
AN EGRESS QUEUE MANAGER

FOR 8 X 100 MBPS AND 1 X IGBPS

ETHERNET SWITCH PORT CONTROLLERS

BARRY GORDON MOSS

B.A.Sc., Simon Fraser University, 2002

PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING

IN THE SCHOOL OF ENGINEERING SCIENCE

O Barry Gordon Moss 2002

SIMON FRASER UNIVERSITY

Decemeber 2002

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author

Approval

Name: Barry Gordon Moss

Degree: Master of Engineering

Title of thesis: An Egress Queue Manager for 8 x 100 Mbps and
1 x 1 Gbps Ethernet Switch Port Controllers

Presentation Committee:

Chair:

Dr. Paul Ho
Project Committee Chair

-
Drxteven Hardy
Supervisor
School of Engineering Science

-
Steve Datiecki
External Supervisor
PMC-Sierra, Inc

Date approved: December 16, 2002

ii

Partial Copyright License

I hereby grant to Simon Fraser University the right to lend, my thesis, project or extended
essay (the title of which is shown below) to users of the Simon Fraser University Library,
and to make partial or single copies only for such users or in response to a request from
the library of any other university, or other educational institution, on its own behalf or for
one of its users. I further agree that permission for multiple copying of this work for
scholarly purposes may be granted by me or the Dean of Graduate Studies. It is
understood that copying or publication of this work for financial gain shall not be allowed
without my written permission.

An Egress Queue Manager for 8 x 100 Mbps and 1 x Gbps Ethernet Switch Port
Controllers

Author:

Barry Gordon boss

Abstract

The project consists of the design of an Egress Queue Manager (EQM), a

major functional block used in PMC-Sierra's PM3370 (8 x 100 Mbps) and

PM3380 (1 x 1 Gbps) Ethernet Switch Port Controller integrated circuits. The

EQM acts as the egress port controller in an output associated input buffered

switch, providing the option of three different traffic scheduling algorithms,

including variants of weighted fair queuing. While designed to operate within the

environment of an Ethernet packet switch, the design is flexible enough to be

adapted to other packet switched environments (such as a IP based switch) with

minimal modifications.

The project consisted of the redefinition, design, verification and

documentation of the EQM block, comprising approximately 70,000 gates of

logic. The design was captured at the register transfer level using the Verilog

hardware description language and then synthesized into a gate-level netlist. The

project also includes a suite of simulations designed to verify the functionality and

performance of the design, and static timing analysis to guarantee that the

synthesized design was capable of operating at a clock rate of 83 MHz.

iii

Dedication

This project is dedicated to my family and friends who have encouraged me

through the long process of pursuing this degree and to my former coworkers at

PMC-Sierra who made this project possible. Thank you.

Acknowledgments

Many thanks to the following individuals for their contributions to the EQM

project:

Steve Dabecki at PMC-Sierra who was the technical lead in charge of

the SWlT sub-section of the PM3370 and PM3380 port controller chips.

Joshua Salvador, who as an engineering co-op executed the

performance simulations for the EQM design and who helped complete

the second simulation test bench.

Tom Alexander from PMC-Sierra's Portland office, who invented (and

re-invented) the EXACT protocol, architected the EXACT chip set, and

drafted the initial EQM specification.

Table of Contents

Approval ... ii

Abstract ... iii

Dedication ... iv

Acknowledgments ... v

Table of Contents ... vi
...

List of Figures .. VIII

List of Tables ... xi

1 Introduction .. 1

2 The System Environment .. 3

2.1 Port Controller Overview ... 3

2.2 The EXACT protocol ... 7

Functional Description ... 10

Overview ... 10

Queue AllocateIData Block Processor (QADBP) 12

3.2.1 Queue Allocate Processing .. 15

3.2.2 Data Block Processing .. 15

3.2.3 Sequence and TPA Error Handling 17

Transmit Pending Arrays (TPA) ... 17

3.3.1 100Mbpsmode .. 17

3.3.2 1 Gbpsmode ... 18

... 3.3.3 Debug Access 20

Queue Fetch Scheduler (QFS) ... 20

.. 3.4.1 100Mbpsmode 22

3.4.2 1 Gbps mode ... 23

.. 3.4.3 Scheduling Modes 29

3.5 Transmit Frame Reassembly Buffer Interface (TFRBI) 37

3.5.1 Transmit Statistics Collection ... 38

3.6 Transmit Statistics Transaction FIFO (TSTF) 39

3.7 Statistics Updater and MPAC Interface (SUMI) 39

4 Simulations ... 42

4.1 Functional Simulations .. 42

4.2 Performance Simulations ... 43

.. 5 Synthesis 44

6 . . Design reusab~l~ty .. 46

7 System performance ... 47

8 A Comparison of Fair Queuing Techniques .. 48

... 9 Conclusions 51

Appendix A: EQM Normal Register Descriptions .. 52

Appendix B: EQM Test Register Descriptions ... 79

B.1 Test Mode 1: Full scan test logic .. 81

B.2 Test Mode 2: RAM BlST .. 84

Appendix C: Performance Simulation Details .. 88

References .. 98

vii

List of Figures

Figure 1. Partial Packet Buffer Chaining Structure. Ethernet frames are
segmented and placed into queues based on the destination port and
priority level. Each queue contains pointers to the first Partial Packet
Buffer (PPB) of the linked list of PPBs holding a given frame. 4

Figure 2. Simplified Port Controller Block Diagram. .. 5

Figure 3. An EXACT Based Ethernet Switch. A 24+2 Ethernet Switch
created using EXACT port controllers and the ENCORE switch fabric
devices. Smaller switches (e.g. an 8+1 or 16+0 switch) can be created
without the switch fabric IC by connecting the EXACT Bus in a ring. 7

Figure 4. EXACT Protocol Flow Diagram. The source device (usually
an IQM) signals available traffic by sending a QA message to the
destination deivce (usually an EQM). When the destination device is
ready to service the QA request, it returns a QF message, allowing the
source to send a single DB message. The QFIDB exchange continues
until the entire packet has been transmitted across the EXACT ring or
switch fabric. ... 8

Figure 5. EQM Block Diagram. Test registers and memory BlST are not
... shown.. 11

Figure 6. Queue Allocate (QA) Message Format. See Table 1 for field
definitions. QA messages are used to signal that an input queue has a
complete packet ready to transmit to an output port associated with this
EQM.. .. 13

Figure 7. Data Block (DB) Message Format. DB messages contain
packet data from a single PPB. If this is the last block of data in a given
frame, the EF (end-of-frame) bit will be set. See Table 1 for field definitions. 14

Figure 8. The Transmit Pending Arrays configured for 8 x 100 Mbps
operation. Each bit indicates if a QA has been received from a given
sourcelpriority (or class of service) queue. When the QA request has been
serviced, the bit is cleared. ... 18

Figure 9. The Transmit Pending Arrays configured for 1 x 1 Gbps operation.
Each 4-bit value indicates the number of unserviced QA messages which
have been received from a given sourcelpriority (or class of service) queue.
When a QA request has been serviced, the corresponding value in the TPA is
decremented. This figure illustrates an example where priority level 1 has
received 9 QAs for SPlD 224,8 QAs for SPlD 254 and 10 QAs for SPID 255. 19

viii

Figure 10. Queue Fetch (QF) Message Format. QF messages are sent by
the EQM to indicate that it is ready to accept a single DB message from the
queue identified by the SPlD and P fields. ... 20

Figure 11. Queue Fetch Scheduler Block Diagram. The QFS consists of
eight TPA scanners which search the TPAs for set bits in 100 Mbps mode,
a single scanner and processor which searches the TPA for non-zero QA
counts in 1 Gbps mode and a controller which arbitrates between the
scanners and issues the QF messages. ... 22

Figure 12. Queue Fetch Scheduler: 1 Gbps Scanner and Processor Block
Diagram. The QFS scans the TPAfor non-zero entries and issues QF
messages according to the scheduling algorithm selected and tracks the
QFs pending and outstanding for each data stream 24

Figure 13. Queue Fetch Scheduler Algorithm: 1 Gbps. The Queue Fetch
Scheduler has a independent scanner operating in parallel which uses the
same algorithms as the100 Mbps schedulers; except that it immediately
starts scanning after the decision is made to process a frame. 26

Figure 14. Queue Fetch Pending Processing: 1 Gbps mode only. 28

Figure 15. Strict Priority Scheduling Algorithm. After processing each frame,
SPS always checks to determine the highest priority level which has
outstanding QA messages. Round robin order is maintained within each
priority level. If enough traffic is presented to the high priority queues, lower
priority queues can be starved. .. 30

Figure 16. Weighted Priority Scheduling Algorithm. WPS acts as a priority
scheduler with credit limits to prevent starvation of lower priority queues. 32

Figure 17. Weighted Fair Scheduling Algorithm. The WFS algorithm is very
similar to the WPS algorithm: the only change is that after processing a
frame, the flow jumps to the credit check instead of resetting the priority to
zero as in WPS. .. 35

Figure 18. Transmit Statistics Update Transaction (TSUT) Format. The
TSUT is passed from the TFRBl to the SUM1 after the last byte of a frame

.. has been passed through. 39

Figure 19. Transmit Statistics Data Structure. The 2-Dword structure tracks
the total number of frames and bytes transmitted in packets containing the
corresponding TXSTAT field. The statistics reflect a running count, which
must be read frequently enough by an external CPU to prevent the counters
from wrapping without being read. ... 40

Figure 20. SRAM Data Structure Addressing. The TXSTAT value from the
TSUT is used to index into the memory block specified by TXST-BASE. 40

Figure 21. Example SSRAM Memory Map with 2 MByte used by EQM. The
unused portions of the memory are used by other blocks in the port
controller for queue structures and statistics. .. 41

List of Tables

Table 1 . QA and QB Message Field Descriptions .. 14

Table 2 . QF Message Field Definition .. 21

Table 3 . Transmit Statistics ... 38

Table A . 1 . Register 0x00: Indirect Register Select .. 53

Table A . 2 . Register 0x01: Indirect Data ... 54

Table A . 3 . Register 0x02: Interrupt and General Status 55

.. Table A . 4 . Register 0x03: General Control 57

Table A . 5 . Scheduling Mode Control Bits .. 58

Table A . 6 . Indirect Register 0x00: Interrupt Enable 59

.............................. Table A . 7 . Indirect Register 0x01 : Base Address Offset I 61

Table A . 8 . Indirect Register 0x02: Illegal SourceIDestination Field 62

Table A . 9 . Indirect Register 0x03: Illegal Message Type Field 63

. Table A . 10 Indirect Register 0x04: Global Maximum QF Outstanding 64

Table A . 11 . Indirect Register 0x05: Maximum QF Outstanding per Stream ... 65

Table A . 12 . lndirect Register 0x06. 0x09. OxOC. OxOF: Channel Weighted
Scheduling (0-3) Limit ... 66

Table A . 13 . lndirect Register 0x07. OxOA. OxOD. 0x1 0: Channel Weighted
Scheduling (0-3) Weight ... 67

Table A . 14 . lndirect Register 0x08. OxOB. OxOE. 0x1 I : Channel Weighted
Scheduling (0-3) Credit Store ... 68

Table A . 15 . Indirect Register 0x1 2: Weighted Scheduling Threshold 69

Table A . 16 . Weighted Scheduling Threshold Values 69

Table A . 17 . Indirect Register 0x20: TPA Diagnostic RAM Control Register ... 70

. Table A . 18 Indirect Register 0x21 : TPA Diagnostic Data High Register 71

Table A . 19. Indirect Register 0x22: TPA Diagnostic Data Low Register 72

Table A . 20 . Indirect Register 0x23: QFS Stream Table Index Register 73

Table A . 21 . Indirect Register 0x24: QFS Stream Table SPIDIP Register 74

Table A . 22 . Indirect Register 0x25: QFS Stream QFICredit Register 75

Table A . 23 . Indirect Register 0x26: QFS Channel Select Register 76

Table A . 24 . Indirect Register 0x27: QFS Channel Status Register 77

Table A . 25 . Indirect Register 0x28: QFS TXD-BLK-AVAIL Register 78

.. Table B . 1 . Test Register I : Test Mode Select 80

Table B . 2 . Test Modes .. 80

... Table B . 3 . Test Register 0x00: Test Enable 81

Table B . 4 . Test Register 0x02: Scan Test Data Input 82

Table B . 5 . SCAN Mode Data Output ... 83

Table B . 6 . Test Register 0x00: Test Enable ... 84

Table B . 7 . Test Register 0x02: BlST Test Data .. 85

Table B . 8 . BlST Mode Data Output ... 86

Table B . 9 . BIST-ERROR Bits .. 87

Table C . 1 . Perform'ance Tests Parameter Key ... 89

...................................... Table C . 2 . WFS Performance Tests - 1 Gbps mode 90

...................................... Table C . 3 . WPS Performance Tests - 1 Gbps mode 92

Table C . 4 . WFS Performance Tests - 100 Mbps mode 94

.................................. Table C . 5 . WPS Performance Tests - 100 Mbps mode 96

1 Introduction

The Egress Queue Manager (EQM) is a major functional block used in PMC-

Sierra's PM3370 [I] (8 x 100 Mbps) and PM3380 [2] (1 x 1 Gbps) Ethernet Switch

Port Controller integrated circuits. Along with PMC-Sierra's PM3390 Switch

Fabric Device, these ICs form the EXACT flexible and stackable Ethernet

switching architecture, capable of maintaining full line rate switching on all ports

even when servicing minimum sized (64 byte) packets. The EQM operates as an

8-port single stream output scheduler controller when used in the PM3370, and

operates as a single port multi-stream scheduler when used in the PM3380.

Packets are transmitted across the switch fabric in variable sized data blocks

with a maximum size of 240 bytes. The EQM manages the handshaking protocol

for service requests, collects transmitted data statistics and forwards the data

blocks a downstream buffer for frame reassembly.

The EQM arbitrates between service requests submitted by ingress queue

managers (IQM), which have traffic queued for the particular egress ports

assigned to the EQM. Within a given class of service (4 are supported in the

EQM), the EQM uses a simple round robin protocol. However, the EQM

implements three parameterizable queuing or scheduling algorithms, which

determine how bandwidth is allocated between the service classes. The simplest

algorithm supported is a strict priority scheduler in which the highest service

class with pending requests is always processed first. Strict priority scheduling

can be used to implement the IEEE 802 .1~ standard [3]. The EQM also supports

a weighted fair scheduling method which achieves many of the goals of the

weighted fair queuing algorithm first described by Demers, Keshav and Shenkeri

[4] but using a method much easier to implement in silicon. Finally, a hybrid

method, which combines features of both priority and weighted queuing, is

implemented.

Within a service class, the EQM supports fair queuing (round robin) service

of the individual source queues.

2 The System Environment

2.1 Port Controller Overview

The EQM acts as the egress controller in an output associated, input

buffered switch. In this architecture, packet data is stored by an ingress queue

manager (IQM) in queues corresponding to individual output ports. The ingress

controller buffers a complete packet before sending a queue allocate (QA)

message through the switching fabric to the EQM, where the data is destined.

The switching fabric consists of one or more linked rings implementing PMC-

Sierra's EXACT protocol.

The EQM does not directly access frame data as this is buffered at the

ingress port, which may be on the same or a different port controller. Frame data

is stored in memory as partial packet buffers (PPB's). Depending on the system

configuration, each PPB contains up to 120 or 240 bytes of frame data together

with header and trailer information. Independent of the size of the payload, each

data block is packed into a 256 byte Partial Packet Buffer. (The 240 byte option

made most efficient use of the PPB memory space; however, the 120 byte option

allowed for finer granularity within the fabric). PPB's are chained together to form

a linked list. The data contained in a single PPB is transmitted across the switch

fabric.

The structure of the PPB's is illustrated in Figure 1.

Figure I. Partial Packet Buffer Chaining Structure. Ethernet frames are
segmented and placed into queues based on the destination port and
priority level. Each queue contains pointers to the first Partial Packet Buffer
(PPB) of the linked list of PPBs holding a given frame [S].

While the EQM is not protocol specific, it was implemented within an Ethernet

switching system. A maximum length Ethernet frame (1 522 bytes with optional

VLAN tag) will require up to 14 chained PPB's to hold the complete frame,

depending on the data block (DB) payload size, which is configured externally to

the EQM.

Ethernet
Egress

lngress

Ethernet
Media

Access
Controller

and
Physical
lnterface

Memory Port
Access Controller

*
EX1

EXACT
Bus

Interface

EQM
Egress
Queue

Manager

TXCTRL
Transmit
Controller
(including

frame
reassembly)

_,

+

Exact
Bus

+

4

IQM
lngress
Queue

Manager

External
Memory

-b

Figure 2. Simplified Port Controller Block Diagram.

IDMA
Ingress
Direct

Memory
Access

Data is queued on the ingress side of the device. Control and Data

messages are sent over the EXACT bus to an egress controller on the

addressed port controller. Figure 2 shows a simplified block diagram or the port

controller. Received Ethernet packets pass are processed by the Ethernet MAC

and Receive Controller. The lngress DMA segments the packet payloads into

240 segments and stores them in an external memory device as a chained PPB

structure (see Figure 1). When a complete packet payload has been segmented

into a chain of PPBs, the IDMA passes the head pointer of the chain to the

+ -b
RXCTRL
Receive

Controller

Ingress Queue Manager. The IQM places the pointer in a queue corresponding

to the output port and priority (or class of service). The IQM communicates with

the EQM corresponding to the egress port using the EXACT protocol (see

section 2.2 following). Packet data fragments are passed through to the EQM to

the Transmit Controller (TXCTRL) where the fragments are reassembled in

buffers. When a complete packet has been reassembled in the TXCTRL, it is

transmitted through the MAC and physical interface on the appropriate Ethernet

egress port.

The EX1 serves as the physical interface to the EXACT ring for the IQM and

EQM, handling clock rate conversions and data path width conversions with

shallow FIFOs.

8 x 1 0 0 Mbps
Port Controller

PM3370
8 x 100 Mbps
Port Controller

Exact
Bus

PM3380
I x I G b p s - Port Controller

8 x 100 Mbps
Port Controller

PM3380
I XI Gbps

Port Controller

Figure 3. An EXACT Based Ethernet Switch. A 24+2 Ethernet Switch created
using EXACT port controllers and the ENCORE switch fabric devices.
Smaller switches (e.g. an 8+1 or 16+0 switch) can be created without the
switch fabric IC by connecting the EXACT Bus in a ring.

2.2 The EXACT protocol

The EXACT protocol is used to transfer data across the switching fabric,

which may be a simple ring connection or a switch fabric IC.

When a given IQM has queued a packet for an output port, it will send a QA

message across the fabric to notify the corresponding EQM that a complete

packet is available for a given output port (see Figure 4).

SOURCE DESTINATION

Frame Recepfion
Begins --b

Frame Queued
Ready for Transfer * Queue Allocate

QA Request Stored

Output Buffer
Space Avaihble

Queue Fetch
S c h e d u l e Next

Request to be Serviced

f-- Frame Fragment
Placed in Output
6uffer; Next Fragment
Requested

+ Frame Carnpletely
Reassmbled in Output
Buffer, Transmtssron
Begins

Frame Transmiss~on
Completed

Figure 4. EXACT Protocol Flow Diagram. The source device (usually an
IQM) signals available traffic by sending a QA message to the destination
deivce (usually an EQM). When the destination device is ready to service
the QA request, it returns a QF message, allowing the source to send a
single DB message. The QFIDB exchange continues until the entire packet
has been transmitted across the EXACT ring or switch fabric.

When the EQM is ready to accept that packet, it will send a Queue Fetch

(QF) message, which allows the IQM to send a single data block (DB) message

containing the first fragment of a packet, as contained in the payload of a single

PPB. If there is more data in the packet, the DB message will have the EOF flag

cleared in the message header. If the DB contains the end of the packetlframe,

the EOF is set and the IQM may immediately send another QA message if there

is one or more additional packets queued for the given output port. When the

EQM receives a DB message it checks the EOF flag. If the flag is clear, the EQM

will return another QF message when it is ready to accept another DB message.

The message formats are described in greater detail later in this report.

System simulations done by the project architect showed that while this

simple version of the protocol was sufficient to sustain line rates for 100 Mbps

ports, the latency across the switch fabric was too great for 1 Gbps ports.

Consequently, the protocol was modified for output ports operating at the higher

rate.

The modified protocol allowed the IQMs to send up to 15 QA messages

which would be stored by the EQMs. In return the EQM is allowed to issue up to

one QF message for each QA message stored up to a maximum of 10. This

allows the EWM to accept BD messages for up to 10 packets in parallel while in

1 Gbps mode. These packets could all originate from the same IQM or from

multiple IQMs.

3 Functional Description

3.1 Overview

Figure 5 shows the block diagram of the EQM, which consists of the following

modules:

Queue AllocateIData Block Processor (QADBP).

Transmit Pending Arrays (TPAs).

Queue Fetch Scheduler (QFS).

Transmit Frame Reassembly Buffer Interface (TFRBI).

Transmit Statistics Transaction FIFO (TSTF).

Statistics Updater and Memory Port Access Controller (MPAC) SRAM

Interface (SUMI).

Control Registers and Control Register Interface (CRI) Logic.

Built-in Self Test (BIST) Sequencer for RAM modules.

Test Registers and Interface Logic.

Note: The test registers and BIST circuits have been omitted from the block

diagram.

A significant design goal was to reuse as much logic and in particular the

TPA memories in the two operating modes (single port 1 Gbps and eight port 100

Mbps). Whenever possible, the sub-modules were designed to support both

modes. This approach was successful for all blocks except the QFS which

required very different designs for the two modes. Thus the QFS essentially

contains two designs and the appropriate logic is enabled based on the mode

selected.

CHAN-SEL[P:O] CRI Interface & Registers I
RSTB --)

SYSCLK ---+
HALT

GMODE -+
Control/Status/Test

to all blocks

TXD-DATA[3 1 :0]

TXD-STAT[18:OI
TxCTRL

TXD_STREAM_ID[3:0] Frame
TXD-W E Reassembly

TXD-EOM Buffer
Interface

Transmit
Pending
Arrays

8 x 3 2 ~ 3 2
Tx Staisistics
Transaction

--) HALTED

€MI-DATA[31:0]

EM I-STAT[l :O]

EM I-W E

EM I-EOM

Queue MTYPE-INT
Allocate1

Data Block QA-SEQE-INT

Processor DBQA-SEQE-INT

DBQF-SEQE-INT

TPA-OVRE-INT

TPA-UNDE-INT

T

EMO-RDY
Queue -b EMO-DATA[31:0]
Fetch

I Scheduler
TXD-BLK-AVAIL[7:O] t --b DBRCV-FIFO-OVRE-INT

Statistics Updater &
MPAC SRAM Interface

Figure 5. EQM Block Diagram. Test registers and memory BlST are not
shown.

3.2 Queue AllocateIData Block Processor (QADBP)

The Queue Allocate / Data Message Processor is responsible for the

following:

Receiving of queue allocate (QA) and data block (DB) messages.

Parsing of the TYPE field within the message header to determine message

type-

Parsing of the other header fields to determine channel destination, source

port, and prioritylclass of service.

100 Mbps mode: Setting the appropriate bit in the corresponding Transmit

Pending Array (TPA) upon receipt of a QA message.

1 Gbps mode: lncrementing the appropriate 4-bit count in the Transmit

Pending Array (TPA) upon receipt of a QA message.

100 Mbps mode: Upon receipt of a DB message, routing the payload to the

TxCTRL Frame Reassembly Buffer interface (TFRBI) and setting the DB

received (DBRCV) flag for the appropriate destination channel. The DBRCV

flag causes the QFS to send the next QF message as soon as space is

available in the corresponding downstream Transmit Frame Reassembly

Buffer. If the DB header has the End of Frame (EOF) bit set, then the

appropriate bit in the Transmit Pending Array is cleared, and the EOF flag for

the appropriate destination channel is set. The EOF flag causes the QFS to

resume the scanning the TPA for that channel according to the scheduling

algorithm.

1 Gbps mode: Upon receipt of a DB message, routing the payload to the

TxCTRL Frame Reassembly Buffer interface (TFRBI) and placing an entry in

the Queue Fetch Scheduler's (QFS) DB received FIFO (DBRF) indicating the

12

SPID, P and EOF fields of the DB, which causes the QFS to send the next QF

message (unless the EOF flag is set) as soon as space is available in the

TFRBI. If the DB header has the End of Frame (EOF) bit set, then the

appropriate count in the Transmit Pending Array is decremented.

The QADBP receives messages from the upstream EXI. These messages will

be of two types. These will be either a queue allocate message (QA), which

indicates that a source has data for one of the channels, or they will be data

blocks (DB's), which contain partial data blocks constituting the complete frame.

The QADBP is capable of processing a mix of QA and DB messages with

minimal latency; however, the EX1 must guarantee a minimum of two inactive

cycles on the EM1 interface between subsequent messages since the QADBP

requires a minimum of 3 SYSCLKs to read-modify-write the TPA RAM.

The format of queue allocate and data block messages as presented by the

EX1 are illustrated in Figure 6 and Figure 7 respectively. Note that the EQM only

supports 256 SPlDs and 8 DCIDs. The unused most significant bits in each field

(SPID[9:8] and DCID[5:3]) will always be ignored.

Bit 31 Bit 0

Figure 6. Queue Allocate (QA) Message Format. See Table 1 for field
definitions. QA messages are used to signal that an input queue has a
complete packet ready to transmit to an output port associated with this
EQM.

aA: SPlD (10) DWord 0

Bit 31 Bit 0

DB:

TXSTAT (1 6) "0000000000000000" DWord 1
I I

/PAYLOAD 0 (8) PAYLOAD 1 (8) PAYLOAD 2 (8) PAYLOAD 3 (8) 1 DWord 2

Figure 7. Data Block (DB) Message Format. DB messages contain packet
data from a single PPB. If this is the last block of data in a given frame, the
EF (end-of-frame) bit will be set. See Table 1 for field definitions.

PAYLOAD N- I

Table 1

DWord (N14 + 2)

Field

TYPE

SPlD

DCID

TXSTAT

PAY LOAD

other bits

QA
Bits -
4

nd QB Message Field Descriptions.
Descri~tion

Message Type.

Defines up to 16 possible message types, of which the EQM requires to know only 3: QA, QF, DB.

0000 - Data Block (DB)
0010 - Queue Allocate (QA)
0100. - Queue Fetch (QF)
Other codepoints are reserved.

Priority of the frame.

Every frame is allocated one of four priority levels. The IDMA passes this field on to the queue
manager. The queue manager will queue the frame according to the following:

'00' - priority 0
'01' - priority 1
'1 0' - priority 2
'11' - priority 3
Note that priority 0 is the highest priority and priority 3 is the lowest

End of Frame (EOF).

When EOF is set, this indicates the last data block (PPB) of the frame.

Source Port Identifier

This field indicates the EXACT ring source port from which the queue allocate was received. This
field is returned as the destination port in a QF message. Note there is not necessarily a 1:l
correspondence between Ethernet ports and EXACT ring source ports. An EXACT port controller
may queue frames from several Ethernet ports into a single queue which will have a single EXACT
rina ID.

Destination Channel Identifier.

This field indicates the destination channel for which the aueue allocate or data is intended.

Transmit Statistics.

A 16-bit field which is used to index into the statistics memory.

Data Payload.

This variable length field contains the packet data to be passed to the TxCTRL block. The field may
vary from 1 to 240 bytes in length. The EQM does not examine or Drocess the Dayload field.

For messages that are received by the EQM (QA and DB), bits marked as "X" are ignored.

For messages that are transmitted by the EQM (QF), these fields are set to 0.

Note that some of these fields are overwritten by the upstream EX1 block, to indicate a pseudo
source address.

The QADBP checks the header fields of the messages to first determine the

type of message, and then the remaining fields to determine the subsequent

processing.

3.2.1 Queue Allocate Processing

A QA message indicates to the EQM that a source has data buffered for one

of the channels supported by the EQM. On receiving a QA in 100 Mbps mode,

the QADBP reads the appropriate line from the destination channel's TPA, sets

the appropriate bit for the source port and prioritylclass of service, and then

writes the modified line back to the TPA. In 1 Gbps mode, the QADBP reads the

appropriate 4 lines from the TPAs to assemble a 4-bit count value, increments

this value and then writes the modified lines back to the TPA.

In 100 Mbps mode, it is an error for the QADBP to receive a QA for a

DCIDISPIDlpriority combination for which the QA bit is already set. In this case,

the QADBP sets the QA-SEQE-INT interrupt flag, and places the source and

destination port numbers in the appropriate error status registers.

In I Gbps mode, it is an error for the QADBP to receive a QA for a SPIDIP

combination for which TPA count has reached its maximum value of 15. In this

case, the QADBP sets the TPA-OVRE-INT interrupt flag, and places the source

and destination port numbers in the appropriate error status registers. If another

TPA Overflow or sequence error occurs before the error status registers are

read, the error status registers will be overwritten with the new information.

3.2.2 Data Block Processing

A DB message is sent to the EQM as a result of the source port receiving a

queue fetch from the EQM. On receiving a DB, the QADBP routes the data block

to the TxCTRL Frame Reassembly Buffer Interface (TFRBI), which in turn writes

the data to the downstream TxCTRL Frame Reassembly Buffer (FRB). Only the

payload data is transmitted to the FRB; the DB message header is removed.

The QADBP monitors the EF (end of frame) field in the data block message

which indicates that this DB is the last for the frame. If this DB is not the last for

the frame, then the QADBP in 100 Mbps mode immediately sets the DBRCV bit

for the destination channel. If the EOF bit is set, then the QADBP clears the

appropriate bit in the TPA. In 1 Gbps mode, the QADBP places an entry

(including the SPIDIP and EF fields) in the DBRCV FIFO of the Queue Fetch

Scheduler (QFS). If the EOF bit is set, the QADBP will also decrement the

corresponding count value in the TPA.

In 100 Mbps mode, it is an error for the QADBP to receive a DB for a channel

which doesn't have the appropriate bit already set in its TPA, thus indicating that

the DB was received without a preceding QA message or that the EOF field was

set in a DB prior to the last DB for the frame. In this case, the QADBP sets the

DBQA-SEQE status flag, and places the source and destination port numbers in

the appropriate error status registers.

In either mode, it is also an error for the QADBP to receive a DB for which a

corresponding QF message has not been sent by the QFS. In 100 Mbps mode,

the QADBP checks for this condition by comparing the SPlD and P output fields

of the TPA-SCANNER for the appropriate channel. In 1 Gbps mode, the QADBP

checks for this condition by comparing the DB header information against the

SPlD and P fields for all active streams from the QFS stream table If this error

occurs, the QADBP sets the DBQF-SEQE status flag, and places the source and

destination port numbers in the appropriate error status registers.

In 1 Gbps mode, it is an error for the QADBP to receive a DB for a SPIDIP

combination for which the TPA has a count of 0, thus indicating that the DB was

received without a preceding QA message or that the EOF field was set in a DB

16

prior to the last DB for the frame. In this case, the QADBP sets the DBQA-SEQE

status flag, and places the source and destination port numbers in the

appropriate error status registers. If the EOF bit was set in the DB header, then

the QADBP sets the TPA-UNDE status flag, and places the source and

destination port numbers in the appropriate error status registers.

3.2.3 Sequence and TPA Error Handling

Sequence errors (QA, DBQA, DBQF) and TPA Overflow Underflow errors

are serious protocol errors, which should occur very infrequently if ever. A single

register reports the source and destination fields of the message which caused

the errors is used for all error types. If another sequence error occurs before the

error status registers are read, the error status registers will be overwritten with

the information from the message causing the latest error. While these protocol

errors were rarely if ever a problem with the production chip set, these diagnostic

features proved to be invaluable while debugging the prototypes.

3.3 Transmit Pending Arrays (TPA)

3.3.1 I00 Mbps mode

In 100 Mbps mode, there is a Transmit Pending Array (TPA) for each of the

eight supported channels. Each TPA consists of four vectors, one vector for each

class of service. (There is an independent TPA for each channel because all the

TPA for each channel must be searched in parallel in order to meet the QA

received to QF issued latency requirements). There is a single bit in the vector

for each source port. Since there are a total of 256 supported source ports per

vector and 4 classes of service vectors, each TPA consists of 1024 bits. (See

Figure 8).

Figure 8. The Transmit Pending Arrays configured for 8 x 100 Mbps
operation. Each bit indicates if a QA has been received from a given
sourcelpriority (or class of service) queue. When the QA request has been
serviced, the bit is cleared.

A TPA bit is set following the receipt of a QA message for the given

channellsource portlpriority. A TPA bit is cleared when a DB message with an

EOF indication is received for that channel/source portlpriority.

The array shown above illustrates an example where destination channel 1,

priority level 2, has received a QA for each of source ports 28, 62, 189 and 224.

3.3.2 1 Gbps mode

In 1 Gbps mode, there is a single Transmit Pending Array (TPA) for the

single supported channels. The TPA consists of four vectors, one vector for each

class of service. There is a 4-bit value in the vector for each source port. The 1

Gbps TPA arrangement is illustrated in Figure 9.

Figure 9. The Transmit Pending Arrays configured for 1 x 1 Gbps operation.
Each 4-bit value indicates the number of unserviced QA messages which
have been received from a given sourcelpriority (or class of service) queue.
When a QA request has been serviced, the corresponding value in the TPA
is decremented. This figure illustrates an example where priority level I has
received 9 QAs for SPlD 224,8 QAs for SPlD 254 and 10 QAs for SPlD 255.

A TPA count is incremented following the receipt of a QA message for the

given source portlpriority. A TPA count is decremented when a DB message with

an EOF indication is received for that source port/priority.

3.3.3 Debug Access

The contents of the TPA RAMS can be accessed through the CRI for

diagnostic purposes. The TPA number (0 through 7) and TPA address are

programmed into the TPA Diagnostic Control Register (indirect registers). After 4

SYSCLK cycles after the TPA number and address have been written, the data

word has been latched and may be read out of the TPA Diagnostic Data registers

(indirect registers 0x21 and 0x22). This operation is transparent to the EQM1s

operation and does not require the EQM to be halted.

3.4 Queue Fetch Scheduler (QFS)

The Queue Fetch Scheduler is responsible for transmitting the QF messages

as a result of detecting a pending request for data as indicated in the transmit

pending array (TPA) for a given channel.

The format of queue fetch message as presented to the EX1 is illustrated in

Figure 10. Note that the EQM only supports 256 SPlDs and 8 DCIDs. The

unusued most significant bits in each field (SPID[9:8] and DCID[5:3]) will always

be zeros.

Bit 31 Bit 0

Figure 10. Queue Fetch (QF) Message Format. QF messages are sent by the
EQM to indicate that it is ready to accept a single DB message from the
queue identified by the SPlD and P fields.

QF SPlD (10)

The description of the various fields in the QF message are given in Table 2:

"0000000000" DClD (6) DWord 0

Table
Field

TYPE

P

SPlD

I DCID

2. G -
Bits -
4

-
2

-
10

: Message Field Definition.
Description

Message Type.

Defines up to 16 possible message types, of which the EQM requires to know only 3, namely QA, QF,
DB.

0000 - Data Block (DB)

001 0 - Queue Allocate (QA)

0100 - Queue Fetch (QF)

Other codeeoints are reserved.

Priority of the frame.

Every frame is allocated one of four priority levels. The IDMA passes this field on to the queue
manager. The queue manager will queue the frame according to the following:

'00' - priority 0

'01' - priority 1

'1 0' - priority 2

'1 1 ' - priority 3

Note that priority 0 is the highest priority and priority 3 is the lowest.

The external CPU erovides this field as part of the forwarding information.

Source Port ldentifier

This field indicates the EXACT ring source port from which the queue allocate was received. This field
is returned as the destination port in a QF message.

Destination Channel ldentifier

This field indicates the destination channel for which the queue allocate or data is intended. The
upstream EX1 substitutes the absolute port ID (queue ID) with the channel ID using a base offset.

3.4.1 I00 Mbps mode

TP A
SCANNER

0

GIGABIT
QFS

SCANNER &
PROCESSOR

TX-RDY [0]

a
a
a

DBRCV-FIFO Interface

QFS
CONTROLLER

QF-SPID-07[7:0]

QF-PRIORITY-07[1:O]

QF_RDY[7]

QF-RDY_CLR[7]

TPA-ADDR-07[5:O]

TPA-DATA-O7[31:O]

TPA

Figure 11. Queue Fetch Scheduler Block Diagram. The QFS consists of
eight TPA scanners which search the TPAs for set bits in 100 Mbps mode, a
single scanner and processor which searches the TPA for non-zero QA
counts in 1 Gbps mode and a controller which arbitrates between the
scanners and issues the QF messages.

EOF[7]
)

DBRCV[7]
b

7

TX-RDY [7]
b

The 100 Mbps QFS contains a TPA Scanner block for each channel

supported. These scanners independently scan the associated TPA for set bits

according the scheduling algorithm currently employed. (The TPA for each

channel must be scanned independently and in parallel in order to meet the QA

received to QF issued latency requirements). When a TPA Scanner detects a

request for a data frame, it places the corresponding source ID and prioritylclass

of service indication on its output and raises a flag. The QFS implements a round

robin polling mechanism on the TPA Scanners and constructs the QF message

when a TPA Scanner ready flag is detected, adding the relevant TYPE and DClD

fields.

Once the QFS scheduling algorithm (see following section) has decided to

process a given QA, the frame is processed as follows:

Generate queue fetch for this channel, and send the QF to the indicated

source port

Wait until the QADBP sets the DBRCV (DB Message Received) flag for this

channel.

Clear the DBRCV and send another QF message for this channel, sending to

relevant source port.

Repeat until the QADBP sets the EOF (End of Frame) flag for this channel

Return to scheduling algorithm

3.4.2 1 Gbps mode

The 1 Gbps QFS supports a single destination channel, but in order to

reduce the QA -> QF -> DB latency, it supports multiple outstanding QFs on

multiple SPIDIP traffic streams. The QFS consists of a TPA Scanner, a DBRCV

FIFO and a Queue Fetch Request Processor (QFRP) as shown in figure 11.

TP A
SCANNER

RETURN-PRlORITY[l:O]

CREDIT
RETURN

QUEUE FETCH
REQUEST

PROCESSOR

TXD-BLK-AVAIL[7:0] ST:rx SPID P QF-PENDING QF-OUTSTANDING
I I I

RESET
____)
SYSCLK
___)

!=-+

Figure 12. Queue Fetch Scheduler: 1 Gbps Scanner and Processor Block
Diagram. The QFS scans the TPA for non-zero entries and issues QF
messages according to the scheduling algorithm selected and tracks the
QFs pending and outstanding for each data stream.

The QFRP keeps track of the state for each of the 10 streams using a state

vector consisting of the SPlDlP assigned to that stream, the current number of

QFs pending (i.e., assigned but pending a check of space available in the

TXCTRL Frame Reassembly Buffer) and QFs outstanding (i.e., QFs which have

been issued after checking that there is sufficient space available for the

resultant DB payloads).

The single TPA scanner operates very similar to the 100 Mbps mode and

uses the same scheduling algorithms; however, it no longer stops and waits for

an entire frame to be processed when a non-zero TPA location is encountered in

the course of searching the array. Instead, the TPA Scanner passes the

SPIDIPriority pair to the Queue Fetch Request Processor along with the value it

read form the TPA.

The QFRP will check if the SPIDIP combination matches one of the data

streams currently being serviced. If there is no match, the QFRP will assign the

SPIDIP to an unused stream if available. If no unused stream is available, then

the QFRP will continue processing but will not complete the handshake with the

TPA Scanner, effectively stopping scanning until a free stream is available. If the

SPIDIP matches the SPIDIP assigned to an active steam, then the current

number of outstanding (issued) QFs for the stream and the number of QFs for

that same stream which are pending are checked. If the TPA count is greater

than the SUM of the pending and outstanding QFs, the QFRP will increment the

QF pending count and indicate that the request from the scanner is valid by

asserting VALID and SCAN-DONE; otherwise VALID is not asserted when the

SCAN-DONE indication is asserted.

If the TPA Scanners sees that its' request was valid, it will continue the

scanning algorithm as in the 100 Mbps mode, treating the VALID indication as if

the frame had be completely processed. If the request was not valid, then the

scanner continues on as if the TPA count for the current SPIDIP had been zero.

Return unused

Rek& credit value
b WSJRHESH

Figure 13. Queue Fetch Scheduler Algorithm: I Gbps. The Queue Fetch
Scheduler has a independent scanner operating in parallel which uses the
same algorithms as the100 Mbps schedulers; except that it immediately
starts scanning after the decision is made to process a frame.

The Queue Fetch Request Processor also services requests from the

DBRCV FIFO. For each entry processed from this FIFO, the stream QF

Outstanding count is decremented. If the EOF flag is not set for the entry, the

stream QF Pending count is incremented. If the EOF flag is set, the QFRP

checks if both the stream QF Pending and QF Outstanding counts have been

reduced to zero. In this case, the stream is marked inactive and subsequently

freed up for use by another SPIDIP pair.

The QFRP also processes the QF Pending counts. For each stream, the

QFRP checks if QF Pending is non-zero and if so checks if there is uncommitted

space available in the associated frame reassembly buffer. If space is available,

the stream's QF Pending count is decremented, the QF outstanding count is

incremented and the QF is sent to the EXI.

The QFRP also restricts the maximum number of outstanding QFs across all

streams to the value programmed in the Global Maximum QF Outstanding

Register. For the PM3380 port controller, a nominal value of 10 is recommended

based on system level simulations done by PMC-Sierra's chip architect, Tom

Alexander. However, the value may be changed to optimize performance in other

system with different fabric latencies. The value may be set as high as the

maximum number of memory blocks in the TXCTRL Frame Reassembly Buffer

(i.e., 70 for block size of 120 bytes, 140 for block size of 240 bytes). Setting

GMAX-QF larger than the number of blocks in the TXCTRL FRB will not permit

more QFs to be issued.

Enter 0

b

Increment
Stream Index

(Rolls over from 9 to 0)

A
b

4

Increment QF Outstanding
-g

Send QF

N
b

v
Y Exit

Figure 14. Queue Fetch Pending Processing: 1 Gbps mode only.

3.4.3 Scheduling Modes

The QFS implements three modes of scheduling:

1. Strict Priority Scheduling (SPS)

2. Weighted Priority Scheduling (WPS)

3. Weighted Fair Scheduling (WFS)

The scheduling mode is selectable by the SCHMODE[I :0] field in the EQM

General Control Register.

3.4.3.1 Strict Priority Scheduling

b Priority

Scan Priority
Vector Starting

After Last
Port Used

Y

Increment
Priority Level

Process
Frame

level = 0

I

b

Figure 15. Strict Priority Scheduling Algorithm. After processing each frame,
SPS always checks to determine the highest priority level which has
outstanding QA messages. Round robin order is maintained within each
priority level. If enough traffic is presented to the high priority queues,
lower priority queues can be starved.

v
1

Strict Priority is a simple scheduling method. For any given egress channel,

the scheduler begins by scanning the transmit pending array (TPA) for the top

priority level beginning after the index of the last source port which was serviced

from this priority level. If the TPA indicates that frame transmissions requests are

pending, then the first such request is serviced in source port order, until the

entire data frame has been received. Additional frame requests at the top priority

level are processed until all requests have been exhausted, then the vector for

the next lowest priority is scanned. If there are no transmit requests pending for

this priority level, the scheduler will proceed to the next lowest priority level, and

repeat the scanning process. If there are transmit requests pending for this

priority level, the next eligible transmit request (i.e., the request for the next port

after the last port serviced) is processed and then the priority level is reset to the

top priority.

3.4.3.2 Weighted Priority Scheduling

Process
Frame

Start

Figure 16. Weighted Priority Scheduling Algorithm. WPS acts as a priority
scheduler with credit limits to prevent starvation of lower priority queues.

) Add Weight
to All Credit

Counts
-

v
Priority

 level=^

Increment
Priority Level b

4

Scan Priority
Vector Starting

After Last
Port Used

The Weighted Priority Scheduling mechanism provides the ability to distribute

source data traffic over 4 weighted classes of service and prevent starvation of

lower priority levels, while still maintaining a priority hierarchy.

Weighted Priority Scheduling (WPS) is implemented using a credit

accumulation scheme and weighted priority servicing, requiring a total of three

storage registers (weighting, credit store and credit limit) per priority level and

one adderlsubtracter per channel. For any given egress channel, the scheduler

begins by adding the weighting value to the respective data block credit store for

all priority levels. If sufficient credits are available for the highest priority level to

transmit a maximum sized frame (i.e., the credit store is >= WS-THRESH) then

the transmit pending array (TPA) is scanned for that priority level beginning after

the index of the last source port which was serviced from this priority level. If the

TPA indicates that frame transmission requests are pending, then the first such

request is serviced in source port order, with the credit store being decremented

for each data block requested until the entire data frame has been received.

Additional frame requests at the top priority level are processed so long as the

credit store remains above the threshold level. When all top priority transmit

requests have been exhausted or the credit store has been reduced below the

threshold, the credit store for the next lowest priority level is checked and if its

credit store is above the threshold level, the TPA is scanned. If there are

insufficient credits available or there are no transmit requests pending for this

priority level, the scheduler will proceed to the next lowest priority level, otherwise

the next eligible transmit request (i.e., the request for the next port after the last

port serviced) is processed and the priority level is reset to the top priority.

When all priority levels have either a credit store value below the threshold

level or no transmission requests pending, the scheduler again updates the credit

stores for all priority levels by adding the weighting value to the value remaining

in the data block credit store. The credit store registers saturate at the limit value.

The scheduler then begins again at the highest priority level.

Note that if the limit value is set to the weight value, the scheduler will be

memoryless and will allocate the same share of scheduling requests each time

through the loop as specified by the weighting values. However, if the limit value

is larger than the weight value, then that given priority level may store its unused

bandwidth up to the credit limit and the weight values become time averaged

weightings. (A limit value lower than the weight value is an illegal condition since

it would effectively become the weighting value).

3.4.3.3 Weighted Fair Scheduling

Figure 17. Weighted Fair Scheduling Algorithm. The WFS algorithm is very
similar to the WPS algorithm: the only change is that after processing a
frame, the flow jumps to the credit check instead of resetting the priority to
zero as in WPS.

Start

Add Weight

Y

to All Credit
Counts

Priority
level = 0

Increment
Priority Level b4

4
N

I
Scan Priority

Vector Starting
After Last
Port Used

N

Process
Frame

I

Weighted Fair Scheduling mechanism provides the ability to distribute source

data traffic over n weighted classes of service.

Weighted Fair Scheduling (WFS) is implemented using a credit accumulation

scheme and weighted round-robin servicing, requiring a total of three storage

registers (weighting, credit store and credit limit) per class of service and one

adderlsubtracter per channel. For any given egress channel, the scheduler

begins by adding the weighting value to the respective data block credit store for

all classes of service. If sufficient credits are available for the first class of service

to transmit a maximum sized frame (i.e., the credit store is >= WS-THRESH)

then the transmit pending array is scanned for that class of service beginning

after the index of the last source port which was serviced from this class of

service. If the TPA indicates that frame transmission requests are pending, then

these requests are serviced in source port order, with the credit store being

decremented for each data block requested until the entire data frame has been

received. Additional frame requests in this class of service are processed so long

as the credit store remains above the threshold level. When all transmit requests

have been exhausted or the credit store has been reduced below the threshold,

the next class of service is processed. When all classes of service have been

serviced, the scheduler again updates the credit stores for all classes of service

by adding the weighting value to the value remaining in the data block credit

store. The credit store registers saturate atthe limit value.

Note that if the limit value is set to the weight value, the scheduler will be

memoryless and will allocate the same share of scheduling requests each time

through the loop as specified by the weighting values. However, if the limit value

is larger than the weight value, then bursting is allowed for that given class of

service and the weight values become time averaged weightings. (A limit value

lower than the weight value is an illegal condition since it would effectively

become the weighting value).

The WFS mechanism is a completely fair system which does not assign any

priority to a particular class of service and simply acts as a means of sharing the

available bandwidth for a channel between different class of service without

wasting unused bandwidth the way traffic shapers or other bandwidth reservation

systems may.

3.5 Transmit Frame Reassembly Buffer lnterface (TFRBI)

The Transmit Frame Reassembly Buffer lnterface is responsible for

transferring the payload data from the DB message to the relevant TXCTRL

Frame Reassembly Buffer. Only the payload data is transmitted to the

downstream FIFO. (Note: the TXSTAT field from the DB header is placed on the

TXCTRL interface TXD-STAT pins at the time the payload data is transferred).

The DB message header field is stripped from the data stream by the QADP. The

Frame Reassembly Buffer is configured as eight virtual FlFOs for the 100 Mbps

mode and as a single large pool for reassembling frames from up to ten traffic

streams in the I Gbps mode.

The TFRBI maintains per channellstream counts of the bytes as they are

assembled in the MAC FIFOs. At the end of the complete frame, the TFRBI

writes this information to the Tx Statistics Transaction FIFO.

The TFRBI does not check the status of the TXD-BLK-AVAILiTXD-RDY bus

since these signals are checked by the Q i S before issuing a QF.

3.5.1 Transmit Statistics Collection

The EQM maintains the following transmit statistics for the each destination

MAC address.

Transmit frames total count

Transmit bytes total count

Statistics counts are maintained in external SSRAM. The EQM receives a 16-

bit pointer in each of the Data Block (DB) messages (TXSTAT) to indicate the

index of the particular statistics data structure.

The update of the transmit statistics counters depend on the state of the

transfer of data to the downstream Tx MAC FIFOs, after the last data block has

been transmitted. Note that if TXSTAT=O, then no counters are updated. Note

that the counters do not saturate but will rollover, and that it is the responsibility of

system software to maintain counter integrity.

Each data structure consists of two 32-bit double words (Dwords) and

contains two 32-bit counts. The TXSTAT index is used with the TXST-BASE

offset control register and the particular statistics counter being accessed, and

together form a 22-bit address into external SSRAM. This is illustrated in the

SUM1 description later.

The various counters and their update conditions are illustrated in below:

Table 3. Transmit Statistics.

I Field Bits Description

Transmitted Frame Total

Transmitted Bytes Total

(Running total of bytes
transmitted to the
downstream TxCTRL.)

Update Conditions

Updated at the end of the
last data block if no error
conditions detected.

Updated at the end of the
last data block if no error
conditions detected.

When the last DB for a given frame is transferred, the TFRBl places Transmit

Statistics Update Transaction (TSUT) into the Tx Statistics Transaction FlFO

(TSTF). The format of the TSUT message is as follows:

Bit 31 Bit 0

Figure 18. Transmit Statistics Update Transaction (TSUT) Format. The TSUT
is passed from the TFRBl to the SUM1 after the last byte of a frame has been
passed through.

--

I TXSTAT (1 6) BYTE COUNT (12)

3.6 Transmit Statistics Transaction FlFO (TSTF)

The 32 entry Transmit Statistics Transaction FlFO acts as a buffer between

the TFRBl and the SUMI. The TFRBl may need to capture multiple TSUTs in a

DWord 0

very short period of time. For example, consider the extreme case where a single

byte DB with EOF set for each channel is received back to back. While the SUM1

module can process requests fast enough to keep up with full line rate traffic, it

needs to have bursts of TSUTs buffered so that no requests are lost due to the

SUNl's latency in accessing the MPAC.

3.7 Statistics Updater and MPAC Interface (SUMI)

The Statistics Updater and Memory Port Access Controller Interface

processes the TSUT messages from the TSTF and permits the EQM to access

the transmit statistics structures which are held in an external memory:

The Transmit Statistics Data Structure is stored in external memory as shown

in Figure 21. There may be up to a total of 65,535 data structures. Each structure

contains two 32-bit Dwords, as illustrated in Figure 19. The two Dwords are

running counts of the total frames and total data bytes respectively passed

through the EQM to the downstream transmit frame reassembly buffer.

Bit 31 Bit 0

Figure 19. Transmit Statistics Data Structure. The 2-Dword structure tracks
the total number of frames and bytes transmitted in packets containing the
corresponding TXSTAT field. The statistics reflect a running count, which
must be read frequently enough by an external CPU to prevent the counters
from wrapping without being read.

TX-FRM

TXBYTES

The data structures accessed by the SUM1 and their respective addressing is

DWord 0

DWord 1

illustrated in Figure 20 and Figure 21 respectively. This illustrates the case where

a single 16M-bit SSRAM is used externally.

Bit 23

TXST-BASE (1 2) 1
Bit 0

TXST DWORD (1)

I

Figure 20. SRAM Data Structure Addressing. The TXSTAT value from the
TSUT is used to index into the memory block specified by TXST-BASE.

+ I TXSTAT (16) 00

Bit 31 Bit 0
0x000000

TXSTAT-1

TXSTAT-2

TX Statistics:
64K x 8 bytes
= 51 2K Bytes

TXSTAT-65535

0x400000

Figure 21. Example SSRAM Memory Map with 2 MByte used by EQM. The
unused portions of the memory are used by other blocks in the port
controller for queue structures and statistics.

4 Simulations

4.1 Functional Simulations

The functional simulations for the EQM were performed by selecting the

appropriate Verilog modules in one of two test benches. These entities

control/monitor the EQM 110, and generate output files which can be checked for

correct operation

The first test bench operates in a simple open loop mode, which presents

individual QAs and DBs to the EQM after specified delays. This mode is used for

simple tests, tests which require a specific sequence of operations, and tests for

error conditions.

The second test bench implements source queue generators for each of the

potentially 1024 SPIDIP combinations. This mode reads in a list of frames for

each source with DCID, frame length and earliest transmission time. The source

mimics the behavior of an IQM block, sending QAs when the transmission time is

reached and responding with DBs to each QF. When all of the scheduled frames

for a given source have been transmitted, that source signals that it is finished,

when all sources have finished, the test terminates. While this mode does not

provide output checking, it does provide an automatic check of the EXACT

protocol.

The results of simulations made with the second testbench can be analyzed

using a per1 script, which calculates the average BW percentage allocated to

each priority (or class of service level) over the period in the simulation during

which all streams at all priority levels are active.

4.2 Performance Simulations

A suite of simulations was created to test the performance of the EQM1s WFS

and WPS scheduling modes. All of these tests are run using testbench 2. The

tests were carried out using varying numbers of streams (4 to 32), weights (equal

ratios, arithmetic ratios and geometric ratios), limit-to-weight ratios (2:1, 3:1, 4:1),

and frame sizes (64 byte tinygrams, 1522 byte maxigrams, n"240 byte, and

random) in both 100 Mbps and 1 Gbps modes. A complete list of the specific

simulations executed and results are in Appendix B.

In general the EQM WFS and WPS scheduling modes were able to distribute

bandwidth between the priority (class of service) levels within an error bound of

+I- 2.0% of the total bandwidth. There were a few data points which lie outside

this error bound; however, it was judged that the traffic distribution was accurate

enough for the intended applications.

5 Synthesis

The EQM design was implemented in Verilog HDL code and then

synthesized into a gate level netlist using Synopsys Design Compiler. The total

gate count of the EQM exceeded 70,000 gates, which was a large block design

for the 0.35 micron technology used to implement the port controller ICs.

Theoretically, Design Compiler should have been able to synthesize the entire

EQM design in a single operation. In practice the design proved to be challenging

for the synthesis tool: runs took multiple days to complete and the tool was

unable to meet the timing requirements. Consequently, each sub-module

(including top-level glue) was individually synthesized, then the sub-modules

were assembled in a separate operation (no synthesis) and the overall timing

confirmed.

The hierarchical synthesis approach yielded several benefits. First, each

block was small enough that Design Compiler would complete a synthesis run in

a matter of hours (instead of days). Secondly, the 100 Mbps QF scheduler could

be synthesized once and then instantiated 8 times (rather than being synthesized

8 times in a top level synthesis approach). Finally if the synthesis program had

difficulty meeting timing objectives for any given sub-module, it was easier to

identify where the problem occurred, and make adjustments either to the sub-

module architecture or the individual synthesis script and resynthesizing only the

sub-module and its dependent hierarchy rather than resynthesizing the entire

design.

Hierarchical synthesis did have one problem. Due to the cycle timing

requirements of the design, it was not possible to place registers on the

boundaries of each sub-module. Therefore, time budgeting had to be

accomplished on the outputs and inputs of some sub-module. In particular, this

tended to occur when there was a large multiplexer on the output of a sub-

module feeding into combinatorial logic on the input of another sub-module.

Synthesis could have been made much easier by putting the multiplexer logic into

the target sub-module, leaving the source sub-module with registered outputs.

However, this approach would have created physical routing problems with

hundreds of metal layer traces needing to be routed between blocks.

Consequently, some significant effort was required to balance the timing budget

between the sub-blocks. Synthesizing the EQM as a flat entity would have

removed this issue, but as stated earlier, this approach had even more significant

problems.

6 Design reusability

The EQM was designed with reusability in other IC designs as a priority.

Wherever possible, the Verilog code was parameterized so that that it would be

easy to expand the number of ports. The design was broken into sub-blocks that

could easily be reused to increase the number of ports serviced. Simulation and

synthesis scripts followed the same approach. The TPA memories were

designed as separate sub-modules so that a change could be easily made from

SRAM to register files if the design was re-implemented in a smaller geometry

silicon technology.

The EQM was designed such that all inputs and outputs to the block are

registered. Furthermore, the internal configuration and control registers are all

accessed by a standard PMC-Sierra on-chip bus. These features (used on all

PMC-Sierra IC designs) make reuse of the silicon building blocks in new IC

designs much easier.

7 System performance

The scheduling system did operate as intended on the system level.

However, architectural decisions made in the design of the ingress queue

manager (IQM) block reduced the usefulness of the scheduling algorithms. The

IQM in 8-channel (1 00 Mbps) mode maintains a single queue for each

destination EQM in the system. Therefore, traffic from all 8 input ports is placed

on a single queue for each destination and priority (or class of service) in a first

come first served basis. Consequently, while the EQM served ports using round-

robin fair queuing within a class of service, the merging of traffic from multiple

ports within the IQM reduced the effectiveness of this approach. Creating

queuing structures for each input port would have been prohibitive in terms of the

logic required in the IQM given the restrictions on design size.

The merged queuing issue did not affect SPS and the ability to implement

IEEE 802.1 p. In this case, the incoming packets of the same priority level were

simply queued at the IQM in a first-in-first-out approach, which is an acceptable

means of scheduling this traffic.

8 A Comparison of Fair Queuing Techniques

The EQM's technique of arbitrating traffic is the most technologically

advanced part of the design. The ability to provide higher priority to different

classes of packets is useful to allow time sensitive data (e.g. data required to

dynamically monitor and configure the network, or real-time voice and video

transmission) to jump ahead of less time sensitive data (e.g. e-mail and file

transfers). The IEEE 803.1 p standard establishes a simple two level priority

scheme. Similarly, it may be useful to somehow allocate the available bandwidth

of a port among several sources either equally or with a non-equal weighting.

This feature can be used to prevent a given source from unfairly monopolizing

the port bandwidth. Finally, the two techniques are combined in the WPS

scheduling method, which gives a given class of service priority until it exceeds

its maximum allocated bandwidth, which prevents the starvation of lower priority

queues.

In the consideration of the EQM's scheduling algorithms, it is worthwhile to

note that the goal was not to produce a traffic policer, which would restrict the

bandwidth of a given source (either class of service or individual source ports).

The goal was to use all of the available bandwidth, but to provide flexibility in

allocating access to the available bandwidth by competing sources.

Previous techniques of implementing fair queuing algorithms described in the

literature, while not specific in implementation, were generally more suitable for

processor/software based designs. While these designs could have been

implemented directly in an integrated circuit, the cost in terms of silicon area

would be prohibitive. It should also be noted that focus on queuing algorithms in

the literature is generally based on allocating bandwidth between individual

packet sources. The focus for the EQM is allocating bandwidth on the basis of

four priority levels or classes of service, regardless of the source of the packets.

Indeed, within a given class of service, the EQM serves all packets on a round-

robin basis, which is the most basic form of fair queuing. (As mentioned in

section 7, the performance of the queuing system is compromised by the

effecting merging of 8 input ports into a single traffic source for a given class of

service by the IQM architecture). The more advanced queuing algorithms are

applied at the class of service level, allowing for paramaterizable bandwidth

distribution between service classes.

Nagle first proposed a fair queuing algorithm for datagram networks in 1987

[6]. Prior implementations used a single queue into which all packets were placed

on a first come first served basis. Nagle's approach was to maintain separate

queues for each packet source and then service these queues in a simple round

robin fashion. If each source presented enough traffic to prevent its queue from

emptying, then each source will have an equal number of packets serviced by

the queuing device (a switch, router, or other gateway device). Nagle's approach

failed to make any provision for packet length; therefore, while quite suitable for

fixed packet networks, such as ATM, it would not provide "fair" results for variable

length packet networks such as Ethernet or IP switches.

The EQM uses Nagle's fair queuing approach within a given class of service.

Within a service class, source (IQM) queues are sewed on a round robin basis.

Demars, Keshav and Shenker's article from 1990 [4] extends Nagle's

approach by taking into account the time to transmit each packet as well as the

packet arrival time. This algorithm does a good job of fairly allocating bandwidth,

as opposed to packet transmission, but requires significant computation to

implement. Demars et. al. also suggest that their fair queuing algorithm can be

enhanced by allowing "arbitrary bandwidth priorities" to be assigned to given

sources, which has become know as weighted fair queuing.

49

Credit Based Fair Queuing was introduced by Bensaou, Chan and Tsang [7]

in 1997 as a practical implementation of weighted fair queuing. CBFQ sorts the

queues using the following metric and services the queue lowest value:

packet - size - credits

bandwidth - share

This approach reduces the complexity of earlier implementations, which

relied on virtual clocks; however, it still requires two computations including a

division operation. The weighted fair scheduling technique implemented in the

EQM disregards packet size when making the determination of which packet to

send next. The bandwidth share is taken into account by varying the number of

credits granted to a queue (in the EQM's case, a class of service) each service

round.

During each service round, new credits are added to the credit accumulation

for each class of service subject to a programmable upper credit limit. Then

packets within a given the first class of service are served, with a single credit

being deducted for each EXACT data block message (up to 240 bytes) received.

The class of service category is sewed with input ports selected in a round robin

fashion until the credits are exhausted or the queue is empty. Service then

proceeds to the next class of service queue. This is continued until all queues

have been served, then a new service round begins and new credits are granted.

This approach yields burstier results than does CBFQ, and the credit resolution is

grainier, but the implementation is simple enough to be realized in silicon and the

results (see appendix) were within acceptable error bounds.

9 Conclusions

The Egress Queue Manager was successfully used in two Ethernet port

controller chip designs. The EQM allowed for IEEE 802.1 p priority queuing

operations as well as providing two weighted fair queuing modes achieved in a

small hardware based design with low request (QA) to grant (QF) latency. While

the overall system level queuing performance was compromised by architectural

choices in the upstream ingress queue manager, the scheduling logic used in the

EQM could be successfully used in other implementations. The scheduling

design of the EQM was considered novel enough, that PMC-Sierra submitted a

patent application for the design.

Appendix A: EQM Normal Register Descriptions

The EQM contains two register sets selectable by the Test Resister Select

(TRSB) pin. When TRSB = 0, test registers may be accessed through the CRI

bus. When TRSB = 1, normal mode registers may be accessed through the CRI

bus.

The normal mode registers contain operation and configuration controls as

well as device status indications. In most applications, the configurations

registers will be programmed only at start-up or after a major mode change.

Some applications may require dynamic provisioning of the parameters for the

weighted scheduling modes, but otherwise no interaction with the register set

should be required on a regular basis while operating.

After a reset, the register bits will assume the default values listed in each

register description. An " X in the default value listing indicates that there is no

default value for the given bit. When writing to unused bits, the default value

should always be written in order to avoid problems should a future version of the

EQM assign a function to a currently unused bit location.

Table

Bit TY pe Function Default

Bit 15 R IRDY 1

Bit 14 R Unused 0

Bit 13 R Unused 0

Bit 12 R Unused 0

Bit 11 R Unused 0

Bit 10 R Unused 0

Bit9 1 R I Unused I 0

Bit8 1 R I Unused I 0

Bit 7 R Unused 0
I I I

Bit6 1 R 1 Unused I 0

Bit5 1 R I Unused I 0

Bit 4 RAN REGSELL41 0

Bit 3 RAN REGSEL[3] 0

Bit 2 RAN REGSEL[2] 0

Bit 1 RIW REGSEL[I] 0

Bit 0 RAN REGSEL[O] 0

IRDY

The indirect ready register bit indicates that the lndirect Data register is ready to
be read and that any write operations to indirect registers have been completed.

The register select bits allow the external CPU to access the indirect registers.
Any data written to or read from lndirect Data register (address 0x1) will be
tolfrom the indirect register addressed by the value of REGSEL[4:0].

Table A. 2. Reaister 0x01 : lndirect Data.

I Bit I Type I Function I Default

Bit 15

Bit 14

I ~ i t 1 2 1 RAN I DATA[12] I 0

Bit 13

RAN

RAN

RAN

Bit 10

Bit 9

DATA[I 51

DATA[I 41

Bit 8

Bit 7

Bit 3 DATA[3]

Bit 2 DATA[2]

Bit 1 RAN DATA[I]

0

0

DATA[I 31

RAN

RIW

Bit 5

Bit 4

0

RIW

RAN

Any data written to or read from this register will be tolfrom the indirect register
addressed by the value of REGSEL[4:0] contained in the lndirect Register Select
register (address 0x0).

DATA[I 0]

DATA[9]

RIW

RAN

Bit 0

0

0

DATA[8]

DATA[7]

0

0

DATA[5]

DATA[4]

DATA[I 501:

RIW

0

0

DATA[O] 0

Table A. 3. Reaister 0x02: lnterru~t and General Status.

Bit 15

Bit 14

I ~ i t 1 1 I R I Unused 1 0 I

Bit 13

Bit 12

I ~ i t 1 0 1 R I Unused I 0 1

R

R

/ B i t 9 1 R I Unused 1 0 I

R

R

HALTED

FROZEN

0

0

GMODE

Unused

Bit 8

Bit 7

IB i t3 / R I DBQA SEQE 1 0 I

X

0

Bit 5

Bit 4

I B i t l I R I MTYPE I 0 I

R

R

IBitO / R I TSTAT OVRE 1 0 1

R

R

HALTED:

Unused

DBRCV-FIFO-OVRE

This bit indicates that the EQM has responded to an assertion of the HALT input
and that all EQM state machines have entered the HALTED state. HALTED is
cleared on the rising edge of SYSCLK after HALT is deasserted.

0

0

TPA-UNDE

DBQF-SEQE

FROZEN:

0

0

This bit indicates that the EQM has frozen in response to a fatal error condition.
(Note: see FRZ-ON-ERROR bit in the General Control Register).

GMODE:

This bit reflects the status of the GMODE input pin.

DBRCV-FIFO-OVRE:

This error status bit indicates that the DBRCV FIFO has causing the Queue Fetch
Scheduler to loose a DB. The interrupt is cleared by reading this register, but the
EQM must be reset to clear the error condition.

This bit indicates that a TPA Overflow error (QA received while the TPA count for
that SPIDIP combination is 15) has occurred in 1 Gbps mode. Cleared by reading
the lllegal Source Destination ID Register.

This bit indicates that a TPA Underflow error (DB received while the TPA count for
that SPIDIP combination is 0) has occurred in 1 Gbps mode. Cleared by reading
the Illegal Source Destination ID Register

This bit indicates that a DB-QA sequence error (DB received without first sending
a QF) has occurred in I00 Mbps mode. Cleared by reading the Illegal Source
Destination ID Register.

This bit indicates that a DB-QA sequence error (DB received without first
receiving a QA) has occurred in 100 Mbps mode. Cleared by reading the Illegal
Source Destination ID Register.

This bit indicates that a QA sequence error (QA received while the corresponding
TPA bit is already set) has occurred in 100 Mbps mode. Cleared by reading the
lllegal Source Destination ID Register.

MTYPE:

This error status bit indicates that a unknown or illegal message type (anything
other than a QA or DB message) has been received. Cleared by reading the
Illegal Message Type Register.

TSTAT-OVRE:

This error status bit indicates that the TSTAT FIFO has overflowed and some
statistics have been lost. Cleared by reading this register.

Table A. 4. Register 0x03: General Control.
I I I I

Bit

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Type

RNV

RAN

R

R

Bit 6

Bit 5

Bit 4

R

R

R

R

R

Bit 3

Bit 2

FRZ-ON-ERROR:

Function

FRZ-ON-ERROR

IN IT-AFTER-HALT

Unused

Unused

R

R

R

Bit I

Bit 0

When FRZ-ON-ERROR is set, the EQM will freeze after detecting a sequence
error; when clear the EQM will merely ignore the out of sequence message.
FRZ-ON-ERROR should be left in its default enabled state except for firmware
debugging purposes.

Default

1

1

X

X

Unused

Unused

Unused

Unused

Unused

R

R

IN IT-AFTER-HALT

X

X

X

X

X

Unused

Unused

Unused

RNV

RIW

When INIT-AFTER-HALT is set, the QFRP reinitialize the credit counts in the
stream table. This bit should always be left set during the initial set up of the
EQM. However, if the EQM is stopped during operation, this bit should be cleared
before deasserting the HALT signal, in order to avoid destroying the data in the
stream table.

X

X

X

Unused

Unused

Determines the mode of operation for the Queue Fetch Scheduler.

X

X

SCHMODE[l]

SCHMODE[O]

0

0

Table A. 5. Scheduling Mode Control Bits.
I I I 1
SCHMODE

00

0 I

Mode

10

11

Description

none

SPS

QFS Disabled

Strict Priority Scheduling

W FS

WPS

Weighted Fair Scheduling

Weighted Priority Scheduling

I ~ i t 1 0 1 R I Unused 1 0 1

Table A. 6. Indirect Register 0x00: Interrupt Enable.

Bit

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 9

Bit 8

Function

Unused

Unused

Unused

Unused

Unused

TY pe

R

R

R

R

R

Bit 7

Default

0

0

0

0

0

R

R

Bit 5

I ~ i t 3 1 RNV I DBQA-SEQE-INT-EN 1 0 1

I I I

R/W

Bit 4 I RNV I DBQF-SEQE-INT-EN

Unused

Unused

t I I

RNV

0

I Bit 0 I RNV I TSTAT-OVRE-INT-EN I 0 I

0

0

DBRCV-FIFO-OVRE-INT-EN

Bit 2

Bit 1

All bits: 0 = disabled, 1 = enabled

0

TPA-UNDE-INT-EN

DBRCV-FIFO-OVRE-INT-EN:

This bit enables the BDRCV FIFO Overflow error interrupt.

0

R/W

RAN

TPA-OVRE-INT-EN:

This bit enables the TPA Overflow error interrupt.

TPA-UNDE-INT-EN:

This bit enables the TPA Underflow error interrupt.

QA-SEQE-INT-EN

MTYPE-INT-EN

DBQF-SEQE-INT-EN:

This bit enables the DB-QF sequence error interrupt.

0

0

DBQA-SEQE-INT-EN:

This bit enables the DB-QA sequence error interrupt.

QA-SEQE-INT-EN:

This bit enables the QA sequence error interrupt.

MTYPE-INT-EN:

This bit enables the illegal message type error interrupt.

TSTAT-OVRE-INT-EN:

This bit enables the TSTAT FIFO overflow interrupt.

Bit14 1 R I Unused I 0

Bit

Bit 15

Bit13 1 R I Unused I 0

Bit12 1 R I Unused I 0

TY pe

R

Bit 11 1 RAN I TXST-BASE[11] I 0

Function

Unused

Table A. 7. Indirect Register OxQ1: Base Address Offset 1,
I I I

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Default

0

Bit 10

Bit 9

Bit 7 RAN I TXST_BASE[7] I 0

RAN

RAN

Bit 4 1 RAN I TXST_BASE[4] I 0

Bit 5

Bit3 1 RAN I TXST_BASE[3] I 0

TXST-BASE[l 0]

TXST-BASE[9]

0

0

I I I

RAN

Bit 0 I RAN I TXST-BASELO] I 0

Bit 2

Bit 1

The TXST-BASE sets the base address of the Transmit Statistics Array stored in
external SSRAM.

TXST-BAS E [5]

The 22-bit DWord address is calculated as follows:

0

RAN

RAN

address = {TXST-BASE[11 :O], 0000000000)
+ {00000,TXSTAT[I 5:0], TXST-Dword)

TXST-BAS E [2]

TXST-BAS E [I]

0

0

Table A. 8. Indirect Register 0x02: Illegal SourceIDestination Field.
I I I I
IB i t I Type Function I Default

Bit 15

Bit 13 R DCID[3] 0
I I I

Bit 10

Bit 8

I Bit 6 1 R

Bit 5

Bit 4

I Bit 0 I R

Bit 2

Bit 1

The SPlD field reports the SPlD field of a QA or DB message received out of
sequence.

R

R

DCID[5:0]:

The DClD field reports the DClD field of a QA or DB message received out of
sequence.

R

R

SPID[5]

SPID[4]

0

0

SPID[2]

SPID[l]

0

0

Table eld.

Bit TY pe Function Default

Bit 15 R Unused 0

Bit 14 R Unused 0

Bit 13 R Unused 0

Bit 12 R Unused 0

Bit 11 R Unused 0

Bit 10 1 R I Unused I 0

Bit9 1 R I Unused 1 0

Bit8 1 R I Unused I 0

Bit7 1 R I Unused I 0

Bit6 1 R I Unused I 0

Bit5 1 R I Unused I 0

Bit 4 R Unused 0

Bit 3 R TYPE[3] 0

Bit 2 1 R I TYPE121 I 0

Bit I R TYPE[l] 0

The TYPE field reports the TYPE field of an unrecognized message received by
the QADBP.

Bit I Type I Function I Default

Bit10 1 R I Unused I 0

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 9 1 R I Unused I 0

Table A. 10. Indirect Register 0x04: Global Maximum QF 0
I I I

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

R

R

R

R

R

--

Bit3 1 RNV I GMAX_QF[3] I I

Unused

Unused

Unused

Unused

Unused

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

0

0

0

0

0

Bit1 I RNV I G M A X - Q F [I] I 1

R

RIW

RNV

R N

RNV

Bit 2

Bit0 I RNV I GMAX-QF[O] I 0

RNV I GMAX-QF[2] I 0

The GMAX-QF field controls the maximum number of QFs that the QFS may
issue across all traffic streams in 1 Gbps mode. A nominal value of 10 is
recommended, although the value may be set as high as the maximum number
of memory blocks in the TXCTRL Frame Reassembly Buffer (i.e., 70 for block
size of 120 bytes, 140 for block size of 240 bytes). Setting GMAX-QF larger than
the number of blocks in the TXCTRL FRB will not permit more QFs to be issued;
however, it may impair the scheduling algorithm.

Unused

G M A X Q F[7]

G MAX-QF[6]

G M AX-Q F [5]

G MAX_QF[4]

This setting has no effect in 100 Mbps mode.

0

0

0

0

0

Table A. 11. Indirect Register 0x05: Maximum QF Outstanding per Stream.
r I I

I Bit 2 1 RNV I SMAX_QF[2] I 0 I

SMAX_QF[7:O]:

The SMAX-QF field controls the maximum number of QFs that the QFS may
issue for any given traffic stream in 1 Gbps mode. This setting has no effect in
100 Mbps mode. A nominal value of 10 is recommended.

Bit 1

Bit 0

RNV

RNV

SMAX-QF[1]

S MAX-Q F[O]

1

0

Table A. 12. Indirect Register 0x06, 0x09, OxOC, OxOF: Channel Weighted
Schec

Bit 15 1 R I Unused I 0

ding (0-3) Limit.

Bit14 1 R I Unused I 0

Bit

Bit13 1 R I Unused I 0

Type

Bit8 1 R I Unused I 0

Bit 12

Bit 11

Bit 10

Bit 9

Function Default

R

R

R

R

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 0 1 RMI I WSn-LIMIT[O] 1 0

Bit 2

Bit 1

The WSn-LIMIT sets the limit value for the channel Weighted Scheduling Credit
Store. There are four WS limit control registers (one for each class of service) for
each channel. In 1 Gbps mode, only channel 0 is used.

Unused

Unused

Unused

Unused

RMI

RMI

RMI

RMI

RAN

Note that there is one set of weighted scheduling control registers per channel
and the set is selected by the CHAN_SEL[2:0] pins.

0

0

0

0

RAN

RMI

WSn_LIMIT[7]

WSn_LIMIT[6]

WSn_LIMIT[5]

WSn_LIMIT[4]

WSn_LIMIT[3]

0

0

0

0

0

WSn_LIMIT[2]

WSn_LIMIT[l]

0

0

Table A. 13. Indirect Register 0x07, OxOA, OxOD, 0x1 0: Channel Weighted
Schec

B i t 1 4 R I Unused 1 0

uling (0-3) weight.

Bit13 1 R I Unused 1 0

Bit

Bit 15

B i t 1 2 1 R I Unused 1 0

Type

R

Bit9 1 R I Unused 1 0

Bit 11

Bit 10

Bit 8 1 R I Unused 1 0

Function

Unused

Default

0

R

R

Bit 6 1 R/W I WSn-WEIGHT[6] I 0

Bit 7

Bit 5 1 RNV I WSn_WEIGHT[5] I 0

Unused

Unused

0

0

I I I

RIW

Bit 3 1 R/W I WSn_WEIGHT[3] I 0

Bit 4 I R N 1 WSn-WEIGHT[4]

Bit 2 1 RNV I WSn-WEIGHT[2] 1 0

WSn_WEIGHT[7]

0

0

1 I I

The WSn-WEIGHT sets the weight value for the channel weighted scheduling
counters. There are four WS weight control registers (one for each class of
service) for each channel. In 1 Gbps mode, only channel 0 is used.

Bit 1

Bit 0

Note that there is one set of weighted scheduling control registers per channel
and the set is selected by the CHAN_SEL[2:0] pins.

RNV

RAN

WSn-WEIGHT[l]

WSn_WEIGHT[O]

0

0

Table A. 14. Indirect Register 0x08, OxOB, OxOE, 0x11: Channel Weighted
Scheduling (0-3) Credit Store.

I I I I I
Bit

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Type

R

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

I Bit 3 1 R I WSn_CREDITS[3] I 0 I

R

R

R

R

R

Bit 4

I Bit 2 1 R 1 WSn_CREDITS[2] I 0 I

Function

Unused

R

R

R

R

R

Default

0

Unused

Unused

Unused

Unused

Unused

I I I 1 R

The WSn-CREDITS contains the running count value for the channel weighted
scheduling counters.

0

0

0

0

0

Unused

Unused

WSn_CREDITS[7]

WSn-CREDITS[6]

WSn_CREDITS[5]

Bit 1

Bit 0

There are four WS Credit Store status registers (one for each class of service) for
each channel. In 1 Gbps mode, only channel 0 is used.

0

0

0

0

0

WSn_CREDITS[4]

Note that there is one set of weighted scheduling control registers per channel
and the set is selected by the CHAN_SEL[2:0] pins.

0

R

R

WSn-CREDITS[l]

WSn-CREDITS[O]

0

0

Table hreshold.

Bit TY pe Function Default

Bit 15 R Unused 0

Bit 14 R Unused 0

Bit 13 R Unused 0

Bit 12 R Unused 0

I ~ i t 1 1 I R I Unused I 0

IBi t10 1 R I Unused 1 0

I I I

Bit 8 R Unused 0

IB i t7 1 R I Unused I 0

Bit 6 R Unused 0

Bit 5 RNV WSlHRESH[5] 0

Bit 4 RNV WSIHRESH[4] 0

Bit 3 RAN WSIHRESH[3] 0

I Bit2 1 RNV I WS_THRESH[2] I 1

Bit 1 RNV I WS-THRESH[l] I 1

I Bit0 I RNV I WS-THRESH[O] I 1

The WSJHRESH contains the number of DB payloads required to assemble a
maximum sized Ethernet frame. Divide 1518 (1 522 if tag insertion is in use) by
the DB maximum payload size and round up to the next integer value to
determine WS-THRESH (see Table 9 for examples).

Table A. 16. Weighted Scheduling Threshold Values.

DB Maximum Payload Size WS-THRESH

Bit

Bit 15

Bit 14

I ~ i t 1 1 I R 1 Unused 1 0

Bit 13

Bit 12

I ~ i t 1 0 1 R I Unused 1 0

TY pe

R

R

IB i t9 1 R I Unused 1 0

R

R

Function

TPA-DONE

Unused

Default

0

0

Unused

Unused

Bit 8

Bit 7

Table A. 17. Indirect Register 0x20: TPA Diagnostic RAM Control
I I I I

0

0

Register.

R

RAN

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Writing to the TPA Diagnostic RAM Control register will trigger a read of the
indicated TPA RAM. The RAM data will be latched into the TPA Diagnostic Data
registers and the TPA-DONE bit asserted after 4 clock cycles.

Unused

TPA-RAM-NU M[2]

RAN

RAN

Bit 1

Bit 0

TPA-RAM-DONE:

0

0

RAN

RAN

RAN

TPA-DONE indicates that the TPA RAM read has been completed. TPA-DONE
is cleared by reading the TPA Diagnostic Data High Register.

TPA-RAM-NUM[l]

TPA-RAM-NUM[O]

RAN

RAN

TPA-RAM-NU M[4:0]:

TPA-RAM-NUM contains the TPA RAM number (0-7) for diagnostic address. In
100 Mbps mode, the RAM number corresponds to the channel number. In 1
Gbps mode, RAM 0 contains the LSB and RAM 3 the MSB of the 4-bit TPA value.

0

0

TPA-ADDR [4]

TPA-ADDR [3]

TPA-ADDR [2]

TPA_ADDR[4:0]:

TPA-ADDR contains the TPA RAM address for diagnostic address.

0

0

0

TPA-ADDR [I]

TPA-AD D R[O]

0

0

Table A. 18. Indirect Register 0x21 : TPA Diagnostic Data High Register.

Bit

Bit 13

Bit 12

Bit 11

Bit 10

I Bit 8 1 R I TPA_DATA[24] I 0 I

TY pe

R

R

Bit 9

R

R

Function

TPA_DATA[29]

TPA_DATA[28]

I I I

R

Bit 6

Bit 5

Default

0

0

TPA_DATA[27]

TPA_DATA[26]

Bit 3

Bit 2

TPA_DATA[3 1 : 1 61:

TPA-DATA contains the most significant word of data latched from the TPA RAM
during a diagnostic access. The access is triggered by writing to the TPA
Diagnostic RAM Control register.

0

0

TPA_DATA[2 51

R

R

Bit 0

0

R

R

TPA_DATA[22]

TPA_DATA[2 1]

R / TPA- DATA [I 61

0

0

TPA- DATA [I 91

TPA- DATA [I 81

0

0

0

Table A. 19. Indirect Register 0x22: TPA Diagnostic Data Lou
I I I I

Function I Default

Bit 15

Bit 14

1 Bit 10 I R I TPA-DATA[lO] I 0

Bit 13

Bit 12

R

R

R

R

Bit 8

Bit 7

TPA-DATA[1 51

TPA_DATA[14]

Bit 5

Bit 4

0

0

TPA_DATA[13]

TPA_DATA[12]

R

R

Bit 3

Bit 2

Register.

0

0

R

R

Bit 0

TPA-DATA contains the least significant word of data latched from the TPA RAM
during a diagnostic access. The access is triggered by writing to the TPA
Diagnostic RAM Control register.

TPA-DATA[%]

TPA_DATA[7]

R

R

0

0

T PA_DATA[5]

TPA_DATA[4]

R

0

0

TPA- DATA [3]

TPA- DATA [2]

0

0

TPA- DATA [0] 0

Table 4.20. Indirect Register 0x23: QFS Stream Table Index Register.
I I I

Bit

Bit 15

Bit 14

Bit 13

Bit10 1 R I Unused

Type

R

Bit 12

Bit 11

Bit 9 1 R I Unused

R

R

Bit8 1 R I Unused

Function

Unused

R

R

Default

0

Unused

Unused

Bit 5 1 R I Unused

0

0

Unused

Unused

Bit 7

Bit 6

0

0

R

R

Bit 4

Bit 3

Bit 0 I RNV I DIAG-ST-I[O] 0

Bit 2

Bit 1

DIAG-ST-IN DEX[15:0]:

Unused

Unused

R

RIW

DIAG-ST-INDEX controls which stream table entry (0 through 9) table will be
available in registers 0x24 and 0x25. Caution: writing this register doesnot latch
the stream table data, it merely controls a multiplexer on the output of the table.
Therefore subsequent reads of registers 0x24 and 0x25 may differ.

0

0

RNV

RNV

Note: This register is specific to the 1 Gbps mode of operation

Unused

D IAG-ST-I N DEX [3]

0

0

DIAG-ST-IN DEX [2]

DIAG-ST-INDEX [I]

0

0

Function I Default

Bit 15

Bit 14

IBit12 1 R I Unused 0

Bit 13 1 R

I ~ i t 1 1 I R I Unused 1 0

R

R

I I I

Unused

Unused

Unused

0

Bit 10

Bit 9

Table A. 21, Indirect Register 0x24: QFS Stream Table SPIDIP RE
I I I I

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

0

0

.

R

R

Bit 8

I Bit 6 1 R 1 DIAG-ST- SPID[6] I 0

Bit 7

DIAG-ST-ACTIVE

D IAG-ST-P[1]

I I I

R

0

0

R

Bit 5

Bit 4

DIAG-ST-P[O]

Bit 3

Bit 2

tgister.

0

DIAG-ST-SPID[7]

R

R

Bit 0

DIAG-ST-ACTIVE :

0

R

R

DIAG-ST-ACTIVE indicates if the specified stream is active (1) or inactive (0).

DIAG-ST- SPID[5]

DIAG-ST- SPI D[4]

R

DIAG-ST-P [I :O]:

DIAG-ST-P contains the priority level assigned to the stream specified in the
Diagnostic Stream Table lndex Register.

0

0

D IAG-ST-SPI D[3]

DIAG-ST- SPID[2]

DIAG-ST-SPID [7:0]:

DIAG-ST-P contains the source port ID assigned to the stream specified in the
Diagnostic Stream Table lndex Register.

0

0

DIAG-ST- SPID[O] 0

Table

Bit 1 Type I Function I Default

Bit15 1 R I Unused 1 0

Bit 14 1 R I Unused 1 0

Bit13 1 R I Unused 1 0

Bit 12 R Unused 0

Bit 11 R ST_CREDITS[3] 0

Bit 10 I R I ST_CREDITS[2] I 0

Bit 8 1 R I ST-CREDITS[O] I 0

Bit 7 R QF_PENDING[3] 0

Bit 6 R QF_PENDING[2] 0

Bit 5 1 R I QF-PENDING[l] 1 0

Bit 2 R QF-OUTSTANDING[2] 0

Bit 1 R QF-OUTSTANDING[l] 0

ST-CREDITS indicates the number of DB scheduling credits resewed for the
stream specified in the Diagnostic Stream Table lndex Register.

QF-PENDING indicates the number of QF requests accepted from the TPA
Scanner but which have not yet been transmitted for the stream specified in the
Diagnostic Stream Table lndex Register.

QF_OUTSTANDING[3:0]:

QF-OUTSTANDING indicates the number of QFs which have been transmitted,
but for which a DB with EOF set has not been returned for the stream specified in
the Diagnostic Stream Table lndex Register.

Table A. 23. Indirect Register 0x26: QFS Channel Select Register.
I I I I

Bit

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

TY pe

R

R

R

R

Bit 9

Bit 8

R

R

Bit 7

Bit 6

Bit 5

Function

Unused

Unused

Unused

Unused

R

R

Bit 4

Bit 3

Default

0

0

0

0

Unused

Unused

R

R

R

Bit 2

IBitO I RAN I DIAG-CHAN_SEL[O] I 0 I

0

0

Unused

Unused

R

R

Bit 1

DIAG-CHAN-SEL controls which 100 Mbps (0 through 7) channel's state
information will be available in The diagnostic channel state register. Note: This
register is specific to the 100 Mbps mode of operation.

0

0

Unused

Unused

Unused

RAN

0

0 -
0

Unused

Unused

RAN

0

0

DIAG-CHAN_SEL[2] 0

DIAG-CHAN-SEL[l] 0

Table A. 24. Indirect Register 0x27: QFS Channel Status Register.
I I I I I

Bit

Bit 15

Bit 14

Bit 13

Bit 12

DIAG-SCAN-STATE indicates the internal state of the TPA Scanner. This value
can be used to determine if the TPA Scanner has become locked up due to a lost
or corrupted message. If this register is read twice and the value changes, the
state machine is not locked up. A consistent value of OxC means the scanner is
waiting for access to the EX1 bus. A consistent value of OxD indicates the scanner
has sent a QF and is now waiting for a DB in return. A consistent value of OxF
means the state machine is halted due to an assertion of the HALT input. The
state machine can not hold in other states. Note: This register is specific to the
100 Mbps mode of operation.

TY pe

R

R

Bit 1

Bit 0

DIAG-QF-P [I :0]:

R

R

DIAG-QF-P contains the priority level of the last QF sent for this channel.

Function

Unused

Unused

R

R

DIAG-QF-SPID [7:0]:

DIAG-QF-SPID contains the source port ID of the last QF sent for this channel.

Default

0

0

D IAG-SCAN_STATE[3]

DIAG-SCAN_STATE[2]

0

0

DIAG-QF-SPID[l]

D IAG-Q F-S P I D [0]

0

0

Table A. 25. Indirect Register 0x28: QFS TXD-BLK-AVAIL Register.
I I

Bit

Bit 15

Bit 14

Bit 13

Bit 12

IB i t9 1 R I Unused

Type

R

R

Bit 11

Bit 10

R

R

Function

Unused

Unused

R

R

Bit 8

Bit 7

Default

0

0

Unused

Unused

Bit 6

Bit 5

0

0

Unused

Unused

R

R

Bit 4

I Bit 2 1 R I TXD-BLK-AVAIL[P] I 0 I

0

0

R

R

Bit 3

Unused

TXD-BLK-AVAI L[7]

R

TXD-BLK-AVAIL[7:O]:

TXD-BLK-AVAIL indicates the state of the TXD-BLK-AVAIL input to the EQM. In
1 Gbps mode, TXD-BLK-AVAIL indicates the number of free buffers in the
downstream frame reassembly buffer. In I00 Mbps mode, each bit of
TXD-BLK-AVAIL acts as a flow control bit for the corresponding channel; i.e.,
TXD-BLK-AVAIL[n] = 1 indicates that the downstream frame reassembly FIFO is
ready to accept further DBs from channel n.

0

0

TXD-B LK-AVAI L [GI

TXD-B L K-AVAI L[5]

R

Bit 1

Bit 0

0

0

TXD-B LK-AVAI L[4] 0

TXD-B LK-AVAI L [3]

R

R

0

TXD-BLK-AVAIL[l]

TXD-B LK-AVAI L [0]

0

0

Appendix 6: EQM Test Register Descriptions

Test mode registers are used to apply test vectors during production testing

of the EQM. Test mode registers (as opposed to normal mode registers) are

selected when TRSB = 0. The two supported test modes are logic scan and RAM

Built In Self Test (BIST) scan.

Writing values into unused register bits has no effect. Reading unused bits

can produce either a logic 1 or a logic 0; therefore, unused register bits should be

masked off by software when read.

Writeable test mode register bits are not initialized upon reset unless

otherwise noted.

Test registers are write only; consequently, the value written cannot be read

back. The value returned on CRRDATA[I 5:O] depends only on the mode

selected (SCAN or BIST) not on the address used.

Table 1. Test Register I: Test Mode Select.

Bit 14 1 W I Unused I X

Bit

Bit 15

Bit 13 1 W I Unused I X

Bit12 1 W I Unused I X

Type

W

Bit 11 I W I Unused I X

Bit10 1 W I Unused I X

Function

GMODEJEST

Bit 9 1 W 1 Unused 1 X

Default

X

Bit 8

Bit 7

Bit2 1 W I Unused I X

Bit 6

Bit 5

Bit 4

Bit 3

W

W

GMODE-TEST

W

W

W

W

Bit 1

Bit 0

Allows control of the static GMODE input for test purposes. When TSTB=I, the
GMODE-TEST register output is multiplexed onto the internal GMODE signal,
replacing the external GMODE signal

Unused

Unused

TMS [I :0]:

X

X

Unused

Unused

Unused

Unused

W

W

Test mode select: Select one of 4 test modes as shown in the table below:

X

X

X

X

TMS[l]

TMS[O]

X

X

Table 6.2. Test Modes.

0

0

I I I I TM3 1 Unused I Ox0000

TMS[l]

1

Mode TMS[O]

0

1

0

Description

TMO

TMI

CRRDATA

TM2

Unused

Core logic (SCAN)

Ox0000

SCANOUT[I 5:0]

RAM (BIST) BISTOUT[I 5:0]

B.l Test Mode 1: Full scan test logic

REGISTER DESCRIPTION:

Table B. 3. Test Register 0x00: Test Enable.
I I I I I Bit I Type I Function I Default

l ~ i t 1 5 1 W I Unused 1 X

I Bit 12 (W I Unused I X

Bit 14

Bit 13

W

W

Bit 11

Bit 10

Bit 7 Unused

Bit 6 Unused

Bit 5 Unused

Bit 9

Bit 8

Unused

Unused

W

W

b2 I W I Unused I X

X

X

W

W

Bit 4

Bit 3

Unused

Unused

SCAN-EN:

Enable shifting of the scan registers.

X

X

Unused

Unused

W

W

Bit 1

Bit 0

X

X

Unused

Unused

W

W

X

X

Unused

SCAN-EN

X

X

Table B. 4. Test Register 0x02: Scan Test Data Input.
I I I I I

Bit 4 1 W 1 SCAN-IN [4] 1 X I
Bit 5

SCAN-IN[? 5:0]:

Scan chain input data.

I I I

W

Bit 2

Bit 1

SCAN-IN [5]

W

W

X

SCAN-IN [2]

SCAN-IN [I]

X

X

Table

Scan chain output data. The logic scan test is carried out by initializing the test
mode appropriately (the using test mode select register) and then repetitively
writing a scan pattern into test register 2, pulsing SYSCLK to advance the scan
chains and then reading the resulting scan pattern out of test register 2. Since
SYSCLK is used to clock the scan chains (as in normal logic operation), CRTCLK
is used to clock the test register logic.

B.2 Test Mode 2: RAM BIST

Table 1.6. Test Register 0x00: Test Enable.
I I I

Bit I Type I Write Function I Read Function

Bit14 1 W I Unused I X

I I I

Bit 13 1 W I Unused I X

Bit15 1 W

Bit12 1 W I Unused I X

Bit11 I W I Unused I X

Unused

Bit 10 1 W I Unused I X

X

Bit9 1 W I Unused I X

Bit8 1 W I Unused 1 X
--

Bit 7 1 W I Unused I X

Bit6 1 W I Unused I X

Bit5 1 W I Unused I X

Bit4 1 W I Unused I X

Bit3 1 W I Unused I X

Bit2 1 W I Unused I X

Bit1 I W I Unused I X

BIST-EN:

Enable the internal RAM BIST.

Bit 0 W BIST-EN X

Table

Bit (Type I Function I Default

Bit 15 W Unused X

Bit 14 W Unused X

Bit 13 1 W I Unused I X

Bit 12 1 W I Unused I X

Bit11 I W I Unused I X

Bit10 1 W I Unused I X

Bit 9 1 W I Unused I X

Bit 8 W Unused X

Bit 7 W B IST_DATA[7] X

Bit 5 W B IST-DATA[5] X

Bit 4 W BIST_DATA[4] X

Bit 3 W B IST_DATA[3] X
I I I

Bit 0 W B IST-DATA[O] X

BIST_DATA[7:0]:

Seed data for the BlST sequence.

Table B. 8. BlST Mode Data Output.

IBit13 / R I Unused / X I

Bit

Bit 15

Bit 14

IBit12 (R I Unused I X I
/Bi t11 1 R I Unused I X 1

Type

R

R

Function

Unused

Unused

Bit 10

Bit 9

I Bit 6 1 R I BIST_ERROR[4] I X I

Default

X

X

Bit 8

R

R

I Bit 3 1 R I BIST-ERROR[l] (X I

I I I

R

Bit 5

Bit 4

BIST-ERROR181

BIST-ERROR[7]

I Bit 1 I R I BIST-RESULT I X I

X

X

BIST-ERROR[6]

R

R

Bit 2

X

R I BIST-ERROR[O] / X

On each clock cycle : high if a data write-read-verify comparison mismatch is
detected for the associated RAM cell : low otherwise. The associated RAMS are
shown in the table following.

BIST_ERROR[3]

BIST_ERROR[2]

Bit 0

The address of the RAM location giving the error may be deduced from the clock
cycle in which the error is detected relative to the start of the BlST pass as noted
below.

X

X

R BIST-END X

Table B. 9. BIST-ERROR Bits.

13 I TPA RAM 3

Bit

8

7

6

5

4

12 I TPA RAM 2

RAM

TSTAT FIFO RAM

TPA RAM 7

TPA RAM 6

TPA RAM 5

TPA RAM 4

1 1 I TPA RAM 1

1 0 I TPA RAM 0

After the BlST sequence completes, this bit indicates the overall result. If any
errors were detected at any time, this bit will be 0. Otherwise, 1 indicates that the
RAM BlST was successful. This bit is only valid when BIST-END is asserted
high.

BIST-END:

Set high at the end of the BlST sequence.

The RAM BlST test is carried out by initializing the test mode appropriately,
repetitively pulsing SYSCLK to run the BlST sequence and finally reading test
register 2 to obtain the result. If the BlST fails, rerunning the sequence and
monitoring the BIST-ERROR bits in test register 2 on every SYSCLK cycle will
reveal the RAM location which is failing. The nine RAMS are tested in parallel;
therefore, the test time is determined by the deepest RAM, dpr32x32. The RAM
BlST sequence involves 16 accesses to each memory location : thus, the RAM
BlST takes approximately 1032 clocks.

Appendix C: Performance Simulation Details

The results of the weighted scheduling performance simulations demonstrate

the effectiveness of the scheduling algorithms under different operating modes

and with a variety of weighting parameters and operating conditions. Table C.l is

a key for the simulation results, which are presented in Tables C.2 through C.5.

Table C. 1. Performance Tests Parameter Kev.

Parameter Description

Chip

Scheduling Mode

Channels

Streams

Packet Size

Weights

Limit : Weight Ratio

8x1 OOM
-

WPS

WFS

PM3380 1 x I Gbps port controller

PM3370 8 x 100 Mbps port controller

Weighted Priority Scheduling

Weighted Fair Scheduling

Single channel

Eight channels (used only with FELIX chip)

Number of unique Source PorVPriority streams in
service.

Tinygrams - smallest Ethernet packet
(64 bytes)

Maxigrams - Largest Ethernet packet size (1822
bytes) including VLAN tag

All packets are multiples of the default DB payload size
(i.e., n x 240 bytes; n = 1 to 7)

Packets are randomly sized between 64 and 1522
bytes

The weighting credits applied to the four classes of
service (or priority levels). Even weights of two
different values were checked to show that traffic could
be scheduled evenly across all classes of service. An
arithmetic ratio of weights was checked to show
situations where the worst ration between two classes
of service is 4:l. Two geometric ratios of weights were
checked to show situations where the worst ration
between two classes of service is 16: 1. Finally a
corner case where one class of service gets a
minimum weighting, a second class gets maximum
weighting and the others classes are unprovisioned is
used to check worst case conditions.

The ration between the limit and weight parameters for
credits affects the "memory" of the scheduler; i.e., how
many unused credits can be retained by a given class
of service after each service round.

'ests - I C
Weights

lode.
I I I . Tabk

Chip

I x l G

I x I G

I x l G

I x l G

I x l G

I x l G

I x l G

I x l G

I x l G

I x l G

I x l G

C. 2. -
Mode

WFS

-
WFS

NFZ
Chan

1

-
1

Perfo -
Streams

nance -
Packet

size Code

L:W

Ratio

2

=rarnes/ 1 P 1 Expected 1 Actual I Delta 1
Stream BW% BW% BW%

512 0 6.7% 3.6% -3.1%

WFS

-
WFS

WFS

-
WFS

WFS

WFS

-
WFS

-
WFS

-
WFS

Weights I L:W (~rameol l P 1 Expected I Actual I Delta I
Ratio Stream B W % BW% BW%

7171717 3 512 0 25.0% 25.0% 0.0%

node.
2

rests - I I
Weights

bps
L:W

Ratio

Framed 1 P I Expected / Actual I Delta I
Stream I I BW% I BW% I BW%

512 1 0 1 6.7%1 3.6%1 -3.1%

Packet Weights

-
L:W

Ratio -
3

Mode Chan Streams Chip

I x l G

I x l G

I x l G

I x l G

I x l G

=rames/l P (Expected 1 Actual I Delta I

WPS

WPS

WPS

WPS

WPS

Table C. 4. WFS Performance Tests - 100 Mbl s mode.
'ramesl P Expected Actual Delta

-
L:W
Ratio -

2

-
3

Chan

-
1

-
1

Chip Streams Mode Packet

Size Cod1

Weights

Stream

; x100~ I WFS

'~100M WFS T
xlOOM WFS

xlOOM WFS T
xlOOM

xlOOM WFS T

WFS

xlOOM

XIOOM~ WFS

WFS

xlOOM

xlOOM WFS T

WFS

xlOOM WFS

8xI00M

8~100M

WFS

WFS

1

1

4

12

T

T

15/30/45/60

15/30/45/60

4

4

256

256

0

1

2

3

0

I

2

3

10.0%

20.0%

30.0%

40.0%

10.0%

20.0%

30.0%

40.0%

8.0%

21.4%

32.6%

37.9%

9.1%

20.2%

30.4%

40.3%

-2.0%

1.4%

2.6%

-2.1%

-0.9%

0.2%

0.4%

0.3%

.* - s mode. T , able C. 5. WPS Performance Tests - 10 Mb -
L:W

Ratic

:hip Mode Chan

-
1

-
1

Streams Packet

Size Cod€

Weights

:100M WPS T
:100M WPS T
:100M WPS

:I 00M WPS

:I 00M WPS

.lOOM WPS I-
100M WPS

100M WPS t
100M WPS

100M WPS 1-

Zhan 1 Streams 1 Packet) Weights Chip

8xI00M

8xI00M

8xI00M

L:W Frames1 P Expected Actual Delta Mode

WPS

WPS

WPS

Stream BW% BW% BW%

256 0 25.0% 25.0% 0.0%

References

[I] pMC-Sierra hc., PM3370 Ethernet Switch Perf Controller Standard Product
Data Sheet (PMC-1970861), PMC-Sierra Inc, 1999.

[2] PMC-Sierra Inc., PM3380 Ethernet Switch Port Controller Standard Product
Data Sheet (PMC-1970861), PMC-Sierra Inc, 1999.

[3] IEEE , IEEE 802. Ip - Standard for Local and Metropolitan Area Networks -
Supplement to Media Access Control (MAC) Bridges Traffic Class Expedifing
and Dynamic Multicast Filtering.

Y !
' 1'",

[4] A. Demers, S. Keshav, and S. Shenker, "Analysis and Simulation of a Fair
Queueing Algorithm," Internetworking: Research and Experience, vol. 1, no.
I , April 1990, pp. 3-26. ..I

[5] P MC-Sierra Inc., PM3380 Ethernet Switch Pod Controller Standard Product
Data Sheet (PMC-1970861), PMC-Sierra Inc, 1999, p. 35. . .. - 7

i

[6] J. Nagle, "On Packet Switches With Infinite Storage," IEEE Transactior
Communications COM-35, April 1987, pp. 435-438.

[7] B. Beusaou, K.T. Chan, and D.H.K. Tsang, "Credit Based Fair Queuinc
(CBFQ): A simple and feasible scheduling algorithm for packet netwot~s," in
Proceedings of the IEEE ATM Workshop, Portugal, May 1997, pp. 589-594.

