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Abstract 

Orthogonal arrays are frequently used in industrial experiments for quality and prod~ctivit~y 

improvement. Due to run-size constraints and level combinations, an orthogonal array may 

not exist, in which case a nearly-orthogonal array can be used. Orthogonal and nearly- 

orthogonal arrays can be difficult to find. This project will introduce a new algorithm for 

the construction of orthogonal arrays and nearly-orthogonal arrays with desirable statistical 

properties, and compare the new algorithm to a pre-existing algorithm. 
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Chapter 1 

Introduction 

The concept of orthogonal arrays dates back to the 1940's to R.ao (1947). Orthogonal ar- 

rays are frequently used in industrial experiments for quality and productivity improvement. 

When an experimenter believes a number of factors may impact a process, orthogonal arrays 

can be used to investigate which factors are active before further studies are done. R.unning 

all possible con~binations of the levels for the factors may not be practical for a variet,y of 

reasons. When the model of interest is a normal linear regression model, orthogonal arrays 

give designs that allow an experimenter to consider a relatively large number of factors in 

relatively few trials while maintaining desirable statistical properties. For situations when 

orthogonal arrays do not exist, we consider the concept of nearly-orthogonal arrays. There 

are a variety of ways to measure the "goodness" of orthogonal arrays and nearly-orthogonal 

arrays, and also a number of ways to actually find them. 

Orthogonal arrays, and nearly-orthogonal arrays, often have desirable statistical proper- 

ties, but are not always easy to find. For some orthogonal arrays, construction can be done 

through existing theory, but in situations where theory does not apply or it is too time- 

consuming for an experimenter to find appropriate theory, an algorithm for constructing 

orthogonal arrays is needed. A number of different algorithms have been proposed for con- 

structing orthogonal and nearly-orthgonal arrays; some of these include a Federov exchange 

algorithm from Miller and Nguyen (1994), an interchange algorithm from Nguyen (1996), a 

threshold accepting technique from Ma et al. (2000), an algorithm for a mixed level orthog- 

onal array with many 2-level factors from DeCock and Stufken (2000), columnwise-pairwise 

algorithms from Li and Wu (1997), and a state-of-the-art algorithm from Xu (2002). 

The st,rength of an orthogonal array is related to the estimability of interaction terms 
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in the normal linear regression model. The higher the strength of an orthogonal array, 

the more interaction k rms  can be estimated independently of each other. In most cases, 

orthogonal arrays of interest are of strength 2, as for strength 3 or higher, construction of 

such an array may not be very easy. 

This project addresses the problem of trying to  find an efficient algorithm for construct- 

ing orthogonal arra.ys and nearly-orthogonal arrays in a timely manner. In addition, we 

look to algorithms which can be adjusted to find orthogonal arrays with higher strength. 

Comparison will be made between Xu's algorithm (2002) and a new algorithm which will 

be introduced in this project. 

In this project, Chapter 2 will introduce the concept of orthogonal and nearly-orthogonal 

arrays and some of their uses, and look at  some of the criteria used to measure near- 

orthogonality. Chapter 3 will discuss two algorithms, one of which is new, that take a se- 

quential approach to find orthogonal and nearly-orthogonal arrays. That is, the algorithms 

find designs by adding one column at a time. Also discussed in Chapter 3 is the extension 

of the algorithms to  try a.nd find orthogonal arrays of higher strength. Chapter 4 will com- 

pare the algorithms in the construction of some orthogonal arrays and nearly-orthogonal 

arrays with small runs. For orthogonal arrays, the algorithms will be compared in ternls of 

efficiency for finding orthogonal arrays and speed. The construction of nearly-orthogonal 

arrays is compared in terms of a statistically justified criterion. 



Chapter 2 

Orthogonal and Nearly-Orthogonal 

Arrays 

Experimenters are often concerned about how changes of certain factors impact a process, 

and want to investigate the effects of these factors sinlultaneously. When the aim of the 

experiment is to estimate the effects of these factors (mean effects, interactions,...), orthog- 

onal arrays can be used. We will first examine areas in which orthogonal arrays are useful, 

followed by a formal definition. 

As we will see, orthogonal arrays are desirable for their properties in estinlating main 

effects and interactions in the normal regression model. In some sit,uations, orthogonal ar- 

rays do not exist. In such cases, a nearly-orthogonal array is often a good alternative. In 

section 2.3, we introduce nearly-orthogonal arrays and discuss what it ineans t,o be "nearly" 

orthogonal. 

2.1 Factorial Designs 

2.1.1 Full Factorial Experiments 

For many scientific settings, investigators are interested in studying a number of factors 

(variables to be studied) simultaneously. Often the goal of the experiment is to study the 

impact that factors have on a response variable of interest. At the beginning of an ex- 

periment, there may be a large number of factors which can impact the response. Before 

continuing study on these factors, it is useful to "screen" out the inert variables and identify 
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the important factors. If the set of (potentially) important factors can be reduced, more 

time can be spent studying the effect of the active factors. 

Setting the factors at a fixed number of values, called levels, a factorial design is often 

used as a plan to run the experiment. When a set of levels has been determined for each 

factor, one way to examine how factors impact the response is to study all possible level 

combinations of all the factors. The hope is to discover how the factors impact the response 

individually, and how they may interact with each other. 

For k factors, with s l ,  ~ 2 , .  . . , sk levels respectively, there are sl  x s2 x . . . x sk different 

combinations for the k factors. To run an experiment which involves each possible combi- 

nation, the experiment requires N = s l  x s:! x . . . x sk runs. 

For a general factorial design, we consider the standard normal regression model for a 

design d, 

Y = Xoao + X l a l  + . . .  + X,a, + E ,  (2.1) 

where Y is the vector of observations, aj the vector of j-factor interactions, Xj  the matrix 

of coefficients for aj (column i corresponds to the coefficient for the i th effect) , and 6 the 

vector of independent random errors which are distributed as N(0, u2) .  When using a full 

factorial design, the main effects and j-factor interactions can be estimated independently 

of each other. 

Example 2.1 Consider an experiment with three factors, each having two levels. 

We refer to these factors as A, B, and C. For each factor, if we consider one 

level to be "low", and the other "high", it is convenient to consider these levels 

as being -1 and +1 respectively. The full factorial design can be represented 

Each row in the design represents one of the experimental runs, which would be 

randomized when implementing the experiment. The number in column 1 refers 
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to the level for fact,or 1? likewise for columns/fact,ors 2 and 3. We refer to X1 as 

t'he design matrix. 

The choice of using -1 and 1 as levels gives bhe added convenience of being 

able to estimate the main effects of the three factors given the response vector 

y wit,h values corresponding to observations for the level set,tings of the factors 

in each row. The vector of main effects, el, can be calculated as 

In designing an experiment as a full faxtorial, not only can main effects be 

estimated independently, but, also the interaction effects. The main effects and 

all interactions can be represented as 

Notice that the first t.hree colu~r~lis are still the same a s  the design matrix, XI,  
representing the main effects, A,B, and C, while the other columns represent the 

interaction effects. AB, AC, BC, and ABC respectively, and can be obtained 

by multiplying the columns across each row (another added convenience of the 

&1 coding). We refer to  X as the model matrix. For a response vector y with 

values corresponding to observations for the level settings of the factors in each 

row, the vector of estimated main effects and interactions, C, can be calculated 

as 

It turns out, t,hat the covariance matrix for C under model (2.1) is diagonal, so 

the effects can be estimated independently of each other. 
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2.1.2 Fractional Factorial Experiments 

While two-level full factorial designs arc desirable as they can estimate all main effect's and 

all linear interactions, running all possible combinations of the factors may not be feasible 

for a variet,y of reasons. These can range from economic limitations, ethical concerns for 

certain combinations of factors, to  combinations that do not make practical sensc or are not 

possible to be run together. In such situations, a fractional factorial design is frequently 

used. 

R.ecal1 that running all possible combinations of factors allows for estimation of all main 

effects and linear interact,ions. It is still possible bo use a fracbion of the runs in the full 

factorial and still estimate many factorial effects. However, in not running all possible 

combinations of factors, the estimates of some factorial effects cannot be fully distinguished 

from each other. nTe refer to  this inability to distinguish between effects as aliasing. A 

desirable design will attempt to ensure that those effects of most interest will not be aliased 

with each other. 

If information is not available as to  what effects may be of interest before creating 

a design, there is the need for a set of working assumptions to rank the importance of 

factorial effects. Three fundamental principles for factorial effects which are used to  choose 

fractional factorial designs (eg. see Wu & Hainada (2000)) are: 

1. Hierarchical Ordering Principle: (i) Lower order effects are more likely to be 

important than higher order effects, and (ii) effects of the same order are equally 

likely t o  be important. 

2. Effect Sparsity Principle: The number of relatively import,ant effects in a factorial 

experiment is small. 

3. Effect Heredity Principle: In order for an interaction t,o be significant, at least one 

of its parent factors should be significant. 

Using these principles, regular fractional factorial designs can be constructed and ranked. 

Under the principles, the maill effects are the most important factorial effects t o  be esti- 

mated, followed by 2-factor interactions, 3-factor interactions, etc ... 

Example 2.2 An experimenter has seven 2-level variables of interest, (A, . . . , G), 

which are t o  be studied simultai~eously. To run a full factorial would take 27 
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runs, but the experimenter wishes to perform the experiment in 23 runs. In each 

of the runs, care must be t'aken in how to select the level for each fador. For 

instance, if two factors are at the same level for each run, it is impossible to 

distinguish the main effects for these factors. In order to run the experiment, 

the experimenter can use the matrix X defined in (2.3), where the interaction 

columns of X will be the factor levels for which to run the additional variables. 

This assignment of variables can be shown through the following generators 

D = AB 

E = *4C 

F = BC 

G = ABC. 

The set, of all columils equal to the identity column I of all 1's is referred to as 

the defining contrnst subgroup: 

I = ABD = ACE = BCF = ABCG 

= BCDE = ACDF = CDG = ABEF = BGE = AFG 

= DEF = ADEG = BDFG = CEFG = ABCDEFG. 

The defining contrast subgroup also gives rise to the a.lia.s pattern, which is the 

grouping of all factorial effects which are aliased. For example, for the main 

effect of A, the aliased factorial effects are 

A = BD = CE = ABCF = BCG 

= ABCDE = CDF = ACDG = BEF = ABGE = FG 

= ADEF = DEG = ABDFG = ACEFG = BCDEFG. 

The effects can be estimated using t,he same method for full factorials, keeping in 

mind that now some effects cannot be distinguished from each other. Using this 

fractional factorial design, the experimenter can only estimate 7 factorial effects. 

In fact, under the fundamental principles, the only effects to be estimated here 

would be the main effccts for factors A, . - . ; G, llilder the assumption that all 

other effects are negligible. 
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In the previous example, the main effects for each of the factors could be estimated in- 

dependently of each other. Keeping in mind the fundamental principles, if our run size 

is sufficiently large enough, we would like to be able to estimate lower order interactions 

which are independent from other lower order factorial effects (interactions involvir~g fewer 

factors). This consideration leads to an important concept, for fractional factorial designs: 

resolution.. 

A design is said to have resolution R (usually denoted by Rornan numerals) if no pfactor 

effect is aliased with another effect having less than R - p factors (see for instance, Mont- 

gomery (1997)). For example, in a resolution I11 design, no main effects are aliased with 

other main effects, but there is aliasing between main effects and two-factor interactions, 

and possibly two-fact'or interackions with each other. In a resolution IV design, main effects 

are not aliascd with other main effects or two-factor interactions, but may be aliased with 

three-factor interactions, a i d  two-fact'or interactions may be aliased with other t.wefactor 

interactions. The resolution of a fractional factorial is, in general, the length of the sinallest 

word in the defining contrast subgroup. A high resolution is desirable, since as the resolu- 

tion increases it allows more of the lower order interactions to be estimated independently of 

other lower order factorial effects, just as the main effects can be estimated independently. 

As mentioned, we would like to find a design with resolution as high as possible. How 

ever, there may be many designs having the same resolution. Further con~parison of designs 

can be done through the minimrum aberration criteria. The miniinum aberration crit.eria se- 

quentially minimizes the elements of the word length pattern (if there are Ai words of length 

1: in the defining contrast subgroup, the word length pattern is the vector U' = (A3: A4, . . . )) 
of the defining contrast subgroup. The purpose of the minimum aberration criteria is to 

keep the aliasing of lower-order interactions and main effects ELS minimal as possible. 

If an experimenter can assume certain higher-order interactions are negligible, then in- 

formation on main effects and lower-order interactions can be obtained by using a fraction of 

the runs of a full factorial design by using a fractional factorial design. Fractional factorial 

designs are particularly useful in screening experiments, to identify those factors that have 

large effects. Regular fractional factorial designs (those with a defining relation) can be 

represented by an orthogonal array, which we will introduce in the next section. 

Not all fractional factorial designs have a defining contrast subgroup. We refer to these 

designs as nonregular designs. While in regular designs, any two factorial effects are ei- 

ther estimated independently or fully aliased, nonregular designs do not have this propert,y. 
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Methods for ranking nonregular designs have been examined by Deng and Tang (l999), 

Tang and Deng (1999), and Xu and Wu (2001). Under these rankings, the best designs are 

generally orthogonal arrays. That is, orthogonal arrays are desiribable for both regular and 

nonregular fractional factorial designs. 

2.2 Orthogonal Arrays 

We now give a, formal definition of orthogonal arrays. 

Definition 2.1 (orthogonal a n n y )  Let S be a set of s sym,bols denoted by  0 , l ; .  . . . s - 1. 

An orthogonal array A with s sgrn,bols, strength t a,nd index X is an N x k array with, entries 

from S such that every N x t subarray of A contains ea,ch, t-tuple from S in emctly X rows. 

An N x k orthogonal array with s levels, strength t and index X will be denoted by 

OA(N, k: s, t ) .  For reasons that will be made clear, the parameter N will be referred to 

as run size, k as the number of factors, and s as the number of levels. These t e r m  will be 

used interchangeably throughout. The parameter X need not be ment,ioned in this notation, 

as it can be determined by the property 

Example 2.3 Consider the following 8 x 7 array: 

This is an OA(8,7,2: 2) since entries from the array are either 0 or 1, and given 

any two columns, the pairs (0, 0), (0, I ) ,  (1, O), (1, 1) occur the same number 

of times (twice), implying strength 2. Note that this array is not strerigth 3, as 

looking at colurnns 1, 2, and 4, the triplet (0, 0, 1) occurs t,wice, but (1: 0, 1) 

does not occur at all. 
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Some useful properties of orthogonal arrays: 

1. An orthogonal array of strength t is also of streligth t*. where 1 _< t* < t .  For this 

reason, we will consider the strength of an orthogonal array as the largest strength 

attributed to that array. 

2. A permutation of runs or factors of an orthogonal array creates an orthogonal array 

with the same parameters. 

3. A permutat,ion of the levels for any factor creates an orthogonal array with the same 

parameters. 

Wllile our definition of orthogonal arrays sta.trd that the set S has symbols 0 , .  . - , s - 1, 

we can replace these symbols with distinct symbols of our choice. For example, if S has 

symbols 0 and 1: we can replace these symbols by -1 and +l and the resulting array is still 

an orthogonal aaray. Froin this, (2.2) is an OA(8,3,2,3), and (2.3) is an OA(8,7: 2,2). In 

fact, by replacing the symbol 1 by -1 and 0 by +1 in example 2.1, the resulting orthogonal 

array is the matrix (2.3). In further examples, for a factor with s levels we will use the 

synlbols 0, . . . , s - 1. 
For full factorial designs discussed in section 2.1.1, in the situation that we have m. 

factors with s levels, the full factorial can be represented by an 0A(s7", m,  s ,  m,). 

For fractional factorial designs fro111 section 2.1.2, a fractional factorial design can be 

represeuted by an orthogonal array. If a design has resolution R., it contains full factorial 

designs on any subset of R - 1 colurnns, which by definit,ion makes the orthogonal array 

strerigth R - 1. 

2.2.1 Mixed Orthogonal Arrays 

The orthogonal arrays discussed in section 2.2 are such that each factor has the same 

number of levels. It nlay not be desirable or possible to use such an orthogonal array in 

some situations (ie. where a machine has one component which can be set t,o 2 levels while 

another which can be set to 3). The concept of orthogonal arrays can be extended to 

situations where factors have diffcrcnt numbers of levels. 

Definition 2.2 (mized or-thuyond arra.y) Let Si be a set  ofsi levels denoted by  0, 1, . . . , si-1 

for 1 5 i 5 v for some positiue integer 11 (si 2 2). We define a niixed orthogonal array - - 
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OA(N, s t 1 s i 2  . .  . s$ ,  t )  to  be an arrwy of size N x k such that k = k l  + k2 + . .  + k ,  and 

the first k1 columns hu,ve symbols from S1, t h , ~  next k2 colum,ns have synrbols from S2. und 

so on, such that given any N x t subarray, each possible t - tuple  appears i n  the same nwn,ber 

0 f  TOUl.5. 

This definition does not require s l ,  sz, . . . , s,: t o  be distinct, but for simplicity we generally 

combine factors with the same number of levels. For example, instead of using the nohtion 

2221, we would use 23. 

We refer to t as the strength of the mixed orthogonal array. The previous comments 

for the orthogonal arrays in section 2.2 hold for mixed orthogonal arrays as well. Note that 

for mixed orthogonal arrays: we no longer consider the colicept of i ndex ,  as the number of 

times a t-tuple can occur may depend on the columns considered, as can be seen in the next 

example. 

Example 2.4 A mixed orthogonal array OA(12,3' 24, 2) 

The ortllogoilal arrays from section 2.1 can be writ,ten in the notation of mixed orthogo- 

nal arrays. For instance, example 2.3 would be an OA(8, 27, 2). Such orthogonal arrays can 

be called synmetrical orthoyonu.1 arrays. From this point forward, we use the notation for 

mixed orthogonal arrays. Just as we can use symmetrical orthogonal arrays for full factorial 

designs and fractional factorial designs, we can do the same for mixed orthogonal arrays, 

and estimation of factorial effects can be done in the same manner. A full factorial design 

will be of the form O A ( N ,  s lss . .  . s,:, k)  where N = nf=l si. 
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2.3 Nearly-Ort hogonal Arrays 

For a given run size, an orthogonal array with factors/levels specified may not exist. Like- 

wise, for a given set of factors and levels, the run size requircd for an orthogonal array 

may not be feasible for reasons as discussed in section 2.1.2. Just because an ort.hogona1 

array does not exist should not mean that thc experiment cannot be performed. An ideal 

compromise is to  creat'e a design that is in some way as close to  an orthogonal array as 

possible. Wang and Wu (1992) considered the concept of these so-called nearly-07-thogonal 

arrays. 

Definition 2.3 (nearly-orthogonal array (Xu(2002))) Let Si be a set of si l e~~e ls  denoted 

by 0, 1, . . . si - 1 for 1 _< i 5 a for some positive integer 21. We definx a nearly-orthogonal 

array NOA(N, s;'s? . - - s?) to be an array of sbe N x A: such that k = k 1  + kp + . . . + ku 

und the first k l  columns have symbols from S 1 ,  th,e next k2 columns have sym,bols from S2 ,  

and so on, such that the array is optim.nl according to some criterion. 

Non-orthogonality can cause problems for dat,a analysis. For non-orthogonal arrays, the 

order for which effects enter into tjhc model is important, a.nd interactions can be partially 

aliased (rieither fully aliased nor orthogonal) wit,h main effects. Harnada and Wi (1992) 

and Chipman, Hamada, and Wu (1997) presented some data-analysis strategies for par- 

t,ially aliased  effect,^. 

One of the major issues in looking at  nearly-orthogonal arrays is deciding what, it, means 

to be "nearly" ort,hogonal. A criterion should be attempting to  measure a notion of de- 

parture from orthogonality and the ability tto compare different designs for their near- 

We will now look at, some of the approaches that have been taken for ineawring orthog- 

onality, and compare some of the similarities in section 2.3.1. We begin with criteria based 

on the model mat,rix. 

If we consider the main effects model, which drops the interaction terms froin (2.1), then 

where is the grand mean, Pi is the ith effect, z, is the corresponding coefficient, and y's 

have errors iid N(0, a2) .  For an array with iV runs, the model can be rewritten in matrix 

form 
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where Y is the vector of N runs, j? = (Po, PI, .  . . ,Dm)', X = (1, XI, - . , xm): x; being the 

vector of zi values for the N runs of the array (the level for factor .i a t  each of the runs) 

and m = Ci(si - 1). 

Let x = [xl/llxl 11,. . . , x,/l(x,ll]. Wang and Wu (1992) proposed thc D criterion 

to  measure the overall efficiency of a nearly orthogonal array, where due to the standard- 

ization of X,  D = 1 iff the xi's are orthogonal to each other. 

In trying to  estimate the effects Dl, . . . , &, then the variance of the least squares esti- 

mator of 3i is minimized when xi, t,he vector of rri values for the N runs, is orthogonal to the 

other columns of X. For any design, \X"X'[ 5 1, and (-grr'"r;'( = 1 iff the original design d is 

an orthogonal array. Then the D crit,erion measures the efficiency of estimating PI , .  . . , Prn 
in (2.4). 

If we let x',? = [rij], then the A2 criterion is defined as 

The A2 criterion measures the overall aliasing between all pairs of columns. An A:! - optimal 

design minimizes Ap, which is useful in that A2 = 0 iff d is an orthogonal array of strength 

2. 

Another way to view A2 is t,o consider the ANOVA model for a design d as defined by 

(2.1). Xu and Wu (2001) defined Aj(d) as a measure of the aliasing between the j-factor 
( A  interactions and the general mean. For -rrj = [xik 1, let 

The generalized nlinimum aberration criterion is to sequentially minimize the terms in 

(Al (d)  ,A2(d), A3(d), . . .) . The generalizcd minimum aberration criterion is equivalent 

to other measures of minimum aberration: the minilnuin aberration crit'erion (Fries and 

Hunter (1980)) discussed in Section 2.1.2 for regular designs, Tang and Deng's (1999) mini- 

mum G2-aberration crit,erion for two-level nonregular designs, a r~d  the nlininluin gencralized 

aberrat,ion criterion (Ma and Fang (2001)) for multi-level nonregular desigi~s. 

Instead of working with the model matrix, it may be desirable t,o work illstead with 

the design matrix only. For design d = [ x ik INxn ,  let njkl (a, b) be the number of rows 
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with column k at  level a E ( 0 ,  . . . , s k )  arid column I at level b E ( 0 , .  . . , s r ) .  Deliote 

nkl ( a ,  .) = nkl (Q, b)  and 7 t k i  (.. b) = C:L~' T L ~ ~  (u,, b )  , where nkl ( a ,  .) can be thought of 

as the number of times a E ( 0 ,  . . , sk - 1 )  appears in column k ,  while nkl( . ,  b) is the number 

of times h E (0, - - . , sr - 1 )  appears in column 1. Ye and Sudjianto (2003) used 

relating this to the sum of squared correlations of pairs of orthonormal two-level contrasts 

for columns k and I .  If & ( d )  = 0 then the two columns have orthogonal main effects. 

Cranler (1946) defined the related measure 

which takes on values between 0 and 1, and is equal to 0 if columns k and 1 have orthogonal 

main effects and is equal to 1 if the coluinns are con~pletely aliased. Ye and Sudjianto (2003) 

proposed 

as a measure of nearly orthogonal main effccts. 

If the columils are balariced, t,hen all elements in a colunin appear the same number of 

times, so nkr(a, .) = N / s k  and nZkl (., b) = N / s l .  This simplifies & ( d )  to 

If nkr(a, b) = N/(sks l )  for all k < I ,  then d is an orthogonal array. The simplified crit.erion 

(2.6) is used by Yainada and Lin (1999); Yamada et al. (1999) and Yamada and Matsui 

(2002). They proposed 

as a measure of the average dependency of all columns. 

Given a design d ,  Ma et al. (2000) proposed the following criterion to measure orthog- 

onality between columns k and I of d: 
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where d(.) is a monotonic increasing function on [0. m) with 4(0) = 0. As a measure of 

non-orthogonality of a design d, for 0(.)  a monotonic increasing function on [07 m) with 

O(0 )  = 0. the function 

is used as a measure of orthogonality. While more general than the X 2  criterion, the D4,@ 

criterion is still ultimately a measure looking at the balance of factor combinations between 

two columns. 

Xu (2002) introduced the J2 criterion for measuring orthogonality. For an N x n matrix 

d = [qk] where column k has s k  levels, define 

where 6(a, b) = 1 if a = b, 0 otherwise, and wk is the weight of the column. For rows i and 

j, cTi j(d) is a measure of the similarity between these rows. If ulk = 1 for all k, Gi j (d)  is the 

number of columns in which rows i and j coincide. Xu (2002) defined 

as a measure of orthogonality in a design. Xu (2003) and Xu and Lau (2006) used J2 in 

power nloments for supersaturated designs. Whereas many criterion have a value of 0 for 

an orthogonal array, Xu (2002) established a lower bound on J2: 

where equalit,y holds iff d is an ortl~ogonal array. 

2.3.1 Connection Between Criteria 

In the preceding section, a number of different measures for near-orthogonality were in- 

troduced. Many of these crit,eria, while appearing to be dissimilar, are actually measuring 
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near-~rt~hogonality in the same way. 

Xu (2002) showed that for a balanced design NOA(N, sl . . . s,), 

The second term of the right-hand side is constant, so for the balanced design, J2 and A2 

are equivalent. 

Also equivalent in the balanced case is a.oe(x2) and A2 through the equality 

The significance of these equivalences is that these criterion are all measuring the balance of 

the nkl(a,  b)'s over all a,  b for each pair I;,  I. This is made even more clear by the following 

lemma from Xu (2003): 

Lemma 2.1 For integers rn, n 2 0, define h(m, 7,) = ~ m , / n ~ ~  n+(2 Lm/n,J + l ) (m-  \ n ~ / n J  n) .  

Let 21, . . . , x,, be nonneg~~tive integers such th,at C zi = m. Thxn C r: 2 1~(m., n,) with. 

equality i# a,ll zi equal LrnlnJ 07. Lrn,/n, J + 1. 

From this lemma, to  find optimal designs witah the A2 criterion (and those it is equiva- 

lent to), it is sufficient to find a design such t,llat nk,[(n, b)'s are within one for all a ,  b, given 

any pair of colunlns k, I. In fact, if such a design exists, Ma et. al's (2000) D$,@(d), in the 

case where d(z)  = x2, O(z) = 1 (which was used by Ma et al. (2000)) will be ininimized as 

well. Also, 4(z) = x2 is related to the X z I  criterion from equation (2.6). 

In an orthogonal array all level combinations in columns k and I appear equally of- 

ten. When considering a nearly-orthogonal array, making nk,l(a, b)'s as balanced as possible 

would intuitively seem a method of making the array nearly-orthogonal. The previous dis- 

cussion on criterion shows that this line of reasoning also has a ~t~atistical justification, and 

that most approaches to considering near-orthogonality are handled using this approach. 

2.4 Construction of Orthogonal and Nearly- 

Orthogonal Arrays 

In some settings, there are a substantia,l number of designs ava,ila,ble which can be obtained 

through existing theory or from tables of designs. However, in some situa,tions, finding 



CHAPTER 2. 0R.THOGONAL AND NEARLY-ORTHOGONAL AR,RAE'S 17 

optimal designs can be difficult. Some orthogonal arrays require a number of different, 

mathematical techniques to find all orthogonal arrays (an essential resource for these t,ech- 

niques is Hedayat, Sloane, and St,ufken (1999)). If an optimal or even a good design is not' 

available, it is likely too time-consuming to examine all potential theoretical methods to  

find a desirable array. We would like a computer algorithm that can find orthogotla1 arrays 

or nearly-orthogonal arrays based on some criterion in a fast and efficient manner. Chaptcr 

3 will examine some algorithms which can be used in the coiistruction of orthogonal and 

nearly-orthogonal arrays. 



Chapter 3 

Two Algorithms for the 

Construction of Orthogonal and 

Nearly-Orthogonal Arrays 

While the mathematical theory exists for the construction of many orthogonal arrays, it may 

not always be enough. If an experimenter does not have the mathematical theory which 

applies for a given situation (if it even exists) tliere needs to be a method to constrlict 

the best design possible. Ultimately, the experimenter wants a design that has some nice 

statistical properties for the run size with the desired factors/levels. In such situations, it 

is ideal to have an algorithm to find am optimal design, or at least one that is near-optimal. 

I11 this chapter, an algorithm for finding "good" designs is presented, and a new one is 

proposed. 

3.1 Xu's Forward Procedure Algorithm using the J2 criterion 

Many attempts have been made at finding efficient algorithms for the construction of or- 

thogonal arrays. Xu (2002) discusses some of the different algorithnls, and introduces his 

own, which will be discussed in this section. In that article, the author shows his algoritllm 

to be superior in terms of both speed and efficiency compared to existing approaches. 

The algorithm sequentially adds columns to an existing design, attempting to find a new 

column orthogonal to the colun~ns already in the design. Furthermore, the algoritllrn uses 
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swapping of symbols in the new column and makes swit,ches based on one which gives the 

greatest reduction in the J2 criterion. 

We begin by examining the operations which will be used in Xu's algorithm involving 

column addition and symbol switching. 

For an N x n matrix d = [xik] where factor(co1umn) Ic has s k  levels, define bij(d) as 

(2.7) and J2 (d) as (2.8) as a measure of orthogonality in a design. 

Corisider adding column c to d, dcnoting the resulting N x ( n  + 1) matrix as d+. The 

columns 1, . . . , n remain unchanged, so the only difference between bi ,j (d+ ) and di,j (d) is 

the consideration of the symbols in d+ from the new column c in rows i and j .  For weight 

wk which is pre-assigned to column c with sr, levels, 

for 1 5 i , j  5 N. To update J2 ,  

where tlhe last equality comes from the fact that, btj(c) can only take on values of 0 or 1. 

This also allows for fast c:omputat,ion of J2(d+) 

Now consider switching distinct symbols in rows a and b of the newly added column 

c .  Then for j # a ,  b, daf(c) = dj , , (c)  arid dbf(c) = 6 j , b ( ~ )  are switched. The switch does 

not effcct c ~ ~ , ~ ( c ) ,  as the values are dist,inct, so this value is 0. To examine the difference 

in J2(d+) ,  first consider fixing a certain row j # a,, b. The effect of the switch only effects 

di,j(d+) for i = a,, t)? all other rows are un<:hanged. In the old calculation for J2, the terms 

which have been changed in the calculation are 

After the switch, these terms will now be 
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Looking at the difference the swap 11as made, the results are: 

For the overall effect on J2(d+) ,  the symbol swap will reduce J2(d+) by A(a, b) such that 

3.1.1 The Algorithm 

As discussed, Xu's algorithm sequent~ially adds columns t o  an existing design. A random, 

balanced column is added, and the algorithm searches all possible switches of elements in 

the new column, perfomling the best switch if it exists. This process continues until a lower 

bound is reached, or no improvement is made. If the lower bound is not reached, another 

attempt will be made a t  finding an orthogonal column, up to  a prespecified number of times. 

The algorithm proceeds as follows: 

1. For k = 1, . . - , n, compute the lower bound L(k) by equation (2.9). 

2. Specify an initial design d with columns (0 , .  . . , 0 , 1 , .  . . , 1, . . . , sl - 1 , .  . . , sl - 1)' and 

(0;-- ,s2 - 1 ,0 , . . .  ,s:! - I , . . .  , O ; . . , S ~  - I)', and compute Gij(d) and J2(d) by 

defi~iition. 

3. For k = 3, . . . , n, do the following: 

i. Generate a random balanced sk-level column c. Compute J2(d+) by equation 

(3.2). If J2(d+) = L(k), go to  st,ep (iv). 

ii. For all pairs of rows a and b with distinct symbols, compute A(a, b) according to 

equation (3.3). Choose a pair of rows with the largest A(a., b) and exchange the 

symbols in rows a and b of column c .  Reduce Jz (d+)  by A(a, b). If J2(d+) = 

L(k ) ,  go to (iv); otherwise repeat (ii) until no further improvement is made. 

iii. Repeat (i) and (ii) T times and choose column c that produces the smallest 

J2(d+>. 

iv. Add colunm c as the kt11 column of d, let J2(d) = J2(d+), and update bi,j(d) 

by equation (3.1). 
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4. Return the final N x n design d. 

The quautity T in the algorithm rcprcseiits tlie number of times we try to add an additional 

column. That is, when the algorit.hni attenlpts to add a column and does not meet the lower 

bound when switches are exhausted, then we try again with another random column. we 

refer to T as the number of restarts, that is, the number of times we have to start a colu~nn 

from t,he beginning. The number of restarts play an important role in the efficiency of the 

algorithm. The effect of T will be studied in Chapter 4. 

Xu's algorithm has thc advantage of being columnwise, which allows for balance in each 

column a t  each iterat,ion. In addition, if the current design at  any time is not ortl~ogonal, 

it has been chosen as "near" orthogonal as possible according to the J2 criteria. While the 

algorithm is designed in a way to keep speed in mind, the number of rows lias a major 

impact on the speed. This is due to  having to look at all possible distinct pairs in a colunln 

for the design, as well as having to  provide updates for a nunlber of rows after a switch. 

3.1.2 Xu's Algorithm using the X2 criterion 

R,ecall from section 2.3.1 that in tlie ~ituat~ion where columns are balanced, the J2 and x2 
criterion are equivalent. In fact,. Xu's algorithm can be used with the x2 criterion instead 

of J2 .  In order to usc the x2 crit,erion, we will establish operations for column addition and 

synibol switching used in the algorithm for the X2 criteria as opposed to  J2 .  

For an added colun~n, we need to couiit the nkl ( i ,  j ) ? s  for all previous columns I; = 

1 , .  . . , 1 - 1, from which we can get x:, and calculate x2 by definition. For symbol switching, 

suppose that a colunm c has been added to the current design, such that it is t1he lt,h colu~i~ii. 

Call this design dl. Let car and c,y be the elenleiits in rows u: and P of c that, we wish to 

switch. Denote z,i arid zpi as the elements in colunm i for rows cu and p. Making the switch 

decreases nIkl (xak, cal) arid nl;l (zijk. cijl) by 1: and increases nk. (xak, cpl) and n,kl (zak, car) by 

1, for all I; = 1, . . . , I  - 1. If t,he design after the switch is denoted as d:, for a particular 

column k :  if z,k = zpk, then xil(d:) is unchanged. If the e le~l~ents  in colunln I; arc different, 
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the impact on Xir (dl)  is 

In general, for a symbol switch in rows cu and P. we can define 

where Akr(a ,  P )  is computed as the remaining terms of (3.4) if x,r; and xpk are different, 

and 0 otherwise. Then a swap of the elements in column 1 of rows a and P will reduce 

X 2  (dl) by A,z ( a ,  p) , where 
1-1 

A,, (a ,  l i) = C Au(n ,  P).  (3 .5)  
k = l  

We now adapt Xu's algorithm to the X2 criterion as follows: 

replace all occurrences of J2 with X 2 .  

replace A(a, b) by Ax2(u,, b) given by (3.5). 

replace the lower bounds L(n) by 0. 

in step 3(a), the updated X2 is calculated by determining the nk.(i, j) 's for k = 

1, . . . ,  1-1. 

3.1.3 Comments on the Algorithm 

With the equivalence between the J2 and X2 criterion for a balanced column, for any random 

balanced colui~ln added to a current design, using either crit,eria will ultiinately lead to t,lle 

same design. This is due to the best symbol switch for one criterion necessarily being t,he 

best for the other crikrion. However, the manner in which the algorithm makes calculations 
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for the criteria is markedly different. 

The J2  criterion is driven by the the similarities between rows. U7hen a column is 

added, the update is bascd on checking the siinilarity in the added column. When searching 

for switches t o  be made and upon making a switch, changes are based upon all rows affected. 

One of the nice properties of the J2 criterion is that calculations for the current column are 

not influenced by how many columns already exist in the design. UThile i t  may be harder 

to  find a suitable column with many preexisting columns, the actual calculations are based 

on the &j 's ,  which is not i~r~pacted if the present column is the third or the twentieth. 

On the other hand, the X2 criterion is driven by the nkr( i , j ) ' s ,  the number of times 

each pair of symbols between columns I; and 1 occur. To compute X2 with a new column, 

the update involves calculating these counts for the new column and each of the previous 

colunlns. This situation also occurs with the switching of elements. in that the <:alculations 

involve having t o  look a t  the influence the switch has on the current column with the 

previous columns. In contrast to  the J2 criterion, as the nlin~ber of columns in the design 

grows, the X2 criterion takes longer t o  calculate. 

With modern computation, one criterion may be able t o  use computational features of 

a programming language to gain an edge over the other in t,erms of speed. However, we 

can still get a sense of how these criterion can impact the speed of the algorithin. The x2 

criterion will run faster when there are less columns, as it is quicker to go over the columns 

rather than the number of rows in looking for switches. However, as the number of columns 

increases, the X 2  criterion should take longer to  calculate, and may lose the advantage to  

the J2 criterion. 

3.2 A New Algorithm Using a Sequential 

Approach 

This section will introduce a new algoithinm using x2(d) = Ck<, X i l ( d )  as defined by 

(2.6) as a measure of near-orthogonality. Dropping the denominator, and instead using the 

simpler 

allows for a fast update, and can be used to  drive the algorithm. 

The algorithm follows Xu's in the idea of adding columns sequentially. However: instead 
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of adding a random column and attempting to make switches to  improve tlie orthogonality of 

the  design, we will inst,ead take a sequential approach for the rows t o  add the new column. 

That is, elements will be added to a new column one row at  a time, based upon which 

element seems best a t  that  time. 

Before presenting the algorithm, we will introduce some new notation and exarriine some 

of the quantities used in the algorithm for adding one symbol at a time in the new column. 

For an N x (1 - 1) design d in which we are looking to add column I ,  let 

the first h rows, where a$ = (al l , .  . . , x(h,-l)l, b*)'. 

Denote x:(hb*) as tlre criterion evaluated with h rows using symbol b* in the last row 

(row h,) for column 1 (ie. using d!:? from equation (3.7)). To evaluate tlre criteria using 

symbol b* E (0, . . . , sl - I}, the update can be done easily using X2(h-1), the X2 criteria 

using the first h - 1 rows. Looking a t  column k and t,he new column, thcre is now one more 

instance of (xhk, b*), so 

(h-I) where n.kl (a: b*) is the number of occurrences of (a, b*) in the previous h - 1 rows. 

When adding a syn~bol for the first row, any of the elements 0, . . - , sl - 1 can he chosen. 

Choosing b* fro111 these elements and looking t o  the previous coluin~ls (the symbols in 

the previous columns are fixed), the pair nkr(a,  b*) will have a value of 1, since there is one 

occurence. All other combinations for elcmcnts from columrls I; and 1 is O for I; = 1, . . . ,1- 1. 

The11 
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R.egardless of the choice for the first row, the criterion is the same, so it need onlv be 

calculated once at the onset of the algorithm 

To look at the X 2  criterion after h rows, we simply need to add the criterion over the 

previous columns. That is, 

If X:(N) = 0, then mlnnm 1 is orthogonal to  the previous 1-1 columns. 

3.2.1 The New Algorithm 

Just, as in Xu's algorithm, we still use a set number of restarts for attempting t,o find an 

orthogonal column if one cannot be found. Also, after a coluinn has been found, and is not 

orthogonal, Xu's algorithm can be used if desired to try and find an orthogorlal column. 

However, use of Xu's algorithm combined with the new one will add considerable time in 

con~putat~ion. 

The algorithm proceeds as follows: 

1. Specify an initial design d with c:oluirms (0, . . . ,0,1,  . . . , I ,  . . . , sl - 1, . . . , sl - 1) and 

(O,... , s2 -  1 , 0 , . . .  , s 2 - 1  , . . .  , 0 , . . .  , s 2 - l ) . L e t 1 = 3 .  

2. Randomize the rows of d .  

3. Let zr = 0 and h = 1. 

5. For b* = 0 , .  . - , sl - 1, calculate x1 2(h'b*) = xL:ll ,X2(h,b*) is calculated using (3.8) for k 
(h)  and 1 from dLb. . Use the best b* such that nJkl (a,  b* ) 5 I\iI(sks1) for k = 1, . . . , 1  - 1. 

If no such choice exists, take the best b* with n,kl(a, b*) > N/(sksr).  In the case of 

equally good choices, take the largest or randomly choose between them. 

6. Rtpeat Steps 4-5 for h = I ; . . .  , N .  

7. If x2(d)  = 0, add column c to the design, go to 9. 

8. repeat 5-7 T times. Choose the column c which nlinin~izes )r2(d+). 

9. Repeat Steps 2-8 for 1 = 3, - .  . , n,. 

10. Return the final N x n design d. 
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3.2.2 Algorithm Using the J2 Criterion 

The new algorithm can be used with the J2 criterion instead of the x2 criterion. 'I'o use the 

new algorithm, we now establish those quantities which will be needed. 

Using J2, we store the 6's from the design with 1 - 1 columns, For an added 

element. 

The11 calculating the J2 criterion at the current row is a matter of adding in the 6's for the 

previous h - 1 rows, so 

In addition, from equation (4) in Xu (2002), 

Combining equations (3.9) and (3.10), 

h-  1 h- 1 

+ 2 ' ~  C d(x,i, b')6,1~(di-1) + el: 6(2,l, b*). 
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This decomposition implies a fast update, as oldy the last two terms of this expression 

depend on the element b*. All the other terms can be stored from the previous rows and do 

not need to be recalculated. I11 <addition, the c5(zor, rpr) take on values of 0 or 1, so the last 

two terms can be calculated quickly. 

The algorithrr~ proceeds the same way as for 312, simply by using .J2 instead of x2 in step 

5. However, in finding the best choice using J2, if we wish to ensure nkl(a, h)  5 N/(sksl) 

(which we need for an orthogonal array), the nZkl3s arc additional information to be stored, 

as they are not used in the calculation of J2. In addition, the equivalence of the criteria is 

assuming a balanced column. The impact of this will be discussed in the next subsection. As 

the algorithm is based on a subset of rows in the design, the criteria may not be equivalent 

a t  a certain row, and the best choice may be different. 

3.2.3 Comments 

From equation (2.10), the columns of the array must be balanced (each element appears 

the same number of times in the column) for the equivalence of J2 and X2 . This balance 

is more important than it might initially seem, as can be demonstrated by the following 

example. 

Example 3.1 Consider the designs Dl and D2: 

The design Dl is balanced, but in design D2 the first column is not balanced. 

Calculating X2 and J2 for both designs gives X2(D1) = X 2 ( ~ 2 )  = 213, whereas 

J2(D1) = 16 while J2(D2) = 17. Using the x2 criterion as setup in algorithm 

(which assunles balance) shows no difference between the two designs, while 

under the J2 criterion, Dl is preferred. In fact, if we calculate X2 by definition 

(2.5), X 2 ( ~ 1 )  = 213, while X 2 ( ~ 2 )  = 0, as the cross-product of the two columns 

is 0. 
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The preceding example illustrates that some care inust be taken when considering the 

equivalence of the different criteria. In particular, for columns k and I ,  if N/sk is integer 

(and/or N/sr) where it is possible to have a balanced column, if N/sksl is not integer, 

balance may need to be forced in constructing the column row by row. 

In light of this, it is useful to introduce the notion of weak strength (Xu (2003)). A design 

is said to be of weak strength t ,  denoted by t - ,  if all level combinations appear as equally 

often as possible. In other words, the difference in the count of possible level combinations 

for any given t columns does not exceed one. If a design is of strength t ,  all possible level 

conlbinations occur the same number of times, so it has weak strength t-. On the other 

hand, a design being weak strength t- does not imply weak strength (t - I)-,  as can be 

seen in example 3.1. 

In the case of orthogonal arrays, from the properties of strength, strength t ensures not 

only all subsets of t columns are balanced, but also all smaller subset of t* = 1,2, . . . t - 1. 

As noted above, this does not hold true for nearly-orthogonal arrays. Simply trying to 

make the nljs as close to each other as possible for a given .i and j is not enough to ensure 

column balance throughout the design. The reason for this can be inore clearly seen by the 

decomposition of J2 given by: 

The first part of this decomposition of J2 corresponds to the balance within each single col- 

unln and is minimized if the array is of weak strength I-, while the second part corresponds 

to column pairs, and is minimized if the array is of strength 2-. The X2 criterion is only 

based on weak strength 2-. 

Since X2 and J2 are based on the occurrences of the nklis, there are instances where we 

can construct an optimal design using a pre-existing orthogonal array. For instance, if we 

have an OA(N,sl . . . s , ,  2): then removing any row will still have all the nkl's within 1 (since 

they all occur the same number of times in columns k and 1 by the definition of orthogonal 

array), so by Lemma 2.1 the design is an A2 optimal NOA(N - 1, sl . . . sm).  

We can also add rows to an existing orthogonal array to make it A2 optimal. If we have 

an existing OA(N, sl - . . s, ,2) ,  adding the row (0, . . . ,0)  will still result in an A2 optimal 

NOA(N + 1, sl . . .  s,,) by Lemma 2.1. Furthermore, adding the row (1, . . . ,1)  is also an 

A2 optimal NOA(N + 2 ,  sl . - . s , ) .  In fact, we can continue this process by adding up to 
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min, (s i )  rows in this nlanner. 

3.3 Extension to Higher Strength 

Even if an orthogonal array of strength 2 can be found. if a strength 3 or higher orthogonal 

array can be obtained, it would be preferred. This section will look at extending the J2 and 

X 2  criteria and algorithms to higher strength. 

3.3.1 The J3 Criterion 

The J2 criterion can be extended to J3 and later to arbitrary Jk for strength 3 and higher. 

For an N x n matrix d = [ x i j ] ,  with weight u)k for column k having sk levels, define 

4 j ( d )  as (2.7). Define 

which is similar to J2 ,  but the power is replaced by 3. By defining J3 as (3.11), J3 can be 

used as a measure of closeness to strength 3 as can be seen by the following lemma. 

Lemma 3.1 For an N x n inatrix d = [z , j ] ,  with weight u)k for column k hwv2n.g sk levels, 

where equality holds i f l  d is an. orthogonal array of stren,gth, 3. 

Proof of Lemma 3.1. Define nkr,(a, b, c )  = li : ~ i k  = a ,  zil = b, xirn = cl, the number of 

times the levels a, b, and c appear in columns k ,  I ,  and m, respectively. Note that 

This holds since the left hand side is over all pairs of rows, and takes a value of 1 for each 

of the 'nklm,(a, b, c)'s and the other nkltn(a,  b, c )  rows it occurs with. 

Note that the right hand side of the previous formula can be partitioned into three 
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sums based on the number of distinct columns are being looked at: one, t'wo, or thrcc. In 

addition, the order in which the columns are considered makes no difference on the count 

(ie. n,kl,(a, b, c) = n,kr(c, a ,  b ) ) .  

To establish the ineq~alit~y, 

n n n  T,V 1 

3 

n n n  sk -1  &/-I  sm-1 3 

= 1 w'~w1w'm [I x 1 n,klm (a,  c)2] - N (2 'UIk) 
k=1 /= I  m = l  a=O b=O c=O k= 1 
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where equality holds when the design is an orthogonal array of strength 3. 

For the inequality, the Cauchy-Schwartz inequality is used. The Cauchy-Schwartz in- 

equality states that for xl ,  x2,. . . . xn,  yl, y2,. . . , Yn E X, we have: 

where equality holds iff z l  / yl = z2/y2 = . - . = x,,/Y,~,. 

For an N x n design matrix d! note that for fixed columns k ,  1 and m with sr;, s,, and 

s,, levels respectively, we have 

The number of summations reduces when t,he subscripts reference multiple columns which 

are actually the same column. By the definition of n,kl,(a, b, c), the columns which are 

referenced that are the same can only be count,ed if they are also at the same level (it is 

impossible for a row to have one factor a t  two different levels). 

Looking at distinct columns k ,  1, and m,, there are s r , s / s ,  possible combinations for the 

levels of these factors. By Cauchy-Schwartz 



CHAPTER 3. TWO ALGORITHMS FOR CONSTR.UCTIOAi OF OAS/N0,4S 32 

where equality holds iff all nklm(a, b, c) are the same for all possible values of a ,  h, and 

c. This implies that for these columns, every triplet appears the same number of times. If 

this holds for every k, 1, and m,, the design is an orthogonal array of strength 3. 

Similarly, if we consider having two distinct columns, k and m,  with s k s l  different com- 

binations, by Cauchy-Schwartz, 

where equality holds iff all nkkr(a,  a,  b) are the same for all possible values of a and b. 

This implies that for columns k and 1 every pair appears the same illiinber of times. 

Finally, for a single distinct column, 

where equalit,y holds iff all nkkk(a,  a ,  a )  are the same for all possible values of a .  This 

implies that column k is balanced, with each level occurring the same ~ lu~nbe r  of times. 

As mentioned, if for every k, 1, and m., each t,riplet occurs the same number of times, the 

design is an orthogonal array of strength 3. If it is an ortllogonal array of strength 3, then 

for any pair of columns, all possible pairs of levels occur the same number of times, and the 
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design is balanced. Then the equality for 2,J3(d) holds iff the design is an orthogonal array 

of strength 3. 

Example 3.2 Consider the following design matrix 

For this matrix, the first 3 columns form an OA(8,  23, 3). Checking the inequality 

for these first 3 columns, 2J3(d(l-3)) = L3(3) = 216. The entire matrix is not 

an orthogonal array of strength 3, and checking the inequality, 2J3(d) = 432 

while L3(4) = 384. 

With the ext,ension of Jz, the hope is to extend Xu's algoritlm to the criterion for higher 

strength. In order to  do so, we need to extend the calculations for column addition and 

symbol swapping. We start with column addition. 

Let column c with weight 7u, and s, levels be added to the original design d, resulting 

in d+ .  The new design is such that 
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Updating J3,  

where the simplification of the formula is due to cFi,j(c) only taking on values of 0 or 1. In 

addition, when weights are all assigned a value of 1, if bij(d)2 is stored, then this updating 

involves no multiplication. 

Another aspect of Xu's algorithm involves swit,ching symbols. Consider switching dis- 

tinct symbols in rows a, and b of the newly added column. Then for j # a,  b, the values 

b, , j(c) = bj;,(c) and bb,j(C) = bj,b(c) are switched. The switch does not effect c~,.~(c),  as the 

values are distinct, so this value is 0. 

Looking at  the difference in J3(d+), first consider fixing a certain row j # a ,  b. In regards 

to  row j ,  the change on J3 of the switch are based on rows a and b, all other rows have been 

unchanged. In the old calculation for J3, the terms of interest in calculation are 

In the calculation of J3 after the switch, these terms will now be 

and 



CHAPTER 3. TWO ALGORITHMS FOR CONSTRUCTION OF OAS/NOAS 35 

Looking at the difference the swap has made: 

and 

We note that A(a, b) requires no multiplication, as ba j(c) and bb,j(c) are either 0 or 1 and 

6,,j(d)2 and 6b,j(d)2 can be stored for faster calculation. 

3.3.2 An Algorithm 

Following the same idea as Xu's algorithm, a new algorithm is proposed. The new al- 

gorithm adds columns to an existing design to find an O A  of strength 3, or an NOA3 

(nearly-orthogonal array optimized using the J3 criteria). The algorithm will repeat T 

times if no lower bound is achieved. Depending on the nat,ure of the problem, this T can be 

adjusted depending on the orthogonality of the existing design. The functions used will be 

swap, involving the interchange of symbols, and exchange, involving changing a candidate 

column with a new one. 

The algorithm: 

1. Compute the lower bound L3(k)  for k = 2, - . . n. 
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2. Setup the first 2 colunms, specified as (0, . . - , O .  1, . . . ,1 ,  - . . , sl - 1, - . . , sl - 1) for 

coluinnl, and ( ( ) , . . .  , ( ) , I , . . .  , I , - . .  , s p - - l , . . .  ,sp-1) forcolumn2. C ~ m p u t , e G ~ ~ ( d )  

and J3(d).  

3. For k = 3 , . . .  , n :  

i. Generate a random balanced sk level column c .  Compute J3(d+) and test against 

L3(k), goto iv) if equality holds 

ii. For all rows with different symbols, calculate A(a., b) according to (3.12). Choose 

the a and b for which A(a,, b) has the greatest value. Swap these 2 symbols, and 

reduce J3(d+) by A(a,, b). If J3(d+) = L3 (k) ,  goto (iv). Otherwise, repeat step 

(ii) until no improvement can be made. 

iii. Repeat i) and ii) T times, choosing column c which results in the smallest value 

for J3(d+). 

iv. Add column c to the design, and update values of J3(d), Gi (d) and Gi,j (d)2 with 

J3 (d+) , hi, (d+) and Gif (d+)2, respectively. 

4. Return the N x n design d .  

If the algorithm is to result in an OA of strength 3, then in step 3.ii), the equa1it)y must 

hold. The choice for T makes a bigger impact on the speed of this algorithm when using 

J3. In finding an orthogonal column that maintains strength 3, the potential coluinils the 

algorithin can find is generally n~uch smaller than that of strength 2. A large value for T 

will enable more time to find an orthogonal column, or at  least a nearly-orthogoi~al column, 

but will also take much time. A small value will take less computation, but may result in a 

poor choice for the added column. 
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3.3.3 Comments on J3 

A useful expansion of J.j is 

as we look at the occurrence of (a,b,c) over all possible pairs of rows. 

Using this derivation of J3, if an NOA of N x n is desired (that is, we know an OA 

does not exist), if we start with an N* x n design that is an orthogonal array of strength 

3, where N* 5 N, then any added row will have the same effect on J3 in regards to the 

N* x n design. Hence, to find a design with reasonable J3, we can look at miilimizing the 

(N - N*) x n matrix for the remaining rows according to the J3 criterion. This holds as 

well for the J2 criterion. By trying to find an optimal design over less rows, the algorithm(s) 

can run faster and hopefully more efficiently. 

3.3.4 Extension to Higher Strength 

J3 can be extended to look for higher strength. We consider the case where all weights have 

a value of 1, but the incorporation of weights is natural. In general, for strength S, define 
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The main reason we can make this generalization is that the definition is still over pairs of 

rows. In particular, consider 

the number of rows that the combination of levels ul, 02 ,  . . . . a s  appears in columns kl, . . . , ks 

respect,ively. Then 

since the left hand side is over all pairs of rows, and each of the nk ,...k,( a l ,  . . . , as)'s will 

be counted with the nk, ...ks ( a l ,  . . . , 0,s) rows it occurs with. 

The Cauchy-Schwartz inequalit,y will still be applied in a similar manner as was done 

for J3, where 

can be partitioned into subsets such that the number of distinct columns being considered 

are 1, . . . S. The added calculation to colunin addition and symbol switcliing should be 

proportional to the number of these partitions, just as we saw in the case of J3. Likewise. 

Xu's algorithm can still be used for the desired Ji .  

3.3.5 The x2 Criterion for Higher Strength 

Instead of using the X2 criterion to nleasure the silnilarity of two columns at a time, a 

modification can be made to consider three or more columns at a time using the new 

algorithm. We first look at ext,ension to three columns and those quantities which will be 

needed for the algorithm. Our notation remains the same, with the exception that quantities 

involving two columns now involve three columns. This can be easily ext,ended to more than 

three columns for higher strength. 

Let nklm(a, b, c) be the number of rows in which symbols a ,  b, and c appear in colunln 

k ,  I ,  and m respectively. Define 



CHAPTER, 3. TWO ALGORITHMS FOR CONSTR,UCTION OF OAS/NOAS 39 

which has a value of 0 iff all nklm.(u,, b, c) = N/'(sksrs,). Then we can use ~ ~ ( d )  = 

zk< l ,<m,  xilrn (d) RS a measure of near-st,rength 3, which takes on a value of 0 if x;~,, = 0 for 

all k, b ,  and m,, which implies a strength 3 orthogonal array. In order to simplify calculations, 

we use the simpler 

A fast update over three columns is done in the same manner as was done over two 

columns. If we are trying to  add column m,, 

When considering the first row, any of the symbols O,1,. . . , s ,  - 1 can be used, and 

To measure the near-strength 3 orthogonality of the new column compared to all previous 

columns, we use 
2(hc*) - 

Xm. 
l<k<l_<m-1 

For a strength S orthogoilal array, we simply need to use the X2 criterion over S columns. 

For the columils kl, k2,. . . , kS, with sl, s g ,  . . . . ss symbols respectively. let nklk2...ks(al, a,2, 

. . . , as) be the number of rows in which the coinbination of (al ,  a,g, . . . , as) appears in 

columils kl, k2, . . . , kS. Then 

can be used, and quantities can be established as was done for streilgth 3. 

3.3.6 The Algorithm 

The algorithm proceeds in the same way as for 2 columns. We will denlollstrate how the 

algorithin proceeds for three columns, but can easily be extended to higher strength: 
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1. Specify an initial design d with columns (0, . . . ,0 ,1 ,  . . - , I , .  . . , sl - 1. . . . , sl - 1) and 

(O,...  , s q  - 1 , 0 , - - .  ,sq - I , . . .  , 0 , . . .  ,sq - 1). Let m = 3. 

2. R.andomize the rows of d. 

3. Let xm = O  and h,= 1. 

( h )  ( h )  (h) (h)  (h )  4. Let d,,,, = [xl 1x2 1 - . . Ix,,,], the first h rows, where x,,, = (xll, . . . , ~ ( h - ~ ) , ,  c*)'. 

2(hc*) = ~2: X2(hc*) is (3.6) calculated using 5. For c* = 0, - - . , S, - 1, calculate x,, 
(h)  columns k, I and m from d , , .  . Use the best c* such that nklm,(u., b, c* )  5 N/(sksrs,) 

for 1 5 k < 1 5 m - 1. If no such choice exists, take the best c* with nklm(a,, b, c*) > 
hT/(sksl~,). In the case of equally good choices: take the largest or randomly choose 

between them. 

6. Repeat Steps 4-5 for h = 1, . . - , N.  

8. repeat 5-7. T times. Choose the column c which minimizes X2(d+). 

9. Repeat Steps 2-8 for m = 3, . . . , n. 

10. Return t,he final N x n design d. 

3.3.7 Comments 

As in t,he case with the X2 criterion for strength 2, some care must be taken for the balance 

of a design. For strength 3, if t,he n.kl,'s are all equal, then the n.kl's must be all equal as 

well. However, if equality cannot be achieved, minimizing X2 may not necessarily result in 

a design which has nice properties in terms of the njklls. 
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Example 3.3 Consider the designs Dl  and D2 

Calculating X2 and J2 for both designs gives X'(D~) = x 2 ( ~ 2 )  = 2, whereas 

J3(D1) = 342 while J3(D2) = 330. In this example, the J3 criterion ranks D2 

as a better design. The columns are balanced, and we have a design of weak 

strength 3- for both designs, but D2 is weak strength 2-, while D l  is not. 

Example 3.3 enforces one of the issues that can arise using t,he new algorithm for finding 

nearly-orthogonal arrays. In order to use the X2 criterion when we can not assume that all 

nklm.?s can be balanced, we should also check for balance or near balance among the ??,k['s and 

balance within each column. This check for balance is already considered in the J-criterion. 

If we are looking for a near-strength 3 (or higher) orthogonal array, the J-crit,erion will try 

to keep balance of lower levels of near-st,rength as well. If instead one uses the X2 criterion, 

extra time must, be spent t,o ensure balance on smaller dimensions. 

3.4 Designs with a Larger Number of Runs 

There are some limitations with the algorithms presented as the run size increases. For Xu's 

algorithm, having to check all possible swit,ches can be too time-consuming due to having 

to consider too many switches. In tjhe new algorithm, too lnany runs means that there is 

much more unknown at a certain row, and makes it harder to find a good column. 
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3.4.1 A modification on Xu's Algorithm 

The idea behind our modification of Xu's algorithm is that if an orthogonal array exists. 

each element of the added column must occur the same number of times with each element of 

the previous columns. We can choose the new column so that it is at least orthogonal to the 

first column. In addition, if we restrict switches such that we will not lose the orthogonality 

to the first column, the number of switches to check is greatly reduced. 

The algorithm proceeds as follows: 

1. For k = 1, . . . , n, compute the lower bound L(k) by equation (2.1) 

2. Specify an initial design d with columns (0,.  . . , 0 , l , .  . . , 1 , .  . . , sl  - 1 , .  . . , sl  - 1)' = 

( ~ ( o * ) ~ ,  x ( ~ * ) ~ ,  . . . , x ( ~ ,  -1*)1), where z(i.)l denotes the rows in column 1 having element 

i*, and ((I,... , ~ 2 - 1 , 0 , . . .  , ~ 2 - - 1 , - . .  , 0 , . . .  , s2- I ) ' ,  a ~ l d c o m ~ u t e & j ( d )  and J2(d) 

by definition. If J2(d) = L(2), then no = 2 and T = TI; otherwise, no = 0 and T = T2. 

3. For k = 3, - - - , n, do the following: 

(a) Generate a random balanced sk-level column c as follows: create s l  random 

balanced columns of size N* = N/sl,  call these ci, for i = 1, . . . , sl .  Match 

these ci to z(i.)l. The column c is orthogonal to column 1. Compute J2(d+) .  If 

J2(d+) = L(k), go to (d). 

(b) For all pairs of rows u and b in z(ii)l with distinct symbols in c for i = 1 , .  . . . s l ,  

compute A(n, b). This forces orthogonality with colunln 1. Choose a pair of rows 

with the largest A(a,, b) and exchange the symbols in rows a and b of colunln c. 

R.educe J2(d+) by A(a, b). If J2(d+) = L(k), go to (d); otherwise repeat (b) 

until no further improvement is made. 

(c) Repeat (a) and (b) T times and choose column c that produces the smallest 

J2(d+). 

(d) Add column c as the kth column of d, let Jz(d) = Jz(d+), and update Gi,j(d). 

4. R.eturn the final N x n design d .  

The main advantage to this algorithm is the reduction of the number of switches to 

consider. N711ile this may seem to be too restrictive on where switches can be made, it 

should be kept in mind that in an optimal design, orthogonality would be kept with this 
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first column for an orthogorlal array. That is, if we were to switch distinct elements from c 

in z ( i* )~  and z(j*)l, losing orthogonality with column 1, switches must be made that would 

eventually make the column orthogonal once again. In addition, column 1 can be randonlly 

chosen among any of the existing columns, and more restarts can be used as less time needs 

to  be spent considering all possible switches. 

Even if we are dealing with nearly-orthogonal arrays, we can likewise ensure that the 

added column has weak strength 2 in regards to the first column. In particular, if the first 

column has a large number of levels, this seems reasonable if using natural weights. 

3.4.2 Discussion of Weights 

The weights for the J2 criterion are chosen based on the purpose of the design. If we want 

an orthogonal array, the lower bound can be reached, so we can use weights of 1 for all 

columns to simplify calculat,ions. Recalling the relationship between J2 and A2 when using 

natural weights (weights of a column equal to the number of levels), for nearly-orthogonal 

arrays, using natural weigllts will try to create an array optimal for the A2 criterion. For 

factors which are deemed to be of higher importance, a larger weight can be assigned to 

them. If a factor has a higher weight, it is more likely that other factors will be chosen to 

be ortllogonal to the factor with higher weight,. 

The use of weights is directly related to the X2 criteria. Using weights of 1 for J2 

is equivalent to using the siinplified equation (3.6) for the X2 criteria. The use of natural 

weights is equivalent to using equation (2.6). which will be used for nearly-orthogonal arrays 

to optimize A2. Setting the weights to 1 to speed up the algorithm may not be advisable 

with nearly-orthogonal arrays, as can be seen by example 3.4. 
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Example 3.4 Let D l  and D 2  be NOA(12, ~ ' 3 ~ ) :  with 

Using the unweighted criterion, we get J2 (Dl )  = 172 and J2(D2)  = 172, while 

the weighted criterion gives .J2(D1) = 912 and J2(D2)  = 880. For D l ,  the non- 

orthogonal columns are 1 and 4, and in D 2  columns 3 and 4. The uliweighted J2 

views these as the same, as both have four n,kl(a, b)'s that  are either one above or 

one below N/(sksr) .  The weightfed J2 considers this more serious when column 

1 is involved as it has more levels, so in this example D 2  is preferred. From a 

statistical standpoint, this makes sense, as in D l ,  some level combinations for 

colulnns 1 and 4 do not appear, whereas in D 2  every level conlbination for all 

pairs of columns occurs a t  least once, including the non-orthogonal colulnns 3 

and 4. 

3.5 Advancements 

This chapter introduced a new algorithm for finding orthogonal and nearly-orthogonal ar- 

rays. I t  adds new columns one row at  a time by making the "best" choice for each row. We 

also used the X2 criterion with Xu's algorithm. 

The J2 criteria was extended to  higher strength, and although results are mentioned by 

Xu (2003) in regards to  minimum moment aberration, more detail was paid attention to  

here from an algorithmic standpoint. As well, both algorithms were adapted to be used for 
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higher strength. Discussion was given for trying to find a way to speed up the algorithm 

when dealing with a larger run size. 



Chapter 4 

Performance and Comparison 

In this chapter we will compare the performance of Xu's algorithm and the new algorithm 

in terms of the const,ruction of orthogonal and nearly-orthogonal arrays according to some 

measure of optimality. Orthogonal arrays and nearly-orthogonal arrays will be discussed in 

separat,e sections. as the approaches we use to compare the algorithms are different. 

4.1 Construction of Orthogonal Arrays 

For sinall run sizes, we often know if an orthogonal array exists. For settings where we know 

one exists, we can compare how each algorithm performs in finding an orthogonal array. To 

do this, a meaningful basis of comparison must be used. For practical purposes, the inain 

aspect,s we want to study in an algorithm are speed and the ability to find orthogonal arrays. 

The algorithm should be successful at finding orthogonal arrays, but it should also be fast. 

If an algorithm can find orthogonal arrays easily, but takes a long time to do so, it may be 

impractical, particularly for large run sizes. For either algorithm, if we set the number of 

restarts very high, we expect the algorithnis to find orthogonal arrays more often, but may 

end up sacrificing speed in doing so. On the other hand, if an algorithm can be run very 

quickly, but rarely finds an orthogonal array, the practicality is also questionable. For both 

algorithms, if we use a small number of restarts, we anticipate that the algorithms will be 

very fast, but may riot find an orthogonal array very often. 

What we really desire is a balance between speed and success. To find a reasonable 

balance, we use the average time to find an orthogonal array as a criterion to compare 

algorithms. That is, for an algorithm being started from its initial point for a certain 
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number of times. 

Tim.eoA = O A ~  ound/Tin%~tal. 

where TimeoA is the average time to find an orthogonal array, OAfo,,n,d is the total number 

of tiarnes an orthogonal arrays was found, and Timetotal is the total time to run the algo- 

rithm from its starting point for a specified number of times. 

As mentioned, the speed and efficiency of the algorithms are determined by the number 

of restarts - the number of times the algorithin tries to add a new column until finally giv- 

ing up. Too many restarts can mean a lot of time spent att,einpting to find an orthogonal 

column. If an orthogonal (to the existing design) column is difficult for the algorithm to 

find or does not exist, the algorithm is using time trying to reach a lower bound that it 

can not achieve. On the other hand, too few restarts may cause an algorithm to give up 

prematurely and have to start again from the initial design of just two columns. In this 

situation, the algorithm may ultimately take inore time to find an orthogo~lal array, as it 

may take many runs of the algorithm before an ort,hogonal array is actually found. 

Xu (2002) suggests 100 restarts as a suitable choice for his algorithnl. While not based 

directly on the expected time to an orthogonal array, the suggestion of 100 restarts is based 

upon considering the success rate and time. The author shows his algorithm to be supereior 

to a Federov exchange algol.it,l~rn froin Miller and Nguyen (1994), and an int,erchange algo- 

rithm from Nguyen (1996). Using TimeoA and comparing the two algorithms, the ilumber 

of restarts to be tried for these algorithms are 50, 100, 200, 300, 500, and 1000. Varying the 

number of restarts in this way allows for better exploration of how the algorithms perform. 

111 order to find a "good" number of restarts to use for an algorithm, we can use TimeoA. 

We hope to determine how many restarts should be used in a general setting for decent 

results (according to Tim,eod4). 

Another issue for examining the algorithms is the number of times each algorithm should 

be repeated froin the initial point in trying to find an orthogonal array, referred t,o as tries. 

If the number of tries is too low, the results ma.y not accurately reflect how the algorithm 

does on average as the expected time to  an orthogonal array is based on the number of 

orthogonal arrays found. This is particularly troublesome in situations where finding an 

orthogonal array is a very rare occurrence. After a set number of attempts, it is possible 

that an orthogonal array is found only once or t,wice, perhaps even not at all. When the 

number of tries is large, if one set of tries results in one orthogonal array while the other 

finds two orthogonal arrays, the difference in average time to an orthogonal array will be 



CHAPTER 4. PERFOR,AfANCE AND COMPAR.ISON 48 

markedly different. However, if an algorithm can find an orthogonal array often and we 

use too many tries, then too much time is spent without much gain in information on the 

algorithm. 

When we study an algorithm, we want to ensure that we have an accurate representation 

of how we can expect the algorithm to perform on average. A reasonable question to ask 

is "how many times should the algorithm find an orthogonal array before we stop?" To do 

this, we want, to estimate p, the probability of any given try resulting in an orthogonal array. 

If we are conlfortable with our estimate of p, we do not need to worry that one set of tries 

happened to get "lucky." The more tries that use to estimate p, the better we anticipate 

our estimate will be, simply as the number of orthogonal arrays found divided by the total 

number of tries. However. at  some point we need to decide that we have used enough tries 

to be satisfied with our estimate of p, otherwise we will just keep running the algorithm. To 

estimate p, we will use the geometric distribution. 

The geometric distribution counts the number of trials until a success is observed. The 

random variable X denotes this number of trials. The geometric distribution has the fol- 

lowing properties: 

where p is the probability of success. As tries are independent of each other, if we consider 

finding an orthogonal array as a success and a non-orthogonal array as a failure, to find n 

orthogonal arrays, we can consider n iid random variables from a geometric distribution, 

stopping when the nth orthogonal array is found. U'ith XI, Xp, . . . , X ,  iid from a geometric 

distribution with parameter p, a 955% confidence iilterval for E(X) (ie. l/p) is 

To get a 95% confidence interval for p, we can use 

where p is the number of orthogonal arrays found divided by the total number of tries. We 

want to use the geometric distribution to remove some of the chance that one algorithm 
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may have happened to have a "lucky" set of tries and ensures that the results reflect how 

well the algorithnls do on average. 

The issue is now how accurate we want our estimate of p to be. For orthogonal arrays 

in which the algorithms have a reasonable success rate, say greater than 0.10, an interval 

half-width of 0.01 is considered. This amount is still small enough to be comfortable with 

the results, and we do not want to have the half-width too small, or else there may be too 

inany successes to be found from a time standpoint. 

From the 95% confidence interval for p, the number of geometric random variables to 

sample for a specified half-width w is 

For the half-width of 0.01, n achieves its maximum when p = 213, giving n = 5692. Looking 

at this situation as a worst case scenario, in running the code until it has found an orthogonal 

array 6000 times, the confidence interval for p will have a half-width of at most 0.01. 

For those orthogonal arrays in which the success rate for the algorithms is very low, GOO0 

successes may t,ake substantial time tJo be achieved, so 6000 is not feasible. In addition, 

for small success rates, an interval half-width of 0.01 is likely not that desirable. In this 

~it~uation, an interval half-width proportional to p is preferred. Using w = p/10, the number 

of successes needed is 

n = 100 * 1.9Ci2(1 - p). 

In this situation, a s p  decreases n increases, so using n. = 400 allows for intervals to have have 

a half-width of p/10 or less. While this number of successes may seem small in conlparison 

to the 6000 discussed for a larger success rate, for rare events there is more inforination 

contained in each observation of the geometric random variable. For these rare events, we 

can expect to see a number of failures before a success. For a higher rate of success, we 

expect to see fewer failures. 

To make cornpasison of the algorithms fair, we try to speed up calculations as much as 

possible. The new algorithm will be used with the simplified x2 given as equation (3.6). 

Xu's algorithm will be used with weights of one which is suggested when finding orthogonal 

arrays. 
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4.1.1 Results 

Both algorithms are suited for designs with a smaller number of runs, so it is orthogonal 

arrays of this nature which we will study. We use the orthogonal arrays studied ill Xu 

(2002). Considering these orthogonal arrays, we have some prior information on what we 

can anti~ipat~e on the performance of Xu's algorithm (Xu (2002)). These arrays are typical 

of the mixed-level designs used for industrial experiments with small runs, and are also 

diverse in the number of runs, factors, and levels. 

For each orthogoilal array, each setting of restarts to be tested was used for Xu's algo- 

rithm with the J2, Xu's algorithm with X2, and the new algorithm with x2. The number of 

orthogonal arrays found, the number of tries, and t,he total time spent were recorded in each 

case. Determination of t,he number of tries resulting in an orthogonal array (400 or 6000) 

was based on previous results from Xu (2002); and where information was not available, 

using the amount of timeltries until one orthogonal array was found. In a few situations, 

the time to find one orthogonal array was so extreme t,hat the test was stopped after one 

orthogonal array for time considerations. 

For the number of  restart,^ that were tested, the expected time to  find an orthogonal 

array is presented for Xu's algorithm with the J2 criterion (Table 4.1), Xu's algorithm with 

the X2 criterion (Table 4.2), and t,he new algorithm using the X2 c:rit,erion (Table 4.3). The 

new algorithm using the J2 criterion was not tested. as in testing it, it performs very poorly. 

The reason for this is an additional condition in using the X2 criterion that checks whether 

nk l (a ,  b) exceeds its expected value which fits in naturally wit,h the X2 criterion, but is not a 

natural extension with the J2 criterion. R.emoving this <:ondit,ion with the X2 criterion also 

results in poor performance. While we could use nl;, to force balance, if we need to store 

these in addition to the components for J2, it is just as well to  use x2. For all settings, more 

detailed tables giving t,ries resulting in an orthogonaly array, total number of tries. t,ot,al 

time spent, est.iinated p, Y5%CI for p,  and estimated expected time to  an orthogonal array 

are presented in tables 4.6-4.23. 

Moving on to  the results, Xu (2002) recoinnlended using 100 column restarts, consider- 

ing both the efficiency of finding orthogonal arrays and speed. Most of the consideration 

was placed on when t,he proportion of tries resulting in an orthogonal array appeared to 

be constant. However, in considering expected time t,o an orthogonal arras  50  restart,^ 

seems tjo be enough in most situations for Xu's algorithm with either crit,erion. Using more 
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restarts, we expect to find an orthogonal array more often, but the expected t h e  to find an 

orthogonal array increases since extra time is spent in situations where the algorithm can 

not find an orthogonal array. 

For the new algorithm, there does not seem to be a clearcut choice for the number of 

restarts to  use. A try in the new algorithm is generally very quick in comparison to  Xu's, 

but does not find an orthogonal array as often. For smaller run sizes (< 27), 300-500 restarts 

is a reasonable choice for expected time to an orthogonal array. For the higher run sizes 

studied, 1000 restarts is a better choice. In contrast to  Xu's algorithm, where just 50 restarts 

is often enough for finding orthogonal arrays and can be used in most situations, too few 

restarts for the new algorithm can cause a very low success rat,e and high expected time to 

an orthogonal array. 

Table 4.4 compares the best expected time to an orthogonal array for each algorithm 

among the different orthogonal arrays tested and lists the best time among those and which 

algorithin achieved that time. I t  is apparent from Table 4.4 that there is no universal winner 

in terms of expected time to an ort,hogonal array. However, we notice a trend in which the 

new algorithm performs better when the nuinber of columns is small, and performs worse 

when the number of colunlns is close to the number of rows. This makes sense because the 

new algorithm has added calculations compared to Xu's as the number of coluinils grows. 

Looking at  Table 4.4 for Xu's algorithm, comparing the J2 and X 2  criteria, we see that 

in many cases the x 2  criterion is an improvement over the J2 criterion. This usually occurs 

when the number of columns is small relative t,o t,he run size. To get a better idea of why 

this occurs, we can look at  the nlailner in which the crit,eria are computed. If the current 

design has m - 1 colunlns, and we are trying to add the m.th colurnn, the X 2  criterion uses 

2 * (m - 1) of the nij's for evaluating/making a symbol switch between rows .I and j .  For 

the J2 criterion, the calculation is based on 2 * N l s ,  of the &j 's .  If the nuinber of colunlns 

is small relative to the number of rows, the X 2  criterion will perform better, with the J2 

criterion preferred as the number of colunlns grows. To get the greatest efficiency from Xu's 

algorithm, it may be worthwhile t,o use the X 2  criterion for some initial set columns, and 

then switch to J2 for the remaining as it is not influenced by the number of columns. 

While the new algorithm may not outperform Xu's in all situations, it provides an ef- 

fective means for constructing orthogonal arrays with a small nuinber of rows and a modest 

nuinber of columns relative to the number of rows. For studying the X 2  criterion with Xu's 

algorithm, we found that there may be improveinents in the situations where there is a 
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moderate number of columns relative to the number of rows. 

4.1.2 Discussion 

Based on the observation that the new algorithm seems to perform much better when the 

number of factors is small relative to the run size, it may be worthwhile to try and use 

the expansive replacement method. For the expansioe repla~em~ent  method, let A be an 

orthogonal array of strength 2 with a factor 1 having .s, levels, and B be an orthogonal array 

of strength 2 having sl runs. By making a one-to-one correspondence between each level 

of factor 1 of A and the sl runs of B ,  replacing each occurrence of the levels in A with the 

corresponding run in B ,  the resultant is an orthogonal array of strength 2 with at least as 

many factors as A. This can be useful with the observations about a smaller number of 

factors in comparison to the run size, as we may be able to find a design faster by using 

expansive replacement afterward. An example of this in the designs studied here are the 

0A(27,g13" and OA(27, 313). The new algorithm can find an 0A(27,g13') very quickly in 

comparison to  the OA(27, 313), but using expansive replacement, we can get an OA(27, 313) 

using an OA(27,9l39 with the 9-level factor replaced with an OA(9, 34). 

4.2 Nearly-Ort hogonal Arrays 

For studying nearly-orthogonal arrays, we want to find a design optimal according to the 

AZ criterion due t,o the statistical justification described in Chapter 2. In comparing the 

algorithnls for orthogonal arrays, the comparison was done on the efficiency for finding an 

optimal design - an orthogonal array. For nearly-orthogonal arrays, we generally do not 

know if a design is optimal. As such, our approach to  comparing the algorithnls must be 

modified. 

Xu (2002) compared his algorithnl to other existing algorithms (a11 interchange algorithm 

from Nguyen (1996), a threshold accepting technique from Ma et a1 (2000), and coinbina- 

torial construction methods from Wang and Wu (1992)) in regards to the Ag criterion for 

nearly-orthogonal arrays with small run sizes. Xu's proved to  be a clear winner. We take 

the same approach, comparing the new algorithm to XU'S in t e r m  of the A2 criterion. We 

use the mixed-level nearly-orthogonal arrays tested by Xu (2002) as a basis of comparison. 
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Even thougll we are now dealing with nearly-orthogonal arrays, the algorithms still pro- 

ceed in the same way they did for the orthogonal case. For the X2 criterion, there are 

situations where the operations will not be integer, but this does not change the method- 

ology of the algorithm. Since we do not know if we have an optimal design, the geometric 

approach can not be used to select the number of tries. Instead we choose the number of 

tries to be 10,000 based on past experience. From the observations about the number of 

restarts for orthogonal arrays, the number of restarts used for the new algorithm will be 

300, 500, and 1000. 

The J2 equivalence to A2 in equation (2.8) comes from setting the weight of each column 

to be the number of levels for that column. Due to this, instead of using the faster equation 

(3.6); we now use (2.6) to drive the algorithm. In the orthogonal array case, = 0 for 

all k, l ,  so the denominator was not necessary. In the nearly-ort,hogonal case, the denomi- 

nator serves the same purpose as natural weights in Xu's alg~rit~hm, which we use for the 

statistical purpose because of the relationship to A2. This distinction can be illustrated by 

example 3.4. 

4.2.1 Results 

For each nearly-orthgonal array, 10,000 tries were used for 300, 500, and 1000 restarts with 

the new algorithm. The algorithm returned the design with lowest A2 among all the tries. 

This A2 value is recorded along with the best nearly-orthogonal designs reported by Xu 

(2002). Since we are looking for designs having lower A2 values, the slower equation (2.6) 

is used to drive the algorithm due to its relationship to A2. 

The results from each of the nearly-orthogonal arrays are shown in Table 4.5. The new 

algorithin results in comparable A2 designs for every nearly-orthogonal array. The excep- 

tions are the NOA(24, 2'311), in which case the new algorithm did not achieve the A2 of 

2.01 that Xu (2002) reported. However, for the N OA(24, 3147) and N OA(12. 2732), the new 

algorithin provides designs with better A2 values, and thus new designs were found. 

In some situations, we know if a nearly-orthogonal array is A2-optimal. From Lemma 

2.1, if for any pair of rows i and j .  the nij(a., 6)'s are within one, the design is A2 optimal. 

While it is not always possible to find such a design, if one does exist, lower bounds can be 

adjusted for all nij (a,, b)'s being within 1, and we could proceed in the same way as when 

dealing with orthogonal arrays. Since we do not know beforehand if such an optimal design 

exists, we must see if the results are different than those reported by Xu (2002). 
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When we can not find an optimal design like that described above, it is riot always clear 

how the design performs in terms of A2. From our results, tlie best design for both algo- 

rithms tends to have the same Aq value. In fact, for most of the nearly-orthogonal arrays, 

these designs are found within the first few tries. and increasing the number of rcstartsltries 

does not seem to give any improvement. 

Some nearly-orthogonal arrays cause problems for the algorithms in trying to  find a best 

nearly-orthogonal array. For instance, using the new algorithm, the best NOA(24,2' 3'') 

is not as good as that found by Xu (2002). As well, all three different restarts result in 

different A2 values, and the 500 restarts actually finds a better design than 1000 restarts. If 

we use 2000 restarts (not listed in table), the best design has an A2 value of 1.91, which is 

better than the result from Xu (2002). Since we are trying to make Aq as small as possible, 

this suggests that there may be instances in which it is wortl~while to use a greater number 

of restarts, even though it may increase the runtime. 

When dealing with a mixed-level array, tlie order in which we add columns into the 

design can have an impact on the design whicli the algorithm returns as having the best 

AS For instance, using the first column as the 6-level column in the NOA(12,6' 25), the 

best design has an Az value of 0.444. If we instead consider tlle 6-level column as t,he last 

column added, the best design has an A2 value of 1.000. A possible explanation is related t.o 

the natural weights. When the 6-level column is added first, it is likely that added columns 

will be forced into orthogonality with tlie 6-level column because more weight is assigned 

to this column. When used as the last column, the algorithm must try to make the 6-level 

columii ort,hogonal with the other five columns whicli appears more difficult. 

The previous discussion on the NOA(12,6' 25) highlights one of the major concerns in 

using a columnwise algorithm to find nearly orthogonal arrays: t,he best nearly-orthogonal 

array for soiiie k columiis may not help in creating the best nearly-orthogonal array for k + 1 

columns. For tlie NOA(12, ~ ' 2 ~ ) ,  if we consider adding the 6-level column last, we may be 

trying to add this column to an OA(12,27), which would be an optinial design for t,he first 

five columns. However, the resulting best NOA for six columiis will not be as good as if 

considering the six-level column first. 

Xu (2002) advised to arrange tlie columns in decreasing order of levels, due to the num- 

ber of possible balanced columns. We make the same suggestion due to the use of natural 

weights, to try and force ort,hogonalit,y with the higher level columns. Since the sequential 

nature may not work well with a particular ordering, it may be worthwhile to  randomize 
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the order of the factors, so that if one ordering is better, it should get used by the algorithm 

at  some point,. For the NOA(12,6127), if the 6-level column is used as column 1, 2, or 3, a 

design can be found with A2 of 0.444. 

4.2.2 Discussion 

Using the X2 criterion for nearly-orthogonal arrays. it is possible that N/(sksl) ,  and hence 

X2, is not integer. However, in not using integer calculations, the speed is greatly increased. 

In an attempt to speed up calculation, if we examine the X2 criterion again, 

Looking at x2 in this wav, the only control we have on the Ap criterion is to  minimize 
"*-' 'I-' nki(a,  b ) 2 ]  . When dealing with nearly-orthogonal arrays, it is quicker (sksl) /N [Co=O C64 

to deal with the simuler 

which is also beneficial in that it is integer. When using the original X:l criterion, a nkl(a, b) 

exceeding the expected number N/(sksl) by one or two may not be very desirable, especially 

in the case of orthogonal arrays. However, the impact on X2 of exceeding the expected 

number is not necessarily very large, and a choice that does so may be deemed the best, 

choice. The )l;,; criterion will treat exceeding the expected number as being more serious, 

hopefully causing more balance among the columns. 
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Table Expected time (in secs) to OA for Xu's algorithm - J2 criteria. 
50 100 200 300 500 1000 

0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 
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Ta.ble 4.2: Expected time (in secs) to OA for Xu's algorithm - y2 criteria. 
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Table 4.3: Ex~ected  time (in secsl to OA for new algorithm - x2 criteria. 
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Table 4.4: Best Expected time (in secs) to OA for each algorithm. - 
Best Algorithm 

0.00002 New 
XU- J;? 
XU- J2 
XU- J2 

New 
New 
New 
New 

xu-X2 
XU- J2 
Xu- J2 
X U - ~ ~  

New 
xu-X2 

New 
New 
New 

Xu-x2 
Xu-x2 

New 
xu-x2 

New 
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Table 4.5: Comparison of t, 
NO A 

NOA(6,3'2') 
NOA(10, 5125) 
NOA(12, 4134) 
NOA(12, 2334) 
NOA(12, 6'25) 
NOA(12, ~ ' 2 ~ )  
NOA(12,3l2') 
NOA(12, 2135) 
NOA(12, 2732) 
NOA(12, 2533) 
NOA(15, ~ ' 3 ~ )  
NOA(18,2138) 
NOA(18, 3723) 
NOA(18,9'2') 

NOA(20, 5'2l5) 
NOA(24, 8'3') 

NOA(24, 31221) 
NOA(24, 6'215) 
NOA(24, 6'218) 
NOA(24,2'311) 
NOA(24, 3147) 

new algoritllm to Xu's in terms of Aq. 
Xu 300 500 1000 

0.333 0.333 0.333 0.333 
0.4 0.4 0.4 0.4 

0.75 0.75 0.75 0.75 
0.75 0.75 0.75 0.75 

0.444 0.444 0.444 0.444 
0.667 0.667 0.667 0.667 
0.778 0.833 0.833 0.778 

1.25 1.25 1.25 1.25 
0.861 0.792 0.792 0.792 
0.875 0.764 0.764 0.764 

0.8 0.8 0.8 0.8 
0.5 0.5 0.5 0.5 

0.333 0.333 0.333 0.333 
0.346 0.346 0.346 0.346 

0.76 0.76 0.76 0.76 
0.875 0.875 0.875 0.875 
0.722 0.833 0.819 0.722 
0.111 0.111 0.111 0.111 
0.667 0.667 0.667 0.667 

2.01 2.208 2.083 2.115 
2.56 2.58 2.53 2.472 
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Chapter 5 

Summary 

Many experiments investigate the effects of two or more factors, in which case factorial 

designs are frequently used. In many ~it~uations,  a fractional factorial design can be used 

to  run an experiment a t  a fraction of the runs iieeded for a full factorial design. These 

designs are particularly useful in industry as screening experiments, to identify important 

fact,ors. Orthogonal arrays can be used as factorial designs with desirable statistical p r o p  

erties. If an orthogonal array does not exist, a nearly-orthogonal array can be used, where 

near-orthogonality can be measured by a number of criteria, some of which were introduced 

in Chapter 2. 

When an experimenter needs an orgtJlogona1 or nearly-orthogonal array for an experi- 

ment, one may not be readily available and may not be easy to  find. In such ~ituat~ions,  

we wish to  have an algorithm to  construct an orthogonal array or a nearly-orthogoi~al array 

opt,imal according to some criterion. Chapter 3 discussed an algorithnl by Xu (2002) and 

introduced a new algorit,hm. 

As orthogonal arrays of higher strength are desirable, Chapter 3 extended the J2 and 

X 2  criteria to higher strength. The extension to higher strength was applied to  the two 

algorithins from Chapter 3. 

In Chapter 4, we compared Xu's algorithm and the new algorithm in terms of speed 

and efficiency for finding an orthogonal array. In comparing t,he algorithms, we also looked 

at  the impact of the nu~nber of restarts on each of the algorithms. For orthogonal arrays, 

Xu's algorithm performs best with a small number of restarts, around 50 or 100. The new 

algorithm performs best with 300 to  500 r e~ t~a r t s  for very small run sizes and around 1000 

for moderate run sizes. While there was no definitive winner between the two algorithms, 
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the new algorithm generally performs better when the number of factors is small relative 

to the run size. In constructing nearly-orthogonal arrays, using A2 as a measure, the new 

algorithm performed similar to Xu's algorithm. For nearly-orthogonal arrays, the results 

suggest that in some situations, finding an optimal A2 design is difficult for both algorithms 

and it may be worthwhile to  increase the number of restarts. 

Future work would include trying to  further examine the connection between the J-  

criteria of higher strength in terms of the generalized minimum aberration criterion. Using 

the algorithms for larger run size would be desirable. Further study could also be done to 

look at the unification of more of the near-orthogonality criteria. 
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