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ABSTRACT

Priority arguments are applied to three problems
in the theory of r¢e. classes.
Chapter I: A conjecture of P. R. Young in A Theorem on
Recursively Enumerable Classes and Splinters, PAMS 17,5
(1966), pp. 1050-1056, that an r.e. class can be constructed
with any pre-assigned finite number of infinite r.e.
subclasses, is answered in the affirmative.
Chapter II: Standard cdasses and indexable classes were
introduced by A. H. Lachlan (cf. On the Indexing of
Classes of Recursively Enumerable Sets, JSL 31 (1966),
pp. 10-22). A class C of r.e. sets is called sequence
enumerable if the r.e. ¢ sequences:.can all be enumeratead
simultaneously, and subclass enumerable if the r.e.
subclasses of C can all be enumerated simultaneously.
It is shown that i1f ¢ is a class of r.e. sets, ¢ is
standard = ¢ 1s sequence enumerable = ¢ i1s indexable = C is
subclass enumerable, but none of the implications can be
reversed.
Chapter III: A partially ordered set (#,<) is represented
by the r.e. class ¢ if (#,<) is isomorphic to (e,<s).
Sufficiently many p.o. sets are proved representable to
verify a conjecture of A. H. Lachlan that répresentable P.0O.
sets and arbitrary p.o. sets are indistinguishable by

elementary sentences.
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INTRODUCTION

Recursively enumerable classes were defined and
first investigated by Rice [2]. For general information
on recursive functions we refer the reader to the text
of Kleene [1]. The "priority method" of Friedberg and
Muchnik is discussed in Sacks [4].

Chapter 1 is to appear under the title "Infinite

''in the

Subclasses of Recursively Enumerable Classes'
Proceedings of the American Mathematical Society. The
main results of Chapter 2 were announced at the American
Mathematical Society Annual Meeting in Houston, January,
1967.
REVIEW OF BASIC DEFINITIONS. These are mostly standard in
the literature.

N will denote the set of natural numbers, and N the

cartesian product of N with itself n times.

We will take as primitive the notion of n argument

partial recursive (p.r.) function. Intuitively, this is a

function from a subset of Nn into N which can be
effectively enumerated when considered as a set of ordered

(n+1)-tuples. Church's Thesis identifies this intuitive

idea with various provably equilivalent formal definitions
(see [1)). We will make free use of Church's Thesis.

Definition 0.1 An n argument recursive function is an

. S s n
n argument p.r. function whose domain is N,

Definition 0.2 R € N is a recursive subset of N if the




characteristic function f of R defined by

f(x1,...,x ) = 0 if (x .,xn) € R

12
1 if (x1,...,xn) £ R
is an n argument recursive function. That is, we can

effectively decide membership of R.

Definition 0.3 & € N" is in% if

(X1”"’Xn) e S e (Q1y1)...(mem)[(x1,...,xn,y1,.,.,ym)e R]

+m

. . , n
where R is a recursive subset of N and Q1”"’Qm are m

alternating quantifiers of which the first is 4.

s e N is in O oo (replace E by V).

Definition 0.4 S € N" is a recursively enumerable (r.e.)

subset of Nn if S is ir12:1. That is, we can effectively

enumerate S,

Definition 0.5 A sequence <S, | Xqseee X, 2 0> of

1,--.,%

n . . .
r.e. subsets of N~ is an m-dimensional r.e. seguence of

r.e. subsets of Nn if

{(X1""’xm’y1""’yn)| (y1:---gyn) € SX1,..0, } ls an

r.e. subset of Nn+m.

Definition 0.6 A sequence <@ _ | XyseessX 2 0> of

1’..")([n

n argument p.r. functions is an m-dimensional r.e.

sequence of n argument p.r. functions if the function @

defined by

QX s X 5T aeeesy) (¥qse0-59,) is an

®
Xyseeos Xy

(m+n) argument p.r. function.
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Definition 0.7 A class € of r.e. subsets of Nn is an r.e,.

class of r.e. subsets of N7 if either C is empty or there is

a 1-dimensional r.e. sequence <SX] X 2 0> of r.e. subsets of

Nn

s.t.f e = {SXI x 2 0}. That is, not only can each member
of ¢ be effectively enumerated, but they can all be

effectively enumerated simultaneously. Such a sequence

as <SX] X 2 0> 1is called a recursive enumeration of C.

Definition 0.8 A class ¢ of n argument p.r. functions is an

r.e. class of n argument p.r. functions ... (obtained fram

0.6 as 0.7 is from 0.5).

FUNDAMENTAL THEOREM. (Church, Kleene, Post Turing)

The class of all n argument p.r. functions is an r.e. class.
The class of all r.e. subsets of N is an r.e. class.
CONVENTION., Although it will be convenient to have the
above definitions in their full generality, we make the
following convention, Unless otherwise stated,

recursive set means recursive subset of N

r.e. set means r.e, subset of N

r.e. sequence meahs f-dimensional r.e. sequence of r.e. sets.

r.e., class means r.e. class of r.e. sets.

* such that



CHAPTER 1

INFINITE RECURSIVELY ENUMERABLE SUBCLASSES

P.R. Young [7] has constructed an infinite r.e. class
with no proper infinite r.e. subclasses, and has asked 1if
infinite r.e. classes with m+1 infinite r.e. subclasses
exist for every m20. It can further be asked what is the
most general partially ordered set we can represent by the
system of the infinite r.e. subclasses of such a class
(under inclusion). These questions are answered by the
theorem below. Our construction is based on a formulation
of Young!s due to A. H. Lachlan.

THEOREM. (a) Let m=21, nz1., Let {Fil 1sism+1} be a class

of subsets of {x | 1sxsn} closed to subsets and with
U{Fil 1sism+1} = {x | 1sx=n}.

Then there is an infinite class C* of r.e. sets and

distinct r.e. sets A s Ay not in ¢¥* such that

1,--

¢ = cxUlA; | 1sis<n}
is an infinite r.e. class with infinite r.e. subclasses
c - {4 | ieFj} (1=Jsm+1).

(b) There is an infinite r.e. class with one
infinite r.e, subclass.
CONVERSELY, any infinite r.e. class with finitely many
infinite r.e. subclasses is of one of these forms.

PROOF. We prove the converse first. Let C be an
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infinite r.e. class with m+1(m21) infinite r.e. subclasses.

If 61 is an r.e. subclass and XeC-C then G1U{X} is an r.e,

13
subclass. It follows that each infinite r.e. subclass
lacks only finitely many members of ¢. Let C¥* be the
intersection of the infinite r.e. subclasses, then C-¢*

is finite, with members A,,...,A say (nz1). Now the

17"

infinite r.e. subclasses of @ have the form
C-{A; | 1eFy} (1<ismt1)

where the Fj are subsets of {x| 1sxsn}. These are closed

to subsets, for if FGFJ
c-{A; | 1eF} = (c-{A, | ieF;})utay | 1eF;-F)

and the union of two r.e. classes is an r.e. class. Also,

by definition of A.,,...,A ,

1° n
LJ{FiI 1sism41} = {x | 1sxsn}.

This completes the proof of the converse.
Note that in (a) m+1S2n. We give a construction for

the case m+1<2" and obtain as corollaries the case m+1=2"

and (b), both of which Young has already proved.

eosG

Since m+1<2n there are subsets G say of

1°2° 1
{x | 1sxsn} different from all the F.. For each

i,k(1<i<l,1sksm+1) there is a number

since the Fi are closed to subsets. For each k with

i<k<m+1 there will be a different variation of the
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construction. We will show that these variations in the

construction all give rise to the same C*, A, ,...,A

1° n'
At this point we make some informal remarks in an
attempt to motivate the construction which follows. C

will be enumerated in an r.e. sequence

<A1,...,A s V i >

n o’ "1°°°

To begin with the (x+1)-st member of the sequence is Just
{x}. There will be an increasing function r(i) such that
the Vi different from each of A1""’An are Vr(O)’Vr(1)"
These will be disjoint from each other and from each of
A1,...,An. At step s of the construction we will work
with a recursive approximation to r(i), namely r(i,s).
We must ensure (see Lemma 1 below) that for all
sufficiently large s, r(i,s) is constant. Call this
Requirement r(i). Let W, be the r.e. set with index e in
some recursive enumeration of the r.e. sets. By
"amalgamating" members of the sequence, we will satisfy
what we can call Requilirement We, which is : if We
intersects infinitely many of Vr(O)’ Vr(1)"°' it
intersects them all and

1 <1 <1 =(Ex)[ere&(z)(xeAZ“zeGi)] (see Lemma 2 below).
Now if we take We to beua1 where 61 is an infinite r.e.
subclass we get for all i Vr(') € 61 and for all i with

1

1<1<]1 there is zeGi with AZ e C Thus the only

q°

possibilities for 61 are



e - {AZ] zeF, } (1sksmt1).

A

< r(x), and Vr(x) will be independent of the variation

used to get the sequence

<A1’u-o’An3V V13-ao>,

0’
but in variation k use of the function p will ensure
that for no y,z do we have

Vy = AZ with zeFk,
and thus an enumeration of ¢ - {AZ] zeFk} is easily
obtained.

In carrying out the construction, the following
difficulty is encountered: an "amalgamation” which we
wish to make satisfy Requirement We will cause
r{i,s+1) # r(i,s). That is to say, Requirement W,
and Requirement r(i) conflict. We therefore assign
priorities to our Requirements as follows

r(0), Wo, (1), Weseonn o

0’
Thus, when the conflict above occurs, we make the
amalgamation only if e<i. It is now possible to deal with
this situation, where only finitely many Requirements
conflict with a given Requirement.

VARTATION k OF THE CONSTRUCTION. Let <we| e20> be an r.e,
sequence enumerating all the r.e. sets., Let

P = {(d,e) |deW_}. The s-th pair will mean the s-th
member of P to appear in an effective enumeration of P

without repetitions. We define

W: = {d] (d,e) is among the first s pairs]}.



8

We define for each s20, by induction on s. sets A?,...,Ai

and a sequence of sets <VS, V?,,..>. Let
0
AX = {x-1} (1sx=sn)
0
V. = {n+x} (x20).

Assume for induction
the V2, A® are all finite

x’ Tx

s , i s s
the AU are all different, in fact x—1eAX-LkAy] y#x }
only finitely many of the Vi can be the same
if V. is different from all the A§ then it is
disj¢int from them all

(5) of the vi which differ from all the A;, different
ones are disjoint

(6) V) is different from all the A} ,
properties evidently possessed by the Ag, Vg

We can define a function r(i,s) by
I‘(O,S) = 0
r(i+1,s) = ux[x>r(i,s) & vi # A? for 1sjsn

S ) ..
& JX # Vr(j S)for O<j=sil],.

;
Suppose the (s+1) -st pair is (d,e) and there is a j>e
such that deVi(.’S). There is at most one such J by (5),
Define

R(e,s,i,x) = erZ+1 & (z) (xeAi“zeGi).

Case 1. There is i with 1<is<l and ~(Ex)R(e,s,i,x). Let i

be the least such number. Put



s+1 S, ;S . -
AX = AXUVI‘( J-, S) if X.G’Ii
S+1 S .
= G
Al AL if xgGy
s+1 _ ,S5+1 co 1S _ a8 _
Ve o o= Ay if v = Ay for some y(there
can bz cnly one such y
by (2))
S+1 S S c o S oS
Vv = A"/, Vo if VD o= V.
x p(1,k)%r(d,s) x 7 'r(d.s)
vl Ve otherwise
X X

This is where variation k arises.
Case 2. Case 1 does not obtain but there is 1 with i<]

and wz+1nvi(. - @#. Let i be the least such number. Put

i,s)
AST! o 8 for all x
X X
vSrl oy v, if VS o= VS or VS, .
X r(i,s)"'r(Jj,s) x r(i,s)~" 'r{j,s)
VS+1 = VS otherwilse.
X X
If there is no j>»e such that deVi(J s) or if neither Case 1
2

nor Case 2 occurs put

AS+1 = AS for all x
X X
vi+1 - v® for all x.

We show that (1),..., (6) are preserved. We have

AScpStT, VSCVS+1(SO that the A°, V° are all non-empty),
X X X X x? 'x

S _ S s+1 _ S+1 S _ 48 «S+1 a8+ <
VX = Vy = VX = V:y 3 Vk = Ay = JX = Ay for all x,¥.
(1) and (3) are clear.

For (2) we need consider only Case 1, where the result
follows by induction hypothesis (4) ard the definition of

r.
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1, VS+1 different from

y

Then VS, VS are
X y

different from each other and from all Ai, so by induction

For (4) and (5), consider Vi+

each other and from all the A§+1.

hypothesis (4), (5) they are disjoint from each other and

from all the Ai. The desired conclusion is that Vi+1 R

V§+1 are disjoint from each other and from all the A§+1.

If Case 1 occurs, then neither Vi nor V§ is equal to

S
r(J,s

S
r(J,s)’
S+ 1

S+1 S S S+ 1 ’
. . = . . hus
Vx Ap(l,k)uvr(J,s) Ap(l,k) T Vx

s+t _ S
Vy = Vy .

v for vi =V ) implies that

I

= V® and
X

The two are therefore disjoint. Also Vi is

. e s ] s S+ 1
disjoint from Vr(J,s) and from AZ for all z, and so Vk

s+ 1
b4

. . S
is different from both Vr(i,s

is disJoint from A for all z. If Case 2 occurs at least

S

S S
one Vx’ Vy ) and Vr(J,s)’ or

4
Vi+1 = V;+1 . If both have this property then Vi+‘=Vi

and V;+1 = V; and the result follows since A§+1

all z. This leaves the case where say Vi =V

= A° for
z

S

r(i,s)

S+ 1 - vS

y Vy

and

S 4 S S
Vy differs from both Vr(i ) and Vr(' )2 then V

s JsB

and the result follows by induction hypotheses (4), (5).

(6) follows by a similar argument, using the fact that

in the construction Jj=>0.

Define A =(){Ai] s20} (1sxsn)
v, =UILV; | s20} (x=0).

We can find the members of Ai, Vi effectively from x, s so
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<A1,...,An, VO’V1"">
is an r.e. sequence enumerating an r.e. class &. Let
cx =¢C - {A,...,A L.
LEMMA 1. For each x and all sufficiently large (s.l.)s,
r(x,s) is a constant, r(x) say.
PROOF OF LEMMA 1. By induction on x. r(0,s) = O for all s
so r(0) = 0. We suppose the result holds for all ysx and
we show 1t holds for x+1. There is an 5q such that if

s2s r(y,s) = r(y) for all ysx. In Case 1 or Case 2

r(z,s+1) = r(z,s) if z<J
r(z,s+1) = r(z+1,s) if z=2j,

for if we divide the members of the sequence

S
1

. . S
classes under set equality, Vr(z,S)

the (z+1)-st such class, and by (4) and (5) the only

which differ from each of A ,...,Ai into equivalence

is the first member of

effect of either case on the computation of r is the loss
of the original (j+1)-st class. So if r(x+1,s+1)#r(x+1,s)
with szso, Case 1 or Case 2 occurs with x+12j>e and by

our induction hypothesis x+1 = Jj. If Case 1 occurs we have
R(e,t,i,d) for all t>s by (4), because d does not belong

to Vt(J £) for any j. Now r(x+1,s+1) # r(x+1,s) can hold
3

r
for only finitely many SZSO through Case 1 -- at most 1
times for each e<x+1, and through Case 2 -- at most x+1

times for each e<x+1 by our induction hypothesis. Thus
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r(x+1,s) = r(x+1), a constant, for all s.l.s. Q.E.D.

S
1,.-

O0,..., n-1 for all s, so A1"“’An are.

By (2) A .,Ai are distinguished by the numbers
We now wish to prove that the Vr(u) are distinct,

disjoint from each other and from all the Au‘ Suppose

err(u)ﬂVr(v) with u # v. Then for all s.l.s

» 8o for all s.l.s xeVe

s s
X(':Vr(u)mfr( r(u,s

v) )Va (v, 5)

contradicting (5). Similarly XGVr(u)nAv contradicts (4).
The Vr(u) are therefore distinct since they are non-empty.
Now we show that for all x, either VX = Vr(u) for
some u or Vk = Ap(u,k) for some u. It follows by induction
on s that if Vi is equal to one of the A; then it is equal

to As(u,k) for some u. Suppose that there is no u such

P
. There is then a u such that r(u)<x<r(u+1).

that VX = Vr(u)
Consider s s.l. that r(v,s) = r(v) for all vsu+1. Then
S S

Vx = Ap(z,k) TOr some z, inwnhlch case Vy = A,(, x)» OF

s S , .
VX = Vr(v,s) for some vsu, in which case Vk = Vr(v)'
. . s s
By induction on s, A_, r(x,s) and Vr(x,s) are all

independent of k. Thus A, r(x) and Vr(x) are all
independent of K.
LEMMA 2. If we intersects infinitely many of Vr(O)’
Vr(1),aoo, then

(7) 1sis<l = (Ex)R(e,i,x), where we define

R(e,i,x) = xeW,_ and (z)(xeAZ ® zeGi)

(8) i=20 = (Ex)[xeweﬂVr(i)].



13

PROOF OF LEMMA 2, First we have: 1if a, t are any given
numbers there is s>t and j>a such that the (s+1)-st pair
. S

is (d,e) and deVr(j,s)'
y>a such that We intersects Vr(

For there are infinitely many
) Alsc these Vr(y) are
disjoint. ©So for infinitely many members d of We’

deVr( ) for some y>a. So therc is s>t such that (d,e) is

y

the (s+1)—st pair and deVr( ) with y>a. Now deVi(. ) for

y JsS
some J. Suppose j<y. Consider u>s s.l. that r(y,u) = r(y)

U u u

and deVr(y). Then devr(y,u)nvr(j,s) so by (4) and (5)
u u . . i
Vr(y,u) = Vr(j,s)’ but r(y,u)>r(j,u)2r(j,s) contradicting

the definition of r(y,u). Thus j2y>a.

Nocw suppose there is a least i<l such that ~(Ex)R(e,i,x).
For each y<i let d(y) be such that R(e,y,d(y)). Let t be
s.1l. that for each y<i R(e,t,y,d(y)). Put a = e and let s,
J correspond to a, t as above. Since for each y<i we have
R(e,s,y,d(y)) and ~(Ex)R(e,s,i,x) Case 1 ensures that
R(e,s+1,1i,d) and so R(e,i,d), contradiction.

Suppose there is a least i1 such that
~(Ex)[xeweﬂVr(i)]. Let t be s.1. that r(i,t) = r(i), for

t( t)] and r(y,t) = r(y) and for

. t+1
each y<i (Ex)[ere nv. y

1<y<1 R(e,t,y,d(y)) (d(y) as above). Put a = max(e,1) and
let s, J correspond to a, t as above. Then Case 2 ensures

S+1 1,541
that deWe r(i,s+1)

nv S0 (Ex)[xeweﬂvr(i)], contradiction.
Q.E.D.

Recall that ¢ has distinct members

A,],..._,An, VI‘(O)’ Vr(,‘),..-
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 _ , o
and C* = {Vr(o)’ Vr(1)""}' Suppose ¢, is an infinite r.e.
subclass.  Put () c, =W, (it is an r.e. set). W, intersects
infinitely many of the Vr(i) so we can apply (7) and (8).

By (8), since the Vr(i) are disjoint from each other and
fram all the Ai’ Vr(i) € 61 for all i. So the only
possibilities for ¢, are

1
e - {Azl zeG; ] (1s1is<1)

e - {AZ] zeF (1<ksm+1).

N

We discount the first possibility. For by (7),

xeweand(z)(xeAZ o zeGi) for some X.
x{Vr(J) for any Jj so the only members of ¢ which x belongs
to are the {A | zeG;}. So one of these sets must be in
61.
We complete the proof by showing that

e - {AZ] zeFk} is r.e. (1<ism+1). For consider

the construction of ¢ by variation k, in an r.e. sequence

<A1,---, %) VO) V1,ao->

Since V. # any member of @¥* = v, = Ap(i,k) some i and
p(i,k)ka, the r.e. sequence obtained by omitting the z-th
member of the original one for each zeFk enumerates the
desired class.

(a) when m+1 = 2

Let n' = nt1, m! = 2"71_2 and the Fp (1sk<2™ 1) be al1
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the subsets of {x | 1sxsn+1} except the whole set. Let

C, C* be constructed for m!', nt, Fg as above. Define

e, = c&*u{AnJr1 ].

Then 61 has no proper infinite r.e. subclasses (and this

proves (b)) and LJG1§{XI x2n}. Define

e, = ¢ ul{i} | Osis<n-1}

and ¢, is the required class. For given an infinite r.e.

2

subclass 63 of Cy,, 03-{{i}| O<isn-1} is an infinite r.e.

subclass of 61 and therefore is C.. On the other hand any

combination of the {i} can be added to C.
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CHAPTER 2
STRONG ENUMERATION PROPERTIES OF R.E. CLASSES

The starting point for the investigation in this
chapter is the work of Lachlan in §1 of [5] and §1 of [6].
We are concerned with certain "enumeration properties™ of
classes of r.e. sets which are stronger than mere
recursive enumerability. After the definitions (2.1 through

2.6) we will be able to state our main theorem.

Definition 2.1 (Lachlan, [5]) Let <wX| x20> be a standard

enumeration of the r.e. sets, that 1s an r.e. sequence

with the property that if <SX] x20> is any r.e. sequence,

there is a recursive function g with SX = WU(X) for all x.

Then a class C of r.e. sets 1is called standard if there
is a recursive function f s.t. <wf(x), x20> is a recursive
enumeration of ¢, and s.t. wf(x) = WX whenever WX e C.

Equivalent Definition 2.2 A class C of r.e. sets is

standard ® for every r.e. sequence <SX] x20> there is an
r.e. C sequence (that is, an r.e. sequence all of whose
members belong to C) <Tx| x20> s.t. T = S_ whenever
S_ecC.

X

PROOF OF EQUIVALENCE

First let ¢ satlsfy 2.1 and let <SX| x20> be any r.e.
sequence. Let g be a recursive function s.t. SX = W (x)
for all x, and define TX = ng(x) for all x. Then

<TX] x20> is an r.e. sequence, T eC for all x, and



=W =T =85 . Thus C

fe(x) g(x) x x
satisfies 2.2. Now let ¢ satisfy 2.2 and let <Txl x20> be

SXGG = Wg( )eG > W

X
an r.e. C sequence corresponding to the r.e. sequence
<W, | x20>, that is Wee =T =W_. Letf be a recursive
function s.t. T, = wf(x) for all x. Then <wf(x)} x20>

enumerates ¢ and Wx e C > W = WX. R.E.D.

£(x)
Definition 2.3 A class C of r.e. sets is called sequence

enumeragble if the r.e. ¢ sequences can be enumerated as

the rows of a 2-dimensional r.e. C sequence.,

Definition 2.4 (Lachlan, [6]) A class G of r.e., sets is

called indexable if there 1s a recursive enumeration

<SX| x20> of €& s.t., if <Txl x20> is any r.e. ¢ sequence
then there exists a recursive function f with TX = Sf(x)
for all x. The sequence <Sx> is called an indexing of C.

Definition 2.5 A class C of r.e. sets is called subclass

enumerable if there is a 2-dimensional r.e. ¢ sequence

whose rows enumerate all the non-empty r.e. subclasses of

C.

Egquivalent Definition 2.6 A class C of r.e. sets is

subclass enumerable ¢ there 1s a recursive enumeration
<le x20> of ¢ s.t., if & 1s an r.e. subclass of C, then
there exists an r.e. set W with @ = {SX] xeW}.

PROOF OF EQUIVALENCE

First let ¢ satisfy 2.5 and let <sxy | x,y20> be a 2-

dimensional r.e. ¢ sequence whose rows enumerate all the
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non-empty r.e. subclasses of ¢. ILet T be a 1-1 two
argument recursive function with range N (e.g. the Cantor
pairing function). Given a number, we can effectively find
the pair that T makes correspond to that number, and so it

is possible to define an r.e. sequence <Sx| x20> by

S = S

T(x,¥) X, ¥

Then <Sx| x20> is a recursive enumeration of C. Let & be
an r.e. subclass of C, and we show that there exists an
r.e. set W with @ = {S_| xeW}. If @ is empty, take W to

be empty. Suppose then that & is non-empty. Then there is
Xy with @ ={Sxo,y, y20} = {ST(xo,y)l y20} and we can take
W= {T(xo,y)[ y201}.

Now let C satisfy 2.6, and let <le x20> have the
property of 2.6. It is clear that we can modify a
recursive enumeration of all the r.e. sets to get a
recursive enumeration of all the non-empty r.e. sets
<Vx] x20>. There is a two argument recursive function
r(x,y) s.t. the range of Ayr(x,y) is V,.: we can let
r(x,0), r(x,1),... enumerate the members of V. as they
appear in some simultaneous enumeration of <Vx>’ "marking
time" with repetitions to cover the case Vx is empty. Now
et Sxy T ar Sr(x,y)
r.e. C sequence with the property required by 2.5, For if

and <S_ yl x,y20> is a 2 dimensional
2

@ is a non-empty r.e. subclass of C there is Xq with

a={s, |xev, } = {8

| x20} = {8 | x20}. Q.E.D,
O ) XO,X

r(xo,x
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MAIN THEOREM. If € is a class of r.e. sets, ¢ is standard
= C 1s sequence enumerable = C is indexable = C is subclass
enumerable, but none of the implications can be reversed,

We will not complete the proof of this theorem until
the end of the chapter. THEOREM 2.1 proves the three
implications, and the three counterexamples we need are
provided by EXAMPLES 2.2, 2.1 and 2,4, THEOREM 2.2 shows
that three results on standard classes from [5] which were
pointed out in [6] to fail for ihdexable classes, do
generalise to sequence enumerable classes. THEOREM 2.3
generalises to subclass enumerable classes a closure
condition proved in [6] for indexable classes, and EXAMPLE
2.3 shows that this condition does not characterize subclass
enumerable classes,

THEOREM 2,1 If ¢ is a class of r.e. sets, ¢ is standard

= C 1s sequence enumerable = ¢ is indexable = C is subclass
enumerable.

PROOF. First implication. This already follows from
Example 4 of [5]. We will give a proof from Definition
2.2, Since we can effectively arrange a 2 dimensional r.e.
sequence as a single r.e. sequence (as in the first half

of the proof of equivalence of Definitions 2.5 and 2.60),

2 dimensional r.e. sequences also have the property of
Definition 2.2, Namely, to every 2 dimensicnal r.e.

sequence <SX y' x,y20>, there corresponds a 2 dimensional
2
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.. C sequ < 20> 3.T. = R
r.e equence Tx,yl X,y20> s.t Sx,y e & = Tx,y Sx,y

Now define <8, > as follows. Let <P, | x=0> be a recursive
2

enumeration of all the r.e. subsets of N2 and take

S,y = {z | (z,y) e P }. If <U, | x20> is any r.e. sequence

there is x4 s.t. PXO = {(z,y) | zeUy} and so
Uy = {z| (z,y) € PXO} = Sxo,y' Thus all r.e. sequences are
enumerated as rows of <Sx y> (the class of all r.e. sets

3

is sequence enumerable). The corresponding C sequence

<TX y> then enumerates by its rows all the r.e. & sequences,
B
Q.E.D.

Second implication. Let @ be a sequence enumerable class
of r.e. sets and let <§, | x,y20> be a 2 dimensional r.e.
C sequence whose rows enumerate all the r.e. & sequences,
Form an r.e. C sequence <SX] x20> asin the first half of the
proof of equivalence of Definitions 2.5 and 2.6. We show
that <S_ | x20> 1s an indexing of ¢. For let <T | x20> be

any r.e. ¢ sequence. Then there is £ s.t. TX = Sx % for
O:

all x. Define a recursive function f by f(x) = T(xo,x),

Then for all x, TX = Sx = = S

0ox = Brlxgux) T Pr(x)

Q.E.D.,

Third implication. Let <Sx| x20> be an indexing of the
indexable class ¢ and we show that <Sx> has the property

of Definition 2.6. Thus let & be a non-empty r.e. subclass
of ¢ (if @ is empty we take W to be empty). Then & is
enumerated by an r.e. sequence and this must have the form

<S ( )l x20> for some recursive function f. Taking W to be

fix
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the range of f, W is r.e. and @ = {SXI xeW}.

Q.E.D.
The example given [6] to distinguish indexable classes
from standard classes suffices to distinguish indexable
classes from sequence enumerable classes.
EXAMPLE 2.1, The class €& = {{0},{1}} is indexable but not
sequence enumerable.
PROOF. Any enumeration of ¢ is an indexing. € 1is not
sequence enumerable by a diagonal argument.

Q.E.D.

Definition 2.7 (Rice, [2]) A sequence <FX] x20> of finite

sets is a strongly r.e. sequence of finite sets 1f there is

a recursive function f s.t.

(1) either f(x) = 1 or £(x) has the form

ao+1 a1+1 an+1
Pq ‘D4 T , where p, is the (n+1) st prime

(pg = 2), and

(2) if f£(x) = 1, F, = the empty set, and if

f(x) = p0a0+1.p1a1+1.”'.pnan+1, FX = {aO,a1,,g.,an}.
That is, given x we can write down the members of Fx’
"once and for all".

THEOREM 2.2 Suppose that ¢ is a class of r.e. sets,

<Fx| x20> is a strongly r.e. sequence of finite sets s.t.
each member of ¢ contains FX for some x, and <Tx| x20> 1is

an r.e. C sequence s.t. for each x, F,_ £ T . ThenC is

not sequence enumerable.
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PROOF. We show that if e,y | x,y20> is a 2 dimensional
r.e., ¢ sequence, during any simultaneous enumeration of
<S > we cah construct an r.e, ¢ sequence <UXI x20> s.t.

XY

for each x, 3. # U_, so that <U_> is not a row of <S_ _>,
XX X X X5y

To obtain UX: enumerate SXX and F F simultaneously.

O’ 1_!...

Since SXXGG, by the property of the sequence <Fx> we will

find a y s.t. Fy S 8, Take U = Ty, and we have Fy;?fUX,

so that U_#S_.. It is clear that <U.> can be made an r.e.
x"Txx » b'd

sequence,

Q.E.D.

Definition 2.8 (Rice, [2]) A class @ of r.e. sets is

called completely recursively enumerable (c.r.e.) if

there is a strongly r.e. sequence <FX] x20> s.t. for any

r.e. set W,

W e C ® there is an x s.t. FX S W,

NOTE. This is not Rice'!s original definiticn, That 2.8

is equivalent to the original definition is Rice'!s "Key

array conjecture, proved by Myhill and Shepherdson in [3].
Generalising Lemma 1.1 of [5], we have

COROLLARY 2,1. Let @ be a sequence enumerable class of

r.e. sets and 7, £ be c,r.e., classes s.t. MU L 2 C. then

either (M - Z)NC or (£ - M) N C is empty.

PROOF. Iet @ be a class of r.e. sets, and let 7, £ be

c.r.e classes s.t. MU £L 2C. Suppose that

Ae (m-2)NnNe, Be (£ -mM NC and we show that ¢ is not
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sequence enumerable. Let <G | x20> and <H_ | x20> be strongly

r.e. sequences of finite sets s.t., for any r.e. set W,

W e M e there is an x s.t. GX S W

W e £ e there is an x s.t. Hx S W .
Define a strongly r.e. sequence <FX] x20> and an r.e. C

sequence <TX] x20> by

r = G , I

2X X 2x+1 T Ux

T =B

2X = 4 .

? T2x+1
Since M U £ 2 ¢, each member of ¢ contains FX for some x
Also, for each x F, £ T, for otherwise it would follow
that either B € M or A € £. Thus by the theorem, ¢ is not
sequence enumerable. Q.E.D.
CORCLLARY 2.2. If a seguence enumerable class of r.e. sets
contains a finite set, then it has a least member,
PROCF. That this property follows from the property of
Corollary 1 is Corollary 1.3% of [5]. For a direct proof
from the Theorem, let a class C of r.e. sets contain a
finite set, then it contains a minimal finite set ¥, IT
F is not least, let A be in ¢ s.%t. A § F. Define

FO = F Fx+1 = {cx}

is the complement of F in increasing

where ¢ C

07 Cqs Cpsen-

order. Also define

To = A, T 4 = F.
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Then <FX] x20> is a strongly r.e. sequence, and <TX] x20>
is an r.e. C sequence s.t. for each x, FX # Tx' Also each
member of ¢ contains FX for some x. For if W e C and W
does not contain F for an x, W € F and in fact W = F

X+ 1

since F is minimal, so that W contains FO.

Q.E.D.
A finite class of r.e. sets is standard if and only if it
has a least member .(Theorem 1.5 of [2]). This also carries
over to sequence enumerable clasées. We need only prove
COROLLARY 2.3. If a finite class has no least member, it
is not sequence enumerable.

PROOF. Let C be {AO,A ..,An}, and suppose C has no least

1°°
member. It follows that for each j (0O<jsn)

AJ - AO n...n An is non-empty. For Osjsn, define
FJ = {XJ}, where Xy € AJ - Aq N...N A.
T; = A; , where i is chosen so that x £ Ay

Now applying the Theorem, C is not sequence enumerable.
(The sequences here are finite, but it makes no difference
to the conclusion of the Theorem).

Q.E.D.
As pointed out in [6], none of the three above Corollaries
holds for indexable classes, the class {{0},{1}} providing
a counterexample in each case. Our next task is to
distinguish sequence enumerable classes from standard

classes. Our example of a class which is sequence enumerable



25

but not standard will have a least member (the empty set);
thus the example answers in the affirmative the conjecture
on page 15 of [6] that there is an indexable class which
is not standard but which has a least member.
EXAMPLE 2.2. There is a class of r.e. sets which is
Sequence enumerable but not standard.
REMARK. The class C which we construct has the empty set
as a member; otherwise it consists of singletons and pairs.
PROOF. As shown in proving the first implication of
Theorem 2.1, the class of all r.e. sets is sequence
enumerable. It easily follows that the class of all r.e.
sets with less than three members is sequence enumerable.
Thus let <Wx,y| X,ys<O> be a 2 dimensional r.e. sequence
of r.e. sets with less than three members, such that every
r.e. sequence of r.,e. sets with less than three members
occurs as a row. By Definitions 2.2 and 2.3 it will be
sufficient to produce an r.e. class ¢, an r.e. seguence
<SX] x20> and a 2 dimensional r.e. sequence <Tx,y | x,y=20>
such that

A, the empty set belongs to €& and ¢ contains no set

with more than two members

B. (x)(y) (T, ;€ c)
Clx). (&y)(w, y £¢c .v. S8, € C and S # wx,y) for each x
D(x). (&@y)((z)(w ec) = (z)(W =T )) for each x .

X2 Xy Z Y2
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We can regard ourselves as trying to satisfy the
double infinity of conditions C(0), D(0), C(1), D(1),...
with this order of priorities, subject to the constraints
A and B, during an enumeration of < Wx,y, x,y=0>,

Before giving the detailed construction we explain briefly
how it works. To satisfy C(x) say, choose a number y and
an ordered triple (p,q,r). We will ensure that

L £C V. Sy, € C and S, # Wy - Put pinS  and
{p} in ¢. At some stage we may have Wx,y = {p} (Event 1).
Then we remove {p} from ¢ by converting it to {p,q}. Later
we may have Wx,y = {p,q} (Event 2). Then we put r in
Sy and {p,r} in &. It is clear how by using different y
and disjoint triples for different x we can satisfy C(x)
for each x. Suppose however we are trying simultaneously

to satisfy D(i) say, by choosing a number j and making

(z) (W,

i,z € e) = (z) (W, _ =T, _).

i,z Js2
Before Event 1 occurs, we may have Wi 0= {p}. We therefore
2

put p in Tj If then Event 1 occurs, because of B we
3

O.
0" o 1s still {p} Event 2 may occur.

is {p,r} and so we may be in trouble if we

put 9 in T, While W.
J’ :LJ

Perhaps Wi,O
put {p,r} in @&. To get over this difficulty we act roughly
as follows., If xs<i (i.e. C(x) has priority over D(i)) we
put {p,r} in ¢ and choose a new number j’ to use for D(i).
This time we will leave Tj',o empty unless it turns out

that W, , is {p,a} or {p,r} and we will then make
3

0]
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T.¢ o =W, . If x>1 (i.e. D(i) has priority over C(x))
J 0 i,0
we put r in Sy but do not put {p,r} in ¢. Instead we
choose a new value of y and a new triple (p',q',r') for use
with C(x). Now is say W, o4 o= {p’} there is no need to
2
unless W.

Js1 1,0
and then we can complete our first attempt at satisfying

put p’ in T becomes {p,q} (because {p} £ ),

C(x) by putting {p,r} in &. The y-th triple is

(3y, 3y+1, 3y+2). This triple may be used in conjunction
with Sy to satisfy a condition C(x) as above. Define

Fo = {0}, F, = {1,21, F, = {3,4,5},... . Then we will
have for each x

.Vl
wX’y £c sy € ¢ and sy # wX’y

where y € FX . Note that FX has x+1 members and there are
x conditions D(i) with higher priority than C(x). The
full construction now follows.

CONSTRUCTION.

Definition of <SX] x20>

s - {3y} if W, o # {3y, 3y+1]

{3y,3y+2} if Wey = {3y,3y+1} ,

where y € Fx' This defines an r.e. sequence.

Definition of ¢ and <T, yl x,y20>.
3

We stipulate in the first place that the empty set belongs

to ¢. The other members of & and the members of the T
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sequence are obtained in a construction step s of which

follows step s (s = 0,1,2,...) of an enumeration of
s s

T
X9’ TX,Y

after step s cof the enumeration but before step s of the

W,y | xy20>. W and ¢° refer to the situation

X,
construction, We set up a framework for the process by
attaching numbers (respectively, ordered pairs) to even
(0odd) values of s in such a way that every number (ordered
pair) is attached to infinitely many values of s. For each
condition C(x) or D(x), after a certain step there will

always be a number associated with the condition. The

associate of C(x) will belong to FX and the associate of
D(x) will correspond to a row of the T sequence, The
associate of a condition may change. We define

Q(y,i,s) = (&j)(8z)(J is associated with D(i) .&. Wy,
k)
S

is either {3y} or
Js2

is either {3y} or {3y,3y+2}.&. T

{3y,3y+11).

Instructions for a step s attached to x

If C(x) has no associate, associate with C(x) the least
member of Fx“ Let y be the associate of C(x). Do nothing
more unless one of the following mutually exclusive cases
holds. |

1. {3y,3y+2} e ¢®. Do nothing.
2. {3y,3y+2} £ ¢° and there is y, <y in F_ s.t,

~(g1i) Q(y1,i,s). Then for the least such y,, put

i<x
{3y1,3y1+2} in @ and change the associate of C(x) to Yy



29

S —
X,y

Q(y,i,s). Then put {3y,3y+2}

3. Neither 1. nor 2. holds, {3¥,3y+1} e ¢°, W

{3y,2y+1} and ~(81), .,

in C.

4, Neilther 1. nor 2. holds, {3y,3y+1} e &®, wi’y =

{3y,3y+1} ana (81), . Q(y,i,s). Then if y + 1 ¢ F
change the associate of C(x) to y + 1, and otherwise
do nothing.

5. WNeither 1. nor 2. holds, {3y,3y+1} £ ¢, {3y} e c®
and wi,y = {3y}. Then convert any occurrence of
{3y} in ¢® to {3y,3y+1}.

6. Neither 1. nor 2. holds, {3¥,3y+1} £c®, {3y} £ c°
and w;,y # {3y}. Then put {3y} in C.

Instructions for a step s attached to (i,k)

If D(1i) has no associate, associate with D(i) the least
number which has not yet been an associate. Let j be the

associate of D(i). For each previous associate J1 of 1,

if there is w, z s.t. TS = {3u} and {3u} £ €%, put Bu+t
1,
in Tj 2 Do nothing more unless one of the following
1)

mutually exclusive cases holds.
7. There is y s.t. Wy , = {3y}, TS , is empty, {3y} e ¢®,
lgk : J}k
V € Fx’ and it is not the case that x>i and
(2y, )y, #y &y, e F_&Q(y,i,s)).
Then t in T. ..
en put 3y in i,k
8. There is y s.t. W . = {3y}, TS . = {3y} and {3y} ﬂ’asa
l,k J:k

Then put 1 in T. ..
b 3y+ i,k
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9. There is y s.t. wi’K = {3y,3y+1}, {3y,3y+1} e ¢° and
T§’K is empty or is {3y}. Then put 3y,3y+1 in TS k-
2
10. There is y s.t. wi,k = {3y,u} with u # 3y,3y+1, 3y+2,
{3y} £ c® ana T? x = {3y}. Then put 3y+1 in T. .
2 JJ
1. Thnere is y s.t. Wy \ = {3y,3y+2}, {3y,3y+2} e C®
and T?,k is empty or is {3y}. Then put 3y,3y+2 in
RS
12, There is y s.t. wi’k = {3y,3y+2}, {3y,3y+2} € ¢® and
Ti,k = {3y,3y+1}. Then choose a new associate for i.

13. There is y s.t. wi,k = {3y,3y+2}, {3y,3y+2} £ &5,
{3y} £ c¢® and Tjﬁk = {3y}. Then put 3y+1 in Ty
This completes the construction.

Remark. To connect the program with the preceding discussion.
At a step s attached to x we try to satisfy condition C(x),
using the step s associate of C(x), and at a step s attached
to (i,k) we try to satisfy condition D(i) by making element
(j,k) of the T sequence equal to element (i,k) of the W
sequence if the latter is in ¢, where J is the step s
associate of D(i). 6. is the first stage of working on
C(x), and 5. corresponds to Event 1. 3. corresponds to Event
2., 2. is the case where we return'to a previous attempt to
satisfy C(x). If i< x, y € F, and Q(y,i,s), this means
that we cannot complete the aftempt with y to satisfy C(x),

because of a conflict with D(i). That accounts for the

appearance of Q in 2., 3., and 4. In 4. we choose a
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new triple for C(x) if possible. We are eventually able
to satisfy C(x) because of the restriction in 7., which
ensures that each D(i) with i<x can block only one attempt
to satisfy C(x), whereas we have x+1 attempts at our disposal
(corresponding to the members of FX); we make these attempts
with the first member of Fx’ the second member of FXJ R
(see 4.) and either one of them works out or we will be
able to return to a previous attempt by 2.
The prcof c¢onsists of a sequénce of six lemmas,

LEMMA 1. For each x, the associate of C(x) is eventually
constant.
PROOF. Because of 1., if the associate of C(x) ever
changes by 2. it never changes again. If the associate of
C(x) never changes by 2., it can change only by 4., and
this happens finitely often since FX i1s finite.

Q.E.D.
LEMMA 2., For any y, if {3y,3y+2} is put into @ at step
v and {3y} e ¢%, then u < v.
PROOF. Suppose that u2v, then by 1.,2., and 3. {3y} e ¢".
But also {3y,3y+1} e ¢", for otherwise 2. occurs at v (3.
cannot) and 4, must have occurred at w < v while y was an
associate of C(x) and so {3y,3y+1} € eV which implies
{3y,3y+1} e ¢', contradicition. It follows that 5. occurred
at a step t < v and 6. is impossible between t and v,

contradiction.
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LEMMA 3. For each i, the associate of D(i) is eventually
constant,

PROOF. The associate of D(i) can change at step s attached
to (i,k) for k = 0,1,2,... by occurrences of 12. Suppose
this happens with y ¢ FX and x > 1 and we derive a
contradiction. Iet t < s be the step at which 3y+1 was put
into Tj,k' At t 8., or 13, must have occurred, because

Wi Kk = {3y,3y+2} eliminates the possibilities 9. and 10.at t.
E .

t
J,K
occurred at u., Let v be the step at which {3y,3y+2} is

T {3y} in either case so there is u< t s.t. 7.

put into ¢. Then v < s. Also v > u by Lemma 2, since
{3y} € et e nave ~(y,i,v) since 2. or 3. occurs at
v. But after step u we have oWl {3y}, wit! {3y}, and
Jyk i,k
by step s we have TS , = {3y,3y+1} and W . = {3y,3y+2}.
Jrk i,k

Thus at step v we must have Q(y,i,v) by the definition of
Q. Contradiction.

Thus the y in occurrences of 12. belongs to FX with
x < 1. Consider s s.l. that for each x < 1 and each
y € F, the membership of {3y}, {3y,3y+1} and {3y,3y+2} in C
has been permanently fixed; there is such an s by 5. and 6.
Then we show 12. can happen for at most one such s which
will prove the Lemma,

Suppose there are two such s, Sq and Sy» s.t, the
associate of D(i) changes to Jo at sy and then to j,

S
V2 {3y, 39+2),
i,k

at 5. > 84 Let S be attached to (i,k), W
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S
L {3y,3y+13}, v € Fx and x < 1, There are then t, u

N

with sy < u <t < s> uwand t are attached to (i,k), 7.
occurs at u, and 8. or 13, occurs at t. Thus {3y} ¢ " but

{3y} ﬁ Gt, which contradicts our assumption about 5g°

Q.E.D.

LEMMA 4. (J)(kx) T, , ec (i.e, B, holds).

J')
PROOF., Let Jj,k be given. If T. is empty then T. € C.,
Jsk i,k
First suppose TJ | gets a member by the “previous associate”
k]
case, i.e, there is s, i, u s.t. J is a previous associate

of D(i), T K = {3u} and {3u} £ ¢®. Thus there is t < s

s
Js
s.t. {3u} € el and 5., occurred between t and s so {3u,3ut1}
€ C and T, e C. Thus we can assume that T, acquires
J.k J,k
members only at steps s attached to (i,k) when j is the
associate of 1i. Tj | can never havemore than 2 members
3
since at the end of any step Tj Kk has at most 2 members. If
3

T has one member then Tj K = {3y} for some y, and
k]

J,k
3y € Wi,k so if {3y} £ ¢, for s.1. s {3y} £ ¢® and
{%y,3y+1} ¢ ¢° and one of cases 8., 9., 10., 11., or 13@,
yields a contradiction., If Tj,k has 2 members let s be

the step when it gets its second member or both its members
if it gets them both at once. Consideration of the
possibilities 8., 9., 10., 11, and 13 at s, usingin 8., 10,,
and 1%. the fact that T§,k = {3y} and {3y} £ ¢® implies
that {3y,3y+1} e ¢, gives Ts k€ C

Q.E.D.
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LEMMA 5. Let y be the final associate of C(x). Then

e .v. 8 & t .
Wy £ y €C sy W (so that C(x) holds)

X,y
PROOF. We note that the associate of C(x) starts at the
least member of FX and possibly increases by occurrences

of 4, By 2. it may decrease, but then by 1. 1t remains

fixed.

First case, {3y,3y+2} € ¢. If this happens by 3. then

W, g = {3y,3y+1}. If it happens by 2. we also have
, .
W v = {3y,3y+1} becuase of the condition in 4. Thus by
k]
the definition of sy, sy = {3y,3y+2} and
S c & W, .
y © Sy W,y

Second case. {3y,3y+2} £ C and y is not the greatest

member of Fx' ‘

a) 1{3y,3y+1} e C & wx,y = {3y,3y+1}. Then for s.l. s
3. or Y4, occurs and we get a contradiction.

b) {3y,37+1} e C & Weoy # {3y,3y+1}. Then by 5.

3y € wx,y so if wx,y e C then wx,y = {3y}, which is

impossible by 5. and 6.
c) {3y,3y#1} e & {3y} ec. IfW, y € C then

3

8, = {3y} ec. If Wey = {zy}, 5. gives a contradiction.
k]

d) {3y,3y+1} £ & {3y} £ . Then 6. can never occur

so 3y e W, _ and wX’y £C.

2y
Third case. {3y,3y+2} £ C and y is the greatest member

of Fx’ The second case argument is valid except in a).

Let s be s.1. attached to x s.t. {3y,3y+1} ¢ ¢° and
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S
X,y

giving a contradiction. For suppose that

{3y,3y+1} = W We show that 2. or 3, occurs at s,

(y1)y1eF (Hi)i<x
X

Then since FX has x+1 members and there are only x numbers

Q(Y1gi,8)-

< x, there are y., y, in F s.t. for some i < x, Q(y1,i,s)
and Q(yg,i,s), Iet j be the associate of D(i) at s and let

S B ‘ s _

ks k, be s.t. wi,k1 = {3y} or {3y,3y,+2}, Wik, = {3y}
S

or {3y,,3y,+21}, Tj,k1 = {3y} or {3y,,3y,+1}, and

S . .
Tj:kg = {3y2} or {3y2,3y2+1}. There exist Ugs Uy with

say)u, < u, and both < s s.t. T, T, first acqui
( Y) 1 J,k1’ J’kg r quire

respectively. At Uy, 7., must occur with

2

members at u u

1’
y=y4|)k'=k

2

1 and at Uy 7., must occur with V=Y5> k=k2,

For the only other possibilities, in the case U, for instance,
u
are 9. and 11,3 9. is impossible because then wi1k =
>
{3y,53y+1} which implies Wy , = {3y,,3y,+1} instead of
3 1 '

{3y1} or {3y1,3y1+2}5 and 11. is impossible because then

u,+1
1T . s
Tj,k1 = {3y1,3y1+2} which implies Tj,k1 = {3Y1:3Y1+2}

instead of {3y1} or {3y1,3y1+1}. Since 7. occurs at U,

we have ~Q(y1,i,u2). But since 7. occurs at u, with y = y,
u1 u1+1
kK = k.], we have Wi’k1 = {33’1} and TJ,K1 = {33’1}: and

combining this with W9 = {3y,} or {3y,,3y,+2}, and
ik, 1 12294

S .

Jk, = {3v,} or {3y,,3y,+1}, we must have Q(y,,1,u5)s

Contradiction.

T

Q.E.D.
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LEMMA 6., Let j be the final associate of D(i). Then

(z) (W,

L, € C)=(z)(u

1,7 = TJ’Z) (so that D(i) holds).

PROOF. Suppose that (z) (W,

i,z € C). Consider W.

ik’
First case, wi,k is empty. Then Tj,k is empty.

Second case. W. has one member. Then W, = {3y} for
i,k i,k
some y, V € Fx say, and {3y} e C. Tj  can acquire members
5
only by 7. and 8. Suppose 8. occurs at a step t, then
there is a step s < t s.t. 7. occurs at s; then by 5. and
6. and the fact that {3y} e ¢, {3y} e ¢® implies that

t, which is impossible. Thus 8. can never occur,

{3y} ecC
and to show that Tj,k = {3y} we have only to show that
. sometime occurs. Thus we must show that if s is chosen
sufficiently large, and x > i, then for each Y4 # vy in Fx’
~(y,,1,8).

For no y, #y in F  can we have {3y1} £ C. Otherwise
suppose (say) y, <y and {3y1}, {3y} € @. Then because
y is sometime an associate of C(x), %o must occur with
y, for y, and so {3y1,3y1+1} € C which implies {3y1} £c
by 5. and 6., contradiction. There is therefore s, with

{3y,} £ et for all t = sy and all y, # y in F, ,but
s s
{3y} e ¢ 9 and wiok = {3y}. Further we can suppose that j
4
is the associate of D(i) at 8q For finitely many z,
s

making up a set Z, we may have Wioz = {3y1} or {3y1,3y4+2}
k] ¥

S
and T.O
Jds2

. so W.
Wl’z e C, Wl’

= {3y,} or {3y,,3y,+1} with y, #y in F_.

, = (3Y:3y 1} or {3y,,3y+2}. If
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W = {3y1,3y1+1} 9. will ensure that eventually Tj

i’Z gZ
will be {3y1,3y1+1}, and if W, = {3y1,3y1+2}, 11, will
3

ensure that Tj , Will become {3y1,3y1+2} (T. can never

ds2z
be {3y1,3y1+1} because then 12, would occur and j would

L

not be the final associate of D(i)). Thus let s 2 s be

s.1l. that for each z € Z we do not have wi ;= {3y1} or
3

s

{3y4,3y,+2} and T} |

F_
X

= {3y} or {3y,,3y,+1} with y, #y in

Now if there is y, #y in F, s.t. Q(y1,i,s), there
S

is z, which must £ Z, with Wy
3

= {3y} or {3y,,3y,+2} and

S

= {3y} or {3y,3y+1}. Since z £ 2, T,°,
5
S .
0’ and so Tj,z is in fact

{3y1,3y1+1}, both members being acquired by 9. at a step t

s
Jsz ¢
But {3y1} gC'for any t 2 s

T is empty.

with 5q = t < s, and thls 1s 1mpossible because Wg z

3

cannot be {3y1,3y1+1}.

Third case. W has two members and W = {3y,3y+1} for
i,k i,k

some y. Then the only cases which can affect Tj
3

7., 8., and 9., and 9. will ensure that Tj k = [3v,3y+1}.
E

Fourth case. W has two members and W = {3y, 3y+2}
1,k 1,k

K are

for some y. Then 11. will ensure that Tj,k = {3y,3y+2].
12, cannot occur since J is the final associate of 1.

Q.E.D.

A. 1s clearly satisfied, and so Lemmas 4, 5, and 6

complete the proof.
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In [5] it was shown that if a standard class contains
an increasing r.e. sequence, then it contains its limit
(that i1s, its union). In [6] this closure condition was
shown to be a property of indexable classes also. The
Theorem below (or, rather, its Corollary, 2.4) generalises
the result to subclass enumerable classes.

THEOREM 2.3. Let <TX | x 2 0> be an r.e. sequence of r.e.
sets s.t. T =(LD{TX | x 2 0} is infinite and there is &
strongly r.e. sequence of finite sets <UX lx 2 0> with

v «T , U U
X X

N opqs 20d QD{UX |x 2 0} = T. Then any

subclass enumerable class containing TX for each x also
contains T.
PROOF. Let C be a class of r.e. sets containing TX for
each x but not containing T. Let <Si,j |i,J 2 0> be a
2-dimensional r.e. sequence of members of C, and denote by
Gi the r.e. subclass of ¢ given by the i-th row. We show
we can enumerate an r.e. sequence <RX | x 2 0> s.t.

1) R, € C for all x

2) If <R |x = 0> enumerates C*, then C¥ #¢,; for all i.

Then ¢ cannot be subclass enumerable.

DISCUSSION.
To satisfy the GO condition: Let Si j be the approximation
3
to Si j after step s of a recursive enumeration of <Si J.>.
B s

We will make each member of the R sequence a member of the

S
S T and
T sequence. If SO,O is a Tx’ then for all s SO,O
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SO there is y s.t. S S Uy (since &D{UX | x 2 0} = T).

0,0

Thus after step s of SO o We can walt till we find such a

y. If we do, then there is a largest x s.t. Ux c g5

0,0°

then ensure that for each n, Rn.is TZ with z sufficiently

We

large that Ux+ < TZ -- namely z 2 x+1. If at a later step

1
we have to increase x we can do so since for any finite

subset F of T , there is x' with Fs U ., . If S is fact
Z X 0,0

T, say, and the largest x with U < T, is x(a), then

U will be in R for each n and S, £ ¥, On the
3

x(a)+1

other hand, if SO 0 is not a TX but is contained in T, in
2

order to make us go wrong by containing Ux for each x it
must be T, which is impossible since T £ C.

If we try this for all C (with Sogo’ S1,o’ 52,0,...5)
we will be 1liable to injure the Rx € @ conditions (by
making Rx = T). Thus we set up a priority ordering

c*;éco, R. ecC, c*;éc1, R, €eC,...

0 1
To satisfy 61, we restrict only Rn with n 2 1; we therefore

have to get two members of C, not in ¢* - R, (so that they

cannot both be R1 and 01 - ¢* is non-empty). We look for

two members of ¢, differing on the largest Ux contained in

1
them. We also add the condition that ¢* is infinite for the

case where two such members cannot be found. And so on, for
62’ OBJII.O .
CONSTRUCTION. Define a 2-dimensional r.e. sequence

<Fi,j | 1,3 = 0> by
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Fi,g = x1(@y)(282)(u, = sy 5 <u,)l.

Now Fi,J is finite for all i,J. Si,j £ T since T £ ¢, i.e.
1,9 Y By

since T = @S{Ux | x =2 0}, U, <8

(T-5 T) is non-empty. If T - S. . is non-empty.

1,4
. . 1s false for all s.l. x
7 1,d
and F, . 1s finite., On the other hand, if S. .-T is non-
1,4 1,4

empty, there is y with sg p
3

Sy . & U 1s false for all z. Thus if x € F. . we have
1.4 y z 1,J
1

U. < S S U for some y1, z and so y1 < y and

- T non-empty, and so

. 17
sd 1

Ux S Sg g This can hold for only finitely many x since
k)

U {u, | x 2 0} is infinite and so in any case F; j is finite.
3

Let F° . be the set of numbers in F, , after step
1,4 1,4

s Of a recursive enumeration of <Fi J.>. Define & recursive
5

function c(i,s) as follows.

If there are numbers jo, J1,...,ji s,t.

S} s S}
i’J-O’ ..;’)Fo

E . . .
1:J19 l’Ji

F

are distinct and non-empty, put

S s Where

1,9,
s d5

' s
c(i,s) = the largest member of Fi’jo U.. U F

ji is chosen to be as small as possible,
Otherwise we put

c(i,s) = 0.
We claim that for each i, c(i,s) attains a largest value.

CASE 10 There are nUInberS Jo,occ’Ji S.ts Fi J ,...’Fi J-
7Y0 et

are distinct and non-empty. In this case if Ji is chosen

as small as possible, then for all s s.l. that
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. S
< j. = F? | =
J Jl FlJJ 1,d
we will have
c(i,s) = the largest member of F. . U...U F, .
lpJO l’Ji

Thus c(i,s) is bounded since it converges.
CASE 2. Otherwise, in which case {Fi,J | 1, = 0} is finite,
@B{Fi,j | 1,J 2 0} has a largest member n, and
c(i,s) < n for all s.
If &B{Fi,J | i,J 2 0} is empty, c(i,s) = O for all s. So in
any case c(i,s) attains a largest value.
Thus there 1s a function f and an r.e. sequence <Rx>

given by RX =T ) satisfyling the conditions

fx
(0) £f(n+1) > £f(n) for all n

(1) £(n) > the largest value of c(0,s) for all n

(2) f(n) > the largest value of c(1,s) for all n z 1

(i+1) f(n) > the largest value of c(i,s) for all n = i

For we can define a recursive function f(i,s) and a

. . s
2-dimensional strongly r.e. sequence <Ri> as follows by
simultaneous inducticn on 1 and s.

£(i,0) = © Rg = the empty set

Let
t(i,s+1) = max{c(0,s+1)+1,...,c(i,s+1)+1,f(i-1,5+1)+1}

if 1 > 0, and
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t(i,s41) = c(0,s4+1)+1 if 1 = 0.

gf(i,s) if t(i,s+1) s £(i,s)
£(i,s+1) =1
qu[X z t(i,s+1) & R® c U ] otherwise
[\ 1 X
S S-+1

S+1 RS uy T

Ry i £(1,s4+1)

where <Ti> is a recursive enumeration of <Tx>'

Note that the definition of f(i,s+1) is possible
because T s U){u, | x = 0}. Derine R, =Q)(R] | s = O}.
Lim f(i,s) = £(i) say exists because for each i, c(i,s)
attains a largest value. Ri = Tf(i) and conditions (0),
(1),... hold.

<Rx> enumerates C* & C. The proof is completed by
showing that ¢* # ¢, for each i.

We need consider only the case where each member of
Gi 1s 1n the sequence <TX>. Thus for each i,J,

F = {y [Uy < Si,j} because T < {UX | x2 0}. If Case 2

i,J
occurs, elther there is no y s.t. Uy S a member of ci or
there is a largest such y. But by condition (0) for each

y there is a member of C* containing Uy. So ¢y #Ce*, If

Case 1 occurs, the i+1 sets S. . ,...,S. . are all
1,dg 1,d5

different, and if n 2 i, condition (i+1) yields f(n) > the
largest value of c(i,s) 2 the largest member of

F UeeoU Fy 55 80 Upgpy © Ry but Upp, £ 8y, for

i’JO i m
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O=m=13i. Thus R_1is different from each of S. . ,...,S. .
n l’JO 1,J

for all n 2 i and it follows that at least one of

S P Gi - C* and Gi £ Cx,

i,J'O"“ 1,d5

Q.E.D.
COROLLARY 2.4, 1If a subclass enumerable class contains
an increasing r.e. sequence then it also contains its
limit.
PROOF. Let the subclass enumerable class G contain the
increasing r.e. sequence <T, | x 2 0>, If
Tf:z&B{TX | x 2 0} is finite, T = T, for some x and so
T € C. Otherwise define

_ X X X
Ux = TO U T1 Ue. .U Tx

where Ti is the set of numbers in TX by the end of step s
of a recursive enumeration of <Tx> ahd the conditions of
the theorem are satisfied.

Q.E.D.
COROLLARY 2.5. A simple example of an r.e. class which
is closed to r.e. limits in the sense of Corollary 2.4 but
is not subclass enumerable is {N-{x} | x 2 0}.
PROOF. Define U, = {n|n < x}, TX = N-{x} and it follows
that any subclass enumerable class contalning {N-{x} | x 2 0}
must also contain N.

Q.E.D,
The following example shows that THEOREM 2.3 does not

. characterize subclass enumerable classes.
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EXAMPLE 2.3. There exists a non-empty r.e. class C,
consisting of singletons and pairs, which is not subclass
enumerable.

PROOF. Let o(i,J) = 2 7(i,J), where 7 is the Cantor pairing
function, so that o i1s an effective one-one correspondance
between ordered pairs of natural numbers and the even
numbers. Let C*¥ be the class of r.e. gets of cardinality
one or two.

Take C = &% - {{o(i,3)} | (Hy)(yéRJ & O(i,J)eWi’y)}
where <le J & 0> is a recursive enumeration of the r,e,
sets and <wi,Jl i,J 2 0> 1s a 2-dimensional r.e. sequence
whose rows include all the r.e. sequences,

Suppose that C is subclass enumerable, then by

Definition 2.6 there is an i s.t. <W y 2 0> is a

i,y ,

recursive enumeration of ¢, and if « is an r.e, subclass of

C the is a J with @ = ,
re is J wi {Wl’y

Let &« be the r.e, class enumerated by the r.e. sequence

| v e RJ}D

<UJ| J 2 0> defined as follows:

CASE (13) . ~(Hy)(yeRJ & o(i,j) e winy),
Then put UJ = {o(1,7)1. UJ e C.

" CASE (2j). (3y)(yeR, & o(i,J) e W. _).

J 1,y

Fix such a y, say Yq- {o(i,J)} £ ¢, and so Wigyozfo{igj),n},
with n # o(i,3)s Put‘UJ = {o(i,J),m}, where m is,an. odd
number different from n,

a4 < C, and so there is a J with & = iwi,yl y € RJ}°
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In CASE (1§),{0(1,4)} e @ - {w; ;| 7 e Ry}, contradiction,
2
In CASE (2j), take Yoo D> m as above. We have {o(i,3),n}

e (W, | v e Rj} - d, giving a contradiction, For if
3

N
{o(i,d),n} e @, {o(i1,3).n} = U, say. Since n is odd and
o(i,J) is even, o(i,j) = o(i,k) and therafore j = k bezguse
o 1s one-one. This contradicts m # n.

Q.E.D.

Our final example completes the proof of the Main

Theoren, |
EXMPLE 2.4. There is a class of r.e. sets which is subclass
enumerable but not indexable,
. REMARK. The class ¢ which we construst consists of singletons
and pairs, and contalins all the pairs.
PROOF, Let <wx£y] X,y & 0> be a 2-dimensiocnal r.e. sequence
of r.e. sets with less than three members including every
r.e. sequence of r.e. sets with less than three members
among its rows, and let <mx ]x 2 0> be a recursive enumeration
of all the one-argument p.r. functions. Puh w(XsY)=df@X(Y>~
Let (i(n),j(n)) be the (n+1)st ordered pair of natural
numbers in some effective numbering, for example we can
define the functions i and j by T{i(n),j(n)) = n, where T
is the Cantor pairing function,
DISCUSSION. To make C non-indexable, for each p we want to

| x 2 0> from being an

prevent the r.e. sequence <W
PsX

indexing of ¢, that is (by Definition 2.4}, we should be
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able to construct an r.e. sequence <UX] x & 0> s.t, if

wp,x € C for all x, then UX e C for all x, and for each g

there is an x with o(g,x) undefined or o(q,x) defined but

W ) # Ux' Let us assign a position B in the U

p,p(a,x
sequence to the p.r. function Py and a singleton {al}l to
the pair (p,q). Compute @(q,B) and if it is defined

. Put {a} in e and a in U

enunerate W As long as

p,p(a,B) B
i undefi d W i
o(g,B) is efined or p,m(q,B),# {a} we can leave it at
that. But if we ever ha defined d W =
e ve ¢(q,B) defined an 0,0(a,8) {a}

we remove {a} from C by converting it to a pair; if

subsequently it turns out that W 8) is a pair we can

p,e(a,
make U, a different pair. In general (p,q) = (i(n),j(n))

B

and by using distinct a for different n, and distinct B
for different q, ¢ can be made non-indexable.

Simultaneously, however, we must make ¢ subclass
enumerable, that is (by Definition 2.5) we have to
enumerate r,e., classes Xb, X1, Xg,,.n with Kl € ¢ s.t, for
each k, if Wk,x e ¢ for all x, then there is 1 with
{Wk’xl x 2 0} = X,. A singleton {a} used as above can
give us trouble, for if Wk’X is apparently {a} while {aleC,
we put {a} in Xl, but then if {a} is removed from ¢ we must
make the {al} in X, a palr, and Wk,X may in fact be a
different pair.

We assign priorities to our requirements, the(i(n),j(n))

non-indexability requirement taking priority over the row k
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subclass enumerability requirement if and only if n < Kk,
If n = k and a conflict arises, we choose a new 1 tc use

with k, converting each member of the old X, fto a pair.

1
Define
Fo = {0}, F, = {1.23, F, = {3,4,5},... . We use as our
a for the (i(n),j(n)) requirement a member of F,. We show
that we can eventually find an a e F, which is "safe™ as
regards possible conflicts with a row K requirement with
k < n,
S
o TON, t W.
ONSTRUCTION Le Wxﬁy,
after step s{=0,1,2,...) of a simultaneous enumeration of

p(x,y,s) refer to the situation

W, y| X,y 2 0> and computation of <g_(y) | x,y = 0>.
3
There is x € F_ s.t. P(n,x) =4¢ Tor each k < n,
| (5 -
x %(LB{WKDZI z20} .v. (8y)(Fz)(yAx & W , = {x.¥]) ..

(2y)(8z)(yeF, & vy # x & We , = {y1).

For if ~P(n,x) for each x € F , for each x ¢ F, let
k(x) be the least number <n s.t.
={y}),\"3

and k(x) is a one-one function with n+1 elements in its

X,z = {x} & (y)(y e F, & y#x =~(HZ)(WK(

x),z
domain and n elements in its range, which is impossible.
There is therefore a binary recursive function y(n,x) s.t.
(n)(x)(y(n,x)eF,) & (n)(8y) (x) (x2y=y(n,x)=y(n,y).&.
P(n,y(n,y))).

This is true because P(n,x) has the form
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(k) ey (B Nz) Qln,x.k,y,2)
where Q is a recursive relation. Limxy(n,x) is the "safe"
value of a € Fn referred to above.

At step s of the definition of C, we also define
numbers af{n,s), B(n,s) for each n < s, working
successively on n=0, n=1,..., n=s, We stipulate that all
pairs are to be in €, and we enumerate them separately.

Instructions for step s.

There 1s one case 1f n=s,
oc(n,s) = Y(I’l,O)

8(n,s) = the least number which has not yet been a value

of B{m,t) with i(m) = i(n).
Put {a{n,s)} into C.
There are three cases if n < s.
Suppose a(n,s-1) = y(n,m).
case 1 o(j(n), B(n,s-1)) is defined by step s and
@(n,5-1) € Wi (1),0(3(n),8(n,5-1))"
Then we put
a(n,s) = v(n,m)
B(n,s) = B(n,s-1).
Also we remove {a(n,s)} from C, by converting any occurrence
of it to a pair.
Case 2 Case 1 does not occur.
Then we put

a(n,s) = v(n,m+1)
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2.1 If a(n,s) = a{n,s-1) put B(n,s) = B{n,s-1).

2,2 If a(n,s) # a(n,s-1) put B(n,s) = the least number
which has not yet been a value of B(m,t) with i(m) = i(n)},
and remove {a{n,s-4)} from ¢ and put {al(n,s)} in.

NOTE. For esch n there are two possibilities:

For some s, Zase 1 occurs. Then for all t 2 s-1,;

a(n,t) = a(nys-1) = a(n) say.

il

B(n,t) = B(n,s-1) = B(n) say.
Also if x ¢ F_, {x} £ C.

Jase 1 never occurs. Then for all s.l. s a(n,s), B(n,s)

are constants a(n), B{(h) as before, This time
a{n) = Lim Y(n,x) and so P(n,a(n)).
Also if x € F_, {x} ec e x =a(n).

¢ is not indexable.

Suppose otherwise then there 1s p s.t. the r.e. sequence
<Wp9xl x 2 0> is an indexing of C. Define an r.e. sequence
<Ux| x 2 0> as follows. Let i~ '(p) be NysNgsNyse0. in
increasing order. For every number x there is a unique
K s.t. x is chosen as B(nkﬂs) for some s and we have
B(nkﬂt) = x for all t 2 s unless Case 2.2 ever happens
and then x is never a value of B(nk,t) again. a(nkps) is
put into UXO Consider the succeeding steps t at which
B(nkpt) = x, If Case 1 ever happens we know

a(nkgs) = a(nk), B(nk,s) = B(nk), {a(nk)} £ ¢ and so

W )) = {a(nk)gy} with y # a(nk)° We then

p,o(J(n,).B8(ny
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put z # vy, a(nk) into U . If Case 2.2 ever happens we

convert UX to a pair.,

For each x, UX € ¢, For UX is a singleton only if
neither Case 1 nor Case 2.2 ever happens and then
{a(ng,s)} = {a(n )} e c.

Also <U_ | x 2 0> is not reducible to W, L x = 0>

2

For if the (g+1)-st p.r. function is total choose k s.t.
J(nk) = 4, Let s be the first step at which B(nk}s) = B(nk).
Then a(nk,s) = a(nk) also. Take x = B(nk) in the above
definition of Ux’ Case 2.2 can never occur. If Case 1

ever occurs UB(DK) is a different pair from W

p,p(a,8(n,))’
and otherwise a(nk) € UB(nk) - WP,Q(QJB(HK)) so in either

case U and the (q+1)-st p.r. function

B(n,) ? "o, p(a,8(n,))

cannot reduce <Ux(x 20 > to <wp Xl X 2 0>, which is a
3

contradiction,

C is subclass enumerable,.

We enumerate a sequence of r,e, classes
Xoj ?(1: ?(2”.’
s.t. 1. Xl € C for all 1

2, For each k, if (x) (W € C) then there is 1 with

k,x
X, = £wk,x, x 2 0}.

Follow a plan by which for each ordered pair (k,x) we consider

the set W at infinitely many steps of the construction

k,x
of C¢. For each k there may be a step at which we associate
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one of the classes Xl with k. Xl remains associated with k

unless it is eliminated in which case Xl is to be made to
consist of a class of pairs. Later we may choose a new Xl
to associate with Kk,

Step s corresponding to (k,x):
Case (a) wiyx is empty. Do nothing.
Gase (b) WEDX is a singleton {y}, y € F say.
n <k If {y} ¢ C at step s assoclate a value of 1 with k
if one does not exist and put {y} in Xl, We note that this
occurrence of {y} in X, came from Wk,x’

If {y} £ C at step s, 1 is associated with k and
{y} e X, eliminate X;.
n >k If {y} € C at step s and (qu)(&v) (ufy & WEDV={y,u}),
associate a value of 1 with k if one does not exist and put
{yv} in X,. Note that this occurrence of {y} in X, came from
kaxo
Case (c) WEJX is a pair {y,z}. Associate a value 1 with k
if one does not exist and put {y,z} in X, 1If {y} or {z} is
in X, - C at this time, convert any occurrence of {y} or {z}
in Xl to {y,z}; otherwise Jjust convert any occurrence of
{y} or {z} in X, which came from wk,x to {y,z}.

i1, i1s satisfied,

' Otherwise there are 1,K,x,s,y s.t. 1 is associated with k
and is never eliminated, s corresponds to (k,x), Case (b)

occurs at step s putting {y} in X, for good, and {yl £c.
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First suppose y € F with n < k. If W][{’X # {y} Case (c)

gives a contradiction, and if w][{’X = {y} Case (b) gives a
contradiction since Xl is eliminated. Next suppose ¥y € Fn
with n > k. Then Case (c) gives a contradiction at a step

corresponding to the (k,v) s.t. W; v = {y,u} with u # y.
2

2. 1s satisfied.

Fix k and suppose that (x) (W][{’X € ¢). First we show that

at infinitely many steps there is. some value of 1 associated
with k., This is clear unless {W]&’X | x 2 0} consists entirely
of singletons {y} with y ¢ F ., n >Kk. With such an n Case 1
never occurs (because {y} e ¢) and y = a(n), P(n,y). This
implies that there is z € F, z #v, {z} e {wk,xl x 2 0}
which i1s impossible since at most one singleton from Fn

can be in C.

Suppose k is associated with infinitely many values of
1. Then since@J}{Fn |n < k} is finite there is a fixed y
s.t. the Xl associated with k 1s eliminated infinitely often
through Case (b) with this y. It follows that {y} £ C and
thus {y} is eventually not in ¢ and so for s.l. 1 associated
with k we never have {y} e X;. Contradiction.

Let 1 be the final associate of k. X, = {Wk’x | x 2 0}
as far as pairs go. If {y} = W]&’X and {y} ¢ Xy, ¥y € F with
n >k, {y} is eventually in ¢, and ~(Zu)(dv)(ufy & Wk’v={y,u}).
But y = a(n), P(n,y). Thus there is z ¢ F ., z #y s.t.

{z} € {Wk X | x 2 0} which is impossible. Also Case (c)
J
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ensures that if {y} ¢ X5 {y} = W, . for some x. Thus
3
X, = {Wk,xl x 2 0}.

Q.E,D.
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CHAPTER 3

PARTIALLY CRDERED SETS REPRESENTABLE BY R.E. CLASSES.

A partially ordered (p.o.) set (#,<) is represented

by the r.e. class ¢ if (#,<) is order isomorphic to (C,&),
that is to the p.o. set consisting of @ ordered by the

inclusion relation. (#,<) is representable if it is

represented by some>r.e. class.

A. H. Lachlan has conjectured that p.o. sets and
representable p.o. sets are indistinguishable by elementary
sentences, and has pointed out that to prove this it 1is
sufficient to show that all p.o. sets of a certain type
(sce the Proposition preceding Theorem 3.4) are representable,
In this chapter the conjecture is verified.

Let (#,<) be a countable p.o. set; and ¢ a function
from N onto #. Define a class C of subsets of N by the
sequence of sets I(0), I(1), I(2),... with
I(x) = df{y | o(y) < o{x)}. We have

o(x) <o(y) e I(x) < I(y).
First suppose o(x) < o(y) and let z ¢ I(x). Then o(z) < o(x),
and so o(z) < o(y) and z € I(y). Next suppose I(x) € I(y).
Then since o(x) < o(x), x € I(x) and so x € I(y) and
g(x) < a(y).

Thus o(x) goes-to-I(x) is a well defined order

isomorphism from (€,<) onto (C,<).
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If the relation R defined by xRy = g, o(x) < o(y) is
an & relation, then C is an r.e. class representing (#,<).
THECOREM 3.1 If (€,<) is a p.o. set s.t.

(1) there is a function o0:N onto € with the relation R

defined by xRy = ,.0(x) < o(y) an @Y NY 4 relation, and

af
(i1) (#,<) has a greatest member,
then (9,<)vis representable by an r.e. class.
CONSTRUCTION As in the remarks preceding the statement of
the theorem, we represent o(x) by‘a set which encodes the
initial segment of {&,<) determined by o(x). Difficulties
in doing this are overcome by assigning priorities to our
requirements.

By hypothesis (i), there is a recursive function

c(x,y,s) with range € {0,1} s.t. for all ordered pairs (x,y)

o(x) <0o(y) = c(x,y,s8) = 0 for all s.1l. s

o(x) £ o(y) = clx,y,s) = 1 for all s.1l. s,
We can assume that c(x,x,s) = O for all x,s.
In steps s = 1,2,3,... we will construct an r.e. sequence

<T(u) | u 2 0> enumerating an r.e. class C. We will also
enumerate an r.e. set A,

Each x will eventually have an associate. The associate
of x may change, but it will do so only finitely often.

Denote the final associate of x by a(x). We intend that

T(a(x)) represents o(x). If u e A, we intend that T(u)

represents the greatest member of (&,<) given by hypothesis
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(11).
Let <G(x) | x 2 0> be a recursive sequence of disjoint

infinite sets. There will always be a greater-than-x tag

defined in G(x), initially taken to be the least member of
G(x). The x-tag may change, but again it will do so only
finitely often. If g(x) is the final greater-than-x tag,
we intend that for all y
g(x) € T(a(y)) ® o(x) < a(y).
We follow a procedure by which we return to each
ordered pair of natural numbers at infinitely many steps.

Instructions for an (x,y) step s

First, if y has no assoclate, associate with y the
least number which has not yet been an associate. Let a,

be the associate of y, and let g be the x-tag.

Case 1 clx,y,s) = O
Then put g in T(a1).
Case 2 c(x,y,s) = 1

Then do nothing unless g ¢ T(a1), in which event there are
two subcases.
We know x # y.

Subcase 2(a) x >y

Then choose a new x-tag, taking it to be the least member of
G(x) greater than g. Set up a subprocedure by which g is
put into T(u) for each u.

Subcase 2(b) x <y
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Then choose a new assoclate an for y, where a5 is the least

number which has not yet been an associate. Put 8,

and set up a subprocedure by which T(a1) pecomes & c.

in A,

This completes the construction,
Define Q{x,y) = {s | s is an (x,y) step and 2(a) or 2(b)
occurs at s}
We prove the following
LEMMA Q(x,y) is finite,
PROOF OF LEMMA. We show that ifbs < s, and s,s, ¢ Q(x,y)

1
then there 1s s, s.t. s, < s, < s

3 1 > 2 3)
s € Q(x,y) implies that c(x,y,s) = 1, the assumption that

and c{x,¥,s5) = 0. Since
Q(x,y) is infinite will yield a contradiction, since c(x,y,s)
converges. Suppose then that S, < S5 and 8418, € Ax,y).
For s = s1, denote the x-tag Jjust after step s by
g(xss), the associate of y just after step s by a(y,s),
and the set of numbers in T(u) just after step s by T(u,s).
Whether 2{a) or 2(b) occurs at s, we have
g(x,s,) £ T(aly,s,)ss ).
However, since s, € QUx,y),
g(x,se—1) € T(a(y,se—1),82—1).
It is therefore possible to define a step s, to be the

3

least step with S, < 33 < S5 s.t.
g(x,sj) € T(a(y,sj),sj), and we have
g(x,s —1 £ T y,53—1),83—1).

g(x,sj) = g(x,s3-1), for otherwise Subcase 2(a) shows that
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g{x,sB) gvT{u,s?) for any u. Also a((,s3) = a(y,53-1),
because otherwise by Subcase 2(b), g(x,sz) £ T(a(y’SB)’S3)’.
sinrce the only numbers that can possibly be in
T{a(y,sB),SE) gre discarded tags from the subprocedure of
2{a). The subprocedure of 2(h) does not affect the argument
since a(y,sj) cannot be in A at S Thus we have
glx,s5) € T{aiy,SB)BSB) - T(a(y,s3)383-1)
and the only way this can happen is by Jase 1. Since *the
G(x) are disjoint and associates}of different numbers are
different, S3 is an ‘x,y) step. Thus c(x,y,sj) = 0 and the
emma 1s proved. |
It 1s now easy to show that the x-tag changes only
finitely often. For
the x-tag changes at s
= s ¢ Q(x,y) for some y < x
and g%L Q(x.y) is finite.
Also, the &associate of y changes only finitely often.
For
the associate of y changes at s
= s € Q(x,y) for some x <y
and Sg% Qlx,y) is finite.
Next we show that
g(x) e T(a(y)) ® ol(x) < o(y)

First suppose o(x) < o(y) and consider an (x,y) step s s.l.

that c(x,y,s) = O, the x-tag is g(x) and the associate of y
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is a(y). Case 1 occurs and g(x) ¢ T{a(y)). Suppose then
g{x) € T(a(y)) and we obtain a contradiction from o(x) X oly).
SJonsilder an {x,y) step s s.l. that c(x,y,s) = 1, the x-tag
is fixed at gi{x), the associate of y is fixed at a(y), and
g(x) € T(a(y)). OCne of Subcases 2{a), 2(b) occurs, and either
the x-tag is changed or the associate of y is changed,
which is impossible.

We have now

T(a(x))  T(aly)) ® o(x) < o(y).
For if T(a(x)) € T(aly)) and o(x) X o(y), g(x) e T(a(x))
but g{x) £ T(aly)). And if o(x) < o(y), we need consider
only members of T’a{x)) of the form g(z), for discarded
associates are in T(u) for all u (the subprocedure of 2(a)).
If g(z) e T(a’x)) then o(z) < o(x), so o(z) < o(y) and
&lz) e T(a(y)).

Thus p defined by

plo(x)) = T(a(x))

is a well defined order isomorphism from (€,<) into (C,<).
It remains to show p is onto. If u is not of the form a(x)
for any x, then u ¢ A and T(u) =QDO, by the subprocedure of

2(b). Let o(x.) be the greatest member of (#,<). For all

o)
x, o(x) < o(xo), and so g(x) € T(a(xo)). Also all discarded
tags are in T(a(xo)). Thus

TN):UO:TMM&)=9WWQ)
and p 1s onto.

Q,anDu
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THECREM 3.2 If {#,<) is a p.o.set s.t.
(i) there is a function o:N onto @ with the relation R
defined by xRy = 4, o/x) < o(y) an IV N V¥ relation, and
(11) (#,<) is effectively a directed set, that is to say
there i1s a binary recursive function u s.t.

o(u(x,y)) » o{x) & o(u(x,y)) » o(y).
then (&,<) is representable by an r.e. class.
CONSTRUCTION This is of course a generalisation of
THEOREM 3.1, and we Jjust indicate briefly how to adapt the
above construction. The existance of a greatest member was

used in Subcase 2(b). By putting a, in A we really made é1
an associate of Xys Where o(xo) is the greatest member.
Suppose the z-tag ¢ T(a1) when we do this, then we are safe
because we know that o(z) < o(xo). In the present case,
using the function u we can effectively find a Y4 s.t. for
all z with the z-tag in T(a1), o(z) < o(y1), and we make a,
an assoclate of Yqe The only problem is a,, now associated

with Yqs could be transferred again to be an assoclate of Yo

(although not by conflict with the same x as before), then

again to y3, and so on. The isomorphism might not be onto

C. This i1s taken care of by bringing the requirement that

a is a final assoclate of something into the priority
scheme, That is, in Case 2 we are faced with either injuring
the "x-tag finally fixed" requirement, or injuring both the

"y has a final associate” and the “a1 is a final associate™
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requirements. Thus we make the conditions for 2(a), 2(b)
X 2 min {y,a1}, x < min {y,a1} respectively, rather than
X>y, x<y.

Q.E.D.
THECREM 3.3 If (#,<) is a p.o. set s.t.
(i) there is a function o:N onto € with the relation R
ol(x) < o(y) an 3¥ NV relation, and

ar "¢
(ii) given a finite set F &€ N, we can effectively find a

defined by xRy =

number u(F) s.t. if {o(x) | x ¢ F} has an upper bound in
(#,<), then ou(F) is such an upper bound, then (&,<) is
representable by an r.e. class.
CONSTRUZTION
We assume that if F is a singleton {x}, then u(F) = x.
Let the recursive function ¢ arising from (i) be defined as
in THEOREM 3.1. Define for finite F & N

d(F,s) =sg I Sg clx,u(F),s).

xel

Then we can effectively find d(F,s) given F and s, 4 takes

values O and 1, and

{o(x) ]| x € F} has an upper bound in (#,<) = d(F,s) = 0 for all
s.l.s
{o(x) | x € F} has no upper bound in (&,<) = d(F,s) = 1 for all
S.1.8

The idea is to use the function d(F,s) to satisfy an
additional requirement: for each finite set F, if

{o(x) | x € F} has no upper bound, then eventually
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{t |t is an x-tag and x € F} is not contained in any Tle).
Then we can hope to use the construction of THEOREM 3.2
"in the 1limit,*®

In steps s = 1,2,3,.., we construct an r.e. sequence
<T(e) | e 2 0> enumerating an r.e. class C.

For each y there will be a step after which y will

always have a finite set of associates. An associate of y

may be transferred to become an associate of Y4 # vy, and a

new assoclate of y will be chosen. We will ensure that y

acquires a final associate which it never loses. If a, is

a final associate of y, we intend that T(a1) represents o{y).
To make the isomorphism onto, each natural number e will
become an associate and be transferred only finitely often,
that is it will become a final associlate,
Let <G(x) | x 2 0> be a recursive sequence of disjoint

infinite sets. There will always be a greater-than-x-tag

defined in G(x), initially chosen to be the least member of
G(x). The x-tag may change, but it will do so only finitely
often. If g{x) is the final greater-than-x tag, we intend
that for all y, and all final associates a, of y,
g(x) e T(a,) ®» olx) < o(y).
We follow a procedure by which we return to each

ordered pair of natural numbers at infinitely many steps.

Instructions for an (x,y) step s

There are five operations to be performed in turn.
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1) If y has no associate, associate with y the least number
which has not yet been an associate.

2) Effectively find a number s 2 s s.t. for each set E

with {t [t is a z-tag and z ¢ E} s T(e), where e is an
associate of y, we do not have both c(z,y,5) = O for each

z ¢ EU{x} and d(EU{x},s) = 1.

%) For each zy s.t. there is a set F and a number e with
{t|]t is a z-tag and z ¢ F} < T(e), d{F,s) = 1 and zy = max F,
choose a new zo—tag, taking it to be the least member of
G(zo) greater than the old zo—tag. Set up a subprocedure
by which the old zo—tag is put in every member of C.

4) (a) For each z, s.t. there is an associate e of y with

0

the z,-tag < Tle), c(zo,y,E) =1, and z

a new z

o 2 min {y,e} choose

o-tag,... of ¢. [as in 3)].
(b) For each e s.t. e is an associate of y and there is
zy with the z,-tag ¢ T(e), c(z,y,s) = 1, and zg < min{y,e}
transfer e to be an assoclate of
u({z | z < e and the z-tag e T(e)}).
If y loses at least one assoclate by (b), associate with
y the least number which has not yet been an assoclate.
5) If c(x,y,s) = O put the x-tag in T(e) for every e associated
with y.
This completes the construction.

Lemma 1 For each finite set F, if {o(x) | x € F} has no

upper bound in (&,<), then eventually we do not have
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{t |t is an x-tag and x € F} € T(e) for any e.

Proof Let s, be the step at which d(F,s) is permanently

fixed at 1. Then Just after operation 3) of step s we

O}
will have {t |t is a z-tag and z ¢ F} not < T(e) for any e,
for d(F,EO) = 1. We claim that this holds forever after.
Supposing otherwise, the first time it becomes false is

after operation 5) of a step s = s Let s be an (x,y) step,

0

then there 1s e associated with y at operation 5) of step
s and a non-empty finite set E with F = E U {x}, x f B,
{t|tis a z-tag and z ¢ E}. s T(e), and c(x,y,5) = 0. The
same situation holds at operation 2) of step s.
d(BE U {x}, 8) = 1 because § 2 5 2 sy- Suppose z € E, then
c(z,y,8) = 0, because if c(z,y,s) = 1, operation 4) would
ensure that the z-tag ¢ T(e) at operation 5). Thus
c(z,y,s) = O for each z € E U {x} and d(E u {x}, §) = 1,
which contradicts the definition of s.

Q.E.D.

Lemma 2 Each e 1s a final associlate.
Proof e certainly becomes an associate, by 1) or the last
part of 4). We must show that e cannot be transferred
infinitely often. Suppose otherwise, then we can choose

s. as large as we please so that e 1s transferred by

0
operation 4) (b) at step sg- Let sy be sufficiently large
that for each finite set F with max F < e and each

z <e, clz, u(F), SO) is at its final value. We can also
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assume that for each F with max F < e,
{t|t is a z-tag and z ¢ F} < T(e) implies that
o(z) <o u (F) for each z ¢ F. (Lemma 1). ILet
Fo = {z |2z < e and the z-tag ¢ T(e) at operation 4) (b) of
Let s, > s, be

O)' 1 0
the next step at which e 1s transferred. Thren there is

so}. Then e is transferred to u(F

zoy < € with the zy-tag in T(e) at operation 4) (b) of S5
and c(zo, u(FO), s1) = 1. 5, 2s, >s,, and so by

definition of s, c(zo, u(FO), s) = 1 for all s 2 Sq

Thus T(e) cannot have acquired the zo-tag (by operation 5))

and s, and the z,-tag is already in T(e) at Sq»

0 1’
that is Zq € FO. 0
o(zo) <0 u(FO),and c(zo, u(FO), so) = 0, which is a

between s
By definition of s, we therefore have
contradiction.

Q.E.D,
Lemma 3 Each y has a final associate.
Proof By 1) and the last clause of 4) (b) there is a
step after which y always has some assoclate. Suppose the
Lemma is false then there 1is Sq sufficiently large that for
each x < ¥y, C(x,y,so) has reached its final value, and such
that y loses an associate by operation 4) (b) of step Sqe
By the last clause of 4) (b) y acquires a new assoclate e
which has not yet been an associate, so that T(e) can
contain only discarded tags. Let e be transferred from

y at S, > 5q Then there is Zq < e with the zo—tag in
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T(e) at operation 4) (b) of s, and C(z,y,§1) = 1,

1

s, zs, > s, and so by definition of S c(zosy,s) = 1 for

all s 2 SO. But the zo-tag must have been put in T(e) by

operation 5) of some step between Sq and s,, This 1is a

1
contradiction.

Lemma 4 The zp-tag changes only finitely often,
Proof The z,-tag can change by %) or by 4) (a). Let s, be

sufficiently large that for each finite set F with max F:zo,

d(F,s has reached its final value, and if that value is

o)
1, it 1s impossible for {t |t is a z-tag and z ¢ F} to be
contained in any T(e). (Lemma 1). Then after S the

zo-tag can no longer be changed by 3),
Suppose the Lemma is false and the zowtag is changed
infinitely often by 4) (a). Let
Y={y|y s zo or y sometime has an associate < ZO}'
Y is finite by Lemma 2, and so there is a fixed y e Y
and infinitely many steps s s.t, for some x, s is an
(x,y) step and the zo-tag is changed at operation 4)(a) of

s. Let s, be such a step, chosen sufficiently large that

1
c(zo,y,s1) has reached its final value, namely 1, and for

each e s z,, & has become a final associate (Lemma 2).

Let s, be the next such step. Just after step S 4 the zo—tag

2
is not in T{(e) for any associate e of y, but for some

associate e of y at step S5 the zo~ﬁag is in T(e). This
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cannot have come about by operation 5), by definition of

Sy Thus there was a transfer of e to y at some step 53
between S and Sns with the zo—tag in T(e) at operation
k) (b) of S 5 By definition of S;5 € > z45. Let

Fo = {z]|z < e and the z-tag € T(e) at operation L)(b) of 53}'
We have y‘= u(FO) and z4 € Fy. Thus
c

d(FO’Sj) = sg [ 3g (z,u(Fd,sB) = 1 since c(zo,y?SB) =1,

But {t |t is 2€§9tag and z ¢ FO} S T(e) at operation 3)
of Sj’ and so operation 3) ensures that this cannot be the
case at operation 4)(b). This is a contradiction.

Q.E.D.
Lemma 5 Let e be a final associate of y. Let g be the
final x-tag. Then

g e T(e) » o(x) < o(y).

Proof Suppose first o(x) < o(y) and let sy be an (x,y) step
sufficiently large that e is permanently an associate of
¥y, the x-tag is fixed at g, and c(x,y,EO) = 0. Then
g € T(e) by operation 5).

Suppose then that g e T(e) but o(x) X o(y). Let sy be
an (x,y) step sufficiently large that e is permanently an
assoclate of y, the x-tag is fixed at g, g € T(e) and

c(x,y,EO) = 1. Then operation 4) will contradict one of

the conditions on SO'

Q.E.D.

Proof of THEOREM Let a(y) be the least final associate
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of y. We have T(a(x)) ¢ T(a(y)) ® o(x) < o(y). & Let
g € T(a(x)). We can suppose g is a final tag, of z say.
Then by Lemma 5 o(z) < o(x) and so o(x) < o(y) and Lemma
5 gives g e T(a(y)).

(=) Suppose T{a{x)) ¢ T(a(y)) but o(x) X o(y). Then if g
is the final x-tag, by Lemma 5 g e¢ T(a(x)) - T(a(y)),
contradiction.

Thus p defined by p(o(x))= T(a(x)) is a well defined
order isomorphism from {#,<) into (¢, <). Also p is onto
by Lemmas 2 and 5,

Q.E.D,
let £ be the first order language consisting of a single
binary predicate constant @ and individual constants
S be a fixed effective

0, 1, 2, ... . Let S,, S

O’ 1,’ 23"'

enumeration cof the sentences in £.

We say a p.o. set (#,<) has property (E) if there is

a function o: N onto @ s.t, if (#,<) is made a model for
£ by interpreting Q as < and 0, 1, 2, ... as
0(0), o(1), o(2), ... we have
(i) {x [SX holds in (#,<)} is recursive in Q°
(ii) there is a singulary recursive function f s.t, if
S, holds in (¢, <) and S, has the form (ay)A(y), then
A(f(x)) holds in (&,%).
A. H. Lachlan pointed out that if X, a sentence involving

only the binary predicate constant Q, 1s satisfied by a
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p.o. set with Q interpreted as the < relation, then we
have the following

PROPOSITION X holds in a p.o. set with property (E), and

that it follows that if every p.o. set with property (E)

1s representable by an r.e. class, then X is satisfied by
an r.e. class with Q interpreted as the inclusion relation.
This was the motivation for THECREM 3. 3.

THEOREM 3.4 If (#,<) has property (E), then (&,<) is

representable by an r.e. class,
PROOF This follows from THEOREM 3. 3.

Q.E.D.
COROLLARY P.o. sets and representable p.o. sets are
indistinguishable by elementary sentences.

PROOF From THEOREM 3.4 and the PRCPOSITICN.

CUTLINE PRCCEF GOF PROPOSITION
The proposition follows from an analysis of the proof of
the completeness theorem (¢f THEOREM 35 on page 394 of
Kleen, [1]).

Let P be the sentence
¥x)a(x,x) & Fx)My)(¥z)(alx,y) & Qly,z).=Q(x,z)).
Then the sentence P & X is consistent.

Let YO = {P & x}. Define an increasing sequence of

finite sets of sentences

Y. €Y, €Y, &

0 1 2
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as follows.
Define recursive f by
£(0) = quz does not occur in SO)
soo0sS

f(x+1)= uyly does not occur in § and y is not

0°=1° X+1
equal to any of £(0),f(1),...,f x))

To get Y from ng -

X+ 1
Is Y, U {SX} consistent? Answer using 0.
— _ . . .
YES. Then Yx+1 is Yx along w1th Sx’ and also in the case
that 8. has the form (Zy)A(y), the sentence A(f(x)).
NO., Then Y_,, i1s Y along with ~S_.
x+1 X X
Define Y* = {J) Y . Note that Y ,. is consistent if Y_ is
neo X X+1 X
(using the fact that f(x) cannot oczur in Y or SX) and so
Y* is consistent, Also Y* is clearly complete in &£.
We have

{x|s, & Y*} recursive in 0’, and

S, € Y* and S_ has the form (dy)A(y) implies that

Define a binary relation @ on the domain N of the
natural numbers by

Q (myn) & . Q(m,n) e Y*.
This gives a way of making (N,Q) a model of £ and by
formula induction we can show that for each x

S, holds in (N,Q) = S, € Y*.

Properties of (N,Q)

Since P € Y*¥, P holds in (N,Q) and so § is a reflexive,
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transitive relation on N.
{x | S, holds in N, Q} is recursive in Q.
If 8, holds in (N,Q) and S, has the form (dy)A(y), then
A(f(x)) holds in (N,Q).
X holds in (N,Q).
Define a system (#,<) by letting € be the equivalence
classes on N of the equivalence relation
xBy ®4- Q(x,¥) & Qy,x),
and taking
x5 < /g ®ar Ax¥).
< is well defined and (#,<) is a partially ordered set.
Define o: N onto @ by o(x) = X/E. We have
S, holds in (@,<) & S, holds in (N,Q) since ¢ is a
homomorphism.
Thus (@,<) has property (E) and X holds in (&,<).
Q.E.D.
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