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Abstract 

Automatic audio signal classification is one of the general research areas in which algorithms 

are developed to allow computer systems to understand and interact with the audio envi- 

ronment. Human utterance classification is a specific subset of audio signal classification 

in which the domain of audio signals is restricted to those likely to be encountered when 

interacting with humans. Speech recognition software performs classification in a domain 

restricted to human speech, but human utterances can also include singing, shouting, poetry 

and prosodic speech, for which current recognition engines are not designed. 

Another recent and relevant audio signal classification task is the discrimination between 

speech and music. Many radio stations have periods of speech (news, information reports, 

commercials) interspersed with periods of music, and systems have been designed to search 

for one type of sound in preference over another. Many of the current systems used to 

distinguish between speech and music use characteristics of the human voice, so such systems 

are not able to distinguish between speech and music when the music is an individual 

unaccompanied singer. 

This thesis presents research into the problem of human utterance classification, specif- 

ically differentiation between talking and singing. The question is addressed: "Are there 

measurable differences between the auditory waveforms produced by talking and singing?" 

Preliminary background is presented to acquaint the reader with some of the science used 

in the algorithm development. A corpus of sounds was collected to study the physical and 

perceptual differences between singing and talking, and the procedures and results of this 

collection are presented. A set of 17 features is developed to differentiate between talking 

and singing, and to investigate the intermediate vocalizations between talking and singing. 

The results of these features are examined and evaluated. 
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((Adusic is the universal language of mankind." 

- L O N G F E L L O W - O ~ ~ ~ ~ - M ~ T  

"Talk is cheap. " 
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Chapter 1 

Introduction and Technical 

Background 

Sound classification, on first analysis, seems a straightforward task. We humans don't often 

think about how we do it, but we can tell that the source of a pattern of air vibrations 

behind us is a door closing and not a glass breaking. Sound analysis itself dates back to 

antiquity, often motivated by the desire to understand musical sound. The relationship 

between pitch and frequency was determined experimentally by Galileo and Mersenne in 

1636 [57]. 

Teaching computers to recognize sounds has been a popular research task since com- 

puters became useful tools for analyzing data. For example, automatic pitch detection 

methods date back to 1962. Audio analysis research is inter- and multi-disciplinary, and 

different parts of the sound classification task are interesting for different research domains, 

including physics, psychology, audiology, music, cognitive science, and philosophy. "If a 

tree falls in the forest, and there is no-one around to hear it, does it make a sound?" If 

sound does not exist apart from our perception of it, then the understanding of the physical 

properties of sound is intimately connected to the understanding of our perception of sound, 

and any study of sound must also include a study of the perceptual science of sound as well. 

We would like to have devices that can hear for us for a number of reasons: to make 

our lives easier by listening to things that are either too dangerous or too repetitive for 

us humans; to listen more closely or more accurately than us humans; or to be more able 

to interact with us humans. A computer could listen for the sound of a crying baby and 
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alert the parent. A computer could listen to and transcribe the speech of an auctioneer for 

accurate record keeping and accounting. A computer could listen to the radio overnight, and 

compile a custom program for the listener when the alarm goes off in the morning, containing 

relevant news, weather, and traffic conditions, devoid of advertisements, or complete with 

ads, or with a set of ads tailored to the personality of the listener. A computer could index 

a database of sound effects for retrieval by a sound engineer working on a movie. Sound 

can also be used as a sensor in factories and industrial areas, providing information about 

a binding saw blade or a squeaking brake, which otherwise might be missed until failure. 

Human utterance classification is a subset of the sound classification problem where the 

task is to decide which of a set of categories best describes a human vocal sound. This could 

include such utterances as laughter, coughs and burps, but for the purpose of this work 

we will restrict human utterances to those containing informational or emotional context, 

specifically speech, song, and utterances between these two. 

1.0.1 Unifying Principles 

In selecting features and analysis tools for this classification task, two principles have helped 

to sharpen the focus and direct the choices made. The first principle is a preference and 

the second is an observation. Neither of these principles are particularly rigorous in their 

motivation. 

Principle 1. (Time-domain preference) W h e n  two computational methods are available 

which perform the same task, prefer the one most  closely related to  t ime-domain processing. 

Principle 2. (Repetition observation) Production and observation of human  vocal sounds 

tends to proceed in cycles, the presence and frequency of which define the phenomena being 

observed or  produced. 

Principle 1 is a variant on Ockham's Razor which states that when two equally complete 

explanations of a phenomenon are available, prefer the simpler. To say that time-domain 

techniques are simpler is probably not a completely true statement, but the motivation 

behind this principle is that removing a single stage in a processing pipeline (that of com- 

puting a spectral analysis of some form) is beneficial, and if a system could be designed 

which needed no spectral analysis whatsoever, an efficiency can be realized because the 

processing could be easily ported to hardware, and a more rapid analysis would result. 



CHAPTER 1. INTRODUCTION AND TECHNICAL BACKGROUND 
, 

An argument against Principle 1 would be that the human auditory system processes 

sounds in a spectral context, and specifically that the cochlea does frequency band analysis. 

A system designed specifically to imitate the human auditory system would have to do at  

least some spectral analysis. The problems with this are twofold. First, as described later in 

Section 1.3, current spectral techniques are not particularly good at resolving the frequency 

information in sampled signals. Second, if one of the goals of this type of research is to 

duplicate human behavior, some would say that the process is unimportant as long as the 

desired responses are generated. 

This thesis concentrates on temporal features as well as temporal methods for feature 

extraction. This is done primarily for simplicity-if the design target of a system is a solid- 

state device, temporal methods have the potential to be faster because they do not require 

the FFT processing step, and because spectral processing often requires higher-dimensional 

considerations. 

Principle 2 is an observation that came from three seemingly independent phenomenon: 

pitch, vibrato and rhythm. Pitch is the human experience of a sound signal which oscillates 

at a detectable frequency. When the pitch itself oscillates, this is referred to as vibrato, a 

technique used by singers and instrumentalists to improve perceptual quality and be heard 

above an orchestra. Rhythm as a concept is more difficult to quantify computationally, but 

in terms of human perception of music, rhythm can be defined as the predictable repetition 

of a series of acoustical events. It should also be noted here, however, that it is often the 

unpredictable acoustical event within the context of a rhythm that is musically interesting. 

Rhyme is another human perceptual phenomenon which relies on repetition, but a specific 

frequency of repetition is not necessary for the perception of rhyme, so this phenomenon 

does not fall strictly into the domain of Principle 2. 

These two principles will be referred to throughout this thesis as a way to narrow the fo- 

cus within the wide and diverse research area of audio signal classification, human utterance 

classification, and speech/song continuum classification. 

The remainder of this chapter presents motivation for the research presented in this 

thesis, as well as technical background on sound and hearing, and techniques researchers 

have used to study auditory signals. 
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1.1 Motivation 

Humans classify audio signals all the time without conscious effort. Recognizing a voice on 

the telephone, telling the difference between a telephone ring and a doorbell ring-these are 

tasks that we don't consider very difficult. Problems do arise in the presence of noise, or 

when the sound is weak or similar to another sound. The classic example problem in audio 

signal classification is called the "cocktail party problem". This describes the phenomenon 

where humans are able to carry on a conversation in a room with many other conversations 

and background noise, the sum of the noise often being louder than the local conversation. 

As the noise gets louder, the intelligibility of the conversation degrades until the situation 

becomes what could be called the "techno dance party problem" where the surrounding 

noise is so great that conversation becomes impossible. 

The motivation behind the work presented in this thesis is threefold. One motivation is 

perceptual and physiological-can we describe what humans do and how they do it? A sec- 

ond motivation is imitative-can we develop a computer program that can emulate human 

listening. A third motivation is augmentativecan we develop a computer program that 

can do more than humans can do. These tasks are incremental: we must first understand 

what humans do before we can build a machine capable of imitating or improving on that 

performance. 

The perceptual and physiological task is to understand and quantify human utterances, 

human perception and categorical classification. How do we produce these sounds, how 

do they travel from a mouth to an ear, how do we separate these sounds into different 

categories, are these categories discrete or continuous, how do we interpret and extract 

information and knowledge from these categories, and how do we use this information and 

knowledge to plan, make decisions and interact with the world around us. 

The difference between speech and song can be likened to the difference between walking 

and dancing. Both perform the intended action (conveying information; traveling), but a 

certain "style" or "presence" has been added to one which makes it qualitatively different 

from the other. Part of the motivation of this research is to try to understand and quantify 

some of these differences. A difficulty is that these differences seem to be ill-defined and 

subjective. As will be seen in Chapter 2, people disagree on what is singing when compared 

to talking, and on what features and characteristics can be used to define the differences. 

Part of the problem is likely to be linguistic: when describing subjective phenomena, words 
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may mean different things to different people. When describing an utterance, people appear 

to agree on general concepts, but when they are asked to define the concepts and why they 

made these decisions, people's understandings start to differ. 

The imitative and augmentative tasks are to build devices that can do what humans can 

do, or can help humans do more or better than they could without the device. Audio signal 

classification encompasses many different application goals, some of which are imitative and 

some of which are augmentative. Speech recognition is a particularly difficult imitative 

goal, since it encompasses many levels of human cognitive processing. Intelligent hearing 

aids are an augmentative goal since they allow an individual human to hear better than he 

or she could without the device. This identifies a pair of subsets for the augmentative goal: 

devices for augmenting the hearing of one specific individual, and devices for augmenting 

the general ability of human hearing. 

Other applications include multimedia database applications such as annotation (for 

example automatic sound clustering) and retrieval (for example query-by-humming), psy- 

choacoustic therapy, automatic music transcription and consumer electronics applications, 

as well as speech detection, speaker verification, emotional content analysis, and even audi- 

tory user interfaces with conversational awareness, such as the fictional computers in "Star 

Trek" and "2001, A Space Odyssey". 

1.2 The Components of Sound 

In its simplest form, sound is a pattern of air pressure variations transferred to our eardrum, 

through a series of connected bones, to a frequency resolving organ and then to our brain. 

While sound itself is a four-dimensional phenomenon (air pressure over time in three-space) 

human perception of sound is two-dimensional, consisting of amplitude and time. It can 

become three-dimensional when we measure it in two physical locations, in the case of stereo 

listening. Stereo listening is principally important for sound localization, and while that can 

be useful for classification in an auditory scene, for the purposes of this work we will restrict 

the investigation of sound to a single listening place, and a single ear (or an average between 

two ears). 

In the real world, sound is a continuous function - it is possible to measure the air 

pressure level and how it changes at any instant in time. This much detail is not necessary 

when using computers to analyze sounds - humans cannot hear instantaneously fast. For 
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machine listening intended to augment human listening, it may be useful to analyze at higher 

and lower frequencies than humans can hear, but for imitative applications, it is sufficient 

to analyze through human perceptible frequencies. The question then is what can humans 

hear, and how can we design computer programs which can "hear" the same things. 

Psychological testing shows that the extreme range of human hearing is between 20 Hz1 

and 20,000 Hz. Average human hearing ranges are often limited to a subset of this frequency 

range. To make a computer program "hear" anything a t  all, we must first convert the sound 

waveform into a sequence of numbers. There are two problems with this - if we do not take 

enough measurements per second, the higher frequencies will not be captured, and if we 

do not make the numbers accurate enough, the computer will not be able to distinguish 

between enough air pressure levels. The first phenomenon is called the sampling frequency, 

and the second is called quantization. 

Quantization can be solved by allocating more bits to each sample. 16 bits per sample 

provides sufficient resolution for 216 = 65,536 possible air pressure levels at each sample. 

The sampling rate question is slightly more difficult. The Shanon theory states that to fully 

represent a waveform up to a frequency of f ,  a sampling rate of 2 x f must be used. To fully 

represent a waveform up to 20,000 Hz, or 20 kHz the computer must take a measurement 

40,000 times per second, or once every 50 microseconds. Modern CD players use sound 

sampled at 44 kHz, digital audio tape (DAT) uses a sampling rate of 48 kHz, and digital 

studios sometimes use 96 kHz. These higher sampling rates are used to allow "filter room" 

- it is very difficult to design a filter which cuts the sound off exactly at 20 kHz, and the 

more room between the signal cutoff and the sampling cutoff, the easier it is to design filters 

and other signal processing systems. 

Some listeners have observed that CD sound is not "perfect" even though it is theo- 

retically capable of reproducing all audible frequencies. It is possible that humans can de- 

tect frequencies above the theoretical audible limit, when in the context of lower-frequency 

sounds, or perhaps through bone conduction or other non-auditory perception. The original 

psychological tests were done with pure sinusoids, waveforms that have only one frequency 

component in them. Future research will tell if we are, in fact, better at hearing than we 

thought we were. 

'One Hertz (Hz) is one cycle per second, and corresponds to a waveform which completely repeats itself 
once in one second. 
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It is important at this point to differentiate between three closely related terms: wave- 

form, signal and noise. A waveform is the raw data to be analyzed and can contain signal, 

noise, both or neither. A signal is a waveform or a portion of a waveform considered to 

contain some desired information and/or properties, while noise is the undesired component 

of the waveform which often hides or blurs the signal being investigated. The same wave- 

form can have many different signal/noise interpretations, depending on the properties or 

phenomena being investigated. 

1.3 Spectral Analysis Techniques 

This thesis concentrates somewhat on time-domain (temporal) signal processing techniques 

(Principle 1). However, this assumes that a temporal technique is available to replace 

a frequency-domain (spectral) technique. If the spectral technique turns out to be more 

efficient, or if no temporal technique exists, then spectral techniques will be used, and 

so it is important to be familiar with spectral techniques as well. Spectral and temporal 

techniques are compared for a specific task in Chapter 3. 

It has been apparent for many years that a useful procedure in the study of sound is the 

study of the spectral components that make up the sound. Requency analysis of waveforms 

has been used in many fields other than sound, such as electrical engineering, geology and 

physics. The amount of information that is available in a one-dimensional waveform at  an 

instantaneous point in time is minimal compared to the amount of information contained in 

the history of the waveform over time. It is this recent history of the waveform that spectral 

techniques investigate. The following sections describe some common spectral techniques, 

their implementation and some evaluation. 

1.3.1 Fourier Analysis 

A sinusoid is a mathematical function that describes the simplest repetitive motion in 

nature. A ball on a rubber band will descend and slow as the band stretches, stop when 

the gravitational acceleration equals the restoring force of the rubber band, begin to ascend 

and stop again when the restoring force is zero and the gravitational acceleration equals the 

momentum. This system is called a simple harmonic oscillator. The sinusoidal motion that 

it creates is found in many different forms in nature, and in particular in the varying air 

pressure of sound waves. 
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Humans and other vertebrates have an organ called the cochlea inside the ear, which 

analyzes sound by spreading it out into its component sinusoids. One end of this organ is 

sensitive to low frequency sinusoids, and one end is sensitive to higher frequencies. When 

a sound arrives, different parts of the organ react to the different frequencies present in the 

sound, generating nerve impulses which are interpreted by the brain. 

Spectral analysis techniques, of which Fourier analysis is the earliest and most commonly 

used today, represent a waveform as a sum of sinusoids. The sum-of-sinusoids representation 

displays information about the harmonic makeup of the waveform, something that the 

human auditory system is particularly good at extracting as well. It is probably because 

of the human ability to recognize a sound signal using its harmonic makeup that so much 

work has been put into Fourier-type algorithms. 

The Fourier transform is an algorithm that generates the Fourier representation of a 

waveform. The Fourier representation contains a list of sinusoid functions, identified by fre- 

quency, and each sinusoid has an associated amplitude and phase. The phase of a waveform 

is the start location of the sinusoid relative to some specific zero. Phase is measured as an 

angle indicating some part of a complete oscillation. A sinusoid with a phase of 0 radians 

is identical to a sinusoid with a phase of 27r radians. These waveforms are said to be "in 

phase". A sinusoid with a phase of .rr radians is opposite to a sinusoid with a phase of 0 

radians. These waveforms are said to be "out of phase" and if added together, would cancel 

each other out. 

It has been shown that the ear is "phase deaf" [16], meaning that two sounds with the 

same frequency composition but with different phase compositions sound the same to the 

human ear. For this reason, the phase component of the Fourier representation is sometimes 

discarded when analyzing sound. However, changes in the phase spectrum of a waveform 

over time are perceptible. This change in phase is perceived as a shift in timbre, not in pitch, 

so it is not unreasonable to throw away the phase component of a Fourier representation 

if that representation were to be used only for pitch detection. It should be noted here 

that rapidly varying phase can result in perceived changes in the pitch, however this rarely 

happens in human vocal production. Figure 1.1 shows an example of a pair of waveforms 

with equivalent amplitude spectra but different phase spectra. The fundamental frequency 

is the same, and so the pitch measure will be the same. 
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Figure 1.1: Two waveforms with sinusoidal components of the same frequency and ampli- 
tude, but with different phase. 

The Short-Time Fourier Transform 

I 
The theory behind the Fourier transform requires that it be performed on a waveform 

of infinite length. This is usually accomplished in practice by repeating a finite-length 

waveform out to plus and minus infinity. If the waveform to be analyzed is long, containing 
I 
I 

many auditory events, the harmonic information from each of these events will be blurred 

i together. This representation does not give any information about when these harmonic 

1 events happen. 
L 

The short-time Fourier transform (STFT) is an attempt to fix the lack of time resolu- 

tion in the classic Fourier transform. The input data is broken into many small sequential 

segments, called frames, and the Fourier transform is applied to each frame in succession. 

What is produced is a three-dimensional representation, showing the progress of the har- 

monic spectrum over time. This representation is often referred to as a spectrogram. 

The finite signal within the frame is repeated to produce the infinite signal required by 

the Fourier transform. As a consequence, there is often a discontinuity in the waveform 

at the frame boundaries. This introduces spectral components into the transform that are 

not present in the original waveform. The solution to this problem is to apply a windowing 

function to the frame, which gently scales the amplitude of the waveform to zero at each end, 
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reducing the discontinuity at frame boundaries. The windowing functions do not completely 

remove the frame boundary effects, but they do reduce the effects substantially. 

Figure 1.2 shows a simple sine wave with three windowing functions and the correspond- 

ing Fourier representations. A single sine wave should have a Fourier representation of a 

singular component, and as can be seen in Figure 1.2, no STFT window completely removes 

the boundary effects, but some do better than others. Using no windowing function is 

equivalent to using a windowing function shaped like a rectangle, and this is referred to as 

a boxcar window. 

a) Boxcar Window b) Hamming Window c) Parzen Window 
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Figure 1.2: The effect of windowing functions on a sinusoid. 

Much work has been done to try to design better windowing functions, but as is made 

clear in [54], the improvements made by these more complicated windows are not worth 

the extra computation required to produce them. The Hamming window is very simple to 

implement, takes very little computation time, and yields good results. Gradually reducing 

the amplitude of the input waveform toward the edges of the frame will substantially reduce 

the frame boundary artifacts regardless of the window shape used. 

When these windowing functions are applied to a waveform, it is clear that some infor- 

mation near the frame boundaries is lost. For this reason, a further improvement to the 
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STFT is to overlap the frames. When each part of the waveform is analyzed in more than 

one frame, information that is lost at a frame boundary is retained in the next overlapping 

frame. 

1.3.2 Other Spectral Techniques 

The Fourier transform is not the only spectral transform; it is merely the most common. It 

was one of the original techniques, it is relatively easy to implement computationally, and 

it has some relevance to the real-world components of audio signals. It is useful for many 

applications, but there are things that the Fourier representation is not good at, such as 

time localization and accurate modeling of human frequency perception. 

Constant-Q Transform 

In the discrete Fourier transform, each frequency band represents an equal fraction of the 

spectrum. This is based on Fourier theory, and the transform is easy to implement and 

comprehend. Spectrally rich waveforms that have harmonically related partials appear on 

the transform as a series of equally spaced peaks. 

The human auditory system has long been understood to perform a kind of frequency 

analysis of the incoming sound. The analysis that is performed by the cochlea is logarithmic 

in its frequency resolution. Since all studies of sound are, to an extent, studies of the way 

humans and other vertebrates perceive sound, it makes sense to design a frequency analysis 

method that models the way the cochlea analyzes frequency. 

Thus was born the constant-& transform [57]. In signal processing theory, Q is the ratio 

of the centre frequency of a filter band to the bandwidth. The width of each frequency band 

in the constant-& transform is related to its centre frequency in the same way, and thus is a 

constant pitch interval wide, typically $ or $ of an octave. This allows for more resolution 

at the lower-frequency end of the representation and less resolution at the higher-frequency 

end of the representation, more accurately modeling the cochlear resolution pattern. 

The difficulties with this representation are that it is more computationally intensive 

and it is not necessarily invertible, that is, the result of analysis followed by synthesis might 

not be exactly the original waveform. For non-real-time analysis-without-synthesis, these 

problems are tolerable. 
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Multi-Resolution Transforms 

A major drawback of the Fourier transform is that it is a representation that is based 

completely in the frequency domain. Using the Fourier transform, one can have information 

about only the frequency behavior of the waveform, without knowing when that behavior 

occurred, unless a technique like STFT is used. 

Multi-resolution techniques look at the spectral makeup of the waveform at  many differ- 

ent resolutions, capturing the low-frequency information about the waveform over a large 

window and the high-frequency information over a smaller window. In the wavelet trans- 

form, this is accomplished by using a basis function that is expanded and contracted in 

time [9, 27, 661. The basis function, called a wavelet, can be thought of as a windowed 

sinusoid, although this description does not emphasize the mathematical nature of these 

functions. They are designed to be orthogonal, so that a transform using these wavelets 

would be reversible. 

In the discrete wavelet transform, the wavelet is stretched to fill the entire time frame of 

the waveform, analyzing how much low-frequency information is present in the frame. The 

wavelet is then scaled to fit half of the frame, and used twice to analyze the first half and 

the second half of the frame for slightly higher frequency information, localized to each half. 

Proceeding by halves, the entire frequency spectrum is covered. High-frequency information 

is highly localized in time, and low-frequency information is less localized. 

Multi-resolution transforms attempt to cross the boundary between a purely time- 

domain representation and a purely frequency-domain representation. They do not cor- 

respond exactly to "time" information o r  "frequency" information; rather the information 

that they extract from the signal is a kind of time-frequency hybrid. Methods can be em- 

ployed to extract time or frequency information from a multi-resolution representation such 

as the wavelet transform. 

1.4 Audio Feature Extract ion 

Feature extraction is typically the first stage in any classification system in general, and 

in audio signal classification systems in particular. Some researchers have elected to apply 

a pre-processing module to their system which filters out unnecessary information for the 

particular application. For example, Kumpf and King [37] use a Hamming window and pre- 

emphasis in their accent classification system, because the data domain contains only speech. 
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Researchers attempting more general classifiers typically have not used a pre-processing 

module, since it could remove useful classification information. 

The features used in audio signal classification systems are typically divided into several 

categories. Perceptual features are based on the way humans hear sound, physical features 

are based on properties of the physical sound, and signal features are based on statistical 

and mathematical properties of the waveform itself. 

An interesting division of features is for the multimedia database system presented 

in [79]. The user describes a desired sound, and the authors divide the features used in 

these descriptions into three categories: acoustical/perceptua1 features, subjective features, 

and simile and onomatopceia. Acoustical/perceptua1 features take into account all of the 

features we have described so far. A user can request a sound with ZCR in a certain range, 

or can request a sound with a given pitch track, typically input by singing or humming. 

Subjective features encompass what the authors call personal descriptive language, which 

can be more difficult for the system designers to deal with but can often be much more 

informative. An example of a subjective feature that the authors give is "shimmering". The 

simile features allow the user to request a sound by saying it is like another sound. This is 

often used to select a sub-category, like speech or noise. Onomatop~ia  is a way to request 

a sound by imitating the sound, for example making a buzzing noise to look for a sound of 

bees or electrical hum. 

1.5 Physical Features 

Physical features are directly related to physical properties of the signal itself. Perceptual 

features are related to the way humans perceive the sound signals, and as such rely on 

perceptual modeling. It is because of this that many researchers have elected to base their 

sound classification systems primarily on physical features. They are easier to define and 

measure, although they are not as directly relevant to human experience. 

1.5.1 Power 

Perhaps one of the most straightforward of the physical features, power is a measure of the 

amplitude of a waveform at  any one time. Power is defined as work per unit time, and in the 

context of audio signals, the power of a signal is related to the amplitude of the waveform. 

The louder the signal, the more power is in it. 
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Power measures are used to discover silence in a waveform, as well as dynamic range. 

The power of a waveform is typically calculated on a short-time basis, by windowing the 

waveform, as in the STFT, squaring the samples and taking the mean 1831. The square 

root of this result is the engineering quantity known as the root-mean square value, which 

has been used by other researchers 163, 791. Average normalized power (P), for a digital 

waveform, is equivalent to the average normalized energy (E) per sample. The definitions 

of these quantities, for a waveform w(t), are presented in Equations 1.1 through 1.4 1311. 

The value p(t) will be used throughout this work to represent the various quantities related 

to power, including amplitude and energy. 

E = lim w2 (t)dt 
T-03 -T/2 

(1.4) 

Features related to the time-varying power of the waveform have also been used. Power 

in specific frequency bands, and in particular, the variance of the low sub-band power, is 

used in [48] to detect silence. Their argument is that the application of a strict power 

threshold would not detect the difference between frames which contained no signal and 

frames which contained signal with low power, such as the beginning or end of a fade. 

The distribution of power across time has been used to distinguish between speech and 

music. Speech tends to consist of periods of high power (voiced phonemes) followed by 

periods of low power (unvoiced phonemes, inter-word pauses), while music tends to have 

a more consistent power distribution. A measure of the power distribution is used in [62], 

while a measure of the power modulation rate is used in [63], where the authors claim that 

speech tends to have a power modulation rate of around 4 Hz. 

1.5.2 Fundamental Frequency (fo) 

Only periodic or pseudo-periodic waveforms can have a valid fo. Perceptually, periodic and 

pseudo-periodic signals have a pitch. Periodic signals exactly repeat to infinity (w(t + 7) = 

w(t)) with a period of T and fo=?-l for the largest value of r. Pseudo-periodic signals 
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almost repeat (w(t tr) = w(t) + e) .  There is a slight variation in the waveform from period 

to period, but it can still be said to have fo = T- l ,  corresponding to the longest period T 

at which the waveform repeats within some tolerance E .  

It is clear that extracting fo from a signal will only make sense if the waveform is 

periodic. fo detectors often serve a dual purpose in this case-if the detected fo makes 

sense for the rest of the signal, then the signal is considered to be periodic. If the fo 

appears to vary randomly or if the detector provides an impossible or invalid result, the 

signal is considered to be aperiodic. Often, programmers will build into their algorithms 

some measure of periodicity detection, and the system will produce an impossible value, 

such as "O", when the algorithm determines that the waveform is aperiodic. 

In a sound or multimedia database such as the one discussed in [79], fo is an important 

feature for distinguishing between pieces of music, or for retrieving pieces of music based 

on the melody. The authors use the STET with a peak extractor to identify the fo of the 

waveform. For more on multimedia databases, see [69] and [80]. 

Speech word boundaries are detected using fo in [56]. The idea here is that large 

variations in fo are unlikely to happen in the middle of a word. It is more likely they 

will happen at the end of the word. The authors discuss the utility of this method for 

examination of various Indian languages (Hindi, Bengali, Marathi and Telugu) as well as 

German. However, they do not discuss the fo extraction method used. 

In many of these systems, there is no differentiation made between pitch and fo, and 

although the difference is well understood and easily modeled, it is important to remember 

that many of these systems do not include perceptual models of pitch detection. 

1.5.3 Spectral Features 

Many physical features of the spectrum of a waveform can be used for classification, de- 

pending on the classification goal. One of the most basic spectral measures is bandwidth, 

which is a measure of the range of frequencies present in the waveform. This feature is used 

in [62] to discriminate between speech and music. In this case, music typically has a larger 

bandwidth than does speech, which has neither the low-frequency of the bass drum nor the 

high frequency of the cymbal. Bandwidth is also used in the system in [79], and in this case 

the bandwidth is calculated by taking the mean of the difference between the frequency of 

each spectral component, and the spectral centroid of the waveform. The authors of this 

paper also use the mean, variance and autocorrelation of the bandwidth as features. 
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A general feature called Hamonic i t y  is used as a feature in several classification sys- 

tems [62, 791. Harmonicity refers to relationships between peaks in the spectrum. An object 

that vibrates, such as the human voice or a musical instrument, creates a sound that has 

strong frequency peaks at evenly spaced intervals across the spectrum. The harmonicity 

of a sound can be used to differentiate between voiced and unvoiced speech, or to identify 

music. 

The speech/music classification system presented in [63] uses several features based on 

statistical measures of the spectrum and spectrogram. These include spectral roll-off point, 

spectral centroid and spectral flux. The spectral roll-off point is the frequency below which 

most of the spectral power exists, and is used to distinguish between voiced and unvoiced 

speech. The spectral centroid is a measure of the mean frequency of the waveform. Music 

tends to have a higher spectral centroid than speech because of the percussive sounds. The 

spectral flux is a measure of the rate of change of spectral information, and music tends to 

have a higher rate of spectral flux than speech. 

1.5.4 Formant Location 

In general, a formant is a peak in the spectral envelope of a sound signal. Usually due 

to resonance of a filter applied to the driving function, these formants are often related to 

timbral difference separate from the driving function. Techniques such as multi-resolution 

spectral analysis and linear predictive coding allow the separation of the driving function 

from the formants, and thus allow the analysis of the filter used to shape the sound. Formant 

analysis, and source-filter analysis in general, can be used for many audio analysis problems. 

Voiced human speech is produced by a source (vocal cords) generating a periodic function 

(a glottal pulse) which is shaped by a filter (the vocal tract). The speech has formants at  

specific frequencies, depending on the phoneme being articulated. In traditional speech 

recognition, the relative frequencies of the first two formants are typically used to identify 

the vowel being formed [2, 551. While formants exist primarily in voiced speech, they 

also exist in some unvoiced sounds. Whispered speech is completely unvoiced, yet we can 

understand it as we understand normal speech. This is because whispered speech also 

contains formants, as shown in Figure 1.3. 

Formant location has been used for many years in traditional speech recognition, but it 

has also been used recently for more specific sound classification. A male/female classifica- 

tion algorithm has been proposed in [76] which uses the location of the first three formants 
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---- a) Voiced speech 
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Figure 1.3: A comparison of voiced speech and whispered speech using the phrase "What 
time is it?" 
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of the sound signal to classify the gender of the speaker. The authors gathered data about 

average formant frequencies for males and females, and found that there was sufficient dif- 

ference to use this as a classification feature. Formants are also used to analyze emotion, 

prosody, content, language or accent. Accent classification is discussed in [37], where a 

foreign accent in a known language is identified by the use of foreign phonemes. 

1.5.5 Duration and Modulation 

The simplest of the time-based features, duration of a sound is simply how much time is taken 

by the sound. In the multimedia database application described in [79], the duration of the 

sound is used as a feature. The sound of a finger snap is likely to be shorter than the sound 

of an explosion, which is again likely to be shorter than the sound of applause. Melody 

recognition, on the other hand, probably can not make use of duration as a recognition 

feature, since durations vary between versions of a song, and specifically between the version 

or versions stored in the database and the version being sung or hummed as input. Duration 

matching methods can be employed when the length of a sound is likely to be similar to the 

length of the stored template. 

In speech, the duration and spacing of syllables tends to be fairly regular, while in other 

sounds, and specifically music, tone lengths tend to vary much more widely. This feature, 

called modulation power in [63] is measured by filtering the signal at 4 Hz (the theoretical 

modulation rate of speech syllables) and using the power in the 4 Hz band as the feature 

indicator. In [62], this feature is referred to as tonal duration, and is measured by first 

finding syllable onsets and offsets, using ZCR to identify fricative consonants, and then 

finding the time between syllables. 

1.6 Perceptual Features 

When extracting perceptual features from a sound, the goal is often to identify the features 

that we as humans seem to use to classify sound. Most perceptual features are somewhat 

related to a physical feature, and it is usually instructive to investigate the physical counter- 

parts to these perceptual features. When physical features cannot be found that correspond 

to perceptual features, it is sometimes necessary to extract information by example, and 

classify based on templates of sounds which have been identified to contain a certain per- 

ceptual feature. 
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1.6.1 Pitch 

Pitch seems to be one of the more important perceptual features, as it conveys much infor- 

mation about the sound. I t  is closely related to the physical feature of fo. While frequency 

is an absolute, numerical quantity, pitch is a relative, fluid quantity. A good example of 

this discrepancy is found in [47], where a system was developed to transcribe sound into a 

musical score. The system worked correctly, but provided an unexpected result-it placed 

the musical piece in the key of Cfl instead of the key of C, because the guitar was tuned 

slightly sharp. 

Humans perceive pitch in situations where current fo detectors can fail. One of the 

most interesting examples of this is the phenomenon of the missing fundamental [58]. When 

presented with two simultaneous pure tones at a given interval, the human auditory system 

"hears" the fundamental frequency that would be common to both tones, if it were present, 

Thus, if two pure sinusoidal tones a fifth apart were played, a pure tone an octave below the 

lower of these tones would be perceived, as a fundamental to the perceived harmonic series. 

This implies that for pitch perception, the frequency spectrum of the signal is at least as 

important as fo. 

1.6.2 Pitch Standards 

One of the major problems for automatic pitch detectors is that they often assume that 

music is based on a specific standard of pitch, for example middle "A" (A4) being 440 Hz. 

Such a standard does not really exist, for several reasons. 

Musical pitch is understood in a relative scale, with the relationships between notes 

much more important than their absolute location on a frequency scale. Before 1750, there 

was no consistent starting point for the musical pitch scale [17]. Absolute pitch had no 

meaning. In these early times, the number of notes being used was small (sometimes no 

more than a couple of octaves). Over the centuries, more and more notes have been added 

to the musical "gamut". 

The standard musical pitch system which many musicians adhere to (A4=440 Hz) is 

in fact not as standard as it seems. Indeed, between 1636 and 1834, organ manufacturers 

made instruments with Aq tuned to anywhere from 392 Hz to 563 Hz [16]. Even today, 

some orchestras tune slightly higher than 440 Hz, a technique believed to make the music 

sound "brighter". 
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The problem of standardized pitch scales manifests itself in many ways for the pitch 

detection researcher. Music recordings might be based on a different standard pitch from 

the one assumed by the detection algorithm, which would provide inaccurate results. Even 

if a recording is made using Aq = 440 Hz, the playback device might not be accurate enough 

to re-produce this pitch-many old phonograph and tape playback devices have unreliable 

playback speeds. Beyond the recording device and the pitch standard, the instrument or 

voice producing the sound might be out of tune. 

Most humans have no problem with this situation because our primary pitch detection 

process is relative pitch perception. Some people with absolute or perfect pitch perceive 

specific frequencies instead of frequency ratios, and can have significant difficulty following 

a musical score when listening to the piece played in a different key [40]. It would be 

beneficial if researchers could design their pitch detectors with some form of relative pitch. 

A difficult and somewhat theoretical question is whether there is any physical difference 

between a piece in the key of Cfl and a piece in the key of C played on an instrument tuned 

a half step too high. How could a computer be programmed to detect this difference? 

An even more difficult problem is that of the natural drift of amateur unaccompanied 

singers. A singer may start on key, and as the piece progresses, slowly drift up or down 

in pitch until at the end of the piece, he or she might be several tones out from the initial 

key. How does a computer deal with this problem? When does it shift from the key of C 

to the key of C/j to the key of D? What makes these problems even more difficult is that 

they are usually specific to the domain of the sound input. A piano will not drift during the 

course of a piece, so a pitch detection algorithm designed for transcribing piano notes might 

not perform well on unaccompanied singing. Indeed, the pitch of unaccompanied singing 

often varies so much during the course of a single note that pitch detectors have difficulty 

determining the note being sung. More discussion on this topic is presented in Section 4.2. 

1.6.3 Prosody 

Prosody is a characteristic of speech corresponding to changes in pitch and phoneme dura- 

tion, as well as significant pauses across a spoken phrase, indicating deeper meaning. For 

example, if the pitch of a phrase rises at the end, it is likely to be a question. Prosody is 

also used to emphasize certain words in a phrase. The sentence "I took her to the store,'' 

can mean different things depending on which part of the sentence has emphasis. "I took 

her to the store," conveys a different meaning from "I took her to the store," or "I took 
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her to the store." This emphasis can be generated using higher pitch, loudness, increased 

phoneme duration or a significant pause before the emphasized word. 

The analysis of prosody for classification usually assumes that speech recognition has 

already been performed, and the prosody of the speech conveys further meaning. As an 

example, in [44] the authors use prosody, among other tools, to identify dialogue acts, or 

fundamental pieces of speech. Prosody could also be used when speech recognition has not 

already been performed. An utterance with prosodic raising at the end could be classified 

as a question, and other characteristics of speech could be identified using prosodic features. 

1.6.4 Timbre 

When humans discuss sound, they talk of pitch, intensity, and some other well-defined 

perceptual quantities, but some perceptible characteristics of a sound are more difficult to 

quantify. We clump these characteristics together, and call them collectively timbre, which 

has been defined as that quality of sound which distinguishes different instruments or voices 

sounding the same pitch. Most of what we call timbre is due to the spectral makeup of 

the signal, specifically at the attack of the note. Many spectral characteristics, as discussed 

above, can be used as classification features, and many of these correspond to the timbre of 

the sound. 

Zhang and Kuo provide a discussion of timbre in [83], and consider it the most impor- 

tant feature in differentiating between classes of environmental sounds, as well as speech 

and music. Acknowledging that spectral information contained in the attack of the note 

is important in timbre, they state that the temporal evolution of the spectrum of audio 

signals accounts largely for the timbral perception. Unfortunately, they do not discuss their 

method for extracting timbral information from a sound. The extraction of physical fea- 

tures that correspond to timbral features is a difficult problem that has been investigated 

in psychoacoustics and music analysis without definitive answers. 

The authors of the multimedia database system discussed in [79] describe subjective 

features as well as acoustic and perceptual features of sound. Words used to describe 

timbre include "shimmering", "bright" and "scratchy", and these ideas can be used in a 

template matching system, which would classify on the basis of timbre without identifying 

the corresponding physical features. The system collects examples of sounds that have been 

classified as "scratchy", clusters them according to the features they have in common, and 

uses these features to decide if a new sound belongs to this category or not. 
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1.6.5 Rhythm 

Rhythm is a perceptual quantity, and is often defined differently depending on the listener. 

Rhythm relates to the rate, regularity and pattern of time-level events like drum beats, 

note and vocal syllable onsets and duration, and linguistic events like prosodic emphasis 

and rhyme. When a piece of sound is considered rhythmic, it often means that there are 

individually perceivable events in the sound that repeat in a predictable manner. The tempo 

of a musical piece indicates the speed at which the most fundamental of these events occur. 

Researchers who are attempting to extract rhythmic information from a piece of sound 

often look at repetitive events in power level, pitch or spectrum distribution, but musical 

rhythm is often not as simple as a peak in power every n milliseconds. More likely, there is 

a complicated series of events, fitting into a repetitive rhythmic framework. The problem is 

that the tempo of this rhythmic framework often changes throughout a piece of music, for 

example slowing down just before a chorus or at the end of the piece. 

A rhythm detector was employed in [63], in the form of a "pulse metric", using autocor- 

relation to extract rhythmicity. The waveform is filtered to isolate various frequency bands, 

and the autocorrelation of each band is taken. The authors indicate that this method is 

useful to detect a strong driving beat in music, but fails when the rhythm deviates very 

much from a central time. A common musical technique that results in this deviation is 

rubato2. 

Rubato music has an underlying beat that is intentionally inconsistent in its duration, 

allowing for emotional expression in the music. This style makes rhythm detection very 

difficult, for example, when a jazz singer draws out some notes and shortens others. The 

effect of this on the listener is that if they know the piece, they can appreciate the interpre- 

tation of the singer by comparing it with an internal mental model derived from previous 

experience. Providing a computer with a similar internal model could require coding of 

experience and context, which is a difficult problem. Conversely, modern dance music uses 

machine-generated drumbeats, which are usually very rigid in onset time and duration, and 

because of this the pulse metric performs well in detecting the presence of rhythm in this 

type of music. 

A more general classification system presented in [83] uses rhythm to detect sound effects 

 he musical term "rubato", also called robbed-time, comes from the idea that time is stolen from one 
note and given to another, so  the overall duration is consistent but the rhythm of the individual notes is 
a1 tered. 
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such as footsteps, clock ticks and telephone rings. While the authors discuss the effects of 

rhythm, and why it is a useful feature, they do not discuss the extraction methods used in 

their rhythm detector. 

1.7 Signal Features 

Signal features relate to the characteristics of the waveform, which is a representation of 

the sound within a computer system. Signal features include statistical and mathematical 

properties of the waveform, and often relate to the manner in which the sound signal has 

been translated into computer-interpretable information. 

1.7.1 Zero-Crossing Rate and Related Features 

Since it was made popular in [34], the utility of the zero-crossing rate has often been in 

doubt, but lately it has been revived. Put simply, the ZCR is a measure of how often the 

waveform crosses zero per unit time. The idea is that the ZCR gives information about the 

spectral content of the waveform. 

One of the first things that researchers used the ZCR for was fo. The thought was that 

the ZCR should be directly related to the number of times the waveform repeated per unit 

time. It was soon made clear that there are problems with this measure of fo [57]. If the 

spectral power of the waveform is concentrated around fo ,  then it will cross the zero line twice 

per cycle, as in Figure 1.4a. However, if the waveform contains higher-frequency spectral 

components, as in Figure 1.4b, then it might cross the zero line more than twice per cycle. 

A ZCR fo detector could be developed with initial filtering to remove the higher partials 

that contaminate the measurement, but the cutoff frequency needs to be chosen carefully 

so as not to remove the fo partial while removing as much high-frequency information as 

possible. Another possibility for the ZCR fo detector would be to detect patterns in the 

zero-crossings, and hypothesize a value for fo based on these patterns. 

It has since been shown that ZCR is an informative feature in and of itself, unrelated to 

how well it tracks fo. Many researchers have examined statistical features of the ZCR. For 

example, [63] uses the ZCR as a correlate of the spectral centroid, or balance point, of the 

waveform, which, unless the spectrum is bimodal, is often the location of most of the power 

in the waveform. If the spectral centroid is of fairly high frequency, it could mean that the 

signal is a fricative, or an unvoiced human speech phoneme. 
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Figure 1.4: Influence of higher harmonics on zero crossing rate. (after [57]) 

A purely statistical use of the ZCR is found in [62]. John Saunders gathered data about 

how the ZCR changes over time, and called this a ZCR contour. He found that the ZCR 

contour of speech was significantly different from that of music, and used this feature to 

help discriminate between the two. A similar use of the ZCR is the short-time average 

ZCR feature, used in [83]. Again, the authors used the ZCR as a measure of the spectral 

characteristics of the waveform, to differentiate between speech and music. These unintuitive 

uses of the ZCR show an advantage of physical features over perceptual features - that some 

useful features of sound signals are not immediately evident from human perception. 

One of the most attractive properties of the ZCR and its related features is that these 

features can be calculated very quickly. The ZCR is a time-domain feature, which can 

be calculated in real time "on the fly," keeping a running total of the zero-crossings as 

the waveform is received. A system which uses features entirely based on the ZCR would 

not even need analog-to-digital conversion. It would only need to sense whether the input 

waveform voltage is positive or negative, and send a pulse whenever the sign of the waveform 

changes. 

1.7.2 Voiced/Unvoiced Frames 

One of the fundamental first steps in any speech recognition system is the classification of 

frames as voiced or unvoiced. On first inspection, this seems like a fairly physical feature: 

voiced frames tend to be harmonic, and have a lower spectral centroid than unvoiced frames, 

which tend to be non-harmonic. 

The voiced-ness of a sound segment can be used as a classification feature, often detected 

using a fo estimator [32, 751. The assumption is that the input is a speech signal, and when 
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there is significant power in a frame but no discernible pitch in normal speech range, the 

frame can reliably be classified as unvoiced. The system is really classifying on the basis of 

pitches in a certain range, but in the domain of speech recognition, this corresponds to a 

voiced/unvoiced classification. 

1.8 Speech, Music and Song 

This thesis deals with human utterance classification, a sub-domain of audio signal clas- 

sification. Specifically, the topic of interest is the physical and perceptual features that 

differentiate human talking from human singing. Human singing has many characteristics 

of what we call music, but the main difference is that in human singing, no instrumental or 

polyphonic music is present. Singing is often combined with instrumental music to create 

the full-spectrum songs we hear on the radio, and individual singing voices are often grouped 

together to create vocal harmonies. The differences between speech and song are often very 

subtle and much more difficult to quantify than the differences between speech and music. 

1.8.1 Speech and Music 

When differentiating between speech and music, the research goal is often application-based: 

Create a system that can separate broadcast radio into segments of speaking and segments 

of music. The goal of such a system would be, for example, automatic radio tuning, where 

the user would request either constant music or constant talking, and the radio would find 

a station with the desired content, and stay there till the content changed, at which point 

the radio would find another station. 

These systems differentiate between speech and song using features that are relevant to 

the task, including bandwidth, fo continuity, and power modulation. While these features 

are useful for a speech/music system, they fail when applied to the speech/song problem. 

The bandwidth of a speech signal is much less than that of a full spectrum music signal 

because the music signal often has bass drum and cymbals, both of which produce sound 

outside the normal range of human singing or speaking. The bandwidth of an individual 

singer is the same as that of an individual speaker3. A difference between speaking and 

singing, however, is that singers often use pitches outside of the normal range of speaking. 

3 ~ h i s  is not strictly true for some trained professional singers, who are able to modify the spectral 
characteristics of their voice to include higher frequencies 
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The problem with this feature is that pitches inside the normal speaking range can be 

evidence for speaking o r  singing. Further information on these features is presented in 

Chapter 4. 

Musical instruments often produce constant pitches held for a duration. Instruments 

such as the piano cannot change the pitch of a single note. Human singing is, on the other 

hand, not dependent on steady pitches and in fact it is very difficult and often undesirable for 

human song to have a perfectly constant pitch. Rather, a more perceptually pleasant human 

song style has a pitch track that uses vibrato, a pseudo-sinusoidal pitch track oscillation. 

The speech/music work that has been done recently can be used to inform a speech/song 

classification project, but the one is not directly extensible from the other. This thesis is a 

description of the features and techniques that are useful in discriminating between speaking 

and singing. 

1.8.2 Human Utterance Continua 

Many human utterances are not strictly classifiable as talking or singing. Utterances like 

poetry, chant and rap music fall somewhere between speaking and singing, with charac- 

teristics of each [41, 431. Another intermediate utterance is sprechstimme or sprechgesang 

(speech-song), developed by the composer Arnold Schoenberg and used later by his student 

Alban Berg. It is a vocal musical style characterized by widely varying pitches, with the 

singer approximating the pitch instead of singing the exact note. 

When considering a classification domain with intermediate utterances between two 

classes, there are several ways to proceed, three of which are hard classification, continuum 

classification, and sub-category hard classification. 

Hard classification. This is the traditional classification paradigm, where each new data 

point must be assigned to exactly one class. In the case of speech versus song, a single two- 

class discrimination will not accurately describe utterances that fall between speech and 

song. A two-class paradigm might be a beneficial starting point for classifying intermediate 

utterances because the two-class features can be extended by assigning a confidence metric 

to each feature measurement. 
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Continuum classification. Also called fuzzy classification, soft classification or confi- 

dence classification, this method assumes that each incoming data point can have member- 

ship in both available classes to some degree. The terminology of these various techniques 

differs but the result is primarily the same. In confidence classification, each data point is 

assigned to one class, with an associated confidence metric indicating the "good-ness" of 

the classification. If all relevant features agree with a classification, the confidence would be 

high, while disagreement in feature results would result in a lower confidence. 

Fuzzy classification considers partial membership in both available classes. Traditional 

logic states that an object is either a member of a set or is not. Fuzzy logic states that an 

object can be a member of a set to a degree [35, 451. As an example, consider terminology 

such as "tall" or to describe an individual. Because these are relational descriptions 

(taller, older), the cut-off point between "tallnand "short" is difficult to identify. Two- 

class Fuzzy logic suggests that each individual be assigned a pair of numbers that indicate 

membership in each class. A short person might be 25% "tall" and 82% "short", while a 

very tall person might be 90% "tall" and 7% "short". Note that fuzzy membership in all 

classes is not required to sum to unity. 

Sub-category hard classification. Because the continuum between speech and song 

can be identified by listing human utterances between speech and song, a third possibility 

presents itself: instead of allowing a continuum of classification results, create a set of 

classes between speech and song and require that each incoming data point be assigned to 

one of these classes. This removes the extra computation that is required with continuum 

classification while acknowledging the range of possible utterances between speech and song. 

In this thesis, hard classification is used to determine the relevant features in the domain 

and to test the capabilities of each feature. Continuum testing is then performed on the 

hard classification features, using intermediate utterances, to test the feasibility of using 

hard classification features for continuum classification. 

1.9 Thesis Organization 

This thesis proceeds in five chapters and three appendices. Chapter 1 has presented an 

introduction to the problem as well as some relevant background necessary for understanding 

the remainder of the thesis. Chapter 2 describes the collection and annotation of the research 



corpus used in the remainder of the thesis. Pitch has become a fundamental base feature 

for this research, so Chapter 3 contains a description of several techniques for extracting fo 

from a waveform. Chapter 4 contains a discussion on the features used in the speech/song 

discrimination task, their motivation, implementation and results. Conclusions and future 

work are presented in Chapter 5. 

The three appendices contain data and documents relevant to the research corpus dis- 

cussed in Chapter 2. Appendix A is the research protocol for the human subject study 

performed to collect and annotate the corpus. Appendix B contains copies and examples 

of the research tools and instruments used in the corpus collection and annotation. Ap- 

pendix C contains the complete corpus annotation results, including numerical ratings and 

verbatim written comments. 
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Chapter 2 

Corpus Collection 

For audio research in a specific domain, the most desirable option is often to find a corpus of 

data that has been collected previously and is in use by other researchers, as this provides 

a place to start and a set of colleagues with whom to compare results. If the domain is 

new, obscure or specific, such a corpus may not exist. Intermediate utterances between 

speech and song is such a data domain. There exist many corpora of speaking only [77], and 

some corpora including sung clips, but searching the current literature did not uncover any 

corpora containing intermediate clips between speaking and singing, or clips of the same 

phrase spoken and sung by one individual. Both of these would be valuable to speech/song 

research. 

The first step in collecting a corpus of clips is to consider the options for sources of 

sounds, of which there are essentially two: find (extract)  clips from pre-existing sources or 

record (solicit)  new clips. Solicited clips have the advantage of control-specific charac- 

teristics of content, speaker, subject, style, etc. can be sought. The primary disadvantage 

of solicited clips is the time and effort required to find appropriate subjects and to obtain 

the necessary permission to solicit such clips. Extracted clips have the advantage of being 

readily available. However, copyright restrictions may apply, and not all characteristics 

are controllable. Further, some characteristics concerning source may be unknown and/or 

unobtainable. 

For the corpus used in this thesis, clips were collected in these two ways-some clips 

were solicited from subjects in a laboratory environment, recorded digitally using a dynamic 

headset microphone, and some clips were extracted from existing media such as movie 

soundtracks, broadcast media, and music albums. 
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2.1 Corpus Domain, Restrictions and Distribution 

No corpus can be exhaustive in scope or content. When creating a corpus containing human 

utterances, a primary concern is the restrictions in the domain, particularly in language, 

content, and scope. If soliciting clips in more than one language, the subjects must be 

multilingual or there must be a multi-lingual solicitor. It is easier to find extracted clips in 

several languages than it is to solicit such clips, although again, some source information 

may not be available. 

If the corpus is restricted to a single language, any conclusions gained from working with 

the corpus will be applicable only to the content language. On the other hand, language 

differences in a multilingual corpus may make it difficult to isolate phenomena occurring in 

only one language. Monolingual segments of a multilingual corpus can be used for mono- 

lingual research. The utility of a multilingual corpus must be balanced with the increased 

time and effort required to collect such a corpus, especially if the research task is, by its 

nature, monolingual. 

This corpus is primarily monolingual, with a small collection of other languages. A larger 

multilingual corpus may be collected in the future, to expand the current research and results 

to other languages. The corpus contains 90.3% (756 files) English language utterances with 

the remainder of the clips (82 files) in languages including French, Italian, Swedish, Gaelic, 

Japanese, Mandarin Chinese, Rumanian, Hungarian, German, Latin, lroquoisl, Mon-kmer2 

and Zunian3. Some clips have no language, such as whistling or humming. 

The corpus can be distributed along three primary axes: 

a Extracted clips - Free Solicited Clips - Constrained Solicited Clips 

a Spoken utterances - Sung utterances - Intermediate utterances 

Speaker Characteristics 

These axes relate to the following characteristics: the collection method of the sound 

clip (Existing media, human subjects); the content of the sound clip (speech, singing, some- 

thing in between) and the content source (who is speaking or singing). The spoken/sung 

 h he Iroquois are a collection of aboriginal american tribes from the north-east United States, Quebec 
and Ontario. 

 on-kmer is the language of the Kmhmu people, an aboriginal tribe from Laos 

3 ~ h e  Zuni are an american aboriginal tribe who originated in New Mexico and Arizona 
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categorization is the primary focus of the research for which this corpus was developed, and 

consists of pure speech clips, pure song clips, and clips that are somewhere between speech 

and song. These intermediate clips are categorized by listener opinion testing, as discussed 

in Section 2.2. The speaker characteristics considered include age, gender, and speaking 

and singing experience, although for the extracted clips, some of this data is unavailable. 

2.1.1 Solicited Clips 

Clips were solicited from 50 subjects, using a set of 11 prompts. Subjects were instructed 

to attempt to limit their utterances to 5 seconds. The prompts used were: 

1. Please speak or sing anything you like for about 5 seconds. 

2. Please sing the first line of your favourite song. 

3. In a single short sentence, please tell me what you had for lunch yesterday. 

4. Please speak the phrase "When you're worried, will you run away?" 

5. Please sing the phrase "Row, row, row your boat, gently down the stream." 

6. Please speak the phrase "Row, row, row your boat, gently down the stream." 

7. Please sing the phrase "0 Canada, our home and native land." 

8. Please speak the phrase "0 Canada, our home and native land." 

9. In a single short sentence, please tell me what you did last weekend, using a voice 

which is somewhere between singing and speaking. 

10. Please utter the phrase "Why is the sky blue?" using a voice which is somewhere 

between speaking and singing. 

11. Please speak or sing anything you like for about 5 seconds. 

These prompts are designed to solicit a specific set of utterances, and to control for 

certain characteristics. There are two types of constraints in the solicited clips-lyric and 

style. Clips may be constrained in lyric (prompt 4)' in style (prompt 2), or both (prompt 7). 

The first and last prompts solicit unconstrained clips, while prompts 5 through 8 constrain 

both lyric and style, to provide a baseline characterization of singing and speaking for each 
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subject. Prompts 9 and 10 constrain style, in that subjects are to provide some form of 

intermediate utterance between speaking and singing. These clips are interesting from the 

point of view of this research, because they are expected to fill out the continuum between 

speech and song. 

The songs for the clips constrained in lyric and style were chosen to be familiar in content 

and tune, while containing a variety of phonemes and rhythmic structures. Prompts 5 and 

6 are from a common nursery rhyme, containing phonetic glide repetition and few fricatives, 

and the tune has short notes and small intervals. Prompts 7 and 8 are from the Canadian 

national anthem, a song familiar to all subjects. This song has longer notes and the intervals 

are larger, and the lyric for this song contains more fricatives and a repetitive vowel structure. 

The prompts were presented to the subjects in one of four orders, to control for familiarity 

and experiment history. Some subjects were prompted for singing first, then speaking, and 

some subjects were prompted for the intermediate clips first while some were prompted for 

intermediate clips last. In each of the four prompt orderings, the first and last clips are 

unconstrained, using identical prompts. 

A total of 550 solicited clips are in the corpus, collected from 50 subjects, consisting 

of 23 females and 27 males. The mean age is 34.8 years, and the standard deviation of 

the ages is 13.7 years. The oldest subject is a 70 year old male, and the youngest subjects 

are 20 years old. Their (claimed) experience ranges from no formal speaking or singing to 

60 years combined speaking and/or singing training. The subject set includes professional 

radio broadcasters and professional singers as well as informed amateurs and novices. 

There are an additional 65 unconstrained solicited clips from individuals during con- 

ferences, which complement the unconstrained nature of the extracted clips. The prompt 

used was "Please speak or sing anything you like for 5 seconds," and each individual gave a 

single clip or two. Combining these with the 100 unconstrained solicited clips, the first and 

last from each of the 50 laboratory human subjects, there are a total of 165 unconstrained 

solicited clips, and 450 constrained solicited clips. 

2.1.2 Extracted Clips 

The clips extracted from existing media were found by looking through popular movies 

and music albums for short segments of speech and song, but primarily for intermediate 



CHAPTER 2. CORPUS COLLECTION 33 

vocalizations4. The requirement for these clips is that they are completely monophonic- 

they have no background noise, music or sound effects. Many of these clips were taken 

"mid-stream", from the middle of an utterance, to avoid utterance onset and offset artifacts. 

A total of 232 extracted clips are included in the corpus, which combined with the 615 

solicited clips makes 847 clips total in the corpus. The extracted clips are unconstrained 

in style and content, although specific style of content was sought for the clips. The en- 

tire corpus is available on-line at h t t p :  //www . cs . sf u. ca/speech, including the numerical 

annotation information presented in the following sections. 

2.2 Data Annotation Method 

Collecting the data for a corpus is only the first step in producing a useful research tool. 

The data must be annotated in order to provide statistical information and research targets. 

A common annotation task in human utterance corpora is to transcribe the words in each 

clip, since a common research task is automatic speech recognition [4]. For the research 

presented in this thesis, what people are saying is less important than how they are saying 

it, so linguistic transcription and part-of-speech tagging is not part of the annotation task 

for this corpus. The annotation task for this corpus is to develop a classification target for 

each utterance. 

Classification targets for linguistic data are usually fairly universal-humans generally 

agree on the linguistic content of an utterance even if computers may have problems resolving 

anaphora (binding pronouns to their related noun phrases) or ambiguities (choosing from 

one of a set of equally plausible results). Stylistic data such as  speech-ness and song-ness 

of intermediate clips are by their nature more subjective, and so the opinion of a single 

researcher is not sufficient to determine the classification of such a clip. For this reason, 

opinions were solicited about the intermediate clips in the corpus both by individuals who 

had participated in the creation of the corpus by providing clips, and by individuals who 

had not been involved in the creation of the corpus. This opinion gathering had the added 

advantage of soliciting opinions on the general differences between speech and song as well 

as the specific classification of each clip. 
- -- 

4 ~ o s t  of the extracted clips come from sources protected under copyright. The Canadian and American 
copyright acts both allow fair use or fair dealing of copyright material under several situations, two of which 
apply-first, the clips are being used for research, and second, the clips are too short to be in competition 
with intended market of the original work [I, 71. 
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Opinions were solicited from human listeners on an internet-based form containing a 

representative sub-set of the complete corpus. The web sub-set of the corpus contains all of 

the constrained solicited clips where the prompt was for an intermediate vocalization (100 

clips) as well as 34 unconstrained solicited clips and 76 extracted clips. These 210 clips were 

reduced to 191 for the web site, by removing 19 clips which were repetitive or unsuitable in 

content or quality. Some repetitive clips were retained in the web corpus as a control. The 

clips that are not annotated using the internet-based form are rated as pure speech, pure 

singing, or rated the same as a similar or identical clip which was rated using the internet 

form. An additional 12 constrained solicited clips were chosen from other prompts and these 

were rated by all listeners, bringing the total number of clips on the web-site to 203. 

Users began by logging in to the web-site, and providing their name and contact infor- 

mation. Each was assigned a unique user number. This number was used for identification 

throughout the project. The name and contact information were retained only for later 

contact if required. The listeners then provided information about their experience with 

professional or amateur music, singing and speaking, as well as their age and gender. 

There are three parts to the web annotation project. Part 1 consists of a simple 1-to-5 

rating for all but 30 of the web corpus clips, 1 for pure speech and 5 for pure singing. The 

extracted clips and the free solicited clips were rated by all listeners, and 20 of the 100 

intermediate utterance solicited clips were rated by each listener, 10 from each prompt, to 

reduce the number of files each listener was required to rate. There were 5 sets of 10 clips 

from each prompt, randomly chosen for each listener, so all 100 of these clips were rated. 

Part 2 contained the remaining 30 clips and a more detailed rating was solicited from 

the listeners: 

1. Rate the file: Talking o o o o o Singing 

2. What is it about the sound that leads you to this judgement? 

3. What could the speaker have done to make this clip more speech-like? 

4. What could the speaker have done to make this clip more song-like? 

If a listener rated a clip as pure speech, s/he was not required to indicate how to make 

the clip more speech-like, and vice-versa. Part 3 is a free-response form where listeners 

shared their insights on the project and on the differences between talking and singing. 
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The data for all three parts were collected using a per1 script system hosted from the 

Simon Fraser University web-site over the course of the month of May, 2001. There were 

48 listeners who completed the web annotation project, 19 of whom had been subjects in 

the data collection phase of the project. Participation was solicited through email, per- 

sonal contact, invitations to the subjects of the data collection project, and a radio spot 

on the British Columbia noon radio show "BC Almanac" on the Canadian Broadcasting 

Corporation. 

2.3 Annot at ion Results: Numerical 

This section provides numerical analysis of the subject set and of the ratings provided by 

the listeners. The data considered here are the numerical statistical data about the subjects 

themselves, and the 1-to-5 ratings provided by the listeners in Part 1 and'part 2. 

2.3.1 Overall Results 

The individual speech/song ratings from each listener for each file were averaged to obtain a 

mean rating (p) for each clip measured. The estimated probability density function for these 

mean ratings is presented in Figure 2.la. For a description of the method for generating 

this probability function, see Section 4.1.2. Figure 2.lb shows the standard deviation (a )  

compared to p for each file. There are several files for which all of the listeners gave the 

same rating, resulting in a standard deviation of 0. The standard deviation of the ratings is 

larger near p=3.5, and is smaller toward a p=l  or p=5. This indicates that in the middle 

of the speech/song axis, listeners disagree more on their ratings, and the confidence of these 

ratings is less. 

2.3.2 Distribution Analysis 

The Kolmogorov-Smirnov (K-S) test [54] is a goodness-of-fit test which provides a measure 

of the distribution deviation between a hypothesized ideal distribution and an observed 

distribution, or between two observed distributions. This statistical measure of distribution 

similarity or difference will be used throughout this work. In the first case, the test is used 

to test the hypothesis that the mean ratings come from a uniform distribution. Later, this 

test will be used to determine if the population demographics had any influence on the 
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Figure 2.1: Corpus mean rating statistics. 

ratings. 

The K-S test is based on minimum distribution distance. Two distributions are compared 

and two statistics are calculated: The K-S distance (D) is the largest vertical distance 

between the two probability distributions, and the K-S significance level ( a )  is a measure, 

related to the sample size N of the distributions being tested, indicating whether to accept 

or reject the null hypothesis. In the K-S test, the null hypothesis is that the observed 

distribution is taken from the ideal distribution, or that the two observed distributions are 

taken from the same (unknown) ideal distribution. The required distance for a desired 

significance level is calculated for large N (> 35) using the following formula: [12]: 

If a single distribution is to be compared against an ideal, N is the number of data 

points in the distribution. If two distributions are to be compared, The effective number of 

data points N, is used in Equation 2.1 in place of N: 

For the data used in this measurement, N = 203 sound files which were rated, so 

D,=.05 = 0.0955 and D,=.ol = 0.1144. The significance levels are interpreted as the likeli- 

hood that this measure could be attributed to chance. Many researchers use a significance 

level of 0.05 as an assurance that the measurement is not due to chance. The algorithm 

used to calculate the K-S distance also calculates the significance level for this distance, 

providing a specific evaluation of the K-S distance. 
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In this case, if D = 0.0955, the likelihood of this distance indicating two distinct dis- 

tributions is (1 - a)  = 95%, and If D = 0.1144, the likelihood of this distance indicating 

two distinct distributions is (1 - a )  = 99.9% . If the distance is less, no judgement can be 

made on whether the distributions are the same or different. The K-S statistic can only 

indicate the likelihood that the distributions are different. If the statistic does not indicate 

a difference, that does not mean that the distributions are the same. 

If the ideal case is a uniform distribution of clips from speech to song, the K-S distance 

between the corpus distribution and the ideal distribution is 0.3302, and the significance 

level of that distance is 2.7226 x lo-''. This indicates that the mean ratings in the corpus 

do not come from a uniform distribution. The ratings seem to be somewhat biased toward 

speech, which could indicate that the original corpus contained more spoken clips, or that 

people tend to rate intermediate clips more speech-like than song-like, or that there is some 

other ground truth related to the perception of speech and song. Further research will be 

necessary to discover whether the bias is an artifact of this particular corpus or if it reflects 

some more fundamental phenomenon. Written results presented in Section 2.4.2 indicate 

that the latter is true, although this does not prove that the original sub-corpus content was 

uniformly distributed. 

2.3.3 Results Considering Listener Characteristics 

Information was gathered regarding the age, gender, and experience of the listeners. The 

mean ratings of the extremes of these demographics are compared using the Kolmogorov- 

Smirnov statistics. The results from the oldest 10% and youngest 10% of the listeners 

are compared, the results from the men are compared with the results from the women, 

the results from those listeners with the highest 10% of claimed speaking experience are 

compared with the lowest lo%, and the same is done for claimed musical experience (a 

combination of instrumental and singing experience). The results of these K-S statistical 

measurements are presented in Table 2.1. In this case, N=113 because some of the files in 

Part 1 of the annotation process were not rated by all listeners. In some cases, the number 

of listeners in a particular demographic who rated a particular file was small or zero, so these 

results could not be compared to listener results in the opposite demographic. Because two 

distributions are being compared, N, is used. 

These statistics show that while there are differences between the results from these 

demographic groups, the hypothesis that the data come from different distributions (for 
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Table 2.1: Kolmogorov-Smirnov statistics for demographic groups. 

Demographic Group Kolmogorov-Smirnov distance Significance level 

Young/Old 0.1526 0.1308 
Men/Women 0.0464 0.9996 

Speaking Experience 0.1429 0.1832 
Music Exverience 0.0859 0.7805 

example, that older people have a different opinion of speaking and singing than younger 

people) is rejected, indicating that the demographic differences are not significant. In fact, 

the distance is so small between the ratings of the men and women that the probability 

is 0.0004 that the two distributions are different. Similar demographic results have been 

shown in research such as that by Scheirer e t  a1 [64], where listeners were asked to rate a 

musical segment on a number of perceptual scales. Scheirer's listener set consisted of 50 

participants of varying ages, genders and musical abilities, and the statistical differences 

between these demographics were studied in more detail than in the current work. In that 

study, the effect of the demographic differences are characterized as small. 

2.4 Annotation Results: Written Comments 

Parts 2 and 3 of the study used prompts which solicited written comments from the listeners. 

Part 2 solicited comments about individual sound clips, and Part 3 solicited general com- 

ments about the differences between speech and song. Some representative and pertinent 

comments are presented here. 

The two main features that listeners mentioned are pitch and rhythm. More specific 

features based on these two quantities are discussed in the following sections. Throughout 

this thesis, individual subject responses will be indicated using the following format: 

c1ip:subject (rating) "reasoning" 

u333:lll (3) "An example reasoning for the rating" 

The labels on the responses correspond to the clip label, subject number and the rating 

given by the subject on the file. 
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2.4.1 Comments on Individual Sound Clips 

Subjects were asked to indicate what about the sound made them rate the sound in the way 

that they did, and what the speaker could have done to make the sound more speech-like 

or more song-like. Responses to these questions depended on how the listeners rated the 

sounds. In this thesis, all quotes from subjects are presented verbatim without corrections 

in spelling or grammar. Any words or phrases which could be used to identify the subjects 

have been removed. 

Mean rating < 2 

These files are considered by most listeners to be very close to speech, and therefore many 

listeners do not indicate how the clip could be more speech-like. Those who offered opinions 

mention characteristics like rhythm, regularity and speed. Faster speech, more regular 

speech, and more rhythmic speech are all considered slightly more song-like. Some listeners 

also mention pitch. Monotonous utterances are considered speech, although some clips with 

widely varying pitch are still classified as speech because the pitch varies in what subjects 

call a "speech-like" way. 

One clip with a mean rating of 1.54 was considered to be poetry by several listeners, but 

the listeners disagreed on whether poetry was more speaking or singing. 

n131:211 (4) "poetry" 

n131:238 (1) "sounds like the recital of a poem" 

n131:317 (1) "poetry is speech not song" 

n131:328 (3) "The fine line between reading poetry and singing poetry" 

On the same clip, one subject mentioned a subtlety of rhythm that affected the rating. 

n131:358 (2) "it could be 100% talking but there's an exaggerated metric pattern that 

pushed my judgement a tick towards song" 

On another clip, some listeners made comments which do not refer to features of the 

clip, but justify the classification by comparison or analogy. 

u162:213 (1) "sounds like Vincent Price story telling" 
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u162:220 (2) "speaking, but with emphasis which seems song-like" 

u162:311 (3) "words are short and clear, but there is a poetry type rhythm" 

For a clip taken from a radio presentation of a poem read at a comedy show, some 

listeners were able to identify the context of the recording, as poetry, comedy or perfor- 

mance. Features such as pitch, rhythm and rhyme are identified, but these features were 

not sufficient to pull the rating much beyond speech. 

u169:221 (2) "sounds like a poem, or stand-up comedy, but hits the same note a few times" 

u169:327 (2) %ounds rehearsed, like a performance, not natural speech" 

u169:354 (2) "more rhyme than straight speech" 

In clips that are rated primarily as speech, the reasons mentioned for not giving a rating 

of (I), such as rhythm, melody and context, are indications of features likely to be useful to 

identify song as opposed to speech. More song-like features in a primarily speech utterance 

drive the ratings toward song. 

Mean rating > 4 

These files are considered by most listeners to be primarily song. Characteristics that 

listeners indicate to justify this rating are rhythm, word duration, tone, and in particular 

tone fitting to a musical scale. Rhyme is also a characteristic that many listeners indicate as 

evidence for song. Listeners rarely indicate characteristics of a song that move the judgement 

toward speech. Most justifications for this category of clip are indications of the features of 

song. 

A clip using exaggerated pitch changes in the sprechstimme style was characterized 

primarily as song, but listeners disagreed on the characteristics responsible for the perception 

of song. 

n132:317 (4) "close to singing but lacks tasteful note arrangement." 

n132:220 (4) "There are tone changes but I wouldn't say it is exactly singing except per- 

haps at the end of the sample where the subject held the syllable and changed notes" 

Judgements on the quality of singing were also made for this same clip. 
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n132:343 (5) "bad singing, but song-like 

n132:251 (3) "that was just painfu1,not singing, but not speech" 

These comments are somewhat surprising, because the clip was recorded by a professional 

musician and singer. 

Several clips were considered song because of the way the clip ended. It seems in these 

cases, that the way a clip ends can influence the judgement for the entire clip. 

u163:213 (4) "started off talking, ended off singing" 

u176:231 (5) "sustained last two notes; pitch of last notes not like talking" 

Clip u168 is a slightly shorter version of a clip u176, with the "musical" ending removed. 

Some listeners identified this and commented on it. 

u176:329 (4) "almost 2 samples here, starts more speech like, ends with more singing tone" 

u176:333 (5) "same as u168, but now it's long enough to tell that it's clearly singing" 

Compare these ratings and reasonings to those made by the same listeners on the shorter 

version. The shortened version was presented earlier in the experiment. 

u168:231 (3) "rhythm ;different syllable lengths, some tone differences not like speech" 

u168:329 (3) "inflected speech, intermediate tension in production" 

u168:333 (4) "pitch and loudness pattern of individual syllables seems subordinate to that 

of the entire phrase" 

2 < Mean rating < 4 

As is evident from Figure 2.lb, listeners disagree more in this range of mean rating. When 

one feature of song is present but others are not, as in the case of poetry, with rhythm 

but no musical melody, listeners disagree on the importance of the feature which is present. 

When a clip has more features of either speech or song, listeners tend to agree more, and 

the mean rating tends to approach one end or the other of the scale. 

Some extracted sound clips are source-recognizable-listeners can identify the movie, 

music or television commercial where the sounds come from, and are able to obtain more 



CHAPTER 2. CORPUS COLLECTION 
, 

context for the clip, which in some cases may contribute to their rating choice. Similarly, 

some solicited sound clips are content-recognizable-When a subject is prompted to sing or 

to produce an intermediate vocalization, they sometimes choose popular music or a movie 

quote. If the listener can recognize the context of the quote or the original source of the 

music, they obtain increased context for the clip and written comments indicate that this 

extra context influences their rating. 

Clip n133 is a solicited clip where the subject is reciting a small segment of a popular 

song. Listeners who recognize the song rate the clip as singing: 

n133:236 (5) "recognizable song" 

n133:309 (4) "I know it's a song. Also, the sound is clearly rythmic" 

while those who don't recognize the song rate the clip more toward talking: 

n133:317 (2) "sounds more like poetry recital than someone singing" 

n133:251 (2) "words too detached for song, too mashed together for speech" 

A clip considered "rap" by several listeners has a mean rating of 3.74. Five subjects 

used the word "rap" in their justifications, four of whom rated the clip as 4, one rated it as 

3: 

u166:213 (4) "rap with very specific notes" 

u166:311 (4) "has a 'rap' beat, words are spoken quickly within the beat, slightly difficult 

to understand" 

u166:330 (3) "sounds like a rap" 

u166:(352,360) (4) "rap" 

As with many clips with mean ratings between 2 and 4, there is much disagreement in 

the interpretation of this clip. 

u166:221 ( 5 )  "sounds like a tune, and regular beat" 

u166:308 (3) "intentional rhythm, sentence had a 'ground' tone with shifts up and down" 
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u166:329 (1) "speech inflection, not singing tone" 

A clip of chanting in Mon-kmer (from a Kmhmu Highlander) has a mean rating of 

3.0. Three listeners used the word "chant" to describe this clip. The standard deviation 

for the ratings of this clip is 1.23, one of the higher values for this measure, indicating 

much disagreement in the interpretation of this clip. It is possible that since context and 

expectation are removed by the use of a presumably unknown language, listeners attend 

more to features of speech and song understood in their native language. 

u172:221 (5) "the ending makes it clear, otherwise could have been a chant" 

u172:311 (2) "has foreign language rhythm, with sounds short and concise except the last 

word at the end" 

u172:359 (3) "sounds like someone praying, tyical in-between thing to me" 

2.4.2 Comments on speech versus singing in general 

In Part 3 of the study, listeners are invited to comment on their general observations of 

speech and song. This prompt is used: 

"In the following field, please write some general observations that you might 

have made over the course of this study about the characteristics of speech and 

singing, as well as the similarities and differences between them." 

Most of these comments describe singing in relation to speaking. This might indicate 

that listeners consider speaking to be the default human utterance, while singing might be 

considered to be a modification of speaking. 

Several listeners provide their opinion of a definition of singing: 

317 "Singing has melody and rhythm." 

328 "Rhyming when combined with musical scales is singing." 

346 "[. . . ]  song, which I understand to be rhythmic speech with distinct, sustained pitches 

that follow a musical scale of some sort ." 

349 "Singing has rhythm, a certain sound and use of the vocal cords, a tune and emphasis 

on syllables not given such stress in speech." 
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333 "[. . . ] singing is imposing a nonlinguistic (presumably musical) pattern on speech." 

One listener gives a definition of speech: 

354 "Speech is the conveyance of meaning without rhythm, rhyme or deliberate pitch for 

enjoyment's sake." 

I t  is unclear whether it is "the conveyance of meaning" or "deliberate pitch" which is 

(or is not) for enjoyment's sake according to this listener. 

Features identified by listeners 

Many listeners describe features that they consider relevant for speech or singing, usually in 

the context of singing as it compares to speech. The most common features are pitch (also 

described as tone and melody) and rhythm (also described as beat, speed, and patterns 

of rhythm). Some listeners also consider rhyme and repetition as features of song. Other 

listeners chose to describe speech as it compares to singing, but the same basic features were 

used, and the listeners described speech as the absence of the features necessary for singing, 

like pitch, rhythm, and vibrato. These features are described in more detail in Section 2.5. 

Some listeners describe the differences between speech and song using more elusive terms 

which do not relate to a definable feature. These include "emotion", "flow" and "feeling". 

Some example comments are: 

232 "There's something in the amount of 'feeling' behind what is being said that pushes it 

toward speech. Good luck quantifying that!" 

236 "The process of identifying speech and singing is subjective to the listener as well as 

to the person who's voice is being heard." 

347 "Near the end I became aware of a dimension of clarity and sharpness of pitch that 

characterizes singing." 

The statistics in Section 2.3 show that there is greater agreement when a clip is rated 

closer to pure speech or pure song. There is greater subjectivity, as listener 236 puts it, 

when a clip is closer to the middle of the spectrum. 
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Other observations 

An interesting observation that some listeners present is that the perception of a clip as 

speech or singing can vary temporally through the course of the clip, and is sometimes 

related to the expectation of the listener: 

231 "Expectations seem to play a role-if we hear a pitch change we don't expect in regular 

speech, we might call it song." 

308 "My opinion was often based on where I thought the speakerlsinger was going next. I 

needed to extrapolate from the short clip." 

359 "Some sounds show continuously intermediate stuff and some keep switching between 

one and the other." 

Some listeners made comments about the distribution of the clips, the setup of the 

experiment, or the correctness of the proposed classification division: 

330 "Most of them sounds more like talking. I think to be qualified as singing, it has to 

sound much nicer, more rhythmic and with tone changes (but not like speaking in a 

drama) ." 

343 "Being a singer, I thought the majority of the sounds were speaking. I believe that a 

lot of them would be labeled song by a non-musician." 

346 "Most of the examples were of speech, but many were not examples of ordinary 'talk- 

ing'." 

357 "I don't believe that it is necessarily appropriate to set up a two-part division of these 

stimuli. I may have grouped items differently, if it were not set that they must fall 

along a single axis from speech to song." 

Some observations that listeners make do not agree with experimental results, making 

the task of extracting information from the opinion of listeners even harder. One listener 

described speech as monotone and non-rhythmic in comparison to song, but while English 

speech does tend to be more constrained that song in pitch range, there are numerous ob- 

served phenomenon where pitch in speech varies significantly for a communicative purpose, 

such as end-of-sentence raising for questions, and prosodic emphasis. Observations of these 

phenomenon are limited to the English language utterances in the corpus. 
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2.5 Features of Speech and Song 

From the comments provided by the listeners, and by the observations of the author of the 

similarities between similarly rated files, the following features are identified as potentially 

useful in the classification of human utterances in the speech/song domain. 

Pitch is a primary feature in the speech/song axis. Speech utterances sometimes have 

a monotone pitch, but often have a pitch track that moves in what listeners refer to as a 

"speech-like" way, varying across syllables and indicating speaker intent or other prosodic 

characteristics. Sung utterances have a noticeable melody, and target pitches adhere to 

some form of musical scale. Vibrato is a key feature that can provide evidence for song, 

although it is important to note that, like all of these features, it is not universal-there 

are circumstances where an utterance with a vibrato-like pitch track may be classified as 

something other than pure song. 

Rhythm is a feature that many listeners indicate as evidence for a speech/song classifi- 

cation. Speech with a discrete rhythm may be classified closer to song. This feature is more 

difficult to measure-amplitude cues that humans use to lock on to a rhythmic pattern 

are difficult to identify amid other power-based features that humans might ignore for a 

particular rhythmic pattern. Power fluctuations in specific frequency bands may be useful 

for this task. 

Rhyme, usually indicative of poetry or singing, is another feature difficult to quantify. 

Rhyme is a higher-level repetition than rhythm, taking phonetic information into account. 

It is unclear at this point wether it will be possible to detect rhyme in an utterance without 

a phoneme recognition engine such as those used in automatic speech recognition systems. 

Many listeners justify their classifications with comparative statements, such as "it uses 

speech-like rhythms", as well as indicating context, as in "I've heard this before'' and expec- 

tation, as in "it depends on where he's going next." These are more difficult to quantify and 

especially difficult to emulate with computational algorithms. One specific piece of future 

work will be to compare sound files with similar descriptions, and try to identify features 

that might be responsible for these classifications. 
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2.6 Discussion 

The collection and annotation of this speech/song corpus serves two important purposes. 

It provides a research tool for examining the differences among human utterances between 

speech and song, and serves as a starting ground for the development of tools which will be 

able to perform this fuzzy classification. It also provides insight into the human perception 

of the differences between speech and song, and human utterances in general. 

Features that are important in the classification of speech and song include pitch, 

rhythm, rhyme, repetition, vibrato, expectation and context. Some of these features are 

measurable from statistical observations of the sound waveform. Expectation and context 

are difficult to quantify and measure, since they relate to world-view and heuristic knowl- 

edge. 



Chapter 3 

fo Estimation 

Fundamental frequency (fo) estimation, also referred to as pitch detection, has been a 

popular research topic for many years, and is still being investigated today. At the 2002 

IEEE International Conference on Acoustics, Speech and Signal Processing, there was a 

full session on fo estimation. The basic problem is to extract the fundamental frequency 

(fo) from a sound signal, which is usually the lowest frequency component, or partial, 

which relates well to most of the other partials. In a periodic waveform, most partials are 

harmonically related, meaning that the frequency of most of the partials are related to the 

frequency of the lowest partial by a small whole-number ratio. The frequency of this lowest 

partial is fo of the waveform. 

Most research into this area goes under the name of pitch detection, although what is 

being done is actually fo estimation. Because the psychological relationship between fo 

and pitch is well known, it is not an important distinction to make, although a true pitch 

detector should take the perceptual models into account and produce a result on a pitch 

scale rather than a frequency scale. 

Current speech recognition engines often discard the pitch information as irrelevant to 

the recognition task. While it is true that individual phonemes are recognizable regardless of 

the driving pitch, or even in the absence of pitch (recall Figure 1.3), this does not imply that 

pitch information is not useful. Much semantic information is passed on through pitch that 

is above the phonetic and lexical levels. In tonal languages, the relative pitch motion of an 

utterance contributes to the lexical information in a word. In this case, speech recognition 

algorithms must attend to the pitch or the context of the utterance to avoid ambiguity. 
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3.1 Theory of Pitch 

The musical pitch of an audio signal is a perceptual feature, relevant only in the context of a 

human listening to that signal. The musical pitch scales that are used today were developed 

before people knew about frequency and spectral content, and was based on the similarity or 

dissimilarity of the note. Pitch is loosely related to the log of the frequency, perceived pitch 

increasing about an octave with every doubling in frequency. However, frequency doubling 

below 1000 Hz corresponds to a pitch interval slightly less than an octave, while pitch 

doubling above 5000 Hz corresponds to an interval slightly more than an octave [16, 301. 

This relationship also changes with intensity. The perceived pitch of a sinusoid increases 

with intensity when the sinusoid is above 3000 Hz, and a sinusoid with frequency below 

2000 Hz is perceived to drop in pitch as the intensity increases [8]. 

It is important to note that these measurements of the differences between frequency and 

the perception were made on isolated sinusoids. Real-world sounds have many harmonics 

above the fundamental frequency. The perception of pitch changes with this harmonic 

content as well. A richer spectrum seems to reinforce the sensation of the pitch, making the 

octave seem more "in-tune". The more sine-like a waveform is, the more distinct the notion 

of frequency, but the less distinct the perception of pitch [73]. This sensation also varies 

with the relationship between the partials. The more harmonically related the partials of 

a tone are, the more distinct the perception of pitch. Pitch perception also changes with 

intensity, duration and other physical features of the waveform. 

There is some controversy as to how the human auditory system perceives pitch [5, 46, 

811. One group of people have traditionally used pure tone pitches to measure phenomena 

like critical bands, masking, and pitch perception. The other group of people use more 

complex tones to see how humans perceive groups of sounds and dissect the "scene" of 

sound around them. There are also important observations arising from the psychology, 

psychoacoustics and psychophysics being researched around the perception of tones and 

pitch, which provide insight into the problem of automatic f o  estimation. For our purposes, 

it is less important to decide which general theory of audition is right, and more important 

to glean information about how humans perceive pitch from each group of researchers. 
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3.2 Automatic fo Estimation 

Fundamental frequency estimation has consistently been a difficult topic in audio signal 

processing. Many context-specific attempts have been made, and many of them work well 

in their specific context, but it has been difficult to develop a "context-free" fo  estimator. fo 

estimators developed for a particular application, such as musical note detection or speech 

analysis, are well understood, but depend on the domain of the data: a detector designed 

for one domain is less accurate when applied to a different domain. The result is that there 

are many fo  estimators currently on the market, but few that are appropriate to more than 

one domain. 

Therefore, choosing a fo  estimator for a speech/song discrimination is a difficult task 

because detectors that work well for music, and hence for song, work less well for speech, and 

vice versa. Three possible solutions to this problem are: find a detector that is reasonably 

good for both speech and song; build a detector that works very well for both speech and 

song; or use two fo  estimators, one suited to speech and one suited to song, and compare the 

results. The latter generates two positive outcomes: the fo  estimation is more reliable, and 

the differences between the f o  estimations can be used as a classification feature between 

speech and song. For this thesis, f o  estimators developed for speech and for instrumental 

music were found, but not specifically for vocal music. For this reason, it was decided to 

evaluate a set of fo  estimators and choose one which was mostly accurate for both speech 

and song. 

3.2.1 Evaluating fo estimators 

It is difficult to empirically measure the performance of a fo  estimator for several reasons. 

First, performance depends on domain, as discussed above. A fo  estimator will almost 

certainly behave better in the context for which it was developed. Second, it is difficult to 

automatically rate the result of a fo  estimator against expected outcomes, precisely because 

it is difficult to measure fo  in the first place. We humans are good at  it, and so we can 

listen to a file and judge the accuracy of a fo  estimation engine, but to lend credibility 

to this measure, we must have many people, both expert and lay, judge the f o  estimation 

result on a large number of sound files. Once a measure like this is taken, however, it can 

be used to evaluate the results of other f o  estimation methods. Another way to evaluate fo  

estimators is to compare the results of multiple detectors on a common corpus. If, for a set 
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of n detectors, k FZ n of them agree, it is likely that the remaining n - Ic are incorrect. 

This third method of comparison is what will be used in this work. Section 3.7 presents 

an evaluation of three fo estimators by comparing their results. Errors in one fo estimator 

provide evidence that the other two are likely to be more accurate, and visual inspection 

of the fo tracks which are significantly different provide further insight into which fo track 

techniques may be better than others. The fo tracks will be evaluated based on the corpus 

discussed in Chapter 2. This is reasonable since it is this data on which the fo estimators 

will ultimately be used. 

3.2.2 Measuring Frequency 

There are a number of standard methods that researchers use to extract fo, based on various 

mathematical principles. Since pitch is a perceptual quantity related to fo of a periodic or 

pseudo-periodic waveform, it should suffice to determine the period of such oscillation, the 

inverse of which is the frequency of oscillation. The problem comes when the waveform 

consists of more than a simple sinusoid. As harmonic components are added to a sinusoidal 

waveform, the appearance of pitch of the waveform becomes less clear and the concept of 

"fundamental frequency" or fo must be considered. The goal of a fo estimator is to find fo 

in the midst of the other harmonically related components of the sound. 

The difficulty of finding the fo of a waveform depends on the waveform itself. If the 

waveform has few higher harmonics or the power of the higher harmonics is small, the fo is 

easier to detect, as in Figures 3.1 and 3.2. If the harmonics have more power than the fo, 

then the period is harder to detect, as in Figures 3.3 and 3.4. Figure 3.4 is an example of 

the phenomenon of the missing fundamental. 

0 2 4 0 5 10 
angle (*pi) frequency (*fo) 

Figure 3.1: Waveform with no upper harmonics. 
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angle (*pi) frequency (*fo) 

Figure 3.2: Waveform with lower power upper harmonics. 

angle (*pi) frequency (*fo) 

Figure 3.3: Waveform with higher power upper harmonics. 
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Figure 3.4: Waveform with high power upper harmonics and no fundamental. 
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The next sections in this chapter discuss three general domains of fo estimation algo- 

rithms, organized by the type of input and the processing paradigm. Time domain methods 

are presented first, as they are usually computationally simple. Frequency domain methods, 

presented next, are usually more complex. Statistical methods use probability theory to aid 

in a decision. After this, Section 3.6 discusses improvements that can be applied to any fo 

estimation algorithm, and Section 3.7 presents a comparison and evaluation of some freely 

available algorithms. The chapter concludes with a discussion. 

3.3 Time-Domain Met hods 

The most basic approach to the problem of fo estimation is to look at  the waveform that 

represents the change in air pressure over time, and attempt to detect the fo from that 

waveform. 

3.3.1 Time-Event Rate Detection 

There is a family of related time-domain fo estimation methods which seek to discover 

how often the waveform fully repeats itself. The theory behind these methods is that if a 

waveform is periodic, then there are extractable time-repeating events that can be counted, 

and the number of these events that happen in a second is inversely related to the frequency. 

Each of these methods is useful for particular kinds of waveforms. If there is a specific time- 

event that is known to exist once per period in the waveform, such as a discontinuity in 

slope or amplitude, it may be identified and counted in the same way as the other methods. 

Zero-crossing rate (ZCR). As discussed in Section 1.7.1, the ZCR of a waveform is 

the number of times that the waveform changes sign. If the power of the waveform is 

concentrated in the fundamental frequency, then it should cross zero twice per cycle, once 

from positive to negative and once from negative to positive. Variation on this method 

include counting only positive-slope zero crossings, and measuring the distance between the 

zero-crossings. 

ZCR detection has been used in the context of fo estimation as recently as [60], where the 

mean and the variance of the zero crossing rate were calculated to increase the robustness of 

a feature extractor. The feature is not used to measure the fo directly, but is used instead to 

track the constancy of the fo across time frames. If the waveform is steady-state or slowly 
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varying, as is the case in most pseudo-periodic musical signals, the mean and variance of 

the ZCR will be consistent over the course of a note, and thus these features can be used 

to detect note boundaries, glissade and frequency modulation effects. 

Peak rate. This method counts the number of positive peaks per second in the waveform. 

In theory, the waveform will have a maximum value and a minimum value each cycle, and one 

needs only to count these maximum values (or minimum values) to determine the frequency 

of the waveform. In practice, a local peak detector must be used to find where the waveform 

is locally largest, and the number of these local maxima in one second is the frequency of 

the waveform, unless each period of the waveform contains more than one local maximum. 

Similar alternatives are available for this method as are available for the zero-crossing rate 

detector-the distance between the local maxima gives the wavelength which is inversely 

proportional to the frequency. 

Slope event rate. If a waveform is periodic, the slope of the waveform will also be 

periodic, and peaks or zeros in the slope can be extracted in the same way as the ZCR. In 

some cases, zeros or peaks in the slope might be more informative than zeros or peaks in 

the original waveform, or the detection of these events might be more robust, depending on 

the domain of the signal. 

Discussion 

The major difficulty with time-event rate detection methods is that spectrally complex 

waveforms rarely have just one event per cycle. Waveforms with rich harmonic spectra may 

cross zero many times or have many peaks in a cycle (recall Figure 1.4). 

There are some positive aspects of time-event rate detection algorithms. These methods 

are exceedingly simple to understand and implement, and they take very little computing 

power to execute. If the nature of the signal is known, a method can be implemented which 

is tailored to the waveform, reducing the error. Peak counters have been the implementation 

of choice for hardware frequency-detectors for may years, because the circuit is very simple, 

and coupled with a simple low-pass filter, provides a fairly robust module. 
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3.3.2 Autocorrelation 

The correlation between two waveforms is a measure of their similarity. The waveforms are 

compared at different time intervals, and their "sameness" is calculated at each interval. 

The result of a correlation is a measure of similarity as a function of time lag between 

the beginnings of the two waveforms. The autocorrelation function is the correlation of a 

waveform with itself. One would expect exact similarity at a time lag of zero, with increasing 

dissimilarity as the time lag increases. The mathematical definition of the autocorrelation 

function is shown in Equation 3.1, for an infinite discrete function x[n], and Equation 3.2 

shows the mathematical definition of the autocorrelation of a finite discrete function xr[n] 

of size N. 

The cross-correlation between two functions x[n] and y[n] is calculated using Equa- 

tion 3.3: 

The value of RZv(O) gives a measure of the similarity of two separate functions. This 

measure will be used to evaluate feature extractors in Chapter 4. 

Periodic waveforms exhibit an interesting autocorrelation characteristic: the autocor- 

relation function itself is periodic. As the time lag increases to half of the period of the 

waveform, the correlation decreases to a minimum. This is because the waveform is out 

of phase with its time-delayed copy. As the time lag increases again to the length of one 

period, the autocorrelation again increases back to a maximum, because the waveform and 

its time-delayed copy are in phase. The first peak in the autocorrelation indicates the period 

of the waveform. 

Problems with this method arise when the autocorrelation of a harmonically complex, 

pseudoperiodic waveform is taken. One can imagine the output of an autocorrelation applied 

to the waveform in Figure 1.4b. The first peak would not be at the period of the full 

waveform, but at the period of the 20th harmonic overtone. The first "large" peak would 
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indeed occur at the fundamental period of the waveform, but it reduces the robustness and 

increases the computational complexity to have the algorithm try to distinguish between 

"large" and "small" peaks. 

The YIN fo estimator 

The YIN fo estimator [lo], developed by Alain de Cheveign6 and Hideki Kawahara, is named 

after the oriental yin-yang philosophical principal of balance, representing this author's at- 

tempts to balance between autocorrelation and cancellation in the algorithm. The difficulty 

with autocorrelation techniques has been that peaks occur at sub-harmonics as well, and 

it is sometimes difficult to determine which peak is the fundamental frequency and which 

represent harmonics or partials. YIN attempts to solve these problems by in several ways. 

YIN is based on the difference function, which, while similar to autocorrelation, at- 

tempts to minimize the difference between the waveform and its delayed duplicate instead 

of maximizing the product (for autocorrelation). The difference function is presented in 

Equation 3.4. 

In order to reduce the occurrence of subharmonic errors, YIN employes a cumulative 

mean function which de-emphasizes higher-period dips in the difference function: 

Other improvements in the YIN fo estimation system include a parabolic interpolation 

of the local minima, which has the effect of reducing the errors when the period estimation is 

not a factor of the window length used (in this case, 15 ms). For a more complete discussion 

of this method, including computational implementation and results, see the cited paper. 

3.3.3 Phase Space 

The phase space signal representation is a way of observing the short-time history of a 

waveform in a way that makes repetitive cycles clear. The basic phase space representation 

is to plot the value of the waveform at time t versus the slope of the waveform at the same 



CHAPTER 3. Fo ESTIMATION 
I 

point [28]. A periodic signal should produce a repeating cycle in phase space, returning to 

a point with the same value and slope. Higher dimension phase space representations plot 

the value and n - 1 derivatives of the signal in n dimensions. 

Pseudo-phase space, also called embedded representation, is a simpler form of phase 

space. The value of the incoming waveform is plotted against a time-delayed version of 

itself. The representation plots the points (x, y) = (f (t), f (t - T)),  and in the n-dimensional 

case, (so, xl,  . . . , x,-1) = (f ( t)  , f ( t  - rl), . . . , f (t - 7,-1)). Often, for simplicity, rr, = Icq. 

In the remainder of this discussion, "phase space" refers to the general class of represen- 

tations that include multi-dimensional phase space and pseudo-phase space representations, 

unless otherwise stated. For a more detailed discussion of a theoretical phase space fo 

estimator, see [22, 71, 721. 

Phase Space for fo estimation 

Any periodic signal forms a closed cycle in phase space, and the shape of the cyclic path 

depends on the harmonic composition of the signal. The fo of a signal is related to the 

speed with which the path completes the cycle in phase space. The task then becomes 

detecting the difference between new values in phase space crossing the old path, and new 

values intersecting and re-tracing the old path. The simplest solution would be to compare 

distances between points in phase space, and detect when the distance becomes minimal. 

An initial point would be selected, and the distance from that point would be traced as a 

function of time. When this distance became zero (or a minimum value) the waveform may 

have repeated. 

This solution is akin to the problem of zero-crossing rate detection, with the associated 

problems. The phase space cycle might be retracing itself, or it might be crossing itself. It 

is clear that a simple distance measure will not be sufficient to measure the repetition rate. 

The distance in higher dimensions might yield a better result-it is conceivable that paths 

which overlap in two-dimensional space will not overlap in higher dimensions. The question 

to ask is how many dimensions are required to ensure that the only time the path of the 

signal intercepts itself is when it begins to repeat itself. The answer to this question will 

depend on the type of data being investigated, but for band-limited periodic signals, this 

dimension will be finite. A proof of this statement follows. 

Theorem 3.1. G i v e n  a band-limited periodic signal, a phase space representat ion can be 
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constructed requiring a finite number of dimensions. 

Proof. A band-limited signal can be represented as a discrete time series sampled at twice 

the maximum frequency of the signal (shanon). Since the given signal is periodic, the cor- 

responding time series can be represented by a finite number of samples, repeated infinitely 

many times. Consider a time series f of n samples. For this series, n difference measures 

d can be made for each sample, corresponding to the first n derivatives of the continuous 

signal. For f (0), these are: 

No further difference measures can be made since for the periodic signal, f (n+ 1) = f (0), 

anddn+1(0) = f ( n + l ) -  f(0) = f(0)-  f(0) = O .  Ingeneral, dn+~(k )  = f ( k + n + l ) -  f(k) = 

f (k)- f (k) = 0, and differences above dn+1 cycle back to the values of the original differences. 

Since the number of difference measures is finite, the number of dimensions required 

to define them is also finite, and the set of n differences represents a unique point in the 

n-dimensional space, which will be passed through only once per cycle. 0 

It is important to note that this proof amounts to a sufficient condition: It is possible to 

fully represent the phase space of all derivatives in a finite-dimensional hyperspace. It may 

not be necessary to use all of these dimensions to fully represent the waveform in a non- 

intersecting hyperspace path. If the signal is band-limited, fewer dimensions are necessary, 

and in the degenerate case of a sinusoid, only two dimensions are necessary to fully represent 

the cycle in a non-intersecting hyperspace path. If the amplitude and first derivative of a 

sinusoid are plotted against each other, the result is a circle. 

While the number of dimensions may be finite, the window size must be kept small. 

Otherwise, the dimensionality of the fully represented phase space will be unwieldy. If the 

window size is smaller than a complete cycle of the periodic waveform, there would be 

insufficient information to determine the frequency. 
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Phase  Space of Pseudo-Periodic Signals 

A bigger problem with phase space fo estimation is how to deal with pseudo-periodic signals. 

In a phase-space representation, the path of a pseudo-periodic signal will never re-trace itself, 

although it will follow a closely parallel path. 

A Poincare' section of a phase space plot is a lower-dimensional orthogonal slice through 

the plot which produces a cross-section of a path being considered. A Poincark section of 

a periodic signal will be one or more discrete points, indicating the locations that the path 

intersects the section. 

A pseudo-periodic signal will generate a cloud of points in a Poincarh section, localized 

in one or more clusters. If these clusters are separate, the mean location of each cluster can 

be treated as the intersection point for that cluster, and the period can be calculated by the 

time lag between successive points in the same cluster. 

A problem arises when two clusters of points are close together, such that for some 

points it is not clear which cluster they should belong to. In this case, higher-dimension 

phase-space representations should be employed until the clusters are shown to be disjoint. 

There are many potential problems with this suggested method, but it may provide another 

alternative to the many f o  estimation algorithms that are currently available. 

3.4 Frequency-Domain Met hods 

There is much information in the frequency domain that can be related to the fo of the 

signal. Pitched signals tend to be composed of a series of harmonically related partials, 

which can be identified and used to extract the fo .  Many attempts have been made to 

extract and follow the fo of a signal in this manner. 

3.4.1 Component Frequency Ratios 

As early as 1979, Martin Piszczalski was working on a complete automatic music transcrip- 

tion system, the first step of which would be pitch detection [52, 531. His system would 

extract the pitch of the signal (assuming that a single note was present at each point in 

time) and then find note boundaries, infer pitch key, and present a score. 

Piszczalski's original procedure began with a spectral transform and identification of the 

partials in the signal, using peak detection. For each pair of these partials, the algorithm 
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finds the "smallest harmonic numbers" that would correspond to a harmonic series with 

these two partials in it. As an example, if the two partials occurred at 435 Hz and 488 Hz, 

the smallest harmonic numbers (within a certain threshold) would be 6 and 7, respectively. 

Each of these harmonic number pairs are then used as a hypothesis for the fundamental 

frequency of the signal. In the previous example, the pair of partials would correspond to a 

hypothesis that the fundamental frequency of the signal is about 70 Hz. After all pairs of 

partials are considered in this way, the hypothesis most strongly suggested by the pairs of 

partials is chosen as the fundamental frequency. Some pairs of partials are weighted higher, 

meaning that their "vote" for the fundamental frequency of the signal counts for more than 

other pairs of partials. The weighing factor depends on the amplitude of the signals-higher 

amplitude pairs are counted more than lower amplitude pairs. 

This method does not require that the fundamental frequency of the signal be present, 

and it works well with inharmonic partials and missing partials. 

Dorken and Nawab presented an improvement to Piszczalski's method in [13]. They 

suggest "conditioning" the spectrum using a method they had previously used for princi- 

pal decomposition analysis. This conditioning had the effect of identifying the frequency 

partials more accurately, and hence making the entire transform more accurate. Another 

improvement that they propose is to perform the entire transform in a constant-Q domain, 

making lower-frequency partials better defined, in an attempt to make the transform closer 

to human perception. 

3.4.2 Filter-Based Methods 

Filters are used for fo estimation by trying different filters with different centre frequencies, 

and comparing their output. When a spectral peak lines up with the passband of a filter, 

the result is a higher value in the output of the filter than when the passband does not line 

UP. 

Optimum Comb Filter  

The optimum comb fo estimator [47] is a robust but computationally intensive algorithm. 

A comb filter has many equally spaced pass-bands. In the case of the optimum comb filter 

algorithm, the location of the passbands are based on the location of the first passband. For 

example, if the centre frequency of the first passband is 10 Hz, then there will be narrow 
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pass-bands every 10 Hz after that, up to the shanon frequency. 

In the algorithm, the input waveform is comb filtered based on many different frequen- 

cies. If a set of regularly spaced harmonics are present in the signal, then the output of the 

comb filter will be greatest when the passbands of the comb line up with the harmonics. If 

the signal has only one partial, the fundamental, then the method will fail because there 

will be many comb filters that will have the same output amplitude, wherever a passband 

of the comb filter lines up with that fundamental. 

Tunable IIR Filter 

A more recent filter-based fo estimator suggested in [38], this method consists of a narrow 

user-tunable band-pass filter, which is swept across the frequency spectrum. When the filter 

is in line with a strong frequency partial, a maximum output will be present in the output 

of the filter, and the fo can then be read off the centre frequency of the filter. The author 

suggests that an experienced user of this tunable filter will be able to recognize the difference 

between an evenly spaced spectrum, characteristic of a richly harmonic single note, and a 

spectrum containing more than one distinct pitch. The paper also presents suggestions for 

automating this search procedure, as a computer would be faster at scanning the frequency 

spectrum and more accurate at identifying the difference between a richly harmonic single 

note and multiple concurrent notes. 

This fo estimation method is in some ways similar to the operation of the stroboscope, a 

tool used by piano tuners. The tool consists of a spinning disk with black and white marks, 

illuminated by a strobe light. The strobe is connected to a microphone, and emits a pulse 

of light as the input signal peaks, once per period. The spinning disk can be sped up or 

slowed down until the disk is illuminated once every rotation. This can be seen when the 

black and white marks on the disk appear stationary. 

3.4.3 Cepstrum Analysis 

Cepstrum analysis is a form of spectral analysis where the output is the Fourier transform of 

the log of the magnitude spectrum of the input waveform [18]. This procedure was developed 

in an attempt to make a non-linear system more linear. Naturally occurring partials in a 

frequency spectrum are often slightly inharmonic, and the cepstrum attempts to mediate 

this effect by using the log spectrum. 
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The name cepstrum comes from reversing the first four letters in the word "spectrum", 

indicating a modified spectrum. The independent variable related to the cepstrum transform 

has been called "quefrency", and since this variable is very closely related to time [57] it is 

acceptable to refer to this variable as time. 

The theory behind this method relies on the fact that the Fourier transform of a pitched 

signal usually has a number of regularly spaced peaks, representing the harmonic spectrum 

of the signal. When the log magnitude of a spectrum is taken, these peaks are reduced, 

their amplitude brought into a usable scale, and the result is a periodic waveform in the 

frequency domain, the period of which (the distance between the peaks) is related to the 

fundamental frequency of the original signal. The Fourier transform of this waveform has a 

peak at  the period of the original waveform. 

Figure 3.5 shows the progress of the cepstrum algorithm. Figure 3.5b shows the standard 

spectral representation of a periodic harmonic signal (whistling at A4). Figure 3 . 5 ~  shows 

the log magnitude spectrum of the same signal. Note the periodicity of both spectra, and 

the re-scaled nature of the log magnitude spectrum. 

The cepstrum method assumes that the signal has regularly-spaced frequency partials. 

If this is not the case, such as with the inharmonic spectrum of a bell or the single-partial 

spectrum of a sinusoid, the method will provide erroneous results. As with most other fo 

estimation methods, this method is well suited to specific types of signals. It was originally 

developed for use with speech signals, which are spectrally rich and have evenly spaced 

partials. 

3.4.4 Multi-Resolution Methods 

An improvement that can be applied to any spectral fo estimation method is to use multi- 

ple resolutions [19]. The idea is relatively simple: If the accuracy of a certain algorithm at 

a certain resolution is somewhat suspect, confirm or deny any fo estimator hypothesis by 

using the same algorithm at a higher or lower resolution. Thus, use a bigger or smaller time 

window to calculate the spectrum. If a frequency peak shows up in all or most of the win- 

dows, this can be considered a confirmation of the fo estimator hypothesis. However, each 

new analysis resolution means more computational expense, which is why multi-resolution 

Fourier analysis is slower than a dedicated multi-resolution transform such as the discrete 

wavelet transform. 
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Figure 3.5: Stages in the cepstrum analysis algorithm. 



CHAPTER 3. Fo ESTIMATION 
I 

3.5 Statistical Frequency Domain Met hods 

The problem of automatic fo estimation can be considered, in some ways, a statistical one. 

Each input frame is classified into one of a number of groups, representing the fo estimator 

of the signal. Many researchers have thought that modern statistical methods might be 

applied to the problem of fo estimation. Two such methods are presented here. 

3.5.1 Neural Networks 

Connectionist models, of which neural nets are an example, are self-organizing pattern 

matchers, providing a classification output for messy or fuzzy input. Logically, they consist 

of a collection of nodes, connected by links with associated weights. At each node, signals 

from all incoming links are summed according to the weights of these links, and if the sum 

satisfies a certain transfer function, an impulse is sent to other nodes through output links. 

In the training stage, input is presented to the network along with a suggested output, 

and the weights of the links are altered to produce the desired output. In the operation 

stage, the network is presented with input and provides output based on the weights of the 

connections. 

The choice of the dimensionality and domain of the input set is crucial to the success of 

any connectionist model. A common example of a poor choice of input set and test data is 

the Pentagon's foray into the field of object recognition. This story is probably apocryphal 

and many different versions exist on-line, but the story describes a true difficulty with 

neural nets. As the story goes, a network was set up with the input being the pixels in 

a picture, and the output was a single bit, yes or no, for the existence of an enemy tank 

hidden somewhere in the picture. When the training was complete, the network performed 

beautifully, but when applied to new data, it failed miserably. The problem was that in the 

test data, all of the pictures that had tanks in them were taken on cloudy days, and all of 

the pictures without tanks were taken on sunny days. The neural net was identifying the 

existence or non-existence of sunshine, not tanks. 

A connectionist model for the recognition of pitch might take as input a set of spectral 

partials, or the time-domain waveform, or the phase space representation of the signal. It 

would likely output a frequency hypothesis, which could then be translated to pitch. 

Another approach to using connectionist models for fo estimation is the modeling of the 

human auditory system, as in [61], where the authors present a neural network model based 
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on the cochlear mechanisms of the human ear. Other neural network models could be based 

on the functioning of the neural pathways (although a good model of this activity has not 

yet been developed) or could be based on the psychological reaction to pitch. Whatever the 

case, for a connectionist model, input domain and training data must be chosen carefully. 

Another problem with connectionist models is that even if a good model is found, it 

does not provide any understanding of how the problem is solved. All of the algorithmic 

information in the model is stored in the weights of the connections, and in large models 

with thousands or millions of connections, it is prohibitively complicated to translate these 

weights into a description or algorithm. One must be happy with the "black box" doing 

what it does without knowing why or how. 

3.5.2 Maximum Likelihood Estimators 

Boris Doval and Xavier Rodet have presented a series of papers on fo estimation using max- 

imum likelihood estimators [14, 151. This statistical technique compares different variable 

value hypotheses based on the likelihood of their being correct in context with the past 

values of these variables. The intent is to recognize and deal with the slight inharmonicity 

of naturally occurring frequency partials in a pitched signal. 

The model they present is set up as follows: an observation 0 consists of a set of 

partials in a short-time Fourier transform representation of a sound. Each observation 

is assumed to have been produced by a sound with a particular fundamental frequency 

fo, and each spectrum contains other information including inharmonic and non-sinusoidal 

partials (noise). This model is a simplification of the general sound model, assuming that a 

sound consists primarily of harmonic partials at integer multiples of fo, with a minority of 

inharmonic partials and noise. 

For a set of candidate fundamental frequencies, the algorithm computes the probability 

(likelihood) that a given observation was generated from each fo in the set, and finds the 

maximum. The choice of the set of fundamental frequencies is important, because theoret- 

ically, the observation could originate from any fo. 

3.6 General Improvements 

Most of the models described can be improved by pre-processing the input, reducing the 

input domain, or by increasing the frequency or time resolution of the input depending 
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on whether the input data is time or frequency information. There are two more major 

improvements that can be employed by most of these methods, and these are described 

below. 

3.6.1 Human Auditory Modeling 

Because pitch detection (and hence fo  estimation) is, by its nature, a perceptual problem, 

any algorithm designed specifically for pitch should be able to be improved by adding some 

characteristics of the human auditory system. A simple improvement that can be added 

to any frequency-domain method is to use a constant-Q spectral transform instead of a 

basic Fourier spectrum. As described in Section 1.3.2, a constant-Q transform is more 

computationally demanding, but is more faithful to the human auditory perceptual system. 

Two factors must be considered when deciding whether or not to use human auditory 

modeling. First, the application for which the detector be used. If the goal is simply to 

detect the fundamental frequency of the signal without consideration of the pitch, human 

perceptual factors are probably not very important. However, if the goal is to detect the 

pitch for a transcription application, human factors are more relevant. The second factor is 

computational complexity. Human auditory modeling often results in a significant increase 

in the computation time required for the application. If computation time is a domain 

constraint, it may be necessary to forego auditory modeling in favor of a method which is 

faster but less physiologically accurate. 

If properties of the human auditory system are to be used in any application, including 

fo estimation, we must first understand the human perceptual system much better than we 

currently do. Presently, the most we can do is make the computer system provide the same 

type of results that the human system does, and hope that these improvements will make 

the system more accurate and robust. 

3.6.2 fo estimator Tracking 

An improvement that several researchers have implemented, applicable to any fo  estimation 

algorithm, is tracking [15]. A fo  estimation based on a single spectral window, no matter 

how high the resolution of the spectral representation or how robust the algorithm, is the 

fo  estimation of a single frame of time. The human system tracks the pitch of an incoming 

waveform, allowing us to identify such phenomena as glissandi (a smooth transition from 
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one pitch to another) and pitch intervals. A time window containing a definite pitch of a 

small number of cycles is often very difficult for a human to identify [57], but when many 

time windows are played one after another, a sensation of pitch becomes apparent. 

A simple modification to a fo estimation algorithm which can improve performance 

without increasing the computational burden is to give preference to fo hypotheses that 

are close to the fo hypothesis of the last time frame. Storing the fo hypothesis of the n 

previous time frames requires only n more memory words, and the comparison to the present 

hypothesis is a simple operation for each past time frame considered. 

A more involved comparison method is the use of hidden Markov models (HMMs), 

statistical models which track variables through time [Ill.  These models have been used to 

solve many problems in linguistics and circuit theory as well as fo estimation. HMMs are 

state machines, with a hypothesis available for the output variable at each state. At each 

time frame, the HMM moves from the current state to the most likely next state, based on 

the input to the model and the state history which is represented in the current state. The 

state transition properties of HMMs are calculated using input-output pairs, consisting of 

(in the case of fo estimation) a set of spectral windows (or a set of spectral partials) and 

the corresponding best fo hypothesis. 

3.7 Evaluation of Implement at ions 

Because there has been much fo estimation research lately, many researchers have designed 

and implemented their own fo estimators, and some have made these available to the wider 

research community. Using an off-the-shelf fo estimator is a good place to start because the 

algorithm is already implemented, and the researcher can begin immediately by analyzing 

results of the algorithm and designing add-on or sub-feature analysis components. One 

drawback is that the algorithm has been designed for a particular research problem and 

might not be appropriate for the problem at hand, although the algorithm could me modified 

to apply more closely if needed. 

3.7.1 Common Problems with fo estimators 

When a signal is pseudo-periodic with a low-power fundamental, it is possible to mistake an 

upper harmonic for the fundamental. Humans do this as well, and it is a result more of the 

signal itself than of the recognition algorithm. A period-k signal can become a period-2k 
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signal through a process called period doubling [65, 291. At the transition point, it is unclear 

whether it is appropriate to count the period as k or 2k.  This transition point is unstable, 

so it is uncommon to hear signals of ambiguous pitch in nature. However, it does indicate 

that period doubling errors may be a difficult problem to overcome. 

Subharmonic errors can lead to misleading results because they often occur within the 

context of a single pitch event, causing the fo estimation to jump back and forth between 

two (or more) subharmonics of the "true" fundamental frequency. The challenge then is to 

improve the fo estimation algorithm to deal with these problems. The YIN improvements 

attempt to rectify subharmonic errors, and have some success over less computationally 

complex algorithms. 

3.7.2 Off-the-shelf fo estimators 

For this thesis, three off-the-shelf fo estimators are evaluated and compared. The first 

two fo estimators are part of a speech analysis software package called Colea, developed 

by Philip Loizou [42] for the MATLAB programming environment. This package contains 

tools for analyzing speech using fo estimation, formants, and spectral content. There are 

two fo estimators built into this package, one based on autocorrelation and one based on 

the cepstrum. 

The third off-the-shelf fo estimator is the YIN algorithm described in Section 3.3.2.  

3.7.3 Evaluation 

The three fo estimators were tested on the speech/song corpus and the fo estimations were 

compared. Since the fo estimations were based on different frame rates, the first task was 

to match the fo estimations on a normalized time scale by interpolating between the frame 

measurements of the fo estimations to match the highest frame rate. Figure 3.6 shows an 

example of the three fo estimation techniques compared on a common scale. Figure 3.7 

shows an example of a situation where the three fo estimation techniques did not agree. 

These three fo estimators were compared using two criteria: 

Consistency between detectors 

Visual inspection of results 
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Figure 3.6: Comparison of three fo estimation methods - all methods near agreement (file 
b226). 
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Figure 3.7: Comparison of three fo estimation methods showing differences among meth- 
ods(fi1e b212). 
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It should be noted that consistency between detectors, as an evaluation technique in 

isolation, is not particularly rigorous. It is not unreasonable to expect two detectors to 

agree on an erroneous fo estimation. This evaluation method becomes acceptable when 

combined with visual inspection. Files with one method in disagreement with the other two 

were inspected visually, and the fo estimations were compared to the perceived pitch track. 

In instances where two methods agreed, in the majority of cases, visual inspection showed 

that the agreeing methods were correct and the method not in agreement was in error. 

A further comparison method could be to generate a manual (and presumably accurate) 

fo track for each file and compare these tracks to the results generated by each method. 

This evaluation technique was considered too labour-intensive for this work, and the results 

gained from the three presented criteria are sufficient for a comparison among the methods. 

If fo track accuracy were of paramount importance in comparing the methods (as in a 

transcription project), annotated corpora currently exist with Electroglottogram (EGG) 

fo track targets which could be used to evaluate the fo accuracy of the method. Synthetic 

signals have often been used to test fo detectors, although care must be taken to use synthetic 

signals that closely resemble the real-world signals that the estimator is likely to encounter. 

Relative accuracy is a sufficient measure for this work because this provides an evaluation 

of the kinds of errors we are interested in, being subharmonic errors and existence errors 

Subharmonic errors are described in Section 3.7.1. Existence errors are generated when a 

pitched frame in a sound is considered by the detector to not have a pitch, or when a fo 

hypothesis is presented for an un-pitched frame. The three criteria used here are sufficient 

for evaluations based on these measures. 

The first criterion is measured by finding the difference between each pair of fo tracks. 

For each file, the difference between the three fo estimations are calculated according to 

Equation 3.6: 

where N is the length of the fo track and Pv is a notation for the valid portions of a fo 

track P. The mean difference over the set of files is calculated, and the results for the entire 

corpus as well as the talking files only and the singing files only are presented in Table 3.1. 

It can be seen from these results that the two fo estimation techniques based on au- 

tocorrelation had more similar results than the fo estimator based on cepstrum. This is 
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Table 3.1: Mean fo estimation difference between three fo estimators. 

YIN / Colea AC YIN / Colea Cepstrum Colea AC / Cepstrum 

All files 13.33 Hz 19.68 Hz 41.22 Hz 
Singing files 11.11 Hz 17.80 Hz 31.83 Hz 
Talking files 14.00 Hz 20.27 Hz 43.75 Hz 

perhaps to be expected, since the base algorithm is the same. This measure is enough to 

support the hypothesis that the Colea cepstrum fo estimator is not as accurate as the two 

autocorrelation fo detectors. 

It is also important here to look at how the fo estimators compared in specific tasks. 

Since fo estimators are usually designed for a specific task, one would expect the fo estimator 

to perform better for that task (e.g. the estimation of the pitch of speech) than another 

task (e.g. the estimation of the pitch of song). Table 3.1 shows that the difference between 

the autocorrelation methods is lower for singing files than for talking files, but the difference 

between the cepstrum method and the two autocorrelation methods is higher for singing 

files than for talking files. 

The second evaluative criterion is visual inspection of the three fo tracks. Files were 

selected with low and high relative error rates, and these were visually inspected for consis- 

tency errors. An example of a file with high difference is in Figure 3.7, where the cepstrum 

fo estimator failed to detect the fo of the signal through the time range of about 1 second 

to 3.5 seconds. The two autocorrelation methods agree well on this sample. It is important 

to notice the slight delay between the two autocorrelation fo tracks. This is because of the 

extra processing steps in the YIN detector, which seem to introduce a slight delay in the 

measured fo track. This can be corrected by re-aligning the fo track with the time scale of 

the original utterance, but this again is another computational step. 

The visual inspection provides no rigorous results, although a count could be made of 

the files in which subharmonic and existence errors occurred, and the detector responsible 

for the error. The results that were provided by the visual inspection are that in most cases, 

differences between the fo tracks are due to errors in the cepstrum fo track, especially in 

singing utterances. Subharmonic errors show up between the autocorrelation fo estimators, 

and these errors are more or less equally distributed among the YIN, Colea and/or both. 

It should be noted that the Colea fo estimators provided no measure of the confidence 
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of the fo estimation. When the utterance is non-periodic, the fo estimation becomes er- 

ratic, jumping to zero or to a higher value out of range. These jumps, combined with the 

application of a power threshold, can be used to detect the presence or absence of fo which 

is an important feature in the speech/song comparison. The confidence metric of the YIN 

estimation means that this extra post-processing is not required. 

Based on the results of this evaluation, it was decided to use YIN exclusively for the re- 

mainder of the f o  measures in this thesis. YIN was more accurate and provided a confidence 

measure. 

3.8 Discussion 

fo estimation algorithms tend to be based on a number of fairly strict assumptions: 

1. The input waveform consists of a single pitched signal, segmented into frames, and 

the waveform is homogeneous throughout the time frame being considered. 

2. The input is limited to a specific audio domain, for which the algorithm is designed. 

3. fo estimation is the same thing as pitch detection. 

These assumptions are acceptable for initial development, and many successful algo- 

rithms have been developed using these assumptions. Indeed, without severely limiting the 

domain at the beginning of research, it would be impossible to achieve anything at all. 

Many researchers who accept that assumption 3 is theoretically incorrect continue to cite 

their work as pitch detectors rather than fo estimators. Given the slightly non-logarithmic 

transfer function from frequency to pitch, and also given some considerations about the 

base frequency used to create the music ( e g  A4 = 440 Hz), a simple transformation can 

be developed to accurately map the frequency of a signal to its musical pitch. 

Assumption 2 is another necessity for the introductory design of an algorithm. As the 

algorithms become more robust and more accurate, the domain for which the algorithm is 

useful will expand until assumption 2 can perhaps be relaxed. It is equally possible, however, 

that the nature of audio signals is such that certain algorithms are good for certain input 

and not others, and there is no "silver bullet" algorithm that will handle every periodic 

input without error. It is even conceivable that the human perceptual system uses more 

than one analysis method for deducing pitch from the vibrations of the eardrum. 
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This leaves assumption 1. fo estimation of multiple auditory streams is not difficult for 

the human auditory system, although it is difficult to concentrate on more than one stream 

at a time. Work on auditory stream separation is proceeding, but it would perhaps be more 

fruitful if the fo estimation community would work with the stream separation community, 

and vice versa. Clearly, each has much to learn from the other. 



Chapter 4 

Feature Discovery, Extraction and 

Evaluation 

This chapter describes the features that are expected to perform well in distinguishing 

between speech and song, and why. Feature extractors are developed based on the opinions 

collected in Chapter 2. The results of the feature extractors are compared with the desired 

ratings for the sounds in the corpus, and the relative feature performance is evaluated. 

4.1 Introduction 

For the differences between speaking and singing to be measurable, features must be identi- 

fied which produce different results when presented with different utterances. The discovery 

of these features is discussed in Section 4.1.1. Once the features are identified and extractors 

are developed, the results of these feature extractors must be evaluated. The techniques 

used for evaluation are presented in Section 4.1.2. The development of each individual fea- 

ture extractor is discussed in Sections 4.2 to 4.4. Section 4.5 presents techniques for and 

results of the evaluation of the feature models. 

4.1.1 Feature Sources 

In determining relevant features to be studied for speech/song discrimination, there are a 

number of resources. First is the personal experience of the researcher, which as always 

is subjective and must be considered carefully and with a certain amount of suspicion. 



CHAPTER 4. FEATURE DISCOVERY, EXTRACTION AND EVALUATION 75 
I 

Humans are the experts at discriminating between speech and song, and a human who has 

been thinking about this problem for a long time is likely to have some accurate insight into 

these differences. 

However, since the experiences of a single person are by nature personal and subjective, a 

larger sample of people must be consulted for their experiences and opinions. The responses 

gathered in the corpus collection described in Chapter 2 provide suggestions for potential 

perceptual features. The complete list of responses is in Appendix C. 

Another source of ideas for potential features is the research literature. People who are 

working on the differences between speech and song [83] as well as the differences between 

speech and music [63] have gathered potential features which may be useful. These features 

must be examined first to determine their suitability for speech/song discrimination, since 

they are often specific only to the task for which they were developed. 

Once the set of features is chosen, and feature extractors are developed for each, the 

results of these feature extractors must be analyzed and evaluated. The following section 

presents methods used to analyze the feature results. 

4.1.2 Analysis 

There are three main motivations for analyzing the results of the feature extractors: 

0 Is the feature extractor accurately measuring the phenomenon of interest? 

0 Is the feature a useful measure of the differences between speech and song? 

0 Given a set of feature extractors, are they measuring different phenomena or merely 

different characteristics of one underlying phenomenon? 

This third point is of particular interest because if several feature extractors are mea- 

suring the same phenomenon, only one of them is necessary in the complete system. 

Feature extractor accuracy is impossible to judge without a-priori knowledge of the ex- 

pected values of the phenomenon being measured. Generating these target values requires 

annotating the data by hand, a labour-intensive task which is beyond the scope of this thesis. 

The second two evaluations are sufficient to determine the suitability of the features being 

tested. Pragmatically, if the feature is shown to be a useful measure of the differences be- 

tween speech and song, it is unimportant whether it is measuring the intended phenomenon 
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or not. The next two sections describe the methods used to evaluate individual features and 

to compare feature results. 

Probability Density Estimations 

Once a feature algorithm has been developed (as presented in later sections of this chapter), 

a feature model is built which is used to classify new clips. The feature model is developed 

by collecting talking and singing feature values from the development corpus. To compare 

these two feature value sets, the system must determine which class (talking or singing) 

is more likely for each feature value. This is done by estimating the probability dens i ty  

func t ion  (PDF) for the talking files, Pt and the singing files, P,. For a random variable, 

the probability density function is a measure of the likelihood that a measurement of that 

variable will fall within a specified range. Equation 4.1 shows the calculation of a probability 

from a PDF f (x): 

The estimation of a PDF is the opposite problem: given a set of measurements X I ,  xz, . . . 
of a random variable X, estimate the probability density at every point in the range of possi- 

ble values of X. The resulting function is called a probability dens i ty  e s t ima t ion  (PDE) and 

is notated by " A ". There are several methods to calculate the PDE, including the histogram 

(probably the most common) and the kernel method, which is used in this thesis [67]. Both 

methods are described here. 

The histogram method divides the range of the variable into bins, and estimates the 

PDF by counting the number of measurements that fall within each bin. This method is 

often preferred because it is easy to implement and well understood, but it has two draw- 

backs. First, the resolution of the histogram PDE is limited to the bin width, and second, 

the resulting PDE is discrete, which is often not desirable for presentation or calculation. 

Specifically, if two PDEs are to be compared (as in a talk/sing feature model), the crossover 

point between them would occur somewhere between the limits of a bin, and the exact 

crossover point would be difficult to discern. As the bin width is reduced to improve the 

resolution, the number of measurements per bin is reduced and variance increases within 

each bin. 

Several improvements to the histogram have been suggested including multi-resolution 
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histograms, smoothed histograms and variable bin width, but these increase the computa- 

tional complexity of the algorithm, decrease the simplicity (which was originally one of the 

attractive features of the histogram) and move away from theoretical accuracy. 

A relatively simple alternative to the histogram is called the kernel method. The set 

of measurements (represented by a series of delta functions) is convoluted with a gaussian 

kernel, w(x), of appropriate size, as in Equation 4.2. The effect is that a gaussian range of 

probability is added to the PDE for each measurement. These gaussians "pile up" where 

they are close together, indicating high probability density, and where the measurements 

are far apart, the gaussians are separate, indicating low probability. The gaussians can be 

approximated by any easily-generated bell-shaped curve, and for the talking and singing 

PDEs in this thesis, a hann window1 [50] was used. 

(6 x {xl,  22, . . .)) 8 w[n] 
Px = 

CYm((6 x {xl,  22, . . .)) 8 w[n]) 
(4.2) 

The denominator term is added to satisfy the requirement that j(Px)dx = 1. A num- 

ber of improvements to the kernel method are presented in [67], but it was judged that 

the improvements in theoretical accuracy are small compared to the required increase in 

computational and intellectual complexity. 

Evaluation: Kolmogorov-Smirnov Testing and Feature Correctness 

Once the PDEs have been calculated, the next step is to compare them. First, Kolmogorov- 

Smirnov statistics are calculated to determine if there is a significant difference between the 

probability distributions. If there is no significant difference, the feature is considered not 

useful for a classification scheme. For those features with a significant K-S distance, the 

PDEs are compared by taking the log difference between them, as shown in Equation 4.3: 

PS P ~ - ~  = log&) - log(Pt) = log 7. 
pt 

(4.3) 

In some situations, one or the other of the PDEs may be equal to zero, in which case 

R-t would approach h o .  To avoid this, the comparative PDE is hard-limited to f 1, with 

the following justification: & 5 1 since j(&)dx = 1. log(a < 1) 5 0. In comparing the 

 he hann window is similar to  the hamming window described in Section 1.3.1. These windows are 
calculated as w[n] = a - b co s (2~n /M) ,  0 5 n 5 M with a = 0.5, b = 0.5 for the hann window and 
a = 0.54, b = 0.46 for the hamming window. 
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two PDEs we are interested in their relative values only where one PDE does not clearly 

dominate over the other. If pS-t > *I, one PDE clearly dominates and the limit of *1 is 

justified. The improved formula is presented in Equation 4.4: 

1, log(R) - log(@t 1 t)> 1, 
P;-~ = -1, 1og(ps) - l o g ( ~ t )  5 -1, (4.4) 

log(pS) - log(pt), otherwise. 

This comparative PDE is used to evaluate each feature model against individual 

sound files with a-priori known ratings. For each evaluation file being tested, each feature 

extractor is applied to obtain a set of feature values. Each feature x generates a speech/song 

rating piPt(z). This rating is evaluated in two ways: absolute and relative correctness. 

The absolute correctness of each speech/song rating is simply a measure of whether or 

not the individual feature extractor, in isolation, produced a rating identical to the target 

rating. The absolute correctness of pi-,(x) is calculated thus: If the a-priori class of the file 

is talking, and PL-,(X) < 0, the feature model is considered to have behaved correctly for 

that file, and is given a value of 1. If not, the feature model is given a value of 0. The mean 

absolute correctness rating over all files is calculated for each feature, and these results are 

presented as each feature is described in detail. 

The relative correctness of pLPt(x) is calculated by comparing the value of P;-,(x) to 

the a-priori rating for the file. If the a-priori rating of the file is 5 (pure singing) and 

(x) = 4.5 for a given feature, that feature is given a correctness of 0.9, because the 

difference between the target rating and the PDE value is 10%. 

4.2 Vibrato 

Sung utterances often have an associated fo track which oscillates in a characteristic way. 

Sometimes when people sing they add this oscillation to the pitch of the note they are 

singing, for stylistic or other reasons. This phenomenon, known as vibrato is characterized 

by a stationary pitch modulated by a 4-8 Hz pseudo-sinusoidal waveform. 

4.2.1 Perceptual Motivation 

Figure 4.1 shows an example fo track of a sung utterance with vibrato and discrete fo levels, 

and Figure 4.2 shows an example fo track of a spoken utterance. These fo tracks are of the 
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same individual speaking and singing the phrase "Row, row, row your boat, Gently down 

the stream." 

time (s) 

Figure 4.1: Example of a sung utterance fo track (file e255). 

01 I I I 
I I I I 1 

0 0.5 1 1.5 2 2.5 3 3.5 4 
time (s) 

Figure 4.2: Example of a spoken utterance f o  track (file f255). 

Many sung utterances in the corpus displayed the presence of vibrato, and vibrato was 

cited as a decision factor for many subjects. Following are examples of subject responses 

indicating vibrato. 

u174:314 (5) "He held on to certain syllables that were (I think) at the ends of words. He 

also seemed to be using a little bit of vibrato." 

u175:314 (5) "The pitch is high and she uses vibrato" 

u175:325 (5) "the wobbly voice" 



CHAPTER 4. FEATURE DISCOVERY, EXTRACTION AND EVALUATION 80 

u175:352 (5) "melody and vibrato" 

The third response in this list shows that people can perceive vibrato and associate it 

with singing without being able to name it. 

4.2.2 Physical Realization 

As can be seen in Figure 4.1, the perceptual feature of vibrato is physically manifest as a 

frequency modulation of the vocal signal. Several researchers in various fields have studied 

this phenomenon [59], and from their work, it is determined that on average, the modulating 

frequency varies between 4 and 8 Hz. The shape of the vocal tract does not change during 

vibrato pitch oscillation, so the formant locations stay constant, as shown in Figure 4.3, 

using the clip s101, which contains the lyric "0 Freunde" sung in opera style. 

time (s) 

Figure 4.3: Spectrogram of a vocal clip with vibrato showing partials moving in and out of 
formats. 

Vibrato blurs the pitch realization, making it more difficult to determine the intended 

pitch target. This means that traditional methods of music detection which make use of 

pitch constancy fail when presented with a pitch track sung with vibrato. Music detection 

methods, and specifically traditional methods of automatic music transcription, rely on a 

relatively consistent fo across the note being transcribed. If the fo of the note changes by 

a small amount, the transcription engine is able to make assumptions about the note and 

assign a discrete value to the pitch, but if the fo changes by more than a quarter tone across 

the note, or if it does not adhere to the expected scale defined in the transcription engine, 

the pitch will not be correctly recognized and the transcription will be incorrect. 
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4.2.3 Feature Extraction 

Once the frequency of the vocal signal has been extracted, detecting a frequency modulation 

is equivalent to detecting local periodicity in the fo track. As in other domains where the 

task is to detect periodicity, there are essentially two approaches: time-domain (temporal) 

methods and frequency domain (spectral) methods. A common temporal method of peri- 

odicity detection is based on autocorrelation, and a common spectral method is based on 

the Fourier transform. The following section describes implementations for both of these 

methods, and following that is a comparison of the results of these methods. 

The goal of a vibrato detector is to produce a rating based on both the strength and 

frequency location of any frequency modulation. Frequency modulation lower than 1-3 Hz 

is likely to be due to fo changes between phonemes rather than vibrato within an individual 

phoneme. Frequency modulation higher than 9-15 Hz borders on the audible range, as well 

as being very difficult or impossible for the human vocal track to produce. Modulation 

frequencies within this range (4-8 Hz) should therefore have higher scores than modula- 

tion frequencies outside of this range. The second characteristic is the magnitude of the 

modulation, a stronger modulation resulting in a higher vibrato score. 

4.2.4 Common Pre-Processing 

Both algorithms begin in the same way, by accepting a fo track as input. The first derivative 

of the fo track is calculated, so that the vibrato detection operates on the slope of the track 

instead of the track itself. Since vibrato-like modulations tend to be sinusoidal, the first 

derivative does not alter the vibrato information. The first derivative is used to identify 

the areas of high f,!, which indicate utterance segment breaks. Figure 4.4 shows the first 

derivative of an example frequency track. Compare with Figure 4.1, which shows the original 

fo track from the same file. 

The next pre-processing step is to separate the utterance into segments. These are 

identified by periods of unvoiced utterance and changes in fo and power. This is done to 

isolate a series of vibrato measures in an utterance, so that a single segment with vibrato 

in an otherwise flat utterance will give a significant vibrato measure in the final evaluation. 

Figure 4.5 shows a single speech segment of the utterance used in Figures 4.1 and 4.4. Each 

speech segment is then normalized to control for differences in the range of the frequency 

modulation at different base frequencies. 
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Figure 4.4: Vibrato pre-processing: f (0)' for the sound in Figure 4.1. 

-1 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 
time (s) from segment start 

Figure 4.5: Vibrato pre-processing: utterance segmentation. 
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In the first vibrato detection method, the fast Fourier transform (FFT) is used to detect 

the presence of low-frequency modulation in the fo track. The FFT is applied to the fo 

track, and the largest peak in the FFT is taken to represent the location of the modulating 

frequency, if any. The FFT vibrato feature value is equal to the frequency band in which the 

maximal spectral peak is found. Figure 4.6 shows the FFT vibrato measure of the utterance 

segment presented in Figure 4.5. 

frequency (Hz) 

Figure 4.6: Vibrato measure using FFT of the fo track. 

The second method for detecting the presence of vibrato uses the autocorrelation of the 

fo track to identify the presence and strength of a vibrato-like frequency modulation. The 

vibrato measure is found by taking the time location of the first non-zero peak and multiply- 

ing it by the amplitude of the peak. In this way, strong peaks at shorter lags are rewarded, 

and weak peaks at longer lags are suppressed. Figure 4.7 shows the autocorrelation vibrato 

measure of the utterance segment presented in Figure 4.5. 

frame offset (s) 

Figure 4.7: Vibrato measure using autocorrelation of the fo track. 

A more accurate vibrato model could be implemented using emphasis for peaks in the 

recognized vibrato frequency range, but the methods already described were found to provide 
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adequate results at this point. Other vibrato detection methods are presented in [59]. 

4.2.5 Comparing Spectral and Temporal Vibrato Detection Algorithms 

In the temporal algorithm, the vibrato measure is calculated by finding the location of the 

first peak in the autocorrelation corresponding to a periodicity frequency above 3 Hz. The 

amplitude of this first peak is then multiplied by the location of the autocorrelation peak. 

This scale factor tends to favor lower-frequency vibrato. 

In the spectral algorithm, the FFT is calculated and the phase information is discarded 

by taking the absolute value. The vibrato measure is then calculated as the amplitude of 

the first high-magnitude peak in the FFT above the threshold of 3 Hz. If there is no vibrato 

present in the signal, the power in the FFT will be concentrated in the lower frequency 

bands and the amplitude of the first peak above 3 Hz will be smaller than that of a signal 

with vibrato. For both algorithms, the vibrato measure for a complete clip is taken as the 

maximum vibrato measure across all of the segments in the clip. 

The feature models for the two vibrato features are presented in Figures 4.8 and 4.9. The 

correctness for these feature models are presented in Table 4.1. Throughout this chapter, 

shorthand notational labels will be used to present tabular information about the features. 

These labels will be defined as they are used, and the full set of labels is presented in 

Table 4.7 near the end of this chapter. In this case, VAC is the feature label for vibrato 

measured using the autocorrelation method, and VFT corresponds to vibrato measured using 

the fast Fourier transform. 

0 50 100 150 200 250 
feature value (1 -lag * autocorrelation) 

Figure 4.8: Feature model of autocorrelation-based vibrato measure, VAC. 



CHAPTER 4. FEATURE DISCOVERY, EXTRACTION AND EVALUATION 85 

0.1 . I . I I I I . . . . . . , . . .  talk I 

-1 0 0 10 20 30 40 50 60 
feature value (Hz) 

Figure 4.9: Feature model of FFT-based vibrato measure, VFT. 

Table 4.1: Correctness of vibrato features. 

I Feature 11  VAC I V'T I 
I 

I Relative 11  0.8021 1 0.6487 1 
I Absolute 11  0.8147 1 0.7262 1 

4.3 Simple fo Statistics 

As discussed in earlier sections, the fo track of an utterance is a key starting point for a 

speech/song discrimination. Depending on the analysis used, fo track based features can 

be quite computationally intensive. Statistics of fo are an exception to this. fo statistics 

features are extracted by taking a suitable window length and calculating the mean, the 

standard deviation, maximum and minimum of the fo. A suitable window length for fo 

statistics is between 2 and 5 seconds. A shorter segment would not contain sufficient data 

for a reasonable statistical judgement, and a segment longer than 5 seconds could contain 

utterances of more than one class, leading to blurred statistics. For this work the complete 

utterance file was used for each clip. 

4.3.1 Perceptual Motivation 

Many subjects observed statistical fo features when quantifying the speech/song difference. 

An abnormally high pitch can indicate song, as can a pitch that varies greatly. Following 

are examples of subject responses indicating statistical fo features which are evidence for 

song. 
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n132:212 (5) "Great variance in pitch.. ." 

n134:236 (5) "high pitch and expressive talking" 

Similarly, certain statistics can be evidence for speech, for example when there is "not 

enough" pitch variation in the utterance. Following are examples of subject responses 

indicating pitch statistical features which are evidence for speech. 

n133:212 (3) "There's rhythm but not enough difference in pitch" 

u161:310 (2) "very little change in tone" 

The difficulty with fo statistics as evidence for speech is that there are cases where a 

value that might be considered song-range is in fact from a speech utterance. For example, 

highly prosodic speech has high fo variance but most subjects rated such utterances more 

toward speech than song: 

n134:251 (2) "Talking, but with a lot of change in pitch" 

4.3.2 Physical Realization and Extraction 

The usefulness of fo statistics is at first not immediately obvious, because the human trial 

annotation revealed some disagreement, but the fact that people mention features like pitch 

range and pitch variance is sufficient to investigate various simplistic measures of the sta- 

tistical distribution of fo across a clip. 

Once the fo has been extracted, the calculation of the statistics is straightforward, 

using standard algorithms. The maximum, minimum, mean and standard deviation were 

calculated for the fo track of each clip in the development corpus, and the results were 

compiled into feature models for these four statistics. The feature models are presented in 

Figures 4.10 through 4.13. 

4.3.3 Discussion 

Statistical features of fo are features which are inspired by human observation but whose 

final usefulness will be determined by how well the results of each feature fit with the desired 

classification scheme. As such, each feature must be investigated independently of the initial 

motivation, and if the feature is found not to separate well, it should not be used. 
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Figure 4.10: Feature model of maximum fo ,  M ( f o ) .  

50 100 150 200 250 300 
feature value (Hz) 

Figure 4.11: Feature model of minimum f o ,  m( fo ) .  
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Figure 4.12: Feature model of mean f o ,  p ( fo)  

I I I I 

0 20 40 60 80 1 00 
feature value (Hz) 

Figure 4.13: Feature model of fo  standard deviation, a ( f o ) .  
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The four statistical features described above are maximum, minimum, mean and stan- 

dard deviation. The maximum fo feature separates well at the tails, with singing having 

an approximately bimodal distribution, perhaps attributable to the differences in speaking 

and singing frequency range between males and females, although this was not directly in- 

vestigated. However, between feature values of 175 and 300, the feature does not separate 

the classes reliably, since both classes have appreciable probabilities in this range. The 

minimum f o  feature seems to follow a somewhat common contour for both features, with 

the PDE of the singing class shifted up the feature value scale. The feature separates well 

at the 75 Hz dip in the singing PDE and above 175 Hz. The mean f o  has an approximately 

bimodal distribution for talking and singing, with the valley in the talking PDE, again near 

175 Hz, lining up with a peak in the singing PDE, and a peak in the singing PDE near 

200 Hz lining up with a valley in the talking PDE. This feature is expected to separate 

well for most feature values. The standard deviation of f o  shows probabilities which are 

similar for most feature values. This feature is not expected to separate well. The mea- 

sured correctness of these features is presented in Table 4.2. The feature labels used here 

are M ( f o )  for maximum f o ,  m ( f o )  for minimum f o ,  p ( f o )  for mean f o  and g ( f o )  for the 

standard deviation of f o .  

Table 4.2: Feature correctness for f o  statistics 

I .- , , .. . . . . . 

I Relative 11 0.6216 1 0.5945 1 0.6779 1 0.5743 1 
I Absolute 11  0.6561 1 0.6277 1 0.7078 1 0.5977 1 

4.3.4 Statistics based on f o  of speech segments 

An expected improvement to the fo statistics is to investigate only on speech segments, 

where segment boundaries are determined by beginning and ending of valid f o  areas, as 

well as areas of high f o  slopesong clips often have high slope pitch transitions between 

notes. Figures 4.14 and 4.15 show the mean and standard deviation feature models based 

on speech segments. 

The relative and absolute correctness for these feature models are presented in Table 4.3. 

The labels used here are p s ( f o )  for the segment-based mean f o  and a s ( f o )  for the segment- 

based standard deviation of f o .  
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Figure 4.14: Feature model of segment-based mean fo, ps(fo). 
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Figure 4.15: Feature model of segment-based fo standard deviation, a,(fo). 

Table 4.3: Feature correctness for speech segment fo statistics. 

I I I 

Absolute 11 0.6511 1 0.5910 
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4.3.5 f; Statistics 

As with fo statistics, the slope of the fo track can be instructive in the decision between 

talking and singing. f; statistics are calculated in the same way as those for fo. The slope 

of the fo is calculated by taking the first difference of the fo, which is the discrete version 

of the first derivative: 

The following statistics are used for analyzing the slope of the maximum, p and a .  

Minimum f; is not used because in many cases, the YIN fo extractor produced consecutive 

frames with identical estimations, resulting in a minimum f; of 0 Hz for many clips. AS 

with fo, higher order statistics and different averages of f; could also be used. Figures 4.16 

to 4.18 show the feature models for the f; statistics. 

0 2 4 6 8 10 12 14 
feature value (Hz per frame) 

Figure 4.16: Feature model of maximum f;, M(f;). 

The correctness of these features is presented in Table 4.4. The feature labels are M(f;) 

for maximum f;, p(f;) for mean f;, and a( f;) for the standard deviation of f;. 

Table 4.4: Feature correctness for f; statistics. 

I Absolute 11  0.5910 1 0.5860 1 0.5493 1 I I I 

Feature 

Relative 
df;) 
0.5576 

f 
0.5418 

df;) 
0.5185 
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Figure 4.17: Feature model of mean f ; ,  p ( f ; ) .  
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Figure 4.18: Feature model of standard deviation of f ; ,  u ( f 6 ) .  
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4.4 Rhythm 

When asked what makes an utterance speech-like or song-like, many listeners identified 

rhythm as an important feature, although their descriptions of the specifics of rhythm in 

the characterization often degrade to circular reasoning: speech is characterized by speech- 

like rhythm and song is characterized by song-like rhythm. To discover what it means for a 

rhythm to be song-like or speech-like, we must first do a data reduction to extract relevant 

features for a rhythm measure, and then study the results of this measure on speech clips 

and song clips. 

Preliminary research shows that rhythm in song involves phrase repetition and repetition 

of power patterns, as well as phoneme repetition. Feature extractors designed to extract 

repetition, such as autocorrelation and other fo extraction techniques, would be useful for 

this task. 

The difficulty with doing work on rhythm is that perceptually, it seems as though rhythm 

is a single concept similar to pitch. Many subjects would simply cite "rhythm" or "lack of 

rhythm" as a reason for rating a file as speech or song. Understanding the physical char- 

acteristics of rhythm is beyond the scope of this thesis, but two features were investigated 

that relate to rhythm. These features were identified by the observation of the author and 

are not based on the perceptual annotation from the corpus. 

4.4.1 Utterance Segment fo Track Match 

The first feature examined in trying to model rhythm is the similarity between the fo track of 

individual speech or song utterance segments. If the fo is similar in two different segments, 

this is possibly an indication of word or phrase repetition, which could indicate rhythm. 

Therefore, it is suspected that fo track matching can be used as a discriminatory feature 

between speech and song. The observation is that in speech, fo tracks are not correlated 

from segment to segment, whereas in song they often are correlated. 

This feature was extracted by first segmenting the sound file into individual sound seg- 

ments as described in Section 4.2.4. Short segments are discarded, and the remaining 

segments are correlated for all segment pairs, with the largest correlation taken to be the 

feature value for that file. Figure 4.19 shows the feature model for the segment fo track 

match. The relative accuracy for this feature is 0.7908, and the absolute accuracy is 0.8063. 

The label for this feature is R,. 
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Figure 4.19: Feature model of speech segment repetition, R,. 

This feature separates well at all feature values. Spoken utterances have segment fo 

correlations concentrated around 100, while sung utterances tend to have higher segment fo 

correlations, centered around 210 with a wider deviational spread. It should be noted that 

there are other possible ways to measure the correlation between segments. The spectrum, 

power and ZCR are also expected to be correlated in a pair of repeated segments. 

4.4.2 Voiced and Unvoiced Parts of Speech 

Human speech can be divided into three categories relating to the driving function of the 

vocal tract. If the vocal chords are held taut, the air forced through them by the lungs 

sets up a periodic vibration which results in a pitched sound. This happens with all vowels, 

liquid consonants like "r" in "road" and "1" "lunch", and nasals like "m" in "match" and 

'h" in "north". These sounds together are called "voiced" and are distinguished from 

"unvoiced" by the fact that they all have a pitch. Unvoiced sounds include fricatives like 

%h" in "shower" and "th" in "thesis", stops like "p" in "pound" and "dl1 in "duck". These 

sounds can add to the perception of rhythm in an utterance, but not to the perception of 

melody, because they have no pitch. 

Perceptual Motivation 

When a person sings, a common phenomenon is voiced lengthening, where the voiced seg- 

ments of the utterance are longer than they would be in normal speech, and the unvoiced 
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segments are shorter. The voiced segments produce the notes, and the unvoiced segments 

are used between the notes to define the semantics of the utterance. Human perception of 

the meaning behind an utterance is concentrated at the "edges" of the utterance, where the 

phonemes change. 

Another phenomenon in sung utterances is silence filling. In normal speech, there are 

segments of silence before or after stops like "t" in "stream" and "feet". Silence is also 

used for punctuation, where a comma or a period might be used in written text. These 

silences are compressed or removed completely when singing, because of voiced lengthening, 

and because punctuation in song is often achieved by the music. It is important to note, 

however, that singing can often include large segments of silence between verses or phrases. 

Physical Realization 

There are several ways to distinguish between voiced, unvoiced and silence frames in an ut- 

terance, and these rely on the physical manifestation of voiced and unvoiced utterances. Un- 

voiced utterances are very often fricative, which means that the driving function is chaotic. 

Instead of a steady stream of air through tight vocal chords producing a pitched sound, the 

vocal chords are held loose and air is allowed to flow freely through them, creating a chaotic 

broadband driving function. 

A second physical characteristic of unvoiced speech is that it is spectrally broadband, 

and the power is often concentrated in higher frequency bands, as compared to voiced 

speech which has power concentrated in a lower-frequency spectral region. Also, since 

voiced speech is pitched, the power spectrum of voiced speech shows peaks at harmonically 

related frequencies. 

A third method is to consider the result of a fo extractor. If a fo extractor is sufficiently 

good at detecting the presence of pitch as well as the value of fo, this information can be 

used to determine the distribution of voiced frames by considering all frames with a valid 

fo measure to be voiced, and all remaining frames to be unvoiced or silent depending on a 

supplementary measure such as power. These physical differences between pitched and non- 

pitched speech can be used to develop feature extractors for the speech/song discrimination 

task. 

It is interesting to note that in a whispered utterance, all phonemes are unvoiced, and 
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hence aperiodic, and this is why it is impossible to add a melody to a whisper2. Humans 

can perceive pitch in an aperiodic waveform if it contains spectral peaks and/or troughs. 

If there is more power concentrated around a particular frequency, a vague notion of pitch 

will be perceived which will increase as the bandwidth around that frequency decreases. In 

human whispering, the broadband aperiodic source signal is filtered into formants by the 

vocal tract, and outside of the context of speech, these formants can lead to the perception 

of pitch. If one starts to whisper and then makes random motions with one's mouth, one 

will discover that the more open the mouth and the oral cavity, the higher the perceived 

pitch. In the context of speech, however, this information is used to decipher the phonemes 

being generated. The characterization of these whispered utterances is beyond the scope of 

this thesis, so for the purposes of this work, the periodicity of an utterance frame will be 

used as a measure of whether the frame is voiced or unvoiced. 

Feature Extraction 

The feature extraction techniques for the distribution of voiced frames depend on the phys- 

ical phenomenon being extracted. The first technique relies on detecting the chaotic nature 

of the driving function. This is done with the zero-crossing rate (ZCR). The ZCR has been 

discussed in Chapter 3 as a method to detect the frequency of a waveform, and reasons were 

given there as to why ZCR by itself is not a successful fo extractor. The task here is to 

detect the existence of a pitch instead of detecting the value. If there is no pitch, the ZCR 

will indicate this with higher values and more erratic distributions. A periodic waveform 

will have a comparatively low ZCR and a more even distribution. 

The ZCR voiced frame distribution detector looks at the waveform frame by frame and 

counts the number of times the waveform crosses zero in that frame, each frame being 15 ms 

long. The mean ZCR for the entire file is then calculated, and frames with ZCR above the 

mean are taken to be unvoiced, with frames below the mean being voiced. 

This initial algorithm was then extended to include silence detection, where the power of 

the waveform dropped below a threshold, and a measure of the ZCR statistical distribution 

was added to capture instances where the ZCR value alone was not enough to determine 

the difference between voiced and unvoiced utterances. 

2 ~ e c a l l  Figure 1.3 for a comparison of normal and whispered speech. 
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Once the file was segmented into voiced, unvoiced, and silent frames, totals were calcu- 

lated for each and translated into a proportion for the file. Three features were extracted 

from this: proportion of voiced frames (PVz), proportion of unvoiced frames (PUz), and 

proportion of silence frames (PSz), the Z in the feature labels indicating the use of ZCR 

in the feature value calculations. These three feature models are presented in Figures 4.20 

to 4.22, and the corresponding correctness results are presented in Table 4.5. 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 
feature value (proportion) 

Figure 4.20: Feature model of ZCR-based proportion of voiced frames, PVz. 

0 0.05 0.1 0.1 5 0.2 0.25 0.3 
feature value (proportion) 

Figure 4.21: Feature model of ZCR-based proportion of unvoiced frames, PUz. 

The second method of voicedness detection involves investigation of the power distribu- 

tion of each frame. If the power in a frame is concentrated in the higher frequency bands, the 

frame is considered to contain an unvoiced utterance, and if the power is concentrated in the 
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Figure 4.22: Feature model of ZCR-based proportion of silence frames, PSz. 

Table 4.5: Feature correctness for ZCR voiced frame ratio features. 

lower frequency bands, the frame is considered to contain a voiced utterance. Other power 

characteristics are relevant as well, such as the power spectral stratification that comes with 

periodic waveforms, but the high-low differentiation was found to be sufficient in preliminary 

testing. This method wasn't implemented because it was considered too computationally 

intensive. 

The third method assumes that the fo extractor being used is capable of not only 

detecting the value of the fo, but also the presence or absence of pitch. The fo extractor 

(YIN) being used in the current set of feature extractors gives a confidence measure along 

with the fo value, and this confidence measure indicates whether or not YIN "believes" that 

the waveform is periodic. With some additional computation, this confidence metric can be 

used as a voiced/unvoiced measure. 

The confidence measure is augmented with a heuristic fo track analysis algorithm that 

detects anomalies in the fo track. This anomaly detector is sensitive to values of fo, f; 

and higher order derivatives of fo. When any of these measures pass beyond perceptually 

defined thresholds, the frame is considered to be non-pitched and hence unvoiced or silent. 

Once again, the voicedness detector is combined with a power measure to determine 

if the non-pitched segments are unvoiced or silent. The feature models of the fo track 

Feature 

Relative 
Absolute 

PUz 
0.5531 
0.6394 

PVz 
0.6003 
0.6361 

PSz 
0.5647 
0. 5877 



CHAPTER 4. FEATURE DISCOVERY, EXTRACTION AND EVALUATION 99 

voicedness detector are presented in Figures 4.23 and 4.24. The correctness results for these 

features are presented in Table 4.6. The labels for these features are PUh for the proportion 

of unvoiced frames using the fo extractor, and PVhfor the proportion of voiced frames. 

From the ZCR-based voiced frame distribution measure, three features were derived: 

proportion of voiced, unvoiced and silent frames. Since all frames can only be one of these 

three, It was decided that for the fo extractor based voiced frame distribution, it is sufficient 

to measure the two quantities: unvoiced and voiced frames, since the proportion of silent 

frames can be derived from the proportion of unvoiced and voiced frames. 

feature value (proportion) 

Figure 4.23: Feature model of fo-based proportion of unvoiced frames, PUf, 

0.01 I I I I 

, , . . . . talk 
sing 

0.005 - 

0.5 0.6 0.7 0.8 0.9 1 
feature value (percent) 

Figure 4.24: Feature model of fo-based proportion of voiced frames, PVh. 
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Table 4.6: Correctness for fo-based voiced frame ratio features. 

4.5 Feature model evaluation and comparison 

The features presented in the above sections separate speech from singing with reasonable 

accuracy, considering that they are isolated features measuring individual phenomena. It 

is informative to evaluate these features to see if they are in fact measuring the same 

or related phenomena, and to see the statistical significance of the differences between the 

PDEs for each feature. To investigate these two concepts, two measures are employed on the 

overall results of these feature models: Kolmogorov-Smirnov distances and cross-correlation 

between features. The correctness results from all feature models are also collected and 

analyzed. The feature labels for the names of the features presented in previous chapters 

are collected for reference in Table 4.7. 

PVfo 
0.5656 
0.6260 

Feature 

Relative 
Absolute 

Table 4.7: Feature labels. 

PUfo 
0.6472 
0.6678 

I Label 1 Feature I 
I vAT I Vibrato, using autocorrelation I 

m ( f o )  Minimum fo  
d f o )  Mean f o  I I 

VFT 
M ( f o )  

Vibrato, using fast Fourier transform 
Maximum fo 

a (  f o )  
M ( f 6 )  

I p,(fo) I Segment-based mean fo  I 

Standard deviation of fo  
Maximum f6 

a( f6)  
R, 

Standard deviation of f; 
Segment fo track repetition 

a,( fo)  
PVz 

Segment-based standard deviation of fo 
ZCR-based proportion of voiced frames 
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4.5.1 Kolmogorov-Smirnov Evaluation 

To evaluate the feature models individually, it is informative to apply the Kolmogorov- 

Smirnov test described in Section 2.3. In this case, the probability distributions from the 

a-prior2 speech and song files are compared, and the question is asked whether the two 

distributions in fact came from the same distribution (indicating that the feature has poor 

separation) or from different distributions (indicating that the feature may have good sepa- 

ration). In this case, Nt = 326 pure talking files and Ns = 273 pure singing files, so for the 

K-S calculations, 

Using Equation 2.1, we have 

Recall that Dff=.O5 and Dff=.ol are the distances required for the null hypothesis (the 

distributions are the same) to be accepted to the corresponding significance level (a  = .05 

and a = .O1 respectively). The K-S test was applied to all 17 features in the feature set, and 

the results are presented in Table 4.8, sorted by decreasing K-S distance. These results show 

that most of the feature extractors provide sufficient distances between the distributions of 

the talking files and the singing files for them to be from statistically different distributions. 

For three features, ps(fo), o (  f;), and os(fo), the null hypothesis is accepted at a sig- 

nificance level of 0(0.01), and the feature values for the talking and singing files cannot be 

considered to have come from the different distributions. Visual inspection of the feature 

models shows that this is not an unreasonable assessment of the usability of these features. 

The feature M(fA) shows a K-S distance which is small but worth noticing, and visual in- 

spection of the feature model does indeed show that this feature may not separate as well 

as some with higher K-S distances. 

4.5.2 Cross-Correlation Evaluation 

In addition to confirming that the classes within a feature model come from statistically dif- 

ferent distributions, another question to consider is whether several features are measuring 

the same phenomenon, or are they all measuring different phenomena. This can be deter- 

mined by calculating the zero-lag cross-correlation (RFl,Fz (0)) between each pair of features. 
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Table 4.8: Kolmogorov-Smirnov results for each feature model. 

K-S Distance 
0.7549 
0.6325 
0.6279 
0.5937 
0.5714 
0.4661 
0.3395 
0.3270 
0.2900 
0.2657 
0.2357 
0.2328 
0.2191 
0.1827 
0.0955 
0.0941 
0.0774 

Significance (a)  
1.5253 x 
3.7513 x 
2.1580 x 
7.0015 x 
1.8420 x 
4.6000 x 
1.2799 x 10-l5 
1.6075 x 10-l4 
1.6370 x 10-l1 
9.9910 x 10-lo 
9.5202 x 10-Os 
1.4317 x 10-O7 
9.3605 x 10-O7 
7.9608 x 10-O5 
1.2526 x 10-O1 
1.3624 x 10-O1 
3.2402 x 10-O1 

R F ~ , F ~  ( 0 )  is calculated using Equation 3.3. Each pair of features is cross-correlated and di- 

vided by the second moment of the first feature, ~ l ~ ( n ) ,  SO that the zero-lag autocorrelation 

is equal to unity, RFl,Fl ( 0 )  = 1. 

The cross-correlation between features can be interpreted in the following way: 

R F ~ , ~ ~ ( O )  = 1 : the features produce identical results for each file, and are likely to be 

measuring the same phenomenon. 

RFl,F2 (0 )  = -1 : the features produce identically opposite results, which also indicates 

that the features are likely to be measuring the same phenomenon. 

RF,,F~(O) = 0 : the features are considered orthogonal, and therefore are likely to be 

measuring different phenomenon. 

Table 4.9 presents the cross-correlation results for each pair of features, and Figure 4.25 

presents a graphic visualization of these results, with darker gray levels indicating smaller 

cross-correlation results. The cross-correlation results have been ordered so that feature 

pairs with higher RF,,F2(0) values are positioned close together. This also means that higher 
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R F ~  , F ~  (0) values occur close to the diagonal. Features with lower overall cross-correlation 

values are on the left and top of the table and figure. 

u(fo') Rs o(fol) PUfo u(fo) PSfo 

u(fol) 

Rs 

o(fol) 

PUfo 

PSfo 

Figure 4.25: Graphical representation of feature pair cross-correlation results from Table 4.9. 

These cross-correlation results show that some features are in fact measuring similar 

or related information. There appear to be groups of related features with high cross- 

correlation between them: M (  fo) ,  p(fo), PVz and PVh seem to be related in their corre- 

lation distribution, as well as u,( fo), u(fA), M(fA) and u ( f o )  These two groups seem to 

be uncorrelated with each other. The features that measure voiced frame distribution seem 

to be clustered together, however PSz is not strongly correlated with this group. The two 

vibrato measures are not strongly correlated with each other or any other features. It is 

interesting to see that u(fA) and M(fA) are highly correlated but p(fA) is not highly corre- 

lated with either of these features. Recall, from the K-S distance measures, that p(fA) has 

a much more significant separation than u(fA) or M (  f;). 

A further instructive observation is the mean of the cross-correlations of a feature with 

the other features. This feature is calculated according to Equation 4.8: 
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Table 4.9: Cross-correlation results for all feature pairs. 
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where N = 17 is the number of features in the set. The results of this measure are presented 

in Table 4.10, sorted from lowest to highest value. A lower value of p(RFn)  indicates a feature 

that is less correlated with the rest of the feature set. This information can be combined 

with the correctness and separation measures presented earlier, to select a set of features 

with potentially high overall utility. The correctness ratings are collected in Table 4.11 for 

convenience. 

Table 4.10: Mean feature cross-correlation results. 

Mean Cross-Correlation 
0.359 
0.488 
0.573 
0.626 
0.629 
0.667 
0.671 
0.674 
0.676 
0.702 
0.717 
0.729 
0.761 
0.771 
0.773 
0.794 
0.798 

The correctness ratings presented here are calculated by evaluating the feature models on 

the same data used to develop them. This is the most straightforward evaluation method, 

but the risk is always present that the feature models will reflect intrinsic biases in the 

development data that will not be discovered by evaluating on the same data-recall the 

tank detector anecdote from Section 3.5.1. If the tank detector system, accidentally trained 

with tanks on sunny days only, had only been tested with the same data used to develop 

the system, the error would never have been detected. 

One way to more rigorously verify a developed system when a limited amount of data 
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Table 4.11: Collected correctness results for each feature. 

Relative Correctness Absolute Correctness 
0.8021 0.8147 
0.7908 0.8063 
0.6487 0.7262 
0.6779 0.7079 
0.6472 0.6678 
0.6216 0.6561 
0.5958 0.6511 
0.5531 0.6394 
0.6003 0.6361 
0.5945 0.6277 
0.5656 0.6260 
0.5743 0.5977 
0.5418 0.5910 
0.5457 0.5910 
0.5647 0.5877 
0.5576 0.5860 
0.5185 0.5493 

is available is to break the data set into a development subset and a test subset. The 

development subset is used to develop the system and generate the models, and the test 

subset is used to verify that the system performs well on data it has not seen yet. To fully 

verify the system design without biasing on any one portion of the data set, the full data 

set is divided into several development subsets, and each is used to develop a version of the 

system, evaluated using the corresponding leftover test subsets. 

This testing method was employed to more rigorously verify the feature model develop- 

ment algorithms. The original talking and singing corpus was divided into equal sections, 

and the talking and singing files from each section were used to develop separate versions 

of the system. This testing was done in two sessions, first with four sections and then with 

ten sections. With four sections, four separate systems were developed (using 75% of the 

corpus) and tested (on the remaining 25%) for absolute and relative correctness, as above. 

The mean results from these four systems are presented in Table 4.12, sorted by absolute 

correctness. In the same way, ten separate systems were developed and tested, and the 

mean results are presented in Table 4.13, sorted by absolute correctness. These results show 

that, while the correctness results are lower, there are no significant biases in the feature 

model development, and the features that performed well when developed on the full corpus 
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continued to perform well when the development and test data were separated. 

Table 4.12: Feature correctness results for separate development and test data, four sets. 

Relative Correctness Absolute Correctness 
0.7937 0.8071 
0.7800 0.7886 
0.6415 0.7064 
0.6549 0.6779 
0.6234 0.6560 
0.5798 0.6376 
0.5958 0.6342 
0.5556 0.6191 
0.5377 0.5956 
0.5597 0.5923 
0.5785 0.5839 
0.5665 0.5755 
0.5423 0.5755 
0.5542 0.5722 
0.5194 0.5571 
0.5207 0.5537 
0.4860 0.4513 

4.5.3 Useful Feature Models 

From these results, some conclusions can be drawn. In terms of correctness, the best three 

individual feature models are VAC, Rs and VFT. The feature models which are most inde- 

pendent of the rest of the features are VAC, p ( f 6 )  and VFT. The features which provide the 

best separation between classes are PUz, PUfo and VAC. The individual feature evaluations 

among these six feature models indicate that they would be useful in the design of a full 

classification engine. These feature models are discussed further in Section 5.1.1. 

4.5.4 Feature Models Applied to Intermediate Vocalizations 

As a final evaluation of the developed feature models, intermediate vocalizations from the 

speech-song corpus are tested. Recall that these clips were rated between speaking and 

singing by listeners in the user study in Chapter 2. The mean ratings from the experiment 

are compared to the feature models generated using the entire speech/song data set. 

For each intermediate utterance clip, a feature value is calculated according to the feature 
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Table 4.13: Feature correctness results for separate development and test data, ten sets. 

Relative Correctness Absolute Correctness 
0.7921 0.8034 
0.7823 0.7966 
0.6421 0.7153 
0.6616 0.6881 
0.6309 0.6627 
0.5786 0.6339 
0.5960 0.6339 
0.5564 0.6186 
0.5850 0.6170 
0.5411 0.6170 
0.5754 0.6000 
0.5583 0.5848 
0.5504 0.5814 
0.5491 0.5678 
0.5178 0.5492 
0.5182 0.5458 
0.4955 0.5017 

extractor algorithm. The feature value is then applied to the feature model to generate a 

computed measure (M,) between -1 and 1. This rating is compared to the human measure 

(Mh), being the mean listener rating for that clip, a value between 1 and 5. The mean 

rating result is scaled to match the feature result, and the euclidean distance is calculated 

between these ratings, using Equation 4.9: 

If the computed measure and the human measure match, the distance will be zero. If 

they are opposite, e.g. if Mc = -1 indicating talking and Mh = 5 indicating singing, the 

(maximal) distance will be 2. 

The human measure is compared to the computed measure for each intermediate file 

applied to each feature, and the mean distances for all intermediate files are presented in 

Table 4.14. 

These distances show that while no feature model duplicates the human perception of 

intermediate vocalizations between speech and song, some features do provide encouraging 

results. It is interesting to note that the features that most closely approach the human 
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Table 4.14: Feature model results compared to human ratings of intermediate files. 

Mean Distance 
0.4122 
0.5189 
0.5241 
0.5333 
0.5498 
0.5722 
0.5762 
0.5804 
0.5830 
0.5956 
0.6007 
0.6212 
0.6643 
0.7162 
0.7958 
0.8068 
0.8148 

ratings are some of the same features that have performed well in other evaluations. These 

intermediate results are preliminary, but they do show that it should be possible to develop 

features that can model intermediate vocalizations. 

The final chapter in this thesis describes some procedures for the development of a 

multi-feature classification system, as well as some conclusions and future directions for this 

research. 



Chapter 

Conclusions 

This chapter presents a summary of this thesis, and identifies areas where more work could 

be done. Suggestions are made to augment the research corpus, including more languages 

and more specific intermediate utterances. Feature improvements are suggested, including 

the addition of new feature extractors and improvements to existing algorithms. The chapter 

ends with some closing observations. 

5.1 Summary 

This thesis sought to address the question: "Are there measurable differences between the 

auditory waveforms produced by talking and singing?" The work was divided into two main 

goals with the ultimate task of designing a set of algorithms to extract relevant features from 

the auditory waveform. 

The first goal was to find a set of relevant features for the speech/song discrimination 

task. Three sources were used to discover phenomena which may be relevant for the task. 

First, the principal researcher proposed some features from his own research experience. 

Second, a set of human listeners were asked to provide their opinions on the differences 

between speech and song, based on their observations of specific sound clips and their general 

observations. Third, features were taken from current auditory classification research. 

The second goal was to develop feature extractors for each of these phenomena. The 

feature extractors fell into three general classes: vibrato features, statistical fo features, and 

rhythm features. Vibrato was a phenomenon cited by many listeners and researchers, and 

two methods were described to extract vibrato information from the waveform. Statistical 
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fo  features were extracted based on the fo track, the slope of the fo track, and utterance 

segments. Rhythmic features included proportion of voiced, unvoiced or silent frames, and 

utterance segment repetition. 

Once the feature extractors were developed, the features were evaluated using three 

measures. First, the features were tested on a-priori labeled data, to determine if the 

features were classifying correctly. Second, the features were tested using Kolmogorov- 

Smirnov distances to determine if the features were separating the two target classes with 

statistical significance. Finally, the cross-correlation of the feature results was used to 

determine whether the features were measuring separate phenomena or a small number of 

underlying phenomena. 

The two principles presented in Chapter 1 have helped to guide this research. Principle 1 

led to the consideration of techniques such as autocorrelation and zero-crossing rate, both of 

which resulted in effective feature extraction techniques for several phenomena. Principle 2 

provided insight into the cyclical nature of utterance and perception, specifically in the 

understanding of vibrato and rhythm. 

5.1.1 Summary of Feature Model Results 

From Section 4.5.3, the feature models that are most likely to be useful in a classification 

engine are VAC and VFT, the autocorrelation- and FFT-based vibrato measures; PUz and 

PUfo, the ZCR- and fo-based proportion of unvoiced frames; R,, the correlation between 

utterance segments; and p(fA), the mean fo slope. It should be noted that although p(&) 

has low cross-correlation with the rest of the feature models, the correctness results for this 

feature are not as good as some of the other feature models. It should also be noted that 

some of the remaining feature models not discussed here do show some promising results, 

and further study should be done on these features as well. 

The vibrato measures VAC and VFT both performed well, and the cross-correlation be- 

tween them was lower than what might be expected for two features designed to measure 

the same phenomenon. Despite the preference for time-domain techniques (Principle I ) ,  it 

seems as though both time- and frequency-domain algorithms are useful here. 

The same is true for PUz and PUh, two feature models designed to measure the pro- 

portion of unvoiced frames in an utterance. Both models had high K-S distances, with 

reasonable correctness and cross-correlation results. 
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The R, feature model, which measured the similarity between the fo track of utter- 

ance segments, performed well in correctness and K-S distance, and had reasonable cross- 

correlation measures with the rest of the feature set. 

The following sections describe techniques which can be used to develop a full classifica- 

tion engine to separate human vocal utterances into speech and song, or along a continuum 

between speech and song. 

5.2 Corpus Improvements 

Because the corpus was collected and annotated fairly early in the project, many somewhat 

arbitrary assumptions had to be made about the type of data to collect and the type of 

annotation that would be relevant. Having completed the study and feature analysis, an 

obvious next step would be to collect and annotate a new corpus taking the findings of this 

study into account, and then apply the algorithms to the new corpus and see what happens. 

A set of sound files has been found that could be used as an additional test corpus - 

a CD called "Music Play" developed for an early childhood music curriculum[74] contains 

many samples of chant-like utterances with rhythmic and melodic components, and it would 

be interesting to see how humans evaluate these clips, as well as to examine the results of 

the feature extractors on these clips. 

The corpus contained sounds from professional and amateur singers, as well as pro- 

fessional and amateur speakers, although no attempt was made to isolate the differences 

between professional and amateur utterances. An interesting research project would be to 

gather more data and analyze differences in speaking and singing style which may come 

with training or experience. 

The fo track evaluations based on the corpus were strictly comparative. A corpus 

improvement that would add credibility to the fo tracks used would be to incorporate some 

form of fo validation, such as electroglottogram or annotated fo values. 

5.2.1 Language 

The files in the initial corpus are primarily English, with some representative selections 

from other languages. This is because the study intentionally concentrated on the English 

language to keep it manageable. An interesting improvement to the corpus and to the entire 

research project would be to expand the investigation to include many other languages and 
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cultures. In tonal languages such as Mandarin Chinese, lexical information is encoded in 

the pitch contour as well as the phoneme, and it would be particularly interesting to study 

the way in which this affects the experience of song in these cultures. 

People who listen to a language they do not speak sometimes identify the language as 

somewhat song-like. For example, many non-Swedish speaking people identify the Swedish 

language as "sing-song". Some listeners from the study in this thesis mentioned that when 

the utterance language was unfamiliar, the speech/song judgement was made based on the 

the presence of features from a familiar language. 

5.2.2 Prosodic Speech 

Cross-language perception is one example of spoken language being perceived as song-like, 

and prosodic speech is another. A study of the properties of prosodic "warning" speech, for 

example, would be very interesting because many people identify the characteristic rise and 

fall of a "warning" utterance as song-like. As an example, imagine (when you were young) 

a parent or caregiver saying "you're gonna be sor-ry" and drawing out the "sorry" into 

almost a descending major third interval. A teacher acquaintance, when told about this 

research project, related an anecdote where whenever she starts to,get impatient with the 

students, they will accuse her of singing to them. This may be another example of prosodic 

speech becoming song-like. 

Another class of utterances that lies between speech and song is skipping rhymes or 

clapping rhymes. These play chants are common in younger people and an interesting 

project would be to investigate the perception of these rhymes by people who use them 

frequently as compared to people who hear them as if for the first time. These rhymes often 

have frequently repeated pitch tracks which would move them more toward the song end of 

a speech/song continuum. 

Other school-yard examples of song-like speech are taunting utterances, such as "neener 

neener neener" and Nelson Muntz's infamous "haw haw" from the "Simpsons" cartoon 

television series, as well as play utterances such as the "olley-olley oxen free" at the end 

of a game of hide-and-seek. An investigation of the similarities and differences between all 

of these prosodic utterances could lend understanding to the human (and the computer) 

experience of song and speech. 
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5.2.3 Specific Intermediate Classes 

The corpus extraction in this thesis presented general prompts to collect intermediate classes, 

and the search for intermediate utterances in existing media was not directed to any specific 

type of intermediate utterance. Throughout this work, many specific intermediate classes 

have been identified, including poetry, liturgical chant, rap music, playground rhyme, auc- 

tioneering, and highly prosodic speech such as warnings, lectures and sermons. Many re- 

search projects could stem from the study of the song-ness of any of these utterances, or 

the identification of features relevant to differentiating between any or all of them. 

5.2.4 Context-Free Utterances 

One problem with the current corpus is that, as mentioned in Section 2.4.1, some samples 

were source- or content-recognizable, implying that extra meaning was obtained based on 

the previous experience of the listener and not on the characteristics of the sound. 

One way to isolate the effect of expectation or context would be to use clips based on the 

Harvard sentences, which are phonetically balanced and contextually neutral. An example is 

"The boy was there when the sun rose." These sentences contain a well-balanced collection 

of phonemes and provide consistent lyrics. An experiment could be developed which would 

solicit samples from subjects using a Harvard sentence or a set of Harvard sentences, spoken 

in a particular style. Styles could include normal speech, read speech, song based on a 

random melody, song based on a well-known melody and various intermediate utterances. 

5.3 Feature Improvements 

The feature extractors developed in this work provide reasonable individual separation, 

and cross-correlational studies between the features show that it is reasonable to believe 

that combining features will result in better classification results. Regardless, the features 

presented are not definitive and there is no reason to believe that they are as good as they 

can be. Future work related to features can be divided into two categories: Improvement of 

current feature models and extractors, and development of new features. 

A standard set of features used for many sound analysis research areas is called me1 fre- 

quency cepstral coeficients (mfcc). No work was done in this thesis on mfcc for speech/song 

classification, and it would be interesting to apply mfcc to this problem. An improvement 
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on mfcc, called human factor cepstral coefficients (hfcc) has recently been presented [68]. An 

interesting research project would be to compare these two feature sets on the intermediate 

speech/song domain. 

A set of features which have been evaluated individually can be combined into a multi- 

dimensional feature model. Dimensionality reduction techniques can be used to isolate 

orthogonal axes which simplify the classification problem. 

The features investigated in this thesis are primarily temporal in motivation. Spec- 

tral differences between speaking and singing are also evident, and future work could also 

include the investigation of spectral differences between speech and song, for example higher- 

frequency power augmentation and so-called "singers formant". 

5.3.1 Improvement of Feature Evaluation 

Some critics of Kolmogorov-Smirnov testing have indicated that the significance indicator 

may become unreliable at large values of N (greater than 100). The significance indicator 

gives a measure of the likelihood that even though there is a distance between the distri- 

butions of two random variables, they come from the same original distribution. If the 

significance is 0.05, then it can be interpreted that 99.5% of the time, the two random 

variables behave independently of each other, and 0.5% of the time, the random variables 

behave identically. 

Critics theorize that as N becomes large, the measurements taken when the random 

variables behave identically will be overshadowed by the measurements taken when the 

random variables behave independently of each other, artificially inflating the results and 

making the two distributions appear more different than they actually are. One way to 

confirm or deny this theorem for the current work would be to randomly divide the data 

into smaller sets (as in the separation of the development and test sub-corpora), and perform 

K-S testing on all set pairs. The comparison could then be made between the K-S distances 

of set pairs from the same original distribution ( ie .  two sets from talking or two sets from 

singing) and K-S distances of set pairs from the theoretically different distributions ( ie .  one 

set each from talking and singing). If the distances are significantly smaller in set pairs from 

the same distribution, this would confirm that the significance of the original K-S distance 

is valid. 



CHAPTER 5. CONCLUSIONS 
L 

5.3.2 Improvement of Current Features 

Some of the feature extractors developed for this work may be improved with further re- 

search, although any modification would need to be compared to the current algorithm for 

that feature. A specific improvement that may be of use is related to the pre-processing of 

the segment-based features. Currently, segments are identified based on fo track and power 

fluctuations. This does not allow for the separation of segments which have homogeneous 

power and/or fo, such as segments separated by a non-fricative consonant. Formant analy- 

sis could be employed to detect changes between such segments and effectively separate the 

signal into individual phonemes. 

The statistical measures used to extract the fo features in this work are simple first order 

statistics. Further research could include analysis of higher order statistical measures such 

as skew and kurtosis, as well as fo range and fo slope. Mode and median of the fo and the 

fo slope may also be useful in this determination. 

5.3.3 Development of New Features 

Some of the features identified by the listeners in the corpus study have not been stud- 

ied or developed in this work. These additional features include nebulous concepts such 

as expectation and context, as well as features which would require higher-level linguistic 

analysis such as rhyme or lyrical repetition. A discussion of some of the issues involved in 

the development of these features is presented here. 

Rhyme 

Phonetic information would be very useful in detecting patterns of rhyming words, and this 

would require formant extraction and Fl:F2 characterization, similar to the preliminary 

steps of a speech recognition engine. Rhyme is likely to correlate well with rhythmic struc- 

tures, so these two features could relate to and inform one another. Rhyme information 

could be extracted through formant, phoneme or orthography information, depending on 

the level of analysis available in the rest of the system. 

Expectation and Context 

Some listeners from the corpus annotation project identified the fact that simple perceptual 

features may not be sufficient to characterize the speech-song continuum axis. Especially in 
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ambiguous utterances, context and expectation play an important role as well. If the lyrics 

in the utterance are ambiguous, but remind the listener of a song once heard, this additional 

context may be sufficient to nudge the listener's opinion in the direction of song. If a listener 

hears the the lyrics of a familiar song in an unfamiliar environment, either spoken or sung, 

the classification may be different than for unfamiliar words. Similarly, the expected ending 

of an utterance can lend weight to one end or the other of the scale. 

Expectation and context are listener-specific difficult to quantify, but expectational prob- 

abilities have been used in speech recognition engines in the past and could be applied to 

this problem as well. 

5.4 Related Research Areas 

The classification of human utterances is a specific research sub-domain, combining audio 

signal processing, psychology, audiology, speech analysis, music analysis and other disci- 

plines. Each of these areas present concepts and research ideas that are worthy of more 

study. 

5.4.1 Audio Signal Classification 

The work presented in this thesis pertains to classification of a specific audio domain. Au- 

tomatic classification in other domains and more general systems could be developed based 

on this work and current research being performed elsewhere. 

Musical instrument classification is currently a research topic of interest. Given a mono- 

phonic musical sound, the classification output could be considered on several levels: 1s 

the instrument a wind, string, reed, brass or percussion? Within the string instruments, is 

the instrument a violin or a cello? Within the cellos, is the instrument a Stradivarius or a 

mass-produced schoolroom model? Is the player a professional or a beginner? Within the 

context of polyphonic music, is the musical sound produced by a 60-piece orchestra or a 

small ensemble? Is the chord being played a major 7th or a minor 9th? 

Animal sound classification would be similar in many ways to musical instrument clas- 

sification. Given an animal sound, is the animal that produced it a mammal, a bird or a 

fish? Is the mammal a cat, a dog, a horse or a rodent? Is the cat a lion, a panther or a 

house cat? Current methods of speaker identification could be applied to identify specific 

animal individuals for migratory tracking and environmental or zoological research. 
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Sound effect classification is an area of interest which includes classification of many 

different types of sounds. Many sound effects are short and percussive, so fo based features 

would not work well for these. Other features based on attack and decay, as well as perhaps 

fractal or wavelet-based techniques, would work well in this context. 

5.4.2 Psychological Studies 

When trying to imitate, emulate or improve upon the human auditory system, it is important 

to understand that system in the context of the behaviors being emulated or improved. 

Further psychological and audiological studies will help to uncover perceptual phenomena 

helpful to the development of computer listening systems. 

Many audiological questions present themselves in the context of this work. How quickly 

do humans classify sounds? How do humans perceive auditory ambiguity, and how can that 

be coded into or improved upon using computer perception? How do humans use experience, 

context and expectation in perception of audio signals? What steps are there between the 

low-level perception of sound and the attachment of meaning? What happens to the human 

auditory system at the extremes of pitch and loudness perception? Some or all of these 

questions may already be answered by researchers in audiology and conative psychology. 

5.5 Closing Remarks 

Understanding and being able to measure the differences between talking and singing is 

significant because it increases our understanding of human utterances and improves our 

ability to design computer programs which may be able to interact more easily with humans 

and the audio environment. 

The measurable differences between speech and song are both perceptual and physical, 

and in this thesis, computational algorithms to extract these differences have been shown 

to be possible. 

As with any research project, parts of this work seemed to invite almost limitless in- 

vestigation. Each question that was answered prompted two more; each feature developed 

suggested another. There is a great deal of fascinating research ahead. 



Appendix A 

Corpus Research Protocol 

This appendix contains the protocol document submitted to the research ethics committee 

of Simon Fraser University when applying for ethical approval for the collection of the 

corpus used in this thesis. Although some features of the collection and annotation protocol 

have changed, specifically the scale used, the collection and annotation process followed the 

proposed protocol. 

A. 1 Introduction 

In this document I will present an outline, specifications and discussion on a proposed 

protocol for collecting a corpus of sound files containing human utterances. The corpus 

collection is primarily for my thesis work on fuzzy classification of human utterances on 

a speech/song axis, but I am planning to build the corpus in such a way that it can be 

published and used for other research. For that reason I will be making the corpus domain 

more general and the annotations more informative than perhaps is necessary for my thesis 

alone. 

The building of this corpus will proceed in two stages. Stage 1 is the collection of 

appropriate sound files from various pre-recorded sources including internet, radio, published 

sources such as music and spoken word CDs and movie soundtracks, as well as collection 

from live sources, in the form of solicited utterance samples from human subjects. 

Stage 2 of the corpus building procedure is to annotate the corpus. This stage will 

consist of going through the corpus and transcribing the words, as well as soliciting human 

subject opinions of the sounds in the corpus. The human opinions will give the corpus 
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validity in the speech/song classification, especially in the fuzzy intermediate domain which 

will contain utterances such as poetry and chant. 

A.2 Corpus Design 

This section presents a discussion on the proposed structure of the corpus as well as the 

limitations and restrictions that will be applied to the corpus design. A summary of this 

discussion will be presented at the end of the section. 

A.2.1 Corpus Domain 

The FSS (fuzzy speech song) corpus is intended for a specific research domain: human 

utterance classification in the domain of speech and music. The primary limitations on 

the corpus are that it will contain only monophonic (with no background or noise) human 

utterances, containing speech, song, or some intermediate vocalization. 

Some secondary restrictions are that the FSS corpus will contain primarily English when 

a language is used, although the corpus is not restricted to English; samples that contain 

song will be primarily in the 12-tone equal tempered music system (commonly referred 

to as the "western" music system) but again the corpus is not formally restricted to the 

western music system. The corpus will contain a few samples of other languages and other 

music systems in the corpus for comparison, especially tonal languages and aboriginal music 

systems. 

The corpus will include samples that reflect different characteristics of human speech, 

as well as different intentions for the corpus itself. The corpus will be able to be segmented 

along three axes: 

0 Constrained utterances - Free utterances 

0 Spoken utterances - Sung utterances 

Speaker Characteristics 

A.2.2 Constrainedness 

In order to make the corpus useful for the specific context of fuzzy speech/song classification, 

but at the same time still be valid for real-world samples, the corpus will contain solicited 
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human utterances of two types. Constrained human utterances will have one or more 

restrictions placed on the utterance during recording. The proposed constraints fall into 

four categories: 

0 Constraints on content of utterance 

Constraints on style of utterance 

Constraints on both content and style 

a No Constraints 

Content constraints. The constraints on the utterance content consist of requiring the 

speaker to utter a specific phrase. The phrases to be uttered are chosen to reflect certain 

expected features of the speech/song classification. Two features that will be investigated 

in this manner are voiced/unvoiced distribution and formant constancy. 

It is expected that song will show a higher percentage of voiced segments of speech 

(vowels, etc.) and a lower percentage of unvoiced segments (fricatives, plosives etc.). Indeed, 

preliminary experiments have shown this to be true. All English lyrical (spoken or sung) 

utterances contain voiced phonemes, but not all contain fricatives. The voiced/unvoiced 

distribution feature extractor would behave as if all utterances with no unvoiced segments 

are song. For this reason, the corpus should contain a spoken utterance with only voiced 

phonemes to make sure the full system can handle such an utterance. It is proposed that 

one of the spoken utterances solicited from subjects be: 

"When you're worried, will you run away?" 

Another feature expected in song is that the glide of diphthongs will be suppressed till 

the beginning or ending of the phoneme. To test this, it is desired to have utterances with 

many diphthongs. For this reason, it is proposed that one of the utterances solicited from 

subjects be: 

"Row, row, row your boat, gently down the stream." 

The diphthongs in this utterance are expected to be short and rhythmic. As a contrast, 

the following utterance will also be solicited: 

"0 Canada, our home and native land." 

Both of the above utterances will be solicited spoken as well as sung. 
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Style constraints. This corpus is being designed with a particular piece of work in mind, 

that is an attempt to characterize the distinction between speech and song, with investiga- 

tions also directed toward intermediate vocalizations. Because of this, part of the corpus 

will contain utterances where the subject is prompted to sing or is prompted to speak. As 

indicated above, some samples will be requested in both spoken and sung styles, so the dif- 

ferences between speaking and singing in these samples would not be obscured by differences 

in content or in subject characteristics. 

There would be samples taken of unconstrained content with constrained style as well. 

The purpose of these samples would be to expand the corpus beyond constrained utterances, 

which test particular characteristics and features, but are not appropriate for design of a 

system to operate on "real-world" data. 

The style-constrained samples would allow the speaker to choose the content (lyrics) of 

the utterance, but would insist on a particular style of utterance. Example prompts are: 

"Sing the first line of your favourite song." 

"What did you have for lunch yesterday?" 

A further style constraint which will attempt to illicit samples in the middle ground 

between speaking and singing would allow the speaker to utter any lyric in any style so long 

as it is neither speaking nor singing. A prompt for this style constraint would be: 

" In a single sentence, Tell me what you did last weekend, using a voice which 

is somewhere between singing and speaking." 

A similar prompt using constrained content would be: 

"Utter the phrase 'Why is the sky blue?' using a voice which is somewhere 

between singing and speaking." 

The phrase "Why is the sky blue?" has many characteristics that are desirable for this 

corpus. It contains a good distribution of fricatives, both voiced and unvoiced, and two 

diphthongs which rhyme. 

No constraints. This section of the corpus will consist of samples that are unconstrained 

in any way. These samples include all "found" samples (samples not directly solicited from 
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human subjects), for example samples taken from radio or from movie soundtracks. The 

corpus will also include some unconstrained samples solicited from subjects. The majority 

of the corpus that I currently have falls into this category. The richness and variability of 

completely free samples fills out the structured nature of the rest of the corpus. 

A.2.3 Utterance Class 

The second way of dividing the corpus is in the perceived style of the utterance itself. Since , 

the majority of the research is concentrating on speech and song, many of the samples will 

fall clearly into one of these two categories, with the remainder falling into the category 

of "Fuzzy speech/songn, indicating that the sample has characteristics of both speech and 

song, but is not clearly one or the other. Some samples will be specifically designed to fall 

within this category, such as the manipulated sample corpus described in Section A.3.4, as 

well as some of the style-constrained utterances. Some found utterances will end up in this 

category as well. The possible utterance classes are: 

a Purely speech utterances 

a Purely song utterance 

a Fuzzy speech/song 

It is important to note that this classification will rely on human opinion testing of the 

corpus, and not from any characteristics of the corpus files. The entire corpus, once collected, 

will be labeled on a fuzzy scale between speech and song, using the results of the human 

opinion testing described in Section A.4. It is expected that there will be many samples 

characterized as pure speech or pure song, which is why the corpus collection protocol is 

biased toward samples which are expected to fall into the fuzzy category between speech 

and song. 

A.2.4 Speaker Characteristics 

Human speech is varied because human speakers are varied. Since the purpose of the 

proposed corpus is to aid in the design and testing of a system that will operate on human 

speech, it is important that the corpus contain a balance of human speaker characteristics. 

For this reason, it will be important to make sure that the subject base contains a good 

balance of individuals on the basis of the following characteristics: 
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0 Age 

Gender 

Musical/Speech training 

Young people, especially children, speak with higher pitch than do adults so the pitch 

range feature extractor proposed in the classification system should be able to handle speech 

from children. Older people have different voice characteristics, as do children at the verge 

of puberty. The proposed corpus would do well to have samples from representatives of 

each of these age groups. To avoid collecting samples from individuals under the age of 

consent, all child samples will be found rather than solicited, taken primarily from movie 

soundtracks. 

Men and women have different pitch aspects of speech. The proposed corpus will have 

a balance of male and female subjects. 

A characteristic of speech that is especially relevant for this corpus is musical training. 

Song is a faculty that all humans possess, but those that are trained in singing have the 

ability to make their voice do exactly what they want. These speakers will be able to give 

samples of very high quality song, and might be more able to give samples in the middle- 

ground between speech and song, or samples that are neither speech nor song. Individuals 

who are trained in speech, such as actors or radio personalities, also have the ability to 

manipulate their voices as desired. The corpus should have a portion of samples solicited 

from trained users of speech and song. , 

A.3 Corpus Collection 

This section describes the protocol for collecting the samples which will populate the FSS 

corpus as described above. There will be four categories of collection: 

Free samples 

Constrained Samples 

0 Found Samples 

Manipulated Samples 
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Each category is described here, including proposed collection protocol. The solicited 

samples will be collected from human subjects using a protocol approved by Simon Fraser 

University according to the university research ethics guidelines. 

The subjects will be selected randomly, with intention to fill out the categories described 

in Section A.2.4. 

A.3.1 Free Sample Subcorpus 

An important sub-corpus is the corpus of solicited samples with no constraints. As discussed 

above, these samples are necessary to fill out the otherwise structured nature of the corpus, 

and also provides some "real-world" samples for a system designed on this corpus to deal 

with. 

The proposed collection protocol for unconstrained samples is this: Two unconstrained 

sample phrases will be collected from each subject, using the following prompt for both 

samples: 

"Please speak or sing anything you like for about 5 seconds." 

A.3.2 Constrained Sample Subcorpus 

This subcorpus will be gathered from human subjects, in the same way that the free sample 

subcorpus will be collected, using various constraints as described in Section A.2.2. The 

samples will be constrained in style, in content or in both style and content. The proposed 

prompts, as stated above, are: 

"Sing the first line of your favourite song." 

"What did you have for lunch yesterday?" 

"Please speak the phrase 'When you're worried, will you run away?' " 

"Please sing the phrase 'Row, row, row your boat, gently down the stream.' " 

"Please speak the phrase 'Row, row, row your boat, gently down the stream.' " 

"Please sing the phrase '0 Canada, our home and native land.' " 

"Please speak the phrase '0 Canada, our home and native land.' " 

" In a single sentence, Tell me what you did last weekend, using a voice which 

is somewhere between singing and speaking." 
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"Utter the phrase 'Why is the sky blue?' using a voice which is somewhere 

between singing and speaking." 

As with the unconstrained samples, the subjects will be encouraged to limit their ut- 

terances to about 5 seconds. For prompts that require a specific phrase, the user will be 

encouraged to read, remember, then speak the phrase as if they were talking or singing to 

another human. For prompts requesting an utterance that is neither speech nor song, the 

subject will be encouraged to practice a couple times before recording, to get a feel for what 

a non-speech, non-song sound might be like. Because singing a phrase first may influence 

how the subject then speaks the same phrase, the order of the prompts will be varied. 

A.3.3 Found Sample Subcorpus 

This subcorpus will be populated by extracting short segments of sound from publicly 

available audio, such as radio, published music, movie soundtracks, and .wav and .mp3 

files available on the internet. Copyright laws allow reproduction of copyright material for 

research purposes. 

I will be scouring the net, radio and movies for sounds that would be appropriate for 

this corpus. Examples of sounds that I am expecting to acquire: 

0 "Daisy, daisy, give me your answer, do" (HAL 9000, "2001") 

0 "Good morning vietnam!" (Robin Williams, "Good Morning Vietnam") 

Various vocalists have been suggested to me as well including Mark Knopfler, Yoko 

Ono and Bob Dylan. The challenge with collecting found samples will be to find samples of 

people singing and speaking without any background noise or music. Stationary background 

noise is acceptable, because the system will be able to filter it out as long as there is a couple 

seconds of silence (with the background noise) before the human utterance begins. 

A.3.4 Manipulated Sample Subcorpus 

This subcorpus will consist of samples that have been deliberately manipulated to fool a 

specific feature extractor. Three of the feature extractors that are expected to be successful 

in detecting the presence of song are: 

0 Pitch outside of normal pitch range. 
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a Presence of vibrato in pitch track. 

Larger proportion of voiced segments. 

To design sounds that would fool each individual feature detector, I would begin with a 

sound that would clearly be classified as speech, and then manipulate characteristics of the 

sound using granular synthesis. The goal of this manipulation would be to create a sound 

that a human would consider to be speech, but which has one of the features of song as 

expected from the feature extractor being designed. 

As an example, I would take a sound sample of someone speaking, with pitch inside the 

normal pitch range for speaking, and granularly increase the pitch so that the pitch range 

feature extractor would classify it clearly as song. Opinions of this file would be solicited 

in the usual manner (see Section A.4) to determine what effect the pitch range has on the 

perceived class of the sound. 

This procedure would be repeated with the other features: adding a harmonic ripple 

to voiced segments of a speech sound; extending the voiced segments and compressing the 

unvoiced segments; and performing similar manipulations with other features. 

The same procedure would be performed in the other direction-making song samples 

sound like speech for a particular feature extractor. For example, removing spectral ripple 

from a song sample; bringing the pitch into normal speaking range; compressing the voiced 

segments and extending the unvoiced segments; and performing similar manipulations with 

other features. 

The goal of this sub-corpus would be to verify the individual success or failure of each 

feature for a speech/song classification, as well as testing the robustness of the overall system 

in the presence of one divergent feature result. 

A.3.5 Corpus Summary 

Figure A.l shows the proposed corpus by subdivision criteria. Table A. l  summarizes the 

proposed subcorpora by collection procedure, along with the related collection methods, 

expected sizes, and purposes. 

Each sample in the corpus can be classified on each axis. if a sample were solicited 

under the constraint of style = song, for example, the source would be "solicited" with the 

gender, age and training characteristics corresponding to the subject, and the class would 

be indicated by the opinion gathering after the corpus is fully collected. 
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Figure A.l: The FSS Corpus subdivisions and categories. 

Table A.l: FSS collected subcorpora characteristics. 

A.4 Opinion Solicitation 

The second stage of building the corpus is to annotate the corpus. This consists of tran- 

scribing all lyrics used in the speech and song samples, as well as soliciting human opinion 

scores for all samples in order to label the corpus on the "speech/song"axis. The opinions 

will be solicited in a manner similar to the solicitation of the samples, and opinions will be 

solicited from the subjects who provided the samples, as well as other subjects who did not. 

Purpose 

"real-world" samples 
boundary conditions 

existing samples 
individual feature testing 

A.4.1 Opinions on the Full FSS Corpus 

Size 

100 
500 
100 
50 

Subcorpus 

Free 
Constrained 

Found 
Manipulated 

Depending on the size of the corpus, subjects will be asked to provide an opinion for some 

or for all of the corpus. 750 samples of 5 seconds each would take 1 hour, 2 minutes to listen 

to, without pauses between samples. If we predict 15 seconds for each sample, listening and 

classifying, the time to complete 750 samples would be 3 hours, 12 minutes. I expect that 

it will be prudent to break the opinion collection into 30 minute sessions. 

Collection Method 

Solicitation 
Solicitation 
Extraction 

Design 
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The opinions will be recorded with the age, gender and musical or speech training level 

of the subject, along with whether or not the subject provided samples for the corpus in the 

corpus collection stage. 

The subjects will be asked the following questions about each sample: 

"Please rate this sample on a scale between speaking and singing. A sample of 

pure speech should be rated '0' and a sample of pure song should be rated '10' " 

"Please rate the quality of speech or song, from 0 to 10. A 'bad' quality sample 

should be rated '0' and a 'good' quality sample should be rated '10'. Please rate 

the quality of the voice only, not the quality of the recording itself." 

"Please choose on e of the words on the response form to describe the sample. 

Choose one of: speech; whisper; yell; poem; babble; monotone; chant; rap; song; 

or write another word in the space provided." 

A.4.2 Opinions on a Selected Sub-set of the FSS Corpus 

Along with these general opinions, a small sub-set of the corpus will be selected for further 

opinion gathering. This subset will consist of solicited, found and designed samples which 

fall into the following categories: 

0 Clearly speech 

Clearly song 

"Rap" style utterance 

Poetry 

0 Chant 

0 Babbling, and singing without words 

Whispering 

Yelling 

Monotonous speech (as in a university lecture) 
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Also in this sub-set will be samples from the corpus that are difficult to categorize, or 

perhaps samples that fall into the fuzzy middle ground between speech and song. 

I will solicit more detailed opinions on this sub-corpus. The subjects will be asked the 

following questions about each sample: 

"Please rate this sample on a scale between speaking and singing. A sample of 

pure speech should be rated '0' and a sample of pure song should be rated '10' " 

"Please rate the quality of speech or song, from 0 to 10. A 'bad' quality sample 

should be rated '0' and a 'good7 quality sample should be rated 'lo'. Please rate 

the quality of the voice only, not the quality of the recording itself." 

"Please indicate what the speaker might have done to make this utterance more 

speech-like" 

"Please indicate what the speaker might have done to make this utterance more 

song-like" 

The first two questions are identical to the first two questions for the full corpus, and are 

included in the sub-corpus opinion testing to test for opinion consistency. The second two 

questions are free-response, and are included to extract a general intuition about speech, 

song, and the middle-ground between them. 

A.5 Summary 

This document describes the proposed protocol for collecting and annotating the FSS (Fuzzy 

Speech Song) corpus, intended for research on human utterance classification, specifically 

speech, song and the fuzzy intermediate domain between speech and song. 

Stage 1 of the corpus collection protocol consists of acquiring utterance samples from 

human subjects and from available media, in four categories: Constrained utterances, Un- 

constrained utterances, Found utterances, and Designed utterances. 

Stage 2 of the corpus collection protocol is the annotation of the corpus by human subject 

opinion. Human subjects will be asked to listen to the samples in the corpus and provide 

opinions based on a series of questions. Subjects will also be asked to provide more specific 

opinions on a subset of the corpus. 
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Corpus Research Instruments 

This appendix contains the ethics approval letter, as well as examples of the collection and 

annotation tools for the corpus used in this thesis. Included are the consent form for the 

collection stage (the consent form for the annotation stage is similar), the information sheet 

provided to subjects, the research instruments, and web form used for the corpus annotation. 
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Ethics Approval Letter 

SIMON FRASER UNIVERSITY 

OFFICE OF VICEPRBSIDENT, RESEARCH 

Mr. David Gerhard 
Graduate Student 
School of Computing Science 
Simon Fraser University 

March 1,2001 

BURNABY, B m H  CQLUMBIA 
CANADA V5A 1S6 
Telephone: (604) 29 1-4370 
FAX: (604) 291-4860 

Dear Mr. Gerhard: 

Re: Collection and Annotation of a Speech/Song Corpus for 
Research into Human Utterance Classification 

NSERC PGS-B 

I am pleased to inform you that the above referenced Request for Ethical Approval of 
Research has been approved on behalf of the University Research Ethics Review 
Committee. This approval is in effect for twenty-four months from the above date. 
Any changes in the procedures affecting interaction with human subjects should be 
reported to the University Research Ethics Review Committee. Sigruficant changes will 
require the submission of a revised Request for Ethical Approval of Research. This 
approval is in effect only while you are a registered SFU student. 

Best wishes for success in this research. 

Sincerely, 

Dr.  am& lh. 0&ff, Chair 
University Research Ethics Review Committee 

c: F. Popowich, Supervisor 

/bjr 
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B. 2 Informed Consent Form: Collection 

SIMON FRASER UNIVERSITY 

INFORMED CONSENT BY SUBJECTS TO PARTICIPATE 

IN A RESEARCH PROJECT OR EXPERIMENT 

The University and those conducting this project subscribe to the ethical conduct of research and 

to  the protection at all times of the interests, comfort, and safety of subjects. This form and the 

information it contains are given to you for your own protection and full understanding of the 

procedures. Your signature on this form will signify that you have received a document which 

describes the procedures, possible risks, and benefits of this research project, that you have received 

an adequate opportunity to consider the information in the document, and that you voluntarily agree 

to  participate in the project. 

Having been asked by David Gerhard of the School of Computing Science of Simon Fraser University 

to participate in a research project experiment, I have read the procedures specified in the document. 

I understand the procedures to be used in this experiment. I understand that my voice will be 

recorded, and that my recorded voice will be included in a data corpus that may be made available 

to  other researchers. I understand that it may be possible for others to  identify me by my voice, 

and I understand that no personal information will be connected to  my voice apart from my age, 

my gender and how well I am trained in speaking and singing. 

I understand that I may withdraw my participation in this experiment a t  any time. 

I also understand that I may register any complaint I might have about the experiment with the re- 

searcher named above or with the Director of the School of computing Science, Binay Bhattacharya, 

at 291-4277. 

I may obtain copies of the results of this study, upon its completion, by contactingt<David Gerhard. 

I have been informed that the results of this research may be published, and that my identity will 

be kept confidential. 

I understand that my supervisor or employer may require me to  obtain his or her permission prior 

to my participation in a study such as this. 

I agree to participate by having my voice recorded as I respond to  a series of prompts. 

NAME (please type or print legibly): 

ADDRESS: 

SIGNATURE: 

WITNESS: 

DATE: 
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B. 3 Informat ion Sheet 

COLLECTION AND ANNOTATION OF A SPEECH/ SONG CORPUS FOR RESEARCH INTO 

HUMAN UTTERANCE CLASSIFICATION 

INFORMATION SHEET 

This is a brief introduction to the research project. In describes what the research is for and 

what will happen in the experiments. 

I am collecting a corpus, or a group of files, of people using their voice. I want to find out what 

the differences are between speaking and singing, and I want to find out what the middle-ground 

between speaking and singing looks like. There are two steps to  this corpus collection. 

Stage 1 is recording the sounds. I will be asking people like you to speak, or sing, in response to 

a series of prompts. The prompts are designed to get you to use your voice in the "middle-ground" 

between speaking and singing. If youre not sure what this sounds like, you can practice a bit before 

I record your voice. 

Stage 2 is finding out what you think of the sounds. I will call you back when I have collected all 

the sounds I need, and if you want, you can participate in this second step as well. I will be playing 

the sounds in the corpus for you, and you are invited to rate the sounds on a scale from speech-ness 

to song-ness. That way, I am not just going on my own opinion. There are other questions I will be 

asking as well, and you can look over the question sheet before you start, if you want. 

It is important for you to understand that this corpus will be used for research I will listen to 

the sounds and I will program a computer to  try to identify which sounds are speech and which 

sounds are singing, and which are somewhere in between. 

Other researchers may want to use this corpus so that we are all working from the same set of 

data and we can all compare our results. Your personal information will in no way be associated 

with your voice, but if you do not want your voice to be heard by other scientists, please let me 

know. The samples are short, and for the most part everyone is saying the same thing, but if you 

are concerned about other scientists hearing your voice, you dont have to participate. 

If you have any questions about the research, please feel free to ask. You may withdraw at any 

time and your data will be discarded. 
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B.4 Research Instrument: Collection 

COLLECTION AND ANNOTATION OF A SPEECH/ SONG CORPUS FOR RESEARCH INTO 

HUMAN UTTERANCE CLASSIFICATION 

STAGE 1: CORPUS COLLECTION 

In this stage of the corpus collection and annotation project, you are asked to provide voice 

samples for the corpus. Samples should be limited to 5 seconds, if possible. Please read each prompt 

before you begin, and when recording, please use a natural voice, as if you were talking or singing 

to a friend. It might help to read and remember the prompt, then voice the sample without looking 

at the prompt. Feel free to practice any sample before your record it. 

1. Please speak or sing anything you like for about 5 seconds. 

2. Please sing the first line of your favourite song. 

3. In a single short sentence, please tell me what you had for lunch yesterday. 

4. Please speak the phrase "When you're worried, will you run away?" 

5 .  Please sing the phrase "Row, row, row your boat, gently down the stream." 

6. Please speak the phrase "Row, row, row your boat, gently down the stream." 

7. Please sing the phrase " 0  Canada, our home and native land." 

8. Please speak the phrase "0 Canada, our home and native land." 

9. In a single short sentence, please tell me what you did last weekend, using a voice which is 

somewhere between singing and speaking. 

10. Please utter the phrase "Why is the sky blue?" using a voice which is somewhere between 

speaking and singing. 

11. Please speak or sing anything you like for about 5 seconds. 
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B.5 Example Web Annotation Form 

Collection and Annotation of a Speech/ Song Corpus for Research into Human Utterance 

Classification 

Simon F'raser University 

Principal Researcher: David Gerhard, dbg0cs.sfu.ca 

Your  Subject Number is 9999. If this i s  not  correct, please stop the  experiment and email the  

principal researcher 

Part 1 
This page contains a lot of data, and may take a few minutes to load, depending on 

your connection speed. 

Please listen to and rate each sound on a scale between talking to singing. When you have listened 

to  and rated all the files, click "Submit" to  continue. 

Section A of E 
I Sound file I Hear it Rate it 1 

For more information, contact David Gerhard, dbg@cs.sfu.ca 



Appendix C 

Corpus Annotation Results 

This appendix contains the data collected from the web annotation form for the corpus. 

Section C.l contains the numerical results from Part 1 of the collection experiment. Sec- 

tion C.2 contains the numerical and written responses to Part 2 of the experiment, where 

subjects were asked to comment on aspects of speech and song regarding particular files. 

Section C.3 contains the written responses to Part 3, where subjects were asked to comment 

on their experiences of speech and song, as well as their experience of this experiment. 

All quotes from subjects are presented verbatim without corrections in spelling, grammar 

or punctuation. Any words or phrases which could be used to identify the subjects have 

been removed. 

The following abbreviations are used in this appendix: 

N Number of ratings made for this file. 

p Mean of all ratings for this file. 

a Standard deviation of ratings for this file. 

H Highest rating for this file. 

L Lowest rating for this file. 
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C.l Numerical Results: Part  1 

C.l.l  Part l . A  

sbj : files n106-n127 
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C.1.2 Part 1.B 

sbj : files u115-u137 
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C.1.3 Part l . C  

sbj : files 11138-11159 

2 1 1 4 3 3 2 4 5 2 2 2 3 4 4 4 3 2 3 5 4 5 5 5 4  
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C.1.4 Part 1.D 

sbj : u224 u225 u226 f216 f217 f218 g244 g245 g246 h213 h214 h215 

2 1 1 2 1 1 1 3 2 5 2 5 1 2 2  

2 1 2 1 2 1 1 2 1 5 3 5 1 2 1  
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C.1.5 Part l . E  

I sbj I files i221Li230 I 
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I sbj 1 files i231Li240 I 
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files i241-i250 I 

I sbj / files i251-i260 I 
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I sbj I files j211-j220 I 

sbj  
- 
222 

I 

files j221-j230 

1 3 3 2 1 2 1 2 4 3  

1 3 5 1 1 1 1 4 5 5  

1 2 3 2 2 1 1 2 5 4  

1 3 5 2 2 1 1 4 5 5  

1 3 5 3 2 1 1 4 5 5  

2 3 4 1 4 3 2 3 4 4  
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files j231-j240 

3 1 2 1 4 1 4 3 2 2  
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I sbj I files j241Lj250 1 

sbj - 
231 

308 

325 

329 

348 

352 

354 

files j251-j260 

2 4 3 1 1  1 1  2 
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C.2 Numerical and Written Results: Part 2 

The following questions were asked on the web form: 

1. Rate the file: Talking @ 8 Singing 

2. What is it about the sound that leads you to this judgement? 

3. What could the speaker have done to make this sample more speech-like? 

4. What could the speaker have done to make this sample more song-like? 

The responses are presented here in the following manner: 

subject number (rating) response 



APPENDIX C. CORPUS ANNOTATION RESULTS 

C.2.1 Rating and Question 1 

file = n128; N = 24; p= 1.46, a= 0.66; H = 3; L = 1 

211 (2) rythm, no tone change 

213 (1) sounds like a new reporter 

212 (1) Sounds like a tougue-twister. No rhythm and words unclear. 

220 (1) not much intonation and little tone change 

236 (3) the rhythmic nature 

238 (1) There is no tone or hint of melody. 

242 (1) No lilt to the words, monotone 

243 (1) The last accent 

251 (2) there doesn't seem to be a tune 

308 (2) There's a rhythm, but no melody 

309 (1) No distinct rythym, monotonic 

310 (2) It sounds like speaking, but there is a bit of change in the tone 

311 (2) There is a bit of rhythm, but not the tones don't vary enough to be singing. 

312 (1) Short concise duration of each word. 

317 (2) there's no melody 

324 (1) pretty flat, no rhythm/melody - 
328 (1) it is almost monotone, no variation 

335 (1) Flat spectrum and rate of speech - 
343 (1) a more connected lang., not English which would be more broken 

346 (1) Sounds like spoken French 

349 (1) The words are said as spoken rather than with irregular empasis on different syllables 

353 (2) It has a slight rhythm 

357 (3) The connectedness (sustained quality) of the utterance 

358 (1) no melody, no rhythm - 
file = n129; N = 24; p= 4.50, CT= 0.59; H = 5; L = 3 

211 (5) rythm, tone change 

213 (4) rhythmic jazz 

212 (5) The rhythm. - 
220 (3) it's not really singing but it's rhythmic 

236 (4) use of rhythm 
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238 (5) It has a rhythm and a beat. - 
242 (5) Beat to speech 

243 (5) The way he pronouned the sound. - 
251 (5) sounds very rhythmis, kind of like a precussion line - 
308 (5) rhythm, melody - 
309 (4) Extremely rythmic, unlikely to be coincidental - 
310 (4) change in tone and rhythm - 
311 (4) lots of rhythm and a beat - 
312 (4) Rythmic. 

317 (5) no words - 
324 (5) presence of rhythm, no talk - 
328 (5) It has a rythum to it - 
335 (5) Rhythm - 
343 (5) connected, rap-like, another culture's singing? - 
346 (4) Rhythmic in a musical way - 
349 (4) it has rhythm and uses the vocal cords as not normally used in speaking 

353 (4) the beat - 
357 (4) Primarily the rhythmic quality, along with the lack of sustained vowel sounds, as - 
well as the quality of the final syllable 

358 (5) said nothing, hence no speech. Beat, rhythm, more like music, so I call it "singing" - 
file = n130; N = 22; p= 1.95, a= 0.65; H = 3; L = 1 

211 (3) poetry, rythm, few tone changes 

213 (2) spoken in verse 

212 (2) Funny tone for each word. 

220 (2) it is definitly speaking but there is emphasis and a lilt to it 

236 (2) it seemed like expressive talking 

238 (3) It definitely had a rhythm. - 
243 (2) The beginning of the second sentence 

251 (2) sounds like a Shakepearian play - 
308 (1) changes in pitch were slight and came at expected points in a sentence - 
309 (1) Sounds like someone reading from a book - 
310 (1) Sounds like someone is reading 

311 (2) no beat, sing-song rhythm like in a chant 
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312 (1) No musical sounds. - 
317 poetry is speech, not song 

324 (3) continuity and intonation - 
328 (3) the fine line between reading poetry and singing poetry 

335 (2) Slightly poetic 

343 (1) sounds like reading a story - 
346 (2) Sounds like a poem being recited - 
349 (2) it has unnatural emphasis creating rhythm but not a tune - 
353 (2) he is talking but not monotone 

357 (2) The exaggerated width of the intonation range - 
358 (2) overly '(colored" speech, some melodic (exaggerated) prosody at the end 

file = n131; N = 24; p= 1.54, a= 0.83; H = 4; L = 1 

211 (4) poetry, 

213 (2) spoken in verse - 
212 (3) Emotion, feelings and varying speed. 

220 (2) it is speaking but the rhythym of poetry lends itself to certain sing-like qualities 

236 (1) sounded like talking 

238 (1) Sounds like a recital of a poem - 
242 (1) More like a recitation 

243 (1) The accent and cotent 

251 (1) still sounds like peotry, but words enounciated well 

308 (1) even tones throughout, no melody - 
309 (1) Again, sounds like reading from a book 

310 (1) Sounds like reading, not variation in tone 

311 (1) the words are short and clear and spoken in the same tone of voice 

312 (1) Straight speech-not music. - 
317 (1) poetry is speech, not song 

324 (2) continuity and little intonation 

328 (3) the fine line between reading poetry and singing poetry - 
335 (1) Pauses between words 

343 (1) reading 

346 (2) Poetic speech 

349 (1) it' show you would speak the words 
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353 (1) she is talking - 
357 (2) Rhythmic patterning, as well as the stylized rising antecedent, and falling consequent - 
phrase intonation, and finally the exaggerated slowing down of the tempo toward the end 

of the phrase. 

358 (2) it could be 100% talking but there's an exaggerated metric pattern that pushed my - 
judgement a tick towards song 

file = n132; N = 24; p= 4.38, a= 0.65; H = 5; L = 3 

211 (4) tone change, sustaining notes 

213 (5) notes associated with words - 
212 (5) Great variance in pitch. There's rhythm. 

220 (4) There are tone changes but I wouldn't say it is exactly singing except perhaps at 

the end of the sample where the subject held the syllable and changed notes 

236 (5) the melody, various pitches used and rhythm 

238 (5) it was a song - 
242 (5) Varied pitch, lilt 

243 (4) The tone - 
251 (3) that was just painfu1,not singing, but not speech - 
308 (4) rhythm and a kind of melody 

309 (4) Clearly not normal speech, widely varied tones 

310 (5) sounds like a song because there is varied tone 

311 (5) words are stretched out and the tones go up and down 

312 (4) Musical tones. 

317 (4) close to siging but lacks tasteful note arrangement 

324 (5) continuity, melody, long vowels 

328 (5) holds to a musical scale 

335 (5) Varied tones and running words together 

343 (5) bad singing, but song-like 

346 (4) This is sing-song speech 

349 (4) it had tune but the voice wasn't used in a singing style ie like opera 

353 (4) He can't sing 

357 (3) The aberrant quality of the intonation. It seems undirected, and inconsi stent from - 
beginning to end. 

358 (4) it's almost pure singing, but the melody sounds too fake and contorted 
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file = n133; N = 24; p= 3.58, a= 0.88; H = 5; L = 2 

211 (4) rythm 

213 (3) sounds like butterfly 

212 (3) There's rhythm but not enough difference in pitch. 

220 (3) rhythmic and tonal 

236 (5) recognizable song 

238 (4) there's a rhythm and a beat 

242 (5) Beat 

243 (3) The tone and cotent 

251 (2) words too detached for song, too mashed together for speech 

308 (4) rhythm (past experience suggests that it will move into a melody) - 
309 (4) I know it's a song. Also, the sound is clearly rythmic 

310 (3) no variation in tone but there is rhythm 

311 (4) there is a beat 

312 (3) Very rhythmic but not melodic. 

317 (2) sounds more like poetry recital than someone singing - 
324 (5) rhythm, melody, long vowels 

328 (5) 

335 (4) Familiar lyric and rhythm in voice - 
343 (4) some song quality, rap-like, rhythmic 

346 (4) Sounds like a "pitch-less" or "spoken" song 

349 (3) repeated words are songlike but lyrics are spoken - 
353 (3) she's not really singing - 
357 (3) The repetitions and almost sustained quality 

358 (3) not sung, because the pitch doesn't quite fall on regular intervals, and the beat is 

off, but definitelly in the direction away from talking and into singing 

file = n134; N = 23; p= 1.70, a= 0.56; H = 3; L = 1 

211 (2) inflection 

213 (2) speech with inflection to express heightened emotion - 
212 (2) Regular speed but abnormally high pitch at the end. 

220 (2) it was talking but the emphasis produced tone changes 

236 (3) high pitch and expressive talking - 
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238 (2) it's an emphatic statement - 
243 (1) tone, cotent - 
251 (2) talking, but with a lot of change in pitch - 
308 (1) pitch suggests excitement, but not musical intentionality - 
309 (1) Sounds like someone speaking normally - 
310 (2) sounds like she's talking - 
311 (2) words are short and clear - 
312 (1) Not melodic or rhythmic. - 
317 (1) perso sounds excited 

324 (2) sounds more like an interjection 

328 (2) - 
335 (1) Very brief 

343 (1) excited, happy, therefore raised pitch - 
346 (1) Sounds like excited speech 

349 (2) i don't know - 
353 (2) her ptich - 
357 (2) Emphasis seems to follow meaning, but is exaggerated in pitch 

358 (2) it's not signing, but no plain talking has so wide pitch excursions, well except maybe 

mot herese 

file = u160; N = 23; p= 1.57, o= 0.84; H = 4; L = 1 

211 (2) rythm 

213 (1) the crying doesn't add anything to the singing 

212 (2) Talking with an abnormal tone and strange pauses between words. 

220 (2) it was talking, but with enough empahsis to seem a wee bit song-like 

236 (4) rhythm and various pitches 

ass (2) 

242 (3) More a 'noise' than speech - 
243 (1) tone, content 

251 (1) words enounciated in certain spots 

308 (1) pitch changes consistent with normal speaking by older person (what's that about?) 

309 (3) I can't tell if it is someone struggling to speak or to sing - 
310 (1) little change in tone 

311 (2) words are mostly clear and short, but there is a bit of a rhythm 
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312 (1) No musical notes. 

317 (1) person talking - 
324 (1) lack of fluidity 

328 (1) - 
335 (1) Pauses - 
343 (1) telling something, sounds scared 

346 (1) Sounds like an old person with a speech impairment 

349 not a clue what they are saying! 

353 (1) no comment - 
357 (2) The unstable quality of the sound indicates either weeping, or some physiological - 
problem 

358 (1) broken talking, but not towards singing - 
file = u161; N = 24; p= 1.83, a= 0.70; H = 3; L = 1 

211 (2) rythm, inflection 

213 (2) sounds rythmic, like poetry - 
212 (1) Regular tone in a question statement. 

220 (3) rhythmic delivery and intonation 

236 (3) different pitches used and the common rhythm of speach 

238 (3) 

242 (1) No lilt to words 

243 (1) 

251 (2) more variation in pitch and slurring together of words than normal speech 

308 (1) there's a rhythm, but not emphasized for rhthym's sake 

309 (2) Some indications of musical tone, but VERY little 

310 (2) very little change in tone 

311 (2) words are short and clear , bit of a rhythm - 
312 (1) No tune. - 
317 (1) sounds like person giving directions 

324 (2) no rhythm, no melody - 
328 (1) 

335 (2) Non sensical words and pauses between words 

343 (1) whining sound which is usually connected - 
346 (2) Rhythmic speech 
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349 (2) rhythm of song but voice of speaker - 
353 (2) the whining - 
357 (3) Patterning of rising pitch toward end. - 
358 (2) almost the same as in 134 above - , 
file = u162; N = 23; p= 1.87, a= 0.81; H = 3; L = 1 

211 (2) rythm 

213 (1) sounds like Vincent Price story telling? - 
212 (3) Has a rhythm not like talking but no big difference in pitch like a song, 

220 (2) speaking, but with empahsis which seems song-like 

236 (1) no melody 

238 (1) sounds like a recital 

243 (2) - 
251 (3) unusual enounciation, but tone stays fairly constant - 
308 (2) rhythm and held notes, but small changes in tone 

309 (1) Again, sounds like someone reading 

310 (1) little variation in tone - 
311 (3) words are short and clear, but there is a poetry type rhythm 

312 (1) No tune or holding of notes. 

317 (1) not much rhythmic content 

324 (3) has some rhythm and fluidity 

328 (3) - 
335 (1) Poetic sound 

343 (1) reading some literary work, play, etc. 

346 (3) Poetic reading, sing-song-like 

349 (2) lilting tune-like sound but still spoken 

353 (2) no comment - 
357 (2) 

358 (2) mostly talking, but there is a distinct rhythmic element and the pitch excursions 

are exaggerated to warrant a bit of "songn-like rating 

file = u163; N = 24; p= 4.21, a= 1.06; H = 5; L = 1 

211 (4) rythm, tone change, sustained notes - 
213 (4) started off talking, ended off singing - 
212 (5) Has a rhythm and change in pitch. - 



APPENDIX C. CORPUS ANNOTATION RESULTS 

220 (5) every word had a tone associated - 
236 (5) melody, high pithes - 
238 (5) it sounds like a part of a song - 
242 (5) Beat, varied pitch, lilt - 
243 (4) the tone 

251 (4) words sound unusual, pitch varies - 
308 (4) melodic, "umm" is clearly a note - 
309 (5) Speaker is clearly using deliberate major chords - 
310 (5) Starts on a high note, ends on a low, varied rhythm - 
311 (5) there is a beat, some words are drawn out and also spoken quickly to fit within the 

beat 

312 (4) Specifically, the word "umbrella" sounds musical. 

317 (1) someone talking as if makig a point 

324 (5) fluidity, melody, long vowels - 
328 (2) - 
335 (5) Blending of one word to next - 
343 (5) changing pitch and connected sound - 
346 (4) Sustained pitches 

349 (5) unnatural emphasis and singing voice - 
353 (3) no comment - 
357 (3) - 
358 (4) see 133 above, only here there is not much talking element, just not entirely decisive - 
singing either 

file = u164; N = 24; p= 1.71, IS= 0.69; H = 3; L = 1 

211 (2) sustained - 
213 (1) 

212 (2) Emotion(excitement) in the sound leads to higher pitch not exactly like talking. 

220 (2) very empahtic but not distinct notes 

236 (2) expression and tone 

238 (2) Sounds like a rock star asking the audience a question 

242 (1) No variation in pitch 

243 (1) tone - 
251 (3) sounds like it's a musical, just finished the dialogue part that leads into a song 
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308 (3) intentional pattern of tone and rhythm, but tone and rhythm are not the point - 
309 (1) I know what it's from..also just sounds like someone yelling - 
310 (2) little variation in tone - 
311 (2) words are short and clear, little variance in tones - 
312 (1) No musical sound. - 
317 (1) someone shouting not singing - 
324 (3) sounds like yelling - 
328 (1) - 
335 (1) Lack of rhythm - 
343 (2) yelling - 
346 (1) Shouting, like an actor in a movie - 
349 (2) yelling voice but it carries on at the end rather than cutting off like a normal person - 
would say it 

353 (2) the change in tone - 
357 (2) - 
358 (1) sounds more like an emotional rather than a sung utterance to me despite the pitch - 
range and protracted "finale" 

file = u165; N = 23; p= 2.22, a= 0.75; H = 4; L = 1 

213 (2) what is it about plays written in meter? 

221 (2) could be that the word "frequently" does not fall on a beat? - 
223 (2) lack of melody 

231 (2) Speaking, but with exagerrated tone changes 

232 (3) Wide range of pitches, but not a lot of change in pace 

246 (2) declamatory style 

249 (1) sounds like theater 

308 (2) tone shifts for emphasis, not for aesthetics - 
310 (2) little variation in tone, no rhythm - 
311 (2) little variance in tones, no beat 

314 (2) Certain syllables were emphasized more than others. - 
325 (3) The elongation of certain sounds. 

327 (2) theatric intonation and rhythm - 
329 (3) changes in pitch between syllables 

330 (2) sounds like talking in a drama 
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333 (2) non-speech-like pitch and amplitude peaks imposed on regularly spaced syllables - 
340 (4) Intonation rather than meaning - 
347 (4) Frequency range and pattern 

348 (2) intonation 

352 (2) no melody - 
354 (2) absence of melody - 
359 (1) it's just plain talk with a "funny" accent - 
360 (2) intonation - 
file = u166; N = 22; p= 3.74, a= 0.91; H = 5; L = 1 

213 (4) rap with very specific notes 

221 (5) sounds like a tune, and regular beat 

223 (4) catchy flow, rhyme like - 
231 (3) rhythm, not tone changes of normal speech 

232 (4) change in pitch between strophes 

246 (5) rhythm and harmony 

249 (5) rythmic 

308 (3) intentional rhythm, sentence had a "ground" tone with shifts up and down 

310 (4) lots of rhythm, quite varied tone 

311 (4) has a "rap" beat, words are spoken quickly within the beat, slightly difficult to 

understand 

314 (4) The tempo and pitch didn't sound like a natural speaking voice. 

325 (4) the speed 

327 (4) high for a male voice, rhythmic 

329 (1) speech inflection, not singing tone 

330 (3) sounds like a rap 

333 (4) external rhythm imposed on the speech, words are stressed differently than in speech 

340 (3) Tone important 

347 (4) Frequency range, tempo, and pattern. 

348 (4) rhythm 

352 (4) rap 

354 (4) rhyme and attempt to pitch the words 

360 (4) rap 

file = u167; N = 21; p= 2.95, a= 1.24; H = 5; L = 1 
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213 (1) couldn't really tell what this was - sounded like yelling/growling? 

221 (2) voice is rough (sounds angry) - 
223 (3) musical elements but drumlbass like - 
231 (2) no rhythmlaccents, tonelpitch changes - 
232 (4) doesn't sound like words of any language, but rather a rythmic utterance 

246 (5) rhythm and harmony - 
249 (5) speaking in syllables and rythmic - 
308 (2) intentional rhythm, lack of resonance (note) - 
310 (1) nothing rhythmical or musical - 
311 (2) no rhythm, sounds like someone is speaking loudly or yelling 

314 (2) It sounded too forced to be speaking, but it didn't sound like singing either! - 
325 (4) I am not totally sure ... mostly the fact that it is so fast - 
327 (4) words indiscernable, rhytmic, fast - 
329 (1) speech inflection 

330 (3) weird sound 

333 (3) loudness and pitch variation seem highly stylized 

340 (4) Rhythm 

347 (3) Tempo and frequency range 

352 (4) no words 

354 (3) its more rhythmic than straight speech 

360 (4) rap - 
file = 11168; N = 23; p= 3.52, a= 1.62; H = 5; L = 1 

213 (4) sounds like mystic prayerlchanting 

221 (3) like speech, except last note sound oddly high 

223 (2) sounds like preaching 

231 (3) rhythm ;different syllable lengths, some tone differences not like speech 

232 (4) wide pitch range and note length, especially at end. 

246 (4) rhythm not completely right 

249 (4) tone an end of sample 

308 (5) patterned tones and rhythm 

310 (5) varied tone 

311 (2) sounds like the rhythm of a foreign language being spoken 

314 (5) The variation in pitch and tempo 



APPENDIX C. CORPUS ANNOTKT'ION RESULTS 

325 (2) 

327 (5) high pitch for a male voice, tones held, pitch variation - 
329 (3) inflected speech, intermediate tension in production - 
330 (1) sounds like - 
333 (4) pitch and loudness pattern of individual syllables seems subordinate to that of the - 
entire phrase 

340 (2) Not much rhythm 

347 (3) Tempo and frequency range. - 
348 (4) melody 

352 (5) different pitches - 
354 (4) use of pitch - 
359 (4) sounds like someone who can't sing, trying to. 

360 (3) ambiguous 

file = u169; N = 23; p= 1.65, rs= 0.57; H = 3; L = 1 

213 (2) talking with a rythym - 
221 (2) sounds like a poem, or stand-up comedy, but hits the same note a few times - 
223 (1) lack of melody 

231 (1) rhythm and tone changes of regular speech - no recognizable musical intervals 

232 (2) Speach that has character 

246 (2) declamatory style - 
249 (1) sounds like a speech 

308 (2) rhythm, pitch variations close to normal conversation 

310 (1) little variation in tone 

311 (2) no beat, tone varies, but no consistency to it. 

314 (2) The words are said at  a quick pace and the pitch doesn't vary much 

325 (1) the speed and clarity 

327 (2) sounds rehearsed, like a performance, not natural speech 

329 (3) large inflection in pitch 

330 (1) sounds like 

333 (2) Though the intonational pattern doesn't sound like conversation, it doesn't sound 

like there's any attempt to impose some kind of external pattern of durational or pitch 

alternations on the individual syllables excep perhaps onthe last word sounds at all 

340 (2) Rhyming 
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347 (2) Tempo and frequency range - 
348 (2) it is speech like - 
352 (1) public speech - 
354 (2) more rhyme than straight speech - 
359 (1) sounds like plain talk in some canadian accent - 
360 (1) a speech - 
file = u170; N = 22; p= 1.86, a= 1.08; H = 4; L = 1 

213 (1) it's talking - 
221 (1) sounds more like excitement or anger, words add to this 

223 (1) sounds like cartoon character in surprise 

231 (1) clipped; no identifiable tone; nothing sustained 

232 (3) speach with so much character, it's on its way to singing 

246 (1) sounds natural 

249 (1) sounds like surprise 

308 (1) pitch changes reflect excitment 

310 (1) sounds like screaming 

311 (2) no beat, tone varies, but no consistency to it. 

314 (4) The pitch sounds unnaturally high and changes in intervals that don't sound like 

speaking. 

325 (3) the pitch 

327 (2) sounds like an exclamation 

329 (4) siren like sliding from syllable to syllable 

330 (2) 

333 (1) Although the intonation is not normal, it is more consistent with some kind of 

emotional or stylistic imposition on the regular pattern, rather than a musica one 

340 (1) Communication intent - 
347 (4) High pitch and melodic pattern 

352 (2) scream 

354 (1) shrill irritation 

359 (2) someone speaking happy, adds little 'tune' to speech 

360 (2) intonation 

file = u171; N = 22; p= 2.5, a= 1.6; H = 5; L = 1 

213 (1) sexy whisper = talking 
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221 (1) sounds like pensive pause in speech - 
223 (4) drum in background - 
231 (1) wasn't "musical" - unidentifiable tone 
7 

232 (5) can't understand words, wide pitch range, wide note length range - 
246 (5) the music in the background - 
249 (2) sexy voice - 
308 (5) held note, rhythm - 
310 (4) starts with some sort of note 
7 

311 (3) can't tell if there is a beat, but it doesn't sound like talking (That's helpful huh?) - 
314 (5) The drum beat in the background, and the lingering on the first syllable. - 
325 (1) the speed - 
327 (4) recognize the song; hear background music - 
329 (2) gutteral, hard sound - 
330 (1) - 
333 (1) same as previous sample (u170) - 
340 (1) Communication intent - 
347 (2) Narrow frequency range - 
352 (2) whisper of satisfaction! - 
354 (1) lack of pitch - 
359 (1) nothing in it suggests singing to me - 
360 (3) vocal not speech sounds - 
file = u172; N = 22; p= 3.0, a= 1.23; H = 5; L = 1 

213 (5) dunno - 
221 (5) the ending makes it clear, otherwise could have been a chant - 
223 (2) sounds like reciting verses - 
231 (4) the last two notes - otherwise classified as talking - 
232 (3) chant like. - 
246 (2) the last two syllables - 
249 (4) the end of the sample - 
308 (1) normal conversational rhythm and tone for language - 
310 (2) little variation in tone until the end - 
311 (2) has foreign language rhythm, with sounds short and concise except the last word at - 
the end 
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314 (4) There were certain syllables where the pitch jumped up above the rest. 

325 (1) the fact that it is another language - 
327 (4) sounds like chanting - 
329 (4) quite a glottal form of singing - 
330 (1) - 
333 (2) same as u169 - 
340 (3) Tone pattern - 
347 (4) Regular tempo & frequency range plus the inflection at the end - 
352 (4) rythm and last note - 
354 (3) intentional use of pitch - 
359 (3) sounds like someone praying, tyical in-between thing to me - 
360 (3) rhythm - 
file = u173; N = 22; p= 1.81, a= 1.10; H = 4; L = 1 

213 (1) kid talking- sounds disorganized 

221 (1) slight surges in pitch on each syllable, also laugh at end? - 
223 (1) sound like baby talk 

231 (1) normal tonal changes of speech 

232 (2) no clue. just sounds that way. can't recognise a song pattern 

246 (1) sounds natural for a kid 

249 (3) can't tell with short sample 

308 (4) more than one voice in same rhythm, pitch variation 

310 (1) just talking with little variation in tone 

311 (1) words sound short and concise, with a bit of laughter at the end. - 
314 (1) The variation in pitch came in places that you would expect from someone who is - 
speaking. 

325 (1) it is a child's voice. often has more pitch and intonational range 

327 (4) rhythmic 

329 (3) reverb in sample connects sounds to make it seem more like singing 

330 (1) 

333 (3) pitch pattern seems more phrase-length rather than from individual syllables 

340 (1) Communication intent 

347 (3) Melodic pattern and frequency range 

352 (3) laugh and strange language - 
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354 (1) 

359 (2) sounds like a recitation, slightly sung speech - 
360 (1) 

file = u174; N = 22; p= 4.68, a= 0.48; H = 5; L = 4 

213 (4) more lounge-chanting. I give it a B, Jack 

221 (5) discrete jumps in notes, in beat 

223 (5) changes in pitch - 
231 (5) some of the pitch changes were not usual to speech 

232 (5) variable pitch and note length 

246 (5) looks like native indian singing 

249 (5) goes up and down, all trilly 

308 (5) patterned shifts in tone and rhythm, held notes 

310 (5) there is rhythm - 
311 (4) words sound drawn out, variance in tones, consistent with a beat. 

314 (5) He held on to certain syllables that were (I think) at the ends of words. He also 

seemed to be using a little bit of vibrato. 

325 (5) seems to be a beat to the voice - 
327 (4) sounds like chanting 

329 (5) pitch changes, very tight vocal production 

330 (5) 

333 (5) Phrase-level patterns clearly dominate 

340 (4) Stress pattern 

347 (4) The regular tempo 

352 (5) slow and melodic - 
354 (4) use of pitch and rhythm 

359 (4) it's like a better-sung prayer 

360 (5) 

file = u175; N = 22; p= 5, a= 0; H = 5; L = 5 

213 (5) clear notes 

221 (5) very melodious, high, discrete pitches - 
223 (5) changes in pitch 

231 (5) musical interval changes;sustained notes 

232 (5) pitch descent, changes in note length 



APPENDIX C. CORPUS ANNOTATION RESULTS 
I 

246 (5) rhythm and harmony - 
249 (5) up and down - 
308 (5) clear notes and melody - 
310 (5) music is in measures, varied tone, rhythm - 
311 (5) a beat, rhythm, variance in tones that sound irregular in spoken language 

314 (5) The pitch is high and she uses vibrato - 
325 (5) the wobbly voice 

327 (5) higher pitch, long clear vowel sounds 

329 (5) pitch changes, mediumlhigh air - 
330 (5) 

333 (5) same at u174 - 
340 (5) Tone pattern - 
347 (5) Tempo and clarity of pitch - 
352 (5) melody and vibrato - 
354 (5) intentional use of pitch 

359 (5) this is typical singing to me. - 
360 (5) - 
file = u176; N = 22; p= 4.59, a= 0.80; H = 5; L = 2 

213 (5) 

221 (4) holding the note at  the end 

223 (5) drawn out words towards end 

231 (5) sustained last two notes; pitch of last notes not like talking 

232 (5) variable pitch and note length 

246 (5) last two syllables 

249 (5) same as u168, end of sample makes sure this time 

308 (5) pattered rhythm and tone shifts 

310 (5) rhythm, varied tone 

311 (3) some words short and clear, others drawn out 

314 (5) This sounded even more like singing than File u168 because of the raised pitch and 

vibrato at the end. 

325 (2) not quite sounding like speech, but more of a combination between the two 

327 (5) rhythmic, long vowels, high pitch 

329 (4) almost 2 samples here, starts more speech like, ends with more singing tone 
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330 (5) ending sound? - 
333 (5) same as u168, but now it's long enough to tell that it's clearly singing 

340 (5) Tone pattern 

347 (5) Melodic tempo and clarity of pitch - 
352 (5) long note plus rythm - 
354 (5) 

359 (4) it's a song, so badly sung that it sounds like speech - 
360 (4) aged? - 

C.2.2 Question 2: More speech-like 

file = n128 

211 less regularity - 
236 used less rhythm - 
242 Slow down - 
251 enounciate more clearly (yes I realize that that probably wasn't english) - 
308 emphasized a meaningful "word" - 
310 spoken with no change in tone - 
317 less repetitive sounding - 
353 slow down 

357 Slowed down, added pauses - 
file = n129 

211 less of both 

212 Get rid of the rhythm. 

220 less rhythm - 
236 used full words 

238 Actually say some words instead of just sounds. 

242 Steady pitch - 
243 Use words and change the tone. 

251 had more variation in sound to make it sound like words 

308 less resonance, smaller interval between tones? 

309 Spoken slower, used actual words 

310 left out the varied rhythm and not variation in tone 
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312 Less rythmic. Less variance in tones. - 
317 remove the melody - 
335 Used vocabulary and non repetition 

346 Make it less rhythmic - 
349 said the syllables in a talking voice - 
353 Not to be so rhytmic - 
357 Made word-like sounds, or alternately pure sustained vowels. These had all the seeming - 
of being nonsense syllables, but also created a sense of imitation of non-vocal sounds. 

358 say some words, use phonemes instead of drum sounds, and get off the steady beat 

file = n130 

211 less rythm 

212 Speak the words with a normal tone. 

220 less intonation 

236 used less expresssion 

251 avoid speaking it as a metre (as in poetry) 

317 remove the rhythm - 
324 break down in fluidity - 
328 use a more monotone speech 

335 No rhythm in speaking 

346 Make it less rhythmic 

349 take out all unnatural emphasis - 
353 talk in monotone 

357 Reduce emphasis to fewer words. 

358 keep a flatterlfalling prosody - 
file = n131 

211 less rythm - 
212 More uniform speed. 

220 flat delivery, de-emphasise rhythm - 
242 Nothing - 
317 less rhyme - 
324 break down in fluidity 

328 use a more monotone speech 

346 Make it more casual, less rhythmic - 
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353 not to be so harmonic - 
357 Mark the words with pitch and loudness based on their infomational qualities rather 

than on their place in the formal structure. 

358 not emphasize prosodically the metric pattern 

file = n132 

211 not holding notes 

212 Small changes in pitch and no dangling note at the end. 

220 less tone changes, less lilt 

236 used less differences in pitches 

242 Same pitch 

251 kept words closer to their normal spoken length 

308 "flatten" 

309 Less tone variation, no need to draw out last syllable 

310 spoken in mor e of a monotone, less drawn out words 

311 said the words shortly and clearly without drawing them out - 
312 Don't hold sounds as long. 

317 remove the melody 

324 remove intonation/melody 

335 Paused between words 

343 break up the words and don't change pitch so much 

346 Make it more natural, follow speech intonation 

349 taken out the tune 

353 talk 

357 Avoid the odd melisma on "-onds," and mark emphasis based on meaning. 

358 use sentential prosody, not jump around with the pitch 

file = n133 

211 less rythm - 
212 A uniform rhythm. 

220 less rhythm - 
236 used a song that I didn't recognize 

238 not be so obvious on the rhythm 

242 Slow down, no beat 

251 words detached 
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308 lowered pitch 

309 Not rhyme so obviously, be less rythmic - 
310 less rhythm - 
312 Speak less rhythmically. 

317 remove the rhythm - 
324 remove rhythm, flatten style 

335 More pauses and less rhythm 

343 not so rhythmical - 
346 Make it less rhythmic 

349 emphasized the words as if speaking to someone - 
353 no comment 

357 not slur the words together as much, and take pauses - 
358 use sentence prosody: cut the "melody" and get off the beat - 
file = n134 

211 less inflection 

212 Not as high pitch at the end. 

220 flatter delivery 

251 kept tone more constant 

310 less variation in tone 

317 lowered tone 

324 flatten style 

353 no comment 

357 give weight to either "so" or "-cit-" rather than such great emphasis on the first, and - 
even more on the second. 

358 keep the pitch curve within regular speech bounds 

file = u160 

211 less rythm 

212 Enunciate the words in a regular speed. 

220 less intonation - 
236 used a straight rhythm 

242 Be coherent - 
309 Less tone variation, especially at the end 

317 lower tone near end 
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357 have greater stability of pitch on each syllable - 
file = u161 

211 less - 
220 flatter delivery, less rhythm 

236 change pitches 

242 Nothing 

251 kept each word more separate 

309 Don't scale upwards so much in tone at the end 

310 no variation in tone - 
317 lowered tone 

335 Spoken slower and flatter 

346 Less rhythmic 

349 said it straight 

353 no comment 

file = u162 

2ll less 

212 Reduce the change in pitch at  the first part. 

220 less intonation, more monotonic 

251 put more time between each word 

308 less resonance, less "held notes" 

317 lowered fluctuations in tone 

324 remove continuity 

346 Make it more natural, less exaggerated 

353 no comment - 
358 same as above 

file = u163 

2ll less 

213 sung no words 

212 More regular speed and tone. 

220 less tone, more monotonic 

236 lower pitch and straight rhythm 

242 Same pitch, equal stress on words 

251 kept each word more separate - 
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308 don't change pitch - 
309 Don't use major chords! 

310 no variation in tone - 
311 not drawn out the words 

312 Don't hold sounds so long. - 
317 not hold word own so long - 
324 remove melody and fluidity 

335 Paused between words - 
343 break up the sounds - 
346 Follow natural speech intonation 

349 not said Ummmmmmmmbrella 

353 talk and slow down - 
358 see 133 above - 
file = u164 

2ll less 

212 Lower the pitch. - 
220 monotonic enunciation, less tone change - 
236 not as much expression 

242 Nothing 

251 kept each word more distinct 

308 less tone drop at end of sentence 

310 no variation in tone 

317 lowered volume of voice 

324 remove intonation - 
343 less connected - 
349 not had the suspension at  the end 

353 slow down - 
file = u165 

221 allow voice to vary off the 2 notes 

223 monotone 

231 less dramatic pitch changes 

232 Less pitch modulation 

246 speak faster 
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314 Lowered the pitch and not used such a straight tempo. - 
325 slow 

327 slower, flatter tone, lower pitch 

330 no such rythm? 

333 slow down the tempo and make it more irregular following more standard alternations 

of longer (stressed) and shorterlreduced (unstressed) syllables 

340 reduce the stress pattern 

347 Narrow the frequency range, more uneven tempo. 

348 less fast - 
352 less rythm and prosody 

308 flattened tones - 
310 more monotone - 
314 Not lingered on some syllables (like the word "mean") 

325 word durations could be shorten, less intonational chance. - 
327 flatter intonation, less melodramatic, - 
329 less pitch inflection, less airstream - 
330 no dramatic tone changes - 
333 kept stressed syllable parameters within a more normal range 

340 Reduce the rhythm 

347 Narrow the frequency range - 
348 say it less pronounced rhythmically - 
352 less intonation - 
354 used less pitch 

file = u166 

213 quit rappin' 

221 keep a more constant tone throughout (no jump half way) 

223 monotone 

231 less rhythm, more minor tone changes 

232 not changed pitch; used more natural rythm (not forced to a meter) 

246 more casual pauses 

249 lengthed longer words? 

308 flatten out tone changes 

310 less variety in tone, less rhythm 
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I 

354 less pitch 

file = u167 

221 don't stay on beat 

223 less rhythm 

231 rhythm & pitch changes of normal speech, 

232 not changed pitch 

246 more casual pauses - 
249 be monotone and not rythmically - 
308 broken up rhythm 

314 Varied the pitch just a little more, and not sounded so rough and growly - 
325 use words 

327 slower 

330 I don't know 

333 reduce range of variation 

340 Reduce the stress pattern - 
347 More irregular tempo 

352 speak to words with no rythm 

354 more meaning, less rhythm 

file = u168 

221 let tone drop off at  end 

223 less melody - 
231 lengthen the short sounds; more speech-like pitch changes 

232 more monotone end; less range in pitch 

246 more speech-like prosody 

249 monotone 

308 monotone 

310 spoken in a monotone - 
314 Used a straighter tempo and a more natural pitch variation (i.e. the last three syllables 

use pitch intervals that sound like song, not speaking) 

327 rhythm less regular 

329 less inflection, less air & more tension in production 

333 broken up the phrase-length pattern of pitch change by emphasizing the individual 

syllables more 
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340 The final sound made it slightly songlike 

347 Less regular tempo 

348 pronounce more individual words - 
352 less difference between the pitches - 
359 avoid this melody-ish tonal progression - 
file = u169 

213 break rythym 

221 allow more drop-off in pitch at the end, don't keep using the same note 

223 nothing 

232 more monotone - 
246 speak faster 

308 broken up rhythm 

314 Let his voice drop at  the end of each phrase - 
327 slower, more irregular, natural rhythm and less dramatic emphasis & pitch variations 

329 less inflection, more gutteral production 

333 The natural increases of duration, pitch and loudness on individual syllables are exag- 

gerated - bringing them into line with normal speech would be sufficient 

340 Reduce the stress patterning 

347 More irregular tempo 

file = u170 

221 lower tones, more relaxed - 
223 lower pitch 

232 monotone, especially at end 

314 Lowered the pitch - 
325 lower the pitch 

327 less melodramatic - reduce pitch variation within a single vowel - 
329 less pitch change, more gutteral production 

347 Lower the pitch 

352 be more monotone and low-voiced - 
359 avoid the brisk height change in "jo-ob" 

file = u171 

223 less drawn out speech - 
232 keep notes/syllables short 
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246 no music - 
249 talked normally - 
308 flattened tone - 
310 no music at  beginning 

&I Not conveyed so much emotion and relaxation in her voice (i.e. could have used a 

stronger voice) 

327 less pitch variation in a single held vowel - 
329 less connection 

347 Narrower frequency range 

352 shorter - 
file = u172 

221 remove last 112 second of piece 

223 less flow and rhythm to speech 

231 change the last two tones 

232 eliminate pitch change and holding of last note 

246 keep last two syllables shorter 

249 not gone up at the end 

310 no variety of tone - 
&I Not let the pitch jump up in the middle and end 

327 less rhythmic, less pitch variation 

329 less pitch change, less free air 

340 Reduce the tonality 

347 Less regular tempo - 
352 stay to a small range of pitches - 
359 avoid brisk changes in tones 

file = u173 

223 nothing 

232 make monotone 

249 if words made sense? 

308 spoken alone, more even rhythm 

327 less rythmic, less regular pattern of pitch variaiton 

329 less connection, more glottal production 

333 might be easier to decide with a longer phrase 
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347 Less regular pattern narrower frequency - 
352 less rythm - 
359 speak in a more "declarative" fashion - 
file = u174 

221 monotone - 
223 monotone - 
231 change pitch of syllable 3,4,5 syllable(s) don't sustain 5 - 
232 make monotone and consistent length of syllables - 
246 speak faster - 
249 .... - 
308 broken up rhythm, flattened tones - 
310 had no rhythm - 
314 Not held onto the ends of words, and used a less syncopated rhythm. - 
325 flatten the rythm - 
327 less rythmic, less regular pitch variation - 
329 more glottal, less air - 
333 syllable duration and pitch contours should be more regular, less affected by larger-scale - 
patterns 

340 Ditch the long stressed syllables - 
347 Less regular tempo - 
352 no vibrato - 
359 avoid the scale-like toneal changes - 
file = u175 

221 use only 1 or 2 notes - 
223 monotone - 
231 don't sustain notes; change pitch of a few to normal speech rise and fall - 
232 monotone - 
246 speak faster - 
249 monotoneish - 
308 monotone - 
310 no rhythm, varied tone 

314 Used less vibrato and let her voice drop to a lower pitch. - 
325 slow down, not so much pitch change! - 
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236 used more tones and pitches - 
238 Made it sound more like a poem? - 
242 Vary pitch of voice - 
243 Use more pitches - 
251 have a tune, or recognizable notes - 
308 more intentionally held notes - 
309 Tones help.. . 
310 more variety in tone and rhythm 317 more melodic - 
324 slow down and add rhythm - 
335 Varied tone and spoke slower - 
343 change pitch - 
346 Make pitches follow a musical scale - 
349 given it a tune and long notes - 
353 sing - 
357 Slowed down, and sustained the vowels and voiced consonants longer - 
358 vary the pitch, get on a beat - 
file = n129 

220 more tone change 

236 various pitches 

242 Nothing 

309 Musical notes.. . tones again. 

310 could have held the notes longer 

312 Hold notes longer. - 
317 hold some of the notes longer - 
343 disconnect and more monotone 346 Make pitches more distinct 

M? 
353 Sing 

357 If it were hummed, it would seem more song-like, by avoiding the sense of nonvocal 

imitation. 

358 add a melody line - 
file = 11130 

211 more tone chnage 

212 Add more rhythm and more variation on the pitches. 
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236 used more tones and pitches - 
238 Made it sound more like a poem? - 
242 Vary pitch of voice - 
243 Use more pitches - 
251 have a tune, or recognizable notes - 
308 more intentionally held notes - 
309 Tones help.. . - 
310 more variety in tone and rhythm 317 more melodic - 
324 slow down and add rhythm - 
335 Varied tone and spoke slower - 
343 change pitch - 
346 Make pitches follow a musical scale - 
349 given it a tune and long notes - 
353 sing - 
357 Slowed down, and sustained the vowels and voiced consonants longer - 
358 vary the pitch, get on a beat - 
file = n129 

220 more tone change - 
236 various pitches - 
242 Nothing - 
309 Musical notes.. . tones again. - 
310 could have held the notes longer - 
312 Hold notes longer. 

317 hold some of the notes longer 

343 disconnect and more monotone 346 Make pitches more distinct - 
349 ? - 
353 Sing - 
357 If it were hummed, it would seem more song-like, by avoiding the sense of nonvocal - 
imitation. 

358 add a melody line 

file = n130 

211 more tone chnage - 
212 Add more rhythm and more variation on the pitches. - 
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220 more intonation - 
236 used various pitches and tones 

251 more variations in pitch, more sustained words - 
308 intentionally held notes, larger interval in tones - 
309 Emphasize the tone variations already present - 
310 varied their tone, rhythm, put the words into measures - 
312 More mucical. - 
317 more melodic - 
324 add melody - 
328 vary his voice to a scale - 
335 Used more varied tones and ran words into each other - 
343 connect the words and change pitch 

346 Make pitches follow a musical scale 

349 give it a tune - 
353 sing - 
357 Sustain the individual sounds longer. 

358 sing more :-) OK, get a melody and start off earlier with the beat - 
file = n131 

211 more tone change 

212 More variation on pitches. 

220 more intonation and tone change 

236 used a noticeable melody 

238 put a tune to it 

242 Varied pitchlspeed - 
251 varied the pitch more, included a tune 

308 held notes and varied pitch - 
309 already has ryming, could easily insert rythym or tones. 

310 more variation in tone, different notes 

311 stretched the words out 

312 Add a tune. 

317 less mootone 

324 add melody 

328 vary her voice to a scale 



APPENDIX C. CORPUS ANNOTATION RESULTS 

335 More varied tones and run words together - 
343 same as n130 - 
346 Make pitches distinct, follow musical scale - 
349 tune, unusaul emphasis - 
353 sing - 
357 Change the length of syllables to a greater extent. It sounds as if all syllables have the - 
same length, except the two repetitions of "row", which are longer than all the others. 

358 use a melodic pitch line - 
file = n132 

21 1 consistency - 
220 more purity? (can't describe it) in the notes - 
242 Nothing 

251 had a tune - 
308 "clearer" on notes? - 
309 Be on key - 
312 More musical. - 
317 more cohesive note selection 

346 Make pitches distinct, follow musical scale - 
349 used an operatic voice 

353 sing 

357 Sustain the vowels in preference to closing most syllables toward the final consonants. - 
358 put the pitch on a melodic line instead of just jumping about with it - 
file = n133 

211 more toal changes 

213 add accompaniament - 
212 Should change pitch. 

220 more purity? in the tone and more modulation - 
238 sing it - 
242 Nothing - 
251 mashed words together more - 
308 more variety of tone 

309 Even more emphasis on the rythym, maybe louder voice - 
310 more variation in notes 
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312 Longer duration of sounds. - 
317 add some melody - 
335 More tonal variety - 
343 not so monotone - 
346 Make pitches more distinct, follow musical scale - 
349 used a singing voice - 
353 no comment - 
357 sustain pitches on the vowels. - 
358 the opposite from above: take the pitch where it's supposed to go (on the note intervals) - 
and keep with the rhythm 

file = n134 

211 more rythm tone change - 
212 Add rhythm. 

220 more tone - 
251 slowed down first part slightly 

308 repeated phrase with same pitch changes, creating a rhythm 

309 Would need musical tones - 
310 more musical with notes 

312 Add a melody. 

317 slowed down - 
324 add rhythm/melody 

335 Slower more varied tone 

343 connect the words, intervals there - 
346 Make pitches distinct (as above) 

353 no comment 

357 Sustain the emphasized syllables on stable pitches. 

358 put a melody on the pitch line 

file = u160 

211 more tone change, rythm 

212 More variance in pitch. 

220 more tonal quality in each word and more rhythm 

236 used various tones and pitches 

242 More beat to 'noise' - 
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251 have some tune - 
308 held notes - 
309 Less broken speaking, voice would have to be stronger - 
310 more rhythm, put the words into measures with notes 

312 Add a tune. - 
317 lengthen duration of words - 
324 add continuity/fluidity - 
335 Run words together 

343 change pitch, connect the sound 

346 (as above) 

353 Sing 

357 not have so many breaks, and create greater connection between syllables. - 
358 melody! 

file = u161 

211 moe tone change 

212 Add rhythm. - 
220 more tonal quality in words, more purity in the tone 

236 change the rhythm - 
242 Varied the pitch, speed - 
251 mashed words together more - 
308 identical repitition 

309 Make the second half as rythmic as the first half - 
310 make it musical with notes, rhythm 

312 Use a tune. - 
317 more melodic 

335 Less pauses and lengthen connecting componenets of signal 

346 (as above) - 
349 opened throught to use singing voice - 
353 no comment 

file = u162 

211 tone change - 
212 More variance in rhythm. 

220 more purity in the tone 



APPENDIX C. CORPUS ANNOTATION RESULTS 

236 used various pitches - 
251 not finished pronouncing eaach word so clearly - 
308 clearer patterns in tone - 
309 Add deliberate musical tones 

310 put it into measures with notes, varied tone - 
312 Use a melody. 

317 hold some words longer - 
324 add melody 

335 Strung words together - 
346 (as above) 

353 no comment - 
file = u163 

211 more tone change - 
213 sung more words 

220 i.e. could have not held onto the 'um7 in umbrella - 
242 Nothing 

251 varied the sound (pitch) of the first part of the phrase - 
308 if the notes of "I must get my" were as distinct as the "umm" 

312 Use a tune for the whole sentence. 

317 more melody - 
346 Make it more rhythmic, follow musical scale 

353 sing 

358 see 133 above 

file = u164 

211 tone, rythm 

212 Add rhythm. 

220 words could have had notes associated 

236 used various pitches 

242 More variation in pitch, beat - 
251 spend more time pronouncing each word 

308 more tone drop at end of sentene 

309 Don't be so monotonic - 
310 made it musical with a variety of rhythms, notes 
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312 Add a tune. - 
317 more melodic - 
324 revise tone - 
335 shortened last word - 
343 last sound should not fall, but hold it - 
346 (as above) - 
349 not used a yelling voice 

353 sing 

file = u165 

221 user more than 2 notes, stay on beat 

223 flowing melody 

231 different endings on the final words of each phrase - up, not down, and held 

232 change length of emphasis on some syllables - 
246 more harmony 

249 sung 

308 held emphasized word on clear note 

310 more musical with notes and varied tone 

314 Varied the pitch more 

325 range the pitch - 
327 held tones longer 

329 more airstream 

330 maybe improve the rythm and ending sound? 

333 phrases seem to end too abruptly for real singing - 
340 More emphasis on tones produced 

347 More melodic pattern 

348 use more melody 

352 sing the prosody as a melody - 
354 used more related pitch 

359 utter a more scale-like tonal progression 

file = u166 

213 quit rappin' 

221 not much, make note change more sudden 

223 more melody 
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231 hold vowels, musical tone changes - 
232 more variable length of note holds - 
308 held a note for variation - 
310 more variety of notes - 
314 Varied the pitch more. - 
327 more steadily held tones, longer vowels - 
329 more airstream - 
330 more tone changes - 
333 maybe just a longer sample would have been enough 

340 more musical tonality - 
347 Make it longer - 
348 more melody - 
352 all the syllables on a certain pitch - 
354 more pitch 

file = u167 

221 higher voice, more varying notes 

223 more melody 

231 rhythm, recognizable pitches, sustained notes - 
232 don't know 

308 more variation in tone - 
310 variety of tones, rhythms, more clarity - 
314 Not sounded so rough and growly. 

327 vowels cleaner, less gutteral 

329 less harsh gutteral production, 

330 don't know 

333 voice quality is very unlike singing 

340 more musical tonality - 
347 Increase the frrequency range and length 

352 less drum-sound, more melodic 

354 more pitch 

file = u168 

213 need more lounge singing in temples 

221 notes are not well defined ... too close in pitch - 
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223 more melody/flow 

231 sustain some; make pitch changes musical intervals - 
232 more variation in note length in first third of strophe - 
246 right rhythm - 
249 ... 
329 more air, less tension in production - 
330 add rythm? - 
333 again, probably just having a second phrase would have been enough - 
340 More rhythm. - 
347 More frequency range and longer - 
348 more melody - 
359 actually tune in right with the notes he suggests 

file = u169 

221 emphasis on word "Canada we eat" doesn't sound song-like 

223 more melody - 
231 change pitch of last syllables of each phrase - up or down by some standard musical 

interval, and sustain 

232 more note length changes 

246 more harmony 

249 not so harsh? 

308 held notes 

310 had rhythm, varied tone 

314 Not cramed so many words into each "beat" (assuming is a straight rhythm to this 

sound clip) 

325 enlongate the vowels and words 

327 longer vowel tones, different pattern of pitch 

329 more air, more relaxed production 

330 don't know 

333 do something besides just over-emphasizing the naturally stressed syllables 

340 Increase the stress patterning 

347 Increase the frequency range and longer 

352 exagerate and differentiate the pitches 

359 same; tonal progression 



APPENDIX C. CORPUS ANNOTATION RESULTS 192 

file = u170 

213 (name that tune? deadbeat club) 

221 don't slur the notes together, more abrupt pitch changes - 
223 more flow in melody 

231 lower the pitch; get some greater range of pitch; sustain - 
232 ??? don't know - 
246 fill pause 

249 longer words? 

308 held notes - 
310 made it musical with many notes and some rhythm - 
314 Not dropped pitch at the end 

325 more range 

327 don't know - 
329 more relaxed production and more air 

333 put some music into it? 

340 More patterning of rhythm and tones 

347 Make it longer 

352 more voice - 
359 stick to some (western?) scale - 
file = u171 

213 perhaps if the sample was longer, i would change my mind - 
221 use more notes, don't wisper 

223 more melody 

231 different pitch -recognizable musical tone; hold the note - 
249 ... - 
310 no speaking at  the end - 
325 more change in intonation and pitch - 
327 less breathy, whisper-like - 
329 less glottal stroke, more air, & less gutteral production 

340 More patterning of stress and tone 

347 Wider frequency range and longer - 
352 more voice and different pitches - 
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359 sing 

file = u172 

221 not much, maybe make notes easier to distinguish in first part - 
223 more melody 

231 have some different pitch changes in other syllables; sustain some notes;rhythm 

232 more pitch and note length changes throughout 

246 more rhythm 

249 more at start 

308 held notes longer 

310 varied rhythm and tone 

314 Some syllables (i.e. the first second or so) sounded too monotone and were at a pitch 

that sounded like the person's natural voice (i.e. sounded low and comfortable) 

325 more pitch change - 
327 more pitch variation in withing and between held vowel sounds 

329 freer air, less glottal production 

340 More stress patterning - 
347 Broader frequency range 

352 more different pitches 

359 not utter a "plainly-spoken" couple words here and there 
- - 

file = u173 

221 get rid of not fluctuations within syllables 

223 more melody and flow 

231 different pitch changes;hold some notes 

232 don't know 

246 slower rhythm 

249 ... 
308 spoken longer with similar rhythm 

310 more rhythm and varied tone 

314 Changed the pitch in a less natural way (i.e. raised the pitch near the beginning) 

325 not sure - 
327 extend vowel sounds 

329 less glottal production, more air - 
333 might be easier to decide with a longer phrase 
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340 More rhythm - 
347 More melodic pattern and longer - 
352 not laugh - 
359 stick to some scale - 
file = u174 

223 more melody 

327 less strictly regular rhythm 

329 less tension in larynx, more air 

340 More tonal patterning 

347 Broader frequency range - 
359 take singing lessons 

file = u175 

223 not much 

329 more relaxed larynx, less glottal, more air - 
file = u176 

221 sounds off tune, notes aren't easy to make out at beginning 

223 more melody 

325 more movement in pitch and tone 

329 more relaxed larynx, more air 

359 take singing lessons and medicine for his throat 
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C.3 General Comments 

The following questions were asked on the web form: 

1. In the following field, please write some general observations that you might have 

made over the course of this study about the characteristics of speech and singing, 

as well as the similarities and differences between them. You may be as brief as you 

wish, and you may leave this section blank if you wish. 

2. In the following field, please enter any comments or observations you may have had 

on your experience participating in this research study. Again, you may leave this 

section blank if you wish. 
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C.3.1 Speech/Song Observations 

211 singing vs poetry rythm is important sustained notes help to define singing much of 

speach starts towards singing in some aspect 

220 Great topic to study, Dave. Now I know how difficult it is to distinguish bewteen speech 

and singing. I see rhythm, pitch and emotion are important factors. They interact with 

each other depending on the situation and context. Very hard to draw a clear line between 

speech and singing. 

220 I felt that both rhythm and tone had a large contribution to how much like singing I 

felt a sample was. 

221 The "pitch surges within syllables" that made one clip sound speech-like, was present 

in a native-Indian clip that I judged as pure singing. 

223 speech: -short spirts of sound -more monotone than singing -less flow, rhythm, melody 

(sounds that fit nicely one after another) singing: -comforting flow -smooth transition be- 

tween sounds -melody -longer drawn out sounds ... words that drag a bit when heard 

231 Expectations seem to play a role-if we hear a pitch change we don't expect in regular 

speech, we might call it song. Normal speech has lots of pitch change. The pitch at ends 

of phrases is used to give information. ("uptalk", turning a statement into a question 

or not). Sustaining notes seems to happen only in singing-except for long drawn-out 

"Hmmmmmmmmm" when thinking, which doesn't sound like singing usually if it's followed 

by speech, but does sound like singing if you sing afterwards. 

232 There's something in the amount of "feeling" behind what is being said that pushes it 

toward speach. Good luck quantifying that!! 

236 The process of identifying speech and singing is subjective to the listener as well to the 

person who's voice is being heard. 

238 Talking and singing at the far end of the scale are very distinct. In the middle, anything 

with a beat, rhythm, and intonation sounds like a song. 

242 I had not realised that pitch played such an important role in making a difference 

between talking and singing. 

243 Singing contains more pitches and is more harmonious than speech. 

249 That it is not always that clear what the difference betweent he two is. With short 

samples it can be difficult. Also different languages sometimes sound melodic 

251 words in song tend to be pronounced slightly differently than speech, and do not seem 
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as distinct as words, ie, there seems to be a more constant stream of air leaving our mouths, 

as opposed to speech, where the sound seems to be cut off slightly between words 

308 My opinion was often based on where I thought the speakerlsinger was going next. I - 
needed to extrapolate from the short clip. 

309 It's interesting that I had a tendancy to include rhyme so much as a requirement 

for "singing" ... but only when the sound was in english. When the sound was in another 

language, I had to rely much more on detecting tone and rythym. 

311 there are a lot of similarities, but perhaps the biggest differences are the rhythm and - 
presence of a beat in singing, whereas spoken language often is irregular in that way. Tones 

in spoken language can go up and down without a consistent pattern to it and words are 

just said as they are, without having to shorten them or draw them out so they fit in the 

measure 

312 I am not trained at all in music, but it seems if I can recognize a clear musical note in - 
a sound, I rate it as singing, otherwise, I don't. 

314 I noticed how hard it is to put the characteristics of speech into words. There's something - 
about a person's speaking voice that is natural. When speaking, the pitch just sounds 

"normal" for them; the sound isn't forced, there is no vibrato, the intervals at which the 

pitch changes sound "normal" .... it's just really hard to describe! 

317 Singing has melody and rhythm. In our culture voice is pretty monotone. 

328 Is reading poetry singing? Ryming when combined with muscical scales is singing. 

329 as an elementary music teacher, I'm faced with kids who have never sung before, and I 

try to coax singing out of them. It was interesting trying to mimic the samples and figure 

out the mechanism to recreate them. 

330 Most of them sounds more like talking. I think to be qualified as singing, it has to 

sound much nicer, more rythmic and with tone changes (but not like speaking in a drama) 

333 At first I thought there would really be only a binary distinction-either it's singing 

or it's not. By the end, I started to think that what matters most for "singing" is the 

imposition of some kind of pattern on the phrase where that pattern is not derived purely 

from the linguistic and/or pragmatic/emotional demands of communication. In other words, 

singing is imposing a nonlinguistic (presumably musical) pattern on speech. 

340 Song emphasizes patterns of rhythm, stress, and tone more strongly. - 
343 Being a singer, I thought the majority of the sounds were speaking. I believe that a lot - 
of them would be labelled song by a non-musician. 
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346 Most of the examples were of speech, but many were not examples of ordinary "talking". - 
They included exaggerated intonation, poetic speech with sing-song (musical) qualities, 

foreign languages with unfamiliar intonation patterns or lexical tones (Chinese), etc. There 

were few examples of genuine song, which I understand to be rhythmic speech with distinct, 

sustained pitches that follow a musical scale of some sort. 

347 Near the end I became aware of a dimention of clarity and sharpness of pitch that 

characterizes singing 

349 Singing has rhythm, a certain sound and use of the vocal cords, a tune and emphasis - 
on syllables not given such stress in speech. 

352 Our prosody can be very musical but it stays easy to imagine the context and know it's - 
just talking. Melody (extent of the variations between pitches), rythm and speed seem the 

best criterions. Hard part is to know where to put counting-out rhymes and rap ... 
354 Speech is the conveyance of meaning without rhythm, rhyme, or deliberate pitch for 

enjoyment's sake. 

357 I don't believe that it is necessarily appropriate to set up a two-part division of these - 
stimuli. I may have grouped items differently, if it were not set that they must fall along a 

single axis from speech to song. 

359 the nature of the diffenrences is very diverse; some sounds show countinuously inter- - 
mediate stuff and some keep switching between one and the other; aiming at spotting that 

difference could be relevant 
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C.3.2 Methodology Observations 

211 somewhat subjective (is that the point?) 

213 Part 2 was too long and labour intensive. I would say that most of your subjects will 

not fill in every field for every sample. I was getting tired after 5 of them! Otherwise- great 

work, David! :) [name]. 

220 I had a difficult time verbalizing what I felt. When I said that a sample could have 

been made more like talking by a flatter delivery, I found it hard to break that down into 

more direct observations. 

221 It was difficult to explain why I made my choices in such a small space. I think that 

some of my intuition was too lengthy to explain, so I didn't. 

223 Where do you classify rap music or rapping? It has flow and rhythm but is generally - 
known as talking. It may not have melody but the flow of the speech may move it more 

towards the musics side. Also, high pitched children and cartoon characters that change 

their pitch often when speaking may be confused with singing. 

231 Whew! Hard work, makimg all those decisions! 

232 I'm frustrated trying to identify why I catagorized something one way or the other. I - 
was tempted at points to go for the extremes so I wouldn't have to write something in one 

of the fields. I didn't give in to that temptation though. 

238 Some people's voices just naturally sound like they're singing. It was obvious where 

people tried to monotonize phrases to force them to sound 'speech-like'. 

242 I found this study very interesting, as did my witness (my daughter). I had never 

listened so closely to the various speech patterns before and found the study fascinating1 

am glad I participated. 

246 Phase 2 was a little too long. The judgments towards the end may not be as accurate 

as those towards the beginning. 

249 It was fun :) 

312 Easy to do this research. Great use of the Internet. I heard about this on CBC radio. 

314 This was a lot harder than I thought it would be! I enjoyed it though. Good luck with - 
the research. 

317 best wishes in your research - 
324 an observation: in the "first* page of testing the browser appears to be stalled while 

in fact it is loading data (although there's no sign whatsoever), perhaps putting an initial 
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message would avoid confusing some more test users. 

325 That it is quite hard to determine what is the middle between speech and singing. - 
329 great study, Dave. Hope you are doing some vocal physiology so voice people can use - 
your results. 

333 I found the tiny little comment windows in part 2 to be really annoying. These bigger - 
ones in part 3 are much better. I hope my answers in that section were not too long. 

What kind of answers were you expecting? Despite this, I really enjoyed the experiment. 

I found the non-English examples very interesting, because of course I had less of (or no) 

idea what the actual linguistic pattern might be, nor could I be sure I knew much about the 

musical pattern possibly being imposed on the speech. I noticed some Putonghua (Mandarin 

Chinese), possibly one other Chinese dialect, (if it was Cantonese, perhaps it was sung after 

all, because I couldn't understand it), at least one S. Asian language (Hindi? Tamil?) and 

one N. American language (Navajo?) I'd be interested to know more about your results! 

343 It would be interesting to know the results of this. I am entering Speech-Lang. Pathology 

in the fall and this is interesting for me. Good luck! 

346 No additional comments, except that this is an issue that has interested me and that I - 
had planned to do some research on (perhaps similar to your study) around 1990. However, 

my grant proposal was turned down and I did not pursue this line of research further. I 

presume you know List's old paper on the topic. Good luck with this project! The sound 

samples are interesting and fun to listen to. 

347 I would be interested in followup about the experimental dimentions - 
352 Very well done but the order is not random. - 
353 It was fun. Good Job man. - 
357 Many of the stimuli appeared clearly artificial, and seemed out of place. Also, some 

of the questions seemed to be asking another thing entirely. For instance, "what could the 

speaker have done to make this more speech-like" is really asking, what quality of the sound 

would have to change to render the perception of a more speech-like sound. That is, the 

question is properly one about how the perceptual domain is influenced by the acoustic 

domain, but the question is posed in terms of the productive domain. 

358 Part B became tiring after a while, because I felt I was writing the same thing over - 
and over, with small wording differences. Perhaps I didn't understand what I was supposed 

to do (in this case sorry for the unusable data)-anyway, I didn't quite fill in the last few, 

I hope that's not too bad. The first part was almost fun. I'm not sure I've been very 
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consistent, it might be interesting to see if my ratings became more polarized in the course 

of the experiment. Did you have any repeated stimuli to check for reliability? 

359 Lots of fun! 
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