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Abstract 

The project consists of the design of an Egress Queue Manager (EQM), a 

major functional block used in PMC-Sierra's PM3370 (8 x 100 Mbps) and 

PM3380 (1 x 1 Gbps) Ethernet Switch Port Controller integrated circuits. The 

EQM acts as the egress port controller in an output associated input buffered 

switch, providing the option of three different traffic scheduling algorithms, 

including variants of weighted fair queuing. While designed to operate within the 

environment of an Ethernet packet switch, the design is flexible enough to be 

adapted to other packet switched environments (such as a IP based switch) with 

minimal modifications. 

The project consisted of the redefinition, design, verification and 

documentation of the EQM block, comprising approximately 70,000 gates of 

logic. The design was captured at the register transfer level using the Verilog 

hardware description language and then synthesized into a gate-level netlist. The 

project also includes a suite of simulations designed to verify the functionality and 

performance of the design, and static timing analysis to guarantee that the 

synthesized design was capable of operating at a clock rate of 83 MHz. 
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1 Introduction 

The Egress Queue Manager (EQM) is a major functional block used in PMC- 

Sierra's PM3370 [ I ]  (8 x 100 Mbps) and PM3380 [2] (1 x 1 Gbps) Ethernet Switch 

Port Controller integrated circuits. Along with PMC-Sierra's PM3390 Switch 

Fabric Device, these ICs form the EXACT flexible and stackable Ethernet 

switching architecture, capable of maintaining full line rate switching on all ports 

even when servicing minimum sized (64 byte) packets. The EQM operates as an 

8-port single stream output scheduler controller when used in the PM3370, and 

operates as a single port multi-stream scheduler when used in the PM3380. 

Packets are transmitted across the switch fabric in variable sized data blocks 

with a maximum size of 240 bytes. The EQM manages the handshaking protocol 

for service requests, collects transmitted data statistics and forwards the data 

blocks a downstream buffer for frame reassembly. 

The EQM arbitrates between service requests submitted by ingress queue 

managers (IQM), which have traffic queued for the particular egress ports 

assigned to the EQM. Within a given class of service (4 are supported in the 

EQM), the EQM uses a simple round robin protocol. However, the EQM 

implements three parameterizable queuing or scheduling algorithms, which 

determine how bandwidth is allocated between the service classes. The simplest 

algorithm supported is a strict priority scheduler in which the highest service 

class with pending requests is always processed first. Strict priority scheduling 

can be used to implement the IEEE 802 .1~  standard [3]. The EQM also supports 

a weighted fair scheduling method which achieves many of the goals of the 

weighted fair queuing algorithm first described by Demers, Keshav and Shenkeri 

[4] but using a method much easier to implement in silicon. Finally, a hybrid 



method, which combines features of both priority and weighted queuing, is 

implemented. 

Within a service class, the EQM supports fair queuing (round robin) service 

of the individual source queues. 



2 The System Environment 

2.1 Port Controller Overview 

The EQM acts as the egress controller in an output associated, input 

buffered switch. In this architecture, packet data is stored by an ingress queue 

manager (IQM) in queues corresponding to individual output ports. The ingress 

controller buffers a complete packet before sending a queue allocate (QA) 

message through the switching fabric to the EQM, where the data is destined. 

The switching fabric consists of one or more linked rings implementing PMC- 

Sierra's EXACT protocol. 

The EQM does not directly access frame data as this is buffered at the 

ingress port, which may be on the same or a different port controller. Frame data 

is stored in memory as partial packet buffers (PPB's). Depending on the system 

configuration, each PPB contains up to 120 or 240 bytes of frame data together 

with header and trailer information. Independent of the size of the payload, each 

data block is packed into a 256 byte Partial Packet Buffer. (The 240 byte option 

made most efficient use of the PPB memory space; however, the 120 byte option 

allowed for finer granularity within the fabric). PPB's are chained together to form 

a linked list. The data contained in a single PPB is transmitted across the switch 

fabric. 

The structure of the PPB's is illustrated in Figure 1. 



Figure I. Partial Packet Buffer Chaining Structure. Ethernet frames are 
segmented and placed into queues based on the destination port and 
priority level. Each queue contains pointers to the first Partial Packet Buffer 
(PPB) of the linked list of PPBs holding a given frame [S]. 

While the EQM is not protocol specific, it was implemented within an Ethernet 

switching system. A maximum length Ethernet frame (1 522 bytes with optional 

VLAN tag) will require up to 14 chained PPB's to hold the complete frame, 

depending on the data block (DB) payload size, which is configured externally to 

the EQM. 
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addressed port controller. Figure 2 shows a simplified block diagram or the port 

controller. Received Ethernet packets pass are processed by the Ethernet MAC 

and Receive Controller. The lngress DMA segments the packet payloads into 
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Ingress Queue Manager. The IQM places the pointer in a queue corresponding 

to the output port and priority (or class of service). The IQM communicates with 

the EQM corresponding to the egress port using the EXACT protocol (see 

section 2.2 following). Packet data fragments are passed through to the EQM to 

the Transmit Controller (TXCTRL) where the fragments are reassembled in 

buffers. When a complete packet has been reassembled in the TXCTRL, it is 

transmitted through the MAC and physical interface on the appropriate Ethernet 

egress port. 

The EX1 serves as the physical interface to the EXACT ring for the IQM and 

EQM, handling clock rate conversions and data path width conversions with 

shallow FIFOs. 
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Figure 3. An EXACT Based Ethernet Switch. A 24+2 Ethernet Switch created 
using EXACT port controllers and the ENCORE switch fabric devices. 
Smaller switches (e.g. an 8+1 or 16+0 switch) can be created without the 
switch fabric IC by connecting the EXACT Bus in a ring. 

2.2 The EXACT protocol 

The EXACT protocol is used to transfer data across the switching fabric, 

which may be a simple ring connection or a switch fabric IC. 

When a given IQM has queued a packet for an output port, it will send a QA 

message across the fabric to notify the corresponding EQM that a complete 

packet is available for a given output port (see Figure 4). 
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Figure 4. EXACT Protocol Flow Diagram. The source device (usually an 
IQM) signals available traffic by sending a QA message to the destination 
deivce (usually an EQM). When the destination device is ready to service 
the QA request, it returns a QF message, allowing the source to send a 
single DB message. The QFIDB exchange continues until the entire packet 
has been transmitted across the EXACT ring or switch fabric. 

When the EQM is ready to accept that packet, it will send a Queue Fetch 

(QF) message, which allows the IQM to send a single data block (DB) message 

containing the first fragment of a packet, as contained in the payload of a single 

PPB. If there is more data in the packet, the DB message will have the EOF flag 

cleared in the message header. If the DB contains the end of the packetlframe, 

the EOF is set and the IQM may immediately send another QA message if there 

is one or more additional packets queued for the given output port. When the 

EQM receives a DB message it checks the EOF flag. If the flag is clear, the EQM 



will return another QF message when it is ready to accept another DB message. 

The message formats are described in greater detail later in this report. 

System simulations done by the project architect showed that while this 

simple version of the protocol was sufficient to sustain line rates for 100 Mbps 

ports, the latency across the switch fabric was too great for 1 Gbps ports. 

Consequently, the protocol was modified for output ports operating at the higher 

rate. 

The modified protocol allowed the IQMs to send up to 15 QA messages 

which would be stored by the EQMs. In return the EQM is allowed to issue up to 

one QF message for each QA message stored up to a maximum of 10. This 

allows the EWM to accept BD messages for up to 10 packets in parallel while in 

1 Gbps mode. These packets could all originate from the same IQM or from 

multiple IQMs. 



3 Functional Description 

3.1 Overview 

Figure 5 shows the block diagram of the EQM, which consists of the following 

modules: 

Queue AllocateIData Block Processor (QADBP). 

Transmit Pending Arrays (TPAs). 

Queue Fetch Scheduler (QFS). 

Transmit Frame Reassembly Buffer Interface (TFRBI). 

Transmit Statistics Transaction FIFO (TSTF). 

Statistics Updater and Memory Port Access Controller (MPAC) SRAM 

Interface (SUMI). 

Control Registers and Control Register Interface (CRI) Logic. 

Built-in Self Test (BIST) Sequencer for RAM modules. 

Test Registers and Interface Logic. 

Note: The test registers and BIST circuits have been omitted from the block 

diagram. 

A significant design goal was to reuse as much logic and in particular the 

TPA memories in the two operating modes (single port 1 Gbps and eight port 100 

Mbps). Whenever possible, the sub-modules were designed to support both 

modes. This approach was successful for all blocks except the QFS which 

required very different designs for the two modes. Thus the QFS essentially 

contains two designs and the appropriate logic is enabled based on the mode 

selected. 
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shown. 



3.2 Queue AllocateIData Block Processor (QADBP) 

The Queue Allocate / Data Message Processor is responsible for the 

following: 

Receiving of queue allocate (QA) and data block (DB) messages. 

Parsing of the TYPE field within the message header to determine message 

type- 

Parsing of the other header fields to determine channel destination, source 

port, and prioritylclass of service. 

100 Mbps mode: Setting the appropriate bit in the corresponding Transmit 

Pending Array (TPA) upon receipt of a QA message. 

1 Gbps mode: lncrementing the appropriate 4-bit count in the Transmit 

Pending Array (TPA) upon receipt of a QA message. 

100 Mbps mode: Upon receipt of a DB message, routing the payload to the 

TxCTRL Frame Reassembly Buffer interface (TFRBI) and setting the DB 

received (DBRCV) flag for the appropriate destination channel. The DBRCV 

flag causes the QFS to send the next QF message as soon as space is 

available in the corresponding downstream Transmit Frame Reassembly 

Buffer. If the DB header has the End of Frame (EOF) bit set, then the 

appropriate bit in the Transmit Pending Array is cleared, and the EOF flag for 

the appropriate destination channel is set. The EOF flag causes the QFS to 

resume the scanning the TPA for that channel according to the scheduling 

algorithm. 

1 Gbps mode: Upon receipt of a DB message, routing the payload to the 

TxCTRL Frame Reassembly Buffer interface (TFRBI) and placing an entry in 

the Queue Fetch Scheduler's (QFS) DB received FIFO (DBRF) indicating the 

12 



SPID, P and EOF fields of the DB, which causes the QFS to send the next QF 

message (unless the EOF flag is set) as soon as space is available in the 

TFRBI. If the DB header has the End of Frame (EOF) bit set, then the 

appropriate count in the Transmit Pending Array is decremented. 

The QADBP receives messages from the upstream EXI. These messages will 

be of two types. These will be either a queue allocate message (QA), which 

indicates that a source has data for one of the channels, or they will be data 

blocks (DB's), which contain partial data blocks constituting the complete frame. 

The QADBP is capable of processing a mix of QA and DB messages with 

minimal latency; however, the EX1 must guarantee a minimum of two inactive 

cycles on the EM1 interface between subsequent messages since the QADBP 

requires a minimum of 3 SYSCLKs to read-modify-write the TPA RAM. 

The format of queue allocate and data block messages as presented by the 

EX1 are illustrated in Figure 6 and Figure 7 respectively. Note that the EQM only 

supports 256 SPlDs and 8 DCIDs. The unused most significant bits in each field 

(SPID[9:8] and DCID[5:3]) will always be ignored. 

Bit 31 Bit 0 

Figure 6. Queue Allocate (QA) Message Format. See Table 1 for field 
definitions. QA messages are used to signal that an input queue has a 
complete packet ready to transmit to an output port associated with this 
EQM. 

aA: SPlD (10) DWord 0 



Bit 31 Bit 0 

DB: 

TXSTAT (1 6) "0000000000000000" DWord 1 
I I 

/PAYLOAD 0 (8)  PAYLOAD 1 (8)  PAYLOAD 2 (8)  PAYLOAD 3 (8) 1 DWord 2 

Figure 7. Data Block (DB) Message Format. DB messages contain packet 
data from a single PPB. If this is the last block of data in a given frame, the 
EF (end-of-frame) bit will be set. See Table 1 for field definitions. 

PAYLOAD N- I  

Table 1 

DWord (N14 + 2) 

Field 

TYPE 

SPlD 

DCID 

TXSTAT 

PAY LOAD 

other bits 

QA 
Bits - 
4 

nd QB Message Field Descriptions. 
Descri~tion 

Message Type. 

Defines up to 16 possible message types, of which the EQM requires to know only 3: QA, QF, DB. 

0000 - Data Block (DB) 
0010 - Queue Allocate (QA) 
0100. - Queue Fetch (QF) 
Other codepoints are reserved. 

Priority of the frame. 

Every frame is allocated one of four priority levels. The IDMA passes this field on to the queue 
manager. The queue manager will queue the frame according to the following: 

'00' - priority 0 
'01' - priority 1 
'1 0' - priority 2 
'11' - priority 3 
Note that priority 0 is the highest priority and priority 3 is the lowest 

End of Frame (EOF). 

When EOF is set, this indicates the last data block (PPB) of the frame. 

Source Port Identifier 

This field indicates the EXACT ring source port from which the queue allocate was received. This 
field is returned as the destination port in a QF message. Note there is not necessarily a 1:l 
correspondence between Ethernet ports and EXACT ring source ports. An EXACT port controller 
may queue frames from several Ethernet ports into a single queue which will have a single EXACT 
rina ID. 

Destination Channel Identifier. 

This field indicates the destination channel for which the aueue allocate or data is intended. 

Transmit Statistics. 

A 16-bit field which is used to index into the statistics memory. 

Data Payload. 

This variable length field contains the packet data to be passed to the TxCTRL block. The field may 
vary from 1 to 240 bytes in length. The EQM does not examine or Drocess the Dayload field. 

For messages that are received by the EQM (QA and DB), bits marked as "X" are ignored. 

For messages that are transmitted by the EQM (QF), these fields are set to 0. 

Note that some of these fields are overwritten by the upstream EX1 block, to indicate a pseudo 
source address. 



The QADBP checks the header fields of the messages to first determine the 

type of message, and then the remaining fields to determine the subsequent 

processing. 

3.2.1 Queue Allocate Processing 

A QA message indicates to the EQM that a source has data buffered for one 

of the channels supported by the EQM. On receiving a QA in 100 Mbps mode, 

the QADBP reads the appropriate line from the destination channel's TPA, sets 

the appropriate bit for the source port and prioritylclass of service, and then 

writes the modified line back to the TPA. In 1 Gbps mode, the QADBP reads the 

appropriate 4 lines from the TPAs to assemble a 4-bit count value, increments 

this value and then writes the modified lines back to the TPA. 

In 100 Mbps mode, it is an error for the QADBP to receive a QA for a 

DCIDISPIDlpriority combination for which the QA bit is already set. In this case, 

the QADBP sets the QA-SEQE-INT interrupt flag, and places the source and 

destination port numbers in the appropriate error status registers. 

In I Gbps mode, it is an error for the QADBP to receive a QA for a SPIDIP 

combination for which TPA count has reached its maximum value of 15. In this 

case, the QADBP sets the TPA-OVRE-INT interrupt flag, and places the source 

and destination port numbers in the appropriate error status registers. If another 

TPA Overflow or sequence error occurs before the error status registers are 

read, the error status registers will be overwritten with the new information. 

3.2.2 Data Block Processing 

A DB message is sent to the EQM as a result of the source port receiving a 

queue fetch from the EQM. On receiving a DB, the QADBP routes the data block 

to the TxCTRL Frame Reassembly Buffer Interface (TFRBI), which in turn writes 



the data to the downstream TxCTRL Frame Reassembly Buffer (FRB). Only the 

payload data is transmitted to the FRB; the DB message header is removed. 

The QADBP monitors the EF (end of frame) field in the data block message 

which indicates that this DB is the last for the frame. If this DB is not the last for 

the frame, then the QADBP in 100 Mbps mode immediately sets the DBRCV bit 

for the destination channel. If the EOF bit is set, then the QADBP clears the 

appropriate bit in the TPA. In 1 Gbps mode, the QADBP places an entry 

(including the SPIDIP and EF fields) in the DBRCV FIFO of the Queue Fetch 

Scheduler (QFS). If the EOF bit is set, the QADBP will also decrement the 

corresponding count value in the TPA. 

In 100 Mbps mode, it is an error for the QADBP to receive a DB for a channel 

which doesn't have the appropriate bit already set in its TPA, thus indicating that 

the DB was received without a preceding QA message or that the EOF field was 

set in a DB prior to the last DB for the frame. In this case, the QADBP sets the 

DBQA-SEQE status flag, and places the source and destination port numbers in 

the appropriate error status registers. 

In either mode, it is also an error for the QADBP to receive a DB for which a 

corresponding QF message has not been sent by the QFS. In 100 Mbps mode, 

the QADBP checks for this condition by comparing the SPlD and P output fields 

of the TPA-SCANNER for the appropriate channel. In 1 Gbps mode, the QADBP 

checks for this condition by comparing the DB header information against the 

SPlD and P fields for all active streams from the QFS stream table If this error 

occurs, the QADBP sets the DBQF-SEQE status flag, and places the source and 

destination port numbers in the appropriate error status registers. 

In 1 Gbps mode, it is an error for the QADBP to receive a DB for a SPIDIP 

combination for which the TPA has a count of 0, thus indicating that the DB was 

received without a preceding QA message or that the EOF field was set in a DB 

16 



prior to the last DB for the frame. In this case, the QADBP sets the DBQA-SEQE 

status flag, and places the source and destination port numbers in the 

appropriate error status registers. If the EOF bit was set in the DB header, then 

the QADBP sets the TPA-UNDE status flag, and places the source and 

destination port numbers in the appropriate error status registers. 

3.2.3 Sequence and TPA Error Handling 

Sequence errors (QA, DBQA, DBQF) and TPA Overflow Underflow errors 

are serious protocol errors, which should occur very infrequently if ever. A single 

register reports the source and destination fields of the message which caused 

the errors is used for all error types. If another sequence error occurs before the 

error status registers are read, the error status registers will be overwritten with 

the information from the message causing the latest error. While these protocol 

errors were rarely if ever a problem with the production chip set, these diagnostic 

features proved to be invaluable while debugging the prototypes. 

3.3 Transmit Pending Arrays (TPA) 

3.3.1 I00 Mbps mode 

In 100 Mbps mode, there is a Transmit Pending Array (TPA) for each of the 

eight supported channels. Each TPA consists of four vectors, one vector for each 

class of service. (There is an independent TPA for each channel because all the 

TPA for each channel must be searched in parallel in order to meet the QA 

received to QF issued latency requirements). There is a single bit in the vector 

for each source port. Since there are a total of 256 supported source ports per 

vector and 4 classes of service vectors, each TPA consists of 1024 bits. (See 

Figure 8). 



Figure 8. The Transmit Pending Arrays configured for 8 x 100 Mbps 
operation. Each bit indicates if a QA has been received from a given 
sourcelpriority (or class of service) queue. When the QA request has been 
serviced, the bit is cleared. 

A TPA bit is set following the receipt of a QA message for the given 

channellsource portlpriority. A TPA bit is cleared when a DB message with an 

EOF indication is received for that channel/source portlpriority. 

The array shown above illustrates an example where destination channel 1, 

priority level 2, has received a QA for each of source ports 28, 62, 189 and 224. 

3.3.2 1 Gbps mode 

In 1 Gbps mode, there is a single Transmit Pending Array (TPA) for the 

single supported channels. The TPA consists of four vectors, one vector for each 

class of service. There is a 4-bit value in the vector for each source port. The 1 

Gbps TPA arrangement is illustrated in Figure 9. 



Figure 9. The Transmit Pending Arrays configured for 1 x 1 Gbps operation. 
Each 4-bit value indicates the number of unserviced QA messages which 
have been received from a given sourcelpriority (or class of service) queue. 
When a QA request has been serviced, the corresponding value in the TPA 
is decremented. This figure illustrates an example where priority level I has 
received 9 QAs for SPlD 224,8 QAs for SPlD 254 and 10 QAs for SPlD 255. 

A TPA count is incremented following the receipt of a QA message for the 

given source portlpriority. A TPA count is decremented when a DB message with 

an EOF indication is received for that source port/priority. 



3.3.3 Debug Access 

The contents of the TPA RAMS can be accessed through the CRI for 

diagnostic purposes. The TPA number (0 through 7) and TPA address are 

programmed into the TPA Diagnostic Control Register (indirect registers). After 4 

SYSCLK cycles after the TPA number and address have been written, the data 

word has been latched and may be read out of the TPA Diagnostic Data registers 

(indirect registers 0x21 and 0x22). This operation is transparent to the EQM1s 

operation and does not require the EQM to be halted. 

3.4 Queue Fetch Scheduler (QFS) 

The Queue Fetch Scheduler is responsible for transmitting the QF messages 

as a result of detecting a pending request for data as indicated in the transmit 

pending array (TPA) for a given channel. 

The format of queue fetch message as presented to the EX1 is illustrated in 

Figure 10. Note that the EQM only supports 256 SPlDs and 8 DCIDs. The 

unusued most significant bits in each field (SPID[9:8] and DCID[5:3]) will always 

be zeros. 

Bit 31 Bit 0 

Figure 10. Queue Fetch (QF) Message Format. QF messages are sent by the 
EQM to indicate that it is ready to accept a single DB message from the 
queue identified by the SPlD and P fields. 

QF SPlD (10) 

The description of the various fields in the QF message are given in Table 2: 

"0000000000" DClD (6) DWord 0 



Table 
Field 

TYPE 

P 

SPlD 

I DCID 

2. G - 
Bits - 
4 

- 
2 

- 
10 

: Message Field Definition. 
Description 

Message Type. 

Defines up to 16 possible message types, of which the EQM requires to know only 3, namely QA, QF, 
DB. 

0000 - Data Block (DB) 

001 0 - Queue Allocate (QA) 

0100 - Queue Fetch (QF) 

Other codeeoints are reserved. 

Priority of the frame. 

Every frame is allocated one of four priority levels. The IDMA passes this field on to the queue 
manager. The queue manager will queue the frame according to the following: 

'00' - priority 0 

'01' - priority 1 

'1 0' - priority 2 

'1 1 ' - priority 3 

Note that priority 0 is the highest priority and priority 3 is the lowest. 

The external CPU erovides this field as part of the forwarding information. 

Source Port ldentifier 

This field indicates the EXACT ring source port from which the queue allocate was received. This field 
is returned as the destination port in a QF message. 

Destination Channel ldentifier 

This field indicates the destination channel for which the queue allocate or data is intended. The 
upstream EX1 substitutes the absolute port ID (queue ID) with the channel ID using a base offset. 



3.4.1 I00 Mbps mode 
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Figure 11. Queue Fetch Scheduler Block Diagram. The QFS consists of 
eight TPA scanners which search the TPAs for set bits in 100 Mbps mode, a 
single scanner and processor which searches the TPA for non-zero QA 
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The 100 Mbps QFS contains a TPA Scanner block for each channel 

supported. These scanners independently scan the associated TPA for set bits 

according the scheduling algorithm currently employed. (The TPA for each 

channel must be scanned independently and in parallel in order to meet the QA 

received to QF issued latency requirements). When a TPA Scanner detects a 

request for a data frame, it places the corresponding source ID and prioritylclass 

of service indication on its output and raises a flag. The QFS implements a round 

robin polling mechanism on the TPA Scanners and constructs the QF message 

when a TPA Scanner ready flag is detected, adding the relevant TYPE and DClD 

fields. 

Once the QFS scheduling algorithm (see following section) has decided to 

process a given QA, the frame is processed as follows: 

Generate queue fetch for this channel, and send the QF to the indicated 

source port 

Wait until the QADBP sets the DBRCV (DB Message Received) flag for this 

channel. 

Clear the DBRCV and send another QF message for this channel, sending to 

relevant source port. 

Repeat until the QADBP sets the EOF (End of Frame) flag for this channel 

Return to scheduling algorithm 

3.4.2 1 Gbps mode 

The 1 Gbps QFS supports a single destination channel, but in order to 

reduce the QA -> QF -> DB latency, it supports multiple outstanding QFs on 

multiple SPIDIP traffic streams. The QFS consists of a TPA Scanner, a DBRCV 

FIFO and a Queue Fetch Request Processor (QFRP) as shown in figure 11. 
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Figure 12. Queue Fetch Scheduler: 1 Gbps Scanner and Processor Block 
Diagram. The QFS scans the TPA for non-zero entries and issues QF 
messages according to the scheduling algorithm selected and tracks the 
QFs pending and outstanding for each data stream. 

The QFRP keeps track of the state for each of the 10 streams using a state 

vector consisting of the SPlDlP assigned to that stream, the current number of 

QFs pending (i.e., assigned but pending a check of space available in the 

TXCTRL Frame Reassembly Buffer) and QFs outstanding (i.e., QFs which have 



been issued after checking that there is sufficient space available for the 

resultant DB payloads). 

The single TPA scanner operates very similar to the 100 Mbps mode and 

uses the same scheduling algorithms; however, it no longer stops and waits for 

an entire frame to be processed when a non-zero TPA location is encountered in 

the course of searching the array. Instead, the TPA Scanner passes the 

SPIDIPriority pair to the Queue Fetch Request Processor along with the value it 

read form the TPA. 

The QFRP will check if the SPIDIP combination matches one of the data 

streams currently being serviced. If there is no match, the QFRP will assign the 

SPIDIP to an unused stream if available. If no unused stream is available, then 

the QFRP will continue processing but will not complete the handshake with the 

TPA Scanner, effectively stopping scanning until a free stream is available. If the 

SPIDIP matches the SPIDIP assigned to an active steam, then the current 

number of outstanding (issued) QFs for the stream and the number of QFs for 

that same stream which are pending are checked. If the TPA count is greater 

than the SUM of the pending and outstanding QFs, the QFRP will increment the 

QF pending count and indicate that the request from the scanner is valid by 

asserting VALID and SCAN-DONE; otherwise VALID is not asserted when the 

SCAN-DONE indication is asserted. 

If the TPA Scanners sees that its' request was valid, it will continue the 

scanning algorithm as in the 100 Mbps mode, treating the VALID indication as if 

the frame had be completely processed. If the request was not valid, then the 

scanner continues on as if the TPA count for the current SPIDIP had been zero. 
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Figure 13. Queue Fetch Scheduler Algorithm: I Gbps. The Queue Fetch 
Scheduler has a independent scanner operating in parallel which uses the 
same algorithms as the100 Mbps schedulers; except that it immediately 
starts scanning after the decision is made to process a frame. 



The Queue Fetch Request Processor also services requests from the 

DBRCV FIFO. For each entry processed from this FIFO, the stream QF 

Outstanding count is decremented. If the EOF flag is not set for the entry, the 

stream QF Pending count is incremented. If the EOF flag is set, the QFRP 

checks if both the stream QF Pending and QF Outstanding counts have been 

reduced to zero. In this case, the stream is marked inactive and subsequently 

freed up for use by another SPIDIP pair. 

The QFRP also processes the QF Pending counts. For each stream, the 

QFRP checks if QF Pending is non-zero and if so checks if there is uncommitted 

space available in the associated frame reassembly buffer. If space is available, 

the stream's QF Pending count is decremented, the QF outstanding count is 

incremented and the QF is sent to the EXI. 

The QFRP also restricts the maximum number of outstanding QFs across all 

streams to the value programmed in the Global Maximum QF Outstanding 

Register. For the PM3380 port controller, a nominal value of 10 is recommended 

based on system level simulations done by PMC-Sierra's chip architect, Tom 

Alexander. However, the value may be changed to optimize performance in other 

system with different fabric latencies. The value may be set as high as the 

maximum number of memory blocks in the TXCTRL Frame Reassembly Buffer 

(i.e., 70 for block size of 120 bytes, 140 for block size of 240 bytes). Setting 

GMAX-QF larger than the number of blocks in the TXCTRL FRB will not permit 

more QFs to be issued. 
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Figure 14. Queue Fetch Pending Processing: 1 Gbps mode only. 



3.4.3 Scheduling Modes 

The QFS implements three modes of scheduling: 

1. Strict Priority Scheduling (SPS) 

2. Weighted Priority Scheduling (WPS) 

3. Weighted Fair Scheduling (WFS) 

The scheduling mode is selectable by the SCHMODE[I :0] field in the EQM 

General Control Register. 



3.4.3.1 Strict Priority Scheduling 
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Figure 15. Strict Priority Scheduling Algorithm. After processing each frame, 
SPS always checks to determine the highest priority level which has 
outstanding QA messages. Round robin order is maintained within each 
priority level. If enough traffic is presented to the high priority queues, 
lower priority queues can be starved. 
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Strict Priority is a simple scheduling method. For any given egress channel, 

the scheduler begins by scanning the transmit pending array (TPA) for the top 

priority level beginning after the index of the last source port which was serviced 

from this priority level. If the TPA indicates that frame transmissions requests are 

pending, then the first such request is serviced in source port order, until the 



entire data frame has been received. Additional frame requests at the top priority 

level are processed until all requests have been exhausted, then the vector for 

the next lowest priority is scanned. If there are no transmit requests pending for 

this priority level, the scheduler will proceed to the next lowest priority level, and 

repeat the scanning process. If there are transmit requests pending for this 

priority level, the next eligible transmit request (i.e., the request for the next port 

after the last port serviced) is processed and then the priority level is reset to the 

top priority. 



3.4.3.2 Weighted Priority Scheduling 
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Figure 16. Weighted Priority Scheduling Algorithm. WPS acts as a priority 
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The Weighted Priority Scheduling mechanism provides the ability to distribute 

source data traffic over 4 weighted classes of service and prevent starvation of 

lower priority levels, while still maintaining a priority hierarchy. 

Weighted Priority Scheduling (WPS) is implemented using a credit 

accumulation scheme and weighted priority servicing, requiring a total of three 

storage registers (weighting, credit store and credit limit) per priority level and 

one adderlsubtracter per channel. For any given egress channel, the scheduler 

begins by adding the weighting value to the respective data block credit store for 

all priority levels. If sufficient credits are available for the highest priority level to 

transmit a maximum sized frame (i.e., the credit store is >= WS-THRESH) then 

the transmit pending array (TPA) is scanned for that priority level beginning after 

the index of the last source port which was serviced from this priority level. If the 

TPA indicates that frame transmission requests are pending, then the first such 

request is serviced in source port order, with the credit store being decremented 

for each data block requested until the entire data frame has been received. 

Additional frame requests at the top priority level are processed so long as the 

credit store remains above the threshold level. When all top priority transmit 

requests have been exhausted or the credit store has been reduced below the 

threshold, the credit store for the next lowest priority level is checked and if its 

credit store is above the threshold level, the TPA is scanned. If there are 

insufficient credits available or there are no transmit requests pending for this 

priority level, the scheduler will proceed to the next lowest priority level, otherwise 

the next eligible transmit request (i.e., the request for the next port after the last 

port serviced) is processed and the priority level is reset to the top priority. 

When all priority levels have either a credit store value below the threshold 

level or no transmission requests pending, the scheduler again updates the credit 

stores for all priority levels by adding the weighting value to the value remaining 



in the data block credit store. The credit store registers saturate at the limit value. 

The scheduler then begins again at the highest priority level. 

Note that if the limit value is set to the weight value, the scheduler will be 

memoryless and will allocate the same share of scheduling requests each time 

through the loop as specified by the weighting values. However, if the limit value 

is larger than the weight value, then that given priority level may store its unused 

bandwidth up to the credit limit and the weight values become time averaged 

weightings. (A limit value lower than the weight value is an illegal condition since 

it would effectively become the weighting value). 



3.4.3.3 Weighted Fair Scheduling 

Figure 17. Weighted Fair Scheduling Algorithm. The WFS algorithm is very 
similar to the WPS algorithm: the only change is that after processing a 
frame, the flow jumps to the credit check instead of resetting the priority to 
zero as in WPS. 
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Weighted Fair Scheduling mechanism provides the ability to distribute source 

data traffic over n weighted classes of service. 

Weighted Fair Scheduling (WFS) is implemented using a credit accumulation 

scheme and weighted round-robin servicing, requiring a total of three storage 

registers (weighting, credit store and credit limit) per class of service and one 

adderlsubtracter per channel. For any given egress channel, the scheduler 

begins by adding the weighting value to the respective data block credit store for 

all classes of service. If sufficient credits are available for the first class of service 

to transmit a maximum sized frame (i.e., the credit store is >= WS-THRESH) 

then the transmit pending array is scanned for that class of service beginning 

after the index of the last source port which was serviced from this class of 

service. If the TPA indicates that frame transmission requests are pending, then 

these requests are serviced in source port order, with the credit store being 

decremented for each data block requested until the entire data frame has been 

received. Additional frame requests in this class of service are processed so long 

as the credit store remains above the threshold level. When all transmit requests 

have been exhausted or the credit store has been reduced below the threshold, 

the next class of service is processed. When all classes of service have been 

serviced, the scheduler again updates the credit stores for all classes of service 

by adding the weighting value to the value remaining in the data block credit 

store. The credit store registers saturate atthe limit value. 

Note that if the limit value is set to the weight value, the scheduler will be 

memoryless and will allocate the same share of scheduling requests each time 

through the loop as specified by the weighting values. However, if the limit value 

is larger than the weight value, then bursting is allowed for that given class of 

service and the weight values become time averaged weightings. (A limit value 



lower than the weight value is an illegal condition since it would effectively 

become the weighting value). 

The WFS mechanism is a completely fair system which does not assign any 

priority to a particular class of service and simply acts as a means of sharing the 

available bandwidth for a channel between different class of service without 

wasting unused bandwidth the way traffic shapers or other bandwidth reservation 

systems may. 

3.5 Transmit Frame Reassembly Buffer lnterface (TFRBI) 

The Transmit Frame Reassembly Buffer lnterface is responsible for 

transferring the payload data from the DB message to the relevant TXCTRL 

Frame Reassembly Buffer. Only the payload data is transmitted to the 

downstream FIFO. (Note: the TXSTAT field from the DB header is placed on the 

TXCTRL interface TXD-STAT pins at the time the payload data is transferred). 

The DB message header field is stripped from the data stream by the QADP. The 

Frame Reassembly Buffer is configured as eight virtual FlFOs for the 100 Mbps 

mode and as a single large pool for reassembling frames from up to ten traffic 

streams in the I Gbps mode. 

The TFRBI maintains per channellstream counts of the bytes as they are 

assembled in the MAC FIFOs. At the end of the complete frame, the TFRBI 

writes this information to the Tx Statistics Transaction FIFO. 

The TFRBI does not check the status of the TXD-BLK-AVAILiTXD-RDY bus 

since these signals are checked by the Q i S  before issuing a QF. 



3.5.1 Transmit Statistics Collection 

The EQM maintains the following transmit statistics for the each destination 

MAC address. 

Transmit frames total count 

Transmit bytes total count 

Statistics counts are maintained in external SSRAM. The EQM receives a 16- 

bit pointer in each of the Data Block (DB) messages (TXSTAT) to indicate the 

index of the particular statistics data structure. 

The update of the transmit statistics counters depend on the state of the 

transfer of data to the downstream Tx MAC FIFOs, after the last data block has 

been transmitted. Note that if TXSTAT=O, then no counters are updated. Note 

that the counters do not saturate but will rollover, and that it is the responsibility of 

system software to maintain counter integrity. 

Each data structure consists of two 32-bit double words (Dwords) and 

contains two 32-bit counts. The TXSTAT index is used with the TXST-BASE 

offset control register and the particular statistics counter being accessed, and 

together form a 22-bit address into external SSRAM. This is illustrated in the 

SUM1 description later. 

The various counters and their update conditions are illustrated in below: 

Table 3. Transmit Statistics. 

I Field Bits Description 

Transmitted Frame Total 

Transmitted Bytes Total 

(Running total of bytes 
transmitted to the 
downstream TxCTRL.) 

Update Conditions 

Updated at the end of the 
last data block if no error 
conditions detected. 

Updated at the end of the 
last data block if no error 
conditions detected. 



When the last DB for a given frame is transferred, the TFRBl places Transmit 

Statistics Update Transaction (TSUT) into the Tx Statistics Transaction FlFO 

(TSTF). The format of the TSUT message is as follows: 

Bit 31 Bit 0 

Figure 18. Transmit Statistics Update Transaction (TSUT) Format. The TSUT 
is passed from the TFRBl to the SUM1 after the last byte of a frame has been 
passed through. 

-- 

I TXSTAT (1 6) BYTE COUNT (12) 

3.6 Transmit Statistics Transaction FlFO (TSTF) 

The 32 entry Transmit Statistics Transaction FlFO acts as a buffer between 

the TFRBl and the SUMI. The TFRBl may need to capture multiple TSUTs in a 

DWord 0 

very short period of time. For example, consider the extreme case where a single 

byte DB with EOF set for each channel is received back to back. While the SUM1 

module can process requests fast enough to keep up with full line rate traffic, it 

needs to have bursts of TSUTs buffered so that no requests are lost due to the 

SUNl's latency in accessing the MPAC. 

3.7 Statistics Updater and MPAC Interface (SUMI) 

The Statistics Updater and Memory Port Access Controller Interface 

processes the TSUT messages from the TSTF and permits the EQM to access 

the transmit statistics structures which are held in an external memory: 

The Transmit Statistics Data Structure is stored in external memory as shown 

in Figure 21. There may be up to a total of 65,535 data structures. Each structure 

contains two 32-bit Dwords, as illustrated in Figure 19. The two Dwords are 

running counts of the total frames and total data bytes respectively passed 

through the EQM to the downstream transmit frame reassembly buffer. 



Bit 31 Bit 0 

Figure 19. Transmit Statistics Data Structure. The 2-Dword structure tracks 
the total number of frames and bytes transmitted in packets containing the 
corresponding TXSTAT field. The statistics reflect a running count, which 
must be read frequently enough by an external CPU to prevent the counters 
from wrapping without being read. 
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The data structures accessed by the SUM1 and their respective addressing is 

DWord 0 

DWord 1 

illustrated in Figure 20 and Figure 21 respectively. This illustrates the case where 

a single 16M-bit SSRAM is used externally. 

Bit 23 

TXST-BASE (1 2) 1 
Bit 0 

TXST DWORD (1) 

I 

Figure 20. SRAM Data Structure Addressing. The TXSTAT value from the 
TSUT is used to index into the memory block specified by TXST-BASE. 

+ I TXSTAT (16) 00 



Bit 31 Bit 0 
0x000000 

TXSTAT-1 

TXSTAT-2 

TX Statistics: 
64K x 8 bytes 
= 51 2K Bytes 

TXSTAT-65535 

0x400000 

Figure 21. Example SSRAM Memory Map with 2 MByte used by EQM. The 
unused portions of the memory are used by other blocks in the port 
controller for queue structures and statistics. 



4 Simulations 

4.1 Functional Simulations 

The functional simulations for the EQM were performed by selecting the 

appropriate Verilog modules in one of two test benches. These entities 

control/monitor the EQM 110, and generate output files which can be checked for 

correct operation 

The first test bench operates in a simple open loop mode, which presents 

individual QAs and DBs to the EQM after specified delays. This mode is used for 

simple tests, tests which require a specific sequence of operations, and tests for 

error conditions. 

The second test bench implements source queue generators for each of the 

potentially 1024 SPIDIP combinations. This mode reads in a list of frames for 

each source with DCID, frame length and earliest transmission time. The source 

mimics the behavior of an IQM block, sending QAs when the transmission time is 

reached and responding with DBs to each QF. When all of the scheduled frames 

for a given source have been transmitted, that source signals that it is finished, 

when all sources have finished, the test terminates. While this mode does not 

provide output checking, it does provide an automatic check of the EXACT 

protocol. 

The results of simulations made with the second testbench can be analyzed 

using a per1 script, which calculates the average BW percentage allocated to 

each priority (or class of service level) over the period in the simulation during 

which all streams at all priority levels are active. 



4.2 Performance Simulations 

A suite of simulations was created to test the performance of the EQM1s WFS 

and WPS scheduling modes. All of these tests are run using testbench 2. The 

tests were carried out using varying numbers of streams (4 to 32), weights (equal 

ratios, arithmetic ratios and geometric ratios), limit-to-weight ratios (2:1, 3:1, 4:1), 

and frame sizes (64 byte tinygrams, 1522 byte maxigrams, n"240 byte, and 

random) in both 100 Mbps and 1 Gbps modes. A complete list of the specific 

simulations executed and results are in Appendix B. 

In general the EQM WFS and WPS scheduling modes were able to distribute 

bandwidth between the priority (class of service) levels within an error bound of 

+I- 2.0% of the total bandwidth. There were a few data points which lie outside 

this error bound; however, it was judged that the traffic distribution was accurate 

enough for the intended applications. 



5 Synthesis 

The EQM design was implemented in Verilog HDL code and then 

synthesized into a gate level netlist using Synopsys Design Compiler. The total 

gate count of the EQM exceeded 70,000 gates, which was a large block design 

for the 0.35 micron technology used to implement the port controller ICs. 

Theoretically, Design Compiler should have been able to synthesize the entire 

EQM design in a single operation. In practice the design proved to be challenging 

for the synthesis tool: runs took multiple days to complete and the tool was 

unable to meet the timing requirements. Consequently, each sub-module 

(including top-level glue) was individually synthesized, then the sub-modules 

were assembled in a separate operation (no synthesis) and the overall timing 

confirmed. 

The hierarchical synthesis approach yielded several benefits. First, each 

block was small enough that Design Compiler would complete a synthesis run in 

a matter of hours (instead of days). Secondly, the 100 Mbps QF scheduler could 

be synthesized once and then instantiated 8 times (rather than being synthesized 

8 times in a top level synthesis approach). Finally if the synthesis program had 

difficulty meeting timing objectives for any given sub-module, it was easier to 

identify where the problem occurred, and make adjustments either to the sub- 

module architecture or the individual synthesis script and resynthesizing only the 

sub-module and its dependent hierarchy rather than resynthesizing the entire 

design. 

Hierarchical synthesis did have one problem. Due to the cycle timing 

requirements of the design, it was not possible to place registers on the 

boundaries of each sub-module. Therefore, time budgeting had to be 

accomplished on the outputs and inputs of some sub-module. In particular, this 



tended to occur when there was a large multiplexer on the output of a sub- 

module feeding into combinatorial logic on the input of another sub-module. 

Synthesis could have been made much easier by putting the multiplexer logic into 

the target sub-module, leaving the source sub-module with registered outputs. 

However, this approach would have created physical routing problems with 

hundreds of metal layer traces needing to be routed between blocks. 

Consequently, some significant effort was required to balance the timing budget 

between the sub-blocks. Synthesizing the EQM as a flat entity would have 

removed this issue, but as stated earlier, this approach had even more significant 

problems. 



6 Design reusability 

The EQM was designed with reusability in other IC designs as a priority. 

Wherever possible, the Verilog code was parameterized so that that it would be 

easy to expand the number of ports. The design was broken into sub-blocks that 

could easily be reused to increase the number of ports serviced. Simulation and 

synthesis scripts followed the same approach. The TPA memories were 

designed as separate sub-modules so that a change could be easily made from 

SRAM to register files if the design was re-implemented in a smaller geometry 

silicon technology. 

The EQM was designed such that all inputs and outputs to the block are 

registered. Furthermore, the internal configuration and control registers are all 

accessed by a standard PMC-Sierra on-chip bus. These features (used on all 

PMC-Sierra IC designs) make reuse of the silicon building blocks in new IC 

designs much easier. 



7 System performance 

The scheduling system did operate as intended on the system level. 

However, architectural decisions made in the design of the ingress queue 

manager (IQM) block reduced the usefulness of the scheduling algorithms. The 

IQM in 8-channel (1 00 Mbps) mode maintains a single queue for each 

destination EQM in the system. Therefore, traffic from all 8 input ports is placed 

on a single queue for each destination and priority (or class of service) in a first 

come first served basis. Consequently, while the EQM served ports using round- 

robin fair queuing within a class of service, the merging of traffic from multiple 

ports within the IQM reduced the effectiveness of this approach. Creating 

queuing structures for each input port would have been prohibitive in terms of the 

logic required in the IQM given the restrictions on design size. 

The merged queuing issue did not affect SPS and the ability to implement 

IEEE 802.1 p. In this case, the incoming packets of the same priority level were 

simply queued at the IQM in a first-in-first-out approach, which is an acceptable 

means of scheduling this traffic. 



8 A Comparison of Fair Queuing Techniques 

The EQM's technique of arbitrating traffic is the most technologically 

advanced part of the design. The ability to provide higher priority to different 

classes of packets is useful to allow time sensitive data (e.g. data required to 

dynamically monitor and configure the network, or real-time voice and video 

transmission) to jump ahead of less time sensitive data (e.g. e-mail and file 

transfers). The IEEE 803.1 p standard establishes a simple two level priority 

scheme. Similarly, it may be useful to somehow allocate the available bandwidth 

of a port among several sources either equally or with a non-equal weighting. 

This feature can be used to prevent a given source from unfairly monopolizing 

the port bandwidth. Finally, the two techniques are combined in the WPS 

scheduling method, which gives a given class of service priority until it exceeds 

its maximum allocated bandwidth, which prevents the starvation of lower priority 

queues. 

In the consideration of the EQM's scheduling algorithms, it is worthwhile to 

note that the goal was not to produce a traffic policer, which would restrict the 

bandwidth of a given source (either class of service or individual source ports). 

The goal was to use all of the available bandwidth, but to provide flexibility in 

allocating access to the available bandwidth by competing sources. 

Previous techniques of implementing fair queuing algorithms described in the 

literature, while not specific in implementation, were generally more suitable for 

processor/software based designs. While these designs could have been 

implemented directly in an integrated circuit, the cost in terms of silicon area 

would be prohibitive. It should also be noted that focus on queuing algorithms in 

the literature is generally based on allocating bandwidth between individual 

packet sources. The focus for the EQM is allocating bandwidth on the basis of 



four priority levels or classes of service, regardless of the source of the packets. 

Indeed, within a given class of service, the EQM serves all packets on a round- 

robin basis, which is the most basic form of fair queuing. (As mentioned in 

section 7, the performance of the queuing system is compromised by the 

effecting merging of 8 input ports into a single traffic source for a given class of 

service by the IQM architecture). The more advanced queuing algorithms are 

applied at the class of service level, allowing for paramaterizable bandwidth 

distribution between service classes. 

Nagle first proposed a fair queuing algorithm for datagram networks in 1987 

[6]. Prior implementations used a single queue into which all packets were placed 

on a first come first served basis. Nagle's approach was to maintain separate 

queues for each packet source and then service these queues in a simple round 

robin fashion. If each source presented enough traffic to prevent its queue from 

emptying, then each source will have an equal number of packets serviced by 

the queuing device (a switch, router, or other gateway device). Nagle's approach 

failed to make any provision for packet length; therefore, while quite suitable for 

fixed packet networks, such as ATM, it would not provide "fair" results for variable 

length packet networks such as Ethernet or IP switches. 

The EQM uses Nagle's fair queuing approach within a given class of service. 

Within a service class, source (IQM) queues are sewed on a round robin basis. 

Demars, Keshav and Shenker's article from 1990 [4] extends Nagle's 

approach by taking into account the time to transmit each packet as well as the 

packet arrival time. This algorithm does a good job of fairly allocating bandwidth, 

as opposed to packet transmission, but requires significant computation to 

implement. Demars et. al. also suggest that their fair queuing algorithm can be 

enhanced by allowing "arbitrary bandwidth priorities" to be assigned to given 

sources, which has become know as weighted fair queuing. 
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Credit Based Fair Queuing was introduced by Bensaou, Chan and Tsang [7] 

in 1997 as a practical implementation of weighted fair queuing. CBFQ sorts the 

queues using the following metric and services the queue lowest value: 

packet - size - credits 

bandwidth - share 

This approach reduces the complexity of earlier implementations, which 

relied on virtual clocks; however, it still requires two computations including a 

division operation. The weighted fair scheduling technique implemented in the 

EQM disregards packet size when making the determination of which packet to 

send next. The bandwidth share is taken into account by varying the number of 

credits granted to a queue (in the EQM's case, a class of service) each service 

round. 

During each service round, new credits are added to the credit accumulation 

for each class of service subject to a programmable upper credit limit. Then 

packets within a given the first class of service are served, with a single credit 

being deducted for each EXACT data block message (up to 240 bytes) received. 

The class of service category is sewed with input ports selected in a round robin 

fashion until the credits are exhausted or the queue is empty. Service then 

proceeds to the next class of service queue. This is continued until all queues 

have been served, then a new service round begins and new credits are granted. 

This approach yields burstier results than does CBFQ, and the credit resolution is 

grainier, but the implementation is simple enough to be realized in silicon and the 

results (see appendix) were within acceptable error bounds. 



9 Conclusions 

The Egress Queue Manager was successfully used in two Ethernet port 

controller chip designs. The EQM allowed for IEEE 802.1 p priority queuing 

operations as well as providing two weighted fair queuing modes achieved in a 

small hardware based design with low request (QA) to grant (QF) latency. While 

the overall system level queuing performance was compromised by architectural 

choices in the upstream ingress queue manager, the scheduling logic used in the 

EQM could be successfully used in other implementations. The scheduling 

design of the EQM was considered novel enough, that PMC-Sierra submitted a 

patent application for the design. 



Appendix A: EQM Normal Register Descriptions 

The EQM contains two register sets selectable by the Test Resister Select 

(TRSB) pin. When TRSB = 0, test registers may be accessed through the CRI 

bus. When TRSB = 1, normal mode registers may be accessed through the CRI 

bus. 

The normal mode registers contain operation and configuration controls as 

well as device status indications. In most applications, the configurations 

registers will be programmed only at start-up or after a major mode change. 

Some applications may require dynamic provisioning of the parameters for the 

weighted scheduling modes, but otherwise no interaction with the register set 

should be required on a regular basis while operating. 

After a reset, the register bits will assume the default values listed in each 

register description. An " X  in the default value listing indicates that there is no 

default value for the given bit. When writing to unused bits, the default value 

should always be written in order to avoid problems should a future version of the 

EQM assign a function to a currently unused bit location. 



Table 

Bit TY pe Function Default 

Bit 15 R IRDY 1 

Bit 14 R Unused 0 

Bit 13 R Unused 0 

Bit 12 R Unused 0 

Bit 11 R Unused 0 

Bit 10 R Unused 0 

Bit9 1 R I Unused I 0 

Bit8 1 R I Unused I 0 

Bit 7 R Unused 0 
I I I 

Bit6 1 R 1 Unused I 0 

Bit5 1 R I Unused I 0 

Bit 4 RAN REGSELL41 0 

Bit 3 RAN REGSEL[3] 0 

Bit 2 RAN REGSEL[2] 0 

Bit 1 RIW REGSEL[I ] 0 

Bit 0 RAN REGSEL[O] 0 

IRDY 

The indirect ready register bit indicates that the lndirect Data register is ready to 
be read and that any write operations to indirect registers have been completed. 

The register select bits allow the external CPU to access the indirect registers. 
Any data written to or read from lndirect Data register (address 0x1) will be 
tolfrom the indirect register addressed by the value of REGSEL[4:0]. 



Table A. 2. Reaister 0x01 : lndirect Data. 

I Bit I Type I Function I Default 

Bit 15 

Bit 14 

I ~ i t 1 2  1 RAN I DATA[12] I 0 

Bit 13 

RAN 

RAN 

RAN 

Bit 10 

Bit 9 

DATA[I 51 

DATA[I 41 

Bit 8 

Bit 7 

Bit 3 DATA[3] 

Bit 2 DATA[2] 

Bit 1 RAN DATA[I ] 

0 

0 

DATA[I 31 

RAN 

RIW 

Bit 5 

Bit 4 

0 

RIW 

RAN 

Any data written to or read from this register will be tolfrom the indirect register 
addressed by the value of REGSEL[4:0] contained in the lndirect Register Select 
register (address 0x0). 

DATA[I 0] 

DATA[9] 

RIW 

RAN 

Bit 0 

0 

0 

DATA[8] 

DATA[7] 

0 

0 

DATA[5] 

DATA[4] 

DATA[I 501: 

RIW 

0 

0 

DATA[O] 0 



Table A. 3. Reaister 0x02: lnterru~t and General Status. 

Bit 15 

Bit 14 

I ~ i t 1 1  I R I Unused 1 0  I 

Bit 13 

Bit 12 

I ~ i t 1 0  1 R I Unused I 0 1 

R 

R 

/ B i t 9  1 R I Unused 1 0 I 

R 

R 

HALTED 

FROZEN 

0 

0 

GMODE 

Unused 

Bit 8 

Bit 7 

IB i t3  / R I DBQA SEQE 1 0  I 

X 

0 

Bit 5 

Bit 4 

I B i t l  I R I MTYPE I 0 I 

R 

R 

IBitO / R I TSTAT OVRE 1 0 1  

R 

R 

HALTED: 

Unused 

DBRCV-FIFO-OVRE 

This bit indicates that the EQM has responded to an assertion of the HALT input 
and that all EQM state machines have entered the HALTED state. HALTED is 
cleared on the rising edge of SYSCLK after HALT is deasserted. 

0 

0 

TPA-UNDE 

DBQF-SEQE 

FROZEN: 

0 

0 

This bit indicates that the EQM has frozen in response to a fatal error condition. 
(Note: see FRZ-ON-ERROR bit in the General Control Register). 

GMODE: 

This bit reflects the status of the GMODE input pin. 

DBRCV-FIFO-OVRE: 

This error status bit indicates that the DBRCV FIFO has causing the Queue Fetch 
Scheduler to loose a DB. The interrupt is cleared by reading this register, but the 
EQM must be reset to clear the error condition. 



This bit indicates that a TPA Overflow error (QA received while the TPA count for 
that SPIDIP combination is 15) has occurred in 1 Gbps mode. Cleared by reading 
the lllegal Source Destination ID Register. 

This bit indicates that a TPA Underflow error (DB received while the TPA count for 
that SPIDIP combination is 0) has occurred in 1 Gbps mode. Cleared by reading 
the Illegal Source Destination ID Register 

This bit indicates that a DB-QA sequence error (DB received without first sending 
a QF) has occurred in I00 Mbps mode. Cleared by reading the Illegal Source 
Destination ID Register. 

This bit indicates that a DB-QA sequence error (DB received without first 
receiving a QA) has occurred in 100 Mbps mode. Cleared by reading the Illegal 
Source Destination ID Register. 

This bit indicates that a QA sequence error (QA received while the corresponding 
TPA bit is already set) has occurred in 100 Mbps mode. Cleared by reading the 
lllegal Source Destination ID Register. 

MTYPE: 

This error status bit indicates that a unknown or illegal message type (anything 
other than a QA or DB message) has been received. Cleared by reading the 
Illegal Message Type Register. 

TSTAT-OVRE: 

This error status bit indicates that the TSTAT FIFO has overflowed and some 
statistics have been lost. Cleared by reading this register. 



Table A. 4. Register 0x03: General Control. 
I I I I 

Bit 

Bit 15 

Bit 14 

Bit 13 

Bit 12 

Bit 11 

Bit 10 

Bit 9 

Bit 8 

Bit 7 

Type 

RNV 

RAN 

R 

R 

Bit 6 

Bit 5 

Bit 4 

R 

R 

R 

R 

R 

Bit 3 

Bit 2 

FRZ-ON-ERROR: 

Function 

FRZ-ON-ERROR 

IN IT-AFTER-HALT 

Unused 

Unused 

R 

R 

R 

Bit I 

Bit 0 

When FRZ-ON-ERROR is set, the EQM will freeze after detecting a sequence 
error; when clear the EQM will merely ignore the out of sequence message. 
FRZ-ON-ERROR should be left in its default enabled state except for firmware 
debugging purposes. 

Default 

1 

1 

X 

X 

Unused 

Unused 

Unused 

Unused 

Unused 

R 

R 

IN IT-AFTER-HALT 

X 

X 

X 

X 

X 

Unused 

Unused 

Unused 

RNV 

RIW 

When INIT-AFTER-HALT is set, the QFRP reinitialize the credit counts in the 
stream table. This bit should always be left set during the initial set up of the 
EQM. However, if the EQM is stopped during operation, this bit should be cleared 
before deasserting the HALT signal, in order to avoid destroying the data in the 
stream table. 

X 

X 

X 

Unused 

Unused 

Determines the mode of operation for the Queue Fetch Scheduler. 

X 

X 

SCHMODE[l] 

SCHMODE[O] 

0 

0 



Table A. 5. Scheduling Mode Control Bits. 
I I I 1 
SCHMODE 

00 

0 I 

Mode 

10 

11 

Description 

none 

SPS 

QFS Disabled 

Strict Priority Scheduling 

W FS 

WPS 

Weighted Fair Scheduling 

Weighted Priority Scheduling 



I ~ i t 1 0  1 R I Unused 1 0 1  

Table A. 6. Indirect Register 0x00: Interrupt Enable. 

Bit 

Bit 15 

Bit 14 

Bit 13 

Bit 12 

Bit 11 

Bit 9 

Bit 8 

Function 

Unused 

Unused 

Unused 

Unused 

Unused 

TY pe 

R 

R 

R 

R 

R 

Bit 7 

Default 

0 

0 

0 

0 

0 

R 

R 

Bit 5 

I ~ i t 3  1 RNV I DBQA-SEQE-INT-EN 1 0 1  

I I I 

R/W 

Bit 4 I RNV I DBQF-SEQE-INT-EN 

Unused 

Unused 

t I I 

RNV 

0 

I Bit 0 I RNV I TSTAT-OVRE-INT-EN I 0 I 

0 

0 

DBRCV-FIFO-OVRE-INT-EN 

Bit 2 

Bit 1 

All bits: 0 = disabled, 1 = enabled 

0 

TPA-UNDE-INT-EN 

DBRCV-FIFO-OVRE-INT-EN: 

This bit enables the BDRCV FIFO Overflow error interrupt. 

0 

R/W 

RAN 

TPA-OVRE-INT-EN: 

This bit enables the TPA Overflow error interrupt. 

TPA-UNDE-INT-EN: 

This bit enables the TPA Underflow error interrupt. 

QA-SEQE-INT-EN 

MTYPE-INT-EN 

DBQF-SEQE-INT-EN: 

This bit enables the DB-QF sequence error interrupt. 

0 

0 

DBQA-SEQE-INT-EN: 

This bit enables the DB-QA sequence error interrupt. 



QA-SEQE-INT-EN: 

This bit enables the QA sequence error interrupt. 

MTYPE-INT-EN: 

This bit enables the illegal message type error interrupt. 

TSTAT-OVRE-INT-EN: 

This bit enables the TSTAT FIFO overflow interrupt. 



Bit14 1 R I Unused I 0 

Bit 

Bit 15 

Bit13 1 R I Unused I 0 

Bit12 1 R I Unused I 0 

TY pe 

R 

Bit 11 1 RAN I TXST-BASE[11] I 0 

Function 

Unused 

Table A. 7. Indirect Register OxQ1: Base Address Offset 1, 
I I I 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

Default 

0 

Bit 10 

Bit 9 

Bit 7 RAN I TXST_BASE[7] I 0 

RAN 

RAN 

Bit 4 1 RAN I TXST_BASE[4] I 0 

Bit 5 

Bit3 1 RAN I TXST_BASE[3] I 0 

TXST-BASE[l 0] 

TXST-BASE[9] 

0 

0 

I I I 

RAN 

Bit 0 I RAN I TXST-BASELO] I 0 

Bit 2 

Bit 1 

The TXST-BASE sets the base address of the Transmit Statistics Array stored in 
external SSRAM. 

TXST-BAS E [5] 

The 22-bit DWord address is calculated as follows: 

0 

RAN 

RAN 

address = {TXST-BASE[11 :O], 0000000000) 
+ {00000,TXSTAT[I 5:0], TXST-Dword) 

TXST-BAS E [2] 

TXST-BAS E [ I  ] 

0 

0 



Table A. 8. Indirect Register 0x02: Illegal SourceIDestination Field. 
I I I I 
IB i t  I Type Function I Default 

Bit 15 

Bit 13 R DCID[3] 0 
I I I 

Bit 10 

Bit 8 

I Bit 6 1 R 

Bit 5 

Bit 4 

I Bit 0 I R 

Bit 2 

Bit 1 

The SPlD field reports the SPlD field of a QA or DB message received out of 
sequence. 

R 

R 

DCID[5:0]: 

The DClD field reports the DClD field of a QA or DB message received out of 
sequence. 

R 

R 

SPID[5] 

SPID[4] 

0 

0 

SPID[2] 

SPID[l] 

0 

0 



Table eld. 

Bit TY pe Function Default 

Bit 15 R Unused 0 

Bit 14 R Unused 0 

Bit 13 R Unused 0 

Bit 12 R Unused 0 

Bit 11 R Unused 0 

Bit 10 1 R I Unused I 0 

Bit9 1 R I Unused 1 0 

Bit8 1 R I Unused I 0 

Bit7 1 R I Unused I 0 

Bit6 1 R I Unused I 0 

Bit5 1 R I Unused I 0 

Bit 4 R Unused 0 

Bit 3 R TYPE[3] 0 

Bit 2 1 R I TYPE121 I 0 

Bit I R TYPE[l] 0 

The TYPE field reports the TYPE field of an unrecognized message received by 
the QADBP. 



Bit I Type I Function I Default 

Bit10 1 R I Unused I 0 

Bit 15 

Bit 14 

Bit 13 

Bit 12 

Bit 11 

Bit 9 1 R I Unused I 0 

Table A. 10. Indirect Register 0x04: Global Maximum QF 0 
I I I 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

R 

R 

R 

R 

R 

-- 

Bit3 1 RNV I GMAX_QF[3] I I 

Unused 

Unused 

Unused 

Unused 

Unused 

Bit 8 

Bit 7 

Bit 6 

Bit 5 

Bit 4 

0 

0 

0 

0 

0 

Bit1 I RNV I G M A X - Q F [ I ] I  1 

R 

RIW 

RNV 

R N  

RNV 

Bit 2 

Bit0 I RNV I GMAX-QF[O] I 0 

RNV I GMAX-QF[2] I 0 

The GMAX-QF field controls the maximum number of QFs that the QFS may 
issue across all traffic streams in 1 Gbps mode. A nominal value of 10 is 
recommended, although the value may be set as high as the maximum number 
of memory blocks in the TXCTRL Frame Reassembly Buffer (i.e., 70 for block 
size of 120 bytes, 140 for block size of 240 bytes). Setting GMAX-QF larger than 
the number of blocks in the TXCTRL FRB will not permit more QFs to be issued; 
however, it may impair the scheduling algorithm. 

Unused 

G M A X Q  F[7] 

G MAX-QF[6] 

G M AX-Q F [5] 

G MAX_QF[4] 

This setting has no effect in 100 Mbps mode. 

0 

0 

0 

0 

0 



Table A. 11. Indirect Register 0x05: Maximum QF Outstanding per Stream. 
r I I 

I Bit 2 1 RNV I SMAX_QF[2] I 0 I 

SMAX_QF[7:O]: 

The SMAX-QF field controls the maximum number of QFs that the QFS may 
issue for any given traffic stream in 1 Gbps mode. This setting has no effect in 
100 Mbps mode. A nominal value of 10 is recommended. 

Bit 1 

Bit 0 

RNV 

RNV 

SMAX-QF[1] 

S MAX-Q F[O] 

1 

0 



Table A. 12. Indirect Register 0x06, 0x09, OxOC, OxOF: Channel Weighted 
Schec 

Bit 15 1 R I Unused I 0 

ding (0-3) Limit. 

Bit14 1 R I Unused I 0 

Bit 

Bit13 1 R I Unused I 0 

Type 

Bit8 1 R I Unused I 0 

Bit 12 

Bit 11 

Bit 10 

Bit 9 

Function Default 

R 

R 

R 

R 

Bit 7 

Bit 6 

Bit 5 

Bit 4 

Bit 3 

Bit 0 1 RMI I WSn-LIMIT[O] 1 0 

Bit 2 

Bit 1 

The WSn-LIMIT sets the limit value for the channel Weighted Scheduling Credit 
Store. There are four WS limit control registers (one for each class of service) for 
each channel. In 1 Gbps mode, only channel 0 is used. 

Unused 

Unused 

Unused 

Unused 

RMI 

RMI 

RMI 

RMI 

RAN 

Note that there is one set of weighted scheduling control registers per channel 
and the set is selected by the CHAN_SEL[2:0] pins. 

0 

0 

0 

0 

RAN 

RMI 

WSn_LIMIT[7] 

WSn_LIMIT[6] 

WSn_LIMIT[5] 

WSn_LIMIT[4] 

WSn_LIMIT[3] 

0 

0 

0 

0 

0 

WSn_LIMIT[2] 

WSn_LIMIT[l] 

0 

0 



Table A. 13. Indirect Register 0x07, OxOA, OxOD, 0x1 0: Channel Weighted 
Schec 

B i t 1 4  R I Unused 1 0  

uling (0-3) weight. 

Bit13 1 R I Unused 1 0  

Bit 

Bit 15 

B i t 1 2 1  R I Unused 1 0  

Type 

R 

Bit9 1 R I Unused 1 0  

Bit 11 

Bit 10 

Bit 8 1 R I Unused 1 0  

Function 

Unused 

Default 

0 

R 

R 

Bit 6 1 R/W I WSn-WEIGHT[6] I 0 

Bit 7 

Bit 5 1 RNV I WSn_WEIGHT[5] I 0 

Unused 

Unused 

0 

0 

I I I 

RIW 

Bit 3 1 R/W I WSn_WEIGHT[3] I 0 

Bit 4 I R N  1 WSn-WEIGHT[4] 

Bit 2 1 RNV I WSn-WEIGHT[2] 1 0 

WSn_WEIGHT[7] 

0 

0 

1 I I 

The WSn-WEIGHT sets the weight value for the channel weighted scheduling 
counters. There are four WS weight control registers (one for each class of 
service) for each channel. In 1 Gbps mode, only channel 0 is used. 

Bit 1 

Bit 0 

Note that there is one set of weighted scheduling control registers per channel 
and the set is selected by the CHAN_SEL[2:0] pins. 

RNV 

RAN 

WSn-WEIGHT[l ] 

WSn_WEIGHT[O] 

0 

0 



Table A. 14. Indirect Register 0x08, OxOB, OxOE, 0x11: Channel Weighted 
Scheduling (0-3) Credit Store. 

I I I I I 
Bit 

Bit 15 

Bit 14 

Bit 13 

Bit 12 

Bit 11 

Bit 10 

Type 

R 

Bit 9 

Bit 8 

Bit 7 

Bit 6 

Bit 5 

I Bit 3 1 R I WSn_CREDITS[3] I 0 I 

R 

R 

R 

R 

R 

Bit 4 

I Bit 2 1 R 1 WSn_CREDITS[2] I 0 I 

Function 

Unused 

R 

R 

R 

R 

R 

Default 

0 

Unused 

Unused 

Unused 

Unused 

Unused 

I I I 1 R 

The WSn-CREDITS contains the running count value for the channel weighted 
scheduling counters. 

0 

0 

0 

0 

0 

Unused 

Unused 

WSn_CREDITS[7] 

WSn-CREDITS[6] 

WSn_CREDITS[5] 

Bit 1 

Bit 0 

There are four WS Credit Store status registers (one for each class of service) for 
each channel. In 1 Gbps mode, only channel 0 is used. 

0 

0 

0 

0 

0 

WSn_CREDITS[4] 

Note that there is one set of weighted scheduling control registers per channel 
and the set is selected by the CHAN_SEL[2:0] pins. 

0 

R 

R 

WSn-CREDITS[l] 

WSn-CREDITS[O] 

0 

0 



Table hreshold. 

Bit TY pe Function Default 

Bit 15 R Unused 0 

Bit 14 R Unused 0 

Bit 13 R Unused 0 

Bit 12 R Unused 0 

I ~ i t 1 1  I R I Unused I 0 

IBi t10 1 R I Unused 1 0 

I I I 

Bit 8 R Unused 0 

IB i t7  1 R I Unused I 0 

Bit 6 R Unused 0 

Bit 5 RNV WSlHRESH[5] 0 

Bit 4 RNV WSIHRESH[4] 0 

Bit 3 RAN WSIHRESH[3] 0 

I Bit2 1 RNV I WS_THRESH[2] I 1 

Bit 1 RNV I WS-THRESH[l] I 1 

I Bit0 I RNV I WS-THRESH[O] I 1 

The WSJHRESH contains the number of DB payloads required to assemble a 
maximum sized Ethernet frame. Divide 1518 (1 522 if tag insertion is in use) by 
the DB maximum payload size and round up to the next integer value to 
determine WS-THRESH (see Table 9 for examples). 

Table A. 16. Weighted Scheduling Threshold Values. 

DB Maximum Payload Size WS-THRESH 



Bit 

Bit 15 

Bit 14 

I ~ i t 1 1  I R 1 Unused 1 0  

Bit 13 

Bit 12 

I ~ i t 1 0  1 R I Unused 1 0  

TY pe 

R 

R 

IB i t9  1 R I Unused 1 0  

R 

R 

Function 

TPA-DONE 

Unused 

Default 

0 

0 

Unused 

Unused 

Bit 8 

Bit 7 

Table A. 17. Indirect Register 0x20: TPA Diagnostic RAM Control 
I I I I 

0 

0 

Register. 

R 

RAN 

Bit 6 

Bit 5 

Bit 4 

Bit 3 

Bit 2 

Writing to the TPA Diagnostic RAM Control register will trigger a read of the 
indicated TPA RAM. The RAM data will be latched into the TPA Diagnostic Data 
registers and the TPA-DONE bit asserted after 4 clock cycles. 

Unused 

TPA-RAM-NU M[2] 

RAN 

RAN 

Bit 1 

Bit 0 

TPA-RAM-DONE: 

0 

0 

RAN 

RAN 

RAN 

TPA-DONE indicates that the TPA RAM read has been completed. TPA-DONE 
is cleared by reading the TPA Diagnostic Data High Register. 

TPA-RAM-NUM[l] 

TPA-RAM-NUM[O] 

RAN 

RAN 

TPA-RAM-NU M[4:0]: 

TPA-RAM-NUM contains the TPA RAM number (0-7) for diagnostic address. In 
100 Mbps mode, the RAM number corresponds to the channel number. In 1 
Gbps mode, RAM 0 contains the LSB and RAM 3 the MSB of the 4-bit TPA value. 

0 

0 

TPA-ADDR [4] 

TPA-ADDR [3] 

TPA-ADDR [2] 

TPA_ADDR[4:0]: 

TPA-ADDR contains the TPA RAM address for diagnostic address. 

0 

0 

0 

TPA-ADDR [ I ]  

TPA-AD D R[O] 

0 

0 



Table A. 18. Indirect Register 0x21 : TPA Diagnostic Data High Register. 

Bit 

Bit 13 

Bit 12 

Bit 11 

Bit 10 

I Bit 8 1 R I TPA_DATA[24] I 0 I 

TY pe 

R 

R 

Bit 9 

R 

R 

Function 

TPA_DATA[29] 

TPA_DATA[28] 

I I I 

R 

Bit 6 

Bit 5 

Default 

0 

0 

TPA_DATA[27] 

TPA_DATA[26] 

Bit 3 

Bit 2 

TPA_DATA[3 1 : 1 61: 

TPA-DATA contains the most significant word of data latched from the TPA RAM 
during a diagnostic access. The access is triggered by writing to the TPA 
Diagnostic RAM Control register. 

0 

0 

TPA_DATA[2 51 

R 

R 

Bit 0 

0 

R 

R 

TPA_DATA[22] 

TPA_DATA[2 1 ] 

R / TPA- DATA [ I  61 

0 

0 

TPA- DATA [ I  91 

TPA- DATA [ I  81 

0 

0 

0 



Table A. 19. Indirect Register 0x22: TPA Diagnostic Data Lou 
I I I I 

Function I Default 

Bit 15 

Bit 14 

1 Bit 10 I R I TPA-DATA[lO] I 0 

Bit 13 

Bit 12 

R 

R 

R 

R 

Bit 8 

Bit 7 

TPA-DATA[ 1 51 

TPA_DATA[14] 

Bit 5 

Bit 4 

0 

0 

TPA_DATA[13] 

TPA_DATA[12] 

R 

R 

Bit 3 

Bit 2 

Register. 

0 

0 

R 

R 

Bit 0 

TPA-DATA contains the least significant word of data latched from the TPA RAM 
during a diagnostic access. The access is triggered by writing to the TPA 
Diagnostic RAM Control register. 

TPA-DATA[%] 

TPA_DATA[7] 

R 

R 

0 

0 

T PA_DATA[5] 

TPA_DATA[4] 

R 

0 

0 

TPA- DATA [3] 

TPA- DATA [2] 

0 

0 

TPA- DATA [0] 0 



Table 4.20. Indirect Register 0x23: QFS Stream Table Index Register. 
I I I 

Bit 

Bit 15 

Bit 14 

Bit 13 

Bit10 1 R I Unused 

Type 

R 

Bit 12 

Bit 11 

Bit 9 1 R I Unused 

R 

R 

Bit8 1 R I Unused 

Function 

Unused 

R 

R 

Default 

0 

Unused 

Unused 

Bit 5 1 R I Unused 

0 

0 

Unused 

Unused 

Bit 7 

Bit 6 

0 

0 

R 

R 

Bit 4 

Bit 3 

Bit 0 I RNV I DIAG-ST-I[O] 0 

Bit 2 

Bit 1 

DIAG-ST-IN DEX[15:0]: 

Unused 

Unused 

R 

RIW 

DIAG-ST-INDEX controls which stream table entry (0 through 9) table will be 
available in registers 0x24 and 0x25. Caution: writing this register doesnot latch 
the stream table data, it merely controls a multiplexer on the output of the table. 
Therefore subsequent reads of registers 0x24 and 0x25 may differ. 

0 

0 

RNV 

RNV 

Note: This register is specific to the 1 Gbps mode of operation 

Unused 

D IAG-ST-I N DEX [3] 

0 

0 

DIAG-ST-IN DEX [2] 

DIAG-ST-INDEX [ I  ] 

0 

0 



Function I Default 

Bit 15 

Bit 14 

IBit12 1 R I Unused 0 

Bit 13 1 R 

I ~ i t 1 1  I R I Unused 1 0  

R 

R 

I I I 

Unused 

Unused 

Unused 

0 

Bit 10 

Bit 9 

Table A. 21, Indirect Register 0x24: QFS Stream Table SPIDIP RE 
I I I I 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

0 

0 

. 

R 

R 

Bit 8 

I Bit 6 1 R 1 DIAG-ST- SPID[6] I 0 

Bit 7 

DIAG-ST-ACTIVE 

D IAG-ST-P[1] 

I I I 

R 

0 

0 

R 

Bit 5 

Bit 4 

DIAG-ST-P[O] 

Bit 3 

Bit 2 

tgister. 

0 

DIAG-ST-SPID[7] 

R 

R 

Bit 0 

DIAG-ST-ACTIVE : 

0 

R 

R 

DIAG-ST-ACTIVE indicates if the specified stream is active (1) or inactive (0). 

DIAG-ST- SPID[5] 

DIAG-ST- SPI D[4] 

R 

DIAG-ST-P [ I  :O]: 

DIAG-ST-P contains the priority level assigned to the stream specified in the 
Diagnostic Stream Table lndex Register. 

0 

0 

D IAG-ST-SPI D[3] 

DIAG-ST- SPID[2] 

DIAG-ST-SPID [7:0]: 

DIAG-ST-P contains the source port ID assigned to the stream specified in the 
Diagnostic Stream Table lndex Register. 

0 

0 

DIAG-ST- SPID[O] 0 



Table 

Bit 1 Type I Function I Default 

Bit15 1 R I Unused 1 0  

Bit 14 1 R I Unused 1 0  

Bit13 1 R I Unused 1 0  

Bit 12 R Unused 0 

Bit 11 R ST_CREDITS[3] 0 

Bit 10 I R I ST_CREDITS[2] I 0 

Bit 8 1 R I ST-CREDITS[O] I 0 

Bit 7 R QF_PENDING[3] 0 

Bit 6 R QF_PENDING[2] 0 

Bit 5 1 R I QF-PENDING[l] 1 0 

Bit 2 R QF-OUTSTANDING[2] 0 

Bit 1 R QF-OUTSTANDING[l] 0 

ST-CREDITS indicates the number of DB scheduling credits resewed for the 
stream specified in the Diagnostic Stream Table lndex Register. 

QF-PENDING indicates the number of QF requests accepted from the TPA 
Scanner but which have not yet been transmitted for the stream specified in the 
Diagnostic Stream Table lndex Register. 

QF_OUTSTANDING[3:0]: 

QF-OUTSTANDING indicates the number of QFs which have been transmitted, 
but for which a DB with EOF set has not been returned for the stream specified in 
the Diagnostic Stream Table lndex Register. 



Table A. 23. Indirect Register 0x26: QFS Channel Select Register. 
I I I I 

Bit 

Bit 15 

Bit 14 

Bit 13 

Bit 12 

Bit 11 

Bit 10 

TY pe 

R 

R 

R 

R 

Bit 9 

Bit 8 

R 

R 

Bit 7 

Bit 6 

Bit 5 

Function 

Unused 

Unused 

Unused 

Unused 

R 

R 

Bit 4 

Bit 3 

Default 

0 

0 

0 

0 

Unused 

Unused 

R 

R 

R 

Bit 2 

IBitO I RAN I DIAG-CHAN_SEL[O] I 0 I 

0 

0 

Unused 

Unused 

R 

R 

Bit 1 

DIAG-CHAN-SEL controls which 100 Mbps (0 through 7) channel's state 
information will be available in The diagnostic channel state register. Note: This 
register is specific to the 100 Mbps mode of operation. 

0 

0 

Unused 

Unused 

Unused 

RAN 

0 

0 - 
0 

Unused 

Unused 

RAN 

0 

0 

DIAG-CHAN_SEL[2] 0 

DIAG-CHAN-SEL[l ] 0 



Table A. 24. Indirect Register 0x27: QFS Channel Status Register. 
I I I I I 

Bit 

Bit 15 

Bit 14 

Bit 13 

Bit 12 

DIAG-SCAN-STATE indicates the internal state of the TPA Scanner. This value 
can be used to determine if the TPA Scanner has become locked up due to a lost 
or corrupted message. If this register is read twice and the value changes, the 
state machine is not locked up. A consistent value of OxC means the scanner is 
waiting for access to the EX1 bus. A consistent value of OxD indicates the scanner 
has sent a QF and is now waiting for a DB in return. A consistent value of OxF 
means the state machine is halted due to an assertion of the HALT input. The 
state machine can not hold in other states. Note: This register is specific to the 
100 Mbps mode of operation. 

TY pe 

R 

R 

Bit 1 

Bit 0 

DIAG-QF-P [ I  :0]: 

R 

R 

DIAG-QF-P contains the priority level of the last QF sent for this channel. 

Function 

Unused 

Unused 

R 

R 

DIAG-QF-SPID [7:0]: 

DIAG-QF-SPID contains the source port ID of the last QF sent for this channel. 

Default 

0 

0 

D IAG-SCAN_STATE[3] 

DIAG-SCAN_STATE[2] 

0 

0 

DIAG-QF-SPID[l] 

D IAG-Q F-S P I D [0] 

0 

0 



Table A. 25. Indirect Register 0x28: QFS TXD-BLK-AVAIL Register. 
I I 

Bit 

Bit 15 

Bit 14 

Bit 13 

Bit 12 

IB i t9  1 R I Unused 

Type 

R 

R 

Bit 11 

Bit 10 

R 

R 

Function 

Unused 

Unused 

R 

R 

Bit 8 

Bit 7 

Default 

0 

0 

Unused 

Unused 

Bit 6 

Bit 5 

0 

0 

Unused 

Unused 

R 

R 

Bit 4 

I Bit 2 1 R I TXD-BLK-AVAIL[P] I 0 I 

0 

0 

R 

R 

Bit 3 

Unused 

TXD-BLK-AVAI L[7] 

R 

TXD-BLK-AVAIL[7:O]: 

TXD-BLK-AVAIL indicates the state of the TXD-BLK-AVAIL input to the EQM. In 
1 Gbps mode, TXD-BLK-AVAIL indicates the number of free buffers in the 
downstream frame reassembly buffer. In I00  Mbps mode, each bit of 
TXD-BLK-AVAIL acts as a flow control bit for the corresponding channel; i.e., 
TXD-BLK-AVAIL[n] = 1 indicates that the downstream frame reassembly FIFO is 
ready to accept further DBs from channel n. 

0 

0 

TXD-B LK-AVAI L [GI 

TXD-B L K-AVAI L[5] 

R 

Bit 1 

Bit 0 

0 

0 

TXD-B LK-AVAI L[4] 0 

TXD-B LK-AVAI L [3] 

R 

R 

0 

TXD-BLK-AVAIL[l] 

TXD-B LK-AVAI L [0] 

0 

0 



Appendix 6: EQM Test Register Descriptions 

Test mode registers are used to apply test vectors during production testing 

of the EQM. Test mode registers (as opposed to normal mode registers) are 

selected when TRSB = 0. The two supported test modes are logic scan and RAM 

Built In Self Test (BIST) scan. 

Writing values into unused register bits has no effect. Reading unused bits 

can produce either a logic 1 or a logic 0; therefore, unused register bits should be 

masked off by software when read. 

Writeable test mode register bits are not initialized upon reset unless 

otherwise noted. 

Test registers are write only; consequently, the value written cannot be read 

back. The value returned on CRRDATA[I 5:O] depends only on the mode 

selected (SCAN or BIST) not on the address used. 



Table 1. Test Register I: Test Mode Select. 

Bit 14 1 W I Unused I X 

Bit 

Bit 15 

Bit 13 1 W I Unused I X 

Bit12 1 W I Unused I X 

Type 

W 

Bit 11 I W I Unused I X 

Bit10 1 W I Unused I X 

Function 

GMODEJEST 

Bit 9 1 W 1 Unused 1 X 

Default 

X 

Bit 8 

Bit 7 

Bit2 1 W I Unused I X 

Bit 6 

Bit 5 

Bit 4 

Bit 3 

W 

W 

GMODE-TEST 

W 

W 

W 

W 

Bit 1 

Bit 0 

Allows control of the static GMODE input for test purposes. When TSTB=I, the 
GMODE-TEST register output is multiplexed onto the internal GMODE signal, 
replacing the external GMODE signal 

Unused 

Unused 

TMS [I :0]: 

X 

X 

Unused 

Unused 

Unused 

Unused 

W 

W 

Test mode select: Select one of 4 test modes as shown in the table below: 

X 

X 

X 

X 

TMS[l] 

TMS[O] 

X 

X 

Table 6.2.  Test Modes. 

0 

0 

I I I I TM3 1 Unused I Ox0000 

TMS[l] 

1 

Mode TMS[O] 

0 

1 

0 

Description 

TMO 

TMI 

CRRDATA 

TM2 

Unused 

Core logic (SCAN) 

Ox0000 

SCANOUT[I 5:0] 

RAM (BIST) BISTOUT[I 5:0] 



B.l Test Mode 1: Full scan test logic 

REGISTER DESCRIPTION: 

Table B. 3. Test Register 0x00: Test Enable. 
I I I I I Bit I Type I Function I Default 

l ~ i t 1 5  1 W I Unused 1 X 

I Bit 12 ( W I Unused I X 

Bit 14 

Bit 13 

W 

W 

Bit 11 

Bit 10 

Bit 7 Unused 

Bit 6 Unused 

Bit 5 Unused 

Bit 9 

Bit 8 

Unused 

Unused 

W 

W 

b2 I W I Unused I X 

X 

X 

W 

W 

Bit 4 

Bit 3 

Unused 

Unused 

SCAN-EN: 

Enable shifting of the scan registers. 

X 

X 

Unused 

Unused 

W 

W 

Bit 1 

Bit 0 

X 

X 

Unused 

Unused 

W 

W 

X 

X 

Unused 

SCAN-EN 

X 

X 



Table B. 4. Test Register 0x02: Scan Test Data Input. 
I I I I I 

Bit 4 1 W 1 SCAN-IN [4] 1 X I 
Bit 5 

SCAN-IN[? 5:0]: 

Scan chain input data. 

I I I 

W 

Bit 2 

Bit 1 

SCAN-IN [5] 

W 

W 

X 

SCAN-IN [2] 

SCAN-IN [ I ]  

X 

X 



Table 

Scan chain output data. The logic scan test is carried out by initializing the test 
mode appropriately (the using test mode select register) and then repetitively 
writing a scan pattern into test register 2, pulsing SYSCLK to advance the scan 
chains and then reading the resulting scan pattern out of test register 2. Since 
SYSCLK is used to clock the scan chains (as in normal logic operation), CRTCLK 
is used to clock the test register logic. 



B.2 Test Mode 2: RAM BIST 

Table 1.6. Test Register 0x00: Test Enable. 
I I I 

Bit I Type I Write Function I Read Function 

Bit14 1 W I Unused I X 

I I I 

Bit 13 1 W I Unused I X 

Bit15 1 W 

Bit12 1 W I Unused I X 

Bit11 I W I Unused I X 

Unused 

Bit 10 1 W I Unused I X 

X 

Bit9 1 W I Unused I X 

Bit8 1 W I Unused 1 X 
-- 

Bit 7 1 W I Unused I X 

Bit6 1 W I Unused I X 

Bit5 1 W I Unused I X 

Bit4 1 W I Unused I X 

Bit3 1 W I Unused I X 

Bit2 1 W I Unused I X 

Bit1 I W I Unused I X 

BIST-EN: 

Enable the internal RAM BIST. 

Bit 0 W BIST-EN X 



Table 

Bit ( Type I Function I Default 

Bit 15 W Unused X 

Bit 14 W Unused X 

Bit 13 1 W I Unused I X 

Bit 12 1 W I Unused I X 

Bit11 I W I Unused I X 

Bit10 1 W I Unused I X 

Bit 9 1 W I Unused I X 

Bit 8 W Unused X 

Bit 7 W B IST_DATA[7] X 

Bit 5 W B IST-DATA[5] X 

Bit 4 W BIST_DATA[4] X 

Bit 3 W B IST_DATA[3] X 
I I I 

Bit 0 W B IST-DATA[O] X 

BIST_DATA[7:0]: 

Seed data for the BlST sequence. 



Table B. 8. BlST Mode Data Output. 

IBit13 / R I Unused / X I 

Bit 

Bit 15 

Bit 14 

IBit12 ( R I Unused I X I 
/Bi t11 1 R I Unused I X 1 

Type 

R 

R 

Function 

Unused 

Unused 

Bit 10 

Bit 9 

I Bit 6 1 R I BIST_ERROR[4] I X I 

Default 

X 

X 

Bit 8 

R 

R 

I Bit 3 1 R I BIST-ERROR[l] ( X I 

I I I 

R 

Bit 5 

Bit 4 

BIST-ERROR181 

BIST-ERROR[7] 

I Bit 1 I R I BIST-RESULT I X I 

X 

X 

BIST-ERROR[6] 

R 

R 

Bit 2 

X 

R I BIST-ERROR[O] / X 

On each clock cycle : high if a data write-read-verify comparison mismatch is 
detected for the associated RAM cell : low otherwise. The associated RAMS are 
shown in the table following. 

BIST_ERROR[3] 

BIST_ERROR[2] 

Bit 0 

The address of the RAM location giving the error may be deduced from the clock 
cycle in which the error is detected relative to the start of the BlST pass as noted 
below. 

X 

X 

R BIST-END X 



Table B. 9. BIST-ERROR Bits. 

13 I TPA RAM 3 

Bit 

8 

7 

6 

5 

4 

12 I TPA RAM 2 

RAM 

TSTAT FIFO RAM 

TPA RAM 7 

TPA RAM 6 

TPA RAM 5 

TPA RAM 4 

1 1  I TPA RAM 1 

1 0  I TPA RAM 0 

After the BlST sequence completes, this bit indicates the overall result. If any 
errors were detected at any time, this bit will be 0. Otherwise, 1 indicates that the 
RAM BlST was successful. This bit is only valid when BIST-END is asserted 
high. 

BIST-END: 

Set high at the end of the BlST sequence. 

The RAM BlST test is carried out by initializing the test mode appropriately, 
repetitively pulsing SYSCLK to run the BlST sequence and finally reading test 
register 2 to obtain the result. If the BlST fails, rerunning the sequence and 
monitoring the BIST-ERROR bits in test register 2 on every SYSCLK cycle will 
reveal the RAM location which is failing. The nine RAMS are tested in parallel; 
therefore, the test time is determined by the deepest RAM, dpr32x32. The RAM 
BlST sequence involves 16 accesses to each memory location : thus, the RAM 
BlST takes approximately 1032 clocks. 



Appendix C: Performance Simulation Details 

The results of the weighted scheduling performance simulations demonstrate 

the effectiveness of the scheduling algorithms under different operating modes 

and with a variety of weighting parameters and operating conditions. Table C.l is 

a key for the simulation results, which are presented in Tables C.2 through C.5. 



Table C. 1. Performance Tests Parameter Kev. 

Parameter Description 

Chip 

Scheduling Mode 

Channels 

Streams 

Packet Size 

Weights 

Limit : Weight Ratio 

8x1 OOM 
- 

WPS 

WFS 

PM3380 1 x I Gbps port controller 

PM3370 8 x 100 Mbps port controller 

Weighted Priority Scheduling 

Weighted Fair Scheduling 

Single channel 

Eight channels (used only with FELIX chip) 

Number of unique Source PorVPriority streams in 
service. 

Tinygrams - smallest Ethernet packet 
(64 bytes) 

Maxigrams - Largest Ethernet packet size (1822 
bytes) including VLAN tag 

All packets are multiples of the default DB payload size 
(i.e., n x 240 bytes; n = 1 to 7) 

Packets are randomly sized between 64 and 1522 
bytes 

The weighting credits applied to the four classes of 
service (or priority levels). Even weights of two 
different values were checked to show that traffic could 
be scheduled evenly across all classes of service. An 
arithmetic ratio of weights was checked to show 
situations where the worst ration between two classes 
of service is 4:l. Two geometric ratios of weights were 
checked to show situations where the worst ration 
between two classes of service is 16: 1. Finally a 
corner case where one class of service gets a 
minimum weighting, a second class gets maximum 
weighting and the others classes are unprovisioned is 
used to check worst case conditions. 

The ration between the limit and weight parameters for 
credits affects the "memory" of the scheduler; i.e., how 
many unused credits can be retained by a given class 
of service after each service round. 



'ests - I C 
Weights 

lode. 
I I I . Tabk 

Chip 

I x l G  

I x I G  

I x l G  

I x l G  

I x l G  

I x l G  

I x l G  

I x l G  

I x l G  

I x l G  

I x l G  

C. 2. - 
Mode 

WFS 

- 
WFS 

NFZ 
Chan 

1 

- 
1  

Perfo - 
Streams 

nance - 
Packet 

size Code 

L:W 

Ratio 

2  

=rarnes/ 1 P 1 Expected 1 Actual I Delta 1 
Stream BW% BW% BW% 

512 0 6.7% 3.6% -3.1% 

WFS 

- 
WFS 

WFS 

- 
WFS 

WFS 

WFS 

- 
WFS 

- 
WFS 

- 
WFS 



Weights I L:W ( ~rameol l  P 1 Expected I Actual I Delta I 
Ratio Stream B W %  BW% BW% 

7171717 3 512 0 25.0% 25.0% 0.0% 



node. 
2 

rests - I I 
Weights 

bps 
L:W 

Ratio 

Framed 1 P I Expected / Actual I Delta I 
Stream I I BW% I BW% I BW% 

512 1 0 1 6.7%1 3.6%1 -3.1% 



Packet Weights 

- 
L:W 

Ratio - 
3 

Mode Chan Streams Chip 

I x l G  

I x l G  

I x l G  

I x l G  

I x l G  

=rames/l P ( Expected 1 Actual I Delta I 

WPS 

WPS 

WPS 

WPS 

WPS 



Table C. 4. WFS Performance Tests - 100 Mbl s mode. 
'ramesl P Expected Actual Delta 

- 
L:W 
Ratio - 

2 

- 
3 

Chan 

- 
1 

- 
1 

Chip Streams Mode Packet 

Size Cod1 

Weights 

Stream 

; x100~ I  WFS 

'~100M WFS T 
xlOOM WFS 

xlOOM WFS T 
xlOOM 

xlOOM WFS T 

WFS 

xlOOM 

XIOOM~ WFS 

WFS 

xlOOM 

xlOOM WFS T 

WFS 

xlOOM WFS 



8xI00M 

8~100M 

WFS 

WFS 

1 

1 

4 

12 

T 

T 

15/30/45/60 

15/30/45/60 

4 

4 

256 

256 

0 

1 

2 

3 

0 

I 

2 

3 

10.0% 

20.0% 

30.0% 

40.0% 

10.0% 

20.0% 

30.0% 

40.0% 

8.0% 

21.4% 

32.6% 

37.9% 

9.1% 

20.2% 

30.4% 

40.3% 

-2.0% 

1.4% 

2.6% 

-2.1% 

-0.9% 

0.2% 

0.4% 

0.3% 



.* - s mode. T , able C. 5. WPS Performance Tests - 10 Mb - 
L:W 

Ratic 

:hip Mode Chan 

- 
1 

- 
1 

Streams Packet 

Size Cod€ 

Weights 

:100M WPS T 
:100M WPS T 
:100M WPS 

:I 00M WPS 

:I 00M WPS 

.lOOM WPS I- 
100M WPS 

100M WPS t 
100M WPS 

100M WPS 1- 



Zhan 1 Streams 1 Packet ) Weights Chip 

8xI00M 

8xI00M 

8xI00M 

L:W Frames1 P Expected Actual Delta Mode 

WPS 

WPS 

WPS 

Stream BW% BW% BW% 

256 0 25.0% 25.0% 0.0% 
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