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ABSTRACT 

The relationship between patent applications and R&D expenditure is a prominent 

example of a count data model with panel data. This paper examines the patents-R&D 

relationship by estimating three different panel count data models. The data includes 346 

firms from 1970 to 1979. First is the Poisson model. Since we have panel data, fixed 

effects and random effects models are developed to allow individual firms to have their 

own average propensity to patent. Then a more commonly used model, the negative 

binomial model, is estimated to allow for overdispersion which typically characterizes 

data of this form. The results from these two models are compared using an 

overdispersion test and a Hausman test. The fixed effect negative binomial model is 

found to be the superior model. These two models assume strict exogeneity of the 

explanatory variables. Estimation via GMM is undertaken to address this problem. 
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I INTRODUCTION 

The main focus of this paper is to apply different panel count data models to conduct an 

empirical study on the relationship between Patent applications and R&D expenditures, 

and to find a better model. For the period of 1970 to 1979 there are 346 firms whose 

annual data are used for this study. A simple "Poisson model" is employed first given the 

non-negative and discrete nature of the number of patent applications. Since we have 

panel data, fixed and random effect Poisson models are applied as well. In addition, we 

applied the negative binomial model in order to offset the strong assumptions of the 

Poisson models. Our finding was that the negative binomial model with fixed effects 

outperforms the other models. To avoid some assumptions that may fail in the context, an 

empirical analysis by the generalized method of moments (GMM) is also carried out in 

the last part. 

The rest of the paper is organized as follows: Section I1 reviews the study of patent-R&D 

expenditure relationship in the open literature. Section I11 provides a brief review of the 

assumptions of the basic Poisson model and applies this model to the data in order to 

obtain a benchmark result. Data description is also included in this part. Section IV takes 

into consideration the nature of the panel data. Fixed and random effect models are 

applied to allow each individual firm to have its own average propensity to patent. 

Section V tests for 'overdispersion' in the data as usually the assumption of equal mean 

and variance may be unreasonable. By letting each firm have its own individual Poisson 

parameter, we find that the negative binomial model is more suitable than the panel 

Poisson model. A Hausman test is conducted in Section VI to decide which model, the 

fixed effects or random effects model, is more appropriate. Consistency of the estimators 

of both Poisson and Negative Binomial models requires strict exogeneity of the 

explanatory variables; however, this assumption is likely to faiI in the patent-R&D 

relationship. Therefore, an estimation procedure by the GMM is undertaken in Section 

VII. Finally, in Section VIII we draw up a conclusion. 



I1 LITERATURE REVIEW 

Pakes and Griliches (1984) present the first empirical work designed to study the patent- 

R&D relationship. It focuses mainly on the degree of correlation between the number of 

patent applications and R&D expenditures over a period of 6 years, as well as the lag 

structure relationship. The data used is from 121 U.S. firms over an 8-year period 

(1968-1975). Several different types of linear functional forms are examined from which 

a linear log-log functional form is then chosen as best. The results show that the 

relationship is very strong because there is a high fit ( ~ ~ = 0 . 9 )  in the cross-sectional 

model and weaker but still significant ( ~ ~ = 0 . 3 )  for the within-firm time-series dimension. 

The effects of the previous R&D expenditures are also significant but relatively small and 

the structure is not well defined, which indicates a lag-truncation bias. However this 

could not be distinguished from a fixed firm effect. A negative time trend is also found in 

the whole data set as well as in the subsets. 

Hausman, Hall and Grilliches (1984) continue the work of Pakes and Griliches (1984) 

and develop models allowing for the fact that the patents data consists of nonnegative 

integers, in the context of panel data. A data set of 128 firms for a period of 7 years 

(1968-1974) is used. In this paper, the simple Poisson regression model is applied first. 

Given the nature of the panel data set, generalized Poisson models with fixed effects and 

random effects are developed which allow each firm to have its own average propensity 

to patent. A Hausman test is then carried out to examine whether the fixed effect model 

or the random effect model is more appropriate. To allow for 'overdispersion' into the 

data, the negative binomial model is also used, and the fixed effects and the random 

effects versions of this model are also developed. In addition to the current R&D 

expenditures, various other explanatory variables are used (none vs. 5 lagged R&D terms, 

a size variable, a science sector dummy variable and an R&D-time interaction variable). 

The current R&D in all the specifications exhibits a significant effect, but less so than 

that of the linear model as given by Pakes and Griliches's. Adding the firm's specific 

effects reduces the coefficients by a small amount. Compared by their loglikelihood 

functions, negative binomial models fit better than the ordinary Poisson models. The total 



coefficient of R&D expenditures of the different Poisson models falls to between 0.35 

and 0.59 whereas for the negative binomial models it lies between 0.37 and 0.60, which 

is slightly higher than that of the Poisson model. 

Hall, Griliches and Hausman(l986) analyze two larger data sets to try to capture the lag 

structure of the patent-R&D relationship. The first has observations for 642 firms over an 

8-year period (1972-1979). This data set includes almost all of the manufacturing firms 

who reported R&D expenditures. First the properties of the R&D expenditures are 

examined and strong evidence of a low order AR process is found. Then some basic 

estimations are carried out, with the current R&D, the three lagged R&Ds, the size 

variable and the science sector dummy as the explanatory variables. Different empirical 

methods, nonlinear least squares, Poisson, Negative binomial and quasi-generalized 

pseudo maximum likelihood methods are compared. All the results are qualitatively the 

same, showing a strong contemporaneous relationship. In order to distinguish whether 

the relatively large coefficient on the last lag is due to the correlation of the last R&D 

variable with the R&D expenditures of earlier period, or whether it might be caused by 

correlated fixed effects, data for a subset of the firms is used, for their is a longer time 

period (346 firms for 10 years). But due to the large standard error, the results are fairly 

unstable so there is still not a clear-cut conclusion about the effect of the long run R&D 

expenditures on patents. 

However, for the patent-R&D relationship, the assumption of strict exogeneity, that is the 

current and lagged values of dependent variables do not explain the explanatory 

variables, is likely to fail since it is possible that patents may generate additional R&D 

expenditures to further develop or improve the embodied innovation. However if this 

assumption is violated, the estimation is no longer consistent. Therefore, Montalvo(l997) 

gets around the problem of inconsistency by employing the GMM estimation to examine 

the second data set used by Hall, et a1 (1986). The explanatory variables include the 

current and five lagged R&D expenditures and a time trend. Compared with the 

estimators of conditional maximum likelihood and pseudo maximum likelihood, the 

contemporaneous R&D and the first lag of the R&D are significantly positive; the total 



effect of the R&D on patents is larger than the alternative fixed-effect panel-data 

estimators, yet as well the standard errors are larger. 

Crepon and Duguet (1997) used the GMM to estimate a patent-R&D relationship with 

fixed effects for European data. The data set used consisted of 698 French manufacturing 

firms over a 6-year period (1984-1989). Two mothods are used. The first uses the lagged 

explanatory variables and an intercept; the second set includes the first set plus all the 

independent cross-products of the previous explanatory variables. Results show that the 

estimates obtained from the two methods are similar. Also there is an efficiency gain 

when using the second set of instruments. When considering the fixed effects, the 

estimated return to the R&D is approximately 0.3. Moreover, introducing restrictions on 

the serial correlations as well as allowing for weak exogeneity of the R&D do not alter 

the results. For the rest of the paper, a dynamic effect is examined by including dummy 

variables for firms that have applied for at least one patent in the previous year. The 

finding is that for small positive numbers of the past innovations, there are positive 

effects on the production of innovation. However, this effect slowly vanishes as the 

number of innovations increases. 

I11 BASIC POISSON REGRESSION MODEL 

3.1 The basic Poisson regression model 

The basic Poisson model is 

I 

where i indexes firms and t indexes years and loga,, = x,, P ,  xit is a vector of m 

regressors for unit i at time t. 



This basic Poisson Model embodies some strong assumptions, e.g. 

E(Y,  I x;,) = a;, = VY,, I x;,) 

In this model, it is also assumed that all observations occurred randomly and 

independently across firms and across time. 

3.2 Data Description 

For the period of 1970 to 1979 there are 346 firms in the data set. For each firm there are 

ten years of data on patents and logR&D expenditures (this data was obtained from 

Bronwyn H. Hall's website). In this paper, the specification used is chosen from one of 

the specifications in Hall, et al(1986)'s paper'. The R&D expenditures of the current year 

and the five previous years are used as the explanatory variables. In order to account for 

the differences in propensity to patent across these firms, a dummy variable for the 

scientific sector is added; to proxy the firm size, the book value of the firms in 1971 is 

used. 

Table 1 and Table 2 show the definition and the descriptive statistics of the variables. The 

histogram of the number of patents per million dollar R&D expenditure can be found in 

appendix I. 

Two specifications are used in this paper. So for the basic Poisson model, 

5 5 

log lit = a + Po LOGR, + x Pm LOGR,,,, + p, x DYEAR, + BCISECT, + ytOGK, 
M =l N =2 

' Inexplicably the results in Hall(1986) could not be replicated. 



Table 1 Definition of Variables 
I NAME DESCRIPTION I 

I I eventually granted I 
PAT The number of patents applied for during the year that were 

I 

I I year.. .the previous five years respectively (in 1 972 dollars) I 

LOGR, 

LOGR1 ,..., LOGR5 

The logarithm of the R&D spending during the current year, 

(in 1972 dollars) 

The logarithm of the R&D spending during the previous one 

I I DYEAR2=1 if it is 1976, =0 otherwise;. . . I 

I 

DYEAR2, ..., DYEAR5 

I sector I 

Year dummies, in ascending order from 1976. eg. 

SCISECT 

I 

LOGK I The logarithm of the book value of capital in 1972 

DYEAR5=1 if it is 1979, =O otherwise 

The dummy variable, equal to one for firms in the scientific 

Table 2 Descriptive Statistics of Variables 

Variable 
PAT 

YEAR 
SCISECT 

LOG K 
LOG R 
LOGR1 
LOGR2 
LOGR3 
LOG R4 
LOGR5 
DYEAR2 
DYEAR3 
DYEAR4 
DY EAR5 

3.3 Empirical Results of Basic Poisson Model 

dean 
34.772 
3.000 
0.425 
3.921 
1.256 
1.234 
1.219 
1.206 
1.197 
1.204 
0.200 
0.200 
0.200 
0.200 

The following results for the basic Poisson model (Table 3) are obtained from Limdep 

7.0 since it has the build in capability to deal with panel count data estimation. 

Std.Dev 
70.875 

1.415 
0.494 
2.093 
2.006 
1.984 
1.967 
1.952 
1.942 
1.934 
0.400 
0.400 
0.400 
0.400 

Skew. 
3.455 
0.000 
0.304 
0.124 
0.170 
0.206 
0.229 
0.244 
0.244 
0.228 
1.500 
1.500 
1.500 
1.500 

Kurt. 
17.109 
1.699 
1.092 
2.644 
2.575 
2.555 
2.562 
2.576 
2.585 
2.596 
3.248 
3.248 
3.248 
3.248 

Minimum 
0.000 
1.000 
0.000 

-1.770 
-3.849 
-3.849 
-3.849 
-3.849 
-3.674 
-3.674 
0.000 
0.000 
0.000 
0.000 

Maximum 
515.000 

5.000 
1 .OOO 
9.666 
7.034 
7.065 
7.065 
7.065 
7.065 
7.065 
1 .OOO 
1 .OOO 
1 .OOO 
1 .OOO 

Cases 
173( 
173( 
173( 
173( 
173( 
173( 
173( 
173( 
173( 
173( 
173( 
173( 
173( 
173( 



The current R&D expenditure has a substantial influence on the number of patent 

applications. When time-invariant variables are included, both LOGK and SCISECT 

have significant effects on the expected number of patents. But all the LOGRs 

coefficients display a U-shape, that is, the coefficients of LOGR and LOGR5 are much 

higher than any of the other years' effects. This contradicts our intuition that the effect of 

the R&D expenditures decreases over time. The negative coefficients of the year 

dummies imply that the patent applications from the current year to the years that follow 

are decreasing in this period. When looking at the raw data, an overall pattern of 

decreasing numbers of patents can be found over time. One tentative explanation to these 

negative coefficients is that R&D investment was more risky because of the high 

inflation during the period, thus firms had less incentive to patent. 

Table 3 Estimates of the Basic Poisson Model 

IV PANEL POISSON REGRESSION MODEL 

Basic Poisson Model 

Unlike the basic count data models, the assumption of independent observations is no 

longer required to hold in the panel data models. One advantage of the panel data 

:onstant 
-0G R 
-0GR1 
-0G R2 
-0GR3 
-0G R4 
-0GR5 
IY EAR2 
)YEAR3 
)YEAR4 
)YEAR5 
-0GK 
SCISECT 

Without time-invariant var. With time-invariant var. 

t-ratio 
38.2239 
4.3793 

-1.2371 
0.2069 
1.7879 
2.7052 

10.6652 
-3.31 65 
-3.9466 

-1 2.5828 
-14.91 70 

Coeff. 
1.8283 
0.1 525 
0.0220 
0.0437 
0.0827 
0.1 040 
0.301 1 

-0.0440 
-0.0604 
-0.1 892 
-0.2298 

Std.Dev. 
0.021 2 
0.0307 
0.0428 
0.0398 
0.0370 
0.0333 
0.0225 
0.01 31 
0.01 33 
0.01 35 
0.01 35 

t-ratio 
38.2239 
4.3793 

-1.2371 
0.2069 
1.7879 
2.7052 

10.6652 
-3.31 65 
-3.9466 

-1 2.5828 
-14.91 70 
57.2831 
49.1 552 

Coeff. 
0.8099 
0.1 345 

-0.0529 
0.0082 
0.0661 
0.0902 
0.2395 

-0.0435 
-0.0524 
-0.1 702 
-0.201 9 
0.2529 
0.4543 

Std.Dev. 
0.021 2 
0.0307 
0.0428 
0.0398 
0.0370 
0.0333 
0.0225 
0.01 31 
0.01 33 
0.01 35 
0.01 35 
0.0044 
0.0092 



formulation over the cross-sectional data formulation is that it permits more general types 

of individual heterogeneity. For example, in the estimation of the relationship between 

the number of patent applications and the R&D expenditures, if a cross-section model is 

used, the only way to control for heterogeneity is to include firm-specific attributes such 

as industry, or firm size. When there happen to be other components affecting individual 

firm-specific propensity to patent, the estimates may become inconsistent. According to 

the nature of patent application, it is very likely that the differences in technological 

opportunities or operating skills may affect the observed number of patents. But these 

firm specific factors are not captured by the explanatory variables in the basic Poisson 

model. In this part, we estimate the effect of the R&D expenditures on patent applications 

by individual firms, controlling for individual firm-specific propensity to patent by 

including a firm-specific term an unobserved firm-specific propensity to patent. For this 

panel Poisson model, the data is assumed to be independent over individual units for a 

given year; but it is permitted to be correlated over time for a given individual firm. As in 

least square panel data model, two models can be used, fixed effects, where separate 

dummies are included for each individual firm; and random effects, where the individual 

specific term is drawn from a specified distribution. 

4.1 Random Effects Poisson Model 

For the Poisson model with intercept heterogeneity, the random effects model as 

developed by Hausman et a1 (1984) was: 

= air U~ 

Whereui(= e x p ( ~ ~ ) )  is the firm specific random variable. xit is a vector of regressors 

including the overall intercept. ;f, and 4,. (t # t') are correlated because of u, , while 

and are uncorrelated by the assumption that ui is independent of ui (i t j) 



To estimate the coefficients, ui is assumed to distribute as a gamma random variable with 

parameter (6,6) (normalized so that the mean is 1, and the variance is1/6), so 

Estimated by maximum likelihood estimation, the results are given in table 4. 

SCISECT 

Delta 

Panel model with random effects I 
Table 4 Estimates of Panel Poisson Model with Random Effects 

Variable 

Constant 

LOG R 

LOGRl 

LOGR2 

LOGR3 

LOG R4 

LOG R5 

DYEAR2 

DYEAR3 

DYEAR4 

DYEAR5 

Without time-invariant var. I With time-invariant var. I 

4.2 Fixed effects Poisson Model 

For the Poisson model, the specification of fixed effects is: 

I 

coefficient I std.dev I t-ratio I coefficient std.dev t-ratio 



where d l  are firm specific dummies, a, (= exp(d,)) are the individual specific effect, 4, 

is a vector of regressors. 

In order to estimate the fixed effects model, the conditional maximum likelihood method 

was developed by Hausman et al(1984). Since y, follows the Poisson distribution, the 

sum of patent y, also follows the Poisson distribution. 
f 

The distribution of y, conditional on y, follows a multinomial distribution: 

Compared with the fixed effects model, one advantage of the random effects model is 

that it is more efficient when correctly specified, that is, relative to the fixed effects 

model, it has n additional degrees of freedom. In addition it allows for the use of time- 

invariant variables, which in the fixed effects model are absorbed into the individual- 

specific effect ai , and are not identified. In contrast, the advantages of the fixed effects 

model are that the population distribution of q need not to be specified, which avoids the 

inconsistency that might happen in the misspecified random effects model. Rather than 

having to assume that the individual effects are uncorrelated with the other regressors, the 

estimators of the fixed effects give consistent estimation under all circumstances. 

4.3 Empirical Results for the Panel Poisson Model 

Table 4 and Table 5 are the results of the estimation of the two models above. According 

to the random effects model, the coefficients for LOGR(0.47 and 0.40 respectively) are 

much higher than those for the basic model(0.15 and 0.13 respectively). The firm specific 



variables, the firm size and the science sector variables still show a strong influence on 

patent application, which is consistent with our assumptions that large firms or firms in 

the science sectors have more incentive or are more efficient in getting the R&D output 

patented. The U-shaped pattern of R&D expenditure coefficients is attenuated. Yet all 

year dummies are still negative and significant. 

Looking at the results from the panel Poisson model with fixed effects, the current R&D 

expenditure also shows a strong influence on the patent application (0.32) both 

statistically and economically. However, the first year and fourth year's coefficients are 

negative with the first year displaying a significantly negative value, which contradicts 

our assumption that previous R&D expenditures should have a diminishing but positive 

effect. As for the year dummies, the results are similar to the results of random effect 

model. 

Table 5 Estimates of Panel Poisson Model with Fixed Effects 

V NEGATIVE BINOMIAL MODEL AND OVERDISPERSION TEST 

Panel Poisson model with fixed effects 

The Poisson model has the strong restriction that the variance and mean are equal. 

However, this assumption is often violated in the real count data sets, that is, the data is 

Variable 

LOG R 

LOGRl 

LOG R2 

LOGR3 

LOG R4 

LOG R5 

DYEAR2 

DYEAR3 

DYEAR4 

DYEAR5 

coefficient 

0.32221 

-0.0871 3 

0.07858 

0.001 06 

-0.00464 

0.00261 

-0.04261 

-0.04005 

-0.15712 

-0.1 9803 

std.dev 

0.02846 

0.04037 

0.03624 

0.02621 

0.03078 

0.02297 

0.01 21 7 

0.00864 

0.00744 

0.00832 

t-ratio 

1 1.32300 

-2.15800 

2.1 6900 

0.04000 

-0.15100 

0.1 1 300 

-3.50200 

-4.63400 

-21.12300 

-23.79700 



overdispersed. Overdispersion occurs when the conditional variance exceeds the 

conditional mean. This may be caused by unobserved individual heterogeneity, or 

excessive zeros in the count data, which is quite common in the real world. When we 

examine the statistics of the data, 'PAT' varies from 0 to 515, with distribution skewed to 

the left together with a long right tail. This is a common feature of overdispersion, which 

shifts the mean towards the origin. 

If this violation is true then the Poisson model would be inappropriate. It may lead to 

very erroneous and overly optimistic conclusions concerning the statistical significance 

of the regressors. To deal with overdispersion, a distribution that permits more flexible 

modeling of the variance than the Poisson model should be used, the negative binomial 

distribution is such a distribution. 

Variable 
PAT 

5.1 PANEL NEGATIVE BINOMIAL MODEL 

The negative binomial model allows each firm's Poisson parameter to have its own 

random distribution. Like in the panel Poisson model, two different models, the fixed 

effects and random effects model are developed and was done by Hausman et al(1984). 

Mean 
34.772 

5.1.1 Negative binomial model with fixed effects 

When we add firm specific effects to the negative binomial model, we get: 

with E( yit 1 EL ) = a,.@I 
and Var(y, 1 8,)  = Ait (6, + 82) 

therefore, 

Std.Dev 
70.875 

Skew. 
3.455 

Kurt. 
17.109 

Minimum 
0.000 

Maximum 
515.000 

Cases 
1730 



all terms involving 8, are cancelled out. 

5.1.2 Negative Binomial random effects model 

For the random effects model, starting from equation (6), by assuming 1/(1+ 8 , )  is 

distributed as beta(a,b), the joint density for the ith individual is : 

5.1.3 Empirical results of the panel negative binomial model 

The results of this negative binomial model can be found in table 6. The current R&D 

expenditure shows a strong positive influence. All coefficients of the previous years' 

LOGR expenditure are positive and decreasing over time, which coincides with our 

expectations, yet all of them are insignificant. For the fixed effects model, the first two- 

year dummies are positive, but the latter two years are negative, which can be explained 

that sometimes the number of the patent applications varies over years in a pattern similar 

to a wave. We can also notice that the standard error of these models are greater than the 

counterparts in the panel Poisson model, this is because the negative binomial model 

allows for an additional source of variance. 

5.2 Test for Overdispersion 

There are several methods of testing for overdispersion. For example, there are 

regression-based tests, the Wald test and the LR test. In view of the fact that the log- 

likelihood function of both the panel Poisson model and the negative binomial model can 



Table 6 Estimates of Negative Binomial Model 

I Negative binomial model with fixed and random effects I 

Variable 

Constant 

LOG R 

LOGR1 

LOG R2 

LOGR3 

LOG R4 

LOGR5 

DYEAR2 

DYEAR3 

DY EAR4 

DYEAR5 

a 

b 

Random effects 

t-ratio I Coefficient I std.dev I t-ratio 1 
Fixed effects 

Coefficient 

1.39944 

0.38762 

0.01 833 

0.1 2909 

0.02469 

0.05775 

0.1 0003 

-0.04671 

-0.0651 2 

-0.20006 

-0.25096 

2.64396 

2.02183 I l l  

I 
std.dev 

0.09081 

0.06982 

0.1 0030 

0.09604 

0.07347 

0.07785 

0.05446 

0.03092 

0.02360 

0.021 15 

0.02083 

0.28263 

0.19617 

be obtained without difficulty, the LR test is used to test for overdispersion (Cameron, 

1998). Here we test the results of the models with fixed effects. 

Ho: E(y, ) = Var(y, ) , which means the Negative Binomial model reduces to the Poisson; 

HI: E(y,  ) < Var(y, ) , which implies overdispersion. 

LR = -2(LLFr - LLFu) , 

where LLFr is the log-likelihood function of the Poisson model, LLFu is the log- 

likelihood function of the negative binomial model, 

It follows thex2 distribution. Since there is only one constraint, the degree of freedom is 

one. 

In this sample, LLFr is -3536, LLFu is -3391, 



As one can see there is strong evidence of overdispersion, thereby the negative binomial 

model is more suitable for this sample. 

VI HAUSMAN TEST 

Although the random effects model can include time-invariant variables and is more 

efficient when compared to the fixed effects model, it is consistent only when it is 

correctly specified. So it is necessary to test which one is better for our data. The 

Hausman test is used on the estimates of the negative binomial model (Hausman, 1984). 

Under the null hypothesis, the random effects model is correctly specified, so both the 

fixed and the random effects models are consistent, while under the alternative 

hypothesis, the random effects are correlated with the regressors, so the random effects 

model loses its consistency. 

Thus, the Hausman test: 

Ho: The random effects model is appropriate. The preferred estimator is A, 
HI: The fixed effects model is appropriate. The preferred estimator is B ,  . 

The Hausman test is based on the distance: 

rH = (aRE - B,q )W t B, 1 - v ( B R E  )I-' ( B R ,  - B F J  

It follows that  the^: distribution, with a degree of freedom of q (the dimension of P,). 

From the result, 

So now we can reject the null hypothesis, and accept that the fixed effects model is more 

appropriate, since there is strong evidence that the firm specific effects in the random 

effects model are correlated with the explanatory variables. 



VII GMM ESTIMATION 

GMM estimation is a very general estimation method used in econometrics. In some 

sense, maximum likelihood and quasi-maximum likelihood can be considered as special 

cases of GMM. The generalized method of moments (GMM) has become popular in 

recent years since it requires fewer assumptions. The consistency of the estimators from 

the Poisson and the Negative Binomial models in this panel count data model requires the 

explanatory variables be strictly exogenous. But in the patent-R&D relationship, this 

assumption is likely to fail since once a firm succeeds in one patent application, it is 

likely that more R&D expenditures will be needed for full development or improvement 

of products embodying the patent. Consequently R&D expenditures should not be 

considered as strictly exogenous. Moreover, the GMM estimation procedure is not based 

on assumptions about the distribution of the error terms. In this part of the paper, the 

GMM method is applied to the fixed effects model and the results are compared to those 

obtained from the previous sections2. 

7.1 Introduction to GMM Method 

One approach to get moment conditions for the GMM estimation is to find a set of 

instrumental variables ( z, ) and residuals ( E ~  ) to satisfy the orthogonality conditions: 

E[z,E,] = 0 

Since E, is a function of the parameters, the estimators can be obtained by solving these 

moment conditions. If the number of moment conditions (L) equals the number of 

parameters (K), it is identified; if L>K, it is overidentified. 

Then the sample moment conditions will be: 

In case of overidentification, the GMM estimator B, will be obtained by minimizing 

F = m(P)'W-'rn(fl) , where w -' is the weight matrix. 

2 For a detailed introduction regarding GMM, please refer to Kennedy(2000). 



7.1.1 Defining the residuals 

The transformation method, developed by Chamberlain (1992), is used here to eliminate 

the unobservable effects in the context of sequential moment restrictions for models with 

multiplicative fixed effects. The transformation is as follows: 

For the fixed effect model, 

under weak exogeneity, uit 

In order to eliminate the unobserved firm specific effects, rewrite (10) for t+l, and 

solving for ai , then substitute back into (9), we obtain: 

So vit is uncorrelated with past and current values of x. 

Define: 



This is the residual we are going to use. 

7.1.2 Minimization criterion 

Thus the GMM estimator of Pcan be obtained by minimizing 

1 
where \i: = - ~ ~ : i . , i . ~ ~ ,  , Ci is $estimated using some predetermined D . 

n 1 = 1  

The matrix of instruments Zi of this panel count model should look like: 

where zi, is some function of the x variables. 

Under mild regularity conditions, is consistent and normally distributed with the 

asymptotic variance-covariance matrix: 



I N  
where D(B)  = -z .Z;VV, ( B )  

N 

and 0 ( B )  = w@) 

7.2 Empirical Result Using GMM Estimation 

In this paper, we have n=346, T=5, so the residual v, (P) is: 

In order to choose the instrumental variables, we need to check the moment conditions. 

The orthogonalitiy conditions of the year dummies with the residuals are same as the 

moment conditions of the residual itself, so we can eliminate the redundancy. Since the 

residual is uncorrelated with past and present value of the R&D expenditures, zit includes 

the intercept and all previous year's LOGR. So there are 34 (7+8+9+10) moment 

conditions, which are contrary to the case of strict exogeneity, where a common set of 

instruments are used. Here the number of instruments increases with the number of 

periods. 

The estimates obtained from the negative binomial model with fixed effects are used as 

the starting values. Compared with the results of the Poisson Model, the 

contemporaneous R&D still has a significant effect on the patent application and the first 

year's lagged R&D is no longer negative. The total effect of R&D on patents is larger 

than that of the Poisson model, but not as large as the one derived from the negative 

binomial model. The standard errors are also larger than that of the Poisson model, 

indicating less efficiency in estimation. However, the last lag is negative and significant 

and all coefficients of the year dummies are negative. 



Table 7 The Result of The GMM Estimation 

GMM Estimation I 
Variable 

LOG R 

LOG R 1 

LOGR2 

LOGR3 

LOGR4 

LOGR5 

DY EAR2 

DYEAR3 

DY EAR4 

DYEAR5 

7.3 Overidentification Test 

Another advantage of the GMM is that it provides an easy specification test for the 

validity of the overidentifying restrictions. If it is exactly identified, the criterion for the 

GMM estimation (F) should be zero since we can find the estimates to exactly satisfy the 

moment conditions. When in the situation of overidentificaiton, the moment conditions 

imply substantive restrictions. So if the model we apply to derive the moment condition 

is incorrect, some of the sample moment conditions will be systematically violated. 

Following Winkelmann(2000), the overidentification test: 

zoefficient 

0.35437 

0.061 83 

0.1 1762 

0.08297 

-0.06742 

-0.1 2877 

-0.02976 

-0.02705 

-0.1 271 2 

-0.1 7532 

Ho: E [ v ~ z , ]  = 0 ,  that is the restrictions are valid. 

HI: The specification is invalid. 

The overidentification test is based on the minimum criterion function evaluated at 

p = B and divided by the sample size, that is: F, = F l n , 

std.dev 

0.1 5521 

0.05830 

0.05307 

0.05220 

0.04851 

0.0461 1 

0.01 372 

0.01 879 

0.02770 

0.03572 

t-ratio 

2.2831 2 

1.06059 

2.21 61 7 

1.58923 

-1.38984 

-2.79291 

-2.1 6939 

-1.43921 

-4.58974 

-4.90832 



and the test statistic follows thex; distribution, with a degree of freedom of L-K, where 

L is the number of moment conditions (34 in this case) and K is the number of parameters 

(10) in this case. 

So the result shows we should accept the null hypothesis that all the moment conditions 

are valid at a 5% significant level. 

VIII CONCLUSION 

Several models were applied to study the relationship between patent applications and the 

R&D expenditures. Firstly we used the Poisson model with cross-sectional data, which 

overlooks the panel nature of the data and controls for heterogeneity only by including 

firm specific effects such as firm size or as to whether it belongs to the science sector. 

The result is then used for comparison. Then the panel Poisson models with unobservable 

fixed effects and random effects are used to control for firm specific effects. One of the 

assumptions of the Poisson model is that the mean and the variance should be equal, 

which does not usually hold true. From the data description, we also find that the 

distribution of the patent application skews to the left together with a long right tail, 

which indicates that there might be overdispersion. So the alternative negative binomial 

models are applied for overdispersion. Finally the GMM estimation is carried out with 

the relaxed assumption of strict exogeneity, since additional R&D expenditures is very 

likely to happen when the firm succeeds in a new patent. 

Table 8 is the summary of estimators from different models with only time-invariant 

variables. Two major results are compared. First is the coefficient of the current year's 

R&D expenditure. Since P o ' s  are from different generalizations of the Poisson models, 

they have the same interpretation and are found to be significantly important in all the 

models. The second result that is compared is the sum of all the coefficients of the current 

R&D expenditure and previous years' R&D expenditures. It is approximately equal to the 



product of the coefficients of R&D expenditures which is the long run effect of R&D 

expenditures on patent applications. When comparing the results of different models, I 

prefer the Negative Binomial model with fixed effects. According to the overdispersion 

test and Hausman test, the Negative Binomial model with fixed effects is more 

appropriate compared to other Poisson Models and Negative Binomial models. The result 

of the estimation, that is, all coefficients of R&D expenditures are positive and the long 

run effect is the highest, is in line with the assumption of the R&D-patent relationship. 

Though theoretically only the estimates from the GMM estimation is consistent, it is less 

efficient. The result is not very stable because of the large standard error. The only thing 

we can conclude from the GMM estimation is that the contemporaneous R&D 

expenditure has important effect on the number of patent applications. 

Table 8 Comparison of Alternative Estimatiors 

t-rati o 

Model I I I I 

I I I 

Panel Poisson with I 

Basic Poisson 

Panel Poisson with 
fixed effects 

4.3793 0.15 0.69 

0.32 

random effects 
Negative Binomial 
with fixed effects 
Negative Binomial 
with random effects 
GMM 

1 1.323 

0.36 

0.31 

0.38 

0.35 

3.156 0.84 

5.552 

2.283 

0.69 

0.42 



APPENDIX I 

Figure 1 Number of Patents Per Million R&D Expenditure 

Std. Dev = 2.90 

Mean = 2.9 

N = 345.00 

number of patents per million R&D expenditure 
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