
A NEW ALGORITHM FOR OBTAINING

MIXED-LEVEL ORTHOGONAL AND

NEARLY-ORTHOGONAL ARRAYS

Ryan Lekivetz

B.Sc., University of Regina, 2004

A PROJECT SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the Department

of

Statistics and Actuarial Science

@ Ryan Lekivetz 2006

SIMON FRASER UNIVERSITY

Fall 2006

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title of Project:

Ryan Lekivetz

Master of Science

A New Algorithm for Obtaining Mixed-Level Orthogonal and

Nearly-Orthogonal Arrays

Examining Committee: Dr. Richard Lockhart

Chair

Dr. Derek Binghain

Senior Supervisor

Simon F'raser University

Date Approved:

Dr. Randy Sitter

Simon F'raser University

Dr. Boxin Tang

External Examiner

Simon F'raser University

SIMON FRASER '
UNIVERSIW~I brary

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted to
Simon Fraser University the right to lend this thesis, project or extended essay to users of
the Simon Fraser University Library, and to make partial or single copies only for such
users or in response to a request from the library of any other university, or other
educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or make a
digital copy for use in its circulating collection (currently available to the public at the
"Institutional Repository" link of the SFU Library website <www.lib.sfu.ca> at:
<http:llir.lib.sfu.ca~handle/l892/112>) and, without changing the content, to translate the
thesislproject or extended essays, if technically possible, to any medium or format for the
purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain shall not be
allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use, of any
multimedia materials forming part of this work, may have been granted by the author.
This information may be found on the separately catalogued multimedia material and in
the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this author,
may be found in the original bound copy of this work, retained in the Simon Fraser
University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Revised: Fall 2006

Abstract

Orthogonal arrays are frequently used in industrial experiments for quality and prod~ctivit~y

improvement. Due to run-size constraints and level combinations, an orthogonal array may

not exist, in which case a nearly-orthogonal array can be used. Orthogonal and nearly-

orthogonal arrays can be difficult to find. This project will introduce a new algorithm for

the construction of orthogonal arrays and nearly-orthogonal arrays with desirable statistical

properties, and compare the new algorithm to a pre-existing algorithm.

Acknowledgments

There are far too many people I have met during my two years at SFU that should be

thanked. In fear of forgetting to inention someone, I will just send out a big thank you to

everyone. Chances are, if you are reading this now, you are one of the people I would like

to thank (so thank you).

Big thanks to the graduate students I have met during my time at SFU. The fun times

certainly made these two years fly by. And I certainly know that without your help I would

not have got'ten through all of In? classes.

My sincerest gratitude to Dr. Derek Bingham and Dr. R.andy Sitter. Without their

knowledge and help, this project would not exist. Because of them and the great professors

in the department, I've b e n inspired to continue my studies.

I can not forget to thank my family for their constant support and encouragement.

Last but certainly not least, my eternal gratitude to Cindy Feng for all her help and

encouragement. I don't know how I would have survived this without her.

Contents

Approval

Abstract

Acknowledgments

Contents

List of Tables

iii

vii

1 Introduction

Orthogonal and Nearly-Orthogonal Arrays 3

2.1 Factorial Designs . 3

2.1.1 Full Factorial Experiments . 3

2.1.2 Fractional Factorial Experin~el~ts . 6

2.2 Orthogonal Arrays . 9

2.2.1 Mixed Orthogonal Arrays . 10

2.3 Near1 y-Orthogonal Arrays . 12

2.3.1 Connection Between Criteria . 15

2.4 Construction of Orthogonal and Nearly-

Orthogonal Arrays . 16

3 Two Algorithms for Construction of OAs/NOAs 18

3.1 Xu's Forward Procedure Algorithm using the J2 criterion 18

3.1.1 The Algorithm . 20

3.1.2 Xu's Algorithm using the X 2 criterion 21

3.1.3 Comments on the Algorithm . 22

3.2 A New Algorithm Using a Sequential

Approach . 23

3.2.1 The New Algorithm . 25

3.2.2 A1~;orithm Using the J2 Criterion . 26

3.2.3 Comments . 27

3.3 Extension to Higher Strength . 29

3.3.1 The J3 Criterion . 29

3.3.2 An Algorithm . 35

. 3.3.3 Comments on J3 37

3.3.4 Extension to Higher Strength . 37

3.3.5 The X 2 Criterion for Higher Strength 38

. 3.3.6 The Algorithm 39

3.3.7 Comments . 40

3.4 Designs with a Larger Number of Runs . 41

3.4.1 A modification on Xu's Algorithm . 42

3.4.2 Discussion of Weights . 43

3.5 Advancements . 44

4 Performance and Comparison 46

4.1 Construction of Orthogonal Arrays . 46

4.1.1 Results . 50

4.1.2 Discussion . 52

4.2 Nearly-Orthogonal Arrays . 52

. 4.2.1 Results 53

4.2.2 Discussion . 55

5 Summary 79

Bibliography 81

List of Tables

4.1 Expected time (in secs) t o OA for Xu's algorithm . J2 criteria 56

. 4.2 Expected time (in secs) t o OA for Xu's algorithm . x2 criteria 57

4.3 Expected time (in secs) to OA for new algorithm . criteria 58

4.4 Best Expected time (in secs) to OA for each algorithm 59

4.5 Comparison of the new algorithm to Xu's in terms of A2 60

4.6 R.esults for Xu's algorithm . J2 criterion, 50 restarts 61

4.7 Results for Xu's algorithm - J2 criterion, 100 restarts 62

4.8 Results for Xu's algorithm - J2 criterion, 200 restarts 63

4.9 R.esu1t.s for Xu's algorithm - J2 criterion, 300 restarts 64

4.10 Results for Xu's algorithm - J2 criterion' 500 restarts 65

4.11 Results for Xu's algorith~n - J2 criterion, 1000 restarts 66

4.12 R.esults for Xu's algorithm - x2 criterion, 50 restarts 67

4.13 Results for Xu's algorit. 11111 - criterion, 100 restarts 68

4.14 Results for Xu's algorithm - x2 criterion, 200 restarts 69

4.15 Results for Xu's algorithm - criterion, 300 restarts 70

4.16 Results for Xu's algorithm - criterion, 500 restarts 71

4.17 Results for Xu's algorithm - criterion, 1000 restarts 72

4.18 R.esults for the new algorithm - x2 criterion, 50 restarts 73

4.19 Results for the new algorithm - X 2 criterion, 100 restarts 74

4.20 Results for the new algorithm - X 2 criterion: 200 restarts 75

4.21 Results for the new algorithm - criterion, 300 restarts 76

4.22 Results for the new algorith~n - criterion, 500 restarts 77

4.23 Results for the new algorithm - criterion, 1000 restarts 78

vii

Chapter 1

Introduction

The concept of orthogonal arrays dates back to the 1940's to R.ao (1947). Orthogonal ar-

rays are frequently used in industrial experiments for quality and productivity improvement.

When an experimenter believes a number of factors may impact a process, orthogonal arrays

can be used to investigate which factors are active before further studies are done. R.unning

all possible con~binations of the levels for the factors may not be practical for a variet,y of

reasons. When the model of interest is a normal linear regression model, orthogonal arrays

give designs that allow an experimenter to consider a relatively large number of factors in

relatively few trials while maintaining desirable statistical properties. For situations when

orthogonal arrays do not exist, we consider the concept of nearly-orthogonal arrays. There

are a variety of ways to measure the "goodness" of orthogonal arrays and nearly-orthogonal

arrays, and also a number of ways to actually find them.

Orthogonal arrays, and nearly-orthogonal arrays, often have desirable statistical proper-

ties, but are not always easy to find. For some orthogonal arrays, construction can be done

through existing theory, but in situations where theory does not apply or it is too time-

consuming for an experimenter to find appropriate theory, an algorithm for constructing

orthogonal arrays is needed. A number of different algorithms have been proposed for con-

structing orthogonal and nearly-orthgonal arrays; some of these include a Federov exchange

algorithm from Miller and Nguyen (1994), an interchange algorithm from Nguyen (1996), a

threshold accepting technique from Ma et al. (2000), an algorithm for a mixed level orthog-

onal array with many 2-level factors from DeCock and Stufken (2000), columnwise-pairwise

algorithms from Li and Wu (1997), and a state-of-the-art algorithm from Xu (2002).

The st,rength of an orthogonal array is related to the estimability of interaction terms

CHAPTER 1. INTR,ODUCTION 2

in the normal linear regression model. The higher the strength of an orthogonal array,

the more interaction k rms can be estimated independently of each other. In most cases,

orthogonal arrays of interest are of strength 2, as for strength 3 or higher, construction of

such an array may not be very easy.

This project addresses the problem of trying to find an efficient algorithm for construct-

ing orthogonal arra.ys and nearly-orthogonal arrays in a timely manner. In addition, we

look to algorithms which can be adjusted to find orthogonal arrays with higher strength.

Comparison will be made between Xu's algorithm (2002) and a new algorithm which will

be introduced in this project.

In this project, Chapter 2 will introduce the concept of orthogonal and nearly-orthogonal

arrays and some of their uses, and look at some of the criteria used to measure near-

orthogonality. Chapter 3 will discuss two algorithms, one of which is new, that take a se-

quential approach to find orthogonal and nearly-orthogonal arrays. That is, the algorithms

find designs by adding one column at a time. Also discussed in Chapter 3 is the extension

of the algorithms to try a.nd find orthogonal arrays of higher strength. Chapter 4 will com-

pare the algorithms in the construction of some orthogonal arrays and nearly-orthogonal

arrays with small runs. For orthogonal arrays, the algorithms will be compared in ternls of

efficiency for finding orthogonal arrays and speed. The construction of nearly-orthogonal

arrays is compared in terms of a statistically justified criterion.

Chapter 2

Orthogonal and Nearly-Orthogonal

Arrays

Experimenters are often concerned about how changes of certain factors impact a process,

and want to investigate the effects of these factors sinlultaneously. When the aim of the

experiment is to estimate the effects of these factors (mean effects, interactions,...), orthog-

onal arrays can be used. We will first examine areas in which orthogonal arrays are useful,

followed by a formal definition.

As we will see, orthogonal arrays are desirable for their properties in estinlating main

effects and interactions in the normal regression model. In some sit,uations, orthogonal ar-

rays do not exist. In such cases, a nearly-orthogonal array is often a good alternative. In

section 2.3, we introduce nearly-orthogonal arrays and discuss what it ineans t,o be "nearly"

orthogonal.

2.1 Factorial Designs

2.1.1 Full Factorial Experiments

For many scientific settings, investigators are interested in studying a number of factors

(variables to be studied) simultaneously. Often the goal of the experiment is to study the

impact that factors have on a response variable of interest. At the beginning of an ex-

periment, there may be a large number of factors which can impact the response. Before

continuing study on these factors, it is useful to "screen" out the inert variables and identify

CHAPTER 2. ORTHOGONAL AND NEARLY-ORTHOGONAL ARRAYS 4

the important factors. If the set of (potentially) important factors can be reduced, more

time can be spent studying the effect of the active factors.

Setting the factors at a fixed number of values, called levels, a factorial design is often

used as a plan to run the experiment. When a set of levels has been determined for each

factor, one way to examine how factors impact the response is to study all possible level

combinations of all the factors. The hope is to discover how the factors impact the response

individually, and how they may interact with each other.

For k factors, with s l , ~ 2 , . . . , sk levels respectively, there are sl x s2 x . . . x sk different

combinations for the k factors. To run an experiment which involves each possible combi-

nation, the experiment requires N = s l x s:! x . . . x sk runs.

For a general factorial design, we consider the standard normal regression model for a

design d,

Y = Xoao + X l a l + . . . + X,a, + E , (2.1)

where Y is the vector of observations, aj the vector of j-factor interactions, Xj the matrix

of coefficients for aj (column i corresponds to the coefficient for the i th effect) , and 6 the

vector of independent random errors which are distributed as N(0, u2) . When using a full

factorial design, the main effects and j-factor interactions can be estimated independently

of each other.

Example 2.1 Consider an experiment with three factors, each having two levels.

We refer to these factors as A, B, and C. For each factor, if we consider one

level to be "low", and the other "high", it is convenient to consider these levels

as being -1 and +1 respectively. The full factorial design can be represented

Each row in the design represents one of the experimental runs, which would be

randomized when implementing the experiment. The number in column 1 refers

CHAPTER 2. ORTHOGONAL AND NE.4R.LY-0R.THOGONAL AR.R.AYS

to the level for fact,or 1? likewise for columns/fact,ors 2 and 3. We refer to X1 as

t'he design matrix.

The choice of using -1 and 1 as levels gives bhe added convenience of being

able to estimate the main effects of the three factors given the response vector

y wit,h values corresponding to observations for the level set,tings of the factors

in each row. The vector of main effects, el, can be calculated as

In designing an experiment as a full faxtorial, not only can main effects be

estimated independently, but, also the interaction effects. The main effects and

all interactions can be represented as

Notice that the first t.hree colu~r~lis are still the same a s the design matrix, XI,
representing the main effects, A,B, and C, while the other columns represent the

interaction effects. AB, AC, BC, and ABC respectively, and can be obtained

by multiplying the columns across each row (another added convenience of the

&1 coding). We refer to X as the model matrix. For a response vector y with

values corresponding to observations for the level settings of the factors in each

row, the vector of estimated main effects and interactions, C, can be calculated

as

It turns out, t,hat the covariance matrix for C under model (2.1) is diagonal, so

the effects can be estimated independently of each other.

CHAPTER 2. ORTHOGONAL AND NEARLY-OR.THOGONAL ARR.L4YS

2.1.2 Fractional Factorial Experiments

While two-level full factorial designs arc desirable as they can estimate all main effect's and

all linear interactions, running all possible combinations of the factors may not be feasible

for a variet,y of reasons. These can range from economic limitations, ethical concerns for

certain combinations of factors, to combinations that do not make practical sensc or are not

possible to be run together. In such situations, a fractional factorial design is frequently

used.

R.ecal1 that running all possible combinations of factors allows for estimation of all main

effects and linear interact,ions. It is still possible bo use a fracbion of the runs in the full

factorial and still estimate many factorial effects. However, in not running all possible

combinations of factors, the estimates of some factorial effects cannot be fully distinguished

from each other. nTe refer to this inability to distinguish between effects as aliasing. A

desirable design will attempt to ensure that those effects of most interest will not be aliased

with each other.

If information is not available as to what effects may be of interest before creating

a design, there is the need for a set of working assumptions to rank the importance of

factorial effects. Three fundamental principles for factorial effects which are used to choose

fractional factorial designs (eg. see Wu & Hainada (2000)) are:

1. Hierarchical Ordering Principle: (i) Lower order effects are more likely to be

important than higher order effects, and (ii) effects of the same order are equally

likely t o be important.

2. Effect Sparsity Principle: The number of relatively import,ant effects in a factorial

experiment is small.

3. Effect Heredity Principle: In order for an interaction t,o be significant, at least one

of its parent factors should be significant.

Using these principles, regular fractional factorial designs can be constructed and ranked.

Under the principles, the maill effects are the most important factorial effects t o be esti-

mated, followed by 2-factor interactions, 3-factor interactions, etc ...

Example 2.2 An experimenter has seven 2-level variables of interest, (A, . . . , G),

which are t o be studied simultai~eously. To run a full factorial would take 27

CHAPTER 2. ORTHOGONAL AND NEARLY-ORTHOGONAL AR.RAYS

runs, but the experimenter wishes to perform the experiment in 23 runs. In each

of the runs, care must be t'aken in how to select the level for each fador. For

instance, if two factors are at the same level for each run, it is impossible to

distinguish the main effects for these factors. In order to run the experiment,

the experimenter can use the matrix X defined in (2.3), where the interaction

columns of X will be the factor levels for which to run the additional variables.

This assignment of variables can be shown through the following generators

D = AB

E = *4C

F = BC

G = ABC.

The set, of all columils equal to the identity column I of all 1's is referred to as

the defining contrnst subgroup:

I = ABD = ACE = BCF = ABCG

= BCDE = ACDF = CDG = ABEF = BGE = AFG

= DEF = ADEG = BDFG = CEFG = ABCDEFG.

The defining contrast subgroup also gives rise to the a.lia.s pattern, which is the

grouping of all factorial effects which are aliased. For example, for the main

effect of A, the aliased factorial effects are

A = BD = CE = ABCF = BCG

= ABCDE = CDF = ACDG = BEF = ABGE = FG

= ADEF = DEG = ABDFG = ACEFG = BCDEFG.

The effects can be estimated using t,he same method for full factorials, keeping in

mind that now some effects cannot be distinguished from each other. Using this

fractional factorial design, the experimenter can only estimate 7 factorial effects.

In fact, under the fundamental principles, the only effects to be estimated here

would be the main effccts for factors A, . - . ; G, llilder the assumption that all

other effects are negligible.

CK4PTER 2. ORTHOGONAL AND NEARLY-ORTHOGONAL ARRAYS

In the previous example, the main effects for each of the factors could be estimated in-

dependently of each other. Keeping in mind the fundamental principles, if our run size

is sufficiently large enough, we would like to be able to estimate lower order interactions

which are independent from other lower order factorial effects (interactions involvir~g fewer

factors). This consideration leads to an important concept, for fractional factorial designs:

resolution..

A design is said to have resolution R (usually denoted by Rornan numerals) if no pfactor

effect is aliased with another effect having less than R - p factors (see for instance, Mont-

gomery (1997)). For example, in a resolution I11 design, no main effects are aliased with

other main effects, but there is aliasing between main effects and two-factor interactions,

and possibly two-fact'or interackions with each other. In a resolution IV design, main effects

are not aliascd with other main effects or two-factor interactions, but may be aliased with

three-factor interactions, a i d two-fact'or interactions may be aliased with other t.wefactor

interactions. The resolution of a fractional factorial is, in general, the length of the sinallest

word in the defining contrast subgroup. A high resolution is desirable, since as the resolu-

tion increases it allows more of the lower order interactions to be estimated independently of

other lower order factorial effects, just as the main effects can be estimated independently.

As mentioned, we would like to find a design with resolution as high as possible. How

ever, there may be many designs having the same resolution. Further con~parison of designs

can be done through the minimrum aberration criteria. The miniinum aberration crit.eria se-

quentially minimizes the elements of the word length pattern (if there are Ai words of length

1: in the defining contrast subgroup, the word length pattern is the vector U' = (A3: A4, . . .))
of the defining contrast subgroup. The purpose of the minimum aberration criteria is to

keep the aliasing of lower-order interactions and main effects ELS minimal as possible.

If an experimenter can assume certain higher-order interactions are negligible, then in-

formation on main effects and lower-order interactions can be obtained by using a fraction of

the runs of a full factorial design by using a fractional factorial design. Fractional factorial

designs are particularly useful in screening experiments, to identify those factors that have

large effects. Regular fractional factorial designs (those with a defining relation) can be

represented by an orthogonal array, which we will introduce in the next section.

Not all fractional factorial designs have a defining contrast subgroup. We refer to these

designs as nonregular designs. While in regular designs, any two factorial effects are ei-

ther estimated independently or fully aliased, nonregular designs do not have this propert,y.

CHAPTER 2. 0RTHOGONA4L AND 2VEE4 R.LY- OR,THOGONAL AR.R-4YS 9

Methods for ranking nonregular designs have been examined by Deng and Tang (l999),

Tang and Deng (1999), and Xu and Wu (2001). Under these rankings, the best designs are

generally orthogonal arrays. That is, orthogonal arrays are desiribable for both regular and

nonregular fractional factorial designs.

2.2 Orthogonal Arrays

We now give a, formal definition of orthogonal arrays.

Definition 2.1 (orthogonal a n n y) Let S be a set of s sym,bols denoted by 0 , l ; s - 1.

An orthogonal array A with s sgrn,bols, strength t a,nd index X is an N x k array with, entries

from S such that every N x t subarray of A contains ea,ch, t-tuple from S in emctly X rows.

An N x k orthogonal array with s levels, strength t and index X will be denoted by

OA(N, k: s, t) . For reasons that will be made clear, the parameter N will be referred to

as run size, k as the number of factors, and s as the number of levels. These t e r m will be

used interchangeably throughout. The parameter X need not be ment,ioned in this notation,

as it can be determined by the property

Example 2.3 Consider the following 8 x 7 array:

This is an OA(8,7,2: 2) since entries from the array are either 0 or 1, and given

any two columns, the pairs (0, 0), (0, I) , (1, O), (1, 1) occur the same number

of times (twice), implying strength 2. Note that this array is not strerigth 3, as

looking at colurnns 1, 2, and 4, the triplet (0, 0, 1) occurs t,wice, but (1: 0, 1)

does not occur at all.

CHAPTER 2. ORTHOGONAL AND NEARLY-ORTHOGONAL ARRAYS

Some useful properties of orthogonal arrays:

1. An orthogonal array of strength t is also of streligth t*. where 1 _< t* < t . For this

reason, we will consider the strength of an orthogonal array as the largest strength

attributed to that array.

2. A permutation of runs or factors of an orthogonal array creates an orthogonal array

with the same parameters.

3. A permutat,ion of the levels for any factor creates an orthogonal array with the same

parameters.

Wllile our definition of orthogonal arrays sta.trd that the set S has symbols 0 , . . - , s - 1,

we can replace these symbols with distinct symbols of our choice. For example, if S has

symbols 0 and 1: we can replace these symbols by -1 and +l and the resulting array is still

an orthogonal aaray. Froin this, (2.2) is an OA(8,3,2,3), and (2.3) is an OA(8,7: 2,2). In

fact, by replacing the symbol 1 by -1 and 0 by +1 in example 2.1, the resulting orthogonal

array is the matrix (2.3). In further examples, for a factor with s levels we will use the

synlbols 0, . . . , s - 1.
For full factorial designs discussed in section 2.1.1, in the situation that we have m.

factors with s levels, the full factorial can be represented by an 0A(s7", m, s , m,).

For fractional factorial designs fro111 section 2.1.2, a fractional factorial design can be

represeuted by an orthogonal array. If a design has resolution R., it contains full factorial

designs on any subset of R - 1 colurnns, which by definit,ion makes the orthogonal array

strerigth R - 1.

2.2.1 Mixed Orthogonal Arrays

The orthogonal arrays discussed in section 2.2 are such that each factor has the same

number of levels. It nlay not be desirable or possible to use such an orthogonal array in

some situations (ie. where a machine has one component which can be set t,o 2 levels while

another which can be set to 3). The concept of orthogonal arrays can be extended to

situations where factors have diffcrcnt numbers of levels.

Definition 2.2 (mized or-thuyond arra.y) Let Si be a set ofsi levels denoted by 0, 1, . . . , si-1

for 1 5 i 5 v for some positiue integer 11 (si 2 2). We define a niixed orthogonal array - -

CHAPTER 2. ORTHOGON-4L AND NEARLY-ORTHOGONAL ARRAYS 11

OA(N, s t 1 s i 2 . . . s$, t) to be an arrwy of size N x k such that k = k l + k2 + . . + k , and

the first k1 columns hu,ve symbols from S1, t h , ~ next k2 colum,ns have synrbols from S2. und

so on, such that given any N x t subarray, each possible t - tuple appears i n the same nwn,ber

0 f TOUl.5.

This definition does not require s l , sz, . . . , s,: t o be distinct, but for simplicity we generally

combine factors with the same number of levels. For example, instead of using the nohtion

2221, we would use 23.

We refer to t as the strength of the mixed orthogonal array. The previous comments

for the orthogonal arrays in section 2.2 hold for mixed orthogonal arrays as well. Note that

for mixed orthogonal arrays: we no longer consider the colicept of i ndex , as the number of

times a t-tuple can occur may depend on the columns considered, as can be seen in the next

example.

Example 2.4 A mixed orthogonal array OA(12,3' 24, 2)

The ortllogoilal arrays from section 2.1 can be writ,ten in the notation of mixed orthogo-

nal arrays. For instance, example 2.3 would be an OA(8, 27, 2). Such orthogonal arrays can

be called synmetrical orthoyonu.1 arrays. From this point forward, we use the notation for

mixed orthogonal arrays. Just as we can use symmetrical orthogonal arrays for full factorial

designs and fractional factorial designs, we can do the same for mixed orthogonal arrays,

and estimation of factorial effects can be done in the same manner. A full factorial design

will be of the form O A (N , s lss . . . s,:, k) where N = nf=l si.

CH-4PTER 2. ORTHOGONAL AND NEARLY-ORTHOGONAL ARRAYS

2.3 Nearly-Ort hogonal Arrays

For a given run size, an orthogonal array with factors/levels specified may not exist. Like-

wise, for a given set of factors and levels, the run size requircd for an orthogonal array

may not be feasible for reasons as discussed in section 2.1.2. Just because an ort.hogona1

array does not exist should not mean that thc experiment cannot be performed. An ideal

compromise is to creat'e a design that is in some way as close to an orthogonal array as

possible. Wang and Wu (1992) considered the concept of these so-called nearly-07-thogonal

arrays.

Definition 2.3 (nearly-orthogonal array (Xu(2002))) Let Si be a set of si l e~~e ls denoted

by 0, 1, . . . si - 1 for 1 _< i 5 a for some positive integer 21. We definx a nearly-orthogonal

array NOA(N, s;'s? . - - s?) to be an array of sbe N x A: such that k = k 1 + kp + . . . + ku

und the first k l columns have symbols from S 1 , th,e next k2 columns have sym,bols from S2 ,

and so on, such that the array is optim.nl according to some criterion.

Non-orthogonality can cause problems for dat,a analysis. For non-orthogonal arrays, the

order for which effects enter into tjhc model is important, a.nd interactions can be partially

aliased (rieither fully aliased nor orthogonal) wit,h main effects. Harnada and Wi (1992)

and Chipman, Hamada, and Wu (1997) presented some data-analysis strategies for par-

t,ially aliased effect,^.

One of the major issues in looking at nearly-orthogonal arrays is deciding what, it, means

to be "nearly" ort,hogonal. A criterion should be attempting to measure a notion of de-

parture from orthogonality and the ability tto compare different designs for their near-

We will now look at, some of the approaches that have been taken for ineawring orthog-

onality, and compare some of the similarities in section 2.3.1. We begin with criteria based

on the model mat,rix.

If we consider the main effects model, which drops the interaction terms froin (2.1), then

where is the grand mean, Pi is the ith effect, z, is the corresponding coefficient, and y's

have errors iid N(0, a2) . For an array with iV runs, the model can be rewritten in matrix

form

CHAPTER 2. ORTHOGONAL .4ND NEARLY-ORTHOGONAL AR,RAYS 13

where Y is the vector of N runs, j? = (Po, PI, . . . ,Dm)', X = (1, XI, - . , xm): x; being the

vector of zi values for the N runs of the array (the level for factor .i a t each of the runs)

and m = Ci(si - 1).

Let x = [xl/llxl 11,. . . , x,/l(x,ll]. Wang and Wu (1992) proposed thc D criterion

to measure the overall efficiency of a nearly orthogonal array, where due to the standard-

ization of X, D = 1 iff the xi's are orthogonal to each other.

In trying to estimate the effects Dl, . . . , &, then the variance of the least squares esti-

mator of 3i is minimized when xi, t,he vector of rri values for the N runs, is orthogonal to the

other columns of X. For any design, \X"X'[5 1, and (-grr'"r;'(= 1 iff the original design d is

an orthogonal array. Then the D crit,erion measures the efficiency of estimating PI , . . . , Prn
in (2.4).

If we let x',? = [rij], then the A2 criterion is defined as

The A2 criterion measures the overall aliasing between all pairs of columns. An A:! - optimal

design minimizes Ap, which is useful in that A2 = 0 iff d is an orthogonal array of strength

2.

Another way to view A2 is t,o consider the ANOVA model for a design d as defined by

(2.1). Xu and Wu (2001) defined Aj(d) as a measure of the aliasing between the j-factor
(A interactions and the general mean. For -rrj = [xik 1, let

The generalized nlinimum aberration criterion is to sequentially minimize the terms in

(Al (d) ,A2(d), A3(d), . . .) . The generalizcd minimum aberration criterion is equivalent

to other measures of minimum aberration: the minilnuin aberration crit'erion (Fries and

Hunter (1980)) discussed in Section 2.1.2 for regular designs, Tang and Deng's (1999) mini-

mum G2-aberration crit,erion for two-level nonregular designs, a r~d the nlininluin gencralized

aberrat,ion criterion (Ma and Fang (2001)) for multi-level nonregular desigi~s.

Instead of working with the model matrix, it may be desirable t,o work illstead with

the design matrix only. For design d = [x ik INxn , let njkl (a, b) be the number of rows

CHAPTER 2. ORTHOGON-4L AND NEARLY-ORTHOGONAL ARR.AYS 14

with column k at level a E (0 , . . . , s k) arid column I at level b E (0 , . . . , s r) . Deliote

nkl (a , .) = nkl (Q, b) and 7 t k i (.. b) = C:L~' T L ~ ~ (u,, b) , where nkl (a , .) can be thought of

as the number of times a E (0 , . . , sk - 1) appears in column k , while nkl(. , b) is the number

of times h E (0, - - . , sr - 1) appears in column 1. Ye and Sudjianto (2003) used

relating this to the sum of squared correlations of pairs of orthonormal two-level contrasts

for columns k and I . If & (d) = 0 then the two columns have orthogonal main effects.

Cranler (1946) defined the related measure

which takes on values between 0 and 1, and is equal to 0 if columns k and 1 have orthogonal

main effects and is equal to 1 if the coluinns are con~pletely aliased. Ye and Sudjianto (2003)

proposed

as a measure of nearly orthogonal main effccts.

If the columils are balariced, t,hen all elements in a colunin appear the same number of

times, so nkr(a, .) = N / s k and nZkl (., b) = N / s l . This simplifies & (d) to

If nkr(a, b) = N/(sks l) for all k < I , then d is an orthogonal array. The simplified crit.erion

(2.6) is used by Yainada and Lin (1999); Yamada et al. (1999) and Yamada and Matsui

(2002). They proposed

as a measure of the average dependency of all columns.

Given a design d , Ma et al. (2000) proposed the following criterion to measure orthog-

onality between columns k and I of d:

CHAPTER 2. ORTHOGONAL AND NEAR,LY-ORTHOGONAL ARRA1'S 15

where d(.) is a monotonic increasing function on [0. m) with 4(0) = 0. As a measure of

non-orthogonality of a design d, for 0(.) a monotonic increasing function on [07 m) with

O(0) = 0. the function

is used as a measure of orthogonality. While more general than the X 2 criterion, the D4,@

criterion is still ultimately a measure looking at the balance of factor combinations between

two columns.

Xu (2002) introduced the J2 criterion for measuring orthogonality. For an N x n matrix

d = [qk] where column k has s k levels, define

where 6(a, b) = 1 if a = b, 0 otherwise, and wk is the weight of the column. For rows i and

j, cTi j(d) is a measure of the similarity between these rows. If ulk = 1 for all k, Gi j (d) is the

number of columns in which rows i and j coincide. Xu (2002) defined

as a measure of orthogonality in a design. Xu (2003) and Xu and Lau (2006) used J2 in

power nloments for supersaturated designs. Whereas many criterion have a value of 0 for

an orthogonal array, Xu (2002) established a lower bound on J2:

where equalit,y holds iff d is an ortl~ogonal array.

2.3.1 Connection Between Criteria

In the preceding section, a number of different measures for near-orthogonality were in-

troduced. Many of these crit,eria, while appearing to be dissimilar, are actually measuring

CHd4PTER 2. ORTHOGONAL AND NEAR.LkT-ORTHOGONAL AR,RAYS

near-~rt~hogonality in the same way.

Xu (2002) showed that for a balanced design NOA(N, sl . . . s,),

The second term of the right-hand side is constant, so for the balanced design, J2 and A2

are equivalent.

Also equivalent in the balanced case is a.oe(x2) and A2 through the equality

The significance of these equivalences is that these criterion are all measuring the balance of

the nkl(a, b)'s over all a, b for each pair I;, I. This is made even more clear by the following

lemma from Xu (2003):

Lemma 2.1 For integers rn, n 2 0, define h(m, 7,) = ~ m , / n ~ ~ n+(2 Lm/n,J + l) (m- \ n ~ / n J n) .

Let 21, . . . , x,, be nonneg~~tive integers such th,at C zi = m. Thxn C r: 2 1~(m., n,) with.

equality i# a,ll zi equal LrnlnJ 07. Lrn,/n, J + 1.

From this lemma, to find optimal designs witah the A2 criterion (and those it is equiva-

lent to), it is sufficient to find a design such t,llat nk,[(n, b)'s are within one for all a , b, given

any pair of colunlns k, I. In fact, if such a design exists, Ma et. al's (2000) D$,@(d), in the

case where d(z) = x2, O(z) = 1 (which was used by Ma et al. (2000)) will be ininimized as

well. Also, 4(z) = x2 is related to the X z I criterion from equation (2.6).

In an orthogonal array all level combinations in columns k and I appear equally of-

ten. When considering a nearly-orthogonal array, making nk,l(a, b)'s as balanced as possible

would intuitively seem a method of making the array nearly-orthogonal. The previous dis-

cussion on criterion shows that this line of reasoning also has a ~t~atistical justification, and

that most approaches to considering near-orthogonality are handled using this approach.

2.4 Construction of Orthogonal and Nearly-

Orthogonal Arrays

In some settings, there are a substantia,l number of designs ava,ila,ble which can be obtained

through existing theory or from tables of designs. However, in some situa,tions, finding

CHAPTER 2. 0R.THOGONAL AND NEARLY-ORTHOGONAL AR,RAE'S 17

optimal designs can be difficult. Some orthogonal arrays require a number of different,

mathematical techniques to find all orthogonal arrays (an essential resource for these t,ech-

niques is Hedayat, Sloane, and St,ufken (1999)). If an optimal or even a good design is not'

available, it is likely too time-consuming to examine all potential theoretical methods to

find a desirable array. We would like a computer algorithm that can find orthogotla1 arrays

or nearly-orthogonal arrays based on some criterion in a fast and efficient manner. Chaptcr

3 will examine some algorithms which can be used in the coiistruction of orthogonal and

nearly-orthogonal arrays.

Chapter 3

Two Algorithms for the

Construction of Orthogonal and

Nearly-Orthogonal Arrays

While the mathematical theory exists for the construction of many orthogonal arrays, it may

not always be enough. If an experimenter does not have the mathematical theory which

applies for a given situation (if it even exists) tliere needs to be a method to constrlict

the best design possible. Ultimately, the experimenter wants a design that has some nice

statistical properties for the run size with the desired factors/levels. In such situations, it

is ideal to have an algorithm to find am optimal design, or at least one that is near-optimal.

I11 this chapter, an algorithm for finding "good" designs is presented, and a new one is

proposed.

3.1 Xu's Forward Procedure Algorithm using the J2 criterion

Many attempts have been made at finding efficient algorithms for the construction of or-

thogonal arrays. Xu (2002) discusses some of the different algorithnls, and introduces his

own, which will be discussed in this section. In that article, the author shows his algoritllm

to be superior in terms of both speed and efficiency compared to existing approaches.

The algorithm sequentially adds columns to an existing design, attempting to find a new

column orthogonal to the colun~ns already in the design. Furthermore, the algoritllrn uses

CHAPTER 3. TWO ALGORITHMS FOR CONSTR,UCTION OF OAS/NOAS 19

swapping of symbols in the new column and makes swit,ches based on one which gives the

greatest reduction in the J2 criterion.

We begin by examining the operations which will be used in Xu's algorithm involving

column addition and symbol switching.

For an N x n matrix d = [xik] where factor(co1umn) Ic has s k levels, define bij(d) as

(2.7) and J2 (d) as (2.8) as a measure of orthogonality in a design.

Corisider adding column c to d, dcnoting the resulting N x (n + 1) matrix as d+. The

columns 1, . . . , n remain unchanged, so the only difference between bi ,j (d+) and di,j (d) is

the consideration of the symbols in d+ from the new column c in rows i and j . For weight

wk which is pre-assigned to column c with sr, levels,

for 1 5 i , j 5 N. To update J2 ,

where tlhe last equality comes from the fact that, btj(c) can only take on values of 0 or 1.

This also allows for fast c:omputat,ion of J2(d+)

Now consider switching distinct symbols in rows a and b of the newly added column

c . Then for j # a , b, daf(c) = dj , , (c) arid dbf(c) = 6 j , b (~) are switched. The switch does

not effcct c ~ ~ , ~ (c) , as the values are dist,inct, so this value is 0. To examine the difference

in J2(d+) , first consider fixing a certain row j # a,, b. The effect of the switch only effects

di,j(d+) for i = a,, t)? all other rows are un<:hanged. In the old calculation for J2, the terms

which have been changed in the calculation are

After the switch, these terms will now be

CH-4PTER 3. TWO -4LGORITHMS FOR CONSTRlJCTION OF OAS/INOAS

Looking at the difference the swap 11as made, the results are:

For the overall effect on J2(d+) , the symbol swap will reduce J2(d+) by A(a, b) such that

3.1.1 The Algorithm

As discussed, Xu's algorithm sequent~ially adds columns t o an existing design. A random,

balanced column is added, and the algorithm searches all possible switches of elements in

the new column, perfomling the best switch if it exists. This process continues until a lower

bound is reached, or no improvement is made. If the lower bound is not reached, another

attempt will be made a t finding an orthogonal column, up to a prespecified number of times.

The algorithm proceeds as follows:

1. For k = 1, . . - , n, compute the lower bound L(k) by equation (2.9).

2. Specify an initial design d with columns (0 , . . . , 0 , 1 , . . . , 1, . . . , sl - 1 , . . . , sl - 1)' and

(0;-- ,s2 - 1 ,0 , . . . ,s:! - I , . . . , O ; . . , S ~ - I)', and compute Gij(d) and J2(d) by

defi~iition.

3. For k = 3, . . . , n, do the following:

i. Generate a random balanced sk-level column c. Compute J2(d+) by equation

(3.2). If J2(d+) = L(k), go to st,ep (iv).

ii. For all pairs of rows a and b with distinct symbols, compute A(a, b) according to

equation (3.3). Choose a pair of rows with the largest A(a., b) and exchange the

symbols in rows a and b of column c . Reduce Jz (d+) by A(a, b). If J2(d+) =

L(k) , go to (iv); otherwise repeat (ii) until no further improvement is made.

iii. Repeat (i) and (ii) T times and choose column c that produces the smallest

J2(d+>.

iv. Add colunm c as the kt11 column of d, let J2(d) = J2(d+), and update bi,j(d)

by equation (3.1).

CHAPTER 3. TWO ALGORITHMS FOR COhTSTRliCTION OF OAS/NOAS 21

4. Return the final N x n design d.

The quautity T in the algorithm rcprcseiits tlie number of times we try to add an additional

column. That is, when the algorit.hni attenlpts to add a column and does not meet the lower

bound when switches are exhausted, then we try again with another random column. we

refer to T as the number of restarts, that is, the number of times we have to start a colu~nn

from t,he beginning. The number of restarts play an important role in the efficiency of the

algorithm. The effect of T will be studied in Chapter 4.

Xu's algorithm has thc advantage of being columnwise, which allows for balance in each

column a t each iterat,ion. In addition, if the current design at any time is not ortl~ogonal,

it has been chosen as "near" orthogonal as possible according to the J2 criteria. While the

algorithm is designed in a way to keep speed in mind, the number of rows lias a major

impact on the speed. This is due to having to look at all possible distinct pairs in a colunln

for the design, as well as having to provide updates for a nunlber of rows after a switch.

3.1.2 Xu's Algorithm using the X2 criterion

R,ecall from section 2.3.1 that in tlie ~ituat~ion where columns are balanced, the J2 and x2
criterion are equivalent. In fact,. Xu's algorithm can be used with the x2 criterion instead

of J2 . In order to usc the x2 crit,erion, we will establish operations for column addition and

synibol switching used in the algorithm for the X2 criteria as opposed to J2 .

For an added colun~n, we need to couiit the nkl (i , j) ? s for all previous columns I; =

1 , . . . , 1 - 1, from which we can get x:, and calculate x2 by definition. For symbol switching,

suppose that a colunm c has been added to the current design, such that it is t1he lt,h colu~i~ii.

Call this design dl. Let car and c,y be the elenleiits in rows u: and P of c that, we wish to

switch. Denote z,i arid zpi as the elements in colunm i for rows cu and p. Making the switch

decreases nIkl (xak, cal) arid nl;l (zijk. cijl) by 1: and increases nk. (xak, cpl) and n,kl (zak, car) by

1, for all I; = 1, . . . , I - 1. If t,he design after the switch is denoted as d:, for a particular

column k : if z,k = zpk, then xil(d:) is unchanged. If the e le~l~ents in colunln I; arc different,

CH.4PTER 3. TWO ALGORITHMS FOR CONSTR.ITCTION OF OAS/NOAS 22

the impact on Xir (dl) is

In general, for a symbol switch in rows cu and P. we can define

where Akr(a , P) is computed as the remaining terms of (3.4) if x,r; and xpk are different,

and 0 otherwise. Then a swap of the elements in column 1 of rows a and P will reduce

X 2 (dl) by A,z (a , p) , where
1-1

A,, (a , l i) = C Au(n , P). (3 .5)
k = l

We now adapt Xu's algorithm to the X2 criterion as follows:

replace all occurrences of J2 with X 2 .

replace A(a, b) by Ax2(u,, b) given by (3.5).

replace the lower bounds L(n) by 0.

in step 3(a), the updated X2 is calculated by determining the nk.(i, j) 's for k =

1, . . . , 1-1.

3.1.3 Comments on the Algorithm

With the equivalence between the J2 and X2 criterion for a balanced column, for any random

balanced colui~ln added to a current design, using either crit,eria will ultiinately lead to t,lle

same design. This is due to the best symbol switch for one criterion necessarily being t,he

best for the other crikrion. However, the manner in which the algorithm makes calculations

CHAPTER 3. T W O ALGORITHMS FOR CONSTRUCTION OF OAS/NOAS

for the criteria is markedly different.

The J2 criterion is driven by the the similarities between rows. U7hen a column is

added, the update is bascd on checking the siinilarity in the added column. When searching

for switches t o be made and upon making a switch, changes are based upon all rows affected.

One of the nice properties of the J2 criterion is that calculations for the current column are

not influenced by how many columns already exist in the design. UThile i t may be harder

to find a suitable column with many preexisting columns, the actual calculations are based

on the &j 's , which is not i~r~pacted if the present column is the third or the twentieth.

On the other hand, the X2 criterion is driven by the nkr(i , j) ' s , the number of times

each pair of symbols between columns I; and 1 occur. To compute X2 with a new column,

the update involves calculating these counts for the new column and each of the previous

colunlns. This situation also occurs with the switching of elements. in that the <:alculations

involve having t o look a t the influence the switch has on the current column with the

previous columns. In contrast to the J2 criterion, as the nlin~ber of columns in the design

grows, the X2 criterion takes longer t o calculate.

With modern computation, one criterion may be able t o use computational features of

a programming language to gain an edge over the other in t,erms of speed. However, we

can still get a sense of how these criterion can impact the speed of the algorithin. The x2

criterion will run faster when there are less columns, as it is quicker to go over the columns

rather than the number of rows in looking for switches. However, as the number of columns

increases, the X 2 criterion should take longer to calculate, and may lose the advantage to

the J2 criterion.

3.2 A New Algorithm Using a Sequential

Approach

This section will introduce a new algoithinm using x2(d) = Ck<, X i l (d) as defined by

(2.6) as a measure of near-orthogonality. Dropping the denominator, and instead using the

simpler

allows for a fast update, and can be used to drive the algorithm.

The algorithm follows Xu's in the idea of adding columns sequentially. However: instead

CHAPTER 3. TWO ALGORTTHI\/IS FOR, CONSTRUCTION OF OL4S/NOL4S 24

of adding a random column and attempting to make switches to improve tlie orthogonality of

the design, we will inst,ead take a sequential approach for the rows t o add the new column.

That is, elements will be added to a new column one row at a time, based upon which

element seems best a t that time.

Before presenting the algorithm, we will introduce some new notation and exarriine some

of the quantities used in the algorithm for adding one symbol at a time in the new column.

For an N x (1 - 1) design d in which we are looking to add column I , let

the first h rows, where a$ = (al l , . . . , x(h,-l)l, b*)'.

Denote x:(hb*) as tlre criterion evaluated with h rows using symbol b* in the last row

(row h,) for column 1 (ie. using d!:? from equation (3.7)). To evaluate tlre criteria using

symbol b* E (0, . . . , sl - I}, the update can be done easily using X2(h-1), the X2 criteria

using the first h - 1 rows. Looking a t column k and t,he new column, thcre is now one more

instance of (xhk, b*), so

(h-I) where n.kl (a: b*) is the number of occurrences of (a, b*) in the previous h - 1 rows.

When adding a syn~bol for the first row, any of the elements 0, . . - , sl - 1 can he chosen.

Choosing b* fro111 these elements and looking t o the previous coluin~ls (the symbols in

the previous columns are fixed), the pair nkr(a, b*) will have a value of 1, since there is one

occurence. All other combinations for elcmcnts from columrls I; and 1 is O for I; = 1, . . . ,1- 1.

The11

CH-4PTER 3. TWO ALGOR,ITHMS FOR CONSTR.UCTION OF OAS/NOAS 25

R.egardless of the choice for the first row, the criterion is the same, so it need onlv be

calculated once at the onset of the algorithm

To look at the X 2 criterion after h rows, we simply need to add the criterion over the

previous columns. That is,

If X:(N) = 0, then mlnnm 1 is orthogonal to the previous 1-1 columns.

3.2.1 The New Algorithm

Just, as in Xu's algorithm, we still use a set number of restarts for attempting t,o find an

orthogonal column if one cannot be found. Also, after a coluinn has been found, and is not

orthogonal, Xu's algorithm can be used if desired to try and find an orthogorlal column.

However, use of Xu's algorithm combined with the new one will add considerable time in

con~putat~ion.

The algorithm proceeds as follows:

1. Specify an initial design d with c:oluirms (0, . . . ,0,1, . . . , I , . . . , sl - 1, . . . , sl - 1) and

(O,... , s2 - 1 , 0 , . . . , s 2 - 1 , . . . , 0 , . . . , s 2 - l) . L e t 1 = 3 .

2. Randomize the rows of d .

3. Let zr = 0 and h = 1.

5. For b* = 0 , . . - , sl - 1, calculate x1 2(h'b*) = xL:ll ,X2(h,b*) is calculated using (3.8) for k
(h) and 1 from dLb. . Use the best b* such that nJkl (a, b*) 5 I\iI(sks1) for k = 1, . . . , 1 - 1.

If no such choice exists, take the best b* with n,kl(a, b*) > N/(sksr). In the case of

equally good choices, take the largest or randomly choose between them.

6. Rtpeat Steps 4-5 for h = I ; . . . , N .

7. If x2(d) = 0, add column c to the design, go to 9.

8. repeat 5-7 T times. Choose the column c which nlinin~izes)r2(d+).

9. Repeat Steps 2-8 for 1 = 3, - . . , n,.

10. Return the final N x n design d.

CH-4PTER 3. TWO ALGORITHMS FOR CONSTRUCTTOIL: OF 0A4S/NOAS 26

3.2.2 Algorithm Using the J2 Criterion

The new algorithm can be used with the J2 criterion instead of the x2 criterion. 'I'o use the

new algorithm, we now establish those quantities which will be needed.

Using J2, we store the 6's from the design with 1 - 1 columns, For an added

element.

The11 calculating the J2 criterion at the current row is a matter of adding in the 6's for the

previous h - 1 rows, so

In addition, from equation (4) in Xu (2002),

Combining equations (3.9) and (3.10),

h- 1 h- 1

+ 2 ' ~ C d(x,i, b')6,1~(di-1) + el: 6(2,l, b*).

CHAPTER 3. TWO ALGOR,ITHMS FOR COMTRUCTION OF 0A4S/NOAS 2 7

This decomposition implies a fast update, as oldy the last two terms of this expression

depend on the element b*. All the other terms can be stored from the previous rows and do

not need to be recalculated. I11 <addition, the c5(zor, rpr) take on values of 0 or 1, so the last

two terms can be calculated quickly.

The algorithrr~ proceeds the same way as for 312, simply by using .J2 instead of x2 in step

5. However, in finding the best choice using J2, if we wish to ensure nkl(a, h) 5 N/(sksl)

(which we need for an orthogonal array), the nZkl3s arc additional information to be stored,

as they are not used in the calculation of J2. In addition, the equivalence of the criteria is

assuming a balanced column. The impact of this will be discussed in the next subsection. As

the algorithm is based on a subset of rows in the design, the criteria may not be equivalent

a t a certain row, and the best choice may be different.

3.2.3 Comments

From equation (2.10), the columns of the array must be balanced (each element appears

the same number of times in the column) for the equivalence of J2 and X2 . This balance

is more important than it might initially seem, as can be demonstrated by the following

example.

Example 3.1 Consider the designs Dl and D2:

The design Dl is balanced, but in design D2 the first column is not balanced.

Calculating X2 and J2 for both designs gives X2(D1) = X 2 (~ 2) = 213, whereas

J2(D1) = 16 while J2(D2) = 17. Using the x2 criterion as setup in algorithm

(which assunles balance) shows no difference between the two designs, while

under the J2 criterion, Dl is preferred. In fact, if we calculate X2 by definition

(2.5), X 2 (~ 1) = 213, while X 2 (~ 2) = 0, as the cross-product of the two columns

is 0.

CH-4PTER 3. TWO ALGOR.ITHA4S FOR CONSTRUCTION O F OAS/NOAS 28

The preceding example illustrates that some care inust be taken when considering the

equivalence of the different criteria. In particular, for columns k and I , if N/sk is integer

(and/or N/sr) where it is possible to have a balanced column, if N/sksl is not integer,

balance may need to be forced in constructing the column row by row.

In light of this, it is useful to introduce the notion of weak strength (Xu (2003)). A design

is said to be of weak strength t , denoted by t - , if all level combinations appear as equally

often as possible. In other words, the difference in the count of possible level combinations

for any given t columns does not exceed one. If a design is of strength t , all possible level

conlbinations occur the same number of times, so it has weak strength t-. On the other

hand, a design being weak strength t- does not imply weak strength (t - I)-, as can be

seen in example 3.1.

In the case of orthogonal arrays, from the properties of strength, strength t ensures not

only all subsets of t columns are balanced, but also all smaller subset of t* = 1,2, . . . t - 1.

As noted above, this does not hold true for nearly-orthogonal arrays. Simply trying to

make the nljs as close to each other as possible for a given .i and j is not enough to ensure

column balance throughout the design. The reason for this can be inore clearly seen by the

decomposition of J2 given by:

The first part of this decomposition of J2 corresponds to the balance within each single col-

unln and is minimized if the array is of weak strength I-, while the second part corresponds

to column pairs, and is minimized if the array is of strength 2-. The X2 criterion is only

based on weak strength 2-.

Since X2 and J2 are based on the occurrences of the nklis, there are instances where we

can construct an optimal design using a pre-existing orthogonal array. For instance, if we

have an OA(N,sl . . . s , , 2): then removing any row will still have all the nkl's within 1 (since

they all occur the same number of times in columns k and 1 by the definition of orthogonal

array), so by Lemma 2.1 the design is an A2 optimal NOA(N - 1, sl . . . sm).

We can also add rows to an existing orthogonal array to make it A2 optimal. If we have

an existing OA(N, sl - . . s, ,2) , adding the row (0, . . . ,0) will still result in an A2 optimal

NOA(N + 1, sl . . . s,,) by Lemma 2.1. Furthermore, adding the row (1, . . . ,1) is also an

A2 optimal NOA(N + 2 , sl . - . s ,) . In fact, we can continue this process by adding up to

CHAPTER 3. TWO ALGORITHMS FOR CONSTR,UCTION OF OAS/NOAS 29

min, (s i) rows in this nlanner.

3.3 Extension to Higher Strength

Even if an orthogonal array of strength 2 can be found. if a strength 3 or higher orthogonal

array can be obtained, it would be preferred. This section will look at extending the J2 and

X 2 criteria and algorithms to higher strength.

3.3.1 The J3 Criterion

The J2 criterion can be extended to J3 and later to arbitrary Jk for strength 3 and higher.

For an N x n matrix d = [x i j] , with weight u)k for column k having sk levels, define

4 j (d) as (2.7). Define

which is similar to J2 , but the power is replaced by 3. By defining J3 as (3.11), J3 can be

used as a measure of closeness to strength 3 as can be seen by the following lemma.

Lemma 3.1 For an N x n inatrix d = [z , j] , with weight u)k for column k hwv2n.g sk levels,

where equality holds i f l d is an. orthogonal array of stren,gth, 3.

Proof of Lemma 3.1. Define nkr,(a, b, c) = li : ~ i k = a , zil = b, xirn = cl, the number of

times the levels a, b, and c appear in columns k , I , and m, respectively. Note that

This holds since the left hand side is over all pairs of rows, and takes a value of 1 for each

of the 'nklm,(a, b, c)'s and the other nkltn(a, b, c) rows it occurs with.

Note that the right hand side of the previous formula can be partitioned into three

CHAPTER 3. T W O ALGOR,ITHhIS FOR CONSTRUCTION OF OL4S/NOAS 30

sums based on the number of distinct columns are being looked at: one, t'wo, or thrcc. In

addition, the order in which the columns are considered makes no difference on the count

(ie. n,kl,(a, b, c) = n,kr(c, a , b)) .

To establish the ineq~alit~y,

n n n T,V 1

3

n n n sk -1 &/-I sm-1 3

= 1 w'~w1w'm [I x 1 n,klm (a, c)2] - N (2 'UIk)
k=1 /= I m = l a=O b=O c=O k= 1

CHAPTER. 3. TWO ALGOR.ITHAG FOR CONSTR.UCTION O F OAS/NOAS

where equality holds when the design is an orthogonal array of strength 3.

For the inequality, the Cauchy-Schwartz inequality is used. The Cauchy-Schwartz in-

equality states that for xl , x2,. . . . xn, yl, y2,. . . , Yn E X, we have:

where equality holds iff z l / yl = z2/y2 = . - . = x,,/Y,~,.

For an N x n design matrix d! note that for fixed columns k , 1 and m with sr;, s,, and

s,, levels respectively, we have

The number of summations reduces when t,he subscripts reference multiple columns which

are actually the same column. By the definition of n,kl,(a, b, c), the columns which are

referenced that are the same can only be count,ed if they are also at the same level (it is

impossible for a row to have one factor a t two different levels).

Looking at distinct columns k , 1, and m,, there are s r , s / s , possible combinations for the

levels of these factors. By Cauchy-Schwartz

CHAPTER 3. TWO ALGORITHMS FOR CONSTR.UCTIOAi OF OAS/N0,4S 32

where equality holds iff all nklm(a, b, c) are the same for all possible values of a , h, and

c. This implies that for these columns, every triplet appears the same number of times. If

this holds for every k, 1, and m,, the design is an orthogonal array of strength 3.

Similarly, if we consider having two distinct columns, k and m, with s k s l different com-

binations, by Cauchy-Schwartz,

where equality holds iff all nkkr(a, a, b) are the same for all possible values of a and b.

This implies that for columns k and 1 every pair appears the same illiinber of times.

Finally, for a single distinct column,

where equalit,y holds iff all nkkk(a, a , a) are the same for all possible values of a . This

implies that column k is balanced, with each level occurring the same ~ lu~nbe r of times.

As mentioned, if for every k, 1, and m., each t,riplet occurs the same number of times, the

design is an orthogonal array of strength 3. If it is an ortllogonal array of strength 3, then

for any pair of columns, all possible pairs of levels occur the same number of times, and the

CH.4PTER 3. TWO ALGORITHMS FOR CONSTRUCTION OF 0A4S/NOAS 3 3

design is balanced. Then the equality for 2,J3(d) holds iff the design is an orthogonal array

of strength 3.

Example 3.2 Consider the following design matrix

For this matrix, the first 3 columns form an OA(8, 23, 3). Checking the inequality

for these first 3 columns, 2J3(d(l-3)) = L3(3) = 216. The entire matrix is not

an orthogonal array of strength 3, and checking the inequality, 2J3(d) = 432

while L3(4) = 384.

With the ext,ension of Jz, the hope is to extend Xu's algoritlm to the criterion for higher

strength. In order to do so, we need to extend the calculations for column addition and

symbol swapping. We start with column addition.

Let column c with weight 7u, and s, levels be added to the original design d, resulting

in d+ . The new design is such that

CHAPTER 3. TWO ALGOR.ITHMS FOR CONSTRUCTION O F OAS/NOAS 34

Updating J3,

where the simplification of the formula is due to cFi,j(c) only taking on values of 0 or 1. In

addition, when weights are all assigned a value of 1, if bij(d)2 is stored, then this updating

involves no multiplication.

Another aspect of Xu's algorithm involves swit,ching symbols. Consider switching dis-

tinct symbols in rows a, and b of the newly added column. Then for j # a, b, the values

b, , j(c) = bj;,(c) and bb,j(C) = bj,b(c) are switched. The switch does not effect c~,.~(c), as the

values are distinct, so this value is 0.

Looking at the difference in J3(d+), first consider fixing a certain row j # a , b. In regards

to row j , the change on J3 of the switch are based on rows a and b, all other rows have been

unchanged. In the old calculation for J3, the terms of interest in calculation are

In the calculation of J3 after the switch, these terms will now be

and

CHAPTER 3. TWO ALGORITHMS FOR CONSTRUCTION OF OAS/NOAS 35

Looking at the difference the swap has made:

and

We note that A(a, b) requires no multiplication, as ba j(c) and bb,j(c) are either 0 or 1 and

6,,j(d)2 and 6b,j(d)2 can be stored for faster calculation.

3.3.2 An Algorithm

Following the same idea as Xu's algorithm, a new algorithm is proposed. The new al-

gorithm adds columns to an existing design to find an O A of strength 3, or an NOA3

(nearly-orthogonal array optimized using the J3 criteria). The algorithm will repeat T

times if no lower bound is achieved. Depending on the nat,ure of the problem, this T can be

adjusted depending on the orthogonality of the existing design. The functions used will be

swap, involving the interchange of symbols, and exchange, involving changing a candidate

column with a new one.

The algorithm:

1. Compute the lower bound L3(k) for k = 2, - . . n.

CHAPTER 3. TWO ALGOR,ITHMS FOR CONSTRUCTION O F OAS/NOAS 36

2. Setup the first 2 colunms, specified as (0, . . - , O . 1, . . . ,1 , - . . , sl - 1, - . . , sl - 1) for

coluinnl, and (() , . . . , () , I , . . . , I , - . . , s p - - l , . . . ,sp-1) forcolumn2. C ~ m p u t , e G ~ ~ (d)

and J3(d).

3. For k = 3 , . . . , n :

i. Generate a random balanced sk level column c . Compute J3(d+) and test against

L3(k), goto iv) if equality holds

ii. For all rows with different symbols, calculate A(a., b) according to (3.12). Choose

the a and b for which A(a,, b) has the greatest value. Swap these 2 symbols, and

reduce J3(d+) by A(a,, b). If J3(d+) = L3 (k) , goto (iv). Otherwise, repeat step

(ii) until no improvement can be made.

iii. Repeat i) and ii) T times, choosing column c which results in the smallest value

for J3(d+).

iv. Add column c to the design, and update values of J3(d), Gi (d) and Gi,j (d)2 with

J3 (d+) , hi, (d+) and Gif (d+)2, respectively.

4. Return the N x n design d .

If the algorithm is to result in an OA of strength 3, then in step 3.ii), the equa1it)y must

hold. The choice for T makes a bigger impact on the speed of this algorithm when using

J3. In finding an orthogonal column that maintains strength 3, the potential coluinils the

algorithin can find is generally n~uch smaller than that of strength 2. A large value for T

will enable more time to find an orthogonal column, or at least a nearly-orthogoi~al column,

but will also take much time. A small value will take less computation, but may result in a

poor choice for the added column.

CHAPTER 3. TWO ALGOR.ITHMS FOR CONSTR,UCTION OF OAS/NOAS 3 7

3.3.3 Comments on J3

A useful expansion of J.j is

as we look at the occurrence of (a,b,c) over all possible pairs of rows.

Using this derivation of J3, if an NOA of N x n is desired (that is, we know an OA

does not exist), if we start with an N* x n design that is an orthogonal array of strength

3, where N* 5 N, then any added row will have the same effect on J3 in regards to the

N* x n design. Hence, to find a design with reasonable J3, we can look at miilimizing the

(N - N*) x n matrix for the remaining rows according to the J3 criterion. This holds as

well for the J2 criterion. By trying to find an optimal design over less rows, the algorithm(s)

can run faster and hopefully more efficiently.

3.3.4 Extension to Higher Strength

J3 can be extended to look for higher strength. We consider the case where all weights have

a value of 1, but the incorporation of weights is natural. In general, for strength S, define

CHAPTER, 3. TWO ALGORITHMS FOR CONSTRUCTION OF OAS/NO24S 38

The main reason we can make this generalization is that the definition is still over pairs of

rows. In particular, consider

the number of rows that the combination of levels ul, 02 , a s appears in columns kl, . . . , ks

respect,ively. Then

since the left hand side is over all pairs of rows, and each of the nk ,...k,(a l , . . . , as)'s will

be counted with the nk, ...ks (a l , . . . , 0,s) rows it occurs with.

The Cauchy-Schwartz inequalit,y will still be applied in a similar manner as was done

for J3, where

can be partitioned into subsets such that the number of distinct columns being considered

are 1, . . . S. The added calculation to colunin addition and symbol switcliing should be

proportional to the number of these partitions, just as we saw in the case of J3. Likewise.

Xu's algorithm can still be used for the desired Ji .

3.3.5 The x2 Criterion for Higher Strength

Instead of using the X2 criterion to nleasure the silnilarity of two columns at a time, a

modification can be made to consider three or more columns at a time using the new

algorithm. We first look at ext,ension to three columns and those quantities which will be

needed for the algorithm. Our notation remains the same, with the exception that quantities

involving two columns now involve three columns. This can be easily ext,ended to more than

three columns for higher strength.

Let nklm(a, b, c) be the number of rows in which symbols a , b, and c appear in colunln

k , I , and m respectively. Define

CHAPTER, 3. TWO ALGORITHMS FOR CONSTR,UCTION OF OAS/NOAS 39

which has a value of 0 iff all nklm.(u,, b, c) = N/'(sksrs,). Then we can use ~ ~ (d) =

zk< l ,<m, xilrn (d) RS a measure of near-st,rength 3, which takes on a value of 0 if x;~,, = 0 for

all k, b , and m,, which implies a strength 3 orthogonal array. In order to simplify calculations,

we use the simpler

A fast update over three columns is done in the same manner as was done over two

columns. If we are trying to add column m,,

When considering the first row, any of the symbols O,1,. . . , s , - 1 can be used, and

To measure the near-strength 3 orthogonality of the new column compared to all previous

columns, we use
2(hc*) -

Xm.
l<k<l_<m-1

For a strength S orthogoilal array, we simply need to use the X2 criterion over S columns.

For the columils kl, k2,. . . , kS, with sl, s g , ss symbols respectively. let nklk2...ks(al, a,2,

. . . , as) be the number of rows in which the coinbination of (al , a,g, . . . , as) appears in

columils kl, k2, . . . , kS. Then

can be used, and quantities can be established as was done for streilgth 3.

3.3.6 The Algorithm

The algorithm proceeds in the same way as for 2 columns. We will denlollstrate how the

algorithin proceeds for three columns, but can easily be extended to higher strength:

CHAPTER 3. TWO ALGORITHMS FOR CONSTRUCTION O F OAS/NOAS 40

1. Specify an initial design d with columns (0, . . . ,0 ,1 , . . - , I , . . . , sl - 1. . . . , sl - 1) and

(O,... , s q - 1 , 0 , - - . ,sq - I , . . . , 0 , . . . ,sq - 1). Let m = 3.

2. R.andomize the rows of d.

3. Let xm = O and h,= 1.

(h) (h) (h) (h) (h) 4. Let d,,,, = [xl 1x2 1 - . . Ix,,,], the first h rows, where x,,, = (xll, . . . , ~ (h - ~) , , c*)'.

2(hc*) = ~2: X2(hc*) is (3.6) calculated using 5. For c* = 0, - - . , S, - 1, calculate x,,
(h) columns k, I and m from d , , . . Use the best c* such that nklm,(u., b, c*) 5 N/(sksrs,)

for 1 5 k < 1 5 m - 1. If no such choice exists, take the best c* with nklm(a,, b, c*) >
hT/(sksl~,). In the case of equally good choices: take the largest or randomly choose

between them.

6. Repeat Steps 4-5 for h = 1, . . - , N.

8. repeat 5-7. T times. Choose the column c which minimizes X2(d+).

9. Repeat Steps 2-8 for m = 3, . . . , n.

10. Return t,he final N x n design d.

3.3.7 Comments

As in t,he case with the X2 criterion for strength 2, some care must be taken for the balance

of a design. For strength 3, if t,he n.kl,'s are all equal, then the n.kl's must be all equal as

well. However, if equality cannot be achieved, minimizing X2 may not necessarily result in

a design which has nice properties in terms of the njklls.

CHAPTER 3. TWO ALGOR,ITHMS FOR CONSTRUCTION OF OL4S/NO24S 4 1

Example 3.3 Consider the designs Dl and D2

Calculating X2 and J2 for both designs gives X'(D~) = x 2 (~ 2) = 2, whereas

J3(D1) = 342 while J3(D2) = 330. In this example, the J3 criterion ranks D2

as a better design. The columns are balanced, and we have a design of weak

strength 3- for both designs, but D2 is weak strength 2-, while D l is not.

Example 3.3 enforces one of the issues that can arise using t,he new algorithm for finding

nearly-orthogonal arrays. In order to use the X2 criterion when we can not assume that all

nklm.?s can be balanced, we should also check for balance or near balance among the ??,k['s and

balance within each column. This check for balance is already considered in the J-criterion.

If we are looking for a near-strength 3 (or higher) orthogonal array, the J-crit,erion will try

to keep balance of lower levels of near-st,rength as well. If instead one uses the X2 criterion,

extra time must, be spent t,o ensure balance on smaller dimensions.

3.4 Designs with a Larger Number of Runs

There are some limitations with the algorithms presented as the run size increases. For Xu's

algorithm, having to check all possible swit,ches can be too time-consuming due to having

to consider too many switches. In tjhe new algorithm, too lnany runs means that there is

much more unknown at a certain row, and makes it harder to find a good column.

CHAPTER, 3. TWO ALGORITHMS FOR CONSTRlJCTION OF OAS/NOAS 42

3.4.1 A modification on Xu's Algorithm

The idea behind our modification of Xu's algorithm is that if an orthogonal array exists.

each element of the added column must occur the same number of times with each element of

the previous columns. We can choose the new column so that it is at least orthogonal to the

first column. In addition, if we restrict switches such that we will not lose the orthogonality

to the first column, the number of switches to check is greatly reduced.

The algorithm proceeds as follows:

1. For k = 1, . . . , n, compute the lower bound L(k) by equation (2.1)

2. Specify an initial design d with columns (0,. . . , 0 , l , . . . , 1 , . . . , sl - 1 , . . . , sl - 1)' =

(~ (o *) ~ , x (~ *) ~ , . . . , x (~ , -1*)1), where z(i.)l denotes the rows in column 1 having element

i*, and ((I,... , ~ 2 - 1 , 0 , . . . , ~ 2 - - 1 , - . . , 0 , . . . , s2- I) ' , a ~ l d c o m ~ u t e & j (d) and J2(d)

by definition. If J2(d) = L(2), then no = 2 and T = TI; otherwise, no = 0 and T = T2.

3. For k = 3, - - - , n, do the following:

(a) Generate a random balanced sk-level column c as follows: create s l random

balanced columns of size N* = N/sl, call these ci, for i = 1, . . . , sl . Match

these ci to z(i.)l. The column c is orthogonal to column 1. Compute J2(d+) . If

J2(d+) = L(k), go to (d).

(b) For all pairs of rows u and b in z(ii)l with distinct symbols in c for i = 1 , s l ,

compute A(n, b). This forces orthogonality with colunln 1. Choose a pair of rows

with the largest A(a,, b) and exchange the symbols in rows a and b of colunln c.

R.educe J2(d+) by A(a, b). If J2(d+) = L(k), go to (d); otherwise repeat (b)

until no further improvement is made.

(c) Repeat (a) and (b) T times and choose column c that produces the smallest

J2(d+).

(d) Add column c as the kth column of d, let Jz(d) = Jz(d+), and update Gi,j(d).

4. R.eturn the final N x n design d .

The main advantage to this algorithm is the reduction of the number of switches to

consider. N711ile this may seem to be too restrictive on where switches can be made, it

should be kept in mind that in an optimal design, orthogonality would be kept with this

CHAPTER 3. TWO .4LGORITHMS FOR COhTSTRUCTION OF 0AS/NOA4S 43

first column for an orthogorlal array. That is, if we were to switch distinct elements from c

in z (i*)~ and z(j*)l, losing orthogonality with column 1, switches must be made that would

eventually make the column orthogonal once again. In addition, column 1 can be randonlly

chosen among any of the existing columns, and more restarts can be used as less time needs

to be spent considering all possible switches.

Even if we are dealing with nearly-orthogonal arrays, we can likewise ensure that the

added column has weak strength 2 in regards to the first column. In particular, if the first

column has a large number of levels, this seems reasonable if using natural weights.

3.4.2 Discussion of Weights

The weights for the J2 criterion are chosen based on the purpose of the design. If we want

an orthogonal array, the lower bound can be reached, so we can use weights of 1 for all

columns to simplify calculat,ions. Recalling the relationship between J2 and A2 when using

natural weights (weights of a column equal to the number of levels), for nearly-orthogonal

arrays, using natural weigllts will try to create an array optimal for the A2 criterion. For

factors which are deemed to be of higher importance, a larger weight can be assigned to

them. If a factor has a higher weight, it is more likely that other factors will be chosen to

be ortllogonal to the factor with higher weight,.

The use of weights is directly related to the X2 criteria. Using weights of 1 for J2

is equivalent to using the siinplified equation (3.6) for the X2 criteria. The use of natural

weights is equivalent to using equation (2.6). which will be used for nearly-orthogonal arrays

to optimize A2. Setting the weights to 1 to speed up the algorithm may not be advisable

with nearly-orthogonal arrays, as can be seen by example 3.4.

CHAPTER 3. TWO ALGORITHMS FOR CONSTRUCTION OF 0L4S/NOAS 44

Example 3.4 Let D l and D 2 be NOA(12, ~ ' 3 ~) : with

Using the unweighted criterion, we get J2 (Dl) = 172 and J2(D2) = 172, while

the weighted criterion gives .J2(D1) = 912 and J2(D2) = 880. For D l , the non-

orthogonal columns are 1 and 4, and in D 2 columns 3 and 4. The uliweighted J2

views these as the same, as both have four n,kl(a, b)'s that are either one above or

one below N/(sksr) . The weightfed J2 considers this more serious when column

1 is involved as it has more levels, so in this example D 2 is preferred. From a

statistical standpoint, this makes sense, as in D l , some level combinations for

colulnns 1 and 4 do not appear, whereas in D 2 every level conlbination for all

pairs of columns occurs a t least once, including the non-orthogonal colulnns 3

and 4.

3.5 Advancements

This chapter introduced a new algorithm for finding orthogonal and nearly-orthogonal ar-

rays. I t adds new columns one row at a time by making the "best" choice for each row. We

also used the X2 criterion with Xu's algorithm.

The J2 criteria was extended to higher strength, and although results are mentioned by

Xu (2003) in regards to minimum moment aberration, more detail was paid attention to

here from an algorithmic standpoint. As well, both algorithms were adapted to be used for

CHAPTER 3. T W O ALGORITHMS FOR CONSTRUCTION OF 0.4S/NOAS 45

higher strength. Discussion was given for trying to find a way to speed up the algorithm

when dealing with a larger run size.

Chapter 4

Performance and Comparison

In this chapter we will compare the performance of Xu's algorithm and the new algorithm

in terms of the const,ruction of orthogonal and nearly-orthogonal arrays according to some

measure of optimality. Orthogonal arrays and nearly-orthogonal arrays will be discussed in

separat,e sections. as the approaches we use to compare the algorithms are different.

4.1 Construction of Orthogonal Arrays

For sinall run sizes, we often know if an orthogonal array exists. For settings where we know

one exists, we can compare how each algorithm performs in finding an orthogonal array. To

do this, a meaningful basis of comparison must be used. For practical purposes, the inain

aspect,s we want to study in an algorithm are speed and the ability to find orthogonal arrays.

The algorithm should be successful at finding orthogonal arrays, but it should also be fast.

If an algorithm can find orthogonal arrays easily, but takes a long time to do so, it may be

impractical, particularly for large run sizes. For either algorithm, if we set the number of

restarts very high, we expect the algorithnis to find orthogonal arrays more often, but may

end up sacrificing speed in doing so. On the other hand, if an algorithm can be run very

quickly, but rarely finds an orthogonal array, the practicality is also questionable. For both

algorithms, if we use a small number of restarts, we anticipate that the algorithms will be

very fast, but may riot find an orthogonal array very often.

What we really desire is a balance between speed and success. To find a reasonable

balance, we use the average time to find an orthogonal array as a criterion to compare

algorithms. That is, for an algorithm being started from its initial point for a certain

CHAPTER 4. PERFORMANCE AND COMPAR.ISON

number of times.

Tim.eoA = O A ~ ound/Tin%~tal.

where TimeoA is the average time to find an orthogonal array, OAfo,,n,d is the total number

of tiarnes an orthogonal arrays was found, and Timetotal is the total time to run the algo-

rithm from its starting point for a specified number of times.

As mentioned, the speed and efficiency of the algorithms are determined by the number

of restarts - the number of times the algorithin tries to add a new column until finally giv-

ing up. Too many restarts can mean a lot of time spent att,einpting to find an orthogonal

column. If an orthogonal (to the existing design) column is difficult for the algorithm to

find or does not exist, the algorithm is using time trying to reach a lower bound that it

can not achieve. On the other hand, too few restarts may cause an algorithm to give up

prematurely and have to start again from the initial design of just two columns. In this

situation, the algorithm may ultimately take inore time to find an orthogo~lal array, as it

may take many runs of the algorithm before an ort,hogonal array is actually found.

Xu (2002) suggests 100 restarts as a suitable choice for his algorithnl. While not based

directly on the expected time to an orthogonal array, the suggestion of 100 restarts is based

upon considering the success rate and time. The author shows his algorithm to be supereior

to a Federov exchange algol.it,l~rn froin Miller and Nguyen (1994), and an int,erchange algo-

rithm from Nguyen (1996). Using TimeoA and comparing the two algorithms, the ilumber

of restarts to be tried for these algorithms are 50, 100, 200, 300, 500, and 1000. Varying the

number of restarts in this way allows for better exploration of how the algorithms perform.

111 order to find a "good" number of restarts to use for an algorithm, we can use TimeoA.

We hope to determine how many restarts should be used in a general setting for decent

results (according to Tim,eod4).

Another issue for examining the algorithms is the number of times each algorithm should

be repeated froin the initial point in trying to find an orthogonal array, referred t,o as tries.

If the number of tries is too low, the results ma.y not accurately reflect how the algorithm

does on average as the expected time to an orthogonal array is based on the number of

orthogonal arrays found. This is particularly troublesome in situations where finding an

orthogonal array is a very rare occurrence. After a set number of attempts, it is possible

that an orthogonal array is found only once or t,wice, perhaps even not at all. When the

number of tries is large, if one set of tries results in one orthogonal array while the other

finds two orthogonal arrays, the difference in average time to an orthogonal array will be

CHAPTER 4. PERFOR,AfANCE AND COMPAR.ISON 48

markedly different. However, if an algorithm can find an orthogonal array often and we

use too many tries, then too much time is spent without much gain in information on the

algorithm.

When we study an algorithm, we want to ensure that we have an accurate representation

of how we can expect the algorithm to perform on average. A reasonable question to ask

is "how many times should the algorithm find an orthogonal array before we stop?" To do

this, we want, to estimate p, the probability of any given try resulting in an orthogonal array.

If we are conlfortable with our estimate of p, we do not need to worry that one set of tries

happened to get "lucky." The more tries that use to estimate p, the better we anticipate

our estimate will be, simply as the number of orthogonal arrays found divided by the total

number of tries. However. at some point we need to decide that we have used enough tries

to be satisfied with our estimate of p, otherwise we will just keep running the algorithm. To

estimate p, we will use the geometric distribution.

The geometric distribution counts the number of trials until a success is observed. The

random variable X denotes this number of trials. The geometric distribution has the fol-

lowing properties:

where p is the probability of success. As tries are independent of each other, if we consider

finding an orthogonal array as a success and a non-orthogonal array as a failure, to find n

orthogonal arrays, we can consider n iid random variables from a geometric distribution,

stopping when the nth orthogonal array is found. U'ith XI, Xp, . . . , X , iid from a geometric

distribution with parameter p, a 955% confidence iilterval for E(X) (ie. l/p) is

To get a 95% confidence interval for p, we can use

where p is the number of orthogonal arrays found divided by the total number of tries. We

want to use the geometric distribution to remove some of the chance that one algorithm

CHAPTER 4. PER,FORMANCE AND COA4PARISON 49

may have happened to have a "lucky" set of tries and ensures that the results reflect how

well the algorithnls do on average.

The issue is now how accurate we want our estimate of p to be. For orthogonal arrays

in which the algorithms have a reasonable success rate, say greater than 0.10, an interval

half-width of 0.01 is considered. This amount is still small enough to be comfortable with

the results, and we do not want to have the half-width too small, or else there may be too

inany successes to be found from a time standpoint.

From the 95% confidence interval for p, the number of geometric random variables to

sample for a specified half-width w is

For the half-width of 0.01, n achieves its maximum when p = 213, giving n = 5692. Looking

at this situation as a worst case scenario, in running the code until it has found an orthogonal

array 6000 times, the confidence interval for p will have a half-width of at most 0.01.

For those orthogonal arrays in which the success rate for the algorithms is very low, GOO0

successes may t,ake substantial time tJo be achieved, so 6000 is not feasible. In addition,

for small success rates, an interval half-width of 0.01 is likely not that desirable. In this

~it~uation, an interval half-width proportional to p is preferred. Using w = p/10, the number

of successes needed is

n = 100 * 1.9Ci2(1 - p).

In this situation, a s p decreases n increases, so using n. = 400 allows for intervals to have have

a half-width of p/10 or less. While this number of successes may seem small in conlparison

to the 6000 discussed for a larger success rate, for rare events there is more inforination

contained in each observation of the geometric random variable. For these rare events, we

can expect to see a number of failures before a success. For a higher rate of success, we

expect to see fewer failures.

To make cornpasison of the algorithms fair, we try to speed up calculations as much as

possible. The new algorithm will be used with the simplified x2 given as equation (3.6).

Xu's algorithm will be used with weights of one which is suggested when finding orthogonal

arrays.

CK4PTER. 4. PERFORMANCE ALND COMPARISON

4.1.1 Results

Both algorithms are suited for designs with a smaller number of runs, so it is orthogonal

arrays of this nature which we will study. We use the orthogonal arrays studied ill Xu

(2002). Considering these orthogonal arrays, we have some prior information on what we

can anti~ipat~e on the performance of Xu's algorithm (Xu (2002)). These arrays are typical

of the mixed-level designs used for industrial experiments with small runs, and are also

diverse in the number of runs, factors, and levels.

For each orthogoilal array, each setting of restarts to be tested was used for Xu's algo-

rithm with the J2, Xu's algorithm with X2, and the new algorithm with x2. The number of

orthogonal arrays found, the number of tries, and t,he total time spent were recorded in each

case. Determination of t,he number of tries resulting in an orthogonal array (400 or 6000)

was based on previous results from Xu (2002); and where information was not available,

using the amount of timeltries until one orthogonal array was found. In a few situations,

the time to find one orthogonal array was so extreme t,hat the test was stopped after one

orthogonal array for time considerations.

For the number of restart,^ that were tested, the expected time to find an orthogonal

array is presented for Xu's algorithm with the J2 criterion (Table 4.1), Xu's algorithm with

the X2 criterion (Table 4.2), and t,he new algorithm using the X2 c:rit,erion (Table 4.3). The

new algorithm using the J2 criterion was not tested. as in testing it, it performs very poorly.

The reason for this is an additional condition in using the X2 criterion that checks whether

nk l (a , b) exceeds its expected value which fits in naturally wit,h the X2 criterion, but is not a

natural extension with the J2 criterion. R.emoving this <:ondit,ion with the X2 criterion also

results in poor performance. While we could use nl;, to force balance, if we need to store

these in addition to the components for J2, it is just as well to use x2. For all settings, more

detailed tables giving t,ries resulting in an orthogonaly array, total number of tries. t,ot,al

time spent, est.iinated p, Y5%CI for p, and estimated expected time to an orthogonal array

are presented in tables 4.6-4.23.

Moving on to the results, Xu (2002) recoinnlended using 100 column restarts, consider-

ing both the efficiency of finding orthogonal arrays and speed. Most of the consideration

was placed on when t,he proportion of tries resulting in an orthogonal array appeared to

be constant. However, in considering expected time t,o an orthogonal arras 50 restart,^

seems tjo be enough in most situations for Xu's algorithm with either crit,erion. Using more

CHAPTER. 4. PER.FORMANCE AND COMPAR.ISON 51

restarts, we expect to find an orthogonal array more often, but the expected t h e to find an

orthogonal array increases since extra time is spent in situations where the algorithm can

not find an orthogonal array.

For the new algorithm, there does not seem to be a clearcut choice for the number of

restarts to use. A try in the new algorithm is generally very quick in comparison to Xu's,

but does not find an orthogonal array as often. For smaller run sizes (< 27), 300-500 restarts

is a reasonable choice for expected time to an orthogonal array. For the higher run sizes

studied, 1000 restarts is a better choice. In contrast to Xu's algorithm, where just 50 restarts

is often enough for finding orthogonal arrays and can be used in most situations, too few

restarts for the new algorithm can cause a very low success rat,e and high expected time to

an orthogonal array.

Table 4.4 compares the best expected time to an orthogonal array for each algorithm

among the different orthogonal arrays tested and lists the best time among those and which

algorithin achieved that time. I t is apparent from Table 4.4 that there is no universal winner

in terms of expected time to an ort,hogonal array. However, we notice a trend in which the

new algorithm performs better when the nuinber of columns is small, and performs worse

when the number of colunlns is close to the number of rows. This makes sense because the

new algorithm has added calculations compared to Xu's as the number of coluinils grows.

Looking at Table 4.4 for Xu's algorithm, comparing the J2 and X 2 criteria, we see that

in many cases the x 2 criterion is an improvement over the J2 criterion. This usually occurs

when the number of columns is small relative t,o t,he run size. To get a better idea of why

this occurs, we can look at the nlailner in which the crit,eria are computed. If the current

design has m - 1 colunlns, and we are trying to add the m.th colurnn, the X 2 criterion uses

2 * (m - 1) of the nij's for evaluating/making a symbol switch between rows .I and j . For

the J2 criterion, the calculation is based on 2 * N l s , of the &j 's . If the nuinber of colunlns

is small relative to the number of rows, the X 2 criterion will perform better, with the J2

criterion preferred as the number of colunlns grows. To get the greatest efficiency from Xu's

algorithm, it may be worthwhile t,o use the X 2 criterion for some initial set columns, and

then switch to J2 for the remaining as it is not influenced by the number of columns.

While the new algorithm may not outperform Xu's in all situations, it provides an ef-

fective means for constructing orthogonal arrays with a small nuinber of rows and a modest

nuinber of columns relative to the number of rows. For studying the X 2 criterion with Xu's

algorithm, we found that there may be improveinents in the situations where there is a

CH.4P TER 4. PER.FORMANCIE AND COMPARISON

moderate number of columns relative to the number of rows.

4.1.2 Discussion

Based on the observation that the new algorithm seems to perform much better when the

number of factors is small relative to the run size, it may be worthwhile to try and use

the expansive replacement method. For the expansioe repla~em~ent method, let A be an

orthogonal array of strength 2 with a factor 1 having .s, levels, and B be an orthogonal array

of strength 2 having sl runs. By making a one-to-one correspondence between each level

of factor 1 of A and the sl runs of B , replacing each occurrence of the levels in A with the

corresponding run in B , the resultant is an orthogonal array of strength 2 with at least as

many factors as A. This can be useful with the observations about a smaller number of

factors in comparison to the run size, as we may be able to find a design faster by using

expansive replacement afterward. An example of this in the designs studied here are the

0A(27,g13" and OA(27, 313). The new algorithm can find an 0A(27,g13') very quickly in

comparison to the OA(27, 313), but using expansive replacement, we can get an OA(27, 313)

using an OA(27,9l39 with the 9-level factor replaced with an OA(9, 34).

4.2 Nearly-Ort hogonal Arrays

For studying nearly-orthogonal arrays, we want to find a design optimal according to the

AZ criterion due t,o the statistical justification described in Chapter 2. In comparing the

algorithnls for orthogonal arrays, the comparison was done on the efficiency for finding an

optimal design - an orthogonal array. For nearly-orthogonal arrays, we generally do not

know if a design is optimal. As such, our approach to comparing the algorithnls must be

modified.

Xu (2002) compared his algorithnl to other existing algorithms (a11 interchange algorithm

from Nguyen (1996), a threshold accepting technique from Ma et a1 (2000), and coinbina-

torial construction methods from Wang and Wu (1992)) in regards to the Ag criterion for

nearly-orthogonal arrays with small run sizes. Xu's proved to be a clear winner. We take

the same approach, comparing the new algorithm to XU'S in t e r m of the A2 criterion. We

use the mixed-level nearly-orthogonal arrays tested by Xu (2002) as a basis of comparison.

CHAPTER 4. PERFORA4ANCE AND COMPARISON 53

Even thougll we are now dealing with nearly-orthogonal arrays, the algorithms still pro-

ceed in the same way they did for the orthogonal case. For the X2 criterion, there are

situations where the operations will not be integer, but this does not change the method-

ology of the algorithm. Since we do not know if we have an optimal design, the geometric

approach can not be used to select the number of tries. Instead we choose the number of

tries to be 10,000 based on past experience. From the observations about the number of

restarts for orthogonal arrays, the number of restarts used for the new algorithm will be

300, 500, and 1000.

The J2 equivalence to A2 in equation (2.8) comes from setting the weight of each column

to be the number of levels for that column. Due to this, instead of using the faster equation

(3.6); we now use (2.6) to drive the algorithm. In the orthogonal array case, = 0 for

all k, l , so the denominator was not necessary. In the nearly-ort,hogonal case, the denomi-

nator serves the same purpose as natural weights in Xu's alg~rit~hm, which we use for the

statistical purpose because of the relationship to A2. This distinction can be illustrated by

example 3.4.

4.2.1 Results

For each nearly-orthgonal array, 10,000 tries were used for 300, 500, and 1000 restarts with

the new algorithm. The algorithm returned the design with lowest A2 among all the tries.

This A2 value is recorded along with the best nearly-orthogonal designs reported by Xu

(2002). Since we are looking for designs having lower A2 values, the slower equation (2.6)

is used to drive the algorithm due to its relationship to A2.

The results from each of the nearly-orthogonal arrays are shown in Table 4.5. The new

algorithin results in comparable A2 designs for every nearly-orthogonal array. The excep-

tions are the NOA(24, 2'311), in which case the new algorithm did not achieve the A2 of

2.01 that Xu (2002) reported. However, for the N OA(24, 3147) and N OA(12. 2732), the new

algorithin provides designs with better A2 values, and thus new designs were found.

In some situations, we know if a nearly-orthogonal array is A2-optimal. From Lemma

2.1, if for any pair of rows i and j . the nij(a., 6)'s are within one, the design is A2 optimal.

While it is not always possible to find such a design, if one does exist, lower bounds can be

adjusted for all nij (a,, b)'s being within 1, and we could proceed in the same way as when

dealing with orthogonal arrays. Since we do not know beforehand if such an optimal design

exists, we must see if the results are different than those reported by Xu (2002).

CH,4PTER 4. PERFORMANCE AhTD COMPA4RISON 54

When we can not find an optimal design like that described above, it is riot always clear

how the design performs in terms of A2. From our results, tlie best design for both algo-

rithms tends to have the same Aq value. In fact, for most of the nearly-orthogonal arrays,

these designs are found within the first few tries. and increasing the number of rcstartsltries

does not seem to give any improvement.

Some nearly-orthogonal arrays cause problems for the algorithms in trying to find a best

nearly-orthogonal array. For instance, using the new algorithm, the best NOA(24,2' 3'')

is not as good as that found by Xu (2002). As well, all three different restarts result in

different A2 values, and the 500 restarts actually finds a better design than 1000 restarts. If

we use 2000 restarts (not listed in table), the best design has an A2 value of 1.91, which is

better than the result from Xu (2002). Since we are trying to make Aq as small as possible,

this suggests that there may be instances in which it is wortl~while to use a greater number

of restarts, even though it may increase the runtime.

When dealing with a mixed-level array, tlie order in which we add columns into the

design can have an impact on the design whicli the algorithm returns as having the best

AS For instance, using the first column as the 6-level column in the NOA(12,6' 25), the

best design has an Az value of 0.444. If we instead consider tlle 6-level column as t,he last

column added, the best design has an A2 value of 1.000. A possible explanation is related t.o

the natural weights. When the 6-level column is added first, it is likely that added columns

will be forced into orthogonality with tlie 6-level column because more weight is assigned

to this column. When used as the last column, the algorithm must try to make the 6-level

columii ort,hogonal with the other five columns whicli appears more difficult.

The previous discussion on the NOA(12,6' 25) highlights one of the major concerns in

using a columnwise algorithm to find nearly orthogonal arrays: t,he best nearly-orthogonal

array for soiiie k columiis may not help in creating the best nearly-orthogonal array for k + 1

columns. For tlie NOA(12, ~ ' 2 ~) , if we consider adding the 6-level column last, we may be

trying to add this column to an OA(12,27), which would be an optinial design for t,he first

five columns. However, the resulting best NOA for six columiis will not be as good as if

considering the six-level column first.

Xu (2002) advised to arrange tlie columns in decreasing order of levels, due to the num-

ber of possible balanced columns. We make the same suggestion due to the use of natural

weights, to try and force ort,hogonalit,y with the higher level columns. Since the sequential

nature may not work well with a particular ordering, it may be worthwhile to randomize

CH'4PTER 4. PERFOR.AL4ATCE AND COMPAR.ISON 55

the order of the factors, so that if one ordering is better, it should get used by the algorithm

at some point,. For the NOA(12,6127), if the 6-level column is used as column 1, 2, or 3, a

design can be found with A2 of 0.444.

4.2.2 Discussion

Using the X2 criterion for nearly-orthogonal arrays. it is possible that N/(sksl) , and hence

X2, is not integer. However, in not using integer calculations, the speed is greatly increased.

In an attempt to speed up calculation, if we examine the X2 criterion again,

Looking at x2 in this wav, the only control we have on the Ap criterion is to minimize
"*-' 'I-' nki(a, b) 2] . When dealing with nearly-orthogonal arrays, it is quicker (sksl) /N [Co=O C64

to deal with the simuler

which is also beneficial in that it is integer. When using the original X:l criterion, a nkl(a, b)

exceeding the expected number N/(sksl) by one or two may not be very desirable, especially

in the case of orthogonal arrays. However, the impact on X2 of exceeding the expected

number is not necessarily very large, and a choice that does so may be deemed the best,

choice. The)l;,; criterion will treat exceeding the expected number as being more serious,

hopefully causing more balance among the columns.

CHAPTER 4. PERFORhlANCE AND COMPARISON

Table Expected time (in secs) to OA for Xu's algorithm - J2 criteria.
50 100 200 300 500 1000

0.00004 0.00004 0.00004 0.00004 0.00004 0.00004

CHAPTER 4. PERFORMANCE AND COAPARISON

Ta.ble 4.2: Expected time (in secs) to OA for Xu's algorithm - y2 criteria.

CHAPTER 4. PER.FOR.MANCE AND COMPAR.ISON

Table 4.3: Ex~ected time (in secsl to OA for new algorithm - x2 criteria.

CHAPTER 4. PER.FOR.A/IANCE AND COMPA R.ISON

Table 4.4: Best Expected time (in secs) to OA for each algorithm. -
Best Algorithm

0.00002 New
XU- J;?
XU- J2
XU- J2

New
New
New
New

xu-X2
XU- J2
Xu- J2
X U - ~ ~

New
xu-X2

New
New
New

Xu-x2
Xu-x2

New
xu-x2

New

CHAPTER 4. PERFORMANCE AND COMPARISON

Table 4.5: Comparison of t,
NO A

NOA(6,3'2')
NOA(10, 5125)
NOA(12, 4134)
NOA(12, 2334)
NOA(12, 6'25)
NOA(12, ~ ' 2 ~)
NOA(12,3l2')
NOA(12, 2135)
NOA(12, 2732)
NOA(12, 2533)
NOA(15, ~ ' 3 ~)
NOA(18,2138)
NOA(18, 3723)
NOA(18,9'2')

NOA(20, 5'2l5)
NOA(24, 8'3')

NOA(24, 31221)
NOA(24, 6'215)
NOA(24, 6'218)
NOA(24,2'311)
NOA(24, 3147)

new algoritllm to Xu's in terms of Aq.
Xu 300 500 1000

0.333 0.333 0.333 0.333
0.4 0.4 0.4 0.4

0.75 0.75 0.75 0.75
0.75 0.75 0.75 0.75

0.444 0.444 0.444 0.444
0.667 0.667 0.667 0.667
0.778 0.833 0.833 0.778

1.25 1.25 1.25 1.25
0.861 0.792 0.792 0.792
0.875 0.764 0.764 0.764

0.8 0.8 0.8 0.8
0.5 0.5 0.5 0.5

0.333 0.333 0.333 0.333
0.346 0.346 0.346 0.346

0.76 0.76 0.76 0.76
0.875 0.875 0.875 0.875
0.722 0.833 0.819 0.722
0.111 0.111 0.111 0.111
0.667 0.667 0.667 0.667

2.01 2.208 2.083 2.115
2.56 2.58 2.53 2.472

T
ab

le
 4

.6
:

R
es

ul
ts

 f
or

 X
u'

s
al

no
ri

th
m

 -
 J

?
cr

it
er

io
n.

 5
0

re
st

ar
ts

.
F

ou
nd

T

ri
es

T

im
e

(s
ec

s)

@

P
L

P

U

E
~

i
1

7
1

e
o

~

(s
)

60
00

60

00

0.
24

1
 .0

00
00

1 .

00
00

0
1
 .0

00
00

0.

00
00

4

e
4.

7:
 R

es
ul

ts
 f

or
 X

u'
s

al
go

ri
th

in
 -

 J
z

cr
it

er
io

n,
 1

00
 r

es
ta

rt
s.

F

ou
nd

T

ri
es

T

im
e

(s
ec

s)

6

P
L

Pu

E

~
i

r
n

e
~

~

(s
)

GO
O0

GO

O0

0.
24

1
 .OO

OO
O

1
 .0

00
00

1
 .OO

OO
O

0.
00

00
4

60
00

95

81

60
00

60

00

60
00

63

22

60
00

60

00

60
00

35

92
4

60
00

72

40

60
00

36

92
9

60
00

17

61
2

60
00

19

66
0

60
00

13

72
0

40
0

10
13

2
GO

OO

60
65

60

00

10
89

82

60
00

66

85
1

60
00

52

40
3

60
00

61

53

40
0

19
67

11

40
0

45
57

1
GO

O0

(3
72

8
GO

OO

14
70

4
40

0
57

10

T
al

e

4.
8:

 R
es

ul
ts

 f
or

 X
u'

s
al

go
ri

th
m

 -
 J

2
cr

it
er

io
n,

 2
00

 r
es

ta
rt

s.

F
ou

nd

T
ri

es

T
im

e
(s

ec
s)

P

l-'

L
P

U

E
~

l
l

n
e

~
~

(s

)

60
00

60

00

0.
24

1
 .OO

OO
O

1.
00

00
0

1.
00

00
0

0.
00

00
4

T
ab

le
 4

.9
:

R
es

ul
ts

 f
or

 X
u'

s
al

eo
ri

tl
~

in
 -
J
7

cr
it

er
io

n.
 3

00
 r

es
ta

rt
s.

F

ou
nd

T

ri
es

'l

h
le

 (
se

cs
)

1;
P

L

P
L

~
 E

~
i

r
n

e
~

~

(s
)

G
O

00

G
O

00

0.
24

1.

00
00

0
1.

00
00

0
1.

00
00

0
0.

00
00

4

a a a aaa 0 aaoaoaaaaac
OC0&&000A0&000000000OC
OccCcccccccccOcCcOoccc
OOOOOOOCOOOCGOOOOOCOOC

4.
11

:
R

es
ul

ts
 f

or
 X

u'
s

al
go

ri
tl

ii
n

-
Jz

 c
ri

te
ri

on
,

10
00

 r
es

ta
rt

s.

h
m

d

T
ri

es

T
im

e
(s

ec
s)

P

P

L

PU

E
~

i
r

n
e

o
~

(s

)

60
00

60

00

0.
24

1 .

00
00

0
1.

00
00

0
1.

00
00

0
0.

00
00

4

T
ab

le
 4

.1
2:

 R
es

ul
t's

 fo
r

X
u'

s
al

~
o

ri
tl

im
 -
y

2
 c

ri
te

ri
on

.
50

 r
es

ta
rt

's
.

F
ou

nd

'T
rie

s
T

im
e

(S
~

C
S

)
P

P

L

P
U

E

~
i

l
n

e
~

~

(s
)

60
00

60

00

0.
22

1
 .OO

OO
O

1
 .OO

OO
O

1.
00

00
0

0.
00

00
4

T
ab

0
 A

4.

13
:

R
es

ul
ts

 f
or

 X
u'

s
al

go
ri

th
m

 -
)

i2

cr
it

er
io

n.
 1

00
 r

es
ta

rt
s.

F

ou
il

d
T

ri
es

T

im
e

(s
ec

s)

P

P
L

PU

E

~
i

r
n

e
~

~

(s
)

:
4.

14
:

R
es

ul
ts

 f
or

 X
u'

s
al

no
ri

th
m

 -
 v

2
 c

ri
te

ri
on

.
20

0
re

st
ar

ts
.

F
ou

nd

T
ri

es

T
im

e
(s

ec
s)

P

P

L

PU

E
~

z
m

e
~

,~

(s
)

G
O

00

60
00

0.

22

1
 .0

00
00

1.

00
00

0
1.

00
00

0
0.

00
00

4

CHAPTER. 4. PER.FOR.MANCE AND COMPA4R,ISON

a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0
~ 0 0 ~ 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 3 3 0
- 0 0 0 0 0 0 0 ~ 0 0 3 * 0 * 0 3 0 * * 0 0 3
~ w w w w w w w w w w w w w w w w w w
4

T
ab

le
 4

.1
G

:
R

es
ul

ts
 f

or
 X

u'
s

al
go

ri
th

m
 -

 X
2

 c
ri

te
ri

on
,

50
0

re
st

ar
ts

.
F

ou
nd

T

ri
es

T

im
e

(s
ec

s)

@

T'
L

PU

E
~

i
m

t
?

o
~

(s

)

60
00

60

00

F
ou

nd

T
ri

es

T
im

e
(s

ec
s)

P

P
L

GO
OO

GO

O0

GO
OO

96

49

60
00

60

00

GO
00

63

07

60
00

60

00

60
00

36

12
5

60
00

71

94

60
00

36

87
2

60
00

17

32
2

60
00

19

94
5

60
00

13

92
5

40
0

11
46

1
GO

O0

60
65

40

0
74

83

60
00

63

70
4

GO
O0

51

71
5

60
00

60

00

40
0

15
99

55

40
0

46
73

1
60

00

60
00

60

00

14
59

1
60

00

92
50

CHAPTER. 4. PERFORMRM4NCE AND COMPARISON

CHAPTER 4. PER,FORMANCE AND COMPARISON

I m o m
m a *
0 0 m
L9 03 m
9"

1 m 4 0
m o o
a 0 0
a 0 0
" 9 9
0 0 0

CHAPTER 4. PERFORMANCE AND COMPARISON

N T r . + + m w m L Q w O m L Q q m m M L Q
- w 1 w " = ? " % 9 * e m a - ? " 9 9
5 o m m m m o m m ~ w g + + o ~ r m

+ + T r m t - w t- m w m w
m + t- + m +

CHAPTER 4. PERFORMANCE AND COMPARISON

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ c o 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 ~ 0 * 0 0 0 * o * * ~ w w w W w w w w w w w w w w w

T
ab

4.

22
:

R
es

ul
ts

 f
or

 t
,h

e
ne

w
 a

lg
or

it
ll

ln
 -

 X
2

 c
ri

te
ri

on
,

50
0

re
st

ar
ts

.
F

ou
nd

T

ri
es

T

im
e

(s
ec

s)

P

P
L

P

U

E
~

i
r

n
e

~
~

(s

)
60

00

60
00

0.

12

1.
00

00
0

1 .
00

00
0

1.
00

00
0

0.
00

00
2

CHAPTER 4. PERFOR.MANCE AND COMP44R.ISON

Chapter 5

Summary

Many experiments investigate the effects of two or more factors, in which case factorial

designs are frequently used. In many ~it~uations, a fractional factorial design can be used

to run an experiment a t a fraction of the runs iieeded for a full factorial design. These

designs are particularly useful in industry as screening experiments, to identify important

fact,ors. Orthogonal arrays can be used as factorial designs with desirable statistical p r o p

erties. If an orthogonal array does not exist, a nearly-orthogonal array can be used, where

near-orthogonality can be measured by a number of criteria, some of which were introduced

in Chapter 2.

When an experimenter needs an orgtJlogona1 or nearly-orthogonal array for an experi-

ment, one may not be readily available and may not be easy to find. In such ~ituat~ions,

we wish to have an algorithm to construct an orthogonal array or a nearly-orthogoi~al array

opt,imal according to some criterion. Chapter 3 discussed an algorithnl by Xu (2002) and

introduced a new algorit,hm.

As orthogonal arrays of higher strength are desirable, Chapter 3 extended the J2 and

X 2 criteria to higher strength. The extension to higher strength was applied to the two

algorithins from Chapter 3.

In Chapter 4, we compared Xu's algorithm and the new algorithm in terms of speed

and efficiency for finding an orthogonal array. In comparing t,he algorithms, we also looked

at the impact of the nu~nber of restarts on each of the algorithms. For orthogonal arrays,

Xu's algorithm performs best with a small number of restarts, around 50 or 100. The new

algorithm performs best with 300 to 500 r e~ t~a r t s for very small run sizes and around 1000

for moderate run sizes. While there was no definitive winner between the two algorithms,

CHAPTER. 5 . SUMMARY 80

the new algorithm generally performs better when the number of factors is small relative

to the run size. In constructing nearly-orthogonal arrays, using A2 as a measure, the new

algorithm performed similar to Xu's algorithm. For nearly-orthogonal arrays, the results

suggest that in some situations, finding an optimal A2 design is difficult for both algorithms

and it may be worthwhile to increase the number of restarts.

Future work would include trying to further examine the connection between the J-

criteria of higher strength in terms of the generalized minimum aberration criterion. Using

the algorithms for larger run size would be desirable. Further study could also be done to

look at the unification of more of the near-orthogonality criteria.

Bibliography

Chipman, H., Hamada, M., and Wu, C.F.J. (1997). "A Bayesian Variable-Selection Ap-

proach for Analyzing Designed Experiments With Complex Aliasing", Technom,etrics,

39, 372-381.

Cramer, H. (1946). Mathematical Methods of Statistics. Princeton University Press,

Princeton.

DeCock, D., and Stufken, J . (2000). "On Finding Mixed Ortllogoilal Arrays of Strength

2 With Many 2-level Factors", Statistics and Probabilit~ Letters, 50, 383-388.

Deng, L. Y., and Tang, B. (1999). "Generalized Resolution and Minimum Aberra-

tion Criteria for Plackett-Burman and Other Nonregular Factorial Designs", Statistica

Sinica, 9 , 1071-1082.

Hamada, M. and Wu, C. F. J . (1992). "Analysis of Designed Experinlents with Complex

Aliasing", Jou.mal of Quality Technology, 24, 130-137.

Hedayat, A. S., Sloane, N. J., and Stufken, J . (1999). Orthogonal Arrays: Theory and

Applications. Springer, New York.

Li, W W., and Wu, C. F. J . (1997). "Columnwise-Pairwise Algorithn~s With Applica-

tions to the Construction of Supersaturated Designs", Technometrics, 39, 171-179.

Ma, C.-X., and Fang, K.-T. (2001). "A Note on Generalized Aberration in Factorial

Designs", Metrika, 53, 85-93.

Ma, C.-X., Fang, K.-T., and Liski, E. (2000). "A New Approach in Constructing Or-

thogonal and Nearly Orthogonal Arrays", Metrika, 50, 255-268.

BIBLIOGRAPHY 82

Miller, A. J., and Nguyen, N.-K. (1994). "A Federov Exchange Algorithm for D-optimal

Design", Applied Statistics, 43, 669-677.

Montgomery, D.C.(1997). Design and Analysis of Experiments, 5th edition. Wilery,

New York.

Nguyen, N.-K. (1996). "A Note on the Construction of Near-Orthogonal Arrays With

Mixed Levels and Economic Run Size", Te~h~nometrics, 38, 279-283.

Rao, C. R. (1947). "Factorial Experiments Derivable from Combinatorial Arragenlents

of Arrays", Journar! of the Royal Statistical Society, Supplement, 9 , 128-139.

Tang, B., and Deng, L. Y. (1999). "Minimum Gn-Abermtion for Non-regular Fractional

Factorial Designs", Th,e Annals of Statistics, 27, 1914- 1926.

Wang, J . C, and Wu, C. F. J . (1992). "Nearly Orthogonal Arrays With Mixed Levels

and Small Runs", Technometrics, 34, 409-422.

Wu, C. F. J . and Hamada, M. (2000). Experiments: Planning, An,alysis and Parameter

Design Optimization. Wiley, New York.

Xu, H. (2002). "An Algorithm for Constructing Orthogonal and Nearly-orthogonal

Arrays With mixed levels and small runs ", Te~hnom~etrics, 44, 356-368.

Xu, H. (2003). "Minimum Moment Aberration for Nonregular Designs and Supersatu-

rated Designs", Statistica Sinica, 13, 691-708.

Xu, H. and Lau, S. (2006). "Minimum Aberration Blocking Schemes for Two- and

Three-Level Fractional Factorial Designs", Journral of Statistical Planning and Infer-

ence, 136, 4088-41 18.

Xu, H., and Wu, C.F. J . (2001). "Generalized Minimum Aberration for Asymmetrical

Fractional Factorial Designs", The Annals of Statistics, 29, 549-560.

Yamada, S., Ikebe, Y. T., Hashiguchi, H. and Niki, N. (1999). "Construction of Three-

level Supersaturated Designs ", Journal of Statistical Planming and Inference, 81, 183-

193.

Yamada, S. and Lin, D. K. J . (1999). "Three-level Supersaturated Designs", Statistics

and Probability Letters, 45, 31-39.

BIBLIOGRAPHY 83

Yarnada, S. and Matsui, T. (2002). "Optimality of Mixed-level Supersaturated De-

signs", Journal of Statistical Planning and Inference, 104, 45'3-468.

Ye. K. and Sudjianto, A. (2003). "The Use of Cramer v2 Optimality for Experiments

with Qualitative Levels", under revision, submitted to IIE Transactions.

