channels on each node r = (i,j). 

% 4 velocity channels (Cl,C2,C3,C4) and 1 rest channel C5 

B = zeros(channel,N,N) ; 

RA=A; RB=B;MA=A; MB=B; 

% Initial condition 

A(5.50,50)=1; 

nA = zeros(N,N);%Concentration of species A 

nB = nA; %Concentration of species B 

Diff = nA-nB; 

solA = zeros(N.N); 

iter =O; 

for t =l:Nt 

................................... ............................... LLLLLLLLXLLXhhLLLl.Xl,l.l.l,l,l.Ll,l,LLLLLLLLLLLLLLLLLLLLL~LLLLLLLLLLLLLLLLL 
%1. Reaction process 

[RA,RBl = REA2DN2(A,B,p,c); 
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................................................................... L/.L/.LLLLLLLLLLLLLLLLLLLLL/.LLLLLLLL/.LLLLLLLL/.LLLLLLLL/.LLLLLLLL/.LLLLL 

%2. Shuffling process 
MA = SHUFF2D(RA); 

MB = SHUFF2D(RB); ................................................................... LLLLLLLLLLLLLLLLLLLLLLLLLL/,LLLLLL/,/.LLLLLLL/,/,LLLLLLL/,LLLLLLLL/,/*LLLLL 
7.3. Propagation process 

A = PROP2D(MA,m-A); 

B = PROP2D(MB,m-B) ; ................ ................................................... LLLLLLLLLLLLLhXLLLLLLLL/.LLLLLLLL/.L/.LLLLLL/,/,LLLLLLLLLLLLLLLL/./,LLLLLL 
7.4. Compute and plot the concentration of species A 

if mod(iter,lO)== 0 

t 

for i = l:N 

for j = l:N 

solA(i,j) = sum(A(:,i,j)); 

end 

end 

imagesc(so1A) 

colormap([l 1 1; .8 .8 .8; .6 .6 .6; .4 .4 .4; .2 .2  .2; 0 0 0; 1 0  11); 

pause ( .2) 

end 

iter = iter+l; 

end 

xlabelc '\bf x ' )  

ylabel('\bf y ' )  

Title(['Concentration of the activator A at time Nt =' ,  num2str(t)]) 
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