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Abstract 

The numerical solution of differential equations requires selecting an appropriate choice of 

mesh, spatial and temporal discretization, and algebraic equation solver. No one aspect 

should be considered in isolation. In the first part of this thesis we consider the issue of 

appropriate mesh selection for two-point boundary value problems. Specifically, we study 

how properties of the matrix corresponding to the discrete problem relate to the issue of 

mesh selection. It is found that the quality of a chosen mesh is identifiable with well-known 

features of the matrix such as eigenvalues/eigenvectors, and singular values/singular vectors. 

Moreover, these matrix characteristics may guide us in the construction of more appropriate 

meshes. 

Over the last twenty years there has been much attention paid to numerical methods for 

differential equations which adapt in either space or time to local features of the computed 

solution. In the second part of this thesis, we consider the method of lines approach to 

solving parabolic partial differential equations. Discretizing in space, using either a fixed or 

moving mesh, results in a system of ordinary differential equations. Traditional implementa- 

tions solve these equations using classical integration methods with local error control. This 

approach suffers from an inability to take advantage of the solution evolving at disparate 

time scales over the spatial domain. To address this issue we consider waveform relaxation 

and Schwarz waveform relaxation methods which allow individual or groups of solution 

components to be integrated using different time steps or even entirely different numerical 

methods. We conclude by proposing a Schwarz Waveform Moving Mesh Method. This 

implementation combines the robustness of an adaptive spatial mesh with the multi-rate 

abilities of a relaxation method. 
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Part I 

Boundary Value Problems and 

Matrix Properties 



Computing the solution of differential equations requires an appropriate choice of dis- 

cretization, mesh selection and algebraic equation solver. No aspect should be considered in 

isolation. A choice for any of these will affect possible options for the other two. To compli- 

cate matters further, the hardware and software you choose to compute your solution may 

affect the structure of linear systems which can be solved efficiently and hence determine 

the choice of discretization. 

The purpose of this work is to investigate connections between the linear system of 

equations to be solved and the selection of an appropriate mesh. To provide a test suite of 

problems we study convection-diffusion problems of the form 

on a square domain (x, y) E [O,1] x [O,1] subject to various boundary conditions. For small 

values of E ,  corresponding to large Peclet numbers, the problem is convection dominated. 

Different choices of the problem data can lead to solutions with interesting features such as 

boundary, interior, and/or corner layers. Capturing these features can be a challenge for 

discretizations on uniform grids and as such provide an appropriate problem set. 

We conclude Part I of the thesis by considering a matrix inverse problem. For symmetric, 

tridiagonal M-matrices we are able to find a bound on a positive perturbation of the matrix 

to ensure a positive inverse. 



Chapter 1 

Boundary Value Problems 

1.1 The Continuous Problem 

In this chapter, we consider the solution of convection-diffusion problems of the form 

on a square domain R := {(x, y) 1 (x, y) E [O, 11 x [0, I]), subject to Dirichlet boundary 

conditions. The problem data b(x), c(x), and f (x) are assumed to be continuous or at least 

bounded on R. In 1-d this problem becomes 

on the interval x E [ O , l ] .  We begin by commenting on the existence and uniqueness of 

solutions of (1.1) and then point out features of the solutions which make them difficult to 

compute. 

Existence of solutions for c(x) 2 0 is a classical result which follows from the F'redholm 

alternative applied to the elliptic operator L. In that case, uniqueness follows directly from a 

maximum principle. If c(x) < 0 then Lu = f will have a unique solution if the homogeneous 

problem Lu = 0, u = 0 on aR, has only the trivial solution, [39]. The Sturm transformation 

(in 1-d) 

provides a mechanism to determine conditions on b(x), c(x), E, and the boundary values A 

and B so that that the homogeneous problem has only the trivial solution [93]. In what 

follows, we will assume that c(x) 2 0 and (1.1) has a unique solution. 



CHAPTER 1. BOUNDARY VALUE PROBLEMS 

, 

Problem (1.1) is a perturbation of the first order differential equation 

Since the order of the reduced problem is less than the original differential equation, it is 

clear that the solution of (1.3) will generally not satisfy the boundary conditions on the whole 

of do. For this reason, regular expansions of the solution will not be valid throughout R and 

(1.1) is referred to as a singular perturbation problem. Analytic approximations for solutions 

of such problems may be obtained using the method of matched asymptotic expansions, see 

for example [54] and [26], and the Wentzel-Kramer-Brillouin (WKB) method [89] and [98]. 

Those regions of dR on which uo does not satisfy the boundary conditions imposed 

on u are the locations of boundary layers. These are regions of rapid transition in the 

solution which prove to be a challenge to resolve numerically. Under certain conditions or, 

the coefficient functions, it is possible to determine which boundary conditions uo should 

satisfy and hence the location of layers in the solution. Depending on the functions b(x), c(x) 

and f (x) and the boundary values A and B, the solution of (1.2) may have one or more 

regions of rapid transition. A summary for the 1-d case is given in [8] while [66] provides 

an analysis in 2-d using the characteristics of (1.3). 

1.2 Numerical Solution 

In this section we point out difficulties with standard finite difference approximations to 

(1.1). We also provide a brief survey of various numerical approaches which attempt to 

circumvent these obstacles. Much of the material in this section may be considered classical, 

and as such, we will only provide sufficient details to introduce notation and highlight the 

important results. Details can be found in the general references [83] and 181. Specific 

non-generic schemes and results will be referenced individually. 

1.2.1 Finite Difference Solutions on Uniform Grids 

The inability of a uniform mesh to efficiently resolve regions of rapid transition in solutions 

of differential equations is well-known. After introducing the required notation we will 

demonstrate the problem with a simple 1-d constant coefficient example. 

We replace R = [O, 11 with a finite set of points 

h R := {xj I x j  = jh, for j = 0,.  . . , M }  
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I 

where h = 1/M is the spatial step size. We let uj denote our approximation to u ( x ~ )  for 

j = 0,. . . , M. To approximate the derivatives ~ ' ( x j )  and ul ' (xj)  in (1.2) we introduce the 

forward and backward differences 

The operators D1 = (D' + 0 - ) / 2  and D2 = D+D- then give second order approximations 

to the first and second derivatives, respectively, where 

uj+l - uj-1 Uj+l  - 2ui + uj-1 D1uj = 
2h 

and D2uj = 
h2 

We now replace (1.2) with the discrete system of equations 

-eD2uj + b j D 1 ~ j  + c j ~ j  = f j l  j = I , .  . . , M - 1 

U o  = A  U M  = B ,  

where bj = b(xj),cj  = ~ ( x j ) ,  and f j  = f ( x j ) .  This is equivalent to the system 

ajUj-1 + p j U j  + yjUj+l = f j l  j = I , . .  . , M - 1 

U o = A  U M  = B ,  

where 
E bj 2E E 

h2 2hi D j = ~ + ~ j 1  a j = - - - -  and ~ , = - - + l l ? -  h2 2h' 

Written in matrix form we have the system of equations 

The scheme (1.4) is second order accurate on uniform grids. It is well known, however, 

that such 3-point centered difference schemes are not stable for h >> E .  This makes such 

schemes cost prohibitive for small E ,  which is indeed the situation of practical interest. 
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5 

The difficulty is made quite explicit by solving the difference equations which result by 

discretizing 
N I 

-EU - u = 0, ~ ( 0 )  = 0, ~ ( 1 )  = 1. (Model Problem I) 

Solving (1.4) exactly for this example we find 

rZ - 1 u. - --- 2E- h 
2 - where T = - ~ ~ - 1  & + h a  

The continuous solution is monotonic while ui clearly oscillates unless h < 26. This would 

require an unacceptably large number of nodes for convection dominated equations with 

€ < I .  

The stability problems associated with centered differences for the u1 term have been 

remedied in numerous ways. A well-known choice is to use upwinding. That is, replace 

ul(xj) by D+uj if bj < 0 and D-uj if bj > 0. This gives uniform stability (with respect 

to E )  and an O(h) uniform approximation outside of the layer. Upwinding is equivalent to 

adding artificial diffusion to the differential equation, which stabilizes standard discretiza- 

t ion~.  Unfortunately, upwinding is over-diffusive and has the undesired effect of smearing 

or widening layers in the solution. Upwinding is a particular case of a more general class of 

schemes which use a fitting factor to add artificial diffusion to a problem. These methods 

may be written in the form 

where q(x) = b(x)h/2~. We see that centered differences are again used for the u' term 

and diffusion is added through the term a. Classical upwinding may be recovered from this 

class of methods by choosing a(q) = 1 + q. The amount of added diffusion may be tuned by 

introducing a numerical viscosity parameter [. For example, by choosing a(q) = 1 + [q it is 

possible to tune [ so that numerical solution is exact for constant coefficient problems 1151. 

The choice a(q) = q coth q(x) gives the Il'in-Allen-Southwell scheme, [2] and [51], which is 

second order accurate and O(h) uniformly convergent on the entire interval for the variable 

coefficient problem. 

The inadequacy of central difference schemes on uniform grids for convection dominated 

equations is a well-known issue, and is not restricted to constant coefficient boundary layer 

problems in one dimension. In fact, similar behaviour exists for problems with multiple 

boundary and/or interior layers, and for variable coefficient or non-homogeneous terms as 

the following examples indicate. 
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I 

Examples 

A layer at one end 

(Model Problem 11) 

Figure 1.1: Model Problem 11: computed solution with h = 0.05 and E = 0.01 and a fine 

grid solution. 
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I 

An interior layer 

(Model Problem 111) 

Figure 1.2: Model Problem 111: computed solution with h = 0.05 and E = 5e - 4 and a fine 

grid solution. 
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A layer at both ends 

(Model Problem IV) 

Figure 1.3: Model Problem IV: computed solution with h = 0.05 and E = 5e - 3 and a fine 

grid solution. 
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A 2 4  example 

X 

Figure 1.4: A solution of a two-dimensional boundary layer problem on a fine grid. 

Figure 1.5: Unresolved boundary layer in a 2-d problem. 
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These examples indicate that a moderate number of equally spaced mesh points fail to 

resolve boundary or interior layers for convection dominated equations. This is reflected 

in the mesh scale oscillations in the computed solutions. As we have mentioned there are 

schemes available which circumvent this problem by adding artificial diffusion. Unfortu- 

nately, obtaining high order accuracy independent of E is a challenge, and is very much 

problem dependent. Another approach is to tune the discrete equations, not by adding 

diffusion, but by altering the computational mesh. 

1.2.2 Finite Difference Solutions on Nonuniform Grids 

The general fitting techniques mentioned above work well on relatively simple problems 

which have layers at one end of the interval. For more complicated problems with more 

than one boundary layer and/or interior layers more sophisticated methods are required. 

An alternative approach is to make a selection of nodes which is more appropriate for 

the problem, that is, concentrating nodes in regions of the domain where the solution has 

interesting features. 

To facilitate nonuniform grid spacing, we discretize our problem using finite differences 

on an arbitrary mesh 

If we let h j  = xj+l- xj,  j = 0, . . . , M - 1 then = max h j .  We replace (1.2) by the discrete 

system of equations 

The difference operators DOuj and DCuj provide approximations to the first and second 

derivatives of u at y. On nii, DOuj and DCuj are given by 

for j = 1,. . . , M - 1. This gives the linear system of equations 
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for j = 1,. . . , M - 1, with boundary conditions 

ug = A and UM = B. 

The coefficients Qj, ,Bj, yj are given by 

In matrix form we obtain a system identical to (1.7) with aj, pj, and yj redefined as above. 

Equation (1.9) is a 3-point centered difference scheme like (1.4). A Taylor series anal- 

ysis, however, demonstrates that DCuj is only a first order approximation to uU(xj) when 

hj # hjW1(1 + O(hj)). Moreover, (1.9) suffers from the same instabilities, which appear as 

oscillations in the computed solution, unless the nodes are chosen to keep the maximum 

hj in the neighborhood of the layer sufficiently small. Pearson 1791 used (1.9) along with 

a basic mesh redistribution strategy and continuation in E to solve various BVP with E as 

small as 10-lo. 

Second order accuracy may be recovered by introducing a staggered mesh. Any equation 

of the form (1.2) is easily rewritten as 

where 
1 q(x) b(x), r(x) = - (c(x) - bl(x)), and q(x) = - -. P(X) = y-- 
E E 

To discretize (1.13) we first rewrite the second order differential equation as a system of first 

order equations 

We now discretize (1.14) using the midpoint rule on [xj, xj+1] and (1.15) on the staggered 

interval [xj-l12, x ~ + ~ / ~ ] .  After a little algebra (see [8] for details), a second order 3-point 

discretization of (1.13) results. Written in terms of u values we have 
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In this formula, pj+1/2 = P ( X ~ + ~ / ~ ) ,  Zi is the midpoint of and Gj is the value 

of u at Zj obtained by quadratic interpolation from uj-1, U j ,  and U j + l .  

Comparing this to (1.12) this difference scheme may be written in matrix form with 

aj, /?j and yj redefined as 

and f j  = q(Zj). The quantities dj, qj and Cj are the coefficients of uj-1, uj and uj+l/2 in 

the interpolation expression for Gj. 

Any discretization on a nonuniform mesh must be accompanied with some mesh selection 

strategy. As a minimum requirement we must choose a mesh so that the computed solution 

on that mesh is "better" than the solution computed on a uniform mesh of the same size. 

How do we choose such a mesh? The simplest case occurs when we can be guided by some 

a priori knowledge of the exact solution. For example, in physical problems we may have 

experimental or theoretical evidence which suggests how the solution will behave. In the 

finite element literature, a posteriori error estimates are used to extract information from a 

computed solution to choose a better grid. In the second part of this thesis we will review 

another possibility which allows for the simultaneous calculation of an appropriate mesh and 

the solution on that mesh. In that case the mesh is chosen so that the computed solution 

approximately equidistributes some indicator of the solution error. 

As we have seen, solving linear two point boundary value problems with finite differences 

(or finite elements/volumes for that matter) require the solution of a linear system. In the 

next chapter we begin to ask if the linear system itself contains information which may 

guide us in the construction of a better mesh. 



Chapter 2 

Mesh Quality and the Linear 

System 

Upon discretizing a linear boundary value problem, we obtain a linear system of equations 

A U ~  = f h  whose solution uh = (u0, UI, . . . , u ~ ) ~  is an approximation to the solution of the 

continuous problem on o h .  In this section we will highlight how certain properties of the 

matrix A are related to the appropriateness of the chosen mesh. Ultimately, one would like 

to be guided in constructing a new, "better" mesh, by these observations. 

2.1- The Spectrum of the Linear System Matrix 

In this section we provide a derivation of the eigenvalues of the linear system matrix cor- 

responding to a discretization of a linear, constant coefficient two-point BVP on a uniform 

mesh. 

Consider a nonsymmetric tridiagonal matrix A = tridiag {a, P, y )  E Cmxm. Assume q 

is a eigenvector of A with associated eigenvalue A. Then Aq = Xq gives rise to the linear 

difference equation 

aq1-1+ (P - A)q1+ yq1+1 = 0, 

for I = 1,. . . , m. To close the system we assign boundary conditions qo = qm+l = 0.  

Assuming ql = r1 we obtain the characteristic roots r* as solutions of the quadratic equation 
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and this yields 
A - a h  J ( x - P ) ~ - ~ ~ X  

r i  = 
27 

Therefore, each component, ql, may be written as a linear combination of r: and r k ,  that 

is, 
1 1 q~ = clr+ + C ~ T - .  

The boundary condition qo = 0 implies cl = -c2, and 

or 

which implies 

By inspection we see that k = 0 would imply r+ = T-  and hence q = 0 from (2.1). 

Rewriting (2.2) we have 
-7rki - x k i  

r+em+l = r-e-, 

and substituting the expressions for r+ and r- and expanding the complex exponentials we 

obtain 

The minus sign in the f can be ignored since it just repeats the eigenvalues. 

Using this expression for X we find the following expression for the eigenvector compo- 

nents: 
v2 7rkl 

(') = 2ci (f) sin - 41 m+ 1' 

where c is an arbitrary constant. 

The nature of the eigenvalues of A depends on the sign of the product a y .  For problems 

of the form (1.2) with constant coefficients we have from (1.6) 

E b  a = - - - -  ~b 
h2 2h 

and y=- -+- .  
h2 2h 
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An easy calculation shows that a y  is nonnegative if h 5 2~/lbl and negative if h > 
2ellbl. This says that the matrix A will have all real eigenvalues if h 2 2~/lbl and complex 

eigenvalues with constant real part otherwise. Moreover, using the fact that 

and the cosine addition formula we see that 

which implies that 

that is, complex eigenvalues always occur in conjugate pairs. 

2.1.1 Examples 

We now consider a concrete example to demonstrate the relationship between the nature of 

the eigenvalues and the quality of the chosen mesh. As a first example recall model problem 

I from Chapter 1, 
II I 

-€U - u = 0, u(0) = 0, u(1) = 1. (2.4) 

Using the analysis from the previous section we expect real eigenvalues if h 5 26 and 

complex eigenvalues with constant real part if h > 26. In Figure 2.1 the mesh size h is 

chosen larger than 26 resulting in a mesh which does not resolve the boundary layer at x = 0. 

The computed solution exhibits mesh scale oscillations as predicted by solving the discrete 

equations. As anticipated, the eigenvalues of the linear system matrix appear as complex 

conjugates. There are actually two real eigenvalues at X = 1 which result due to the use of 

non-eliminated boundary conditions. To impose Dirichlet boundary conditions the first and 

last rows of the linear system matrix A are chosen as  (1,0,. . . ,0,0) and (0,0,. . . ,0,1) with 

the right hand side vector containing the boundary values. These eigenvalues will appear 

in all our figures. Figure 2.2 demonstrates the real eigenvalues which result by choosing 

h 5 2 ~ .  The boundary layer is now resolved resulting in a smooth monotonic solution. 

The inhomogeneous boundary value problem (model problem 11) 



CHAPTER 2. MESH QUALITY AND THE LINEAR SYSTEM 

I 

Figure 2.1: Numerical solution (left) and eigenvalue distribution (right) corresponding-to 
an unresolved boundary layer. 

Figure 2.2: Numerical soIution (left) and eigenvalue distribution (right) corresponding to a 
resolved boundary layer. 
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again has a sharp layer at x = 0 for E << 1; however, the solution is no longer constant 

outside of the layer. On the left of Figure 2.3 we illustrate the magnitude of the imaginary 

part of the largest eigenvalue of A for h > 26. As shown, the JImXI -t 0 as h -t 2&. For 

h = 26 all the eigenvalues of A (besides the two eigenvalues at X = 1) are given by X = 1/26. 

As h decreases past 26 the eigenvalues remain real with [XI + ca as h -t O+. The behaviour 

of the eigenvalues as a function of h for fixed E is easy to see analytically from the expression 

for the eigenvalues given in equation (2.3). 

Figure 2.3: 1Im XI for h < 26 (left) and /Re XI for h > 26 (right). 

Although our analysis of the eigenvalues of the linear system matrix is restricted to 

constant coefficient boundary value problems on uniform grids, the next example again 

illustrates the connection between resolving a region of rapid transition and the emergence 

of real eigenvalues. Recall model problem 111, a variable coefficient interior layer problem, 

The solution of this problem, shown in the bottom left of Figure 2.4, has an interior layer of 

width O(&) at x = 112. As the mesh is refined (from top to bottom in the figure), we see 

the eigenvalues transform from complex with nearly constant real part to a combination of 

real and complex eigenvalues. Due to the variable coefficient of the u' term, a mesh which 

sufficiently resolves the layer no longer corresponds to a linear system matrix with all real 

eigenvalues. The distribution on the left has a larger number of real eigenvalues due to the 

larger proportion of points with local mesh spacing < 26. 
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Figure 2.4: Computed solutions (left) and corresponding eigenvalues (right) for an interior 
layer problem with decreasing values of h (top to bottom). 
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2.1.2 Effect of Nonuniform Grids 

It is quite clear that uniform grids are not sufficient for practical problems involving sharp 

regions of rapid change in the solution. Unfortunately, as we move away from a uniform 

mesh we also lose exact expressions for the eigenvalues and eigenvectors of the linear system 

matrix. In this section we hope to illuminate the effect of the choice of mesh on the spectrum 

of the matrix through several well-chosen examples. We restrict ourselves to piecewise 

uniform refinements and equidistributed grids. 

Figure 2.5: Eigenvalue distributions corresponding to two different piecewise uniform grids. 

In Figure 2.5 we depict the eigenvalue distributions of the linear system matrix corre- 

sponding to model problem I for two different piecewise uniform grids. The plot on the left 

was generated with a simple grid composed of two uniform sub-grids. For 0 5 x 5 112 we 

choose a spacing hl < 26 and for 112 < x < 1 we choose ha > 26. The plot on the right 

corresponds to a grid with a much smaller region near x = 0 with hl < 26. Both grids 

are chosen so that the boundary layer at x = 0 is sufficiently resolved. Both distributions 

contain real and complex eigenvalues. The real eigenvalues reflect the fact that the grids 

have local mesh spacings which satisfy the requirement h 5 26. Complex eigenvalues arise 

due to mesh points outside the layer where h > 26. 

We now compare eigenvalue distributions of the linear system matrix for uniform and 

equidistributed grids. The eigenvalues shown on the left plots in Figure 2.6 correspond 

to uniform grids while the right plots correspond to equidistributed grids with the same 

number of points. In the top left we choose 101 equally spaced points, enough to resolve the 

boundary layer at x = 0. As we have already seen the eigenvalues are real indicating that 
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the local mesh spacing satisfies h 5 26 across the entire interval. Using an equidistributed 

grid with the same number of points (top right) we again obtain real eigenvalues. We should 

note, however, that the largest eigenvalues in this plot are many magnitudes larger than 

those corresponding to the uniform grid. This is due to the small local mesh spacing for the 

points in the layer with the equidistributed grid. We have seen in the previous section that 

the magnitude of the largest real eigenvalue grows large as h -t 0. A cluster of eigenvalues 

of size lo1 N lo2 is quite evident for the equidistributed mesh. These eigenvalues reflect 

those mesh points outside the layer with local mesh spacing similar to the uniform mesh 

with the same number of points. 

v 0 0 0 0 0 0 0 0 0 0 0 0 0  

10 10' 10' to' r d 
Rr A lo' 

Figure 2.6: Eigenvalue distributions corresponding to uniform (left) and equidistributed 

(right) grids. 

In the bottom two plots of Figure 2.6 we repeat the experiment for the same boundary 

layer problem but with only 30 points. It is clear that the uniform mesh is not capable of 
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resolving the layer. The lack of any real eigenvalues suggests the mesh does not achieve 

a local mesh spacing of & < 26 anywhere on the interval. The equidistributed mesh with 

the same number of points, however, is able to resolve the layer. The mesh points in the 

layer satisfy the mesh spacing requirement and real eigenvalues result. In contrast to the 

equidistributed mesh with 101 points complex eigenvalues are now evident. This is due to 

those mesh points outside the layer which are unable to satisfy & < 26. With 101 points the 

equidistributed mesh is able to provide small mesh spacing in the interval containing the 

boundary layer and keep the mesh spacing relatively small outside of the layer. This is not 

possible with only 30 equidistributed points for this problem. 

We must stress at this point that the presence of real eigenvalues is necessary, but not 

sufficient evidence that the mesh has resolved a boundary layer for this class of convec- 

tion dominated BVPs. The real eigenvalues merely indicate that the local mesh spacing 

requirement is satisfied somewhere in the interval. Indeed, if we repeat the experiments 

with either the piecewise uniform or equidistributed mesh by reflecting the mesh points in 

the line x = 112 (and thus creating inappropriate meshes) we will obtain nearly identical 

eigenvalue distributions. 

As a last example, we consider our model problem I with 6 = l e  - 4. This would 

require at least 5000 equally spaced mesh points to resolve the boundary layer. We use an 

equidistributed grid with only 40 points. The computed solution and associated eigenvalues 

are illustrated in Figure 2 . 7 .  Again we note several important points: the number of real 

eigenvalues reflect the number of mesh points in the layer, that is, those for which h < 26; 

the ,complex eigenvalues indicate those mesh points outside of the layer for which & > 26; 

and the size of the largest real eigenvalues reflects the mesh spacing in the layer region. 

2.1.3 Further Comments 

As we have seen discretizing a constant coefficient singular perturbation problem (1.2) on a 

uniform mesh with centered differences results in a linear system to solve for the approximate 

solution. The linear system matrix is composed of a balance of a symmetric, positive 

definite contribution from the diffusion term and a skew-symmetric contribution from the 

convective term. Positive definite matrices have real eigenvalues, while skew symmetric 

matrices have purely imaginary eigenvalues. If h is larger than 26 then the skew-symmetric 

matrix dominates resulting in complex eigenvalues. 

Using upwinding for the convective terms results in a linear system matrix comprised 
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Figure 2.7: Equidistributed solution (left) and corresponding eigenvalues (right) for a sharp 
boundary layer. 

again of a symmetric, positive definite matrix from u" and a lower triangular matrix from 

the u' term. In this case, the lower triangular matrix increases the diagonal dominance of 

the system matrix resulting in real eigenvalues independent of the mesh spacing. In fact, as 

we have mentioned this leads to a discretization which is overly-diffusive. This may cause 

excessive widening of boundary layer. 

Tuning the diffusion, equation (1.8), allows the user to balance the positive effect of 

increasing the diagonal dominance of the diffusion contribution to an optimal value, while 

ensuring the discretization is not over-diffusive. 

2.2 Singular Value Decomposition 

Although the eigenvalues of the linear system matrix do yield an indication as to the ap- 

propriateness of the chosen mesh, we are unable to decide if the refinement is in the correct 

location spatially. As we will see in this section, the singular vectors of the linear system 

matrix provide grid information which is spatially relevant. 

We now consider the effect of the grid on the singular vectors of the matrix A. Every 

real, rectangular matrix A E RmXn has a singular value decomposition (SVD) [40] 

A = UCV*.  

The orthogonal matrices U and V may be written column-wise as 

mxm U = (UI, ~ 2 , .  . . ,urn) E R , and V = (vl., v2, . . . , v,) E Rnxn, 
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and the diagonal matrix C written as 

C = diag(al, 02,. . . , ap) E Rmxn with a1 2 a 2  2 . . 2 a, > 0, 

and p = minim, n). 

If A is square and nonsingular then a, > 0 and the SVD may be used to write the 

solution of Au = f as 
n 

where cu = C-lU* f. 

As we have seen, discretizing linear two point boundary value problems gives a linear 

system of discrete equations Au = f .  So (2 .5 )  is a representation of the approximate solution 

of the BVP. Equation (2 .5 )  and the expression for a demonstrate that the singular vectors 

corresponding to the smallest singular values are dominant in the expansion for u. Of course 

how well the solution of the BVP resembles these low frequency or smooth singular vectors 

depends on the distribution of the singular values and the vector a. This is a reflection of 

the fact that the existence of layers in solution depends not only on the differential operator, 

represented by the matrix A, but also the boundary values and the inhomogeneity in the 

differential equation which is stored in the vector f and exerts its influence through a. 

As we will see from various examples, boundary and interior layer information is con- 

tained in the low frequency singular vectors. Furthermore, the smooth singular vectors also 

indicate important mesh information. When a layer in the continuous solution of a convec- 

tion dominated problem is not resolved we have seen that centered difference schemes yield 

oscillations in the computed solution. The oscillations are an important indicator that we 

have interesting, unresolved behaviour in the continuous problem. Furthermore, the location 

of the largest oscillations indicates the position of the layer in the continuous solution and 

hence where higher mesh concentration is required. We will demonstrate that the dominant 

singular vectors also have oscillations on mesh scale when layers are not resolved. 

In Figure 2.8 (left) we illustrate the singular vector corresponding to the smallest singular 

value of model problem I with E = 0.01 and N = 201 uniformly spaced mesh points. The 

vector cu which determines how the solution is represented by the smooth singular vector is 

shown on the right of the figure. The components of a are essentially zero except for the 

last entry, which is precisely the contribution of vn to the solution of the boundary value 

problem. 
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Figure 2.8: The dominant singular vector (left) and cr (right) for model problem I. 

To begin to understand what information pertaining to the solution of the boundary 

value problem and appropriateness of the chosen mesh is contained in the SVD of the 

matrix, we consider a few examples from our selection of model problems. We begin by 

considering model problem IV which we repeat here for convenience: 

on [ O , l ] ,  with u(0) = 0 and u(1) = 1, and E << 1. This problem has two sharp boundary 

layers at x = 0 and x = 1. 

Figure 2.9: The three most dominant singular vectors corresponding to a two layer problem 

on a fine mesh. 

The singular vectors of the linear system matrix of model problem IV are displayed in 

Figure 2.9. Here we have used a mesh sufficiently fine to resolve the boundary layers. We 

see that the layer information, most importantly location and steepness, is contained in 

those low frequency singular vectors. 
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As a second example, we consider model problem 11, 

on [0, 11, with u(0) = 1 and u(1) = 1. The solution of this problem has a boundary layer at 

x = 0 and an outer solution which looks like u = x. Figure 2.10 contains a plot of the three 

singular vectors corresponding to the smallest three singular values. Again we have chosen 

a mesh which resolves the layer. 

Figure 2.10: The three most dominant singular vectors corresponding to model problem I1 

on a fine mesh. 

We now discretize the problem on an inappropriate mesh, one with an insufficient number 

of points to resolve the boundary layer. The dominant singular vector again resembles the 

under-resolved solution as shown in Figure 2.11. 

Figure 2.11: Under-resolved solution and corresponding dominant singular vector for model 

problem 11. 

Finally, we consider model problem 111, a boundary value problem with an interior layer 

located at x = 112, 

EU" + (x - 1/2)u1 = 0 
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on [0, I], with u(0) = 0 and u(1) = 1. The dominant singular vectors of the linear system 

matrix corresponding to a fine and an under-resolved grid are shown on the left and right 

of Figure 2.12 respectively. 

Figure 2.12: The dominant singular vectors corresponding to model problem I11 on a fine 

(left) and under-resolved (right) mesh. 

The singular vectors not only tell us that we have a mesh resolution issue, they also 

indicate spatially where further mesh refinement is necessary. This is exactly what the 

eigenvalues were not able to do. 

Unfortunately, computing the singular vector corresponding the smallest singular value is 

not an easy chore. An obvious choice of techniques would be to use some form of the Lanczos 

(applied to ATA) or Arnoldi algorithms to compute the singular vectors, see [84] as a general 

reference. Lanczos and Arnoldi are iterative techniques to spectral decompositions akin to 

conjugate gradients [43] and GMRES [85], respectively, for solving large system of linear 

equations. Experiments with the Lanczos algorithm, however, indicate that convergence to 

the dominant singular vector of A (or eigenvector of ATA) is quite slow. Fast convergence 

is achieved to the largest eigenvalue and associated eigenvector. This is not the end of the 

spectrum that we are interested in for this application. Typically, the fastest algorithms to 

converge to the smallest eigenvalue would involve iterating on A-l. Each iteration coming 

at a cost roughly equivalent to a linear solve involving A. Since we are trying to ascertain 

mesh quality without actually solving the BVP this may be too high a price to pay. Some 

experiments which involve iterating on the original linear system are given in the next section 

and provide a glimmer of hope. 

There is also some recent work by McSherry and Achlioptas [60] concerning acceleration 

techniques of Lanczos which may be applicable. 
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2.3 Detecting Layers with Iterations 

A poor mesh selection will result in non-physical oscillations in the computed solution and 

singular vectors of the linear system matrix for convection dominated equations discretized 

by centered differences. In this section we will illustrate how simple iterations on the linear 

system may be used to detect boundary and/or interior layers without converging to the 

solution of the boundary value problem. 

In Figure 2.13 we illustrate the solution of model problem I with E = l e  - 4 with a 

rather crude mesh with uniform spacing h = 1/100. Clearly, this mesh is not able to resolve 

the layer at x = 0. In fact, a uniform mesh consisting of several thousands points would 

be necessary. To the right of the solution we have displayed the result after 10 iterations 

of CGNR (Conjugate Gradients applied to the Normal Equations) applied to the discrete 

equations with a random initial guess (more on this later). At first glance, the approximate 

solution does not resemble the actual solution at all, except for the obvious oscillations. 

Figure 2.14 once again illustrates the approximate solutions after 10,20 and 30 iterations. 

This time, however, we have averaged the results with a simple [I, 2,1] filter. The data we 

have pictured then is the absolute value of the difference between the approximate solution 

and its averaged counterpart. Although we have no grid point in the layer it is clear the 

approximate solution is having difficulty satisfying the boundary condition at x = 0. 

Figure 2.13: Solution of model problem I with E = l e  - 4 and N = 101 mesh points (left); 

Approximate solution after 10 CGNR iterations (right). 
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Figure 2.14: Difference of approximate solution and filtered approximate solution for model 

problem I after 10,20, and 30 CGNR iterations. 

Repeating the experiments on model problem I with a finer mesh consisting of 501 

points produces similar results. The numerical solution is shown in the top left of Figure 

2.15. Again the mesh is not able to resolve the layer, however, the oscillations are contained 

in a much smaller region near the boundary. A relatively few CGNR iterations detects the 

region of interest. The work involved is nominal considering that CGNR would take nearly 

400 iterations to obtain the numerical solution to an accuracy of It  is important to note 

that after 20 iterations CGNR has not converged, or even obtained a good approximation 

of the numerical solution, in fact Ilu - ~ ~ ~ 1 1 ,  = 1.39. 

Model problem IV is a boundary layer problem with layers at both ends of the interval. 

An inappropriate choice of mesh for this problem has peculiar results. Not only do centered 

differences result in oscillations in the computed solution, but the layer at x = 0 may be 

completely missed if the layer at x = 1 is unresolved. As shown in Figure 2.16, however, a 

few CGNR iterations are able to detect the layers at both ends of the interval. 

As a final example, we consider model problem I11 with E = l e  - 8 which results in a 

relatively sharp interior layer at x = 112. Figure 2.17 demonstrates the results of 20 CGNR 

iterations with a varying number of mesh points. Once again, it appears that a moderate 

number of mesh points in the chosen grid works best. In this case 151 and 201 mesh points 

are sufficient to quickly indicate the presence of a region of interest in the solution. 
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Figure 2.15: Solution of model problem I with E = l e  - 4 and N = 501 mesh points (top 
left); Difference of approximate solution and filtered approximate solution after 10,20 and 
30 iterations of CGNR (top right and bottom). 
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Figure 2.16: Difference of approximate solution and filtered approximate solution of model 

problem IV with E = le  - 4 after 20 iterations of CGNR for N = 51,151, and 201 mesh 

points. 

Figure 2.17: Difference of approximate solution and filtered approximate solution of model 

problem I11 with E = l e  - 8 after 20 CGNR iterations for N = 101,151 and 201 mesh points. 

We end this section with an important comment about the choice an initial guess for 

the iterative solver. For all the experiments presented here a random initial vector was 

used. In fact, the results depend heavily on this choice. In Figure 2.18 we repeat the exact 

same setup used to generate the last picture in Figure 2.16 except we use an initial guess 

of the constant vector (1,1,. . . , I ) ~ .  The left plot is of u20 while the right plot is of the 

usual difference between u20 and its filtered value. The results are not nearly as impressive. 

In this case, the choice of initial guess coincides with the boundary value at x = 1. The 

iterations produced by CGNR detects that the early iterates agree with the boundary value 

and is happy to keep them constant on that end of the interval. The iterations do detect a 
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problem at x = 0 as it tries, unsuccessfully, to satisfy the boundary condition there resulting 

in the oscillations. With this choice of initial data CGNR would need to iterate almost to 

convergence to be able to deduce anything definitive from the iterates. 

Figure 2.18: After 20 iterations of CGNR with a non-random initial guess. 

Ostrowski [77] introduced a rich class of matrices known as  M-matrices in 1937. A matrix 

A is a nonsingular M-matrix if and only if A is nonsingular with aij 5 0 for i # j and 

A-I 2 0. There are many characterizations of M-matrices. Berman and Plemmons [12] give 

50 different but equivalent definitions. A condition which is easy to check is that a matrix 

A is a nonsingular M-matrix if and only if aij 5 0 for i # j and A is generalized strictly 

diagonally dominant. A matrix is said to be generalized (strictly) diagonally dominant if 

there exists a diagonal matrix D with positive entries so that AD is (strictly) diagonally 

dominant l. It is clear that a sufficient ,but not necessary, condition for A to be a M-matrix 

is that A is strictly diagonally dominant with non-positive off-diagonal entries. 

M-matrices have the nice property that if there exists a vector w with Aw 2 1 (component- 

wise), then [/A-' 11, < IIwll,. With respect to discretizations of boundary value problems 

'A matrix C is diagonally dominant if 

I ~ i i l 2 z l ~ i ~ l  for i = l ,  ..., n, 
j=1 
j#i 

and strictly diagonally dominant if the equality is removed. 
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a bounded inverse is sufficient to prove stability of a discretization, that is we can show 

where Lh is the discrete version of the differential operator which defines the boundary value 

problem . 
For our class of BVPs, equation (1.2) with c ( x )  2 0, discretized on a uniform grid with 

centered differences a sufficient condition to ensure A is a M-matrix is 

This agrees, in the constant coefficient case, to the condition which guarantees that A has 

only real eigenvalues. Moreover, this assumption ensures that the computed solution is 

oscillation free, that is, all boundary layers are resolved. 

In section 2.1.3, we commented on the connection between various discretizations and the 

eigenvalues that result on uniform grids. The discussion included the effect that upwinding 

and tuned upwinding had on the diagonal dominance properties of the linear system matrix. 

Indeed, in light of the definition of a M-matrix, it is clear, and is easily verified, that 

upwinding provides a linear system matrix which is a M-matrix independent of h and E .  

Tuned upwinding yields M-matrices under various assumptions on the tuning parameter, 

see [83] for a nice discussion. In this section we investigate what effect the choice of mesh 

has on the M-matrix structure of the linear system matrix. 

Consider the'linear system matrix of model problem I with E = le  - 2. We discretize the 

problem with three grids; a uniform grid, a piecewise uniform grid and an equidistributed 

grid, all of which resolve the boundary layer at x = 0, as shown in Figure 2.19. The 

plots on the left demonstrate the computed solution of the boundary value problem for the 

chosen grid. On the right of Figure 2.19 we indicate, by solid dots, those rows of the linear 

system matrix A which satisfy the local M-matrix conditions. That is, we indicate rows 

which are diagonally dominant and have nonpositive off-diagonal entries. The first two 

plots correspond to a uniform mesh chosen to resolve the boundary layer. This results in a 

linear system matrix which is a M-matrix. Therefore, a dot is drawn for each entry of every 

row of the 100 x 100 matrix. The quantity "nz" denotes the number of nonzero entries in 

the matrix. 

2 ~ h e  concept of equidistribution was mentioned in section 2.1.2 and will discussed further in Chapter 4 
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Figure 2.19: Solution and local M-matrix structure for model problem I on a uniform (top), 
piecewise uniform (middle) and equidistributed (bottom) grid. 
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Choosing a uniform grid for a constant coefficient BVP of the form (1.2) will result in 

a matrix where the diagonal dominance condition is either satisfied for all rows or none at 

all. This is basically saying that on a uniform mesh, if (2.6) is satisfied anywhere on the 

interval then it is satisfied everywhere. Of course, for nonuniform grids it is possible to have 

(2.6) satisfied locally, resulting in matrices which are locally like M-matrices. In the middle 

plots of Figure 2.19 we have used a piecewise uniform grid which satisfies (2.6) for points 

near the boundary layer. The large number of points in the refined portion of the mesh 

(relative to the total number of mesh points) results in a large number of rows included in 

the matrix plot. Moreover, there is a spatial connection between the rows of the matrix 

and the location of the mesh points on the interval. The equidistributed grid requires fewer 

points to sufficiently resolve the layer, resulting in fewer rows shown in the matrix plot. 

The situation changes slightly for a variable coefficient problem. Figure 2.20 shows the 

results for model problem IV. Here we use an unresolved uniform grid (top), a piecewise 

uniform grid which resolves the right layer (middle), and a piecewise uniform grid which 

resolves both layers (bottom). For this example, we see local M-matrix structure corre- 

sponding to a grid which doesn't resolve the layer at all. Indeed, near x = 112 the coefficient 

of u' is approximately zero which for this problem relaxes the local requirement on the mesh 

size. In fact, the matrix appears to be a M-matrix except for rows corresponding to points 

in the immediate region of the unresolved layers. As we refine the mesh near x = 0 the 

entries in those rows become shaded dots in the matrix plot. And once both layers are 

resolved the matrix is an M-matrix. 

As a final example, we consider another variable coefficient problem whose solution has 

an interior cusp at x = 112, 

Here we keep the uniform grid spacing fixed at h = 1/100 and vary E .  As E is decreased 

from le  - 2 to 5e - 6, from top to bottom in Figure 2.21, we see that the number of rows 

of the matrix which satisfy the local M-matrix condition decreases. 
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Figure 2.20: Solution and local M-matrix structure for model problem IV on a uniform 
grid (top), a piecewise uniform grid (middle), and a refined uniform grid (bottom). 
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Figure 2.21: Solution and local M-matrix structure for a variable coefficient interior cusp 
problem with E = l e  - 2 (top), E = 5e - 4 (middle) and e = 5e - 6 (bottom). 



Chapter 3 

A Matrix Inverse Problem 

Consider a tridiagonal symmetric M-matrix 

In accordance with the definition of a M-matrix provided in section 2.4 we will assume the 

entries ai, bi nonnegative and ai > bi + bi+1, i.e. the matrix is strictly diagonally dominant. 

The Cholesky factorization of T, given by T = L D L ' L ~  will exist if, for example, T is 

diagonally dominant. For tridiagonal matrices T it is possible to compute this factorization 

explicitly. To this end we let 

I , and DL = 

-1 T Forming LDL L and comparing the entries to those of T we obtain a recurrence for ai, 
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A U L  factorization of T ,  given by T = U D ; ~ U ~ ,  msy be obtained in a similar manner. 

If we let 

then by simply multiplying and comparing entries to those of T we obtain the following 

recurrence for the entries of D: 

Meurant [62] has used the Cholesky and UL factorizations of T to study the inverses of 

symmetric tridiagonal matrices and obtains the following result (see [62] and [63] for details 

of the proof): 

The entries of the inverse of T are given ezplicitly as 

b,d,+l . - . d n  , for all i, and j > i, 
" i  - . - 6, 

and 
di+1 . . . dn T.? = 

22 6.i . . .6,  , for all i. 

Using (3.2) we now determine the rate of decay of the entries of T-l. Computing directly 

Under the assumption that T is strictly diagonally dominant it is easy to show from the 

recurrence relation (3.1) and induction that di > bi. So we have 
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This allows us to bound TG:~ in terms of ~ 7 '  as 

Moreover, (3.1) gives us a lower bound as well. We have 

from which we may show 

Therefore we have upper and lower bounds for in terms of T;': 

where 

It is clear that this may be extended to compare any off-diagonal entry of T-' to the 

diagonal entry in that row, 

To compare TG' to an entry closer to the diagonal (along a row) we have 

And to bound T;' in terms of an entry further from the diagonal (along a row) we have 

Due to symmetry the estimates also work column wise. Care must be taken that the entries 

that are being compared are on the same side of the diagonal. 

3.1 Positivity Subject to a Perturbation 

In this section we investigate a positive perturbation of a M-matrix. Specifically we are 

interested in understanding how large the perturbation can be so that the perturbed matrix 
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retains the nonnegative inverse. The answer, it turns out, depends on the entries of the 

matrix M. 

Specifically, we consider the matrix B given by 

where a and b are positive, h # 0, and the tridiagonal part of B is an M-matrix. For what 

values of h is the inverse of B nonnegative? 

If h < 0, then if h is chosen so that B is strictly diagonally dominant (or generalized 

strictly diagonally dominant), then B is still a M-matrix and will satisfy B-I 2 0. If h > 0 

then the entries of B no longer satisfy the sign pattern necessary to be a M-matrix. Due 

to continuity, if h is chosen small enough then we would expect B-I 2 0. Our goal is to 

find a bound on h which will ensure a nonnegative inverse. 

We begin by considering a simpler case. Suppose B is given as B = M + E, where M is 

the tridiagonal M-matrix with entries {-bi-l, ai, -bi) and E = uvT is a rank one matrix. 

We choose u and v so that the (1,3) entry of B is h. The vectors u = (h, 0, . . . , o ) ~  and 

v = (0,0,1,0,. . . , o ) ~  give the correct matrix. Now to get a feeling for what B-I looks like 

we use the Shermann-Morrison formula, 

A quick calculation shows that vTM-'u = hM;l and EM-' is a matrix whose first row 

is hM;' and the rest zeros. The quantity Mgl denotes the third row of M-l. 
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We will now use the decay estimates (3.6) to find an upper bound on h to ensure B-I 2 0. 

In addition to the decay estimates we also require a bound on the diagonal entries of M-I. 

Ostrowski [78] obtained the following bound on M i 1  for strictly row diagonally dominant 

matrices: 

where 

These bounds have been tightened by Nabben [72] in the case of nonsymmetric diagonally 

dominant tridiagonal matrices. For notational convenience in the discussion which follows, 

we introduce p has an upper bound on the diagonal entries of M-I. 

The (1,l) entry of M-lEM-' is SM;'MG~ where s = h/(l + hMG1). So comparing 

the (1,l) entries of MdlEM-l and M-I we require 

Using the decay estimates we have the following sequence of inequalities, 

This indicates that s < 1/pp2 is a sufficient requirement. 

For the (1,2) entries we have to show 

In this case, the sequence of inequalities 

implies that s < b/pp is sufficient. 

To compare the (1, k) entries for k 2 3 we note that MG' > M;' since the ~ 3 1 ~ '  entries 

are closer to the diagonal. Taking advantage of symmetry we use the decay estimates 

column-wise to obtain 

and therefore 

SM;,'MG~ 5 S$M;~I 5 M$ if s < b2/p. 
P 
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Now consider the j-th row, for j 2 2. We want to show 

SM;'M;' < MG', for all k = 1, . . . , n. 

If k < j we compare M;' to MJ<' which is closer to the diagonal along a row. So we have 

for k 5 j, 
1 

SM;,~M;~ < s p p k - l ~ J < l  < MG', if s < - pPk-l ' 

If k > j then we compare MG' to MJ<l which is closer to the diagonal along a column. So 

we have 
1 

SMZ'M;' < s , L L ~ ' - ~ M ; ~ ' ,  if s < - p~ -3 * 

The tightest restriction found on s was that s < @/,up. Therefore, subject to a rank-1 

perturbation, a sufficient condition to ensure B-' is nonnegative is that 

3.1.1 Higher Rank Perturbations 

To generalize the result of the previous section we consider a perturbation given by E = UV 

where U = hI and V is a matrix of zeros except for a second superdiagonal of ones. We use 

an extension of Shermann-Morrison which says, if I  + VMP1U is nonsingular then 

Rows 1 through n - 2 of V M - I  are just the n - 2 rows of M - I .  Rows n - 1 and n are zeros. 

To ensure B-' = ( M  + UV)-' is nonnegative we require 

Under a suitable assumption on h it possible to show using a Neumann expansion that the 

inverse of 

C-I  = ( I  + VM-'U)-' = ( I  + h v ~ - l ) - l  5 I .  (3.9) 

From this we may deduce 

The bound on h which we obtain below is sufficient to ensure (3.9) is valid. 
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We wish to find a bound on h so that 

Computing directly we find the (ij)-th entry of P = M-lVM-' is given by 

Using the bounds from the previous section we have 

from which (3.10) follows directly. 

3.1.2 A Symmetric Perturbation 

We now consider a symmetric rank 2 perturbation, that is we only perturb the (1,3) and 

(3,l) entries of M by a quantity h. Let V be the matrix of zeros except for ones in the (1,3) 

and (3,l) positions. Once again the generalized Shermann-Morrison formula guarantees 

that B-' > 0 if 

~ M - ~ ( I  + ~ v M - ~ ) - ~ v M - ~  < - M-I. (3.11) 

The structure of I + ~ v M - '  again allows us to deduce 

In this case the (ij)-th entry of hM-lvM-' is given by 

h ( ~ , ; l ~ , ; l +  M~G~M,;~). 

Therefore, inequality (3.11) will be satisfied if 

Applying the decay estimates as in the previous sections we deduce that 

is a sufficient bound on the size of the perturbation. 
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3.1.3 Extensions 

We are now in a position to return to the matrix B of (3.7). Writing B as M + E we see 

that E is a combination of the perturbations discussed in the previous two sections. It will 

come as no surprise that a bound on h to ensure B-l > 0 may be derived in a similar way 

to obtain the following result. 

The matrix B from equation (3.7) will have a nonnegative inverse if 

This is a sufficient but not necessary condition. In fact it may be possible to improve 

the bounds p, 8 and p using the improved decay estimates of Nabben 1721. 

As a final comment, we note that our development does not depend in any way on the 

symmetry of the matrix M.  M is only required to be a tridiagonal M-matrix. In the 

nonsymmetric case, the decay estimates of Nabben [71] and [72] would assist in extending 

the result. Although notationally more cumbersome, the arguments may be adapted to 

consider nonconstant, non-symmetric, positive perturbations of the form 

where f and g are nonnegative vectors. 

3.2 An Application 

The bounds developed in the previous sections will now allow us to comment on a time 

stepping strategy for higher order degenerate diffusion equations. 

A model [41] of thin liquid films and fluid interfaces driven by surface tension is given 

(in 1-D) by the degenerate diffusion equation 
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where f (h) hn as h + 0. The power of n is determined by the boundary conditions on the 

liquid-solid interface. In all applications a physical solution requires h to be nonnegative. 

It is known that if n = 0, in which case (3.12) is the linear fourth order heat equation, 

negative solutions will result from positive initial data. For larger values of n this is not the 

case. In 1-D, positive solutions result from positive initial data if n 2 3.5 [14]. Numerical 

simulations ([14],[3] and [13]) by Bertozzi et al. demonstrate that for smaller values of n the 

solutions develop singularities of the form h + 0. 

Numerically, one wishes to preserve the positivity of the continuous solution and to 

resolve any singularities which result. Zhornitskaya and Bertozzi [I031 propose discretizing 

(3.12) in space by 

Yi,t + (a(%-1, ~ i )y5x~, i ) r  = 01 (3.13) 

for i = 0,1, . . . , N - 1 with yi (0) = ho (xi). The quantities yx,i and yz,i denote forward and 

backward differences respectively, and yzzz,i is a composition of these differences performed 

in the usual way. 

For n 2 2 the choice 

where GU(s) = l/ f (s) is shown to preserve positivity of solutions. For n < 2 a positivity- 

preserving scheme is obtained by discretizing, as above, a suitable regularization of the 

PDE. 

In this section, we propose a time stepping strategy which will retain the positivity- 

preserving features of the semi-discrete equations (3.13) and (3.14) while only requiring 

linear solves at each time step. The basic idea is to discretize (3.13) in time by treating the 

linear parts implicitly and the nonlinear parts explicitly 

A similar scheme was proposed by Hoff to solve the one-dimensional porous medium equa- 

tion [46]. Computing yn+l from yn requires a linear solve 

where B is a nonsymmetric pentadiagonal matrix of the form (3.7) considered in the previous 

section. Positivity will be preserved if B-l 2 0. Ensuring that the tridiagonal part of B 



CHAPTER 3. A MATRIX INVERSE PROBLEM 47 

is a M-matrix and the perturbation is small enough imposes a constraint on the time step 

At to retain positivity. We note that this constraint is sufficient but not necessary. In fact, 

yn+l may remain positive even if some entries of B-' are negative. More work is required 

to consider the effect of boundary conditions on the positivity of B-l. 



Part I1 

Numerical Integration, Moving 

Meshes and Schwarz Waveform 
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Discretizing parabolic PDEs spatially result in systems of ordinary differential equations. 

Integrating in time using ODE software is the well-known method of lines (MOL). Successful 

implementation requires a good choice of spatial mesh, discretization method, and ordinary 

differential equation solver. 

In problems from chemical kinetics, network analysis, radio frequency applications, and 

very large scale integrated (VLSI) circuits, many authors have investigated the application of 

multirate integration techniques. Direct integration methods require that every differential 

equation be discretized (in time) identically. This results in timestep selection dictated 

by fastest changing components. Multirate methods attempt to circumvent this restriction 

by allowing the slow changing components to be integrated using large time steps, while 

concentrating the computational effort in dealing with the fast components. 



Chapter 4 

Moving Mesh Methods 

Adaptive mesh methods for partial differential equations typically fall into one (or more) of 

the following broad categories: 

0 r-refinement: moving a fixed number of mesh points to difficult regions of the physical 

domain, 

0 p-refinement: varying the order of the numerical method to adapt to local solution 

features, 

h-refinement: uniform mesh refinement where resolution is inadequate. 

The r-refinement and h-refinement methods mentioned above may be applied in either 

a static or dynamic fashion. Static methods involve refininglcoarsening or redistributing 

nodes at fixed times during a calculation. Dynamic (or moving mesh) methods solve for 

the solution and mesh simultaneously. This requires specification of a mesh equation which 

concentrates nodes in regions of rapid variation of the solution. The equidistribution princi- 

ple (EP), first introduced by de Boor [22], provides a mechanism for mesh movement. The 

EP requires that nodes are selected so that some measure of the solution error is equally 

distributed over all subintervals of the physical domain. 

4.1 Equidistribution and a Moving Mesh PDE 

We will consider the solution of a PDE of the form 
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subject to appropriate initial and boundary conditions. In (4.1), L denotes a spatial dif- 

ferential operator in the physical coordinate x. If this PDE is particularly difficult to solve 

we may wish to introduce a computational coordinate f by a one-to-one (time dependent) 

coordinate transformation 

x = x(f, t), f E [ O , l ] ,  with x(0, t) = 0, x(1, t)  = 1. 

If this mesh transformation is chosen appropriately then a simple uniform mesh 

will suffice in the computational domain. The mesh transformation will then specify the 

corresponding physical mesh by xi (t) = x(&, t) for i = 0,1, . . . , N .  

The mesh transformation is specified by the EP  written in integral form [99] as 

where 

O(t) = l1 M(2, t) d l ;  

and M(x, t) is a chosen monitor function which provides a measure of the error in the 

numerical solution. The quantity B(t) is a measure of the total error in the numerical 

solution at time t. We may arrive at (4.3) as follows. Requiring the error to be the same 

on each subinterval [ ~ j - ~ ( t ) ,  xj(t)] is equivalent to 

Adding this expression for j = 1, .  . . , i gives (4.3) for each value of i. 

In [82], [48], [49], Huang, Ren, and Russell develop continuous moving mesh partial dif- 

ferential equations (MMPDEs) based on differentiating (4.3). To avoid the computationally 

inconvenient 8(t) we may differentiate twice with respect to f to obtain 

Since (4.5) does not involve the node speed x, it is referred to as a quasi-static EP (QSEP). 

Requiring the mesh to satisfy this QSEP at some later time t + T results in several other 
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MMPDEs. A particularly useful mesh equation derived in this way, which we use in our 

calculations. is 

A popular choice for M(x, u, t) is the arclength monitor function 

This choice is based on the premise that we expect the error in the numerical solution to be 

largest in regions where the solution has large gradients. The choice of monitor function is 

often problem dependent. For example, Budd, Huang, and Russell [16], develop a monitor 

function which preserves the scaling invariance of the underlying physical PDE. In fact, 

examples are given for so-called blow-up problems where the arclength monitor function 

fails to adequately resolve the solution near the singularity time. A regularized monitor 

function 

was introduced by Mackenize and Beckett [lo] to solve singularly perturbed reaction dif- 

fusion equations and by Stockie, Mackenzie, and Russell [94] to solve hyperbolic problems. 

The parameter a may be solution dependent and is used to balance the number of mesh 

points in the sharp layer with those in the rest of the domain. This works particularly 

well for onedimensional conservation laws. In [lo] the authors also introduce another reg- 

ularized monitor function which depends on the curvature of the solution. Moving Finite 

Element methods [68], [67] use the solution residual, ut - Lu as a monitor function. 

In higher dimensions Huang and Russell [50], [19] develop a moving mesh equation based 

on minimizing a functional of the mesh coordinate mappings. In this situation the monitor 

function is replaced by a monitor matrix. 

The mesh transformation x = x(J, t)  suggests that we should rewrite the physical PDE 

in Lagrangian form. The total time derivative u is given as 

This allows (4.1) to be written as 

u - uxx = Lu. 

Equation (4.8) and (MMPDE4) are solved simultaneously for the mesh and corresponding 

solution. 
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4.2 Discretization and Solution Process 

As outlined in the previous section, using a moving mesh method to solve a PDE requires 

solving a coupled system of nonlinear PDEs (even if the original PDE is linear!). For 

purposes of the development of our Schwarz Waveform Moving Mesh Method in Chapter 6, 

we will restrict ourselves to the moving mesh equation (MMPDE4). 

The resulting system of coupled PDEs to be solved on the uniform mesh (4.2) is given 

as 

Discretizing spatially with centered differences we obtain the semi-discrete approxima- 

tion 

for i = 1,. . . , N - 1. The right hand side of the semi-discrete physical PDE, fi, denotes the 

discrete approximation to the spatial operator C at 5 = ti. Centered differences are use to 

discretize C. The quantity Mi denotes a centered difference approximation to the monitor 

function at xi. In actual calculations, Mi is replaced by its smoothed value M~ defined by 

The role of spatial smoothing is discussed by Dorfi and Drury [25]. For our purposes we 

choose the smoothing parameters y = 2 and p = 2. See [48] for comments concerning the 

choice of y and p. 

To close the system we specify boundary conditions for the mesh and solution. Typically, 

initial and boundary conditions of the physical PDE come from the problem description. 

On a fixed interval we specify xo = xN = 0 as boundary conditions for the mesh. If the 

initial solution u(x, 0) does not have steep layers then an initial uniform mesh for x(<, 0) is 
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normally sufficient. If the initial solution has features which are not resolved on a uniform 

mesh for the chosen value of N, then an equidistributed initial mesh is required. 

One way to accomplish an initial equidistributed mesh is to solve the PDE 

coupled with a moving mesh equation. Solving this system over the time interval 0 5 t 5 1 

with a uniform initial mesh will yield the solution u(x, 1) = uo(x) and the resulting mesh will 

equidistribute the initial solution. To avoid propagating any errors from this calculation, 

the initial solution is re-evaluated at the new initial mesh. 

The semi-discrete approximation (4.10) describes a large system of linearly implicit 

ODEs which maybe written in the form 

The vector y denotes the unknowns ordered as (uo, xo, ul, XI ,  . . . , u ~ ,  X N ) ~  and V(y) is a 

matrix which depends on the unknown solution and mesh. 

Solving this system of ODEs in time results in the Moving Method of Lines. Standard 

implementations solve this stiff system of ODEs with fully implicit time stepping provided 

by packages such as DASSL [go]. For our purpose, we will solve (4.11) using Backward 

Euler, 

V(Yn)(Yn - Yn-I) - hng(yn) = 0, 

with local error control provided by step doubling. The resulting system of nonlinear 

algebraic equations are solved with modified Newton using strategies of Gustafsson and 

Soderlind [42] and Alexander [I] to control factorizations and evaluations of the Jacobian 

matrix. The Jacobians are evaluated using finite difference methods adapted to sparse 

matrices 1211. 

4.3 Other Implementat ion Strategies 

Solving for the mesh and solution directly from (4.11) is prohibitively expensive for problems 

in higher dimensions. In [59], [lo] and [47] the authors propose a decoupling procedure which 

allows the mesh and solution to be computed in an iterative fashion. 

Decoupling the mesh equation from the physical PDE has the obvious benefit of reduc- 

ing the size of the linear algebra problem for the Newton step by half. Furthermore, by 
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alternating the solves for the x and y grids the structure of the linear algebra problem is 

made suitable for fast, direct, block tridiagonal solves. 

Computing the mesh and solution separately allows the user complete control over the 

local error tolerances for the ODE integrator, as well as different convergence criteria in the 

iterative algorithm. This is motivated by the observation that the mesh need not always 

be computed to the accuracy of the solution. If the iteration between the mesh equation 

and the physical PDE is continued long enough then grid lag is a serious concern [ll]. This 

is avoided in [lo] by allowing up to four iterations in the algorithm. This appears to be 

sufficient for most examples. 

In Chapter 6, we propose and describe the implementation of a Schwarz Waveform 

Moving Mesh Method in onedimension. This method decouples (4.11) spatially, and solves 

the mesh equation and physical PDE over all subdomains using a domain decomposition 

strategy. 



Chapter 5 

Decoupled Integration and 

Multirate Methods 

In this chapter we consider novel numerical approaches for solving time dependent differ- 

ential equations. Of particular interest are strategies which allow solution components or 

groups of solution components to be integrated with different time steps (multirate methods) 

or even different numerical methods. The discussion presented here is admittedly incom- 

plete; however, we hope to provide some indication of the methods which are available for 

ODES and PDEs. 

We begin by describing the decoupled implicit Euler and backward differentiation for- 

mulas of Skelboe. Fully implicit decoupled integration methods naturally lead to waveform 

relaxation. Associated with any decoupled integration method is a partitioning strategy 

which groups components of the solution together in subsystems. In the context of implicit 

time stepping we will mention a couple of partitioning methods based on the Jacobian of 

the nonlinear algebraic equations. 

We will then return to PDEs and discuss two classes of methods, hp-refinement tech- 

niques. and domain decomposition based methods. 



CHAPTER 5. DECO UPLED INTEGRATION AND MULTIRATE METHODS 57 

5.1 ODE methods 

5.1.1 Decoupled Integration Formulas 

We will consider the problem of solving first order systems of ordinary differential equations 

Multirate methods attempt to benefit from the inherent time scales in the problem by 

separating (5.1) into subsystems. Each subsystem is then integrated using possibly different 

time steps and even numerical methods. We will use the methods of Skelboe to demonstrate 

the basic idea and conclude the section with some related approaches. 

Skelboe ( [92] ,  [go], [86] ,and [91]) considers decoupled implicit Euler and backward differ- 

entiation formulas. Suppose a system of the form 

where y : R + RS, and f : R x RS + RS, is partitioned as 

Here y, : R + RSP, fr : R x RS -t RSr, with 2:=1 si = s and the initial condition is 

partitioned as Y ( to)  = ( Yl,O, Y2,0, ' . . 1 Yq,O )T. 
The partitioning requires subsystems which consist of strongly interacting components 

with weak couplings to the other subsystems. This is made precise with the concept of 

monotonic max-norm stability [86]. This condition is necessary to ensure stability of the 

decoupled integration method. 

The decoupled implicit Euler method results by applying backward Euler to each of the 

q subsystems, and it is written as 

The values Gi,, are taken as convex combinations of { yi,k I k 2 0 )  for i # r, and represent 

communication between subsystems. Convexity is required to ensure stability. The iji,n are 
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often chosen by zero order interpolation, Giln = yi,k, or zero order extrapolation jji,, = yi,k+~ 

when t , ,  E (ti,kl ti,k+l). Weaker stability but improved accuracy is possible by choosing 

jji,, by first order extrapolation as 

It is clear that (5.2) may be solved in parallel since communication is only required after each 

completed step. On a sequential computer, it would be appropriate to use a Gauss-Seidel 

formulation 

Yr,n = Y T , ~ - I  + hnfr(tn, ~ l , n ,  . . - 1  Yr-l,nl Y T , ~ ,  jjr+l,nl. . - 1 &,n) (5-3) 

for n = l , 2  ,... and r = l ,  ..., q. 

Computing the next step for subsystem r requires the previously computed values on sub- 

systems 1,2,. . . r - 1. 

Skelboe [90] describes two general categories of decoupled integration formulas, semi- 

implicit and fully implicit. Equations (5.2) and (5.3) are examples of semi-implicit formulas. 

The discretization is implicit at the level of the subsystem but explicit with respect to the 

rest of the system. The method is semi-implicit since the giln values are chosen as either 

convex combinations of previously computed values of yi,k or zero order extrapolated values. 

This extrapolation can lead to inaccuracies. Fully-implicit decoupled formulas are defined 

by a compound step [tN-l, tN] with each subsystem having discretization points at t,-, and 

tN. The discretization of all subsystems must be computed simultaneously over a number of 

time steps, resulting in large system of nonlinear equations. In this case, all the jjilk values 

are computed by interpolation of solution values within the compound step. The waveform 

relaxation method, discussed in the next section, may be interpreted as an iterative solution 

method for the large system of nonlinear equations resulting from a fully implicit decoupled 

integration step. 

As mentioned, semi-implicit decoupled integration formulas limit the implicitness to 

individual subsystems. This reduces the dimension of the system of nonlinear equations for 

y,,, and the subsequent linear algebra involved in computing the Newton step. 

In [92], Skelboe considers more general backward differentiation multirate formulas ap- 

plied to separated systems of ODES of the form 
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We define the k-step linear multistep operator Lk as 

If y and z solve (5.4) and (5.5), respectively, then we assume 

for all t E [t,, tb]. This implies we may use Lk  to integrate (5.5) using larger time steps 

than for (5.4). It is appropriate to use this formulation when N << M or g is much more 

expensive to evaluate than f . 
The multirate formulation proceeds by integrating the fast system (5.4) with k-step 

backward differentiation formula with multiple steps of size h: 

and the slow system (5.5) with step-size qh where q is a positive integer: 

Coupling between the subsystems is taken care of by the interpolation or extrapolation 

operator 
k 

m = , - n q - q  with n - q < m 5 n. 

The quantity ,Zm represents interpolation if Go,, # O,l ik+ = 0 and extrapolation if tio,, = 

O@k,s # 0. 
One step of (5.7) and q steps of (5.6) comprises a compound step. The compound step 

may be computed using either a fastest or slowest first strategy. The fastest first multirate 

method integrates (5.4) with (5.6) from tn-q to t ,  using q steps of size h. The required zm 

values are provided by Zml computed by (5.8) using the values zn-kq, . . . , z,-~. Then, the 

slow system (5.5) is integrated from tn-q to t, using one step. 

The slowest first strategy integrates (5.5) using (5.7) with the unknown y, values ap- 

proximated by gn computed by extrapolating the values of yn-q-k+l through to yn-,. This 

is followed by integrating fast system (5.4) from tnVq to t, by (5.6). The slow solution is then 

computed from (5.8) using the z-values z , - ( ~ - ~ ) ~ ,  . . . ,z,. We may then correct the value 
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of zn by reevaluating (5.7) based on yn computed from (5.6) instead of the extrapolated 

value gn. 
The fully implicit multirate step is obtained by iterating the solution of the slow and 

fast subsystems until convergence. This corresponds to using waveform relaxation to solve 

the system of ODES. Waveform relaxation methods will be the topic of the next section. 

Another approach is that of Engstler and Lubich [27], who construct a multirate Richard- 

son Extrapolation method. The extrapolation tableau is used to decide which components 

are sufficiently accurate and consequently those components which require no further work. 

The extrapolation is continued for those components which do not satisfy the local error 

requirement. This provides a dynamic partitioning strategy. A new multirate RungeKutta 

formula, based on embedding low-order methods in the eighth-order method of Dormand 

and Prince is developed in 1281. 

For problems which have relatively few equations involving small time-constants Hofer 

[45] presents a technique which combines implicit and explicit methods. The implicit trape- 

zoidal rule is used to integrate the transient, fast components, while the smooth components 

are integrated with the explicit modified midpoint rule . Rational extrapolation is imple- 

mented to control accuracy and step size. Andrus, [4], considers first order systems which 

have been partitioned into two subsystems. Subsystems are integrated somewhat inde- 

pendently of one another with different time steps and/or integration method. The slow 

response system is integrated with a fourth order RungeKutta method. Fourth order for the 

whole system is then achieved by integrating the fast response equation accurately enough 

so as to contribute terms no larger than fifth order to the slow system. This technique is 

extended to second order systems in [5]. The absolute stability of decoupled RungeKutta 

methods is considered in [6]. It is shown that if the two subsystems are weakly coupled then 

the regions of stability are similar to the classical regions of stability. Automatic step-size 

control based on local truncation error as well as separation error is discussed in [7]. 

5.2 Waveform Relaxat ion met hods 

In this section, we consider the solution of first order systems of ordinary differential equa- 

tions of the form (5.1) using waveform relaxation methods. The essential idea of the wave- 

form relaxation method is related to the Picard iteration [81] for proving the existence of 

solutions for initial value problems. The method became popular as a solution technique 
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for large, stiff systems of ODEs with the paper by Lelarasmee et. al. in the VLSI literature 

[56l- 
The idea is to partition the ODE into p subsystems 

where 

yiERnR"', and kn,=n. 
i=l 

Each subset of solution components, yi, i = 1, . . . , p, is then solved in an iterative fashion. 

For example, a waveform Gauss-Jacobi (WRGJ) method is obtained by iterating 

for k = 0,1,. . . and i = 1, .  . . ,p. During each iteration y:" is solved over a time window 

[0, TI using the possibly interpolated values of the previous waveform for the evaluation of 

the function fi. Analogous to the classical iterative techniques for linear systems of algebraic 

equations, a waveform Gauss-Seidel (WRGS) method is obtained by iterating 

k+l k 
+ I  = f i ( y l  y ,  . . . , y , y . . . , ) for k = 0, I , . .  . . (5.11) 

Each iteration of either of these waveform methods requires the solution of p systems of 

first order differential equations. Convergence is achieved if Ilyk+'(t) - yk(t)ll satisfies a 

termination criteria for all t E [0, TI. 

It is clear that during each iteration of WRGJ, the p subsystems may be solved in 

parallel. Of course there is a rather complicated load balancing issue to deal with. 

Convergence Results 

For linear systems of ODEs of the form 

where Q is a constant matrix, convergence has been studied by Miekkala and Nevanlinna 

in [64] and [65], and Nevanlinna in [73], [74] and [75]. 

A general waveform relaxation algorithm for (5.12) may be written as 
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where M and N denote a splitting of the matrix Q. 

Using the convolution operator and Laplace transform of the differential system super- 

linear convergence of (5.13) is obtained on all finite time intervals. Using exponentially 

weighted norms linear convergence is obtained on unbounded time intervals. 

For general nonlinear systems of ODES of the form 

convergence results first appeared in [56],[101] and [loo]. System (5.14) has a unique solution 

if c ( ~ ) - ~  exists and is uniformly bounded with respect to y, and f is globally Lipschitz 

continuous with respect to y. 

If c is diagonally dominant then both WRGJ and WRGS both converge uniformly on 

bounded intervals [56]. This result applies to both Jacobi and Gauss-Seidel waveform 

techniques. In [17], Burrage extends these results to general waveform splittings and also 

provides error bounds. The result is summarized in the following theorem: 

Theorem 5.2.1 Consider the first order system of diflerential equations (5.1) defined on 

[0, TI and assume there exists a splitting o f f  ( y ) ,  denoted F ( y ,  z ) ,  where F satisfies 

F ( y ,  y )  = f ( y ) ,  F : Rn x Rn + Rn, 

and F is Lipschitz continuous with respect to  y and z .  Then the iteration 

converges un i jomly  on all finite intervals [0, TI. The error, ek = yk - y satisfies 

where L 1  and L2 are the Lipschitz constants of F with respect to  y and z .  

The convergence results presented in the previous section do not guarantee the conver- 

gence of discretized WR algorithms. Discretized WR algorithms result when the ordinary 

differential equations which specify the individual waveforms are solved using a numerical 

method. The interaction between WR algorithms and multistep integration methods is con- 

sidered in detail in [loo]. Convergence is obtained in the case of constant time steps for all 

subsystems and for the multirate WR algorithm provided the waveforms are interpolated 

carefully in the evaluation of f .  
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5.2.1 Partitioning 

A suitable partitioning of components is crucial for the practical implementation of waveform 

relaxation methods. In [27] and [28] the authors use extrapolation methods to compute an 

error estimate. Components of the solution which satisfy the error requirement by a large 

margin are classified as inactive. The other components are deemed active and require more 

computational effort. In the context of waveform relaxation methods an alternate approach 

is presented in [102]. The authors suggest a multilevel partitioning strategy obtained by 

analyzing the elements of the Jacobian matrix. 

Jacobian Techniques 

Waveform relaxation methods have a successful history in the simulation of very large scale 

integration (VLSI) circuits and power systems. The first published report of the use of 

relaxation methods in a circuit simulator was the code MOTIS [20] in 1975. This code was 

up to two orders of magnitude faster than standard circuit simulators of the day. 

Partitioning of the components in these applications have traditionally been tightly 

based on knowledge of the physical system. In [102], the authors describe a partitioning 

strategy which is independent of knowledge of the physics of the ODE system. When 

solving (5.1) with implicit time stepping, a system of nonlinear algebraic equations is solved 

at each iteration. Typically, some modified Newton scheme is used as the nonlinear solver 

requiring the formation of the Jacobian of the system of equations. Partitioning of the 

solution components into decoupled subsystems is achieved by performing a E-decomposition 

([87],[88], and 1971) of a modified Jacobian. 

The edecomposition algorithm attempts to detect blocks of variables which are strongly 

coupled. The algorithm proceeds as follows. Given a row-scaled matrix A and an E > 0 

if laij[ 5 E then set aij = 0. Then, attempt to find a suitable permutation of rows and 

columns which will permute the matrix to block-diagonal form. The variables within each 

block are considered strongly coupled. After the deletion of small matrix entries this is just 

the classic graph theory problem of computing strongly connected components of a graph. 

This problem has been studied extensively and fast O(n + e) algorithms are available where 

n is the number of vertices in the graph and e is the number of edges - see 1961 and related 

references. The E decomposition algorithm repeats this procedure for a sequence of E values 

recording the maximum resulting block size BO(e). The value E which gives the largest 
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decrease in BO(&) also yields the partitioning which is chosen for the waveform relaxation. 

If backward Euler is used for the time integration then yn is updated from yn-l through 

the system of nonlinear equations 

To avoid scaling issues the E-decomposition is not performed on the Jacobian of F ( y ) .  Since 

some of the entries of the Jacobian are functions of the chosen time step small entries may 

arise even if variables are strongly related. The matrix 

is used instead to avoid this scaling problem. 

5.3 Schur Decomposition Methods and the Quasi-Steady State 

Approximat ion 

In [58],[23] and [24], Deuflhard and Maas, develop a decoupled integration technique which 

involves splitting the solution components into fast and slow subsystems using the Schur 

decomposition of the Jacobian. 

Consider a first order system of ODEs written as 

We now linearize the system of ODEs about the initial condition 4 0 .  Letting $ = 4 - 
then the differential equation implies 

Applying Taylor's Theorem to the right side we have 

Since is time-independent, d$o/dt = 0 so the linearized system becomes 
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Assuming F4 is nonsingular, we may solve (5.18) subject to $ ( O )  = 0 to find 

In [58] the authors suggest a change of variables Q = Qd$ where 

is the block Schur decomposition [40] of the Jacobian. The matrix 

is an upper triangular matrix with the eigenvalues of Fd on the main diagonal and Qd is 

an orthogonal matrix. In terms of Q the solution of the linearized problem (5.19) may be 

written as 
1 F t  

Q ( t )  = QdF; (e  - I )F($o) .  (5.20) 

F'rom the change of variables and ODE (5.18) we see that 

Then using 
,Q;'TQ~~ = Q ; ~ ~ T ~ Q ~ ,  

and equation (5.20) we see that Q ( t )  can be written in terms of the rates dQ/dt at t = 0 as 

This representation suggests that small perturbations in the direction of eigenvectors cor- 

responding to large eigenvalues will grow, while those corresponding to small eigenvalues 

while remain small. 

A second decomposition, presented in [24], decouples the system of ODES by eliminating 

the S12 block. The required similarity transformation is specified by the matrix Td, where 
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and Z solves the Sylvester equation 

Equation (5.22) suggests grouping the eigenvalues of F+ according to their real parts and 

defining a splitting parameter p as 

p = maxSZX < 0 and min RX > p. 
XES22 A E S l l  

The change of variables 

partitions (5.1) as 

where the perturbation parameter E is given as E = l/p. 

The quasi-steady-state approximation (QSS A) uses (5.23) to produce the differential- 

algebraic equations (DAEs) 

'Ujo = f (WO, 20) 

0 = g(w0, zo). 

The assumption here is the fast components z reach 

(5.24) 

steady state quickly, which suggests 

replacing the differential equation for z with algebraic constraints. With this choice of E, 

(5.24) is an index 1 DAE and hence may be solved using standard numerical techniques [9]. 

A linearly implicit Euler discretization is used to solve a chemical combustion problem with 

this technique in [23]. 

This procedure is affected by two sources of error. The local truncation error, controllable 

by usual local error estimates, and the QSSA error. How to estimate and control the QSSA 

error is discussed in the next section. 

5.3.1 Estimating the QSSA Error 

Sophisticated ODE packages provide local error control mechanisms which select time steps 

to keep the local truncation error below some user specified tolerance. Using a decoupled 

integration strategy imposes another source of error due to the decoupling itself. 
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The multirate extrapolation method of Engstler and Lubich [28] also gives local error 

estimates from the extrapolation process itself. These estimates are used to dynamically 

partition the system of the ordinary differential equations. 

We now consider an error estimation technique for the quasi-steady-state approxima- 

tion. The QSSA involves reducing the dimension of a system of ODES to a system of DAEs 

with varying numbers of algebraic constraints, cf. (5.24). Numerical integrators for ODES 

and DAEs control local discretization or truncation error. The QSSA error may be esti- 

mated and controlled in a similar way. This will allow a monitor on the chosen partitioning 

and suggest when subsequent Schur decompositions are necessary. This result is outlined 

in [23]; however, the development is quite involved and we include it here for completeness 

and future reference. 

If (w, z) and (wo, zo) denote the solution of the ODE and DAE system respectively, then 

the QSSA error after one integration step At may be written as 

A brief outline of the derivation of an estimate for a: is given [23]. The details of this 

derivation (which is rather involved) are provided below. 

If the reduced problem (5.24) has a unique solution (or if the DAE has index one) then 

the singularly perturbed problem (5.23) may be solved asymptotically [76] as 

where 

The functions mj(7) and n j ( ~ ) ,  with T = t / ~ ,  are exponentially decaying in the sense that 

If we assume that the fast components (z) are controlled by the system dynamics, then 

the QSSA error is dominated by the error in the slow components (w), that is, a x Ilw(At) - 
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wo(At)ll. Ignoring 0(e2) terms from (5.26) we see that cu may be approximated as 

To obtain a bound on IJwl(At)ll we substitute the expansions for w(t) and z(t) from (5.26) 

and (5.27) into the singularly perturbed system of ODES (5.23). Applying Taylor expansions 

to the functions f and g and comparing coefficients of e we obtain the O(1) reduced problem 

(5.24) and the O(E) problem 

respectively. Note, we have suppressed the t dependence. Differentiating the second equation 

from the reduced problem (5.24) with respect to time we obtain 

Using this value of zo and substituting zl from (5.29) into (5.28) we obtain a linear ODE 

for w1, 
fZ9W.f 

~l = ( f w  - fz9;lgw)wl - -. 
9; 

Evaluating (5.26) at t = 0 and comparing O(E) terms we see that wl(0) + mo(0) = 0 or 

wl(0) = -mo(0) (assuming w(0) is €-independent). To find wl(0) we obtain a solution for 

mo(r). Using (5.26) we find that to leading order 

Using the differential equations for w(t) and W(t) we find 
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Since mo -+ 0 as r i w, we may write mO(r) as 

Hence, to bound the QSSA error we have to solve (5.38) subject to 

Solving the first order differential equation for w l ( t )  we may bound wl (At) as 

for some constants L and b. At t = 0 we expect, due to our partitioning, that f,(w(O), z (0) )  = 

gw (w(O), z (0) )  x 0. This suggests w1 (0 )  will dominate b in our bound on wl (At). Fur- 

ther, we expect the step-size control strategy of the numerical integrator, will choose 

At so that eLAt x 1. Therefore, we may obtain an approximate bound on w l ( A t )  as 

ll~l(At>II 5 llw1(O)II. 
To approximate wl(0)  we use the fundamental theorem of calculus, Gauss-Laguerre 

integration, and another application of the fundamental theorem of calculus. If we let 

Changing from t to 0 variables where t = 8no(s) ,  we find 

So, from (5.32) and no(s )  N no(0)e-"s we have 

Interchanging the order of integration and changing variables S / K  -, s we may rewrite wl(0)  

We now use Gauss-Laguerre quadrature [44] to approximate the integral of f,no(0)e-s on 

the interval s E [0, w). The Gauss-Laguerre quadrature formula is given as 
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where 
(m!) 

Hi = 
L k  (xi)Lm+l (xi) ' 

L, is the m-th Laguerre polynomial and xi is the xi-th root of Lm. The error, El is given 

For m = 1 we have the approximation 

Jdm e - ~  (x) dx a f ( l ) .  

Here we have used the first two Laguerre polynomials given by Ll(x) = 1 - x and L2(x) = 

2 - 42 - x2. 

Applying Gauss-Laguerre quadrature to the integral on the interval s E [0, m)  yields 

where a E [0, 00). This implies 

We now use the fact that no(0) = no( l /~ )e - l  to write wl(0) in a form for which the 

fundamental theorem will apply: 

Utilizing the fundamental theorem of calculus one more time and n o ( l / ~ )  = no(0)e-' we 

The final result follows by applying linear approximations to the quantity on the right, 
1 

w1(0) a ; If (wo(O), zo(0) + no(0)) - f (wo(O), zo(0))I 

1 
(5.34) - - [f (~(011 ~ ( 0 ) )  - f (wo(O),zo (O))] . 

K 

Finally, using wO(0) = ~ ( 0 )  we may approximate the QSSA error as 
E 
- [f ( w ( O ) ~ Z ( O ) )  - f (w(O), ~0(0))1 . 
tc 

(5.35) 

This is an intriguing result which expresses the error simply in terms of a difference of the 

slow system function values. 
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5.4 PDE Based Methods 

5.4.1 Space-Time Adaptive hp-Refinement Met hods 

Moving Mesh methods described in Chapter 4 allow spatial mesh points to continuously 

adapt to regions of rapid change in the solution of the physical PDE. Another related 

approach is so-called h-refinement methods which allow mesh refinement or coarsening. 

For time dependent PDEs, p-refinement methods are natural to choose temporal order and 

step size control. 

Flaherty and Moore [69], [70] and [30] develop integrated space-time hp-refinement 

strategies. These methods make mesh and time steplorder decisions in a unified manner. 

Systems of parabolic PDEs are solved using a Finite Element Galerkin method (in space) 

and a Singly Implicit Runge-Kutta method (in time). A posteriori temporal and spatial 

error estimates are used to guide in accepting or rejecting solutions over local space-time 

domains. Moreover, these estimates provide grid, time step and temporal order for the next 

step. 

These methods are computationally robust; however, the resulting space-time meshes 

are complicated and require sophisticated data structures for efficient implementation [29]. 

5.4.2 Schwarz Waveform Relaxation 

There have been three general classes of methods discussed in the literature which apply 

domain decomposition to parabolic problems: 

1. Discretize in time and solve the resulting elliptic problems with classical domain de- 

composition ([HI, [61], and [55]). 

2. Discretize in space and apply waveform relaxation to the system of ODES ([57],[53] 

and [52]). 

3. Subdividing the spatial domain, discretizing spatially and apply waveform relaxation 

across the subdomains ([32] and [%I). 

The first approach, which applied domain decomposition to parabolic problem was prob- 

ably the most natural: utilize the extensive literature concerning domain decomposition 

applied to elliptic problems. This technique suffers from a couple of difficulties. Since the 

elliptic problems arise after discretizing in time, we are forced to use the same time step 
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on each subdomain. Also computed solution information must be exchanged at the end of 

each time step. 

Applying waveform relaxation to the system of ODEs resulting from the semi-discretizat- 

ion in space does allow different time steps in different regions of the spatial domains. 

Information is transmitted between subdomains after solving a subset of ODEs over a time 

window, not after each step. Unfortunately, for Jacobi, Gauss-Seidel and SOR Waveform 

relaxation methods the constants which arise in the error estimates depend negatively on 

the mesh parameter Ax, if the ODEs result from a spatial discretization of a PDE. The 

negative dependence on spatial resolution has been overcome for the classical WR methods 

using multigrid by Lubich and Ostermann [57], [95], and Janssen and Vandewalle [52]. 

The third class of methods overcome the difficulties associated with waveform relaxation 

methods. The later technique has become known as Schwarz waveform relaxation methods. 

These methods were developed by Gander et al. [31], [36], [32] ,1341 and independently by 

Giladi in 1381. These methods allow different numerical treatments (time step and integra- 

tion formula) on different subdomains and convergence independent of the mesh parameter 

without the added complication of the multigrid framework. 

Consider a general parabolic problem 

subject to appropriate initial and boundary conditions on 8 0 .  The Schwarz waveform 

relaxation method can be written quite succinctly in two subdomains R0 and Rl as follows: 

for j = 0,1, 

(k) 
ui"+l)(x;t) = { u ~ - ~ ( x ,  t) X, t E Fj = aRj n Rl-j 

(5.38) 
given boundary condition x, t E 8Rj - rj 

We make things explicit by considering the Schwarz waveform relaxation method applied 

to the one-dimensional inhomogeneous heat equation [36]: 
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We assume enough smoothness on the prescribed data to ensure a unique, bounded solution. 

The spatial domain R = [0, L] x [O, oa) is decomposed as R1 = [0, PL] x [0, oa) and R2 = 

[aL, L] x [0, oo), where 0 < a < p < L. We define v(x, t) on R1 and w (x, t) on R2 so that 

vt = v,, + f(x, t)  0 < x < PL, t > 0 

4 0 ,  t )  = g1 (t) t > O  

4% t) = w(PL, t) t > O  

~ ( 3 ,  0) = ~ 0 ( 4  0 5 x i PL, 

and 

The waveform relaxation iteration proceeds as, for k = 0,1,. . . 

(k+l' = v!.+l) + f (x, t) 0 < x < PL, t > 0 Vt 

v ( ~ + ~ ) ( o ,  t) = gl(t) t > O  

v("+l) (PL, t) = w ( ~ )  (PL, t)  t > O  

v ( ~ + ~ ) ( x ,  0) = uO(x) 0 i x 5 PL, 

I and 

(k+l) = wg+l) + f (x, t)  a L  < x < L, t > 0 w t 

w("+')(cYL, t) = dk) (aL ,  t) t > O  

~ ( ~ + l )  (L, t) = g2 (t) t > O  

w ( ~ + ~ ) ( x ,  0) = uO(x) a L  5 x 5 L. 

In [36] superlinear convergence is obtained on bounded time intervals, and linear conver- 

gence on unbounded time intervals for the one-dimensional heat equation. Convergence is 

independent of the mesh parameter (and hence robust with respect to mesh refinement) and 

the convergence rate improves by increasing the size of the overlap. Results are given for 
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both the continuous case, equations (5.39) and (5.40), and the semi-discrete case (after spa- 

tial discretization). Giladi and Keller [38] prove superlinear convergence on bounded time 

intervals for a constant coefficient convection diffusion equation. Gander (I311 and [32]) 

extends these results to the one-dimensional, variable coefficient reaction diffusion equa- 

tion, and again obtains linear convergence and superlinear convergence on unbounded and 

bounded time intervals respectively. Gander et al. [34] apply overlapping Schwarz waveform 

methods to the wave equation and a constant coefficient, linear convection reaction diffusion 

equation. The effect of the Dirichlet transmission conditions at the subdomain boundaries is 

studied and found to slow down convergence of the algorithms. Optimal transmission con- 

ditions are then derived which lead to non-overlapping Schwarz methods which converge in 

a finite number of steps. Multi-dimensional extensions of these results may be found in [37] 

for the heat equation and [33] for convection reaction diffusion problems. 

An important question remains: how do we dynamically determine the number and 

placement of subdomains? The partitioning ideas discussed in a previous section may pro- 

vide an answer, especially in a dynamic situation where difficult computational regions are 

changing with time. This is still very much an open research problem. 

In the next chapter we propose a new Moving Mesh Schwarz Waveform method which 

inherits the favourable properties of Schwarz Waveform and the spatial mesh resolution 

abilities of Moving Mesh PDEs. 



Chapter 6 

Schwarz Waveform Moving Mesh 

Method 

In this section we propose a new Schwarz Waveform Moving Mesh Method. The basic idea 

is to apply Schwarz Waveform to the system of ODES which arise from semi-discretization 

(in space) of the coupled physical and moving mesh partial differential equation. 

6.1 Continuous Algorithm 

We propose an overlapping Schwarz Waveform Moving Mesh method to solve parabolic 

PDEs in onedimension, 

u t=L(u) ,  o n Q =  [0,1], 

subject to u(x, 0) = uo(x) and Dirichlet boundary conditions. 

We first decompose Q into D nonoverlapping fixed subdomains fij, j = 1, . . . , D. Each 

subdomain hj is enlarged by an overlap region consisting of M mesh points, giving overlap- 

ping domains Q1, Rz, . . . , OD. 

The physical PDE is now discretized along with a moving mesh equation on each sub- 

domain. To avoid mesh crossings from one subdomain to another we fix the mesh points 

on the boundary of hj, j = 1,. . . D l  but allow the mesh points to move within and on the 

outer boundary of the overlap regions. 

Let x j  and tj denote the physical and computational meshes on each subdomain Qj. 

The solution on each subdomain will be denoted as uj. The Schwarz Waveform Moving 
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Mesh method requires us to solve, for k = 1 ,2 , .  . ., and j = 1,. . . , D, 

for x E Rj. 

The boundary values for u$ and x$ come from the values of u;::, x;~: and uk-l k-1 
j+l, Xj+l On 

the left and right boundaries of Rj respectively, from the previous iteration. Each Schwarz 

waveform iteration requires the solution of D moving boundary problems as illustrated in 

Figure 6.1 with D = 3. 

Figure 6.1: Sequence of Moving Boundary Problems solved during one iteration of the 

Moving Mesh Schwarz Waveform method over a time window [0, TI. 
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6.2 Solving the Moving Boundary Problems 

On each subdomain the coupled system of PDEs is discretized in space as described in 

section 4.2. The Moving Schwarz method described in the previous section requires that 

the boundary points of fi j  be fixed to avoid mesh crossings between subdomains. To fix 

the boundary points we adjust the moving mesh PDE corresponding to such mesh points 

to read xB = 0 for each boundary index B of fij. 

The time dependent ODES are solved using backward Euler over successive time win- 

dows. The time dependent boundary conditions on u j  and x j  are obtained by cubic spline 

interpolation from the data of the previous iteration. Interpolation is required since gener- 

ally the data from iteration k - 1 is not computed on the same sequence of time steps as 

iteration k. 

For efficiency, the algorithm is designed with an adaptive time windowing strategy. 

The algorithm begins by solving the sequence of moving boundary problems on a time 

window [0, TI.  If u j  or x j  fails to reach t = T in the maximum allowable time steps, 

the iteration is restarted with a smaller time window. The window is also reduced if the 

Schwarz Waveform iteration fails to converge in 6 iterations. The time window is enlarged if 

the iteration converges in less than 4 iterations. The waveform iteration is terminated when 

11 y; - y:-' 11, 5 6, where y is the vector of unknowns containing both the mesh and solution. 

A tolerance of 6 = l e  - 4 is used in the experiments with local error control tolerance of 

l e  - 6. 

As a final note, the code provides each subdomain with an initial equidistributed mesh. 

That is we solve ut = uo(s) for s E fij and a moving mesh PDE subject to u(x, 0) = 0. The 

provides a grid which equidistributes the initial solution to the PDE over each subdomain. 



Chapter 7 

Numerical Results 

To understand the working details of the Waveform and Schwarz Waveform methods when 

applied to partial differential equations, we begin our experiments on fixed meshes. This 

allows us to experiment with the effect of spatial mesh size, overlap and the maximum 

number of allowable time steps without the complication of moving mesh methods. We will 

conclude this chapter by applying the Schwarz Waveform moving mesh method to Burgers' 

equation and a two spike problem. 

7.1 Model Problems 

As an initial test problem we consider the viscous Burgers' equation, 

where c = 112, xo = 114 or 1/10, and r << 1. The solution is a traveling front of thickness 

O ( E )  which moves to the right from xo at speed c = 0.5. 

We will also use our Moving Schwarz method to solve Burgers' equation subject to the 

initial condition 
1 

u(x, 0) = sin(2xx) + - sin(nx) 
2 

with boundary conditions u(0, t) = u(1, t )  = 0. This results in a solution which develops a 

sharp front and moves to the right with diminishing amplitude. 
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As a second test we will consider a two spike problem whose solution is given by 

The solution consists of two spikes centered at fixed locations xo and xl which begin to 

evolve at different times to and tl. We choose xo and xl to keep the spikes well isolated in 

the spatial domain. The times to and tl are chosen so that tl > to. This allows the first 

spike to grow to its maximum height before the second spike appears. 

7.2 Waveform Relaxation 

We will test Jacobi and Gauss-Seidel Waveform Relaxation for fixed grids, applied to Burg- 

ers' equation with a moderate value of E. To implement the Waveform Relaxation we divide 

the solution components into three fixed subsystems. This will allow comparisons with 

Schwarz Waveform on fixed grids. We note, however, that this may not be the optimal 

partitioning of components for this problem. 

7.2.1 Effect of Overlap and Maximum Number of Times Steps 

In Tables 7.1 and 7.2 we record the number of waveform iterations and total CPU time 

(in seconds) required to solve Burgers' equation with E = l e  - 2 for the Jacobi Waveform 

iteration method with 1000 and 6000 maximum time steps per iteration. The CPU time 

and number of iterations are recorded against the number of mesh points and the size of 

the overlap. Integration is performed with an explicit method. Tables 7.3 and 7.4 repeats 

these experiments for the Gauss-Seidel Waveform method. 

It is clear that even a small amount of overlap produces a tremendous reduction in 

computational time for both Jacobi and Gauss-Seidel Waveform methods. The relatively 

improved convergence properties of Gauss-Seidel as compared to Jacobi is evident for small 

amounts of overlap. Yet moderate overlaps bridge this gap and in fact allow Jacobi to 

outperform Gauss-Seidel. We also note the inability of larger overlaps to further reduce 

CPU times. This is due to the increase of work per iteration as the overlap increases, 

eventually negating any improvements to the convergence rate. The optimal amount of 

overlap appears to depend on the number of mesh points used. It appears as if a 15-25 

percent overlap is optimal for this problem. 
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Although increasing the maximum number of allowable time steps from 1000 to 6000 

per time window has an appreciable effect on the number of waveform iterations, it has a 

negative effect on the overall CPU time for moderate values of N. As the number of mesh 

points is increased, increasing the maximum number of time steps is beneficial. This is due 

to the smaller time requirement imposed by the local error control of the ODE solver for 

smaller mesh spacings. 
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Overlap 

1 0  2 4 6 8 16 32 48 64 128 160 

Table 7.1: Number of Waveform iterations and CPU time (seconds) for Jacobi Waveform 

with MAXSTEPS = 1000 

Overlap 

1 0  2 4 6 8 16 32 48 64 128 160 

Table 7.2: Number of Waveform iterations and CPU time (seconds) for Jacobi Waveform 

with MAXSTEPS = 6000 
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Overlap 

1 0  2 4 6 8 16 32 48 64 128 160 

Table 7.3: Number of Waveform iterations and CPU time (seconds) for Gauss-Seidel Wave- 

form with MAXSTEPS = 1000 

Overlap 

1 0  2 4 6 8 16 32 48 64 128 160 

Table 7.4: Number of Waveform iterations and CPU time (seconds) for Gauss-Seidel Wave- 

form with MAXSTEPS = 6000 
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7.2.2 Rate of Convergence 

The tables of the previous section also verify a remark made earlier. The convergence of 

Waveform Relaxation depends negatively on the size of the mesh spacing. If N is doubled 

then the number of iterations increase by a factor of approximately two. 

Figure 7.1 shows the convergence of Gauss-Seidel Waveform Relaxation over the time 

window [0, 0.11. The left plot shows the reduction in the difference of successive iterates for 

an overlap of 8 for all values of N. Linear convergence is achieved; however, it is clear the 

constant depends on Ax in a negative way. Yet, if we tune the overlap to the best value for 

a particular N (from the tables) then we obtain convergence (to l e  - 12) in 4 or 5 iterations 

for all values of N. 

Figure 7.1: Convergence of waveform relaxation for various spatial mesh sizes and overlap= 8 

(left) and tuned overlap (left). 

7.3 Schwarz Waveform on Fixed Grids 

To compare with the results of the previous section we solve Burgers' equation with E = le-2 

with the Schwarz Waveform method of section 5.4.2. Tables 7.5 and 7.6 record the number 

of iterations and CPU time required to solve the problem with given values of N and overlap. 

An important contrast with the results of the Waveform Relaxation runs is evident. 

Moderate overlap yields convergence independent of Ax. As N is increased the total CPU 
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time does increase. This is due to the extra work per iteration by the ODE solver, not the 

number of Schwarz Waveform iterations. Increasing the maximum number of allowed time 

steps marginally improves the run times and the number of iterations for larger values of N 

and overlap. 

Overlap 

1 8 16 32 48 64 128 160 

Table 7.5: Number of Waveform iterations and CPU time (seconds) for Schwarz Waveform 

with MAXSTEPS = 1000 
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Overlap 

1 8 16 32 48 64 128 160 

Table 7.6: Number of Waveform iterations and CPU time (seconds) for Schwarz Waveform 

with MAXSTEPS = 6000 

7.4 Schwarz Waveform and Moving Meshes 

We now provide some brief experiments to demonstrate the Schwarz Waveform Moving 

Mesh method. 

7.4.1 Effect of a Fixed Mesh Point 

In the design of the Schwarz Waveform Moving Mesh method we fixed the mesh points at 

the boundary of the non-overlapping domains fij. This was done to avoid mesh crossings 

from one subdomain to another. It has the effect of keeping the number of mesh points in 

each subdomain constant. 

To see the effect fixing a node has on mesh movement in the majority of the domain and 

the simulated overlap region we solve Burgers' equation with a traditional moving mesh 

method on the entire domain. The mesh point at x = 0.7 is kept fixed throughout the 

computation. The left plot of Figure 7.2 illustrates the typical mesh trajectories obtained 

by applying a moving mesh partial differential equation to a moving front problem with one 

spatial domain. The mesh points clearly follow and track the front as it moves from left 

to right. The right of Figure 7.2 illustrates a simulation involving a moving mesh method 
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applied to Burgers' equation with E = 0.01 and N = 60 mesh points. The mesh point F, 

initially at x x 0.7, is held fixed by specifying XF = 0 in the specification of the moving 

mesh PDE. As the front moves from left to right the mesh adapts as expected to the left 

of the fixed mesh point. It is clear, however, the mesh points to the right of the fixed mesh 

point do not respond until the front approaches the point F. At that time the points on 

the right race into layer while the points to the left return quickly to a uniform spacing. 

Sufficient care must be taken to ensure there are enough points to the left of F to maintain 

stability and accuracy. 

In our Moving Schwarz method the inability of the points to the right of the fixed mesh 

point to "see" the layer will hopefully be tempered somewhat by overlap. 

Figure 7.2: Mesh trajectories for Burgers' equation on one domain 

7.4.2 Solution of Burgers' Equation with the Schwarz Waveform Moving 
Mesh method 

To provide some initial testing of the Schwarz Waveform Moving Mesh method we solve 

Burgers' equation with E = l e  - 4 with 40 points in each of the three subdomains. The 

top row of plots in Figure 7.3 illustrates the computed solution at times t = 0.25,0.45 and 

t = 1.7. The bottom plots show the corresponding error. As expected we see a sharp front 

moving from left to right. The mesh trajectories as functions of time are displayed in Figure 

7.4. 
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Figure 7.3: Solutions and errors for Burgers' equation with moving Schwarz waveform 

method at t = 0.25'0.45 and 1.7. 

The solution at t = 0.25 and t = 1.7 look fine with actual errors on the order of the 

tolerance controlling the convergence of the Schwarz Waveform iteration. At t = 0.45, 

however, there is an indication of a problem. It is precisely at this time the front encounters 

the boundary between the first and second subdomains. At that moment we see from 

the solution that the meshes are having problems communicating. A possible fix may be 

provided by some of the more sophisticated Schwarz Waveform methods which use "higher- 

order" transmission conditions at the boundary ([34] and [35]). 

Figure 7.5 highlights both the tremendous potential and current difficulties with the 

Moving Schwarz method. In this plot we have displayed the number of time steps per time 

window taken by implicit Euler in each subdomain, labeled I, 11, and I11 in the legend of the 

plot. The dotted vertical lines specify the time at which the layer crosses the subdomain 

boundary. The data shows that while the layer is completely contained in subdomain I 
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Figure 7.4: Moving Schwarz Mesh Trajectories for Burgers' Equation with E = l e  - 4 and 
40 points per domain 

(0 5 t 5 0.4), the work involved to integrate over subdomains I1 and 111 is negligible. 

In fact, until the front is well in domain I1 the time integrator is constantly taking only 

single digit numbers of time steps. As the front approaches the boundaries the number 

of time steps in the adjoining domains increases dramatically again indicating the trouble 

experienced by the Schwarz Waveform. 

Figure 7.5: Number of time steps taken in each subdomain during each time window. 

A final look at what the algorithm is doing as we approach the subdomain boundaries is 
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given in Figure 7.6. Here we have displayed the size of the time windows used to compute 

the solution. Again, we see a dramatic decrease in the size of the time window due to the 

maximum number of allowed time steps being exceeded. 

I 
5 10 15 20 25 30 35 40 45 

Number of time windows 

Figure 7.6: Length of time windows for moving Schwarz method applied to Burgers' equation 

with E = le  - 4. 

Mesh trajectories corresponding to Burgers' equation with the second initial condition 

are shown in Figure 7.7. In this case, the solution evolves to a front in subdomain two. 

This.results in a nearly uniform mesh in subdomain I for the entire problem. The grids in 

subdomains two and three, however, react to the evolving solution and carry the front to 

the boundary at x = 1. 
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Figure 7.7: Moving Schwarz Mesh Trajectories for Burgers' Equation with E = l e  - 3 and 

20 points per domain 

7.4.3 Two Spike Problem 

Figure 7.8 illustrates the exact solution of the two spike problem for times t = 0'0.6'1.6 

and t = 2.7. The solution at t = 0 is u(x, 0) = 0 and hence is not visible in the plot. At 

t = 0.6 the spike centered at xo = 114 has appeared and continues to grow. The second 

spike centered at XI = 314 emerges at t = 312. The final solution shown, at t = 2.7 shows 

both spikes which have nearly reached their maximum height. 

X 

Figure 7.8: Exact solutions of two spike problem at t = 0'0.6'1.6 and 2.7. 
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We solve the two spike problem with 80 mesh points using one and two domains. The 

final computed solution (at t = 2.7) and the corresponding mesh trajectories for the one 

domain calculation are shown in Figure 7.9. The computed solution is illustrated using solid 

line and open circle combination. The open circles indicate the location of the mesh points. 

The exact solution is drawn with a solid line only. Although the moving mesh method 

does capture the two spikes we do see a lost of accuracy in the region between xo and XI. 

Excessive errors arise in the computed solution for t > 3/2 corresponding to the "birth" of 

the second spike. Indeed, the method has great difficulty achieving sufficient resolution of 

the second spike. Attempting to do, by an appropriate movement of mesh points, increases 

the error in the region of the left spike. From the mesh trajectories we see a relatively quick 

movement of mesh points from the region of the left spike towards the emerging right spike 

for t > 312. 

Figure 7.9: Solution at t = 2.7 and mesh trajectories for the two spike problem with one 

domain. 

It is important to note that it is not possible to solve this problem to the relatively 

poor accuracy achieved in Figure 7.9 without a careful choice of monitor function, number 

of mesh points, and moving mesh parameters (e. g. T ) .  The number of mesh points and 

monitor function chosen are vital to allow resolution of the second spike. Using the same 

number of mesh points and the arclength monitor function it is possible to miss the spike at 

xl completely. We control the proportion of points outside of the initial region of difficulty 

(by an appropriate choice of a in (4.7)) the second spike is detected and mesh movement 
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proceeds. The loss of accuracy which occurs as the second spike grows is due in part to the 

time required for the mesh to adapt to new features in the solution. This is controlled by 

the moving mesh parameter T in MMPDE4. Decreasing the value of T facilitates a quicker 

mesh movement and hence a quicker return to an equidistributed grid. This will improve 

the accuracy of the computed solution at the expense, however, of much smaller steps in 

the time integration. 

Figure 7.10: Solution at t = 2.7 and mesh trajectories for the two spike problem with two 

subdomains. 

This problem is ideal for a two domain simulation of the Schwarz Waveform moving 

mesh method. The computed and exact solutions and resulting mesh trajectories are shown 

in Figure 7.10. Compared to the one domain calculation we see improved accuracy between 

the spikes and in regions of high curvature1. As expected we see the mesh remains uniform 

in each subdomain until the spike in that region is activated. At that point the mesh in each 

subdomain adapts to the evolving features of the solution with a simple arclength monitor 

function and moderate values of T .  In fact, comparable accuracy is possible with many 

fewer mesh points than the one domain calculation. 

In Figure 7.11 we compare the time steps taken by the ODE solver (backward Euler) 

for the one domain (left) and two subdomains (right) simulations. In the two subdomain 

case we have illustrated the time steps for subdomain I (light) and subdomain I1 (dark) 

'A monitor function which provides a balance between arclength and curvature may improve the one 
domain calculation in this aspect. 
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corresponding to the first waveform iteration. We see that the time steps chosen for the 

one domain calculation are quite large until t = 114 when the left spike begins to grow. 

The time steps remain relatively steady at lo-* until the second spike emerges at t = 3/2. 

Immediately the time steps are reduced by an order of magnitude as the mesh points race 

to adjust to new features in the solution. 

Figure 7.11: Time steps for one domain (left) and two subdomains (right) solution of the 

two spike problem. 

The time steps chosen in each subdomain by the Schwarz Waveform moving mesh method 

are controlled primarily by the local features of the solution. The time steps in subdomain I 

react to the spike developing at t = 114 and reduce to and remain at this level for the 

duration of the run. Little work is required to integrate the solution and mesh components 

in subdomain I1 until t = 312. At the time the size of the acceptable time steps decrease 

to a level similar to those on subdomain I. It  is important to note that the time steps in 

subdomain I are not affected by the development of the second spike. No mesh points move 

from one subdomain to another. This keeps the time steps an order of magnitude larger 

than the one domain calculation. This more than compensates for the iteration required in 

the Schwarz Waveform moving mesh method, resulting in a 40% faster run time. 



Chapter 8 

Conclusions and Future Work 

In this final chapter we summarize the contents of this dissertation, highlighting the most 

important results and observations and indicating current and future research directions. 

Chapter 1 provides a concise overview of finite difference methods for solving two point 

boundary value problems (BVPs). Difficulties with discretizations on uniform grids are 

discussed to provide a context for the next chapter. 

In Chapter 2 we consider the problem of grid selection for linear BVPs. Specifically, 

we explore the connection between spectral properties of the discretization matrix A and 

mesh quality or resolution. The existence of real eigenvalues is found to be correlated to 

the resolution of boundary or interior layers; however, explicit information pertaining to 

the location of needed mesh refinement is apparently not available. Using the singular 

value decomposition of A it is possible to write the discrete solution of the BVP as an 

expansion of singular vectors. The dominant singular vectors of A indicate mesh quality 

and provide insight to the spatial location of layers and required refinement. Computing 

the dominant singular vector(s) efficiently has proven difficult, although recent fast low 

rank SVD methods [60] may be useful for higher dimensional problems. This exploration 

is ongoing. An alternate technique to obtain spatially relevant mesh information by simple 

iterations on the linear system is proposed and tested for a variety of model problems. 

Further experimentation and theoretical investigation are required to better identify specific 

iterative methods which are well suited to this application. We expect that model problems 

which are at least two dimensional are necessary to illustrate significant efficiencies and 

hence the real potential of the technique. This chapter concludes with a preliminary look 

at the M-matrix structure of A and connections with grid selection. Experiments indicate 
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that local M-matrix structure is a sufficient condition for mesh quality. Unfortunately, the 

investigation has thus far not resulted in any obvious conditions which would ensure an 

M-matrix structure. 

The inverse positivity of a perturbation of a tridiagonal M-matrix is considered in 

Chapter 3. We obtain a simple bound on the size of the perturbation in terms of the entries 

and size of the tridiagonal matrix. An extension of these results to include perturbations 

of more general band matrices is currently underway. An application of this result to time 

stepping for higher order partial differential equations (PDEs) which require nonnegative 

physical solutions is presented. More work is required to identify classes of PDEs as well as 

spatial and temporal discretizations which yield matrices of this form. 

Chapters 4 and 5 are used to set the stage for the Schwarz Waveform moving mesh 

method proposed in Chapter 6. A brief survey of moving mesh methods in one spatial 

dimension is given in Chapter 4. The concept of equidistribution and the development of 

the moving mesh PDE is reviewed. Current implementation strategies are indicated. In 

Chapter 5 we survey decoupled and multirate integration strategies. The idea is to identify 

solution components which evolve on different time scales. These groups of components 

are then integrated with different time steps and possibly different integration methods. 

The main difficulties (and hence potentially fruitful research areas) include the dynamic 

partitioning of components and the estimation and control of the error associated with the 

decoupling procedure. Of primary interest for the rest of the thesis is the Schwarz Waveform 

method for PDEs. Most of the other methods reviewed are developed and tested in the ODE 

context. Further study of these techniques in the PDE situation is warranted. 

In Chapter 6 we propose a new Schwarz Waveform moving mesh method. This is a 

natural coupling of domain decomposition with moving mesh methods. The method is 

defined and implementation details are provided. Numerical results for various decoupled 

integration methods on fixed and moving grids are presented in Chapter 7. The Schwarz 

Waveform moving mesh method performs quite nicely for a model problem having a "two 

spike" solution, which serves as a prototype for problems having difficult solution behaviour 

in more than one region. The numerical solution is found to be not only more accurate, 

but it is computed more efficiently than for a moving mesh method on one domain. The 

Schwarz Waveform method is inherently multirate, allowing different time steps for solution 

and mesh components in different domains. It would be natural in this context to allow for 

different moving mesh parameters in different subdomains. We intend to develop and test 
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strategies which take advantage of this flexibility. The ability to partition the unknowns 

spatially also allows grids to adapt to rapidly changing features of the solution in different 

regions of the physical domain. Tests on Burgers' equation prove to be more of a challenge, 

as regions of rapid change in the solution moves from subdomain to subdomain. This causes 

an increase in the number of time steps in domains which share the difficult regions of the 

solution. Depending on the details of the implementation this may cause a decrease in 

the size of the time window and hence an increase in the total number of time windows. 

The number of waveform iterations required to achieve convergence increases. Many of 

these difficulties appear related to the changing size of the overlap region. This may be 

circumvented by posing the problem in the computational domain ( and discretizing on 

a uniform grid. Numerical studies using this approach are currently underway. Another 

possible approach is to develop higher order transmission conditions, particularly suited to 

moving meshes, to enable the passing of data from one subdomain to another. Finally, 

research into ways of extending the Schwarz Waveform moving mesh method to problems 

in higher dimensions is ongoing. 
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