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Abstract 

Autoregressive and Moving Average time series models and their combination are 

reviewed. Autoregressive Conditional Heteroscedastic (ARCH) and Generalized 

Autoregressive Conditional Heteroscedastic (GARCH) models are extensions of these 

models. These are defined and compared to the class of Autoregressive Moving 

Average models. Maximum likelihood estimation of parameters is examined. 

Conditions for existence and stationarity of GARCH models are discussed and the 

moments of the observations and the conditional variance are derived. Character- 

istics of low order GARCH models are explored further through simulations with 

different initial parameter values. As examples, GARCH models with different orders 

are fitted to the Standard & Poor's 500 Stock Price Index. 
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Chapter 1 

Introduction 

Autoregressive (AR), Moving Average (MA) and the mixed autoregressive moving 

average (ARMA) models are often very useful in modelling general time series. How- 

ever, they all have the assumption of homoscedasticity (or equal variance) for the 

errors; this is not appropriate when dealing with the financial market variables such 

as the stock price indices or currency exchange rates. These financial market vari- 

ables typically have three characteristics which general time series models have failed 
- 

to consider. 

1. The unconditional distribution of financial time series such as the stock price 

returns Xt has heavier tails than the normal distribution. 

2. Values of Xt do not have much correlation, but values of X; are highly corre- 

lated. 

3. The changes in Xt tend to cluster. Large (small) changes in Xt tend to be 

followed by large (small) changes, as documented by Mandelbrot (1963). 

One of the earliest time series models allowing for heteroscedasticity is the Autore- 

gressive Conditional Heteroscedastic (ARCH) model introduced by Engle (1982). The 
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ARCH models have the ability to capture all the above characteristics in financial mar- 

ket variables. Bollerslev (1986) extended this idea into Generalized Autoregressive 

Conditional Heteroscedastic (GARCH) models which give more parsimonious results 

than ARCH models, similar to the situation where ARMA models are preferred over 

AR models. 

In Chapter 2, we will describe the definitions and maximum likelihood estimation 

methods of general time series models like the AR, MA and ARMA models. Then the 

definitions of ARCH and GARCH models will be introduced; the maximum likelihood 

estimation for ARCH parameters will be discussed. The comparison between high 

order ARCH models with the GARCH(1,l) models will also be addressed. In Chapter 

3, we will describe the properties for GARCH(1,l) models; existence and stationarity 

conditions are discussed and moments of the data will be derived. Typical simulation 

results will be used to discuss the properties of the estimates of the parameters. In 

Chapter 4, we fit the Standard & Poor's (S&P) 500 Stock Price Index for the period 

from January 2, 1990 to December 29, 2000 by ARCH(1) and GARCH(1,l) models 

and some diagnostics will be applied. Alternative methods of diagnostic checking on 

the residuals of the fitted model will also be discussed. 



Chapter 2 

Time Series Concepts and Models 

Let S be a subset of the real numbers. For every t E S ,  let Xt(w) be a random 

variable defined on a probability space { R  : w  E 0);  then the stochastic process 

{X t (w)  : t E S) is called a time series. For any given w, Xt is the realization at time 

t. This will always be a time series with S - Z C (0, f 1, . . . ); Xt is then called a 

time series in discrete time. Thus observations are X I , .  - . , XT and we will assume 

each X t ,  t = 1, . - - , T, is real-valued. Often our models will require the existence of 
- 

unobserved Xt values for t < 0 or t > T. 

In Section 2.1, we describe the stationarity conditions used in general time series con- 

texts. We then define some general time series models and the maximum likelihood 

method for estimating the parameters. In Section 2.3, the general ARCH(q) and 

GARCH(p, q) models are defined. 

2.1 Stationarity 

Suppose X = ( X I ,  . . . , XT)' has a multivariate normal distribution with mean vector 

p = ( p l ,  - , pT)' and a T x T variance-covariance matrix C, where ' denotes the 
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transpose of a vector or matrix. There are T data points but T+T(T+1)/2 parameters 

to estimate which is not feasible. Therefore, some assumptions on the process {Xt) 

must be made which permits us to obtain reasonable estimates on the parameters; 

stationarity is the most commonly used such assumption in time series contexts. 

Definition 2.1 (Joint Distribution). The joint distribution function of XI, . - 0  , XT 

is  given by 

Definition 2.2 (Strict Stationarity). A process is said to be strictly stationary 

if the joint distribution of X1,X2,. . . , X k  i s  the same as the joint distribution of 

Xt+1, Xt+2, . - - , Xt+k, evaluated at the same set of points XI,  2 2 ,  - - - , xk, i .  e. 

for all t and for all k .  

Definition 2.3 (Wide Sense Stationarity). A process i s  said to  be second order 

(or wide sense) stationary if 

E(Xt) = p and V(Xt) = a2 

for all t and, for all k ,  

is  a function of the time lag k only and does not  depend on  t ime t .  
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2.2 Standard Time Series Models 

Historically, three basic time series models have been used to describe data. They 

are the Autoregressive, the Moving Average and the Autoregressive Moving Average 

models. 

2.2.1 General Autoregressive Models 

In the autoregressive (AR) time series model, an observation .Xt is directly related to 

p previous observations by 

This is the Autoregressive series of order p, AR(p). In this model, et is called the 

error. When the errors are independent, have normal distributions with mean zero 

and constant variance a:, they are called white noise. In our models, et is assumed 

to be white noise. 

The model (2.1) can then be expressed as: 

where +p(B) = 1-41 B-$2B2- - . . -  6, BP and B is the backshift operator on time 

t ;  for example, BXt = Xt-1, B2Xt = Xt-2 and so on. 

For the AR(p) process from (2.1) to be stationary, the roots of 4,(B) = 0 must lie 

outside the unit circle. For illustration, an AR(1) process defined as 

will be used but the results following can be generalized into AR processes with higher 

order. Rearranging (2.2) gives 



CHAPTER 2. TIME SERIES CONCEPTS AND MODELS 6 

Hence, 1 - B = 0 gives B = I/&. Suppose that I+1 I < 1, then the root of 

& (B) = 0 is greater than one, or lies outside the unit circle, and thus the AR(1) 

process from (2.2) is stationary. 

Note that, from (2.2), Xt is defined recursively from its previous observations; it can 

be expressed as: 

Since 141 I < 1, allow k to go to infinity; then 

It can be shown that if we define the process { X t )  via this formula then Xt satisfies 

the recursive identity (2.2) provided I < 1; and { X t )  is stationary. 

The variance of Xt can then be found as: 

This is finite and positive if 1 < 1 
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We then examine how the parameters 91 and a: for the AR(1) model can be estimated. 

The joint density of the observations XI,  . . , XT can be written as the product of 

their conditional densities: 

For any k = 2 , .  . . , T, the conditional density of Xk, given XI, . . - , Xk-l, is 

1 
fxk1xl,.- ,xk-l (xklxl, . . . , "k-1) = - {- '"k - 91 "k-li2 

f i g 6  20: 

and the marginal density for X1 is 

The marginal density of X1 is usually dropped from the overall likelihood function 

for simplicity because its contribution on the likelihood function is negligible when 

the number of observations is large. The conditional likelihood, conditional on XI, is 

and the log likelihood function, neglecting the constant term, is 

We can then use the maximum likelihood to find the estimates and 6: by solving 
dl a1 

the derivatives of the log likelihood function - = 0 and - = 0 respectively. 
a91 a72 
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2.2.2 General Moving Average Models 

Another common model is the Moving Average series of order q, MA(q), defined by: 

where the et's are white noise. Using the backshift operator B on time t ,  the model 

from (2.3) can also be expressed as: 

where O,(B) = 1 - 81 B - . - .  - 8, B4. If the roots of 6,(B) = 0 lie outside the unit 

circle, then the MA(q) process is said to be invertible, meaning that Xt can be written 

as an infinite order AR process in terms of Oj for j = 1, . . . ; q. 

For the case of MA(l), 

the condition < 1 is sufficient for the invertibility of the process. This can be 

shown by rearranging (2.4) to give 

Since 10, 1 < 1, we will let k go to infinity; rt becomes 

this can be written as 
w 

xt = - CB: Xt-j + et. 
j=l 

This is an AR(co) model Xt = xgl 4; Xt-j + rt where q!$ = -8: for j = 1 , .  . . , m. 
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By comparing with the AR(1) process, it follows that invertible moving average pro- 

cesses are always stationary. The definition of X from (2.3) is explicit so X is guar- 

anteed to exist. 

In order to estimate el and a: in the MA(1) model, we first find the joint density of 

the observations XI, - - - , XT; this is a multivariate normal distribution. Therefore, 

the likelihood function can be written as: 

T 
- exp {-g) x 1.1 
- j=o b~ 2 4  

where (JI is the absolute value of the determinant of the appropriate Jacobian matrix 

connecting the Xt and the c t ,  and 6; = xj + el for j = 1, - - - , T, are obtained 

recursively. 

This likelihood function from (2.5), however, cannot be evaluated since €0 is unknown. 

There are basically three ways to solve this problem. One way is to use its expected 

value E(Q)  = 0 and treat the result as if it were the true likelihood function. Another 

way is to treat €0 as a parameter and estimate it together with el and a: using 

maximum likelihood. The third way is the combination of the two methods: 

1. Substitute €0 by its expected value E(eO) = 0 into the likelihood function (2.5). 

2. Obtain estimates 4 and 6: using maximum likelihood. 

3. Compute the expected value of €0 given all the observations and the estimated 

parameters at that iteration, i.e. Eo = ~ ( r o l & ,  6:,2, X I , .  . . , XT). 

4. Insert go back to the likelihood function (2.5). 

5. Repeat Steps (2) to (4) until all three estimates, 81 , 6: and Po converge. 
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2.2.3 General Autoregressive Moving Average Models 

The process {Xt) is an Autoregressive Moving Average process, ARMA(p, q) ,  if it 

satisfies the formula 

where et7s are white noise. Formula (2.6) can be written as q5,(B) Xt = 8,(B) et using 

backshift operator B, +,(B) and B,(B) defined above. 

Because 1 + x;=, 8; < 00, the moving average terms on the right hand side of (2.6) 

will not affect the condition for stationarity of an autoregressive process, Wei (1994). 

Thus, equation (2.6) will define a stationary process provided that q5,(B) = 0 has 

all the roots lying outside the unit circle. Similarly, the roots of 8,(B) = 0 must lie 

outside the unit circle if the process is to be invertible. 

Sometimes, models like autoregressive or moving average alone do not give parsimo- 

nious results when fitting the data. Therefore, the ARMA models with small p and q 

are preferred over AR models with high order, for example. An ARMA(1,l) model 

defined as 

xt - 4,xt-, = Et - 6,Et-l 

is used here for illustration and it can be expressed as: 
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Suppose /ell < 1 and let k go to infinity; then 

and therefore 
00 

This is an AR(co) model Xt = xgl 4; Xt-j + et with 4; = (Q1 - 81) e-' for 

j = 1, - - . , oo. This suggests that an ARMA(1,l) model may sometimes be a good 

approximation to higher order AR models. 

The parameters O1 and a: from an ARMA(1,l) model can also be estimated by 

maximum likelihood. As in the AR(1) case, the joint density can be written as the 

product of their conditional densities: 

The conditional density of Xk, for an arbitrary k = 2, . . . , T, conditional on 

XI,  - - .  , Xk-l and el, is 

The marginal density of X1 is dropped for simplicity as in the AR(1) case. Therefore, 

the likelihood function, conditioning on X1 and €1, is: 
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where = xj-1 - xj-2 + Q1 E;-~ for j = 3, - - - , T, are obtained recursively. As 

for MA(l), we substitute the expected value E(e1) = 0 for €1 since it is unknown, and 

estimate the parameters iteratively until the estimates converge. 

2.3 Financial Time Series Models 

All three models described above are often very useful in modeling time series in 

general. However, they have the assumption of constant error variance, a:. This 

is considered to be unrealistic in many areas of economics and finance. Therefore, 

Autoregressive Conditional Heteroscedastic (ARCH) models and Generalized ARCH 

(GARCH) models which allow variance to vary over time have been proposed, in par- 

ticular to model financial market variables. 

2.3.1 Autoregressive Conditional Heteroscedastic (ARCH) 

- Models 

Suppose X1, X2, .  . - , XT are the time series observations and let Ft be the set of Xt 

up to time t,  including Xt for t 2 0. As defined by Engle (1982), the process {Xt) is 

an Autoregressive Conditional Heteroscedastic process of order q, ARCH(q), if: 

Xt1.6-1 - N(0,  ht), with 
2 ht = a0 + Xt-I + - . + a, x:, 

where q > 0, a0 > 0 and cui 2 0 for i = 1, .  0 .  , q. The conditions a0 > 0 and ai > 0 

are needed to guarantee that the conditional variance ht > 0. 
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It is obvious from (2.7) that the conditional expectation and variance of Xt are: 

In the financial literature, the conditional variance ht is called the volatility. 

The simplest model is the ARCH(1) model: 

X t  N(O,ht), with 

ht = QO + (Yi  X:-l 

and the parameters a 0  and a1 can be estimated by maximum likelihood. The joint 

density of the observations XI, - . - , XT is 

For k = 2, . . . , T, the conditional density is 

The marginal density of X1 is again dropped for simplicity, as for the AR(1) model 

and the resulting likelihood function becomes 

The log likelihood function, neglecting the constant term, is 

T X: 

i(a0, a l )  = -I c {log (ao + a1 4-1)  + 
3=2 

a 0  + a1 x;-~ 1, 
We can find the estimates 60 and by solving the derivatives of the log likelihood 

dl dl 
function - = 0 and - = 0 respectively. 

dao doll 
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2.3.2 Generalized Autoregressive Conditional Heteroscedas- 

tic (GARCH) Models 

The process {Xt) is a Generalized Autoregressive Conditional Heteroscedastic model 

of order p and q, GARCH(p, q) (Bollerslev, 1986) if: 

Xtl.6-1 N(O,ht), with 

4 P 

= a 0  + C ai x:-~ + C Pj ht-j 

where q > 0 , p  2 0, a 0  > 0 a n d a i  2 Ofor i  = l , . . - , q ,  pj 2 0 for j = l , . . . , p .  

Again, the conditions a 0  > 0, ai > 0 and Pj > 0 are needed to guarantee that the 

conditional variance ht > 0. 

As for ARMA(p, q) models, the likelihood function for the GARCH(p, q) models is 

difficult to write out. Therefore, we will postpone the discussion of the maximum like- 

lihood estimation until Section 3.4.1 for the special case of the GARCH(1,l) model. 

2.3.3 The ARCH(q) and the GARCH(1,l) Models 

The simplest and often most useful GARCH process is the GARCH(1,l) process given 

by: 

XtlFt-1 N(0, ht), with 

ht = a 0  + a1 x,2-1 + Pl ht-1 (2.10) 

where a0 > 0, al > 0 and pl 2 0. 

It is often found that when fitting ARCH models to financial data a high order is 

required to get a satisfactory fit (Bollerslev, 1986). We can see that this is expected 
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for data which is really from a GARCH(1,l) process by substituting ht-l into the 

formula (2.10) recursively. This gives 

We will see in Section 3.1 that in order to have a finite variance of Xt7 the condition 

al + Dl < 1 is needed. This means P1 is strictly less than one. Thus, if k -+ m, ht 

with which corresponds to an ARCH(m) model ht = a; + xgl a; Xt-j 
a; = a o / ( l  - a) and a; = al ,$-' for j = 1, .  - .  , m. 

This result suggests that a GARCH(1,l) model might replace a high order ARCH(q), 

giving a more parsimonious model. This is similar to  the case in Section 2.2.3 when 

the ARMA(1,l) model is written as an AR(co) representation. 



Chapter 3 

The GARCH(1,l) Model 

In this chapter, we will consider the GARCH(1,l) models. We first consider the 

existence of the GARCH(1,l) process in Section 3.1. Moments of the observations 

and the conditional variance will be examined in Section 3.2 and the condition of 

stationarity for the GARCH(1,l) models is studied in Section 3.3. In the subsequent 

sections, we look a t  the characteristics of the maximum likelihood estimates of the 

parameters from GARCH(1,l) models. 

3.1 Existence of the GARCH(1,l) Process 

The GARCH(1,l) model, first mentioned in Section 2.3.3, is as follows: 

X 1  - N(0, ht), with 

ht = cro + 01 x:, + PI ht-I 

As with the definition of AR(p) processes in Section 2.2.1, GARCH(p, q) processes are 

defined recursively and conditions are needed to guarantee the existence of stationary 
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solutions. Here we derive such conditions for the GARCH(1,l) process. Dividing by 

the square root of the conditional variance of Xt from (3.1), we obtain: 

and therefore the sequence Zl, - . - , ZT defined by Zt = Xt/& should be independent 

and identically distributed (iid) N(0 , l ) .  We can then construct a stationary solution 

of (3.2) starting from a sequence of iid N(0, l )  random variables {Zt) .  

Assuming that the process begins infinitely far in the past, ht can be expressed as: 

~ h & r e m  3.1. If the expectation of an infinite sum of non-negative random variables 

is finite, then the sum converges almost surely. 

(See Lukacs, 1975, Theorem 4.2.1, p. 80.) We can use this theorem to find a condition 

under which the expression in (3.3) exists. Taking the unconditional expect at ion of 

both sides, we get 
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Thus, the unconditional expected value of ht is finite and the infinite series for ht in 

(3.3) converges to ao/(l - a1 - pl) provided that cul +PI < 1. 

In summary, if a1 + < 1 and a1 2 0, P1 2 0, we can define ht by (3.3) and 

Xt = Zt a. The resulting process {Xt) is a stationary solution of (3.2). 

3.2 Moments of Xt and ht 

After showing the existence of the GARCH(1,l) process, we now examine the higher 

moments of ht and then Xt. We have already seen 

Squaring the equation (3.2), we get 

Since the process is stationary, ~ ( h : )  = E(h;-!_,). So 
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Therefore, the unconditional second moment of ht is finite if 3 4  + 2al PI + P; < 1. 

If this condition is false, then there is no positive value for E(hz) = E(hE,) which 

satisfies the equation (3.4). 

We now look at  the moments of Xt. The first and the third moments of Xt are both 

zero: 

The second and the fourth moments can be found by: 

and 

Recall that the kurtosis, K(.), of a random variable Y with mean zero is defined as: 

so that 

E ( y 4 )  = K(Y) [E(y2)I2. 

The second term on the right hand side of (3.5) is the square of the unconditional 

variance of Xt, E(X:), thus the kurtosis of Xt is: 
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which is strictly greater than 3 unless a1 = 0. 

The kurtosis for a standard normal random variable Z is 3. Thus, the kurtosis of 

Xt is greater than the kurtosis of a normal random variable, and the distribution of 

Xt has a heavier tail than the normal distribution, when al > 0. Some plots will be 

shown in Chapter 4. 

3.3 Stationarity of the GARCH(1,l) Process 

It is interesting to examine in detail the conditions under which the second and fourth 

moments of the Xt are stationary, namely, 

by looking at these regions on a graph. Let x be cul and y be PI to simplify the 

notation. Then, x + y = 1 is a straight line whereas 

is an ellipse. However, it cannot be written as the general ellipse formula 

x2/a2 + y2/b2 = 1 on x- and y-axes. But it can be rotated geometrically and be 

expressed in the general ellipse formula on the rotated axes. 

Let 

be the rotation matrix which rotates the x- and y-axes counterclockwise into u- and 

v-axes by an angle 0. Then, using R-l(8), we have 
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This gives 

x = ucos8 - vsin8 

and 

y = usin8 + vcos8. 

Thus, we get 

x + y = u(sin 8 + cos 8) + v(cos 8 - sin 8). 

The left hand side of (3.6) is 

(x + Y)2 = u2(1 + sin 28) + v2(1 - sin 28) + 2uv cos 28 

whereas the right hand side of (3.6) is 

1 - 2x2 = 1 - 2u2 cos2 8 - 2u2 cos2 8 + 2uv sin 28. 

Substituting in equation (3.6), we obtain 

u2 (1 + sin2 8 + 2 cos2 8) + v2 (1 - sin2 8 + 2 sin2 8) = 1 + 2uv (sin 28 - cos 28). 

If sin 28 = cos 28, then we can eliminate the uv term and get a general ellipse formula 

on the u- and v-axes. Therefore, tan28 = 1 and 8 = 7r/8 or 22.5'. This gives 

sin 28 = cos 28 = d / 2 .  Recall that 

sin2 8 = (1 - cos 28)/2 and cos2 8 = (1 + cos 28)/2. 

We can then write (3.6) in the general ellipse formula in terms of u and v only: 

which gives the minor axis a = (1 - .\/2/2)'12 = 0.54 and major axis b = (1 + 
J2/2)1/2 = 1.31. The corresponding graph is shown in Figure 3.1. 
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Figure 3.1: Regions giving finite second and fourth moments of Xt.  The process 
is defined only for ( x ,  y) in the first quadrant. The fourth moment of Xt is finite 
only inside the shaded region of the ellipse. A stationary solution of equation (3.2) 
exists only within the triangle bounded by the x-axis, the y-axis and the dashed line 
x + y = 1. Note that x and y are used instead of a1 and ,Bl respectively in this plot. 
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3.4 Data Simulation 

From Section 3.1, Xt is defined to be a function of ht and iid standard normal random 

variables Zt; and the ht defined in (3.2) can be expressed in terms of previous ht and 

Zt. Therefore, both Xt and ht can be simulated recursively from the sequence of Zt. 

In the model, Xt are allowed to go infinitely into the past, but in reality start at 

t = 1. Therefore, we will use the expected values E(X;) = E(ht) = cro/(l - cul - PI) 

to substitute for past X; and ht when needed. The expected values of the volatility 

in a stationary process, a2, is also called the long-term volatility of the process. 

To simulate data from a GARCH(1,l) process, we follow the steps: 

1. Generate a sequence of iid N(0,l) random variables, {Zt) for t = 1, . - - , T*. 

2. Set hl = cuo/(l - a1 - Dl) and X1 = Z1 6. 

3. For t = 2, - . . , T* do the following recursively: 

The sequence Xt is not exactly stationary but approaches stationarity as T* becomes 

larger; therefore we take the last T values and regard them as stationary. 

3.4.1 The Likelihood Function and Estimation of 

Parameters 

For the GARCH(1,l) model defined from (3.2), the joint density of the observations 

XI, . . , XT can be written as the product of the conditional densities, conditioning 
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on the previous observations: 

for simplicity, the marginal density of X1 will be dropped, as for the ARMA(1,l) 

model. For k = 2, . - , T, the conditional density of Xk, conditioning on XI,  . . , Xk-1, 

and the conditional likelihood function, given X1 and hl, is: 

where hj* = a 0  + a1 X g ,  + ,& h;-l are obtained recursively. We substitute hl by its 

expected value E(hl)  = ao/ ( l  - a1 - Dl). 

Taking the logarithm and neglecting the constant term, we find that the log likelihood 

where X = (XI, . - , XT)' and h = (hl,.  . . , hT)'. 

The function nlminb from S-Plus is described as a local minimizer for smooth nonlin- 

ear functions subject to bound-constrained parameters. Since we want to maximize 

the log likelihood function, we will use the function nlminb to minimize its negative 

value. This function can have restrictions on the parameter values using the options 

lower and upper. However, we will not use these options in this section as we just 

want to see the general behaviour of the GARCH(1,l) model and the function nlminb. 

In Section 3.6.2, we will make use of these options and compare the parameters esti- 

mated with and without using this constraint. 
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3.5 A typical GARCH(1,l) Example 

We now show how to generate data from the stationary GARCH(1,l) model with 

initial values of parameters a0 = 1,al = 0.2 and ,Dl = 0.2 and how to obtain the 

estimates using maximum likelihood. 

3.5.1 Results from the Monte Carlo Simulations 

Four typical plots of T = 500 observations Xt and the corresponding ht from 100 

Monte Carlo samples are shown in Figure 3.2. Note that large variation of Xt asso- 

ciates with large variation of ht. This is expected as Xt are defined recursively from ht. 

A sample of the maximum likelihood estimates for the first 100 simulated samples and 

the estimated averages and standard errors are shown in Table 3.1, together with the 

values of Bolo2, Bo + ,dl, bolo2 + a and bolo2 + Bl + ,& where c2 = aO/ ( l  - a1 - ,Dl) 

is computed from their true values. 

Table 3.1: Estimates of the parameters for GARCH(1,l) model with values of param- 
eters a 0  = 1, a1 = 0.2 and P1 = 0.2 from the m = 100 samples of Monte Carlo studies 
(incomplete table). Each sample has 500 observations. The estimated averages and 
estimated standard errors are shown in the last two rows. 
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T h e  1 

Time 1 
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Time 1 

Figure 3.2: Four time series plots of typical observations Xt and the corresponding ht 
from the stationary GARCH(1,l) model with the values of parameters cro = 1, a1 = 
0.2 and PI = 0.2. 
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Note that there are two negative estimates of ,& from samples 2 and 98. As mentioned 

above, this is possible because no restriction has been imposed on the range of the esti- 

mates during the "maximization". We will see how often this happens in Section 3.6.2. 

The averages of the three estimates for GARCH(1,l) with initial values of parameters 

a 0  = 1, a1 = 0.2 and PI = 0.2 from the 100 Monte Carlo samples are shown in Table 

3.2 together with their estimated standard errors and mean square errors (MSE). For 

large T, maximum likelihood estimates are normally distributed to high approxima- 

tion. Using this, we see that all three estimates are not statistically different from 

their true values at the 5% significance level. 

Table 3.2: Averages, standard errors and mean squared errors (MSE) of the estimates 
for GARCH(1,l) model with values of parameters a 0  = 1, a1 = 0.2 and P1 = 0.2. 

3.5.2 Ident ifiability of parameters 

Estimates 
bo 
61 
al 

The estimated variance-covariance matrix and the correlation matrix of the three 

parameter estimates and four sums are shown in Table 3.3. Note that the variance 

of bo + ,& is significantly smaller than the individual variances of ho and ,&: 0.028 

as opposed to 0.149 and 0.058. Recall that for any two arbitrary random variables U 

and V, the variance of their sum is: 

True 
Values 
1.000 
0.200 
0.200 

Var (U + V) = Var (U) + Var (V) + 2Cov(U, V). 

Estimated 
MSE 
0.151 
0.004 
0.059 

Estimated 
Expected Values 

1.041 
0.195 
0.179 

This suggests a negative association between the two estimates h0 and Dl which can 

be seen from the value of the Pearson correlation coefficient, -0.96, in the correlation 

matrix, Table 3.3. This fact is further illustrated by the scatter plot between Go and 

Estimated 
Standard Errors 

0.039 
0.006 
0.024 
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Variance-Covariance Matrix 

Table 3.3: Variance-covariance matrix and the correlation matrix for estimates from 
100 Monte Carlo samples of size 500 from the GARCH(1,l) model with parameters 
cro = 1, crl = 0.2 and P1 = 0.2. Note that a2 = a o / ( l  - a1 - Dl). 

Correlation Matrix 

&O 

&I 

81 
ho/a2 

60 + A 
&/a2 + bl 

h o / 0 2 + h l + a  

1.00 0.18 -0.96 
0.18 1.00 -0.34 

-0.96 -0.34 1.00 
1.00 0.18 -0.96 
0.91 -0.07 -0.76 

-0.00 -0.58 0.28 
0.19 0.40 -0.04 

1.00 0.91 -0.00 0.19 
0.18 -0.07 -0.58 0.40 

-0.96 -0.76 0.28 -0.04 
1.00 0.91 -0.00 0.19 
0.91 1.00 0.40 0.39 

-0.00 0.40 1.00 0.52 
0.19 0.39 0.52 1.00 
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Figure 3.3: Scatter plot between ho and A from GARCH(1,l) model with values of 
parameters a 0  = 1, a1 = 0.2 and Dl = 0.2. Note that a0 and bl are used in the plot 
instead of ho and ,& respectively. 
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,& shown in Figure 3.3 where the points are close to a straight line with negative slope. 

Notice also that the variance V(60/o2 +/?I) is much less than the respective variances 

V(60/02) and v(pl) .  This can be explained by the fact that these two parameters 

are approximately non-identifiable. Recall from (3.2) that ht is expressed as 

Multiplying QO by ht-i and dividing it by E(ht-1) gives approximately the same value 

of ao. Thus, ht can be written as: 

The sum cuo/02 +pl is a constant and can be considered as a single parameter. There- 

fore, the parameters a 0  and Dl are approximately non-identifiable. (If a1 = 0, then 

00 and Dl are exactly non-identifiable and ao/02 + ,6 = 1.) 

Another interesting fact from Table 3.1 is that ho/02 + h1 + a is very close to one 

(0.998) and the variance of this sum is very small (0.004) compared with the vari- 

ances of the individual terms. Hull (1999) mentioned that the long-term volatility o2 

could be incorporated directly into the constant term a 0  of the GARCH(1,l) model. 

Suppose a 0  = y a2, then 

taking expectation, we have that 

and therefore y + c r l +  ,dl = 1. Thus 

6 0  which explains why the variance of - + h1 + is so small. 
o2 
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3.6 Results from Further Simulations 

3.6.1 Characteristics and Behaviour of the Estimates 

We have discussed the GARCH(1,l) model with the true values of parameters 

a0 = 1, crl = 0.2 and ,B1 = 0.2. Further Monte Carlo studies have been done with 

various combinations of the parameters a1 and Dl. Table 3.4 gives the averages and 

True Values 

Ql P1 

0.00 0.00 
0.00 0.20 
0.00 0.30 
0.00 0.50 
0.00 0.70 
0.10 0.00 
0.10 0.20 
0.10 0.30 
0.10 0.50 
0.10 0.70 
0.20 0.00 
0.20 0.20 
0.20 0.30 
0.20 0.50 
0.20 0.70 
0.30 0.00 
0.30 0.20 
0.30 0.30 
0.30 0.50 
0.40 0.00 
0.40 0.20 
0.40 0.30 
0.40 0.50 
0.50 0.00 
0.50 0.20 

Estimated 
Averages 

Estimated 
Root Mean Square 

Table 3.4: Estimated averages and root mean squares of m = 50 Monte Carlo samples 
with different values of parameters. The value of cro is one. 
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the root mean squares of the estimates of the parameters with fked a0 = 1, and a1 

and Dl varying. When cul = 0, we expect a0 and P1 to be non-identifiable. This is 

demonstrated in the table (top 5 rows), where in general there is a marked bias in do 

and ,&. The phenomenon occurs again for low al, but diminishes as a1 + 0.50. 

3.6.2 Negative estimates 

It was seen from Table 3.4 that it is possible to obtain negative values for the estimates 

dl and ,&, although this is not allowed from the definition (3.2) of the GARCH(1,l) 

model. Therefore, it seems appropriate to record how often such negative values occur. 

Table 3.5 gives the probability of the negative estimates for various combinations of 

the parameters and for different numbers of the Monte Carlo samples. It is interesting 

to see that there is one Monte Carlo sample out of 200 for which the estimated mean 

of do is less than zero when dl and pl are set to 0.00 and 0.20. It is also noted that 

crl is positive in general, except when its true value is set to zero. In addition, it is 

very likely for to have negative estimates regardless of the true values used. This 

can also be seen from the scatter plot in Figure 3.3 where about 20% of the points 

fallsbelow the line ,& = 0. 

A second set of Monte Carlo samples was analyzed, using restrictions on the estimates 

at each stage of the iterative procedure, as follows: 

In Table 3.6, the two sets of estimates (those with no restrictions and those with 

restrictions) are compared. The table also shows the differences between the averages 

of the estimates. In general, restriction does not affect the estimate do as much as it 

does dl and Dl. 
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Table 3.5: Probabilities of different estimates from GARCH(1,l) models having neg- 
ative values for various combinations of true parameters cq and P1 and different num- 
bers m of Monte Carlo samples. Note that cue = 1. Each sample has 500 observations. 

Table 3.6: Average estimates of parameters from GARCH(1,l) models with and 
without restrictions imposed during the estimation and their differences for various 
combinations of true parameters crl and Dl. Each Monte Carlo sample has 500 ob- 
servations. D is the difference between the two sets of estimates. The restricted 
estimates are denoted by "*" . 
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Data Analysis 

We first discuss the dataset Standard & Poor's 500 Stock Price Index in Section 4.1. 

Then we fit the ARCH(1) model to the dataset in Section 4.2. The GARCH(1,l) 

model is used to obtain a better fit to the dataset and subsequently, the diagnostic 

checking on the fit is discussed in Section 4.4. 

- 

4.1 Data Description 

The dataset being considered in this chapter is taken from the Standard & Poor's 

(S&P) 500 Stock Price Index from Jan 2, 1990 to Dec 29, 2000 which has T = 2780 

observations. It measures the performance of 500 of the largest companies in the U.S., 

diversified by different industries. 

Let & be the value of the S&P 500 Stock Price Index at time t for t = 0, , T - 1. 

Figure 4.1 shows the time series plot of yt during the above period. 

Let Xt be the continuously compounded returns for the S&P 500 Stock Price Index, 

defined by Xt = 10g(E+~/x)  for t = 0, - - . , T - 2. This is sometimes referred to as 



CHAPTER 4. DATA ANALYSIS 

Time t 

Figure 4.1: Time series plot of the S&P 500 Stock Price Index from Jan 2, 1990 to 
Dec 29, 2000. 

Time t 

Figure 4.2: Time series plot of the continuously compounded returns Xt for S&P 500 
Stock Price Index from Jan 2, 1990 to Dec 29, 2000. 
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the log difference of the stock price index; it has only T - 1 = 2779 observations. The 

time series plot of Xt is given in Figure 4.2. 

Some summary statistics of the Xt are shown in Table 4.1. As expected, the average 

of the returns Xt is slightly positive since the stock price index x, from Figure 4.1, 

definitely has an upward trend. (In the model fitting which follows, we have not sub- 

stracted the mean. However, analysis of the series Xt - x gives very similar results 

to those obtained below.) The skewness coefficient is -0.29 which suggests that Xt is 

slightly left skewed; the density plot of Xt in Figure 4.3 obtained by plotting the x- 

and y-coordinates from the output of S-Plus function density agrees with this skew- 

ness coefficient. The value of the kurtosis is greater than 3, meaning that it has an 

heavier tail than the standard normal distribution; this can also be shown from the 

normal probability plot in Figure 4.4. 

Skewness -0.29108 
Kurtosis 7.72087 

Table 4.1: Summary statistics of the continuously compounded returns Xt for S&P 
500 Stock Price Index. 

Figure 4.5 shows the plot of the autocorrelation function for Xt using the function acf 

in S-Plus. There is only weak dependence between the Xt since most of the autocor- 

relation coefficients at  different time lags are within the approximate 95% limits (the 

dotted lines). 

Miller (1979) mentioned that the residuals of a fitted ARMA model did not appear 

to be autocorrelated but the squared residuals seemed to be significantly correlated. 

Therefore, it seems reasonable to consider the volatility (or variability) of the Xt. 

Since the mean is almost zero, we consider the autocorrelation function plot of Xf; 

and this is shown in Figure 4.6. It shows that there is a substantial dependence 
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Returns X-t 

Figure 4.3: Density plot of the continuously compounded returns Xt for S&P 500 
Stock Price Index. 

Ouantiles of Standard Normal 

Figure 4.4: Normal probability plot of the continuously compounded returns Xt for 
S&P 500 Stock Price Index. 
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Figure 4.5: Autocorrelation function plot for the continuously compounded returns 
Xt of the S&P 500 Stock Price Index. 

Figure 4.6: Autocorrelation function plot for the squared continuously compounded 
returns X: of the S&P 500 Stock Price Index. 
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between X: because all of the autocorrelation coefficients of X: are above the a p  

proximate 95% limit. Therefore, it seems appropriate to see how a GARCH(1,l) 

model fits Xt. 

4.2 Fitting ARCH(1) Models and Diagnostics 

Before we fit the GARCH(1,l) model, it is interesting to fit a simpler ARCH(1) model 

defined in (2.8). The discussion on the procedures used will be brief in this section, 

but it will be detailed in Sections 4.3 and 4.4. 

The iterative method for estimation is similar to Section 3.4.1. The function nlminb 

from S-Plus is used to perform the maximum likelihood estimation. However, we 

will have to guess the initial values of the parameters to start the estimation; thus 

cro = 1.00 and cq = 0.20 are used1. The estimates obtained are Go = 7.2 x and 

= 2.1 x 10-l. 

After we have fit the ARCH(1) model, it is appropriate to examine how well the model 

fits the data. Recall that Xt = Zt f i  where Zt are iid standard normal random vari- 

ables. Thus, if the ARCH(1) model is appropriate, then X t / A  should exhibit the 

behaviour of white noise, though the mean might not be zero. 

Using the estimates Go and GI,  we can compute the estimated conditional variance ht 
for ARCH(1) models defined as: 

it = G o + G 1 ~ ~ _ ,  for t = 1;-. , T - 2 .  

The estimated conditional variance kt is then used to compute the residuals 

it = x t / 6  for diagnostic purposes. 

'Different combinations of initial values of parameters are also used but they all give estimates 
which converge to the same estimates given above. 
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Figure 4.7 gives the normal probability plot for the residuals after fitting the 

ARCH(1) model. It shows substantial signs of heavier tails than the standard normal 

distribution. We examine further by looking at the autocorrelation function plot of 

the square of the residuals 2: = x: /R~ in Figure 4.8. It shows that there is still some 

autocorrelation among the squared residuals as more than half of the autocorrelation 

coefficients at different lags are outside the approximate 95% limits. 

Quantiles of Standard Normal 

Figure 4.7: Normal probability plot for the residuals it = xt/& of the S&P 500 
Stock Price Index using ARCH(1). 
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Figure 4.8: Autocorrelation function plot for the squared residuals 2: = x;/ht of the 
S&P 500 Stock Price Index using ARCH(1) model. 

2 

4.2.1 Ljung-Box Q-Statistic 

............................................................................................................................................................................................. 
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In addition to the visual inspection of the plotted autocorrelation function, the Ljung- 

Box Q-statistic is used for diagnostic checking. The Ljung-Box Q-statistic (Ljung and 

Box, 1978) is defined by: 

where n is the number of observations, K is the largest lag used and rj is the sam- 

ple autocorrelation function at lag j of an appropriate time series Xt, for example. 

Statistic r j  for Xt is then defined as 

where x = 1 Xt . n 
t=l 
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The number of observations n is T - 2 = 2778 and largest lag K is 34 in this case. 

When fitting ARMA(p, q) models to data and testing the residuals to see if they are 

approximately white noise, under the null hypothesis that the series is ARMA(p, q) , 
Q has approximately the X2 distribution with (K - p - q) degrees of freedom. 

The Q-statistic is a modification of the Box-Pierce test statistic (Box and Pierce, 

1970) ; this was suggested for testing AR, MA and ARMA models. Both test statistics 

are based on the calculation of the sample autocorrelation function for the residuals 

Elt from those models. McLeod and Li (1983) argued that a similar test statistic based 

on different calculations using the autocorrelation function will be more useful for 

small sample applicability; it is defined as 

and rj* is 
n n 

t=j+l t=l 

1 
n 

where Z = - x 2,. Li and Mak (1994) suggested the applicability of Q* to the hetero- 
n t=l 

scedastic time series models. For example, the test statistic for an ARCH(q) models is 

where ?j is a function of the squared residuals 2; = x Z / ~  and is defined as: 

and 

Since E(x:/~~) = 1 and the sample autocorrelation function can also be defined as 
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Ling and Li (1997) further extended the idea to the multivariate heteroscedastic time 

series context. Alternative diagnostic test for ARCH(q) models was proposed by Hong 

and Shehadeh (1999); it is based on the weighted sum of the squared sample autocor- 

relations of the squared residuals, with more weight being put in the terms of smaller 

lags. Horvhth and Kokoszka (2001) developed the asymptotic theory for the linear 

statistic of sample autocorrelations of the squared residuals from an ARCH(q) model. 

In our ARCH(q) context, we do not have enough knowledge about the large sample 

theory of the Ljung-Box Q-statistic and hence do not know much about its behaviour. 

Nonetheless, we proceed by analogy, and suppose the Ljung-Box Q-statistic has the 

X 2  distribution with (K - q) degrees of freedom. The critical value for X:3-l) = X& 
with a 95th percentile of 47.4. 

Alternatively, Monte Carlo simulations could be used to find the exact pvalue of the 

Ljung-Box Q-statistic for the ARCH(1) model. This can be done by generating, say, 

1000 Monte Carlo samples from the ARCH(1) models using the estimated parameters 

LiO and 61 and then computing the Q-statistic for each sample. The sample pvalue, 

or the probability of the number of samples which are as extreme or more extreme 

than our Q-statistic can be found, and we can see how well the ARCH(1) actually fits 

the data. 

The Ljung-Box Q-statistic for X: is 893 (using the X 2  approximation, the pvalue x 0) 

and this shows strong evidence of autocorrelation for the series X:. Further, the 

Ljung-Box Q-statistic for the squared residuals 2: = x:/ht after fitting the ARCH(1) 

is 375 (pvalue GZ 0). Clearly, this model does not adequately explain the S&P 500 

Stock Price Index based on the normal probability plot and the Q-statistic, so we now 

try the GARCH(1,l) model. 
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4.3 Fitting GARCH(1,l) Models 

As in Section 4.2, we first estimate the parameters, namely cuo, al and pl ,  for the 

GARCH(1,l) model, then compute the series kt and do some diagnostics on the fit. 

The initial values of the estimates used are ho = 0.01, hl = 0.05 and ,& = 0.90, based 

on previous studies by Engle and Patton (2001), Hull (2000) and others. After 29 

iterations, those estimates converge to the results shown in Table 4.2. 

Estimates 

5.00 x 

Table 4.2: Estimated parameters of Xt for GARCH(1,l) model. 

Since ht is defined from the previous Xt and ht , we will start the estimated conditional 

variance series ht at t = 1. Also, we could have substituted hl by its own expected 

value. However, the expected value is not directly observed and we will use the 

observed - X i  instead, as the unconditional expected values of X: and ht are equal. 

Then we compute it for t = 2, . . . , T - 1 recursively using the formula below with 

the estimates for cuo, and Dl: 

Some of the Xt and estimated % are displayed in Table 4.3. 

Figure 4.9 shows the time series plot for this estimated series of conditional variance it. 
Notice that the estimated volatility is high for some periods and low for other periods. 

Recall that a is close to one and ho and hl are small. Since kt = ho + hl xLl +& &-1, 

we see that kt tends to be close to In other words, large values of ht are clustered 

together and so are the small values of ht. 
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Date 
Jan-02-1990 
Jan-03-1990 
Jan-04- 1990 
Jan-05- 1990 
Jan-08- 1990 
Jan-09- 1990 

Dec-26-2000 
Dec-27-2000 
Dec-28-2000 
Dec-29-2000 

Table 4.3: Values of the S&P 500 Stock Price Index x, the continuously compounded 
returns Xt, the estimated conditional variance it and standard deviation \/jE; based 
on the estimates bO, b1 and ,& from Table 4.2 for GARCH(1,l) models. 

I I I I I I I I I I I 

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 

Time t 

Figure 4.9: Time series plot for the estimated condition4 variance ht derived reeur- 
sively from X, and the estimated parameters 80, 81 and f i  from Table 4.2. 
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4.4 Diagnostics for the GARCH(1,l) Models 

After we have fit the model, it is appropriate to examine how well the GARCH(1,l) 

model fits the data. Figure 4.10 gives the normal probability plot for the residuals 

2 = X .  It still shows that the new model has heavier tails than the standard 

normal distribution. As before, we then examine the autocorrelation function plot for 

the squared residuals 2: = x:/& shown in Figure 4.11. It seems there is not much 

dependence amongst 2:. 

Quantiles of Standard Normal 

Figure 4.10: Normal probability plot for the residuals it = x,/& of the S&P 500 
Stock Price Index using GARCH(1,l). 

In addtion, we also use the Ljung-Box Q-statistic to assess the fit. The number of 

observations n is T - 2 = 2778 and largest lag used K is 34 in this case. As for 

the ARCH model, modification of Q-statistic has been suggested, but we shall take 

the original form, and proceed by analogy to the ARMA(p, q) case and suppose the 

Ljung-Box Q-statistic for GARCH(p, q) models has the x2 distribution with (K -p-q) 

degrees of freedom. The critical value for X&-l-ll = X322 with a 95th percentile of 46.2. 
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Figure 4.11: Autocorrelation function plot for the squared residuals 2; = x:/% of 
the S&P 500 Stock Price Index using GARCH(1,l). 

The Ljung-Box Q-statistic for the 2: series after fitting the GARCH(1, I) model 

is 31.5 (pvalue of 0.49), suggesting that there is no significant correlation for the 

squared residuals 2;. The autocorrelation has been substantially removed by the 

GARCH(1,l) model. 

Moreover, Figure 4.12 shows the pvalues obtained by calculating the Ljung-Box 

Q-statistics at different values of K ,  based on the X 2  distribution with (K - p - q) 

degrees of freedom. Note that at K = 3,6,7 and 8, the p-values are smaller than 0.05. 

The fact that K = 3 gives significance suggests that at least one more parameter is 

needed in the GARCH model. The higher pvalues for K 2 9 may be explained by 

the fact that using large values of K such as 34 dilutes the power of the Ljung-Box 

Q-statistic if the true correlation function at lag j is close to zero for higher j. 

In summary, the GARCH(1,l) model with estimated parameters Lio = 4.57 x lo-', 

h l  = 5.00 x and ,& = 9.46 x 10-I fits the log difference Xt of the Standard & 

Poor's 500 Stock Price Index reasonably well. However, the significant value of the 
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5 10 15 20 25 30 35 

Largest lag used K 

Figure 4.12: Diagnostic plot of pvalues against the number of lags used K for the 
residuals X:/ht of the S&P 500 Stock Price Index. 

autocorrelation of the residuals, for K = 3, suggests that models like GARCH(1,2), 

GARCH(2,l) or GARCH(2,2) might be still more successful in fitting the S&P index 

than GARCH(1,l) since the autocorrelation of the residuals would be better modelled. 

4.5 Final Remarks 

In this project, we have shown how some recently developed models for time series, 

particularly applicable to financial time series are used. The special feature of the 

models is that the series volatility is modelled as a function of the previous values of 

the variable. The simpler forms of the ARCH and GARCH models have been fitted 

to some financial data. However, many properties of these models are still to be 

investigated. To assess the fit of the models, various diagnostics have been suggested, 

but their properties, for example, their ability to detect a wrong model, have not yet 

been sufficiently studied. This also will provide a major topic of research. 
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