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Abstract 

Survival analysis is typically concerned with quantifying lifetimes of individuals, and 

relating them to  covariates. Here two endpoints are of interest, a response state and 

survival. The response state indicates a positive outcome to  an invasive treatment 

and subsequently, survival time is monitored. The segmentation of survival experience 

into two parts is helpful in the coronary artery bypass application considered which 

records (i) operative survival, defined as survival 30 days after coronary artery bypass 

surgery and (ii) long-term mortality, given operative survival. With coronary artery 

bypass surgery there is a high risk of operative mortality, i.e. death within 30 days of 

surgery. It is of interest- to explore the effects of covariates on both of the outcomes 

(i) and (ii). In a previous analysis, Ghahramani et. al. (1999) used a fully parametric 

approach combining the logistic regression model, for analyzing operative mortality, 

and the Weibull regression model, for analyzing long-term survival. Although the 

Weibull is a flexible model, and seemed to  give a fair fit in that analysis, a more 

robust approach is applied here using the Cox's proportional hazards (PH) model. 

We also make linkages with multi-state modelling. The model will be broadly useful 

in assessing the joint influence of covariates on surviving the application of a severe 

treatment and, on treatment success, in terms of subsequent survival experience. 
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Chapter 1 

Introduction 

Cardiac bypass surgery is a common surgical treatment for severe blockages of the 

arteries of the heart. This type of surgery poses a substantial risk of operative mor- 

tality, defined as death within 30 days after surgery. In order to  develop strategies to 

improve patient care, an accurate and objective estimate of preoperative risk will be 

helpful in aiding patients and clinicians in the assessment of the risks of surgical and 

conservative treatment. 

The objective of this study is to simultaneously model operative mortality and 

long-term survival using data from British Columbia's Cardiac Registry Database. 

We develop a semi-parametric regression analysis of (i) operative mortality, or death 

within 30 days, and (ii) long-term survival, or survival after 30 days, given survival to 

the first 30 days, using current cardiac registry data. We address here specifically the 

similarity of prognostic factors for operative mortality and long-term survival using a 

Cox model for long-term survival. We will show that the analysis can be viewed as 

one arising from multi-state modelling of the outcomes considered. 

In the rest of this chapter, background information will be provided on the dataset 

used in the analysis, followed by a preliminary examination of the effects of covariates 

and the design of this study. 
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British Columbia's Cardiac Registry Database 

British Columbia's Cardiac Registry, headed by Dr. Mike Kiely at  St. Paul's Hospi- 

tal, is one of the most comprehensive cardiovascular databases in Canada, containing 

over 10,000 patient records. It was created in 1989 by the provincial Ministry of 

Health in response to  the report of long waiting times for cardiac surgery. One of the 

panel's recommendations was the establishment of a registry of cardiac patients to ac- 

quire detailed information. In fall 1990, the development of the registry commenced. 

Data collection started in 1991. The database captures prognostic information on all 

open heart surgeries performed in the province. Currently, open heart surgery is per- 

formed at  four hospitals in the Lower Mainland and Victoria. One of the strengths 

of this database is that it is a population-based registry that captures every car- 

diac surgery procedure in British Columbia, as opposed to the usual single-hospital, 

selected-patient databases. The data is derived primarily from the Operative Report 

form, which is completed by the surgeon immediately after the surgery. The format 

of the form was revised in 1994 to capture additional information than previously 

required. 

Prognostic information on the form is grouped into a number of different cate- 

gories. These categories include: demographic information, information on previous 

cardiac surgery, diagnosis information, co-morbidity or diseases. Based on discussions 

with clinicians and previous work published on predicting operative mortality, a list 

of potential prognostic factors was developed. Data on most of these were recorded on 

the Operative Report form; however for some variables this data was obtained from 

other sources. Tables 1.1 - 1.3 (reproduced from Ghahramani 1999) list the potential 

prognostic factors and their definitions. 

1.2 Coronary Artery Bypass Data 

The vessels that bring blood to the heart are called the coronary arteries. They are 

somewhat similar to narrow tubes. A fatty substance called plaque can build up in 

these arteries and make them narrow, so less blood gets to  the heart. This is called 
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Factor 
Demographic variables 

Ejection fraction 

Urgency of surgery 

Left ventricular end diastolic pressure 
> 15 mg Hg 

Re-operation 

Unstable anginalrecent MI < 6 weeks 

MI > 6 weeks 

Chronic obstructive pulmonary disease 

Diabetes 

ASA within 5 days 

Definition 
Age, gender, place of residence(urban/rural) , 
hospital, year of surgery, 
average household income 

Fraction of blood heart pumps out 
of ventrical when it beats 

Can be elective, urgent, or emergency 

Indicator for left ventricular end diastolic 
pressure > 15 mg Hg 

Indicator for previous cardiac operation 

indicator for unstable anginalrecent 
MI < 6 weeks 
Angina is chest pain; 
MI is myocardial infarction or heart attack 

Indicator for MI > 6 weeks; 
death of heart muscle due to  an 
occlusion of the coronary artery 

Indicator for chronic obstructive pulmonary 
disease such as emphysema & 
chronic bronchitis 

Indicator for diabetes 

Indicator for aspirin administered 
within 5 days 

Table 1.1: Prognostic factors 
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Factor 
Pre-op symptomatic arrhythmia 

Pre-op intra-aortic balloon pump 

Pre-op iv nitroglycerine 

Pre-op diuretic 

Pre-op iv Heparin 

Pre-op ventilation/intubation 

Pre-op coumadin 

Definition 
Indicator for pre-op symptomatic arrhythmia; 
anything other than the normal heart 
rhythm which is called the sinus rhythm 

Indicator for pre-op intra-aortic balloon pump; 
a measure of severity of disease. A 
balloon is placed in aorta to decrease 
resistance which the heart must 
pump against when patient is 
having refractory angina 

Indicator for pre-op iv nitroglycerine; 
if patient is having angina, intravenous 
nitroglycerine is administered to relieve the 
pain and open up the arteries 

Indicator for pre-op diuretic; 
used if there is excess body fluid 
and is also a marker for congestive 
heart failure 

Indicator for pre-op iv Heparin; 
when patient experiences unstable angina 
and there is partial clotting of the arteries, 
heparin is administered to open the clot 

Indicator for pre-op ventilation 
or intubation; 
ventilation is needed as the patient 
cannot breathe on his own due to congestive 
heart failure or shock, for example 

Indicator for pre-op coumadin; 
a patient on coumadin has a high risk of 
stroke 

Table 1.2: Prognostic factors 
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Factor 
Pre-op steroids 

Pre-op thyroid replacement 

Other endocrine disease 

Hypertension 

Peripheral vascular disease 

Cerebrovascular disease 

Dialysis/elevated creatinine 

Congestive heart failure 

Pulmonary hypertension 

Number of diseased vessels 

Malignant disease 

Definition 
Indicator for pre-op steroids 

Indicator for pre-op thyroid replacement 

Indicator for other endocrine disease; 
Example: adrenal disease 

Indicator for very high blood pressure 

Indicator for peripheral vascular disease; 
hardening of arteries in body other 
than heart 

Indicator for cerebrovascular disease; 
indicator for hardening of arteries 
in brain 

Indicator for dialysis/elevated creatinine; 
measures how well kidneys filter the blood 

Indicator for congestive heart failure which 
occurs when blood backs up to lungs since the 
heart is unable to pump blood to the rest of body 

Indicator for pulmonary hypertension; 
another measure of high blood pressure 

Can be one of main left stenosis, 
more than 3 diseased vessels, 
or, 1-2 diseased vessels. 
Main left stenosis is the most important 
major artery coming out of the aorta 
which supplies arteries on the left side 
of the heart with blood 

Indicator for cancer 

Table 1.3: Prognostic factors 
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Table 1.4: The isolated coronary artery bypass procedure 

Year 

1991 
1992 
1993 
1994 
Tot a1 

coronary artery disease. The isolated coronary artery bypass (CAB) graft surgery is 

the most common treatment for serious coronary artery disease. 

CAB surgery involves using blood vessels from other places in the body to  'bypass' 

the blockages in the coronary arteries. As a result blood flow is restored to the heart 

muscle. 

In this study, we are interested in identifying risk factors for operative mortality 

and long-term survival after CAB surgery. From British Columbia's Cardiac Registry 

database, the dataset which we used consists of the first isolated CAB of all individuals 

receiving at  least one CAB between 1991 to 1994. The total number of individuals in 

this dataset is 6064. The ages of these patients ranged from 12 to  92 with the median 

age being 65. The breakdown of the 6064 CAB'S by year and number of operative 

deaths in a particular year is given in Table 1.4. 

Figure 1.1 illustrates the Kaplan-Meier survivor function for the CAB patients; 

note this does not take any covariates into account. The estimated 30-day survival 

probability is 97.6%. The estimated 1-year and the estimated 3-year survival prob- 

abilities are 95.8% and 92.6% respectively. Notice the steep initial descent in the 

Kaplan-Meier curve which represents operative mortality. 

For the CAB data, Tables 1.5 - 1.7 (reproduced from Ghahramani 1999) pro- 

vide the frequency of each of the potential prognostic categorial variables identified 

previously. Only individuals with complete covariate vectors are considered for the 

development of a prognostic model. There were 5066 such cases, which represents 

about 84% of the CAB dataset. 

Number of Operative 
CAB procedures Deaths 

1372 30 
1571 40 
1550 35 
1561 40 
6064 145 
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Years 

Figure 1.1: Estimated Survivor Function: 1991-1994 
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Factor 
Gender 

Ejection fraction 

Urgency of surgery 

Left ventricular end diastolic pressure 
> 15 mg Hg 

Unstable anginalrecent MI < 6 weeks 

MI > 6 weeks 

Chronic obstructive pulmonary disease 

Diabetes 

ASA within 5 days 

Pre-op symptomatic arrhythmia 

Label 
males 
females 
<35% 
35-50% 
>50% 
missing 
elective 
urgent 
emergency 
missing 

Yes 
no 
missing 

Yes 
no 
missing 

Yes 
no 
missing 

Yes 
no 
missing 

Yes 
no 
missing 

Yes 
no 
missing 

Yes 
no 
missing 

Yes 
no 
missing 

Frequency 
482 1 
1243 

Table 1.5: Potential risk factors and their frequencies 
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Pre-op iv nitroglycerine P 
Pre-op diuretic P 
Pre-op iv heparin 

Pre-op coumadin f 
Pre-op steroids 

Pre-op thyroid replacement 

Other endocrine disease 0 
Hypertension 0 
Cerebrovascular disease 

Peripheral vascular disease 

Label I Frequency 

I 

missing 

missing 205 

missing * 
missing 

5834 
missing 

5786 
missing 

5786 

no 
missing 

Table 1.6: Potential risk factors and their frequencies 

no 
missing 

Yes 
no 
missing 
Yes 
no 
nissing 

609 
205 
609 

5250 
205 
405 

5454 
205 
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Factor 
Dialysis/elevated creatinine 

Congestive heart failure 

Pulmonary hypertension 

Number of diseased vessels 

Average household income 

Malignant disease 

Urbanlrural residence 

Year of surgery 

Institution of surgery 

Label 

Yes 

missing 

Yes 
no 
missing 

Yes 
no 
missing 
1-2 vessels 
3 vessels 
main left stenosis 
missing 

missing 

missing 
greater Van/Vic 
other 
missing 
1991 
1992 
1993 
1994 
Vancouver 
St. Paul 
Royal Jubilee 
Royal Columbian 

Frequency 
472 

5387 
205 

Table 1.7: Potential risk factors and their frequencies 
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1.3 Preliminary Examination of Effects of Covari- 

ates 

To determine which levels of a factor experience higher operative mortality or long- 

term survival, we examined each covariate's effect on operative mortality and long- 

term survival without adjusting for the other risk factors in a preliminary analysis. 

For each level of a factor, the percentage who experienced operative mortality for the 

group of patients belonging to that level was determined. Also, estimates of 1-year 

and 3-year survival probabilities were obtained without setting survival to the first 30 

days as a condition. Tables A1 - A3 in the Appendix summarize these results. 

Based on this preliminary analysis, the list of factors which seem to be singly im- 

port ant for operative mortality are age, gender, ejection fraction, urgency of surgery, 

re-operation, chronic obstructive pulmonary disease, diabetes, pre-operative symp- 

tomatic arrhythmia, pre-operative intra-aortic balloon pump, pre-operative nitroglyc- 

erine, preoperative diuretic, pre-operative ventilation or intubation, the need for dial- 

ysis or elevated creatinine levels, congestive heart failure and pulmonary hypertension. 

In this thesis, we analyze the data set simultaneously considering operative mor- 

tality and long-term survival. 

Plan of the Project 

The plan of the project is as follows. 

In Chapter 2 we develop a semi-parametric proportional hazards model for simulta- 

neously fitting long-term survival and operative mortality. Inference using maximum 

likelihood theory is discussed. 

In Chapter 3 the model is fitted to the British Columbia cardiac registry data and 

the proportional hazards assumption is examined. 

Chapter 4 discusses an alternate approach viewing the model developed as a multi- 

state model. Summary comments are provided. 



Chapter 2 

Nonparametric Simultaneous 

Modelling 

2.1 Introduction and Model Assumptions 

Traditional survival analysis involves fitting a model to a single response, lifetime. 

Its application here has the assumption that both operative mortality (or short-term 

survival) and long-term survival (defined as survival after 30 days) are affected by the 

same set of covariates. Although this may be reasonable, we wish to establish a more 

general model, which will view these two outcomes separately, and allow predictions 

for them. 

Natural models for these two outcomes are a logistic regression model for operative 

mortality and a proportional hazards (PH) model or a parametric regression model 

for long-term survival. 

Ghahramani et. al. (1999) use the Weibull regression model for analyzing long- 

term survival. Although the Weibull is a flexible model, and seemed to give a fair 

fit in that analysis, a more robust approach is applied here using the Cox PH model. 

This provides a semi-parametric analysis where covariates enter the survivor function 

in a specified parametric way, but the shape of the survivor function is left unspecified 

and estimated non-parametrically. 

Under the proportional hazards assumption the hazard function of T, given lifetime 
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covariates x, is of the form h(t1x) = ho(t)g(x,@), where @ is a vector of unknown 

parameters and g(.) is fully specified. Following Cox (1972), we will focus on the 

particular model that has 

h(tlx) = ho(t) exp(xP) (2.1) 

where @ = (PI, . . . , pp)' is a vector of regression coefficients, ho(t) is a hazard function 

termed the baseline hazard function and corresponds to  the hazard for an individual 

with x = 0. The model in (2.1) is called the Cox PH model. 

The advantage of using the Cox PH model is that it is essentially distribution- 

free: a partial likelihood function for @ is constructed which does not depend upon the 

underlying lifetime distribution or, equivalently, on the baseline hazard ho(t). Even 

though the baseline hazard is not specified, reasonably good estimates of regression 

coefficients, hazard ratios of interest, and adjusted survival curves can be obtained. 

This is what is implied when the Cox PH model is described as 'robust'. If the 

Weibull is in fact appropriate, the results from using the Cox PH model will closely 

approximate the results for the Weibull. 

When in doubt, however, about the suitability of a particular parametric model, 

the Cox PH model becomes an appealing alternative because of the reliability of 

results from fitting this model and their reasonably high efficiency. For these reasons 

the Cox PH analysis is extremely popular, and we adopt it herein for the analysis of 

long-term survival. 

For i =  1, . . . ,  n let 

1 if the i th individual died within the first 30 days after surgery 
zi = 

0 otherwise 

Let pi = P(zi = 1) be the probability that the i th individual dies within the first 

30 days after surgery, p = (pl , .  . ,p,). Furthermore, let T,  denote the i th lifetime, 

Li denote the i th censoring time for the individual who has survived beyond 30 days 

after surgery and ti = min {T,, Li). Here, lifetime is defined as the interval between 

date of surgery and death for our application. Then let 

ti - 30 if xi = 0 
Y , =  

otherwise 
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Fitting two separate models, a logistic regression model to the binary response, zi, 

and a Cox PH regression model to the lifetimes yi conditional on zi = 0 gives 

for covariate design matrices G and X*. 

We also wish to consider simultaneous estimation of covariate effects on operative 

mortality and long-term survival. Where such simultaneous estimation is appropriate, 

information will be pooled from the model predicting operative mortality with that 

which predicts long-term survival to estimate the corresponding effects. For exam- 

ple, if the same covariates affect logit(p) and h(ylx) so that as operative mortality 

decreases, long-term survival increases, we may have 

for covariate matrices X ,  X*, and unknown real-valued parameter T. Note that the 

covariate matrices X,  X* contain the same set of covariates but differ in their number 

of rows since X contains data from all cases, while X* contains information only from 

those cases who survived the first 30 days. When T > 0, the risk of operative mortality 

increases as long-term survival decreases, and as T + -oo, the risk of operatively 

mortality diminishes. As T + oo, the risk of operatively mortality becomes certain. 

The parameterization in (2.3) however, assumes that the same set of covariates 

influence both operative mortality and long-term survival. To provide a bit more 

flexibility to accommodate those covariates whose effects on the two outcomes may 

differ, model (2.3) is reformulated as 

where y contains the parameters corresponding to those covariates whose effects on op- 

erative mortality and long-term survival differ. In order to  avoid over-paramet erizing , 
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while Z contains a general constant term represented by a column of ones, X and X* 

do not. What is envisioned is that X and Z should contain different sets of covariates, 

or, perhaps, just a few in common. The focus of fitting the simultaneous model (2.4) 

is to explore commonalities which lead to simple structures for covariate effects. 

2.2 Likelihood Development and Maximum Like- 

lihood Estimation 

The likelihood functions under the three different model formulations (2.2), (2.3) and 

(2.4) are very similar and only the likelihood function for the model (2.4) will be 

presented. Suppose that a sample of n individuals yields k distinct observed lifetimes 

and n-k censoring times. The k observed lifetimes will be denoted by t(l) < . + < t(k), 

and R, = R(t(i)) will be used to represent the risk set a t  time t(i), that is, the set of 

individuals alive and uncensored just prior to  t(i). Let z = (z l , .  . . , zn) be the vector 

of indicators for operative mortality. The likelihood L(y, ,L?, r) is given by 

where f (.) is the probability function of zi, x(i) is the regression vector associated 

with the individual observed to  die at  t(i). Notice the second term in the likelihood 

(2.5) is the partial likelihood function of long-term survival suggested by Cox (1995). 

If there are relatively few ties, a modification of the likelihood (2.5) suggested by 

Breslow (1974) may be adopted: replace L in (2.5) with 

where di is the number of lifetimes which equal t(i) and S(i) is the sum of the regression 

vectors x* for these di individuals. That is, if Di represents the set of individuals who 

die a t  t(i), then di = IDi/ and Si = x:. When there are no ties, all di = 1 and 

(2.6) reduces to (2.5). 
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Let Xi,  Xf,  Zi denote the i th row of X ,  X* and Z, respectively. Then, since 

the log of the likelihood becomes: 

The maximum likelihood estimates of P, y ,  T are obtained from (2.8) using a 

Newton-Raphson algorithm. First and second partial derivative are required for the 

algorithm. 

Let 

The components of the score vector 

and observed Fisher information matrix I. = (I,,) are the following: 
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a2 log L 
n 

- ai 

- - ~ C ( l + a ~ ) ~  ZiTXis %TPs i=l 

n a2 log L 

8 ~ T ' l .  i=l 

a2 log L 
n 

ai 
XiTXis 

a p T  p S  2=l 

t d i  ( ex'') (CltRi xlTxlseXLB) - (EIERi xlTeXiB) (CIERi xlsexLp) 

i=l (El Eni exlp) 

n n 
d2 log L ai 

W T T  (1 + ai) lXir  

n a2 log L 
- - - C ( x i ~ ) ~  ai 

ar2 i=l ( 1  + 

The partitioned form of the observed information matrix I. is 

- 

- a210g L a2 log L a2 log L - 
ayayl ayapl aya7 

a2 log L a2 log L a2 log L 
apayl apapl a p a ~  

a2 log L a2 log L a2 log L 
- a ~ a y  a7apt a72 - 

a10 L a10 L a10 L The maximum likelihood equations + = 0, & = 0 and + = 0 are then solved 

by using the Newton-Raphson updating algorithm. Let J be the full parameter vector 
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[ = (71, . . . , yq, & , . . . , pp, T)', and (("1 indicate the current value of the estimate of [. 

Then J(") is updated to [("+l) using 

This updating continues to convergence. 

We use the standard large sample likelihood ratio test to test the hypothesis Ho : 

pi = 0 versus the alternative Ho : pi # 0 or H1 : 7; = 0 versus H1 : yi # 0. In order 

to evaluate whether is reasonable to assume that r = 1, a hypothesis of interest, a 

profile plot for T should be examined. 

We are also interested in the effects of the covariates via odds ratios and relative 

risks for clinical purposes. Odd ratios of predictors of operative mortality are found 

by exponentiating the parameter estimates in the logistic regression model. For the 

Cox PH regression model, the estimated relative risk of the j th  risk factor relative to 

the baseline is exp(&) as described below. 

The hazard function of Y given covariate vector x is given by 

We can write the relative risk (RR) of x; versus x$ as h(ylx;) divided by h(ylx$) or 

Given all covariates are fixed except xj, the relative risk becomes 

For a categorical variable, xj, when xj  = 1 versus when xj = 0, or for a continuous 

variable when xj is increased by unity, the relative risk is given by 

RR = exp (pj) . 



Chapter 3 

Application to the B.C. Cardiac 

Registries Data 

3.1 Model Fitting 

In order to make the model parsimonious, due to the large list of potential risk fac- 

tors, a number of variable selection procedures were implemented into the model 

fitting process. These included forward selection, backward elimination, simultane- 

ously dropping several variables, and stepwise procedures. From the non-simultaneous 

model (2.2), Table 3.1 lists the covariates which were identified by any of the model 

fitting procedures as important in predicting operative mortality and long-term sur- 

vival, defined as 'Significant predictors'. 

Examination of the estimates for the year of surgery effect indicated fewer cases of 

operative mortality and longer long-term survival in 1993 than those corresponding 

to 1991, 1992 and 1994. Since there was no clinical evidence to support inclusion of 

this of this variable for future predictions, we decided to exclude year of surgery as a 

covariate. 

For the simultaneous model (2.4), the estimate of T is 1.1 with a standard error 

of 0.14. The ninety-five per cent confidence interval for T based on the large sample 

normal approximation to the distribution of .i is (0.8,1.4). Since there is no evidence 

against the hypothesis that T = 1, we refit the model with T set at unity. 
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Operative mortality Long-term survival 

Age Age 
Gender 
Ejection fraction 
Urgency of surgery 
Re-operation 
Pre-op iv nitroglycerine 
Pre-op diuretic use 
Pre-op ventilation/intubation 
Pulmonary hypertension 
No. of diseased vessels 
Urbanlrural residence 
Congestive heart disease 
Peripheral vascular disease 

Ejection fraction 
Urgency of surgery 
Re-operation 
Diabetes 
Pre-op diuretic use 
Peripheral vascular disease 
Dialysis/elevated creatinine 
Congestive heart failure 
No. of diseased vessels 
Year of surgery 

Table 3.1: Significant predictors 

Interaction terms with sex and age were also considered as well as a quadratic 

term with age. None of these was significant. 

The parameter estimates corresponding to  the fitted model with T equal to one are 

reported in Table 3.2. The estimated odds ratio for operative mortality corresponding 

to  the fitted model are reported in Table 3.3. The estimated relative risks for long- 

term mortality corresponding to the fitted model are reported in Table 3.4. 

Although all the variables listed in Table 3.2 contribute to  an understanding of 

risks in this analysis, note that gender, urgency of surgery, pre-operative ventilation 

and rural residence are significant predictors of operative mortality, but not long- 

term survival while peripheral vascular disease is a significant predictor of long-term 

survival but not operative mortality. Interpretation of covariates that affect both 

operative mortality and long-term survival similarly is straightforward. For example, 

having an ejection fraction 5 35% increases the risks corresponding to both operative 

mortality and long-term survival. 

Factors which pose extremely high risk for operative mortality (OR > 2) are 

emergency surgery, pre-operative ventilation/intubation and ejection fraction of less 
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Factor Label ? SE(?) 
Female gender 0.51 0.21 
Urgency of surgery 

Pre-op ventilation/intubation 
Peripheral vascular disease 

elective 
urgent 0.41 0.21 
emergency 1.18 0.39 

1.93 0.63 
-0.88 0.32 

Rural residence (baseline in urban residence) 0.58 0.21 
A 

Factor Label P SE(& 
Age 0.06 0.01 
Ejection fraction 

Re-operation 
Diabetes 
Pre-op diuretic 
Peripheral vascular disease 
Cerebrovascular disease 
Dialysis/elevated creatinine 
Congestive heart failure 
Number of diseased vessels 1-2 

2 3 0.31 0.18 
main left stenosis 0.58 0.19 

Table 3.2: Parameter estimates and their standard errors for the simultaneous fit with 
?-=I.  
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Factor Label OR 95% CI 
Female gender 1.67 (1.11,2.51) - 

Urgency of surgery 

Pre-op ventilation/intubation 
Peripheral vascular disease 
Rural residence (baseline in urban residence) 

Age 
Ejection fraction 

Re-operation 
Diabetes 
Pre-op diuretic 
Cerebrovascular disease 
Dialysis/elevated creatinine 
Congestive heart failure 
Number of diseased vessels 

elective 
urgent 
emergency 

main left stenosis 1.78 (1.22. 2.60) 

Table 3.3: Odd ratios for operative mortality and their confidence intervals for the 
simultaneous fit with T = 1. 
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Factor Label RR 95% CI 

Age 1.06 (1.05, 1.08) 
Ejection fraction 

Re-operation 
Diabetes 
Pre-op diuretic 
Peripheral vascular disease 
Cerebrovascular disease 
Dialysis/elevated creatinine 
Congestive heart failure 
Number of diseased vessels 

>50% 1.00 
35-50% 1.33 
<35% 2.57 

1.80 
1.29 
1.52 
1.84 
1.37 
1.38 
1.73 

1-2 1 .oo 
2 3 1.36 
main left stenosis 1.78 

Table 3.4: Relative risks for long-term survival and their confidence intervals for the 
simultaneous fit with T = 1. 

than 35%. The factor which poses extremely high risk for long-term survival (RR > 
2) is ejection fraction of less than 35%. Factors which pose high risk (1.5 5 OR/RR 5 
2) for both operative mortality and long-term survival are re-operation, pre-operative 

diuretic, congestive heart failure and main left stenosis. In addition, high risk factors 

for operative mortality (1.5 5 OR 5 2) are also female gender, urgent surgery and 

rural residence. 

Comparing the results from this analysis with those from Ghahramani et. al. 

(1999) who used a fully parametric approach combining the logistic regression model 

for analyzing operative mortality, and the Weibull regression model for analyzing long- 

term survival, we note some striking similarities. First, the set of all the significant 

factors for long-term survival in this analysis is parallel to those from Ghahramani's 

analysis as shown in Table 3.5 and the estimated effects and their standard errors 

are very close, with the exception of the covariate Pre-op ventilation/intubation. In 

the analysis above, this variable is not significant for predicting long-term survival. 

Though the confidence interval for this effect was quite wide in Ghahramani's analysis, 
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Fact or Label Chui's RR Ghahramani's RR 

Age 1.06 1.06 
Ejection fraction 

Re-operation 
Diabetes 
Pre-op diuretic 
Pre-op ventilation/intubation 
Peripheral vascular disease 
Cerebrovascular disease 
Dialysis/elevated creatinine 
Congestive heart failure 
Number of diseased vessels 

>50% 1.00 
35-50% 1.33 
<35% 2.57 

1.80 
1.29 
1.52 

not sig. 
1.84 
1.37 
1.38 
1.73 

1-2 1.00 
2 3 1.36 
main left stenosis 1.78 

Table 3.5: Comparison of relative risks for long-term survival between Chui's results 
and Ghahramani's results. 

(1.19, 7.05), and substantially wider than any of the other confidence intervals for 

relative risks for long-term survival in that analysis, nevertheless it was significant. 

The clinical significance of having this variable as a predictor of operative mortality 

is certainly clear as this is another indicator of the urgency of the surgery. However, 

having it as a predictor of long-term survival, given survival 30 days after surgery and 

subsequent discharge, is not as clear. 

Considering the analysis of operative mortality reported in Table 3.6, again we 

identify a close parallel between the results of the two analyses. Differences occur for 

the covariates Emergency surgery and again for Pre-op ventilation/intubation. The 

estimated relative risk for Emergency surgery is lower in this analysis than in Ghahra- 

mani et. al.'s while the estimated relative risk for Pre-op ventilation/intubation is 

much higher. Note that these two variables are correlated and this may play a part 

in explaining the differences in the analyses. 
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Factor Label Chui's OR Ghahramani's OR 
Female gender 1.67 1.67 
Urgency of surgery elective 1.00 1.00 

urgent 1.51 1.53 
emergency 3.26 3.92 

Pre-op ventilation/intubation 6.92 2.90 
Peripheral vascular disease 0.77 0.77 
Rural residence 1.79 1.77 

Age 1.06 1.06 
Ejection fraction > 50% 1.00 1.00 

35-50% 1.33 1.32 
<35% 2.57 2.56 

Re-operation 1.80 1.79 
Diabetes 1.29 1.29 
Pre-op diuretic 1.52 1.53 
Cerebrovascular disease 1.37 1.37 
Dialysis/elevated creatinine 1.38 1.37 
Congestive heart failure 1.73 1.71 
Number of diseased vessels 1-2 1.00 1.00 

2 3 1.36 1.35 
main left stenosis 1.78 1.74 

Table 3.6: Comparison of odd ratios for operative mortality between Chui's results 
and Ghahramani's results. 
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3.2 Checking the Proportional Hazards Assump- 

tion 

The cumulative hazard function, H(tlx), is related to the hazard function, h(tlx), by 

and the survival function S( t  lx), is related to H( t  lx), by 

The PH assumption implies that S(t1x) = S O ( ~ ) ~ ~ P ( ~ P ) ,  i.e. the survival curves 

for different values of x are powers of one another. We can use this observation to 

perform rudimentary checks of the PH assumption through inspection of Kaplan- 

Meier survival curve estimates or Cox PH model survival curve estimates for various 

levels of a covariate, since the crossing of these survival curves indicates departure 

from the assumption. The PH assumption also implies that H (t  lx) = Ho (t) exp(xp) , 
i.e. that the cumulative hazard curves obey a proportionality assumption. Here again, 

crossing curves indicate violations of the PH assumption. 

Since H(t1x) = - log S(tlx), we can use the logarithmic transformation of the 

Kaplan-Meier estimate or Cox PH model estimate for this assessment. The PH as- 

sumption further implies that 

log H(t)  = log Ho ( t )  + xp; 

or we can rewrite the PH model as 

log [- log S(t)] = log [- log So (t)] + xp. 
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Therefore, under the PH assumption, plots of log[- log $(t)], or equivalently, plots of 

log ~ ~ ( t ) ,  are roughly parallel for different values of x. 

Violations of the PH assumption may also be assessed by comparing survival 

estimates based on the Cox PH model with estimates computed independently, as 

for example, with the Kaplan-Meier estimates. Departures between the two provide 

evidence against the PH assumption. In addition, Schoenfeld residuals (Schoenfeld, 

1980) may be plotted versus time. Briefly, for a dichotomous covariate x, these are 

either 1 - E(xil&) or 0 - E(xilRi), where Ri denotes the risk set at the ith failure 

time and the expectation of the covariate value is computed under the Cox model. 

If the PH assumption holds, the residuals should be approximately in two horizontal 

bands, while time trends indicate a departure from PH. 

Figure 3.1 displays Kaplan-Meier survivor functions corresponding to the factors 

found significant for the analysis of long-term survival, while Figure 3.2 shows plots of 

the log cumulative hazard based on the Kaplan-Meier survivor function. In general, 

there is no strong evidence of departure from proportional hazards seen in these plots, 

though some hints of departure may be seen in Figure 3.1 for age, ejection fraction and 

no.of diseased vessels, and in Figure 3.2 for ejection fraction, re-operation, diabetes, 

pre-op diuretic and no. of diseased vessels. The curves for diabetes in fact look 

coincident, reflecting the fact that this variable is marginally significant. The curves 

for no. of diseased vessels also reflect the lack of significance between the effects of 2 3 

diseased vessels and main left stenosis (mls). The variables age, ejection fraction, re- 

operation, diabetes, pre-op diuretic and no. of diseased vessels are investigated further 

in Figures 3.3 - 3.8 which compare survivor function estimates based on the Cox model 

with the Kaplan-Meier estimates. The figures show no striking dis-similarities between 

the survivor function estimates. 

Figures 3.9 and 3.10 show the scaled Schoenfeld residuals and the corresponding 

LOWESS-smoothed curves (and 95% confidence intervals) of all significant factors in 

the analysis of long-term survival. In general, the LOWESS-smoothed curves center 

around f i  in Table 3.2 as horizontal lines with the exceptions of diabetes and periph- 

eral vascular disease. The LOWESS-smoothed curve for diabetes shows a general 

increasing trend, while the LOWESS-smoothed curve for peripheral vascular disease 
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appears to be a U-shaped. However, note the large confidence interval in the smoothed 

estimates especially in the regions where the trends are observed. In the significant 

test, the p-values of all the significant factors are greater than 0.5. In summary, there 

does not seem to be strong evidence of departures from PH evident in the analysis of 

long-term survival. 
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Figure 3.1: Kaplan-Meier survival curve estimates 
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Figure 3.2: Log cumulative hazard functions for Kaplan-Meier estimate 
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Figure 3.4: Kaplan-Meier vs Cox PH model survival curve estimates for the levels of 
ejection fraction 
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Figure 3.5: Kaplan-Meier vs Cox PH model survival curve estimates for the levels of 
no. of diseased vessels 
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Time 

Figure 3.6: Kaplan-Meier vs Cox PH model survival curve estimates for re-operation 
present and absent 
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Figure 3.7: Kaplan-Meier vs Cox PH model survival curve estimates for diabetes 
present and absent 
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Pre-op Diuretic 
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Figure 3.8: Kaplan-Meier vs Cox PH model survival curve estimates for pre-op diuretic 
present and absent 
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Figure 3.9: Schoenfeld residuals 
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Figure 3.10: Schoenfeld residuals 



Chapter 4 

Connection with Multi-State 

Modelling 

In situations where treatment is harsh, and survival is measured by time from treat- 

ment and analyzed using traditional methods such as the proportional hazards model, 

it is usual to observe steep initial descent of the estimated survivor curve followed by 

a less sharp decline. Sometimes the survivor curve flattens after such steep initial de- 

scent indicating that, for those individuals who survive treatment it is quite successful 

in curing disease. In these situations it is often of interest to quantify the effects of 

covariates on (i) surviving the treatment experience and (ii) long-term survival. In 

coronary artery bypass surgery, for example, the most common open heart surgical 

procedure, there is a high risk of operative mortality, defined as death within 30 days 

after surgery. However, for those individuals who survive surgery, the operation is 

typically quite successful with high promise of long-term survival. 

Ghahramani et. al. (2001) discussed parametric methods of investigating joint 

effects of covariate for two outcomes. Lifetimes were modelled using the Weibull 

model and operative mortality was incorporated as a binary endpoint. Methods for 

jointly assessing the effects of covariates were employed. This project extends such 

methods by considering the use of a non-parametric modelling approach for long-term 

survival. It retains the ideas of Ghahramani et. al. for incorporating covariates but 

provides a more flexible semi-parametric method for investigating their effects. 
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The approach used can also be viewed as arising from multi-state modelling. Multi- 

state models have been useful in other situations where several endpoints are jointly 

studied and transitions between these investigated. For example, recently, Chevret, 

Leporrier and Chastang (2000) adopt a multi-state model for incorporating tumour 

response in randomized phase I11 cancer trials. Tumour response is indicated by 

tumour shrinkage and attainment of response is rationalized as a meaningful surrogate 

endpoint worth investigation. In the study of outcomes after cardiac surgery this 

is certainly also the case. Although, as mentioned earlier in the project, the two 

endpoints could be studied separately, using the multi-state modelling approach allows 

investigation of simple structures for covariate effects on both outcomes. Exploring 

commonalities in covariate effects in the two outcomes is beneficial for grouping the 

full picture of such effects with regard coronary artery bypass surgery, and other 

similar harsh treatments. 

The process consists of two compartments. The first, a discrete-time process, mon- 

itors transitions out of the treatment state, State 1, into State 2, Treatment Success 

or State 3, Death. The second compartment is a continuous time Markov model mon- 

itoring transitions from State 2 to  State 3. Figure 4.1 illustrates the complete process. 

For transitions from State 1, let p = pl2 be the probability of a 1 t 2 transition, or 

the probability of surviving treatment. The intensity governing 2 t 3 transitions is 

X(t). Let Y,(t) record the state occupied by individual i at  time t ,  t E (0, t 2 30 days), 

i = 1, . . , n, and flzi be an indicator variable for a 1 t 2 transition for an individual 

i. For an individual who has survived beyond 30 days after surgery, let Ti denote 

lifetime, Li denote censoring time, ti = min {T,, Li); and 

Probabilities governing transitions from State 2 are denoted by 

P 2 k ( ~ ( 1 ) , ~ ( 2 ) )  = Pr(Y(u(2) +3O) = klY(u(1) +3O) = 2)) k = 2 ,3  

where u(1) and u(2) represent two different time points. To incorporate the effects of 

covariates, initially assume no connectivity between covariate effects influencing p12 

and those influencing P2k. 
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Figure 4.1: Three-State Model for Coronary Artery Bypass Surgery 

1 - P  

Assuming a logistic linear model for pla and a proportional intensity model for X 

we have 

1: Treatment 

and the likelihood function becomes 

2: Successful Operation 

where Ind(A) is the indicator variable for event A, and xi is the regression vector for 

the individual observed to fail at ui, D is the set of times at  which 2 + 3 transitions 

are observed and C is the set of times at  which transitions out of State 2 are censored. 

Note that X(t) = X(u + 30) = Xo (u + 30) exp(xfP) . 
For mounting a parametric approach, Xo(u) would have a fully specified parametric 

form. The partial likelihood approach may also be employed and yields the likelihood 

This is the identical likelihood as developed in Chapter 2, and hence that approach 

can be viewed as arising from a multi-state model. 
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The model used above, (4.1), is analogous to (2.2) in Chapter 2. Note that models 

which attempt to  connect the relationship between the effects of covariates on 1 -+ 2 

and 2 -+ 3 transitions, such as (2.3) and (2.4) may similarly be employed. Viewing 

the analysis as arising from a multi-state model may be convenient when considering 

extensions of the analysis where other intermediary endpoints between states 2 and 

3 are of interest. Extensions of this sort are more easily managed in the multi-state 

modelling framework. 



Appendix 

Factor 

Gender 

Ejection fraction 

Urgency of surgery 

Left ventricular end diastolic pressure 

Unstable anginalrecent MI < 6 weeks 

Label 

0-49 
50-54 
55-59 
60-64 
65-69 
70-74 
75-79 
> 80 
males 
females 

35-50% 
>50% 
elective 
urgent 
emergency 

Yes 
no 

Yes 
no 

% Operative 
Mortality 

0.7 
1.5 
1 .o 
1.9 
2.5 
3.7 
3.4 
7.0 
1.9 
4.1 
6.4 
2.5 
1.4 
1.4 
3.4 
8.8 
3.6 
1.9 
5.6 
2.2 
3.2 
1.5 

Table Al:  Preliminary examination of potential risk factors 



Factor 

MI > 6 weeks 

Chronic obstructive pulmonary disease 

Diabetes 

ASA within 5 days 

Pre-op symptomatic arrhythmia 

Pre-op intra-aortic balloon pump 

Pre-op iv nitroglycerine 

Pre-op diuretic 

Pre-op iv heparin 

Pre-op ventiIation/intubation 

Pre-op coumadin 

Pre-op steroids 

Pre-op thyroid replacement 

Table A2: Preliminary examination of potential risk factors 

Label 

Yes 
no 

yes 
no 

Yes 
no 

Yes 
no 

Yes 
no 

Yes 
no 

Yes 
no 

Yes 
no 

Yes 
no 

Yes 
no 

Yes 
no 

Yes 

Other endocrine disease 

Hypertension 

no 

Yes 

% Operative 
Mortality 

2.2 
2.6 
3.9 
2.3 
3.8 
2.2 
2.3 
2.6 
6.6 
2.3 
15.5 
2.3 
5.6 
1.8 
7.3 
2.1 
4.0 
1.7 

32.0 
2.3 
2.7 
2.5 
4.1 

no 

Yes 
no 

Yes 
no 

2.5 
2.2 

S(1) 

0.96 
0.96 
0.93 
0.96 
0.94 
0.96 
0.96 
0.96 
0.93 
0.96 
0.84 
0.96 
0.93 
0.96 
0.87 
0.97 
0.84 
0.97 
0.65 
0.96 
0.97 
0.96 
0.94 

2.5 
3.2 
2.5 
3.4 
2.2 

A 

S(3) 

0.92 
0.93 
0.87 
0.93 
0.89 
0.93 
0.93 
0.92 
0.85 
0.93 
0.82 
0.93 
0.89 
0.93 
0.78 
0.94 
0.91 
0.93 
0.65 
0.93 
0.94 
0.93 
0.92 

0.96 
0.96 

0.93 
0.92 

0.96 
0.97 
0.96 
0.95 
0.96 

0.93 
0.92 
0.93 
0.90 
0.93 



Factor Label 1 % Operative I S(1) I ~ ( 3 )  

Peripheral vascular disease 

Cerebrovascular disease 

Dialysis/elevated creatinine 

Congestive heart failure 

Pulmonary hypertension 

Number of diseased vessels 

Average household income 

Malignant disease 

Urbanlrural residence 

Year of surgery 

Institution of surgery 

greater Van/Vic 
other --i 

Yes 
no 

Yes 
no 

Yes 
no 

Yes 
no 

Yes 
no 
1-2 vessels 
3 vessels 
main left stenosis 

Table A3: Preliminary examination of potential risk factors 

Mortality 
3.1 
2.4 
4.0 
2.4 
4.4 
2.3 
8.3 
2.0 
11.4 
2.3 
1.0 
2.4 
3.3 

1992 
1993 
1994 
Vancouver 
St. Paul 
Royal Jubilee 
Royal Columbian 

0.92 
0.96 
0.92 
0.96 
0.91 
0.96 
0.85 
0.97 
0.82 
0.96 
0.98 
0.95 
0.95 

2.5 
2.3 
2.5 
2.8 
2.2 
2.4 
1.6 

0.85 
0.93 
0.86 
0.93 
0.94 
0.93 
0.77 
0.94 
0.70 
0.73 
0.96 
0.92 
0.90 

0.95 
0.97 
0.96 
0.96 
0.95 
0.97 
0.96 

0.92 
0.94 
0.94 
0.92 
0.93 
0.93 
0.93 



Bibliography 

[l] Breslow, N. E. (1974) Covariance analysis of censored survival data. Biometrics, 

30, 89-99. 

[2] Cox, D. R. (1972) Regression models and life tables (with discussion). Journal 

of the Royal Statistical Society, 34, 187-202. 

[3] Cox, D. R. (1975) Partial likelihood. Biometrika, 62, 269-276. 

[4] Ghahramani, M. (1998) Simultaneous Modelling of Long and Short Term Sur- 

vival after Coronary Artery Bypass Graft Surgery. M.Sc. Project, Simon F'raser 

University. 

[5] Ghahramani, M., Dean, C.B. and Spinelli J.J. (2001) Simultaneous modelling of 

operative mortality and long-term survival after coronary artery bypass surgery. 

Statistics in Medicine, 20, 1931-1945. 

[6] Hess K. (1995) Graphical methods for assessing violations of the proportional 

hazards assumption in Cox regression. Statistics in Medicine, 14, 1707-1723. 

[7] Lawless, J.F. (1982) Statistical Models and Methods for Lifetime Data. New York: 

John Wiley and Sons. 

[8] Schoenfeld, D. (1980) Chi-squared goodness-of-fit tests for the proportional haz- 

ards regresion model. Biometrika, 67, 145-153. 


