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Abstract

The numerical solution of differential equations requires selecting an appropriate choice of
mesh, spatial and temporal discretization, and algebraic equation solver. No one aspect
should be considered in isolation. In the first part of this thesis we consider the issue of
appropriate mesh selection for two—point boundary value problems. Specifically, we study
how properties of the matrix corresponding to the discrete problem relate to the issue of
mesh selection. It is found that the quality of a chosen mesh is identifiable with well-known
features of the matrix such as eigenvalues/eigenvectors, and singular values/singular vectors.
Moreover, these matrix characteristics may guide us in the construction of more appropriate
meshes.

Over the last twenty years there has been much attention paid to numerical methods for
differential equations which adapt in either space or time to local features of the computed
solution. In the second part of this thesis, we consider the method of lines approach to
solving parabolic partial differential equations. Discretizing in space, using either a fixed or
moving mesh, results in a system of ordinary differential equations. Traditional implementa-
tions solve these equations using classical integration methods with local error control. This
approach suffers from an inability to take advantage of the solution evolving at disparate
time scales over the spatial domain. To address this issue we consider waveform relaxation
and Schwarz waveform relaxation methods which allow individual or groups of solution
components to be integrated using different time steps or even entirely different numerical
methods. We conclude by proposing a Schwarz Waveform Moving Mesh Method. This
implementation combines the robustness of an adaptive spatial mesh with the multi-rate

abilities of a relaxation method.
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Part I

Boundary Value Problems and

Matrix Properties




¥

Computing the solution of differential equations requires an appropriate choice of dis-
cretization, mesh selection and algebraic equation solver. No aspect should be considered in
isolation. A choice for any of these will affect possible options for the other two. To compli-
cate matters further, the hardware and software you choose to compute your solution may
affect the structure of linear systems which can be solved efficiently and hence determine
the choice of discretization.

The purpose of this work is to investigate connections between the linear system of
equations to be solved and the selection of an appropriate mesh. To provide a test suite of

problems we study convection—diffusion problems of the form
—eAu+b-Vutcu=f

on a square domain (z,y) € [0,1] x [0, 1] subject to various boundary conditions. For small
values of ¢, corresponding to large Peclet numbers, the problem is convection dominated.
Different choices of the problem data can lead to solutions with interesting features such as
boundary, interior, and/or corner layers. Capturing these features can be a challenge for
discretizations on uniform grids and as such provide an appropriate problem set.

We conclude Part I of the thesis by considering a matrix inverse problem. For symmetric,
tridiagonal M-matrices we are able to find a bound on a positive perturbation of the matrix

to ensure a positive inverse.



Chapter 1

Boundary Value Problems

1.1 The Continuous Problem

In this chapter, we consider the solution of convection—diffusion problems of the form
Lu=—-eAu+b - Vutcu=f, 0<exl (1.1)

on a square domain Q := {(z,y)|(z,y) € [0,1] x [0,1]}, subject to Dirichlet boundary
conditions. The problem data b(z), ¢(z), and f(z) are assumed to be continuous or at least

bounded on 2. In 1-d this problem becomes
—eu”(z) + b(z)v/(z) + c(z)u(z) = f(z), u(0) = A, u(l) =B, (1.2)

on the interval z € [0,1]. We begin by commenting on the existence and uniqueness of
solutions of (1.1) and then point out features of the solutions which make them difficult to
compute.

Existence of solutions for c(x) > 0 is a classical result which follows from the Fredholm
alternative applied to the elliptic operator L. In that case, uniqueness follows directly from a
maximum principle. If ¢(z) < 0 then Lu = f will have a unique solution if the homogeneous
problem Lu = 0,u = 0 on 8¢, has only the trivial solution, [39]. The Sturm transformation
(in 1-d) L e

i = exp(i /0 b(s) ds) u,

provides a mechanism to determine conditions on b(z), c(z), €, and the boundary values A
and B so that that the homogeneous problem has only the trivial solution [93]. In what

follows, we will assume that c(z) > 0 and (1.1) has a unique solution.

3




CHAPTER 1. BOUNDARY VALUE PROBLEMS | 4

Problem (1.1) is a perturbation of the first order differential equation
b-Vug+cug = f. (1.3)

Since the order of the reduced problem is less than the original differential equation, it is
clear that the solution of (1.3) will generally not satisfy the boundary conditions on the whole
of 9. For this reason, regular expansions of the solution will not be valid throughout {2 and
(1.1) is referred to as a singular perturbation problem. Analytic approximations for solutions
of such problems may be obtained using the method of matched asymptotic expansions, see
for example [54] and [26], and the Wentzel-Kramer-Brillouin (WKB) method [89] and [98].

Those regions of 8 on which ug does not satisfy the boundary conditions imposed
on u are the locations of boundary layers. These are regions of rapid transition in the
solution which prove to be a challenge to resolve numerically. Under certain conditions on
the coefficient functions, it is possible to determine which boundary conditions ug should
satisfy and hence the location of layers in the solution. Depending on the functions b(z), c(z)
and f(z) and the boundary values 4 and B, the solution of (1.2) may have one or more
regions of rapid transition. A summary for the 1-d case is given in [8] while [66] provides

an analysis in 2-d using the characteristics of (1.3).

1.2 Numerical Solution

In this section we point out difficulties with standard finite difference approximations to
(1.1). We also provide a brief survey of various numerical approaches which attempt to
circumvent these obstacles. Much of the material in this section may be considered classical,
and as such, we will only provide sufficient details to introduce notation and highlight the
important results. Details can be found in the general references [83] and [8]. Specific

non-generic schemes and results will be referenced individually.

1.2.1 Finite Difference Solutions on Uniform Grids

The inability of a uniform mesh to efficiently resolve regions of rapid transition in solutions
of differential equations is well-known. After introducing the required notation we will
demonstrate the problem with a simple 1-d constant coefficient example.

We replace € = [0, 1] with a finite set of points

Qh = {.’L‘j..’L‘j=jh, forj=07~'-7M}
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where h = 1/M is the spatial step size. We let u; denote our approximation to u(z;) for
j=0,...,M. To approximate the derivatives u'(z;) and v”’(z;) in (1.2) we introduce the
forward and backward differences

Dtu: = Uj+1 — Uyj

Uj — Uj—1
7 h .

and D—Uj = h

The operators D! = (D* + D~)/2 and D? = DT D~ then give second order approximations

to the first and second derivatives, respectively, where

Ujp1 — 2U; + Uj—1

Uj+1 — Uj—1
Dlyj=-22"— 9= and D%;=

2h h?
We now replace (1.2) with the discrete system of equations
—6D2u]' + ble’u]' + cju; = fis j=1...,M-1 (1.4)

ug=A4 up = B,
where b; = b(z;),¢c; = ¢(x;), and f; = f(x;). This is equivalent to the system

ajuj-1+ Bu; +vjuj41=f5,  j=1,...,M~1 (1.5)

’LLo=A UM=B,

where

aj=_56‘2'_'éb‘;;l, ﬂjZ%‘i‘Cj, a.nd"yj=-—%+—2b—]}';. (1.6)
Written in matrix form we have the system of equations
(1 0 0 0 0 - 0 uo A
ar o m O 0 e 0 U] f1
0 a2 B2 0 0 ug f2
0o 0 - ' ' : o= o e @D
0 0 amM-2 Bm-2 YM-2 0 uUpM-—2 fu—2
0 0 0  am-1 Bum-1 YM-1| | um-1 fm-1
0 0 0 0 0 1 upM \ B

The scheme (1.4) is second order accurate on uniform grids. It is well known, however,
that such 3—point centered difference schemes are not stable for A > e. This makes such

schemes cost prohibitive for small ¢, which is indeed the situation of practical interest.
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The difficulty is made quite explicit by solving the difference equations which result by
discretizing
—eu’ —u' =0, u(0)=0, u(l) =1 (Model Problem I)
Solving (1.4) exactly for this example we find

;= ri-1 where 7__2e—h
YT eM T 2%+ h’

The continuous solution is monotonic while u; clearly oscillates unless h < 2¢. This would

U

require an unacceptably large number of nodes for convection dominated equations with
ek 1.

The stability problems associated with centered differences for the v/ term have been
remedied in numerous ways. A well-known choice is to use upwinding. That is, replace
u'(z;) by D¥u; if b; < 0 and D~ w; if b; > 0. This gives uniform stability (with respect
to €) and an O(h) uniform approximation outside of the layer. Upwinding is equivalent to
adding artificial diffusion to the differential equation, which stabilizes standard discretiza-
tions. Unfortunately, upwinding is over-diffusive and has the undesired effect of smearing
or widening layers in the solution. Upwinding is a particular case of a more general class of
schemes which use a fitting factor to add artificial diffusion to a problem. These methods

may be written in the form
—eo(q(z;))D?u; + b;DYu; + ciu; = fi, (1.8)

where g(z) = b(z)h/2e. We see that centered differences are again used for the u' term
and diffusion is added through the term ¢. Classical upwinding may be recovered from this
class of methods by choosing o(q) = 1+ ¢. The amount of added diffusion may be tuned by
introducing a numerical viscosity parameter £. For example, by choosing o(q) = 1+£&q it is
possible to tune £ so that numerical solution is exact for constant coefficient problems [15].
The choice o(g) = gcoth g(z) gives the II’in-Allen-Southwell scheme, [2] and [51], which is
second order accurate and O(h) uniformly convergent on the entire interval for the variable
coefficient problem.

The inadequacy of central difference schemes on uniform grids for convection dominated
equations is a well-known issue, and is not restricted to constant coefficient boundary layer
problems in one dimension. In fact, similar behaviour exists for problems with multiple
boundary and/or interior layers, and for variable coefficient or non-homogeneous terms as

the following examples indicate.
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)

Examples

A layer at one end

e +u'=1, u(0)=1,u(l)=1 ~ (Model Problem II)

oF -
|
o2} \ . ]
—04 1 ! — t L ! L L L
o] 0.1 0.2 0.3 0.4 0.5 0.6 07 08 0.8 1
X

Figure 1.1: Model Problem II: computed solution with A = 0.05 and € = 0.01 and a fine
grid solution.
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An interior layer

euw' + (z—1/2)u' =0, u(0)=0,u(l) =1 (Model Problem III)

1.2

0.8

06

0.4

0.2

-0.4 . L I L I L t L I
0 0.1 0.2 0.3 04 0.5 0.6 07 08 0.9 1
X

Figure 1.2: Model Problem III: computed solution with h = 0.05 and € = 5e¢ — 4 and a fine
grid solution.
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A layer at both ends

—eu” + (z —1/2)u’ =0, u(0) =0, u(l) =1 (Model Problem IV)

0.8
06 B
i T
u
0.2
. H_N/X
\
|
0.2 /-
|
0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1
X

Figure 1.3: Model Problem IV: computed solution with A = 0.05 and ¢ = 5e — 3 and a fine
grid solution.
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A 2-d example

—eAu+ (1+ 224+ y)>)u, =0

w(0,1) = u(z,1) =0, wu(z,0) =64z3(1—2z)3, wu(l,y)=64y>(1 -y)3.

Figure 1.5: Unresolved boundary layer in a 2—d problem.

10
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These examples indicate that a moderate number of equally spaced mesh points fail to
resolve boundary or interior layers for convection dominated equations. This is reflected
in the mesh scale oscillations in the computed solutions. As we have mentioned there are
schemes available which circumvent this problem by adding artificial diffusion. Unfortu-
nately, obtaining high order accuracy independent of ¢ is a challenge, and is very much
problem dependent. Another approach is to tune the discrete equations, not by adding

diffusion, but by altering the computational mesh.

1.2.2 Finite Difference Solutions on Nonuniform Grids

The general fitting techniques mentioned above work well on relatively simple problems
which have layers at one end of the interval. For more complicated problems with more
than one boundary layer and/or interior layers more sophisticated methods are required.
An alternative approach is to make a selection of nodes which is more appropriate for
the problem, that is, concentrating nodes in regions of the domain where the solution has
interesting features.

To facilitate nonuniform grid spacing, we discretize our problem using finite differences

on an arbitrary mesh

Qr = {$i|0=$0<$1<"'<$M=1}-

Ifwelet hj = zj41—~2;,7=0,...,M—1then h = max h;. We replace (1.2) by the discrete

system of equations

—GDCUJ' + bjDO’LLj + cju; = fj, i=1...,.M~-1, (1.9)

up = A uy = B.

The difference operators D%; and D¢u; provide approximations to the first and second

derivatives of u at z;. On Qﬁ, D% and DCu; are given by

1
DV, = h2_ (winy — ui) + B2 (u; — uj_ 1
Uj vhjhj—l(hj""'hj—l)( J—l(u.7+1 u])+h3(u1 Uj 1))’ (1 0)
2
Dfu (hj—1(ujy1 — uj) — hj(uj — uj-1)), (L.11)

hj—1hj(hj + hj—1)

forj=1,...,M — 1. This gives the linear system of equations

ajuj-1 + Biuj + v = f; (1.12)
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for j=1,...,M — 1, with boundary conditions
ug = A and up = B.

The coeflicients aj, B;,; are given by

2¢ bi(hj —hj1)

i = 1 <~2€ _bjhj) ,B‘_ + + ¢
7T hj+ ki \hjoy hjm1)” 7T Rk hihj-1 "
1 —2¢  bih;_1
and «v; = + - ) .
& hj + hj—1 < h; h;

In matrix form we obtain a system identical to (1.7) with a5, 8;, and -y; redefined as above.

Equation (1.9) is a 3—-point centered difference scheme like (1.4). A Taylor series anal-
ysis, however, demonstrates that Du; is only a first order approximation to u”(z;) when
hj # h;j—1(1+ O(h;)). Moreover, (1.9) suffers from the same instabilities, which appear as
oscillations in the computed solution, unless the nodes are chosen to keep the maximum
h; in the neighborhood of the layer sufficiently small. Pearson [79] used (1.9) along with
a basic mesh redistribution strategy and continuation in € to solve various BVP with ¢ as
small as 1071°,

Second order accuracy may be recovered by introducing a staggered mesh. Any equation
of the form (1.2) is easily rewritten as

14

u’ = (p(z)u) + r(z)u + ¢(z), (1.13)

where

p@) =2 re) = Lele) - @), and gl@)=-L2.

To discretize (1.13) we first rewrite the second order differential equation as a system of first
order equations

4

v = plz)utv (1.14)

Vo= r(z)u+g(x). (1.15)

We now discretize (1.14) using the midpoint rule on [;,z;+1] and (1.15) on the staggered

interval [z;_1/2,%;4+1/2). After a little algebra (see [8] for details), a second order 3-point
discretization of (1.13) results. Written in terms of u values we have

2 1 1 1 1
R h_j(uj“ - uj) — Ef_‘;(ﬂj —uj—1)~ '2"pi+1/2(uj+1 +uj) + -2'pi—1/2(u1‘ + uj-1)

= T(f:j)ﬂj +q(5:J) . ' (116)
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In this formula, pj41/2 = p(Tj41/2), &; is the midpoint of [x;_1 /3, ;11/2], and 4; is the value
of u at z; obtained by quadratic interpolation from u;_1,u;, and uj4;.

Comparing this to (1.12) this difference scheme may be written in matrix form with

aj, B; and +y; redefined as

2 Pj-1/2 -
a; = + —r(Z;)d;
J hj_l(hj + hj_l) hj + hj_l ( J) J
2 P -
B = + L (i)

hj_l(hj + hj_l) hj + hj_l
’_2(h;1 + hj"_ll) Pj-1/2 — Pj+1/2
h; + hj-1 hj + hj-1

il

Y T(Z5);,
and f; = ¢(Z;). The quantities d;,7; and &; are the coefficients of u;_1,u; and 4,45 in
the interpolation expression for u;. _

Any discretization on a nonuniform mesh must be accompanied with some mesh selection
strategy. As a minimum requirement we must choose a mesh so that the computed solution
on that mesh is “better” than the solution computed on a uniform mesh of the same size.
How do we choose such a mesh? The simplest case occurs when we can be guided by some
a priori knowledge of the exact solution. For example, in physical problems we may have
experimental or theoretical evidence which suggests how the solution will behave. In the
finite element literature, a posteriori error estimates are used to extract information from a
computed solution to choose a better grid. In the second part of this thesis we will review
another possibility which allows for the simultaneous calculation of an appropriate mesh and
the solution on that mesh. In that case the mesh is chosen so that the computed solution
approximately equidistributes some indicator of the solution error.

As we have seen, solving linear two point boundary value problems with finite differences
(or finite elements/volumes for that matter) require the solution of a linear system. In the
next chapter we begin to ask if the linear system itself contains information which may

guide us in the construction of a better mesh.




Chapter 2

Mesh Quality and the Linear
System

Upon discretizing a linear boundary value problem, we obtain a linear system of equations
Aul = fP whose solution u = (ug,u1,...,up )T is an approximation to the solution of the
continuous problem on Q". In this section we will highlight how certain properties of the
matrix A are related to the appropriateness of the chosen mesh. Ultimately, one would like

to be guided in constructing a new, “better” mesh, by these observations.

2.1° The Spectrum of the Linear System Matrix

In this section we provide a derivation of the eigenvalues of the linear system matrix cor-
responding to a discretization of a linear, constant coeflicient two-point BVP on a uniform
mesh.

Consider a nonsymmetric tridiagonal matrix A = tridiag {e, 8,7} € C™*™. Assume ¢
is a eigenvector of A with associated eigenvalue A. Then Aq = \g gives rise to the linear
difference equation

agi-1+ (8- Mg +vq4+1 =0,

for I = 1,...,m. To close the system we assign boundary conditions g = gm4+1 = 0.

Assuming q; = 7' we obtain the characteristic roots r. as solutions of the quadratic equation

o+ (B—Nr+r* =0,

14
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and this yields

_A-ax/(—p)Z—4ar
= = .

Therefore, each component, ¢;, may be written as a linear combination of ri and r* , that

T+

is,
— l l
g =cry +car_.

The boundary condition ¢y = 0 implies ¢; = —¢z, and
g =c(rh —rb). (2.1)

Now, gp+1 = 0 gives
m+1 = Tm+1

T+
or mtl
)
T_—
which implies
rp=r_emd,  k=0,1,...,m. (2.2)

By inspection we see that k = 0 would imply 4 = r_ and hence ¢ = 0 from (2.1).

Rewriting (2.2) we have
—mki wki

T4+€ m+l = r_em+1l s

and substituting the expressions for 7, and r_ and expanding the complex exponentials we

obtain L
T
)\=,3:|:2\/a")’COSm—-——H, k=1,...,m. (23)
The minus sign in the £ can be ignored since it just repeats the eigenvalues.

Using this expression for A we find the following expression for the eigenvector compo-

1/2
k) _ o [ .kl
q —2c7,(7> smm+1,

nents:

where c is an arbitrary constant.
The nature of the eigenvalues of A depends on the sign of the product ay. For problems

of the form (1.2) with constant coefficients we have from (1.6)

a_e b J _e+b
=Tz op 2 TETR oy
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An easy calculation shows that a7y is nonnegative if h < 2¢/|b| and negative if h >
2¢/|b|. This says that the matrix A will have all real eigenvalues if A < 2¢/|b| and complex
eigenvalues with constant real part otherwise. Moreover, using the fact that

m—k+1 k
m+1 m+1’

and the cosine addition formula we see that ‘
(m—k+ )7 kr
cos | ——— } = —cos ,
m+1 m+1

Ak = Am—k+1s

which implies that

that is, complex eigenvalues always occur in conjugate pairs.

2.1.1 Examples

We now consider a concrete example to demonstrate the relationship between the nature of
the eigenvalues and the quality of the chosen mesh. As a first example recall model problem
I from Chapter 1,

—ev’ —u' =0, u0)=0,u(l)=1. (2.4)

Using the analysis from the previous section we expect real eigenvalues if h < 2¢ and
complex eigenvalues with constant real part if A > 2¢. In Figure 2.1 the mesh size A is
chosen larger than 2¢ resulting in a mesh which does not resolve the boundary layer at z = 0.
The computed solution exhibits mesh scale oscillations as predicted by solving the discrete
equations. As anticipated, the eigenvalues of the linear system matrix appear as complex
conjugates. There are actually two real eigenvalues at A = 1 which result due to the use of
non—eliminated boundary conditions. To impose Dirichlet boundary conditions the first and
last rows of the linear system matrix A are chosen as (1,0,...,0,0) and (0,0,...,0,1) with
the right hand side vector containing the boundary values. These eigenvalues will appear
in all our figures. Figure 2.2 demonstrates the real eigenvalues which result by choosing
h < 2¢. The boundary layer is now resolved resulting in a smooth monotonic solution.

The inhomogeneous boundary value problem (model problem II)

—eu —u' =-1, (0)=1, u(l)=1,
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Figure 2.1: Numerical solution (left) and eigenvalue distribution (right) corresponding to
an unresolved boundary layer.
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Figure 2.2: Numerical solution (left) and eigenvalue distribution (right) corresponding to a
resolved boundary layer.
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¥

again has a sharp layer at £ = 0 for ¢ < 1; however, the solution is no longer constant
outside of the layer. On the left of Figure 2.3 we illustrate the magnitude of the imaginary
part of the largest eigenvalue of A for h > 2¢. As shown, the Im\| — 0 as h — 2¢*. For
h = 2¢ all the eigenvalues of A (besides the two eigenvalues at A = 1) are given by A = 1/2e.
As h decreases past 2¢ the eigenvalues remain real with |A\| — oo as h — 0. The behaviour
of the eigenvalues as a function of & for fixed ¢ is easy to see analytically from the expression

for the eigenvalues given in equation (2.3).

5000 B 10"
fm A 3 Re 2]
’1‘ 10°F 4
4000 |- L
\y 10’y ]
‘a q
+
w0

3
ey

10 10
2 2

Figure 2.3: {Im )| for h < 2¢ (left) and |Re A| for h > 2¢ (right).

Although our analysis of the eigenvalues of the linear system matrix is restricted to
constant coefficient boundary value problems on uniform grids, the next example again
illustrates the connection between resolving a region of rapid transition and the emergence

of real eigenvalues. Recall model problem III, a variable coefficient interior layer problem,
—eu’ —(z—1/2)v' =0, u(0) =0, u(l)=1.

The solution of this problem, shown in the bottom left of Figure 2.4, has an interior layer of
width O(v/€) at z = 1/2. As the mesh is refined (from top to bottom in the figure), we see
the eigenvalues transform from complex with nearly constant real part to a combination of
real and complex eigenvalues. Due to the variable coefficient of the v’ term, a mesh which
sufficiently resolves the layer no longer corresponds to a linear system matrix with all real
eigenvalues. The distribution on the left has a larger number of real eigenvalues due to the

larger proportion of points with local mesh spacing h < 2.
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2.1.2 Effect of Nonuniform Grids

It is quite clear that uniform grids are not sufficient for practical problems involving sharp
regions of rapid change in the solution. Unfortunately, as we move away from a uniform
mesh we also lose exact expressions for the eigenvalues and eigenvectors of the linear system
matrix. In this section we hope to illuminate the effect of the choice of mesh on the spectrum
of the matrix through several well-chosen examples. We restrict ourselves to piecewise

uniform refinements and equidistributed grids.
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Figure 2.5: Eigenvalue distributions corresponding to two different piecewise uniform grids.

In Figure 2.5 we depict the eigenvalue distributions of the linear system matrix corre-
sponding to model problem I for two different piecewise uniform grids. The plot on the left
was generated with a simple grid composed of two uniform sub-grids. For 0 < z <1/2 we
choose a spacing h; < 2¢ and for 1/2 < x < 1 we choose ha > 2¢. The plot on the right
corresponds to a grid with a much smaller region near x = 0 with h; < 2¢. Both grids
are chosen so that the boundary layer at = 0 is sufficiently resolved. Both distributions
contain real and complex eigenvalues. The real eigenvalues reflect the fact that the grids
have local mesh spacings which satisfy the requirement h < 2¢. Complex eigenvalues arise
due to mesh points outside the layer where h > 2¢.

We now compare eigenvalue distributions of the linear system matrix for uniform and
equidistributed grids. The eigenvalues shown on the left plots in Figure 2.6 correspond
to uniform grids while the right plots correspond to equidistributed grids with the same
number of points. In the top left we choose 101 equally spaced points, enough to resolve the

boundary layer at £ = 0. As we have already seen the eigenvalues are real indicating that
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the local mesh spacing satisfies k < 2¢ across the entire interval. Using an equidistributed
grid with the same number of points (top right) we again obtain real eigenvalues. We should
note, however, that the largest eigenvalues in this plot are many magnitudes larger than
those corresponding to the uniform grid. This is due to the small local mesh spacing for the
points in the layer with the equidistributed grid. We have seen in the previous section that
the magnitude of the largest real eigenvalue grows large as h — 0. A cluster of eigenvalues
of size 10! ~ 102 is quite evident for the equidistributed mesh. These eigenvalues reflect
those mesh points outside the layer with local mesh spacing similar to the uniform mesh

with the same number of points.
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Figure 2.6: Eigenvalue distributions corresponding to uniform (left) and equidistributed
(right) grids.

In the bottom two plots of Figure 2.6 we repeat the experiment for the same boundary

layer problem but with only 30 points. It is clear that the uniform mesh is not capable of
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¥

resolving the layer. The lack of any real eigenvalues suggests the mesh does not achieve
a local mesh spacing of h < 2 anywhere on the interval. The equidistributed mesh with
the same number of points, however, is able to resolve the layer. The mesh points in the
layer satisfy the mesh spacing requirement and real eigenvalues result. In contrast to the
equidistributed mesh with 101 points complex eigenvalues are now evident. This is due to
those mesh points outside the layer which are unable to satisfy h < 2¢. With 101 points the
equidistributed mesh is able to provide small mesh spacing in the interval containing the
boundary layer and keep the mesh spacing relatively small outside of the layer. This is not

possible with only 30 equidistributed points for this problem:. |

We must stress at this point that the presence of real eigenvalues is necessary, but not
sufficient evidence that the mesh has resolved a boundary layer for this class of convec-
tion dominated BVPs. The real eigenvalues merely indicate that the local mesh spacing
requirement is satisfied somewhere in the interval. Indeed, if we repeat the experiments
with either the piecewise uniform or equidistributed mesh by reflecting the mesh points in
the line z = 1/2 (and thus creating inappropriate meshes) we will obtain nearly identical
eigenvalue distributions.

As a last example, we consider our model problem I with € = le — 4. This would
require at least 5000 equally spaced mesh points to resolve the boundary layer. We use an
equidistributed grid with only 40 points. The computed solution and associated eigenvalues
are illustrated in Figure 2.7. Again we note several important points: the number of real
eigeﬁvalues reflect the number of mesh points in the layer, that is, those for which h< 2¢;
the complex eigenvalues indicate those mesh points outside of the layer for which A > 2¢;

and the size of the largest real eigenvalues reflects the mesh spacing in the layer region.

2.1.3 Further Comments

As we have seen discretizing a constant coefficient singular perturbation problem (1.2) on a
uniform mesh with centered differences results in a linear system to solve for the approximate
solution. The linear system matrix is composed of a balance of a symmetric, positive
definite contribution from the diffusion term and a skew-symmetric contribution from the
convective term. Positive definite matrices have real eigenvalues, while skew symmetric
matrices have purely imaginary eigenvalues. If h is larger than 2¢ then the skew—-symmetric
matrix dominates resulting in complex eigenvalues.

Using upwinding for the convective terms results in a linear system matrix comprised
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Figure 2.7: Equidistributed solution (left) and corresponding eigenvalues (right) for a sharp
boundary layer.

again of a symmetric, positive definite matrix from «” and a lower triangular matrix from
the u’ term. In this case, the lower triangular matrix increases the diagonal dominance of
the system matrix resulting in real eigenvalues independent of the mesh spacing. In fact, as
we have mentioned this leads to a discretization which is overly—diffusive. This may cause
excessive widening of boundary layer. |

Tuning the diffusion, equation (1.8), allows the user to balance the positive effect of
increasing the diagonal dominance of the diffusion contribution to an optimal value, while

ensuring the discretization is not over—diffusive.

2.2 Singular Value Decomposition

Although the eigenvalues of the linear system matrix do yield an indication as to the ap-
propriateness of the chosen mesh, we are unable to decide if the refinement is in the correct
location spatially. As we will see in this section, the singular vectors of the linear system
matrix provide grid information which is spatially relevant.

We now consider the effect of the grid on the singular vectors of the matrix A. Every

real, rectangular matrix A € R™*™ has a singular value decomposition (SVD) [40]
A=UZV™.
The orthogonal matrices U and V may be written column-wise as

U= (u,ug,...,um) €ER™™ and V= (vi,vq,...,v,) € RV,
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and the diagonal matrix ¥ written as
T = diag(oy,02,...,0p) E R™™ with 01>092>:--20p, 20,

and p = min{m, n}.
If A is square and nonsingular then o, > 0 and the SVD may be used to write the

solution of Au = f as

n .
U= Z o4, (2.5)
i=1

where a = Z71U*f.

As we have seen, discretizing linear two point boundary value problems gives a linear
system of discrete equations Au = f. So (2.5) is a representation of the approximate solution
of the BVP. Equation (2.5) and the expression for o demonstrate that the singular vectors
corresponding to the smallest singular values are dominant in the expansion for u. Of course
how well the solution of the BVP resembles these low frequency or smooth singular vectors
depends on the distribution of the singular values and the vector a. This is a reflection of
the fact that the existence of layers in solution depends not only on the differential operator,
represented by the matrix A, but also the boundary values and the inhomogeneity in the
differential equation which is stored in the vector f? and exerts its influence through a.

As we will see from various examples, boundary and interior layer information is con-
tained in the low frequency singular vectors. Furthermore, the smooth singular vectors also
indicate important mesh information. When a layer in the continuous solution of a convec-
tion dominated problem is not resolved we have seen that centered difference schemes yield
oscillations in the computed solution. The oscillations are an important indicator that we
have interesting, unresolved behaviour in the continuous problem. Furthermore, the location
of the largest oscillations indicates the position of the layer in the continuous solution and
hence where higher mesh concentration is required. We will demonstrate that the dominant
singular vectors also have oscillations on mesh scale when layers are not resolved.

In Figure 2.8 (left) we illustrate the singular vector corresponding to the smallest singular
value of model problem I with ¢ = 0.01 and N = 201 uniformly spaced mesh points. The
vector a which determines how the solution is represented by the smooth singular vector is
shown on the right of the figure. The components of o are essentially zero except for the
last entry, which is precisely the contribution of v, to the solution of the boundary value

problem.
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Figure 2.8: The dominant singular vector (left) and « (right) for model problem I.

To begin to understand what information pertaining to the solution of the boundary
value problem and appropriateness of the chosen mesh is contained in the SVD of the
matrix, we consider a few examples from our selection of model problems. We begin by

considering model problem IV which we repeat here for convenience:
—eu' +(z~1/2)0d' =0

on [0,1], with u(0) = 0 and u(1) = 1, and ¢ <« 1. This problem has two sharp boundary

layers at =0 and z = 1.
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Figure 2.9: The three most dominant singular vectors corresponding to a two layer problem

on a fine mesh.

The singular vectors of the linear system matrix of model problem IV are displayed in
Figure 2.9. Here we have used a mesh sufficiently fine to resolve the boundary layers. We
see that the layer information, most importantly location and steepness, is contained in

those low frequency singular vectors.
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As a second example, we consider model problem II,
e +u' =1

on [0, 1], with u(0) = 1 and u(1) = 1. The solution of this problem has a boundary layer at
z = 0 and an outer solution which looks like u = z. Figure 2.10 contains a plot of the three
singular vectors corresponding to the smallest three singular values. Again we have chosen

a mesh which resolves the layer.
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Figure 2.10: The three most dominant singular vectors corresponding to model problem II

on a fine mesh.

We now discretize the problem on an inappropriate mesh, one with an insufficient number
of points to resolve the boundary layer. The dominant singular vector again resembles the

under-resolved solution as shown in Figure 2.11.

~0.2[0

Figure 2.11: Under-resolved solution and corresponding dominant singular vector for model

problem II.

Finally, we consider model problem III, a boundary value problem with an interior layer
located at z = 1/2,
e +(x—1/2)0v' =0
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on [0, 1], with u(0) = 0 and u(1) = 1. The dominant singular vectors of the linear system
matrix corresponding to a fine and an under-resolved grid are shown on the left and right

of Figure 2.12 respectively.
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Figure 2.12: The dominant singular vectors corresponding to model problem III on a fine

(left) and under-resolved (right) mesh.

The singular vectors not only tell us that we have a mesh resolution issue, they also
indicate spatially where further mesh refinement is necessary. This is exactly what the
eigenvalues were not able to do. »

Unfortunately, computing the singular vector corresponding the smallest singular value is
not an easy chore. An obvious choice of techniques would be to use some form of the Lanczos
(applied to AT A) or Arnoldi algorithms to compute the singular vectors, see [84] as a general
reference. Lanczos and Arnoldi are iterative techniques to spectral decompositions akin to
conjugate gradients [43] and GMRES [85], respectively, for solving large system of linear
equations. Experiments with the Lanczos algorithm, however, indicate that convergence to
the dominant singular vector of A (or eigenvector of AT A) is quite slow. Fast convergence
is achieved to the largest eigenvalue and associated eigenvector. This is not the end of the
spectrum that we are interested in for this application. Typically, the fastest algorithms to
converge to the smallest eigenvalue would involve iterating on A~!. Each iteration coming
at a cost roughly equivalent to a linear solve involving A. Since we are trying to ascertain
mesh quality without actually solving the BVP this may be too high a price to pay. Some
experiments which involve iterating on the original linear system are given in the next section
and provide a glimmer of hope.

There is also some recent work by McSherry and Achlioptas [60] concerning acceleration

techniques of Lanczos which may be applicable.
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2.3 Detecting Layers with Iterations

A poor mesh selection will result in non-physical oscillations in the computed solution and
singular vectors of the linear system matrix for convection dominated equations discretized
by centered differences. In this section we will illustrate how simple iterations on the linear
system may be used to detect boundary and/or interior layers without converging to the
solution of the boundary value problem.

In Figure 2.13 we illustrate the solution of model problem I with ¢ = le — 4 with a
rather crude mesh with uniform spacing A = 1/100. Clearly, this mesh is not able to resolve -
the layer at z = 0. In fact, a uniform mesh consisting of several thousands points would
be necessary. To the right of the solution we have displayed the result after 10 iterations
of CGNR (Conjugate Gradients applied to the Normal Equations) applied to the discrete
equations with a random initial guess (more on this later). At first glance, the approximate
solution does not resemble the actual solution at all, except for the obvious oscillations.
Figure 2.14 once again illustrates the approximate solutions after 10,20 and 30 iterations.
This time, however, we have averaged the results with a simple [1,2,1] filter. The data we
have pictured then is the absolute value of the difference between the approximate solution
and its averaged counterpart. Although we have no grid point in the layer it is clear the

approximate solution is having difficulty satisfying the boundary condition at z = 0.

Figure 2.13: Solution of model problem I with € = le — 4 and N = 101 mesh points (left);
Approximate solution after 10 CGNR iterations (right).
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Figure 2.14: Difference of approximate solution and filtered approximate solution for model
problem I after 10,20, and 30 CGNR iterations.

Repeating the experiments on model problem I with a finer mesh consisting of 501
points produces similar results. The numerical solution is shown in the top left of Figure
2.15. Again the mesh is not able to resolve the layer, however, the oscillations are contained
in a much smaller region near the boundary. A relatively few CGNR iterations detects the
region of interest. The work involved is nominal considering that CGNR would take nearly
400 iterations to obtain the numerical solution to an accuracy of 10~5. It is important to note
that after 20 iterations CGNR has not converged, or even obtained a good approximation
of the numerical solution, in fact |ju — u?°||o, = 1.39.

Model problem IV is a boundary layer problem with layers at both ends of the interval.
An inappropriate choice of mesh for this problem has peculiar results. Not only do centered
differences result in oscillations in the computed solution, but the layer at £ = 0 may be
completely missed if the layer at £ = 1 is unresolved. As shown in Figure 2.16, however, a
few CGNR iterations are able to detect the layers at both ends of the interval.

As a final example, we consider model problem IIT with ¢ = le — 8 which results in a
relatively sharp interior layer at £ = 1/2. Figure 2.17 demonstrates the results of 20 CGNR
iterations with a varying number of mesh points. Once again, it appears that a moderate
number of mesh points in the chosen grid works best. In this case 151 and 201 mesh points

are sufficient to quickly indicate the presence of a region of interest in the solution.

1
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Figure 2.15: Solution of model problem I with ¢ = 1e — 4 and N = 501 mesh points (top
left); Difference of approximate solution and filtered approximate solution after 10,20 and

30 iterations of CGNR (top right and bottom).
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Figure 2.16: Difference of approximate solution and filtered approximate solution of model
problem IV with ¢ = le — 4 after 20 iterations of CGNR for N = 51,151, and 201 mesh

points.
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Figure 2.17: Difference of approximate solution and filtered approximate solution of model
problem III with e = le— 8 after 20 CGNR iterations for NV = 101, 151 and 201 mesh points.

We end this section with an important comment about the choice an initial guess for
the iterative solver. For all the experiments presented here a random initial vector was
used. In fact, the results depend heavily on this choice. In Figure 2.18 we repeat the exact
same setup used to generate the last picture in Figure 2.16 except we use an initial guess
of the constant vector (1,1,...,1)T. The left plot is of u?° while the right plot is of the
usual difference between u?° and its filtered value. The results are not nearly as impressive.
In this case, the choice of initial guess coincides with the boundary value at z = 1. The
iterations produced by CGNR detects that the early iterates agree with the boundary value
and is happy to keep them constant on that end of the interval. The iterations do detect a
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problem at z = 0 as it tries, unsuccessfully, to satisfy the boundary condition there resulting
in the oscillations. With this choice of initial data CGNR would need to iterate almost to

convergence to be able to deduce anything definitive from the iterates.
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Figure 2.18: After 20 iterations of CGNR with a non-random initial guess.

2.4 M—-Matrices

Ostrowski [77] introduced a rich class of matrices known as M-matrices in 1937. A matrix
A is a nonsingular M-matrix if and only if A is nonsingular with a;; < 0 for 7 # j and
A~! > 0. There are many characterizations of M—matrices. Berman and Plemmons [12] give
50 different but equivalent definitions. A condition which is easy to check is that a matrix
A is a nonsingular M-matrix if and only if a;; < 0 for i # j and A is generalized strictly
diagonally dominant. A matrix is said to be generalized (strictly) diagonally dominant if
there exists a diagonal matrix D with positive entries so that AD is (strictly) diagonally
dominant !. It is clear that a sufficient ,but not necessary, condition for A to be a M-matrix
is that A is strictly diagonally dominant with non-positive off-diagonal entries.
M-matrices have the nice property that if there exists a vector w with Aw > 1 (component—

wise), then [|[A7}|oo < |lw]loo. With respect to discretizations of boundary value problems

! A matrix C is diagonally dominant if
n
lcis| 2 Z lei] for 1=1,...,n,
=1
J#L

and strictly diagonally dominant if the equality is removed.
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1

a bounded inverse is sufficient to prove stability of a discretization, that is we can show
R
lull < ClIL ],

where L" is the discrete version of the differential operator which defines the boundary value
problem .
For our class of BVPs, equation (1.2) with c(x) > 0, discretized on a uniform grid with

centered differences a sufficient condition to ensure A is a M—matrix is

2¢ .

This agrees, in the constant coefficient case, to the condition which guarantees that A has
only real eigenvalues. Moreover, this assumption ensures that the computed solution is
oscillation free, that is, all boundary layers are resolved. ”

In section 2.1.3, we commented on the connection between various discretizations and the
eigenvalues that result on uniform grids. The discussion included the effect that upwinding
and tuned upwinding had on the diagonal dominance properties of the linear system matrix.
Indeed, in light of the definition of a M-matrix, it is clear, and is easily verified, that
upwinding provides a linear system matrix which is a M-matrix independent of ~ and e.
Tuned upwinding yields M-matrices under various assumptions on the tuning parameter,
see [83] for a nice discussion. In this section we investigate what effect the choice of mesh
has on the M-matrix structure of the linear system matrix.

Consider the linear system matrix of model problem I with ¢ = 1e — 2. We discretize the
problem with three grids; a uniform grid, a piecewise uniform grid and an equidistributed
2 grid, all of which resolve the boundary layer at z = 0, as shown in Figure 2.19. The
plots on the left demonstrate the computed solution of the boundary value problem for the
chosen grid. On the right of Figure 2.19 we indicate, by solid dots, those rows of the linear
system matrix A which satisfy the local M-matrix conditions. That is, we indicate rows
which are diagonally dominant and have nonpositive off-diagonal entries. The first two
plots correspond to a uniform mesh chosen to resolve the boundary layer. This results in a
linear system matrix which is a M-matrix. Therefore, a dot is drawn for each entry of every
row of the 100 x 100 matrix. The quantity “nz” denotes the number of non—zero entries in

the matrix.

2The concept of equidistribution was mentioned in section 2.1.2 and will discussed further in Chapter 4
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Choosing a uniform grid for a constant coefficient BVP of the form (1.2) will result in
a matrix where the diagonal dominance condition is either satisfied for all rows or none at
all. This is basically saying that on a uniform mesh, if (2.6) is satisfied anywhere on the
interval then it is satisfied everywhere. Of course, for nonuniform grids it is possible to have
(2.6) satisfied locally, resulting in matrices which are locally like M-matrices. In the middle
plots of Figure 2.19 we have used a piecewise uniform grid which satisfies (2.6) for points
near the boundary layer. The large number of points in the refined portion of the mesh
(relative to the total number of mesh points) results in a large number of rows included in
the matrix plot. Moreover, there is a spatial connection between the rows of the matrix
and the location of the mesh points on the interval. The equidistributed grid requires fewer
points to sufficiently resolve the layer, resulting in fewer rows shown in the matrix plot.

The situation changes slightly for a variable coefficient problem. Figure 2.20 shows the
results for model problem IV. Here we use an unresolved uniform grid (top), a piecewise
uniform grid which resolves the right layer (middle), and a piecewise uniform grid which
resolves both layers (bottom). For this example, we see local M-matrix structure corre-
sponding to a grid which doesn’t resolve the layer at all. Indeed, near z = 1/2 the coefficient
of u’ is approximately zero which for this problem relaxes the local requirement on the mesh
size. In fact, the matrix appears to be a M-matrix except for rows corresponding to points
in the immediate region of the unresolved layers. As we refine the mesh near z = 0 the
entries in those rows become shaded dots in the matrix plot. And once both layers are
resolved the matrix is an M-matrix.

As a final example, we consider another variable coefficient problem whose solution has

an interior cusp at z = 1/2,
—eu’ — (22 — 1)u' + 0.5u =0, u(0) =1/2, u(1) = 1.

Here we keep the uniform grid spacing fixed at h = 1/100 and vary €. As ¢ is decreased
from le — 2 to 5e — 6, from top to bottom in Figure 2.21, we see that the number of rows

of the matrix which satisfy the local M—matrix condition decreases.
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Chapter 3

A Matrix Inverse Problem

Consider a tridiagonal symmetric M—-matrix

ai
—bs

—by

a2

—bs

=bn-1 an_1
_bn

—b,

an

In accordance with the definition of a M-matrix provided in section 2.4 we will assume the

entries a;, b; nonnegative and a; > b; + b;j+1, i.e. the matrix is strictly diagonally dominant.

The Cholesky factorization of T, given by T = LDZlLT will exist if, for example, T is

diagonally dominant. For tridiagonal matrices T it is possible to compute this factorization

explicitly. To this end we let

01
—by

2

"bn—l

5n—1

on

, and Dy =

61

2

511—1

on

Forming LDZILT and comparing the entries to those of T we obtain a recurrence for 4;,

61 =ay, 6 =a;—

38
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A UL factorization of T, given by T = UD{,IUT, may be obtained in a similar manner.
If we let

di —bs dy

dy —bs da
U= - - and DU =
dn—l

. K o

then by simply multiplying and comparing entries to those of T' we obtain the following

recurrence for the entries of D:

b?
dn=0n, di=a;—-LL i=n-1,n-2,...,L (3.1)
di+1 )
Meurant [62] has used the Cholesky and UL factorizations of T to study the inverses of
symmetric tridiagonal matrices and obtains the following result (see [62] and [63] for details
of the proof):

The entries of the inverse of T are given explicitly as

dise -+ d
Tl = by b= for all 4, and j > i, (3.2)
g 5 On
and g p
o digee ,
I-:i.il = H, or all .

Using (3.2) we now determine the rate of decay of the entries of T~!. Computing directly

we have

-1
T bin

Under the assumption that 7T is strictly diagonally dominant it is easy to show from the

recurrence relation (3.1) and induction that d; > b;. So we have

b2
_ 1+1
di = ai — —— > a; — biy1 > by,
i1
or
a; — biy1

AN
b; b;
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This allows us to bound Tf]fH in terms of Ti;l as

b,
-1 J+1 -1
Tin<——7-T;

from which we may show

Therefore we have upper and lower bounds for Tz’_]l_l_1 in terms of Ti;l:

T3 < T < PT5 0 (34)
where ,
. b.
p = max —*L— and p = min L. (3.5)
Qj+1 — Oj+2 Qj+1

It is clear that this may be extended to compare any off-diagonal entry of 77! to the

diagonal entry in that row,
AT < T < pPIIT (36)
To compare Tgl to an entry closer to the diagonal (along a row) we have
ﬁlk—lei;l < Tgl < plk"lei;l.
And to bound Tgl in terms of an entry further from the diagonal (along a row) we have

I -1 L -1
e < T < gt

Due to symmetry the estimates also work column wise. Care must be taken that the entries
that are being compared are on the same side of the diagonal.
3.1 Positivity Subject to a Perturbation

In this section we investigate a positive perturbation of a M-matrix. Specifically we are

interested in understanding how large the perturbation can be so that the perturbed matrix
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retains the nonnegative inverse. The answer, it turns out, depends on the entries of the
matrix M.

Specifically, we consider the matrix B given by

( aj -—bz h
-bz as —b3 h
h —b3 as --b4 h

B = , (3.7)
h  =bp_z an—2 —bp_1 h
h —bp-1 @n-1  —by
\ h —bn an

where a and b are positive, h # 0, and the tridiagonal part of B is an M—-matrix. For what
values of h is the inverse of B nonnegative?

If h < 0, then if h is chosen so that B is strictly diagonally dominant (or generalized
strictly diagonally dominant), then B is still a M-matrix and will satisfy B~* > 0. If h > 0
then the entries of B no longer satisfy the sign pattern necessary to be a M-matrix. Due
to continuity, if A is chosen small enough then we would expect B! > 0. Our goal is to
find a bound on h which will ensure a nonnegative inverse.

We begin by considering a simpler case. Suppose B is given as B = M + E, where M is

T is a rank one matrix.

the tridiagonal M-matrix with entries {—b;_1,a;,—b;} and E = wv
We choose u and v so that the (1,3) entry of B is h. The vectors u = (k,0,...,0)7 and
v=(0,0,1,0,...,0)7 give the correct matrix. Now to get a feeling for what B~ looks like

we use the Shermann-Morrison formula,

M-1ywTpm-1

B—l = (M + U’UT)—1 = M_1 —_ m

A quick calculation shows that vT M1y = hM;;! and EM ™! is a matrix whose first row
is hM3 ! and the rest zeros. The quantity M; ' denotes the third row of M.

So B~ 1>0if
h -1
T TvhM;T My —

0 0
<M1 (3.8)

M—l
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We will now use the decay estimates (3.6) to find an upper bound on & to ensure B! > 0.
In addition to the decay estimates we also require a bound on the diagonal entries of M 1.

Ostrowski [78] obtained the following bound on Mu’.1 for strictly row diagonally dominant

matrices:
Ml _1_____
®OT M- &)’
where
1
=51 2 Ml
i#g

These bounds have been tightened by Nabben [72] in the case of nonsymmetric diagonally
dominant tridiagonal matrices. For notational convenience in the discussion which follows,
we introduce p has an upper bound on the diagonal entries of M~!.

The (1,1) entry of M~ EM~! is sM{;! M;;* where s = h/(1 + hM3"). So comparing
the (1,1) entries of M~'EM ™! and M~ we require

~1pr—1 -1
sMy"Mg” < My
Using the decay estimates we have the following sequence of inequalities,
—1pr—1 20 r—1a7—1 2 ar—l -
sMiy Mg;' < sp™Miy Mg < sp*uMyy’ < My
This indicates that s < 1/up? is a sufficient requirement.
For the (1,2) entries we have to show
—1pr-1 -1
sMyy Mgy < Miy'
In this case, the sequence of inequalities
—1pr=1 —1p— —1 o ans—1 -1
sMiy"Mgy' < spMyy" Mg < spuMyy’ < pMyy < My,

implies that s < p/up is sufficient.

To compare the (1, k) entries for £ > 3 we note that Mg}cl > Ml’k1 since the Mg}cl entries
are closer to the diagonal. Taking advantage of symmetry we use the decay estimates
column—wise to obtain

1 My
Mg~ < 72
and therefore
sMIIMZ < sE Ml < M7 ifs < P
1 Mae S S Mye S My s < P/ p
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1

Now consider the j-th row, for j > 2. We want to show
sM; Mgt < Mﬁcl, forallk=1,...,n.

If k < j we compare M]-_l1 to M ﬁzl which is closer to the diagonal along a row. So we have
for k < 7,

~1pr-1 k=13 -1 -1 .
sM;1" My~ < sup Mjk < Mjk , ifs< =t

If £ > 7 then we compare Ms—kl to M ﬁcl which is closer to the diagonal along a column. So

we have

sMi'Mg! < spp M3}, if s < =t

The tightest restriction found on s was that s < j/up. Therefore, subject to a rank-1

perturbation, a sufficient condition to ensure B~! is nonnegative is that

A

R< 2.
pp

3.1.1 Higher Rank Perturbations

To generalize the result of the previous section we consider a perturbatidn given by E = UV
where U = hI and V is a matrix of zeros except for a second superdiagonal of ones. We use

an extension of Shermann~Morrison which says, if I + VM ~1U is nonsingular then
M+UV)t=MT-MUIT+VMIU) VML

Rows 1 through n—2 of VM ™! are just the n — 2 rows of M~1. Rows n—1 and n are zeros.

To ensure B~! = (M + UV)~! is nonnegative we require
MUI+vMiOYTlvMTt < ML

Under a suitable assumption on k it possible to show using a Neumann expansion that the

inverse of
Cl=(I+VMIU)'=T+rVM 1< (3.9)

From this we may deduce
MteltvMTl < MV ML

The bound on h which we obtain below is sufficient to ensure (3.9) is valid.
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We wish to find a bound on h so that

— hMg'l —
— hM;'l —
M ';1 <ML (3.10)
- th__2
0 0
0 0

Computing directly we find the (ij)-th entry of P=M7"VM~!is given by

Py = Z hM kle—+2
Using the bounds from the previous section we have
1= 1 -1 . p
hMpt Ml s € ———=M7', ifh< —
# My S g™ RS Ty
from which (3.10) follows directly.

3.1.2 A Symmetric Perturbation

We now consider a symmetric rank 2 perturbation, that is we only perturb the (1,3) and
(3,1) entries of M by a quantity h. Let V be the matrix of zeros except for ones in the (1,3)
and (3,1) positions. Once again the generalized Shermann—Morrison formula guarantees
that B! > 0 if
AM™Y I+ hVM Y)WV M < ML (3.11)
The structure of I + AV M ™! again allows us to deduce
MY I+hAVMHYIWVM < MIlVMTL
In this case the (ij)-th entry of ARM =1V M1 is given by
WM Mg + Mgt M.

)

Therefore, inequality (3.11) will be satisfied if
WM Mg+ Mz M) < M3

)

Applying the decay estimates as in the previous sections we deduce that

p
h< Lt
~ 2pp

is a sufficient bound on the size of the perturbation.
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3.1.3 Extensions

We are now in a position to return to the matrix B of (3.7). Writing B as M + FE we see
that E is a combination of the perturbations discussed in the previous two sections. It will
come as no surprise that a bound on h to ensure B~} > 0 may be derived in a similar way
to obtain the following result.

The matriz B from equation (8.7) will have a nonnegative inverse if
p
h<—o——n.
2(n ~2)up

This is a sufficient but not necessary condition. In fact it may be possible to improve
the bounds p, p and p using the improved decay estimates of Nabben [72].

As a final comment, we note that our development does not depend in any way on the
symmetry of the matrix M. M is only required to be a tridiagonal M-matrix. In the
nonsymmetric case, the decay estimates of Nabben [71] and [72] would assist in extending
the result. Although notationally more cumbersome, the arguments may be adapted to

consider nonconstant, non-symmetric, positive perturbations of the form

0 0 hfi
0 0 0  hf
hgt 0 0 0  hfs

E= ,
hgn—4a 0 0 0 hfp-2
hgn-2 0 0

where f and ¢ are nonnegative vectors.

3.2 An Application

The bounds developed in the previous sections will now allow us to comment on a time
stepping strategy for higher order degenerate diffusion equations.
A model [41] of thin liquid films and fluid interfaces driven by surface tension is given

(in 1-D) by the degenerate diffusion equation

ht + (f(h)hmx:p)x = O, V (3'12)
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where f(h) ~ h™ as h — 0. The power of n is determined by the boundary conditions on the
liquid—solid interface. In all applications a physical solution requires » to be nonnegative.
It is known that if n = 0, in which case (3.12) is the linear fourth order heat equation,
negative solutions will result from positive initial data. For larger values of n this is not the
case. In 1-D, positive solutions result from positive initial data if n > 3.5 [14]. Numerical
simulations ([14],[3] and [13]) by Bertozzi et al. demonstrate that for smaller values of n the
solutions develop singularities of the form A — O. ‘

Numerically, one wishes to preserve the positivity of the continuous solution and to
resolve any singularities which result. Zhornitskaya and Bertozzi [103] propose discretizing
(3.12) in space by

Yit + (a(Yi-1, Yi)Vz2z,i)z = 0, (3.13)

fori=0,1,...,N — 1 with y;(0) = ho(z;). The quantities y,; and yz; denote forward and
backward differences respectively, and yzgz: is a composition of these differences performed
in the usual way.

For n > 2 the choice

S ‘—3 1 'f ,
a(s1,82) = { =0y 1oL F o2 (3.14)

f(s1) if 81 = s9,

where G"(s) = 1/f(s) is shown to preserve positivity of solutions. For n < 2 a positivity—
preserving scheme is obtained by discretizing, as above, a suitable regularization of the
PDE.

In this section, we propose a time stepping strategy which will retain the positivity—
preserving features of the semi-discrete equations (3.13) and (3.14) while only requiring
linear solves at each time step. The basic idea is to discretize (3.13) in time by treating the
linear parts implicitly and the nonlinear parts explicitly

n+1

Y Yy

A + (a(y?—by?)yg:il,i)z = 0. (3.15)

A similar scheme was proposed by Hoff to solve the one-dimensional porous medium equa-

tion [46]. Computing y"*! from y™ requires a linear solve
Byn+l = yn

where B is a nonsymmetric pentadiagonal matrix of the form (3.7) considered in the previous

section. Positivity will be preserved if B~! > 0. Ensuring that the tridiagonal part of B
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is a M-matrix and the perturbation is small enough imposes a constraint on the time step
At to retain positivity. We note that this constraint is sufficient but not necessary. In fact,
y™*! may remain positive even if some entries of B! are negative. More work is required

to consider the effect of boundary conditions on the positivity of B~L.



Part 11

Numerical Integration, Moving

Meshes and Schwarz Waveform

48
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Discretizing parabolic PDEs spatially result in systems of ordinary differential equations.
Integrating in time using ODE software is the well-known method of lines (MOL). Successful
implementation requires a good choice of spatial mesh, discretization method, and ordinary
differential equation solver.

In problems from chemical kinetics, network analysis, radio frequency applications, and
very large scale integrated (VLSI) circuits, many authors have investigated the application of
multirate integration techniques. Direct integration methods require that every differential
equation be discretized (in time) identically. This results in time-step selection dictated
by fastest changing components. Multirate methods attempt to circumvent this restriction
by allowing the slow changing components to be integrated using large time steps, while

concentrating the computational effort in dealing with the fast components.



Chapter 4

Moving Mesh Methods

Adaptive mesh methods for partial differential equations typically fall into one (or more) of

the following broad categories:

e r-refinement: moving a fixed number of mesh points to difficult regions of the physical

domain,

e p-refinement: varying the order of the numerical method to adapt to local solution

features,
e h-refinement: uniform mesh refinement where resolution is inadequate.

The r-refinement and h-refinement methods mentioned above may be applied in either
a static or dynamic fashion. Static methods involve refining/coarsening or redistributing
nodes at fixed times during a calculation. Dynamic (or moving mesh) methods solve for
the solution and mesh simultaneously. This requires specification of a mesh equation which
concentrates nodes in regions of rapid variation of the solution. The equidistribution princi-
ple (EP), first introduced by de Boor [22], provides a mechanism for mesh movement. The
EP requires that nodes are selected so that some measure of the solution error is equally

distributed over all subintervals of the physical domain.

4.1 Equidistribution and a Moving Mesh PDE

We will consider the solution of a PDE of the form

ur = L(u) 0<z<l, t>0, (4.1)

50
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subject to appropriate initial and boundary conditions. In (4.1), £ denotes a spatial dif-
ferential operator in the physical coordinate z. If this PDE is particularly difficult to solve
we may wish to introduce a computational coordinate £ by a one-to—one (time dependent)

coordinate transformation
r=2z(t), £€][0,1], with z(0,t) =0, z(1,t) =1.

If this mesh transformation is chosen appropriately then a simple uniform mesh
)

=% =01 N (4.2)

&

will suffice in the computational domain. The mesh transformation will then specify the
corresponding physical mesh by z;(t) = z(§;,t) for ¢ =0,1,...,N.
The mesh transformation is specified by the EP written in integral form [99] as

2(6.1)
/0 M(3,t) di = €0(t), (4.3)

where

1
o(t) = /0 M(3,1) d3, (4.4)

and M(z,t) is a chosen monitor function which provides a measure of the error in the
numerical solution. The quantity 6(¢) is a measure of the total error in the numerical
solution at time ¢t. We may arrive at (4.3) as follows. Requiring the error to be the same

on each subinterval [z;_1(t), z;(t)] is equivalent to
" M(z,t)dz . 0
/z. (Z,t)dz = N (t).
7=1

Adding this expression for j =1,...,7 gives (4.3) for each value of 1.

In [82],[48],[49], Huang, Ren, and Russell develop continuous moving mesh partial dif-
ferential equations (MMPDESs) based on differentiating (4.3). To avoid the computationally
inconvenient 6(t) we may differentiate twice with respect to £ to obtain

0 0
% {M(x(g,t),t)-a—éz(f, t)} =0. (4.5)

Since (4.5) does not involve the node speed z, it is referred to as a quasi-static EP (QSEP).

Requiring the mesh to satisfy this QSEP at some later time ¢ 4 7 results in several other
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MMPDEs. A particularly useful mesh equation derived in this way, which we use in our

8 ot 10 oz
il ) === == . MPDEA4
e (%) = —r7 (%) (MMPDEY
A popular choice for M(z,u,t) is the arclength monitor function

M(z,u,t) = 1+ (@u/oz)?. (4.6)

This choice is based on the premise that we expect the error in the numerical solution to be

calculations, is

largest in regions where the solution has large gradients. The choice of monitor function is
often problem dependent. For example, Budd, Huang, and Russell [16], develop a monitor
function which preserves the scaling invariance of the underlying physical PDE. In fact,
examples are given for so—called blow—up problems where the arclength monitor function

fails to adequately resolve the solution near the singularity time. A regularized monitor

M(zut) = 1+ élux|2 @7

was introduced by Mackenize and Beckett [10] to solve singularly perturbed reaction dif-

function

fusion equations and by Stockie, Mackenzie, and Russell [94] to solve hyperbolic problems.
The parameter o may be solution dependent and is used to balance the number of mesh
points in the sharp layer with those in the rest of the domain. This works particularly
well for one—-dimensional conservation laws. In [10] the authors also introduce another reg-
ularized monitor function which depends on the curvature of the solution. Moving Finite
Element methods [68], [67] use the solution residual, u; — Lu as a monitor function.

In higher dimensions Huang and Russell [50},[19] develop a moving mesh equation based
on minimizing a functional of the mesh coordinate mappings. In this situation the monitor
function is replaced by a monitor matrix.

The mesh transformation z = z(§,t) suggests that we should rewrite the physical PDE

in Lagrangian form. The total time derivative u is given as
U= U + UgZ.

This allows (4.1) to be written as
U — U = Lu. (4.8)

Equation (4.8) and (MMPDE4) are solved simultaneously for the mesh and corresponding

solution.
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4.2 Discretization and Solution Process

As outlined in the previous section, using a moving mesh method to solve a PDE requires
solving a coupled system of nonlinear PDEs (even if the original PDE is linear!). For
purposes of the development of our Schwarz Waveform Moving Mesh Method in Chapter 6,
we will restrict ourselves to the moving mesh equation (MMPDE4).

The resulting system of coupled PDEs to be solved on the uniform mesh (4.2) is given

as
U —uyt = L(u)
. 1 (4.9)
(M(z,u,t)Z¢), = —= (M(m,u,t)xg)g.
Discretizing spatially with centered differences we obtain the semi-discrete approxima-
tion |

. Uiyl — Uj—1 ) .
U; — <—-—————> ;= f;

Zitl — Li-1
M1+ M; . . M; + M; s —
/N E1 =)~ a7 (=gl = (410
—l Mi+l+Mi - —.’1:') _Mi+Mi—1 (.’E—.’ZI )
r 2(/RE T TN T

fori=1,..., N —1. The right hand side of the semi—discrete physical PDE, f;, denotes the
discrete approximation to the spatial operator £ at £ = ;. Centered differences are use to
discretize L. The quantity M; denotes a centered difference approximation to the monitor

function at z;. In actual calculations, M; is replaced by its smoothed value M, defined by

k=i-p k=i—p

The role of spatial smoothing is discussed by Dorfi and Drury [25]. For our purposes we
choose the smoothing parameters v = 2 and p = 2. See [48] for comments concerning the
choice of v and p.

To close the system we specify boundary conditions for the mesh and solution. Typically,
initial and boundary conditions of the physical PDE come from the problem description.
On a fixed interval we specify 2o = £y = 0 as boundary conditions for the mesh. If the

initial solution u(z,0) does not have steep layers then an initial uniform mesh for z(£,0) is
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normally sufficient. If the initial solution has features which are not resolved on a uniform
mesh for the chosen value of N, then an equidistributed initial mesh is required.

One way to accomplish an initial equidistributed mesh is to solve the PDE
u = uo(z), u(z,0)=0,

coupled with a moving mesh equation. Solving this system over the time interval 0 <t <1
with a uniform initial mesh will yield the solution u(z, 1) = ug(z) and the resulting mesh will
equidistribute the initial solution. To avoid propagating any errors from this calculation,
the initial solution is re—evaluated at the new initial mesh.

The semi-discrete approximation (4.10) describes a large system of linearly implicit

ODEs which maybe written in the form
V) = 9(y). (4.11)

The vector y denotes the unknowns ordered as (ug, Zo, u1,21,...,un,zx)T and V(y) is a
matrix which depends on the unknown solution and mesh.

Solving this system of ODEs in time results in the Moving Method of Lines. Standard
implementations solve this stiff system of ODEs with fully implicit time stepping provided
by packages such as DASSL [80]. For our purpose, we will solve (4.11) using Backward
Euler,

V(yn)¥n — Yn-1) — hng(yn) =0,

with local error control provided by step doubling. The resulting system of nonlinear
algebraic equations are solved with modified Newton using strategies of Gustafsson and
Soderlind [42] and Alexander [1] to control factorizations and evaluations of the Jacobian
matrix. The Jacobians are evaluated using finite difference methods adapted to sparse

matrices [21].

4.3 Other Implementation Strategies

Solving for the mesh and solution directly from (4.11) is prohibitively expensive for problems
in higher dimensions. In [59],[10] and [47] the authors propose a decoupling procedure which
allows the mesh and solution to be computed in an iterative fashion.

Decoupling the mesh equation from the physical PDE has the obvious benefit of reduc-
ing the size of the linear algebra problem for the Newton step by half. Furthermore, by
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alternating the solves for the z and y grids the structure of the linear algebra problem is
made suitable for fast, direct, block tridiagonal solves.

Computing the mesh and solution separately allows the user complete control over the
local error tolerances for the ODE integrator, as well as different convergence criteria in the
iterative algorithm. This is motivated by the observation that the mesh need not always
be computed to the accuracy of the solution. If the iteration between the mesh equation
and the physical PDE is continued long enough then grid lag is a serious concern [11]. This
is avoided in [10] by allowing up to four iterations in the algorithm. This appears to be
sufficient for most examples.

In Chapter 6, we propose and describe the implementation of a Schwarz Waveform
Moving Mesh Method in one-dimension. This method decouples (4.11) spatially, and solves
the mesh equation and physical PDE over all subdomains using a domain decomposition

strategy.



Chapter 5

Decoupled Integration and
Multirate Methods

In this chapter we consider novel numerical approaches for solving time dependent differ-
ential equations. Of particular interest are strategies which allow solution components or
groups of solution components to be integrated with different time steps (multirate methods)
or even different numerical methods. The discussion presented here is admittedly incom-
plete; however, we hope to provide some indication of the methods which are available for
ODEs and PDEs.

We begin by describing the decoupled implicit Euler and backward differentiation for-
mulas of Skelboe. Fully implicit decoupled integration methods naturally lead to waveform
relaxation. Associated with any decoupled integration method is a partitioning strategy
which groups components of the solution together in subsystems. In the context of implicit
time stepping we will mention a couple of partitioning methods based on the Jacobian of
the nonlinear algebraic equations.

We will then return to PDEs and discuss two classes of methods, hp-refinement tech-

niques. and domain decomposition based methods.
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5.1 ODE methods

5.1.1 Decoupled Integration Formulas

We will consider the problem of solving first order systems of ordinary differential equations

¥ =f(y), yeR. (5.1)

Multirate methods attempt to benefit from the inherent time scales in the problem by
separating (5.1) into subsystems. Each subsystem is then integrated using possibly different
time steps and even numerical methods. We will use the methods of Skelboe to demonstrate
the basic idea and conclude the section with some related approaches.

Skelboe ([92], [90],[86],and [91]) considers decoupled implicit Euler and backward differ-

entiation formulas. Suppose a system of the form

¥y =Ff(ty), y(to)=vo, t=to,

where y : R —» R® and f : R x R® — R®, is partitioned as

U filt,y) v
o fa(t, y) Y2
= . y y —_
gq fq(t, y) yq

Heré yr : R—> R%, fr : Rx R% — R®, with ZLI s; = s and the initial condition is
partitioned as y(to) = (¥1,0,420,** > ¥g0)7-

The partitioning requires subsystems which consist of strongly interacting components
with weak couplings to the other subsystems. This is made precise with the concept of
monotonic maz-norm stability [86]. This condition is necessary to ensure stability of the
decoupled integration method.

The decoupled implicit Euler method results by applying backward Euler to each of the

q subsystems, and it is written as

Yrn = Yrn—1T hnfr(tna Yins---s gr—l,nv Yrms Ur+lms - - s gq,n) (5.2)

for n=1,2,... and r=1,...,q.

The values §;, are taken as convex combinations of {y; x|k > 0} for ¢ # r, and represent

communication between subsystems. Convexity is required to ensure stability. The §; , are
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often chosen by zero order interpolation, ¥in = ik, Or zero order extrapolation §; n = y; k41
when trn € (tik, tik+1). Weaker stability but improved accuracy is possible by choosing
Ui,n by first order extrapolation as

- h
Jin = Yin-1+ 3= Win-1 = Yin-2).
n—1
It is clear that (5.2) may be solved in parallel since communication is only required after each
completed step. On a sequential computer, it would be appropriate to use a Gauss-Seidel

formulation

Yron = Yrn—-1+ hnfr(tm Yins s Yr=1n Yrns gr+1,na ceey ?jq,n) (5-3)

for n=1,2,... and r=1,...,q.

Computing the next step for subsystem r requires the previously computed values on sub-
systems 1,2,...7 — 1. )

Skelboe [90] describes two general categories of decoupled integration formulas, semi-
implicit and fully implicit. Equations (5.2) and (5.3) are examples of semi~implicit formulas.
The discretization is implicit at the level of the subsystem but explicit with respect to the
rest of the system. The method is semi-implicit since the §;, values are chosen as either
convex combinations of previously computed values of y; s or zero order extrapolated values.
This extrapolation can lead to inaccuracies. Fully-implicit decoupled formulas are defined
by a compound step [tx.;, tn] With each subsystem having discretization points at ty.; and
tn. The discretization of all subsystems must be computed simultaneously over a number of
time steps, resulting in large system of nonlinear equations. In this case, all the §j; ; values
are computed by interpolation of solution values within the compound step. The waveform
relazation method, discussed in the next section, may be interpreted as an iterative solution
method for the large system of nonlinear equations resulting from a fully implicit decoupled
integration step.

As mentioned, semi-implicit decoupled integration formulas limit the implicitness to
individual subsystems. This reduces the dimension of the system of nonlinear equations for
yrn and the subsequent linear algebra involved in computing the Newton step.

In [92], Skelboe considers more general backward differentiation multirate formulas ap-

plied to separated systems of ODEs of the form

Y = ft,y,2) Ylt)=va yeRY (5.4)
Z = g(t,y,2) 2t =z, z€RM (5.5)
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We define the k-step linear multistep operator Ly as

k
Li[y(t);h] = Z ary(t — rh) + hB.y/ (t — Th).

r=0

If y and z solve (5.4) and (5.5), respectively, then we assume
IiLxly(2); Al > || Li[=(2); R]|

for all t € [tg,ts). This implies we may use Lj to integrate (5.5) using larger time steps
than for (5.4). It is appropriate to use this formulation when N « M or g is much more
expensive to evaluate than f.

The multirate formulation proceeds by integrating the fast system (5.4) with k-step

backward differentiation formula with multiple steps of size h:

k
Z arYm—r + hBo f (tm, Ym, 2m) = 0, ag =1, (5.6)

r=0
and the slow system (5.5) with step—size gh where ¢ is a positive integer:

k
Z Qrzn—gr + qhBog(tn, Yn, 2n) = 0, og = 1. (5.7)

r=0
Coupling between the subsystems is taken care of by the interpolation or extrapolation
operator \
Zm = Z&r’m_(n_q)zn_,q withn — g < m < n. (5.8)
=0
The quantity Z, represents interpolation if ags # 0,ars = 0 and extrapolation if ags =
0,&k,s # 0.

One step of (5.7) and g steps of (5.6) comprises a compound step. The compound step
may be computed using either a fastest or slowest first strategy. The fastest first multirate
method integrates (5.4) with (5.6) from t,_4 to t, using q steps of size h. The required z,
values are provided by Z,, computed by (5.8) using the values z,_iq, ..., 2n—g. Then, the
slow system (5.5) is integrated from ¢,_4 to ¢, using one step.

The slowest first strategy integrates (5.5) using (5.7) with the unknown y, values ap-
proximated by ¥, computed by extrapolating the values of y,_g_g+1 through to yn_4. This
is followed by integrating fast system (5.4) from ¢,_g to t, by (5.6). The slow solution is then

computed from (5.8) using the z-values z,_(x_1)q,---,2n. We may then correct the value
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of z, by re-evaluating (5.7) based on y, computed from (5.6) instead of the extrapolated
value gy,

The fully implicit multirate step is obtained by iterating the solution of the slow and
fast subsystems until convergence. This corresponds to using waveform relaxation to solve
the system of ODEs. Waveform relaxation methods will be the topic of the next section.

Another approach is that of Engstler and Lubich [27], who construct a multirate Richard-
son Extrapolation method. The extrapolation tableau is used to decide which components
are sufficiently accurate and consequently those components which require no further work.
The extrapolation is continued for those components which do not satisfy the local error
requirement. This provides a dynamic partitioning strategy. A new multirate Runge-Kutta
formula, based on embedding low—order methods in the eighth-order method of Dormand
and Prince is developed in [28]. )

For problems which have relatively few equations involving small time—constants Hofer
[45] presents a technique which combines implicit and explicit methods. The implicit trape-
zoidal rule is used to integrate the transient, fast components, while the smooth components
are integrated with the explicit modified midpoint rule . Rational extrapolation is imple-
mented to control accuracy and step size. Andrus, [4], considers first order systems which
have been partitioned into two subsystems. Subsystems are integrated somewhat inde-
pendently of one another with different time steps and/or integration method. The slow
response system is integrated with a fourth order Runge-Kutta method. Fourth order for the
whole system is then achieved by integrating the fast response equation accurately enough
so as to contribute terms no larger than fifth order to the slow system. This technique is
extended to second order systems in [5]. The absolute stability of decoupled Runge-Kutta
methods is considered in [6]. It is shown that if the two subsystems are weakly coupled then
the regions of stability are similar to the classical regions of stability. Automatic step-size

control based on local truncation error as well as separation error is discussed in [7].

5.2 Waveform Relaxation methods

In this section, we consider the solution of first order systems of ordinary differential equa-
tions of the form (5.1) using waveform relaxation methods. The essential idea of the wave-
form relaxation method is related to the Picard iteration [81] for proving the existence of

solutions for initial value problems. The method became popular as a solution technique
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for large, stiff systems of ODEs with the paper by Lelarasmee et. al. in the VLSI literature
[56].
The idea is to partition the ODE into p subsystems

y‘L=fi(yl,y27"'7yia"',yp)7 i=172,-~~1pa (59)
where
P
y; € R™, and an =n,
Each subset of solution components, y;,¢ = 1,...,p, is then solved in an iterative fashion.

For example, a waveform Gauss—Jacobi (WRGJ) method is obtained by iterating

U = fk s, ), (5.10)

for k =0,1,... and ¢ = 1,...,p. During each iteration yk‘*'1 is solved over a time window
[0,T] using the possibly interpolated values of the previous waveform for the evaluation of
the function f;. Analogous to the classical iterative techniques for linear systems of algebraic

equations, a waveform Gauss—Seidel (WRGS) method is obtained by iterating
gEtl = [kt Ly kL), fork=0,1,. . (5.11)

Each iteration of either of these waveform methods requires the solution of p systems of
first order differential equations. Convergence is achieved if |jy*+1(t) — y*(t)| satisfies a
termination criteria for all t € [0, 7.

It is clear that during each iteration of WRGJ, the p subsystems may be solved in

parallel. Of course there is a rather complicated load balancing issue to deal with.
Convergence Results

For linear systems of ODEs of the form

Y (z) + Qu(z) = g9(z), (5.12)

where @ is a constant matrix, convergence has been studied by Miekkala and Nevanlinna
in [64] and [65], and Nevanlinna in [73],[74] and [75].

A general waveform relaxation algorithm for (5.12) may be written as

F My = NyF g, y¥ () = b0, (5.13)
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where M and N denote a splitting of the matrix Q.

Using the convolution operator and Laplace transform of the differential system super-
linear convergence of (5.13) is obtained on all finite time intervals. Using exponentially
weighted norms linear convergence is obtained on unbounded time intervals.

For general nonlinear systems of ODEs of the form

cw)y' = f(y), y(0) =y, t€0,T], (5.14)

convergence results first appeared in [56],{101] and [100]. System (5.14) has a unique solution
if c(y)! exists and is uniformly bounded with respect to y, and f is globally Lipschitz
continuous with respect to y.

If ¢ is diagonally dominant then both WRGJ and WRGS both converge uniformly on
bounded intervals [56]. This result applies to both Jacobi and Gauss-Seidel waveform
techniques. In [17], Burrage extends these results to general waveform splittings and also

provides error bounds. The result is summarized in the following theorem:

Theorem 5.2.1 Consider the first order system of differential equations (5.1) defined on
[0,T] and assume there ezists a splitting of f(y), denoted F(y, z), where F satisfies

F(y,y)=f(y), F:R"xR"—>R"
and F is Lipschitz continuous with respect to y and z. Then the iteration
g =F R, v 0) = o (5.15)
converges uniformly on all finite intervals [0,T]. The error, € = y¥ — y satisfies
ekt < L et (5.10)
where L1 and Lo are the Lipschitz constants of F with respect to y and z.

The convergence results presented in the previous section do not guarantee the conver-
gence of discretized WR algorithms. Discretized WR algorithms result when the ordinary
differential equations which specify the individual waveforms are solved using a numerical
method. The interaction between WR algorithms and multistep integration methods is con-
sidered in detail in [100]. Convergence is obtained in the case of constant time steps for all
subsystems and for the multirate WR. algorithm provided the waveforms are interpolated

carefully in the evaluation of f.
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5.2.1 Partitioning

A suitable partitioning of components is crucial for the practical implementation of waveform
relaxation methods. In [27] and [28] the authors use extrapolation methods to compute an
error estimate. Components of the solution which satisfy the error requirement by a large
margin are classified as inactive. The other components are deemed active and require more
computational effort. In the context of waveform relaxation methods an alternate approach
is presented in [102]. The authors suggest a multilevel partitioning strategy obtained by

analyzing the elements of the Jacobian matrix.

Jacobian Techniques

Waveform relaxation methods have a successful history in the simulation of very large scale
integration (VLSI) circuits and power systems. The first published report of the use of
relaxation methods in a circuit simulator was the code MOTIS [20] in 1975. This code was
up to two orders of magnitude faster than standard circuit simulators of the day.

Partitioning bf the components in these applications have traditionally been tightly
based on knowledge of the physical system. In [102], the authors describe a partitioning
strategy which is independent of knowledge of the physics of the ODE system. When
solving (5.1) with implicit time stepping, a system of nonlinear algebraic equations is solved
at each iteration. Typically, some modified Newton scheme is used as the nonlinear solver
requiring the formation of the Jacobian of the system of equations. Partitioning of the
solution components into découpled subsystems is achieved by performing a e~decomposition
([87],(88], and [97]) of a modified Jacobian.

The e-decomposition algorithm attempts to detect blocks of variables which are strongly
coupled. The algorithm proceeds as follows. Given a row-scaled matrix A and an e > 0
if |a;;| < e then set a;; = 0. Then, attempt to find a suitable permutation of rows and
columns which will permute the matrix to block-diagonal form. The variables within each
block are considered strongly coupled. After the deletion of small matrix entries this is just
the classic graph theory problem of computing strongly connected components of a graph.
This problem has been studied extensively and fast O(n + e) algorithms are available where
n is the number of vertices in the graph and e is the number of edges — see [96] and related
references. The ¢ decomposition algorithm repeats this procedure for a sequence of ¢ values

recording the maximum resulting block size Bo(e). The value ¢ which gives the largest
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decrease in By(e) also yields the partitioning which is chosen for the waveform relaxation.
If backward Euler is used for the time integration then y, is updated from y,_; through

the system of nonlinear equations

F(yn) = Yn — Yn—1 — hnf(yn) = 0.

To avoid scaling issues the e~decomposition is not performed on the Jacobian of F(y). Since
some of the entries of the Jacobian are functions of the chosen time step small entries may

arise even if variables are strongly related. The matrix

of
A_I+3_y

is used instead to avoid this scaling problem.

5.3 Schur Decomposition Methods and the Quasi—Steady State

Approximation

In [58],[23] and [24], Deuflhard and Maas, develop a decoupled integration technique which
involves splitting the solution components into fast and slow subsystems using the Schur
decomposition of the Jacobian.
Consider a first order system of ODEs written as
a¢
Z=F@), 40 =
We now linearize the system of ODEs about the initial condition ¢y. Letting 1 = ¢ — ¢o

then the differential equation implies

L@+ 60) = F( + o).

Applying Taylor’s Theorem to the right side we have
plymng

d d
E"t[‘)‘ + % = F(d)o) -+ F¢(¢0)’¢ (5.17)

Since ¢y is time-independent, d@g/dt = 0 so the linearized system becomes

% = F(¢o) + Fy(d0)¥. (5.18)
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¥

Assuming Fy is nonsingular, we may solve (5.18) subject to 1(0) = 0 to find
P(t) = F; (7" = I)F(¢o). (5.19)
In [58] the authors suggest a change of variables ¥ = Q41 where
Q7' TQa = Fy(go)

is the block Schur decomposition [40] of the Jacobian. The matrix

- Su1 S
Fo [P P
0 Sy
is an upper triangular matrix with the eigenvalues of F; on the main diagonal and Qg is
an orthogonal matrix. In terms of ¥ the solution of the linearized problem (5.19) may be
written as

U(t) = QuF, ("' — I)F (o). (5.20)
From the change of variables and ODE (5.18) we see that
20 = QaZE(0) = QuF (4.
Then using
Q7' TQat _ Q7" ez"th,
and equation (5.20) we see that W(t) can be written in terms of the rates d¥/dt at t =0 as

(¥
dt

This representation suggests that small perturbations in the direction of eigenvectors cor-

CW(t) = (ft = DT12(0). (5.21)

responding to large eigenvalues will grow, while those corresponding to small eigenvalues
while remain small.
A second decomposition, presented in [24], decouples the system of ODEs by eliminating

the S12 block. The required similarity transformation is specified by the matrix T, where

Ty FTy=S= (Sél SO ) (5.22)
22

0 Z 0 Z
e (0 ) a0 )

where
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and Z solves the Sylvester equation
S11Z — Z Sy = —8Si2.

Equation (5.22) suggests grouping the eigenvalues of Fy according to their real parts and

defining a splitting parameter y as

p=maxRA <0 and min A > p.
AESy2 AeS11 :

The change of variables

o
V4
partitions (5.1) as

W= f(w,2)

e = g(w, 2) (5.23)

(w,2)(0) = T 'y,
where the perturbation parameter ¢ is given as e = 1/u.
The quasi-steady-state approximation (QSSA) uses (5.23) to produce the differential-
algebraic equations (DAEs)

wo = f(wo, 20) (5.24)
0 = g(wo, 20)-

TheAassumption here is the fast components z reach steady state quickly, which suggests
replacing the differential equation for z with algebraic constraints. With this choice of €,
(5.24) is an index 1 DAE and hence may be solved using standard numerical techniques [9].
A linearly implicit Euler discretization is used to solve a chemical combustion problem with

this technique in [23].
This procedure is affected by two sources of error. The local truncation error, controllable
by usual local error estimates, and the QSSA error. How to estimate and control the QSSA

error is discussed in the next section.

5.3.1 Estimating the QSSA Error

Sophisticated ODE packages provide local error control mechanisms which select time steps
to keep the local truncation error below some user specified tolerance. Using a decoupled

integration strategy imposes another source of error due to the decoupling itself.
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The multirate extrapolation method of Engstler and Lubich [28] also gives local error
estimates from the extrapolation process itself. These estimates are used to dynamically
partition the system of the ordinary differential equations.

We now consider an error estimation technique for the quasi-steady-state approxima-
tion. The QSSA involves reducing the dimension of a system of ODES to a system of DAEs
with varying numbers of algebraic constraints, cf. (5.24). Numerical integrators for ODEs
and DAEs control local discretization or truncation error. The QSSA error may be esti-
mated and controlled in a similar way. This will allow a monitor on the chosen partitioning
and suggest when subsequent Schur decompositions are necessary. This result is outlined
in [23}; however, the development is quite involved and we include it here for completeness
and future reference.

If (w, z) and (wo, 29) denote the solution of the ODE and DAE system respectively, then

the QSSA error after one integration step At may be written as
a = ||(w, z)(At) — (wo, 20)(AL)|. (5.25)

A brief outline of the derivation of an estimate for « is given [23]. The details of this
derivation (which is rather involved) are provided below.

If the reduced problem (5.24) has a unique solution (or if the DAE has index one) then
the singularly perturbed problem (5.23) may be solved asymptotically [76] as

£
I

W(t,e) + em(,¢€) (5.26)
Y(t,¢€) + n(r,e), (6.27)

[
—
L
~—
I

where

Wi(t,e) ~ ij(t)ej, Z(t,e) ~ sz(t)ej
§=0

Jj=0
x ) o0

m(T,€) ~ ij(r)ej, n(r,€) ~ an(r)ej.
Jj=0 j=0

The functions m;(7) and n;(7), with 7 = t/e, are exponentially decaying in the sense that
Inj(7)] < In;(0)]e™  and  |my(7)| < Im;(0)]e™"".

If we assume that the fast components (z) are controlled by the system dynamics, then

the QSSA error is dominated by the error in the slow components (w), that is, a = |w(At)—
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wo(At)||. Ignoring O(e?) terms from (5.26) we see that o may be approximated as
a = ellwi (At)]|.

To obtain a bound on [Jw;(At)|| we substitute the expansions for w(t) and z(t) from (5.26)
and (5.27) into the singularly perturbed system of ODEs (5.23). Applying Taylor expansions
to the functions f and g and comparing coefficients of ¢ we obtain the O(1) reduced problem
(5.24) and the O(e) problem

W = fu(wo,20)w1 + fz(wo, 20)21 (5.28)
0 = gu(wo,20)w1 + gz(wo,20)21 — 20, (5.29)

respectively. Note, we have suppressed the ¢ dependence. Differentiating the second equation

from the reduced problem (5.24) with respect to time we obtain
0 = gu (wo, 20)wo + gz(wo, 20) 20,

or
_9uw(wo, 20) f(wo, 20)

gz ('LU(), 20)
Using this value of %y and substituting z; from (5.29) into (5.28) we obtain a linear ODE

o =

for w;,

i = (fu — fog7 "gu)un — L ”j;"f . (5.30)

z

Evaluating (5.26) at t = 0 and comparing O(e) terms we see that wi(0) + mo(0) = 0 or
w1(0) = —mg(0) (assuming w(0) is e-independent). To find w;(0) we obtain a solution for
mo(7). Using (5.26) we find that to leading order

dw dW dm dW dmdr dW dm

@@ @@ ara & a
Using the differential equations for w(t) and W(t) we find

dm dw dW
EF—E—-&;—JC(%Z)‘JC(WZ)-

Setting € = 0 we have

dmo

—— = f(wo(0), 20(0) + no(7)) — f(wo(0), 20(0)).
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1

Since mg — 0 as 7 — ©0, we may write mo(7) as
mo(7) = [.: f(wo(0), 20(0) + no(s)) — f(wo(0), 20(0)) ds. (5.31)
Hence, to bound the QSSA error we have to solve (5.30) subject to
w0 = [ £wo(0) 0(0) + no(s)) = F(wo(0), 0(0) ds. (532
Solving the first order differential equation for w;(t) we may bound wi(At) as
lwi(A8)] < e*4|w1 (0) + 8],

for some constants L and b. At t = 0 we expect, due to our partitioning, that f,(w(0),2(0)) =
gw(w(0),2(0)) ~ 0. This suggests w;(0) will dominate b in our bound on w;(At). Fur-
ther, we expect the step—size control strategy of the numerical integrator, will choose

At so that eFAt =~ 1. Therefore, we may obtain an approximate bound on w;(At) as
wi(At)]l < [lw1(0)]]-

To approximate w;(0) we use the fundamental theorem of calculus, Gauss-Laguerre

integration, and another application of the fundamental theorem of calculus. If we let
g(t) = f(wo(0),20(0) + t) then :

no(s)
sno@) -0 = [ gy
Changing from t to # variables where ¢t = fno(s), we find
1 1
9(no(s)) — 9(0) = / 9’ (Bro(s))no(s) df = / f2(wo(0), 20(0) + no(s))no(s) db.
0 0
So, from (5.32) and ng(s) ~ ng(0)e™"* we have

oo rl
w1(0) = ‘/0 /0 f2(wo(0), 20(0) + Ono(s))no(s) dbds.

Interchanging the order of integration and changing variables s/x — s we may rewrite w; (0)

1 o0
w(0) = /0 /0 £4(wo(0), 20(0) + fno(s/))mo(0)e* ds dé.

We now use Gauss-Laguerre quadrature [44] to approximate the integral of f,no(0)e™* on

the interval s € [0, 00). The Gauss-Laguerre quadrature formula is given as

/0 T f(z)dz = Hif(ze) + E, (5.33)

k=1
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where N2
H; = ; (m) )
Ly, (zi) L1 (i)

L, is the m—th Laguerre polynomial and z; is the z;—th root of L,,. The error, E, is given
(m!)?
m!
E= ) om) .
Bl TO, £

For m = 1 we have the approximation
(o o]
/ e f(z)dz = f(1).
0
Here we have used the first two Laguerre polynomials given by Li(z) =1 —z and La(z) =

2 —4x — z2.
Applying Gauss-Laguerre quadrature to the integral on the interval s € [0, 00) yields
oo
/0 Jz(wo(0), 20(0) + no(s/k))no(0)e™° ds = f,(wo(0), 20(0) + no(1/k))no(0)
L [_di
2 |ds?
where ¢ € [0,00). This implies

1
wi(0) ~ X /0 £+ (w0(0), 20(0) + no(L/))mo(0) dé.

K

m%@m@+ﬁmmmmﬂ ,

S=0

We now use the fact that 19(0) = ng(1/k)e™! to write w;(0) in a form for which the

fundamental theorem will apply:
1
e
wi(0) ~ < /0 Fo(wo(0), 20(0) + no(1/K))no(1/x) db.
-1

Utilizing the fundamental theorem of calculus one more time and n¢(1/k) = no(0)e™" we

obtain
e -
w1 (0) ~ —,; [f(’wo(O),Zo(O) -+ no(O)e 1) - f(’wo(O),Zo(O))] .
The final result follows by applying linear approximations to the quantity on the right,

w1 (0) ~ % [£ (w0(0), 20(0) + 10(0)) — f (wo(0), 20(0))]

~ % [f (w(0), 2(0)) — £ (wo(0), z0(0))]

Finally, using wo(0) = w(0) we may approximate the QSSA error as
| ar = [f(w(0), 2(0)) - £ (w(0), (). (5:35)

This is an intriguing result which expresses the error simply in terms of a difference of the

(5.34)

slow system function values.
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1

5.4 PDE Based Methods

5.4.1 Space-Time Adaptive hp—Refinement Methods

Moving Mesh methods described in Chapter 4 allow spatial mesh points to continuously
adapt to regions of rapid change in the solution of the physical PDE. Another related
approach is so—called h-refinement methods which allow mesh refinement or coarsening.
For time dependent PDEs, p-refinement methods are natural to choose temporal order and
step size control.

Flaherty and Moore [69], [70] and [30] develop integrated space-time hp-refinement
strategies. These methods make mesh and time step/order decisions in a unified manner.

Systems of parabolic PDEs are solved using a Finite Element Galerkin method (in space)
and a Singly Implicit Runge-Kutta method (in time). A posteriori temporal and spatial
error estimates are used to guide in accepting or rejecting solutions over local space-time
domains. Moreover, these estimates provide grid, time step and temporal order for the next
step.

These methods are computationally robust; however, the resulting space-time meshes

are complicated and require sophisticated data structures for efficient implementation [29].

5.4.2 Schwarz Waveform Relaxation

There have been three general classes of methods discussed in the literature which apply

domain decomposition to parabolic problems:

1. Discretize in time and solve the resulting elliptic problems with classical domain de-
composition ([18], [61], and [55]).

2. Discretize in space and apply waveform relaxation to the system of ODEs ([57],[53]
and [52]).

3. Subdividing the spatial domain, discretizing spatially and apply waveform relaxation
across the subdomains ([32] and [38]).

The first approach, which applied domain decomposition to parabolic problem was prob-
ably the most natural: utilize the extensive literature concerning domain decomposition
applied to elliptic problems. This technique suffers from a couple of difficulties. Since the

elliptic problems arise after discretizing in time, we are forced to use the same time step
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on each subdomain. Also computed solution information must be exchanged at the end of
each time step.

Applying waveform relaxation to the system of ODEs resulting from the semi-discretizat-
ion in space does allow different time steps in different regions of the spatial domains.
Information is transmitted between subdomains after solving a subset of ODEs over a time
window, not after each step. Unfortunately, for Jacobi, Gauss—Seidel and SOR Waveform
relaxation methods the constants which arise in the error estimates depend negatively on
the mesh parameter Az, if the ODEs result from a spatial discretization of a PDE. The
negative dependence on spatial resolution has been overcome for the classical WR methods
using multigrid by Lubich and Ostermann [57], [95], and Janssen and Vandewalle [52].

The third class of methods overcome the difficulties associated with waveform relaxation
methods. The later technique has become known as Schwarz waveform relaxation methods.
These methods were developed by Gander et al. [31],[36], [32],[34] and independently by
Giladi in [38]. These methods allow different numerical treatments (time step and integra-
tion formula) on different subdomains and convergence independent of the mesh parameter
without the added complication of the multigrid framework.

Consider a general parabolic problem
u = L(u, x,1) in Q (5.36)

subject to appropriate initial and boundary conditions on 9. The Schwarz waveform
relaxation method can be written quite succinctly in two subdomains g and ; as follows:

for j=0,1,

Jat = L(u; 7, 2,t) z,t €Qy (5.37)
(k)
(z,t el =00, N
u§k+1) (z,t) = Ui; (z,t) z,t €l J 1-j (5.38)
given boundary condition z,t € 08Y; =T

We make things explicit by considering the Schwarz waveform relaxation method applied

to the one-dimensional inhomogeneous heat equation [36]:

U = Ugr + f(,1) O<z<L,t>0
u(0,t) = g1(t) t>0
u(L,t) = go(t) t>0
u(z,0) = up(x) O0<z<L.
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We assume enough smoothness on the prescribed data to ensure a unique, bounded solution.
The spatial domain @ = [0, L] x [0,00) is decomposed as ©; = [0, 8L] x [0,00) and Q3 =
[@L, L] x [0,00), where 0 < oo < 8 < L. We define v(z,t) on £; and w(z,t) on Q2 so that

Ut = Ugy + f(z, 1) 0<z<pBL, t>0

’U(O, t) = gl(t) t>0
v(BL,t) = w(BL,1) t>0
v(z,0) = up(z) 0<z<BL

and

Wy = Wgy + f(z,t) el<z<L,t>0

w(aL,t) = v(aL,t) t>0
w(L,t) = gaoft) t>0
w(z,0) = up(z) aL<z<L.

The waveform relaxation iteration proceeds as, for £ = 0,1, ...

v§k+1) =o)L f(z,t)  O0<z<PBL,t>0

*+0(0,8) = g1(t) t>0 (5.39)
v5+V(BL, 1) = w® (L, 1) t>0
WGan) (2,0) = up(z) 0<z<pBL,

and

W) =D 4 f(2t)  al<z<L,t>0

wk+D (L, 1) = v®) (aL,t) t>0 (5.40)
wk(L,t) = go(2) t>0
w(k+1)(x, 0) = uo(z) aL<z<L.

In [36] superlinear convergence is obtained on bounded time intervals, and linear conver-
gence on unbounded time intervals for the one-dimensional heat equation. Convergence is
independent of the mesh parameter (and hence robust with respect to mesh refinement) and

the convergence rate improves by increasing the size of the overlap. Results are given for
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both the continuous case, equations (5.39) and (5.40), and the semi-discrete case (after spa-
tial discretization). Giladi and Keller [38] prove superlinear convergence on bounded time
intervals for a constant coefficient convection diffusion equation. Gander ([31] and [32])
extends these results to the one-dimensional, variable coeflicient reaction diffusion equa-
tion, and again obtains linear convergence and superlinear convergence on unbounded and
bounded time intervals respectively. Gander et al. [34] apply overlapping Schwarz waveform
methods to the wave equation and a constant coefficient, linear convection reaction diffusion
equation. The effect of the Dirichlet transmission conditions at the subdomain boundaries is
studied and found to slow down convergence of the algorithms. Optimal transmission con-
ditions are then derived which lead to non-overlapping Schwarz methods which converge in
a finite number of steps. Multi~dimensional extensions of these results may be found in [37]
for the heat equation and [33] for convection reaction diffusion problems.

An important question remains: how do we dynamically determine the number é.nd
placement of subdomains? The partitioning ideas discussed in a previous section may pro-
vide an answer, especially in a dynamic situation where difficult computational regions are
changing with time. This is still very much an open research problem.

In the next chapter we propose a new Moving Mesh Schwarz Waveform method which
inherits the favourable properties of Schwarz Waveform and the spatial mesh resolution
abilities of Moving Mesh PDEs.



Chapter 6

Schwarz Waveform Moving Mesh
Method

In this section we propose a new Schwarz Waveform Moving Mesh Method. The basic idea
is to apply Schwarz Waveform to the system of ODEs which arise from semi-discretization

(in space) of the coupled physical and moving mesh partial differential equation.

6.1 Continuous Algorithm

We propose an overlapping Schwarz Waveform Moving Mesh method to solve parabolic

PDEs in one-dimension,
ug = L(u), on =[0,1],

subject to u(z,0) = ug(z) and Dirichlet boundary conditions.

We first decompose €2 into D nonoverlapping fixed subdomains Qj, ji=1,...,D. Each
subdomain Qj is enlarged by an overlap region consisting of M mesh points, giving overlap-
ping domains 1, 8,...,0p.

The physical PDE is now discretized along with a moving mesh equation on each sub-
domain. To avoid mesh crossings from one subdomain to another we fix the mesh points
on the boundary of Qj, j=1,...D, but allow the mesh points to move within and on the
outer boundary of the overlap regions.

Let z; and £; denote the physical and computational meshes on each subdomain ;.

The solution on each subdomain will be denoted as u;. The Schwarz Waveform Moving

75
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Mesh method requires us to solve, for k =1,2,...,and j=1,...,D,

k
auj

i = 524 = L)) o
ok ouk -
(M(x;?,uf,t)—;g) =2 <M<x§,u§, t)—;fg—) ,
§ £

for z € Q.

k k-1 k-1 k-1 k-1
¢ o151 and U1, T4 On

the left and right boundaries of {2; respectively, from the previous iteration. Each Schwarz

The boundary values for u% and x;‘ come from the values of u

waveform iteration requires the solution of D moving boundary problems as illustrated in
Figure 6.1 with D = 3.

T +

II

X X (t) XL(t) Xl{t)

III

|
|
I
|
I
I
|
i
!
i

o0 X

Figure 6.1: Sequence of Moving Boundary Problems solved during one iteration of the

Moving Mesh Schwarz Waveform method over a time window [0, T].
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6.2 Solving the Moving Boundary Problems

On each subdomain the coupled system of PDEs is discretized in space as described in
section 4.2. The Moving Schwarz method described in the previous section requires that
the boundary points of Qj be fixed to avoid mesh crossings between subdomains. To fix
the boundary points we adjust the moving mesh PDE corresponding to such mesh points
to read £g = 0 for each boundary index B of Qj.

The time dependent ODEs are solved using backward Euler over successive time win-
dows. The time dependent boundary conditions on u; and z; are obtained by cubic spline
interpolation from the data of the previous iteration. Interpolation is required since gener-
ally the data from iteration & — 1 is not computed on the same sequence of time steps as
iteration k.

For efficiency, the algorithm is designed with an adaptive time windowing strategy.
The algorithm begins by solving the sequence of moving boundary problems on a time
window [0,7T]. If u; or z; fails to reach ¢ = T in the maximum allowable time steps,
the iteration is restarted with a smaller time window. The window is also reduced if the
Schwarz Waveform iteration fails to converge in 6 iterations. The time window is enlarged if
the iteration converges in less than 4 iterations. The waveform iteration is terminated when
||y;9 - y;.“l lo < &, where y is the vector of unknowns containing both the mesh and solution.
A tolerance of § = le — 4 is used in the experiments with local error control tolerance of
le —6.

As a final note, the code provides each subdomain with an initial equidistributed mesh.
That is we solve u; = ug(z) for € Q; and a moving mesh PDE subject to u(z,0) = 0. The

provides a grid which equidistributes the initial solution to the PDE over each subdomain.



Chapter 7
Numerical Results

To understand the working details of the Waveform and Schwarz Waveform methods when
applied to partial differential equations, we begin our experiments on fixed meshes. This
allows us to experiment with the effect of spatial mesh size, overlap and the maximum
number of allowable time steps without the complication of moving mesh methods. We will
conclude this chapter by applying the Schwarz Waveform moving mesh method to Burgers’

equation and a two spike problem.

7.1 Model Problems

As an initial test problem we consider the viscous Burgers’ equation,

1
Ut = €Ugy — ‘2‘(u2)z

u(0,t) =1, wu(l,t) =0,
1
u(z,0) =c— 3 tanh((z — zo)/4e¢),

where ¢ = 1/2,z9 = 1/4 or 1/10, and € <« 1. The solution is a traveling front of thickness
O(e) which moves to the right from zg at speed ¢ = 0.5.

We will also use our Moving Schwarz method to solve Burgers’ equation subject to the
initial condition

1
u(z,0) = sin(27z) + ) sin(nz)

with boundary conditions u(0,t) = u(1,t) = 0. This results in a solution which develops a

sharp front and moves to the right with diminishing amplitude.

78
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¥

As a second test we will consider a two spike problem whose solution is given by
1
ue,t) = ~ (max(0, tanh(z — to))e™@=%0)*/¢ 1 max(0, tanh(t — t;)e~@=D*/¢),

The solution consists of two spikes centered at fixed locations zo and z; which begin to
evolve at different times to and t;. We choose zg and z; to keep the spikes well isolated in
the spatial domain. The times to and t; are chosen so that ¢; > ty3. This allows the first

spike to grow to its maximum height before the second spike appears.

7.2 Waveform Relaxation

We will test Jacobi and Gauss—Seidel Waveform Relaxation for fixed grids, applied to Burg-
ers’ equation with a moderate value of e. To implement the Waveform Relaxation we divide
the solution components into three fixed subsystems. This will allow comparisons with
Schwarz Waveform on fixed grids. We note, however, that this may not be the optimal

partitioning of components for this problem.

7.2.1 Effect of Overlap and Maximum Number of Times Steps

In Tables 7.1 and 7.2 we record the number of waveform iterations and total CPU time
(in seconds) required to solve Burgers’ equation with ¢ = le — 2 for the Jacobi Waveform
iteration method with 1000 and 6000 maximum time steps per iteration. The CPU time
and number of iterations are recorded against the number of mesh points and the size of
the overlap. Integration is performed with an explicit method. Tables 7.3 and 7.4 repeats
these experiments for the Gauss—Seide] Waveform method.

It is clear that even a small amount of overlap produces a tremendous reduction in
computational time for both Jacobi and Gauss—Seidel Waveform methods. The relatively
improved convergence properties of Gauss—Seidel as compared to Jacobi is evident for small
amounts of overlap. Yet moderate overlaps bridge this gap and in fact allow Jacobi to
outperform Gauss-Seidel. We also note the inability of larger overlaps to further reduce
CPU times. This is due to the increase of work per iteration as the overlap increases,
eventually negating any improvements to the convergence rate. The optimal amount of
overlap appears to depend on the number of mesh points used. It appears as if a 15-25

percent overlap is optimal for this problem.
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Although increasing the maximum number of allowable time steps from 1000 to 6000
per time window has an appreciable effect on the number of waveform iterations, it has a
negative effect on the overall CPU time for moderate values of N. As the number of mesh
points is increased, increasing the maximum number of time steps is beneficial. This is due
to the smaller time requirement imposed by the local error control of the ODE solver for

smaller mesh spacings.



CHAPTER 7. NUMERICAL RESULTS 81

1

Overlap

0 2 4 6 8 16 32 48 64 128 160
336 121 113 108 106 111 90 102 111
139 59 46 42 41 36 31 84 38
599 190 162 155 160 139 136 138 156
323 148 108 93 92 71 70 66 72
777 257 211 188 189 173 183 165 183 219
663 284 203 169 165 140 124 115 118 144
912 313 255 236 226 223 216 219 210 261 273
1102 466 337 285 266 234 195 195 183 206 212
1344 387 316 284 274 264 251 267 246 180 177
1419 789 510 425 383 836 271 282 267 191 176

257

385

N 513

641

769

Table 7.1: Number of Waveform iterations and CPU time (seconds) for Jacobi Waveform
with MAXSTEPS = 1000

Overlap
0 2 4 6 8 16 32 48 64 128 160
317 55 37 33 30 25 23 21 24
27 188 88 61 50 43 32 2 21 2
285 452 80 54 45 42 35 32 33 31
457 235 164 121 114 83 66 56 50
N 513 774 112 63 53 46 45 47 36 39 39
754 440 339 265 218 150 126 97 96 91
641 909 132 8 68 69 55 57 50 42 48 54
1282 824 569 448 368 254 209 170 147 130 141
769 1339 201 105 8 75 65 65 60 55 33 39
1723 1223 906 662 580 378 8309 277 235 125 123

Table 7.2: Number of Waveform iterations and CPU time (seconds) for Jacobi Waveform
with MAXSTEPS = 6000
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Overlap
0 2 4 6 8 16 32 48 64 128 160
201 95 108 107 99 108 90 102 111
BTN 10 51 51 49 46 41 87 89 48
302 152 144 152 154 135 135 138 156
385 27, 127 109 111 108 83 80 79 81
N 513 415 202 182 184 188 161 183 165 183 219
534 248 200 200 202 155 151 139 148 152
560 245 209 220 224 206 216 219 210 261 273
641 795 395 315 306 312 252 233 224 216 217 228
769 645 306 259 260 268 246 251 267 246 318 315
1247 605 465 448 446 876 836 332 809 815 810

Table 7.3: Number of Waveform iterations and CPU time (seconds) for Gauss—Seidel Wave-
form with MAXSTEPS = 1000

Overlap
0 2 4 6 8 16 32 48 64 128 160
92 36 30 26 26 24 21 21 24
BT 189 66 {8 40 40 36 2/ 22 28
183 52 40 39 35 33 28 30 30
385 451 169 122 115 99 88 60 56 51
N 513 312 59 46 40 39 42 43 33 36 39
876 847 244 203 195 163 132 95 96 96
387 8 59 52 57 50 52 45 39 48 ©4
641 1360 624 436 348 819 258 221 166 149 139 150
434 102 75 65 57 58 63 52 51 57 60
769 2233 985 657 537 461 387 375 263 237 207 207

Table 7.4: Number of Waveform iterations and CPU time (seconds) for Gauss-Seidel Wave-
form with MAXSTEPS = 6000
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7.2.2 Rate of Convergence

The tables of the previous section also verify a remark made earlier. The convergence of
Waveform Relaxation depends negatively on the size of the mesh spacing. If N is doubled
then the number of iterations increase by a factor of approximately two.

Figure 7.1 shows the convergence of Gauss—Seidel Waveform Relaxation over the time
window [0, 0.1]. The left plot shows the reduction in the difference of successive iterates for
an overlap of 8 for all values of N. Linear convergence is achieved; however, it is clear the
constant depends on Az in a negative way. Yet, if we tune the overlap to the best value for
a particular NV (from the tables) then we obtain convergence (to le—12) in 4 or 5 iterations

for all values of N.

Figure 7.1: Convergence of waveform relaxation for various spatial mesh sizes and overlap= 8

(left) and tuned overlap (left).

7.3 Schwarz Waveform on Fixed Grids

To compare with the results of the previous section we solve Burgers’ equation with € = le—2
with the Schwarz Waveform method of section 5.4.2. Tables 7.5 and 7.6 record the number
of iterations and CPU time required to solve the problem with given values of N and overlap.

An important contrast with the results of the Waveform Relaxation runs is evident.

Moderate overlap yields convergence independent of Az. As N is increased the total CPU
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time does increase. This is due to the extra work per iteration by the ODE solver, not the
number of Schwarz Waveform iterations. Increasing the maximum number of allowed time

steps marginally improves the run times and the number of iterations for larger values of N

and overlap.
Overlap

8 16 32 48 64 128 160
24 22 18 18 18

257
18 14 13 14 15
28 24 19 18 18

385
25 22 19 20 21
20 24 22 18 18 18

N 513

37 80 30 26 28 30

641 33 27 23 21 18 18 18
56 47 42 40 35 3 38

769 34 28 24 22 19 18 18
% 65 54 51 46 42 44

Table 7.5: Number of Waveform iterations and CPU time (seconds) for Schwarz Waveform
with MAXSTEPS = 1000
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Overlap
8 16 32 48 64 128 160
13 12 12 10 10
257
14 12 11 18 13
16 12 12 10 10
385
24 19 20 17 18
18 13 12 11 10 10
N 513
89 80 27 26 28 26
" 20 16 12 12 10 10 10
63 47 86 37 29 381 33
769 21 16 12 12 12 10 10
91 68 47 48 48 87 38

Table 7.6: Number of Waveform iterations and CPU time (seconds) for Schwarz Waveform
with MAXSTEPS = 6000

7.4 Schwarz Waveform and Moving Meshes

We now provide some brief experiments to demonstrate the Schwarz Waveform Moving
Mesh method.

7.4.1 Effect of a Fixed Mesh Point

In the design of the Schwarz Waveform Moving Mesh method we fixed the mesh points at
the boundary of the non-overlapping domains Qj. This was done to avoid mesh crossings
from one subdomain to another. It has the effect of keeping the number of mesh points in
each subdomain constant.

To see the effect fixing a node has on mesh movement in the majority of the domain and
the simulated overlap region we solve Burgers’ equation with a traditional moving mesh
method on the entire domain. The mesh point at £ = 0.7 is kept fixed throughout the
computation. The left plot of Figure 7.2 illustrates the typical mesh trajectories obtained
by applying a moving mesh partial differential equation to a moving front problem with one
spatial domain. The mesh points clearly follow and track the front as it moves from left

to right. The right of Figure 7.2 illustrates a simulation involving a moving mesh method
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applied to Burgers’ equation with ¢ = 0.01 and N = 60 mesh points. The mesh point F,
initially at z = 0.7, is held fixed by specifying £r = 0 in the specification of the moving
mesh PDE. As the front moves from left to right the mesh adapts as expected to the left
of the fixed mesh point. It is clear, however, the mesh points to the right of the fixed mesh
point do not respond until the front approaches the point F. At that time the points on
the right race into layer while the points to the left return quickly to a uniform spacing.
Sufficient care must be taken to ensure there are enough points to the left of F' to maintain
stability and accuracy.

In our Moving Schwarz method the inability of the points to the right of the fixed mesh

point to “see” the layer will hopefully be tempered somewhat by overlap.
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Figure 7.2: Mesh trajectories for Burgers’ equation on one domain

7.4.2 Solution of Burgers’ Equation with the Schwarz Waveform Moving
Mesh method

To provide some initial testing of the Schwarz Waveform Moving Mesh method we solve
Burgers’ equation with € = le — 4 with 40 points in each of the three subdomains. The
top row of plots in Figure 7.3 illustrates the computed solution at times ¢t = 0.25,0.45 and
t = 1.7. The bottom plots show the corresponding error. As expected we see a sharp front
moving from left to right. The mesh trajectories as functions of time are displayed in Figure
74.
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Figure 7.3: Solutions and errors for Burgers’ equation with moving Schwarz waveform
method at ¢t = 0.25,0.45 and 1.7.

The solution at ¢ = 0.25 and t = 1.7 look fine with actual errors on the order of the
tolerance controlling the convergence of the Schwarz Waveform iteration. At ¢t = 0.45,
however, there is an indication of a problem. It is precisely at this time the front encounters
the boundary between the first and second subdomains. At that moment we see from
the solution that the meshes are having problems communicating. A possible fix may be
provided by some of the more sophisticated Schwarz Waveform methods which use “higher—
order” transmission conditions at the boundary ([34] and [35]).

Figure 7.5 highlights both the tremendous potential and current difficulties with the
Moving Schwarz method. In this plot we have displayed the number of time steps per time
window taken by implicit Euler in each subdomain, labeled I, II, and III in the legend of the
plot. The dotted vertical lines specify the time at which the layer crosses the subdomain

boundary. The data shows that while the layer is completely contained in subdomain I
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Figure 7.4: Moving Schwarz Mesh Trajectories for Burgers’ Equation with € = le —4 and
40 points per domain '

(0 <t £ 04), the work involved to integrate over subdomains II and III is negligible.
In fact, until the front is well in domain II the time integrator is constantly taking only
single digit numbers of time steps. As the front approaches the boundaries the number
of time steps in the adjoining domains increases dramatically again indicating the trouble

experienced by the Schwarz Waveform.
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Figure 7.5: Number of time steps taken in each subdomain during each time window.

A final look at what the algorithm is doing as we approach the subdomain boundaries is
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given in Figure 7.6. Here we have displayed the size of the time windows used to compute
the solution. Again, we see a dramatic decrease in the size of the time window due to the

maximum number of allowed time steps being exceeded.
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Number of time windows

Figure 7.6: Length of time windows for moving Schwarz method applied to Burgers’ equation

with € = le — 4.

Mesh trajectories corresponding to Burgers’ equation with the second initial condition
are shown in Figure 7.7. In this case, the solution evolves to a front in subdomain two.
This. results in a nearly uniform mesh in subdomain I for the entire problem. The grids in
subdomains two and three, however, react to the evolving solution and carry the front to

the boundary at z = 1.
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1

Figure 7.7: Moving Schwarz Mesh Trajectories for Burgers’ Equation with € = le — 3 and

20 points per domain

7.4.3 Two Spike Problem

Figure 7.8 illustrates the exact solution of the two spike problem for times ¢t = 0,0.6,1.6
and t = 2.7. The solution at ¢t = 0 is u(z,0) = 0 and hence is not visible in the plot. At
t = 0.6 the spike centered at g = 1/4 has appeared and continues to grow. The second
spike centered at z7 = 3/4 emerges at ¢t = 3/2. The final solution shown, at ¢t = 2.7 shows

both spikes which have nearly reached their maximum height.
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Figure 7.8: Exact solutions of two spike problem at t = 0, 0.6, 1.6 and 2.7.
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We solve the two spike problem with 80 mesh points using one and two domains. The
final computed solution (at ¢ = 2.7) and the corresponding mesh trajectories for the one
domain calculation are shown in Figure 7.9. The computed solution is illustrated using solid
line and open circle combination. The open circles indicate the location of the mesh points.
The exact solution is drawn with a solid line only. Although the moving mesh method
does capture the two spikes we do see a lost of accuracy in the region between z¢ and z;.
Excessive errors arise in the computed solution for ¢ > 3/2 corresponding to the “birth” of
the second spike. Indeed, the method has great difficulty achieving sufficient resolution of
the second spike. Attempting to do, by an appropriate movement of mesh points, increases
the error in the region of the left spike. From the mesh trajectories we see a relatively quick
movement of mesh points from the region of the left spike towards the emerging right spike
for t > 3/2.
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Figure 7.9: Solution at ¢t = 2.7 and mesh trajectories for the two spike problem with one

domain.

It is important to note that it is not possible to solve this problem to the relatively
poor accuracy achieved in Figure 7.9 without a careful choice of monitor function, number
of mesh points, and moving mesh parameters (e. g. 7). The number of mesh points and
monitor function chosen are vital to allow resolution of the second spike. Using the same
number of mesh points and the arclength monitor function it is possible to miss the spike at
z1 completely. We control the proportion of points outside of the initial region of difficulty

(by an appropriate choice of « in (4.7)) the second spike is detected and mesh movement
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proceeds. The loss of accuracy which occurs as the second spike grows is due in part to the
time required for the mesh to adapt to new features in the solution. This is controlled by
the moving mesh parameter 7 in MMPDE4. Decreasing the value of 7 facilitates a quicker
mesh movement and hence a quicker return to an equidistributed grid. This will improve

the accuracy of the computed solution at the expense, however, of much smaller steps in

the time integration.
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Figure 7.10: Solution at t = 2.7 and mesh trajectories for the two spike problem with two

subdomains.

This problem is ideal for a two domain simulation of the Schwarz Waveform moving
mesh method. The computed and exact solutions and resulting mesh trajectories are shown
in Figure 7.10. Compared to the one domain calculation we see improved accuracy between
the spikes and in regions of high curvature!. As expected we see the mesh remains uniform
in each subdomain until the spike in that region is activated. At that point the mesh in each
subdomain adapts to the evolving features of the solution with a simple arclength monitor
function and moderate values of 7. In fact, comparable accuracy is possible with many
fewer mesh points than the one domain calculation.

In Figure 7.11 we compare the time steps taken by the ODE solver (backward Euler)
for the one domain (left) and two subdomains (right) simulations. In the two subdomain

case we have illustrated the time steps for subdomain I (light) and subdomain II (dark)

! A monitor function which provides a balance between arclength and curvature may improve the one
domain calculation in this aspect.
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corresponding to the first waveform iteration. We see that the time steps chosen for the
one domain calculation are quite large until ¢ = 1/4 when the left spike begins to grow.
The time steps remain relatively steady at 107 until the second spike emerges at t = 3/2.
Immediately the time steps are reduced by an order of magnitude as the mesh points race

to adjust to new features in the solution.
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Figure 7.11: Time steps for one domain (left) and two subdomains (right) solution of the

two spike problem.

The time steps chosen in each subdomain by the Schwarz Waveform moving mesh method
are controlled primarily by the local features of the solution. The time steps in subdomain I
react to the spike developing at ¢t = 1/4 and reduce to 10~ and remain at this level for the
duration of the run. Little work is required to integrate the solution and mesh components
in subdomain II until ¢ = 3/2. At the time the size of the acceptable time steps decrease
to a level similar to those on subdomain I. It is important to note that the time steps in
subdomain I are not affected by the development of the second spike. No mesh points move
from one subdomain to another. This keeps the time steps an order of magnitude larger
than the one domain calculation. This more than compensates for the iteration required in

the Schwarz Waveform moving mesh method, resulting in a 40% faster run time.



Chapter 8
Conclusions and Future Work

In this final chapter we summarize the contents of this dissertation, highlighting the most
important results and observations and indicating current and future research directions.

Chapter 1 provides a concise overview of finite difference methods for solving two point
boundary value problems (BVPs). Difficulties with discretizations on uniform grids are
discussed to provide a context for the next chapter.

In Chapter 2 we consider the problem of grid selection for linear BVPs. Specifically,
we explore the connection between spectral properties of the discretization matrix A and
mesh quality or resolution. The existence of real eigenvalues is found to be correlated to
the resolution of boundary or interior layers; however, explicit information pertaining to
the location of needed mesh refinement is apparently not available. Using the singular
value decomposition of A it is possible to write the discrete solution of the BVP as an
expansion of singular vectors. The dominant singular vectors of A indicate mesh quality
and provide insight to the spatial location of layers and required refinement. Computing
the dominant singular vector(s) efficiently has proven difficult, although recent fast low
rank SVD methods [60] may be useful for higher dimensional problems. This exploration
is ongoing. An alternate technique to obtain spatially relevant mesh information by simple
iterations on the linear system is proposed and tested for a variety of model problems.
Further experimentation and theoretical investigation are required to better identify specific
iterative methods which are well suited to this application. We expect that model problems
which are at least two dimensional are necessary to illustrate significant efficiencies and
hence the real potential of the technique. This chapter concludes with a preliminary look

at the M—matrix structure of A and connections with grid selection. Experiments indicate

94



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 95

that local M—matrix structure is a sufficient condition for mesh quality. Unfortunately, the
investigation has thus far not resulted in any obvious conditions which would ensure an
M -matrix structure.

The inverse positivity of a perturbation of a tridiagonal M-matrix is considered in
Chapter 3. We obtain a simple bound on the size of the perturbation in terms of the entries
and size of the tridiagonal matrix. An extension of these results to include perturbations
of more general band matrices is currently underway. An application of this result to time
stepping for higher order partial differential equations (PDEs) which require nonnegative
physical solutions is presented. More work is required to identify classes of PDEs as well as
spatial and temporal discretizations which yield matrices of this form.

Chapters 4 and 5 are used to set the stage for the Schwarz Waveform moving mesh
method proposed in Chapter 6. A brief survey of moving mesh methods in one spatial
dimension is given in Chapter 4. The concept of equidistribution and the development of
the moving mesh PDE is reviewed. Current implementation strategies are indicated. In
Chapter 5 we survey decoupled and multirate integration strategies. The idea is to identify
solution components which evolve on different time scales. These groups of components
are then integrated with different time steps and possibly different integration methods.
The main difficulties (and hence potentially fruitful research areas) include the dynamic
partitioning of components and the estimation and control of the error associated with the
decoupling procedure. Of primary interest for the rest of the thesis is the Schwarz Waveform
method for PDEs. Most of the other methods reviewed are developed and tested in the ODE
context. Further study of these techniques in the PDE situation is warranted.

In Chapter 6 we propose a new Schwarz Waveform moving mesh method. This is a
natural coupling of domain decomposition with moving mesh methods. The method is
defined and implementation details are provided. Numerical results for various decoupled
integration methods on fixed and moving grids are presented in Chapter 7. The Schwarz
Waveform moving mesh method performs quite nicely for a model problem having a ”two
spike” solution, which serves as a prototype for problems having difficult solution behaviour
in more than one region. The numerical solution is found to be not only more accurate,
but it is computed more efficiently than for a moving mesh method on one domain. The
Schwarz Waveform method is inherently multirate, allowing different time steps for solution
and mesh components in different domains. It would be natural in this context to allow for

different moving mesh parameters in different subdomains. We intend to develop and test
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'

strategies which take advantage of this flexibility. The ability to partition the unknowns
spatially also allows grids to adapt to rapidly changing features of the solution in different
regions of the physical domain. Tests on Burgers’ equation prove to be more of a challenge,
as regions of rapid change in the solution moves from subdomain to subdomain. This causes
an increase in the number of time steps in domains which share the difficult regions of the
solution. Depending on the details of the implementation this may cause a decrease in
the size of the time window and hence an increase in the total number of time windows.
The number of waveform iterations required to achieve convergence increases. Many of
these difficulties appear related to the changing size of the overlap region. This may be
circumvented by posing the problem in the computational domain ¢ and discretizing on
a uniform grid. Numerical studies using this approach are currently underway. Another
possible approach is to develop higher order transmission conditions, particularly suited to
moving meshes, to enable the passing of data from one subdomain to another. Finally,
research into ways of extending the Schwarz Waveform moving mesh method to problems

in higher dimensions is ongoing.
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