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ABSTRACT

inergy modelers have traditionally taken top-down or bottom-up approaches to portray
the interactions between energy production and consumption, and the economy. Top-
down models provide a more realistic representation of behavior and the feedbacks in an
cconomy, while bottom-up models are better able to explicitly model technological
change and technology focused policies. Hybrid energy-economy models. such as CIMS.
attempt to combine these strengths, and as such are able to provide more realistic and
meaningful predictions. One of the major challenges in developing a hybrid model is

accurately depicting how firms and individuals will choose between technologies.

Discrete choice modeling was identified as a tool capable of meeting this challenge,
because it has been specifically developed to empirically examine technology level
choices and the factors that influence them. This research developed highly significant
and intuitive discrete choice models for mode and vehicle choice decisions in the
personal urban transportation sector. After aligning the discrete choice models and CIMS
to account for minor inconsistencies, the two models were incorporated in CIMS. With
the improved representation of behavior embedded in CIMS, a varicety of policies were
simulated to demonstrate the new capacity to model policies focused on the financial and
non-financial attributes of urban transportation decisions. These simulations represented
significant improvements over the initial capabilities of CIMS. and existing top-down and

bottom-up models.

The improvements to CIMS have helped bridge the divide between top-down and
bottom-up approaches by providing a truc hybrid, which includes behavioral realism,
technological detail, and macro-economic feedbacks. Although this work has identified a
number of additional improvements that would each benefit the CIMS model. the
existing research has successfully augmented the behavioral realism aspect of a hybrid
model. Once the changes experimented with in this rescarch have been permanently
adopted, CIMS will be able to produce more accurate predictions for a more

comprehensive suite of policies.
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1 INTRODUCTION

With the Federal government’s ratification of the Kyoto Protocol. Canada committed
itself to reducing greenhouse gas emissions to 6% below 1990 levels. but based on
Canada’s Greenhouse Gas Inventory (Environment Canada, 2002), emissions were
already 16% above 1990 levels in 2000, and they are projected to be 33% above by 2010.
Without some sort of strong policy stimulus, it is highly unlikely that Canada will be able
to close the significant gap that exists between the country’s predicted emissions and its
international commitments. The Federal Government's current plan to meet Kyoto
commitments outlines some of those policies, and it seems probable that many of them
will focus on pushing firms and individuals to make technology decisions that have lower
green house gas emissions per unit of service delivered (Government of Canada. 2002).
These types of policies are attractive because they reduce emissions by encouraging
technological change that decouples energy use (and the accompanying emissions) from
consumption, while allowing people to continue improving their standards of living. In
this context, technological change is meant to encompass a broad scope of solutions
including decisions between actual technologies (choosing between ditferent types of
lightbulbs for example), and also the ways in which those technologies are used (deciding
between carpooling and driving alone for example). The policy challenges presented by
the Kyoto Protocol will be similar to the emerging environmental issues that Canadians
are likely to face in the future. As such, the challenges of greenhouse gas policy apply to
the broader spectrum of environmental problems where technical change is scen as a

potential solution.

Although technological change is capable of improving energy efficiency. this outcome is
by no means guaranteed, and many examples illustrate how new technologies have led to
increased encrgy consumption (more powerful vehicles, bigger refrigerators. and color
televisions for example). Government may try to influence the manner in which

technological change manifests itself by using tools such as information campaigns.



financial incentives/disincentives, and regulations. With the exception of regulations. all
of these policy levers rely on individuals and firms being encouraged (or discouraged)
enough to change their technology decisions. Predicting how people will react to any
influence is a highly uncertain endeavor, but an ideal model would allow the social.
financial, and environmental costs associated with difterent policies to be accurately
predicted. With this information, policy makers could compare and contrast policy
alternatives and choose a package of policies that would achieve the desired changes at
an acceptable cost to society. The unknown and uncertain factors inherent in any policy
analysis make this level ot accuracy impossible to obtain, but the modeling attempts to
date have still left considerable room tor improvement. More specifically. there are
opportunities to better understand how technological change can be influenced by policy.
and capitalizing on these opportunities will provide valuable information in Canada’s
search for low cost solutions to meet its Kyoto Protocol targets (and the future targets that

are likely to follow).

The rescarch in this paper focuses on this challenge of improving our capacity to model
policies that influence technological change. This chapter sets the framework. Sections
1.1 and 1.2 look at existing modeling attempts to tackle this problem. and notes
opportunitics for improvement. Section 1.3 puts these general modeling concepts within

the framework of personal urban transportation, and section 1.4 outlines the rest of the

paper.

1.1 Modeling Technological Change

Historically, two approaches have been used to model the changes in energy consumption
that result in part from the diffusion of new technologies. These are commonly referred
to as top-down and bottom up modeling, and although neither is limited to modeling
technological change, the following discussion will be focused on this topic. Top-down
approaches, often advocated by cconomists. typically take an aggregate view of the
cconomy, and model changes in the mix of technologies based on the historical behavior
of the market. Bottom-up modeling takes the opposite approach by representing

individual technologies so that changes in the technology mix can explicitly be modeled
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as stock turns over. Although both approaches seek to model the same systems, they
often lead to significantly difterent predicted outcomes and costs. The diverging cost
predictions are a common source of confusion, and a key issue in the top-down/bottom-
up debate, because without an understanding of how the two approaches operate, the

results they provide can be misinterpreted by placing them in an incorrect context.

Top down models look at the economy at an aggregated level (by sector for example).
and individual technologies are not represented because the models take a broader view
of energy and economic decisions. In general, top-down models are able to portray these
decisions in a realistic manner (accounting for the financial and non-financial aspects of
decision making), because they are at least in part based on historical data. Because
individual technologies are not included, technological change cannot be explicitly
modeled, and instead is commonly represented with a single parameter referred to as the
rate of autonomous energy efficiency improvement (AEED'. This parameter can be
estimated from actual data, but it is very difficult to isolate from other factors, and in
practice AEEI is commonly based on modeler experience or intuition. The treatment of
costs in top-down models sets up one of the key differences with bottom-up models. and
deserves particular attention. Top-down models assume that markets ar¢ working
properly, and therefore that individuals and firms are making the choices that are in their
own best interests. Even though alternative technologies might have lower {inancial
costs, they are not being chosen because they do not provide the same level of overall
welfare. The parameters in top-down models also reflect an inertia to change, and as a
result, any policies that cause different technology decisions generally lead to high costs

(Jaccard et al., 2003).

The Intergovernmental Panel on Climate Change (2001) classifies two types of top-down
models: traditional time-series econometric models, and the more recently developed

computable general equilibrium (CGE) models. The main difference between these two

[ .. . . . .
AEEI actually defines the rate of energy efficiency improvement in the absence of price or policy signals.
Even if AEE! is set to zero, technical change can still occur when these signals are present.
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types is that CGE models look at the entire economy (including government spending.
employment, trade-flows, and work/leisure tradeofts), whereas time-series econometric
models are focused strictly on the sectors producing, transforming. and consuming
energy. Because of their more limited scope, time-series models are usually tractable
enough to be estimated primarily from historical data and as such are highly
representative of past experiences. In contrast, in order to reflect a broader scope of
economic interactions, CGE models sacrifice some of this behavioral realism by basing
parameters on consensus estimates from the literature or calibrating model performance

to fewer data points (IPCC, 2001).

Despite the claims of realism, top down models are far from perfect, and two significant
critiques have been leveled at their assumptions about market behavior. The first of these
is that many modelers have questioned the validity of using AEEI to help represent
technological change accurately (Azar and Dowlatabadi, 1999). General agreement
exists that technological change will occur, but there is concern that unless energy prices
are significant or specific energy efficiency policies are in place, technological change
will manifest itself in characteristics other than efficiency (cars coming with additional
service features for example). The second criticism relates to the assumption that firms
and individuals are operating in their best interests, and the resulting conclusion that the
current state of the economy is optimized. The market does not operate perfectly. and
Jafte and Stavins (1994) describe the failures that information can be underprovided
because of its public good characteristics, and that potential adopters of energy efficient
technologies may not be in a position to receive the benetits from that adoption. These
market failures can each lead to a less than optimal allocation of goods and resources in
the economy, which means that changes could be made without necessarily incurring
costs. For example, Moxnes (2003) found that making less efficient refrigerators
unavailable through regulation could actually lead to increased consumer welfare

compared to an unregulated market.

Two additional critiques of top down models relate to the failure of their long-term

predictions to account for policy and preference shifts, and their inability to effectively
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model technology focused policies (Jaccard et al., 2003). First, the key parameters in the
top-down models are based on past behavior and experiences, and as such may not
necessarily be valid if the future deviates significantly from those conditions. For
example, increasing environmental pressures, and the related policy responses could lead
to increasing rates of technological change in the search for solutions. As a result,
historical values for AEEI would no longer be accurate, and the amount of future
progress would be underestimated. The second critique stems from the high level of
aggregation in top-down models. This treatment of technological detail is acceptable
when the policies of interest are fiscal instruments such as economy-wide taxes, but it
makes it increasingly difficult to model policies that focus on specific technologies such

as regulations and subsidies.

Bottom up modelers claim their models overcome these weaknesses primarily because
they explicitly represent technologies. Doing so allows them to model policies designed
to encourage technological change more directly. These types of models utilize large
databases to describe the technologies that are currently available and expected to be
available to meet different energy demands. They operate based on demand forecasts
(typically for energy services), and as new demands need to be satisfied. some algorithm
decides which technologies are chosen. The market share allocation algorithms typically
focus on financial costs using the social discount rate to trade-off operating and capital
costs, where competing technologies are otherwise assumed to be perfect substitutes if
they provide the same energy service. The social discount rate is lower than the observed
rate implicit in top down models, meaning that technologies with lower operating costs,
but higher capital costs become more attractive. This view of technological change leads
to a faster penetration of energy efficient technologies than predicted by top-down
models, and at a lower cost. An example of a bottom up model is MARKAL. which is a
generic linear programming formulation for energy supply and demand that has been

applied to energy-economies in over 40 countries (ETSAP, 2000). As a lincar



programming model, in addition to being a bottom up model, MARKAL predicts

. . L . . 2
technology choices that are simultancously optimized over all sectors and time periods™.

Bottom up models dont suffer from the same shortcomings as top-down models because
technologies are modeled explicitly, which allows their innovation and diffusion to be
changed to depict different technology-tfocused scenarios and policies. They too have
weaknesses however, and the primary critique leveled at bottom-up models is that the
market share allocation algorithms do not reflect actual behavior, because although
technologies may provide identical energy services, other factors influence the decision
making process. By simply using tinancial costs. and the social discount rate to predict
technology decisions, the algorithms over-predict peoples™ willingness to change, leading
to a gap between the actual and predicted market shares of apparently cost-eftective
energy cfficient technologies. Jaffe and Stavins (1994) have attributed this encrgy
efficiency gap in part to market realities, termed non-market failures, which include the
efficient technologies having greater cost uncertainty”, being imperfect substitutes, and
having higher adoption costs. They also include market heterogeneity as a non-market
failure, meaning that a technology s availability and cost will differ across the market. A
second problem with bottom-up models is that they are commonly partial-equilibrium (as
opposed to general equilibrium). meaning that they can determine the balance of
consumption within scctors, but do not generally model the feedbacks between sectors
(Jaccard et al., 2003). Bottom-up models are also subject to the critique that they tend to
focus on technologies that offer improved energy efticiency. and commonly ignore new
and emerging technologies that are less energy efficient or more energy intensive. An
example of this is a modcl that includes a detailed representation of how the costs ot wind
generated clectricity can decline as market share increases, but has no accounting for the

similar ways in which natural gas extraction can become cheaper.

? Although MARKAL is a well known, and well publicized bottom-up model, optimization models only
represent a minority of the bottom-up models in use. Many are simple spreadsheet depictions of energy
§ystcms. which receive minimal discussion in the literature.

The capital costs of energy efficient technologies are typically higher. and the financial savings arc
realized in the operating costs. The longer the lifespan of the technology. the more uncertain these savings
become.
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Despite these long-held critiques of both top down and bottom up models. many
modelers from both camps have chosen to focus on their model’s strengths instead of
trying to improve on its shortcomings. Top-down models continue to provide a more
realistic representation of consumer behavior, and macro-economic feedbacks, while the
strength of bottom-up models is their technological detail. As a result, each approach
excels at different modeling applications, while struggling with others. Top-down
models are best suited for predictions of what will happen in an economy. as long as the
conditions of that economy don’t deviate too much from the past. They are weakest
when conditions difter significantly from the past, and when policy needs to be targeted
at specific technologies. Bottom-up models are best for exploring the possibilitics of
what could happen, identifying possible futures to aim for, and designing technology
focused policies that might help achieve those futures. Because of their lack of
behavioral realism however, bottom-up models are not suited for predictive tasks.
Unfortunately, both types of models are often used for applications that go beyond their
strengths, and as such, the predictions they offer are plagued with the problems described

above.

The types of policy problems that expose these limitations are common, so instead of
continuing to use models that are ill-suited to the tasks at hand, modelers must find
approaches that can capitalize on the strengths of both top-down and bottom-up models.
In other words, it is paramount that the modeling tools used for energy-economy analysis
recognize the reasons behind the energy efficiency gap, and the fact that technological
change can be dynamic. Designing models to meet these requirements leads to tools that
are both behaviorally realistic and technologically explicit. This challenge is summarized
by figure 1.1, which represents top-down and bottom-up models on three dimensions:
technological detail, behavioral realism, and equilibrium fecdbacks. A third type of
model on the diagram represents a hybrid approach, which incorporates the technological
detail of the bottom models, and the behavioral realism, and equilibrium feedbacks of the
top-down models, and as a result, is able to address the policy problems discussed above.

Recognizing these challenges is intuitively quite straight forward, but accounting for



them in a modeling context can be extremely challenging, especially while striving to
keep the models tractable and transparent enough to be useable in a policy analysis

setting.

'

Conventional
Top-down

Syoeqpadq
wnuqrnbyg

Vd

Q Hybrid
/ A .
7 Conventional
Ve

Bottom-u
o P

7
7
7

|

[

|

|

|

Ve

I

|

| 7
~u7

Ligure 1.1 - Lnergy-economy model typologies (Sowrce: Jaccard et al., 2003)

1.2 The Challenge of Hybrid Modeling

Although significant gaps still remain between top-down and bottom-up approaches. it is
not as clear cut as mentioned above; some top-down models have applied increasingly
disaggregated demand functions, and some bottom-up models have included more and
more sophisticated technology allocation algorithms. These small steps have laid the
groundwork for the development of hybrid models, and as discussed below a number of
significant steps have been made starting from both top-down and bottom-up approaches.
MARKAL in particular provides an excellent example of a bottom-up model that has
attempted to move in the direction of hybrid models by incorporating macro-economic
feedbacks, and some limited behavioral realism. MARKAL-MACRO uses the basic
bottom-up model, linked to a top-down macro-economic module, and MARKAL-GP
utilizes goal-programming approaches to broaden the technology allocation procedure
beyond financial costs (ETSAP, 2002, and Seebregts et al., 2002). Although useful

endeavors, these attempts fall short of a true hybrid model because the tradeoffs between



different technology attributes are not empirically estimated, and because they still scarch

for an optimal equilibrium, they are not behaviorally realistic.

From the top-down perspective, two different approaches have been taken to solve the
weakness of not including technological detail. First, some modelers have taken an
indirect approach by attempting to endogenize technological change within standard top-
down models, so that instead of being a static parameter, AEEI can respond to policy and
price signals. Azar and Dowlatabadi (1999) provide an overview of some of these
attempts, and although they are an improvement over standard top-down models. they
still fail to provide sufficient capabilities to model technology focused policies. The
second approach, which moves closer to hybrid models, involves attempts to explicitly
link or embed bottom-up modules within top-down models. Rivers et al. (2003)
summarize the attempts of Jacobsen, Koopmans and Willem te Velde, and Bohringer.
who use the results of bottom-up modules to inform the macro-economic parameters in
the top-down component. Although a step in the right direction this approach fails to
account for the lack of behavioral realism in the least-cost based. bottom-up modules. and
as such, the information being fed to the top-down component suffers from the same

shortcomings.

A prominent model that does qualify as a hybrid is the National Energy Model System
(NEMS), which the Department of Energy uses to model energy policy in the United
States. NEMS was developed in 1990 because the previous national modeling tool. the
Intermediate Future Forecasting System, was not capable of modeling the major policies
of the day such as the Clean Air Act Amendments, and the deregulation of the natural gas
industry (Gabriel et al., 2001). It is difficult to provide a quick synopsis of NEMS
because the modeling approach for each sector of the economy has evolved separately.
but essentially it operates as a simulation model that seeks a general equilibrium within
sub-modules for the different supply, demand, and transmission/conversion energy
sectors. These individual solutions are linked after each iteration, and the process is
reiterated until an equilibrium is reached across all sub-modules. The model contains an

explicit representation of technologies, and with the exception of electricity supply.

9



which is dictated by a linear program, technologies are allocated to reflect real market
behavior. Looking at the transportation module in detail, NEMS categorizes vehicles

according to manufacturer, class, acceleration, horsepower, safety, and financial costs.
Despite the detailed competition structure, market share is assigned based on financial

costs only, using private discount rates (E1A, 2002).

DeCanio and Laitner (1997) critique NEMS' (and other models that allocate technology
market shares using similar methods) reliance on financial costs to portray realistic
behavior. NEMS uses implicit discount rates ranging from 30% to 620% to represent
some of the factors behind the energy efticiency gap, which DeCanio and Laitner claim
over-restricts emerging energy efficient technologies from capturing market share. over-
estimates costs for technological change, and limits the range of possible policy
interventions. They argue that the model's reliance on discount rates to replicate market
behavior results in discount rates that are too high, and propose instead that the
technology decisions should be modeled using additional non-monetary technology
attributes, which they believe will lead to lower estimated discount rates. Although other.
non-financial, factors clearly play a role in technology decisions, the findings of Morris et
al. (2002) show that Laitner and DeCanio's critiques may be somewhat unfair. Based on
a direct comparison between NEMS and the US version of MARKAL-MACRO (a non-
linear optimization model), NEMS predicted greater adoption of renewable clectricity
generation options, which are technologies that are typically more favored by traditional

bottom-up models.

CIMS is another hybrid energy economy model, similar in design to NEMS in that it
iteratively seeks equilibriums within cach of its sectors until an overall equilibrium is
obtained for each period of the simulation. Developed by the Energy and Materials
Research Group (EMRG) at Simon Fraser University, CIMS will serve as the energy-
economy modeling tool for this research, and for that reason is described in some detail
here. CIMS utilizes an explicit representation of technologies to satisty energy service

demands that are disaggregated according to the sectors and regions of Canada (Jaccard
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etal., 2003). In order to tackle the problem of behavioral realism, CIMS allocates

technologies according to the logistic relationship shown in equation 1.1,

—y

r .
MS, = - (Equation 1.1)
KN .
Slcc,x-— T s MC +EC, +i,
k=1 (1)

where, MS; is the market share of technology j, CC;j is the capital cost, MC; is the
maintenance cost, and EC; is the energy cost. This equation contains three specific
parameters (that can differ across technologies) to reflect different aspects of the decision
making process that wouldn't be captured by a least-cost analysis. First, the discount rate
(the r parameter) is used to represent consumer time preference in the relationship
between operating and capital costs. Second, intangible costs (the i; parameter) are used
to represent the monetized value of the non-financial components of a decision. Third.
market heterogeneity (the v parameter) allows CIMS to recognize that market conditions
differ across the country, so even if a technology may be cheaper on average, it will be
more expensive for some consumers, and therefore achieve non-negligible market share.
Figure 1.2 illustrates the affect that ditferent values of v can have on technology market
shares for a simple two technology case, where the steeper curves (those with the higher

values for v) indicate higher cost responsiveness, and less market heterogeneity.
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Figure 1.2 - Iffect of market heterogeneity on market share predictions
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In theory, this relationship for allocating market share can answer DeCanio and Laitner’s
critiques leveled at NEMS because the intangible parameters are included to represent the
other non-financial attributes of a technology decision. In practice however, these
parameters are extremely difficult to estimate, which is the same problem encountered by
any attempts to model human behavior. The parameter values currently being used are
based on literature reviews, meta-analysis, and expert opinion, but in many cases these
estimates are modified to calibrate the model’s business as usual predictions to external
forecasts’. The problem with this approach is that the three key parameters described
above can confound one another so that no unique solution exists to a calibration
approach. In other words, an infinite number of v, i, and r combinations could achieve
the same calibration. Unfortunately, although these different calibrations are equivalent
in the business as usual case, their predictions diverge as policy scenarios diverge from
business as usual, and without any empirical basis, there is no way to tell which
calibrations are more accurate. Ideally the parameter values would all be empirically
estimated so that analysts could be more confident in CIMS’ predictions over a wide

range of policy scenarios.

The challenge of finding a sound empirical basis for representing human behavior is not
unique to the field energy modeling. It is a challenge faced in many other fields. and as
such, each attempt to understand and model human behavior represents a potential
solution that could be used with CIMS. Discrete choice models are one of these potential
solutions, as they have been developed specifically to look at consumer technology
choices (although not necessarily from an energy service perspective). These models
generally don’t possess any information about the equilibrium feedbacks present in an
energy economy model like CIMS, but they do excel at predicting behavior, which is
why they will be used to improve the parameter values currently used in CIMS. Section
2 discusses discrete choice models in more detail, but the general way they will be used

in this research is as follows. First, discrete choice models are developed for the

* See Nyboer (1997) for a more detailed discussion of the parameters used in CIMS, and Murphy (2000) for
the transportation sector in particular,
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technology decisions of interest so that the behavioral complexities of these decisions can
be modeled using the best tools available. Second, the performance of the discrete choice
models is translated into an integrated energy-cconomy model (CIMS), so that the

behavioral realism can be exploited within a broader modeling framework.

1.3 Focusing on Personal Urban Transportation

Many sectors in the Canadian economy present modeling challenges particularly well
suited to a hybrid approach. Personal urban transportation, referring to the transportation
needs of individuals within Canada’s cities, is one of these well-suited sectors for two
reasons. First, technology decisions for different vehicle and mode types are only
partially driven by cost, where time, comfort, style. and reliability all play major roles in
the decision making process. Because of these additional factors, simple least cost
predictions will diverge significantly from reality. Second, the different technologies
available are continually evolving, and are highly subject to policy influence so the
historical experiences with transportation won’t necessarily be repeated in the future.
Various vehicle emissions standards show how much influence government can have
over the energy efficiency and emissions of vehicles being sold in a region. Pilkington
(1998) has examined the effect on technological innovation of major vehicle regulations
in the United States such as California's Vehicle Emission Standard, and the more modest
1990 Federal Clean Air Act Amendments and the 1992 National Energy Policy Act. te
concludes that although it is too early to tell if the CVES will succeed in its ambitious
goals, all three pieces of legislation have helped spur the only major engine technology
advancements in the last |5 years. These two characteristics of personal urban
transportation necessitate a behaviorally realistic, and technologically detailed modeling
approach. For these reasons, this research will take the technology choices for vehicle

type and commuting mode as a framework for making CIMS a better hybrid model.

A more general justification for studying personal urban transportation is that the
emissions are significant enough that policy will likely be aimed at reducing them. and as
such, the capacity to effectively model the decisions within the sector will be beneficial.

Although there are some countervailing factors, emissions have been increasing. with the
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primary factors being an increasing urban population, increasing popularity of larger
vehicles, and a move towards single occupancy vehicles away from carpooling. transit.
and non-motorized transportation (NRCAN, 2002). The combined result of these trends
is that emissions from the sector are predicted to be 21% above 1990 levels by 2010
without any intervention, which is slightly less than the national average (Environment
Canada, 2002). The federal government has recognized the significance of these trends.
and the Climate Change Plan for Canada expects reductions of at least 21 megatonnes
from personal urban transportation (Government of Canada, 2002). Clearly. policy
intervention seems likely, and because of the complexity of the underlying technology

decisions, a strong modeling approach will be beneficial.

There is a vast wealth of modeling experience in the transportation sector, and much of it
will be used as the foundation for this research. Prior to the 1970°s, the field was almost
exclusively focused on aggregate forecasts of vehicle demand, but with the advent of
tractable discrete choice modeling approaches, modelers took a much more
technologically detailed approach (Manski, 1980). They developed models that focused
on the intricacies of specific transportation related decisions such as the numbers, types.
and vintages of vehicles that people prefer, and the types of modes they choose for work
and recreational trips. This transition did not lead to a loss of behavioral realism because
modelers continued to focus their understanding on the wide variety of factors that
influenced transportation decisions. It did however necessitate a diminished focus on
aggregate measures of demand because the new models were so detailed that a broad
view of the economy was no longer feasible. The past twenty years has seen the
underlying model specifications. and estimation routines advance considerably
(McFadden, 2000), but much of the focus remains on the individual decisions that
comprise the personal urban transportation system. Although these models have become
increasingly sophisticated, they generally fail to sec the larger pictures of how the
different transportation decisions interact with one very notable exception being
Hensher’s (2002) work to develop an integrated urban passenger transport model system.
This project combines a number of empirically estimated discrete and continuous choice

models (vehicle type, number of vehicles, mode, time of commute, frequency of
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commute, and location of home for example) to comprehensively represent the

transportation system in Perth, Australia.

The attempts of Hensher and others to tie together the disaggregated work in
transportation decisions are undeniably valuable, but they fall short of a true hybrid
approach from an energy-economy modeling perspective. The remaining problem is that
these models still fail to relate how transportation decisions fit within the entire economy.
Models like NEMS have attempted to integrate the models from discrete choice studies
into their technology allocation algorithms, but these approaches have failed to include
the wealth of decision-making factors contained in the original discrete choice models.
Instead they have typically focused on the estimated relationships between operating and
capital cost, because these attributes are already included in the model. This research will
attempt to extend on the attempts of Hensher and NEMS, by including a network of
transportation decisions within a larger energy-economy model, without losing the

behavioral richness that defines the discrete choice models.

1.4 Structure

The remainder of the paper is divided into six chapters. Chapter two provides a more
detailed description of discrete choice modeling in order to provide the reader with a
solid foundation on the forthcoming modeling tools. With this understanding, it will
become clear how discrete choice models are capable of providing greater behavioral
realism to a model like CIMS. Chapter three summarizes the data collection process, and
assesses the success of the different surveying steps. Chapter four focuses on the
estimation and discussion of the discrete choice models, and presents the key results that
are translated into CIMS in chapter five. CIMS’ resulting improved behavioral
capabilities are then demonstrated through some policy simulations in chapter six.

Finally, chapter seven summarizes the results, and offers some key conclusions about the

research.



2 DISCRETE CHOICE MODELS

Discrete choice models aim to understand and predict non-continuous choices, where
consumers are forced to choose between a number of non-divisible goods or services.
They focus on the choices of individual consumers, and attempt to extrapolate an
understanding of the market demand from those individual preferences. As such. they
are well-suited to anchor the behavioral realism axis of a hybrid energy-cconomy model.
Based on the early work of McFadden (see McFadden, 1976 for an overview of this
research), discrete choice models depart from the classical economic view of demand that
sees choice alternatives as bundles of homogeneous and infinitely divisible goods.
Instead, each good and service becomes defined by its unique attributes. which in turn
influence a customer's attraction to it (Manski. 2001). Under this view, the attributes
become the driving factors in consumer decision-making, and if they can be observed. the
choices people make can theoretically be predicted. Attributes can range from
measurable and tangible qualities such as price or weight, to highly intangible qualities
such as attractiveness. In addition to the transportation applications that will be
discussed, DCM’s have been used. for example, to model residential decisions (Revelt
and Train, 1997), choice of recreational activity (Schroeder and Louviere, 1999), and

marketing applications (Verbeeke et al., 2000).

2.1 Random Ultility Theory

In order to conceptualize a discrete choice model, assumptions need to be made about
how consumers actually make decisions. or in other words. the modeler needs to guess
what thought processes occur as a consumer finalizes on a choice. Understanding
decision-making behavior is by no means a simple task; and Meyer and Kahn (1991)
provide an overview of the more common theories of decision-making and how each can
serve as the foundation for a modeling approach. Examples include feature elimination.
and satistycing, which both belicve consumers have minimum acceptable thresholds for

each feature or attribute. Feature elimination theorizes that consumers compare all
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alternatives simultaneously, one attribute at a time, and that they sequentially eliminate
the alternatives that don’t meet an attribute’s threshold until a single choice remains.
Satisfycing theorizes that consumers look at all of the attributes, one alternative at a time.
until one is found that satisfies all of the thresholds. The two theories are very similar.
but can predict different decisions when more than one alternative meets all of the
minimum requirements. Distinct from these algorithms, utility maximization is the
dominant choice theory in economics, and it is based on the proposition that consumers
gain a measure of utility from any good or service they consume, and they will choose
the goods and services that maximize their personal utility. In its most general form. the
theory is attractive because it permits individuals to decide how important each attribute
is in their decisions. This flexibility allows different decisions to be predicted for
different people, even though they may face the same decision scenario. Ultility
maximization doesn’t explain every decision, but it has remained a prominent piece of
economic theory because intuitively it plays a part in many decisions, it is easily
translated into a modeling framework, and it provides relatively robust predictions in

many contexts.

Utility theory initially assumed that decisions could be completely understood based on
the attributes in a choice scenario, resulting in deterministic predictions if all the
attributes were known with certainty. Following this idea, utility was described by

equation 2.1.

u,=V, (Equation 2.1)

where Uj; is person i’s utility for good or service j, and Vj; is person 1's observed utility

for good or service j. Vjj is commonly defined by equation 2.2.

V’] = ﬁ” X /\7/ + ASC:/ (Fquation 2.2)

where X is a vector of attribute values for good or service j. By is a vector of person i's
weighting coefficients for each of good or service j's attributes, and ASCj; is an attribute
independent (alternative specific) constant that person i associates with the utility of good
or service j. A belief in this view of the world can be summarized by figure 2.1, which

shows the probability that a certain amount of utility is gained from each of two
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competing technologies. According to this diagram, the probabilities for the two utilitics
are both 100%, so technology two will always have a higher utility, and will therefore

always be chosen.
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Figure 2.1 - Utility probability density functions in a deterministic world

Equations 2.1 and 2.2 suffer from the shortcoming that decision-making is too complex
to be completely described with a simple set of observable parameters, and weighting
coefficients. Train (1986) explains this inadequacy in two ways. First, some attributes
that are important to a decision-maker won’t be observable by an external researcher, and
some aspects of the decision making process may even be unrealized or random to the
decision-maker depending on the decision. Second, there will inevitably be some degree
of measurement error when trying to assess what alternatives a person considers, and

what attribute values they observe when making a choice.

The admission of these limitations led to the development of random utility theory, where
utility is defined to contain an observable and unobservable (or random) component.

This view of consumer decision-making leads to utility being defined by equation 2.3.

U,/ = V!/ té, (Equation 2.3)

where Uj; is person i's utility for good or service j, and V;; and g are the observable and
random components of person i’s utility for good or service j. Vj; is the same as
described in equation 2.2, but only the key observable attributes are included as X;'s, with

the less important or unobservable factors encapsulated within the error component.
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Compared to the deterministic case in figure 2.1, the random component has the effect of
converting Ujj into a distribution of possible outcomes instead of a single deterministic
point. Figure 2.2 shows the likelihoods of different utility values for the same two
technologies once an error term is included. Now, instead of technology two always
being chosen, the overlap between the two curves indicates that each could possibly be

chosen depending on the actual value of &
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Figure 2.2 - Utility probability density functions in a stochastic world

If utilities were sampled from each of the two curves presented in figure 2.2 (the two dark
squares for example), the point with the highest utility would be chosen (technology

two). Each time this sampling process is repeated, the technology with the highest utility
will be chosen, and as shown by the clear triangles, it is possible for technology one to be
chosen even though it provides less utility on average. This stochastic nature leads to the

probability that person A will choose technology one, P4 1, being defined by equation 2.4.

PAJ = P(UA,] > UA,2 )= P(VA,I - V,4,2 >E 4y~ 5.4,1) (Equation 2.4)

Both of the V terms are deterministic once the attribute values are known, so the
probability that technology one will be chosen can be obtained by integrating over all
possible values of the € terms. Relating back to figure 2.2, the integration is analogous to
sampling many pairs of points, and then calculating the proportion of pairs in which
technology one provided more utility. If this information can be obtained for enough
consumers, the average probability of a technology being chosen is equivalent to the new

market share for that technology.
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Although useful for explaining why consumer behavior can't be predicted with certainty,
random utility theory in this form is not useful for modeling until assumptions are made
about the Vjj and g;; terms. A researcher needs to decide what attributes will be included
in the Vj; term, what mathematical form it will assume, what distribution describes the
error term, and whether or not the error terms are correlated across the alternatives.
Current work in discrete choice modeling is focused on hypothesizing, modeling and
testing various formulations for the V; and g;; terms, but this research will use one of the

earliest and most tested formulations; the multi-nomial logit model (Louviere et al.,
2000).

2.2 The Multi-nomial Logit Model

The muiti-nomial logit (MNL) model is a specific formulation of random utility theory:.
built on the assumption that the error terms, &jj, for each alternative are independently and
identically distributed according to a type I extreme value distribution. Figure 2.3 shows

the probability distribution function (pdf) of a type I extreme value distribution, which is
defined by equation 2.5.
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Figure 2.3 - Likelihood function for type I extreme value distribution

Likelihood (&) = ¢* L) (Equation 2.5)
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When the choice probability function (equation 2.4) is integrated using identical and

independent extreme value distributions for the error terms. equation 2.6 results”.
"

MS, = _e

J

Ze”’ (Equation 2.6)
7=l

Although this equation is derived from expressions that contain the random error terms,
the market shares are simply functions of the f;’s and X;’s that make up each V. This
closed form, analytical solution means that the exact values of the unobserved

components of utility are not needed to estimate the model or calculate market shares.

The choice of this error distribution in the MNL model implies that the unobserved
component of utility is most likely to be zero, but the distribution is skewed to the left.
Also, the error terms are independent of each other, so a certain error for one alternative
does not influence the likelihood of the other error terms. Realistically, these
assumptions about shape and correlation of the error terms are probably never completely
satisfied, but in practice many decisions come close. The significant advantage presented
by these assumptions is that the integration of equation 2.4 results in a closed form
equation to calculate market share, whereas the probability distribution functions of
other, possibly correlated distributions result in much more complex equations. When
these models were first applied by McFadden, the computer power needed for numerical
approximations, or simulation based approaches was not available, so the simple analytic
solution presented by assuming extreme value type I distributions for the errors was very

attractive (McFadden, 2000).

The assumed independence of the error term results in the relative choice probabilities
between any two choices being independent of all the other choices (even if new

alternatives are added to the choice set). This implication is known as the independence

* The utility equations in the MNL model no longer contain a subscript for individual consumers. Model
flexibility isn’t reduced because personal characteristics such as income or education can be interacted in
the utility function to produce individuality, or models can be segmented into relatively homogenous
groups to test for different attribute weighting coefficients.
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from irrelevant alternatives (I11A), and it is often cited as a significant shortcoming of the
MNL model. It means that if a MNL model predicts market shares of technology one
and two to be 50% each, their relative proportions will remain constant as long as their
attributes aren’t changed. Even if a third option is added that gains 30% market share.
the original two technologies will still earn equivalent market share, or 35% each.
Similarly, if one technology’s attributes values are changed so that it gains more market
share, all other technologies lose market share proportionally, so that their relative shares
remain constant. The potential problem associated with the assumption of independent
error terms is commonly illustrated using the red bus, blue bus paradox. In the paradox, a
car and the red bus each initially get 50% of the market share, and after a second blue bus
is introduced, instead of each bus receiving 25% market share, all three alternatives
receive 33% because the red bus and car need to maintain their relative probabilities. The
validity of the IIA assumption is obviously an important concern, but the associated

problems can generally be avoided if the alternatives are chosen appropriately.

Discrete choice modelers are well aware of the problems presented by the assumptions of
the MNL model, and much of the field's current research is focused on new formulations,
and finding ways to relax assumptions, while still producing tractable models. Train
(2003) and Louviere (2000) both provide excellent overviews of some of these alternate
approaches. Despite the limitations of the MNL however, it continues to be the most
dominant formulation used by discrete choice modelers, and so long as the assumptions
are not drastically violated by the choice situations or predictive requirements of the
model, the models continue to provide valuable information (Louviere, 2000). These
reasons, in combination with the wealth of literature on MNL models and the relative

accessibility of the mathematics justify the use of the models in this research.

2.3 Data Requirements

Discrete choice models for a given decision are estimated using information about the
choices available in that decision (the attributes and their levels), and the choice made.
The attributes can include whatever the modeler chooses as long as they can be observed

in some way each time the choice is made. The choice can be made numerous times by
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the same or different people, and even if the attribute levels remain constant, the models
can accommodate different choices because of the unobserved component of utility.
Once all of the data is collected, p parameters are estimated to provide the most likely

explanation of consumer behavior given the choices that were made.

The observed choices can be from real market data (revealed preferences), or from
hypothetical situations (stated preferences). The advantage of revealed preferences is that
they reflect the actual behavior of consumers, whereas with stated preferences, people’s
actions don’t always reflect their stated intentions. This significant advantage is
restricted by three distinct problems. First, technology attributes in real world data are
often correlated (it is often hard to disassociate price from quality for example) making it
difficult to isolate the importance of each attribute. Second, the alternatives a customer
was choosing between, and the attribute levels they observed when making the choice are
often difficult to obtain (especially for the alternatives not chosen). Third, it is often
desirable to understand how people will react to technologies that have significantly
different attribute values from those currently observed, or for technologies that aren't
even available yet. In these cases, it is impossible to obtain revealed preference
information because the tradeoffs are fictional. Stated preference data doesn’t suffer
from any of these drawbacks, as the technologies and attribute levels can be set to allow a
full range of tradeoffs to be observed. Of course, if a technology is too difterent from
what is currently available, people will have difficulty accurately saying whether or not

they would select it.

Revealed and stated data are not mutually exclusive, and it can be advantageous to
combine both sources to estimate models, because the strengths of the two data sources
are natural complements to one another (see Brownstone et al., 2000 for an example).
Due to time constraints, and the additional complexities involved in combining separate
data sources, only one type of data could be used, so in the case of this research the
models were based on stated preference data. This choice was made because both choice
experiments test scenarios designed to reflect different policy initiatives, which aren’t

currently observed across Canada. Examples of this include higher gasoline taxes, levies
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on polluting vehicles, and express access for carpools and transit. Also, the hydrogen
fuel cell car, which is not yet commercially available, was tested as an alternative in the
vehicle choice experiment. It should be noted that some of these policies have been tried
in specific regions or municipalities, but trying to piece the revealed responses together
and sort out the underlying factors would have been too problematic for this project.
Instead, choice experiments were developed for both mode and vehicle choice and the

stated preference data was collected using a mail survey, which is described in the

following section.
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3 CHOICE EXPERIMENT METHODOLOGY

The choice data needed to develop the discrete choice models was collected by first
recruiting potential participants at random by telephone, and then mailing a survey
containing the choice experiments to those who agreed to participate. This approach
allowed the sample population to be screened for certain criteria, and queried for personal
information that would be used to customize the mailout survey. These features are
advantageous because the screening allows the survey to be targeted to a specific
population, and the customization helps make the questions less hypothetical, and more
meaningful to individual respondents. As a result, response rates are generally higher
than simple mailout surveys, and the results are probably more reflective of respondents’
views (Dillman, 1999). This section discusses the choice experiment design (section
3.1), the telephone recruitment process (section 3.2), and the mailout process (section
3.3). The mailout survey was designed between mid August 2002, and late September
2002 in order to be ready for the telephone recruitment, which commenced on October 7,
2002. The recruitment and subsequent mailout processes lasted for three weeks, after

which surveys were collected until January 2003.

3.1 Choice Experiment Design

The finalized mailout survey consisted of five parts looking at transportation options and
habits, vehicle preferences, commuting mode preferences, views on transportation issues,
and additional demographic information. The survey contained a total of 48, mostly
multiple-choice questions, and took up four double-sided legal-sized sheets of paper. with
completion time estimated to be around twenty-five minutes. Appendix 2 contains a
sample copy of the survey instrument. For the purposes of this research project. the
discrete choice experiments contained in the vehicle and mode preference sections
{question 21 to 24 and 26 to 29) are the key components of the survey instrument. These
experiments asked respondents to make hypothetical decisions between different vehicles

and modes based on various attribute levels so that the importance of each attribute could
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be assessed. The questions in the other parts of the survey were designed to fill in gaps
that were anticipated from the choice experiment, help provide explanatory variables for
respondent choices, and improve the flow of the survey so that it was easier to understand

and complete.

3.1.1 The Vehicle Choice Experiment

Each survey contained four hypothetical vehicle choices, asking the respondent to choose
between a standard gasoline vehicle, an alternative fuel vehicle, a hybrid-electric vehicle,
and a hydrogen fuel cell vehicle. These four vehicle types were selected because they
represent a full spectrum of engine technologies currently available, and likely to be
available in the foreseeable future, and they fit well with the options currently modeled in
CIMS. Respondents were informed that each vehicle was like the type they currently
drove (this information was collected in the telephone survey), but beyond the attributes
contained in the choice experiment, no additional information about the vehicle was
provided. The survey did not contain an option for someone to say they wouldn't choose
any of the given vehicles for two reasons. First, choosing no vehicle was not a realistic
option because they were assumed to be replacing their current vehicle. Second, the costs
and variables presented in the survey often represented policy scenarios, so a person’s
current expectations for the values of key attributes wouldn't necessarily be valid

anymore.

A detailed literature review was undertaken to select the attributes that were used to
describe each vehicle. Looking for attributes that were consistently significant, and could
be influenced through policy, the resulting six attributes were the purchase price. the fuel
costs, the percentage of stations selling the proper fuel, whether or not the vehicle would
be granted express lane access, the emissions compared to a standard gasoline vehicle,
and the power compared to their current vehicle. Table 3.1 summarizes some of the other

studies that have used these attributes in discrete choice models for vehicle choice.
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Attribute
Article Capital | Operating Fuel Express | Emissions | Power’
Cost Cost® Available Lane Data
Access
Ewing, 2000 v v v v v
Bunch, 1993 v v v v v
Greene, 1988 v v
Brownstone, 2000 v v v v v
McCarthy, 1998 v v
Manski, 1980 v v v
This study v v v v v v

Table 3.1 — Other vehicle choice models that have used similar attributes

This list of six attributes certainly isn’t exhaustive, but unfortunately everything couldn’t
be included in this study. Some of the most notable exclusions that have been used in the
studies mentioned in table 3.1 include the makes and models available, safety, reliability,
seating and storage capacity, driving range, and refueling time. The last five were not
included because although they have been found to be important attributes it was
assumed that all four vehicle types could achieve comparable performance on these
factors. Make and model availability, safety, and reliability, will likely vary in the eyes
of consumers for the different vehicle types, but they were not included in the choice
experiment because the size of the experimental design was limited in the number of
attributes explored, and these attributes were either too complicated to account for, or
they were considered less important than those already included. Although they weren’t
explicitly part of the choice experiment, most of the excluded attributes were indirectly
measured in question six of the survey, which asked respondents to rank the importance
of various vehicle attributes on a one to five scale. The use of these results in
combination with the choice experiment results is discussed in section 4.2.1. Also not
included in the choice experiment are the personal characteristics, which can influence an
individual’s decisions. Demographic information on gender, age, income, family size,
education, and occupation was collected in the survey, and its use is discussed in section

4.3 regarding the estimation of models using segmented samples.

[ .
. Includes both maintenance and fuel costs.
Includes attributes like performance, top speed, and acceleration.
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Table 3.2 shows the possible levels that each of these attributes could take independently
in each survey. For example, four different values were possible for the purchase price of
the gasoline vehicle, while only two were possible for the other types of vehicles. In
total, two attributes could assume four values independently of the other attributes, and
twelve attributes could assume two values independently of the other values. Two
attributes (italicized in table 3.2) were set according to a separate value in the design in
order to allow their levels to vary without using up a degree of freedom. These were the
fuel cost of the hybrid electric vehicle (equal to 75% of the gasoline vehicle's fuel cost),
and the hybrid electric vehicle's access to express lanes (equal to the alternative fuel
vehicle’s access). For example, if the fuel cost for gasoline assumed the value
110%*Ncc, the hybrid electric vehicle would cost 75%* 1 10%*N¢¢. The remaining eight
attributes were constants. This formulation resulted in a 2'¢ full factorial design (each
four level attribute was treated as 27), for which a resolution 1V, 2'*"" fractional factorial

design was used to conduct the choice experiment (see section 3.1.3).

. Gasoline Alternative Fuel Hybrid-Electric  Hydrogen Fuel
Vehicle Type Vehicle Vehicle Vehicle Cell Vehicle
»100% NCC
. ©]105% Nee »]105% N¢e ¢ 105%N ®]10% N¢e
p cc cC cc I
urchase Price o 110% Nee 110% Nee *120% Nec o 120% Nee
®]15% NCC
«100% Nge
Fuel Cost o] 10% Ngc ] 10% Nge o Fquals 75% [ 10% N
® 120% Nic ]20% Nge Gasoline Value  ®120% Ny
L l 30% N]:(‘
Stations with Proper 0 ®25% 0 *25%
Fuel «100% 5% »100% 5%
No o guals AIV * No
E . ¢ q
xpress Lane Access wNo wYes Value wVes
Ermicei
tongisrlr?;i SZ;:;Slaered sEqual »10% Less 25% Less 0 00% Less
Power Compared to wEaual eeEqual sEqual eLEqual
Current Vehicle dua 0% Less *10% Less 0% Less

Table 3.2~ Possible attribute values in vehicle choice experiment
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The purchase price and fuel costs of the four vehicles were based on the respondent’s
current expenses, with N¢c, and Nyc referring to values obtained in the telephone surveyx.
The variations around those base values were selected from current market data, and
information in the CIMS database. On average, gasoline vehicles had the cheapest
capital costs followed by alternative fuel vehicles, hybrid electric vehicles. and hydrogen
fuel cell vehicles, but any ordering was possible depending on the choice profile. Hybrid
electrics had the cheapest fuel costs regardless of the profile, while the remaining three
vehicles types had the same average cost, which, depending on the choice profile could
be ranked in any order. Of particular note are the prices for the hydrogen fuel cell
vehicle, which are well below any anticipated initial market price (set at 10 or 20 percent
above current gasoline vehicle prices). The reason for this discrepancy is that differences
in capital costs exceeding twenty percent have been found to dominate vehicle choice
decisions (Ewing, 2000 and Washbrook, 2002), so if more realistic prices had been used.
the hydrogen fuel cell vehicle would never have been chosen. If an alternative is selected
too few times, the tradeoff points at which it becomes preferred can’t be estimated. and
the alternative can’t be included in the model. The remaining attributes levels were
chosen based on the values found to be significant in other studies, with the most notable
being the percentage of stations with proper fuel. The minimum value of 25% was
selected because Greene (1988) found that as availability dropped under 25%, utility
quickly decreased non-linearly. Although it would have been interesting to observe these
effects as well, the limits of the design prevented this given the large number of other

attributes being examined.

3.1.2 The Mode Choice Experiment

Similarly to the vehicle choice experiment, each survey contained four questions asking
the respondent to choose between five modes for their commute to work. The options
provided were driving alone, carpooling, taking public transit, using a park and ride

service, and walking or cycling. Additional modes are obviously available (a more

* If the respondent either didn’t know the capital and fuel costs of their current vehicle, or didn’t have
access to a vehicle, the sample averages for N¢($20,000), and F.¢ ($125/month) were used.
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detailed breakdown of public transit for example), but the size of the experimental design
and the available space on the survey page limited the number that could be included.
The five that ended up being chosen were selected because they were either the most
heavily used, or they were available to the greatest number of potential new users. Space
limitations on each survey page made it impossible to fit all five choices on a page. so if
the respondent lived up to fifteen kilometers from work they were given the
walking/cycling choice, or if they lived further away than fifteen kilometers they were
given the park and ride option. This step did not impose an assumption that the
respondent would not have selected the excluded choice if they had been given the option
because the eliminated choices were accounted for during model estimation (see section
4.2.1). As with the vehicle choice experiment, respondents were not given the option to
choose none of the choices because it was assumed that they would need to continue
commuting to work, and that the choices they are currently making might not be
available because of policy influences. It should be stressed that this choice experiment
focused solely on mode choice decisions for commuting trips, and that other types of
trips such as shopping, recreation, and social visits often have considerably different

attributes and decision criterion.

Unlike the vehicle choice experiment, the attributes describing each option in the mode
choice were not identical. Driving alone was described with the total travel time, and
cost; carpooling was described with traveling time, pickup/drop off time, and cost; public
transit and park and ride were described with traveling time, walking/waiting time, cost.
and the number of transfers; and walking and cycling was described using the traveling
time, and whether or not a bike route was present. These attributes were all selected
based on a review of existing research (table 3.3 shows other studies that used these
attributes), and pre-survey discussions. As with the vehicle choice experiment, the
attributes presented in the survey were not exhaustive, but additional options were not
considered to be as important, and their inclusion would have overextended the
experimental design, and overcomplicated the survey presentation for respondents. Some
of the excluded attributes that were discussed in the other surveys mentioned in table 3.3

were environmental impact, reliability, traveling speed, privacy, and level of congestion.
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Time and costs have also been more finely divided than in this study, so that the
importance of waiting versus walking time could be differentiated for example.
Reliability in particular, has been cited in some studies as a key deterrent stopping people
from using modes other than single occupancy vehicles (Translink, 2003), and the
decision to exclude it as a factor instead of the number of transfers was relatively
arbitrary. Despite the fact that these attributes were not included in the experimental
design, they were examined separately in question 13 of the survey, and a discussion of

how these results fit with the estimated models is presented in section 4.2.2.

Attribute
Article Travel Cost Pickup | Walking/ | Number Bike
Time Drop-off | Waiting of Route
Time Time Transfers | Access’
Train, 1979 v v v v
Washbrook, 2002 v v v v
Asenio, 2002 v v v v v
Palma, 2000 v v
Bhat, 1997 v v v
This study v v v v v v

Table 3.3 - Other mode choice models that have used similar attributes

Table 3.4 describes the possible levels for each of these attributes, where all attributes
could independently take on two values except for the SOV travel time that had four
possible levels. Nrime, Neost» and Npig refer to the traveling times, commuting costs, and
distances that each respondent provided in the telephone survey, each of which were used

' The possible values presented in table 3.4

as reference points for the attribute levels
indicate fifteen two-level attributes, and one four-level attribute, resulting in a 2'% full
factorial design, which as in the vehicle choice design was implemented using a
resolution 1V, 2'®"" fractional design (see section 3.1.3). The different levels were
selected to reflect the real differences between different modes, scaled to the respondent’s
current situation, which helped produce a range of values reflective of the diversity

experienced across the country. The range of values explored for travel time allowed for

No discrete choice models for mode choice reviewed in the literature contained a cycling option.

® For the respondents who didn’t commute, sample averages for Ny, {25 minutes), and N,
($I25/month) were used in the choice questions. For the respondents who didn’t commute by SOV, Ny,
and N,y were calculated using the inverse of the formulas for non-SOV driving times in table 3.4,
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any of the five modes to be the fastest in a given choice set, but on average driving alone
was the fastest available mode, followed by carpooling, park and ride, and public transit.
The ranking for walking and cycling depended on the value provided for Npig. For costs.
carpooling was always cheaper than driving alone, and transit was always cheaper than
park and ride. The relative magnitudes of these two groups depended on the value

provided for Neg.

Vehicle: Alone  Vehicle: Carpool Public Transit Park and Ride Walk or Cycle
Travel Time Driving Time Driving Time Driving Time Travel Time
® 90% Nrime ® 90% Nrime o 105% Nrime ® 95% Nrime e Npg = 6km/hror
e 100% Npime ® 100% Nyine e 115% Npipe ® 105% Nryme Npg = I5Skm/hr
e 110% Nrime o Np, = 8km/hror
o 120% Nrime Npi: = 20km/hr
Pickup/Drop-off Walk/'Wait Fime Walk/'Wait Time
¢ 5 minutes e 5 minutes ¢ 5 minutes
e 10 minutes e |5 minutes ¢ 10 minutes
Cost Cost Cost Cost Cost
e [00%Ncow ® 50% Neoo e $60 / month ® 25% Ncost e 30/ month
o 110%Neos  ® 75% Neos o $100/ month Transit Value

e 50% Ncog +
Transit Value
Transfers Needed — Transfers Needed — Bike Path Available
e None e None e Yes
e One e One e No

Table 3.4 — Possible attribute values in mode choice experiment

3.1.3 Experimental Design

The previous two sections have mentioned that both the vehicle and mode choice
experiments were carried out using resolution IV, 2'°'" designs. The experimental
design dictates the combinations of attribute levels that will be explored in the choice
experiment. Efficient experimental designs eliminate the need to test all possible
attribute level combinations, while ensuring that the effect of each attribute can still be
estimated independently. A design is referred to as orthogonal when it ensures that none

of the attributes of interest are collinear across the choice sets. The 2'¢"' design used in

32



this study is a resolution 1V design'', which is important because using a resolution 1V
design ensures that the effect of each attribute can be estimated independently from the
influence of other attributes or combinations of attributes (Montgomery, 2001). If a

lesser resolution was used, the importance of each variable could not be separated from

the influence of the other variables, and useful predictions would be impossible.

The 2'%" design results in thirty-two different profiles (or choices) that can each be
converted into a mode or vehicle choice question (i.e. the attribute levels for four vehicles
or five modes). The complete design is contained in appendix 3. In order to create
blocks of four questions for each survey, these profiles were first randomized, and then
arranged into sets of four profiles two different ways. This process resulted in the sixteen
sets of choice profiles (available in appendix 3), where each choice profile appears twice
(although never in combination with another profile more than once). These sets were
assigned to respondents as they were recruited ensuring that the sets were distributed
evenly across each of the eighteen cities to minimize the possibility that any single set of
choices would be over or under represented in a specific city. For example, when the
first batch of surveys was printed, if there were seven respondents from Calgary, choice
sets one to seven would be assigned to those respondents. When the next batch of

surveys was printed, the next Calgary respondent was given choice set number eight.

Although this process succeeded in achieving an even distribution of choice sets at the
city level, it unintentionally introduced a slight bias at the regional and national levels.
The assignment of choice sets for each city was always initiated with choice set number
one, so the higher number choice sets had a higher probability of being underrepresented
by a single choice set in each city. For example, if a city had thirty respondents, choice
sets fifteen and sixteen would only be assigned once for that city, whereas all the other
choice sets would be assigned twice. The influence of this bias was reduced because the

choice profiles were ordered two different ways, so even though choice set 16 was

" The 2'*"" design was obtained by making a copy of the resolution 111, 2"*""" design described in
Montgomery (2001), then reversing all of the copied version's signs, and combining it with the original.
The 16" factor is created from the original identity element, which is the product of all of the factor levels.
Performing these steps on any resolution 111 design results in a resolution 1V design (Montgomery, 2001).
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underrepresented, profile numbers 19, 14, 10, and 15 also appeared in one other choice
set. With the bias being replicated in all 18 cities, the least distributed profile (number
15) was distributed 18 times fewer (12%) than the most distributed profile (number 4). A

complete listing of distribution frequencies for each profile is available in appendix 3.

Once the sets of profiles were assigned to each respondent, the generic design levels were
replaced with the mode and vehicle choice attribute levels described in tables 3.2 and 3.4.
This process allowed each choice question to be customized to the individual based on
the capital cost of their current vehicle (N¢c), their average fuel costs (Nyc), their normal
commuting time (Nime), and their expected walking and cycling time based on their
commuting distance (Np;y). The fuel costs were also presented in weekly or monthly
units depending on which the respondent preferred, and the respondent’s car type was
included in the descriptive information about the vehicle choice. All of these steps in
combination helped personalize each survey so that the choices were as realistic as

possible, hopetfully facilitating more realistic responses.

As mentioned, the design used for both the mode and vehicle choices facilitated an
independent estimation of all the main effects, and in both experiments a wide range of
alternatives and attributes were tested. The design faces a number of specific limitations
however, most notably in the number of attribute levels being explored. Most attributes
were only set to two possible levels, which limited model predictions to linear
relationships. Specifically, when only two levels are explored, it becomes impossible to
identify increasing or decreasing marginal utilities or upper and lower threshold for
attributes. Knowing this, the developed models should be used with caution in scenarios
where the attribute levels differ significantly from those explored in the choice
experiment. This limitation will have the most impact on the costs of hydrogen fuel cell
vehicles (and to a lesser degree hybrid-electric cars), which were set at prices much lower
than would be expected without significant subsidies. A second limitation was that the
design was fully saturated, which means that reducing the number of attribute
combinations (choice profiles) any further would have reduced the design's resolution.

Although the design used was still resolution IV and orthogonal, it only explores 32

34



attribute combinations compared to the 65,536 that are available in the full 2'° factorial
design, so 65,502 attribute combinations were not explored. More attribute levels or a
larger fractional design were not used because the number of alternatives and attributes
being explored had already dictated a large design, and a larger design would have given
an unacceptably low probability of obtaining the necessary number of responses for each
profile. If for example, the design had included 64 profiles, and the sample size had

remained unchanged, each profile would have been sent to half as many respondents.

3.2 Telephone Recruiting

CGT Research International was contracted to recruit 1,150 participants for the mailout
survey. The sample was drawn at random from Canadian households living in urban
centers with populations over 250,000, and respondents were recruited between the 5"
and 16" of September, 2002. Smaller cities weren't sampled because the availability of
transportation alternatives is limited, and the choices being explored in the mode choice
experiment wouldn’t have been meaningful. The respondents were stratified according to
regional, and then metropolitan area population, resulting in the sampling frame
summarized in table 3.5 based on Canadian census data (Statistics Canada, 2001). This
stratification process yielded city sample sizes that weren’t proportional to city
populations in other regions, but it ensured that smaller cities received enough responses
to accurately represent each population. For example, if the stratification was based
purely on city size, Halifax would have accounted for 1.7 percent of the sample, instead

of the 5.3 percent achieved using the method described above. All of the deviations

between the desired and actual sample size were acceptable.
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Region City Population Sample Size Diff.
Desired | Actual
British Vancouver 1,829.854 131 130 1
Columbia | Victoria 288,346 21 21 0
Prairie Calgary 879,277 69 69 0
Provinces | Edmonton 782,101 61 66 -5
Winnipeg 626,685 49 48 1
Saskatoon 196,816 15 16 -1
Ontario Toronto 4,366,508 262 257 5
Ottawa — Hull 827,854 50 58 -8
Hamilton 618,820 37 36 1
Kitchener 387,319 23 23 0
London 337,318 20 24 -4
St. Catharines — Niagara 299,935 18 21 -3
Windsor 263,204 16 17 -1
Oshawa 234,779 14 17 -3
Quebec Montréal 3,215,665 230 216 14
Québec 635,184 45 43 2
Atlantic Halifax 276,221 61 62 -1
Provinces | St. John’s'2 122,709 27 30 3

Table 3.5 — Desired and actual sample siratification

Before accepting any individual respondent, the telephone recruiters were instructed to
test the following filters. First, to comply with Simon Fraser University ethical
guidelines, anyone younger than 19 was not permitted to participate (SFU, 2001).
Second, each respondent needed to either have access to a vehicle, or commute to work
or school at least once per week. Although people not meeting these criteria still have
important transportation related concerns, it was decided that their responses to the mode
choice and vehicle choice questions would be unreliable, and that they would present too
broad a population to administer a concise survey instrument to. In total, of the 1,266
people willing to participate in the phone survey, 55 were filtered out because of no
access to vehicles and no commuting, and 57 were eliminated because they were too
young or not available during the survey period. The complete script of phone interview

questions is available in appendix 2.

In addition to the filters purposely applied, certain subsets of the population could have

been unintentionally over or under-represented depending on how available they were.
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In order to maximize the probability of contacting each sampled household, surveying
was conducted between noon and 10:00 pm in each time zone, and each household was
called up to fifteen times before a replacement was sampled. Despite these efforts.
certain populations will inevitably be more available to take phone calls, and because
filtering on a number of demographic factors would have been prohibitively expensive,
the potential for coverage biases could not be eliminated. To find these biases where they
did occur, demographic information from the survey was compared with the 1996 and
2001 Canadian Censuses, where large differences between the two populations would
indicate that a coyerage error had occurred for some reason. Unfortunately, the ranges
used to collect demographics in the survey did not match exactly with Statistics Canada
data, so the statistical significance of any biases cannot be tested here. The largest bias
was the overrepresentation of retirees, and homemakers, which can be explained by the
fact that these two groups are much more likely to be available for phone calls at home.
Apart from this, the remaining biases appear to be relatively minor, where compared to
the Canadian averages, the sampled population has a higher family income, a higher
proportion of females, a higher level of education, a larger family size, and is slightly

older.

A related problem, which is one of the significant weaknesses of telephone recruitment
surveys, is the potential for self-selection biases. This problem can occur because
respondents are able to decide whether or not to participate once they had been contacted,
and if the people who chose not to participate possessed characteristics or attitudes not
present in the participating population, the results would be biased. Detecting a self-
selection bias is impossible in this study because nothing is known about the people who
choose not to participate, but the potential for this bias is illustrated in figure 3.1, which
shows the breakdown of all valid telephone numbers that CGT International attempted to
contact. Combining the groups where no was contact made, and those that refused to

participate yields almost 85% of the total sampling frame, indicating a significant

"> With a population of only 122,709 (Statistics Canada, 2001), St. John's, NF was also included to provide
an additional center in Atlantic Canada.
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potential for a bias to exist within either group. Unfortunately there is no way around this
potential problem, and it is a standard concern with survey research based on telephone

recruitment.

Breakdown of Sampled Phone
1.154

B@No Contact
M Refused
ORecruited

3,149

3.386

Figure 3.1 - Potential for self-selection bias

3.3 Mailout survey

3.3.1 Conducting the Survey

The mailout survey consisted of up to three separate contacts to ensure each participant
had ample time and opportunity to complete the questionnaire. Throughout the survey
process, all respondents were kept aware of the fact that their participation was voluntary.
and that they could withdraw at any time. The researcher’s phone number and email
address were provided so that any questions could be posed, and respondents were also
provided with a contact number for the School of Resource and Environmental
Management's director in case they had concerns about the survey that they might not
feel comfortable discussing with the researcher. All correspondence was carried out in

English or French, depending on the respondent’s preference.

The first mail contact occurred immediately following the recruitment between October
10, 2002, and October 20, 2002, with each participant being sent an initial copy of their
survey. Because the phone recruiting took place over 11 days, surveys and
accompanying cover letters (sce appendix 2) were mailed in batches so that the delay
between recruitment and mailing would be minimized. The mailout dates, and average

delay from recruitment date are summarized in table 3.6, with the maximum delay of
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eight days occurring because of a reporting problem from the recruiting firm'”. Each
package included a loonie as a thank you for taking the time to participate, and a promise
to donate an additional loonie to Unicef for each survey returned. A stamped and
addressed return envelope was also included in order to minimize the respondent’s time
and cost commitments. These types of financial enticements have been found to

significantly enhance survey response rates (Dillman, 1999).

Mailout Date Surveys | Average Delay
Mailed From Initial
Contact (Days)
October 10, 2002 315 3.00
October 13, 2002 597 5.13
October 15,2002 70 3.07
October 20, 2002 172 442

Table 3.6 — Average delay from phone contact for each baich of survey mailings

Two weeks after the initial mailout, each respondent who hadn’t already replied (770 in
total) was sent a follow-up postcard (see appendix 2) to remind them to complete the
survey, or thank them if the survey had been sent back, but not received. This phase of
the mailout process resulted in two noticeable benefits. First, the postcards were
delivered to three respondents who never received the initial mailout for some reason',
so they were provided with replacement packages. Second, and most importantly, the
reminder seems to have had a positive effect on response rates as shown in figure 3.2.
Responses were highest in the second week after the initial mailing, after which they fell
by 55 percent in week three. In week four however (two weeks after the postcards were
mailed), the response rate stabilized for one week, which could be the result of the
postcards. Although not conclusive (the response rate did still fall slightly), this finding
corresponds with existing survey research that finds early follow-up contacts to be
effective tools to elicit additional responses (Dillman, 1999). In total, the follow-up
postcards look to have increased responses by upwards of 100 surveys making them a

worthwhile component of the data collection process.

" These twelve respondents were contacted again by phone to explain the delay in their survey.

" A total of 28 surveys were returned due to incorrect or incomplete addresses, and attempts were made to
contact each of these respondents. Of these mistakes, 12 were corrected and sent a replacement package,
while the remaining 16 either had intentionally provided an incorrect address, or could not be contacted.
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Impact of Followup Postcards on Survey Receipts
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Figure 3.2 — Surveys received by the number of weeks afier the initial mailing

As a final contact, the 386 remaining respondents who had not returned their surveys by
November 18, 2002 were mailed an identical replacement survey with a revised cover
letter (see appendix 2) explaining that the survey was drawing to a close, and that their
responses were still important to the project. Figure 3.3 illustrates the impact of the
follow-up mailout on weekly response rates, and as with the follow-up postcard, the
replacement survey appears to have had a minor effect shown by the small increase in
returns two weeks after the final package had been mailed. Unlike the postcard however,
the increase is much smaller (up to 15 surveys), and it is questionable as to whether or not

the cost was justified.

Impact of Replacement Surveys on Survey Reeeipts

100

Replacement Surveys Mailed J
801

Surveys Received

1 2 3 4 5 6 7 8 9 10
Weeks after November 11", 2002

Figure 3.3 — Surveys received by the number of weeks afier November F1, 2002

3.3.2 Response Rate
Surveys were collected until January 31, 2003; at which point 878 of the initial 1154 had
been returned resulting in a raw response rate of 76%. To obtain a more accurate

calculation for response rate, incorrect addresses (24), blank surveys (10), and surveys
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that weren’t taken seriously (2) were removed, resulting in a data set of 866 surveys out
of a potential 1118, or a revised response rate of 77%. This response rate of 77%
compares well with Dillman’s (1978) expectation of 81% for combined telephone-
mailout surveys to a general population. In his more recent work, Dillman (1999)
explains that expectations today should be lower for telephone based work because of the
dramatic increase in telemarketing, and the introduction of call screening and call answer
technologies. The observed response rate also compares well with similar transportation
choice studies that used similar methodologies involving phone recruitment followed by
mailout surveys. Some examples include Brownstone (2000) with 66%, Ewing (2000)
with 59%, and Washbrook (2002) with 84%. An additional point is that these types of
studies commonly focus on specific localized populations, which is expected to increase
response rates by ten percent (Dillman, 1999), whereas this research questioned a much
broader population base. Based on this information, the 77% response rate achieved in
this survey is extremely satisfactory, and it can be concluded that the multiple
personalized contacts overcame any drawbacks associated with targeting the survey to

the general population.

3.3.3 Response Bias

Although the response rate was high, 23% of the recruited population did not return a
completed survey, and if common characteristics or attitudes were present within this
23% that weren’t represented in the returned surveys, the results would be subject to a
response bias. Unlike the self-selection bias, limited information is available on the
recruits who did not return surveys (because they completed the telephone survey), so it
is possible to see if any differences exist between them and the rest of the population.
Figures 3.4 through 3.8 contrast the demographics for the respondents that returned the
survey with those that did not. If any of these breakdowns were significantly different, it
would indicate that the survey appealed to a certain portion of society more than another,
so that their response rates didn’t match with their recruitment rates. The figures show
that the available demographics are relatively unchanged between the populations who
returned and didn’t return the surveys, so based on the limited statistics available, no

response biases are present.
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Language Breakdowns - By Survey Status Gender Breakdowns - By Survey Status
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Figure 3.8 — Response bias in regions

3.3.4 Measurement Error

Measurement error is introduced when a respondent interprets a question differently than
was intended when the question was designed, making the results for that question much
less meaningful. As a result, it is important to test the survey results to ensure that the
questions were both understandable, and completable in a reasonable time frame so as to
not to overtax respondents. To examine the first of these possibilities, figure 3.9
illustrates how many times each question was skipped (not counting skipped pages),
where commonly skipped questions could possibly indicate misunderstandings. Of the

42 question where answers were expected, almost 90% were skipped by less than two
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percent of respondents, and no question was skipped more than four percent of the time.
The questions skipped the most frequently (4 and 41) can both be explained because
question 4 mistakenly didn’t have a “Don’t Know” option, and question 41 asked

respondent’s about their income.

Frequecies of Skipped Questions

Question

Figure 3.9 — Frequencies of skipped survey questions

Figure 3.9 doesn’t show an increase in skipped questions towards the end of the survey,
but it doesn’t include skipped questions on blank pages, where a higher frequency of
missed pages towards the end of the survey could also indicate that respondent’s didn’t
have enough time to complete the survey. To check for this possibility, figure 3.10
shows the times each page was skipped, where pages three/four, and five/six were
skipped considerably more than all of the other pages. Although it would have been
preferable if no pages had been skipped, the fact that the pages at the end of the survey
weren’t skipped as often indicates that the survey was probably a reasonable length. A
more likely explanation for the skipped pages is that they stuck together, and because
they weren’t numbered, respondents didn’t notice that they had missed a page. The
combination of evidence presented in figures 3.9 and 3.10 leads to the conclusion that
respondents found both the complexity and time requirements of the survey questions to

be reasonable, so the possibility of measurement error is minimal.
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Frequencies of Missed Pages
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Figure 3.10 - Frequencies of missed survey pages
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4 MODEL ESTIMATION

The respondent choices in questions 20 through 23, and 25 through 28 were used to
estimate a variety of multinomial logit models for vehicle and mode choice, where the
resulting B parameters were those that best explained the set of data points (choices). The
following discussion focuses on these base models, while their adaptation to CIMS is
discussed in section 5. The optimal parameter estimates for the entire sample population
(section 4.2) are preceded by an introductory examination of the choice questions that
iltustrates the strengths and weaknesses of the stated preference experiments (section
4.1). Also discussed in this section are some of the alternative MNL models developed
from subsets of the survey results (section 4.3), and some techniques to account for the

uncertainty surrounding the optimal parameter estimates (section 4.4).

4.1 Preliminary Assessment of Choice Questions

Of the 866 valid surveys received, 3,278 uscable vehicle choices and 3,335 useable mode
choices were obtained'” for use in model estimation. Although the overall response rate
was excellent, it is also important to ensure that each choice profile was adequately
represented. Table 4.1 shows how many of each of the 32 choice profiles in the mode
and vehicle choice designs were received, with the average response rate being 108
profiles (75%). Where the least represented profile was returned almost 100 times, all
profiles seem to be adequately represented in the returned sample, so all attribute effects

can be estimated independently.

15 . . . . . .
A total of 186 vehicle choice questions, and 129 mode choice questions were eliminated from the
possible 3,464 because they weren’t answered, or the answer was indiscernible.
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Profile |Received Profile |Received Profile |Received Profile |Received
20 118 30 112 21 109 14 105
7 116 12 111 32 109 27 105
2 115 13 110 23 108 18 104
17 114 29 110 31 108 25 101
22 113 3 109 8 107 4 100
26 113 9 109 11 107 10 100
28 113 16 109 6 106 24 99
1 112 19 109 15 106 S 97

Table 4.1 — Counts of received choice profiles

The responses were also examined to see if each alternative received enough choices to
reveal the tradeoff points at which that alternative becomes preferred. Figures 4.1 and
4.2 show the total number of choices each alternative received for the vehicle choice, and
mode choice experiments, and although the alternative fuel vehicle alternative in the
vehicle choice set, and the park and ride alternative in the mode choice set were chosen
relatively infrequently in their choice sets (5.2% and 3.5% respectively), neither situation
prevented models from being estimated. This conclusions was reached based on
Louviere (2000), who explains that equation 4.1 can be used to determine required

sample sizes,

"> l_pz'q)_l(]+aJ (Equation 4.1)
pa 2

where n is the minimum required sample size, p is observed market share, a is the desired
accuracy, and @' is the inverse cumulative standard normal for significance a.
Rearranging the equation to solve for a, with sample sizes of 3,278, and 3,335, market
shares of 5.2% and 3.5% can be estimated within 13% and 10% of the true value with
95% confidence. As the observed market shares increase, the accuracy of the estimates

also increases considerably.
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Distribution of All Vehicle Choices
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Figure 4.1 — Choice frequencies for each vehicle type

Distribution of All Mode Choices
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Figure 4.2 — Choice frequencies for each mode type

The final assessment performed on the choice questions was to examine the number of
respondents who made the same choice in all four questions on their survey. If this event
occurred frequently, the attributes’ estimated contribution to utility would be reduced
relative to the alternative specific constants, despite the fact that their levels were
changing in each choice. Figures 4.3 and 4.4 summarize how many people chose each
type of vehicle/mode in all four choices, and how many choose a mixture of
vehicles/modes. In both the vehicle and mode choice experiments, 56% of respondents

chose the same alternatives in all four questions.
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Mixture of Respondent Vehicle Choices

400
350

346

250
200 -
150
100 56

50

Number of Surveys

All Gas All AFV All Hybrid  All Fuel-cell Mixed

Figure 4.3 - Diversity in respondent vehicle choices

Mixture of Respondent Mode Choices

Number of Surveys

Figure 4.4 - Diversity in respondent mode choices

These high shares can be explained in three different ways. First, the respondents could
have taken sufficient time to read and understand each question, but the majority
associated a high utility with the alternative they selected based on something other than
the attributes presented. This is the preferred explanation, because although it means
some important factors may have been missing from the choice experiment, each answer
is still independent, and the estimated models would be valid representations of the
respondents” views. A second explanation is that the respondents may not have spent
enough time reading the questions, and as a result failed to notice that the attribute levels
were changing from question to question. If this were true, the observations for each
individual wouldn’t be independent, and the majority of the choice observations would be
invalidated. Third, it’s possible that the respondents were overwhelmed by the number
choices and attributes, and therefore had to focus on just a small subset of the possibilities
in order to make their decision. This outcome would not be as serious as the second

because the choices would still be independent, but the models would be biased because
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all attributes are assumed to have the same potential to influence the decision, regardless
of the decision maker. Based on a sampling of survey comments, all three of these
possibilities seem to be defendable, but the first seems to be the most common
explanation. The general high quality to which the rest of the survey was completed
indicates that people did take the time to think about the questions, and there were only a

few comments saying that the questions were confusing or overwhelming.

4.2 Estimated Models Using the Complete Sample

As mentioned, multinomial logit models are estimated using maximum likelihood
techniques, which maximize the log of the likelihood function, L,

QO J
L= zz‘f” In P/q (Equation 4.2)

g=l j=1

where fjq is | if alternative j was chosen in observation q and 0 otherwise, and Py is the
probability of observation q choosing alternative j, which is equivalent to the multinomial
logit market share calculation given in equation 2.6. The non-logged likelihood function
would be the product of the different Pj, terms, but by taking the natural logarithms, the
product is converted to a sum, and the rounding errors that would occur otherwise are
avoided. The set of B parameters used in P, that yield the largest sum of choice
probabilities are the maximum likelihood estimates for a given utility formulation and set
of observations. LIMDEP version 7.0 was used to find the MLE"s of the parameters for

both the mode and vehicle choice models.

4.2.1 Vehicle Choice
The utility for each vehicle type, V, was estimated according to equation 4.3

V=L..-CC+ P FC+ L, FA+ L EXP+ B, - POW + B (Equation 4.3)

where CC is capital cost, FC is the monthly fuel cost, FA is the percentage of service
stations with the required fuel, EXP indicates if the vehicle has access to express lanes (0)
or not (1), POW indicates if the vehicle has power equal to (0) or 10% less than (1) the

respondent’s current vehicle, and ASC is a constant specific to each alternative. The first
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five B parameters are constrained to be identical for the four vehicle types (for example,
capital cost is equally important for each vehicle type), but the Basc term can be difterent
for each vehicle'®. Table 4.2 shows the results of this model using all 3,278 observations.
with the MLE estimates for the weighting coefficients appearing in the second column,
and the t-values in the third column. It should be noted that emissions were not included
as a variable in the utility formulation because although respondents were given
emissions information, the attribute levels were constants in the experimental design, and

as such, any resulting effect can’t be distinguished from the alternative specific constants.

Beta Parameter MLE t-value
Capital Cost -9.01E-05 | -5.76*
Fuel Cost -4.60E-03 | -3.38*
Fuel Availability 1.16 8.47*
Express Lane Access -0.16 -3.09*
Power -0.22 -4.47*
ASC - Gasoline -1.70 -17.22%
ASC — Alternative Fuel -2.01 -23.06*
ASC — Hybrid Electric -0.36 -4.18*
Log-likelihood - full model -3,625.61
Log-likelihood - constants only | -3,699.51
Log-likelihood - no coefficients | -4,544.27
Observations 3,278

*Coefficient is significant with 99% confidence.
Table 4.2 — Best fit statistics for vehicle choice model

All of the parameters have the expected sign, with increased capital, and increased fuel
costs having a negative impact on utility, while increased fuel availability, increased
express lane access, and increased power all had a positive impact on utility. All of these
coefficients, and the three alternative specific constants were significant with 99%
confidence (when the value in the third column exceeds £2.57). The explanatory power
of discrete choice models is commonly tested by comparing the cumulative log-
likelihood of the base model (4™ last row) against models with no coefficients (2™ last
row), and models just containing alternative specific constants (3" last row). The test
statistic for these comparisons is two times the difference in the models’ cumulative log

likelihoods, which approximately follows a chi-squared distribution, with the number of

' To facilitate model estimation, the alternative specific constant for the fuel cell vehicle was fixed at zero.
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degrees of freedom equaling the number of coefficients that have been restricted. Both
test statistics (1,837.3 for the no coefficients, and 147.8 for the just alternative specific
constants) resulted in a rejection of the null hypothesis, meaning that the model presented

in table 4.2 offers an improved explanation of the data than either of the alternatives with

99% significance.

An important comment about the alternative specific constants is that their magnitudes
are relatively large compared to the other attributes' contributions to utility. This means
that the alternative specific constants will constitute a significant share of the total
observed utilities whatever values the attributes take on, and as a result, they will
potentially become the primary determinants of market share. For example, in a scenario
where a gasoline vehicle possessed the attributes summarized in table 4.3, 47% (-1.49) of
the observed utility is the result of the attributes, compared to 53% (-1.70) from the

alternative specific constant.

Attribute Value
Capital Cost $20,000
Fuel Cost $150 / month
Fuel Availability 100%
Access to Express Lanes No

Power Compared to Current Vehicle | Equal

Table 4.3 — Attribute values for gasoline vehicle

Although the alternative specific constants account for a significant portion of the
observed utilities, the magnitude of the observed utilities needs to be assessed relative to
the error term to know what influence they will have on the market shares. If the scale of
the model is large, meaning that the observed utility is large compared to the error term,
the attributes and alternative specific constants will strongly influence the market shares.
If the scale of the model is small however, neither the attributes nor the alternative
specific constants will influence market shares (regardless of their relative magnitudes).
Instead, the market shares will be dictated by the error terms, and because all of the error
terms are identical in a multinomial logit model, the predicted market shares would also
be equal. In order to assess the scale of the vehicle choice model, it was compared with

similar models produced by Bunch (1993), and Ewing (2000). Since the exact

51



specification of attributes differs from model to model, this task was accomplished by
comparing the coefficients for capital cost in the different models. Examining the base
models from Bunch’s and Ewing’s work revealed their coefficients for capital cost were
2.2 and 1.5 times larger than the coefficients in this study’s model. The larger
coefficients indicate that the scale of their models is larger, and that the attributes and

alternative specific constants would therefore have more influence on the market shares'’.

With this understanding, the following analysis illustrates the impact that the model’s
scale, and the relative magnitude of its attributes and alternative specific constants have
on predicted market shares. High and low values were selected for each attribute (shown
in table 4.4), and then combined to create a high and a low utility scenario for each
vehicle type. This process resulted in eight different vehicles (an attractive and
unattractive version for each type). To test how much market share each vehicle type
could obtain, its attractive (high utility) version was combined with the low utility
versions of the other three vehicle types. The reverse was done with each vehicle’s
unattractive (low utility) version to test how small a market share each type could obtain.
The process resulted in eight scenarios in which each vehicle type was as attractive and
unattractive relative to the other vehicle types in one scenario. The ranges shown in
figure 4.5 show what market shares are possible for each of the vehicle types in these

high and low utility scenarios.

Attribute Low Utility | High Utility
Value Value
Capital Cost $40,000 $20,000
Fuel Cost $225/ month | $75/ month
Fuel Availability 25% 100%
Access to Express Lanes No Yes
Power Compared to Current Vehicle 10% Less Equal

Table 4.4 — Attribute values used to produce high and low vehicle type utilities

' This conclusion assumes that all people value capital cost the same regardless of the sample population’s
demographics. An alternative conclusion could be that the sampled population for the given study just
placed a higher importance on capital cost, and the other attributes might compare differently. This
complete test was not possible because beyond capital cost, the exact attributes differed from model to
model.
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Market Share Ranges for Each Vehicle Type

100%
90% —
80% - T‘
70% -
60% ~
50% -
40%
30% —~
20% -
10% -
0% - J - ' J - . J hn | -

Gasoline Alternative Fuel Hybrid-Electric Fuel-Cell

Market Share

Figure 4.5 — Possible vehicle type market shares

These market share ranges do not represent absolute minimums or maximums, because
the attribute values could be set to cover a wider range, but they do illustrate two key
points. First, although the model’s scale is smaller than some similar models, the
attribute coefficients and alternative specific constants are large enough to prevent the
error terms from dominating total utility, and they allow a considerable range of market
shares to be predicted. At the same time however, for the range of attribute values
considered, the magnitude of the alternative specific constants prevents most vehicle
types from being able to capture the full range of possible market shares (0% to 100%).
For example, the gasoline vehicle is unable to achieve more than 80% market share, even
when all of its attributes are superior to the other vehicle types because the alternative
specific constants for the hybrid electric and hydrogen fuel cell vehicles are so much
larger than gasoline’s. These findings are encouraging, because they contradict DeCanio
and Laitner’s (1997) conclusions that estimating these types of models leads to
alternative specific constants that prevent emerging technologies from capturing
significant market share. In this vehicle choice model, the reverse problem seems to

actually be present to a minor degree.

Focusing specifically on the alternative specific constants for the different vehicle types
reveals another interesting finding, where all else being equal, respondents actually had
an attraction to the less familiar, non-gasoline vehicles. Hydrogen fuel cell vehicles were
the most popular, followed by hybrid electric vehicles, and then gasoline and alternative

fuel vehicles. Figure 4.6 shows predicted market shares for the four vehicle types if each
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possessed identical characteristics except for the alternative specific constants. This
finding shows that those surveyed don’t seem to be worried about experimenting with
new engine technologies if the vehicle performance is otherwise comparable to existing
options. Ewing (2000) reached similar conclusions when he examined the preferences of

Montreal commuters for gasoline, alternative fuel, and electric vehicles.

Vehicle Type Market Shares
9%

7%

(8 Gasoline
@ Alternative Fuel
O Hybrid-Electric
O Fuel-Cell

49%

35%

Figure 4.6 — Vehicle type market shares based on equal attribute values

An obvious problem with these conclusions is that non-gasoline vehicles haven't gained
significant new market share anywhere in Canada, and certainly not to the levels shown
in figure 4.6. This can be explained in part because the attribute values for non-gasoline
vehicles have been set to extremely attractive levels to produce these market shares
predictions, so they might be realistic if attribute values reached these levels in some
future scenario. However, the answer is not this simple, as non-gasoline vehicles
continue to gain significant market share even when attribute levels are set to values
closer to those currently experienced by survey respondents. At these levels, upwards of
70% of respondents said they would choose a hybrid-electric vehicle, when in reality
only one of the 781 respondents with vehicle access had done so. Question six in the
survey was designed to help explain the differences in alternative specific constants by
asking respondents to rate the importance of eight different vehicle attributes (five of
which, were not attributes in the vehicle choice experiment). As shown in figure 4.7,
reliability, safety, and vehicle type were the most important attributes that weren’t
included as attributes in the discrete choice survey. Unfortunately, these results don’t

help explain the rankings of the alternative specific constants because there is no reason
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to believe respondents would have rated non-gasoline vehicles to be superior in these
attributes. They were instructed that all of the vehicle types were the same class, and
given their limited knowledge about hydrogen fuel cell and hybrid vehicles, it seems

more likely that they would assume non-gasoline vehicle to have reduced reliability and

safety.
5 Attribute Importance for Vehicle Choice
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Figure 4.7 — Autribute Importance in Vehicle Choice

The attractiveness of non-gasoline vehicles could be explained in two additional ways.
First, nothing in the statistical models accounts for the number of vehicle models
available, when in reality far more than four alternatives exist, and most of the additional
models are gasoline vehicles. Leiby and Rubin’s (2001) model of vehicle choice includes
indicators for both the number of makes and models of different vehicle types, and these
factors are some of the most important determinants of vehicle type market shares.
Second, it is also possible that the alternative specific constants are artificially large
because respondents said they would pay more for emission reductions than they would
actually pay in reality. With the exception of the alternative fuel vehicles, the ranking of
the alternative specific constants paralleled the ranking of emissions reductions for each
vehicle type, so this explanation seems to be plausible. Bunch et al. (1993) did vary
emissions levels in their experimental design, and they found emissions reductions to
have a positive influence on utility, but they questioned the believability of this
conclusion on the basis that the results were artifacts of the stated preference study, and
wouldn't have been found using revealed preferences. Similarly, Johansson-Stenman,
and Martinsson (2002) found in a survey of 2,500 Swedish car owners that survey

respondents consistently (and unconsciously) overstated their concern for the
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environment when asked to rate its importance in their decisions. Both of these
explanations make sense intuitively, and techniques to account for them are discussed in

section 5.2.

The remaining attributes also play an important role in each vehicle's utility, but it is
difficult to directly compare them because their influence is dependant on the changes in
attribute level, and none of the units are equivalent. Table 4.5 displays how much of each
attribute would be equivalent to a $1,000 increase in capital costs. For example, a
consumer would be willing to accept the capital cost being $1,000 more if fuel costs were
decreased by $19.59 per month. Under this presentation format, a direct comparison is
still difficult, but one interesting observation is the relative unimportance of express lane
access. Only an 8% increase in availability or a 4% increase in power is required to
compensate a $1,000 increase in capital cost, whereas a 56% increase would be required
for express lane access. Although it is quite possible that respondents placed a much
higher importance on fuel availability and power, an alternate explanation that should be
considered is that their limited knowledge of express lanes caused respondents to
marginalize the attribute. In total, 83% of respondents either didn’t have access to, or
didn’t know what a carpool express lane was, so they may not have understood the

attribute well enough to give it significant weighting in their decisions.

Attribute Change Equal to
$1000 Increase in
Capital Cost
Fuel Cost $-19.59 / month
Fuel Availability + 8%
Express Lane Access + 56%
Power* + 4%

*Value indicates 4% or total power, not 4% ot 10%.
Table 4.5 — Capital cost equivalency for vehicle attributes

When changes in attribute values don’t offset each other, market shares will be altered,
and the magnitude of that change will depend on both the initial market share and the
initial attribute value of the technology being altered. This dependence results from the
multi-nomial logit’s non-linear market share curve, which is steep (high elasticity) when

utilities are similar, and flat (low elasticity) when utilities are different. Typically, a
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technology’s market share elasticity, E, is expressed as the percent change in the

technology’s market share resulting from a percent change in one of its attributes

(equation 4.4). Alternatively, equation 4.5 shows how the numerator can be expressed as

the change in market share instead of percent change, yielding an elasticity defined as E’.
_ %AMS e AMS

E= NG (Equation 4.4) = %AX, (Equation 4.5)

When this second form of elasticity is calculated for a multinomial logit model with a
linear-additive utility formulation, equation 4.6 results,

E = B-X,-MS -(1-MS,) (Equation 4.6)

where B is the weighting coefficient of the attribute being changed, X is technology i's

value for that attribute, and MS; is technology i’s initial market share.

Because the attribute weighting coefficients are equal for each vehicle type, equation 4.6
will also produce the same results for each vehicle type with a given X; and P;, so the
following elasticity curves apply to all of the vehicle types. Figures 4.8 through 4.12
show E" for the five vehicle choice attributes at four different attributes values.
Examining each figure individually, the largest changes in market share occur when a
vehicle is capturing 50% of the market, which is the steepest point in the market share
curve. Also, larger initial attribute values lead to larger changes in market share because
market shares are calculated based on absolute differences, so a percent change is larger
for larger initial values. Comparing across figures, changes in capital cost result in the
largest changes in market share, followed by similar effects for fuel costs and fuel

availability, with the smallest impacts resulting from express lane access.
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Figure 4.12 - Power Elasticities
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4.2.2 Mode Choice
Unlike the vehicle choice model, the utility of each mode, Vope. has a unique

formulation, as shown in equations 4.7 through 4.11.

Vior = Bor - DT+ Loy -COST + Sy (Equation 4.7)
Vior =By DT+ By - PDT + S - COST + B, (Lquation 4.8)
V/'/ow,w/' = ﬂ/)/ DT + ﬂwu'/' WWT + ﬂ( OS1 -COST + ﬂ/‘/m,\w ‘TRANS + ﬂ//e,:,v.w/' (lquation 4.9)
Viaw = Pror - DT + ﬂwu'/‘ WWT + ﬂ(‘().\'/ -COST + ﬂ,,(,,,w -TRANS + ﬂ,‘,,,“- (lquation 4.10)
Vi = By - DT + By - PATH + . (Equation 4.11)

where DT is the driving time, PDT is the pickup and drop-off time, WWT is the walking
and waiting time, COST is the monthly cost of the mode, and TRANS is the number of
transfers required. Anywhere a § parameter occurs in more than one utility formulation
(Bor and Beost for example) the estimated value is the same for all occurrences. It should
also be noted that the alternative specific constant for the walking and cycling option is
fixed to zero because a maximum of four of the five alternatives can be varied during
model estimation. In addition to the utility formulations presented above, some alternate
forms were experimented with (allowing the value of driving time to be different for each
mode for example), but the model presented in this section seemed to provide the best
combination of explanatory power, and simplicity. Table 4.6 shows the MLE parameters

and t-values when the above equations were estimated using all 3,335 mode choices.

Beta Parameter MLE t-value
Cost -2.84E-03 -5.29*
Driving Time -4.42E-02 | -13.84*
Pickup/Drop-off Time -7.94E-02 -5.07*
Walking/Waiting Time -7.32E-02 -8.36*
Transfers -0.16 -2.00%*
Cycling Path 0.17 1.26***
ASC - SOV -0.53 -3.94*
ASC - HOV -0.47 -2.73*
ASC - Transit -0.46 -3.02*
ASC - Park n' Ride -1.95 | -10.80*
L.og-likelihood -4,088.34
Log-likelihood - constants only -4,673.59
Log-likelihood -- no coefficients | -5,367.48
Observations 3.335

*Coelticient is sigmificant with 99% confidence.

HCoeffictent is significant with 95% confidence,
*+Coctlicient is significant with 80% confidence.

Table 4.6 - Best fit statistics for mode choice model
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As with the vehicle choice model, all of the attributes entered the model with the
expected signs. Increasing time, cost, and the number of transfers had a negative
influence on utility, with only increasing access to bike routes having a positive effect,
and the estimates were each significant with 99% confidence, with the exception of the
number of transfers (95%), and the presence of cycling paths (80%). Despite the lower
confidence in the cycling path parameter, it has been left in the main model because a
number of comments on surveys indicated that people felt positively about bike routes,
and the lower confidence is partially the result of the smaller sample size of cycling
choices. The log-likelihood ratio statistics for the just constants model (1,170), and no
coefficients model (2,558) both exceed their respective chi-square distribution values,
indicating that the parameter estimates in table 4.6 offer greater explanatory values than

those with the restricted parameter sets.

Prediction ranges for possible mode market shares are dictated by two factors: the
attributes' and alternative specific constants’ relative contributions to utility, and the
relative magnitudes of the observed utility and the error term. The range of market shares
possible for each mode type was tested using the same procedure described for the
vehicle choice model, with the high and low attribute values shown in table 4.7. These
attribute values are well within the ranges of values presented in the surveys, and as the
resulting market share ranges in figure 4.13 show, market shares from 0% to almost
100% are possible for each of the modes. These results show that like the vehicle choice
models, the observed component of utility is large enough relative to the error terms to
allow the market share predictions to be influenced by realistic attribute values. Unlike
the vehicle choice models however, the alternative specific constants in the mode choice
utility formulations are not as dominant relative to the attributes” contributions to utility.
In other words, almost a full range of market shares is possible for each of the modes

because of the alternative specific constants’ smaller relative magnitude.
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Attribute Low Value High Value
Cost $50 / month $200 / month
Driving Time 5 minutes 60 minutes
Pickup/Drop-off Time 0 minutes 20 minutes
Walking/Waiting Time 0 minutes 20 minutes
Transfers 0 |
Cycling Route Access No Yes

Table 4.7 — Attribute values used to produce high and low mode type utilities

Market Share Ranges for Each Mode
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Figure 4.13 -- Range of possible market shares for each mode

Figures 4.14 and 4.15 show the actual and predicted market shares for the five modes,
where the actual shares were obtained from survey responses, and the predicted shares
were based on the costs and times provided by respondents in their survey responses.

The detailed attribute values for each of these scenarios can be found in appendix 5.
Given that it was difficult to know the exact level of some attributes (respondents weren't
asked to decompose the time of their commutes for example), the two figures seem to
match fairly well. The major divergence between the actual and predicted shares occurs
with the carpooling option, which is predicted to be almost four times as popular as it is
in reality. A possible explanation for this problem is that some respondents chose the
carpooling option in the choice experiment, when in reality it was not a possibility for
them. This possibility is supported by some survey comments, which indicated that
carpooling was not a feasible option, even though it had been selected. If the carpooling
option is eliminated for the 39% of the population that claimed it was not available to
them, its share drops to 16%, which is much closer to the actual share. The issue of mode

availability is discussed further in section 6.
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Figure 4.14 — Actual mode shares for respondents Figure 4.15 — Predicted mode shares for respondents

Taking a closer look at the alternative specific constants reveals that the values for the
SOV, HOV, and transit options are all relatively similar, while park and ride was the least
attractive, and walking and cycling was the most attractive. In a scenario where the costs
and times of the different modes (with the exception of walking and cycling) were quite
competitive, the similarity of the alternative specific constants for SOV, HOV, and transit
means that each mode will obtain considerable market share. The results of such a
scenario are displayed in figure 4.16, with the exact attribute values available in appendix
5. The aversion to using park and ride services can possibly be explained because many
respondents were unfamiliar with the option (the service was either unavailable or
unknown to 61% of respondents compared to 2% for SOVs), and as a result they were
hesitant to select it even though the attributes may have been attractive. The attraction to
walking and cycling makes sense because many of the attributes associated with walking
and cycling, such as personal health and environmental benefits were not included in the

survey, so they are accounted for in the alternative specific constant.

62
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Figure 4.16 — Market Shares for scenario with similar times and costs

The results of survey question 13 were designed further explain the relative rankings of
each alternative specific constant by asking respondents how they rated eight different
mode attributes (six of which, weren’t included in the experiment design). Interestingly,
the results in figure 4.17 show flexibility, safety, and reliability were the most important
attributes excluded from the mode choice experiment. These would all seem to be
attributes that favor SOV travel, and they do little to explain why carpooling and transit
were rated equivalently in the model. Environmental impact is an attribute that would
favor non-SOV modes, but it was not rated as a particularly important attribute in the
survey. Two additional factors that may explain this difference are the companionship
possible in non-SOV modes, and the ability to work on other tasks. Based on survey
comments, these factors would seem to be important to some respondents, but

unfortunately, no questions in the survey specifically targeted these attributes.

5 Attribute Importance for Mode Choice
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Figure 4.17 — Attribute Importance in Mode Choice
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The mode choice models have three variables describing time (driving time,
walking/waiting time, and pickup/drop-oft time), and because the units are identical, they
can be compared directly. Interestingly, the respondents” valuations of the different types
of time were not identical, with the coefficients for the non-driving time attributes
approximately equal, and almost twice as influential as the driving time attribute. This
means for example, that an average respondent considers spending half an hour driving to
work 1o be roughly equivalent to waiting for 10 minutes, and then driving for another 10
minutes. So although the absolute time involved in these non-driving activities may be
small relative to the entire commute, their influence on respondent choice, and therefore
their role in policy, can be significant. A number of other mode choice studies
(Washbrook, 2002, Asenio, 2002, and Bhat, 1997 for example) have reached the same
conclusion that traveling time is more bearable then non-driving time, although it should
be noted that the values they observed for different types of non-driving time often had
different relative rankings. The only counter conclusion found in the literature belonged
to Train (1979), in which in vehicle time was found to be slightly more important than

waiting time (carpooling was not examined).

The elasticities for the six mode choice attributes are displayed in figures 4.18 through
4.23. As with the vehicle choice experiment, the elasticities are presented as the change
in market share over the percent change in attribute values, with four initial values shown
for cach attribute. The three figures for time-based attributes reinforce the conclusions of
the preceding paragraph, with pickup/drop-off and walking/waiting time elasticities being
relatively equal, and approximately twice as important as driving time. This can be seen
by comparing the lines marked by triangles (time = 15 minutes) on figures 4.20 and 4.21
with the line marked by squares (time = 30 minutes) on figure 4.19. The figures also
show that time seems to be a more important determinant of choice than cost, and that
both cycling route access and the number of transfers have similar but much smaller

impacts on market share than the time and cost attributes.
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Figure 4.18 — Cost Elasticities
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Figure 4.20 — Pickup/Drop-off Time Flasticities
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Figure 4.22 — Transit Transfers Elasticities
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4.3 Estimated Models Using Segmented Samples

The models discussed to this point have all included the full sample of respondents,
without any attempt to disaggregate the results based on different demographic
indicators. Different segments of society commonly hold different views, and the models
estimated for these different populations would presumably also be different. For
example, income and gender have commonly been interacted in utility formulations to
allow market share predictions to vary across different populations (Bunch, 1993 and
Ewing, 2000 provide vehicle choice examples). Although these segmentations can be
informative, they are not particularly useful for a model like CIMS, because there is no
means of distinguishing between different populations (except on a regional basis). As
such, the following discussions of sub-models tor vehicle choice and mode choice are
primarily to illustrate the potential for model misspecifications by not having

demographic differences represented within CIMS.

4.3.1 Vehicle Choice

In addition to the vehicle choice model based on all 3,278 observations, eight sets of sub-
models were estimated according to the same utility formulation presented in equation
4.3, to yield 32 individual sub-models. The segments were based on region, city size.
major cities, age, gender, education, family income, vehicle access, and vehicle type.
Each set of sub-models can be compared with the base model, using the same test that
compared the base model against those with no coefticients. The test statistic is two
times the difference between the cumulative log likelihood of the base model., and the
sum of cumulative log likelihoods for a set of sub-models (all five regions for example).
This statistic follows a chi-squared distribution, with the number of degrees of freedom
cqual to the number of coeflicients summed across sub-models minus the number of
coefficicents in the base model. The only caveat to this procedure is that the cumulative
sample sizes for the sub-models need to equal the sample size for the entire population.
In the cases where some respondents didn't fit into a category (some people didn’t

provide an income for example) the log likelihoods were scaled up to be comparable to a
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sample size of 3,278'. The results of these tests are displayed in table 4.8, and with the
exception of the major cities segmentation all of the sub-models offered greater

explanatory power than the base model with 99% confidence.

Segment Sub - Test Degrees of | Reject Null
Models | Statistic | Freedom | Hypothesis*
Region 5 88.4 32 Yes
City Size 3 68.9 16 Yes
Major Cities 3 -24.5 16 No
Age 4 92.5 24 Yes
[ducation 4 113.8 24 Yes
Gender 2 55.3 8 Yes
Income 5 113.7 32 Yes
Vehicle Type 4 573 24 Yes

*Models were significantly different with 99% confidence
Tuble 4.8 Significance of vehicle choice demographic segments

As groups, almost all of the segmentations explain the observed vehicle choices better
than the base model, but not all of their individual sub-models necessarily make sense
intuitively. FFor example, in the region sub-models, only two of the five sub-models had
all five coefficients with the expected sign, and none of the models had eight significant
coefficients. Table 4.9 summarizes how many times each attribute cocfficient had the
expected sign and was significant, and as can be seen, none of the coefficients were
significant in all 32 sub-models, and two of the five attribute coefficients didn’t have the
expected sign all the time. The fact that the fuel cost coefficient is not the expected sign
in seven of the 32 sub-models'” is of particular concern because it is difficult to explain
why increasing fuel costs would have a positive influence on utility. Also of note is that
both the express lanc access, and ASC for hybrid vehicles weren't significant in very
many sub-models (12 and 17 respectively), so although they were significant in the base

case, confidence in those estimates should be cautioned.

" Strictly speaking, this step is not mathematically correct, but due to the small number of missing samples

(less than 3%), the error introduced was deemed to be negligible.
" 1 all seven of these cases. the fucl cost coefficient was not significantly different from zero, but the most

fikely estimate was still a positive value,
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Times Times
expected coefficient
sign was was

Coefficient observed significant*
Capital Cost 32 26
Fuel Cost 25 22
Fuel Availability 32 27
Express Lane Access 29 12
Power 32 22
ASC - Gasoline na 31
ASC - AFV na 31
ASC - HEV na 17

*With 95% confidence
Table 4.9 - Summary of cocefficients in vehicle choice model segments

Recognizing that the sub-models have some problems, table 4.10 presents more detailed
information on each of the individual sub-models, while the complete parameter
estimates and t-statistics are available in appendix 6. Some of the most noteworthy
segments are those based on age, education, and gender, which all have the expected
signs in all of their sub-models. In these three segmentations, some of the differences
between sub-models followed distinct trends, whereas others seemed to be paiternless. In
the age segments, vehicle power and access to proper fuel had less importance for older
respondents, which could be the result of older respondents having less interest in driving
long distances, and a decreased desire for powerful vehicles. In the education segments,
access to the proper fuel was more important for people with more education, perhaps
because they were more likely to be traveling longer distances. Interestingly, higher
education leads to a greater importance being placed on vehicle power, which contradicts
the findings of Ewing (2000), and Bunch (1993), who both find increased education leads
to increased environmental concern. This finding also seems to contradict other model
results that show respondents with a higher education also had the greatest aversion to
gasoline vehicles compared to the cleaner hybrid electric, and hydrogen fuel cell vehicles.
Finally, when looking at the gender segments, women place less importance on power
than men, and they also place a much higher value on the operating costs relative to the

other attributes.
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Sub-Model Obs. | CLL | Expected Significant
Signs Coefficients*
All Observations 3278 |-3625.6 5 8
Region — Atlantic 286 | -310.5 3 4
Region — Quebec 772 | -867.0 5 6
Region — Ontario 1226 |-1334.8 5 7
Region — Prairies 583 | -622.5 4 5
Region — BC 411 | -446.5 4 4
City Size — More than 1,000,000 1670 |-1875.3 5 8
City Size — 500,000 to 1,000,000 924 | -9734 5 6
City Size — Less than 500,000 684 | -742.5 3 5
City — Toronto 709 | -780.5 5 6
City — Vancouver 353 | -373.6 4 3
City — Montreal 608 | -699.2 S 5
Age — Younger than 25 years 300 | -283.0 5 8
Age — 26 to 40 years 1053 |-1119.6 5 5
Age — 41 to 55 years 1226 |-1339.9 5 7
Age — Older than 56 years 687 | -823.8 5 4
Education — Grade 9 or less 139 | -181.2 5 2
Education — Grade 12 629 | -705.1 5 6
Education — College 1075 |-1153.4 5 6
Education — University 1401 | -1492.0 S 8
Gender — Male 1345 | -1501.1 5 6
Gender — Female 1909 | -2070.5 5 8
Family Income — Under $20,000 248 | -299.9 4 5
Family Income — $20,001 to $40,000 | 614 | -680.3 5 6
Family Income — $40,001 to $60,000 714 | -745.0 5 6
Family Income — $60,001 to $80,000 540 | -598.1 5 3
Family Income — Over $80,000 1044 |-1116.9 4 7
With Access to a Vehicle Only 3001 | -3306.4 5 8
Car Type — Small 914 | -978.6 5 8
Car Type — Medium 931 |-1015.9 S 7
Car Type — Large (includes minivans) | 751 | -829.8 S 7
Car Type — Trucks/SUV's 411 | -4753 4 4

*With 95% confidence
Table 4.10 — Summary of models in vehicle choice model segments

Although some interesting ideas and trends can be drawn from the segments, when the
accompanying problems are also considered there does not seem to be any critical
information being excluded by building a model based on the entire population. This
conclusion is important because it helps rationalize the use of a single set of behavioral
parameters in CIMS for all of Canada. More detailed segments and greater attention to
demographics would likely continue to increase the explanatory power of the vehicle

choice models, and potentially even eliminate some of the counter-intuitive results
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observed in this section. CIMS operates at a relatively coarse demographic resolution
however, and the level of detail that could realistically be included doesn’t seem to offer

any improvements.

4.3.2 Mode Choice

An almost identical seven segments were developed for the mode choice model following
the same utility formulations laid out in equations 4.7 through 4.11, resulting in 28 sub-
models. The only differences were that the vehicle access segmentation was replaced
with a commuter/non-commuter segmentation, and the vehicle type sub-models were
removed. As with the vehicle choice segmentations, each group of sub-models was
tested against the base model using a log-likelihood ratio test. The test statistics and
results summarized in table 4.11 show that all seven segmentation groups provided an

improved understanding of the data with 99% confidence.

Segment Sub - Test Degrees of | Reject Null
Model Statistic | Freedom | Hypothesis*
Region 5 108.2 40 Yes
City Size 3 48.4 20 Yes
Major Cities 3 185.3 20 Yes
Age 4 217.7 30 Yes
Education 4 73.7 30 Yes
Gender 2 99.3 10 Yes
Income 5 275.1 40 Yes

*Models were significantly difterent with 99% contidence
Table 4.11 — Significance of mode choice demographic segments

Like the vehicle choice sub-models however, although the base model was highly
significant with all signs appearing in the expected direction, the same cannot be said for
all of the individual sub-models. Table 4.12 shows how many times each attribute
coefficient had the expected sign and was significant over the 28 sub-models. All three
time coefficients had the expected signs in all 28 segments, but cost, the number of
transfers, and bike route access, had unexpected influences on utility in up to six sub-
models. Although bike route access., and the number of transfers could probably have
been non-factors for many respondents (especially those who may not have examined the
non-vehicle options closely), it is difficult to explain why increasing cost would be seen
as a benefit in four of the 28 sub-models. Also of concern is that access to a cycling path
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was only significant in one sub-model, and pickup/drop-off time, the number of transfers,
and the ASC's for SOV, HOV, and transit were significant in less than twenty of the sub-
models. This summary information about the mode choice segments shows that they
possess a considerable number of weaknesses and although the models may provide some
interesting insights, minimal overall value is lost by working with the base model in

CIMS.

Times Times
expected | coefficient
sign was was

Cocfficient observed |significant*
Cost 24 22
Driving Time 28 27
Pickup/Drop-off Time 28 19
Walking/Waiting Time 28 25
Transfers 24 7
Cycling Path 22 I
ASC - SOV Na 14
ASC - HOV Na 9
ASC - Transit Na 11
ASC - Park n' Ride Na 25

*With 95% confidence
Table 412 Summary of cocfficients in mode choice model segments

Table 4.13 illustrates how many coefficients had the expected sign, and how many were
statistically significant in cach of the mode choice sub-models. The complete sub-model
specifications are also avatilable in appendix 7. Some of the most interesting, and
rcasonable segmentations are those by region, city size, and age, but as with the vehicle
choice sub-modecls, the trends across different sub-models weren't always explainable.
IFor example, all else being equal, park and ride was the least popular mode in all regions,
and walking/cycling was the most popular except for Quebec where it was carpooling.
The aversion 1o park and ride could be explained by respondents’ general lack of
experience with the mode, but Quebecois” attraction to carpooling is strange considering
they also had the greatest aversion to high pickup/drop-off times. The importance of
driving time was relatively constant across regions, while cost had the highest relative
importance in BC and the Atlantic provinces. Although the coefficients in each of the
city size sub-models all have the expected signs, there are only negligible differences

between the three sub-models, and the base model. There are differences across the age
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sub-models however, where cost is most important for young and old respondents,
possibly because those samples are heavily weighted with students and retirces who have
less disposable income, making travel costs a more significant portion of their budget.
The attractiveness of the SOV and transit options were relatively similar for all four age
groups, but these modes were more attractive than walking/cycling for the elderly, while
the reverse was true for the younger age groups, possibly because they were more
physically able to undertake more active forms of transportation. Clearly there are a
number of estimated differences between the different sub-models, but because so many
are either inconsistent, or unexplainable, deciding which ones are valid, and which are

artifacts of the smaller sample sizes would be extremely problematic.

Model Segment Obs. CLL Expected Significant
Signs Coefficients*
All Observations 3,335 | -4,088.3 6 9
Region — Atlantic 282 -339.4 5 4
Region — Quebec 758 -909.8 5 5
Region — Ontario 1,277 | -1,555.6 6 6
Region — Prairies 597 | -7237 6 5
Region — BC 421 -505.7 6 7
City Size — More than 1,000,000 1,707 | -2,070.6 6 6
City Size — 500,000 to 1,000,000 944 | -1,151.2 6 5
City Size — Less than 500,000 684 -842.3 6 6
City — Toronto 750 -900.4 6 6
City — Vancouver 361 -435.7 6 6
City — Montreal 596 -709.1 4 5
Age — Younger than 25 years 300 -322.9 6 6
Age — 26 to 40 years 1,074 | -1.318.2 6 6
Age — 41 to 55 years 1,254 | -1,466.2 6 7
Age — Older than 56 years 701 -865.1 5 5
Education — Grade 9 or less 134 -162.4 3 0
Education — Grade 12 649 -790.4 5 7
Education — College 1,094 | -1,334.8 6 4
Education — University 1,432 | -1.732.3 6 7
Gender — Male 1.366 | -1,671.3 6 9
Gender — Female 1.951 | -2,345.6 S 6
Family Income — Under $20,000 253 -308.6 4 3
Family Income — $20,001 to $40,000 | 626 -737.7 4 4
Family Income - $40,001 to $60,000 | 727 -921.0 6 5
Family Income — $60,001 to $80,000 | 547 -642.1 6 6
Family Income — Over $80.000 1,058 | -1,194.5 6 7
Commuters Only 2,637 | -3,146.9 6 8

*With 95% confidence
Table 413 Summary of models in mode choice model segments
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4.4 Accounting for Uncertainty

Until now only the maximum likelihood estimates have been presented, and although
they do provide the best explanation of the data, they don’t provide a perfect explanation.
Many other combinations of  parameters could provide reasonable fits with the observed
choices, and by just focusing on the maximum likelihood estimators these additional
possibilities are ignored. Accounting for these alternative parameter estimates allows the
full range of possible outcomes and their associated probabilities of occurrence to be
assessed. Once this information is available, the relative strength (or certainty) of the
MLE’s can be easily secen. If many parameter combinations are equally likely, the
confidence in the MLE"s should be reduced, but if the MLE’s are much more likely than
the alternative combinations, confidence in them should be increased. These two
extremes are illustrated in figures 4.24 and 4.25, where both diagrams show the
probability that various parameter estimates explain hypothetical data sets. In both cases,
the maximum likelihood estimator is identical (5), but the certainty in that estimate is

much greater in figure 4.25.
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Figure 4.24 Diffuse pdf for hypothetical parameter  Figure 4.25 — Narrow pdf for hypothetical parameter

This way of thinking about uncertainty is significantly difterent from confidence intervals
or sensitivity analyses that focus primarily on the potential outcomes. without considering
their probability of their occurrence. Without both types of information, it is impossible

to take advantage of the full benefits of uncertainty analysis. Morgan and Henrion (1990)

outline three general reasons why incorporating uncertainty is often beneficial to policy
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analysis. First, accounting for uncertainty allows the most important factors in a decision
to be identified. and potentially unexpected outcomes can be anticipated. Second,
disagreements over predicted outcomes can be debated more fruitfully by comparing full
ranges of potential outcomes (which may overlap) instead of focusing on single point
estimates. In highly uncertain analysis, this can be particularly useful, because estimates
that initially seem to be vastly different may in fact overlap with each other once
uncertainty is accounted for. Third, properly documenting the uncertainty in an analysis
helps future work return to the ideas and incorporate them into additional analysis
without misinterpreting or overextending the results. These three reasons in combination
with the intuitive notion that attempts to understand human behavior will always be
clouded with uncertainty give a strong justification for the following techniques for

quantifying uncertainty in discrete choice models.

4.4.1 Technique for Quantifying Uncertainty in Discrete Choice Models

In order to account for the uncertainty in the f§ parameters of the vehicle and mode choice
models developed in section 4.2, it is necessary to return to the cumulative log likelihood
function presented in equation 4.2. The estimation routine in LIMDEP 7.0 focuses
exclusively on finding the parameters that maximize this equation using the most
efficient method possible. This is accomplished with the first and second order
derivatives of the likelihood function, and as a result of the efficient solving algorithm,
many of the possible combinations of beta parameters are skipped over in the search for
the MLE. The approach taken in this section first develops a series of possible values for
each B parameter centered at its respective MLE, and then determines the value of the
likelihood function for every possible combination of B parameters. The value of the
likelihood function for any set of parameters is directly proportional to the probability of
that combination of parameters occurring, so once enough combinations are evaluated,
the complete joint probability density function can be interpolated. Fortunately, local
minimum and maximums are not a concern because the parameter space of the log-
likelihood function for an MNL model is concave in all parameters (Train, 2003), and as
such, the likelihood function will decrease as any of the parameters are moved in either

direction away from the MLE. This technique is illustrated for a hypothetical DCM with
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a single B parameter in the figure 4.26. The left hand side of the diagram shows the
likelihood function evaluated at nine different parameter values. These points are then
scaled to unity on the right hand side and interpolated to form a probability density
function for the {ull range of explored B values. Although much harder to visualize, the

technique is the same when dealing with a multi-dimensional parameter space.
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tigure 4.26  Transforming likelihood values 1o a probability distribution function

Uncertainty was explored in eight of nine vehicle choice parameters, and nine of eleven
mode choice parameters. In both models, the alternative specific constants set to zero in
the initial estimation (hydrogen fuel cell vehicles, and walking/cycling) were fixed at
zcro for the uncertainty analysis. Fixing one of the alternative specific constants to its
maximum likelihood estimator does not detract from the analysis because it is only the
difference in utility values that matter, so if one is arbitrarily fixed to zero the full range
of possible differences is still explored. Because of computational time limitations, the
park & ride alternative specific constant was also fixed to its MLE (-1.95) to reduce the
amount of uncertainty being considered in the mode choice model. This simplification is
of minor significance because the park and ride option is not included in CIMS, so the

uncertainty surrounding its utility constant is relatively unimportant.

Series of seven possible parameter estimates were centered around each of the uncertain

B parameters’ MLE's so that the marginal probability for the values furthest from the
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MLE's were between 2% and 5%". The marginal probability of a parameter value is its
probability of occurring independent of the other parameters” values, so this step means
that between 4% and 10% of the possible values for each parameter are not being
considered. The resulting ranges of parameter values for the vehicle and mode choice
models are shown in tables 4.14 and 4.15 respectively. The log-likelihood function for
every possible combination of these B parameters was then calculated with the 3,278, and
3,335 choice observations using macros programmed in Excel 2000. Ideally, a wider
range of values, and finer intervals could have been explored, but the computation time
required to run the Excel macros was already considerable, and the fact that the

likelihood functions are concave minimized the potential to overlook subtle behavior.

Attribute Low High
Value Value
Capital Cost -5E-05 | -0.0001
Fuel Cost -0.002 -0.007
Fuel Availability 0.9845 1.3411
Express Lane Access -0.043 -0.277
Power -0.103 -0.337
Gasoline Vehicle ASC -1.549 -1.843
Alternative Fuel Vehicle ASC -1.805 -2.206
Hybrid-Electric Vehicle ASC -0.267 -0.462
Hydrogen Fuel Cell Vehicle ASC 0 0
Table 4.14 - Range of values explored in the vehicle choice uncertainty analysis.
Attribute Low High
Value Value
Commuting Cost -0.051 -0.038
Traveling Time -0.086 -0.060
Walk/Wait Time -0.093 -0.066
Pickup/Drop-off Time -0.326 0.008
Number of Transfers -0.004 -0.001
Cycling Route Access -0.069 0.416
Single Occupancy Vehicle ASC -0.666 -0.399
High Occupancy Vehicle ASC -0.591 -0.355
Transit ASC -0.601 -0.324
Park & Ride ASC -1.947 -1.947
Walk/Cycle ASC 0 0

Table 4.15  Range of values explored in the mode choice uncertainty analysis.

* This step was somewhat problematic because the ranges were determined using subsets of uncertain
parameters. Because the marginals are dependant on all the uncertain parameters, once the full set was
analyzed, the desired marginal wasn't achicved exactly.
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4.4.2 Results of the Uncertainty Analysis

Figures 4.27 through 4.34 present the marginal probability distributions for each of the
uncertain parameters in the vehicle choice models. So that the different figures can be
effectively compared, the vertical scales range from 0% to 30%. Horizontally, the scales
have been chosen so that they reflect each attribute’s average contribution to utility. For
example, the range for the capital cost coefficient is much smaller than the range for any
of the alternative specific constants because its contribution to utility is multiplied by the
values for capital cost. If these scaling adjustments were not made, the distributions for
the parameters that are multiplied by larger numbers would appear to be very narrow
(highly certain), which would misrepresent the actual uncertainty because utility is the
measure of interest. Using the presentation format in the following figures, direct visual
comparisons can be made, where high, narrow marginals indicate little uncertainty in the

parameter’s contribution to utility, and short, wide marginals indicate the opposite.

The probability distribution functions provide additional information that is not available
from the t-statistics presented in section 4.2. For example, even though both Brc, and
Brxp have very similar t-statistics (~3), the uncertainty in those parameters is quite
different, with Brc’s contribution to utility being almost three times as uncertain. An
additional point of interest is that although Bcc and Brc contribute the most uncertainty to
utility, the actual values they are likely to cover fall within relatively small ranges. For
example, 95% of the likely Bec values are between -1.22* 10* and -5.86*107. This
finding is important because the relationship between these parameters is typically used
to estimate private discount rates (see section 5.3), so a narrow range of likely parameter

values will translate to a narrow range of likely discount rate estimates.
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Figures 4.35 through 4.43 present the marginal probability distribution functions for the
beta parameters in the mode choice model and, similarly to the vehicle choice figures, the
vertical scales all range from 0% to 40%, and the horizontal ranges are selected to be
directly comparable in terms of contribution to utility. In terms of the relative
contributions to utility, these figures illustrate that the three time variables are the least
uncertain parameters. This finding is important because as discussed in section 4.2, they
are also the most influential variables on choice predictions. Also of note is the relatively
large degree of uncertainty surrounding the utility contributions from Brransiers and
Beyclepath, both of which have a significant probability of actually subtracting from a
mode’s utility. These possibilities match with the t-statistics presented in table 4.6, which

showed that both of these parameters couldn’t be significantly differentiated from zero.
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In addition to the marginal probability distributions for each of the uncertain parameters,
vehicle type market shares were calculated for each combination of parameter values.
Figures 4.44 through 4.47 show market share distributions for the different vehicle types
in a scenario where the attributes reflect current values, and cases where each of the three
non-gasoline vehicle types are individually promoted through cost subsidization, and
increased fuel availability (the details of these scenarios are available in appendix 4). As
with the marginal probability distributions, the peak of each curve represents the
maximum likelihood prediction for that vehicle type’s market share, and the wider the
distribution the less certain the prediction. In all of the scenarios, the figures show a
range of possible market shares for each of the vehicle types, where the most likely
estimate is sometimes less than 20% probable. Possible values for vehicle type market
shares cover ranges of up to 20%, and often overlap, which provides backing to the idea

that the single most likely outcomes shouldn’t be focused on.
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Figures 4.48 through 4.51 show the market share distributions for the different
commuting modes in a business as usual scenario, and scenarios where each of the non-
SOV options are each individually promoted (the details of these scenarios are available
in appendix 5). The widths of the distributions are slightly narrower than those obtained
for the different vehicle types, with ranges of up to 15% possible. The narrower
distributions are partially explained because fewer possible values were explored in some
parameters, which has the effect of increasing the likelihood of the maximum likelthood
estimates relative to the less likely parameter values. In general, both the vehicle type
and mode type market share distributions are narrow considering the range of values that
seemed likely in each of the parameters™ marginal probability distributions. This is
encouraging, because although the importance of each attribute is uncertain, that
uncertainty is not additive, and the resulting uncertainty surrounding the market shares
(and costs, and emissions) is not overwhelming. The techniques in this section have
successfully demonstrated the degree of uncertainty in the vehicle and mode choice

models, and ways of incorporating this understanding into CIMS will be discussed in

section 5.5.
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S INCORPORATING DCM’S INTO CIMS

The discrete choice models developed in section 4.2 are effective at predicting market
shares for mode and vehicle choice in isolation, but because they are isolated from the
rest of the economy, they are not immediately useful in an energy-economy modeling
context. To gain value from the discrete choice models, their performance will be
incorporated into CIMS once two specific obstacles are overcome. First, the technologies
themselves, and their organization in the DCM's do not match exactly with the
technology hierarchy used in CIMS. Second, the key CIMS parameters (v, i, and r) don"t
correspond directly with the weighting parameters used in discrete choice models. The
remainder of this section elaborates on these issues, and discusses the techniques used to
match the DCM technologies and predictive characteristics to CIMS (sections 5.1
through 5.3). The resulting CIMS parameters, and means of propagating estimates of’

uncertainty into CIMS are discussed in sections 5.4 and 5.5 respectively.

5.1 Matching the Mode Choice DCM to CIMS

Two specific problems were encountered when matching the discrete choice model for
mode choice to CIMS. The first of these is that CIMS competes SOV's, HOV's, transit,
and walking/cycling, whereas the DCM also includes a park and ride option. This issue is
casily resolved by removing the park and ride option from the DCM, and lcaving the
other utility formulations unchanged. This action doesn't necessitate alterations to the
utility formulations because of the multinomial-logit model’s property of independent
choice probabilities (see section 2.2). By removing the park and ride mode, the market
share it would have received is divided between the remaining modes so that their
relative choice probabilities are unchanged. This step also makes sense intuitively,
because a person who would have chosen the park and ride option was already willing to

use a mixture of modes, so their choices in the absence of the park and ride option seem

likely to also comprise a mixture of modes.
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The second problem is that CIMS competes modes using capital cost as an attribute.
which wasn’t included in the DCM formulation. Capital costs are commonly excluded
from mode choice models (Washbrook, 2000 and Bhat, 1997), because the decision is
viewed as a day-to-day usage decision where the sunk capital costs of a vehicle purchase
do not influence the decision. In other words, once a person has purchased a vehicle,
only the marginal cost of operating that vehicle influence the decision to use it*". The
reason that not including capital costs in the DCM formulation is a problem stems from
the way modes are competed in CIMS. Figure 5.1 presents a simplified illustration of the
mode choice competition in CIMS*, where light grey boxes are individual technologies.
and dark grey boxes are the parent nodes that group competing technologies or nodes
together. When a competition occurs between technologies (vehicle I and vehicle 2 for
example), the characteristics of those technologies are used to determine the resulting
market shares. When a competition occurs between nodes (SOV, HOV, transit, and
walking/cycling for example), market shares are determined using the market share
weighted averages of the life cycle costs for the underlying technologies. In the mode
choice competition for example, the SOV and OV characteristics are both based on the

market shares and life cycle costs of vehicle one and two.

' The decision to model mode choice as a usage or purchasing decision has implications for the calculation
of costs, because it is important to know if people who change their commuting paltgrns also change their
vehicle ownership. For example, does a commuter who decides to start taking transit to work also decide
to scll their vehicle. This issue is returned to in more detail in section 6.

“* In reality, the underlying vehicle technologies are developed in much greater detail.
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Figure 5.1 — Simplified urban transporiation technology hierarchy in CIMS
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This method of calculating market shares for mode choice in CIMS leads to a problem
because the capital costs, which are needed in the vehicle choice competition, cannot be
excluded from the mode choice competition where they are not desired. CIMS does not
currently possess the capability to exclude or block capital costs from market share
calculations, so to circumvent the problem, the mode choice competition is determined
outside the simulation. More specifically, CIMS is run normally without any changes to
the mode choice parameters, and once complete, the weighted average characteristics of
the resulting vehicle mix are calculated in an Excel spreadsheet. This allows the capital
costs to be omitted, and the remaining parameters are used in the external mode choice
competition. The resulting mode shares are used to determine the total stock in each

mode’s underlying technologies, so that costs and emissions can be calculated.

Although this approach fails to directly embed the performance of the discrete choice
model within CIMS, the predictions are almost identical® because the technology
attributes (excluding capital costs) are obtained from the simulation output, and the mode
shares are calculated using the parameters that would have been embedded in CIMS.

Macro economic feedbacks have been turned oft in all simulations to prevent mode

* Slight discrepancies will occur because the CIMS outputs that the external mode choice calculation is
based on are less precise than the values actually used in CIMS’ calculations.
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shares from atfecting fuel costs, which would in turn affect vehicle stocks. If this
feedback were allowed to occur, market shares calculated outside the model wouldn't be
correct because equilibrium would not have been reached. In reality, any errors
introduced by disabling the macro-economic feedbacks are likely minimal because the
demand for transportation services is typically inelastic (Espey, 1997). In future, the
revised competition algorithm could be directly embedded in CIMS so that macro
features could be activated, and all competition and costing calculations could occur
within the model. This could be simply accomplished by keeping the components of the
vehicle type life cycle costs disaggregated when passing them to the mode choice
competition. CIMS users would also need to be given controls to declare which
components of the life cycle cost should passed to the mode choice competition. These
steps would allow users to prevent capital costs from influencing the mode choice

competition, without removing them from the vehicle choice competitions.

5.2 Matching the Vehicle Choice DCM to CIMS

The challenges encountered when preparing the vehicle choice model for integration with
CIMS were considerably more complex than those linked to the mode choice model. In
total, four specific problems were addressed, two of which stem from the fact that CIMS
provides a more detailed breakdown of fuel and engine types than presented in the survey
questions. Instead of reducing the complexity of the DCM as was the case in the mode
choice model, the DCM needs to be expanded to represent a wider variety of decisions.
CIMS" complete model for vehicle choice is presented in figure 5.2, where the clear
boxes are individual technologies, and light and dark grey boxes group together
competing technologies or nodes. The underlying (or child) technologies/nodes of light
grey boxes compete endogenously within CIMS, while those stemming from dark grey

boxes are currently assigned market share using exogenously defined fixed ratios.
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The first problem presented by figure 5.2 is that the nested node structure for various
vehicle types results in some undesired substitution patterns. For example, if all ten
vehicle types had identical characteristics, one would expect them to each obtain equal
market shares, but this is not the case, with the desired and actual predictions presented in
table 5.1. The reason for the discrepancics is that the weighted average costs used to
compete the alternative fuels, other fuels, and gasoline vehicles nodes would be equal, so
these nodes are first assigned equal market shares (33%). CIMS would then divide the
33% cqually between the competing child technologies. and because the number of
technologies in each node is different, the resulting market shares will also be different.
This is an cxtreme example, but the same sorts of problems occur regardless of the

technology characteristics. These substitution patterns are difficult to defend
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theoretically”®, and they make it very difficult to match CIMS to the performance of the
DCM that doesn't contain any nested competitions. To solve the problem, all ten of the
new car technologies were reassigned to the gasoline vehicles node, and the market share
for that node was fixed at 100%. An identical operation was performed on the new
trucks node. These modifications have been made to the version of CIMS used for this
research, but in order to make CIMS as transparent and intuitive as possible, it is strongly

recommended that they be adopted permanently.

Market Share
Desired CIMS
Technology Prediction | Prediction
High Efficiency Gas 10% 17%
Low Efficiency Gas 10% 17%
Propane 10% 11%
Natural Gas 10% 11%
Diesel 10% 11%
Methanol 10% 7%
Ethanol 10% 7%
Electric (Battery) 10% 7%
Hybrid-Electric 10% 7%
Hydrogen Fuel Cell 10% 7%

Table 5.1 - Market share discrepancies resulting from nested technology structure

The second problem presented by the vehicle choice models is that the four technologies
in the discrete choice model don’t match the ten modeled in CIMS. As with the mode
choice model, this problem can be solved because the 1IA property of the multinomial
logit model permits the addition or subtraction of alternatives without the need to re-
estimate the model. This step was accomplished by mapping the DCM technologies
directly to CIMS where possible, and adding new technologies where necessary. All new
technologies had the same weighting coefficients for attributes, but the alternative
specific constants were chosen to reflect differences in vehicle types where appropriate.
Hybrid electric and hydrogen fuel cell vehicles were mapped directly to their namesakes
in CIMS, and the alternative fuel vehicle was assumed to be equivalent to propane,

natural gas, methanol, and ethanol options, so no changes to the alternative specific

* They were initially grouped this way because CIMS did not allow more than five technologies at a node,
and the hierarchy allowed policies like vehicle emissions standards to be roughly simulated. The
technology limitation no longer exists, and these types of policies can be simulated using other techniques.
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constants were required for these technologies. The ASC for diesel vehicles was set as
the average of gasoline and alternative fuel vehicles, indicating that it was slightly less
preferred than the gasoline option, but more so than less conventional automotive fuels.
The ASC's for the high and low efficiency gasoline vehicles were selected so that the
DCM market shares were equivalent to the business as usual shares predicted in CIMS,
and that the market share weighted average of their alternative specific constants equaled
the ASC of the gasoline vehicle in the base DCM. Selecting an ASC for electric vehicles
was somewhat problematic because the driving range, and recharging time are both
significant attributes for this type of vehicle (Bunch, 1993) that weren’t tested in this
vehicle choice experiment. Based on the work of Ewing (2000), and assuming a driving
range of 160 km, and a recharging time of 40 minutes, 0.54 was subtracted from the
alternative specific constant of the hydrogen fuel cell vehicle’s ASC. The resulting
alternative specific constants displayed in table 5.2, were input into the version of CIMS
used for this research, and should be included in the standard version in the future. It is
important to note that although a number of technologies in CIMS are taking on the same
DCM attribute coefficients and ASC's (all of the alternative fuel vehicles for example),
they won’t necessarily have identical costs within CIMS, because the tangible and

intangible attribute values can still be set independently.

Vehicle Type Alternative
Specific
Constant
Methanol -2.01
Ethanol -2.01
Electric -0.54
Hybrid-electric -0.36
Hydrogen Fuel Cell 0.00
Diesel -1.86
Propane -2.01
Natural Gas -2.01
Gas — High Efficiency -2.39
Gas — Low Efficiency -0.92

Table 5.2 - Alternative specific constants for CIMS ' vehicle types.

After the technology hierarchy had been modified to match with CIMS, the vehicle

choice models also needed to be adjusted to account for the possible false environmental
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effect mentioned in section 4.2. The concern with emissions reductions is that people
may unconsciously say they are willing to pay more for them than they would do so in
reality, so the alternative specific constants would be artificially inflated to reflect the
survey responses. To account for this problem, a portion of each vehicle type’s
alternative specific constant was assumed to represent its environmental attractiveness,
and that portion was removed. The amount subtracted was based on the work of Ewing
(2000), who analyzed the influence of emissions reductions as a varying attribute. In
order to be able to use the information from Ewing’s model, all of the coefficients in his
model were scaled so that the coefficient for capital cost equaled the value for capital cost
obtained in this research. Next, the scaled estimate for the emissions reduction
coefficient was multiplied by the percentage emissions reductions for each vehicle type to
produce an emissions modifier for each vehicle type's alternative specific constant. The
resulting modifiers are presented in table 5.3. It is important to note that the influence of
reduced emissions on utility could be real, so the policy analysis performed in section 6 is

undertaken with and without the environmental effect.

Vehicle Type Emissions
Modifier
Methanol -0.18
Ethanol -0.04
Electric 0.00
Hybrid-electric -0.09
Hydrogen Fuel Cell 0.00
Natural Gas -0.16
Propane -0.19
Diesel -0.16
Gas — High Efficiency -0.11
Gas — Low Efficiency -0.32

Table 5.3 — Alternative Specific Constant Modifiers for Emissions Effect

The final challenge presented by the vehicle choice models was that the DCM's don’t
account for the availability of different makes and models within a vehicle type. For
example, even though a hydrogen fuel cell car may be preferable to a comparable
gasoline vehicle, if 100 different makes of gasoline vehicles are available compared to
one make of hydrogen fuel cell vehicle, the gasoline vehicles will likely capture a greater

cumulative share of the market. To account for this effect, an additional factor has been
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added to each vehicle type’s alternative specific constant to represent its availability,
assuming that the base model represents a scenario where all vehicle types are equally
available. Similar to the possible emissions modifiers, these modifiers are highly
speculative because they were not part of the initial experimental design, and as such, the
policy simulations in section 6 are carried out both with and without the modifiers. The
modifiers were initially calculated by determining the necessary adjustments to the base
alternative specific constants so that the resulting market shares were equivalent to those
presented in table 5.4. These target market shares were based on CIMS’ business as
usual predictions before any modifications to the decision algorithms were made. The
same table also shows the alternative specific constant modifiers needed to achieve those
market shares. Appendix 8 contains additional tables of alternative specific constant
modifiers that are designed to reflect different availability scenarios. These are
unfortunately not dynamic, because only one set of modifiers can be used for a single
CIMS run (see section 5.3), but they do provide additional flexibility that wasn’t

previously available in CIMS.

Vehicle Type Market Availability
Share Modifier
Methanol 0% -1.44
Ethanol 1% 0.94
Electric 0% -2.67
Hybrid-electric 1% -5.36
Hydrogen Fuel Cell 0% 0.00
Propane 0% -0.48
Diesel 4% 1.94
Natural Gas 1% 1.31
Gas — High Efficiency 49% 3.10
Gas — Low Efficiency 44% 2.26

Tuble 5.4 — Vehicle Type Market Shares, and Associated Availability Modifiers

Although make and model availability is undoubtedly an important component of vehicle
choice, the results of this exercise show that some other effects are probably present
because the sizes of the modifiers are not consistent. For example, the electric hybrid
modifier is much larger than the hydrogen fuel cell vehicle modifier even though some
hybrid cars exist, while no hydrogen fuel cell vehicles can be purchased yet. As a result,

these modifiers are recommended only for use as a sensitivity analysis in combination
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with the base estimates. This approach is motivated in part by DeCanio and Laitner
(1997), where techniques that solely use the calibrated estimates are critiqued for being
too static in their predictions because the calibration is trying to account for too many

different factors.

In future, it is recommended that availability be modeled more explicitly so that it can be
easily changed to reflect different scenarios. Two possible approaches to this challenge
are discussed here in hopes that they will be addressed more thoroughly in future
research. First, the CIMS vehicle choice algorithm could be split into a number of
identical competitions designed to reflect the different classes of cars people focus their
vehicle searches within (small cars and SUV's for example). Within each of these sub-
decisions, CIMS would be modified to allow the analyst to declare which vehicle types
are available (hybrids not being available in the SUV decision for example). This
approach would reflect consumer’s apparent willingness to purchase alternative vehicle
technologies as long as they are available in the vehicle type of interest. A second
approach would be to repeat the vehicle choice survey with an additional attribute
describing the number of models available in each vehicle type. The model could then be
estimated with availability explicitly defined as an attribute, and the market dynamics
would be endogenous to the model. A challenge with this approach is that describing
availability in a hypothetical choice is extremely difficult, and would present a significant

hurdle in survey design to ensure respondents could picture the intended market scenario.

5.3 Estimating CIMS Parameters

Once the performance and structure of the discrete choice models had been suitably

modified to reflect the desired mode and vehicle choice decisions being modeled in

CIMS, their behavioral performance could be incorporated into CIMS. Equation 5.1

(initially introduced as equation 1.2) illustrates how market share for competing

technologies is allocated in CIMS.
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In the equation, MS; is the market share of technology j, CC; is the capital cost, r is the
discount rate, n is the technology lifespan, MC; is the maintenance cost, EC; are the
energy costs, 1 is the intangible cost, v describes the degree of market heterogeneity, and
K is the number of competing technologies. Two key differences exist between this
equation and the market share calculation for discrete choice models (equation 2.6), each
of which present challenges for matching the two together. First, the i parameter in
CIMS is a single constant, whereas in the DCM’s the non-monetary attributes are each
explicitly defined, and weighted by their own coefficients. As a result, the same amount
of detail and flexibility that is present in a DCM can’t be expressed in CIMS using the
current algorithm. Second, the observed utility is the exponent of the term for each
alternative in the DCM, whereas in CIMS, the life cycle cost is the exponential base in
each term. Although both relationships produce exponential curves, this difference
means that changes in market share for the DCM’s are dictated by the magnitude of the
differences between utility, while in CIMS, changes in market share are dictated by the
ratio of life cycle costs. This difference in the performance of the two relationships
makes it impossible to make the two curves equivalent, and as discussed at the end of this

section, it also has implications for market share calculations and cost estimates for

nested nodes.

Two basic approaches exist for bridging these disconnects between the DCM’s and
CIMS’ market share allocation algorithms. First, it is possible to maintain the existing
algorithms within CIMS, and select the v, i, and, r parameters so that the predictions in
CIMS match those produced by the DCM’s. Alternatively, the market share allocation
algorithms in CIMS could be replaced with the market share allocation formula for

DCM’s directly. The first approach is the simplest, because it doesn’t necessitate any
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structural changes to CIMS, but at the same time it reduces modeling flexibility because
intangibles can’t be manipulated individually or dynamically, a perfect match with DCM
predictions isn’t possible, and estimating parameter values is still subject to a degree of
arbitrariness. The second approach would make the internal workings of CIMS more
complex (especially during a changeover from one methodology to another), but
flexibility would be maximized, and the performance of the DCM’s would be perfectly
preserved. These tradeoffs were discussed at length within EMRG (Horne and Rivers,
2002), and the decision was made to follow the first approach, primarily because of the
desire to preserve simplicity and consistency across the model. If more competition

nodes are based on discrete choice models, this decision deserves revisiting.

The first approach is possible because in general, the market share curves for CIMS and
DCM’s are essentially mirror images of each other, as illustrated for a two technology
case in figures 5.3 and 5.4. Although CIMS allocates market share based on life cycle
costs®, while DCM's allocate based on utility, the mathematical forms for market share
result in similar behavior. For a given change in cost or utility, each model predicts
significant market share changes (high elasticities) when a technology has close to 50%
market share (the dark squares on either figure). Conversely, when a technology has the
majority or minority of market share, both models predict small changes in market share
(low elasticity) for the same change in cost or utility (the light triangles on either figure).
The techniques described in the following paragraphs describe a standardized
methodology for mapping the B parameters in DCM’s to the v, i, and r parameters in

CIMS that make the market share predictions as equivalent as possible.

** As mentioned, the life cycle costs in CIMS contain financial and non-financial costs, so they are

analogous to utility in many ways.
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Technology Market Shares: CIMS Technology Market Shares: DCMs
100% A 100%

80% - 80% -

60% 60% A

Market Share Technology 1
Market Share Technology 1

40% A 40% A
20% A 20% A
0% a 0%
Life Cycle Cost (Technology 1) Utility (Technology 1)
Figure 5.3 — CIMS market share curve Figure 5.4 — DCM market share curve

The simplest CIMS parameter to obtain from a DCM is the discount rate, r, which Train
(1985) has shown can be derived from a multi-nomial logit model using equation 5.2,
_ B _ -n - L
r = x(1=(1+rN™") (kquation 5.2)
oC
where Bec and Boc are the DCM coefficients for capital cost operating cost, and n is the

lifespan of the technology. If n is sufficiently large, the term to the right of the

multiplication sign approaches 1, and the discount rate can be calculated according to

equation 5.3.
y = -é(-(— (Equation 3.3)
B

Table 5.5 summarizes some points when this simplification can be accurately used?®,
where the validity depends on the discount rate. Because the technology lifespan for
vehicles in CIMS is 16 years, and many studies have observed discount rates under 35%
for vehicle purchases (Train, 1985), the simplification probably isn’t valid in this case so

the full equation will be used.

* The simplification was deemed to be accurate if it produced estimates for the discount rate within 1% of
the full formula.
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Discount Rate | Lifespan
5% 95
10% 49
15% 33
20% 26
25% 21
30% 18
35% 16
40% 14
45% 13
50% 12
55% 11
60% 10

Table 5.5 — Tech. life and discount rate combinations when equation 5.3 can be used

The intangible cost parameter i; is calculated in a similar manner to the way capital costs
are annualized, starting by determining the tradeoff between each non-monetary attribute
and the operating cost (i.¢. a capital recovery factor for each component of the intangible

cost), illustrated by equation 5.4

: 2
(/RF,( = Lk (Equation 5.4)
o
where, CRFy and B are the capital recovery factor and weighting parameter for each non-
monetary variable k. The intangible cost parameter in equation 5.1, ij. is then calculated

by applying the capital recovery factory to each non-monetary variable, and summing all

the terms according to equation 5.5

IS

i = Z(CRF,( x X, ) (Equation 5.5)

where X, is the value for non-monetary variable k, and K is the number of non-monetary
variables, including the alternative specific constant®’. The reason that the capital
recovery factor is applied to each Xy is that no frequencies were given for any of the

intangible costs in the survey, so respondents are assumed to have treated them as up

front considerations similar to capital costs.
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Equation 5.5 requires values for each Xi to be selected (the value for average SOV
driving time for example) before i; can be calculated. This requirement means that any of
the intangible variables are fixed at a single X value for a given CIMS run, and cannot
be dynamically altered during a simulation. They can however be changed prior to a run
to describe a particular scenario (see section 6 for further discussion). As a possible
future improvement to CIMS, it would be useful to be able to set X to different values in
each time period. This approach would necessitate modifying CIMS to allow each i,
parameter to be defined independently for each period. For example, this improvement
would allow changes in traveling time, or changes in fuel availability to be explicitly
modeled by calculating the desired i; parameters based on the discrete choice models and

inputting them exogenously for each CIMS period.

Once the r and i; parameters have been estimated, v can be selected so that the market
shares predicted by CIMS match the market shares predicted by the discrete choice
models. Based on equation 2.6 and 5.1, this relationship is shown by equation 5.6.

—v
+MC, + EC, +1,

, O x——
e 1-(1+r)
— (Equation 3.6)

—_— 0

K .
V A r
Ze CC,x ———+ MC, + EC, +1i,
Z k [—(I+r)" k kT

The difficulty with this relationship is that no direct analytical solution exists for v that
will satisfy all combinations of attribute values that can occur within or across different
simulations. Because the v parameter represents market heterogeneity, it shouldn’t be
affected by changes in attribute values. As a result, v should be selected to best satisty
the range of possible attribute values that are likely to occur during a simulation. To
mecet this requirement, an array of possible attribute value combinations was created for
each set of technologies, and starting with a guessed value for v, each technology's
market share was calculated using both sides of equation 5.6. The squared error between

CIMS’ market share and the DCM’s market share were then summed across technologies

*" The X,’s for the alternative specific constants equal one.
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and attribute value combinations to yield a cumulative error term for the given v.
Microsoft Excel solver was then used to find the v that resulted in the minimum
cumulative error term, which was taken as the optimal estimate for v given the ranges of
attribute values explored. Although this is essentially a calibration step (which was one
of the problems with the current methodology for obtaining CIMS parameters), it is
calibrating CIMS to a wide range of empirically estimated tradeoffs, and it is only

calibrating a single parameter.

Calculating CRF for each alternative specific constant leads to an issue with market
share allocation because the magnitudes of the alternative specific constants in a discrete
choice model are arbitrary. As mentioned, DCM market shares are dictated by the
differences in utilities, so only the differences between alternative specific constants
matter. This means that the arbitrary anchoring of the alternative specific constants to
zero doesn’t effect the market share predictions. The alternative specific constants’
anchor point does impact the calculation of CRF, however, because CRF is directly
related to each alternative specific constant’s value. Even though a different value for
CRFy would lead to a different intangible cost parameter, ij, the CIMS and DCM
predictions would still be almost identical because v is determined after i;, and would
change to reflect changes in ij28. Problems occur however when the results of one
competition feed into another, as is the case in the mode choice competition. If the
vehicle choice model’s alternative specific constants were anchored at 10,000 instead of
zero, the life cycle costs being propagated to the mode choice competition would be
substantially higher, and the market shares for the non-vehicle modes would be much
larger as a result. This problem is not a concern for this research because only the
operating and fuel costs (instead of the life cycle costs) were transferred to the mode
choice competition. To ensure that the problem is not encountered in the future, it is
strongly recommended that discrete choice models be developed for any nodes that feed

into one another, and that only explicitly declared attributes (capital, fuel, and operating

** This means that different anchor points in the discrete choice model could lead to any value for v, even
though mode! performance would be unchanged.
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costs) be passed between these nodes. Intangible costs would therefore need to be
declared at each node separately based on that node's discrete choice model, and scaling
problems would be avoided. If additional attributes are made explicit within CIMS in the
future (travel time for example), these could also be propagated from node to node with

the financial costs.

Even if the recommendations in the preceding paragraph are followed, the same issue
leads to potential problems when calculating the welfare costs of a policy. Currently in
CIMS, welfare costs are only calculated for tax-based policies by interpreting the area
under a cost curve as society’s willingness to pay (MKJA, 2002). This method would
still work correctly, but more direct approaches at calculating welfare costs such as those
discussed in Rivers and Horne (2003) would be more problematic. In these approaches,
welfare costs would be calculated directly based on the stocks, and financial and non-
financial costs for each technology in CIMS. Unfortunately, the component of the non-
financial cost that stems from the alternative specific constants is essentially arbitrary,
and the sclection of an anchor point would have significant bearing on the final cost
calculations. A potential solution for dealing with this problem would be to exclude the
alternative specific constants’ contributions to the intangible cost when calculating costs.
As long as the discrete choice models are well designed, the alternative specific constants

should constitute a relatively small portion of observed utility, so excluding them should

not significantly impact cost predictions.

5.4 Resulting Parameters

The resulting v, and r parameters for the vehicle and mode choice models are shown in
tables 5.6 and 5.7. The most likely estimate for the vehicle choice discount rate was
calculated to be 22.6%., with 95% of the possible estimates falling between 10% and
59%. These estimates fall well within the wide range of values observed in similar
studies, with Train’s (1985) survey of the literature finding rates of 0% to 40% in vehicle

choice decisions examined in eight studies. More recently, Ewing’s (2000) results show
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discount rates of 19% or 70% depending on the coefficient examined, while Bunch’s
(1993) parameters leads to a rate of 0%’ (none of these values were discussed in either
of the papers). Although this range of estimates in the literature is quite wide, the fact
that the rate observed in this study is well within the extremes lends confidence to the
model results. The v estimates were selected as the best-fit values across 3,072 and 576
combinations of vehicle and mode choice attribute values. Depending on the subset of
combinations, the solution varied from 2.79 to 2.99 for the vehicle choice models, and
1.99 to 2.26 for the mode choice models, showing that optimal solution is fairly robust to
changing attribute values. These values for the v parameters are quite low compared to
the current values used in CIMS (10 for vehicle choice and 6 for mode choice), which
means that the new parameters will predict more market heterogeneity given similar life
cycle costs. In other words, the less preferred technologies will receive more market
share than they currently do. These changes have been made to a version of CIMS used

solely for this project, but they are also recommended as modifications for future CIMS

modeling projects.

Parameter | Estimate Parameter | Estimate

v 2.9 v 2.2%

r 22.6% r Not Applicable
Table 5.6 - v and r for vehicle choice Table 5.7 - v and r for mode choice

Although the i parameters for each technology in CIMS are functions of non-cost
attributes, tables 5.8 and 5.9 present the most likely estimates for the vehicle and mode
types based on the attribute levels provided by respondents in the telephone and mail
surveys. The vehicle type estimates also include the possible modifiers for emissions and

availability, which are not dependant on the attribute values®'. The magnitudes of the

* Calculated assuming average driving distance of 17,000 km/year (Transport Canada, 2000).

*® The lower v for the mode choice does not contradict the earlier conclusion that the mode shares were
more influenced by attribute values than vehicle shares (see section 4.3). The lower v value is simply an
artifact of the larger intangible costs in the mode choice model.

' The base values and modifiers for the vehicle types’ i parameters presented in table 5.8 were not the
exact values entered in CIMS because of a bug in the simulation software. CIMS does not allow negative
operating costs, so to ensure that the sum of the i parameter and the existing O&M value were positive, a
portion of the modifier was discounted and applied to the capital cost instead. The declining capital cost
functions were adjusted so that their performance mimicked the original CIMS setup.
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intangible cost parameters for vehicle types seem reasonable even though the availability
modifiers are quite large, with a spread of over $20,000 / year between the hybrid-electric
and high-efficiency gasoline vehicles. These modifiers are large enough that they will
completely dominate the vehicle type decision, but that is not unreasonable considering
they are designed to simulate a case where only gasoline vehicles are available to the
majority of the population. Until alternative vehicle technologies are made available to
the public, they will not see significant adoption, regardless of how attractive their
attributes are. The intangible costs for the mode choice are also quite large, but once
again this makes sense based on the survey data, where respondents indicated that they

felt time was the most important factor in their mode choice decisions.

Vehicle Type i — Base i — Emissions i — Availability
Modifier Modifier
Methanol $ 4,771 / year $ -469 / year § 3,756/ year
Ethanol $ 4,013/ year $ -104/ year $ -2,452/ year
Electric $ -1,051/ year $§ 0/year $ 6.964 / year
Hybrid-electric $ -1,521/year $ -235/year $ 13,980/ year
Hydrogen Fuel Cell $ 270/ year $§ 0/year $ 0/ year
Propane $ 4,771/ year $ -496 / year $ 1,252/ year
Diesel $ 3,335/ year $ -417/ year $ -5,060/ year
Natural Gas $ 4,771/ year $ -417/year $ -3,417/ year
Gas — High Efficiency | $§ 3,774/ year § -287/year $ -8,086/year
Gas — Low Efficiency | § -633/year | § -835/year $ -5.895/year

Table 5.8 — Estimates of i for each vehicle type

Mode i

SOV $ 6,352/ year
HOV $ 7.828 / year
Transit $12,394 / year
Walk/Cycle | $11,947/ year

Table 5.9 — Estimates of i for each mode tvpe

As a validation step for the techniques mentioned in this section, the market shares
predicted by the DCM’s are compared with the market shares predicted by CIMS using
the DCM derived parameters. Figure 5.5 through 5.8 and 5.9 through 5.12 show these
comparisons for four validation scenarios of mode and vehicle choice, with the details of
each scenario available in appendices 4 and 5. The predicted market shares resulting

from the discrete choice models and CIMS based on the discrete choice models are
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extremely close. The discrepancies in the vehicle choice comparisons are slightly larger

than their mode choice counterparts because the greater number of choices makes the fit

for the v parameter less exact. In a two-technology case, the fit between CIMS and the

DCM would be almost perfect. The steps described in the previous section have been

programmed in Excel 2000 so that CIMS parameters can be easily estimated for any

desired scenario of attribute values. A variety of these scenarios and the resulting i

parameters are presented in appendix 9, with their use in CIMS discussed in section 6.
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5.5 Propagating Uncertainty Into CIMS

The steps outlined in the preceding section only discuss how to estimate single values for

behavioral parameters while it has already been noted that the B parameters they are

based on are only the best estimates. Each of these alternative values could lead to

different model predictions for stocks, emissions, and costs, and as such, it would be

advantageous to be able to propagate the information gained about preference uncertainty

into an energy-economy model. Doing so would allow the advantages of including

uncertainty raised by Morgan and Henrion (1990), namely identifying key factors,

facilitating comparison, and enabling future elaboration, to be exploited. In addition, a

full examination of uncertainty also opens the possibility of determining the expected

outcomes of a policy scenario, which are defined as the sum of the possible outcomes

individually weighted by their probability of occurrence. Rechow (1994) explains that

the expected outcome can differ from the most likely outcome if either the magnitude of

possible outcomes or their probabilities of occurrence are asymmetrically distributed.

Whenever this is the case, making decisions based on the most likely outcome (i.e. not
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accounting for uncertainty) can lead to sub-optimal actions. As an example, take a
situation where policy A would lead to low emissions in the most likely scenario, but
disproportionately high emissions if a certain set of parameter estimates turns out to be
true. If policy B predicts slightly higher emissions levels for the most likely parameter
estimates, but isn’t accompanied by the extremely negative outcomes for other estimates.
it could be the decision maker’s preferred action. Before being able to take advantage of
these strengths, the challenge that remains is finding a way to propagate the information

gained in section 4.4 into CIMS in an accurate and efficient manner.

Currently, energy-economy models generally recognize the importance of uncertainty,
but their actual treatment is inadequate, commonly neglecting the issue entirely, or
simply exploring a selection of possible scenarios (Schimmelpfennig, 1996). Some of the
stronger approaches include Manne and Richels (1994), and Fiddaman (2002) who have
addressed uncertainty using top-down models (Global 2100 and FREE respectively).
Manne and Richels surveyed experts to develop distributions for GDP growth, elasticities
of substitution, AEEI, availability of economically competitive renewable substitutes to
coal-fired electricity, and the costs of non-electric liquid fuel backstops. Fiddaman
developed subjective distributions for a similar set of parameters. Their works account
for a wide range of uncertainty, and they produce predictions for global carbon emissions
ranging between 5 and 25, and 5 and 20 gigatons in 2030 respectively. Although useful,
neither of these models are based on empirical data, nor do they explicitly account for the
uncertainty in preferences for different technologies. This avoidance of preferences
could be attributed to the conventional neoclassical economic assumption that
preferences are static in the short-run, and unchanged by government or market
influences. This would be unfair, as accounting for uncertainty is not necessarily a
rejection of these assumptions, and should more correctly be interpreted as a recognition
that consumer preferences cannot be perfectly observed and modeled by an outside
observer. Therefore, even if preferences are static, preference modeling should allow for
a range of possible preferences. Techniques that account for behavioral uncertainty using
empirically estimated confidence intervals have been demonstrated by Stavins (1999) in

the specific context of converting farmland to forests to sequester carbon, and also
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discussed by Jaccard et al. (2003). These approaches are beneficial in that they show a
range within which the most likely outcome is likely to occur, but they do not provide
information on the distribution of outcomes, which is critical when determining the

expected costs of a policy.

A logical approach to comprehensively account for behavioral uncertainty in CIMS
would be to solve v, i, and r for each combination of B parameters, and use values from
the joint probability function for the B parameters to develop a joint probability
distribution of v, i, and r. This distribution could then be sampled from, and with each set
of v, i, and r parameters used to run CIMS, the resulting simulation outputs could be
compiled to develop probability distributions for technology stocks, costs, and emissions.
Unfortunately the time required for this approach is not feasible for two reasons. First,
solving v, i, and r already takes considerable time, so repeating these steps for each
combination would be too time consuming, especially considering that it would need to
be done for each change in attribute values that would lead to different i values. Second,
CIMS already takes upwards of ten minutes to run using single parameter estimates, and
that time would become unmanageable if parameter estimates needed to be sampled

hundreds of times for a single CIMS run.

In order to circumvent the problems discussed above, an alternate approach involves
calculating market shares normally in CIMS (using the most likely estimates of v, i, and
r), and then randomly modifying those market shares based on the market share
distributions obtained in section 4.4. To describe the process more specifically, imagine
a CIMS technology competition between three technologies. First, assuming that the
market shares are approximately normally distributed (limited within the range of 0% to
100%), a standard deviation is selected for each technology as a function of that
technology's most likely market share by fitting the proposed distribution to the market

share curves developed for vehicle and mode choice in figures 4.44 through 4.51. After
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the initial market shares are calculated. the following four™ steps are repeated until
smooth distributions are obtained for the three hypothetical technologies. First, a revised
market share is sampled for the first technology using its initial market share as the
distribution’s mean. Second, the shares of the remaining two technologies are scaled so
that their relative shares equal the initial proportions, and the total market share sums to
100%. Third, a market share is sampled for the second technology using its revised
market share as the distribution’s mean. Finally, the third technology’s market share is
assigned so that the sum of the three shares equals 100%. This approach is only
mathematically valid if the market share distributions are independent of each other,
meaning that sampling a certain market share for the gasoline vehicles doesn’t affect the
likelihood functions of the remaining vehicle types. This assumption was not rigorously
tested, but the symmetry of the marginal distributions for each p parameter, and the
symmetry of the market share distributions shows that any dependencies are probably

negligible.

Standard deviations for the distributions of market shares for vehicle types and mode
types were described according to the quadratic equations shown in equations 5.7 and 5.8
respectively®’, where MS refers to the maximum likelihood estimate for market share.

sd,,. =-0.0004963x MS® +0.04963x MS +0.5186 (Equation 5.7)
sd,,. =-0.0004284 x MS? +0.04284 x MS +0.5055 (Equation 5.8)

These equations produce standard deviations between 0.52% and 1.76% for vehicle type
choice, and 0.51% and 1.57% for mode choice, which come very close to approximating
the original distributions. The steps to produce distributions of vehicle type and mode
market shares were programmed using an Excel 2000 macro, which also calculated the
related distributions for stocks and emissions. The macro utilized CIMS outputs, and the

process was iterated 10,000 times to achieve smooth distributions that were unbiased

* For competitions with more or less than three technologies, the number of steps to be repeated is equal to

one less the number of technologies multiplied by two.
* Quadratic equations were used because they allow the function to mimic the behavior of decreasing

uncertainty as the most likely market shares approach 0% or 100%. A simple direct relationship with
market share would not have facilitated this performance.
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from the maximum likelihood estimates. The results of this analysis are presented in the

following section, which examines a number of different policy scenarios.

This approach is subject to three limitations that should be discussed before proceeding.
First, and probably most importantly, the uncertainty being discussed in this paper only
refers to the uncertainty surrounding consumer preferences. In addition to this source of
uncertainty, there is also a considerable degree of uncertainty in the technical data within
CIMS, and its magnitude relative to the behavioral components is unknown. To properly
address this issue, a detailed review of the costs and emissions data in CIMS is
required®’. Second, the techniques have only been applied to the personal urban
transportation technologies in CIMS, and until the majority of the key technologies are
approached in a similar manner, estimates of uncertainty for the economy would be
considerably understated. This problem is easily solved because the aforementioned
techniques could be extended to other sectors of the model once the underlying
parameters have uncertainty distributions associated with them. Third, the uncertainty in
each time period is assessed independently, meaning that an unlikely event in period one
can’t influence the likelihood of outcomes in subsequent periods. This limitation results
in an underestimation of uncertainty, which could only be resolved if parameter values

were sampled as CIMS was running.

Despite these limitations, the techniques described in this section provide a workable
solution to the problem of incorporating empirically estimated behavioral uncertainty in
an encrgy-economy model like CIMS, and as such represent a valuable advancement in
the presentation of results. An inseparable challenge from quantifying uncertainty is
successfully conveying the ideas so that they can be understood and incorporated into a
policy analysis. Using probability distributions to quantify uncertainty (as opposed to
more traditional frequentist approaches such as confidence intervals) increases the

challenge of conveying information because many people are not familiar with the

* Much of CIMS® technology data was reviewed between 1999 and 2001 by experts as part of the model’s
application to estimating GHG emission reduction costs for the National Climate Change Implementation
Process in Canada, but little was done to address the uncertainty in this data.

107



technique. Instead, it is natural to prefer to focus on single outcomes, while
marginalizing many other, slightly less probable outcomes (Morgan and Henrion, 1990).
Teaching people to recognize the non-zero probability associated with a wide range of
outcomes is probably not the simplest way of conveying uncertainty, but because of the
benefits discussed earlier, the endeavor is worthwhile. This is not to say that traditional
statistical techniques are no longer useful®, but instead that a probabilistic approach

offers additional benefits, which should make it the preferred tool when feasible.

* For example, confidence intervals are a much more visually accessible tool for showing cost or emission
time trends, because using probability distributions for outcomes necessitates a three-dimensional

representation of the data.
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6 POLICY SIMULATIONS

This section demonstrates CIMS’ new capabilities to model a range of policies effecting
various decision attributes in both mode and vehicle choice. More specifically, sections
6.1 through 6.4 look at the business as usual case, a carbon tax, incentives for non-
gasoline vehicles, and incentives for non-single occupancy vehicle modes. The first two
simulations do not demonstrate new CIMS capabilities, but they do include the revised
baseline parameters, so for the resulting predictions will likely be different from existing
CIMS forecasts. The last two policies are designed specifically to demonstrate the new
attributes incorporated into the CIMS parameters for mode and vehicle choice, and they
could not have been reliably simulated prior to this research. All of the analysis for this
section uses the results of runs for Ontario’s transportation sector because it accounts for
31% of national transportation emissions (Transport Canada, 2000). With the exception
of base stocks and demands, the transportation models do not vary from region to region,
so these results could easily be scaled up to reflect national predictions, or the modifiers

could be applied to each region to facilitate national runs.

In each of the simulations, the output information focuses on the transportation sector’s
CO; equivalent emissions in five-year time increments from 2005 to 2035. In the
interests of simplicity, market shares are only presented for the unmodified business as
usual case (full market shares are available in appendix 10). Costs are not presented in
this analysis because the two new policies being tested have associated financial costs
(financing additional fuel availability, and building bike lanes for example) that have not
been quantified. Without a better estimate for these policy costs, reporting financial or
social costs would be highly misleading. This information would ideally be available
before deciding between policies, but it is not required for the demonstrative purposes of
this section. As discussed, the discrete choice models forming the foundation of the new
CIMS parameters are not perfect, and two steps are taken to account for this uncertainty

in the simulations. First, the availability and emissions modifiers developed for the
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vehicle choice alternative specific constants in section 5.4 were included by running four
variations of each simulation. The different runs are shown in table 6.1. Second,
emissions distributions were calculated for the year 2035 to show the range of outcomes
that the data implies to be plausible. Additionally, policies could have been simulated
with and without minimum mode shares to account for mode availability (introduced in
section 4.2). This step has been omitted from this research because it was considered less
important than looking at the different policies and the uncertainty surrounding the

vehicle choice model, which already resulted in 16 different cases to analyze.

Run1l | Run2 | Run3 | Run4

Include the availability modifiers No Yes No Yes

Include the emissions effect modifiers No No Yes Yes

Table 6.1 - Modifiers to include in different runs for each policy

The following results for mode shares are referring to usage, and not ownership. This
issue has been highlighted by MKJA (2002) who point out that although a person may
choose to take transit to work, they may continue to own that vehicle for other purposes.
CIMS produces aggregate mode splits, meaning that it doesn’t indicate what percentage
of the population is using each mode, instead showing the percentage of total travel
demand that is satisfied by each mode. For example, CIMS does not differentiate
between half the population riding their bikes all the time or the entire population riding
their bikes half the time. This issue is not critical to emissions, because they are dictated
entirely by usage patterns, but it is much more important for costing, because the actual
vehicle stocks (instead of their usage) dictate how much capital investment is made.
MKJA (2002) handle this issue by calculating costs under the primary assumption that all
changes in mode choice lead to changes in vehicle ownership, and second that no
changes in mode choice lead to changes in vehicle ownership. This treatment of costs
leads to national financial differences of $1,000,000,000 to $18,000,000,000 (in 1995
dollars) in the transportation sector for taxes of $10 to $150 per tonne of carbon. This

sensitivity analysis could be refined based on figure 6.1, which presents some survey

* Only one period’s results are displayed here because the uncertainty is handled independently for each
period, so the figures for different periods will all possess similar characteristics around the most likely

estimates.
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results showing how many people think their families could make due with fewer
vehicles if their traveling habits changed. In total, only 24% of respondent’s said they
could meet their traveling needs with fewer vehicles, so calculating costs assuming that
either 0% or 50% (instead of 0% or 100%) of the population give up their vehicles would

provide a more concise range for the sensitivity analysis.

Families Able to Meet Their Travel
Needs with Fewer Vehicles

700 7

600 - O Yes
300 A B No

400 -

300
200
-1
0 i | :- ;
1 2

Jormore Total

Responses

Vehicles

Iigure 6.1 - Respondents ' ability to use fewer vehicles

6.1 Business As Usual

Figures 6.2 and 6.3 show the vehicle type and mode shares for the unmodified (run 1)
business as usual case. The new vehicle emissions by period from each of the business as
usual runs are displayed in figure 6.4, while figure 6.5 focuses on the range of possible
emissions in 2030. In all runs, new vehicle emissions increase quickly until 2010
because the older vehicles are quickly being replaced. After this initial rise, the rate
slows to a more gradual increase reflecting an ongoing growth in transportation demand.
Also relatively common across runs are the mode share patterns, with single occupancy
vehicles gaining the most market share (35%), followed by carpools (30%), walking and
cycling (20%), and transit (10%). The stability in mode shares is in stark contrast to the
vehicle type shares, which are dramatically influenced by the different modifiers, with the
high and low efficiency gasoline vehicles moving from a combined 35% market share in
run | to 98% in run 4 where they are as attractive as possible. It is interesting, but

believable, that considerable swings in the vehicle market can have such little impact on
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the choice of modes. The stability occurs because only the operating and fuel costs of the
vehicles are passed to the mode choice competition, and these assert much less influence

on mode choice than the non-financial factors such as driving time.

Although minimal, the availability modifier (used in runs two and four) did have some
influence on mode shares from period to period, as the single occupancy vehicles
increased their market share at a slightly faster rate when availability wasn’t accounted
for. This difference is explained by the increasing shares of hybrid-electric and electric
vehicles in runs one and three, both of which have lower fuel costs than the vehicles they
are replacing. Runs two and four are different because the availability modifier makes
these vehicle types too expensive relative to gasoline vehicles. This difference amplifies
over time because once hybrid electric and electric vehicle begin capturing market share
their capital costs decline to simulate economies of scale and Iearning”. As the capital
costs decline, the vehicle types gain more market share, causing the weighted average
fuel and operating costs for vehicles to drop even further. The effect of the modifiers is
also illustrated through the emissions figures, where carbon dioxide output increases from
runs one to three, to two, to four. The most likely rankings make sense because both
modifiers make more polluting vehicle types more attractive, and as expected, the
availability modifier (run 2) exerts a greater influence on market shares than the
emissions modifier (run 3). It is interesting to note however, that the uncertainty
distributions presented in figure 6.5 show that there is considerable overlap in these

distributions, meaning that these rankings aren’t necessarily fixed.

*7 The declining capital cost feature of CIMS does not apply to mature technologies such as gasoline
vehicles.
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Figure 6.2 - Mode Shares —~ Run | (No Modifiers)
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Figure 6.3 — Vehicle Type Shares — Run 1 (No Modifiers)
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Figure 6.4- Total new vehicle emissions for the business as usual scenario
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Figure 6.5 — Probability™ of new vehicle emissions for the BAU scenarios in 2030

6.2 Carbon Tax

The new vehicle emissions for runs one through four with a $50/tonne carbon tax are
shown in figures 6.6 through 6.9 in comparison with the equivalent business as usual run.
Figure 6.10 also shows these emissions in 2030 with their associated probability
distributions. The associated vehicle and mode shares are available in appendix 10. The
tax results in a modest reduction in carbon dioxide emissions between one and five
megatonnes per year. The reduction occurs because market share for the low efficiency
gasoline vehicles, which are most effected by the tax, has been distributed relatively
evenly between the other vehicle types. Emissions reductions are the greatest in run four
because the gasoline vehicles have more market share in the business as usual case, so
even though a comparable percentage of consumers are predicted to switch, the absolute
number changing is greater. If the reported emissions included all modes, the reduction
would be slightly larger because the zero emission option of walking and cycling gains

market share at the expense of the other three modes.

* The probability associated with a given emissions level is inversely related to the number of possible
emissions outcomes assumed to be possible. In other words, as finer intervals are explored the associated
probabilities get smaller. In this figure emissions were evaluated in 0.1 megatonne intervals, so a 0.01
probability for 20 megatonnes mean that there is a 1 percent chance that the emissions will be between 19.5
and 20.5 megatonnes.
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Figure 6.10 — Probable new vehicle emissions for carbon tax scenarios in 2030
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6.3 Incentives for Non-Gasoline Vehicles

The non-gasoline incentives entailed increasing the fuel availability of methanol, ethanol,
natural gas, propane, diesel, and hydrogen fuel cell vehicles by 25%, giving express lane
access to hydrogen fuel cell and electric vehicles, and increasing the power of every
vehicle except diesels and low-efficiency gas. Using the existing financial cost attributes,
a surcharge of $1,000, and $3.000 was also applied to high, and low efficiency gasoline
vehicles respectively. The annual emissions resulting from each run using these
incentives/disincentives are shown in figures 6.11 through 6.14, while figure 6.15 shows

the 2030 emissions including uncertainty. The market shares for mode and vehicle types

for each run are available in appendix 10.

The emissions reductions resulting from the non-gasoline incentives were slightly greater
than the $50/tonne tax, ranging from | to 6 megatonnes depending on the combination of
modifiers. The incentives have the desired affect of discouraging people from choosing
the high or low efficiency gasoline vehicles, most of which chose hybrid-electric and
electric vehicles instead. The impact of these policies increases with time because they
also cause the capital costs of hybrid-electrics and electrics to decline, making them even
more attractive. Despite all of the incentives, the capital cost of hydrogen fuel cell
vehicles still makes them prohibitively expensive, as they are unable to capture any
market share. One of the most interesting effects of this policy is that it actually
increases (albeit by less than 1%) the SOV and HOV market shares. The reason for this
change is that the policy encourages people to use more environmentally benign vehicles,
which happen to have cheaper fuel costs. Switching to these types of vehicles lowers the
weighted average fuel cost for all vehicles, making the SOV and HOV options more
attractive mode choices. This result illustrates the potential pitfalls of the rebound effect,
which describes a situation where people have saved money on energy (fuel)
consumption, and then put those savings into different kinds of consumption, thereby
negating some of the energy savings (Jaccard and Bataille, 2000). The integrated nature
of CIMS allows these types of counter-intuitive interactions to be foreseen and

quantified, where they would have otherwise been missed in an isolated vehicle choice
model.
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6.4 Incentives for Non-Single Occupancy Vehicle Modes

The non-SOV incentives included increasing SOV driving time by 15%, decreasing the
in-vehicle time of all other modes by 20%, reducing the waiting time for transit by two
thirds, cutting the number of transfers in half, and increasing the percentage of commutes
with bike route access by 50%. In additional to non-financial policy levers, the cost of
transit was also reduced by $400 per year. The annual emissions resulting from these
incentives / disincentives are illustrated in figures 6.16 through 6.19, while figure 6.20
illustrates the uncertainty surrounding year 2030 emissions. The market shares for mode

and vehicle types are available in appendix 10.

The non-SOV incentives resulted in the greatest emissions reductions, ranging from five
to ten megatonnes depending on the combination of modifiers, which are slightly
exaggerated because they don’t account for the marginal increase that will result from
greater transit use. It should be noted, that these large reductions are not an indication
that the mode switching policies are superior, because the costs of the different policies
are not accounted for in this analysis. The findings are important however, because they
show an additional potential for emissions reductions through mode switching that has
not been revealed in earlier simulations with the CIMS model (MKJA, 1998 and MKJA,
2002). The emissions reductions are entirely caused by the almost 10% decline of market
share for single occupancy vehicles. The market share for carpooling also decreased
slightly, while walking and cycling, and transit have both experienced significant

increases (5% and 10% respectively).
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7 CONCLUSIONS

The primary goal of this research was to develop a rigorous method to improve the
behavioral parameters in CIMS. Doing so would help bridge the traditional gap between
top-down and bottom-up approaches to energy-economy modeling by incorporating both
technological detail, macro-economic feedbacks, and empirically estimated, behavioral
realism into a single model. These improvements would advance beyond previous efforts
to develop a hybrid model by providing more accurate model predictions and allowing a
wider range of policies to be simulated. Both of these improvements would be of
significant benefit to policy makers who can be limited and confused by the divergent
modeling approaches currently used. To place this goal within a tangible context,
personal urban transportation (mode choice and vehicle choice specifically) was selected
as the research focus. This sector of the Canadian economy is significant in terms of
environmental impact (accounting for approximately 13% of national carbon dioxide
emissions), and the consumer decisions that define the sector are also an interesting mix
of financial and non-financial factors. These combined characteristics make personal
urban transportation an ideal candidate for hybrid modeling. As discussed in the
following sections, these goals have largely been met, but new challenges have emerged
and each stage of the project has offered lessons that will benefit anyone charting a
similar research course in the future. Section 7.1 summarizes the underlying discrete
choice models, which bring the behavioral realism to CIMS. Section 7.2 follows with a

discussion of where the project has left hybrid modeling, and section 7.3 points to future

research agendas for hybrid models.

7.1 Behavioral Realism in Personal Urban Transportation

After identifying the general research goals and context, discrete choice models were
selected as an econometric modeling approach that could provide the detailed
representation of consumer decision-making behavior needed in a hybrid model. An

additional strength of discrete choice models is that they can be compatible with the
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existing parameter structure of CIMS and, although not perfect, the match between DCM
and CIMS predictions can be very good. The data needed to estimate these models was
obtained by surveying a random sample 1,154 Canadians living in urban centers about
their preferences for different commuting modes and vehicle types. Although some
biases were inevitably present, the combination of a high response rate (77%), a wealth of
respondent comments, and general high quality responses led to the conclusion that the
survey data was highly representative of the respondent population. Despite the success
of the data collection phase of the research, the process was challenging, and a possible
improvement would be to follow-up on a sampling of the initial responses. If
respondents could have been interviewed to explain their choices in more detail, a
number of lingering questions about the meaning of certain types of responses could have
been resolved. Such follow-ups would need to be carefully considered because they

would require additional time and money, and would probably need to be accomplished

as multiple stages in a larger research project.

The otherwise successful survey produced a rich data set that permitted the estimation of
highly significant multi-nomial logit models, in which all of the attribute coefficients had
the expected signs. These results show that the attributes and alternatives used were
meaningful to respondents, and that they were important factors in mode and vehicle
choices. The final vehicle choice and mode choice utility formulations are shown again
in equation 7.1 through 7.4 and 7.5 through 7.9 respectively. In addition to the maximum

likelihood estimates, the techniques developed in this research have shown how to look at

the probability associated with a range of parameter values.

Vehicle Choice Utility Formulation
=-90-10°.CC-46-10° FC+12-FA-02-EXP-0.2-POW —-1.7 (Lquation 7.1)

’/(iu.\u/lm* -

Vs vug ==9.0-107".CC —4.6-10" - FC+1.2- FA=02-EXP-02-POW -2.0  (Equation 7.2)
Vippmd ==9:0-107CC —4.6-107 - FC +1.2- FA-0.2- EXP ~0.2- POW = 0.4 (Equation 7.3)
Viwrn ==9.0-107-CC-4.6-107 - FC+1.2-FA-0.2- EXP-0.2- POW (Equation 7.4)
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Mode Choice Utility Formulations

Vi ==-0.04- DT - 0.003- COST - 0.5 (Lquation 7.3)
Vior ==0.04-DT -0.08- PDT —-0.003-COST - 0.5 (Equation 7.6)
Vinsy =—0.04- DT —0.08 - WWT -0.003-COST - 0.2 - TRANSFERS - 0.5 (Equation 7.7)
Vierwgse =—0.04- DT —~0.08-WWT +-0.003- COST — 0.2 - TRANSFERS - 2.0 (Equation 7.8)
Viangcvre =—0.04- DT +0.2- PATH (Equation 7.9)

Although highly significant and intuitive, the models were not without problems as the
base line predictions did not match as well with reality as desired, and many of the
segmentations based on different demographic variables were inconsistent. Two
significant avenues were identified to explain these shortcomings in the model. First,
only a limited number of attributes could be explored because of limitations in the
experimental design. Based on the results of other survey questions and the literature,
some of these excluded attributes would likely have influenced the decisions. Second,
the utility models could have been better specified to allow error terms to be correlated
across alternatives, or certain factors to have non-linear effects on utility. These alternate
model formulations weren't explored because the basic forms were challenging enough to
apply, and the broad scope of the experimental design didn't allow non-linear affects to
be estimated. Although any of these extensions could have improved model validity,

alternate approaches would have had their own limitations as well.

Before the discrete choice models could be incorporated into CIMS, two significant
changes were needed. First, the park and ride alternative was removed from the mode
choice model, and six additional vehicle types were added to the vehicle choice model.
The mathematical properties of the discrete choice model facilitated these modifications,
but error was inevitably introduced as alternative specific constants were assigned to the
new technologies. Second, various versions of the alternative specific constants were
designed for the vehicle choice model, because it seemed to have some significant
(although explainable) divergences from reality. The modifiers for vehicle type
availability were of some concern because they are large enough to dominate the other
choice attributes. This dominance is quite likely accurate, but it points to the need to

better understand how changes in availability affect consumer choice, which is handled



very rudimentarily with the modifiers. To recognize the crudeness of this approach, any

model predictions were made both with and without the modifiers.

7.2 Hybrid Modeling Today

In addition to the modifications made to the discrete choice models, two structural
changes were made to CIMS to improve the way it represented transportation decisions.
First, the original nested vehicle type node structure was modified so that all vehicle
types competed directly in a single node. Second, capital costs were blocked from the
market share allocation algorithm for mode choice to reflect the design of the discrete
choice model. Currently this change has only been implemented external to the standard
CIMS simulation procedures, but would ideally be programmed as an endogenous
feature. Both changes have also just been made in the database used in this research, and

it is strongly recommended that they be implemented in the standard version of CIMS so

that they can be used in future research.

Once the changes were implemented, the performance of the discrete choice models was
smoothly transferred to CIMS in a manner that limited changes to the existing parameters
for the discount rate used in the decisions, the intangible costs of each technology, and
the degree of market heterogeneity. The fit between the discrete choice models and
CIMS were extremely satisfactory, although a perfect match is impossible because of
fundamental differences in the mathematics of the market share curves. Although the
lack of an exact fit isn’t a serious issue, the same mathematical differences lead to
potential problems in welfare costing and market share allocation when nested node
structures are present in CIMS. Some suggestions for minimizing this error have been
provided, but if additional DCM work is integrated with CIMS, the potential for error
will continue to accumulate. Because of this concern, the decision to work with existing
CIMS parameters instead of directly embedding the DCM utility formulations should be
revisited in the future. Although there are clearly benefits to directly embedding the
DCM s, this is by no means an easy decision because of the significant costs involved in

changing the underlying structure to CIMS. Also, it is important to remember that CIMS
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has already been significantly improved in comparison with traditional top-down and

bottom-up approaches, and that these additional improvements may not be that critical.

With the DCM’s integrated into CIMS, the improved modeling capabilities were
demonstrated with three policy simulations. In particular, a set of incentives for non-
gasoline vehicle alternatives, and a similar set for non-single occupancy vehicles
demonstrated the new types of policies that can now be simulated with CIMS. The
results of these simulations confirmed the success of the integration exercise, because all
of the simulations and their variations produced outcomes congruent with the underlying
DCM’s. They also demonstrated an ability to influence consumer decisions in mode and
vehicle choice through both monetary and non-monetary policy. The simulations took
advantage of the uncertainty that was quantified around the discrete choice models,
which allowed CIMS outputs to be produced as probability distributions instead of point
estimates. Although the initial time investment to develop the uncertainty curves was
considerable, subsequent runs can now be produced in slightly more time than a single
estimate CIMS run. This improvement over traditional CIMS outputs is a significant
advancement because it provides explicit acknowledgement that predictions are

uncertain, and that each possible outcome has a non-zero probability associated with it.

The steps described to this point have successfully improved the behavioral realism of a
hybrid energy-economy model. Although a number of shortcomings have been identified
throughout the process, none of these changes are required in the immediate future
because the changes already implemented represent a significant improvement over the
existing CIMS model. In comparison with the top-down approaches lacking
technological detail, or bottom-up approaches failing to account for the reality of
preferences, the improved version of CIMS represents a significant step forward in
energy-economy modeling that is capable of much more sophisticated simulations to
advise policy. All of the mentioned shortcomings were consciously omitted because they
would have presented too many challenges for the scope of this research, and they were
all deemed to be less significant than the issues already being addressed. That is not to

say that they are not valuable steps forward in the development of hybrid models, but
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instead that they are only improvements on the significant progress that has already been

made.

7.3 Hybrid Modeling Tomorrow

In addition to the already mentioned problems encountered in the research methodology,
this section attempts to provide some broad directions for future research in hybrid
energy-economy modeling, and CIMS in particular. All of these improvements are
extensions of this work, and will likely need to either draw on multiple bodies of work, or
become parts of longer-term research projects. As shown by some preliminary attempts
to piece together different discrete choice models in this research, the first approach
quickly opens up a vast wealth of potential modeling tools, but much of that information
can be difficult to work through and can lead to inconsistent results. Looking at the other
option, longer-term research would facilitate complete control of the research agenda. but
it could also reduce research flexibility by charting a course too far into the future. The
strengths and weaknesses of both approaches are not fully apparent at this juncture, and
when any of the following agendas are pursued, both approaches should be given serious
consideration. The four major avenues for future research are expanding the research
scope, understanding the dynamics of emerging technologies, improving policy

simulation flexibility, and continuing to quantify uncertainty.

Scope

The first avenue for improvement is probably the most important, and it would thankfully
be able to draw upon all of the techniques and lessons learned in this research. Currently
the scope of this research has been limited to mode and vehicle choice within personal
urban transportation, and even when concurrent research in residential heating and
industrial cogeneration is considered, a vast array of decisions could be better understood.
Both within the transportation sector, and across other sectors, discrete choice models
could be developed for other decisions and incorporated into CIMS to improve the
overall realism of model predictions. For some of these decisions the DCM’s developed
in this research could probably be modified, but for the majority of them, the decisions

characteristics are different enough to warrant additional research.
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Dynamics of Emerging Technologies

The approach in this research took a broad view of a number of different technologies
and attributes for mode and vehicle type choice, and although valuable, it made it
impossible to garner a detailed understanding of any single attribute or technology. This
detailed understanding is exactly what is required to effectively simulate the innovation
and adoption of emerging technologies. For example, this research looked at two levels
of fuel availability and assumed a linear response to all other levels, where in reality
consumers have been found to be much more interested in fuel availability at low levels
and there is probably a threshold below which they are unwilling to buy a vehicle. These
types of detailed dynamics are commonplace in new technologies, and to successfully

address them, one or two specific policy levers needs to be selected for detailed study.

Policy Simulation Challenges

Despite the fact that this research has offered some interesting policy simulations, they
are by no means comprehensive analyses, and in order to properly compare different
policy options, the work needs to be extended in three ways. First, costs were excluded
from the presentation of results because the costs associated with the different policies
were not available. This has not been a problem in the past, because CIMS has primarily
been used to model taxes, which are re-distributive (i.¢. zero financial costs unless
changes in technology choices are induced) policies with the exception of the
administrative costs. For the infrastructure investments involved in many transportation
policies, the policy costs are far from negligible, and some estimate would need to be tied
to a policy scenario before the costs could be estimated. Without this, investments in
transit, or subsidizing fuel availability would seem like win-win options because they
would be making more environmentally benign forms of transportation more attractive at
apparently zero cost. This is not a limitation of CIMS, because once costing estimates are

obtained for various policies, they could easily be included in any financial or welfare

cost calculations.



A second limitation, which is closely tied to the current CIMS setup, is the limited ability
to model non-monetary policies that change through time. Policies that include changing
targets for stocks or shares in each period (such as vehicle emissions standards) can be
simulated, but any of the new non-monetary variables introduced in this research can't
currently be changed through the course of a simulation. Once values for the intangible
costs are selected, they are fixed for all periods of the simulation. This is probably the
most straightforward of all the enhancements discussed in this section because it could be
simply accomplished by adding an intangible cost field to CIMS for each period instead
of using a single value. Despite the simplicity, it would open up a broad range of policy
options for simulation including examples such as steadily increasing investments in
transit service, or increasing fuel availability for non-gasoline vehicles. Being able to
simulate these types of policies would be beneficial because they are much more

representative of the marginal changes that are likely to take place in reality.

Even with these two extensions, effectively modeling transportation policy will be
challenging with CIMS because of the spatial element involved in many transportation
policies. More specifically, it will always be difficult to relate the impact of an actual
policy to a change in an attribute value in the discrete choice model, which would be
translated into CIMS. Examples of this challenge include trying to figure out what
attribute values to use for time to reflect a new carpooling lane on a city's major
expressway, or determining the appropriate change in cost to reflect a toll to enter a city's
downtown core. These types of policy would change the traveling time or cost for some
commuters, but the impact would be negligible for those who don't use the affected
roads. CIMS is a geographically aggregated model, meaning that it doesn’t account for
spatial differences (other than regions), so physical quantities such as roads and
highways, and the cities and neighborhoods they connect are not considered, which
makes simulating policies tied to these physical boundaries extremely problematic. Even
if the average effect of a policy could be determined for an entire CIMS region, a second
problem is that there is no guarantee that applying the average value to the entire
population is equivalent to focusing the full effect on a subset of the population. Based

on DCM s developed in this research the two approaches will yield identical results, but
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only because the attributes have all been assumed to have linear effects on utility. If
more complicated utility functions were explored and the relationships were found to be
non-linear, additional approaches would need to be considered. A possible future
approach for dealing with this problem would be linking CIMS with more disaggregated
transportation model for the major urban centers in Canada. The exact details of such an
approach are beyond the scope of this research, but based on the recommendations

resulting from Tisdale's (2003) work with CIMS on the effect of air contaminants at a

local scale, such an approach shows promise.

Uncertainty

Throughout this paper, the uncertainty surrounding model predictions has been an
ongoing focus because of its importance in illuminating confidence in predictions,
facilitating comparisons between predictions, and helping decide between alternative
actions. The benefits of including uncertainty in any analysis should never be
undervalued, but it is also important to recognize that the analysis in this paper has
focused on a single source of uncertainty. By limiting the consideration of uncertainty to
the behavioral aspects of personal urban transportation decision, the challenge has been
made tractable, but the omitted portions should not be forgotten. Possibly just as
important is the uncertainty present in technical estimates, such as the base stocks, costs,
and emissions factors needed to make CIMS a technologically explicit model. Each of
these quantities represents an amalgamation of a variety of similar technologies and the
values have been estimated to reflect the average for the range that exists across the
country. Because the technical figures in CIMS' transportation model were updated for
the National Climate Change Implementation Process the mean estimates are probably
quite accurate, but the data resulting from the process did not explicitly account for
uncertainty. Until this source of uncertainty is investigated as thoroughly as the

behavioral component, the magnitude by which the uncertainty estimates under-present

the range value won't be known.

These four major avenues, scope, the dynamics of emerging technology, policy

simulation challenges, and uncertainty, all represent significant steps forward for CIMS,
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or any model for that matter. Returning to the top-down / bottom-up debate again
however, none of these improvements are required to bridge the gap in modeling
philosophies. They all represent improvements to what is already a hybrid model
according to the definition used in this paper. With that perspective, it may be more
useful to take a step back to examine the current improvements and gain as much from
them before moving onto new challenges. This approach will allow the new capabilities
to be fully tested and exploited, and in addition to the valuable policy analysis that can be

done during this process, new avenues for improvements will also probably be identified.
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APPENDIX 2 — SURVEY INSTRUMENTS

Phone Script (3 Pages)

Hello, my name is calling on behalf of Simon Fraser University. We are conducting
a survey to learn about Canadians’ attitudes and preferences toward personal transportation. Your answers
will be used to help Canadian cities set their transportation priorities, and shape future transportation
policies across Canada.

The survey is composed of a five minute phone interview, and a twenty minute follow-up mail
questionnaire. For each completed mail survey, we will donate one dollar to Unicef.

IF NECESSARY READ:
1 am not selling anything, and all of your responses will be kept confidential.

Part A — Recruitment
1. Areyou, or someone else in your houselold who is 18 years of age or older interested in

participating in this survey?

I. Yes
2. No SKIP TO Q13
2. Thank you. Before we continue, may I confirm that you are 18 years of age or older?
1. Yes
2. No THANK AND TERMINATE WITH REJECTION REASON |

Part B — Vehicle Ownership

3. Do you own or have access to a vehicle?
1. Yes
2. No SKIP TO Q6.

4. What type of vehicle do you use most often,

READ LIST
A compact car (such as Honda Civic, Toyota Corolla, or Chevy Cavalier),

a mid-size car (such as Ford Taurus, Toyota Camry, or Honda Accord),

a full-size car (such as Ford Crown Victoria, Chrysler Concord, or Lincoln Town Car),
a Pickup Truck,

a Minivan,

a SUV/ (Sport Utility Vehicle), or

a motorcycle?

DON’T KNOW/REFUSED

P NOYU B L —

5. How much did this vehicle cost when it was purchased (the vehicle you most commonly use)?

999999. DON'T KNOW/ REFUSED

Part C — Commuting
6. Do you commute to work or school at least once per week?

l. Yes
2. No

IF Q6=2 AND Q3=2  THANK AND TERMINATE WITH REJECTION REASON 2
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IF Q6=2 SKIP TO Q11

7.  How do you most commonly commute to work or school?
READ LIST IF NECESSARY
ALLOW MULTIPLE RESPONSES

driving alone (SOV),
carpooling,

public transit,
walking, or

cycling?

DB o =

8. On average, approximately how many minutes does it take you to travel one-way between home and
work or school when ~“driving alone / carpooling / taking transit / walking / cycling =?

9. Approximately how many kilometers is your one-way trip from home to work or school?
IF DK — ASK FOR BEST GUESS

999999. DON’T KNOW

If Q7<>1,2 or 3 SKIP TO Q11.
10. On average, approximately how much do you spend on commuting costs when < <driving alone

carpooling / laking transit>> to work or schoo/?
IF COMMON COMMUTING MODE IS DRIVING ALONE OR CARPOOLING:
Please only consider gas, parking and road toll expenses, and feel free to give your answer on a weekly or

monthly basis; whichever is easier.

IF COMMON MODE IS TAKING TRANSIT:
Please only consider transit fares, and feel free to give your answer on a weekly or monthly basis;

whichever is easier.

999999, DON'T KNOW / REFUSED

Part D - Prepare for Mail Portion of Survey
That completes the phone portion of this survey. The second half of the survey will be sent to you by mail

within the next week.

I1. May I please have your complete address in order to mail the next portion of the survey?
ADDRESS:
CITY:
PROVINCE:
POSTAL CODE:

12. Finally, what name would you like to appear on the mailing label?

FIRST NAME:
LAST NAME:

Thank you very much for your time. Have a great day/night.

Part E — Rejection Information - . .
13. Before you go. could you please tell me why you aren’t willing to participate in this study?

I.  Not interested, .
Don’t know enough about transportation issues,

2
3. Don’t have time,
4. Other,
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5. Prefer not to say/ REFUSED

Rejection Reason 1: 1'm sorry, but Simon Fraser University ethical regulations restrict us from
interviewing anyone under the age of 18. Thank you for your time.

Rejection Reason 2: 1’'m sorry, but because you don’t have access to a vehicle, and don’t commute at least
once per week, you don’t qualify for the remainder of this survey. Thank you for your time.
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Cover Letter 1 (1 Page)

Simon Fraser University

School of Resource and Environmental Management Burnaby, BC, V5A 1S6
Department: 604.291.4659
Survey: 604.268.6621
[5-Sep-03

«First_Name» «l.ast Name»,

As a follow up to our recent telephone contact, please find enclosed your copy of the
Canadian Transportation Preferences Survey. We appreciate your help with this
important research, and your input will help us understand how Canadians perceive and
utilize the transportation systems in their communities. The results of the study will
help us pinpoint current strengths and weaknesses, which we can use to predict how
transportation patterns will evolve under various policy and investment strategies.

Your answers are completely confidential, and will only be released as summarics in
which no individual's answers can be identified. When you return your completed
questionnaire, your name will be deleted from the mailing list, and never connected to
your answers in any way. Your participation is entirely voluntary, and we will assume

that by completing and returning this survey you are indicating your consent to
participate in this research. Please note that Simon Fraser University ethical regulations
require you to be 18 or older to complete this survey. If you are not 18 or older, or if
you decide for some reason not to complete the survey, please return it unanswered in

the enclosed envelope.

We can’t stress how grateful we are that you are willing to contribute to this study, and
as a small token of our gratitude, please accept the enclosed $1 coin. Also, for each
survey returned to us, we will donate an additional $1 to Unicef.

[f you have any questions or concerns about this research we would be glad to talk to
you. Please direct questions or concerns about the survey to the primary researcher,
Matthew Horne, by phone at 604.268.6621 or via email to mhorne@sfu.ca. All
messages will be returned the next day. More general concerns about the research can

be directed to Frank Gobas at 604.291.4659.

Thank you very much for your time. Your help with this survey is greatly appreciated.

Sincerely,

Matthew Horne
Graduate Student Rescarcher
School of Resource and Environmental Management
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Survey (16 Pages)

Simon Fraser
University

CANADIAN
TRANSPORTATION
PREFERENCES STUDY

Energy and
Materials
Research Group
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Thank you for agreeing to participate in our survey. This information will be used to
analyze the transportation choices available to Canadians today and in the future.
Remember that with each received survey, we will donate $1 to Unicef. Your opinions
and ideas are important, so please answer each question. The following sample illustrates
the format that will be used for questions in the survey.

Sample Question

A/‘ Question Number l A/IEUeSUOH (plain text) I | Instructions (ltal1c1zed)|

How satisfied are you with these features of public transit in your city? Pleasc
indicate your opinion for each feature.

Level of Satisfaction With Public Transit
Drsistied ™ N Koo
Frequency of Service o] a (| (| a a
Cleanliness of vehicles | O a %] a d a
Friendliness of drivers | d a ] d |
Timeliness of arrivals a a %] d d d

'\f Public Transit Features I v\| Your Answers I

The survey should take approximately 25 minutes to complete.

Part 1 — Your Transportation Options, Requirements and Habits

1. How many vehicles do you or your family own?

O None } = If none, please skip to question 8.
O One
U Two } = If one or more, please continue (o question 2.
O Three or more
2. What is the make, model, and year of the vehicle you most often use?
Make: Model: Year:
(IFord for example) (Explorer for example)

3. How long have you or your family owned this vehicle?

years
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4. How much longer do you expect you or your family will own this vehicle?

years

5. What are the annual maintenance costs for this vehicle?

Less than $1,000 per year

$1,000 to $2,000 per year

$2,001 to $3,000 per year

More than $3,000 per year
Don’t know

CCO0O0O

6. What importance did the following factors have in your family’s decision to
purchase this vehicle? Please indicate the importance you place on each factor.

Importance of Factor in Vehicle Purchase Decision

Not at All Somewhat Very Don’t
Important Important Important  Know
Purchase Price
Vehicle Type
Fuel Economy
Horsepower
Safety

Seating Capacity
Reliability

Appearance and Styling
Other:

00000000
Coo00o0o0o0oOdo
COo0000000
COo0000000
o000 0000
COo000000O0

7. Considering your transportation requirements, do you think your family could
meet its needs with fewer vehicles, either by travelling less, or using different

methods of transportation?

O Yes
O No

8. How many people in your family travel to work or school at least three times per week?

O None
O One
0 Two

O Three or more

137



9. Do you travel to work or school at least once per week?

U Yes = If ves, please continue to question 10).

O No = /fno, please skip to question 18.

10. On average, how long would it take you to travel from home to work or
school by each of the following methods? Please check the best response for

cach method.

Travel Time to Work or School

Under20 21to40 41to60 61t090 Over90 Not
Minutes  Minutes Minutes Minutes Minutes  Available

Don't
know

Vehicle: Alone
Vehicle: Carpool
Public Transit
Park and Ride
Cycling
Walking

Other:

CO0OD0DO000O

CO000000C

COo0Do0CcCOo
CO0O0D00O
COo000D00C
o000 Ccoo

o000 00

I1. On average, how many times per week do you travel from home to work or
school using each of the following methods? Please check the best response for

each method.

Times per week
None One Two Three Four Five or
more
Vehicle: Alone a a a a a a
Vehicle: Carpool a a a a a a
Public Transit a a a a Q Q
Park and Ride a a a a a O
Cycling a Q g a a a
Walking a a a a a O
Other: a a a a a O

12. Does the pattern you just described change throughout the year?

O Yes @ ifyes please explain.

O No
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13. What importance do the following factors have in your decision between

14.

different methods of travel? Please indicate the importance you place on each
factor.

Importance of Factor in Travel Method Decision

Not at All Somewhat Very Don’t

Important Important Important  Know
Cost Q g a a a a
Travel Time Q a a a g a
Comfort a a a a a g
Flexibility Q a a a a a
Safety | ] a o a o
Privacy g a a ] ] ]
Environmental Impact a o a a a a
Reliability Q Q a a a a
Availability of Method ] Q a Q a a
Other: ] a Q a a a

In an average week, what proportion of your personal total travelling time is
spent commuting to work or school? Please consider all of your travelling
needs including commuting, running errands, shopping, visiting family and

friends, and entertainment.

U Less than 25%
0 25% to 50%
3 More than 50%

. Regarding your commute to work or school, do you have the option of using the

following services? Please indicate the availability of each transportation

service.

Yes, No, Not Don’t

Available Available Know
Bringing bicycles on public transit a a a
Using bike routes or paths a Q Q
Showering and changing at work or school a g Q
Driving in carpooling lanes a a a
Riding express buses or rapid transit a g o
Using a carpool coordinating service a a a
Driving on express toll roads a a a
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16. How many days a week do you think your job or education could be completed from home?

O None

U Oneor Two
O Three or Four
Five or more
U Don’t know

17. Considering your current commute, how many days a week would you work from home if
you had an employer or school that gave you the option of working from home?

U None

U Oneor Two
Q Three or Four
Five or more
U Don’t know

18. Do you have friends or co-workers who use the following transportation methods or types of
vehicles as their primary means of commuting to work or school? Please check one answer

Jor each transportation method and vehicle type.

Yes No Esg“t,
Carpooling ([ ([ a
Public Transit a d a
Walking ([ ([ a
Cycling d ([ Q
Hybrid electric vehicle (such as the Honda Insight)” Q Q Q
Alternative fuel vehicle (using natural gas for example)” | O a Q

19. Do you have any comments on the answers you provided in this section of the survey?

* Hybrid electric vehicles such as the Honda Insight and Toyota Prius combinc gasoline and clectric systems.
¥ Alternative fuel vehicles use fuels other than gasoline or diesel. such as natural gas. ethanol. and propane.
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u’art 2 — Your Vehicle Preferences

—

This section presents four hypothetical choices, each asking you to choose between four vehicles.
For each choice, read over the attributes, and indicate the vehicle you would prefer. Imagine
that all four vehicles are <<compact cars/mid-size cars/full-size cars/trucks/vans/SUVs>>

Important Concepts

o Alternative Fuel Vehicle — Powered using fuels other than gasoline or diesel, such as natural

gas, ethanol, and propane.

Hybrid Electric Vehicle — Powered using a combination of gasoline and electric systems.
Hydrogen Fuel Cell Vehicle — Powered using hydrogen fuel, producing water as exhaust.
Anticipated release date of 2004.
e FExpress Lane Access — Scenario where vehicles with lower emissions would be given access
10 express lanes on major roads. Assume a time savings of 20% when lanes are available.

20. If these were the only four vehicles available to you, which would you choose?

Vehicle Type

Purchase Price

Fuel Cost

Stations with Proper Fuel
Express Lane Access
Emissions Compared to
Current Vehicle

Power Compared to
Current Vehicle

Gasoline
Vehicle

$45,000
$10/week
100%
None

Equal

Equal

O

Alternative Fuel Hybrid-Electric Hydrogen Fuel

Veliicle
$45,000
$10/week
100%
None

25% Less

Equal

0

Vehicle
$45,000
$10/week
100%
None

Equal
25% Less

0

Cell Vehicle
$45,000
$10/week
100%
None

100% Less

10% Less

0

21. If these were the only four vehicles available to you, which would you choose?

Vehicle Type

Purchase Price

Fuel Cost

Stations with Proper Fuel
Express Lane Access
Emissions Compared to
Current Vehicle

Power Compared to
Current Vehicle

Gasoline
Vehicle

$45,000
$10/week
100%
None

Equal

Equal

0

Alternative Fuel Hybrid-Electric Hydrogen Fuel

Vehicle
$45,000
$10/week
100%
None

25% Less

Equal

0

Vehicle
$45,000
$10/week
100%
None

Equal
25% Less

M|

Cell Vehicle
$45,000
$10/week
100%
None

100% Less

10% Less

0
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22. If these were the only four vehicles available to you, which would you choose?

Current Vehicle

[l

0

M|

Vehicle T Gasoline Alternative Fuel Hybrid-Electric Hydrogen Fuel

chicle Type Vehicle Vehicle Vehicle Cell Vehicle
Purchase Price $45,000 $45,000 $45,000 $45,000
Fuel Cost $10/week $10/week $10/week $10/week
Stations with Proper Fuel 100% 100% 100% 100%
Express Lane Access None None None None
Emissions Compared to

Equal 25% L Equal 1009

Current Vehicle qua o Less qua 00% Less
Power Compared to Equal Equal 25% Less 10% Less

[

23. If these were the only four vehicles available to you, which would you choose?

Current Vehicle

0

0

[

Vehicle T Gasoline Alternative Fuel Hybrid-Electric Hydrogen Fuel
eicie Lype Vehicle Vehicle Vehicle Cell Vehicle
Purchase Price $45,000 $45,000 $45,000 $45,000
Fuel Cost $10/week $10/week $10/week $10/week
Stations with Proper Fuel 100% 100% 100% 100%
Express Lane Access None None None None
Emissions Cpmpared to Equal 5% Less Equal 100% Less
Current Vehicle
Power Compared to Equal Equal 25% Less 10% Less

[

24. Do you have any comments on the choices you made in this section of the survey?
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I Part 3 — Your Transportation Mode Preferences

This section presents four hypothetical situations, each asking you to choose between four
options for getting to work or school. For each question, read over the attributes, and indicate
which method you would prefer. You can assume that all of the methods are available to you
(even if you don’t have access to a car for example). Please consider all other commuting

constraints you might have when making your decision.

Important Concepts
L]

Park and Ride — Parking at a transit station and taking transit to work from there.

o Cycle or Walk — Please select this choice if you prefer the cycling or the walking option.

25. If these were the only methods available to get to work or school, which would you choose?

Veliicle: Alone

Total Travel Time:
20 minutes

Cost:
$10 per week

Q

Vehicle: Carpool
Total Travel Time:
20 minutes
Pickup / Drop-off Time:
5 minutes

Cost:
$10 per week

M

Public Transit

Total Travel Time:

20 minutes
Walking / Waiting Time:

5 minutes
Cost:

$10 per week
Transfers Required:

One
U

Park and Ride

Total Travel Time:
20 minutes

Walking / Waiting Time:
5 minutes

Cost:
$10 per week

Transfers Required:

None
H

26. If these were the only methods available to get to work or school, which would you choose?

Vehicle: Alone

Total Travel Time:
20 minutes

Cost:
$10 per week

0

Vehicle: Carpool
Total Travel Time:
20 minutes
Pickup/Drop-off Time:
5 minutes

Cost:
$10 per week

0

Public Transit

Total Travel Time:
20 minutes

Walking / Waiting Time:

5 minutes

Cost:
$10 per week

Transfers Required:

One
M|

Walk or Cycle

Total Travel Time:
20 or 30 minutes

Cost:
$0 per week
Cycling Conditions:
On road or On path

0
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27. If these were the only methods available to get to work or school, which would you choose?

Vehicle: Alone

Total Travel Time:
20 minutes

Cost:
$10 per week

W

Veliicle: Carpool
Total Travel Time:
20 minutes
Pickup / Drop-off Time:
5 minutes

Cost:
$10 per week

m]

Public Transit Park and Ride

Total Travel Time: Total Travel Time:

20 minutes 20 minutes
Walking / Waiting Time: Walking / Waiting Time:

5 minutes 5 minutes
Cost: Cost:

$10 per week $10 per week
Transfers Required: Transfers Required:

One None

i Q

28. If these were the only methods available to get to work or school, which would you choose?

Vehicle: Alone

Total Travel Time:
20 minutes

Cost:
$10 per week

O

Vehicle: Carpool
Total Travel Time:
20 minutes
Pickup/Drop-off Time:
5 minutes

Cost:
$10 per week

0

Public Transit Walk or Cycle

Total Travel Time: Total Travel Time:

20 minutes 20 or 30 minutes
Walking / Waiting Time:

5 minutes
Cost: Cost:

$10 per week $0 per week
Transfers Required: Cycling Conditions:

One On road or On path

0 o

29. Do you have any comments on the choices you made in this section of the survey?
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Part 4 — Your Views on Transportation Issues ‘I

30. What is your level of support/opposition for the following government actions that would
influence your transportation system? Please check the best answer for each group of actions.

Your Degree of Support

4
At > 5
& 2 R
88- s a8 <32
5 oal e a § 8
ao = 3 © =
7] v QXM

Improving traffic flow by building new roads, and
expanding existing roads.

Discouraging automobile use with road tolls, gas taxes, and
vehicle surcharges.

Making neighborhoods more attractive to walkers and
cyclists using bike lanes, and speed controls.

Reducing vehicle emissions with regular testing, and
manufacturer emissions standards.

Making carpooling and transit faster by giving them
dedicated traffic lanes, and priority at intersections.
Making transit more attractive by reducing fares, increasing
frequency, and expanding route coverage.

Reducing transportation distances by promoting mixed
commercial and residential, and high-density development.
Reducing transportation needs by encouraging compressed
workweeks and working from home.

C 000D OO0 O O
0 00D O OO O
C 00O D O 0O O O e
0 OO0 DO O O O
0 0O DD OO O O
0 0 D0 OO0 O O

31. Do you have any comments regarding the actions discussed in question 30?

32. How do you feel about the role governments plays in shaping your transportation system?

They are doing too much.

They are doing about the right amount.
They aren’t doing enough.

Don’t know

oooo
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33. Thinking about your daily experiences, how serious do you consider the following problems
related to transportation to be? Please indicate your opinion for each potential problem.

Seriousness of Problem
g = g
5] _ -
© = o 5 = = 2
58 £ 8 58
Z & =& =Za Ay
Traffic congestion you experience while driving. Q Q a a Q a
Traffic noise you hear at home, work, or school. a a a a a a
Vehicle emissions, which impact local air quality. ] ] | ] ] a
Accidents caused by aggressive orabsent mindeddrivers. | O O QO QO Q
Vehicle emissions, which contribute to global warming. O QO a a Q
Unsafe communities due to speeding traffic. a a a a a a

34. How do you believe hybrid electric vehicles (such as the Toyota Prius) compare with
standard gasoline vehicles in the following categories? Please indicate your opinion for each

categor)y.

Compared to a Gasoline Vehicle

Much Slightly Equal Slightly Much  Don’t
Worse Worse 4 Better Better Know

Impact on the Environment
Reliability

Refueling Time

Distance per Fill-up
Horsepower and Acceleration
Fuel Costs

Purchase Price

00000 O
C00O0D0D0OO0O
OC00OD0O00D
00000 Oo
CO0OO0O00O
CO0OO0OD0D0OO

35. Are you satisfied with the selection of hybrid electric vehicles available in the market?

O Yes
O ~No } = Please explain. o
U Don’t Know
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36. How do you believe carpooling, taking transit, walking, and cycling each compare with
driving alone on each of the following criteria? Please indicate your opinion for each

transportation method.

Comparison with Driving Alone

Much Slightly Equal Slightly Much Don’t
Worse Worse Better Better Know

Carpooling
Safety while | Public Transit
travelling Walking
Cycling

Carpooling
Public Transit
Walking
Cycling

Comfort

Carpooling
Impact on the | Public Transit
Environment | walking

Cycling

Carpooling
Public Transit

Flexibility Walki
alking

o000 0DD|0000|00OC
0000000000000 O
0000000000000 ©
o000 0D0D|0D000|IDD00C D

Co0dooooojlooooloooo
o000 000|0000|l00o O

Cycling

37. How satisfied are you with the following features of the public transit system in your city?
Please indicate your opinion for each transit feature.

Satisfaction with Public Transit
Very Very Don’t
Dissatisfied Neutral Satisfied Know

Location of bus stops
Frequency of bus service
Timeliness of bus service
Availability of seats
Cleanliness of vehicles

Convenience of bus routes

CO0OO0ODOD
CO0ODO0OD O
CODODOO
CoCcoDOoOD

COoCco00OD O
CO0O0DOC

Cost of fares
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38. Do you have any comments on the answers you provided in this section of the survey?

Part 5 - Additional Information About Yourself

39. What is your gender?

Q Female
Q Male

40. How many people live in your family household?

O One

d Two
 Three

O Four or more

41. In 2001, which category best described your total family income, before tax?

$20,000 or less
$20,001 to $40,000
$40,001 to $60,000
$60,0001 to $80,000
$80.001 or over

CcOo000o

42. What type of dwelling do you live in?

O Single-family detached house

U Duplex, townhouse or row house
O Apartment building

U Other:

43. What is the highest level of education you have completed?

Less than Grade 9

Grade 9

Grade 12

College, CEGEP or other post-secondary diploma

University

oCcooo
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44,

45.

46.

47.

48.

What is your age?

@l 25 years or less
O 26 to 40 years
@ 41 to 55 years
O 56 years or older

What is your current occupation?

Do you work at the same location most days?

O ves
d No= If no, please explain. e

Do you work the same hours most days?

O Yes

O No = [fno, please explain.

Do you have any comments on the answers you provided in this section of the survey?
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If you have any questions about this survey, or the
research in general, please contact the primary
researcher, Matt Horne.

Phone: 604.268.6621
Email: mhorne@sfu.ca

If you would like to speak to a representative of the
School of Resource and Environmental Management,
please contact the director, Frank Gobas.

Phone: 604.291.4659

Once you have completed this survey, please return it in
the accompanying stamped envelope to the following

address:

Canadian Transportation Preferences Study
EMRG/CIEEDAC

Room 2123 East Academic Annex

Simon Fraser University

8888 University Drive

Burnaby, BC, V5A 186

If you would like to see the results of this study, updates
will be regularly posted at the following website:

http://www.emrg.sfu.ca/transportation

Thank you again for taking the time to offer us your
ideas on these important issues.
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Followup Postcard ( 1 Page)

«First Name» «lL.ast Name»,

Two weeks ago you were sent your copy of the Canadian Transportation
Preferences Survey as a follow-up to our phone interview on
«Respondant_Date».

If you have already completed and returned the survey, we want to express our
appreciation for your help with this research project. If not, please do so
today. We are especially grateful for your help because it is only by asking
people like you to share your experiences that we can understand how

Canadians view their transportation systems.

If you didn't receive your copy of the survey, or if you have misplaced it,
please contact us and we will send you a replacement immediately. You
can lecave a message by telephone at 604.268.6621, or by email at

mhorne@sfu.ca.
Thank you again for vour participation in this project.

Sincerely,

Matthew [Horne
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Cover Letter 2 (1 Page)

Simon Fraser University

School of Resource and Environmental Management Burnaby, BC, V5A 156
Department Phone:  604.291.4659
Survey Phone: 604.268.6621
15-Sep-03

«First_ Name» «Last_Name»,

About four weeks ago we sent you your copy of the Canadian Transportation Preferences
Survey. To the best of our knowledge, it hasn't been returned as of 15-Nov-02. The study is
drawing to a close, and this is the last contact that will be made to the people who were

contacted by phone in early October.

Individuals from across the country who have already returned their surveys have responded
with strong opinions on the state of their transportation systems and how they feel they can be
improved. As well, they have provided a wealth of information on their commuting patterns and
vehicle purchasing preferences. The results of the survey will provide a clear picture of the
Canadians’ opinions and preferences, and will be very useful for both transportation planning

and energy use research.
We are sending this final contact because we are concerned that people who have not yet
responded may have experiences with their transportation system that differ from those who

have already replied. Hearing from everyone initially contacted helps ensure that the results are
as accurate as possible and reflect the broad range of opinions found across Canada.

If you have any questions about the survey or research, please leave a message by phone at
604.268.6621 or by email to mhorne@sfu.ca. Both the voice mail and email are checked daily

and any messages will be returned the next day.

As a reminder, all of your answers are completely confidential, and they will only be released as
summaries in which no individual’s answers can be identified. When you return your completed
questionnaire, your name will be deleted from the mailing list, and never connected to your

answers in any way.

We hope you will fill out and return the enclosed survey, but if for any reason you prefer not to,
please let us know by returning the blank survey in the enclosed stamped envelope.

Thank you for your time and assistance.

Sincerely,

Matthew Horne

Primary Researcher,
School of Resource and Environmental Management
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APPENDIX 3 — EXPERIMENTAL DESIGN

Basic 2" Experimental Design

Attribute
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Profiles Within Each Choice Set

Choice| Choicel Choice 2 Choice 3 | Choice 4
Set Profile Profile Profile Profile
Number Number Number Number
1 4 31 3 I
2 24 8 23 12
3 5 27 6 9
4 25 21 13 28
5 20 7 22 19
6 17 30 16 14
7 32 11 18 10
8 2 26 29 15
9 4 24 5 25
10 20 17 32 2
11 31 8 27 21
12 7 30 Il 26
13 3 23 6 13
14 22 16 18 29
15 ] 12 9 28
16 19 14 10 15
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Times Each Choice Profile Was Included in a Survey

[ Profile [Number
Number{ Sent
15 134
10 136
14 138
29 138
26 139
2 140
18 140
11 141
19 141
16 142
32 142
9 143
30 143
12 144
17 144
28 144
22 145
6 146
7 146
[ 147
13 147
20 147
23 147
27 147
5 148
8 148
21 148
24 149
25 149
3 150
31 151
4 152
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APPENDIX 4 — SCENARIOS FOR VEHICLE CHOICE PREDICTIONS

Scenario Attributes for Figure 4.44

Gasoline |Alternative] Hybrid- |Hydrogen
Fuel Electric | Fuel-Cell

Capital Cost 20000 25000 30000 60000
Fuel Cost 200 200 150 250
Fual Availability | 0.1 1 0.1

Express Access 1 | 1 1
|

Power 0 | |

Scenario Attributes for Figure 4.45

Gasoline |Alternative] Hybrid- |Hydrogen
Fuel Electric | Fuel-Cell
Capital Cost 25000 28000 32000 30000
Fuel Cost 225 225 175 200
Fual Availabilit 1 0.1 1 0.5
Express Access ] ] |
Power 0 1 | 0

Scenario Attributes for Figure 4.46

Gasoline [Alternative Hybrid- |Hydrogen
Fuel Electric | Fuel-Cell
Capital Cost 25000 22000 32000 60000
fFuel Cost 225 175 175 250
Fual Availability 1 0.5 1 0.1
Express Access ] | |
Power 0 0 | |

Scenario Attributes for Figure 4.47

Gasoline [Alternative] Hybrid- ’Eydrogen
Fuel Electric | Fuel-Cell
Capital Cost 25000 24000 28000 50000
Fuel Cost 225 185 130 225
Fual Availability, 1 0.25 ] 0.25
Express Access ] 0 0 0
Power 0 0 0 0
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Scenario Attributes for Figure 5.5

Gas- | Gas- |Propane Nat Gas| Diesel | Meth |Ethanol|Electric| Hybrid | Fuel

High Low Cell
CC_| 19000 | 21000 | 25000 | 25000 | 25000 | 25000 | 25000 | 40000 | 35000 | 60000
OC | 1500 2000 1500 1500 1500 1500 1500 1500 1500 1000
FA 1 1 0.1 0.1 0.1 0.1 0.1 1 1 0.1
Exp 1 1 ] 1 1 1 1 0 1 1
Pow 0 0 0 0 0 0 0 1 1 1
Scenario Attributes for Figure 5.6

Gas- | Gas- |Propane|Nat Gas| Diesel | Meth |Ethanol|Electric| Hybrid | Fuel

High Low Cell
CC | 20000 | 25000 | 20000 | 20000 | 20000 | 25000 | 25000 | 40000 | 35000 | 60000
OoC | 1500 2000 1250 1250 1250 1500 1500 1500 1500 1000
FA 1 1 0.5 0.5 0.5 0.1 0.1 1 1 0.1
Ex 1 1 0 0 0 1 ! 0 1 1
Pow 1 0 0 0 0 0 1 1 1
Scenario Attributes for Figure 5.7

Gas- | Gas- |Propane|Nat Gas| Diesel | Meth |Ethanol| Electric| Hybrid | Fuel

High Low Cell
CC | 20000 | 25000 | 25000 | 25000 | 25000 | 25000 | 25000 | 25000 | 25000 | 35000
OoC | 1500 2000 1500 1500 1500 1500 1500 1250 1250 1000
FA 1 1 0.1 0.1 0.1 0.1 0.1 1 1 0.5
Exp 1 1 1 1 1 1 1 0 1 ]
Pow| | 0 0 0 0 0 0 I 0 0|
Scenario Attributes for Figure 5.8

Gas- | Gas- [Propane/Nat Gas| Diesel | Meth |Ethanol|Electric| Hybrid | Fuel

High Low Cell
CC | 20000 | 25000 | 25000 | 25000 | 25000 | 20000 | 20000 [ 40000 [ 35000 | 60000
OC | 1500 2000 1500 1500 1500 1250 1250 1500 1500 1000
FA 1 1 0.1 0.1 0.1 0.75 0.75 1 1 0.1
Exp 1 1 ] 1 1 0 0 0 1 |
Pow | 0 0 0 0 0 0 1 l 1
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APPENDIX 5 — SCENARIOS FOR MODE CHOICE PREDICTIONS

Scenario Attributes for Figure 4.15

SOV HOV Trans Park W/C
Cost ($/month) 150 120 100 150 0
Driving Time 22 20 38 40 65
Pickup/Dropoff Time 0 10 0 0 0
Walking/Waiting Time 0 0 15 10 0
Transfers 0 0 0.5 0
Cycling Path 0 0 0 0 0

Scenario Attributes for Figure 4.16

SOV HOV Trans Park /C
Cost ($/month) 150 100 100 150 0
Driving Time 30 30 30 30 90
Pickup/Dropoff Time 0 5 0 0 0
Walking/Waiting Time 0 0 5 5 0
Transfers 0 0 0 0 0
Cycling Path 0 0 0 0 0.5

Scenario Attributes for Figure 4.48

SOV HOV Transit Ww/C
Cost ($/month) 150 120 100 0
Driving Time 22 20 38 65
Pickup/Dropoff Time 0 10 0 0
Walking/Waiting Time 0 0 15 0
Transfers 0 0 0.5 0
Cycling Path 0 0 0 0

Scenario Attributes for Figure 4.49

SOV HOV Transit w/C
Cost ($/month) 150 75 100 0
Driving Time 22 15 38 65
Pickup/Dropoff Time 0 S 0 0
Walking/Waiting Time 0 0 15 0
Transfers 0 0 0.5 0
Cycling Path 0 0 0 0

Scenario Attributes for Figure 4.50

[ SOV HOV Transit W/C
Cost ($/month) 150 120 60 0
Driving Time 22 20 25 65
(Pickup/Dropoff Time 0 10 0 0
Walking/Waiting Time 0 0 b 0
Transfers 0 0 0 0
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[Cycling Path 0 0 ‘ 0 0
Scenario Attributes for Figure 4.51

N{0)Y% HOV Transit W/C
Cost ($/month) 150 120 100 0
Driving Time 22 20 38 45
Pickup/Dropoff Time 0 10 0 0
Walking/Waiting Time 0 0 15 0
Transfers 0 0.5 0
Cycling Path 0 0 1
Scenario Attributes for Figure 5.9

SOV HOV Transit W/C
Cost ($/year) 2000 1500 1000 0
Driving Time 22 20 38 65
Pickup/Dropoff Time 0 0 15 0
Walking/Waiting Time 0 10 0 0
Transfers 0 0 0.5 0
Cycling Path 0 0 0 0
Scenario Attributes for Figure 5.10

SOV HOV Transit W/C
Cost ($/year) 2000 1000 1000 0
Driving Time 25 17 38 65
Pickup/Dropoff Time 0 0 15 0
Walking/Waiting Time 0 5 0 0
Transfers 0 0 0.5 0
Cycling Path 0 0 0 0
Scenario Attributes for Figure 5.11

SOV HOV Transit W/C
Cost ($/year) 2000 1500 500 0
Driving Time 25 20 20 65
Pickup/Dropoff Time 0 0 10 0
Walking/Waiting Time 0 10 0 0
Transfers 0 0 0.1 0
Cycling Path 0 0 0 0
Scenario Attributes for Figure 5.12

SOV HOV Transit W/C
Cost ($/year) 2000 1500 1000 0
Driving Time 25 20 38 40
Pickup/Dropoff Time 0 0 15 0
Walking/Waiting Time 0 10 0 0
Transfers 0 0 0 0
Cycling Path 0 0 0 I
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APPENDIX 6 — VEHICLE CHOICE SUB-MODELS

All Obs.
Beta b/St.
Coeff, Err.
Capital Cost -9.01E-05 -5.76 | Gray cells in the beta coefficient column are the expected sign.
Fuel Cost -4.60E-03 -3.38
Fuel 1.16 8.47 | Gray cells in the beta/St. Error column are statistically significant,
Express -0.16 -3.09
Power -0.22 -4.47
ASC - -1.70 -
ASC - AFV -2.01 -
ASC - HEV -0.36 -4.18
Log- -3625.61
Obscrvations 3278
Discount 24%
Region
Atlantic Quebec Ontario Praries BC
Beta b/St. Beta b/St. | Beta b/St. Beta b/St. Beta b/St.
Coeff. | Err. | Coeff. | Err. | Coeff. | Err. | Coeff. | Err. | Coeff, | Err.
Capital Cost] -1.06E-04] -1.83] -9.60E-05] -3.05 -7.70E-05 -3.07| -1.68E-04| -4.45] -2.59E-06] -0.05
Fuel Cost] 9.51E-03 1.99 -8.80E-03] -2.67 -1.44E-02] -6.06[ 1.55E-03 0.96| 3.47E-03 0.71
Fucl Availability, 0.66f 1.37 1.36)  4.62 1.18  5.34 134 3.99 095 2.5
Express Access| 0.08 0.47 -0.211 -1.90 -0.18  -2.13 017 -1.34 <013 -0.88!
Powe -0.38] -2.22 -0.17] -1.62 -0.15| -1.82 -0.300  -2.46 -0.32] -2.4
ASC - Gasoling] -1.53) -4.44 -1.35] -6.69 -1.78 -10.96 -1.93  -8.09 =201 -7.1¢
ASC - AFV -2.000 -6.59 -1.79 -10.06 -1.96| -14.12 -2.551 -10.64 -1.84 -8.04
ASC - HEV] 053 176 040 -2.094 079 -5.45 031 -1.59 -0.10]_-0.36
Log-likelihood]  -310.46] -867.04 -1334.85 -622.54 -446.51 |
Observations 286, 772 1226 583 411
Discount Rates -13% 13% 6% -130% S19
City Size
Large Medium Small
Beta b/St. | Beta b/St. | Beta b/St.
Coeff, | Err. | Coeff. | Err. | Coeff. | Err.
Capital Cosy -6.76E-05| -3.14] -1.35E-09] -4.56 -1.07E-04 -2.87
Fuel Cos{ -1.05E-02] -4.80 -1.59E-02] -4.77] 2.74E-03) 1.83
Fuel Availability, 1.100  5.77 128 491 1.24 3.97
Express Access| -0.23] -3.11 -0.15)  -1.57 0.01 0.09
Power -0.200 -2.89 -0.14] -1.53 -0.39] -3.54
ASC - Gasoling] -1.51] -11.07 -1.97 -10.37 -1.77] -7.93
ASC - ATV -1.81] -15.57 -2.41) -13.10 -1.91 -10.0
ASC - HHEV] -0.50] -4.03 -0.90 -5.07] 007 037
Log-likelihood| -1875.30) -973.39 -742.45
Observations 167 924 684
Discount Rates| 8% 10% -47%,
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Major Cities

Toronto Vancouver Montreal
Beta b/St. Beta b/St. Beta b/St.
Coeff. | Err. | Coeff. | Err. | Coeff. | Err.
Capital Cost| -5.52E-05] -1.80] -4.02E-06] -0.07] -1.08E-04] -2.9]
Fucl Cost] -1.73E-02] -4.99] 1.87E-03 0.34 -7.87E-03] -2.25
Fuel Availability 1.200  4.12 0.72 1.79, 1.26 3.8(
Express Access -0.260 -2.36 -0.19] -1.25 -0.21]  -1.69
Power 0111 -1.02 -0.33]  -2.24 -0.22)  -1.94
ASC - Gasoline -1.59] -7.52 -2.071 -6.55 -1.200 -5.33
ASC - Al -1.84] -10.27 -1.931 -7.62 -1.68]  -8.69]
ASC - HEV| -0.84] -4.35 -0.05 -0.18 -0.33]  -1.57]
Log-likelihood]  -780.54 -373.59 -699.22
Observations 709 353 608|
Discount Rates 4% -3% 16%
Age
<25 years 26 to 40 years | 41 to 55 years >56 years
Beta | b/St. | Beta | b/St. | Beta | b/St. | Beta | b/St.
Coeff. | Err. | Coeff. | Err. [ Coeff. | Err. | Coeff. | Err.
Capital Cost| -2.65E-04] -3.60! -7.65E-05] -2.64 -8.76E-05] -3.60| -8.76E-05] -2.68
Fuel Costl -3.36E-02] -4.53] -6.35E-04f -0.44 -5.77E-03] -2.48] -1.18E-02] -2.83
Fuel Availability 2.53 4.77 1.200  4.85 1.25 5.61 0.50 1.71
Express Access| -0.400 -2.10) -0.171 -1.86 -0.09] -1.06] -0.17) -1.46
Power -0.660 -3.53 -0.26/ -2.99 -0.17] -2.18 -0.07] -0.66
ASC - Gasoline -2.39] -6.41 -1.81] -10.12 -1.920 -11.96| -0.85 -4.06
ASC - ARV -1.78] -6.03 -2.121 -12.91 -2.32] -15.28 -1.43] -8.71
ASC - HIEV] 2139 -4.00 -0.14]  -1.00 0.65 -4.51 0.19 -0.94
Log-likelihood]  -282.95 -1119.60 -1339.95 -823.77
Obscrvations| 30 1053 1226, 687
Discount Rates 9% 145% 18% 99
Education
Grade 9 or less Grade 12 College University
Beta b/St. Beta b/St. Beta b/St. Beta b/St.
Coeff. | Err. | Coeff. | Err. | Coeff. | Err. | Coeff. | Err.
Capital Cos{ -7.62E-05] -1.08] -1.31E-04] -3.08] -8.23E-05] -2.94] -8.61E-05 -3.79
Fuel Cost -2.77E-02]  -2.57 -9.25E-03] -2.71] -1.59E-03] -0.95 -5.56E-03] -2.47
Fuel Availability] 041 065 0.65  2.04 159 6.37 1200 5.78
Express Accessy <079 2900  -0.13] -1.08]  -0.09] -1.01 0.17_-2.17
Power -0.091 -0.39 -0.23] -2.06 -0.200 -2.25 -0.24) -3.17
ASC - Gasoling] 032 0.73 -1.18  -5.11 -1.87 -10.70f -2.10 -13.60f
ASC - ARV -0.30 -0.98 -1.62| -8.664 -2.39 -13.55 -2.19; -16.05
ASC - HEV -0.67 -1.37 0.01] -0.04 -0.46 -3.07 -0.54 -4.04
Log-likclihood| -181.17] -705. 10 -1153.40 -1492.04
Obscrvations 139 629 1075 1401
Discount Ratcs] 3% 17% 62% 19%
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Gender
Male Female
Beta b/St. Beta b/St.
Coeff. | Err. | Coeff. | Err.
Capital Cost -9.29E-05] -4.12] -8.74E-05] -3.96
Fuel Cost| -1.55E-03] -1.07] -1.01E-02] -4.55
Fuel Availability 1.65 7.5 0.84 4.72
Express Access -0.15 -1.89 -0.150 -2.16
Power -0.27, -3.41 -0.18] -2.83
ASC - Gasoline -1.811 -12.06 -1.65 -12.35
ASC - AFV] -2.28] -15.60, -1.82| -16.57
ASC - HEV -0.62) -4.84 -0.28] -2.29
Log-likelihood] -1501.12 -2070.51
Observations 1345 1909
Discount Rates| 72% 10%)
Income
< $20,000 $20,001 to $40,001 to $60,001 to > $80,000
$40,000 $60,000 $80,000
Beta | b/St. | Beta | b/St.| Beta | b/St.| Beta | Db/St.| Beta | b/St.
Coeff. | Err. | Coeff. | Err. | Coeff. | Err. | Coeff. | Err. | Coeff. | Err.
Capital Cosf -1.62E-04] -2.12{ -1.14E-04] -2.54) -1.03E-04] -2.98) -4.53E-05] -1.07| -8.67E-05] -3.63
Fuel Cos] -1.00E-02]  -1.28 -1.11E-02]  -2.52 -1.44E-02]  -3.80| -1.39E-02| -3.88] 9.491:-04] 0.69|
'uct Availability 143 2.82 1.47]  4.52) 0.85| 2.82 0.55 1.68 1.45 588
Express Access 0.15  0.76 -0.16]  -1.37 -0.21f  -1.90 -0.01]  -0.08 -0.21] -2.29
Power] -0.54] -2.96 -0.03] -0.28 -0.22] -2.05 -0.04] -0.35 -0.39] -4.33
ASC - Gasoling -1.47 -4.31 -1.62]  -7.02 -1.55 -7.11 -1.400 -5.66] -2.12] -11.86
ASC - Al'V] -1.41] -5.18 -1.83) -93 -2.28 -10.58 -1.47 -7.74 -2.47 -14.38
ASC - TIEV -0.61] -1.65 -0.59] -2.62 -0.39  -1.96] -0.22] -1.01 -0.51] -3.56
Log-likclihood]  -299.92 -680.35 -745.03 -598.1( -1116.88
Obscrvations) 248 614 714 540 1044
Discount Rates 19% 12% 9% 49 S110%

Car Access
Beta b/St.
Coeff. | Err.
Capital Cost -9.18E-05  -5.68
Fuel Cost| -4.22E-03[  -3.02
lF'uel Availability 1120 7.75
Express Access -0.15 -2.79
Power] -0.23) -4.39
ASC - Gasoling] -1.68] -16.24
ASC - AV -2.04] -22.09
ASC - HEV] -0.31] -3.45
Log-likclihood] -3306.36)
 Obscrvationy 3001
Discount Ratesy 26%
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Vehicle Class
Small Cars Medium Cars Large Cars Trucks/SUV's
(includes
minivans)
Beta b/St. Beta b/St. Beta b/St. Beta b/St.
Coeff. | Err. | Coeff. | Err. | Coeff. | Err. | Coeff. | Err.
Capital Cost] -1.68E-04] -4.27| -8.06E-05 -2.63| -5.89E-05] -2.06| -1.04E-04] -3.07
Fuel Cost| -1.33E-02] -3.88/ -7.82E-03| -2.68 -1.18E-02| -3.68] 1.40E-03 0.93
Fuel Availability 1.67] 6.19 1.13)  4.35 0.78, 2.76] 1.01 2.59
Express Access -0.21]  -2.06) -0.21) -2.16 -0.03]  -0.24 -0.08] -0.53
Powen -0.24) -2.54 -0.26] -2.88 -0.21]  -2.00] -0.18] -1.29)
ASC - Gasoling -1.95| -10.12 -1.65 -8.79 -1.550 -7.59 -1.40] -5.2
ASC - AFV] -2.06] -12.23 -1.84 -11.52 -2.000 -10.88 -2.15]  -8.57
ASC - HLV| -0.8 -4.58 -0.311 -1.81 -0.44] -2.35 -0.21] -0.92
Log-likelihood]  -978.58 -1015.88 -829.80) -475.32
Observations| 914 931 751 411
Discount Rateg 15% 12% 6% -89%
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APPENDIX 7 — MODE CHOICE SUB-MODELS
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All Obs
Beta | b/St.
Coeff, | Err.
Cost] -2.84E-03] -5.29] Gray cells in the beta coefficient column arc the expected sign,
Driving Time| -4.42E-02] -13.85
P/D Time| -7.94E-02) -5.07)  Gray cells in the beta/St. Error column are statistically significant.
W/W Time| -7.32E-02] -8.36)
Transfers) -0.1589¢ -2.00
Cycling Path 0.17328] _1.26
Asc - SOV| -0.53256| -3.94
Asc - HOV| -0.47297 -2.73
Asc - Transitt -0.46235 -3.02
Asc - P & R| -1.9468Y -10.80
Log-likelihood] -4088.34
Observations 3335
Region
Atlantic Quebec Ontario Praries BC —1
Beta |b/St.| Beta |b/St.| Beta [b/St.| Beta |b/St.| Beta ]b/St.
Coeff. | Err. | Coeff. | Err.| Coeff. | Err.| Coeff. | Err. | Coeff. | Err.
Cos -6.39E-03 -2.82[-3.94E-03 -3.21]-4.55E-03] -5.51]-2.29E-04] -0.40-7.55E-03 -3.37
Driving Time] -4.78E-02] -3.92]-5.02E-02| -6.28]-3.75E-02] -8.05-5.66E-02] -6.28-5.21E-02 -6.21
P/D Time[-1.03E-01] -1.86-1.01E-0lj -3.14{-8.47E-02 -3.30/-4.87E-02| -1.31(-5.95E-02] -1.36
W/W Time|-8.06E-02| -2.83/-6.89E-02] -3.85|-9.95E-02| -6.69-4.42E-02| -2.11[-5.70E-02| -2.30
Transfers] -0.21387] -0.80{ 0.140398 0.85 -0.28503 -2.1 <0.1727 -0.89 -0.37702f -1.66
Cycling Pathy -0.22734] -0.47] 0.06070 0.18 0.15460 0.71) 0.587428] 1.74] 0.256824] 0.71
Asc - SOV| -0.41663 -0.77 0.027963] 0.09] -0.24692] -1.18] -0.65793] -2.17] -1.1464 -2.9)
Asc - HOV] -0.39389 -0.600 0.271117, 0.71] -0.32362 -1.17] -0.80507 -1.95 -1.17518] -2.45
Asc - Transif -0.15876] -0.28] -0.04875] -0.14] -0.12484] -0.52] -0.85469] -2.320 -1.0412 -2.39
Asc - P& R| -2.17904] -2.99 -1.82867 -4.35] -1.3228] -4.76] -2.34294] -5.59] -2.29952 -4.45
Log-likelihood -339.407 -909.788 -1555.63 -723.69 -505.708
Observations 282 758 127 597 421
{ City Size
Large Medium Small
Beta | b/St.| Beta | b/St.| Beta | b/St.
Coeff. | Err. | Coeff, | Err. | Coeff. | Err.
Cost] -4.76E-03[ -5.61] -7.00E-03; -5.24] -5.33E-0. -0.99
Driving Time] -4.79E-02)  -9.98 -4.72E-02} -7.58 -3.75E-02) -6.07
P/D Time| -7.61E-02] -3.52{ -8.08E-02] -2.72{ -9.08E-02] -2.59,
W/W Timel -8.76E-02f  -7.06] -4.92E-02] -3.06{ -8.03E-02] -3.99
Transfers] -0.23605 -2.121 -0.09944] -0.67] -0.14988] -0.84
Cycling Path] 0.147494]  0.73 0.153142] 0.61] 0.225184] 0.7§
Asc - SOV| -0.31902] -1.62] -0.08603] -0.33] -0.85903] -3.09
Asc - HOV| -0.34991 -1.42 -0.22768 -0.70{ -0.67018 -1.76
Asc - Transiq -0.14896{ -0.68 -0.37665] -1.30, -0.783] -2.34
Asc-P & Rl -1.65493] -6.35] -1.77536] -5.02] -2.04972] -5.49i
Log-likelihood] -2070.64 -1151.18§] -842.321
Obscrvations| 170 94 68



Major Cities
Toronto Vancouver Montreal
Beta | b/St. | Beta | b/St.| Beta | b/St.
Coeff. | Err. | Coeff. | Err. | Coeff. | Err.
Cost -5.66E-03] -4.58] -6.42E-03] -2.74] -4.18E-03] -3.1¢6|
Driving Time| -4.36E-02]  -6.05{ -5.21E-02] -5.63{ -5.72L-02] -5.75
P/D Time| -7.39E-02)  -2.22|-7.21E-02] -1.50} -8.38FE-02| -2.35
W/W Timg| -1.22E-01]  -6.09; -5.84E-02| -2.26{ -6.95E-02] -3.39
Transfers ~0.510160 -2.94] -0.39817] -1.64] 0.168567] 0.90
Cycling Pathl 0.065607] 0.22] 0.24327] 0.62] 0.198133] 0.47
Asc - SOV| -0.05389 -0.19) -1.08238] -2.58] 0.070457] 0.19|
Asc - HOV| -0.29398 -0.79] -1.06871 -2.05] 0.207944] 0.46
Asc - Transif) 0.306581 0.93 -0.83024} -1.79 -0.053760 -0.13
Asc-P & R| -0.97552] -2.54 -2.56592| -4.46 -1.70727] -3.55
Log-likelihood| -900.383] -435.735 -709.061
Observations| 75( 361 59
Age
<25 years 26 to 40 years | 41 to 55 years >56 years
Beta | b/St.| Beta | b/St.| Beta |Db/St.| Beta | b/St.
Coeff. | Err. | Coeff. | Err. | Coeff. | Err. | Coeff. | Err.
Cost| -1.176-02]  -3.44]-9.78E-04] -1.78] -3.23E-03] -3.79/-1.36E-02] -6.68
Driving Timd -7.04E-02] -5.94[-3.11E-02] -6.99 -5.59E-02] -9.39{-3.67E-02] -3.50)
P/D Time| -1.39E-01] -2.68] -7.90E-02] -2.96{ -7.85E-02] -2.89-5.55E-02] -1.64
W/W Timef -3.89E-02| -1.23|-7.47E-02f -4.69 -8.07E-02[ -5.18 -8.01E-02| -4.75
Transters  -0.4595) -1.54] -0.32847] -2.24] -0.04298f -0.31] -0.05029] -0.33
Cycling Path] 0.096492]  0.22] 0.219435]  0.97] 0.12019 0.54] 0.637172 1.36
Asc-SOV] -1.18392] -2.05] -0.62369 -2.94] -0.31959 -1.48 1.381179 2.85
Asc - HOVE  -0.4767] -0.79] -0.28177] -0.97 -0.70058 -2.41] 0.99814 1.90
Asc - Transif] -1.40551] -2.48] -0.40028 -1.56] -0.64244 -2.53] 1.599062] 3.32
Asc-P &R -2.74726{ -3.78 -2.1475 -6.87] -1.87363[ -6.28 0.438941 0.82
Log-likelithood] -322.914 -1318.18 -1466.16 -865.071
Obscrvations 30( 107 1254 701
Education
Grade 9 or less Grade 12 College University
Beta | b/St.| Beta |[b/St.| Beta | Db/St.| Beta | b/St.
Coeff. { Err. | Coeff. | Err. | Coeff. | Err. | Coeff. | Err.
Cost] -5.15E-03( -0.97 -5.60-03( -4.24{-6.52E-04 -1.24] -5.68:-03] -5.8¢
Driving Time| 2.26E-02] 1.20 -5.81E-02] -6.86| -3.08E-02] -6.45 -5.70E-02] -10.67
P/D Time| -2.51E-021  -0.29(-3.92E-028  -1.13] -1.19E-01] -4.37] -7.45E-02] -3.09]
W/W Time| -3.25E-02] -0.83[-5.79E-02] -2.85]-7.06[-02| -4.57|-9.14E-02] -6.73
Translers 0.326596 (.88 -0.12935F -0.71} -0.1815] -1.28 -0.22756{ -1.88
Cycling Pathl -1.01612] -1.18 -0.13388] -0.42) 0.22923 0.91f 0.271717 .34
Asc - SOV| 1.033809 1.16) -0.71202] -2.29] -0.33321f -1.45] -0.51444 -2.44
Asc- 1OVl 0.18689 0.19 -0.98912[ -2.47| 0.123985 041 -0.61792 -2.32
Asc - Transitf 0.3922031  0.47] -0.97135] -2.701 -0.28129 -1.03] -0.2668 -1.15
Asc- P &R -1.09541 -1.06/ -2.02923[ -4.93] -1.90395 -6.08 -1.717031 -6.11
Log-likelihood -162.391 -790.401 133478 173234
Observations 13 649 109 1432
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Gender
Male Female
Beta | b/St.| Beta | b/St.
Coeff. | Err. | Coeff. | Err.
Cost| -1.02E-03] -2.04] -7.20E-03| -7.45
Driving Time| -4.48E-02 -9.10{ -4.83E-02] -10.72
P/D Time| -8.12E-02| -3.04] -7.50E-02{ -3.82
W/W Timel -5.83E-02| -4.46{ -8.69E-02f -7.29
Transfers) -0.09751f -0.81] -0.21823] -2.05
Cycling Path| 0.450465| 2.25] -0.02755 -0.14]
Asc - SOV| -0.620731 -3.26] -0.15692] -0.80)
Asc - HOV]  -0.8103] -2.93] -0.12384] -0.54
Asc - Transitl -0.60336 -2.67] -0.14357] -0.67,
Asc-P & R| -2.21829 -8.35 -1.41615 -5.63
Log-likelihood] -1671.28 -2345.6
Obscrvations| 1366 1951
Income
< $20,000 $20,001 to $40,001 to $60,001 to > $80,000ﬁ
$40,000 $60,000 $80,000
Beta | b/St.| Beta | Db/St.| Beta | b/St.| Beta |{Db/St.| Beta | Db/St.
Coeff, | Err. | Coeff. | Err. | Coeff. | Err. | Coeff. | Err. | Coeff. | Err.
Cost -1.78E-02] -4.20-1.19E-02] -5.69-4.52E-03] -3.27-6.35E-03] -5.12]-6.640-04] -135
Driving Time -2.25E-02)  -2.45 -4.12E-02)  -5.86 -4.31E-02] -6.66/ -5.13E-02] -5.63| -6.24E-02| -8.94
P/D Time| -9.63E-02] -1.521-6.66E-02] -1.95{-7.80E-02] -2.31)-7.14E-02| -1.96] -8.03E-02] -2.65
W/W Time| -3.67E-02]  -1.21] -5.14E-02] -2.65[-5.93E-02[ -3.49 -1.19E-01} -4.73| -1.23E-01| -6.70
Transters, -0.47023] -1.67] 0130239 0.71] -0.17414 -1.12] -0.53435 -2.52 -0.17631] -1.15
Cycling Path| -0.03495 -0.08 -0.12145 -0.391 0.39494 1.33) 0.301214f 0.77] 0.144311 .57
Asc - SOV 1.8891431  3.000 -0.2666( -0.74] -0.25403; -0.87| -0.18804 -0.48 -0.98552 -4.08
Asc- HOV] 1069942 164 -0.0149 -0.04 -0.16109 -0.43 -0.05714 -0.12] -13902] 414
Asc - Transi 1.13658] 1.920 -0.36263] -0.97, 0.014994  0.05] 0.135366] 0.31| -0.85615 -2.97
Asc-P & Rl 0.347467]  0.47| -1.98427] -4.16f -1.28891] -3.50f -1.03334] -2.06 <2387 -7.17
Log-likelihood] -308.621 -737.66| -921.01 -642.087 -1194.53
Obscrvations 253 620 727 547 1058
| Commuter
Beta |b/St.
Coeff, {Err.
Cost{-2.16E-03| -4.21
Driving Time}-4.27E-02]-13.1
P/D Time] -9.61E-02] -5.34
W/W Time| -7.76E-02] -7.36]
Transfery) -0.15028] -1.56
Cycling Path] 0.162641] 1.14
Asc - SOV -0.5302 -3.82
Asc - HOV] -0.46731] -2.48
Asc - Transif -0.63711] -3.81
Asc-P & R -2.29062/-11.07,
Log-likelihood] -3146.94
Obscrvations 2637
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APPENDIX 8 — AVAILABILITY MODIFIERS

Case 1 Case 2 Case 3
Vehicle Market Availability Market Availability Market Availability
Type Share Modifier Share Modifier Share Modifier
Methanol 0% -1.44 5% 0.21 1% -1.33
Ethanol 1% 0.94 5% 0.14 1% -1.40
Electric 0% -2.67 5% -0.44 1% -1.99
Hybrid 1% -5.36 5% -2.11 4% -2.26
Fuel-cell 0% 0.00 5% 0.01 70% 11.25
Propane 0% -0.48 5% 0.78 1% -0.76
Diesel 4% 1.94 5% -0.01 1% -1.54
Natural Gas 1% 1.31 5% 0.87 1% -0.67
Gas — High 49% 3.10 30% 0.35 10% -0.59
Gas — Low 44% 2.26 30% -0.20 10% -1.14

Case 4 Case 5 Case 6
Vehicle Market Availability Market Availability Market Availability
Type Share Modifier Share Maodifier Share Modifier
Methanol 2% -0.93 4% -0.73 10% -0.30
Ethanol 2% -1.00 4% -0.80 10% -0.37
Electric 2% -1.58 4% -1.39 10% -0.96
Hybrid 2% -3.36 4% -3.05 10% 2.62
Fuel-cell 2% 732 4% 7.59 10% 8.02
Propane 2% -0.35 4% -0.16 10% 0.27
Diesel 4% -0.64 4% -0.96 10% -0.53
Natural Gas 2% -0.26 4% -0.07 10% 0.36
Gas — High 41% 0.47 34% -0.15 10% -1.87
Gas — Low 41% -0.09 34% -0.70 10% 242

Case 7 Case 8 Case 9
Vehicle Market Availability Market Availability Market Availability
Type Share Modifier Share Modifier Share Modifier
Methanol 0% -3.94 7% -0.54 5% 0.04
Ethanol 20% 3.55 7% -0.61 10% 0.61
Electric 5% 1.58 7% -1.19 5% -0.61
Hybrid 50% 222 7% -2.86 20% -0.97
Fuel-cell 0% 4.39 7% 7.79 5% 0.00
Propane 0% -3.36 7% 0.04 5% 0.62
Diesel 10% 2.70 7% -0.76 10% 0.46
Natural Gas 0% -3.28 7% 0.12 5% 0.70
Gas — High 15% 1.77 22% -0.95 20% -0.21
Gas — Low 0% -6.05 22% -1.50 15% -1.04
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APPENDIX 9 — INTANGIBLE COST PARAMETERS USED IN

SIMULATIONS

The following tables list the actual values used in CIMS simulations. These differ from
the base values described in section 5 because some of the vehicle type modifier was
applied to the capital cost. The capital cost modifiers are shown immediately below.

Vehicle Type CC Modifier

Methanol $0
Ethanol $0
Electric $0
Hybrid-Electric -$4,255
Fuel Cell $0
Propane $0
Diesel -$4,255
Natural Gas $0
Gas — High Efficiency -$12,766
Gas — Low Efficiency -$24,255

Business As Usual — Run 1

Mode i Vehicle Type i
SOV 6352 Methanol 4771
HOV 8148 Ethanol 4013
Transit 14345 Electric -1051
Walk / Cycle | 11947 Hybrid-Electric -521
Fuel Cell 270
Propane 4771
Diesel 4335
Natural Gas 4771
Gas —~ High Efficiency 6774
Gas — Low Efficiency 5067
Business As Usual — Run 2
Mode i Vehicle Type i
SOV 6352 Methanol 8527
HOV 8148 Ethanol 1561
Transit 14345 Electric 5913
Walk / Cycle | 11947 Hybrid-Electric 13460
Fuel Cell 270
Propane 6023
Diesel -725
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Natural Gas 1354
Gas - High Efficiency | -1312
Gas — Low Efficiency -828
Business As Usual — Run 3
Mode i Vehicle Type i
SOV 6352 Methanol 4301
HOV 8148 Ethanol 3908
Transit 14345 Electric -1051
Walk / Cycle | 11947 Hybrid-Electric -755
Fuel Cell 270
Propane 4275
Diesel 3918
Natural Gas 4354
Gas — High Efficiency 6487
Gas — Low Efficiency 4232
Business As Usual — Run 4
Mode i Vehicle Type i
SOV 6352 Methanol 8057
HOV 8148 Ethano! 1457
Transit 14345 Electric 5913
Walk / Cycle | 11947 Hybrid-Electric 13225
Fuel Cell 270
Propane 5527
Diesel -1142
Natural Gas 937
Gas — High Efficiency | -1598
Gas — Low Efficiency -1662
$50/tonne Carbon Tax — Run 1
Mode i Vehicle Type i
Sov 6352 Methanol 4771
HOV 8148 Ethanol 4013
Transit 14345 Electric -1051
Walk / Cycle | 11947 Hybrid-Electric -521
Fuel Cell 270
Propane 4771
Diesel 4335
Natural Gas 4771
Gas — High Efficiency 6774
Gas — Low Efficiency 5067
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$50/tonne Carbon Tax — Run 2

Mode i Vehicle Type i
SOV 6352 Methanol 8527
HOV 8148 Ethanol 1561
Transit 14345 Electric 5913
Walk / Cycle | 11947 Hybrid-Electric 13460
Fuel Cell 270
Propane 6023
Diesel -725
Natural Gas 1354
Gas — High Efficiency | -1312
Gas — Low Efficiency -828
$50/tonne Carbon Tax — Run 3
Mode i Vehicle Type i
SOV 6352 Methanol 4301
HOV 8148 Ethanol 3908
Transit 14345 Electric -1051
Walk / Cycle | 11947 Hybrid-Electric -755
Fuel Cell 270
Propane 4275
Diesel 3918
Natural Gas 4354
Gas — High Efficiency 6487
Gas — Low Efficiency 4232
$50/tonne Carbon Tax — Run 4
Mode i Vehicle Type i
SOV 6352 Methano! 8057
HOV 8148 Ethanol 1457
Transit 14345 Electric 5913
Walk / Cycle | 11947 Hybrid-Electric 13225
Fuel Cell 270
Propane 5527
Diesel -1142
Natural Gas 937
Gas — High Efficiency | -1598
Gas — Low Efficiency -1662
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Gasoline Vehicle Disincentives — Run 1

Mode i Vehicle Type i
SOV 6352 Methano! 4287
HOV 8148 Ethanol 3529
Transit 14345 Electric -1195
Walk / Cycle | 11947 Hybrid-Electric -247
Fuel Cell -632
Propane 4287
Diesel 3994
Natural Gas 4287
Gas — High Efficiency 7283
Gas — Low Efficiency 6189
Gasoline Vehicle Disincentives — Run 2
Mode i Vehicle Type i
SOV 6352 Methanol 8043
HOV 8148 Ethanol 1077
Transit 14345 Electric 5770
Walk / Cycle | 11947 Hybrid-Electric 13734
Fuel Cell -632
Propane 5539
Diesel -1066
Natural Gas 870
Gas — High Efficiency -803
Gas — Low Efficiency 294
Gasoline Vehicle Disincentives — Run 3
Mode i Vehicle Type i
SOV 6352 Methanol 3817
HOV 8148 Ethanol 3424
Transit 14345 Electric -1195
Walk / Cycle | 11947 Hybrid-Electric -481
Fuel Cell -632
Propane 3791
Diesel 3577
Natural Gas 3869
Gas — High Efficiency 6996
Gas — Low Efficiency 5354
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Gasoline Vehicle Disincentives — Run 4

Mode i Vehicle Type i
SOV 6352 Methanol 7573
HOV 8148 Ethanol 972
Transit 14345 Electric 5770
Walk / Cycle | 11947 Hybrid-Electric 13499
Fuel Cell -632
Propane 5043
Diesel -1483
Natural Gas 453
Gas — High Efficiency | -1089
Gas — Low Efficiency -540
SOV Disincentives — Run 1
Mode i Vehicle Type i
SOV 6912 Methanol 4771
HOV 7402 Ethanol 4013
Transit 9428 Electric -1051
Walk / Cycle | 9532 Hybrid-Electric -521
Fuel Cell 270
Propane 4771
Diesel 4335
Natural Gas 4771
Gas — High Efficiency 6774
Gas — Low Efficiency 5067
SOV Disincentives — Run 2
Mode i Vehicle Type i
SOV 6912 Methanol 8527
HOV 7402 Ethanol 1561
Transit 9428 Electric 5913
Walk / Cycle | 9532 Hybrid-Electric 13460
Fuel Cell 270
Propane 6023
Diesel -725
Natural Gas 1354
Gas — High Efficiency | -1312
Gas — Low Efficiency -828
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SOV Disincentives — Run 3

Mode i

SOV 6912
HOV 7402
Transit 9428
Walk / Cycle | 9532

SOV Disincentives — Run 4

Mode i

SOV 6912
HOV 7402
Transit 9428
Walk / Cycle | 9532

Vehicle Type i

Methanol 4301
Ethanol 3908
Electric -1051
Hybrid-Electric -755
Fuel Cell 270
Propane 4275
Diesel 3918
Natural Gas 4354
Gas - High Efficiency 6487
Gas — Low Efficiency 4232
Vehicle Type i

Methanol 8057
Ethanol 1457
Electric 5913
Hybrid-Electric 13225
Fuel Cell 270
Propane 5527
Diesel -1142
Natural Gas 937
Gas — High Efficiency | -1598
Gas - Low Efficiency -1662
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APPENDIX 10 — ADDITIONAL SIMULATION RESULTS

Business as Usual — Run 1

Total New Vehicles - Market Shares - Run 1
50%
| |mMethanol @ Ethanol Electric  OHybrid O Fuel Cell
40% | @Propane M Diesel Natural Gas B Gas - High @ Gas - Low
30% -
20% -
10% -
0% - . . = 1]
| 2005 2015 2025 2035
Total Mode Shares - Run 1
50% U— —
D SOV @ HOV
B Transit B Walk/ Cycle
10%
30%
20% 1
10% 1
0% + :
2005 2015 2025 2035

Business as Usual — Run 2

Total New Vehicles - Market Shares - Run 2

%%
80% - B Methanol @ Ethanol O Electric O Hybrid O Fuel Cell
0% @ Propane M Diesel @ Natural Gas ® Gas - High B Gas - Low

60%
50%
40% -
30%
20%
10%
0%

2005
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Total Mode Shares - Run 2

30%

20%

I osov @ Hov
| ®Tmnsit ~ BWalk/Cycle |

2005 2015 2025 2035

Business as Usual -~ Run 3

50%

40%

30% -
20% -
10% -

0%

Ethanol A Electric O Hybrid O Fuel Cell
Propane M Diesel @ Natural Gas B Gas - High O Gas - Low |

Total Mode Shares - Run 3

50% -

40%

30%

20%

10%

0%

| | osov B HOV 1
|| M Transit lWalk/C)"“c‘:le

2005 2015 2025 2035
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Business as Usual — Run 4

Total New Vehicles - Market Shares - Run 4

20% +
10%

0% +

2005 2015

2025 2035

0% B Methano! @ Ethanol @ Electric O Hybrid O Fuel Cell
’ Propane W Diesel B Natural Gas @ Gas - High B Gas - Low
50%
| 40%
30%
| 20%
10% -
0% -
2015 2035
Total Mode Shares - Run 4
50% | e —
. gsov HOV !
| B Transit B Walk/Cycle |
40% 1
30%

$50/tonne Carbon Tax — Run 1
E Total New Vehicles - Market Shares - Run 1

i
{

50%

30%

20%

10%

0%

L 40% -

t

| @ Methanol @ Ethanol B Electric D Hybrid O Fuel Cell
Propane 8 Diesel Natural Gas @ Gas - High Gas - Low |

2005

2015

2025 2035
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40%

20%

10%

0%

Total Mode Shares - Run 1

50% -

30% -

+

["osov HOV ]
| ETransit B Walk/Cycle |

2005 2015 2025 2035

$50/tonne Carbon Tax — Run 2

T0%
60%
50%
40%
30%
20%

0%

Total New Vehicles - Market Shares - Run 2

90% -
80%

10% 1

i

' ® Methanol @ Ethanol Electric O Hybrid

0O Fuel Cell

| @ Propane W Diesel @ Natural Gas B Gas - High @ Gas - Low

2005 2015 2025

40%

30%

10%

0%

20% |

50%

Total Mode Shares - Run 2

‘asov g HOV ]
W Transit EWalk/ Cycle |

2005 2015 2025 2035
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$50/tonne Carbon Tax — Run 3
Total New Vehicles - Market Shares - Run 3

50%

B Methanol @ Ethanol ~ MEkctric  @Hybrid dFuel Cell
40% Propane M Diesel @ Natural Gas M Gas - High  Gas - Low |

30%

20%

10%

0%

2005 2015 2025 2035

Total Mode Shares - Run 3

50%

gsov B HOV |
B Transit B Walk/ Cycle |

40%

30%

20%

10%

2005 2015 2025 2035

$50/tonne Carbon Tax — Run 4
Total New Vehicles - Market Shares - Run4

200 | | @Methanol @ Ethanol D Ekctic O Hybrid O Fuel Cell
’ Propane B Diesel @ Natural Gas W Gas - High B Gas- Low
60% "

50% -

40% -
30%
20%
10%

0%

2005 2015 2025 2035
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Total Mode Shares - Run 4

50% -

asov HOV
@ Transit B Walk/ Cycle

40%

30%

20%

10%

0%
2005 2015 2025 2035

Gasoline Vehicle Disincentives — Run 1

Total New Vehicles - Market Shares - Run 1
50%
. B Methanol & Ethanol @ Electric O Hybrid OFuelCell |
40% | @Propane  ® Diesel @ Natural Gas @ Gas - High [ Gas - Low |
30%
20%
10% -
0%
2005 2015 2025 2035

Total Mode Shares - Run 1

50% -

[ osov @ HOV N
| @ Transit BWalk/Cycle |

40%

30%

20% -

10% -

0%

2005 2015 2025 2035
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Gasoline Vehicle Disincentives — Run 2

10%

0%

2005 2015

Total New Vehicles - Market Shares - Run 2
§0% @ Methanol @ Ethanol O Electric O Hybrid O Fuel Cell
o @ Propane B Diesel @ Natural Gas M Gas - High 0 Gas - Low
. ‘
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30%
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01]//0 i — S ...
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Gasoline Vehicle Disincentives — Run 3
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