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Abstract 

This thesis deals with issues of robust Fault Detection and Isolation (FDI) and com- 

pensation in uncertain nonlinear systems using second order sliding mode and iterative 

learning observers. 

The problem of detecting and diagnosing actuator faults using a variable structure 

adaptive observer (VSAO) is first discussed. The VSAO is constructed directly based 

on the uncertain nonlinear system itself. The VSAO-based FDI can achieve robust 

fault detection and estimation. Furthermore, a second order sliding mode observer 

(SOSM0)-based robust fault detection in uncertain nonlinear systems is addressed. 

The SOSMO has the property of sharply filtering unwanted high frequency signals due 

to unmodelled dynamics, as the sliding surface dynamics forms a low-pass filter. The 

SOSMO is then extended to an uncertain constrained nonlinear system (UCNS) for 

fault detection and estimation, where the SOSMO can directly supply fault estimation. 

This makes fault isolation become easier. 

An Iterative Learning Observer (ILO), which is updated online by immediate past 

system output errors as well as inputs, is constructed for the purpose of fault diagnosis. 

An automatic control reconfiguration scheme for fault accommodation using iterative 

learning strategy is then suggested. It is shown that the effects of disturbances can be 

attenuated by ILO inputs. The ILO is applied to excite an adaptive law in order to 

generate an additional control input to the nonlinear system. The additional control 

input can annihilate the effect of faults on system dynamics. ILO-based adaptive fault 

compensation strategy is independent from any existing strategies. It can supply fault 

detection, estimation, and compensation at the same time, and does not need a fault 

detection and isolation subsystem. 

The last chapter is concerned with the design of a sliding mode observer (SMO) 



for a class of uncertain nonlinear differential-algebraic systems (DAS). An algorithm 

is developed to reconstruct the algebraic variables with a singular distribution ma- 

trix. An S M 0  is then designed based on the reconstructed algebraic variables to 

compensate the effect of disturbances on estimation error dynamics such that the 

estimated states including both the differential and algebraic variables can track the 

actual ones. 
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Chapter 1 

Introduction 

Increased productivity requirements and stringent performance specifications have led 

to more demanding operating conditions in many modern engineering systems. Such 

conditions increase the possibility of system faults which are characterized by critical, 

unpredictable changes in the system dynamics. 

In general, feedback control algorithms, which are designed to handle small system 

perturbations that may arise under "normal" operating conditions, can not accommo- 

date abnormal behavior due to faults [35]. Automated maintenance for early detection 

of worn equipment is becoming a crucial problem in many practical applications. 

System faults can result in off-specification production, increased operating costs, 

and the possibility of detrimental environmental impacts. More importantly, from the 

safety point of view, a single fault can develop into multiple faults, which can further 

lead to catastrophe. Therefore, in order to satisfy the needs for safety, reliability, and 

performance in the industrial processes, it is important to promptly detect system 

component faults, actuator faults, and sensor faults, and to accurately diagnose the 

source and severity of each malfunction so that corrective actions can be taken. 

Motivated by achieving high levels of reliability, maintainability and performance 
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in faulty systems, more and more attention has recently been devoted to fault accom- 

modation. On April 26th, 1986, for example, the worst nuclear accident in history 

took place in the small town of Chernobyl, Ukraine. Thirty one people were claimed 

dead. Total casualties are unknown and estimates run into the thousands. The rea- 

son for this incident was that the reactor's design made it unstable at low power. 

Sophisticated monitoring and fault management systems could have prevented this 

and similar accidents. 

Developing new design and analysis methods for health monitoring and fault di- 

agnosis, as well as fault accommodation are the main tasks in this thesis 

Basic Concept of Fault Diagnosis and 

Compensation 

Faults can occur in both hardware and software of the controlled systems. This thesis 

is concerned with hardware faults. 

A fault that tends to degrade overall system performance represents an undesired 

change in a system of interest, while a failure denotes a complete breakdown of a 

system component or function. In this thesis, fault rather than failure is used to 

indicate a tolerable malfunction, rather than a catastrophe. Typical faults are [48] 

Construction defects such as cracks, ruptures, fractures, leaks, and loose parts. 

0 Actuator faults such as damage in the bearings, deficiencies in force or momen- 

tum, defects in the gears, and aging effects. 

0 Sensor faults, including scaling errors, hysteresis, drift, dead zone, short cuts, 

and contact failures. 
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Abnormal parameter variations in the systems. 

0 External obstacles such as collisions and clogging of outflows. 

Due to the fact that no consistent terminology in the fault diagnosis field existed, 

the SAFEPROCESS Technical Committee discussed this matter and tried to find 

some commonly accepted definitions. Based on the discussions within the commit- 

tee, a fault was defined as: "an unpermitted deviation of at least one characteristic 

property o r  parameter of the system from the acceptable/usual/standard conditions. " 

Meanwhile, a failure is " a permanent interruption of a system's ability t o  perform a 

required function under specified operating conditions " [62]. 

The role of a fault diagnosis sys tem [14] is to detect faults and to diagnose their 

locations and significance in a system of interest. Such a system normally consists 

of three tasks: fault detection, fault isolation, and fault identification. A fault in 

a dynamic system can take on many forms, such as actuator faults, sensor faults, 

unexpected abrupt changes of some parameters, or even unexpected structural changes 

[l24]. 

The purpose of fault detection is to generate an alarm which informs the operations 

that there is at least one fault in the system. This can be achieved from either 

the direct observation of system inputs and outputs, or the use of certain types of 

redundant relations (i.e. the model-based fault detection and diagnosis or analytical 

redundancy methods). Fault isolation is to determine the locations of faults, e.g. 

which sensor or actuator has become faulty. Identification, however, is not an easy 

task, as it requires that after an alarm has been set, an estimation of the location, 

size and nature of the fault should be made [52, 1241. The isolation and identification 

tasks together are referred to as fault diagnosis. Most practical systems contain only 

fault detection and isolation stages (FDI). In many cases, diagnosis is used simply as 
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a synonym for isolation. 

Over the last two decades, fault diagnosis has attracted a great deal of attention. 

The majority of this work has been to design and analyze fault detection and isolation 

issues [15, 17, 68, 70, 76, 129, 1341. Fault accommodation or fault-tolerant control, 

in particular, is becoming more and more interesting to researchers [6, 16, 65, 92, 

99, 115, 1391. A fault-tolerant control is defined as a control system with fault- 

tolerant capability. There may be some performance degradation under the operation 

of a fault-tolerant control system. The main objective of a fault-tolerant control 

is to maintain the specified operations of a system under consideration, and give 

operators (or automatic monitoring systems) enough time to repair the damage or 

take alternative measures to avoid catastrophe [14]. In the case of flight control 

systems, for example, safety is the greatest priority. This implies that even in the 

presence of failed components, the aircraft must still be able to land safely. 

The aim of fault-tolerant control is to adjust or modify the system control inputs 

in order to maintain the safety and reliability of the system so that the controlled 

system can still continue according to its original specifications [65, 92, 1391. Some 

fault-tolerance measures will be suggested in this thesis. 

1.2 Fault Diagnosis Methodologies 

A traditional approach for fault diagnosis is a hardware-based method, where a partic- 

ular variable is measured using multiple sensors, actuators, computers and software. 

Several problems that hardware redundancy based fault diagnosis encounters are the 

extra equipment, cost, and additional space required to accommodate this equipment 

1141 

Analytical redundancy is potentially more reliable than hardware redundancy 
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[119]. A wide range of analytical redundancy fault diagnosis approaches can be 

broadly divided into model-based techniques, knowledge-based methodologies, and 

signal-based techniques [95]. 

There are two classes of model-based approaches, i.e. quantitative models based 

approach (differential equations, state space methods, transfer functions, etc.), 

which generally utilizes results from control theories, such as parameter estima- 

tion, state estimation or parity space concepts; and qualitative models based 

approach, where qualitative models of the process are used to predict the be- 

havior of the process, and fault detection is achieved by comparing the actual 

observations to the predicted behavior. Model-based fault diagnosis is defined as 

'"the determination of faults of a system from the comparison of available system 

measurements with a priori information represented by the systems's mathemat- 

ical model, through generation of residual quantities and their analysis " [14]. 

A great deal of knowledge is required to develop knowledge-based fault diagnosis 

systems (the process structures, process unit functions etc.). 

In signal-based FDI, signals or symptoms that carry as much fault information 

as possible must be extracted from systems. The limitation of signal-based FDI 

is its lack of efficiency, especially for early fault detection. 

The main advantages of model-based approaches are that no additional hardware 

components are required to realize the fault diagnosis algorithms, and that the exist- 

ing measurements for process control are sufficient to implement the fault diagnosis 

strategies. Model-based fault diagnosis approaches will be discussed in this thesis. 

More specially, observer-based fault diagnosis will be the main concern. 
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1.3 Model-Based Fault Diagnosis 

In contrast to physical redundancy, where measurements from parallel sensors are 

compared to each other, the sensor measurements in model-based FDI are compared 

with analytically computed values of the respective variables. The resulting differences 

are called residuals, which are indications of the presence of faults in systems of interest 

[52]. The following is a list of some generally used approaches to model-based residual 

generation. 

Observer-Based Approach The basic idea behind this approach is to use an 

observer or a filter in FDI to estimate system outputs from measurements by 

employing a Luenberger observer in a deterministic setting or a Kalman filter 

in a stochastic setting. In this case, output estimation errors or innovations can 

be taken as residuals, respectively. 

Parity Space Approach The parity space approach is based on a check of the 

parity (consistency) of parity equations that are properly modified system equa- 

tions by system measurements. The purpose of modifying system equations is 

to decouple residuals from system states and to decouple among different faults. 

An inconsistency demonstrates the presence of faults [48]. 

Parameter Estimation Approach Model-based FDI can also be achieved using 

system identification techniques in an input-output system model. Usually, 

faults are reflected in system parameters, such as friction, mass, viscosity, resis- 

tance, inductance, etc. The parameters of the actual process can be repeatedly 

estimated using online parameter estimation methods [14, 60, 631. The esti- 

mated parameters are then compared with those of the reference model. Any 

substantial discrepancies indicate a fault. 



Chapter 1. Introduction 

It is well known that a perfectly accurate mathematical model of a practical system 

never exists because some parameters of the considered system may vary in an uncer- 

tain manner, and the characteristics of disturbances are unknown so that they can not 

be modelled accurately. In the process of fault diagnosis design, model uncertainties 

and disturbances have to be taken into account, as they constitute a source of false 

and missed alarms of the fault detection system. They may corrupt FDI performance 

to  such an extent that the FDI system is totally useless [14]. Therefore, when design- 

ing a fault diagnosis system, one has to consider the effect of model uncertainties and 

disturbances so that the FDI system will be robust to them, i.e. insensitive or even 

invariant, while still being sensitive to real faults. An FDI scheme designed to pro- 

vide satisfactory sensitivity to faults, associating with the necessary robustness with 

respect to uncertainties and disturbances, is called a robust FDI scheme [14]. During 

the last ten years, numerous approaches towards the solution of robust fault diagnosis 

have been developed, such as observer-based robust FDI [2, 93, 105, 106, 113, 1241, 

unknown input observers [15,96, 107, 108, 1251, eigenstructure assignment [33,97,98], 

etc. In the next section, the observer-based robust fault detection strategies will be 

reviewed. 

1.4 Observer-Based Robust Fault Diagnosis and 

Compensation : an Overview 

The most widely considered tools for fault detection are observers. The idea behind 

using of an observer for fault detection is to estimate system outputs from measure- 

ments using an observer, and then construct residuals by properly weighted output 
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estimate errors [39]. When the considered systems are subject to unknown distur- 

bances and uncertainties, the effect of them has to be decoupled from the residual 

signals to avoid false alarms in detection. This problem is well known in the field of 

FDI as robust fault detection [39]. 

Ever since Beard [5] founded the concept of analytic redundancy for fault detec- 

tion, model-based fault diagnosis has been in development at various places since the 

early 1970s. The main idea of the analytic redundancy, which replaces the hardware 

redundancy, is to generate directional residuals by failure detection filters. Different 

fault effects can be mapped into different directions or planes in the residual vector 

space so that fault isolation can be achieved [14, 481. Beard's approach was then 

redefined in a geometric setting by Jones [66] and Massoumnia [86], leading to the 

so-called Beard-Jones Fault Detection Filter. Its design issue was later discussed by 

White and Speyer [126], Liu and Si [81], and Chung and Speyer [30]. 

Clark and co-workers are believed the first to apply the Luenberger observer for 

fault detection [32], Leininger [78] first pointed out the impact of modelling errors 

on FDI performance, and the first work to tackle robustness of observer-based FDI 

approach was contributed by Frank and Keller [44]. 

The most important task in model-based fault diagnosis is the generation of robust 

residuals. Unknown input observers can achieve this task [12, 13, 59, 105, 125, 1271. 

The uncertain factors in system modelling are considered to act via unknown inputs 

(disturbances). Based on the known distribution matrix of unknown inputs, they can 

be decoupled from output estimation errors that are defined as residuals. Therefore, 

residuals are decoupled from unknown inputs. The definition of an unknown input 

observer in [15] is as follows 
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A n  observer is  defined as a n  unknown input  observer for the consid- 

ered sys tem if its state estimation error approaches zero asymptotically, 

regardless of the presence of the unknown input  (disturbance) in the 

system. 

The work of [15], which is widely cited, combines the unknown input observer and 

fault detection filter to form a new approach that ensures that the residual vector, 

generated by the filter, has both robust and directional properties. 

An unknown input observer FDI strategy for linear systems can not be applied to 

nonlinear system FDI [46]. When a fault occurs, the nonlinear system will run out 

of the operating point. The fault detection subsystem may enhance the modelling 

errors. To tackle this problem, Seliger and Frank [I071 extended linear unknown 

input observer theory to nonlinear systems. In their contribution, a new concept 

of nonlinear unknown input observers is used for component and actuator FDI in 

a class of nonlinear dynamic systems with disturbances and uncertainties that are 

expressed as unknown input signals. Under some conditions, the system model can 

be transformed into a form that remains unaffected by unknown inputs, but still 

reflects the occurrence of component or actuator faults. The nonlinear unknown 

input observer is designed based on the transformed model. The observer outputs 

can be used for state estimation and residual generation. 

Yang and Saif [I331 designed a novel nonlinear unknown input observer for a class 

of nonlinear systems whose states and outputs can be decomposed into two parts. 

The first part is affected only by actuator faults, whereas the other is decoupled 

from them. The subsystem that is decoupled from faults is then used to design the 

nonlinear unknown input observer. The estimates are used for FDI purposes. 

In recent years, the SMO-based FDI strategy that originated from sliding mode 

control has been attracting researchers' attention [96, 97, 113, 130, 1311. The main 
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characteristic of the SMO is that, despite disturbances and uncertainties, the output 

estimation errors between the system and the SMO can be forced to and maintained 

at zero while sliding. Once a fault occurs, sliding will cease to exist, and based on 

this a fault alarm signal can be generated. Therefore, SMOs are qualified candidates 

for robust FDI. 

The pioneering work on SMO design which can be found in [I121 examines the 

potential uses of the SMO and introduces a particular observer structure that includes 

switching terms. The analysis shows that SMOs have promising properties in the 

presence of modeling errors and sensor noise. Another earlier work [I181 also describes 

an observer with discontinuous switched components. Edwards et al. [39] considered 

the application of a particular SMO to fault detection and isolation problems. The 

novelty of their research lies in the reconstruction of fault signals by the equivalent 

injection concept. Also, the SMO gain is chosen to maintain the sliding of system 

output errors even after a fault occurs. 

A novel SMO design for both linear and nonlinear systems is proposed by Xiong 

and Saif [130, 1311. The new SMO has the advantages of working under much less 

conservative conditions than Wallcot and Zak's observers [122], and of estimating a 

state function when estimating all states is impossible. 

Authors of [55, 68, 71, 76, 113, 123, 130, 1311 presented the robust fault detection 

of a subset of sensor, actuator, and process faults using SMOs. The performance 

of SMO-based FDI techniques is shown to be robust to parameter uncertainties in 

system models. 

A generic observer cannot efficiently detect faults with slow time constants because 

the enhancement of robustness is associated with a decrease of the sensitivity to 

faults with slow time constants [4, 46, 851. Adaptive observers are proposed to tackle 
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this problem because they can estimate both system states and the slowly varying 

unknown parameters of the observed systems [45, 124, 132, 1351. In order to apply the 

adaptive observer scheme to nonlinear system FDI, the considered nonlinear system 

usually has to be transformed to form a so-called adaptive observer canonical form, 

as shown in [36, 831. 

Yang and Saif [135] consider a class of special nonlinear systems for FDI purposes. 

The nonlinear system under consideration can be transformed into two different sub- 

systems. One takes the adaptive observer canonical form on which an adaptive ob- 

server design, under certain conditions, is based. The other subsystem is affected 

only by actuator faults. With the aid of the estimations of states as well as un- 

certain parameters, the faults are approximated using discretization technique. The 

approximated faults can be used for fault detection and isolation. 

Recently, some researchers [6, 16, 65, 921 have sought the solution of the fault ac- 

commodation problem. The typical approach is based on a set of fault detection and 

isolation subsystems. An additional control input resulting from fault detection and 

isolation subsystem is added to the original control inputs in order to reduce or com- 

pensate the effects of faults [65, 92, 1391. As a matter of fact, the fault detection and 

isolation subsystem is not always necessary for the purpose of fault accommodation 

[61. 

The work of [94] is very interesting: a controller embedding an internal fault 

model is able to not only automatically offset the effect of an incipient fault in an 

induction motor, but also reconstruct the fault whose effect has been offset. The 

authors of [67] introduce an extra input to the nonlinear observer used as a filter to 

directly estimate the time-varying faults. This estimation of faults is then employed 

to establish a fault-tolerant controller to guarantee the stability of the closed-loop 
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system. From the nonlinear robust control viewpoint, a set of robust fault-tolerant 

control is proposed in [loll .  The resulting closed-loop system has the properties that 

the stability and performance can be guaranteed in the presence of uncertainties and, 

when there is a sensor fault, stability can still be maintained. 

Fault accommodation will be another issue raised in this thesis. 

1.5 Thesis Outline 

Chapter 2 of this thesis is concerned with the problem of detecting and diagnosing 

actuator faults using a variable structure adaptive observer (VSAO). The observer 

construction in the existing approaches for FDI is based on the observer canonical 

form transformed from nonlinear systems. The transformation conditions, however, 

are not always satisfied in the practical systems. Motivated by this, a VSAO will 

be constructed directly based on the uncertain nonlinear system itself for diagnosing 

actuator faults. 

The property of filtering unwanted high frequency signals, which is due to the 

fact that the second order sliding surface dynamics forms a low-pass filter, makes it 

possible for a SOSMO be applied to  uncertain nonlinear systems for fault detection 

in Chapter 3. Another SOSMO with fault estimation, as proposed in Chapter 4, can 

achieve fault detection and estimation at the same time, making fault isolation easier. 

Compared with the first order SMO, the SOSMO has a better performance especially 

when the magnitude of a fault is relatively small. 

Chapter 5 presents a general framework for fault detection and accommodation 

using the IL strategy. An iterative learning observer (ILO), which is updated online by 

immediate past system output errors as well as inputs, is constructed for the purpose 

of fault detection. Further, using the IL strategy, an automatic control reconfiguration 
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scheme for fault accommodation is also described. One of the main features of the 

proposed scheme is that the control reconfiguration is achieved automatically based 

only on the response of the overall system. This IL controller does not require a fault 

detection and isolation subsystem. 

Chapters 6 and 7 further explore the properties of the ILO, discovering that it 

can estimate and compensate disturbances and /or actuator faults. More specifically, 

it can be alert to any variation of the considered system. This attractive feature 

makes it possible for the ILO to be used to excite an adaptive law. An additional 

input generated from the adaptive law is added to the nominal system inputs for the 

purpose of fault accommodation. The simulation example in Chapter 7 shows that 

the ILO-based fault accommodation is very effective. 

The last chapter is concerned with the design of an SMO in a class of uncertain non- 

linear differential-algebraic systems (DAS) described by so-called semi-explicit forms 

with the differential variables being coupled with algebraic variables. An algorithm is 

developed, using serial elementary matrices followed by differentiation, to transform 

the singular distribution matrix into a nonsingular matrix such that the algebraic 

variables can be expressed as a function of system state variables and inputs. An 

SMO is then designed based on the reconstructed overall system equation. The sta- 

bility of the proposed observer is also proved and an illustrative example is given in 

simulation to describe the design of the SMO. 



Chapter 2 

Robust FDI via a VSAO 

This chapter is concerned with the problem of detecting and diagnosing actuator faults 

using a variable structure adaptive observer (VSAO). A VSAO which uses only inputs 

and outputs for diagnosing actuator faults by a learning method will be constructed. 

The construction of this observer is directly based on the uncertain nonlinear system 

under consideration. Coordinate changes are not employed to transform the nonlinear 

system into a linear one. In addition, stability condition of the proposed observer is 

relaxed by introducing the expansions of the nonlinear terms into power series. This 

makes the calculation of the observer gain matrix easier. It will be shown that the 

proposed approach is robust in the sense that the residual will only produce an alarm 

only after a fault occurs. No alarm signal is generated even when the system of interest 

is subject to some parameter uncertainties or disturbances. 

2.1 Introduction 

Many efforts have been made towards observer-based approaches to fault diagnosis 

in nonlinear systems 135, 40, 47, 48, 99, 1241. Especially, Demetriou and Polycarpou 
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[35] developed a general framework for model-based fault detection and diagnosis for 

a class of systems with incipient faults. The changes in the system dynamics due to 

a fault are modelled as nonlinear functions of the state and input variables, while the 

time profile of the fault is assumed to be exponentially developing. An automated 

fault diagnosis architecture using nonlinear online approximations with an adaption 

scheme is designed and analyzed. To implement their approach, system states are 

assumed to be measurable, which is not always true in practice. Wang and Daley [124] 

presented a novel approach for the fault diagnosis of actuators in known deterministic 

dynamic systems using an adaptive observer technique. A system without model 

uncertainties is initially considered, followed by a discussion of a general situation 

where the system is subject to either model uncertainties or external disturbances. 

The adaptive diagnostic algorithm is then developed to diagnose faults. Vemuri and 

Polycarpou [120] proposed a fault diagnosis algorithm for a class of nonlinear systems 

with modelling uncertainties, where not all states of the systems are measurable. The 

main idea behind this approach is to monitor the plant for any off-nominal system 

behavior utilizing a nonlinear online approximator with adjustable parameters. Under 

some assumptions, the nonlinear systems are first transformed into linear systems on 

which the proposed estimation model is based. 

As for observer design, Rjamani [I021 presented a systematic design methodology 

and some fundamental insight into observer design for a class of Lipschitz nonlinear 

systems. It is pointed out that the stability conditions of the observer proposed by 

Thau [117] are only useful to check the stability of the observer once it has been 

designed. Choosing observer gain matrix so as to satisfy the stability conditions, 

however, is not straightforward. 

In this chapter, a nonlinear VSAO for the purpose of actuator fault diagnosis is 
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proposed. This kind of observer is based directly on the uncertain nonlinear system 

under consideration. Coordinate changes are not employed to transform the consid- 

ered nonlinear system into a linear one. Additionally, using the stability conditions 

we can easily design the observer parameters. 

2.2 Preliminaries and Problem Statement 

Consider a class of dynamic systems described by the following differential equation: 

where: x(t) E Rn is immeasurable state vector, u(t) E Rm is measurable input vector, 

y(t) E Rm is measurable output vector, C E RmXn and F E IRnXm are constant 

matrices, f (x)  : IRn +Rn,  g(x) : Rn -+RnXm, Af(x ,u , t )  : Rn x IRm x R+ + Rm, 

the system uncertainty, O(t), is an m x m time-varying matrix, representing the gain 

of actuators connected to input u(t). It is through this matrix that we model the 

effects of the actuator faults. When the actuators are healthy, O(t) = OH, a known 

matrix. However, any O(t) # OH would indicate the presence of actuator faults. It is 

assumed that g(x) = Fg(x). Lastly, we assume that the system is observable and, 

in this chapter, only actuator faults are considered. The model used here is not a 

general nonlinear system because there is no a unified model, such as x = f (x, u, O) ,  

can be used in this thesis. Actuator fault is expressed by a gain matrix O(t) of control 

inputs. This supplies readers with an intuition of the actuator faults. 

The purpose of the actuator fault detection and diagnosis is to generate an alarm 

signal when a fault occurs and produce an accurate estimate of the matrix O(t) which 

defines the actuator fault behavior. 
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For convenience, we have following abbreviations 

The expansions of f ( x )  and g(x)  into power series lead to 

g(2) - g(x) = [BIZ,  B2Z,.  . . , BmZ] + $(it, x )  (2.3) 

where q5, $ are the terms of second and higher order in Z = i - x. A ( t ) ,  Bi(t)  are 

n x n matrices, i = 1,. . . , m. 

Throughout this chapter we will make the following assumptions: 

Assumption 2.1 Actuator gain %(t) is first-order differentiable, and Il%(t) 1 1  < 7 0 ,  

where 1 1  . 1 1  refers to the Euclidean norm. 

Assumption 2.2 System input is bounded via llull 5 3/u. 

Assumption 2.3 The uncertainty term A f ( x ,  u ,  t )  is unknown but bounded, so that 

Assumption 2.4 Matrix B ( t )  = [B1, B2,  . , B,] is bounded with y~ and 119(.) 1 1  5 

7 g .  

Assumption 2.5 There are positive real numbers k4, kq > 0 such that the 4,  $ are 

bounded via II$(i,x)II 5 k411i - X I / ,  and 11$(2,x)11 5 k+lli - X I \ .  

Remark 2.2.1 It should be noted that the assumptions presented above are all re- 

garding norm bounds; no special or rigorous requirements are claimed. Especially, 

the Lipschitz condition, a very common and often employed condition is not needed. 

This relaxes the stability condition to be derived in the following theorem. 
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2.3 Main Results 

In this section, a VSAO-based fault diagnosis approach for uncertain nonlinear sys- 

tems will be considered. 

In practice, it is not always possible to have the state measurements. In this 

case, only input and output information can be used to construct the observer for the 

purpose of actuator fault diagnosis. 

Recall the nonlinear systems (2.1): 

Note that, based on assumption 2.3: 

In the fault diagnosis literature, it is well known that the presence of modelling 

errors, in general, increases the probability of false alarms. During last few years, the 

designs of so-called robust fault diagnosis schemes have resulted in a variety of tools 

for dealing with such modelling uncertainties. In this chapter, we consider the fault 

diagnosis issue for the uncertain nonlinear system using a VSAO. In some work, for 

example [120], the observer is constructed based on a linear system transformed from 

the considered nonlinear system. To obtain the diffeomorphism that transforms the 

nonlinear system into a linear one, a set of general observability like conditions are 

needed [84]. Also, with the addition of actuator faults, an additional restriction will 

have to be placed on them in that they will have to depend on the known signals (i.e. 

inputs and outputs) in the new coordinates. Generally, the difficulty in obtaining 

the diffeomorphism, as well as the restriction placed on the type of faults allowed, 

will limit the applicability of the linearization type of approaches. Here, we directly 



Chapter 2. Robust FDI in Uncertain Nonlinear Systems via a VSAO 19 

construct the VSAO based on the nonlinear system of interest itself. No coordinate 

changes are employed to transform the considered nonlinear system into a linear one. 

Consider a VSAO of the form 

where: 

I 0, otherwise, 

and 2(t)  E lRn is the observer state vector The parameter 6(t)  is the estimate of 

O(t) and 8 = 6 - 0. The positive definite matrix P is symmetric, and L(t)  is the gain 

matrix to be determined. Matrix G E RmXm is nonsingular. The vector v( t )  is the 

switching term defined as above. Finally, p is a positive constant to be derived. 

Remark 2.3.1 The variable structure term v( t )  can guarantee the robustness of the 

residual due to its capability of disturbance rejection. The adaptive law is used to 

estimate actuator faults. This makes the VSAO possess the capability of both robust 

fault detection and estimation. 

The main task of designing the VSAO is to choose the gain matrix L(t)  and the 

switching gain p. In what follows, we will discuss the design of L(t)  and p, and will 

give a proof of the stability and convergence of the above proposed observer. 

If the state estimate errors are defined as 5( t )  = 2( t )  - x ( t ) ,  and output estimation 

errors ey( t )  = $(t)  - y(t) ,  then it is straightforward to show 
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The value of ~ ( t )  is set to OH until a fault is detected. It is assumed that after a fault 

occurs, 9(t) = 9 = constant # OH. 

Output estimation error e, is selected as the residual vector and is used for the 

purpose of monitoring for the actuator fault detection as follows: 

where lle,(T)1lA is A-norm, defined as leii(t)llx = ~ u p ~ ~ r ~ , ~ , l  e-ul leyl l l~ > 0. IlClle is a 

prespecified threshold and T is the time when a fault occurs. 

As a result, the purpose of the actuator fault diagnosis is to find a diagnosis 

algorithm for 6(t) such that 

lim ?(t) = 0; lim e(t) = 0. 
t+oo t-03 

To avoid false alarms generated by A f (x,  u, t )  , we could simply increase the value 

of E .  However, an arbitrary increase may lead to an insensitivity of the observer 

to faults of small magnitude. So, the following proofs of sensitivity and robustness 

actually supply a method to determine the minimum threshold. 

Theorem 2.1 (Robustness) The robust variable structure fault diagnosis described 

by equations (2.5) and (2.6) guarantees that 

for time t < T prior to the occurrence of the fault. 

Proof: 

It is straightforward to show that 
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Multiplying both sides of the above equation by e-xt and considering the definition 

of A-norm, we have 

l l e ~ I l X  5 l l ~ l l l l Z l l ~ ~  (2.10) 

On the other hand 

and 

Using basic integral inequality (see [43], p. 96), we have that 

Multiplying the above equation by e-xt, and assuming that A > k3, we have 
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Taking supremum on both sides of the above equation, we obtain 

Remark 2.3.2 Theorem 1 states that despite the presence of the uncertainties, the 

fault detection logic will not produce a false alarm. 

In what follows, time t of matrix A ( t )  is omitted for the convenience of derivation. 

Theorem 2.2 (Sensitivity) If the fault matrix 8 is such that 

for some td > 0, then 

Proof: 

Rewrite error dynamics equation (2.7) as 

1 T 2 = ( A  + L C ) ~  + 4 + [g(i i )8( t )u( t )  - g(x)8( t )u( t ) ]  - F A  f (x, u ,  t )  + P- C v. (2.16) 

The solution of the above equation is 
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Considering output error expression and taking norms, we obtain 

In the above derivation, we assume that A + L C  is a stable matrix and Xo and ,u 

could be selected such that inequality Ile(A+LC)t 1 1  5 Pe-'ot holds. 

Furthermore 

P 
-PllCIl llw)lle-xOt - Ilcll(40 + 1)(1 - e-Xot) 

where $o is the norm bound of 6; 1 = ,oaf IlFll + ,oIIP-lCTII. 

Multiplying both sides of the above equations by e-xt, we have that 

Taking supremum on both sides of the above equation, we obtain 
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The following theorem provides sufficient conditions for convergence of the state 

estimates and the stability of the observer proposed above. 

Theorem 2.3 (Stability) Consider an uncertain nonlinear system (2.1). If there 

exist positive definite symmetric matrix P( t )  and gain matrix L(t)  such that (A( t )  + 
L(t)C)TP(t)  + P(t ) (A( t )  + L(t)C) + ~ ( t )  = -Q(t) ,  where Q(t)  is a positive definite 

symmetric matrix, then the state estimation error dynamics (2.7) is stable. 

Proof: 

Consider the Lyapunov function candidate 

then 

2T 
v = i T p 2  + z T p i  + zTP2 + 2tr(B G - ~ B )  

+2e:g(2)8~ - 2tr(uerg(f)GG-'8) - 2e:A f + 2e:v 
(2.25) 

where PF = CT. In the above derivation, equation (2 .2)  is used and the adaptive 

law has been inserted. 
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Considering Assumptions 2.4 and 2.5, and substituting v(t) from equation (2.6) 

into equation (2.25), we have the following further extended equation: 

So, the proposed VSAO is stable. I 

From the stability derivation of the VSAO, we know that the main reason why 

the Lipschitz condition is not required is the introduction of the power series of f (x) 

and g (x) . 

Remark 2.3.3 From adaptive theory viewpoint, a learning methodology for actuator 

fault diagnosis has been constructed. By using the adaptivity capabilities of this 

observer, it can be used not only to detect the occurrence of the actuator failures, but 

also to provide an online estimate of the fault characteristic. 

Remark 2.3.4 From the derivation of the stability of the proposed VSAO, it is 

known that the modelling uncertainties can be dynamically compensated by the dis- 

continuous term v(t). So, introducing this discontinuous term into the observer has 

improved the robustness of the fault diagnosis algorithm for uncertain nonlinear sys- 

tems (2.1). 
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2.4 An Example 

In this section, the proposed VSAO-based approach will be tested by detecting and 

diagnosing actuator faults in a simple nonlinear system as follows 

where 

The VSAO is constructed as follows 

where 

Assume that healthy actuator gain OH = 1, and a fault occurs as follows: 

{ 
1; t < lO(sec) 

O(t) = -2; 10 5 t < 15(sec) (2.31) 

2; t 2 l5(sec). 

The simulation results are shown in subplots 1, 2, and 3 of Figure 2.1. It can be 

seen that tracks the faulty actuator behavior in a desired manner. After an actuator 

fault occurs at 10 sec and 15 sec, residual e, rapidly jumps to a value indicating a 

fault has occurred. Therefore, e, provides a good measurement for detecting actuator 

faults. It should be noted that the initial nonzero value of the residual is due to the 

observer's initial conditions mismatch. 
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Figure 2.1: Fault Diagnosis by a VSAO. 
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2.5 Conclusions 

In this chapter, a VSAO for actuator fault diagnosis in uncertain nonlinear systems 

has been constructed based directly on the nonlinear systems under consideration. 

Coordinate changes are not used. This makes the VSAO easier be applied to indus- 

trial processes. The effects of model uncertainties on estimation error dynamics can 

be dynamically attenuated by the variable structure term, while the estimated fault 

compensates the effects of the actuator fault. This is why the VSAO can still accu- 

rately estimate the post-faulty system states. The simulation results show that this 

kind of VSAO-based fault diagnosis strategy can work efficiently. 



Chapter 3 

Robust Fault Detection via a 

SOSMO 

In this chapter, a second order sliding mode observer (SOSM0)-based robust fault 

detection in uncertain nonlinear systems is discussed. The reason why the SOSMO 

is used for fault detection is that the second-order S( t )  (sliding surface) dynamics 

can sharply filter unwanted high frequency signals due to unmodelled dynamics. The 

sliding condition will be first derived such that the observer switching gain can be se- 

lected. The stability of the reduced sliding mode observer is then proved by assuming 

that the considered uncertain nonlinear system has a single output and two outputs, 

respectively. An example will be employed to show that the proposed sliding mode 

observer can work very effectively. 

3.1 Introduction 

The growing needs of FDI in complex systems, such as the automotive, manufacturing 

autonomous vehicles, and robots, have attracted a lot of attention [28, 50, 61, 1061. 
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It is well known that the core element of model-based fault detection in industrial 

systems is the generation of residual signals that act as indicators of faults. Various 

design approaches for residual generation have been proposed. Fault detections using 

parity space approaches and detection filters are discussed in [50, 96, 971. Besides 

these strategies, the most widely considered tools for fault detection are observers. 

The basic idea behind the utilization of observers for fault detection is to estimate the 

outputs of the systems from the measurements by using some type of observer. After 

that, one can construct the residuals by properly weighted output estimate errors 

[39]. When the considered system exhibits unknown disturbances and uncertainties, 

their effects have to be de-coupled from the residual signals to avoid false alarms in 

detection. This problem is commonly known in the literature as robust fault detection 

P I .  

In recent years, SMOs that originate from sliding mode control have been provok- 

ing researchers' attention [96, 97, 113, 130, 1311. The main characteristic is that the 

output estimation errors between the considered system and the SMO can be forced 

to and maintained at zero, which is called sliding, despite the disturbances and un- 

certainties. Therefore, the SMOs can be applied to robust FDI. The pioneering work 

on SMOs can be found in [112, 1181. 

Additionally, Hermans et al. [55] introduced an SMO on the basis of transforming 

the considered system into a canonical form. After analyzing the structure of the un- 

certainties, an SMO is constructed. Edwards et al. [39] considered the application of 

a particular SMO to  FDI problems. The novelty of their paper lies in the reconstruc- 

tion of the fault signals by the equivalent injection concept. The SMO gain is chosen 

to maintain the sliding of system output estimation errors even after a fault occurs. 

The equivalent control concept is also used in [I231 to prove the convergence of the 
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proposed SMO that is used to estimate the states of nonlinear systems of interest. 

Sreedhar et al. [I131 presented a robust detection of a subset of sensor, actuator, and 

process faults using the SMO. The performance of the SMO-based FDI technique is 

shown to be robust to parameter uncertainties of the system model. 

In this chapter, a SOSMO based robust fault detection will be discussed, which 

is motivated from the second order sliding mode control [ll, 411. The reason why we 

adopt the second order sliding mode concept is that the second order sliding surface 

dynamics forms a low-pass filter that can sharply filter unwanted high frequency 

signals caused by disturbances and uncertainties. This makes the SOSMO robust to 

disturbances, while being sensitive to the low frequency faults. As long as the fault 

is not a high frequency signal, it can be successfully detected. 

3.2 Preliminaries and Problem Statement 

Consider a general uncertain nonlinear system as follows: 
m 

~ ( t )  = E(x) + b f ( x , t )  + C g i ( ~ ) ~ i ( t )  
i=l 

= r w  + ~ ( x ,  t) + ~ ( x ) u ( t )  

~ j ( t )  = hj(x)7 j = l , . . . , m  

where: x(.) : R+ t IRn is the system state vector; u(.), y(.) 

( 3 4  

IR+ -+ Rm are system 

input and output vectors, respectively; J(.), gi(.) : IRn -+ IRn, i = 1, . . , m are smooth 

vector fields and hi(.) : IRn -+ IR, i = 1, , m is a smooth function; b f (x, t) E IRn 

represents the disturbances and uncertainties. 

The goal of this chapter is to design a SOSMO, which is named after the second 

order sliding condition, to detect system faults. Fault detection could be accomplished 

by measuring the deviation of the system trajectories from the sliding surfaces. The 

second order sliding condition will be used to design the SOSMO. 
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Throughout this chapter, the following assumptions are required: 

Assumption 3.1 The system output vector h(x)  = [hl ( x )  , . , hm(x)lT is difleren- 

tiable. 

Assumption 3.2 The system inputs u = [ul,  . , u,IT are bounded. 

ah . Assumption 3.3 Matrix - zs bounded. 
ax 

Assumption 3.4 Uncertainties have upper bounds in the followir~g forms: 

where q ( x )  is the known upper bound of unknown disturbances. 

ah (2 )  
Assumption 3.5 Matrix - L(t)  E IRmXm is nonsingular, where L(t)  is observer 

ax 
gain to be determined. 

3.3 Main Results 

In this section, the SOSMO design issues and its stability will be discussed. 

The key point here is that if the deviation of the SOSMO outputs and the real 

outputs is within an acceptable range, the residual should not generate an alarm 

signal. In the sliding mode context, one says that the observer is sliding [55]. A fault 

will destroy the sliding. 

To achieve robust fault detection for the uncertain nonlinear systems despite the 

existence of uncertainties and disturbances, the following SOSMO is proposed: 
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where L( t )  E IRnXm is observer gain to be determined; u( t )  is the switching term to 

be derived which includes sliding surface vectors. 

The expressions of the first order derivatives of observer output vector i j  and system 

output vector y can be obtained from system equation (3.1) and observer equation 

(3.2) 

where: 

Remark 3.3.1 From the viewpoint of nonlinear system theory [64], either equation 

(3.3) or (3.4) implies that the considered system has relative degree one because 

A(.) # 0. 

If output estimate errors are defined as e ( t )  = y(t)  - ij(t), then it is straightforward 

to show that 

e( t )  = ( B ( x )  - B ( 2 ) )  + ( A ( x )  - A(?))u( t )  + A F ( x )  + v ( t )  . (3.5) 
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In what follows, the switching term v( t )  will be derived. To this end, the relation- 

ship between sliding surface dynamics and output errors can be selected as a second 

order differential equation for which the so-called SOSMO is named: 

where S = col [sl, s2, . . . , s,], the sliding surface. Parameters c and xo are two constant 

coefficients. 

Substituting equation (3.5) into (3.6), we have: 

where 

6 B = B ( x ) - B ( i ) ,  6A=A(x)-A(?) .  

A Lyapunov function candidate is taken to create the attractivity condition as follows: 

where w is a positive constant. 

Differentiating equation (3.8), we obtain: 

To constitute the attractivity condition for the sliding mode towards dS/dt = S = 

0, the following inequality should hold [41]: 

Substituting equation (3.7) into the above equation, we have: 
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If the switching term v(t) is chosen as v = zoS - ce - UIS - d sgn(S), equation 

(3.11) can be further simplified as 

Noticing that STsgn(S) 2 ( 1  s I( and consequently -dSTsgn(S) 5 -d 11 s 11 , therefore 

using this inequality, equation (3.12) can be further derived by using vector norms 

therefore, if 

where 7 6 ~  is the norm bound of known function ~ ( x ) ,  then, 

which means that output errors are kept sliding on the sliding surface. 0 

The faulty uncertain nonlinear systems can be in the following form: 

where [(t) represents system faults such as actuator faults or aged components. 

We could take e(t), the output estimation error between the SOSMO and the 

considered uncertain nonlinear system, as a residual. 

If there are no faults in the uncertain nonlinear system, and a proper gain d has 

been selected, then the SOSMO should be sliding and the residual should be zero. 

Once there exists a fault, if we have chosen a proper gain d such that the SOSMO 
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is robust to disturbances and uncertainties while sensitive to faults, the residual will 

then generate a fault alarm signal. 

As we can see from equation (3.7), v(t) is discontinuous across s = 0, and s 
is accordingly discontinuous, which leads to chattering. If we use s as a residual, 

the chattering is not desirable. To smooth out the discontinuity, a boundary layer 4 

neighboring the switching surface s is introduced [ l l ] .  A saturation function (sat) is 

used to replace signum function. The saturation function is defined as 

and 

The S dynamics outside the boundary layer can be obtained by substituting v(t) into 

equation (3.7) as 

s + wS+ dsgn(s) = 6~ + 6Auf  AF. (3.19) 

Within the boundary layer, the S dynamics has the form of 

Equation (3.20) represents a low-pass filter [ll, 271 that can block high-frequency 

signals while letting all low-frequency signals pass. So, as long as the fault is not a 

high-frequency signal, it will have an impact on S dynamics. Therefore, S can also 

be selected as a residual. In fact, s can also be selected as a residual because once a 

fault occurs, the s will stop sliding, thereby enabling us to detect faults, which will 

be seen in the simulations. 
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Remark 3.3.2 According to equation (3.14), we know that if the chosen d is big 

enough, then the system output errors can be guaranteed to slide. On the other 

hand, if d is too big, the chattering will become an especially important issue and, 

in addition, the sliding mode observer may become robust to faults as well. That 

is, when a fault occurs, the residual may not be able to produce an alarm signal. 

Therefore, the selection of gain d needs careful consideration. 

3.3.1 Stability Analysis of the SOSMO with a Single Output 

Under some conditions, a nonlinear system can be transformed to a nonlinear system 

with linear outputs [123]. Therefore, assume that the considered nonlinear system has 

an output variable y = xl. Based on this assumption, the stability of the proposed 

SOSMO is to be proved. 

Expanding the SOSMO (3.2) according to each observer state variable leads to 

the following: 

il = fl - kl ( t ) ~  

L2 = f2-k2(t)v 

ah(?) - 1 

where [kl(t), k2(t), . - . , ki,(t)IT = L(t) [diL(t)] ; v is the discontinuous term in 

the SOSMO; and [fl, A,.  . . , fnlT = [(P) + G(?)zL. 

Let Zi = xi - ii, i = 1,. . . , n and subtract equation (3.21) from system equation 
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where [ A f i , A f i , . . .  7AfnlT = [ f i , f i , . * .  ,fnlT - [.f17.f2,... ,.fnlT = ( [ ( r )  - [ (e ) )  + 
(G(x)u - G(ii)u), and 6 fi is the disturbance, i = 1,. , n. 

Based on the following lemma, Theorem 1 will be presented. 

Lemma 3.3.1 The coefficient kl(t) in estimation error dynamics equation (3.22) is 

equal to 1. 

Proof: The proof is straightforward. 

Because the output is xl(t), we have the following calculation: 

where ll # 0. 

Recall that inequality (3.14) can guarantee the output errors to reach the sliding 

surface S(t)  and be kept sliding on it, i.e. Zl is zero on this surface. Applying 

the concept of equivalent dynamics in accordance with [118], we have the reduced 

estimation error dynamics in the form of 

i 2  = Af2 + 6f2 - ?(t)(Afl + 6fl) 

i n  = Afn + 6fn - k ( t ) ( ~  fl + 6fl). 

By expanding A f l ,  A f 2 ,  . . , A f, into power series, we get the following differential 

form of the above equation: 

- a f 2  h a f i 1 , ~ + . . . + [ 3 L  
i 2  - [G - -i,ax2 a x n  + $2 + (6f2 - t 6 f l )  
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where &,  i = 2,  . - , n, are the terms of second and higher order in (x i  - &). 

Let 5 = [it2, Z3 ,  . . , & I T ,  we have: 

1 (fi afl.. .fi) ax2 ax3 ax,  , 

Assume that gains li(t), i = 1, - , n can be chosen such that matrix A(t) is a 

stability matrix and there exists a positive definite symmetric matrix P such that 

where Q is a positive definite matrix. 

Let us further consider a Lyapunov function candidate 
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Differentiating it, we get: 

i/' = &TpZ+ZTp& 

= (ZTAT + QT + bFT)PZ + ZTP(AZ + @ + SF) 

(3.28) 

= Z ~ A T P Z  + (PTPZ + GFTPZ + ZTPAZ + ZTPQ) + ZTPGF 

Considering equation (3.26), the above equation can be further extended as 

where Y ~ F  is the norm bound of known function ~(x). In the derivation process above, 

I holds, then the inequality l l @ l l  5 rmllZll is used. Therefore, if ~11Z11 2 (,_n(g)!2~llpll) 

reduced state estimation error is bounded. 

The above results can now be summarized in the following theorem. 

Theorem 3.1 Consider uncertain nonlinear system (3.1) with a single output and 

its SOSMO defined in equation (3.2). If inequality (3.14) and equation (3.26) hold, 

then the system state estimation error is bounded. 

3.3.2 Stability Analysis of the SOSMO with Multiple 

Outputs. 

For a multi-output nonlinear system, the SOSMO has the same construction as that 

in equation (3.2). Nevertheless, in this case the observer gain matrix L(t)  is an n x m 

matrix, where m is the number of outputs. In addition, output estimation error 

vector e(t) ,  discontinuous term v, and sliding surface S( t )  are m dimension vectors. 



Chapter 3. Robust Fault Detection via a SOSMO 41 

For simplicity of stability derivation, assume that the system outputs y = [xl, x2IT. 

Under this circumstance, rewrite SOSMO (3.2) as follows 

A 

2n = f n  - knlv1 - kn2~2 

where [fl, f2,. . . , fnlT = <(2) + G(2)u(t) and u E IR2. 

Subtracting equation (3.30) from systems (3.1), we have 

21 = Afi + bfi + k11~1+ k12~2 

z n  = Afn Sfn + knlvl + 

where [Afi,Af2,"' 7AfnIT = [fi, f27. . . 7 fnlT - [fl, f2,. . . , fnlT = (<(x) - <(;)) + 
(G(x)u - G(2)u), and 6fi is the disturbance, i = 1 , .  . . , n. 

In the following lemma, the coefficients kij in equation (3.31) are about to be 

derived according to each component of matrix L(t). Also, based on the following 

lemma, Theorem 2 will be stated. 

Lemma 3.3.2 In equation (3.31), the coefficients kll = lcz2 = 1 and k12 = kSl = 0. 

Proof: The proof process is straightforward. Starting with 
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and considering 

where A = l l l l z 2  - l121zl # 0, 

we have 

The dynamics of state errors xl and 2 2  is 

From the above equation, the equivalent controls can be obtained: 

Redefine 5 = [Z3, Z4, - - . , $,IT and its dynamics is: 
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The expansions of A fl, A f2, . . . , A fn into power series lead to: 

1 1 - 1  1 O f 1  132111-1 1 a f 2  

2 3  = [ax3 - 2 2 ~  32 2Lax3  A 3 1  u&3 + . . 

where $i, i = 3 , .  . . , n is the term of second and higher order in (xi - &). 

Let 

The reduced error dynamics can be as follows 
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where 

and 

6D = 

- 6 f 3  - / 3 1 / 2 2 - 1  A 32 1 2 ' 6  f 1  - 132111-1311126 - 
A f 2  

6 f 4  - k 1 2 2 i 1 4 2 h  6 f 1  - b 2 1 1 1 - 1 4 1 1 ~ 6  
A f 2  

6 f n  - l n l b - 1  2 / 2 1  6 1n2111-1 1 / 1 2  
A n  f 1 -  A" 6 f 2 -  - 

In the following, assume that gains lij, i = 1, - , n, j = 1,2 can be chosen such 

that matrix B(t)  is a stability matrix and there exists a positive definite symmetric 

matrix n(t) such that 

where R is a positive definite matrix. 

Considering a Lyapunov function candidate V = ZTrIZ, it follows that: 

I -Xmin(R)IZl12 + 2r411nlll~l12 + 2 r ~ ~ l l n l l  llZI1 

= ((-Xmin(R> + 2r4llnII) IIZII + 2760 llnll) llZll 

where 3/60, 74 are the norm bounds of 6D and &. 

Furthermore, take a value 0 < a < 1, provided that the gains lij are such that 

Xmin(R) - 2~4llnll - a 2 0 (3.42) 

and using the inequality (3.41), it is easy to show that 

V I -allZll 

if 

llZll 2 c 
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with 

From Khalil [69], this means that Z is convergent to the ball 

Therefore, given any c* > there exists a finite time T such that for all 

t > T we have 

Remark 3.3.3 Actually, the equivalent control v,, = [ d s p ( ~ ) ] , , .  Because, on the 

sliding surfaces, S ( t )  = ~ ( t )  = 0 and e = y - 6 = 0. 

Theorem 3.2 Assume that assumptions 3.1-3.5 and inequality (3.14) hold. If gains 

l i j ,  i = 3, . - . , n, j = 1,2 are chosen such th,at (3.40) and (3.42) are satisfied, then the 

state estimation errors of the reduced sliding mode observer converge to the ball 

3.4 Simulation Results 

In this section, the above presented SOSMO for fault detection will be illustrated on 

a simple nonlinear system. These simulation results confirm that the SOSMO can be 

used to robustly detect system faults. A first order SMO based fault detection will 

be also presented for the purpose of comparison. 
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3.4.1 Fault Detection by a SOSMO 

Consider the system 

Y = x2 

where f a  is an actuator fault with a size 0.5, occurring at time 10sec. 

Uncertainties and disturbances are taken as 

The SOSMO has the following form: 

Output estimate error e(t)  = ~ ( t )  - &(t )  and sliding surface s can be selected 

as residuals. The simulation results are shown in Figures 3.1-3.5. 

Figures 3.1 and 3.2 describe that, when there exists no fault, this SOSMO can 

converge to the system model very accurately. In Figures 3.3 and 3.4, the residuals 

produce alarm signals after a fault occurs, i.e. the sliding mode observer stops sliding 

after the occurrence of a fault. The residuals fly to infinity, at which point the fault 

detection can be achieved. When the gain d is increased largely, the chattering of 

discontinuous term v( t )  becomes large. Meanwhile, see output errorlresidual in Figure 

3.5, the residual cannot work anymore because the sliding observer can still slide even 

if a fault appears. 

3.4.2 Fault Detection by a First Order SMO 

A first order SMO is constructed according to [3, 1231 
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The sliding surface is selected as a residual. As shown in Figure 3.6, the same 

fault as that used in the SOSMO can not be efficiently detected due to the chattering, 

even though this observer can converge to the system state equation. 

3.5 Conclusions 

This chapter has explored a SOSMO for the purpose of fault detection. It is the 

fact that the stability proof is hard work, especially the stability proof for nonlinear 

systems with multiple outputs since it needs a much greater workload. To guarantee 

the sliding of output errors, parameter d should be selected according to an inequality 

derived in Section 3. The key issue here is the selection of the observer gain d because it 

is the measure of uncertainties and disturbances. It must be taken properly. If it is too 

big, it muffles faults; if too small, it cannot guarantee the sliding of output estimation 

errors. This SOSMO is sensitive to small-sized faults because the S dynamics within 

the boundary layer is a continuous signal. That is, there is no chattering in there. 

In addition, the sliding surface dynamics forms a low-pass filter that can block high 

frequency signals caused by disturbances or modelling uncertainties, while letting all 

low frequency signals pass. As long as the faults are not high frequency signals, they 

will be successfully detected. The simple example has verified these results. 
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Output Error 

r---' 
v-discontinuous term 

0.5 ~ 

-0.5 
0 5 10 15 20 25 

System output (solid line) and Observer output (dotted line) 

Figure 3.1: No faults occur-1. 



Chawter 3. Robust Fault Detection via a SOSMO 49 

S dynamics Sliding surface dS/dt 

0'02 2 

Figure 3.2: No faults occur-2: S and S 

S dynamics 

I 
Sliding surface dS/dt 

-0.02 L J -0.02 
0 2 4 6 8 10 0 2 4 6 8 10 

Figure 3.3: A fault occurs: S and S. 
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Output ErrorIResidual v-discontinuous term 

dsldt System output and Observer output 

Figure 3.4: An abrupt actuator fault occurs. 
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Output ErrorIResidual v-discontinuous term 

System output and Observer output 

Figure 3.5: Gain d is chosen too big. 
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System state 1 estimation error System state 2 estimation error 

v-discontinuous term Sliding surface S/Output Estimation Error 

1 

Figure 3.6: The first order SMO with a fault. 



Chapter 4 

Robust FDI in UCNS via a 

SOSMO 

This chapter will extend the SOSMO based FDI approach to uncertain constrained 

nonlinear systems (UCNS). A SOSMO will be presented based on the closed-loop 

systems formed by imposing the constraint terms into the considered system equation. 

This SOSMO can directly supply the estimate of faults, which makes fault isolation 

easier. From the estimate of faults, the size and the severity of the faults can also be 

obtained. The sliding condition on which the selection of the observer switching gain 

is based, is first derived. This switching gain not only forces the output errors to be 

zero, but keeps the output errors at zero as well. To smooth out the discontinuity of 

the sliding surface, a saturation function is introduced to replace the signum function 

so that the sliding surface dynamics forms a low-pass filter. The stability of the 

reduced SOSMO resulting from the use of equivalent control concept is then proved 

by assuming that the considered UCNS has a single output and then two outputs, 

respectively. An example is employed to show that the proposed SOSMO can work 

very effectively. Especially for a relatively small-sized fault, this SOSMO can still 
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efficiently detect the fault. In comparison to the SOSMO, the first order SMO cannot 

realize this task because of the chattering. 

4.1 Introduction 

Many practical systems can be modelled as constrained nonlinear systems, such as 

the mechanical systems with holonomic or nonholonomic constraints [75, 881, power 

systems [56], chemical processes [77], etc. A mobile robot moving on a surface [26], 

for example, is a typical constrained nonlinear system whose constraint is the spec- 

ified surface. Little FDI work has been done in the constrained nonlinear systems. 

Therefore, research on fault diagnosis in constrained nonlinear systems is necessary, 

especially research on fault diagnosis in UCNS. 

In this chapter, a SOSMO with fault estimation is to be constructed in a class 

of UCNS. The proposed SOSMO can achieve three tasks: first, it can achieve fault 

detection; second, fault estimation can be realized by the observer itself; and finally, 

fault isolation can also be performed through fault estimation. 

4.2 Preliminaries 

Consider a class of UCNS defined by the following differential equations 

where f (x), gi(x), ki(x) and hi(%) are analytic functions, d(t) E IRn and f,(t) E IRP 

are disturbance and actuator fault, respectively. It is assumed that fa = constant. 
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For convenience, we denote G(x) = [gl (x) , . . . , gm(x)], k(x) = [kl (x) , . . . , kl (x)lT, 

u(t) = [ul,. . . and h(x) = [hl(x), . . . , h,(x)lT. Suppose that for all x(t) E 

U, vector fields gl (x) , . . . , gm (x) are linearly independent, [dkl (x) , . . . , dkl (x)] and 

[dhl(x), . . . , dh,(x)] are each linearly independent sets of covector fields and m = l+p. 

Further, w(x) E IRnXn and E(x) E IRnxp are distribution matrices of disturbances and 

faults, and E(x) is full rank such that all faults can be detected. 

Some notations to be used later are stated in the following: 

The derivative of a scalar function $(x) along a vector f (x) = [fl (x) , . . . , fn(x)lT 

can be expressed as 

where x = [xl, . . . , xnIT. The derivative of $(x) taken first along f (x) and then along 

a vector g(x) is 

If $(a) is differentiated j times along f (x), the notation L$$(x) is used with L:$(X) = 

$(x>. 

In reference to Z-H Li [79], we have the following definitions. 

Definition 4.2.1 The constrained characteristic index ry of disturbances d(t) is 
ry-1 

defined to be the least positive integer such that L,,L; ki(x) # 0 for some 

x E U c IRn, i = l , . . . , l , j  = 1;m.n. 

Definition 4.2.2 The constrained characteristic index rq of fault f,(t) is defined to 

be the least positive integer such that ~ ~ ~ ~ 7 - l  ki(x) # 0 for some x E U c IRn, 

i = l , . . . , l ,  j = l , . . . p  . 

Definition 4.2.3 The constrained characteristic rt of system input u(t) is defined to 

be the least positive integer such that Lgj LY-'ki(x) # 0, i = 1, . . , 1 ,  j = 1, - . m. 
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Throughout this chapter, system (4.1) satisfies the following assumptions: 

Assumption 4.1 The considered uncertain constrained nonlinear system output vec- 

tor h(x)  = [hl ( x ) ,  . . . , h,(x)lT and constraint vector k (x )  = [kl ( x ) ,  . , kl(x)lT are 

C" . 

Assumption 4.2 The system input vector u( t )  = [ul , - 3  . , umIT is bounded. 

ah . ah Assumption 4.3 Matrix - as bounded with bh, and -E(x)  # 0. ax ax 
Assumption 4.4 The constrained characteristic indices satisfy ry > r: and ria > r:. 

ah ah Assumption 4.5 Matrices (1) Ll ( t )  and (1) L2 ( t )  are both nonsingular. Ma- 

trices L l ( t )  and L2(t)  are SOSMO gains to be determined later. 

Assumption 4.6 Both disturbance d(t)  and system actuator fault f,(t) are bounded 

with bd and b f ,  respectively. 

Assumption 4.4 explains that disturbance and fault terms do not affect the deriva- 

tive of the constraint term, which assures that the d(t)  and f,(t) terms do not appear 

in the derivatives of ki of order rf. 

Using assumption 4.4 and differentiating constraint term ki(x) as in [26],  we can 

obtain the following equations 
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where b(x)  = [ ~ ~ l i ~ ( x ) ,  . . . , L? kl(x)]', A ( x )  = [ L ~ ~  LY-l ki(Z)]lxm. The solution 

of (4.5) can be written as a feedback law 

where A+(x)  = A T ( x )  ( A ( x )  AT ( 2 ) ) - I  is the pseudo-inverse of A(x)  , I is an identity 

matrix and u(t) is a reference input. 

Substituting feedback law (4.6) into UCNS (4.1) to combine the constraint into 

considered UCNS, we form a closed loop system 

x = ( f  ( x )  - G ( x ) A f  ( x ) b ( x ) )  + G ( x ) ( I  - A + ( x ) A ( x ) ) u  + w(x )d ( t )  + E ( x )  f a @ )  (4.7) 

on which our SOSMO will be based. 

Remark 4.2.1 In assumption 4.4, the condition rq > r: can guarantee that faults do 

not appear in the feedback law (4.6) such that one can combine the constraint term 

into considered UCNS system equation. In fact, this condition can be relaxed when 

the constrained characteristic index r: = 1. Under this condition, feedback law (4.6) 

becomes 
ale 

u = -A+(x) (b(x )  + - E ( x )  f a )  + ( I  - A f ( x ) A ( x ) ) u  ax (4.8) 

where A ( x )  = [Lgilc,(x)]rxm and b(x )  = [ L  k l ( x )  . L f  kr(x)lT. 

Consequently, the closed-loop system equation (4.7) has a new form 
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4.3 Main Results 

In this section, based on system equation (4.7), we shall design a SOSMO with fault 

estimation for the purpose of FDI. 

There is a clear intuitive link between sliding surfaces and fault detection. In 

the case of Sliding Mode, the sliding surfaces are made insensitive to internal orland 

external disturbances (actually, the so-called sliding surface is just a differential equa- 

tion that has a unique solution e(t) = y - $ = e(t) = 0). This coincides with the 

requirement of a robust FDI observer where if there is no fault, the system output 

errors are kept sliding on the surface. This means e(t) = e(t) = 0. When a fault 

occurs, the system output errors will stop sliding. This implies that the sliding has 

been destroyed. 

The goal of this chapter is to design a SOSMO with the capability of fault estima- 

tion for a class of UCNS to diagnose system actuator faults. This SOSMO based FDI 

approach assures that the residual is robust to disturbances and modelling uncertain- 

ties, while remaining sensitive to system faults. The second order sliding condition 

will be used to design the SOSMO that is named after the second order sliding mode 

dynamics, a low-pass filter that can sharply reject unwanted high frequency signals 

due to unmodelled dynamics [ll, 411. 

To achieve robust fault detection and estimation for the uncertain constrained 

nonlinear systems despite the existence of uncertainties and disturbances, a SOSMO 
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in reference to Chang [11] and Elmali et al. [41] is proposed as follows: 

2 ( t )  = 

idt) = 

v ( t )  = 

f a ( t )  = 

where D and F are p x p and p x p matrices, respectively. Matrices Ll ( t )  and 

L2(t)  are n x p observer gains. Parameters w, c and xo are some constants, ~ ( t )  E IRP 

is the sliding surface vector, sgn is a signum function and rc, is a positive switching 

gain to  be determined. The term fa(t)  is the estimate of actuator faults and v ( t )  is 

the discontinuous term. Finally, e( t )  = y - 6 is the output estimation error vector. 

This SOSMO can directly estimate faults. The estimated faults, which can provide 

a direct estimate of the size and severity of the faults, can be used directly to isolate 

all faults. 

The output estimation error dynamics can be obtained by differentiating system 

equation (4.7) and observer equation (4.10): 
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where 

and 

a h  a h  a h  
A A  = (- f ( x )  - -G(x)  A+(x)b(x) )  + -G(x)  ( I  - AS' (x )  A ( x ) ) u ( t )  ax ax ax 

a h  
Remark 4.3.1 The assumption of - E ( x )  # 0 in assumption 4.3 guarantees that ax 
fault fa(t) has an impact on output estimation errors for the purpose of fault detection 

and estimation. 

The relationship between sliding surface dynamics and output errors can be taken 

as : 

where S = col [ s l ,  s2 ,  . . , s,] . 
Substituting equation (4.11) into (4.14), we have: 

A Lyapunov function candidate is chosen to create the attractivity condition as 

follows: 
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The time derivative of Lyapunov function candidate is as follows 

To constitute the attractivity condition, the following inequality should hold: 

Substituting equation (4.15) into above equation, we have: 

Substituting discontinuous term u(t) from equation (4.10) into equation (4.19) 

yields 

Noticing that STsgn(s) 2 1 1 ~ 1 1  and consequently -nsTsgn(s)  < - K I I ~ I ,  and 

using this inequality, equation (4.20) can be further derived by using vector norms 

therefore, if 

then, v 5 0, which means that output estimation errors are kept sliding on the sliding 

surface if switching gain K is selected according to equation (4.22). 

As shown in equation (4.15), v(t) is discontinuous across s = 0, and s is accord- 

ingly discontinuous, which leads to chattering. If we use s as a residual, the chattering 

is not desirable. To smooth out the discontinuity, a boundary layer $ neighboring the 
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switching surface s is introduced [Ill .  A Saturation function (sat) is used to replace 

the signum function. The saturation function is defined as 

s 2  
sat (-) $ , . . , sat(g) P I T  

and 

The S dynamics outside the boundary layer can be obtained by substituting v into 

equation (4.15) as 

Within the boundary layer, the S dynamics has the form of 

Equation (4.26) represents a low-pass filter [ll, 271; that means it can filter high- 

frequency signals, while letting all low-frequency signals pass. So, as long as the fault 

is not a high-frequency signal, it will have impact on S dynamics. Therefore, S can 

be selected as a residual. As a matter of fact, s can also be selected as a residual 

because, once a fault occurs, the s will temporarily stop sliding, then recover sliding. 

This way we could detect faults, as will be seen in the simulations. 

Remark 4.3.2 The observer is designed to maintain a sliding motion even in the 

presence of faults, which is quite different from the approaches in [50, 55, 1131 and 

the approach proposed in Chapter 3 where a fault will destroy the sliding of the sliding 

mode observers. 
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Remark 4.3.3 From equation (4.22), one can know that the selection of switching 

gain K is related only to some norm bounds. Therefore, one can claim that if these 

norm bounds are known, then K can be chosen easily without knowing all system 

states for calculation of norm bounds. 

4.3.1 Stability Analysisofthe SOSMO withasingleoutput 

In this section, the stability analysis is based on creating a sliding mode on the first 

one or several state equations (it depends on how many outputs the considered system 

has), which leads to a reduced estimation error equivalent dynamics. The asymptotic 

convergence of the reduced estimation error dynamics is then proved. 

Assume that system output y = Cx(t),  where C is a constant matrix. For the 

simplicity of proof, let y = xl(t). 

Stability analysis begins by expanding the sliding observer (4.10) according to each 

observer state variable 

= (1 - kll ( t ) ~  + k12Dfa 

[kll (t), kzl (t), , knl (t)lT = Ll (t) - Ll (t) ; ~ ( t )  is the discontinuous term in t 1;; 1-I 
L -I 

SOSMO; [hi2 (t) , k22 (t) , 
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Let Zi = xi - &,  i = 1, - ,  n, subtracting equation (4.27) from system equation (4.7), 

where 

and wi and Ei are row vectors of matrices w and El  respectively. 

On the basis of the following lemma, Theorem 4.1 will be introduced. 

Lemma 4.3.1 The coefficients k l l ( t )  and k12 in state estimation error dynamics 

(4.29) are both equal to 1. 

Proof: Because the output is xl ( t ) ,  we have the following straightforward calculation: 

and 
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where 1; # 0, 1f # 0. I 

Recall that inequality (4.22) guarantees that output errors will reach the sliding 

surface ~ ( t )  and will be kept there while sliding on it, i.e. the output estimation error 

Z1 is zero on this surface. Applying the concept of equivalent dynamics in accordance 

with [118, 1231, we have the reduced SOSMO error dynamics in the form of 

By expanding AC1, LC2, . . . , A& into power series, we have the following differen- 

tial form of the above equation: 
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where &, i = 2, . , n, are the second and higher order terms in ( x i  - &). 

Let 2  = [Z2, Z 3 ,  a . . , znITl we have: 

= A ( ~ ) Z  + Q, + 6~ +  AD^^ 

where 

and 

Choose gains l i ( t ) ,  i = 1, . . , n such that the matrix A ( t )  is a stability matrix and 

there exists a positive define symmetric matrix P ( t )  such that 

where Q is a positive define matrix. If gain matrix L2 ( t )  = Ll ( t ) ,  then equation (4.33) 

can be reduced to 

Z = A(t)Z + + + 6F (4.36) 

Consider a Lyapunov candidate function of the form 
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Differentiating it, we have: 

Considering equation (4.35), the above equation can be further extended as 

where Amin(.) and Amax(.) are minimum and maximum eigenvalues, respectively, 

and 7 6 ~  is the norm bound of 6F.  

In the above derivation process, inequality 1 1 + 1 1  5 y411511 is used. 

Therefore, if the following inequality holds for all 2 

then v 5 0, which implies that the reduced estimation error is bounded. 

Following [123], SOSMO gain Ll ( t )  can be directly calculated. 

Finally, the following theorem summarizes the above results. 

Theorem 4.1 Consider UCNS (4.7) with a single output and its SOSMO defined 

in equation (4.10). If inequality (4.22) and equation (4.35) hold, then system state 

estimation error is bounded. 

Remark 4.3.4 In this subsection, we discussed the stability of UCNS with a single 

output y = x l ( t ) .  The coefficient of v ( t )  in the first estimation error equation is 1 

due to the special structure of the proposed observer Ll ( t )  -Ll(t)  . From this 1;; 1 - I  
L J 

special structure, we can also derive that if y = xi( t ) ,  i = 1, . . . , n ,  then the coefficient 

of v in the i-th estimation error equation is 1. 
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Remark 4.3.5 It is worth noting that the linear output y = Cx has been used to 

prove the stability of the UCNS. If there is a single output of the form of y = h(x), 

from equation (4.11), v(t) can be calculated as 

Substituting the above expression into equation (4.29) will lead to a similar form 

as equation (4.31), and similarly, the stability of the UCNS can be proved. 

4.3.2 Stability Analysis of the SOSMO with Multiple 

Outputs. 

For multi-output nonlinear systems, one has the same construction of the SOSMO 

as that in equation (4.10). Nevertheless, observer gain matrices Ll(t) and L2(t) are 

n x p matrices, where p is the number of outputs. In addition, output estimation error 

e(t), discontinuous term v(t) and sliding surface S(t)  are dimension-p vectors. For 

simplicity of stability derivation, assume that y = [xl, x2IT. Under this condition, 

rewrite SOSMO (4.10) as follows: 

where Dl and D2 are row vectors of D. 
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Subtracting (4.42) from system (4.7), we have 

Before stating Theorem 4.2, Lemma 4.3.2 is introduced. 

Lemma 4.3.2 In equation (4.43), the coefficients kll = kz2 = mll = m22 = 1 and 

k12 = lc21 = ml2 = ma1 = 0. 

Proof: 

The proof process is straightforward as follows: 

where A = 1:,1,1, - 1:,1,1, # 0. 
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Similarly 

where = 1y11,22 - 1y21,21 # 0. 

Therefore, the dynamics of the state estimation errors Icl and 52 are 

= A[, + wld(t) + El f a  + vl - D1fa 

From equation (4.47) we have the equivalent control: 

( ~ 1 ) e q  = ~ 1 f a  - - wld(t) - Elfa and (vz)eq = - 4 - ~ 2 d ( t )  - E2 fa.  

(4.48) 

These two equivalent control laws will be used in the stability proof. 

Redefine Ir: = [Z3, iE4, , & I T  and its dynamics: 
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where &, i = 3 , .  - . , n are the second and higher order terms in (xi - &). 

Let 

E ~ ( n - 2 )  x (n-2). 

The reduced error dynamics can be described as follows 

where Dfa  = [D1fa ,  D2falT, 6 = [&3,. . . , & I T .  
Moreover 
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and 

In the following, we choose the gains l k ,  i = 1 , .  . . , n, j = 1,2 such that matrix 

B(t) is a stability matrix and there exists a positive definite symmetric matrix II(t) 

such that 

where R is a positive definite matrix. If gain matrix L2(t) = Ll(t),  then equation 

(4.51) can be reduced as 

i = B(t)Z + + SN (4.54) 

Considering a Lyapunov function candidate V = j.'IIZ, it follows that: 

where Amin(.) and Am,,(.) are minimum and maximum eigenvalues, respectively, 

and BN, 74 are the norm bounds of 6N and 5. 

Furthermore, take a value 0 < a < 1, provided that the gains 1; are such that 

and using the inequality (4.55), it is easy to show that 
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with 

From Khalil (691, this means that 2 is convergent to the ball 

Therefore, given any c* > Jmc there exists a finite time T such that for all 

t > T we have 

Theorem 4.2 Consider constrained uncertain nonlinear system (4.7) with multiple 

outputs and its SOSMO defined in equation (4.10). If inequality (4.22) and equations 

(4.53) and (4.56) hold, then the state estimation error converges to the ball 

Remark 4.3.6 The equivalent control veq represents the average behavior of the dis- 

continuous term v and indicates the effort necessary to maintain the output errors 

sliding on the sliding surface [39]. The usual way to recover the equivalent control 

signals is to use a low-pass filter [72, 118, 1311. Therefore, if the equivalent control sig- 

nals can be recovered, then disturbances d ( t )  can be roughly estimated from equation 

(4.48) if the UCNS has no faults. 
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4.3.3 Fault Isolation Strategy 

For fault detection and isolation purpose both output estimation errors and sliding 

surface ~ ( t )  can be selected as residuals. When a fault occurs, the sliding surface is 

no longer zero. Nevertheless, the observer switching gain K has been designed to keep 

the system in sliding mode. Therefore the sliding surface will recover to zero, and by 

this process the fault can be detected. 

In order to solve the fault isolation problem one can employ the following strategy 

[lo71 : 

Partition the set of all possible faults into a disjoint subsets that are to be 

isolated. 

An observer is designed corresponding to each subset, which results in a bank 

of a fault detection observers generating a residuals where the ith residual is 

sensitive only to the ith subset of faults while being robust to other all faults as 

well as to disturbances and uncertainties. 

In addition, H. Yang and M. Saif [I351 use an adaptive observer to isolate faults, 

where the disturbances are estimated, then by some calculation, faults can also be 

estimated by examining each component of the fault vector. Thus, fault isolation can 

be accomplished. 

Here, faults are directly estimated in the SOSMO. As soon as any of the compo- 

nents of the estimate of faults is greater than zero, then the alarm for the correspond- 

ing fault component will be activated. The following algorithm summarizes the fault 

diagnosis process by the SOSMO. 

Step 1: Impose constraint into system equation by differentiating constraint term k ( x )  

under assumption 4.4 to form a closed-loop system. 
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Step 2: Construct a SOSMO for this closed-loop system. 

step 2.1 Select switching gain rc from equation (4.22) under assumptions 4.5 and 

4.6. 

step 2.2 Choose the gain matrices L l ( t )  and L 2 ( t ) ,  where L l ( t )  must make A(t) or 

B ( t )  stable. Then solve equation (4.35) or (4.53) to get P or II. If equation 

(4.40) or (4.58) holds, then go to step 3,  otherwise, reselect gain matrices 

L l ( t ) ,  L2 ( t )  and Q or R to solve P or IT. 

Step 3: Fault detection and isolation is now accomplished based on the estimate of 

faults. In addition, one can also know the size and severity of the faults. 

4.4 An Illustrative Example 

In this section the above presented SOSMO for fault detection and estimation will be 

illustrated on a simple nonlinear system. These simulation results confirm that the 

SOSMO can be used to robustly detect and estimate actuator faults. A first order 

SMO will be also presented for the purpose of comparison. 

4.4.1 Fault Detection and Estimation by a SOSMO 

Consider the system 

Y = x1 

k = x2 + x3 - const. = 0 
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where const. is a constant, disturbance dl(t) is designated as a random function. 

Obviously, the constrained characteristic index rc=l, after calculation of b(x) and 

A(x) , we form a feedback law as in the equation (4.8) 

Substituting equation (4.62) into system equation (4.6l), we obtain the closed-loop 

system with the effect of constraint 

Based on equation (4.63), the SOSMO is constructed as follows: 

v = ( D  + rT)fa - CF + Z ~ S  - zuS - nsat(S) 
A 

f a  = rs. 

The SOSMO will detect and estimate the actuator fault when f,l occurs. 

We take output estimation error and sliding surface dynamics S and ~ ( t )  as resid- 

uals. When a fault occurs, ~ ( t )  will deviate from zero and recover to zero as described 

in Figure 4.1. The S can also generate an alarm as shown in figure 4.3. Meanwhile, 

fault estimation as demonstrated in Figure 4.1, is accurately achieved. Hence, the 

estimated fault is also a perfect residual candidate. Figure 4.2 demonstrates state 

estimation errors produced by the SOSMO. It is shown that all three state estimation 

errors can converge to zero, which implies that this kind of SOSMO can reconstruct 

the system states very accurately. 
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In Figure 4.1, for the sake of comparison with the first order SMO, a small-sized 

fault is employed to test the SOSMO. It turns out that the SOSMO works very well. 

4.4.2 Fault Detection by a First Order SMO 

A first order SMO is constructed according to 13, 

This observer can achieve state estimation efficiently as can be seen in Figure 4.4, 

but when the magnitude of the fault is small it is not appropriate for fault detection. 

This indicates that when the sliding surface is selected as a residual, small-sized 

faults can not be efficiently detected due to the chattering as shown in Figure 4.5. 

This is true even though this observer can converge to the system state equation 

very accurately. In Figure 4.5, the same fault as that used in last subsection occurs. 

Neither the sliding surface nor the output estimation error can efficiently produce 

alarm signals to indicate the occurrence of a fault. The switching gain ki in observer 

equation (4.65) must be selected to guarantee the stability of the observer [3] while 

suppressing the disturbances. Therefore, it is not possible to make it small and the 

chattering is unavoidable. Compared with the first order SMO, the stability of the 

proposed SOSMO is guaranteed by both L1 and L2. Consequently, it is possible to 

choose the switching gain 6 small and, accordingly, chattering is not big. In addition, 

the residuals S and s are continuous signals within the boundary layer, which makes 

it more sensitive to faults. In summary, the proposed SOSMO is appropriate for fault 

diagnosis. 
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4.5 Conclusions 

This chapter explored a SOSMO with a fault estimation scheme for the purpose of 

FDI in uncertain constrained nonlinear systems. The crucial problem for imposing 

the constraint term into the uncertain constrained nonlinear system equation is that 

Assumption 4.4 can guarantee to form a feedback equation with system inputs and 

constraints without involving disturbances and uncertainties. To guarantee the sliding 

of the output estimation errors on the sliding surface, parameter K should be selected 

according to inequality (4.22). This switching gain K is the measurement of both 

uncertainties and/or disturbances, and faults. We can also conclude that the direct 

estimation of faults can supply one with both a fault isolation method as well as an 

indication of the size and severity of the fault. The proposed SOSMO can achieve 

three tasks at the same time: 1) fault detection by the second order sliding surface or 

the output estimation errors; 2) fault estimation supplied by the observer itself; and 

3) fault isolation. One of the main properties of this SOSMO is that it is very sensitive 

to  low-frequency faults while robust to high-frequency disturbances. The first order 

SMO, because of the chattering problem, cannot efficiently detect a small-sized fault 

that can be successfully detected by the SOSMO. The simple example has verified 

this result. 
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Figure 4.1: Fault detection and estimation by a SOSMO. 
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Figure 4.2: State Estimation Error by the SOSMO. 
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Figure 4.3: The S and s of the SOSMO. 
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Figure 4.4: State Estimation Error by First Order Sliding Mode Observer. 
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Figure 4.5: Output Error and Sliding Surface by First Order Sliding Mode Observer. 



Chapter 5 

An ILO-Based Fault Detection and 

IL-Based Accommodation in 

Nonlinear Systems 

This chapter presents a general framework for fault detection and accommodation 

using an Iterative Learning (IL) strategy. An Iterative Learning Observer (ILO), 

which is updated online by immediate past system output errors as well as inputs, is 

constructed for the purpose of fault detection. This ILO involving previous system 

information is different from the conventional Luenberger Observer whose states are 

only a function of the current inputs, outputs, and the estimation errors. Furthermore, 

using IL strategy, an automatic control reconfiguration scheme for fault accommoda- 

tion is also described. One of the main features of the proposed scheme is that the 

control reconfiguration is achieved automatically based only on the response of the 

overall systems. The IL controller does not require a fault detection and isolation 

subsystem. An example is employed to verify the effectiveness of the ILO-based fault 

detection and IL fault accommodation scheme. 
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5.1 Introduction 

A commonly utilized approach for fault detection is through the use of an observer. 

The well known Luenberger (or Luenberger-like) observers are adopted broadly to 

detect the faults in linear, time delay, as well as certain classes of nonlinear systems 

[47, 105, 124, 128, 136, 1371. 

Fault diagnosis in nonlinear systems has not received as much attention as its linear 

counterpart partly due to the fact that, in general, nonlinear control and observer 

design themselves are not as mature of fields as the linear ones. References [40, 120, 

133, 1361 are examples of certain works in this direction. 

Nonlinear diagnostic observer design is at the heart of observer based FDI for non- 

linear systems. In this regard, [I021 presents some fundamental insights into observer 

design for a class of Lipschitz nonlinear systems. The work of [31], which is an exten- 

sion of the well known Luenberger observer, proposes a state observer for nonlinear 

continuous time systems. In particular, the construction of the observer proposed 

in their work does not require a preliminary nonlinear change of coordinates, and 

the observer convergence can be proved under very general conditions. References 

[37, 1311 propose a class of sliding mode observer for nonlinear systems. The observer 

is based on the equivalent control concept. In recent works [9, 581, observers based on 

some ideas from the high gain approach, whose gain could easily be designed, were 

proposed for multivariable nonlinear systems. 

As for accommodation of faults, [6] describes the design of an automatic control 

reconfiguration scheme for accommodation of actuator faults in a class of plants where 

the number of control inputs is larger than the number of controlled outputs. The 

method is developed for a particular type of fault and the information about the 

fault is not available to the controller. In addition, [42, 991 proposed accommodation 



Chawter 5. ILO-Based Fault Detection and IL-Based Accommodation 

approaches from the neural network viewpoint. 

In this chapter a new observer design methodology using IL concept for fault 

detection is proposed. In addition, the IL strategy is also used to reconfigure the 

control system structure for fault accommodation. 

5.2 Problem Statement and Preliminaries 

Consider a nonlinear system described by the following equation 

~ ( t )  = J(x(t)) + g(x(t))u + fa(x(t), u) 
(5.1) 

y(t> = h(x(t)) 

where x(t) E IRn is the state, u(t) E 

measurement, J(x) : Rn 3 Rn, fa(x, u) 

Rm is the input, y(t) E Rm is the system's 

: Rn x Rm -+ IRn, g(x) : Rn -+ RnXm and 

h(x) : Rn + Rm are smooth vector fields. The function f,(x, u) characterizes the 

change in the system due to a fault. A system fault typically results in changes in 

the parameters of the system or even in changes in the dynamics of the system. In 

the most general case, such changes are represented by a nonlinear function of the 

system states and inputs [120]. It should be noted that the fault representation given 

by (5.1) does not address sensor faults. The description of a sensor fault requires an 

additional term in the output equation. 

The objective of this chapter is to develop an IL fault detection and accommoda- 

tion strategy based on the dynamic system model in (5.1). An ILO, which is updated 

or driven successively by the ILO input, will be constructed. The ILO possess the 

capability of detecting any changes in the system dynamics. Once a fault is detected, 

self-correction based on IL approach is achieved through the reconfiguration of the 

control system. This reconfiguration of the control system is based on the response 

of the overall system, and not based on the information about faults. 
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For convenience, the following notation is introduced 

The expansion of [ ( x )  into power series leads to 

where $(2,  x )  is the second and higher order terms in e( t )  = x( t )  - 2( t ) .  In 

addition, A( t )  is an n x n matrix. The expansion of [ ( x )  into power series makes it 

convenient to discuss the stability of the proposed ILO. 

Throughout this chapter we will make the following assumptions 

Assumption 5.1 Functions g(x)  and h ( x )  are Lipschitx in x with Lipschitx constants 

kg and kh 

11dx) - g(2) 1 1  5 kg lle(t) ll 

Ilh(x) - h ( i )  1 1  5 khIle(t)ll. 

Assumption 5.2 System input vector is bounded by k,, and fault f,(x, u )  is bounded 

b y  fm. 

Assumption 5.3 There is a real number kd > 0 such that q5 is bounded via 

Assumption 5.4 Symmetric matrix P ( t )  has the following property: 

where pl, P2 are positive real numbers, and P ( t )  is the solution of the following Riccati 

equation: 
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In [99], a learning paradigm was proposed for fault detection and accommodation 

based on neural network. Here, we shall propose another approach for fault detection 

and accommodation based on IL concept. The main characteristic of this IL approach 

is the fact that the observer inputs are updated online by the past inputs and previous 

information which drives the observer to follow the system model and to detect any 

changes in the system dynamics once this ILO is constructed. 

5.3 ILO-Based Fault Detection Approach 

In this section, the ILO is discussed at some length for the fault detection in a class 

of nonlinear systems. Recall the nonlinear system: 

In practice, it is not always possible to measure the state vector. Therefore, only 

inputs and outputs can be used to construct the observer for the purpose of fault 

detection. Thus, an ILO is constructed using only the system inputs and outputs: 

where T denotes the sampling time interval, 2(t) is the observer state vector at time 

t ,  K and L are ILO gain matrices. The term m(t),  which is called ILO input, is 

updated at each time instant t, and output estimation error e,(t - T) = h(x(t - 7)) - 

h(2(t - r)). It is used to estimate fault fa. This ILO has a similar structure with 

PI observers [log, 110, 1111. The difference between them lies in the fact that the 

ILO uses previous system information to estimate faults. The PI observer employs 

an additional differential equation to achieve fault estimation. 
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Subtracting observer equation (5.5) from system equation (5.1) and considering 

equation (5.2), we have 

Note that the above observer differs from a typical Luenberger observer which is driven 

by the inputs, outputs and the output errors at the current sampling time described 

as : 

i ( t )  = t ( i ( t ) )  + g(i( t))u(t)  + Le,(t). (5.7) 

In the proposed ILO, observer states are updated by previous system output errors 

and previous observer input m(t  - T )  as can be seen in equation (5.5). 

Remark 5.3.1 To gain an understanding of this ILO, we can regard the nonlinear 

systems (5.1) as a reference model where the observer model tracks it driven by the 

iterative input m(t). 

Remark 5.3.2 The gain matrix of ILO input m(t) is designated as an identity ma- 

trix, which coincides with that of the fault in the considered system equation. If the 

fault is described by rfa(x(t) ,  u),  where I' is a constant gain matrix, then observer 

input will accordingly be expressed as rm(t ) .  The identical gain matrices make dis- 

cussion convenient. 

Remark 5.3.3 A similar concept as to the ILO input update law presented in equa- 

tion (5.5) was referred to Time Delay Control by [138]. In this chapter, we shall refer 

to it as IL update law. 

Lemma 5.3.1 describes a norm feature of the ILO input update law on which the proof 

of Theorem 5.1 will be based. 
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Lemma 5.3.1 I f  ILO input m(t) is defined as m(t) = K m ( t  - r )  + Ley(t - r ) ,  then 

following inequality holds 

mT(t)m(t) 5 2mT(t - r ) ~ ~ ~ m ( t  - 7 )  + 2e:(t - r ) ~ ~ ~ e , ( t  - 7 ) .  

Proof: 

Substituting ILO input m ( t )  into 2mT(t)m(t )  , we have: 

2mT(t)m(t )  = 2mT(t - r ) K T K m ( t  - r )  + 2mT(t - r)KTLe,(t - r )  

+2eF(t - r )  LTKm(t  - r )  

+2eT (t - 7 )  LT Ley ( t  - r )  . 

By applying the following inequality 

2aTb 5 aTa + bTb, 'd a,b E IRn, 

we have: 

2mT(t)m(t )  5 2mT(t - r ) K T K m ( t  - 7 )  + m T ( t - r ) K T K m ( t  - 7 )  

+er(t - r)LTLe,(t - r )  + mT(t - r ) K T K m ( t  - r )  

+er(t - r )LTLey( t  - 7 )  +2e;(t - r )LTLey( t  - r ) .  

Therefore, 

mT( t )m( t )  < 2mT(t - T ) K ~ K ~ ( ~  - r )  + 2eF(t - r ) ~ ~ ~ e , ( t  - r ) .  

This completes the proof. 

Theorem 5.1 Consider the nonlinear systems (5.1) and its ILO given in equation 

(5.5). Let assumptions 5.1-5.4 hold. If inequalities (5.21) and (5.22) hold, then 

estimation error e ( t )  is bounded. 
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Proof: Consider the following Lyapunov function candidate 

V = eT ( t )  ~ ( t ) e ( t )  + e r ( 0 )  ~ e ,  (0)dO + (5.13) 

where R is a symmetric positive definite matrix and P ( t )  satisfies assumption 5.4. 

The time derivative of the Lyapunov function candidate can be obtained as follows: 

+mT (t)m(t) - mT(t - ~ ) m ( t  - T )  + eT( t )  Re,  ( t )  (5.14) 

-e:(t- ~ ) R e , ( t  - 7). 

Substituting estimation error equation (5.6) into above equation, we have: 

~ ( e ( t ) ,  t )  I e T ( t )  ( A T ( t ) P ( t )  + P ( t ) A ( t )  + ~ ( t ) ) e ( t )  + 2eT(t )  P ( t ) $  

-e:(t - ~ ) R e , ( t  - 7 ) .  

For any two vectors, following inequality holds 
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+e;(t)Re, ( t )  - e;(t - 7) Re,  (t - T )  - amT(t)m(t). 

where a is a positive constant. 

Considering Lemma 5.3.1, the above equation can be further derived 

v ( e ( t ) ,  t )  I -Amin(&) IIe(t) 1 1 2  + 2k4llP(t) l l  l le(t) 1 1 2  + 2kgkullP(t) l l  lle(t) 1 1 2  

- a m T  ( t )  m(t) 

where 

~ ~ ( t ) p ( t )  + ~ ( t ) ~ ( t )  + ~ ( t )  + ~ ( t ) ~ ( t )  = -Q. 

Therefore, if 

Xmin (Q)  2 2k4P2 + 2kgkuP2 + kiXmax (R)P2 

and select K and L such that 

where 

This completes the proof of Theorem 5.1. 

L 
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Remark 5.3.4 The residual e, can be used for fault monitoring and detection pur- 

poses. When there are no faults in the system, e, should be zero. On the other hand, 

an e, greater than a certain threshold value would point to the occurrence of a fault. 

It is the property of this observer that, some time after the occurrence of the fault, 

it would learn about the fault and e, will be again driven to zero. This means that 

this ILO can learn and follow the post-fault system model driven by m ( t ) .  Simulation 

studies to be presented later will confirm this. 

Remark 5.3.5 It should be mentioned that the above observer can be used for the 

purpose of fault detection. Actually, fault isolation can be also accomplished without 

additional work, in that if estimation error e ( t )  is bounded, then fa - m(t) can be 

proved to be bounded as well. Therefore, m(t) is an estimation of system fault fa, 

and accordingly, fault isolation can be achieved. 

5.4 Fault Accommodation by the IL Approach 

Fault accommodation, if possible, is typically achieved through reconfiguration of the 

control systems. In this section, a fault accommodation scheme by an IL approach 

similar to the one used for fault detection will be proposed. 

Note that most of the theoretical studies on FDI in control systems focus on 

detection and isolation of sensor or actuator faults. In these cases, typically accom- 

modation may take place once a fault of the sensors or actuators is detected and the 

faulty device is isolated. Accommodation then often amounts to compensating for 

the loss of the faulty instrument through estimation in case of a sensor, or controller 

reconfiguration, in case of an actuator. However, if the likely sources of the faults 

are no longer confined to sensor or actuators, it may no longer be possible to isolate 

and accommodate the fault in the manner described previously. In these cases, the 
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goal will be to determine appropriate control actions to offset the effects of faults. 

Development of such a methodology is the primary focus of this section. 

In the case of a fault, the control objective is to adjust the control input u such 

that system outputs track the outputs of a reference model given by 

In this IL fault accommodation approach, the control law is updated online by its 

previous control inputs and the previous tracking errors. The iterative learning law 

is given by 

~ ( t )  = um + u(t - 7 )  + M(t)Cy (t  - 7 )  (5.25) 

where u(.) is the control input, M ( t )  is a gain matrix, Cy(t - r )  = ym(t - r )  - y ( t  - r )  

is system output error at time t - 7. 

One of the main features of the proposed scheme is that the control reconfiguration 

is achieved automatically based only on the response of the system. Hence, the 

controller does not require a fault detection and isolation subsystem. Therefore, no 

information about the fault is available to the controller, and the fault can occur at 

any unknown time. 

The error dynamic equation can be obtained by subtracting equation (5.24) from 

the system equation 

Before stating Theorem 5.2, we make two assumptions. 

Assumption 5.5 Symmetric matrix II(t) has following property: 
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where a l l  a2 are positive real numbers, and n(t) is the solution of the following Lya- 

punov equation: 

Assumption 5.6 The function g(x)  is bounded with b,. 

Assumption 5.7 Assume that W ( < ( t ) )  = ST(t)II(t)<(t) is a positive definite func- 

tion, where IT(t) satisfies equation (5.27). If there exists W ( < ( t - T ) )  5 c2W(<(t) ) ,  c > 

1, then II<(t - T ) I I  5 c~l/<(t)II, where T > 0 and E = (a2/a1)'/2. 

Theorem 5.2 Consider the faulty system (5.1), and let Assumptions 5.1-5.3, 5.5 - 

5.7 hold. If 

where 0 < cv < 1, then control law (5.25) guarantees both ( ( t )  and cv(t) are bounded. 

Proof: The Lyapunov function candidate is taken as : 

This Lyapunov function possesses definiteness and decrescence as follows: 
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Considering assumptions 5.5 and 5.7 and substituting control law (5.25), we have: 

v(C(t) , t)  = -CT(t)RC(t) +2CT(t)n(t)$-2CT(t)n(t)gm(x)um(t)  

+2Eckh11g(x)II I I M ( t )  1 1  I I n ( t )  1 1  l lC( t )  1 1 2  
where fm  is the bound of fault f a .  

Furthermore, take a value 0 < a < 1,  provided that 

where b, and bM are the norm bounds of g(x )  and M ( t ) ,  respectively, it is easy to 

show that 

v 5 -allC(t)l12 (5.35) 

if IlC(t)ll 2 s with 

From Khalil [69], this means that C is convergent to the ball 

Therefore, given any s* > there exists a finite time T such that for all t > T 

we have 

IlC(t> I I  < s*. 
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Furthermore, 

116(t>ll 5 kh11<(t>ll < khc*. 

This completes the proof. 

5.5 An Illustrative Example 

In this section, the proposed IL approach will be used to detect and accommodate 

faults in a simple nonlinear system described as follows: 

where 

and fa (x ,  u) is a fault. Using the methodology described in Sections 5.3 and 5.4, 

the ILO is constructed as follows: 

I;. = [ ( I ; . )  + g(I;.)u(t) + m(t) 
$ = I;.1 (5.39) 

m(t) = K m ( t  - r )  + Le,(t - r )  

where 

5.5.1 Fault Detection 

The norm of output estimation error is chosen to be the monitoring function: 

Assume that a fault occurs at t = 5sec. The simulation results are shown in Figure 5.1. 

It can be seen that the size of residual signal suddenly increases after the occurrence 
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of a fault. Additionally, it can be observed that the residual converges to zero within 

very short time, which explains that the ILO can still follow system after the fault. 

Note as well that the initial nonzero value of the residual is due to the initial condition 

mismatch between the system and the ILO. 

5.5.2 Fault Accommodation 

In this experiment, we consider the problem of fault accommodation by the proposed 

approach of control system reconfiguration. Using the same example as in fault detec- 

tion, the control objective is to force the system output to follow the desired output 

(the output of a desired model). Assume that the desired output is sin(t) and that a 

fault occurs at t = 5sec. The simulation results are shown in Figures 5.2 and 5.3.  It 

can be seen that the reconfiguration of the control system results in a very quick re- 

duction in the tracking errors subsequent to the occurrence of the fault. The tracking 

error becomes huge and can not be reduced after the occurrence of a fault if there is 

no IL control reconfiguration in the control system. 

5.6 Conclusions 

In this chapter, an ILO was presented for fault detection and an IL reconfiguration 

for fault accommodation. The proposed ILO, driven by the ILO inputs and updated 

online by previous observer inputs and previous output errors between system outputs 

and the observer outputs, can track the system and detect any changes in the system 

due to faults. Also, as shown in the simulation results, the ILO can still follow the 

post-fault system. The proposed IL control law can automatically reconfigure the 

system inputs based only on the system response (output errors) once a fault occurs. 
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Figure 5.1: ILO-based fault detection. 
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Chapter 6 

An Iterative Learning 

Observer-Based Fault Diagnosis 

Strategy 

In this chapter, an Iterative Learning Observer (ILO) updated or driven successively 

and iteratively by immediate past system output errors and ILO inputs is to be 

proposed in a class of time-delay nonlinear systems for the purpose of robust fault 

diagnosis. Its main characteristic is that it can estimate not only system states but 

also disturbances and actuator faults such that the ILO can still track post-fault 

system model. It will be shown that the output disturbances are attenuated by the 

last sampling values. The differences between current and immediate past sampling 

values of disturbances are further compensated by the ILO input. Therefore, this 

ILO can attenuate output measurement disturbances. Moreover, the implementation 

of this ILO approach consumes less on-line calculation time in practice. The ILO 

fault diagnosis approach will be then applied to automotive engine fault detection 

and estimation in order to test its effectiveness. 
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6.1 Introduction 

Some practical processes, for example, biology, mechanical and chemical engineering, 

involve delays that may cause instability or affect the performance of the control 

systems [2]. The fault diagnosis issues in this kind of time-delay systems have been 

attracting researchers' attention [73, 1341. Still, there exist limited results on fault 

diagnosis for time-delay systems, especially for nonlinear time-delay systems. Yang 

and Saif [I341 proposed a robust observer for state estimation in a class of state- 

delayed dynamic systems. The existence condition of the proposed observer and the 

convergence proof are derived based on the Razumikhin theory. This observer is then 

used to detect and isolate actuator and sensor faults in a class of time-delay systems. 

An alternative parity space approach is used to synthesize a residual generator for 

time-delay systems in [73]. The application of a modern symbolic computation system 

like MAPLE to the development and the design of fault detection systems for time- 

delay systems is investigated. 

An automotive powertrain is a typical time-delay nonlinear system [28]. Some 

research results on fault diagnosis were presented in [28, 54, 68, 70, 76, 93, 1141, in all 

of which the main strategy for fault detection and isolation is based on the first order 

SMOs that can be seen in [68, 70, 71, 761. Nevertheless, a crucial drawback of the 

first order SMOs is the chattering issue that stems from the switching term, which in 

most cases is undesirable because it may cause false fault alarm. 

The ILO is first proposed in [18]. In this chapter, an ILO-based robust fault 

diagnosis strategy using the immediate past output errors and ILO inputs is presented 

for fault detection and estimation in the class of time-delay nonlinear systems. This 

ILO approach is then applied to fault detection and estimation of an automotive 

engine that is employed as an application example. The main property of this ILO 



Chapter 6. An ILO-Based Fault Diagnosis Stra,tegy 104 

is that it can compensate both system disturbances and actuator faults, which makes 

ILO so robust that it can still follow the post-fault model after the occurrence of 

an actuator fault. Compared with the SMO strategy for fault diagnosis, this ILO 

approach is robust while not having the chattering problem that is unavoidably met 

in the SMO. Additionally, the output measurement disturbances that are usually 

amplified by a classical Luenberger observer can be attenuated by the ILO. 

6.2 Problem Statement 

Consider a time-delay nonlinear system described by 

~ ( t )  = Ax(t) + @(x,u) + Bx( t -  th) +d( t )  

~ ( t )  = W) (6.1) 

where x(t) E IRn is unmeasurable system state vector; y(t) is measurable out- 

put vector; d(t) is unmeasurable disturbance vector; th is a fixed delay; @(x, u) is a 

Lipschitz nonlinearity. 

In this chapter, we shall construct an ILO whose states are updated by the pre- 

vious system output errors and the previous ILO inputs. This differs from a classical 

Luenberger observer that is driven by system inputs and output errors of the current 

sampling time as described below: 

where e,(t) = y(t) - $(t), and L is observer gain matrix. 

By subtracting the equation above from the system equation (6.1), estimation 

error dynamics can be obtained 
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where 5( . )  = x ( . )  - ? ( a ) .  

Obviously, disturbance d ( t )  has impacts on error dynamics. Thus, the main draw- 

back of the classical Luenberger observer is the lack of robustness. By contrast, the 

ILO to be proposed is so robust that the effects of disturbance d ( t )  on error dynamics 

can be compensated by ILO input v(t), which can be seen in the following derivation 

of the stability proof. 

Output measurement disturbances are usually met in practice. The other issue 

to  be discussed in this chapter is output disturbance attenuation. A Luenberger 

observer usually amplifies the effects of output disturbances on error dynamics. In 

what follows, the details are analyzed. 

Rewrite time-delay nonlinear system (6.1)  with output disturbances as follows: 

~ ( t )  = A ~ ( t ) + @ ( x , u ) + B ~ ( t - t ~ )  

y ( t )  = C x ( t )  + d ( t )  . 
(6.4) 

The estimation error dynamics can be obtained by subtracting the Luenberger 

observer equation (6.2)  from system equation (6.4) 

From the estimation error equation above, we can know that the disturbance 

d ( t )  is amplified by gain L. That means that the measurement disturbances are 

increased. On the other hand, if gain L is chosen smaller to attenuate the effects of 

the disturbances, then the stability of the observer will be affected. Busawon et al. 

[8] proposed a new PI observer to attenuate the effects of disturbances. Though the 

disturbance d ( t )  is not amplified by PI observer gain, the disturbance itself still has 

influence on the estimation error dynamics. 

In this chapter, an ILO is presented to attenuate output disturbances. More im- 

portantly, the implementation of this ILO approach uses less calculation time. The 
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PI observer consumes much more precious on-line calculation time in practice. Be- 

cause, in the PI observer, an extra differential equation is added into the n-dimension 

system such that the original system is extended to an (n + 1)-dimension one that 

will consume much more calculation time in practice. Accordingly, this PI observer 

probably could not be implemented if the sampling time interval is small. 

6.3 Main Results 

First of all, we construct a robust ILO with the property of disturbance compensation 

and estimation. Furthermore, output disturbance attenuation by this ILO will be 

discussed. The application of this ILO to robust fault diagnosis issues will be further 

introduced in section 6.4. 

6.3.1 The ILO and Disturbance Estimation 

In this investigation, the following assumptions are required. 

Assumption 6.1 Disturbance d ( t )  and its derivative d ( t )  are bounded with known 

bounds 

Assumption 6.2 System is bounded input bounded state stable, and the derivative 

of system input vector u is bounded. 

a@ a@ 
Assumption 6.3 Functions @(t), -, and - are bounded and satisfy Lipschitz ax au 
conditions as follows: 
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Figure 6.1: A Simulink block diagram description of the ILO. 

and 

Based on system equation (6.1), the ILO is proposed as follows 

where 2(.) is estimated system state vector; T is sampling time interval; y(t - 

r) is the immediate past measurable output vector, i.e. the output at time t - T; 

v(t) is called ILO input; L and K:s are some gain matrices to be determined. A 

Simulink block diagram describing the structure of the ILO is demonstrated in Figure 

6.1 in order to obtain an insight of it, where tau:=r, x(t):=i(t), y(t):=$(t), and 

Phi(x,u):=@(x, u). 

The main feature of this ILO is that its states are updated by previous system 

output errors and previous ILO input v(t - T),  as can be seen in equation (6.10). It 
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can detect and estimate any changes in the system dynamics. In the simulation, we 

shall see that this ILO can be used to robustly detect and estimate actuator faults. 

In fact, it is so robust that it can still track the post-fault system model driven by 

ILO input v( t ) .  

Subtracting observer equation (6.10) from system equation (6. I ) ,  we have: 

where Z ( . )  = x(.) - 2 ( . )  is state estimation error, matrix ( A  - LC) can be a stable 

matrix by selecting an appropriate gain matrix L. 

Remark 6.3.1 To obtain an understanding of this ILO, we can regard the nonlinear 

systems (6.1) as a reference model and the ILO driven by its input v( t )  can track it . 

The following lemma will be helpful for the proof of Theorem 6.1. 

Lemma 6.3.1 If ILO input v( t )  is defined in equation (6.10), then following inequal- 

ity holds 

Proof: Substituting ILO input v( t )  in equation (6.10) into 2vT(t)v(t) , we have: 

2vT(t)v(t) = 2vT(t - T ) K ~ K ~ v ( ~  - 7 )  +2vT(t - T ) K T K ~ C Z ( ~  - 7 )  

+2ZT(t - T ) ( K ~ C ) ~ ( K ~ C ) ~ ? ( ~  - T ) .  

By applying the following inequality 
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we have: 

2uT(t)u(t) 5 2 u T ( t - - T ) K F K ~ u ( ~ - T )  + u T ( t - T ) K T K ~ v ( ~ - T )  

Therefore, 

vT(t)v( t )  5 2 u T ( t - r ) ~ T ~ 1 v ( t  -r)+2iET(t - T ) ( K ~ C ) ~ ( K ~ C ) ~ ( ~  r ) .  (6.16) 

This completes the proof. I 

Theorem 6.1 Consider a time delay nonlinear system (6.1) satisfying Assumptions 

6.1-6.3, and having an ILO given in equation (6.10). If equation (6.23), and inequal- 

ities (6.24) and (6.26), hold, then state estimate error is bounded. 

Proof 

Consider following Lyapunov function candidate: 

where P, R and r are symmetric positive definite matrices. 

Substituting estimation error equation (6.11) into the derivative of Lyapunov func- 

tion candidate V, we have 
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= z T ( ( A  - LC)TP + P ( A  - LC) + R + J?)Z + 2ZTPBZ(t - th )  

(6.18) 

+2ZTP(@(x, u )  - @(it, u ) )  + 2ZTpd(t) - 2ZTPv(t) 

Combining inequalities 

into equation (6.18) leads to 

Ti 5 ZT((A - LC)TP + P ( A  - LC) + R + J? + 2PP)S + 2bdlJPIJ IIZJI 

Considering equation (6.7) of Assumption 6.3 and Lemma 6.3.1, equation (6.21) 

can be further extended as: 
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v 5 z T ( ( A  - L C ) ~ P  + P ( A  - LC) + R + + 2PP)Z + ~vIIIPII llB112 

+izT(t - t h ) ~ T ~ ~ ( t  - th)  + (4 + 2 ~ ) ~ ~ ( t  - T ) K ; K ~ U ( ~  - T )  

-ZT(t - T )  RZ(t - T )  - auT(t)u(t) 

+(4 + 2a)ZT(t - T ) ( K ~ C ) ~ ( K ~ C ) Z ( ~  - T )  

-ZT(t - th)r?(t - th)  - UT(t - T)'U(t - 7 )  + 2bdllP// IlZIl (6.22) 

5 ZT((A - L C ) ~ P  + P ( A  - LC) + R + I? + 2PP)Z + 2171Xmax(P)JJZ()2 

where I E IRnXn is an identity matrix, and a is a positive constant. 

For any Q = QT > 0, there exists a P = PT > 0 satisfying the following Ricatti 

equation 

and let 

then equation (6.22) can be simplified as 
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The proof is complete. I 

Remark 6.3.2 In fact, k can also be proved bounded. To this end, let x := k ,  and 

differentiate state estimation error equation (6.11) to obtain 

where v(t) = Klv(t - T )  + K2Cx(t - T )  , 

and 
d 

s - ( ( x u ) - ( 2 ) )  = 
dt 

Assumptions 6.1, 6.2, and 6.3 can guarantee the boundedness of x and 
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where rl and r2 are two positive constants. 

Using an analysis similar to that used in the analysis of the estimation error 

dynamics, one can know that [lzll is bounded. 

Remark 6.3.3 Observing estimation error equation (6 .  ll), if it is stable, then esti- 

mation error 2 is bounded, and $ is also bounded from remark 6.3.2. Accordingly, 

-v(t)  + d ( t )  is bounded. Therefore, we could say that the ILO input v( t )  can estimate 

or reconstruct disturbance d(t). This will be seen in the simulation. In addition, the 

boundness of -v(t) + d ( t )  also explains that the robustness of ILO results from ILO 

input v(t) .  It is v( t )  that compensates the effects of disturbance d ( t )  on estimation 

error dynamics. 

6.3.2 Output Disturbance Attenuation by the ILO 

In this subsection, output disturbance attenuation issue will be discussed by consid- 

ering equation (6.4). To this end, the following assumptions are required: 

Assumption 6.4 The variation of d(t)  is bounded with a known bound 

where T is the sampling interval in a sampled-data system. 

Assumption 6.5 Consider that W ( 2 )  = zT( t )p2( t )  is a positive definite function, 

where P = PT > 0 satisfies equation (6.48) and 2(t)  = x(t)  - ii(t). Assume that 

W ( 2 ( t  - T ) )  < q2W(2(t)) ,q  > 1, then Il2(t - r)11 < qp11i?(t)ll, where T > 0,  the 

sampling time interval and p = (A,,, ( P )  / A ~ ~ ~ ( P ) ) " ~ .  

Remark 6.3.4 Assumption 6.5 is based on the stability theorem of Razumikhin [53]. 



Chapter 6. An ILO-Based Fault Diagnosis Strategy 114 

To attenuate output disturbances, an ILO that is a little bit different from that in 

equation (6.10) is constructed as 

4 = A? + Q ( 8 ,  u )  + BP(t - th) + K l ( y  - $) + u ( t )  
(6.30) 

~ ( t )  = K 2 v ( t  - T )  - K l [ y ( t  - T )  - $( t  - T ) ] .  

The ILO (6.30) is almost the same as (6.10). The only difference between them is 

that the ILO (6.30) has two identical gain matrices K i s .  

The estimation error dynamics between system equation (6.4) and observer equation 

(6.30) is then given by 

Z = ( A  - KIC)lr: + [@(x,u)  - @(?,u)] + B Z ( t  - th) + K I C Z ( t  - T )  
(6.31) 

- K l [ d ( t )  - d ( t  - T ) ]  - K2u( t  - 7 ) .  

Remark 6.3.5 We can see, from the estimation error dynamics (6.31), that the effect 

of disturbance d ( t )  is attenuated by its immediate past sampling value that results 

from measurable output y (t  - T )  in the ILO input u ( t )  . And, K l  ( d ( t )  - d( t  - 7 ) )  can be 

further attenuated by u ( t )  if the estimation error dynamics (6.31) is stable. Also, this 

approach of disturbance attenuation consumes less on-line calculation time compared 

with PI observer where an extra differential equation is added into the n-dimension 

system, such that the original system is extended to an (n + 1)-dimension one that 

will consume much more calculation time in practice. 

Remark 6.3.6 The observer gain K in [8] is guaranteed not to amplify the effect 

of d ( t ) .  But, disturbance d ( t )  itself still has an impact on error dynamics. In this 

ILO approach, the effect of disturbance d ( t )  on estimation error dynamics is further 

reduced regardless of ( d ( t )  - d ( t  - T ) )  being multiplied by K 1 .  This is important in 

fault detection because the reduction of disturbance effect can improve the robustness 

of fault detection. 

Before stating Theorem 6.2, Lemma 6.3.2 is first introduced as follows. 
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Lemma 6.3.2 Consider ILO update law v(t) = K2v(t - T) - Kl (y (t  - T) - $(t - 7)).  

If Assumption 6.5 holds, then IIv(t)ll I lnllii3(t - T ) I ~  + bn, where 1, and b, are two 

positive constants. 

Proof: 

For the initial v(to), we could select it such that Ilv(to)ll I loll5(to)ll1to E [ O , T ] ,  

and for any t > 0, there exists t = n r  + to, where n is non-negative. So, we have 

Next, we consider v(2r + to) 

Assumption 6.5 is used in the derivation above. It will be also considered in 

equations (6.34) and (6.35). 
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Therefore, IIv(t) 1 1  5 Inllj.(t - 7) ( 1  + b,. The proof is complete. 

Remark 6.3.7 The positive constant I, has an explicit expression by substituting 

liPl into li, repetitively, where, i = 1 , .  . . ,n, i.e. 

Meanwhile, the expression of b, has the form of 

To guarantee the convergence of equations (6.37) and (6.38), K2 must be selected such 

that 11K211 < 1 and qp11K211 < 1. It is worth noting that once the significant digits 

after the decimal points of I, and b, are designated, I, and b, converge to constants, 

respectively, as n increases. It is easy to calculate them by using Matlab. 

To derive the stability condition of estimation error equation (6.31), we choose a 

Lyapunov function candidate as follows 

where P, R, S and are symmetric positive definite matrices. 

Substituting estimation error equation (6.31) into the derivative of Lyapunov func- 

tion V, we have 
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= Z T ( ( A  - K I C ) T P  + P ( A  - K I C )  + R + I' + S)? - 2ZTPK2v(t - T )  

(6.40) 

+2zTPBZ(t  - th) + 2 Z T ~ ~ l C Z ( t  - T )  + 2ZTP(@(x,  U )  - @(?, u ) )  

-ZT(t - 2T)SZ(t - 27). 

By applying inequality (6.14), we have: 

Considering equation (6.7) of Assumption 6.3 and equations (6.41) and (6.42), 

equation (6.40) can be further extended as 
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Applying Lemma 6.3.2 to the equation above, we obtain 

v < ZT((A - KIC)TP + P ( A  - K I C )  + R + I? + S + 2PP)z 

then 

v 5 i?T((A - KIC)TP + P ( A  - KIC)  + R + r + S + 2PP 

and for a positive definite symmetric matrix Q there exists a positive definite sym- 

metric matrix P in the following equation 
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Therefore, \d ((21) 2 2Amaz(p) IIKl llld + 2 b n - l X m ~ x ( ~ )  1 1  K2 1 1  , i /  o. 
Xmin ( Q )  - 2VlXmax  ( P )  

Theorem 6.2 Consider system equation (6.4) satisfying Assumptions 6.3, 6.4, 6.5, 

and Lemma 6.3.2. If inequality (6.47) and equation (6.48) hold, then, system state 

estimate error is bounded. 

Remark 6.3.8 We can say, from Theorem 6.2, that -Kl(d(t)  -d( t -T) )  - K2v(t-T) 

is bounded because equation (6.31) is stable. By a similar operation, one can prove 

that k is also bounded. On one hand, disturbance d(t)  is attenuated by its immediate 

past value; on the other hand, the boundedness of -Kl(d(t)  - d(t - T ) )  - K2v(t - T )  

implies that ILO input v( t )  can further compensate the effect of (d(t)  - d ( t  - T ) )  on 

estimation error dynamics. This demonstrates the effectiveness of output disturbance 

attenuation by the ILO. 

6.4 Application to Automotive Engine Fault 

Diagnosis 

In this section, the above proposed ILO will be applied to detect and estimate ac- 

tuator faults in an automotive engine described by a second-order nonlinear engine 
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model that involves intake to torque production delay and unmeasurable time vary- 

ing disturbances. This delay is due to the fact that the engine torque production is a 

discrete process, but it is modelled as a continuous time domain. Therefore, the delay 

must be introduced [114]. 

6.4.1 An Automotive Engine Model 

In what follows, we introduce an engine model based on [114]. We start with pressure 

p in the intake manifold that satisfies the following dynamic equation: 

where kl = 180. .mmaf is the mass rate of air entering the manifold and mcyl is the 

mass rate of air leaving the manifold and entering the combustion chamber. The mass 

rate of air entering the manifold is modelled as 

where al = 0.3861kgls for the engine of interest. ul is normalized throttle char- 

acteristic [0 : 11, taken as system input 1. pr is normalized pressure influence that has 

following expression 

0.259, otherwise, 

where po is atmospheric pressure, po = 1Bar. 

The mass flow rate entering the combustion chamber has the following expression 

P mcyl = kw- (6.53) 
Po 

where w is the engine speed (rad/s). lc = 1.73 x lop4. 
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The second nonlinear equation of engine model is the rotational dynamics 

where Tind is indicated torque, Tf is friction torque, Tp is pump torque and Th is 

disturbance torque. J, = 0.255kgm2 is the inertia moment of the engine. 

Indicated Engine Torque can be modelled as 

where th = 5 . 4 8 1 ~  is the intake to torque production delay, t, = 1 . 3 1 ~  is spark 

to torque production delay that will be neglected in this chapter. a2 = 8.51 x 

105Nm/kg/rad represents the maximum torque and 

f,(t - t,) = (cos(-b + u2))2.875 

is the spark influence, where b is the distance from MBT (minimum spark advance 

for the best torque). Distance b can be fixed or adjusted within the interval [O, 15'1, 

thereby, control input u2 varies within the interval [-b, b]. 

Engine Friction Torque: 

where KcYl = 0.5 x 1OP3m3 is the volume of one cylinder, z = 5 is the number of 

cylinders. 

Engine Pump Torque: 

Engine Disturbance Torque Td is bounded with IITd(t) 1 1  5 c, where c is a positive 

constant. 
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Finally, we have the nonlinear two state engine model as follows: 

Based on this time delay two state engine model, the ILO fault detection strategy 

is to  be implemented. 

6.4.2 Fault Detection and Estimation for Automotive Engine 

For convenience, letting xl(t) = w, x2(t) = p, equation (6.59) can be written as 

Based on the equation above, the ILO is constructed according to equation (6.10) as 

follows: 

6 = 2 22IT. 

The ILO will detect and estimate actuator fault f,~,,t,. It is assumed in the fol- 

lowing fault detection that the healthy system has a fault f,,t,,toT = 0, that sampling 
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time interval T = 0.01, that th 2 T, and that both system disturbance and output 

disturbance d(t) = 0.15sin(5t). 

Some comments on simulation are listed in the follows. 

Figures 6.2 and 6.3 show system and observer trajectories without actuator 

faults. Under this condition, the ILO input v(t) can compensate and estimate 

system disturbance d(t) in equation (6.1). In Figure 6.2, the states of the ILO 

asymptotically converge to system states after starting from the initial points. 

That is, the ILO can track system model very accurately. Figure 6.3 demon- 

strates the system disturbance estimation by ILO input v(t). The zoom-in of 

v(t) and d(t) shows that, after some oscillations of the ILO input v(t), the v(t) 

can reconstruct d(t) very accurately. 

Figures 6.4 and 6.5 indicate system and observer trajectories under an actuator 

fault. An actuator fault occurs at 15 seconds, taking system states off their 

original tracks. However, by observing engine speed diagram in Figure 6.4, the 

ILO states can still track the varied engine speeds. In Figure 6.5, the ILO 

input v(t) can be chosen as a residual because it can estimate the actuator fault 

very accurately. Actually, the v(t) has been estimating system disturbance d(t). 

After the occurrence of an actuator fault, the v(t) jumps to another higher value, 

such as 4 which is the real fault value. Meanwhile, the v(t) varies according to 

disturbance d(t). Therefore, the v(t) can estimate both the actuator fault and 

system disturbance at the same time (see Figure 6.6). This is the main reason 

why the ILO can track the post-fault system model. 
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6.4.3 Output Disturbance Attenuation By the ILO 

The ILO input v ( t )  has the following form 

for output disturbance attenuation. Other ILO parameters are the same as those in 

last subsection. 

Figures 6.7 and 6.8 describe output disturbance attenuation. Figure 6.7 shows 

state estimation errors between the considered system and a Luenberger observer 

with state estimation error 1 equal to 0.0262 at time 40 seconds. Figure 6.8 describes 

the state estimation errors between the considered system and an ILO with state 

estimation error 1 equal to -0.0017 at time 40 seconds. Both figures have the same 

coordinate scales. The absolute value of state error 1 in Figure 6.8 is about 15 times 

less than that in Figure 6.7. Furthermore, the absolute value of state error 2 at 

time 40 seconds in Figure 6.8 is about 20 times less than that in Figure 6.7. This 

demonstrates the effectiveness of the ILO-based disturbance attenuation strategy. 

6.5 Conclusions 

In this chapter, an ILO has been presented for fault detection, estimation, and output 

disturbance attenuation and has been applied to the automotive engine fault detection 

and estimation. It has been shown that the ILO can not only compensate the effects 

of disturbances and actuator faults, but also attenuate measurement disturbances. 

The convergence of ILO input vector to disturbances or actuator faults enables this 

kind of ILO to compensate the effects of disturbances or faults. Accordingly, it is 

robust. The principle of attenuating output disturbances by the ILO is due to both 

the immediate past output errors that raise an immediate past disturbance d ( t  - r), 
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and the ILO input v( t ) .  In the application example, the ILO input v( t )  is an ideal 

residual candidate because it can produce a "Jump" after an actuator fault occurs. 

Meanwhile, it can successfully estimate disturbances and faults, which enables the 

ILO to follow the post-fault system model. 
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Pressure in the Manifold(dotted line) & Its Estimate(so1id line) 
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Engine Speed(dotted line) & Its Estimate(so1id line) 
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Figure 6.2: System states and their estimations. 
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ILO input "V(t)(solid line)" and Disturbance "d(t)(dotted line)" 

Zoom of "V(t)" and "d(t)" 

Figure 6.3: Disturbance estimation by ILO input. 
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Engine Speed(dotted line) & Its Estimate(so1id line) 
560 I I I I 

Figure 6.4: Post-fault system states. 
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Fault Estimate (solid line) 
I I I I 

An Abrupt Actuator Fault 

Figure 6.5: The fault and its estimate. 
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Zoom of Fault Estimate (solid line) 

An Abrupt Actuator Fault 
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Figure 6.6: The fault and its estimate. 
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State error 1 by Luenberger Observer 
0.05 I I I I 

x 1 o - ~  State error 2 by Luenberger Observer 
2 I I I I 

Figure 6.7: Estimation error dynamics between system and Luenberger observer. 
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State error 1 bv ILO 

-2L 
0 5 10 15 20 25 

Figure 6.8: Estimation error dynamics between the system and the ILO. 



Chapter 7 

Fault Diagnosis and Cornpensat ion 

by an ILO 

Fault detection, estimation, and compensation problem for a class of disturbance 

driven time delay nonlinear systems is addressed. The proposed approach relies on an 

ILO for fault detection and estimation. Under no faults, the ILO supplies accurate 

disturbance estimation where the effect of disturbances on estimation error dynamics 

can be accordingly attenuated. The proposed ILO can detect sudden changes in the 

nonlinear system. Thus the ILO is used to  excite an adaptive control law in order 

to offset the effect of faults on the system dynamics. In addition, the ILO-based 

adaptive fault compensation strategy can handle multiple faults. The fault detection 

and compensation strategy is demonstrated in simulation on an automotive engine 

model. 

7.1 Introduction 

Issues dealing with the health of dynamical systems have attracted a great deal of at- 

tention in recent years. The majority of the research has dealt with the fault detection 
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and isolation issue [17, 15, 70, 76, 68, 129, 1341. However, fault accommodation has 

also been subject of many studies [6, 16, 65, 92, 99, 115, 1391. Typical approach for 

fault accommodation is based on a fault detection and isolation subsystem where an 

additional control input resulting from this subsystem is added to the original control 

input to reduce or compensate the effect of faults [65, 92, 1391. It should be noted 

however that the fault detection and isolation subsystem is not always necessary for 

fault compensation [6]. 

The work in [94] reports a controller embedding an internal model of the fault, 

where in addition to reconstructing the fault, it is able to automatically offset the 

effect of it in induction motors. Another work related to fault tolerant control is [67], 

where an extra input to a nonlinear observer is used as a filter to directly estimate 

time-varying faults. Further, the estimate of faults is employed to establish a fault 

tolerant controller to guarantee the stability of the closed-loop system. From the 

nonlinear robust control viewpoint, a robust fault tolerant control is proposed in [loll .  

Stability and performance of the closed-loop system can be guaranteed in presence of 

uncertainties and when there are sensor faults. 

In this work we propose a fault detection, estimation and compensation approach 

without resorting to the fault detection and isolation subsystem. The proposed 

methodology is based on the design of an ILO that monitors system dynamics varia- 

tions caused by faults or/and disturbances. Additionally, once a fault is detected, the 

ILO will excite an adaptive control law that is used to generate an extra control input 

in order to offset the effect of faults on system dynamics such that system outputs 

can be maintained at their prescribed values. In addition to control adaptation, this 

process will also provide an estimate of the faults. 

In recent years, environmental factors have been a driving push behind the interest 
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in fault diagnosis in automotive engines [76]. It is now necessary to constantly monitor 

vehicle's operation in order to detect and compensate any abnormal behavior. An 

automotive powertrain is a typical time-delay nonlinear system [28]. Some research 

results on automotive fault diagnosis were presented in [28, 70, 76,68,93, 1141, among 

which, the main strategy for fault diagnosis is based on sliding mode observers [70, 

71, 76, 681. In this work, the proposed ILO-based fault detection, estimation and 

compensation approach is suggested for an automotive engine. 

Problem Statement and System Formulation 

Consider a time-delay nonlinear system described by 

where x(t) E Rn is unmeasurable system state vector; y(t) E RP is measurable output; 

u(t) E Rm is system control input; d(t) E Rq is unmeasurable disturbance; td is a fixed 

delay; @(x(t), x(t - td)) is a Lipschitz nonlinearity; fa(x, t)  represents system faults, 

such as aged components; A, B ,  C and E are constant matrices with appropriate 

dimensions, respectively. Distribution matrices of both disturbance d(t) and fault 

f,(x, t )  are designated as the same matrix E for the convenience of discussion. In this 

chapter, all actuators are assumed to be free from any faults. 

The aim of the fault compensation or fault tolerance control is to adjust or mod- 

ify the system control input in order to maintain the safety and reliability of the 

considered nonlinear system so that controlled system can still continue its original 

specifications [65, 92, 1391. 

In this chapter, we deal with fault detection, estimation, and compensation issues 
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for the class of time delay nonlinear systems described above. Fault detection, es- 

timation, and compensation will be achieved all at the same time by using an ILO 

together with an adaptive law, such that the formed closed-loop time delay nonlinear 

system has the property of fault rejection. 

Throughout this chapter, following assumptions are required. 

Assumption 7.1 System control input u ( t )  is bounded by b,, and both disturbance 

d ( t )  and fault f a ( x , t )  are bounded with Ild(t)II 5 bd and Ilfa(x,t)II 5 b f ,  V t  > 0. 

Assumption 7.2 [65, 921 Vector space spanned by the columns of E is a subset of 

the space spanned by the column vectors of B, that is span(E)  G s p a n ( B ) .  

Assumption 7.3 Function @ ( x ( t ) ,  x ( t  - td) )  satisfies Lipschitx condition with Lips- 

chitx constants ql and q2 i.e. 

where Z( . )  = x ( . )  - i ( . ) .  

Assumption 7.4 Matrix A is Hurwitx and system (7.1) is bounded input-bounded 

state stable. 

Assumption 7.5 Consider that W ( Z )  = Z T ( t ) P 2 ( t )  is a positive definite function, 

where P = pT > 0 satisfies equation (7.37) and Z ( t )  := x ( t )  - 2 ( t ) .  Assume that 

W ( 2 ( t  - T ) )  5 q 2 W ( Z ( t ) ) , q  > 1, then IlZ(t - T ) I ~  5 qp11Z(t)ll, where T > 0,  the 

sampling time interval and p = (Xma,(P)/Xmin(P))1'2. 

Remark 7.2.1 Assumption 7.5 is based on the stability theorem of Razumikhin [53]. 

Remark 7.2.2 This chapter concerns only fault detection, estimation and compen- 

sation issues. Stabilization of the nonlinear system is not focused here. Therefore, 

the considered nonlinear time-delay system is assumed stable. 



Chapter 7. Fault Diagnosis and Com~ensation by an ILO 138 

Remark 7.2.3 Assumption 7.2 guarantees that it is always possible to find a matrix 

M such that BM = E for the purpose of fault compensation. Intuitively speaking, 

fault compensation can be achieved if we have an additional control input w(t)  that 

is adjusted on-line, satisfying 

In this chapter, we first of all analyze a robust ILO regarding the properties of 

fault orland disturbance estimation. The discussion regarding ILO based adaptive 

fault compensation issue is then followed where we shall show that this ILO, together 

with an adaptive law, can achieve fault detection, estimation and compensation at 

the same time. The application of this ILO plus the adaptive law to an automotive 

engine for robust fault diagnosis and compensation will be further demonstrated in 

section 7.5. 

7.3 Analysis of the ILO regarding Disturbance 

and/or Fault Estimation 

The ILO that was first proposed in [18] is to be discussed with respect to its main 

features. Considering its main feature, the ILO-based adaptive fault detection, esti- 

mation, and compensation issues will be introduced. 

For the time being, temporarily ignore matrix E and the fault term f,(x, u, t )  in 

system equation (7.1) for the convenience of discussion. In this case the following 

system will be of interest 



Chapter 7. Fault Diagnosis and Compensation by an ILO 

It is reasonable to rewrite system equation as (7.4) because one could regard d(t) 

as either a disturbance or a fault. 

According to [18, 201, the ILO has the following form 

where ?(.) is the estimated system state; $ ( a )  is the estimated system output; T is 

sampling time interval; y(t - T) is the immediate past measurable output, i.e. the 

output at time t - r; v(t) is called ILO input; L and K ~ s  are gain matrices with 

appropriate dimensions to be determined, where i = 1,2.  

The main characteristic of this ILO is that its states are updated or driven suc- 

cessively by the previous system output errors and the previous ILO input v(t - T), 

as can be seen in equation (7.5). The term "iterative" indicates that ILO repeats the 

same operation, i.e. the ILO input being always updated by the previous information. 

Subtracting observer equation (7.5) from system equation (7.4), we have: 

where 2(t) = ~ ( t )  - ?(t) is system state estimate error, rnatrix (A - LC) can be a 

stable matrix by selecting an appropriate gain matrix L. 

To prove theorem 7.1, the following lemma is needed. 

Lemma 7.3.1 If ILO input v(t) is defined in equation (7.5), then following inequality 

holds 
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Proof: 

Substituting expression of ILO input v(t)  in equation (7.5) into 2vT(t)v(t) , we 

have: 

2vT(t)v(t) = 2vT(t - T ) K ; K ~ v ( ~  -7 )  + 2 ~ ~ ( t - ~ ) K ; K ~ c z ( t  - 7 )  

+2ZT(t - T ) ( K ~ C ) ~ ( K ~ C ) ~ ( ~  - 7 ) .  

By applying the following inequality 

we have: 

2 v T ( t ) ~ ( t )  5 2vT(t - T ) K ; K ~ v ( ~  - T )  + vT(t - T ) K T K ~ J ( ~  - T )  

+2zT(t - T ) ( K ~ C ) ~ ( K ~ C ) ~ ( ~  - T ) .  

Therefore, 

This completes the proof. I 

Theorem 7.1 [20] Consider time delay nonlinear systems (7.4) satisfying Assump- 

tions 7.1, 7.3, and 7.4, and having an ILO given in equation (7.5). If equation (7.17) 

and inequalities (7.18) and (7.20) hold, then state estimate error is bounded. 
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Proof: 

In what follows, time t  of each variable will be omitted for the convenience of 

statement. 

Consider following Lyapunov function candidate: 

t t t 

v = i ~ p i + L - ~ i  ( 0 ) RZ(0)dO + Ltd  i?(P)I'i(P)dP + 1 vT(a)v(a)da (7.12) 
t-T 

where P, R and I7 are symmetric positive definite matrices. 

Substituting estimation error equation (7.6) into the derivative of Lyapunov func- 

tion candidate V ,  we have 

v = p ~ i + i ~ ~ & + i ~ ( t ) R j . ( t )  - z T ( t  -7)RZ(t  - 7 )  +iT(t)I ' j . ( t )  

= i T ( ( A  - LC)TP+ P ( A  - LC) + R+I')Z 

(7.13) 

+2iTP(@(x, x(t - td ) )  - a(?, ?(t - t d ) ) )  + 2iTPd(t)  - 2iTPv(t)  

+vT(t)v(t)  - vT(t  - r )v( t  - 7) .  

Combining inequality 

into equation (7.13) leads 

v < i T ( ( A  - LC)TP + P ( A  - LC) + R + I7 + PP)? 
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where bd is the upper bound of disturbance d(t) .  

Considering Assumption 7.3 and Lemma 7.3.1, equation (7.15) can be further 

extended as: 

v 5 ZT((A - LC)TP + P ( A  - LC) + R + r + PP)Z 

5 ZT((A - LC)TP + P ( A  - LC) + R + I? + PP + v2PP)z 

where I E IRnXn is an identity matrix, and a is a positive constant. 

For any Q = QT > 0, there exists a P = PT > 0 satisfying the following Riccati 

equation 

and let 
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where 

The proof is complete. I 

Remark 7.3.1 In fact, k can be proved bounded, to  this end, let z := &, and differ- 

entiate state estimation error equation (7.6) to obtain 

i = ( A -  L C ) z + s +  Bz(t - th) +d( t )  -v(t)  (7.21) 

where v(t) = Klir(t - T) + K2Cz(t - T) 

d a@ a@ a@ a@ 
and s := -(@(x, u)-@(P,u)) = ( - (x ,u)k-- (P,u) i )+(-(x ,u)u-  -(2,u)u). 

dt ax ax au au 

Assumptions 7.1, 7.2, and 7.3 can guarantee the boundedness of x and 

I rl + rzllzII 

where rl and rz are two positive constants. Using an analysis similar to that used in 

the analysis of the estimation error dynamics, one can know that llzll is bounded. 
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Remark 7.3.2 From the proof of Theorem 7.1 and Remark 7.3.1, it is clear that both 

estimation error Z(t) and its derivative &(t) are bounded. Accordingly, -v(t) + d(t) 

is also bounded. Thereby, the ILO input v(t) can detect, estimate or reconstruct 

disturbance or fault d(t), which will be seen in the simulation. If both disturbances 

and faults exist in the system, the ILO input v(t) will estimate the composition of 

them. Therefore, given that the ILO input v(t) can monitor variations of system 

dynamics. The ILO-based adaptive fault detection, estimation and compensation can 

be designed based on it. In addition, the boundedness of -v(t)+d(t) also explains that 

the robustness of the ILO results from ILO input v(t). It is v(t) that compensates the 

effects of disturbance d(t) on estimation error dynamics. The capability to estimate 

disturbances and faults will be demonstrated in the simulation study later. 

7.4 Main Results 

In this section, an ILO-based adaptive fault detection, estimation and compensation 

strategy, with proof of its stability will be presented. 

7.4.1 ILO-Based Adaptive Fault Detection, Estimation, and 

Compensation 

The ILO, together with an adaptive law, can achieve the fault detection, estimation, 

and compensation task. The task is accomplished in three stages: first fault detection 

is achieved by the ILO input v(t) or the additional control input w(t); second, the 

additional control input can estimate faults during fault compensation; and third, this 

estimation will offset the effect of faults on the system. 

The fault compensation issue is about to be emphasized in this work because the 

fault detection and estimation can be achieved at the same time. The main goal 
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disturbances 
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Figure 7.1: Dynamic process of fault compensation. 

Plant 
with faults 

of this chapter is to annihilate the effect of faults on system performance and to 

maintain system outputs at their nominal values, while realizing fault detection and 

estimation. This will be achieved by the addition of a new control input, generated 

from an adaptive law excited by ILO input v(t), to the nominal input. 

The dynamic fault compensation process is described in Figure 7.1. That is, first 

of all, an ILO is constructed to monitor any system variations. Second of all, the ILO 

input v(t) will be used to excite the adaptive law in order to generate an additional 

system input w(t) for the purpose of eliminating the effect of faults. The transition 

phase of fault estimation and elimination will be successively monitored by the ILO. 

The adaptive law will then be successively updated stimulated by ILO input v(t) 

until there exists no variation in the considered system. That means faults have been 

completely compensated. The current w(t) is the estimations of the faults. Under the 

circumstance of no faults in the systems, the additional input w(t) can estimate and 
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eliminate the effect of disturbances. 

We are in the position to present the ILO-based adaptive fault compensation 

strategy. Rewrite system equation (7.1) with faults as follows: 

where w(t) is the additional system input for fault estimation and compensation; u,(t) 

is system nominal control input. According to Assumption 7.2, A4 can be selected 

such that B M  = E. Vector f,(x, t )  is the faults, such as component faults other than 

actuator or sensor faults. 

The following ILO and adaptive law consist of the fault detection, estimation, and 

compensation methodology 

where L, Kl ,  K2 and F are constant matrices to be determined. 

As stated above, v(t) is used to excite the adaptive law due to its sensitivity to 

variations in the system. 

Subtracting equation (7.24) from system equation (7.23) leads to estimation error 

dynamics for the need of stability proof of the ILO-based adaptive fault compensation 

approach in the following subsection: 

k(t) = (A - LC) z(t) + [Q(x (t) , x (t  - td)) - @(2(t), ?(t - id))] 
(7.25) 

+E[f,(x, t)  + d(t) + w(t)] + Ev(t). 

In the following subsection, stability of equation (7.25) is first analyzed. Some com- 

ments will then follow. 
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7.4.2 Stability Analysis 

Theorem 7.2 states the stability conditions of the proposed ILO-based adaptive fault 

compensation strategy. To prove Theorem 7.2, the following lemma is needed. 

Lemma 7.4.1 Consider ILO update law v(t) = Klv(t - r) + KzCZ(t - 7). If As- 

sumption 7.5 holds, then Ilv(t)II < lnl(5(t - r)ll, where 1, is a positive constant to be 

derived. 

Proof: For the initial v(to), we could select it such that JJv(to) 11 < 10~~5(to)  1 1 ,  to € [0, r], 

and for any t > 0, there exists t = n r  + to, where n is non-negative, so, we have 

= 1211qto + 7)Il 

where 12 = ~ ~ ~ P I I K I I I  + lIK2IIIICll. 

Assumption 7.5 is used in the derivation above, it will be also considered in equa- 

tions (7.28) and (7.29). 
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Continuously, consider v(37 + to),  we have 

IIv(37 + to) II L IIKiII 1 1 4 2 ~  + to) ( 1  + ( ( K 2 l l  IICII IlZ(27 + to )  ( 1  

Finally, 

This completes the proof. I 

Remark 7.4.1 1, can have an explicit expression by substituting liWl into li, repeti- 

tively, where, i = 1,. . . , n,  i.e. 
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To guarantee the convergence of equation (7.30), Kl must be selected such that 

qpl(Kl 1 1  < 1. It is worth noting that once the significant digits after the decimal 

point of 1, are designated, I ,  will converge to a constant, as n increases. It is easy to 

calculate it using Matlab. 

Theorem 7.2 Consider time delay nonlinear system (7.23) satisfying Assumptions 

7.1-7.5. If the proposed ILO input satisfies Lemmas 7.3.1 and 7.4.1 along with con- 

ditions (7.37) and (7.38), then fault compensation control can be achieved b y  an ILO 

plus an adaptive law proposed in equation (7.24). 

Proof: Consider the following Lyapunov function candidate: 

where P = PT > 0 and R = RT > 0. 

Substituting estimation error equation (7.25) into the derivative of Lyapunov func- 

tion candidate V leads to 

= ZT((A - LC)TP + P ( A  - LC) + R + I)Z + 2ZTPEv(t) 

(7.32) 

+2ZTP(@(x, ~ ( t  - t d ) )  - @(?, ?(t - t d ) ) )  + 2ZTPE(fa + d ( t )  + ~ ( t ) )  
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where I E lRnXn is an identity matrix. 

By applying inequality (7.9), the following inequality holds 

With the aid of Assumption 7.3, the following extension can be obtained 

2zTP(@(x1 ~ ( t  - id)) - @ ( g ,  ?(t - t d ) ) )  

Substituting the adaptive law in equation (7.24) and combining equations (7.33) 

and (7.34) into equation (7.32), we have 

Using Lemma 7.3.1, the above equation can be further extended 

v 5 - z T ( ( ~  - L C ) ~ P  + P(A - LC) + R + $PP + $PP + 21 + P E E ~ P ) ~ ~ :  
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For any Q = QT > 0, there exists a P = PT > 0 satisfying the following equation 

(A - L C ) ~ P  + P ( A  - LC) + R + $PP + $PP + 21 + P E E ~ P  = -Q. (7.37) 

Consider Assumption 7.5 and Lemma 7.4.1 and let 

equation (7.36) can be simplified as 

According to [69, 1001, the above inequality has following form by some operation 

where c = 2XmaX(P) ((Ell(bf + bd + b,) + 2buqplnll F(I, then ILO-based adaptive fault 

compensation control is achieved. I 

Remark 7.4.2 It is worth noting that this ILO-based adaptive reconfiguration of 

the control input is a feedback dynamic control process, as ILO input v(t) can reflect 

the control transition phase aroused by the additional adaptive input w(t) and fault 

fa(x, t ) .  So, we can say that v(t) is an indicator of the variations of the considered 

systems. Then this indicator is employed as the lasting stimulation of the adaptive 

law such that w(t) is updated on-line. Furthermore, this w(t) is added back to the 

system input to further attenuate the effect of faults. This process forms a dynamic 

control loop. This dynamic adjusting process will end if the indicator v(t) approaches 

a steady small value or even zero if there exist no disturbances in the systems, which 

means the faults have been compensated. In addition, this indicator keeps its "eyes" 

on system dynamics. Once a new fault occurs, it will inform w(t) immediately, then 

some counteraction will be taken again. 
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Remark 7.4.3 This ILO-based adaptive fault compensation strategy can offset mul- 

tiple faults that occur simultaneously or in order because the additional control input 

is reconfigured according only to the system's response. 

Remark 7.4.4 In the course of the proof of Theorem 7.2, a method has been derived 

to select each parameter of the ILO, as shown in equations (7.37) and (7.38). 

Remark 7.4.5 One of the main features of this ILO-based adaptive fault compensa- 

tion strategy is that the additional input can be in running fault compensation from 

the beginning of the system operation because the additional input w( t )  is zero in the 

fault free case if there exist no disturbances in the systems. It will be the estimation 

of disturbances in the fault free case if there exist disturbances. This property makes 

systems more robust to disturbances because the effect of disturbances can be elim- 

inated by the additional input. The fault compensation process starts only after a 

fault occurs. 

Remark 7.4.6 Though there is no fault detection and estimation subsystem in our 

fault compensation system, fault detection, compensation, and estimation can be 

completed at the same time by the additional input w( t ) .  It is not hard to notice 

that once a fault occurs, ILO input v ( t )  will immediately detect it, feeding itself to 

the adaptive law so that the additional control input w ( t )  is produced. Therefore, 

either v ( t )  or w( t )  can be regarded as a residual. If ILO input v ( t )  is not varying (if 

no disturbances exist), then faults have been completely compensated by the w( t ) .  

The current w ( t )  is the estimation of the fault, which can be seen in the application 

example. If there exist no faults in the nonlinear systems, w ( t )  is the estimation of 

the disturbance. 
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7.5 Application to Automotive Engine Fault 

Diagnosis and Compensation 

In this section, we apply the above proposed ILO-based adaptive strategy to de- 

tect, estimate, and compensate system faults in an automotive engine described by a 

second-order nonlinear engine model that involves intake to torque production delay 

and unmeasurable time varying disturbances. This delay is due to the fact that the 

engine torque production is a discrete process. But it is modelled as a continuous 

time domain. Therefore, the delay must be introduced [114]. The automotive engine 

model discussed in Chapter 6 will be used here to demonstrate the effectiveness of 

the above proposed fault detection, estimation, and compensation approach. 

Rewrite the nonlinear two-state engine model as follows: 

Based on this time delay two-state engine model, the ILO-based fault detection, 

estimation, and compensation strategy is to be implemented. 

For convenience, letting x l ( t )  = w, x2( t )  = p, equation (7.41) can be written as 
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Based on the equation above, the ILO and the adaptive law are constructed ac- 

cording to equation (7.24) as follows: 

iil = 576.6522(t - td) - 76 - 0.112ii1 - 2.148 x - 7.84 x 10-4(1 - g2) 

~ ( t )  = -10v(t). 

In the following simulations, the ILO will estimate disturbances if no faults exist in 

the system. If a fault occurs, ILO-based adaptive method will achieve fault detec- 

tion, estimation and compensation. We assume that the healthy system has a fault 

f,(x, t )  = 0, and that sampling time interval T = 0.01 and td E T. 

1. Disturbance Estimation by the ILO 

The disturbance d(t) is designated as a random function and a sinusoid. In 

Figure 7.2, a slowly varying disturbance (sinusoid) is accurately estimated by 

the ILO. Figure 7.3 shows that the ILO can also supply an accurate estimation 

of a random disturbance. This implies that the ILO can be used as a very 

effective robust control tool. 

2. ILO-Based Adaptive fault Detection, Estimation, and Compensation 

The main result of this work is verified in Figures 7.4 and 7.5 in which an abrupt 

fault occurs at time 10 seconds. ILO input v(t) immediately detects this fault 
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and the additional control input w ( t )  becomes greater than zero to offset the 

fault. The steady value of w ( t )  is the estimation with a negative sign of the fault. 

By this way, the effects of the fault on system dynamics are compensated. Under 

the circumstance of counteraction, automotive engine speed and the pressure 

in manifold recover to their original values after a transition phase as shown in 

Figure 7.5. These two figures also reveal that both w ( t )  and v ( t )  can be selected 

as residuals. 

3. Multzple faults case 

If there exist multiple faults in the system, the ILO-based adaptive fault com- 

pensation strategy can still work. Figure 7.6 describes the responses of both 

w ( t )  and v ( t )  after two faults occur in order. The w ( t )  can retrieve its original 

value after compensating the first fault. After the second fault appears, it im- 

mediately generates another estimation to counteract the second fault. It is w ( t )  

that makes engine speed and pressure robust to the two faults demonstrated in 

Figure 7.7. Figure 7.8 shows the counteraction of w ( t )  to two faults occurring 

simultaneously. 

7.6 Conclusions 

Fault detection, estimation, and compensation issues have been achieved by the ILO 

plus an adaptive control law. The main property of the proposed approach is that 

the fault compensation is based totally on system response, without resorting to a 

fault detection and isolation subsystem. This avoids a degraded performance due to 

inaccurate fault estimation. Though fault estimation is also attained in the process 

of fault compensation, it is not employed to offset faults. The crucial point here is 
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the ILO input u( t )  that is on the alert against any variations of the dynamic system, 

and that excites an adaptive law to generate an additional control input for the needs 

of fault compensation. From simulations, it is easy to notice that both w ( t )  and u ( t )  

can be treated as residuals. In addition, a method has been derived to select observer 

parameters such that ILO can be easily constructed in practice. 
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1. v(t): Disturbance Estimate (solid line) 

2. v(t): Zoom-In of Disturbance Estimate (solid line) 

Figure 7.2: Disturbance estimation by the ILO- a sinusoid disturbance. 
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Figure 7.3: Disturbance estimation by the ILO- a random disturbance. 

0.5 

0.4 

0.3 

I I I I 

- - 

: - 

r 
- - 



Chawter 7. Fault Diagnosis and Cornwensation bv an ILO 

1. Additional Control lnput -w(t) & Real Fault (dotted line) 

2. ILO lnput v(t) 

Figure 7.4: The additional control input and ILO input. 



Chawter 7. Fault Diagnosis and Cornwensation bv an ILO 

Pressure in the Manifold (dotted line) & Its Estimate (solid line) 
I I I I 

Engine Speed (dotted line) & Its Estimate (solid line) 
580 I I I I 

Figure 7.5: Engine speed and pressure in the manifold and their estimations . 
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1. Additional Control Input -w(t) & Real Fault (dotted line) 

Figure 7.6: The w(t )  and v( t )  under multiple faults in order. 
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1. Engine Speed(dotted line) & Its Estimate(so1id line) 
600 1 I I I I I 

2. Pressure in the Manifold(dotted line) & Its Estimate(solid line) 
2 ( I I I I 

Figure 7.7: Engine speed and pressure in the manifold and their estimations under 
multiple faults in order. 
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1. Additional Control Input -w(t) & Real Faults 

2. ILO input v(t) 

Figure 7.8: The w(t )  and v ( t )  under simultaneous multiple faults. 



Chapter 8 

An SMO in Nonlinear DAS 

This chapter is concerned with the design of an SMO in a class of uncertain nonlinear 

differential-algebraic systems (DAS) described by so-called semi-explicit forms with 

the differential variables being coupled with algebraic variables. In order to estimate 

the algebraic variables directly, an algorithm is developed to reconstruct the alge- 

braic variables whose distribution matrix is singular, using serial elementary matrices 

followed by differentiation. An SMO is then designed based on the reconstructed al- 

gebraic variables. The estimated states, including both the differential and algebraic 

variables, can converge to the actual ones. The stability of the proposed observer is 

proved and an illustrative example is given in simulation to describe the design of the 

SMO. 

8.1 Introduction 

An important research area is concerned with a large class of engineering systems 

that are described by both ordinary differential equations and algebraic equations, 
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such as robotic systems with kinematic constraints [75, 881. Power systems and elec- 

tric circuits also fall into this category [56, 116, 1211. In the chemical process, for 

example, the differential equations stem from dynamic conservation equations, while 

the algebraic equations commonly arise from thermodynamic equilibrium relations, 

empirical correlations, pseudo-steady-state assumptions, and so on. 

The majority of the research on nonlinear DAS has focused on solvability and 

numerical solutions [7, 101. The problem of feedback controller synthesis has been 

addressed only for restricted classes of DAS that mainly arise from mechanical systems 

[74, 871. A framework for the study of Lyapunov stability of equilibria in DAS is 

presented in [56]. [77] addresses the output feedback control problem for nonlinear 

multi-variable high-index DAS in semi-explicit form. A local disturbance decoupling 

issue is considered by [82] in uncertain DAS where an algorithm is first developed 

such that the system can be expressed in a simple form. Based on this simple form, 

a feedback control law is then constructed to ensure that the closed loop system has 

a unique solution without impulses and its output is not affected by disturbances. 

Only a few papers have been published in uncertain nonlinear DAS regarding ob- 

server design although this turns out to be very important in many applications, such 

as control issues or fault diagnostics [20, 129, 1341. In [116], an SMO is constructed in 

a class of linear DAS where the DAS is first converted into an equivalent control prob- 

lem via the singularly perturbed sliding manifold approach. A robust sliding observer 

is then designed ensuring asymptotic stability in the presence of disturbances. Refer- 

ence [I211 is concerned with designing and analyzing a numerically feasible learning 

scheme for robust and stable fault diagnosis of DAS. The proposed fault diagnosis 

architecture monitors the physical system for any off-nominal behavior by estimators. 

As a matter of fact, observers are ideal tools for fault diagnosis [20, 129, 1341 under 
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the existence of unmeasurable differential and algebraic variables. 

Therefore, it is necessary to consider observer design issues in uncertain nonlinear 

DAS no matter whether it is for the control application or fault diagnosis. In this 

work, an SMO will be designed based on a class of uncertain nonlinear DAS with 

singular distribution matrix of the algebraic variables. 

8.2 Problem Statement and System Formulation 

Consider a class of uncertain nonlinear DAS described by 

x(t) = Ax(t) + b(x)z(t) + g(x)u(t) + Wd(x, x, u, t )  

0 = k(x) +l(x)z(t)  (8.1) 

~ ( t )  = Cx(t) 

with compatible initial conditions, where x(t) E IRn is unmeasurable system state 

vector; x(t) E IRP denotes algebraic variable vector; y(t) E IRq is measurable outputs; 

u(t) E IRm is system control inputs; A E IRnXn, W E IRnXs, and C E IRqXn are 

constant matrices; d(x, z, u, t) : IRn x IRp x IRm x IR' t IRe represents disturbance 

or uncertainty vector; k(x) : W -+ IRp; I(%) : IRn -+ IRpxp; b(x) : IRn t IRnXP; 

Remark 8.2.1 Incompatible initial conditions will typically lead to jumps at con- 

stant x to the constraint [56]. 

Remark 8.2.2 The above description of DAS is in the so-called semi-explicit form 

with the algebraic variables z(t) appearing linearly [51]. The semi-explicit differential- 

algebraic system model is motivated by some practical applications, such as chemical 

processes. Moreover, the linear form of the algebraic variables z(t) is also typical in 

chemical processes. 
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For a vector-valued smooth function f (x) = [fl(x), f2(x), . . , fn(x)IT, a matrix- 

valued smooth function g (x) = [gl (x) , g2 (x) , . . . , gm (x)] with gi (x) = [gt (x) , g? (x) , . , 
gY(x)lT, and a smooth function h(x), the following notations will be used 

The problem in question is to construct an SMO for the uncertain DAS of interest 

with a singular distribution matrix 1 (x) . 

In system equation (&I), the algebraic variables are coupled with differential vari- 

ables. If they can be decoupled and expressed by system states x(t) and system input 

u(t) ,  then the algebraic variables can be directly estimated by differential variables. 

Nevertheless, matrix l(x) in the algebraic constraint equation is singular. This makes 

algebraic variables z(t) impossible to be directly solved, and causes additional under- 

lying constraints among differential variables to be present. If singular matrix l(x) 

can be transformed to a nonsingular matrix by some operations, consistent with the 

algebraic constraints, then the algebraic variables can be expressed in terms of differ- 

ential variables. Motivated by these considerations, in what follows an algorithm will 

be developed to reconstruct the algebraic variables. An SMO for the uncertain DAS 

of interest with reconstructed algebraic variables will be constructed for the purpose 

of estimating both the differential and algebraic variables. 
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8.3 Main Result 

In this section, we shall design an SMO for the uncertain nonlinear DAS. To this end, 

we first propose an algorithm to reconstruct x( t )  in terms of state x( t )  and system 

input u ( t ) ,  consistent with the algebraic constraints. After that, an SMO will be 

designed based on the reconstructed algebraic variables. 

8.3.1 An Algorithm for the Reconstruction of Algebraic 

Variables x ( t )  

Based on [57], [77] proposes an algorithm to reconstruct algebraic variables z ( t )  be- 

cause of the singular distribution matrix l ( x )  for the purpose of state-space realization. 

On that basis, an improved algorithm, which is motivated by [57] for the reconstruc- 

tion of algebraic variables z ( t ) ,  is about to be presented. This algorithm consists of 

elementary row operations and differentiation with respect to time t .  

Prior to stating the algorithm, the following assumptions are introduced: 

A A 

Assumption 8.1 [Lb,kf(x),Lb2k~(x),...,Lbpk~(x)], i = l , . . - , p - p , ,  s = l , . . . , r ,  

can not be a zero vector at every iteration, where r is the number of iterations for 

the reconstruction of algebraic variables, i.e. at rth iteration, l ( x )  can be developed 

to be a nonsingular matrix; b; denotes the jth column of matrix b(x);  @ ( x )  is the ith 

component of vector hs(x)  as shown in equation (8.5) or (8.18). 

Assumption8.2 Lgjkf = O  f o r s  < r ,  i =  l , . . . , p - p , ;  j =  l , - . . , r n ;  wheregj is 

the jth column of matrix g(x) .  

Assumption 8.3 L~~ hf = 0 for s < r ,  i = 1 , .  . . , p  - p,; j = 1, . . ,O; where W; is 

the jth column of matrix W .  
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Remark 8.3.1 Assumption 8.1 can guarantee that singular matrix l(x) can be surely 

developed to a nonsingular matrix because, if a vector in assumption 8.1 is always a 

zero vector at every iteration, l(x) would forever be a singular matrix. 

Remark 8.3.2 Assumption 8.2 assures that system input u will not appear until 

the last iteration. This prevents us from differentiating system input u. Meanwhile, 

Assumption 8.3 guarantees that the disturbance d has no influence on algebraic con- 

straints when they are differentiated. 

Remark 8.3.3 Assumption 8.1 implies that no component of vector is can always 

be a constant for s 5 r ,  as the derivative of a constant is zero. This makes the vector 

in Assumption 8.1 be a zero vector. 

We are in the position to present the procedure for the reconstruction of algebraic 

variables z ( t )  . 

Iteration 1: Consider the algebraic constraint in equation (8.1) with p1 = m a x , , ~  

{rank l(x)) < p, M = IRn. 

1. Pre-multiply l(x) by El ,  an elementary matrix that reorders the rows of 

1 (x) such that the first pl rows of Ell (x) are linearly independent for some 

x E M, i.e. 

E1 (x) TI(.) 
o = [iyxJ + [[+) I 

Now, reduce the last p - pl rows of E,ll(x) to zeros by pre-multiplying a 

p x p elementary matrix 



Chapter 8. An  SMO in Nonlinear Differen tial-Algebraic Sys terns 

with the property of 

where the entries of Fl(x) are real analytic function on MI = {x E MI 

rank i1 (x) = pl). 

By the two operations above, we have 

iF1 (x) o = [  & (4 ]+["6"']. 
where P(z)  E lRPLXP has full row rank pl for all x E MI. kl(x) = 

[k: (x) , a . . , (x)]' = Fl (x)kl (x) + k1 (x) and 0 = Fl (x)il (x) + i1 (x) 
are of dimensions (p - pl) and (p - pl) x p, respectively. 

2. Differentiating il(x) once with respect to t leads to following algebraic 

equation 

iF1 (x) o = [  i2 (x) f2 (x) ]u+[ I d  
C? (4 z (4 (8.6) 

where 
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c"?(x) = 

and 

Lwl i: ( x )  - L ~ ,  i: (.) 
E;(x)  = I (8.10) 

L W ~ ~ ; - , ~  ( x )  . . L W & - ~ ~ ( X )  

where bi, gi, and Wi denote the ith columns of matrices b(x),  g(x) ,  and W,  

respectively. 

Assumptions 8.2 and 8.3 suggest that c"f(x) = 0 and c"z(x) = 0. Therefore, 

equation (8.6) can be simplified as 

0 = 

3. Evaluate the rank of 

Let p2 = max{rank Dl(x) ) .  If p2 = p, then stop, otherwise, proceed to the 
xEMl 

next iteration, beginning with equation (8.11). 
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Iteration s: After s - 1 iterations, following algebraic equation can be obtained 

0 = 

P ( x )  

with 

p, = max {rank Ds-l(x))  
X E M L I  

where 

1. Pre-multiply D,-l(x) by Et , an elementary matrix that reorders the rows 

of D,-l(x) such that the first p, rows of E,lD,-l(x) are linearly independent 

for some x E MkP1, i.e. 

where ,kS(x) and P ( x )  are of dimensions p - p, and ( p  - p,) x p, respectively. 

Reduce the last p - p, rows of EtD,-l(x) to zeros by pre-multiplying a 

p x p elementary matrix 

o =  

- % ( x )  

t" (4 
i 

l" ( x )  

- P ( x )  

- i l ( x )  - 

iF2 ( x )  
i 

is ( x )  

_ i"x)  

+ 



Chapter 8. An SMO in Nonlinear Differential-Algebraic Systems 

where the entries of Fk(x )  are real analytic functions on Mk = { x  E MkPl I 
rank [ i l ( x ) ,  p ( x ) ,  . . . , P(x)IT = I),). 

By the two operations above, we have 

i' ( x )  

k2 ( x )  

is ( x )  

i" ( x )  

i1 ( x )  

i2 ( x )  

P ( x )  

0 

where I S  ( x )  = [il ( x )  , i 2 ( x ) ,  . . , (x)lT E Rps x p  has full row rank p, 

for all s E Mk,  is ( x )  = [ i ; ( x ) ,  . , %-p3 (x)IT = F, ( x ) k S ( x )  + is ( x )  , 

0 = F , ( X ) Z " X ) + ~ " ( X )  E R ( ~ - P " ) ~ P ,  and k s ( x )  = [ k l ( x ) ,  i 2 ( x ) , .  , kS(x)lT E 

lRps . 

2. Differentiating i s ( x )  once with respect to t and considering Assumptions 

8.2 and 8.3, the following algebraic equation can be obtained 
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where 

and 

F(x)  = 

3. Evaluate the rank of 

0 = 

Let p,+l = max{ rank D ~ ( X ) ) .  If pS+, = p, then stop, otherwise, proceed 
X E  Mk 

to the next iteration, beginning with equation (8.19). 

- s+l 
( 2 )  = [  LAX^: ( x )  ' '  LAX^;-^^ (2)  lT 

- P ( x )  - 
lC2 ( x )  

E"x) 
- Ls+l ( x )  - 

Ds(x )  := 

By construction, the procedure can converge after a finite number of iterations r ,  

then the final algebraic equation can be obtained as follows 

- i1 ( x )  - 

i2 ( x )  

+ : z  

P ( x )  - p+l - - 

- i1 ( x )  

w4 
! 

P ( x )  
p+1 - 

P ( x )  - 
lC2 ( x )  

kr ( x )  
k + l ( x )  - 

+ 

- i1 ( x )  

i2 ( x )  
: 

IT ( x )  - l~+l  - 
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with matrix [il(x), i2(x), . . , F(x), I;'+ llT having the full rank p, and 

~ ~ , h ; ( x )  . . .  LJ~;(x) 

(8.24) 

l T  ( 4  . 4, $-pT ( 4  

Therefore, algebraic variables x can be reconstructed based on equation (8.23) as 

follows: 

The above expression of x can be directly used for observer design. 

In the course of the reconstruction of the algebraic variables, a set of new con- 

straints among the differential variables is defined as 

i s  p-ps (x) = o 

which leads to  a set N = {x E Rn 1 / (XI  = 0,i = 1, a * . ,  s; j = 1, ,p-pi) .  So, the 

differential variables x E N rl Mk+l after the reconstruction of the algebraic variables. 

Remark 8.3.4 It is Assumption 8.3 that makes equation (8.23) not include the dis- 

turbance term d. 
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Remark 8.3.5 Substituting equation (8.25) into system equation leads to an ordi- 

nary differential equation of dimension n which can be dealt with by some existing 

approaches for some needs, such as stabilization, linearization, etc. 

Remark 8.3.6 F,(x) can be obtained by F,(x) = - i " (x )~" (x )~ ,  where lS(x)+ = 

Is ( x ) ~  ( l " ~ ) l " x ) ~ ) - ~  is the generalized inverse of 1 "x). 

Remark 8.3.7 In the algorithm proposed above, it is not necessary for the elemen- 

tary matrix to render the input distribution matrix to be zeros, making the proposed 

algorithm easier to realize. In the algorithm of [77], it is a hard task to find a matrix 

E(x) that not only relocates rows of matrix l(x), and sets the last p - p, rows to  zero, 

but also brings the last p - p, rows of the system input distribution matrix to be 

zero. In addition, the rank of matrix l(x) at each iteration in [77] cannot be evaluated 

because there is no given domain of x. 

8.3.2 An SMO for the uncertain DAS with Singular l(x) 

Based on the expression of z in equation (8.25), an SMO is proposed as follows 

where 

a m  i f i j+O 
v(t) = llFy"ll ' 

0, otherwise 

where ?(t) E N n Mk+l is the estimated system states; i ( t )  E IRP is the estimated 

algebraic variables; $(t)  E Rq is the estimated system outputs; y"(t) = y(t) - $(t); 
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F E Elexq is a constant matrix; L E Elnxq is a gain matrix to be determined; a is a 

positive constant. 

Subtracting observer equation (8.27) from system equation (8.1) leads to the fol- 

lowing estimation error equation: 

where Z( t )  = x ( t )  - ?(t) is system state estimation errors; 2 is algebraic variable 

estimation errors; matrix ( A  - LC)  can be a stable matrix by selecting an appropriate 

gain matrix L.  

8.3.3 Stability Analysis 

To prove the stability of the estimation error equation (8.29), the following assump- 

tions are required. 

Assumption 8.4 Both b(x)  and f ( x ,  u )  are bounded with bb and bf and satisfy Lip- 

schitz condition with Lipschitz constants bl and b2 i.e. 

Assumption 8.5 Function g ( x )  satisfies Lzpschitz condition with Lzpschitz constant 

b3 i.e. 



Chapter 8. An SMO in Nonlinear Differen tial-Algebraic Sys terns 

Assumption 8.6 System control inputs and disturbances are bounded by 

IIu(t) 1 1  < bu and Ild(x, Z ,  U ,  t )  1 1  5 bd,  respectively. 

The following theorem addresses stability conditions of estimation error equation 

(8.29). 

Theorem 8.1 Consider DAS (8.1) satisfying assumptions 8.4-8.6, and the algebraic 

variables ~ ( t )  is reconstructed in equation (8.25). If both equation (8.35) and inequality 

(8.37) hold, then estimate error dynamics (8.29) is stable. 

Proof: 

A Lyapunov function candidate V = ZTPZ is chosen for the proof of the stability 

of estimation error equation, where P = PT > 0. 

Substituting estimation error equation (8.29) into the derivative of Lyapunov func- 

tion candidate V leads to: 

v = ZT((A - LC)TP + P ( A  - LC))Z + 2ZTP[b(x)x - b(?) i]+ 

2ZTP[g(x) - g(?)]u - 2 z T p w v ( t )  + 2zTpwd  

= ZT((A  - L C ) T ~  + P ( A  - LC))Z + 2ZTP[b(x) - b(2)] f ( x ,  u )  (8.33) 

+2ZTpb(2)[f ( x ,  u )  - f ( 2 ,  u ) ]  + ~ Z ~ P [ ~ ( X )  - g(2)lu 

-2ZTPWv(t) + 2ZTPWd. 

With the aid of assumptions 8.4, 8.5, 8.6, and letting PW = (FC)T ,  equation 

(8.33) has the form of 

Letting a = bd ,  and for any Q = QT > 0,  there exists a unique P = PT > 0 

satisfying following equation 

( A  - L C ) ~ P  + P ( A  - LC) = -Q, (8.35) 
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then, equation (8.34) can be simplified as 

then estimation error equation (8.29) is stable. Furthermore, 2 is also bounded 

according to assumption 8.4. The proof is complete. I 

8.4 An Illustrative Example 

To illustrate the construction of an SMO in a class of DAS described in equation (8.1), 

we consider the following system given by 

with 

A= 

r 
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The maximum rank pl of 1 ( x )  is 1. Pre-multiplying algebraic equation by Ef = I, 

where I is a 2 x 2 identity matrix, and reducing the last row of Ei l (x )  to zero by 

pre-multiplying a matrix 

where Fl(x )  = -x2/x1 on M I ,  we obtain 

where MI = { x  -E IEt3(x1 # 0) .  

Differentiating i l ( x )  = xa - x2 leads to the following form 

ai l (+)  
where - W = 0. 

ax  
Therefore, algebraic equation (8.40) has a new form of 

where matrix [: :] has rank 2 for all x E Ad2. 

The algebraic variables x can be solved from equation (8.42) 
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Based on the derivation above, we have following observer 

where 

( 0, otherwise 

A random function is taken as disturbance d l  and the system states and algebraic 

variables are initialized to consistent values. 

Figures 8.1 and 8.2 show that both the estimated algebraic variables and system 

states can quickly converge to the actual values of the considered differential-algebraic 

system with reconstructed algebraic variables. 

8.5 Conclusions 

An SMO has been proposed in a class of uncertain nonlinear DAS with a singular 

distribution matrix of the algebraic variables. The selling point of this work is the 
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improved algorithm for the reconstruction of the singular matrix 1 (x). It is simpler and 

more rigorous because this algorithm only requires serial elementary matrices that can 

be obtained easily, and differentiation to transform the singular 1(x) into a nonsingular 

matrix. The transformation enables the algebraic variables x to be expressed as a 

function of system state variables and inputs. Based on the reconstructed algebraic 

variables, an SMO that can attenuate the effects of disturbances on system estimation 

error dynamics is suggested using the direct estimation of the algebraic variables x(t). 

The illustrative example has shown both the reconstruction of the algebraic variables 

and the design of the SMO. 
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Figure 8.1: System state estimation errors. 
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Figure 8.2: Algebraic variable estimation errors. 



Chapter 9 

Conclusions 

Sliding mode observers, including both SMOs and SOSMOs, and the ILO have been 

designed and applied to uncertain nonlinear systems for the purpose of fault diagnosis. 

The main contribution of this thesis is the design of the SOSMO and the ILO that 

have been used to detect and estimate actuator faults. 

The most widely used tools for fault diagnosis are observers as demonstrated in 

the thesis. The basic idea behind the utilization of observers for fault diagnosis is to 

estimate system outputs from measurements by using some types of observers, and 

then residuals can be constructed by weighted output estimation errors. 

The classical Luenberger observer cannot efficiently detect faults when distur- 

bances exist in the system. The SMO, a robust observer that can eliminate the effects 

of disturbances on the estimation error dynamics, can tackle this problem. That is, 

it can detect the occurrence of a fault by suppressing the disturbance. If an adaptive 

law is used together with the SMO, fault estimation can also be achieved as reported 

in Chapter 2. However, the disadvantage of the SMO is the chattering problem that 

may cause the residuals to be robust to real faults. Given that a SOSMO is addressed 

to  detect small-sized faults. The attractive feature of the SOSMO is that it can not 
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only detect relatively small faults, but also supply the operation with fault estimations 

so that one can know the size and severity of the faults. The sliding surface in the 

SOSMO design can generate an alarm signal after a fault occurs because this sliding 

surface is so sensitive that a small fault can destroy its sliding property. 

An important issue in FDI is the fault estimation that can be used for fault 

accommodation, fault isolation, or even fault detection. The adaptive strategy has 

been widely used for fault estimation, and a version is reported in Chapter 2. The 

VSAO that is constructed according to the nonlinear system itself can achieve both 

fault detection and fault estimation despite the disturbances. The simulation example 

verifies that the VSAO can efficiently detect and estimate actuator faults in a class 

of uncertain nonlinear systems. 

Additionally, as addressed in Chapters 5 and 6, the ILO can accomplish fault 

estimation. It can estimate and compensate faults and/or disturbances by monitor- 

ing the system's dynamic variations caused by the faults and/or disturbances. The 

estimation and compensation enable the residual, which may be defined as system 

estimation errors or ILO inputs, to be robust to  disturbances, and make the ILO 

itself follow the considered system after the occurrence of a fault. 

Fault accommodation is a crucial issue in FDI. The existing strategies for fault 

compensation control are based on adding an additional control input, resulting from 

the fault detection and isolation subsystem, to the original control input in order to 

reduce or compensate the effects of faults. The IL approach addressed in Chapter 5 

can accomplish fault accommodation without utilizing a fault detection and isolation 

subsystem. The main idea behind the IL approach for fault accommodation is that 

the controller can be reconfigured automatically by the system output estimation 

errors. As a result, the fault detection and isolation subsystem is not required in the 
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IL approach. 

An alternative approach for fault accommodation is to  combine the ILO and the 

adaptive law. The ILO plays an important role in fault accommodation because it 

monitors any of the system's variations, while feeding its inputs to the adaptive law for 

producing an additional control input for the purpose of fault elimination. This fault 

accommodation strategy is a dynamic process because the transition phase of fault 

estimation and compensation will be successively monitored by the ILO. The adaptive 

law will be successively updated till there exists no variation in the considered system. 

This implies that faults have been completely compensated. The current additional 

control input is the estimation of the fault. 

The necessity to consider observer design issues in uncertain nonlinear DAS, ei- 

ther for the control applications or for fault diagnosis, has prompted the author to 

address the design and analysis of an SMO for the DAS that exists in many industrial 

processes. The key to constructing the SMO for the DAS is the reconstruction of the 

algebraic variables because of the singular distribution matrix. An SMO other than a 

Luenberger observer is used to estimate both the differential and algebraic variables 

due to its robustness to disturbances. Therefore, the SMO is a potential tool for fault 

diagnosis in the DAS. 

The author wishes to emphasize that output estimation errors are not the only 

residual candidates for fault diagnosis. Accurate fault estimation makes it possible 

for the ILO input to  be selected as a residual as well, as revealed in Chapters 6 and 7. 

In addition, the additional control input produced from the adaptive law proposed in 

Chapter 7 can be another residual candidate because it is the estimate of the fault. 

The third potential residual candidate is the sliding surface of the SOSMO which 

can generate an alarm signal when the sliding is destroyed by a fault as presented in 
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Chapters 3 and 4. 

Time delays in system states exist in many industrial systems. The FDI issue for 

these systems, however, has not been discussed extensively. The time-delay nonlinear 

system considered in this thesis is concerned only with the fixed and known time 

delays. Nevertheless, variable and unknown time delays also exist. The FDI for these 

systems needs a great deal of work because the FDI approach and fault detection 

observers must be reconsidered. 

This thesis is mainly concerned with the FDI issue for actuator and component 

faults. Sensor faults have not been considered. The ILO, proposed in some chapters, 

may be applied to  sensor fault diagnosis. This needs more exploration for future. 

The ILO, as shown in this thesis, is a powerful tool for estimating disturbances 

or faults. As a matter of fact, the ILO requires more than a single sampling time 

interval for estimation. Disturbances that vary at every sampling interval can not be 

accurately estimated by the ILO. In addition, the problem of how many sampling time 

intervals are enough for the ILO to estimate a disturbance requires more research. 

The majority of the research on nonlinear DAS has focused on control issues [7, 101, 

such as the problem of feedback controller synthesis [74, 871, Lyapunov stability of 

equilibria in DAS [56], and the output feedback control problem for nonlinear multi- 

variable high-index DAS [77]. Few papers have been published on FDI in uncertain 

nonlineax DAS. The reference [I211 is concerned with designing and analyzing a nu- 

merically feasible learning scheme for robust and stable fault diagnosis of DAS. The 

existence of unmeasurable differential and algebraic variables usually makes this ap- 

proach useless in practice. Thus, the fault diagnosis problem in DAS needs further 

consideration. The decoupling problem of algebraic variables from the differential 
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variables will be the first challenge. Chapter 8 discussed the class of DAS with dis- 

turbance term appearing only in the differential equation. If the disturbance exists 

in both the differential and algebraic equations, the decoupling problem will be more 

difficult. This raises an attractive research direction. Besides the SMO discussed in 

Chapter 8, the ILO may be further explored in DAS for fault detection and estima- 

tion. Actuator and sensor faults will be mainly considered in DAS for fault diagnosis 

purpose. However, the component faults resulting from the algebraic variables will 

also be an issue that needs much more research effort. In summary, the fault diagnosis 

in DAS will be a promising research direction. 
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