
Implementing AODV Ad Hoc Routing Protocol

For lPv6

Meng Chunng Lee
B.Sc. E.E., University Of Manitoba

PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING

In the School
of

Engineering Science

O Meng Chunng Lee 2003

SIMON FRASER UNIVERSITY

April 2003

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name: Lee, Meng Chunng
Degree: Master of Engineering
Title of Project: Implementing AODV Ad Hoc Routing Protocol For

I Pv6
Examining Committee:

Chair: Dr. Marek Syrzycki
Professor

r u -- - 7
Dr. Steve Hardy
Senior Supervisor
Professor

Dr. Paul Ho
Supervisor
Professor

-
Dr. Tejinder Randhawa
Supervisor
NewMlC Scientist
New Media Innovation

Date Approved:

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend
my thesis, project or extended essay (the title of which is
shown below) to users of the Simon Fraser University Library,
and to make partial or single copies only for such users or
in response to a request from the library of any other
university, or other educational institution, on its own
behalf or for one of its users. I hrther agree that
permission for multiple copying of this work for scholarly
purposes may be granted by me or the Dean of Graduate
Studles. It is understood that copying or publication of this
work for financial gain shall not be allowed without my
written permission.

Title of ~ h e s i f i e a x t e n d e d Essay

Author:
(signature)/ - - - .-

(name) b ~ - , , . .U -
J J

ABSTRACT

Wireless networks have become increasingly popular in the past few years. It is

anticipated that ad hoc networks will play an important role in the advancement of

wireless networks. Among the various ad hoc routing protocols, the Ad-Hoc On-Demand

Distance Vector (AODV) routing protocol is the most popular and common one. At the

present time, IPv4 is the foundation of networking, as the most commonly used internet

protocol standard. However, with the further growth of new wireless devices connecting

to the Internet, IPv4 is proving inadequate to support this growth. The lnternet

Engineering Task Force (IETF) has developed IP Version 6 (IPv6) to enable a far larger

number of systems to be deployed on the Internet. To ensure that the provisioning of

wireless networks can keep pace with lnternet growth, it is desirable to incorporate ad

hoc routing protocols into IPv6. This would provide great advantages for both users and

product developers.

The goal of this project is to implement an IP Version 6 (IPv6) AODV ad hoc

routing protocol. We have chosen Uppsala University's AODV (AODV-UU)

implementation as the baseline. In this project, we demonstrate the correctness of our

IPv6 based AODV protocol by creating various network configurations in a test bed.

More generally, this report provides valuable insight into the porting of routing protocols

from IPv4 to IPv6.

iii

DEDICATION

To my dad, mum and my girlfriend Bee Kim.

ACKNOWLEDGEMENTS

I know that this project would not have been possible except for several people.

Firstly, I would like to thank Professor Steve Hardy for being my supervisor. Secondly, I

would like to thank Dr. Tejinder S. Randhawa of NewMlC for providing valuable

guidance throughout the project. I would also like to thank Antti Tuominen for answering

my technical questions about AODV and IPv6 in a very responsive manner and also

David Wilder for providing me with help on setting up the Linux Kernel Core Dump

(LKCD) debugger. I would like to thank Warren Lee of NewMlC for assisting with setting

up the laptop and helping with testing. Last but not least, I would like to thank the New

Media Innovation Centre for providing resources for this project.

TABLE OF CONTENTS

.. Approval ii

Abstract .. iii

Dedication .. iv

... Acknowledgements v

Table of Contents ... vi

List of Figures ... ix

List of Tables ... x

Chapter One lntroduction ...

Chapter Two Introduction To Ad Hoc Networks ... 2

... 2.1 Common Routing Protocol 2

2.2 Ad Hoc Routing Protocol .. 2

... 2.2.1 Reactive Routing Protocol 3

. 2.2.2 Pro-Active Routing Protocol .. 3

............................ Chapter Three Ad Hoc On-demand Distance Vector (AODV) Protocol 4

.. 3.1 AODV Operations 5

Chapter Four IP Version 6 Essentials .. 7

... 4.1 Introduction To IPv6 7

4.2 IPv6 Addresses .. 7

4.3 IPv6 Address Format ... 7

... 4.3.1 Leading Zeros Suppressed 8

... 4.3.2 Zeros Field Collapsed 8

... 4.4 IPv6 Address Types 8

.. 4.5 More About 1Pv6 8

Chapter Five IPv4 AODV Software Implementation ... 9

... 5.1 Software Implementation 9

.. 5.2 Software Components In Details I 0

.. 5.2.1 Core Program I 0

5.2.2 Kernel Module ... 13

... 5.2.3 AODV Processing Module 14

5.2.4 Packet Handler Module ... 15

.. 5.2.5 Route Table Module 15

... 5.2.6 Miscellaneous Utilities Modules 15

5.2.7 IP Queue API Library ... 1 6

5.2.8 AODV Configuration Parameter .. 16

Chapter Six IPv6 AODV Implementation ... 17

6.1 AODV Control Messages For IPv4 And IPv6 ... 17

6.1 . 1 Route Request Message (RREQ) ... 1 7

6.1.2 Route Reply Message (RREP) .. 18

6.1.3 Route Error Message (RERR) ... 19

6.1.4 Route Reply Acknowledgement (RREP-ACK) ... 20

6.2 New Implementation For IPv6 AODV ... 20

6.2.1 Local Host Initialization .. 20

6.2.2 Routing Table .. 21

6.2.3 Kernel Module ... 22

6.2.4 Packet Queue Library API ... 23

6.2.5 Socket Changes .. 23

6.2.6 ICMP Control Messages Handling ... 23

6.3 Porting Strategic .. 24

Chapter Seven Development Environment And Test-Bed Set Up 25

7.1 Mobile Node Set-up ... 25

... 7.2 Test Environment Set-up 25

7.3 Debugging Tools .. 26

Chapter Eight Test Results .. 27

... 8.1 Mobile Nodes Configuration 27

8.2 Test Scenario 1 .. 27

.. 8.3 Test Scenario 2 29

8.4 Test Scenario 3 .. 33

8.5 Test Scenario 4 .. 35

.. 8.6 Test Scenario 5 37

Chapter Nine Conclusions ... 38

Appendices ... 33

A . 1 Linux Kernel .. 39

A.2 802 . I 1 b Wireless Device ... 40

A.3 Set up IPv6 Site Local Address ... 40

A.4 Running IPv6 AODV .. 41

A.5 Testing Utilities ... 41

vii

A.6 Linux Kernel Core Dump (LKCD) Tools ... 4 1

A.7 IPv4 AODV Implementation ... 42

Reference List ... 43

viii

LIST OF FIGURES

Figure 1 AODV Route Discovery Process ... 6

... Figure 2 Main Loop Suede-Code 12

Figure 3 RREQ Messages for IPv4 ... 18

Figure 4 RREQ messages for IPv6 ... 18

.. Figure 5 RREP message for IPv4 18

Figure 6 RREP message for IPv6 .. 19

Figure 7 RERR message for IPv4 ... 19

Figure 8 RERR message for IPv6 ... 20

... Figure 9 Route Reply RREP-ACK for IPv4 and IPv6 20

.. Figure 10 Hash Function For IPv4 and IPv6 21

Figure 11 Test Scenario 1 Set Up ... 27

Figure 12 Results Before AODV Started ... 28

Figure 13 Results After AODV Started .. 29

.. Figure 14 Test Scenario 2 Set up 30

... Figure 15 Mobil Nodes' Route Table For Test Scenario 2 31

.. Figure 16 Ping Results 32

... Figure 17 Node A and Node C Route Table After Ping Stop 33

.. Figure 18 Traceroute6 Results From Node A To Node C 33

... Figure 19 Test Results for Test Scenario 3 34

... Figure 20 "traceroute6" Results 35

... Figure 21 Test Results for Test Scenario 4 36

... Figure 22 "traceroute6" Results 36

... Figure 23 SSH Session From Node A To Node C 37

LIST OF TABLES

Table 1 Examples of Ad Hoc Routing Protocols .. 3

... Table 2 Summary of IPv6 Address Type 8

Table 3 AODV-UU Software Components Summary ... I 0

Table 4 Netfilter Hook Name for IPv4 and IPv6 ... 22

Table 5 Socket Options Different For IPv4 And IPv6 ... 23

CHAPTER ONE
INTRODUCTION

Wireless networks have become a favoured subject in academic research as well

as in commercial product development. This is mainly because wireless mobile devices

are rapidly gaining popularity due to their compact size and portability. In general,

wireless networks can be classified into two categories: Infrastructure Networks and

Non-Infrastructure Mobile Networks. lnfrastructure Networks normally have a fixed wired

gateway and mobile nodes can communicate with the network through a base station.

An example application of this kind of network is a Wireless LAN. Non-Infrastructure

Mobile Networks are also known as ad hoc networks. They do not use a fixed gateway

for packet routing. Each mobile node acts as a router and maintains routes to other

nodes in the network. This type of wireless network is very attractive for various

purposes and applications such as convention meetings, electronic classrooms, search-

and-rescue and related uses.

The most dramatic issue in the current IP world is the exponential growth of the

number of Internet users along with growth in traffic. This implicitly indicates that the

current IPv4 address space will be exhausted some time soon. Therefore, lPng or IPv6

has been introduced not only to solve this problem but also to enhance the network by

including capabilities such as control of Quality-of-Services (QoS), auto configuration,

security and other features.

This project is the product of the combination of these two hottest subjects in the

networking world, namely ad hoc wireless networks and lpv6. This combination is

reflected in the title: Implementing AODV Ad Hoc Routing Protocol for IPv6.

CHAPTER TWO
INTRODUCTION TO AD HOC NETWORKS

An ad hoc wireless network is a self-maintaining network and all the mobile

nodes are interconnected in an arbitrary manner. Hence, the routing in ad hoc networks

differs from fixed line protocols in that optimum routing is not the most important

requirement for ad hoc routing. Features like rapid route convergence and high reactivity

are deemed more important.

2. I Common Routing Protocol

There are two common routing algorithms in use on today's Internet: Link State

and Distance-Vector algorithms. The main difference between these two algorithms is

that routers using the Link State algorithm will flood all the nodes in the network with a

small packet of information describing the state of its own links, whereas a router using

the Distance-Vector algorithm sends its entire routing table to only its neighbors. The

trade off between these two algorithms is that Link State algorithm converges faster and

is less prone to routing loops while the Distance-Vector algorithm requires less memory

and CPU power.

2.2 Ad Hoc Routing Protocol

Several routing protocols have been proposed for ad hoc mobile networks since

the advent of DARPA packet routing protocols in the early 1970's. Ad hoc routing

protocols can be classified into two categories: Re-Active Routing Protocols (also

referred to as On-Demand Routing Protocols) and Pro-Active Routing Protocols (also

refer as Table-Driven Routing Protocols).

2.2.1 Reactive Routing Protocol

Re-Active protocols create a route only when the source desires a packet to be

routed. In other words, a node will initiate a route discovery process within the network

when it requires a route to a destination. It will maintain the route until it is no longer

required.

2.2.2 Pro-Active Routing Protocol

Pro-Active protocols will try to maintain up-to-date routing information for all

nodes in the network. This is achieved through maintaining a set of routing tables. When

there is a change in network topology, the node will propagate updated information

throughout the network to maintain a consistent view.

The following table shows the existing ad hoc routing protocols and their

category:

Re-Active
Ad Hoc On-Demand Distance Vector

Pro-Active
Destination-Sequenced Distance-Vector

(AODV)

Dynamic Source Routing (DSR)

(DSDV)

Optimized Link State Routing (OLSR)

Lightweight Mobile Routing (LMR)

Temporally Ordered Routing Algorithm

Table 1 Examples of Ad Hoc Routing Protocols

Fisheye State Routing (FSR)

Topology Broadcast Based on Reverse-

(TO RA)

A very well written paper called "A Review of Current Routing Protocols for Ad

Path Forwarding (TBRPF)

Hoc Mobile Wireless Networks" [Ref. 91, give a very good description of several routing

schemes and also presents a comparison between the reactive and pro-active routing

protocols, highlighting their features, differences and characteristics.

CHAPTER THREE
AD HOC ON-DEMAND DISTANCE VECTOR (AODV) PROTOCOL

Ad hoc On-Demand Distance Vector is one of the most popular ad hoc routing

protocols. It is basically the combination of Dynamic Source Routing (DSR) and

Destination-Sequenced Distance Vector (DSDV). The major strengths of AODV are:

quick adaptation to dynamic link conditions,

low CPU consumption and memory overhead,

low network utilization,

routing loop free by using destination sequence numbers.

Destination Sequenced Distance Vector (DSDV) protocol is based on the well-

known Bellman-Ford routing algorithm but improved through the avoidance of routing

loops in a mobile network of routers. Each node maintains a routing table which contains

routes to all possible nodes. A sequence numbering system is used to allow a node to

distinguish stale routes from new ones. Since routing table updates are sent periodically

throughout the network, a considerable amount of control traffic is generated in the

network.

AODV is based on a DSDV implementation but reduces the control traffic in the

network by creating routes on an on-demand basis, instead of maintaining a complete

list of routes. It is a pure on-demand route acquisition system. The specification of AODV

is documented as an Internet-Draft submitted by the Mobile Ad Hoc Networking Working

Group of the Internet Engineering Task Force (IETF) [Ref. 21. The next section gives a

brief description of how AODV works in general.

3. I A ODV Operations

There are 3 message types defined for AODV: Route Request (RREQ), Route

Reply (RREP) and Route Error (RERR). These message types are communicated

through a UDP connection and normal IP header processing is still required. When a

source node wants to communicate with a destination node and it does not have a valid

route, it will generate a RREQ message to its neighbours in control manner (Figure 1 a).

Its neighbours will forward the request to their neighbours until the request reaches a

node that has a route to the destination. Each node that forwards the route request

creates a reverse route for itself back to the source node.

When the RREQ packet reaches a node with a route to the destination node, it

generates a RREP (Figure 1 b) which contains the number of hops to reach the

destination and the sequence number for the destination most recently seen by the node

generating RREP. AODV uses destination sequence numbers to ensure that all routes

are loop free and contain the most recent route information. Each node maintains its

own sequence number and broadcast ID. The broadcast ID is incremented for every

RREQ the node initiates.

Each of the nodes, that forward the reply back to the source, creates a forward

route to the destination. The state created in each node is hop-by-hop along the path

from the source to the destination. In other words, each node only remembers the next

hop and not the whole path. If the source later receives a RREP that contains a greater

or equal sequence number, but with a smaller hop count, it will update its route

information for that destination and use the new route. A route will be deleted if it was

inactive for a specified lifetime.

If a source moves, it will regenerate the route discovery protocol to find

the route to the destination. If a node along the route moves, its upstream neighbours

5

notice the move and propagate a link failure notification message, a RREP with an

infinite metric, to its upstream neighbours. The node which receives this message will

also propagate the message to its upstream neighbours and continue the propagation

until the source node is reached.

AODV periodically transmits "hello" messages (a RREQ with hop count

equal to 1) to maintain a route to its neighbours. If a node misses three consecutive

"hello" messages from a neighbour, it considers the link to the neighbour to be down.

I (a) Propagation of RREQ From Node 1 to Search for Node 3

(b) Route for Node 3 to send RREP back to the source

Figure 1 AODV Route Discovery Process

CHAPTER FOUR
IP VERSION 6 ESSENTIALS

This chapter gives a basic introduction to IPv6 and provides a reference point for

more IPv6 information.

4. I Introduction To IPv6

The work for IP Version 6 (IPv6) standardization began in 1991 and the main part

was completed in 1996. The specification of IPv6 is documented in RFC 2460. IPv6 is a

successor to IPv4 with improvements to address space, security, Quality of Service

(QoS), autoconfiguration and related areas.

4.2 IPv6 Addresses

One of the main objectives of introducing IPv6 to replace IPv4 is to supply a IP

address space to last "forever". The address space has been increased from 32 to 128

bits. With 128 bits, there are approximately addresses. One of the major differences

between IPv4 and IPv6 addresses is that IPv6 addresses are scoped. There are 3

different scopes for IPv6 addresses: Link Local, Site Local and Global address. Link

Local addresses are designed to be used on each link for address autoconfiguration and

for neighbour discovery functions. Site Local addresses are designed to replace IPv4

addresses for use in Intranets. Global addresses are used to uniquely identify a node

that is connected to a IPv6 Internet.

4.3 lPv6 Address Format

IPv6 addresses are 128-bits long and are represented by eight fields of up to four

hexadecimal digits. Each field is separated by a colon ":". For example:

"FEC0:I 234:0000:0000:0001:0002:0003:0004".

4.3.1 Leading Zeros Suppressed

The leading zeros of each field can be suppressed. The previous example can

be written as "FEC0:I 234:O:O: 1 :2:3:4".

4.3.2 Zeros Field Collapsed

If the IPv6 address has contiguous fields that contain only zeros, the field can be

collapsed and simplified as "::". The previous example can be written as

"FECO: 1234:: 1 :2:3:4".

4.4 IPv6 Address Types

Since IPv6 introduced the concept of address scope, the address types can be

identified from the leading bits of the IPv6 addresses. Table 2 gives a summary of IPv6

address types with examples.

Table 2 Summary of IPv6 Address Type

4.5 More About lPv6

Since fully explaining IPv6 is not within the scope of this report, readers can find

more information about IPv6 from the following books: "Implementing IPv6: Supporting

the Next Generation Internet Protocols" [Ref. 41 and "Big Book of IPv6 Addressing

RFCs" [Ref. 51.

CHAPTER FIVE
IPV4 AODV SOFTWARE IMPLEMENTATION

The objective of this project is to implement IPv6 functionalities on an existing

IPv4 AODV implementation. There are three recommended IPv4 AODV

implementations: UCSB Implementation, NlST lmplementation and Uppsala University

Implementation. Links to this implementation can be found in the IPv4 AODV section in

the Appendix A of this report.

This project is using Uppsala University AODV lmplementation (AODV-UU) as

the based to add in IPv6 functionalities. This chapter will describe the software

architecture and implementation of AODV-UU.

5. I Software lmplementation

AODV-UU is implemented based on AODV IETF draft [Ref.. 21 version 10 and

version 11. At the time of this project started, only version 10 is available, and

correspond to AODV-UU Version 0.5. AODV-UU Version 0.6 is released early 2003 and

is based on AODV IETF draft version 11. This project will based on AODV-UU Version

0.5 and will merge the AODV-UU Version 0.6 changes in the future. The pros of AODV-

UU implementation is: it is very stable and very well tested. The cons is: there is no

design document and not much comments in the code.

AODV-UU is designed to run on Linuxls user space. The processing of AODV-

UU is also relies on two kernel modules. AODV-UU required a Netfilter module

"ip-queue.0" to run in kernel space to capture IP packets. Information on how to build

this module can be found in the reference section of this report. AODV-UU

implementation can be discussed in six different components: Core program, AODV

messages processing modules, kernel modules, packet processing modules, routing

table modules and miscellaneous utility. The main functionalities of each component can

be summarized in Table 3.

Component
Core Program

Kernel Module

Module
Packet Handling Module

Functionality
program initialization, process user specified parameter
when AODV start-up, attached call-back function and fall in
a main loop to listen to the attached socket
responsible for accepting the packet, or queue the packet to

AODV Processing
processing the received AODV messages
responsible for processing the packet that pass from the
kernel module to the user space, it will decide whether to
forward the packet based on the AODV routing table or
queue the packet if no route can be found for the destination

user space or forwarding the packet
responsible for the generating AODV messages and

Table 3 AODV-UU Software Components Summary

Routing Table Module

Misc. Utilities

Detail of each of these components will be explained in next section.

and generate a request for route discovery
responsible for maintaining a user space routing table as
well as controlling the kernel routing table
Provide useful function for general use, for example debug
log, timer queue etc.

5.2 Software Components In Details

5.2.1 Core Program

The core program contains 1 file: "main.cn. This is the core of the AODV user

space program. The main functionality of the core program are listed as follow:

process user input parameter

detect from the terminal and fork a new process (if applicable)

initialize various components

enter a main loop

This section will further discuss the critical components initialization including

Local Host Initialization, Packet Input Initialization and AODV Socket Initialization. It will

also discuss the mechanism used for the AODV main loop with the "Call-Back function

implementation.

For host initialization, this is a critical area to be make for ADOV to support

multiple interfaces. The main function of host initialization is to retrieve network interface

information for AODV use, for example, interface address, netmask, interface index and

so on. It will also load the "ip6-queue" and "kaodv" kernel modules (will be discuss in

next section) and also turn on kernel IP forwarding option. Due to IPv6 introduce

address scope concept, the host initialization code cannot be reuse directly from IPv4 to

IPv6, therefore AODV for IPv6 will only support only one interface for current release.

Packet input initialization will create and initialize an IPQ handler is using IPQ

standard API. This is actually opening a Netlink socket for the user space program to

retrieve IP packets that captured by the kernel module. The initialization process will

then call the attach-callback-func to attach the socket file descriptor and the associated

processing function "packet-input()" defined in "packet-input.cM.

AODV socket initialization will create a UDP socket and bind to port 654. It will

add the host address to multicastlbroadcast group for neighbor discovering purpose. It

also set the IP-PKTINFO and IP-RECVTTL socket option so that when it receives an IP

packet, it can retrieve the TTL (or HOPLIMIT for IPv6) information and the payload. The

AODV message is actually store in the payload of the packet.

The "Call-Back Function" implementation for AODV-UU is using the "select()

function" for I10 multiplexing. The "callbacks" data structure, "attach-callback-func" and

the main loop suede-code are shown in Figure 2.

#define CALLBACK-FUNCS 4
static struct callback {

int fd;
callback-func-t func;

} callbacks [CALLBACK-FUNCSI ;

static int nr-callbacks = 0;

int attach-callback-func(int id, callback-func-t func)
I

if (nr callbacks >= CALLBACK-FUNCS) {
fpri&f (stderr, "callback attach limit reached! ! \nu) ;
exit (-1) ;

1
callbacks[nr-callbacksl.•’d = fd;
callbacks[nr-callbacks] .func = func;
nr-callbacks++;
return 0;

1

main ()

fd-set rfds, readers;
int nfds = 0;

/ * Set sockets to watch. . . * /
FD-ZERO (&readers) ;
for (i = 0; i < nr-callbacks; i++)

{
FD SET (callbacks [i] . f d, &readers) ;
ifd(callbacks [il . fd >= nf ds)
nfds = callbacks [i] . fd + 1;

1

while (1)
{
memcpy ((char *) &rfds, (char *) &readers, sizeof (rfds)) ;

if ((n = select (nfds, &rfds, NULL, NULL, timeout)) < 0)
continue ;

{
for (i = 0; i c nr-callbacks; i++)

{
if (FD ISSET (callbacks [il . fd, &rfds))

(*tailbacks [i] . func) (callbacks [il . fd) ;

Figure 2 Main Loop Suede-Code

The following show the flow of the main loop:

use FD-ZERO() to initialize the set

use FD-SET() to add the socket to be monitor

use "select function" to poll for processing

the return value of select is the total count of the number of descriptors

that are ready.

use FD-ISSET to determine which socket is ready

call the processing function accordingly

5.2.2 Kernel Module

Besides the Netfilter kernel module "ip-queue.on, AODV also has its own kernel

module. It is "kaodv.~". The main functionality of "kaodv.~" is to register the following

netfilter hooks: NF-IP6-PRE-ROUTING, NF-IP6-LOCAL-OUT,

NF-IP6-POST-ROUTING to nf-aodv-hook(). When Netfilter module receive an IP

packet, nf-aodv-hook function will be called. It will check if this is AODV control

messages. If the receive packet is AODV message, it will accept the packet and let go to

AODV program to handle it. If it is not AODV message, it will check the hook value. If the

hook value is NF-IP6-PRE-ROUTING or NF-IP6-LOCAL-OUT, it will put this in the

queue and let the user program to pick this up. If the hook is NF-IP6-POST-ROUTING,

it will reroute all packets before sending on interface. This will make sure queued

packets are routed on a newly installed route (after a successful RREQ-cycle).

5.2.3 AODV Processing Module

AODV messages processing contains the following files: "seek-1ist.c" ,

"aodv-socket.cn, "aodv-rreq.~", "aodv-rrep.cn, "aodv-rerr.cW, "aodv-hello.cW,

"aodv~timeout.c".

"seek-1ist.c" is used to keep a "precursor list" which contains the IP address for

each of its neighbor that are likely to use it as a next hop towards each destination.

"aodv~socket.c" is responsible for sending and receiving AODV control

messages and call the corresponding AODV messages handler to process the

message.

"aodv-rreq.cn is responsible for the main functionality of AODV RREQ operation

such as creating RREQ message, process received RREQ message, and RREQ route

discovery.

"aodv-rrep.c" is responsible for the main functionality of AODV RREP operation

such as creating RREP message, process received RREP message, create RREP-ACK

as well as process received RREP-ACK.

"aodv-rerr.cn is responsible for the main functionality of AODV RERR operation

such as creating RERR message and processing received RERR message.

"aodv~timeout.c" is responsible for the timeout of the following function: Route

Delete, Route Discovery, Route Expire, Hello Timeout, RREQ Record, RREQ Blacklist,

RREP-ACK and Wait On Reboot.

"aodv-hello.cn is responsible for sending Hello message and process received

Hello message.

5.2.4 Packet Handler Module

There are 2 files associated with AODV packet handler: "packet-input.cn and

"packet-queue.cV.

"packet-input.cW is mainly responsible for processing IP packets that passed from

the kernel space module. The socket communication is set up during packet handler

initialization as described in the packet handler initialization part. It will decide whether

the packet should be queue while waiting for route discovery process or drop the packet

if no route can be found.

"packet-queue.cV is responsible for handling the queued packet.

5.2.5 Route Table Module

There are two files associated with AODV routing table handler: and

"routing-table.cn. "routing-tab1e.c" is serving the routing entry modification request that

come from the AODV operation. It maintains a separate routing table in user space for

AODV use, which is similar to the kernel routing table except it store some other

information that specified to AODV like destination sequence number, last lifetime and

so on. After updating the user space routing table, it will call the functions defined in

"k- route.^" to add or delete route entry to or from the kernel routing table.

5.2.6 Miscellaneous Utilities Modules

The following files served as a utilities add on for AODV implementation:

"timer-queue.cn, debug.^", "icmp6.cV, "print-route6.c" and "ipv6-uti1s.c".

"timer- queue.^" provide general timer function the AODV operation such as

sending hello message periodically and so on.

 debug.^" provide a logging mechanism for AODV to log debug message,

general information and also the route table changes history.

"icmp6.c" provide a function that responsible for sending an ICMP message to

tell the source that it request is not reachable.

"print-route6.c" is new for IPv6 for printing the kernel routing table. This is mainly

use for debugging purpose. The implemenation is based on the net-tools route show

implementation, which is inspecting the /proc/net/ipv6-route system file.

"ipv6-uti1s.c" provide a few IPv6 utilities for AODV such as getting host interface

information, converting IPv6 address to string for display, and also a function to print

IPv6 address.

5.2.7 IP Queue API Library

IP Queue Library contain one file: "libipq.~". This is standard IP Queue Library for

user program to build with for the IP Queue standard interfaces.

5.2.8 AODV Configuration Parameter

AODV operation parameters are specified in "params.hn and served as the user

configurable AODV file. It has the value of the parameters such as "Hello Interval",

"Active Route Timeout", "Net Diameter" and so on. Since this is a header file, this

parameter will be hard coded and build into the AODV object file. One way to improve

this in the future is, make a separate configuration AODV configuration file and AODV

program will read these parameters from configuration file. This will definitely save user

time if helshe want to reconfigure the AODV operation parameters.

CHAPTER SIX
IPV6 AODV IMPLEMENTATION

This chapter will talk about the IPv6 implementation of AODV on top of AODV-

UU. The IPv6 socket API changes and new features are documented in two IETF

documents: RFC 2553 - Basic socket interface extension for IPv6 and RFC 2292 -

Advanced sockets API for IPv6. There are also two good IPv6 porting guide provided by

Sun Microsystems and HP. Links to these two tutorials can be found in the reference

section. AODV specification for IPv6 is documented in "AODV for IPv6 Internet-Draft"

[Ref. 31.

6. I AODV Control Messages For IPv4 And IPv6

The operation of AODV for IPv6 are similar with AODV for IPv4. The main

difference is the AODV control messages. AODV operations are quite straighfforward

and rely on 4 different control message types: Route Request (RREQ), Route Reply

(RREP), Route Error (RERR) and Route Reply Acknowledge (RREP-ACK). The detail

explanation of the AODV control messages can be found in the AODV IETF draft [Ref.

21. This section will highlight the differences between IPv4 and IPv6.

6.1 .I Route Request Message (RREQ)

The main different of RREQ message for IPv4 and IPv6 is the type value. The

type value for IPv4 is 1 and for IPv6 is 16. Besides that, instead of 32-bit source and

destination, it replaced by 128-bit IPv6 address, and the fields order are rearranged for

IPv6 to enable alignment along 128-bit boundaries.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Type 1 J I R ~ G ~ Reserved I Hop Count

RREQ ID - - . -
Destination IP Address

Destination Sequence Number

1 Originator IP Address

I Originator Sequence Number

Figure 3 RREQ Messages for IPv4

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Type 1 J I R ~ G ~ Reserved I Hop Count

32-bit Flooded Packet ID
32-bit Destination Sequence Number I

32-bit Source Sequence Number

128-bit Destination IP Address

128-bit Source IP Address

Figure 4 RREQ messages for IPv6

6.1.2 Route Reply Message (RREP)

The main different of RREP message for IPv4 and IPv6 is the type value. The

value for IPv4 is 2 and for IPv6 is 17. There is 5 bits dedicated for prefix size in IPv4 and

8 bits for IPv6. Besides that, instead of 32-bit source and destination, it replaced by 128-

bit IPv6 address, and the fields order are rearranged for IPv6 to enable alignment along

128-bit boundaries.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Type I R ~ A ~ Reserved l~ref ix size1 Hop Count 1

32-bit Destination IP Address I
32-bit Destination Sequence Number

32-bit Source IP Address
Lifetime

Figure 5 RREP message for IPv4

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Type I R ~ A ~ Reserved I Prefix Size I Hop Count I

32-bit Destination Sequence Number

128-bit Destination IP Address

128-bit Source IP Address

- -

Lifetime

Figure 6 RREP message for IPv6

6.1.3 Route Error Message (RERR)

The main different of RERR message for IPv4 and IPv6 is the type value. The

type value for IPv4 is 3 and for IPv6 is not yet determined (based on AODV for IPv6

IETF draft [Ref. 31). For current implementation, value 18 is used and will be updated

once the value is finalized. Besides that, instead of 32-bit source and destination, it

replaced by 128-bit IPv6 address, and the fields order are rearranged for IPv6 to enable

alignment along 128-bit boundaries.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

I Type INI Reserved 1 Dest Count I
Unreachable Destination IP Address (1)

Unreachable Destination Sequence Number (I)
Additional Unreachable Destination IP Address (if needed)

Additional Unreachable Destination Seauence Number (if needed)

Figure 7 RERR message for IPv4

Type IN1 Resewed I Dest Count
Unreachable Destination Seauence Number (1)

Unreachable Destination IP Address (1) 128 bits

Additional Unreachable Destination Sequence Number (if needed)

Additional Unreachable Destination IP Address (if needed)

Figure 8 RERR message for IPv6

6.1.4 Route Reply Acknowledgement (RREP-ACK)

The main different of RREP message for IPv4 and IPv6 is the type value. The

type value for IPv4 is 4 and for IPv6 is 19.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
Type I Resewed 1

Figure 9 Route Reply RREP-ACK for IPv4 and IPv6

6.2 New Implementation For lPv6 AODV

6.2.1 Local Host Initialization

For IPv4, the interface information such as IP address, interface index, netmask

& etc can be retrieve using ioctl() system call. Unfortunately, Linux's ioctl does not

support the following actions: SIOCGIFCONF, SlOGlFADDR and SIOCGIFFLAGS.

Using Netlink socket is one of the solution, and reading the network interface information

from the /proc/netlif-inet6 system file is the easier and most efficient method.

Local host initialization also responsible to enable IP packet forwarding for the

node. For IPv4, the IP packet forwarding option can be turn on by writing "1" to the

following Linux system file: "lproclsyslnetlipv4lip~forward". For IPv6, this file is located at

"lproclsyslnet/ipv6Iconf/alllforwarding".

6.2.2 Routing Table

The Hashing function for routing table lookup should be different for IPv4 and

IPv6. Since AODV-UU is using hash function for routing entry lookup for IPv4, a different

hash function is needed for IPv6. I reuse an IPv6 hashing function that found in

/usr/src/linux/include/netladdrconf.h which is one of the hashing algorithm for IPv6. The

code is as shown as follow:

/ * Original hash function for IPv4 AODV * /
unsigned int hashing(u-int32-t * addr, hash-value * hash)
1

*hash = *addr;
return (*hash & RT-TABLEMASK) ;

1

/ * hashing function from /usr/src/linux/include/net/addrconf.h * /
static -inline- u8 ipv6_addr_hash(struct in6-addr *addr)
I
- u32 word;

word = addr->s6_addr[2] ̂ addr->s6_addr32[3];
word ^= (word>>l6) ;
word ^= (word >> 8);

/ * New IPv6 hashing function for IPv6 AODV */
unsigned int hashing(struct in6-addr * addr, hash-value * hash)
{

return(((*hash) A (*hash >> 4)) & RT-TABLEMASK) ;
1

Figure 10 Hash Function For IPv4 and IPv6

RT-TABLEMASK is defined as RT-TABLESIZE - 1. RT-TABLESIZE is currently

defined as 64.

There is another major changes make for routing table module. k-del-rte is a

internal function called by routing-table module to delete a kernel route. The original

prototype of k-del-rte function is as follow:

int k-del_rte(u-int32-t dst, u-int32-t gw, u-int32-t nm);

Since k-del-rte() function will call ioctl to delete a kernel route, it always pass it 0

for interface index and route metric. This causing a problem in IPv6 in the following

situation: When the kernel route table is actively being using, for example ping, then call

ioctl to delete the route with metric 0, ioctl will return no error but the route does not get

deleted. The metric that correspond to the route that store in the kernel route table need

to be identified and store in the in6-rtmsg structure before calling ioctl. Since AODV

does keep track of the metric for each route, it will pass in this parameter when calling

k-del-rte() function. The new k-del-rte prototype is look like follow:

int k-del-rte(struct in6-addr dst, struct in6-addr gw, u-intl6-t plen, unsigned int

ifindex, unsigned int metric);

6.2.3 Kernel Module

kaodv6.c is functional similar to ka0dv.c where kaodv6.c is for IPv6. Since this is

a kernel loadable module, a new file and object is created for IPv6 so that kaodv.0 and

kaodv6.0 can be loaded to the kernel at the same time. For kaodv6 module, the main

difference is the netfilter hook names. The following are the names difference for IPv4

and IPv6:

Table 4 Netfilter Hook Name for IPv4 and IPv6

NF IP PRE ROUTING
NF IP LOCAL OUT
NF IP POST ROUTING

NF IP6 PRE ROUTING
NF IP6 LOCAL OUT
NF IP6 POST ROUTING

6.2.4 Packet Queue Library API

1ibipq.c and 1ibipq.h has the standard IP packet queue interfaces between the

user and the kernel space. The original code is using Version 1 .x for 1ibipq.c and version

I .x For 1ibipq.h. These two files do not support IPv6 features. The latest version of these

two files can be downloaded form the Internet that has IPv6 support. Version 1.7 for

1ibipq.c and version 1.6 for 1ibipq.h are used for AODV for IPv6 implementation.

6.2.5 Socket Changes

AODV-UU is using sendto and recvfrom function for AODV messages

communication. On the receiver on of the AODV node, it use recvmsg to retrieve the IP

control messages such as TTL information and then using recvfrom to retrieve the IP

payload, which is the AODV message. This does not work for IPv6 when the transmit

side is sending the message using sendto, the IP control message cannot be retrieve

from the receiver end. Therefore, for the IPv6 implementation of AODV, the AODV

control message is send and receive using sendmsg and recvmsg.

The socket options for IPv4 and IPv6 are also different. The following table

shown those are used in AODV socket:

Table 5 Socket Options Different For IPv4 And IPv6

6.2.6 ICMP Control Messages Handling

In IPv6, there are 2 new ICMP message types: ND-NEIGHBOR-SOLICIT and

ND-NEIGHBOR-ADVERT and this is basically replaced IPv4 ARP to resolve MAC

addresses from IP address. The ND-NEIGHBOR-SOLICIT message will be sent when

the host need to find a new destination that it does not have a record. This is part of the

23

I Pv4 I Pv6
Level

SOL-IP

Level

IPPRoTo-IPV6

Option
IP PKTlNFO
IP RECVTTL

Option
1PV6 PKTINFO
IPV6 HOPLIMIT

neighbor discovery mechanism that build in the Linux kernel for IPv6. The host will

multicast the message to the following address: OxFF02::I :FFxx:xxxx, when

Oxff02:: 1 :ff/I 04 is the standard prefix and xx:xxxx will be replaced by the last 24 bits of

the destination host address. For example, if a host try to ping the following address:

0xFFCO:I 234::2222. The multicast address will becomeOxFF02::1 :FF00:2222. When the

host OxFFCO:1234::2222 receive the ND-NEIGHBOR-SOLICIT, it will reply with

ND-NEIGHBOR-ADVERT. This causing a problem with the AODV since it receive a

packet and the destination is OxFF02::1:FF00:2222, AODV first check this address is its

own address and then check against its own routing table. Since this entry does not exist

in its routing table and will not able to find a route to OxFF02::1:FF00:2222, the

ND-NEIGHBOR-SOLICIT message will never be processed. The solution to this

problem is, packet-input() who handle in coming packet should let the

ND-NEIGHBOR-SOLICIT and ND-NEIGHBOR-ADVERT message go through instead

using AODV to process the packet.

6.3 Porting Strategic

Since AODV-UU is build using more than 20 files, including the header files, the

approach that I used is, port one single file at a time. I first construct a dummy main file

which will include the new header for the new file ported over. I also defined a dummy

header file that defined the functions that needed for the new file but yet ported. Then I

update the Makefile to compile the whole program with new ported file. I continue with

the same process until all the files are ported over and remove the dummy header file

and the dummy main file with the AODV main file.

CHAPTER SEVEN
DEVELOPMENT ENVIRONMENT AND TEST-BED SET UP

This chapter will talk about general setup for development and testing

environment for this project. It also covers the debugging tools used in this project.

7. I Mobile Node Set-up

The system requirement for a Mobile Node are stated as follow:

Linux Kernel Version 2.4.18-3 (RedHat 7.3) and Up

802.1 1 b Wireless Device running in Ad Hoc Mode

Linux Kernel source must be installed in the proper place

Must have Netfilter module: ip6-queue.0 build as a kernel loadable

module

Must turn on IPv6 support for the Kernel

Must configure a site local address to the interface

Must be able to compile and run IPv6 AODV code

Optional utilities for AODV testing: nc6 and mtvp

Refer to Appendix A for detail set up procedures for each of the components.

7.2 Test Environment Set-up

AODV does not restrict to run only with wireless interface. AODV is running on

top of Network Layer, which mean it will also work with Ethernet interface. During the

early development phase, a laptop and a desktop communicating with Ethernet interface

is used running as infrastructure mode for IPv4. The final testing environment are using

3 laptops, which are running Linux Kernel Version 2.4.1 9 and 2.4.20, with 802.1 1 b

25

wireless device that running in ad hoc mode. Each of the mobile nodes must set to have

the same site local prefix. Net-tools utility is the major tools that use for testing, for

instant, ping6, traceroute6 and route commands. Source node can use ping6 to figure

out whether it can reach a destination that is not in its routing table. User can use

traceroute6 to figure out the path of a packet travel. User can also use route to show the

current IPv6 kernel route table. We also use nc6 (netcat6) to stream data through IPv6

connection. We set up a server node to send a MPEG file and run client on another

node to stream the MPEG file to a MPEG player (Please refer to Appendix A for more

information). We also try to run Secure Shell using IPv6 to remotely login to a host that is

running AODV for IPv6.

7.3 Debugging Tools

There are two major debugging tools that were used for this project. One is the

Ethereal to monitor packet that send or receive on a host. Ethereal version 0.9.97 does

support for AODV for IPv4 and IPv6. Since AODV also has kernel module, and

unfortunately this module does cause a kernel panic, a kernel debugging tool called

Linux Kernel Core Dump (LKCD) is used to solve this problem (more information can be

found in Appendix A).

CHAPTER EIGHT
TEST RESULTS

This chapter will talk about the test result that prove that the AODV for IPv6 is

working as stated.

8. I Mobile Nodes Configuration

Setup 3 laptops that meet the system requirements as stated in previous chapter.

Configure each individual laptop to have an IPv6 site local address. The site local

network prefix must be the same site local prefix. In our test environment, we are using

OxFECO:1234::/64 as site local prefix and Node A, B and C are using local site address

OxFECO: 1234:: 1, OxFECO: l234::2 and OxFECO: 1234::3 respectively.

8.2 Test Scenario I

This test is to show the routing entries of each Mobile Node before and after IPv6

AODV start up where 3 Mobile Node can see each other (as shown in Figure 11).

Node A Node B

I

Figure 11 Test Scenario 1 Set Up

Use "route -A inet6" command to show the kernel route table of each mobile

node. The results before AODV is started are shown as Figure 12.

Node A Route Table Before AODV Start
[root@localhost devil# route -A inet6
Kernel IPv6 routing table
Destination Next Hop Flags Metric Ref Use Iface
: : 1/128 U 0 0 0 10
fe80::260:1dff:fefO:e56a/128 : : U 0 0 0 lo
fe80 : : /10 UA 256 0 0 ethl
fec0:1234::1/128 U 0 0 0 lo
fec0:1234::/64 UA 256 0 0 ethl
ff00: :/8 UA 256 0 0 ethl

Node B Route Table Before AODV Start
[root@localhost root]# route -A inet6
Kernel IPv6 routing table
Destination Next Hop
: : 1/128
fe80::202:a5ff:fe6f:293/128
fe80: :/lo
fec0:1234::2/128
fec0:1234::/64
ff00: :/8

Node C Route Table Before AODV Start
[root@localhost root]# route -A inet6
Kernel IPv6 routing table
Destination Next Hop
: : 1/128
fe80::260:ldff:fefO:flae/128 : :

fe80: :/lo
fec0:1234::3/128
fec0:1234::/64
ff00 : : /8

Flags Metric Ref Use Iface
u 0 0 0 lo
u 0 0 0 lo
UA 256 0 0 ethl
U 0 0 0 lo
UA 256 0 0 ethl
UA 256 0 0 ethl

Flags Metric Ref Use Iface
u 0 0 0 lo
u 0 0 0 lo
UA 256 0 0 ethl
U 0 0 0 lo
UA 256 0 0 ethl
UA 256 0 0 ethl

Figure 12 Results Before AODV Started

The results after AODV is started are shown in Figure 13.

Node A Route Table After IPv6 AODV Started
[root@localhost root]# route -A inet6
Kernel IPvC routing table
Destination
: : 1/128
fe80::260:ldff:fefO:e56a/128
fe80: :/lo
fec0:1234::1/128
fec0:1234::2/128
fec0:1234::3/128
fec0:1234::/64
ff05::11/128
ff00: :/8

Next Hop
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
ff05: :11
. . . .

Flags Metric Ref
u 0 0
u 0 0
UA 256 0
U 0 0
UH 2 0
UH 2 0
UA 256 0
UAC 0 527
UA 256 0

Node B Route Table After IPv6 AODV Started
[root@localhost root] # route -A inet6
Kernel IPvC routing table
Destination Next HOD Flags Metric Ref -

u
u
UA
UH
u
UH
UA
UAC
UA

Node C Route Table After IPv6 AODV Started
[root@localhost root]# route -A inet6
Kernel IPvC routing table
Destination
: : 1/128
fe80::260:1dff:fefO:flae/128
fe8O : : /10
fec0:1234::1/128
fec0:1234::2/128
fec0:1234::3/128
fec0:1234::/64
ff05::11/128
ff00: :/8

Next Hop
. . . .
. . . .
. . . .
. . . .

Flags
u
u
UA
UH
UH
u
UA
UAC
UA

Metric Ref
0 0
0 0
256 0
2 0
2 0
0 0
256 0
0 2 4
256 0

Use Iface
0 lo
0 lo
0 ethl
0 lo
0 ethl
0 ethl
0 ethl
1 ethl
0 ethl

Use Iface
0 lo
0 lo
0 ethl
0 ethl
0 lo
0 ethl
0 ethl
1 ethl
0 ethl

Use Iface
0 lo
0 lo
0 ethl
0 ethl
0 ethl
0 lo
0 ethl
0 ethl
0 ethl

Figure 13 Results After AODV Started

8.3 Test Scenario 2

Continue the set up from Test Scenariol, move the laptops such that Node A can

only see Node B and Node B can see both Node A and C. Node C can only Node B as

shown in Figure 14.

Figure 14 Test Scenario 2 Set up

Display the route table for each mobile node and the results are shown in Figure

Use "ping6" command on Mobile Node A to ping Node C. The results of the ping

and the route table for Node A and Node C is shown in Figure 16.

As the route table shown in Figure 16, Node A create a new route to Node C via

Node B. Similarly, Node C also create a new route to Node A via Node B. The route

table for Node A and Node C are shown in Figure 17 after ping is stop for a while.

As shown in Figure 17, the route to Node C in Node A is deleted. Similarly, the

route to Node A in Node C also deleted. Use "traceroute6" command to trace the packet

travel from Node A to Node C and the results is shown in Figure 18.

Node A Route Table After Node C Moved Awav From Node A
[root@localhost root]# route -A inet6
Kernel Ipv6 routing table
Destination
: : 1/128
fe80::260:ldff:fefO:e56a/128
fe80: : /10
fec0:1234::1/128
fec0:1234::2/128
fec0:1234::/64
ff05::11/128
ff00: :/8

Next Hop
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
ff05: :11
. . . .

Flags
u
u
UA
U
UH
UA
UAC
UA

Metric Ref
0 0
0 0
256 0
0 0
2 0
256 0
0 807
256 0

Node B Route Table After Node C Moved Away From Node A

[root@localhost rootl # route -A inet6
Kernel Ipv6 routing table
Destination Next Hop
: : 1/128
fe80::202:a5ff:fe6•’:293/128
fe80 : : /10
fec0:1234::1/128
fec0:1234::2/128
fec0:1234::3/128
fec0 : 1234 : : /64
ff05::11/128 ff05: :11
ff00: :/8

Flags
u
u
UA
UH
u
UH
UA
UAC
UA

Metric Ref
0 0
0 0
256 0
2 0
0 0
2 0
256 0
0 968
256 0

Node C Route Table After Node C Moved Awav From Node A
[root@localhost rootl # route -A inet6
Kernel Ipv6 routing table
Destination
: : 1/128
fe80::260:1dff:fefO:flae/128
fe8O : : /10
fec0:1234::2/128
fec0:1234::3/128
fec0 : 1234 : : /64
ff05::11/128
ff00: :/8

Next Hop
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
ff05: :11
. . . .

Flags Metric Ref
u 0 0
u 0 0
UA 256 0
UH 2 0
u 0 0
UA 256 0
UAC 0 675
UA 256 0

Use Iface
0 lo
0 lo
0 ethl
0 lo
0 ethl
0 ethl
1 ethl
0 ethl

Use Iface
0 lo
0 lo
0 ethl
0 ethl
0 lo
0 ethl
0 ethl
1 ethl
0 ethl

Use Iface
0 lo
0 lo
0 ethl
0 ethl
0 lo
0 ethl
1 ethl

0 ethl

Figure 15 Mobil Nodes' Route Table For Test Scenario 2

I The Results Of Node A Ping Node C

[root@localhost root]# ping6 fec0:1234::3
PING fec0:1234::3(fec0:1234::3) from fec0:1234::1 : 56 data bytes
64 bytes from fec0:1234::3: icmp-seq=l ttl=63 time=18.5 ms
64 bytes from fec0:1234::3: icmp_seq=2 ttl=63 time=1.29 ms
64 bytes from fec0:1234::3: icmp seq=3 ttl=63 time=7.40 ms
64 bytes from fec0: 1234 : :3 : icmpIseq=4 ttl=63 time=l. 19 ms
64 bytes from fec0:1234::3: icmp_seq=5 ttl=63 time=2.41 ms
64 bytes from fec0:1234::3: icmp_seq=6 ttl=63 time=6.00 ms
64 bytes from fec0:1234::3: icmp seq=7 ttl=63 time=l.07 ms
64 bytes from fec0:1234: :3: icmpIseq=8 ttl=63 time=1.07 ms
64 bytes from fec0:1234::3: icmp_seq=9 ttl=63 time=l.ll ms
64 bytes from fec0:1234::3: icmp - seq=lO ttl=63 time=11.5 ms
64 bytes from fec0:1234::3: icmp-seq=ll ttl=63 time=4.04 ms
64 bytes from fec0:1234::3: icmp_seq=12 ttl=63 time=1.27 ms
64 bytes from fec0:1234::3: icmp seq=13 ttl=63 time=l.ll ms -
64 bytes from fec0:1234::3: icmp seq=14 ttl=63 time=1.15 ms
64 bytes from fec0 :I234 : :3 : icmp-seq=15 _ ttl=63 time=1.45 ms
64 bytes from fec0:1234::3: icmp_seq=16 ttl=63 time=lO.l ms
64 bytes from fec0:1234::3: icmp_seq=17 ttl=63 time=1.12 ms
64 bytes from fec0:1234::3: icmp_seq=18 ttl=63 time=1.12 ms
64 bytes from fec0:1234::3: icmp_seq=19 ttl=63 time=6.45 ms
64 bytes from fec0:1234::3: icmp_seq=ZO ttl=63 time=5.86 ms

- - - fec0:1234::3 ping statistics - - -
20 packets transmitted, 20 received, 0% loss, time 19196ms
rtt min/avg/max/mdev = 1.070/4.270/18.528/4.581 ms

I Node A Route Table When Ping In Pro~ress

[root@localhost rootl # route -A inet6
Kernel IPv6 routing table
Destination Next Hop Flags Metric Ref Use Iface
: : 1/128 U 0 0 0 10
fe80::260:1dff:fefO:e56a/128 : : U 0 0 0 lo
fe80: : /10 UA 256 0 0 ethl
fec0:1234::1/128 U 0 34 0 lo
fec0:1234::2/128 UH 2 1 0 ethl

ff02::1:ff00:1/128 ff02::l:ffOO:l UAC 0 1 0 ethl
ff05::11/128 ff05: :11 UAC 0 959 1 ethl
ff00: :/8 UA 256 0 0 ethl

Node C Route Table When pin^ In Pro~ress
[root@localhost rootl # route -A inet6
Kernel IPv6 routing table
Destination Next Hop
: :1/128
fe80::260:ldff:fefO:•’lae/128 : :

Flags Metric Ref Use Iface
u 0 0 0 lo
u 0 2 0 lo

. . . . u 0 55 0 lo

. . . . UA 256 0 0 ethl
ff02: :1:ff00:3 UAC 0 1 0 ethl
ff05: :11 UAC 0 926 1 ethl
. . . . UA 256 0 0 ethl

Figure I 6 Ping Results

Node A Route Table After P i w Stor, For A While
[root@localhost root]# route -A inet6
Kernel IPv6 routing table
Destination
: : 1/128
fe80::260:ldff:fefO:e56a/128
fe8O: : /10
fec0:1234::1/128
fec0:1234::2/128
fec0:1234::/64
ff05::11/128
ff00: :/8

Next Hop
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
ff05: :11
. . . .

Flags Metric Ref
u 0 0
u 0 0
UA 256 0
U 0 42
UH 2 1
UA 256 0
UAC 0 974
UA 256 0

Node C Route Table After pin^ Stop For A While
[root@localhost root] # route -A inet6
Kernel IPv6 routing table
Destination
: : 1/128
fe80::260:1dff:fefO:flae/128
fe80: :/I0
fec0:1234::2/128
fec0:1234::3/128
fec0:1234::/64
ff05::11/128
ff00: :/8

Next Hop
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
ff05: :11
. . . .

Flags Metric
u 0
u 0
UA 256
UH 2
U 0
UA 256
UAC 0
UA 256

Ref
0
2
0
2
120
0
1016
0

Use Iface
0 lo
0 lo
0 ethl
0 lo
0 ethl
0 ethl
1 ethl
0 ethl

Use Iface
0 lo
0 lo
0 ethl
0 ethl
0 lo
0 ethl
1 ethl

0 ethl

Figure 17 Node A and Node C Route Table After Ping Stop

Traceroute6 Results From Node A To Node C
[root@localhost root]# traceroute6 fec0:1234::3
traceroute to fec0:1234::3 (fec0:1234::3) from fec0:1234::1, 30 hops max, 16 byte packets
1 fec0:1234::2 (fec0:1234::2) 7.067 ms 1.287 ms 0.907 ms
2 fec0:1234::3 (fec0:1234::3) 5.468 ms 1.145 ms 8.355 ms

Figure 18 Traceroute6 Results From Node A To Node C

8.4 Test Scenario 3

Continue with the Test Scenario 2 setup and have Node A to continue to ping

Node C. Move Node A close to Node C. Ping continue to work and the time for ping will

be shorter and the route table for Node A also updated with the new route entry where

Node A can now see Node C directly. The results are shown in Figure 19.

Ping Results From Node A To Node C
[root@localhost root]# ping6 fec0:1234::3
PING fec0:1234::3(fec0:1234::3) from fec0:1234::1 : 56 data bytes
64 bytes from fec0:1234::3: icmp-seq=l ttl=63 time=16.8 ms
64 bytes from fec0:1234::3: icmp_seq=2 ttl=63 time=1.34 ms
64 bytes from fec0:1234::3: icmp_seq=3 ttl=63 time=1.24 ms
64 bytes from fec0:1234::3: icmp_seq=4 ttl=63 time=l.ZO ms
64 bytes from fec0:1234::3: icmp_seq=5 ttl=63 time=l.l7 ms

Node A Route Table When Node A Pinping Node C
[root@localhost root1 # route -A inet6
Kernel Ipv6 routing table
Destination Next Hop Flags Metric Ref Use Iface
: : 1/128 U 0 0 0 lo
fe80::260:1dff:fefO:e56a/128 U 0 0 0 lo
fee0 : : /10 UA 256 0 0 ethl
fec0:1234::1/128 U 0 207 0 lo

ff05: :11 UAC 0 1321 1 ethl
. . . . UA 256 0 0 ethl

Ping Results From Node A To Node C When Node A Come Close To Node C
[root@localhost root]# ping6 fec0:1234::3
PING fec0:1234::3(fec0:1234::3) from fec0:1234::1 : 56 data bytes
64 bytes from fec0:1234::3: icmp_seq=l ttl=63 time=16.8 ms
64 bytes from fec0:1234::3: icmp_seq=2 ttl=63 time=1.34 ms
64 bytes from fec0:1234::3: icmp_seq=3 ttl=63 time=1.24 ms
64 bytes from fec0:1234::3: icm~ sea=4 ttl=63 time=1.20 ms

54 bytes from fecO
54 bytes from fecO
54 bytes from fecO
54 bytes from fecO
54 bytes from fecO
54 bytes from fecO
54 bytes from fecO

:1234: :3: icmpIseq=19 ttl=64 time=l .O1 ms
:1234::3: icmp_seq=20 ttl=64 time=0.779 ms

54 bytes from fec0: 1234: :3: icmp-seq=2l ttl=64 time=O. 822 ms
54 bytes from fec0:1234::3: icmp_seq=22 ttl=64 time=0.776 ms
54 bytes from fec0:1234::3: icmp_seq=24 ttl=64 time=0.778 ms

Node A Route Table When Node A Come Close To Node C
[root@localhost root]# route -A inet6
Cernel Ipv6 routing table
lestination Next Hop Flags Metric Ref Use Iface
: : 1/128 U 0 0 0 lo
ie80::260:ldff:fefO:e56a/128 U 0 0 0 10
Fe80 : : /10 UA 256 0 0 ethl
iec0:1234::1/128 . . . , U 0 255 0 lo

0 ethl

-- - -

Figure 19 Test Results for Test Scenario 3

The results shown in Figure 8.9 indicated that the route entry to Node C in Node

A has changed from going though Node B to going to Node C directly instead. The ping

result also show that the pinging time is shorter after the route changed. Use

"traceroute6" to show the path for a packet travel after the route changed. The results is

shown in Figure 20.

Traceroute6 Results From Node A To Node C
[root@localhost root]# traceroute6 fec0:1234::3
traceroute to fec0:1234::3 (fec0:1234::3) from fec0:1234::1, 30 hops max, 16 byte packets
1 fec0:1234::3 (fec0:1234::3) 6.755 ms 1.279 ms 6.047 ms

Figure 20 "traceroute6" Results

The result shown in Figure 20 indicated that Node A is sending packet directly to

Node C.

8.5 Test Scenario 4

Continue with Test Scenario 3 setup with ping is still running. Move Node A back

to the location as in Test Scenario 2 where Node A cannot see Node C directly. Ping

continues to work and the time for ping will be longer and the route table for Node A also

updated with the new route entry where Node A can now see Node C via Node B. The

results are shown in Figure 21.

The results shown that the ping time is now longer and the route to Node C in

Node A is now go through Node B. Use "traceroute6" command to display the path of

the packet travel from Node A to Node C and the results is shown in Figure 22.

The results shown in Figure 22 indicated that the packet from Node A is travelled

to Node C via Node B.

 pin^ Results From Node A To Node C When Node A Move Away From Node C
[root@localhost root]# ping6 fec0:1234::3
PING fec0:1234::3(fec0:1234::3) from fec0:1234::1 : 56 data bytes
64 bytes from fec0:1234::3: icmp-seq=l ttl=63 time=16.8 ms
64 bytes from fec0:1234::3: icmp-seq=2 ttl=63 time=1.34 ms
64 bytes from fec0:1234::3: icmp_seq=3 ttl=63 time=1.24 ms
64 bytes from fec0:1234::3: icmp_seq=4 ttl=63 time=1.20 ms
64 bytes from fec0:1234::3: icmp seq=5 ttl=63 time=1.17 ms
64 bytes from fec0 : 1234 : : 3 : imp-seq=12 - ttl=64 time=1001 ms
64 bytes from fec0:1234::3: icmp_seq=13 ttl=64 time=9.56 ms
64 bytes from fec0:1234::3: icmp_seq=l4 ttl=64 time=0.821 ms
64 bytes from fec0:1234::3: icmp_seq=15 ttl=64 time=0.780 ms
64 bytes from fec0:1234::3: icmp seq=16 ttl=64 time=0.992 ms
64 bytes from fec0: 1234 : : 3: icmpIseq=17 ttl=64 time=O. 774 ms
64 bytes from fec0:1234::3: icmp seq=18 ttl=64 time=0.880 ms
64 bytes from fec0: 1234 : : 3: icmp-seq=19 - ttl=64 time=l. 01 ms
64 bytes from fec0:1234::3: icrnp_seq=20 ttl=64 time=0.779 ms
64 bytes from fec0:1234::3: icmp - seq=21 ttl=64 time=0.822 ms
64 bvtes from fec0:1234::3: i c m ~ sea=22 ttl=64 time=0.776 ms - - -
64 bytes from fec0:1234::3: icmp_seq=24 ttl=64 time=0.778 ms
64 bytes from fec0:1234;;3: icrnp-seq-25 ttl564 time-16,6 ms +- route change again
64 bytes from fec0:1234::3: icmp_seq=27 ttl=64 time=l.01 ms
64 bytes from fec0:1234::3:
64 bytes from fec0:1234::3:
64 bytes from fec0:1234::3:
64 bytes from fec0:1234::3:
64 bytes from fec0:1234::3:
64 bytes from fec0:1234::3:
64 bytes from fec0:1234::3:
64 bytes from fec0:1234::3:
64 bytes from fec0:1234::3:

icrnp_seq=28 ttl=63 time=14.8 ms
icmp_seq=32 ttl=63 time=10.3 ms
icmp_seq=33 ttl=63 time=1.48 ms
icmp_seq=34 ttl=63 time=1.12 ms
icmp_seq=35 ttl=63 time=1.12 ms
icmp_seq=36 ttl=63 time=1.13 ms
icmp seq=37 ttl=63 time=1.12 ms
icmpIseq=38 ttl=63 time=1.13 ms
icmp_seq=39 ttl=63 time=2.81 ms

- - - fec0:1234::3 ping statistics - - -
39 packets transmitted, 28 received, 28% loss, time 38265111s
rtt min/avg/max/mdev = 0.774/39.062/1001.218/185.233 ms, pipe 2

Node A Route Table When Node A Move Awav From Node C
[root@localhost root]# route -A inet6
Kernel IPv6 routing table
Destination Next Hop Flags Metric Ref
: : 1/128 U 0 0
fe80::26O:ldff:fefO:e56a/128 U 0 0
fe80: : /10 UA 256 0
fec0:1234::1/128 U 0 300

Use Iface
0 lo
0 lo
0 ethl
0 lo

UA 256 0 0 ethl
ff05: :11 UAC 0 1389 1 ethl
. . . . UA 256 0 0 ethl

Figure 21 Test Results for Test Scenario 4

Traceroute6 Results From Node A To Node C
[root@localhost root]# traceroute6 fec0:1234::3
traceroute to fec0:1234::3 (fec0:1234::3) from fec0:1234::1, 30 hops max, 16 byte packets
1 fec0:1234::2 (fec0:1234::2) 13.957 ms 3.003 ms 2.423 ms
2 fec0:1234::3 (fec0:1234::3) 13.582 ms 5.311 ms 0.774 ms

Figure 22 "traceroute6" Results

8.6 Test Scenario 5

Continue with Test Scenario 4, stop the ping command. Initiate Secure Shell

login to Node C from A: "ssh -6 fec0:1234::3" and log in as root user. After login to Node

C, display the route table of Node C: "route -A inet6" and display the interface

configuration using "ifconfig". The results is shown in Figure 23.

Run Secure Shell On Node C From Node A
[root@localhost root]# ssh -6 fec0:1234::3
root@fec0:1234::3's password:
Last login: Thu Mar 20 13:50:18 2003 from fec0:1234::1

Dump Node C Route Table From The SSH Session
[root@localhost root]# route -A inet6
Kernel IPv6 routing table
Destination
: : 1/128
fe80::260:ldff:fefO:flae/128
fe80 : : /10
fec0:1234::1/128
fec0:1234::2/128
fec0:1234::2/128
fec0:1234::3/128
fec0:1234::/64
ff05::11/128
ff00: :/8

Next Hop
. . . .
. . . .
. . . .
fec0:1234::2
fec0:1234::2
. . . .
. . . .
. . . .
ff05: :11
. . . .

Flags
u
u
UA
UGH
UHC
UH
u
UA
UAC
UA

Metric Ref
0 0
0 14
256 0
3 5
0 2
2 7
0 843
256 0
0 2956
256 0

Use Iface
0 lo
0 lo
0 ethl
1 ethl
0 ethl
0 ethl
1 lo
0 ethl
1 ethl

0 ethl

Display Node C Interface Information From The SSH Session
[root@localhost root] # ifconf ig
ethl Link encap:Ethernet HWaddr 00:60:1D:FO:Fl:AE

inet6 addr: fec0:1234::3/64 Scope:Site
inet6 addr: fe80::26O:ldff:fefO:flae/lO Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:l
RX packets:3668 errors:O dropped:O overruns:O frame:O
TX packets:3034 errors:16 dropped:O overruns:O carrier:O
col1isions:O txqueue1en:lOO
RX bytes:385034 (376.0 Kb) TX bytes:494529 (482.9 Kb)
Interrupt:3 Base address:Ox100

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:l
RX packets:178 errors:O dropped:O overruns:O frame:O
TX packets:178 errors:O dropped:O overruns:O carrier:O
col1isions:O txqueue1en:O
RX bytes:25418 (24.8 Kb) TX bytes:25418 (24.8 Kb)

Figure 23 SSH Session From Node A To Node C

CHAPTER NINE
CONCLUSIONS

The goal of this project was to implement the first AODV routing protocol to

support IPv6 functionalities. The study phase of this project was started in August 2002.

No IPv6 AODV implementation was found at that time. The objective of this project was

refined to implement IPv6 functionalities on an existing IPv4 AODV routing protocol. It

was decided to implement IPv6 functionalities on Uppsala University's AODV (referred to

as AODV-UU) implementation. The positive aspects of AODV-UU are that the protocol is

stable and very well tested. The negative aspects are lack of design documentation and

lack of comments in the code.

IPv6 functionalities have been successfully implemented on AODV-UU

and completed with comprehensive testing. There are many opportunities for further

work, such as providing multiple interface support, ns-2 support, performance analysis

and so on.

The value of this project is not only to provide a functioning IPv6 AODV

but also to provide a valuable guide for porting IPv4 protocols to support IPv6. This

project also gives guidance in setting up a test bed for IPv6 AODV.

A. I Linux Kernel

IPv6 AODV is implemented to run on Linux Kernel Version 2.4.18-3 (Red Hat

Linux 7.3) and up. IPv6 AODV has been tested running on Linux Kernel 2.4.18-3, 2.4.19

and 2.4.20. User can find out the kernel version using "uname" command. On the user

prompt, type: "uname -aH. The system will return all the kernel version information. If the

version is lower than 2.4.18-3 and would like to run IPv6 AODV, user can download the

latest kernel source code from www.kernel.org. User can also find more information on

how to compile and install the new kernel from the "Linux Kernel HOWTO Tutorial"

(www.tldp.orq/HOWTOlKernel-HOWTO.html).

IPv6 AODV are required the Linux Kernel to have the IPv6 feature enable. User

also need build the IPv6 Netfilter module as a kernel loadable module. In order for the

user to build the kernel, use must have the kernel source installed in "/usr/src/linux-

2 . 4 . ~ ~ " directory. User can turn on these features using the following steps:

Go to the /usr/src/linux-2.4.~~ directory

Type "make xconfig"

Click on the "Code maturity level options" menu and select "y" for

development andlor incomplete codeldriver.

Click on the "Networking Optionsn menu, select "y" for Network Packet

Filtering, IPv6 protocol and click on "IPv6: Netfilter Configuration". Select

"m" for all the options.

Follow the Linux Kernel Howto tutorial to build the kernel

After the kernel is rebuild and boot successfully, user need to add the following

line: "NElWORKING-IPV6=yesn to the following file: "letclsysconfiglnetwork". User can

restart the network setup without rebooting the system using "/etc/init.d/network restart"

command. User can verified that the Netfilter modules are build successfully using the

following command "modprobe ip6-queue". If no error messages pop out, that means

the ip6-queue module is build successfully.

A. 2 802.7 1 b Wireless Device

AODV is not restricted to run only on wireless network but it is intend for ad hoc

wireless purpose. User can use 802.1 1 b wireless device to form an ad hoc wireless

network. Since 802.1 1 b is the most popular and affordable technology at this point of

time, IPv6 AODV are tested using Lucent 802.1 1 b PCMCIA wireless card. Since this is

an ad hoc network, user does not need an access point for the setup. User can find

more information on how to install and set up a wireless device driver on Linux from the

"Wireless Howto" tutorial (www.tld~.orqlHOWTOMlireless-HOWTO.html). The only thing

that user need to be aware is, all the wireless devices must be running in ad hoc mode.

A.3 Set up IPv6 Site Local Address

Once the IPv6 kernel option is turn on for the Linux kernel, user can assigned an

Site Local IPv6 address to an interface using ifconfig command. For example, "ifconfig

eth1 add fec0:1234::1/64". This mean that the site local prefix address is fec0:1234 and

the prefix length is 64. The site local host can be identified by fec0:1234::1 IPv6 address.

User can refer to "1Pv6 Howto" tutorial (www.bierinser.de/linux/lPv61) to learn more

about IPv6 configuration.

A.4 Running lPv6 AODV

User can download the lPv6 AODV code from

www.newmic.com/research/aodv.htrnl. Once the user untar the AODV tar file to a

specified directory, user can build the code by typing "make clean install" in the specified

AODV directory. "aodvd6" will be build and install to the /bin directory. To run IPv6

AODV, type "aodvd6 -i ethl" where "ethl" is the interface that AODV will be used for

communication. Before aodvd6 can be run, the specified interface must have been

assigned an site local address. User can find out more options by typing "aodvd6 -h" to

print out all the available options on the screen.

A. 5 Testing Utilities

This project are also using some other IPv6 utilities for testing other than the

Linux net tool utilities. For example, netcat6, a utility to reads and writes data across

network connections and it is fully support IPv6. Netcat6 can be download from

www.dee~s~ace6.net~~roiects/netcat6.html web site. This project is also using a Linux

MPEG player call "MN" together with netcat6 for testing. MTV can be downloaded from

www.m~ecltv.com. User can play MPEG file thorough the network using these two tools.

For example, Node A want to play a MPEG movie from Node B, both of these nodes

must have netcat6 install and Node A must have MTV player install. Type the following

command on Node B "nc6 -I -p 5000 < ./test.mpgn. On Node A, type "nc6 <Node B IP

Address> <Port #> I mtvp -". The test.mpg will be played on Node A.

A.6 Linux Kernel Core Dump (LKCD) Tools

The Linux Kernel Core Dump project has created a set of utilities and kernel

patches for debugging Linux kernel crash. It is designed to provide kernel developers as

well as system administrators a reliable method of detecting, saving and examining

system crashes. Developers can use these tools to analyse the crash dump. LKCD

utilities, including well written tutorials, can be download from htt~:Nlkcd.sourceforse.net

web site.

A. 7 IPv4 AODVlmplementation

The are couples of IPv4 AODV implementation that can be downloaded for free

from the Internet. The following implementations are recommended:

UCSB Implementation: moment.cs.ucsb.edu/AODV/aodv.html

NET Implementation: w3.antd.nist.~ov/wct4/aodv kernel

Uppsala University Implementation: www.docs.uu.se/-henrikllaodv

REFERENCE LIST

[l] C.K. Toh, "Ad Hoc Mobile Wireless Networks: Protocols and Systems", Prentice Hall
PTR, 2001.

[2] Charles E. Perkins, Elizabeth M. Royer & Samir R. Das, "Ad hoc On-Demand
Distance Vector (AODV) Routing - Internet-Draft", January 2002, Work-in-
progress.

[3] Charles E. Perkins, Elizabeth M. Royer & Samir R. Das, "Ad hoc On-Demand
Distance Vector (AODV) Routing For IP Version 6 - Internet-Draft", November
2001, Work-in-progress.

[4] Mark A. Miller, "Implementing IPv6, Second Edition: Supporting the Next Generation
Internet Protocols", M&T Books. 2000.

[5] Peter H. Salus, "Big Book Of IPv6 Addressing RFCsn, Morgan Kaufmann, 2000.

[6] Online, "Porting Networking Applications to the IPv6 APls, solarisTM Version 8", Sun
Microsystems, October 1999.

Can be downloaded from: wwws.sun.com/software/soIaris/ipv6/porting~uide~ipv6.pdf

[7] Online, "HP-UX 11 i IPv6 Porting Guide", Hewlett-Packard, February 2001.

Can be downloaded from:
www.docs.hp.com/h~ux/onlinedocs/netcom/ipv6portinaquide.pdf

[8] S. Corson, J. Macker, "Mobile Ad hoc Networking (MANET): Routing Protocol
Performance Issues and Evaluation Considerations - RFC 2501", IETF, January
1999.

[9] Elizabeth M. Royer, C.K. Toh, "A Review of Current Routing Protocols for Ad Hoc
Mobile Wireless Networks", IEEE Personal Communications, April 1999.

