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Abstract

Orthogonal arrays are frequently used in industrial experiments for quality and productivity
improvement. Due to run-size constraints and level combinations, an orthogonal array may
not exist, in which case a nearly-orthogonal array can be used. Orthogonal and nearly-
orthogonal arrays can be difficult to find. This project will introduce a new algorithm for
the construction of orthogonal arrays and nearly-orthogonal arrays with desirable statistical

properties, and compare the new algorithm to a pre-existing algorithm.

iii



Acknowledgments

There are far too many people I have met during my two years at SFU that should be
thanked. In fear of forgetting to mention someone, I will just send out a big thank you to
everyone. Chances are, if you are reading this now, you are one of the people I would like
to thank (so thank you).

Big thanks to the graduate students I have met during my time at SF'U. The fun times
certainly made these two years fly by. And I certainly know that without your help I would
not have gotten through all of my classes.

My sincerest gratitude to Dr. Derek Bingham and Dr. Randy Sitter. Without their
knowledge and help, this project would not exist. Because of them and the great professors
in the department, I've been inspired to continue my studies.

I can not forget to thank my family for their constant support and encouragement.

Last but certainly not least, my eternal gratitude to Cindy Feng for all her help and

encouragement. I don’t know how I would have survived this without her.

iv



Contents

Approval
Abstract
Acknowledgments
Contents

List of Tables

1 Introduction

2 Orthogonal and Nearly-Orthogonal Arrays

2.1 Factorial Designs . . . . . . . . . ..o
2.1.1 Full Factorial Experiments . . . .. . .. ... ... ... ... ..
2.1.2 Fractional Factorial Experiments . . . . . . . ... .. ... . ... ..

2.2 Orthogonal Arrays . . . . . . . .. .. e
2.2.1 Mixed Orthogonal Arrays . . . . ... ... ... ... ... .. ...

2.3 Nearly-Orthogonal Arrays . . . . . .. . .. .. ... ... ... ...
2.3.1 Connection Between Criteria . . . . . .. . ... ... .. ... .. ..

2.4 Construction of Orthogonal and Nearly-

Orthogonal Arrays . . . . . . . . . 0 L e

3 Two Algorithms for Construction of OAs/NOAs
3.1 Xu’s Forward Procedure Algorithm using the J; criterion . . . . . .. .. ..
3.1.1 The Algorithm . . . . . .. .. . . e
3.1.2  Xu's Algorithm using the x? criterion . . . . .. ... .. ... ....

ii

iii

iv

vii

10
12
15

16



3.1.3 Comments on the Algorithm . . . .. ... .. ... ... .......

3.2 A New Algorithm Using a Sequential

Approach . . . . . . . L
3.2.1 The New Algorithm . . . ... ... ... ... ... ... .......
3.2.2  Algorithm Using the J Criterion . . . . . . . .. .. .. ... .....
323 Comments. . . . . .. .
3.3 Extension to Higher Strength . . . . . . .. .. ... .. 0oL
331 The JsCriterion . . . . . . . . . .. . e
332 AnAlgorithm . . . . . . . ... ..
333 CommentsonJsz . .. . .. .. ..
3.3.4 Extension to Higher Strength . . . . . . ... . ... ... .......
3.3.5 The x? Criterion for Higher Strength . . . . . . ... ... .......
3.3.6 The Algorithm . . . . . . ... . ... ...
3.3.7 Comments. . . . . .. . e
3.4 Designs with a Larger Number of Runs . . . . .. .. ... ... .. .. ...
3.4.1 A modification on Xu’s Algorithm . .. ... ... .. ... ... ...
3.42 Discussion of Weights . . . . . . .. ... oo Lo
3.5 Advancements . . . ... ... e e e e e e
Performance and Comparison
4.1 Construction of Orthogonal Arrays . . . . . . .. .. ... ... ... ....
411 Results . ... .. ... .o e e e e e e
412 Discussion . . . . . .. ... e e e e e
4.2 Nearly-Orthogonal Arrays . . . . . . . . .. . . . . e
421 Results . . . . . L e
4.2.2 DISCUSSION . .« .« v v v v e e e e e e e e e e e

5 Summary

Bibliography

vi

46
46
50
52
52
53
95

79

81



List of Tables

4.1 Expected time (in secs) to OA for Xu’s algorithm - J; criteria. . . . ... .. 56
4.2 Expected time (in secs) to OA for Xu’s algorithm - x? criteria. . . . ... .. 57
4.3 Expected time (in secs) to OA for new algorithm - x? criteria. . . . . . .. . . 58
4.4 Best Expected time (in secs) to OA for each algorithm. . . ... .. ... .. 59
4.5 Comparison of the new algorithm to Xu's in termsof 4. . . . . .. ... .. 60
4.6 Results for Xu’s algorithm - Jy criterion, 50 restarts. . . . . . . ... ... .. 61
4.7 Results for Xu’s algorithm - Jy criterion, 100 restarts. . . .. . ... ... .. 62
4.8 Results for Xu's algorithm - Jg criterion, 200 restarts. . . . .. ... ... .. 63
4.9 Results for Xu's algorithm - Jy criterion, 300 restarts. . . .. .. .. ... .. 64
4.10 Results for Xu’s algorithm - J; criterion, 500 restarts. . . .. .. .. ... .. 65
4.11 Results for Xu'’s algorithm - Jy criterion, 1000 restarts. . . . . . . .. .. ... 66
4.12 Results for Xu’s algorithm - x? criterion, 50 restarts. . . . . . . ... ..... 67
4.13 Results for Xu’s algorithm - x? criterion, 100 restarts. . . .. .. ... ... . 68
4.14 Results for Xu’s algorithm - 2 criterion, 200 restarts. . . .. . ... ... .. 69
4.15 Results for Xu's algorithm - x? criterion, 300 restarts. . . .. . ... ..... 70
4.16 Results for Xu’s algorithm - x? criterion, 500 restarts. . . .. . ... ... .. 71
4.17 Results for Xu’s algorithm - x? criterion, 1000 restarts. . . . . . . .. . ... . 72
4.18 Results for the new algorithm - x? criterion, 50 restarts. . . . . . .. ... .. 73
4.19 Results for the new algorithm - x? criterion, 100 restarts. . . . ... ... .. 74
4.20 Results for the new algorithm - x? criterion, 200 restarts. . . ... .. ... . 75
4.21 Results for the new algorithm - x? criterion, 300 restarts. . . .. ... .... 76
4.22 Results for the new algorithm - y? criterion, 500 restarts. . . . ... ... .. 77
4.23 Results for the new algorithm - x? criterion, 1000 restarts. . . . . . . ... .. 78

vii



Chapter 1

Introduction

The concept of orthogonal arrays dates back to the 1940’s to Rao (1947). Orthogonal ar-
rays are frequently used in industrial experiments for quality and productivity improveiment.
When an experimenter believes a number of factors may impact a process, orthogonal arrays
can be used to investigate which factors are active before further studies are done. Running
all possible combinations of the levels for the factors may not be practical for a variety of
reasons. When the model of interest is a normal linear regression model, orthogonal arrays
give designs that allow an experimenter to consider a relatively large number of factors in
relatively few trials while maintaining desirable statistical properties. For situations when
orthogonal arrays do not exist, we consider the concept of nearly-orthogonal arrays. There
are a variety of ways to measure the “goodness” of orthogonal arrays and nearly-orthogonal
arrays, and also a number of ways to actually find them.

Orthogonal arrays, and nearly-orthogonal arrays, often have desirable statistical proper-
ties, but are not always easy to find. For some orthogonal arrays, construction can be done
through existing theory, but in situations where theory does not apply or it is too time-
consuming for an experimenter to find appropriate theory, an algorithm for constructing
orthogonal arrays is needed. A number of different algorithms have been proposed for con-
structing orthogonal and nearly-orthgonal arrays; some of these include a Federov exchange
algorithm from Miller and Nguyen (1994), an interchange algorithm from Nguyen (1996), a
threshold accepting technique from Ma et al. (2000), an algorithm for a mixed level orthog-
onal array with many 2-level factors from DeCock and Stufken (2000), columnwise-pairwise
algorithms from Li and Wu (1997), and a state-of-the-art algorithm from Xu (2002).

The strength of an orthogonal array is related to the estimability of interaction terms
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in the normal linear regression model. The higher the strength of an orthogonal array,
the more interaction terms can be estimated independently of each other. In most cases,
orthogonal arrays of interest are of strength 2, as for strength 3 or higher, construction of
such an array may not be very easy.

This project addresses the problem of trying to find an efficient algorithm for construct-
ing orthogonal arrays and nearly-orthogonal arrays in a timely manner. In addition, we
look to algorithms which can be adjusted to find orthogonal arrays with higher strength.
Comparison will be made between Xu's algorithm (2002) and a new algorithm which will
be introduced in this project.

In this project, Chapter 2 will introduce the concept of orthogonal and nearly-orthogonal
arrays and some of their uses, and look at some of the criteria used to measure near-
orthogonality. Chapter 3 will discuss two algorithms, one of which is new, that take a se-
quential approach to find orthogonal and nearly-orthogonal arrays. That is, the algorithms
find designs by adding one column at a time. Also discussed in Chapter 3 is the extension
of the algorithms to try and find orthogonal arrays of higher strength. Chapter 4 will com-
pare the algorithms in the construction of some orthogonal arrays and nearly-orthogonal
arrays with small runs. For orthogonal arrays, the algorithms will be compared in terms of
efficiency for finding orthogonal arrays and speed. The construction of nearly-orthogonal

arrays is compared in terms of a statistically justified criterion.



Chapter 2

Orthogonal and Nearly-Orthogonal
Arrays

Experimenters are often concerned about how changes of certain factors impact a process,
and want to investigate the effects of these factors simultaneously. When the aim of the
experiment is to estimate the effects of these factors (mean effects, interactions,...), orthog-
onal arrays can be used. We will first examine areas in which orthogonal arrays are useful,
followed by a formal definition.

As we will see, orthogonal arrays are desirable for their properties in estimating main
effects and interactions in the normal regression model. In some situations, orthogonal ar-
rays do not exist. In such cases, a nearly-orthogonal array is often a good alternative. In
section 2.3, we introduce nearly-orthogonal arrays and discuss what it means to be “nearly”

orthogonal.

2.1 Factorial Designs

2.1.1 Full Factorial Experiments

For many scientific settings, investigators are interested in studying a number of factors
(variables to be studied) simultaneously. Often the goal of the experiment is to study the
impact that factors have on a response variable of interest. At the beginning of an ex-
periment, there may be a large number of factors which can impact the response. Before

continuing study on these factors, it is useful to “screen” out the inert variables and identify
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the important factors. If the set of (potentially) important factors can be reduced, more
time can be spent studying the effect of the active factors.

Setting the factors at a fixed number of values, called levels, a factorial design is often
used as a plan to run the experiment. When a set of levels has been determined for each
factor, one way to examine how factors impact the response is to study all possible level
combinations of all the factors. The hope is to discover how the factors impact the response
individually, and how they may interact with each other.

For k factors, with sy, 2, -+ , S levels respectively, there are s; X s9 X - - - x s different
combinations for the & factors. To run an experiment which involves each possible combi-
nation, the experiment requires N = 83 X 89 X «-+ X 8§ runs,

For a general factorial design, we consider the standard normal regression model for a
design d,

Y = Xoap + X1 + - + Xonam + ¢, (2.1)

where Y is the vector of observations, «; the vector of j-factor interactions, X; the matrix
of coefficients for a; (column 7 corresponds to the coefficient for the ith effect) , and e the
vector of independent random errors which are distributed as N(0,¢?). When using a full
factorial design, the main effects and j-factor interactions can be estimated independently

of each other.

Example 2.1 Consider an experiment with three factors, each having two levels.
We refer to these factors as A, B, and C. For each factor, if we consider one
level to be “low”, and the other “high”, it is convenient to consider these levels

as being —1 and +1 respectively. The full factorial design can be represented

-1 -1 -1
-1 -1 +1
-1 +1 -1

X, = BRI (2.2)
+1 -1 -1
+1 -1 +1
+1 +1 -1
+1 41 41

Each row in the design represents one of the experimental runs, which would be

randomized when implementing the experiment. The number in column 1 refers
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to the level for factor 1, likewise for columns/factors 2 and 3. We refer to X; as
the design matrix.

The choice of using -1 and 1 as levels gives the added convenience of being
able to estimate the main effects of the three factors given the response vector
y with values corresponding to observations for the level settings of the factors

in each row. The vector of main effects, &1, can be calculated as

1 /

é] = ’é—anxly

In designing an experiment as a full factorial, not only can main effects be
estimated independently, but also the interaction effects. The main effects and

all interactions can be represented as

-1 -1 =1 41 41 41 -1
-1 -1 41 41 -1 -1 +1
~1 41 -1 -1 41 =1 +1
-1 +1 41 -1 -1 41 -1
+1 =1 =1 =1 —1 +1 +1
+1 -1 41 -1 +1 -1 -1
+1 41 -1 41 -1 -1 -1
+1 41 41 41 +1 41 41

Notice that the first three colummns are still the same as the design matrix, Xy,
representing the main effects, A,B, and C, while the other columns rcepresent the
interaction effects, AB, AC, BC, and ABC respectively, and can be obtained
by muitiplying the columns across each row (another added convenience of the
+1 coding). We refer to X as the model matrix. For a response vector y with
values corresponding to observations for the level settings of the factors in each
row, the vector of estimated main effects and interactions, €, can be calculated
as

1 o
2n_1Xy.

It turns out that the covariance matrix for € under model (2.1) is diagonal, so

¢ =

the effects can be estimated independently of each other.

(o))
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2.1.2 Fractional Factorial Experiments

While two-level full factorial designs arc desirable as they can estimate all main effects and
all linear interactions, running all possible combinations of the factors may not be feasible
for a variety of reasons. These can range from economic limitations, ethical concerns for
certain combinations of factors, to combinations that do not inake practical sense or are not
possible to be run together. In such situations, a fractional factorial design is frequently
used.

Recall that running all possible combinations of factors allows for estimation of all main
effects and linear interactions. It is still possible to use a fraction of the runs in the full
factorial and still estimate many factorial effects. However, in not running all possible
combinations of factbrs, the estimates of some factorial effects cannot be fully distinguished
from each other. We refer to this inability to distinguish between effects as aliasing. A
desirable design will attempt to ensure that those effects of most interest will not be aliased
with each other.

If information is not available as to what effects may be of interest before creating
a design, there is the need for a set of working assumptions to rank the importance of
factorial effects. Three fundamental principles for factorial effects which are used to choose

fractional factorial designs (eg. see Wu & Hamada (2000)) are:

1. Hierarchical Ordering Principle: (i) Lower order effects are more likely to be
important than higher order effects, and (ii) effects of the same order are equally

likely to be important.

2. Effect Sparsity Principle: The number of relatively important effects in a factorial

experiment is small.

3. Effect Heredity Principle: In order for an interaction to be significant, at least one

of its parent factors should be significant.

Using these principles, regular fractional factorial designs can be constructed and ranked.
Under the principles, the main eflects are the most important factorial effects to be esti-

mated, followed by 2-factor interactions, 3-factor interactions, etc...

Example 2.2 An experimenter has seven 2-level variables of interest, (A, -, G),

which are to be studied simultaneously. To run a full factorial would take 27
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runs, but the experimenter wishes to perform the experiment in 23 runs. In each
of the runs, care must be taken in how to select the level for each factor. For
instance, if two factors are at the same level for each run, it is impossible to
distinguish the main effects for these factors. In order to run the experiment,
the experimenter can use the matrix X defined in (2.3), where the interaction
columns of X will be the factor levels for which to run the additional variables.

This assignment of variables can be shown through the following generators

= AB
AC
= BC
= ABC.

Q m =D
i

The set of all columns equal to the identity column I of all 1's is referred to as

the defining contrast subgroup:

I = ABD=ACE=BCF = ABCG
= BCDFE = ACDF =CDG = ABEF = BGE = AFG
DEF = ADEG = BDFG = CEFG = ABCDEFG.

il

The defining contrast subgroup also gives rise to the alias pattern, which is the
grouping of all factorial effects which are aliased. For example, for the main

effect of A, the aliased factorial effects are

A = BD=CFE=ABCF =BCG
= ABCDE = CDF = ACDG = BEF = ABGE = FG
= ADEF = DEG = ABDFG = ACEFG = BCDEFG.

The effects can be estimated using the same method for full factorials, keeping in
mind that now some effects cannot be distinguished from each other. Using this
fractional factorial design, the experimenter can only estimate 7 factorial effects.
In fact, under the fundamental principles, the only effects to be estimated here
would be the main effects for factors A4,--. .G, under the assumption that all

other effects are negligible.

-3
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In the previous example, the main effects for each of the factors could be estimated in-
dependently of each other. Keeping in mind the fundamental principles, if our run size
is sufficiently large enough, we would like to be able to estimate lower order interactions
which are independent from other lower order factorial effects (interactions involving fewer
factors). This consideration leads to an important concept for fractional factorial designs:
resolution.

A design is said to have resolution R (usually denoted by Roman numerals) if no p-factor
effect is aliased with another effect having less than R — p factors (see for instance, Mont-
goniery (1997)). For example, in a resolution III design, no main effects are aliased with
other main effects, but there is aliasing between main effects and two-factor interactions,
and possibly two-factor interactions with each other. In a resolution IV design, main effects
are not aliased with other main effects or two-factor interactions, but may be aliased with
three-factor interactions, and two-factor interactions may be aliased with other two-factor
interactions. The resolution of a fractional factorial is, in general, the length of the smallest
word in the defining contrast subgroup. A high resolution is desirable, since as the resolu-
tion increases it allows more of the lower order interactions to be estimated independently of
other lower order factorial effects, just as the main effects can be estimated independently.

As mentioned, we would like to find a design with resolution as high as possible. How-
ever, there may be many designs having the same resolution. Further comparison of designs
can be done through the minimum aberration criteria. The minimum aberration criteria se-
quentially minimizes the elements of the word length pattern (if there are A; words of length
i in the defining contrast subgroup, the word length pattern is the vector W = (A3, A4,---))
of the defining contrast subgroup. The purpose of the minimum aberration criteria is to
keep the aliasing of lower-order interactions and main effects as minimal as possible.

If an experimenter can assume certain higher-order interactions are negligible, then in-
formation on main effects and lower-order interactions can be obtained by using a fraction of
the runs of a full factorial design by using a fractional factorial design. Fractional factorial
designs are particularly useful in screening experiments, to identify those factors that have
large effects. Regular fractional factorial designs (those with a defining relation) can be
represented by an orthogonal array, which we will introduce in the next section.

Not all fractional factorial designs have a defining contrast subgroup. We refer to these
designs as nonregular designs. While in regular designs, any two factorial effects are ei-

ther estimated independently or fully aliased, nonregular designs do not have this property.
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Methods for ranking nonregular designs have been examined by Deng and Tang (1999),
Tang and Deng (1999), and Xu and Wu (2001). Under these rankings, the best designs are
generally orthogonal arrays. That is, orthogonal arrays are desiribable for both regular and

nonregular fractional factorial designs.

2.2 Orthogonal Arrays

We now give a formal definition of orthogonal arrays.

Definition 2.1 (orthogonal array) Let S be a set of s symbols denoted by 0,1,...,s — 1.
An orthogonal array A with s symbols, strength t and index X is an N x k array with entries

from S such that every N X t subarray of A contains each t-tuple from S in exactly A rows.

An N x k orthogonal array with s levels, strength ¢ and index A will be denoted by
OA(N, k,s,t). For reasons that will be made clear, the parameter N will be referred to
as run size, k as the number of factors, and s as the number of levels. These terms will be
used interchangeably throughout. The parameter A need not be mentioned in this notation,

as it can be determined by the property
A= N/s".

Example 2.3 Consider the following 8 x 7 array:

= o= = = OO o O
e B o= R o R S o B o)
—_ O R D kD =D
== O DO O =
_= O = OO = O
= O O = = o © =
= o O = O = = O

This is an OA(8,7,2,2) since entries from the array are either 0 or 1, and given
any two columnns, the pairs (0, 0), (0, 1), (1, 0), (1, 1) occur the same number
of times (twice), implying strength 2. Note that this array is not strength 3, as
looking at columns 1, 2, and 4, the triplet (0, 0, 1) occurs twice, but (1, 0, 1)

does not occur at all.
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Some useful properties of orthogonal arrays:

1. An orthogonal array of strength ¢ is also of strength ¢*, where 1 < t* < ¢. For this
reason, we will consider the strength of an orthogonal array as the largest strength

attributed to that array.

2. A permutation of runs or factors of an orthogonal array creates an orthogonal array

with the same paramecters.

3. A permutation of the levels for any factor creates an orthogonal array with the same

parameters.

While our definition of orthogonal arrays stated that the set S has symbols 0,--- ,s—1,
we can replace these symbols with distinct symbols of our choice. For example, if § has
symbols 0 and 1, we can replace these symbols by -1 and +1 and the resulting array is still
an orthogonal array. From this, (2.2) is an OA(S8, 3,2,3), and (2.3) is an OA(8,7,2,2). In
fact, by replacing the symbol 1 by -1 and 0 by +1 in example 2.1, the resulting orthogonal
array is the matrix (2.3). In further examples, for a factor with s levels we will use the
symbols 0,--- ,s — 1.

For full factorial designs discussed in section 2.1.1, in the situation that we have m
factors with s levels, the full factorial can be represented by an OA(s™, m,s, m).

For fractional factorial designs from section 2.1.2, a fractional factorial design can be
represented by an orthogonal array. If a design has resolution R, it contains full factorial
designs on any subset of R — 1 columns, which by definition makes the orthogonal array

strength R — 1.

2.2.1 Mixed Orthogonal Arrays

The orthogonal arrays discussed in section 2.2 are such that each factor has the same
number of levels. It may not be desirable or possible to use such an orthogonal array in
some situations (ie. where a machine has one component which can be set to 2 levels while
another which can be set to 3). The concept of orthogonal arrays can be extended to

situations where factors have different numbers of levels.

Definition 2.2 (mized orthogonal array) Let S; be a set of s; levels denoted by 0,1,...,s;—1

for 1 < i < v for some positive integer v (s; > 2). We define o mixed orthogonal array
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OA(N, sf‘sgz sk 1) to be an array of size N x k such that k = ky + ko + -+ + k. and
the first k1 columns have symbols from Sy, the next ko columns have symbols from So. and
50 on, such that given any N x t subarray, each possible t-tuple appears in the same number

of rows.

This definition does not require s, 89,. .., S, to be distinct, but for simplicity we generally
combine factors with the same number of levels. For example, instead of using the notation
2221 we would use 2.

We refer to t as the strength of the mixed orthogonal array. The previous comments
for the orthogonal arrays in section 2.2 hold for mixed orthogonal arrays as well. Note that
for mixed orthogonal arrays, we no longer consider the concept of index, as the nuinber of
times a t-tuple can occur may depend on the columns considered, as can be seen in the next

example.

Example 2.4 A mixed orthogonal array OA(12,3'2% 2)

000 00
0 01 10
01001
01111
10011
101 01
110 00
11110
2 00 11
20100
21010
21101

The orthogonal arrays from section 2.1 can be written in the notation of mixed orthogo-
nal arrays. For instance, example 2.3 would be an OA(8,27,2). Such orthogonal arrays can
be called symmetrical orthogonal arrays. From this point forward, we use the notation for
mixed orthogonal arrays. Just as we can use symmetrical orthogonal arrays for full factorial
designs and fractional factorial designs, we can do the same for mixed orthogonal arrays,
and estimation of factorial effects can be done in the same manner. A full factorial design

will be of the form OA(N, syse--- s, k) where N = Hle 8i.



CHAPTER 2. ORTHOGONAL AND NEARLY-ORTHOGONAL ARRAYS 12

2.3 Nearly-Orthogonal Arrays

For a given run size, an orthogonal array with factors/levels specified may not exist. Like-
wise, for a given set of factors and levels, the run size required for an orthogonal array
may not be feasible for reasons as discussed in section 2.1.2. Just because an orthogonal
array does not exist should not mean that the experiment cannot be performed. An ideal
compromise is to create a design that is in some way as close to an orthogonal array as
possible. Wang and Wu (1992) considered the concept of these so-called nearly-orthogonal

arrays.

Definition 2.3 (nearly-orthogonal array (Xu(2002))) Let S; be a set of s; levels denoted
by 0,1,....5 — 1 for 1 <i < v for some positive integer v. We define a nearly-orthogonal
array NOA(N, slf’sgz - 8%) to be an array of size N x k such that k= k1 + ko + -+ ky
and the first k) columns have symbols from Sy, the next ko columns have symbols from So,

and so on, such that the array is optimal according to some criterion.

Non-orthogonality can cause problems for data analysis. For non-orthogonal arrays, the
order for which effects enter into the model is important, and interactions can be partially
aliased (neither fully aliased nor orthogonal) with main effects. Hamada and Wu (1992)
and Chipman, Hamada, and Wu (1997) presented some data-analysis strategies for par-
tially aliased effects.

One of the major issues in looking at nearly-orthogonal arrays is deciding what it means
to be “nearly” orthogonal. A criterion should be attempting to measure a notion of de-
parture from orthogonality and the ability to compare different designs for their near-
orthogonality.

We will now look at some of the approaches that have been taken for measuring orthog-
onality, and compare some of the similarities in section 2.3.1. We begin with criteria based
on the model matrix.

If we consider the main effects model, which drops the interaction terms fromn (2.1), then

E(Y) = B+ Z-Tiﬁi

1=1
where 3y is the grand mean, 3; is the ith effect, x; is the corresponding coefficient, and y’s
have errors iid N(0,0?). For an array with N runs, the model can be rewritten in matrix

form

EY)=Xp, Cou(Y)=cly (2.4)
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where Y is the vector of N runs, 8 = (8,51, Bm)s X = (1, X1, ,Xm). X; being the
vector of z; values for the N runs of the array (the level for factor i at each of the runs)
and m=y .(s; —1).

Let X = [x1/][x1]l, -, Xm/||Xm]||]. Wang and Wu (1992) proposed the D criterion

DZ‘X/X 1/m

to measure the overall efficiency of a nearly orthogonal array, where due to the standard-
ization of X, D = 1 iff the x;’s are orthogonal to each other.

In trying to estimate the effects f1,..., G, then the variance of the least squares esti-
mator of 3; is minimized when x;, the vector of x; values for the NV runs, is orthogonal to the
X'X| =1 iff the original design d is
an orthogonal array. Then the D criterion measures the efficiency of estimating 51,...,08m
in (2.4).

If we let X'X = [ri7], then the Ay criterion is defined as

— E 2

i<j

other columns of X. For any design, |X'X| < 1, and

The A, criterion measures the overall aliasing between all pairs of columns. An As—optimal
design minimizes Ao, which is useful in that A = 0 iff d is an orthogonal array of strength
2.

Another way to view A, is to consider the ANOVA model for a design d as defined by
(2.1). Xu and Wu (2001) defined A;(d) as a measure of the aliasing between the j-factor

interactions and the general mean. For X; = [Z‘Ei)], let

)N
Ay(d) = 5 3D
ko oli=1

The generalized minimum aberration criterion is to sequentially minimize the terms in

2

(A1(d),A2(d), As(d),...). The generalized minimum aberration criterion is equivalent
to other measures of minimum aberration: the minimum aberration criterion (Fries and
Hunter (1980)) discussed in Section 2.1.2 for regular designs, Tang and Deng’s (1999) mini-
mum Go-aberration criterion for two-level nonregular designs, and the minimmum gencralized
aberration criterion (Ma and Fang (2001)) for multi-level nonregular designs.

Instead of working with the model matrix, it may be desirable to work instead with

the design matrix only. For design d = [it)nxn, let ng(a,b) be the number of rows
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with column k& at level a € {0,--- Sk} and (~olumn [ at level b € {0,---,s}. Denote
ng(a, ) Zb—o ng(a,b) and ny (- Za o Mki(a,b), where ny(a,-) can be thought of
as the number of times a € {0,-- | s, — 1} appears in (:olumn k, while ng (-, b) is the number
of times b € {0,---,s; — 1} appears in column I. Ye and Sudjianto (2003) used

[nri(a,b) = ny(a, ) (-, b) /N2

, ol ’ | ’
X(d) = n(a, (. b) , (2.5)

relating this to the sum of squared correlations of pairs of orthonormal two-level contrasts
for columns & and I. If x%,(d) = O then the two columns have orthogonal main effects.

Cramer (1946) defined the related measure

2

Via(d) = (/N
min(sg,s1) — 1]

which takes on values between 0 and 1, and is equal to 0 if columns k& and I have orthogonal

main effects and is equal to 1 if the columns are completely aliased. Ye and Sudjianto (2003)

proposed .
E[V*(d)] = =12 > Vu(d)?

as a measure of nearly orthogonal main effccts.
If the columns are balanced, then all elements in a column appear the same number of

times, 8o n(a,-) = N/sy and ny(-,b) = N/s;. This simplifies x2,(d) to

, _sk" — [nwia,b) — N/(ss1)]?
Xia(d) = gﬂ g N (26)

If npi(a,b) = N/(sgs;) for all k < I, then d is an orthogonal array. The simplified criterion
(2.6) is used by Yamada and Lin (1999), Yamada et al. (1999) and Yamada and Matsui
(2002). They proposed

ave(x*(d)) = Y xi(d)/[m(m —1)/2]

1<k<i<m
as a measure of the average dependency of all columns.
Given a design d, Ma et al. (2000) proposed the following criterion to measure orthog-
onality between columns k and [ of d:

Sk—1s—1

=33 ¢ (inula,b) = N/(sis1))),

a=0 y=0
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where () is a monotonic increasing function on [0,00) with ¢(0) = 0. As a measure of
non-orthogonality of a design d, for #(-) a monotonic increasing function on [0,00) with

6(0) = 0, the function
Doo(d) = D 8(fy(k. 1))

1<k<i<n
is used as a measure of orthogonality. While more general than the y? criterion, the Dy g
criterion is still ultimately a measure looking at the balance of factor combinations between
two columns.
Xu (2002) introduced the Jy criterion for measuring orthogonality. For an N x n matrix

d = [z;x] where column & has si levels, define
Sig(d) = wid(zu,zi), 1<6,5<N, (2.7)
k=1

where 8(a,b) = 1 if a = b, 0 otherwise, and wy is the weight of the column. For rows ¢ and
J, 6;;(d) is a measure of the similarity between these rows. If wy = 1 for all &, 0; ;(d) is the

number of columns in which rows 4 and j coincide. Xu (2002) defined

Jo(d) = D [bi(@)] (2.8)

1<i<j<N
as a measure of orthogonality in a design. Xu (2003) and Xu and Lau (2006) used J; in
power moments for supersaturated designs. Whereas many criterion have a value of 0 for

an orthogonal array, Xu (2002) established a lower bound on Jy:

Jo(d) = L(n)

n 2 n
2-1 (Z ]VS]:]U’k)> + (Z(Sk — 1)(N8;1wk)2>
k=1

k=1

-N (Z wk) , (2.9)
k=1

where equality holds iff d is an orthogonal array.

i

2.3.1 Connection Between Criteria

In the preceding section, a number of different measures for near-orthogonality were in-

troduced. Many of these criteria, while appearing to be dissimilar, are actually measuring
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near-orthogonality in the same way.
Xu (2002) showed that for a balanced design NOA(N, sy - $m),

Jo(d) = N?4y(d) +27'N [Nm(m 1) + N S s — (Z sk)2:| . (2.10)

The second term of the right-hand side is constant, so for the balanced design, J, and A
are equivalent.

Also equivalent in the balanced case is ave(x?) and 4 through the equality
ave(x?) = NAy/[m(m - 1)/2).

The significance of these equivalences is that these criterion are all measuring the balance of
the ng(a, b)'s over all a,b for each pair k,{. This is made even more clear by the following

lemma from Xu (2003):

Lemma 2.1 For integers m,n > 0, define h(m,n) = |m/n)* n+(2 |m/n|+1)(m—|m/n]|n).
Let x1,--+, T, be nonnegative integers such that 3. z; = m. Then Y. z? > h(m,n) with

equality ioff all x; equal |m/n| or |m/n| + 1.

From this lemma, to find optimal designs with the Ao criterion (and those it is equiva-
lent to), it is sufficient to find a design such that ny (a,b)’s are within one for all a, b, given
any pair of columns k,{. In fact, if such a design exists, Ma et. al’s (2000) Dy ¢(d), in the
case where ¢(z) = 22, 8(z) = 1 (which was used by Ma et al. (2000)) will be minimized as
well. Also, ¢(z) = z? is related to the x% criterion from equation (2.6).

In an orthogonal array all level combinations in columns & and ! appear equally of-
ten. When considering a nearly-orthogonal array, making ny (@, b)’s as balanced as possible
would intuitively seem a method of making the array nearly-orthogonal. The previous dis-

cussion on criterion shows that this line of reasoning also has a statistical justification, and

that most approaches to considering near-orthogonality are handled using this approach.

2.4 Construction of Orthogonal and Nearly-
Orthogonal Arrays

In some settings, there are a substantial number of designs available which can be obtained

through existing theory or from tables of designs. However, in some situations, finding
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optimal designs can be difficult. Some orthogonal arrays require a number of different
mathematical techniques to find all orthogonal arrays (an essential resource for these tech-
niques is Hedayat, Sloane, and Stufken (1999)). If an optimal or even a good design is not
available, it is likely too time-consuming to examine all potential theoretical methods to
find a desirable array. We would like a computer algorithm that can find orthogonal arrays
or nearly-orthogonal arrays based on some criterion in a fast and efficient manner. Chapter
3 will examine some algorithms which can be used in the construction of orthogonal and

nearly-orthogonal arrays.



Chapter 3

Two Algorithms for the
Construction of Orthogonal and

Nearly-Orthogonal Arrays

While the mathematical theory exists for the construction of many orthogonal arrays, it may
not always be enough. If an experimenter does not have the mathematical theory which
applies for a given situation (if it even exists) tliere needs to be a method to construct
the best design possible. Ultimately, the experimenter wants a design that has some nice
statistical properties for the run size with the desired factors/levels. In such situations, it
is ideal to have an algorithm to find an optimal design, or at least one that is near-optimal.
In this chapter, an algorithm for finding “good” designs is presented, and a new one is

proposed.

3.1 Xu’s Forward Procedure Algorithm using the J; criterion

Many attempts have been made at finding efficient algorithms for the construction of or-
thogonal arrays. Xu (2002) discusses some of the different algorithms, and introduces his
own, which will be discussed in this section. In that article, the author shows his algorithm
to be superior in terms of both speed and efficiency compared to existing approaches.

The algorithm sequentially adds columns to an existing design, attempting to find a new

column orthogonal to the columns already in the design. Furthermore, the algorithin uses

18
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swapping of symbols in the new column and makes switches based on one which gives the
greatest reduction in the J, criterion.

We begin by examining the operations which will be used in Xu’s algorithm involving
column addition and symbol switching.

For an N x n matrix d = [z;z] where factor(column) & has s; levels, define 4; ;(d) as
(2.7) and Jo(d) as (2.8) as a measure of orthogonality in a design.

Cousider adding column ¢ to d, denoting the resulting N x (n + 1) matrix as d,. The
columns 1,...,n remain unchanged, so the only difference between 4; ;(d+) and é; ;(d) is
the consideration of the symbols in d, from the new column ¢ in rows ¢ and j. For weight

wy which is pre-assigned to column ¢ with s; levels,
8i,5(d4) = & 5(d) + widy;(c), (3.1)
for 1 <i,7 < N. To update Jo,

Ja(dy) = Y [6ig(dy))?

1<)
= > [8i5(d) + widi ()]
i<j
= S 15 (A)? + 2w 16 5(d)dis ()] +wi Y [6i5(e))
i<J 1< i<j
= Jo(d) + 2wy > [8i5(d)ds;(c)] + wi D _[6i5(c)], (3.2)

1<g 1<J

where the last equality comes from the fact that &; j(c) can only take on values of 0 or 1.
This also allows for fast computation of Jo(d)

Now consider switching distinct symbols in rows a and b of the newly added column
c. Then for j # a,b, d ;(c) = 6;4(c) and d ;(c) = d;4(c) arc switched. The switch does
not effect §,5(c), as the values are distinct, so this value is 0. To examine the difference
in Jo(d4), first consider fixing a certain row j # a,b. The effect of the switch only effects
8;j(d4) for i = a, b, all other rows are unchanged. In the old calculation for Jo, the terms

which have been changed in the calculation are

6a,j(d)6a,,j (C) + 6b,j(d)(5b’j(c).

After the switch, these terms will now be

5a,j(d)5b,j (C) + 5(,’]' (d)éa’]‘(c).
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Looking at the difference the swap has made, the results are:

(8aj(c) = dp5(c)) X 8gi(d) + (b j(c) = daj(c)) X b ;(d)
= (8a,5(c) — dp5(c)) X (8q,5(d) — 8p,3(d))-

For the overall effect on Ja(dy), the symbol swap will reduce Jo(d ) by A(a,b) such that

A(a,b) = 2wy Y _ [Sazlc) ~ 8;(c)][8aj(d) = b (d)]. (3.3)
j#ab

3.1.1 The Algorithm

As discussed, Xu's algorithm sequentially adds columns to an existing design. A random,
balanced column is added, and the algorithm searches all possible switches of elements in
the new column, performing the best switch if it exists. This process continues until a lower
bound is reached, or no improvement is made. If the lower bound is not reached, another
attempt will be made at finding an orthogonal column, up to a prespecified number of times.

The algorithm proceeds as follows:
1. For k =1,---,n, compute the lower bound L(k) by equation (2.9).

2. Specify an initial design d with columns (0,...,0,1,...,1,...,s; —1,...,s, — 1) and
(0,--- ,89 — 1,0, -+ ;89 — 1,-++,0,-+- s, — 1), and compute §; ;(d) and Jo(d) by

definition.
3. For k=3,---,n, do the following:

i. Generate a random balanced sg-level column ¢. Compute Jo(d;) by equation
(3.2). If Jo(d4) = L(k), go to step (iv).

ii. For all pairs of rows a and b with distinct symbols, compute A(a,b) according to
equation (3.3). Choose a pair of rows with the largest A{a,b) and exchange the
symbols in rows a and b of column c. Reduce Jo(dy) by A(a,b). If Jo(dy) =

L{k), go to (iv); otherwise repeat (ii) until no further improvement is made.

iii. Repeat (i) and (ii) T times and choose column c that produces the smallest
Ja(d4).

iv. Add column ¢ as the kth column of d, let Jo(d) = Jo(d4), and update é; ;(d)
by equation (3.1).
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4. Return the final N x n design d.

The quantity T in the algorithm represents the number of times we try to add an additional
column. That is, when the algorithm attempts to add a column and does not neet the lower
bound when switches are exhausted. then we try again with another random column. We
refer to T as the number of restarts, that is, the number of times we have to start a column
from the beginning. The number of restarts play an important role in the efficiency of the
algorithm. The effect of T will be studied in Chapter 4.

Xu’s algorithm has the advantage of being columnwise, which allows for balance in each
column at each iteration. In addition, if the current design at any time is not orthogonal,
it has been chosen as “near” orthogonal as possible according to the J; criteria. While the
algorithm is designed in a way to keep speed in mind, the number of rows has a major
impact on the speed. This is due to having to look at all possible distinct pairs in a column

for the design, as well as having to provide updates for a number of rows after a switch.

3.1.2 Xu’s Algorithm using the y? criterion

Recall fromn section 2.3.1 that in the situation where columns are balanced, the Jo and y?
criterion are equivalent. In fact, Xu’s algorithm can be used with the x? criterion instead
of Jo. In order to usc the y? criterion, we will establish operations for column addition and
symbol switching used in the algorithm for the x? criteria as opposed to J.

For an added column, we need to count the ng(i,j)’s for all previous columns k =
1,...,1—1, from which we can get y}, and calculate x? by definition. For symbol switching,
suppose that a column ¢ has been added to the current design, such that it is the {th column.
Call this design d). Let ¢y and cg be the elements in rows « and 3 of ¢ that we wish to
switch. Denote x4; and xg; as the elements in column 7 for rows a and 8. Making the switch
decreases ng(Tak, ¢at) and ng (. ¢ar) by 1, and increases ny(Tak, cgr) and ny (xgg, cqr) by
1, forall k =1,...,1 — 1. If the design after the switch is denoted as dl+, for a particular

column k, if x4 = 2, then X%I(dlﬂ is unchanged. If the elements in column k are different,
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the impact on x2,(dy) is

sp—1s—1

@) = Y S 6, 5) - N (s
=0 ;=0
= > [V (6, 5) = N/ (ses))?

(i) {zak tpr} X {caticar}

(S (T akr car) = 1= N/(sks)]2 + [\ (@pn, c00) — 1= N/ (sy80))

9 @y cat) + 1= N/ (515D + 080 (T ok car) + 1 — N/ (sp80)]?

d d
= Xp(d)+ 2[”1&11)(%1”%/) + ”izl)(mﬁk’c‘ll)

d
"’nggzl)(xaky Cal) ~ "Ejl) (g, ca1)] + 4 (3.4)

In general, for a symbol switch in rows a and 3, we can define
Xa(dy) = xi(d1) + (e, B)

where Ay (a, 8) is computed as the remaining terms of (3.4) if x4, and zg are different,
and 0 otherwise. Then a swap of the elements in column [ of rows a and § will reduce
x2(d;) by A z2(a, ), where

-1
Asa(a, B) =Y Apla, ). (3.5)
k=1
We now adapt Xu's algorithm to the x? criterion as follows:
e replace all occurrences of Jp with x2.
e replace A(a,b) by A, 2(a,b) given by (3.5).
e replace the lower bounds L(n) by 0.
e in step 3(a), the updated x? is calculated by determining the ny(i,5)’s for & =
1,...,0-1.
3.1.3 Comments on the Algorithm

With the equivalence between the J; and Y criterion for a balanced colunn, for any random
balanced column added to a current design, using either criteria will ultimately lead to the
same design. This is due to the best symbol switch for one criterion necessarily being the

best for the other criterion. However, the manner in which the algorithm makes calculations
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for the criteria is markedly different.

The Jo criterion is driven by the §; ;’s, the similarities between rows. When a column is
added, the update is based on checking the similarity in the added column. When searching
for switches to be made and upon making a switch, changes are based upon all rows affected.
One of the nice properties of the Jo criterion is that calculations for the current column are
not influenced by how many columns already exist in the design. While it may be harder
to find a suitable column with many pre-existing columns, the actual calculations are based
on the 4; ;’s, which is not immpacted if the present column is the third or the twentieth.

On the other hand, the x? criterion is driven by the ny(i, 7)'s, the number of times
each pair of symbols between columns k and [ occur. To compute x? with a new columnn,
the update involves calculating these counts for the new column and each of the previous
columns. This situation also occurs with the switching of elements, in that the calculations
involve having to look at the influence the switch has on the current column with the
previous columns. In contrast to the J, criterion, as the number of columns in the design
grows, the x? criterion takes longer to calculate.

With modern computation, one criterion may be able to use computational features of
a programming language to gain an edge over the other in terms of speed. However, we
can still get a sense of how these criterion can impact the speed of the algorithm. The y?
criterion will run faster when there are less columns, as it is quicker to go over the columns
rather than the number of rows in looking for switches. However, as the number of columns
increases, the x? criterion should take longer to calculate, and may lose the advantage to

the Js criterion.

3.2 A New Algorithm Using a Sequential
Approach

This section will introduce a new algoithmm using x*(d) = ¥, x3;(d) as defined by
(2.6) as a measure of near-orthogonality. Dropping the denominator, and instead using the

simpler
Sk -1 87 -1

Xk(d) = D" > fnula,b) = N/(sks))? (3.6)

a=0 =0
allows for a fast update, and can be used to drive the algorithm.

The algorithm follows Xu’s in the idea of adding columns sequentially. However, instead



CHAPTER 3. TWO ALGORITHMS FOR CONSTRUCTION OF OAS/NOAS 24

of adding a random column and attempting to make switches to improve the orthogonality of
the design, we will instead take a sequential approach for the rows to add the new column.
That is, elements will be added to a new column one row at a time, based upon which
element seems best at that time.

Before presenting the algorithm, we will introduce some new notation and examine some
of the quantities used in the algorithin for adding one symbol at a time in the new column.

For an N x (I — 1) design d in which we are looking to add column [, let

h k), (h h
dl(fb*) = [Tg )I-T(Q )I e ]I;bt)]’ (3.7)
the first h rows, where mgl}:.) = (T1, T )
Denote X,?(hb*) as the criterion evaluated with h rows using symbol " in the last row

(row h) for column [ (ie. using d%z.) from equation (3.7)). To evaluate the criteria using
symbol b* € {0,...,s — 1}, the update can be done easily using x2h=1), the x? criteria
using the first h — 1 rows. Looking at column k£ and the new column, there is now one more

instance of (zpy, b*), so

Sk~l Sl—l

™ =S i (ab) = N/ (ses)P?

a=0,a#xy k b=0,b#b*
(h,—l) l* - N 2
+[nk1 (-Thka ) ) +1 /(SkSI)]
2(h~1 h— x
= " 20l wn, 0) = VY (sks)) + 1, (3.8)
where n.,(c’;‘l)(a, b*) is the number of occurrences of (a, b*) in the previous h — 1 rows.
When adding a symbol for the first row, any of the elements 0, - - - , s — 1 can be chosen.
Choosing b* from these elements and looking to the previous columus (the symbols in

the previous columns are fixed), the pair ng(a,d*) will have a value of 1, since there is one

occurence. All other combinations for elements from columns k and lisO fork =1,...,[-1.
Then
sp—1s—1
2(1 . '
i = 3 3 lwalis ) — N/ (s
i=0 ;=0
= [1=N/(ss)PP+ > [0—N/(ses))
(i,5)#(a.6*)

= 1 = 2N/(skst) + [N/ (sws)]] + (swst — 1IN/ (ses))?
= SkSI[N/(SkSl)]Q — 2N/(Sksl) + 1.
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Regardless of the choice for the first row, the criterion is the same, so it need only be
calculated once at the onset of the algorithm.
To look at the y? criterion after h rows, we simply need to add the criterion over the

previous columns. That is,
-1
2(h) _ 2(hb™)
X = Z Xet -
k=1

V)~ 0, then column ! is orthogonal to the previous I-1 columns.

If X1,2

3.2.1 The New Algorithm

Just as in Xu's algorithm, we still use a set number of restarts for attempting to find an
orthogonal column if one cannot be found. Also, after a column has been found, and is not
orthogonal, Xu’s algorithm can be used if desired to try and find an orthogonal column.
However, use of Xu’s algorithm combined with the new one will add considerable time in
computation.

The algorithm proceeds as follows:

1. Specify an initial design d with coluimns (0,--- ,0,1,--- ,1,--- ,s;—1,--- ;81 —1) and
(Oa 592 — 1707"' ,82"‘1,"‘ 707"' ;82 — 1) Let I = 3.

2. Randomize the rows of d.
3. Let zy =0and h=1.
4. Let d;:;) be (3.7), the first h rows, where 1:%") = (@1 Loy U7)

5. For b* =0,---,s — 1, calculate X?(h'b‘) = ZL‘I v2h") is calculated using (3.8) for k

and [ from dl(zl.). Use the best b* such that ng(a,b*) < N/(sgs;) for k =1,--- 1 - 1.
If no such choice exists, take the best b* with ng(a,b*) > N/(sks;). In the case of

equally good choices, take the largest or randomly choose between them.
6. Repeat Steps 4-5 for h=1,--- | N,
7. If x2(d) = 0, add column c to the design, go to 9.
8. repeat 5-7 T times. Choose the column ¢ which minimizes x2(d4).
9. Repeat Steps 2-8 for [ =3,--- ,n.

10. Return the final V x n design d.



CHAPTER 3. TWQO ALGORITHMS FOR CONSTRUCTION OF OAS/NOAS 26

3.2.2 Algorithm Using the J; Criterion

The new algorithm can be used with the Jy criterion instead of the )(2 criterion. 1o use the
new algorithm, we now establish those quantities which will be needed.

Using Jo, we store the 8's from the design with { — 1 columns, d;—;. For an added

element,

1
Son(dy)) = S wib(zak, Thi)
k=1

-1
= Zwk‘é(makaxhk) + wlé(flal,b*)
k=1

= San(di-1) + wib(z e, b%)-
Then calculating the Js criterion at the current row is a matter of adding in the é’s for the

previous A — 1 rows, 50

h—-1
BAM) = B@" )+ S Ban(dior) + wd(zar, b))

a=1

h—-1
= Jg(d}h‘—l)) + Z[éah(dl—l)]g
a=1

h~1 h—1
+2w1 > (T a1 b)ban(di1) + W] Y 6(zar, b%). (3.9)
a=1 a=1

In addition, from equation (4) in Xu (2002),

L")y = AN 420 Y (ra Ta)Sas(dT)

1<a<B<h—1

+wf Dz Ta)- (3.10)

1<a<B<h—1

Combining equations (3.9) and (3.10),

J2(d§hb*))= = Jo(d, (h 1)+2w1 Z 3(Zai, T )dap(d h 1))
1<a<f<h~1
h—1
+wf Y 6<xaz,xm>+2[aah<d1-l>12
1<a<p<h-1 a=
h-1 h-1
+2un Y 6T, b )oan(di1) + wi Y 8(zar, b*).

a=1 a=1
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This decomposition implies a fast update, as only the last two terms of this expression
depend on the element b*. All the other terms can be stored from the previous rows and do
not need to be recalculated. In addition, the (x4, xg) take on values of 0 or 1, so the last
two terms can be calculated quickly.

The algorithm proceeds the same way as for x2, simply by using .Jo instead of x? in step
5. However, in finding the best choice using Js, if we wish to ensure ng(a,b) < N/(sgsi)
(which we need for an orthogonal array), the ng's arc additional information to be stored,
as they are not used in the calculation of Jo. In addition, the equivalence of the criteria is
assuming a balanced column. The impact of this will be discussed in the next subsection. As
the algorithm is based on a subset of rows in the design, the criteria may not be equivalent

at a certain row, and the best choice may be different.

3.2.3 Comments

From equation (2.10), the columns of the array must be balanced (each element appears
the same number of times in the column) for the equivalence of Jo and ¥? . This balance
is more important than it might initially seem, as can be demonstrated by the following

example.

Example 3.1 Consider the designs Dy and Da:

+1 +1 [ +1 +1
+1 -1 +1 -1
R R I I
-1 -1 -1 -1
+1 41 +1 41
1 -1 \ +1 -1)

The design D, is balanced, but in design Do the first column is not balanced.
Caleulating x? and J, for both designs gives y%(D1) = x*(D2) = 2/3, whereas
Jo(D1) = 16 while Jy(D2) = 17. Using the x? criterion as setup in algorithm
(which assumes balance) shows no difference between the two designs, while
under the Jy criterion, Dy is preferred. In fact, if we calculate x* by definition
(2.5), x*(D1) = 2/3, while x?(Dg) = 0, as the cross-product of the two columns
is 0.
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The preceding example illustrates that some care must be taken when considering the
equivalence of the different criteria. In particular, for columns k and [, if N/s; is integer
(and/or N/s;) where it is possible to have a balanced column, if N/s;s; is not integer,
balance may need to be forced in constructing the column row by row.

In light of this, it is useful to introduce the notion of weak strength (Xu (2003)). A design
is said to be of weak strength ¢, denoted by ¢7, if all level combinations appear as equally
often as possible. In other words, the difference in the count of possible level combinations
for any given t columns does not exceed one. If a design is of strength t, all possible level
combinations occur the same number of times, so it has weak strength t—. On the other
hand, a design being weak strength ¢t~ does not imply weak strength (¢t — 1)~ as can be
seen in example 3.1.

In the case of orthogonal arrays, from the properties of strength, strength ¢ ensures not
only all subsets of ¢ columns are balanced, but also all smaller subset of t* =1,2,--- [t —1.
As noted above, this does not hold true for nearly-orthogonal arrays. Simply trying to
make the n; ;5 as close to each other as possible for a given ¢ and j is not enough to ensure
column balance throughout the design. The reason for this can be more clearly seen by the

decomposition of Jo given by:

n s —1 sp—1s8—1
2Ja(d) = Z [Z nkk(a,,a)Q:I + Z {Z Z ni(a, b)2} — Nn?.

k=1 a=0 1<ks#Il<n La=0 b=0

The first part of this decomposition of Jy corresponds to the balance within each single col-
umn and is minimized if the array is of weak strength 1=, while the second part corresponds
to column pairs, and is minimized if the array is of strength 2=. The x? criterion is only
based on weak strength 27.

Since x? and J, are based on the occurrences of the ny;’s, there are instances where we
can construct an optimal design using a pre-existing orthogonal array. For instance, if we
have an OA(N,s; - - - sm, 2), then removing any row will still have all the ny’s within 1 (since
they all occur the same number of times in columns k and [ by the definition of orthogonal
array), so by Lemma 2.1 the design is an Ag optimal NOA(N — 1,81+ 8m)-

We can also add rows to an existing orthogonal array to make it As optimal. If we have
an existing OA(N, 81+ $m,2), adding the row (0,...,0) will still result in an Ay optimal
NOA(N + 1,51 - 8y,) by Lemma 2.1. Furthermore, adding the row (1,...,1) is also an
Ag optimal NOA(N + 2,51+ $m). In fact, we can continue this process by adding up to



CHAPTER 3. TWO ALGORITHMS FOR CONSTRUCTION OF OAS/NOAS 29
min(s;) rows in this manner.

3.3 Extension to Higher Strength

Even if an orthogonal array of strength 2 can be found, if a strength 3 or higher orthogonal
array can be obtained, it would be preferred. This section will look at extending the J» and

x? criteria and algorithms to higher strength.

3.3.1 The J; Criterion

The Jy criterion can be extended to Js and later to arbitrary Ji for strength 3 and higher.
For an N x n matrix d = [z;;], with weight wy for column k having sj levels, define

d:;(d) as (2.7). Define
Js(d)= Y [ (d), (3.11)

1<i<j<N
which is similar to Jo, but the power is replaced by 3. By defining J3 as (3.11), J3 can be
used as a measure of closeness to strength 3 as can be seen by the following lemma.

Lemma 3.1 For an N xn matriz d = [245], with weight wy for column k having sy levels,

= Z wiN?/s, + 3 Z wiuy[N?/(sks)]
k=1 kAl

n 3
+ Y wszwm[Nz/(SkSlSm)]_N(Zwk> ’

kstl#m k=1

where equality holds iff d is an orthogonal array of strength 3.
Proof of Lemma 3.1. Define ngyy,(a,b,c) = |i: o = a, zy = b, xim = ¢}, the number of

times the levels a, b, and ¢ appear in columns k, [, and m, respectively. Note that

N N sk

Z Z O( ik, Tk )0( 241, 251) 0 Zim, Tjim) = Z Nyim(a, b, ¢)?.

i=1 j=1 a=0 b=0 c=0
This holds since the left hand side is over all pairs of rows, and takes a value of 1 for each
of the ngym(a, b, ¢)’s and the other ng,y(a, b, ¢) rows it occurs with.

Note that the right hand side of the previous formula can be partitioned into three
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sums based on the number of distinct columns are being looked at: one, two, or three. In
addition, the order in which the columns are considered makes no difference on the count
(ie. ngim(a,b, ¢) = npri(c, a,b)).

To establish the inequality,

2J5(d) = 2> [8i(d)f

1<g
3
= 22 {Z Wb (Tik, Tjk) ]
i<y th=1
N N 13 n 3
= ZZ Zwk& iElk,.T]k) - N (Zu’k>
i=1 j=1 lk=1 k=1

N N n
= ZZ Z"L’k‘s(fik’fjk) . [Zwl5(wihfj1)]
3 k=1 i

i=1 j=1 L 1=1
n n 3
X [Z w 6(7‘",,,7‘]"1)} - N (Z u7k>
m=1 k=1
N N
= Z Z [Z Z wké(xlka-'r]k wyo(jg, T]l)wm(s(xzm -T]m):|
=1 j=1 Lk=1l=1 m=1

n Sp—18—18,-1
= Zumw;uv I:ZZ anlmabc ]— (Zw)

k=11=1m =0 b=0 c=0
n sp—1 sp—18—1

= w% anukaaa ]"'32“%“’1 {Z Znhklaab j|
k=1 a=0 k£l =0 b=0

Sk—18p—18p—~1 n 3
+ Z W Wen {Z Z Z Neim(a, b, c)Q} - N (Zwk>

k#l#m a=0 b=0 c=0 k=1
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n
> Z wiN?/s; + 3 Z wiw [N?/(s.5)))
k=1 kAl

n 3
+ Z wrwwm [N? /(s1815m)] = N (Z u)k) ,
k=1

k#l#m

where equality holds when the design is an orthogonal array of strength 3.
For the inequality, the Cauchy-Schwartz inequality is used. The Cauchy-Schwartz in-

equality states that for x1,x2,...,Zn, y1,%2,..-,Yn € R, we have:
(#f+ a5+ +2o) (g + 93+ +yn) 2 (@ + 22+ Toya)’,

where equality holds iff z1/y1 = x9/ys = -+ = Ty /yn-
For an N x n design matrix d, note that for fixed columns k,! and m with sg, s;, and

sm levels respectively, we have

Sk~] Sl—l Sm—l

Z Z Z Nm(a, b, ¢) = N,

a=0 b=0 c¢=0

s—18~1

Z Z Tkal(a,, a, b) = N,

a=0 b=0

Sk—l

Z neek(a,a,a) = N.
a=0
The number of summations reduces when the subscripts reference multiple columns which
are actually the same column. By the definition of nym(a,b,c), the columns which are
referenced that are the same can only be counted if they are also at the same level (it is
impossible for a row to have one factor at two different levels).
Looking at distinct columns k, [, and m, there are sgs;s,, possible combinations for the

levels of these factors. By Cauchy-Schwartz

$E—18—1 84, ~1
(Z Z Z nklm(a, b, C)2> (12 + 12 +---+ 12)/$kslsm

a=0 b=0 c=0
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sp—18—18,,—1 2
> (Z SN numlab. C)> /$kS15m

a=0 b=0 c=0

— N2 .
=N /SkSlé'ﬂh

where equality holds iff all ngyy,(a,b, c) are the same for all possible values of a,b, and
c¢. This implies that for these columns, every triplet appears the same number of times. If
this holds for every k, I, and m, the design is an orthogonal array of strength 3.

Similarly, if we consider having two distinct columns, k and m, with sis; different com-

binations, by Cauchy-Schwartz,

sg—1s8-—1
<Z > niwila,a, b)2> (24124 - 4+ 1%) /sesy
a=0 b=0
sg—1s—1 2
2 (Z Z niri(a, a, b)) /K81

a=0 b=0

= N?/spsy,

where equality holds iff all ngg(a,a,b) are the same for all possible values of a and b.
This implies that for columns & and ! every pair appears the same number of times.

Finally, for a single distinct column,

Sk —1
(Z "kkk(a,a,a)"’) 12+ 1%+ +12)/sp
a=0

sp—1 2

Sk

> (Z ’nkkk(a,a,a)> /Sk
a=0

= N?/sy,

where equality holds iff all ngki(a,a,a) are the same for all possible values of a. This
tmplies that column & is balanced, with each level occurring the same number of times.

As mentioned, if for every k, [, and m, each triplet occurs the same number of times, the
design is an orthogonal array of strength 3. If it is an orthogonal array of strength 3, then

for any pair of columns, all possible pairs of levels occur the same number of times, and the
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design is balanced. Then the equality for 2J3(d) holds iff the design is an orthogonal array

of strength 3.

Example 3.2 Consider the following design matrix

e i = R = B e R )

e en B an B = I o]
= o =k O =R O = O
[ S s B e B S S S e N e R

For this matrix, the first 3 columns form an O A(8, 22,3). Checking the inequality
for these first 3 columns, 2J3(d(;_g)) = L3(3) = 216. The entire matrix is not
an orthogonal array of strength 3, and checking the inequality, 2J3(d) = 432
while L3(4) = 384.

With the extension of Js, the hope is to extend Xu's algorithm to the criterion for higher
strength. In order to do so, we need to extend the calculations for column addition and
symbol swapping. We start with column addition.

Let column ¢ with weight w,. and s, levels be added to the original design d, resulting

in d4. The new design is such that

(5,;’]‘ (d+) = 5i’j(d) -+ wkéiJ (C)
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Updating Js,

where the simplification of the formula is due to é; ;(c) only taking on values of 0 or 1. In
addition, when weights are all assigned a value of 1, if &; ;(d)? is stored, then this updating
involves no multiplication.

Another aspect of Xu’s algorithm involves switching symbols. Consider switching dis-
tinct symbols in rows a and b of the newly added column. Then for 7 # a,b, the values

da,j(c) = 0;j,a(c) and & ;(c) = 8;(c) are switched. The switch does not effect d44(c), as the

J3(d+)

§[5i,.i(d+)]3
i[@',}'(d) +widij(c)]°
i[‘sm‘(dﬂg + 3wy ;[51‘,3' (d)?8:5(c)]
+3£ > [0 <d>6i,j<c])2] +wi Y 16i5(e)
J3(d) + ;wk 2[511,3'((1)2511,1(0)]/ ]

i<

+3wi Y [6:5(d)d; 5 (0)] + wi Y _[6:5(c)],

i<g 1<J

values are distinct, so this value is 0.

Looking at the difference in J3(d. ), first consider fixing a certain row j # a, b. In regards

to row j, the change on J3 of the switch are based on rows a and b, all other rows have been

unchanged. In the old calculation for J3, the terms of interest in calculation are

and

0a,(d)*84,5(c) + 8,5(d)*bp; ()

(Sa,j (d)éa,j (C) + 5b,j (d)(sb’j (C)

In the calculation of Js after the switch, these terms will now be

and

84,(d)?8p,5(c) + 8p,;(d)*da s (c)

0a,5(d)dp5(c) + &p5(d)dq,;(c).

34
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Looking at the difference the swap has made,

(8a,5(€) = 85(c)) X 8a,5(d)? + (8y,5(c) — 8aj(c)) X B ;(d)?
= (8a,5(¢) — bp,5(c)) X (8q,5(d)? = & 5(d)?)

and

(0a,j(c) = dpj(c)) x 84 5(d) + (d,5(c) = daj(c)) x 8 5(d)
= (da,j(c) = db5(c)) X (8a,5(d) — de,5(d))-

For the overall effect on J3(d4), the symbol swapping will reduce J3(d+) by A(a,b), where

Afa,b) = Bwr Y [8az(c) = 85;5(c)][6a;(d)? = bp;(d)?]

Jj#ab
+3w} Y [60,5(¢) = 8,5(C)][8a5(d) — & 5(d)]
j#ab
= 3wk Y [fag(e) = 65(c)] X [da(d)* = 8,5(d)* + 8aj(d) ~ &5(d)]-
Jj#a.b

(3.12)

We note that A(a,b) requires no multiplication, as 4 ;(c) and d j(c) are either 0 or 1 and

6a,;(d)? and &, ;(d)? can be stored for faster calculation.

3.3.2 An Algorithm

Following the same idea as Xu's algorithin, a new algorithm is proposed. The new al-
gorithm adds columns to an existing design to find an OA of strength 3, or an NOA3
(nearly-orthogonal array optimized using the J; criteria). The algorithm will repeat T
times if no lower bound is achieved. Depending on the nature of the problem, this T' can be
adjusted depending on the orthogonality of the existing design. The functions used will be
swap, involving the interchange of symbols, and exchange, involving changing a candidate

column with a new one.

The algorithm:

1. Compute the lower bound L3(k) for k = 2,--- ,n.
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2. Setup the first 2 columns, specified as (0,---,0,1,---,1,--- sy —1,--- .51 — 1) for
column 1, and (0,---,0,1,---,1,--- ,s9—1,--- ,s5—1) for column 2. Compute é; ;(d)
and J3(d).

3. Fork=3,---,n:

i. Generate a random balanced s, level column ¢. Compute J3(d. ) and test against

Ls(k), goto iv) if equality holds

ii. For all rows with different symbols, calculate A(a, b) according to (3.12). Choose
the a and b for which A(a,b) has the greatest value. Swap these 2 symbols, and
reduce J3(dy) by A(a,b). If J3(dy) = L3(k), goto (iv). Otherwise, repeat step

(ii) until no improvement can be made.

iii. Repeat i) and ii) T times, choosing column ¢ which results in the smallest value

for J3(d,).

iv. Add column c to the design, and update values of J3(d), 6; ;(d) and 4; ;(d)? with
J3(dy4), 6;;(d+) and &; j(d4)?, respectively.

4. Return the N x n design d.

If the algorithm is to result in an OA of strength 3, then in step 3.ii), the equality must
hold. The choice for T' makes a bigger impact on the speed of this algorithm when using
J3. In finding an orthogonal column that maintains strength 3, the potential columns the
algorithin can find is generally much smaller than that of strength 2. A large value for T
will enable more time to find an orthogonal column, or at least a nearly-orthogonal column,
but will also take much time. A small value will take less computation, but may result in a,

poor choice for the added column.
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3.3.3 Comments on J3

A useful expansion of Js is

J(d) = D [

1<j

. 3
= Z [Z wrd(Tik, Ijk):l

i<j Lk=1

N-1 N [n 3
= Z Zwké(ifikv-”ﬁjk)
i=1 j=it+1 Lk=1
N-1 N [ n n n
= STNTS T wib(@ik, win)wib(@ar, @51)wm(Tim, T jm)
i=1 j=it+1 Lk=1 1=1 m=1
n n n N-1 N
= wrwiwm | DY (@i Tik)6(xst, £51)8(Tim, Tjm)
k=1 (=1 m=1 =1 j=itl
n n n sp—1s8—1sm,m—1
_ nUm(a b, c)
= 2 wkarm ) > 2 ,
k=1 (=1 m=1 a=0 b=0 c=0

as we look at the occurrence of (a,b,¢) over all possible pairs of rows.

Using this derivation of J3, if an NOA of N x n is desired (that is, we know an OA
does 1ot exist), if we start with an N* x n design that is an orthogonal array of strength
3, where N* < N, then any added row will have the same effect on J3 in regards to the
N* x n design. Hence, to find a design with reasonable J3, we can look at minimizing the
(N — N*) x n matrix for the remaining rows according to the J3 criterion. This holds as
well for the J; criterion. By trying to find an optimal design over less rows, the algorithm(s)

can run faster and hopefully more efficiently.

3.3.4 Extension to Higher Strength

Js can be extended to look for higher strength. We consider the case where all weights have

a value of 1, but the incorporation of weights is natural. In general, for strength S, define

Js(dy=" > [is(d)®

1<i<j<N
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The main reason we can make this generalization is that the definition is still over pairs of

rows. In particular, consider
nkl"-ks(a’la T vaS) = |7 $ Tk = a1, s Tikg = (ISI,

the number of rows that the combination of levels a,as,- - - , ag appears in columns k1, - -+ , kg

respectively. Then

Skl—l Sks—l

N N
SO 6@k Tik) - 6(Tikgy Tikg) = D e D Mykg(an, e, a8)?

i=1 j=1 a1=0 ag=0
since the left hand side is over all pairs of rows, and each of the ny,..xs (a1, - ,ag)’s will
be counted with the ng, ..k (a1, - ,as) rows it occurs with.

The Cauchy-Schwartz inequality will still be applied in a similar manner as was done

for J3, where

Sk —1 Skg—1

n n n S
ST ST S g kglan, e as)? —N<Zl>
k=1

k1=1 ks=1 | a1=0 ag=0

can be partitioned into subsets such that the number of distinct columns being considered
are 1,---,85. The added calculation to column addition and symbol switching should be
proportional to the number of these partitions, just as we saw in the case of J3. Likewise,

Xu’s algorithm can still be used for the desired J;.

3.3.5 The x? Criterion for Higher Strength

Instead of using the x? criterion to measure the similarity of two columns at a time, a
modification can be made to consider three or more columns at a time using the new
algorithm. We first look at extension to three columns and those quantities which will be
needed for the algorithm. Our notation remains the same, with the exception that quantities
involving two columns now involve three columns. This can be easily extended to more than
three columns for higher strength.

Let ngym(a,b, c) be the number of rows in which symbols a, b, and ¢ appear in column

k, I, and m respectively. Define

Sk—18—-18p,-1

Npimla, b, c) — SkS1Sm 2
Xkim = Z Z Z P ?V/)(skN/( ko) ;

a=0 b=0 c=0 815m)
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which has a value of 0 iff all ny,(a,b,¢) = N/(spsi5m). Then we can use x?(d) =
Y kclem Xﬁlm(d) as a measure of near-strength 3, which takes on a value of 0 if Xf:lm =0 for
all £, I, and m, which implies a strength 3 orthogonal array. In order to simplify calculations,

we use the simpler

sp—1s—1sp—1

X%lm, = Z Z Z [nklm,(aw b7 C) - N/('Sk:'sls'm)]z'

a=0 =0 c=0
A fast update over three columns is done in the same manner as was done over two
columns. If we are trying to add column m,

sp—1 s1—1 Sm—1

he* h
Xigm(,: ) = Z Z Z [ngclr)n(aa ba C) - ]\[/(Skskr'sm)]2

a=0,a5xp b=0,b5£2y; c=0,c5c*

h— *
il @i T, ) + 1= N/ (sesi5)]?
2(h—1 h—1 *
= oD 2 lnl D ey Tt ) — N/ (sg818m)] + 1. (3.13)
When considering the first row, any of the symbols 0,1, ..., s,, — 1 can be used, and

2(1
ng ) = s;{sgsm[N/(sk.slsm)]2 — 2N/ (sq8p81) + 1.

m

To measure the near-strength 3 orthogonality of the new column compared to all previous

columns, we use
2(her 2(he*)
Are) = N e, (3.14)
1<k<i<m~1

For a strength S orthogonal array, we simply need to use the x? criterion over S columns.

For the columns ki, ko, ..., ks, with s1, 52, ..., sg symbols respectively, let ng, k,...ks (a1, a2,
.., ag) be the number of rows in which the combination of (ay,as,...,as) appears in
columns ki, ko, ..., ks. Then
s1—1 s2~1 sg—1

Xbyhgks = Z Z Z (Nkykyks (1,02, ... ag) — N/(s182- - 55))°

a1=0a2=0 ag=0

can be used, and quantities can be established as was done for strength 3.

3.3.6 The Algorithm

The algorithm proceeds in the same way as for 2 columns. We will demonstrate how the

algorithm proceeds for three columns, but can easily be extended to higher strength:
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10

. Specify an initial design d with columns (0,--- ,0,1,---,1,--- ,s3—1,--- ,s1—1) and

(0, ,8—1,0,-++,80~1,-+-,0,-- 80— 1). Let m = 3.

. Randomize the rows of d.

. Let z,, =0 and h = 1.

. Let di,?c) = [:r,(lh')|:r,§h)| e |m("}2], the first h rows, where :rg;z = (21, T(he1yms €)'
For ¢* = 0,---,s,;, — 1, calculate X?,i"c" = km:_ll x2he') s (3.6) calculated using
columns k, [ and m from dg:g.. Use the best ¢* such that ngym(a,b, ¢*) < N/(sps18m)
for 1 < k<1< m—1. If no such choice exists, take the best ¢* with ngy,(a, b, c*) >
N/(sks15m). In the case of equally good choices, take the largest or randomly choose
between them.

Repeat Steps 4-5 for h=1,--- | N.
If x2(d) =0, go to 8.
repeat 5-7. T times. Choose the column ¢ which minimizes y?(dy).
Repeat Steps 2-8 for m = 3,--- ,n.
. Return the final N x n design d.

3.3.7 Comments

As in the case with the x? criterion for strength 2, some care must be taken for the balance

of a

well

design. For strength 3, if the nyy,’s are all equal, then the ny’s must be all equal as

. However, if equality cannot be achieved, minimizing x? may not necessarily result in

a design which has nice properties in terms of the ny’s.
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Example 3.3 Consider the designs Dy and Do

-1 -1 -1 -1 -1 -1
-1 -1 +1 -1 -1 +1
-1 +1 -1 -1 +1 -1
—1 41 +1 -1 41 +1
+1 -1 -1 +1 -1 -1
p,_ | 1 -1+ Dy = +1 -1 +1
+1 +1 -1 +1 41 -1
+1 41 +1 +1 41 +1
~1 -1 +1 -1 -1 -1
-1 -1 -1 -1 41 +1
+1 41 -1 +1 -1 +1
+1 41 +1 +1 41 -1

Calculating x? and Jz for both designs gives x*(D1) = x*(D32) = 2, whereas
J3(D1) = 342 while J3(Dg2) = 330. In this example, the J; criterion ranks Do
as a better design. The columns are balanced, and we have a design of weak

strength 3~ for both designs, but Dj is weak strength 27, while D, is not.

Example 3.3 enforces one of the issues that can arise using the new algorithm for finding
nearly-orthogonal arrays. In order to use the x? criterion when we can not assume that all
niim 'S can be balanced, we should also check for balance or near balance among the ny;’s and
balance within each column. This check for balance is already considered in the J-criterion.
If we are looking for a near-strength 3 (or higher) orthogonal array, the J-criterion will try
to keep balance of lower levels of near-strength as well. If instead one uses the X2 criterion,

extra time must be spent to ensure balance on smaller dimensions.

3.4 Designs with a Larger Number of Runs

There are some limitations with the algorithms presented as the run size increases. For Xu's
algorithm, having to check all possible switches can be too time-consuming due to having
to consider too many switches. In the new algorithm, too many runs means that there is

much more unknown at a certain row, and makes it harder to find a good column.
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3.4.1 A modification on Xu’s Algorithm

The idea behind our modification of Xu's algorithm is that if an orthogonal array exists,
each element of the added column must occur the same number of times with each element of
the previous columns. We can choose the new column so that it is at least orthogonal to the
first column. In addition, if we restrict switches such that we will not lose the orthogonality
to the first column, the number of switches to check is greatly reduced.

The algorithm proceeds as follows:
1. For k=1,---,n, compute the lower bound L(k) by equation (2.1).

2. Specify an initial design d with columns (0,...,0,1,...,1,...,81 = 1,... 81 — l)l =
(T(0")1> Z(1#)15 - - - » T(s, 1)1 ), Where z(;+; denotes the rows in column 1 having element
i*,and (0,--- ,80—1,0,-+- ;82 —1,--+,0,-- ;89— 1)1, and compute 6; ;(d) and Jo(d)
by definition. If Jo(d) = L(2), then ng = 2 and T' = T; otherwise, ng = 0 and T = Tb.

3. For k = 3,--- ,n, do the following:

(a) Generate a random balanced si-level column c as follows: create s; random
balanced columns of size N* = N/sq, call these ¢;, for i = 1,...,s. Match
these ¢; to z(;»)1- The column c is orthogonal to column 1. Compute Jo(d+). If
Jo(de) = L(k), go to (d).

(b) For all pairs of rows a and b in z(;-y; with distinct symbols in ¢ for i = 1,..., sy,
compute A(a,b). This forces orthogonality with column 1. Choose a pair of rows
with the largest A(a,b) and exchange the symbols in rows a and b of column c.
Reduce Jo(dy) by A(a,b). If Jo(d4) = L(k), go to (d); otherwise repeat (b)

until no further improvement is made.

(¢) Repeat (a) and (b) T times and choose column ¢ that produces the smallest
JQ(d+).
(d) Add column c as the kth column of d, let Jo(d) = J2(d+), and update §; ;(d).

4. Return the final N x n design d.

The main advantage to this algorithm is the reduction of the number of switches to
consider. While this may seem to be too restrictive on where switches can be made, it

should be kept in mind that in an optimal design, orthogonality would be kept with this
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first column for an orthogonal array. That is, if we were to switch distinct elements from ¢
in z(;+)1 and z(;j«)1, losing orthogonality with column 1, switches must be made that would
eventually make the column orthogonal once again. In addition, column 1 can be randomly
chosen among any of the existing columns, and more restarts can be used as less time needs
to be spent considering all possible switches.

Even if we are dealing with nearly-orthogonal arrays, we can likewise ensure that the
added column has weak strength 2 in regards to the first column. In particular, if the first

column has a large number of levels, this seems reasonable if using natural weights.

3.4.2 Discussion of Weights

The weights for the Js criterion are chosen based on the purpose of the design. If we want
an orthogonal array, the lower bound can be reached, so we can use weights of 1 for all
columns to simplify calculations. Recalling the relationship between J» and As when using
natural weights (weights of a column equal to the number of levels), for nearly-orthogonal
arrays, using natural weights will try to create an array optimal for the Ay criterion. For
factors which are deemed to be of higher importance, a larger weight can be assigned to
them. If a factor has a higher weight, it is more likely that other factors will be chosen to
be ortliogonal to the factor with higher weight.

The use of weights is directly related to the x? criteria. Using weights of 1 for Jo
is equivalent to using the simplified equation (3.6) for the x? criteria. The use of natural
weights is equivalent to using equation (2.6), which will be used for nearly-orthogonal arrays
to optimize As. Setting the weights to 1 to speed up the algorithm may not be advisable

with nearly-orthogonal arrays, as can be seen by example 3.4.
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Example 3.4 Let D; and Dy be NOA(12,6133), with

1 000 1 01 1
1 110 1 100
2 011 2 010
21 01 21 01
3 010 3010
3 1 01 31 01
D, = ;D2 =
4 01 1 4 0 0 1
4 1 00 4 1 1 0
5 0 0 0 5 0 00
5 1 1 1 5 1 1 1
6 0 0 1 0 0 1
6 1 10 6 1 1 0

Using the unweighted criterion, we get Jo(D1) = 172 and Jo(D2) = 172, while
the weighted criterion gives Jo(D1) = 912 and Jo(D2) = 880. For D1, the non-
orthogonal columns are 1 and 4, and in D2 columns 3 and 4. The unweighted Js
views these as the same, as both have four ny;(a, b)’s that are either one above or
one below N/(sys;). The weighted Jo considers this more serious when column
1 is involved as it has more levels, so in this example D2 is preferred. From a
statistical standpoint, this makes sense, as in Dy, some level combinations for
columns 1 and 4 do not appear, whereas in D2 every level combination for all
pairs of columns occurs at least once, including the non-orthogonal columns 3

and 4.

3.5 Advancements

This chapter introduced a new algorithm for finding orthogonal and nearly-orthogonal ar-
rays. It adds new columns one row at a time by making the “best” choice for each row. We
also used the x? criterion with Xu’s algorithm.

The Jy criteria was extended to higher strength, and although resuits are mentioned by
Xu (2003) in regards to minimum moment aberration, more detail was paid attention to

here from an algorithmic standpoint. As well, both algorithms were adapted to be used for
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higher strength. Discussion was given for trying to find a way to speed up the algorithm

when dealing with a larger run size.



Chapter 4
Performance and Comparison

In this chapter we will compare the performance of Xu’s algorithm and the new algorithm
in terms of the construction of orthogonal and nearly-orthogonal arrays according to some
measure of optimality. Orthogonal arrays and nearly-orthogonal arrays will be discussed in

separate sections, as the approaches we use to compare the algorithms are different.

4.1 Construction of Orthogonal Arrays

For small run sizes, we often know if an orthogonal array exists. For settings where we know
one exists, we can compare how each algorithm performs in finding an orthogonal array. To
do this, a meaningful basis of comparison must be used. For practical purposes, the main
aspects we want to study in an algorithm are speed and the ability to find orthogonal arrays.
The algorithm should be successful at finding orthogonal arrays, but it should also be fast.
If an algorithm can find orthogonal arrays easily, but takes a long tinie to do so, it may be
impractical, particularly for large run sizes. For either algorithmm, if we set the number of
restarts very high, we expect the algorithms to find orthogonal arrays more often, but may
end up sacrificing speed in doing so. On the other hand, if an algorithm can be run very
quickly, but rarely finds an orthogonal array, the practicality is also questionable. For both
algorithms, if we use a small number of restarts, we anticipate that the algorithms will be
very fast, but may not find an orthogonal array very often.

What we really desire is a balance between speed and success. To find a reasonable
balance, we use the average time to find an orthogonal array as a criterion to compare

algorithms. That is, for an algorithm being started from its initial point for a certain

46
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number of times,

Timeps = OAfound/TiTn@totaL (4.1)

where Timeg 4 is the average time to find an orthogonal array, OA gungq is the total number
of tiames an orthogonal arrays was found, and Time;uq is the total time to run the algo-
rithm from its starting point for a specified number of times.

As mentioned, the speed and efficiency of the algorithms are determined by the number
of restarts - the number of times the algorithmn tries to add a new column until finally giv-
ing up. Too many restarts can mean a lot of time spent attempting to find an orthogonal
column. If an orthogonal (to the existing design) column is difficult for the algorithm to
find or does not exist, the algorithmn is using time trying to reach a lower bound that it
can not achieve. On the other hand, too few restarts may cause an algorithm to give up
prematurely and have to start again from the initial design of just two columns. In this
situation, the algorithm may ultimately take more time to find an orthogonal array, as it
may take many runs of the algorithm before an orthogonal array is actually found.

Xu (2002) suggests 100 restarts as a suitable choice for his algorithm. While not based
directly on the expected time to an orthogonal array, the suggestion of 100 restarts is based
upon considering the success rate and time. The author shows his algorithm to be supereior
to a Federov exchange algorithm from Miller and Nguyen (1994), and an interchange algo-
rithm from Nguyen (1996). Using T'imepa and comparing the two algorithmns, the number
of restarts to be tried for these algorithms are 50, 100, 200, 300, 500, and 1000. Varying the
number of restarts in this way allows for better exploration of how the algorithins perform.
In order to find a “good” number of restarts to use for an algorithm, we can use Timega.
We hope to determine how many restarts should be used in a general setting for decent
results (according to Timep4).

Another issue for examining the algorithms is the number of times each algorithmm should
be repeated from the initial point in trying to find an orthogonal array, referred to as tries.
If the number of tries is too low, the results may not accurately reflect how the algorithm
does on average as the expected time to an orthogonal array is based on the number of
orthogonal arrays found. This is particularly troublesome in situations where finding an
orthogonal array is a very rare occurrence. After a set number of attempts, it is possible
that an orthogonal array is found only once or twice, perhaps even not at all. When the
nuinber of tries is large, if one set of tries results in one orthogonal array while the other

finds two orthogonal arrays, the difference in average time to an orthogonal array will be
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markedly different. However, if an algorithm can find an orthogonal array often and we
use too many tries, then too much time is spent without much gain in information on the
algorithm.

When we study an algorithm, we want to ensure that we have an accurate representation
of how we can expect the algorithm to perform1 on average. A reasonable question to ask
is “how many times should the algorithm find an orthogonal array before we stop?” To do
this, we want to estimate p, the probability of any given try resulting in an orthogonal array.
If we are comfortable with our estimate of p, we do not need to worry that one set of tries
happened to get “lucky.” The more tries that use to estimate p, the better we anticipate
our estimate will be, simply as the number of orthogonal arrays found divided by the total
number of tries. However, at some point we need to decide that we have used enough tries
to be satisfied with our estimate of p, otherwise we will just keep running the algorithm. To
estimate p, we will use the geometric distribution.

The geometric distribution counts the number of trials until a success is observed. The
random variable X denotes this number of trials. The geometric distribution has the fol-

lowing properties:

where p is the probability of success. As tries are independent of each other, if we consider
finding an orthogonal array as a success and a non-orthogonal array as a failure, to find n
orthogonal arrays, we can consider n iid random variables from a geometric distribution,
stopping when the nth orthogonal array is found. With X7, Xo, ..., X,, iid from a geometric
distribution with parameter p, a 95% confidence interval for E(X) (ie. 1/p) is

l-p

pvn

To get a 95% confidence interval for p, we can use
pV1-p
vno

where p is the number of orthogonal arrays found divided by the total number of tries. We

X +1.96

p+1.96

want to use the geometric distribution to remove some of the chance that one algorithm
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may have happened to have a “lucky” set of tries and ensures that the results reflect how
well the algorithms do on average.

The issue is now how accurate we want our estimate of p to be. For orthogonal arrays
in which the algorithms have a reasonable success rate, say greater than 0.10, an interval
half-width of 0.01 is considered. This amount is still small enough to be comfortable with
the results, and we do not want to have the half-width too small, or else there may be too
many successes to be found from a time standpoint.

From the 95% confidence interval for p, the number of geometric random variables to
sample for a specified half-width w is

1.96%p%(1 — p)
n=——g
For the half-width of 0.01, n achieves its maximum when p = 2/3, giving n = 5692. Looking
at this situation as a worst case scenario, in running the code until it has found an orthogonal
array 6000 times, the confidence interval for p will have a half-width of at most 0.01.

For those orthogonal arrays in which the success rate for the algorithms is very low, 6000
successes may take substantial time to be achieved, so 6000 is not feasible. In addition,
for small success rates, an interval half-width of 0.01 is likely not that desirable. In this
situation, an interval half-width proportional to p is preferred. Using w = p/10, the number
of successes needed is

n = 100 x 1.96%(1 — p).

In this situation, as p decreases n increases, so using n = 400 allows for intervals to have have
a half-width of p/10 or less. While this number of successes may seem small in comparison
to the 6000 discussed for a larger success rate, for rare events there is more information
contained in each observation of the geometric random variable. For these rare events, we
can expect to see a number of failures before a success. For a higher rate of success, we
expect to see fewer failures.

To make compasison of the algorithms fair, we try to speed up calculations as much as
possible. The new algorithm will be used with the simplified x? given as equation (3.6).
Xu's algorithm will be used with weights of one which is suggested when finding orthogonal

arrays.
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4.1.1 Results

Both algorithms are suited for designs with a smaller number of runs, so it is orthogonal
arrays of this nature which we will study. We use the orthogonal arrays studied in Xu
(2002). Considering these orthogonal arrays, we have some prior information on what we
can anticipate on the performance of Xu’s algorithm (Xu (2002)). These arrays are typical
of the mixed-level designs used for industrial experiments with small runs, and are also
diverse in the number of runs, factors, and levels.

For each orthogonal array, each setting of restarts to be tested was used for Xu's algo-
rithm with the Jo, Xu’s algorithm with x2, and the new algorithm with x?. The number of
orthogonal arrays found, the number of tries, and the total time spent were recorded in each
case. Determination of the number of tries resulting in an orthogonal array (400 or 6000)
was based on previous results from Xu (2002), and where information was not available,
using the amount of time/tries until one orthogonal array was found. In a few situations,
the time to find one orthogonal array was so extreme that the test was stopped after one
orthogonal array for time considerations.

For the number of restarts that were tested, the expected time to find an orthogonal
array is presented for Xu’s algorithm with the Jy criterion (Table 4.1), Xu’s algorithm with
the x? criterion (Table 4.2), and the new algorithm using the x? criterion (Table 4.3). The
new algorithm using the Jo criterion was not tested, as in testing it, it performs very poorly.
The reason for this is an additional condition in using the x? criterion that checks whether
ni(a, b) exceeds its expected value which fits in naturally with the x? criterion, but is not a
natural extension with the J, criterion. Removing this condition with the x? criterion also
results in poor performance. While we could use ny; to force balance, if we need to store
these in addition to the components for Js, it is just as well to use x?. For all settings, more
detailed tables giving tries resulting in an orthogonaly array, total number of tries, total
time spent, estimated p, 95%CI for p, and estimated expected time to an orthogonal array
are presented in tables 4.6-4.23.

Moving on to the results, Xu (2002) recommended using 100 column restarts, consider-
ing both the efficiency of finding orthogonal arrays and speed. Most of the consideration
was placed on when the proportion of tries resulting in an orthogonal array appeared to
be constant. However, in considering expected time to an orthogonal array, 50 restarts

seems to be enough in most situations for Xu’s algorithm with either criterion. Using more
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restarts, we expect to find an orthogonal array more often, but the expected time to find an
orthogonal array increases since extra time is spent in situations where the algorithm can
not find an orthogonal array.

For the new algorithm, there does not seem to be a clearcut choice for the number of
restarts to use. A try in the new algorithm is generally very quick in comparison to Xu's,
but does not find an orthogonal array as often. For smaller run sizes (< 27), 300-500 restarts
is a reasonable choice for expected time to an orthogonal array. For the higher run sizes
studied, 1000 restarts is a better choice. In contrast to Xu’s algorithm, where just 50 restarts
is often enough for finding orthogonal arrays and can be used in most situations, too few
restarts for the new algorithm can cause a very low success rate and high expected time to
an orthogonal array.

Table 4.4 compares the best expected time to an orthogonal array for each algorithm
among the different orthogonal arrays tested and lists the best time among those and which
algorithm achieved that time. It is apparent from Table 4.4 that there is no universal winner
in terms of expected time to an orthogonal array. However, we notice a trend in which the
new algorithm performs better when the number of columns is small, and perforins worse
when the number of columns is close to the number of rows. This makes sense because the
new algorithm has added calculations compared to Xu’s as the number of columns grows.

Looking at Table 4.4 for Xu’s algorithm, comparing the J; and x? criteria, we see that
in many cases the x? criterion is an improvement over the J; criterion. This usually occurs
when the number of columns is small relative to the run size. To get a better idea of why
this occurs, we can look at the manner in which the criteria are computed. If the current
design has m — 1 columns, and we are trying to add the mth column, the x? criterion uses
2 % (m — 1) of the n;;’s for evaluating/making a symbol switch between rows ¢ and j. For
the J; criterion, the calculation is based on 2 * N/sy, of the 4; ;'s. If the number of columns
is small relative to the number of rows, the x? criterion will perform better, with the J,
criterion preferred as the number of columns grows. To get the greatest efficiency from Xu's
algorithm, it may be worthwhile to use the x? criterion for some initial set columns, and
then switch to Jo for the remaining as it is not influenced by the number of columns.

While the new algorithm may not outperform Xu’s in all situations, it provides an ef-
fective means for constructing orthogonal arrays with a small number of rows and a modest
number of columns relative to the number of rows. For studying the x? criterion with Xu's

algorithm, we found that there may be improvements in the situations where there is a
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moderate number of columns relative to the number of rows.

4.1.2 Discussion

Based on the observation that the new algorithm seems to perform much better when the
number of factors is small relative to the run size, it may be worthwhile to try and use
the expansive replacement method. For the expansive replacement method, let A be an
orthogonal array of strength 2 with a factor I having s; levels, and B be an orthogonal array
of strength 2 having s; runs. By making a one-to-one correspondence between each level
of factor [ of A and the s; runs of B, replacing each occurrence of the levels in A with the
corresponding run in B, the resultant is an orthogonal array of strength 2 with at least as
many factors as A. This can be useful with the observations about a smaller number of
factors in comparison to the run size, as we may be able to find a design faster by using
expansive replacement afterward. An example of this in the designs studied here are the
OA(27,913%) and OA(27,3'3). The new algorithm can find an OA(27,9'3%) very quickly in
comparison to the OA(27, 3'%), but using expansive replacement, we can get an O A(27,31%)
using an OA(27,9'3%) with the 9-level factor replaced with an OA(9,3?).

4.2 Nearly-Orthogonal Arrays

For studying nearly-orthogonal arrays, we want to find a design optimal according to the
A, criterion due to the statistical justification described in Chapter 2. In comparing the
algorithms for orthogonal arrays, the comparison was done on the efficiency for finding an
optimal design - an orthogonal array. For nearly-orthogonal arrays, we generally do not
know if a design is optimal. As such, our approach to comparing the algorithms must be
modified.

Xu (2002) compared his algorithm to other existing algorithms (an interchange algorithm
from Nguyen (1996), a threshold accepting technique from Ma et al (2000), and combina-
torial construction methods from Wang and Wu (1992)) in regards to the As criterion for
nearly-orthogonal arrays with small run sizes. Xu's proved to be a clear winner. We take
the same approach, comparing the new algorithm to Xu's in terms of the A, criterion. We

use the mixed-level nearly-orthogonal arrays tested by Xu (2002) as a basis of comparison.
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Even though we are now dealing with nearly-orthogonal arrays, the algorithms still pro-
ceed in the same way they did for the orthogonal case. For the x? criterion, there are
situations where the operations will not be integer, but this does not change the method-
ology of the algorithm. Since we do not know if we have an optimal design, the geometric
approach can not be used to select the number of tries. Instead we choose the number of
tries to be 10,000 based on past experience. From the observations about the number of
restarts for orthogonal arrays, the number of restarts used for the new algorithm will be
300, 500, and 1000.

The Jy equivalence to A9 in equation (2.8) comes from setting the weight of each column
to be the number of levels for that column. Due to this, instead of using the faster equation
(3.6), we now use (2.6) to drive the algorithm. In the orthogonal array case, x2, = 0 for
all k,l, so the denominator was not necessary. In the nearly-orthogonal case, the denomi-
nator serves the same purpose as natural weights in Xu's algorithm, which we use for the
statistical purpose because of the relationship to As. This distinction can be illustrated by

example 3.4.

4.2.1 Results

For each nearly-orthgonal array, 10,000 tries were used for 300, 500, and 1000 restarts with
the new algorithm. The algorithm returned the design with lowest A2 among all the tries.
This Ay value is recorded along with the best nearly-orthogonal designs reported by Xu
(2002). Since we are looking for designs having lower A values, the slower equation (2.6)
is used to drive the algorithm due to its relationship to As.

The results from each of the nearly-orthogonal arrays are shown in Table 4.5. The new
algorithin results in comparable Ay designs for every nearly-orthogonal array. The excep-
tions are the NOA(24,2'3!), in which case the new algorithm did not achieve the Ay of
2.01 that Xu (2002) reported. However, for the NOA(24,3'47) and NOA(12,273%), the new
algorithin provides designs with better A values, and thus new designs were found.

In some situations, we know if a nearly-orthogonal array is As-optimal. From Lemma
2.1, if for any pair of rows i and j, the n;;(a,b)’s are within one, the design is A7 optimal.
While it is not always possible to find such a design, if one does exist, lower bounds can be
adjusted for all n;;(a,b)’s being within 1, and we could proceed in the same way as when
dealing with orthogonal arrays. Since we do not know beforehand if such an optimal design

exists, we must see if the results are different than those reported by Xu (2002).
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When we can not find an optimal design like that described above, it is not always clear
how the design performs in terms of A4;. From our results, the best design for both algo-
rithms tends to have the same A9 value. In fact, for most of the nearly-orthogonal arrays,
these designs are found within the first few tries, and increasing the number of restarts/tries
does not seem to give any improvement.

Some nearly-orthogonal arrays cause problems for the algorithms in trying to find a best
nearly-orthogonal array. For instance, using the new algorithm, the best NOA(24,2'311)
is not as good as that found by Xu (2002). As well, all three different restarts result in
different A5 values, and the 500 restarts actually finds a better design than 1000 restarts. If
we use 2000 restarts (not listed in table), the best design has an Ao value of 1.91, which is
better than the result from Xu (2002). Since we are trying to make As as small as possible,
this suggests that there may be instances in which it is worthwhile to use a greater number
of restarts, even though it may increase the runtime.

When dealing with a mixed-level array, the order in which we add columns into the
design can have an impact on the design which the algorithm returns as having the best
As. For instance, using the first column as the 6-level column in the NOA(12,6'2%), the
best design has an A9 value of 0.444. If we instead consider the 6-level column as the last
column added, the best design has an A value of 1.000. A possible explanation is related to
the natural weights. When the 6-level column is added first, it is likely that added columns
will be forced into orthogonality with the 6-level column because more weight is assigned
to this column. When used as the last column, the algorithm must try to make the 6-level
column orthogonal with the other five columns which appears more difficult.

The previous discussion on the NOA(12,6!2%) highlights one of the major concerns in
using a columnwise algorithm to find nearly orthogonal arrays: the best nearly-orthogonal
array for some & columns may not help in creating the best nearly-orthogonal array for k+1
columns. For the NOA(12,612%), if we consider adding the 6-level column last, we may be
trying to add this column to an OA(12,2°), which would be an optimal design for the first
five columns. However, the resulting best NOA for six columns will not be as good as if
considering the six-level column first.

Xu (2002) advised to arrange the columns in decreasing order of levels, due to the num-
ber of possible balanced columns. We make the same suggestion due to the use of natural
weights, to try and force orthogonality with the higher level columns. Since the sequential

nature may not work well with a particular ordering, it may be worthwhile to randomize
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the order of the factors, so that if one ordering is better, it should get used by the algorithm
at some point. For the NOA(12,612%), if the 6-level column is used as column 1, 2, or 3, a
design can be found with As of 0.444.

4.2.2 Discussion

Using the x? criterion for nearly-orthogonal arrays, it is possible that N/(sks;), and hence

x?, is not integer. However, in not using integer calculations, the speed is greatly increased.

In an attempt to speed up calculation, if we examine the y? criterion again,

o L e X [malayb) = N/ (ses)?
Xkl(d) - agﬂ g N/(SkSl)
= (sks)/N S0 S [maala, )2 = 2Nmig(a,b)/(swst) + N?/(sisr)?]
a=0 =0
= (sxs;)/N [Z Znu a, b) } — (sks1)/N [ZNQ/(sksl) - N2/(sksl)]
a=0 b=0
sk-ls, 1
= (skst) /N{Z anlab } N.
=0 =0

Looking at x? in this way, the only control we have on the A, criterion is to minimize
(sgs1)/N [ZS" ! p -01 ngi(a, b)z] . When dealing with nearly-orthogonal arrays, it is quicker
to deal with the simpler

sp—18—1

xX& = (sps)) l:z anl (a,b) }

a=0 b=0
which is also beneficial in that it is integer. When using the original x2, criterion, a ny(a, b)
exceeding the expected number N/(sys;) by one or two may not. be very desirable, especially
in the case of orthogonal arrays. However, the impact on x? of exceeding the expected
number is not necessarily very large, and a choice that does so may be deemed the best
choice. The XE;‘ criterion will treat exceeding the expected number as being more serious,

hopefully causing more balance among the columns.
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Table 4.1: Expected time (in secs) to OA for Xu’s algorithm - Jy criteria.

OA 50 100 200 300 500 1000

0A(9,3%) | 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004
0A(20,2'9) | 0.01149  0.01661  0.02809 0.03155 0.04614 0.08553
OA(16,2'%) | 0.00116  0.00115  0.00115 0.00116 0.00116 0.00116
0OA(12,2'1) | 0.00033  0.00037  0.00046 0.00054  0.00078 0.00121
0OA(16,8'2%) | 0.00086  0.00086  0.00086 0.00086 0.00086 0.00086
OA(16,4%) | 0.03428  0.06703  0.13163 0.19256 0.32710 0.65567
OA(18,3721) | 0.00583  0.00728  0.01049 0.01336 0.01989 0.03358
OA(18,613%) | 0.04579  0.08438  0.16620 0.24315 0.40683 0.78767
OA(20,5'28) | 0.02689  0.03583  0.06080 0.08595 0.13052 0.25249
OA(24,2%%) | 0.09150 0.13929  0.21202 0.27655 0.40633 0.68883
OA(24,412%0) | 0.05414 0.08309  0.12126 0.16527 0.23114 0.41733
OA(24,312'%) | 0.73488  1.14190  2.04770 2.68075 4.33018 8.22000
0OA(24,12'212) | 0.01193  0.01199  0.01233 0.01261 0.01311 0.01423
OA(24,4'3'1213) | 0.48003 0.78833  1.36018 1.94388 2.66440 5.19288
OA(24,6141211) | 0.22801  0.40483  0.68750 0.94183 1.45883 2.68383
OA(25,5% | 0.33263 0.65250  1.27650 1.847 3.10167 6.01467
OA(27,913%) | 0.05280  0.05086  0.05068 0.05074 0.05074 0.05074
OA(27,3'3) | 41.72750 47.55500 76.78000 101.08750 156.34000 337.31750
OA(28,277) | 6.52250  9.94250 18.55000  25.91250  37.98750  70.76500
OA(32,161216) | 0.18622  0.13603  0.12982 0.12935 0.12957 0.12957
OA(32,814%218) | 0.23916  0.36100  0.54467 0.68917 0.90900 0.90900
OA(40,20'2%) | 53.3675  4.80238  1.86400 1.62917  1.75650  1.75650
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Table 4.2: Expected time (in secs) to OA for Xu’s algorithm - x? criteria.

OA 50 100 200 300 500 1000

OA(9,35) ] 0.00004 0.00004 0.00004 0.00004 0.00004  0.00004
OA(20,29) | 0.01335 0.01942 0.02391  0.03694 0.05448  0.10160
0A(16,2%) | 0.00162 0.00162 0.00162 0.00162 0.00162  0.00162
OA(12,2'1) | 0.00045 0.00047  0.00053  0.00057  0.00071  0.00098
OA(16,812%) | 0.00080  0.00079  0.00079  0.00079  0.00079  0.00079
OA(16,4%) | 0.02012 0.03879 0.07666  0.11208  0.19046  0.38133
OA(18,3721) | 0.00419  0.00511  0.00711  0.00888  0.01303  0.02152
OA(18,613%) | 0.02925 0.05427 0.10672  0.15582  0.26043  0.50617
OA(20,5'2%) | 0.02064 0.02786  0.04687  0.06634 0.10126  0.19501
OA(24,2%) | 0.10361 0.16673  0.26203  0.34567  0.51900  0.89367
OA(24, 41220) 0.05605  0.09100 0.13695 0.18436  0.27164  0.49717
0A(24,3'2'6) | 0.72308 1.18685 2.19533  2.90705 4.73555  9.13750
OA(24,12'2'2) | 0.01045 0.01052 0.01065 0.01081 0.01106  0.01162
OA(24, 413! 213) | 042285 0.73217 1.30083 1.88060  2.62585 5.18485
OA(24,6'41211) | 0.16844 031107 0.54033  0.74700 1.16950  2.16600
OA(25,5% | 0.12614  0.24076  0.48900  0.70783  1.18900  2.30350
OA(27,913%) | 0.02815 0.02730  0.02730  0.02726  0.02726  0.02726
OA(27,313) | 23.34500 27.91500 46.85000 62.85250 99.24750 217.97750
OA(28,22") | 5.93750  9.91250 19.12500 35.65500 42.08750  80.05250
0A(32,16'2!%) | 0.14521  0.11180 0.10755  0.10725  0.10739 0.10739
OA(32,8'42218) | 0.15462  0.26077 0.41950  0.54550  0.75033 1.27150
0A(40,20'220) 27.575  2.90823  1.27483  1.15383  1.25817  1.62800
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Table 4.3: Expected time (in secs) to OA for new algorithm - x? criteria.

OA 50 100 200 300 500 1000

0A(9,3%) 0.00002 0.00002 0.00002  0.00002 0.00002 0.00002
0A(20,21) 0.07220 0.02051 0.01773  0.01998 0.02451 0.03443
0A(16,21%) 0.00232 0.00219 0.00219  0.00217 0.00217  0.00222
0A(12,21) 0.00043 0.00042 0.00044  0.00044 0.00046  0.00051
OA(16, 8198) 0.00037 0.00037 0.00037  0.00037 0.00037 0.00037
0 A(16, 4%) 0.00210 0.00399 0.00816  0.01171 0.01918 0.03925
OA(18,3721) 0.00408  0.00336 0.00340  0.00366 0.00436  0.00598
0OA(18,6'3%) 0.01359 0.02604 0.04648  0.07052 0.11091 0.21725
0A(20,5'28) 0.05308 0.02822 0.02751  0.02391 0.02872  0.04863
0 A(24,22%) - 16.38250 0.47333  0.20637 0.19994 0.25612
OA(24,4'2%0) | 150.80000 1.44953 0.12949  0.08880 0.09116 0.13025
0A(24,3276) 6216 398.76000  17.06250  5.20098 2.13895 1.98565
0A(24,121212) 0.00378 0.00330 0.00325  0.00327 0.00333 0.00343
0A(24,4131213) 1902.97  125.39000 2.87870  1.36700 0.88230 1.09703
OA(24,6'41211) 2.80718 0.35610 0.15058  0.14990 0.18453 0.31941
0A(25,5%) 0.01844 0.02788 0.05401  0.07787  0.12475 0.25365
OA(27,9'3%) 0.05666 0.05574 0.02701  0.02318 0.02161 0.02336
0A(27,3'3) 719115 - - 629.8275 471.75000  129.03
OA(28,2°7) - - - 26150  920.660  56.31
0A(32,16'2'6) 0.27375 0.05029 0.02787  0.02504 0.02437  0.02403
0A(32,81422'8) - 449.28000 268.06000 13.57750 1.52683  0.49383
O A(40,201220) - 2942 124.17500 20.32250 0.40800 0.26325
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Table 4.4: Best Expected time (in secs) to OA for each algorithm.

OA New Xu-x? Xu-Joy Best Algorithm

0A(9,3% 0.00002  0.00004  0.00004 | 0.00002 New
0A(20,2'9) 0.01773  0.01335  0.01149 | 0.01149 Xu-Jo
0A(16,219) 0.00217 0.00162  0.00115 | 0.00115 Xu-Jo
0A(12,2') 0.00042  0.00045  0.00033 | 0.00033 Xu-Jo
0A(16,8128) 0.00037  0.00079  0.00086 | 0.00037 New
OA(16,4%) 0.00210  0.02012  0.03428 | 0.00210 New
0A(18,3™2h 0.00336  0.00419  0.00583 | 0.00336 New
0A(18,6'3%) 0.01359  0.02925  0.04579 | 0.01359 New
0A(20,528) 0.02391  0.02064  0.02689 | 0.02064 Xu-x?

0 A(24,2%) 0.19994  0.10361  0.09150 | 0.09150 Xu-Jo
OA(24,412%) 0.08880  0.05605 0.05414 | 0.05414 Xu-Jo
OA(24,31219) 1.98565  0.72308  0.73488 | 0.72308 Xu-x?
0A(24,121212) 0.00325  0.01045  0.01193 | 0.00325 New
OA(24,4'31213) 0.88230  0.42285  0.48003 | 0.42285 Xu-x?
OA(24,6'4'21) | 0.14990  0.16844  0.22801 | 0.14990 New
OA(25,5%) 0.01844 0.12614 0.33263 | 0.01844 New
0A(27,9'3%) 0.02161  0.02726  0.05068 | 0.02161 New
OA(27,313) | 129.03000 23.34500 41.72750 | 23.34500 Xu-x?
0A(28,2%7) | 56.31000 5.93750  6.52250 | 5.93750 Xu-y?
0A(32,161219) 0.02403  0.10725 0.12935 | 0.02403 New
OA(32,814221%) 0.49383  0.15462  0.23916 | 0.15462 Xu-x?
0O A(40,201220) 0.26325  1.15383  1.62917 | 0.26325 New
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Table 4.5: Comparison of the new algorithm to Xu'’s in terms of As.
NOA Xu 300 500 1000

NOA(6,3'2%) [ 0.333 0.333 0.333 0.333
NOA(10,5'2° 0.4 0.4 0.4 0.4

NOA(12,413%) | 0.75 0.75 0.75 0.75
NOA(12,233%) | 0.75 0.75 0.75 0.75
NOA(12,612%) | 0.444 0.444 0.444 0.444
NOA(12,612%) | 0.667 0.667 0.667 0.667
NOA(12,312%) | 0.778 0.833 0.833 0.778
NOA(12,213° 1.25 125 1.25 1.25
NOA(12,273%) | 0.861 0.792 0.792 0.792
NOA(12,253%) | 0.875 0.764 0.764 0.764
NOA(15,513° 0.8 0.8 0.8 0.8
(
NOA(18,3723) | 0.333 0.333 0.333 0.333

NOA(18,9128
NOA(20,5%215
NOA(24,8'3%
NOA(24,312%
NOA(24, 62
NOA(24,6'218
NOA(24,2'3%
NOA(24,3'47

0.346 0.346 0.346 0.346
0.76 076 0.76  0.76
0.875 0.875 0.875 0.875
0.722 0.833 0.819 0.722
0.111 0.111 0.111 0.111
0.667 0.667 0.667 0.667
2.01 2208 2.083 2.115
2.56 2.58 253 2472

)
)
)
)
)
)
)
)
|
NOA(18,213%) 0.5 05 05 05
)
)
)
)
)
)
)
)
)
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Chapter 5
Summary

Many experiments investigate the effects of two or more factors, in which case factorial
designs are frequently used. In many situations, a fractional factorial design can be used
to run an experiment at a fraction of the runs needed for a full factorial design. These
designs are particularly useful in industry as screening experiments, to identify important
factors. Orthogonal arrays can be used as factorial designs with desirable statistical prop-
erties. If an orthogonal array does not exist, a nearly-orthogonal array can be used, where
near-orthogonality can be measured by a number of criteria, some of which were introduced
in Chapter 2.

When an experimenter needs an orgthogonal or nearly-orthogonal array for an experi-
ment, one may not be readily available and may not be easy to find. In such situations,
we wish to have an algorithm to construct an orthogonal array or a nearly-orthogonal array
optinlai according to some criterion. Chapter 3 discussed an algorithm by Xu (2002) and
introduced a new algorithm.

As orthogonal arrays of higher strength are desirable, Chapter 3 extended the Jo and
x? criteria to higher strength. The extension to higher strength was applied to the two
algorithms from Chapter 3.

In Chapter 4, we compared Xu’s algorithm and the new algorithm in terms of speed
and efficiency for finding an orthogonal array. In comparing the algorithms, we also looked
at the impact of the number of restarts on each of the algorithms. For orthogonal arrays,
Xu’s algorithm performs best with a small number of restarts, around 50 or 100. The new
algorithm performs best with 300 to 500 restarts for very small run sizes and around 1000

for moderate run sizes. While there was no definitive winner between the two algorithms,
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the new algorithm generally performs better when the number of factors is small relative
to the run size. In constructing nearly-orthogonal arrays, using As as a measure, the new
algorithm performed similar to Xu’s algorithm. For nearly-orthogonal arrays, the results
suggest that in some situations, finding an optimal A design is difficult for both algorithins
and it may be worthwhile to increase the number of restarts.

Future work would include trying to further examine the connection between the J-
criteria of higher strength in terms of the generalized minimum aberration criterion. Using
the algorithms for larger run size would be desirable. Further study could also be done to

look at the unification of more of the near-orthogonality criteria.
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