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Abstract 

T h s  thesis develops a framework for studying the design and valuation of collateralized loan 

contracts in a dynamic setting under complete information and uncertainty. Contingent 

claims valuatidn techniques are integrated into a game theoretic setting in which borrowers 

and lenders behave noncooperatively to maximize the values of their claims as specified by 

the terms of the loan contract and applicable bankruptcy laws. 

The analysis presumes that the market value of the loan collateral follows a diffusion 

process. The borrower attempts to deviate from the terms of the loan contract to enhance 

the value of his claim. This behaviour is tempered by contractual provisions which allow the 

lender to foreclose and seize the collateral in the face of such deviation. Hence the rational 

borrower engages in 'strategic'default', deviating from the terms of the contract without 

provoking foreclosure. However, certain contractual indentures do yield foreclosure in some 

states along the equilibrium path of the game analyzed. 

Consistent with empirical evidence, foreclosure is assumed to be costly. The incidence 

of these costs on the contracting parties is state dependent. Also, the level of the market 

value of the collateral at which foreclosure occurs is determined endogenously. 

Results are obtained analytically and by numerical methods. Noteworthy results include: 

(1) The upper limit on credit extended by a rational lender is a modest fraction of the 

i ~ ~ i t i d  market value of the collateral when foreclosure costs and dividend flows are positive, 

regardless of the interest rate the borrower offers. (2) The credit supply curve facing a 

particular borrower may be 'backward bending', with more credit supplied at  lower interest 

rates than higher interest rates. (3) Strategic default by the borrower has a sigmficant 

negative effect on the quantity of credit supplied for any given contractual interest rate. (4) 

A contractual indenture which allows the lender to recover prior concessions made to the 

borrower, at a later date, mitigates this negative effect. (5) The quantity of credit bitended 



is decreasing in the volatility of the market value of the collateral, the cash flows generated 

by the collateral and the term to maturity of the loan contract. 

For the purposes of this study results (1) and (2) are referred to as 'credit rationing'. 

Such credit rationing prevails despite the lack of any informational asymmetries between 

the borrower and lender. 
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Chapter 1' 

Introduction 

Black and Scholes (1973) a14 Merton (1973, 1974): were the first to recognise that the debt 

of a firm can be viewed as a continpent claim on its assets. This marked the first significant 
P 

development in the modeling, and pricing of default risky debt. Numerous extensions to 

this framework have emerged.' Black and Cox (1976) incorporated classes of senior and 
s 

junior debt. Breruian and Schwartz (1 977) and Irigersoll (1977) studied convertible bonds 

and coupoxi payilig debt. Breniian and Schwartz ($980) allowed for stochastic hiterest rates. 

Cox, I~igersoll and Ross (1980) modeled variable rate debt. Mason and Bhattacharya (1981) 

ilduJed a jump process for the underlying asset value, while Jones, Mason and bsenfeld 

(1984) incorporated callable debt. 

While these contributions have been important in their own right, they all seem to be 

characterized by a common shortcoming. Empirical evidence suggests that the default risk 

premia on corporate %debt significantly exceed those implied by these models. For example, 

the estimates of Jones, Mason and Rosenfeld (1984) systematically overestimate observed 

bond prices. Kiln, R.anaswarny arid Sundaresan (1993) report that the credit spreads on 

AAA rated corporate bonds ranged from 15 to 215 basis points with an average of 77 basis 

points, while credit spreads on BAA rated bonds ranged from 51 to 787 basis points with 

an average of 198 basis points over the period 1926 to 1986. Merton's model, however, is 

unable to generate credit spreads in excess of 120 basis points, even when excessive debt 

ratios and volatility parameters are used (Pan, 1995). 

Recent coritributions to the contingent claims literature on corporate debt (Anderson 
- 

'Only a small number of noteworthy contributions are listed here. See Cooper and Martin (1996) and 
Ingersoll (1987, chapter 19) for comprehensive summyies. 
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4 
mtd Sundaresan, 1996, ~nders8n,%undaresan and Tychon, 1996 and Mella-Barral and Per- 

raudin, 1996) claim that these models fail dce to their stylized treatment of fina@ial astress, 
i 

def+ and bankruptcy procedures. To illustrate the nature of this problem, consider Mer- 

ton's original analysis of zero- coupon debt (Merton, 1974). The boundary condition on the 
a 

.) 

value of the bond at maturity T is: 

This states that the bond value at maturity is the minimum of the principal P ,  or the value 

of the firm s. This condition implies a model of the bankruptcy process. Upon default of th'e 

debt contract (s < P), the bondholders seize the assets of the firm instantly and costlessly, 

and then liquidate the assets or continue to operate them without any loss of value. This 

assu~uption about the bankruptcy process has an important bearing on the predictions of 

the models which employ it. 

Research on the resolution of default and the implications of bankruptcy procedures has 
established a number of stylized facts:2 

The formal renegotiatiov of debt contracts in the face of financial distress, by private 

'workouts' or via the bankruptcy courts, is costly, both because of direct costs and 

because of disruptions of the firm's activities. 

Bankruptcy procedures allow considerable scope for opportunistic behaviour by the . 
parties to the loan contract 5 

Deviations from, absolute priority of claims on the assets of the firm are common." 
L 

2 

Debtholders of firms experiencing financial distress are often persuaded by equityhold- 

ers to accept concessions prior to formal bankruptcy proceedings. 
1 

Based on a sample of 11 retailing firms and 5 industrial firms operating under the 

protection of Chapter 11 of the US Bankruptcy Reform Act of 1978, Altman (1984) reports 

'This literature is voluminous. Important contributions include Altman (1984), F'ranks and Torous (1989, 
1993), Warner(l977a, 1977b) and Weiss (1990). See ,Pan (1995) and Longhofer and Carlstrom (1995) for 
useful surveys. 

3The absolute priority rule is the theoretical standard by which financial contracts are resolved when a 
debtor is insolvent. In short, a debtor shall receive no value from his assets until all creditors have been 
repaid in full. 
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e 
> 

I 

that the s u n  of direct and indirect reliegotiation costs amounted to 8.7% of market value * 
one year prior to bankruptcy for the retailing firms and 15% for the industrial firms. 

Violations of the absolute priority of claim2 in Chapter 11 reorganizations are wdl doc- 

umented. Betker k ( 995) and Ranks and Torous (1991) find that equityholders of publicly 

traded companies that go through reorganization receive value approximately 75% of the . 

time, even though their creditors do not receive. the full 'value of their claims. The magnitude 

of these deviations is not small. Eberhart, Moore and Roenfeldt (1990) find that the firm's ' 

equityholders retain approximately 7.6% of the firm's value. 

These bankruptcy facts are absent from the contributions cited in the opening remarks 

to this chapter. They are in largepart due to the 'second best' nature of loan contracts , 

(Freixas and Rochet, 1997). In an ideal world, a loan contract would specify, at every date 

over the term -of the loan and for every state of nature: 

1. The payment to be made by the borrower to the lender 

2. The iriterest rate to be applied to the outstanding principle 
Z 

3. A possible adjustment in the collateral required by the lender 

4. The actions (in particular investment decisions) to be undertaken by. the borrower 

In practice loan contracts are much less co~nplex. Payment obligations (points 1 and 

2) and collateral (point 3) are generally specified for the duration of the contract, whereas 

actions to be taken (point 4) are left to the Scrrower. Consequently loan contracts typically 

leave a great deal of scope for opportunistic behaviour by ;hc bnrrower. 
P 

Early attempts to incorporate some of these stylized facts include Bergman and Callen 

(199 1) who study the extraction of concessions from debtholdek during financial distress 
4 * 

in a static model of capital structure detesmination. Kim et al. (1993) and Leland (1994) 

include costly bankruptcy in a contingent claims model of corporate debt, while Longstaff 

and Schwartz (1995) incorporate departures from absolute priority. These models simply 

impose the various bankmptcy facts on the underlying'analysis. The bankruptcy facts do 

not emergp as a consequence of the rational behaviour of the contracting parties and the 

illdentures oi the loan contract. 

Anderson and Sudaresan (1996), Anderson, Sundaresan and Tychon (1996) and Mella- 
3 

Barral and Perraudin (1996) have incorporated a game theoretic framework into the stan- 

dard model of contingent claims valuation such that the bankruptcy facts are endogenised 
% 
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*, 

in the model. Central to the analysis is a game in wHich borrowers attempt to deviate from 

the indeptures of the debt contract to enhance equity value. This behaviour is tempered 

by contractual provisions which allow debtholders to foreclose and seize the collateral in 

the face of such deviation. Hence borrowers engage in 'strategic -d;fault9, deviating from 

the terms of the contract without inducing foreclosure. Deviations from absolute priority 
4 

and the extraction of concessions from debtholders occur along the dquilibr~um paths of the . 

games modeled. The threshdd value of the collateral at which control thereof is passed from 

borrower to lender is determined endogenously in these models, as is the compensation to 

be received by lenders when this default boundary is reached. 

The implicatiom for the valuation of default risky debt are significant. These models 

generate credit spreads consistent with the empirical evidence, without resorting to unreal- 

istically high b ~ k r u p t c y  costs or excessive levels of firm asset volatility. .We shall refer to 

9 these rnodels as 'strategic debt service m ~ d e l s ' . ~  ' 

Our objective is to combine the structure of these strategic debt service models with the 
C 

approach developed by Jones (1995) to develop a framework which explores the implications 

of default risk and 'the rational opportunistic behaviour of the contracting parties for the ,/ 
extension of credit by banks, within the context of 'standard' collateralized loan  contract^.^ 
In particular, we are interested in the implications for credit rationing. For our purposes, 

credit rationing refers to instances in which the amount of credit which the lender is willing 

to extend falls short of the financing requirement of the borrower. Variations in the nterest 4 
rate specified in the loan contract do not remedy this ~ i t ua t i on .~  Unlike many attempm to 

study the phenomenon of credit rationing, we do not rely on assumptions of informational 

4There exists an extensive body of research pertaining to  strategic behaviour and incentive compatibility 
within the context of debt contracts. See, for example, Bolton and Scharfstein (1990) and Dewatripoint and 

. Maskin ( 9.5). However, this literature does not employ a contingent claims valuation framework. 
We 1 'm that the strategic debt service models are in fact better suited to  situations like this where a 

single lender interacts with a borrower. In the case of publicly traded corporate bonds, coordination problems 
amongst the bondholders are bound to occur as they decide on the appropriate reaction to  the opportunistic 
behaviour of the bond issuer. While Anderson and Sundaresan (1996) cou+ the propositions of their model 
in terms of corporate bond yields, the game they develop is one played by a single borrower and lender. 

 his definition of credit rationing is due to  Jaffee and Russell (1976) and Gale and Helwig (1985). 
Alternative approaches to  credit rationing such as that of Baltensperger (1978) would contend that what we 
describe here,is not credit rationing at all. He argues that the lender's refusal to  supply additional credit 
despite the borrower's willingness to pay a higher rate of interest is not a sufficient condition for credit 
rationing. The borrower must be willing to  pay all the 'nonprice' elements of the loan contract as well. One 
of these elements would be to  supply additional collateral. In our hamework the initial market value of the 
collateral is fixed. The borrower cannot add to this. See F'reixas and Rochet (1997, chapter 5)for'a survey 
of the credit rationing literature. - 
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asymmetries or costly state ~erification.~ Here, as in Jones (1995) and the strategic debt 

service models, borrowers and lenders have 'full information' at  the time a debt contract is 

negotiated. Neither party can influence the riskiness of the underlying collateral and hence, 
/ 

the subsequent riskiness of their claims & specified in the contract. Our objective is to 

provide a benchmark analysis of credit relations based on rational strategic behaviour and 

option value alone. These elements are pervasive, whether information asymmetries exist 

or not. 

Our analysis extends the framework of the strategic debt service models in an important 

way. We include contractual indentures which allow the lender to kxtract concessions from 

the borrower in certain states of nature. Thus, unlike the approach adopted in the work 

cited above, the ongoing implicit contract renegotiation is not always advantageous to the 

borrower. 
i. 

As in the case of the strategic debt service models, costs associated with the renegotiation 

of loan contracts or the transfer of ownership of assets in the event of default, play a 

central role in our aiialys While the literature on the costs associated with bankruptcy 

of companies which issue publicly traded debt is extensive, far less research effort has been 

directed at establishing the magnitudes of the cost associated with default on bank loans. 

Asarnow and Edwards (1995) gtudy the losses incurred by Citibank on defaulted bank 
'' loans over the period 1970 to 1993. For a portfolio of general commercial and industrial 

loans they find that the loss incurred in the eve& of default 'mounted to 34.79% of the 

outs tandihg principal.8 The part of this loss which may be associated with loan renegotiation 

and attempts to seize and liquidate collateral amount to at  least 10% of the principal for 

the entire portfolio and amount to 13.68% for loans with principal amounts exceeding $10 

  nil lion.^ 
Our analysis also sheds light on the design of loan contracts and allows us to draw 

C 

some conclusiorss regarding the social efficiency of a variety of contractual arrangemend 

which typify actual bank lending practices. Lenders who are cognizant of the limitations of 

standard loan contracts to constrain the opportunistic behaviour of borrowers may demand 

collateral requirements which exceed the fair tnarket value of a project, in order to satisfy a 

borrower's financing requirements. If the borrower has no additional collateral, the lender 
- -  - .  ~ 

'.~affe and Stiglitz (1990) survey the literature based on these assumptions. 
"nfortunately, this portfolio contains a mix of secured and unsecured loans. 
'~enceforth, we shall refer to these costs as foreclosure costs. 



CHAPTER. 1 .  INTRODUCTION 

will choose to extend an amount of credit (if any) which falls short of the borrower's financing 

requiremeats. He ce, economically viable projects may go unfunded when the borrower has 
- ? 

insufficient funds to cover the udunded balance of the proj&tzs v&ue.'fiorn a social ;elfare 

staidpoint this is clearly inefficient . l o  

The analysis developed here is presented as follows. Chapter 2 sets out the parameters 

of the representative loan contract and describes the environment in which the lender and 

borrower operate. Chapter 3 describes the games of.strategy which may be played out 

between the contracting parties. Chapter 4 provides analytical solutions and chapter 5 

provides numerical solutions to these gameraid considers the implic~tions for the values 

of the claims of the borrower and the lender. Chapter 5 also repoyts the implications for 

credit rationing and considers some issues in contract design. Chapter 6.concludes. -. 
f" 

9 

1 0 ~ a r r i s  and Raviv (1991, 1992) survey the incomplete contracting approach to loan contracts and financial 
structure. 



Chapter 2 

The contracting environment 

/ 

c In keeping with the contingent claims approach, we develop a continuous time 'arbitrage- 

free' ~aluation framework. Risk-free interest rates are assumed constant. By asswing 

4 corr lete markets we afford the agents the opportunity to hedge their respective positions 

at prevailing market rates for such 'insurance'. s 

Two features of our environment account fot>redit rationing. First, the collateral is 
{ assumed to generate a service flow or dividendetream over the multiperiod term of the 

loan contract. These flows contribute to the initial market value of the collateral. However, 

in the case of default, the lender is unable to recover the value of such flows which have 

accrued to the borrower. Consequently, the value of the lender's claim is determined, not 

by the initial market value of the collateral, but by the expected of the collateral at  

the unknown date of default,, discounted to the present. 

Second, the option to default belongs to the borrower. He controls the timing of its 

exeicise and the extent of the default. Default refers to any behaviour by the borrower 

which is riot in compliance with the indentures of the loan contract. I11 the game theoretic - 
framework developed here we distinguish between two types of default. Termhating default 

induces foreclosure as a best response by the lender. Terminating default may be a rational 

choice of the borrower or it may occur due to binding constraints which make it impossible 

for the borrower to avoid. Stmtegic default does not induce foreclosure as a best response 

by the lender. Instead the lender allows the loan to continue. Hence, strategic default 

implies that the borrower is successful at extracting concessions form the lender. Strategic 

debt service is a particular type of strategic default. Here, the lender accepts debt service 

payments from the borrower which fall short of the contractual payments. The presence of 



CHAPTER 2. THE CONTRACTING ENVIRONMENT 8 

foreclosure costs increases the scope for strategic default by increasing the 'reluctance' of 

the lender to foreclose in certain states of nature. The borrower can appropriate value form . 

the lender by following a strategic default policy which amounts to ongoing renegotiation 

of the loan contract in favour of the borrower.' 
I 

- 2.1 The debt contract 

We employ a simple multiperiod, specified collateral, non-recourse loan contract similar to 

the coiltract described in Jones (1995) .  The lender advances a sum to a borrower in exchange 

for the borrower's promise to make a scheduled sequence of payments over some interval of 

time. For a finite interval, [O, TI, the contract may call for a lumpsum payment at  T. For 

an initial sum of $1 and continuous payments at a rate of p per year over the interval [0, TI, 

Wth a lumpsum payment, P, at T, the contractual loan rate, c , satisfies: 

 he outstanding loan balance at t E [0, T] is: 

The lur~lpsum +@af&eilt is simply: - 

Perpetual loans and pure discount loans (discount notes) are simple special cases of 

equation 2.1. I11 the case of a perpetual loan, the contractual rate c is the coupon rate 

applied to a notiorla1 principle P. This implies a continuous stream of payments, p = cP 

which satisfies: 

1 = cP e - C T d ~  I (2 .4 )  
This implies that P = 1 and b ( t )  = 1, for t E [0, m). In the case of a pure discount loan, a *  

single contractual payment is specified at T. Equation 2.1 now becomes: 

'Since we confine our attention to strategic debt service in this paper, we will use the terms strategic 
default and strategic debt service interchangeably. 
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2.1.1 Remedies in the event of default, 

Loau contracts typically*include a number of iridentures which specify remedies available to 

the lender in the event of a breach of the contract (default) by the borrower. We cohfine 

our attermtion to the following remedies: 

Foreclosure 

A fundamental indenture contained in all loai contracts is meeting the currently scheduled 

payment of interest and principal. If the borrower fails to make these payments in a timely 

fashion he is deemed to be in default. Default entitles the lender to foreclose and seize the 

collateral. If the value of the collateral net of foreclosure costs, exceeds the outstanding loan 

balance, the lender is obligated to return this surplus to the borrower. Foreclosure always 

i~nplies the termination of the loan contract. 

Penalty ra tes  

Default does riot force the lender to foreclose. She may be willing to defer the payment 

ill question to some later time. In such cases, the lender may apply a 'penalty' rate of 

hterest, equal to or perhaps greater than the contractual rate, to any overdue debt service 

pay~uer~ts until such time as the payments are brought up to date. The penalty rate w to 

be applied is specified in the contract. Let k(t) represent the balance of outstanding debt 

service payments at t. Over the term of the loan the change in this balmce is 

dk(t) = [wk( t )  + p - p*] dt (2.6) 

where p* represents the continuous payment stream offered by the borrower in lieu of the 

contractually specified stream, p."o, if the borrower does not make any payments over the 

term of the loan, and the loan is not terminated prior to maturity, the outstanding balance 

at matlirity will be: 

'1n the analysis which follows &e assume that k ( t )  2 0. In other words, if the borrower offers p* > p 
when k ( t )  = 0, the contractual balance b ( t )  is adjusted as if p* = p. 
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This provides the lender with an alternative remedy to foreclosure when the borrower be- 

comes delirquent in his payments. 

Technical default 

Loan contracts often afford the lender the option to declare a 'technical default' under 

circunlstarices specified in the contract. For example, the contract may specify that the 

borrower is in default whenever the collateral value falls below some predetermined propor- 
', 

tion of the outstanding loan balance even though the borrower has made all contract,ual 

paymects to date. In the event of such technical default the lender may foreclose. We 

assume that the technical default provision, if it is included, allows the lender to foreclose 

whenever the value of the collateral falls below the contractual loan balance, s ( t )  < b(t) .3 

This indenture; if it is present in the contract, may allow the lender to extract a payment 

flow p*, from the borrower which exceeds the contractual flow p, in certain circumstances. 

2.1.2 Additional indentures 

Loan contracts often contain indentures which prevent the borrower from undermining the 

lender's claim on the underlying collateral. For example, the contract may prohibit the 

issuance of any additional claims on the collateral. In the case where the collateral is the 

assets of the firm, the loan contract may deny the borrower the option of issuing additional 

debt or equity.4 In the analysis which follows we model this indenture by imposing a 'cash 

flow' constraint on the borrower's debt servicing choices: all debt service payments must 

be financed by the cash flows generated by the underlying collateral when this indenture is 

present in the contract. 

3Technical default provisions are often significantly more onerous from the borrower's point of view. 
Default ratios in the neighbourhood of 1.5 times the  collateral d u e  are common. 

41n what follows we will demonstrate that restrictive covenants of this nature have far reaching implications 
for the behaviour of the borrower after the contract is in place, and consequently for the value of the lender's 
claim. Denying the borrower the option of issuing additional debt or equity t o  finance scheduled debt service 
payments on the original loan, in times of financial distress, may not seem to  be in the interests of the 
lender. We will demonstrate that,  under certain assumptions, this restriction actually enhances the value of 
the lender's claim. 
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2.1.3 The borrower's options 

In addition to his default option, the borrower has the option to pay off the loan prior to 

maturity by making a payment equal to the outstanding balance. If the borrower exercises 

this option, we assume he incurs transaction costs, of negotiating a new loan to refinance 

the old f [b(t)], in addition @ incurring a new obligation with a market value equal to 

the outstanding balance b(t).' Prepayment is rational in instances where the value of the 

collateral has risen sufficiently since the origination of the loan to render the loan less 

(default) risky. The borrower is now paying a premium, c - r ,  over the risk free rate which 

is consistent with greater default risk A new lender would be' willing to accept a smaller 

premium. If the benefit of the lower premium over the remaining term of the loan exceeds 

the refinancing costs, the borrower will exercise this option. 

The prepayment option is generally viewed as being detrimental to the lender. In the 

absence of explicit compensation to the lender in the event of prepayment, one may expect 
& ' to observe contracts which expressly deny this option to the b~ r rower .~  However, the legal 

enforceability of such a provision is not clear (Jones, 1995, p.5f). Unlike the prepayment 

or refinancing of fixed rate loans that occurs when the general level of interest rates has 

declined, the lender has a far more onerous burden of proof in claiming that prepayment . 

in the face of an increase in the market value of the collateral is damaging. After-all, the 

lender was charging a premium to compensate for the possibility of default. If default is 

now less likely, why should the lender continue to receive the risk premium? Thus, whether 

or pot the contract specifically provides for, or prohibits, this option, it may be available to " 
the borrower. 

If the borrower is effectively constrained in his prepayment behaviour, he may choose 

to default in circumstances where he would otherwise prepay. Terminating default may be 

rational when the credit spread is sufficiently large. Thus, default at  'high' collateral values 

is a (costly) substitute for prepayment.7 

5We assume a competitive loan market. 
'One of the surprising results of our analysis is that in the presence of certain indentures, a prepayment 

option actually benefits the lender. 
'We are assuming that the refinancing costs associated with prepayment are lower than the foreclosure 

costs which would be imposed on the borrower in the event of g default at high collateral values. 
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2.2 The collateral 

Let s ( t )  be the equilibrium ~naj-ket value of the collateral a t  time t. Assume this value 

follows a continuous Markov process over time: 

* 
ds(t) = a($, t)dt + us(t)dz(t) (2.8) 

where z(t ) is a standard Brownian motion, u is a constant volatility parameter and a(s, t) is 

the-expected iristantaneous drift in s . ~  The collateral generates a continuous dividend flow 

at the rate d(s, t )  which 'accrues to the borrower provided that foreclosure has not occurred. 

111 the event of foreclosure, the lender seizes the collateral, incurring foreclosure costs 1 (s, t). 

If the market value net of foreclosure costs exceeds the outstanding balance 

We assuine that s ( t )  is costlessly and conti~~uously observed by both 

contract. i 

parties to the 

2.3 The market 

We assume that the borrower and lender have access to a market in which they can con- 

struct a transaction cost-free hedge against s-risk. Such a market is said to be dynamically 

complete with respect to s-risk. At each instant there exist securities or portfokSs of secu- 

rities that are locally perfectly correlqted with 3, allowing either party to hedge against the 

randoln variations in s. For example, if s is the value of the assets of a borrowing firm, risk 

of fluctuation in their value might be hedged by selling short shares of publicly traded firms 

ill the same industry (Jones, 1995, p.4). 

I11 addition, both parties can trade in default free bonds that provide a constant contin- 

uously compounded yield of r per year.g 

Working in a dyilamically complete market setting with symmetric information allows 

'For the stochastic diffaential equation (4) to  describe a unique stochastic (Ito) process, a(8, t) and a ( s ,  t )  
must be Borel measurable and satisfy Lipschitz and growth conditions (see Duffie, 1988, p.225). 

'For loans of moderate duration the loan contract described here is roughly equivalent to  a floating rate 
contract with a constant 'credit spread', c - r .  Contractual payments would be adjusted as r changes to  
maintain the same balance schedule b(t) as  in the fixed rate case. It seems contradictory t o  assume that the 
borrower can borrow elsewhere a t  default free rates. For the arbitrage valuation argument which follows, we 
require that the party in control of the default option is in this situation. This party could be the borrowing 
firm itself provided that the collateral supporting the loan is only some part of the firm's assets, and the 
lender does not have recourse to  the remaining assets. Alternatively, the shareholders of the firm, protected 
by limited liability, may be in control of the default decision (Jones, 1995, p.4f). 
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one to obtain equilibrium option exercise strategies and contract values that are independent 

of the risk attitudes, personal circumstances and expectations about future collateral value 

of the contracting parties. It enforces consistency between collateral characteristics such as 

cash flows and capital appreciation. It also facilitates a tractable analysis of the welfare 
. . 

implications of the various contractual indentures referred to here (Jones, 1995, p.3). 



Chapter 3 

The games borrowers and lenders 

Oi~ce the debt contract is established, the borrower and lender engage in a noncooperdive 

game in which they choose strategies to maximize the values of their claims. Given the 

stochastic process for ~ ( t ) ,  we describe a continuous time stochastic game of perfect infor- 

iuation.' The players have complete information with respect to the environment (i.e. the - 
stochastic process governing collateral values and the 'his t0i.y' of collateral values to the 

present time), their payoffs and the game itself. 

The game is essentiallione of ongoing contract renegotiation, in which the agents at- 

tempt to deviate from the terms of the agreement whenever it is advantageous to do so. We 

develop a number of variations on the following basic subgame. At every point in time, the 

borrower exercises choice over the instantaneous debt service flow which he offers the lender, 

p*. The borrower makes this offer with full knowledge of the rational response which it will 

induce from the lender. The lender's rational response maximizes the value of her claim, 

given the borrower's offer and the indentures of the loan contiact. For example, if the offer 

falls short of the contractual flow, p, the borrower is in default. Default entitles the lender 

to foreclose or to invoke other remedies afforded her by the contract. The contract may also 

'The basic property of stochastic games is that the history of the game at  each point in time can be 
summarized by a 'state'. Current payoffs depend on this state and on current actions. (Fudenberg and 
Tirole, 1991, p.503). Continuous time stochastic games are known as 'differential games' since the evolution 
of the state variables are described by differential equations. Perfect information implies that  all information 
sets in the extensive form of the game are singletons. In other words, players 'move' sequentially and their 
actions are observed before the next move occurs (Fudenberg and Tirole, 1991, pp.72-73). 



- 
CHAPTER 3. THE GAMES BORROWERS AND LENDERS PLAY 15 

entitle the lender to foreclose, under certain circumstances, in the absence of default on the 

part of the borrower, or in cases where the borrower is in default due to some prior breach of 

the contract which has riot yet been remedied (see section 2.1). Thus the lender's response 

to the borrower's offer determines whekher or not the game continues and the payoffs to the , 

b 6 agents. 

We restrict our analysis to the Markov perfect equilibria of the game. We find these 

equilibria by restricting the strategy space of the players to the set of 'Markov' or 'state- 

space' strategies in which the p a t  influences current play only through its effect on a 

fil~ite number of state variables that summarize the direct effect of the past on the current 

euvironment. In other words, the past matters only to the extent that it directly affects 

the current payoffs of the players.2 A Markov perfect equilibrium is a profile of Markov 

strategies for the players that yields a Nash equilibrium in every proper subgame (Fudenberg 

and Tirole, 1991, p.501). Each player's choice of an optimal strategy is a control problem in 

which the player takes into account the influence of his actions on the state, both directly 

and indirectly through the influence of the state on the strategies of the player's opponent. . 

Modeling noncooperative games in continuous time can present subtle dif6culties (see 

Fudenberg and Tirole, 1991, pp.118-119). We heed the advice of Fudenberg and Tirole 

(1985) by describing the equilibrium of a discretized version of the game and then take limits 

as the time interval goes to zero. Discretization allows the specification of the sequence of 

moves by the agents in a coherent fashion. 

We divide the time to rnaturity of the loan contract into a number of small intervals, 

each of length dt. At the start of every interval, the borrower oflers to service the loan at a 

rate of p* for the duration of the interval which implies a payment of p*dt.3 Similarly, the 

contractual payment for the interval is pdt. No further action is taken by either agent until 

the start of the next time interval when the borrower makes a new offer. 

We develop two classes of Markov games. First we describe one state variable games in 

which the market value of the collateral s ( t ) ,  is the only state variable. Then we describe 

games of two state variables in which we add a second state variable which captures some 

'1n games of repeated play, past play may influence current and future strategies, not because it has a 
direct effect on the environment, but rather because players believe that the past matters in some way. By 
restricting the strategy space to Markov strategies we ignore such beliefs. In other words, different histories 
of the state of the game which have a common current state alp assumed to imply the same payoffs for the 
players for any given set of current actions. 

3 ~ o r  the purposes of the description of the game, the payment, appropriately discounted, can be made at 
any point in time during the interval, or it may be paid continuously over the interval. 



aspects of the history of the game in a 'payoff relevant' fashion. In each case we impose the 

indentures of the stylized loan contract., deicribed in section 2, on the borrower and lender. 

3.1 One state variable games 

We assume that the current values of s and t embody all relevant information upon which 

the current actions of the lender and borrower are based. In particular the borrower's choice 

of the debt service flow can be expressed as p*[s(b), t]. There is no scope here for past play 

to influence current payoffs. At any point in time the state of the game is determined by 

the current realization of s ( t )  and the current actions of the players. 

For a finite term loan, the state space S x T, where S r [0, oo) denotes the range of 

values for s, and T E [0, TI, denotes the range of values for t, contains all possible states for 

the players strategies.4 A strategy constitutes the specification of a number of regions or 

closed subsets in S x T in which specific actions are taken by the player.5 For example, the 

borrower defaults whenever (s, t) E Dl where D is a clo4d subset of S x T. His prepayment 

policy, P, is another closed subset of S x T. The lender forecloses whenever (s, t) E F, where 

F c S x T. Similarly, any other actions which the contract may afford the players may be 

represented by closed subsets of S x T. 

The loan contract is terminated whenever foreclosure or prepayment occurs, or when 
t 

the maturity date is reached. The boundaries of F and P are referred to as the termination 

boundaries of the game, and the regions themselves are the termination regions. The open 

subset of S x T in which the loan contract is not terminated (the complement of F U P) is 

referred to as the coiltinuation region, C. 

Let SIL(s, t) and Re(s, t )  represent the termination values of the lender's claim and 

borrower's claim, respectively. The continuatioh value the lender's claim, L(s, t),  is f 
simply the value to the lender of the remaining cash flows from the loan if the collateral . 

d u e  at time t is s and the loan has not been terminated a t  an earlier date. L(s, 0), the 

value of the lender's claim at the loan origination date, represents the maximum amount of 

credit that the lender would extend to the borrower in exchange for the promised sequence of 

coutrac tual payments. Similarly, B ( 8 ,  t ) represents the continuation value of the borrower's 
- - -  - 

4For infinite horizon cases, T = oo, players' strategies depend only on 8.  In this case the game is said to 
be 'stationary' (Fudenberg and Tiole,  1991, p.521). 

'For the valuation problems to be solved by the borrower and lender over the course of the game it is 
necessary that these sets be closed subsets of S x T 
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position, taking into account his options under the contract, assuming the contract has not 

yet been terminated. 

In discretized form the continuation values of the claims may be expressed as 

L(s, t )  = p*[s(t), t]dt + EP k(s + ds, t + dt)] eWrdt 

B(s,  t) = [d(s, t )  - p*[s(t), t]] dt + E? [ ~ ( s  + ds, t + dt)] e-rdt 

= [d(s, t )  - p* [s(t), t]] dt  + B-(s, t) (3-2) 

In the above EQ is the expectation operator under the equivalent martingale - or risk 

adjusted probability measure, Q. Since the values of the claims depend on future realizations 

of s, they are ucertain. The assumption that markets are complete with respect to s-risk 

allows us to assume that the borrower and lender evaluate future payoffs or cash flows 

using the same martingale equivalent probability measure (see Harrison and Kreps, 1978). 

L- (s ,  t ) and B-  (s, t) are respectively the 'ex debt service' and 'ex dividend' values of the 

claims. The default free instantaneous interest rate , r ,  is the discount rate. 

Given the assumptions specified in sections 2.2 and 2.3, the standard arbitrage or repli- 

catiou arguments of contingent claims pricing imply that L(s, t )  and B(s,  t) satisfy the 

followi~lg stochastic partial differential equations in C when dt + O6 

4 

1 2 2  -o s L,, + [rs - d(s, t)] L, + Lt + p*[s(t), t] = rL  
2 (3.3) 

1 2 2  -u s B,, + [rs - d(s, t)] B, + Bt + d(s, t )  - p*[s(t), t] = rB 
2 (3-4) 

With the exception of the p*[s(t), t] term on the left-hand side of both equations, these 

equations are the standard partial differential equations which emerge repeatedly in the 

valuation of claims contingent on a state variable which follows the Markov process described 

in equation (2.8). A heuristic de'rivation of these equations is provided in appendix 1.7 

 he arguments of L(s, t) and B(s, t) are suppressed in the equations. 
'Duffie (1988, sections 15 and 21) is one of many sources for a rigorous derivation of the partial differential 

equations used in the valuation of contingent claims. 
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# 

\ 

Many solutions exist for these equations. Invoking the appropriate~j'undary conditions 
4 

at maturity and the so-called 'free-boundary' conditions which muqbhold on the termination 

bound&ies of S x T, allows us to select the appropriate solutions for the players' optimal 

control problems. These boundary conditions will be determined by the specific indentures 

of the xontract, and the restrictions imposed on the strategy space of the 6orrower and 

lender. &,- 
The free boundar>ond&io$ which characterize optimal policies, and determine the sets 

D, F and P y e  termed 'value matching' and 'high contact' or 'smooth pasting' conditions 

(Dixit, 1993).~ The value matching condition requires that the continuation value and 

the terrninatioll. value of a particular claim be equal on the boundaries of the termination 

regions. The smooth pasting condition requires that the first derivative in the s direction 
, ' .  

of the d u e  function of the option exerciser be continuous on the boundyy &f- = + these sets. 

For example, suppose that the borrower is in control of termination of the along a 

particular boundary, s( t) .  The value matching condition implies B(2, t )  = O B ( g ,  t ) ,  and the 

smooth pasting implies B,(?, t )  = dQB(g, t)/ds. This calculation assumes that the strategies 

followed by the ayers are fixed. Consequently, it determines a subgame perfect Nash "I 
equilibrium in the Markov strategies whi& is characteristic of a Markav perfect equilibrium. 

Equations (3.3) and (3.4) constitute the continuous time representation of the solutions 

to the claim values, L(s, t )  and B(s, t), for a general class of one state varjable games. This 

for~nulation gives us much of the facility of contingent claims analysis while at  the same 

time allowing us to build on game .theoretic modeling of financial distress and contract 

renegotiation. The same general sol@t,ieion tkchniques are applicable to a variety of problems. 

We may consider a number of variations on the game. In each case we solve the same partial 

differential equations. All that changes from one case to another will be the specification of 

p* [s(t), t] and the boundary conditions. 

-+ We consider two versions of the one state variable game. First, we describe a benchmark 

%e in which the scope for the borrower and lender to behave strategically to effectively 

renegotiate the terms of the loan contract, is' limited. Our approach here is very similar to 

that of Jones (1995). Then we expand the scope for strategic behaviour, particularly for 

the borrower, proceeding along bhe lines of Anderson and Sundaresan (1996) and Anderson; 

Sundaresan and Tychon (1 996). 

'Sarnuelson (1965) seems to be the first person to have coined the phrase 'high contact' in his pioneering 
efforts in this area. 

-3 
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3.1.1 Terminating default 
,-, 

We proceed by initially ignoring the technical default provision. 'We assume that the lender 

does not entertain any attempt by the borrower to alter the terms of the contract. In 

particular, the lender always forecloses wheneverthe borrower offers p* < p for any t < T, 

or if he offers P* < P at T. Thus default is 'terminating' in that it forces foreclosure which 

terminates the game. There is no scope here for the borrower to explore the possibility of 

offerirlg the lender payments which, while they fall short of the contractual amounts, do 

not induce the lender to forecl~se.~ Thus default is always characterized by the borrower 

offering the lender a debt service flow of zero, while the debt service flow is always equal to 

the contractual payment flow in the continuation region. 

Since his control variable, p8[S(t), t], is binary, the borrower's control problem is reduced 

to an 'optimal stopping' problem. At every point in time he can either terminate the game 

(default or prepay) or continue (make the contractual debt service payment). The borrower 

has a clear 'first-mover advantage'. The lender cannot foreclose until the borrower defaults, 
i 

in the absence of a technical default provision. Under these circumstances, D F. The 

lender 'chooses' an optimal strategy in name only. The foreclosure restriction together 

with the absence of a technical default provision means that her actions are completely 

determined for every (s, t) E S x T. 

Consequently we can describe the Markov perfect equilibrium of the game in the case of 

a (finite) term loan, by restricting our attention to the borrower's optimal stopping problem. 

We consider the optimal actions for the borrower to pursue at maturity which determine 

the boundary conditions for his problem. Then we 'step back' through time considering his 

optimal actions until the origination date (t  = 0) is reached. This allows us to describe the 

free boundary conditions in the state space which characterise his rational behaviour. 

At maturity, the borr\ower offers a lump sum payment, P* to offset the outstanding 

balance, P = b(T). Since an offer of P* < P forces foreclosure, his rational offer is 

P* = { 0 for s(T) 5 P 

P for s(T) > P 

'Strategic default or strategic debt service is considered in the next version of the game. 
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t 

So. at maturity there is a single, (lower) termination region, (s, T)  E F if s(T) 5 P. The 

values of the claiiris at T are 
* 

L(s, T )  = rnax (0, s (T)  - 1(s, T ) )  B(s, T )  = 0 for "s(T) 5 P (3.5) 

. . 
L(s, T )  = P B(s ,T)  = s(T)  - P for s (T)  > P (3.6) 

The lower termination region extends back from T to the loan origination date, t = 0. 

Default occurs in this region when the continuation value of the borrower's claim is driven 

to zero. Since default forces foreclosure, the termination values of the claims in this region 

Note that the value of the lender's claim is never less than zero. This follsws from the 

assuinptiou that the lender can abandon the collateral if the foreclosure costs exceed its 

irlarket value. The value of the borrower's claim is also never less than zero since his 

liability under the loan contract is limited to the market value of the collateral. 

The boundary of this region, y(t), is also the lower termination boundary for the game. 

On this boundary the value matching condition for the borrower's problem,. B(g, t )  = 

flR (2, t )  , implies 

B (s, t )  is strictly positive whenever the dividend flow from the exceeds the con- 

tractual debt service flow, d(s, t)  > p, since B- ( s , t )  > 0." (3, t), such that 

d(s, t )  > p, is not an element of the lower default region since it is not rational for the 

borrower to default under these circumstances. 

It is rational for the borrower to continue servicing'the debt when the dividend flow 

from the collateral falls short of the contractual payment flow, d(s, t )  < p, if the ex dividend 

''This is a consequence of the borrower's limited liability under the loan contract. 
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value of his claim is sufficiently large, B- (s, t )  > [ p  - d(s, t)]dt.ll 

Prior to maturity, ~ ( t )  5 b(t) + 1 ( g ,  t),  since there is some finite probability that the 

value of the collateral will recover sufficiently such that B(s, T) > 0.12 Thus, B(s, t )  > 0 for 

s( t  ) < s(O) < b(t) + 1 (s, t) ,  even though the borrower would receive nothing in the event of - 
P 

default and foreclosure. The borrower's default decision problem is similar to the stopping 

faced by -the holder of an American option. In the interval, a(t) < s(t)  < b(t)+l(s, t ) ,  

the 'intrinsic value' of the borrower's claim is zero, but the 'gime value' is positive. 

As we move back in time, sufficiently far away from TI a second termination region 

emerges for sufficiently 'high' values of the collateral if c - r is sufliciently large. This upper 

region has a lower bound, s ( t )  which is also the upper termination boundary for the game.'" 

As the collateral value rises, the probability of default diminishes. The credit spread, c - r ,  

originally set when the collateral value was lower, now seems unwarranted. Faced with the 

prospect of making the high contractual payments for the remai&ng term to maturity of 

the loan cbntract, the borrower will choose to default or prepay the loan if his proceeds 

from doing so exceed the continuation value of l~is 'claim.'~ If the cost incurred by the 

borrower in negotiating a new loan to refinance the outstanding balance, f [b(t)], is less than 

the foreclosure costs, 1 (s, t ), the borrower will prepay the loan instead of defaulting.15 The 

termination values of the claim in this region are 

S I L  (s, t) = b(t) 

' ' T h e  borrower may have other resources to  draw on to  finance the contractual payments in these cir- 
cumstances, or, in the absence of appropriate contractual indentures, the borrower may be able to  issue 
additional claims against the collateral. 

I21n fact, for 'reasonable' parameter values the boundary of the lower default region, g(t) can be significantly 
lower than the outstanding balance, b(t) if there is sufficient time remaining to  maturity. 

I 3 h r  valuation purposes we only consider foreclosure costs of,the linear form, l(s, t )  = lo + lls(t). In this 
case, the upper default region is a compact set for finite term loans, i.e.; there is an upper bound to  the 
region. Since foreclosure costs are monotoniplly increasing in s, at sufficiently high levels of 8, the foreclosure 
costs will exceed the benefits associated with termination in order t o  avoid the seemingly unwarranted credit 
spread. 

14 Since the foreclosure cost are a '&adweight loss' form the point of view of the borrower and lender, a 
clear incentive exists for the parties t o  renegotiate the terms of the contract (the credit spread, in particular) 
as s(t) approaches ~ ( t ) .  Such renegotiation is ruled out here. Prepayment or default are (costly) substitutes 
for renegotiation. In the strategk default version of the game, section 3.1.2, we allow for 'de facto' contract 
renegotiation via the strategic behaviour of the contracting parties. 

15 We assume that refinancing costs are of the form f [b(t)] = fo + flb(t), for valuation purposes: Since 
these costs are not inaeasing in 8 ,  the prepayment region will not have an upper bound. 

%. 
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0 1 1  the boundary of the.upper termination region, the value matching condition, B(3, t )  = 

1ln(T, t ) ,  implies that the foreclosure- or refinancing costs incurred by the borrower in de- 

fault are exactly equal to the present value of the extra cost associated with servicing the 

loan over the remaining term to maturity at the contractual rate c which is now greater 

tllan the fair market rate for the lower default risk.16 The value matching condition may 

be expressed as 

[d(l, t) - p] dt + B- (2, t) = 3(t) - min (1 (8, t) ,  f [b(t)]} - b(t) 

The borrower's optimal strategy is characterized by a termination set which consists 

of two disjoint regions or subsets in.S x T. The continuation region C is then defined by 

s(t)  < s(t)  < s(t) .  - 

We summarize the borrower's optimal stopping problem in the following Bellman equa- 

tion 

where fjB(s, t )  combines the termination values of the borrower's claim in the two termina- 

ti011 regions 

fin (s, t )  = max 0,  s( t )  - min{l(s, t ) ,  f [b(t)]} - b(t)) { 
Fkom the lender's perspective, default does not occur 'soon enough' along the lower 

.9 

terrnhation boundary. The lender would always prefer the borrower to follow a strategy of 

defaulting at  thk last moment the loan could be fully repaid by the liquidated collateral, 

s ( t )  = b(t) + l(5, t) .  The borrower's rational behaviour of timing default so as to maximise - 

the value of his claim, is detrimental to the value of the lender's claim. 

Technical default 

Under appropriate restrictions on the loan parameters, a technical default provision will 

remedy this situation to some extent by allowing the lender to pursue an 'active' foreclosure 
e 

strategy for 'low' values of s. Recall that the technical default provision allows the lender to 

''With sufficiently little time remaining to maturity the cost incurred in servicing the loan at a rate 
greater than the fair market rate for the reduced default risk will be less than the foreclosure costs incurred 
by defaulting. Thus, the upper stopping region and the upper stopping boundary do not extend to T for 
any Y .  
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foreclose whenever s( t)  < b(t). Provided that the credit spread and the contractual payment 

flow are confined to 'reasonable' ranges, the boundary of the technical default region, b(t), 

will lie above the boundary of the lower default region.17 This allows the lender to foreclose 

at levels of s ( t )  above those at which the borrower would choose to default, enhancing the 

value of her claim. l 8  

For ~ ( t )  < s(t)  < b(t), the lender solves the following optimal stopping problem1g 

L(s, t) = max{R1,(s, t )  , pdt + L-(s ,  t ) )  (3.13) 

where the termination value of her claim is 

n,(s, t)  = max{O, ~ ( t )  - l(s, t ))  (3.14) 

Now the value matching condition for the lender on the lower termination boundary of the 

game, ~ ( t ) ,  for some interval [0, t], satisfiesz0 

pdt + L-(g, ( t))  = max{O, s ( t )  - l(s, t)) 

Note that if we change the technical default provision such that the lender may foreclose 

whenever s ( t )  < b(t) + 1 ( s ,  t),  the loan is effectively riskless. The lender always recovers the 

contractual balance in the even6 of foreclosure or prepayment. Since the riskless interest 

rate is assumed to be constant, there is no 'reinvestment risk' if the contract is terminated 

prior to maturity. In this case the lender would be willing to lend $1 at the riskless rate, 

i.e., c = r .  2 1 

Figure 3.1 depicts the strategy space for the terminating default game. We assume that 

prepayment is preferred to terminating default for 'high' values of the collateral. 

1 7 ~ y  reasonable we mean values which are not too large. For example, for a 5 year loan, c - r = 0.03, 
p = 0.1, and l(s, t )  = .15s(t) will suffice. 

''under these conditions, F f D. 
"We assume here that the borrower continues to  offer a debt service flow of p in this region since it lies 

'outside' his lower default region. There is however, an incentive for the borrower to  consider offering debt 
service flows which exceed p in an attempt to  stave off foreclosure if this enhances the value of his claim. We 
allow for this in the strategic default game. 

20The borrower is no longer in control of the termination of the game along the lower termination boundary 
so long as the technical default boundary lies above his lower default boundary. Thus, the lower boundary 
is no longer a 'free boundary' for the borrower. 

2 1  We are able to  generate numerical results, for the case of a teim loan, based on the methods described 
in chapter 5 which are consistent with this observation. 
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Figure 3.1: Strategy space - Terminating Default 

This completes the description of the Markov perfect equilibrium for the terknating 

default game in the case of a term loan. For perpetual loans similar reasoning applies 

except that we simply need to specify the boundaries of D and P in terms of s'for any t ,  as 
' 

these boundaries are invariant with respect t o  t.22 

3.1.2 Strategic default 

We relax the assumption that the lender always forecloses in tihe event of default. Default 

merely 'activates' the lender's foreclosure option. The lender not foreclose if doing so 

does not increase the value of her claim. This allows the borrower to explore the possibility 

of offering the lender a debt service flow which falls short of the contractual payment flow 

aud hence implies default, but does not induce foreclosure. Thusi we tallow for deviations . 
\ 

from the terms of the original contract, or ongoing contract renegotiation. 

We assume that if the lender accepts a debt service offer which is less than the contractual 

payment she surrenders any claim on the unpaid amount. In other words the outstanding 

"1n the case of a perpetual loan, the control problems for the borrower and lender are stationary. 
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balan 1 b( t ) .  is adjusted as if the full contractual payment bad been made. Hence the 

contract is effectively renegotiated, in favour of the borrower, whenever such an offer is 

accepted. We refer to this strategic behaviour on the part of the borrower with respect to 

the debt service flow as strategic default. 

As before we proceed by initially ignoring technical default. In the absence of a tech- 

nical default provision the lender can never foreclose if the borrower offers the contractual 

i~lstantaneous debt service flow, p. Since the continuation value of the borrower's claim is 

strictly decreasing in p* , his debt service offer will never exceed p for t < T.  Similarly, his 

offer at maturity, P*, will not exceed P, the contractual balance a t  maturity. 

We describe the Markov perfect equilibrium for a term loan. At maturity the borrower 

offers a lumpsum payment in lieu of the outstanding balance, P = b(T). The borrower 

offers the smallest payment, P*, which does not provoke foreclosure 

P* = min P, b a x { O ,  s(T) - l(s, T)}} { (3.16) 

This implies a single default region at maturity, (s, T) E D if s(T) F P + 1 (s, T ) . ~ ~  

Consequently the values of the claims at  maturity are 

= max{l(s, T) ,  s(T) - P )  (3.17) 

\) 

For P > s(T)  - 1(s, T )  > 0, the borrower avoids foreclosure by offering the lender an 

amount equal to what she would receive if she liquidated the collateral, s (T) - 1 (s, T). This 

allows the borrower to retain l(s, T), the amount which would be dissipated if foreclosure 

occurred. If s(T) - 1 (s, T) 5 0, the borrower retains s(T),  while the lender receives nothing.24 

Clearly it is never rational for the borrower to provoke foreclosure at  maturity. 

For t < T, the rational strategies of the players are based on similar reasoning. Since 

foreclosure imposes a 'dead-weight' loss on the borrower, he never induces foreclosure along 

the equilibrium path of the game. Similarly, for high collateral values, where prepayment was 

2 3 ~ h i s  default region is not a termination region for the game. 
24We m u m e  here that since the lender has nothing to gain by foreclosing, she does not foreclose. -In 

a setting in which borrowers and lenders have occasion to enter into contracts repeatedly over time, this 
assumption may not be reasonable. Lenders may foreclose with nothing to  gain to temper borrowers' ipcentive 
to behave strategically in future contracts. 
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rational in the terminating default game, the borrower now prefers to avoid the refiriancing 

costs associated with prepayment by engaging in strategic default instead. In other words, 

ongoing debt renegotiation in favour of the borrower is preferred to prepayment. For every 

time interval in the discretized form of the game, there exists a critical instantaneous debt 

service flow, p which leaves the lender indifferent between foreclosing and allowing the loan 

to continue until the start of the next time interval 4. 

$[s(t), t]dt = rnax(0, IIt  (s, t )  - L-(s,' t)) 

where $ I L  ( s ;  t) represents the value of the lender's claim if she forecloses 

0, = min ( b ( t ) ,  max{0, s(t) - I(s, t)}) (3.19) 

To determine this critical level of the instantaneous debt service flow, the borrower 

must take into account the p lue  to the lender of the subgames along which the contract is 

not terminated. The borrower evaluates future payoffs to the lender using the martingale 

equivalent probability measure, Q. 

Suppose at t, s ( t)  is realized. The borrower's opti~cal debt service offer for the next 

interval, dt,  is: 

p*[s(t), t]dt = min{pdt , pdt) 

The continuation values of the claims are again expressed in equations (3.1) and (3.2). 

As we move back in time from T, we observe the emergence of two disjoint default 

regions.25 Within these regions, p*[s(t), t ]  < p. Strategic default, which does not induce 

foreclosure, is preferred to terminating default which terminates the contract. The lender 

is willing to accept debt service flows below the contractual flow since the probability of 

(terminating) default diminishes as s( t)  increases. Unlike the upper termination region in 

the terminating default game, this region extends to T. As the term to maturity declines, 

the lower boundary of the upper default region, S(t), declines as well. With less time 

remaining to maturity, the risk of the collateral value deteriorating before maturity, becomes 
? 

s~naller and the lender is willing to accept progressively smaller debt service flows without 

foreclosing. 

2 6 ~ h e  upper default region only exists if the credit spread, c - r, is positive. 
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Prepayment, if permitted, may"stil1 occur just below the lower bound of the upper 

default region, but at significantly higher levels of c - r than in the terminating default 

game. Again, it may be rational for the borrower to incur the refinancing costs associated 

with prepayment rather than to pay the high credit spread over the remaining term of the 

loan. 

In the lower default region the borrower is able to offer a debt service flow less than 

the contractual flow due to the low collateral value, and consequently, the low value of the 

lender's claim in foreclosure. The presence of foreclosure costs would further reduce the 

value of the lender's claim. This adds to the borrower's ability to 'extract' value from the 

lender." As the term to maturity diminishes, the upper boundary of the lower default set 
5 

increases. With less time remaining to maturity the probability that the collateral value will 

recover diminishes, lowering the ex debt service value of the lender's claim. Progressively 

larger debt service flows are required to keep the lender from foreclosing, 

So, the borrower's choice of the instantaneous debt service flow solves the following 

control problem27 

Technical default 

The presence of a technical default provision alters the borrower's strategy. Assume again 

that the lender can foreclose if s( t)  < b(t), irrespective of the debt service flow offered by 

the borrower. To avoid foreclosure in the technical default region the borrower's offer must 

HOW satisfy 

p*[s(t), t]dt = pdt (3.22) 

Again, if the technical default boundary lies above the boundary of the lower default 

region, ~ ( t )  < b(t), over some range of 10, Tj, the borrower may be able to offer the lender 

26While positive foreclosure costs enhance the scope for strategic default or strategic debt service when the 
collateral value is low, they are not necessary for strategic default. In the absence of foreclosure costs, the 
borrower can avoid foreclosure at low collateral values by offering the lender the entire dividend flow Erom 
the collateral if the dividend flow is less than the contractual debt service flow. From the lender's point of 
view, receiving the dividend &rw is just as good as owning the collateral. Of course, the borrower prefers this 
strategy to inducing foreclosure since there is some positive probability that the collateral value will recover. 

27The borrower now has a continuous control variable, p0[ s ( t ) ,  t] E [O,p] which he chooses at every point 
in time to maximize the value of his claim. 
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I Lower strategic default boundary 

I 

Fippre 3.2: Strategy space - Strategic Default 

5 

debt service flows which exceed the contractual flow to prevent foreclosure whenever s ( t )  

satisfies ~ ( t )  < ~ ( t )  < b ( t ) .  We assume that any offered debt service flow in excess of t 

coritractual flow is not reflected in the contractual balance b( t ) .  The balance continues 4 

be adjusted as if the contractual debt service payments are being made: Thus,the technical f 
default provision allows for renegotiation of the contract in favour of thy lender. 

I 

The case of a perpetual loan is similar except that the boundaries of the default re- 

gions remain unchanged through time as the borrower and lender solve stationary control 

pro blerns. / 

*_ 

Figure 3.2 depicts what the strategy space for the terminating default game. 

This completes the construction of a Markov perfect equilibrium for the strategic default 

game. The most important feature is that strategic default does not provoke foreclosure 

aud the borrower never exercises his prepayment option. This can be interpreted as the 

outcome of the ongoing negotiation process between borrower and lender over the term of 
Q 

the loan. 

The absence of foreclosure along the equilibrium path of the strategic default game is 

troublesome in that it is plainly unrealistic. In reality foreclosure does occur. Anderson 
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atld Sundaresan (1996) obtain foreclosure in equilibrium in some states by assuming that 

debt service flows must be financed by the dividend flow generated by the collateral. This 

implies the following restriction on the borrower's debt service offers T 

p*[s(t), t] E [O, d(s, t)] for all (s, t) E S x T 

Tllis cau be viewed as a simple indenture designed to protect the lender's claim on the 

underlying collateral. I11 the case where the collateral is the assets of a firm, the indenture 

effectively prohibitsthe firm from issuing additional claims on the collateral (debt or equity) 

or sellir~g assets to finance the debt service flow. 

The dividend flow constraint is binding whenever p > d(s, t ) .  In these states it is rational 

for the lender to foreclose. The precise effect of this indenture on the equilibrium strategies 

of the borrower and lender, and hence the location of the foreclosure set in the state space, 
4 

S x T, will depend on assumptions about the dividend flow, d ( ~ , t ) . ~ ~  In cases where the 

cor~straint is binding in some subset of S x T, the effect is to enhance the value of the lender's 

claim at the expense of the borrower. 

7 

3.2 Two state variable games 

111 the terminating default game, any concessions made by either party in the process of 

contract renegotiation are assumed to be irreversible. For example, suppose that, for some 

time, the collateral value deteriorates significantly and the borrower successfully negotiates 

a debt service flow smaller than the contractual flow over this period. However, after this 

period the collateral value recovers such that the terms of the original contract become 

billding once more. The contract does not provide for the lender to recover any of the 

concessions which she made to the borrower over this interval. 

We relax the assumption of irreversible concessions for the lender.29 Now the lender may 

agree to renegotiated terms with the understanding that in the event that circumstances 

reverse themselves, she will have some recourse to recover any concessions which she made. 

In particular, we assume that the loan contract includes an indenture which allows the 

"Of course, if the loan contract were a pure discount note ( p  = O ) ,  the dividend flow constraint would 
have no effect on the strategies of the borrower and lender. A h ,  if the dividend flow were sufficiently large 
the constraint would never binding 

"We continue to ass;me that any concessions made by the borrower, such as offering p* > p, in the 
technical default region are irreversible. 
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lender to add outstanding debt-service payments, which originate from concessions made, 

to the contractual loan balance. Furthermore, the contract may provide for a 'penalty' rate 

of interest to be applied to these outstanding amounts. The purpose of this feature of the 

contract is to temper the borrower's incentive to service the debt strategically, increasing 

the value of the lender's position. The lender has a claim to these outstanding payments at  

maturity or at the time that default or foreclosure occurs. 

3.2.1 Penalized default 

We model the behaviour of the borrower and lender within this revised negotiating environ- 

ment by developing a game in which past play has a bearing on the current actions chosen 

by the borrower and the lender. Let k(t) represent the balance of outstanding debt service 

payments at t. Over the time interval dt, the change in this balance is given by equation 2.6 

on page 9. 

We retain the Markov property of the games to be described by assuming that the current 

values of s ,  k and t embody all relevant information upon which the current actions of the 

borrower and lender are based. So, at any point in time the state of the game is determined 

by the current values of the state variables, s(t) and k!(t), and the current actions of the 

borrower and lender. In particular the borrower's choice of the instantaneous debt service 
8 

flow can be expressed as p* [s (t),  k(t), t]. 

For a term loan, the state space is noy S x K x T, where K r [0, K]. K represents 

the inaximum value of outstanding debt service payments which can accumulate over the 

term of the loan." Strategies are described by the location of the closed sets Dl F and P in 

S x K x T .  

In discretized form, the value of the claims in C are 

L(s ,  k, t )  = p*[s(t), k(t), t]dt + E? [ ~ ( s  + ds, k + dk, t + dt)] e-rdt 

B(s, k, t )  = d(s, t) - p*[s(t), k(t), t]] dt + E? [ ~ ( s  + ds, k + dk, t + dt)] e-rdt [ 
3 0 ~ f  the borrower does not make any payments over the term of the loan, and the loan survives to maturity, 

the value of the outstanding debt service flow at maturity is K = max k(T) = p/w(ewT - 1). 
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= [d(s, t )  - p*[s(t), k(t), t]] dt + B-(s, k, t )  (3.24) 

By the arbitrage arguments which apply in our complete markets setting, L(s, k, t) 

, and B(s,  k: t ) rnust satisfy the following stochastic partial differential equations in C when 

dt -t 03' 

We consider two versions of the foreclosure 'rule'. First, we assume the loan contract 

stipulates that the lender can only foreclose in the event of current default. Any past action 

by the borrower which constituted default at  that time cannot be invoked for the purpose of 

foreclosure at the present time. In other words, the lender has the opportunity to foreclose 

at the t i~ne default occurs, but not thereafter.32 Hence the lender accepts the renegotiated 

terms of the contract, for'the next time interval if she chooses to* accept a debt service 

flow which falls short of t&e contractual flow. This is identical to the foreclosure rule in 

the strategic default game. However, unlike the strategic default gape, the lender does 
k 

not 'forget' the default in the sense that the contract allows her to add the outstanding 

debt service payments, k(t), to her claim on the collateral. We refer to this version of the 

foreclosure rule w.the 'current default' foreclosure rule. 

The second version of the default rule considered allows, the lender to foreclose at any 

time, t, if k(t) > 0. The borrower must restore the balance of outstanding debt service flows, 

k ( t )  = 0, in order to 'deactivate' the lender's foreclosure option. We refer to this version of 

the foreclosure rule as the 'outstanding payment' foreclosure rule. 

We proceed, again, by ignoring technical default for the moment. At maturity, the \ 

borrower offers a lump sum payment 

This implies a single default region at maturity, (s, T )  E D if s(T) 5 P + k(T) + l(s, T). 

The values of the claims at maturity are 

31The arguments of the functions are suppressed in these equations. 
32 Unless, of course, default occurs at a later time again. 
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= m ~ { a ( s ,  T), S(T) - P - I~(T))  (3.28) 

For t < T,  the critical debt service flow which leaves the lender indifferent between 

foreclosing and allowing the loan to continue is 

I! 
@[s(t),k(t),t]dt = max O,flL(s,k,t) - L-(s,k, t)} (3.29) ' 

where. the foreclosure value of the lender% claim is 

Under the 'current default' rule, the lender cannot foreclose if p* 2 p, whereas under the 

outstanding balance rule the lender cannot foreclose if k(t) = 0. 

We state the borrower's optimal control Jroblem as 

The presence of a second state variable complicates the analysis of the rational behaviour 

of the borrower, for t < T, considerably. The continuation value of the borrower's claim 

(equation 3.24) is no longer monotonically decreasing in the instantaneous debt service flow -. 
offered, p*. A 'low' debt service flow offer allows the borrower to retain a greater share of the 

dividend flow, increasing, ceteris paribus, the value of his claim. At the same time, however, 

the instantaneous rate of growth in k(t) increases by the difference between the contractual 

flow &d the offered flow, which' lowers the ex-dividend value of his claim.33 ~ h u s ,  we 

can no longer assert that the borrower will always make the smallest offer which prevents 

foreclosure. Unlike the strategic default game it may now be rational for the,borrower to 

engage in terminating default or prepayment or to induce foreclosure, even in the absence of 

a dividend flow constraint or other constraints on his debt service strategy. Consequently, 

in the absence of assumptions about the values of the parameters which define the precise 

3 3 ~ t  is possible for there to be more than one level of the debt service flow over the next @terval.which 
maximizes the value of the borrower's claim. In such cases we assume that the borrower makes the lowest 
offer. 
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B 

nature of the loan contract, general propositions about the strategies of the borrower and 

lender are not forthcoming. 

However, some observations can be made. For collateral values signdicantly higher than 

b ( t )  + k ( t )  there is a high probability that the collateral value will be greater than P + k(T) 

at maturity. At these high collateral values the borrower will not choose to offer p* < p 

as this would increase the amount owing at  maturity. Thus a debt service offer lower than 

the contractual flow, if it is accepted by the lender, does not constitute renegotiation of the 

contract in favour of the borrower. In fact, if interest accrues at  a 'penal' rate, w > c, on 

the outstanding debt service flows, then renegotiation of this kind favours the lender! 

We defer further remarks pertaining to the properties of this version of the renegotiation 

game to the next chapter where we employ numerical methods to glean further insights. 



Chapter 4 

Analytical results 

We consider the effects of the behaviour described in chapter 3 on the values of the claims 

of the borrower and lender, and the debt servicing strategies which emerge. 

To facilitate valuation we make a number of 'time independence' assumptions which 

improve the tractability of the analysis. First, we assume that the instantaneous drift in 

the collateral value is time independent, a ( s ,  t) = as( t )  
I 

Furthermore we assume that the dividend flow generated by the collateral, loan refi- 

i~ancing costs and bankruptcy costs are independent of time and are homogeneous of degree 

oue in their remaining arguments; d(sl t )  = dl s, f (6) = f 1 b and 1 (s, t) = 1 TlLiS allows the 

solutions obtained for L(s, t) and B(s,  t) to be interpreted as the values of the agents' claims 

per dollar of credit extended at the contract origination date. These values are independent 

of loan scale aud s(t)  may be interpreted as the collateral value per dollar of credit iritially 

extended. 

Analytical solutions to the linked partial differential equations (3.3), (3.4), (3.25) and 

(3.26) are generally not available. However, imposing either one of two additional assump- 
_ C tioils does yield solutions if we ignore indentures such as prepayment, technical default and 

dividend constraints. 
f First, if the contracting agents are restricted to exercising their options at  the contract 

maturity date only, then optimal exercise policies are described by single critical values of the 

collateral at  maturity. The values of agents' positions are then easily determined. Second, if 
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the contract does not have a maturity date (the loan is perpetual), then the strategies of the 

borrower and lender are invariant with respect to time, and can be described by corbtant 

critical ,values of the collateral. Again, some solutions are forthcoming. 

In chapter 5 we relax these assumptioils. We employ a finite difference procedure which . 

allows us to consider cases in which the options available to the contracting parties may be 

rationally exercised prior to maturity. This numerical framework also allows us to consider 

the effects of prepayment and technical default options and dividend constraints which are 

often contained within the set of indentures in actual loan contracts. 

We consider a number of stylized loan contracts. 

4.1 Pure discount loans 

Since a discount loan specifies a single contractual payment a t  T ,  the borrower will not 

rationally default at 'low' values of s prior to T.  In the absence of regular debt service 

payments, the value of the borrower's claim can never fall below zero, even as s(t)  + 0. 

However, if the credit spread c - r is sufficiently large, it may be rational for the borrower 

to default at 'high' collateral values for the reasons described in section 3.1.1.' In order to 

obtain closed from expressions for L(s, 0) and B(s, 0 ) ,  we d o w  the borrower to exercise his 

'high default' option at  maturity only. 

4.1.1 Terminating default 

Given the assumptions with respect to the contract parameters and the constraints on the 

behaviour of the contracting parties, we now restate (3.6), the value of the lender's claim 

and the borrower's claim at  maturity 

max (0, (1 - ll)s(T)) for s(T)  < P 
L(s ,T)  = 

for s(T) > P 

B(s ,T)  = max (0, s(T) - P )  

The values of these claims at  t -- 0 are stated in the following proposition 

'If the foreclosure costs are sufficiently large, it would not be rational for the borrower to exercise his 
'upper default' option for a given credit spread. For example, if 11 = 1, the borrower will never default prior 
to maturity for any s ( t )  and any c - r, in the case of a pure discount bond. 
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Proposition 1 If t h e 4 o ~ o w e r  and lender play the terminating default game, foreclosure 

costs and dividend flows are proportional to the collateral value, and there are no debt service 

payments over the term of the loan, then the loan value is 

while the value of the borrower's claim is 

. B(s ,  0) = s(0)(1 - e-*) + c (s, T ;  P )  

where c(s, T ;  P )  is the value of a European call option on the collateral with ezpiry date T 

and exercise price equal to P, and c(s, T; P )  is the value of a European 'digital' call option 

with the same 

Proof of the proposition is in appendix A.2. The value of the lender's cfaim is simply the 

'after foreclosure cost' value of the collateral 'stripped' of its dividend flow, net of the value 

of the borrower's call option on the collateral, plus the value of a digital call option on 

the collateral. This option appears in the value function due to the dis~ontinuity~in the 

lender's payoff at maturity if 11 > 0. The value of the borrower's cl&m is simply the sum 

of a European call option on the collateral and the present value of the dividend stream 

generated by the collateral over the term of the loan. 

The expected present value of the foreclosure costs, F(s ,  0) = s(0) - B(s,  0) - L(s, 0), is 

F(s, 0) = 1 ,  s(0)e-" - c(s, T;  P) - P E ( ~ ,  T; P)]-  [ (4.2) 

In the absence of foreclosure costs, F(s, 0) = 0, which implies that the sum of the claims 

equals the market value of the collateral. 

.4.1.2 Strategic .default 

The values of the lender's claim and the borrower's claim at maturity (3.17) are now 

L(s, T )  = min {P, (1 - ll)s(T)) 

B(s, T) = max { l l s ( T ) ,  s(T) - P) 
2 A European digital option pays at maturity, one unit of currency if it is in-the-money, and pays zero 

otherwise. This option appears in the value function due to the discontinuity in.the lender's payoff at 
maturity if 1 1  > 0. 
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The rational borrower will engage in strategic default for s (T)  5 Pl (1 -  l l ) ,  offering the 

lender a payment of (1 - 1 )s ( T ) .  

Proposition 2 If the borrower and lender play the strateyic default game, bankruptcy costs 

and dividend flows are proportional to the collateral value, and there are no debt sewace 

payments over the temn of the loan, then the loan value is 

while the value of the bomwer 's  claim is 

where c ( s ,  T ;  Pl (1  - 1,  ) )  is the value of a European call option on the collateral wath ezpiry 

date T  and exercise price equal to P l ( 1  - 1 1 )  

Proof of the proposition is in appendix A.2. The value of the loan or the lender's claim is 

simply the 'after foreclosure cost' value of the collateral 'stripped' of its dividend flow, less 

the value of the borrower's call option on the collateral. Note that the value of claims sum 

to the value of the collateral 

The borrower's strategic behaviour ensures that foreclosure never occurs. Hence, F (s ,  0) = 

0. 

4.1.3 Penalized default 

Since the contract calls for a single payment at maturity, the penalized default game collapses 

to the strategic default game. Any shortfall between the borrower's offered payment, P* 

and the contractual balance, P ,  is immediately due in the form of outstanding debt service 

payments, k(T)  = P - P*. Thus the borrower offers 

P* = min P, max{O, (1 - l ~ ) s ( ~ ) } }  I 
This is the same offer made in the strategic default game. Consequently the values of the 

claims at maturity are identical to the corresponding values in the strategic default game. 

The same applies to the values of the claims at  t = 0. 
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4.2 Term loans with debt service payments 

We continue to assume that the borrower can only exercise his default options at  maturity. 

Similarly, the lender can only foreclose at maturity. Hence, the loan continues to maturity 

with certainty.3 

4.2.1 Terminating default 

The terminal values of the claims, L(s, T) and B(s,  T),  are identical to those in section 4.1.1. 

The values of the claims at t = 0 are 

Proposition 3 If the borrower and lender play the terminating default game, foreclosure 

costs and dividend flows are proportional to the collateral value, contractual payment flows 

are constant at p, and default cannot occur prior to matarity, then the loan value is 

L(s, 0 )  = (1 - 1 , )  [ s ( ~ ) e - ~  - c (s, T ;  P)] + (1 - eerT)  + lIPC(s, Ti P) 
r 

while the value of the bomwer's claim is 

where c (s ,  T; P )  is the value of a European call option on the collateral with ezpf'ry date T 

and exercise price equal to P ,  and C(s, T ;  P) is the value of a European 'digital' call optdon 

with the same terms. 

The values of the claims are identical to those in section 4.1.1 except for the presence of 

the present value of the debt service payments to be made over the term of the loan. There 

is no change in the expected foreclosure costs at the loan origination date F(s ,  0). 

4.2.2 Strategic default 

L(s, T) and B(s, T) are identical to the expressions in section 4.1.2. L(s ,  0) and B(s ,  0) differ 

from the expressions in propostion 2 only due to the presence of the debt service payments 

3Rest~icting the default options of the borrower in this fashion implies that the borrower always offers the 
lender the full contractual debt service payments, even if this means that the value of his claim is negative! 
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Proposition 4 If the borrower a7~d lender play the strut'egic default game, foreclosure costs 

u71d dividend flows are proportional to the collateral value, contractual payment flows are 

curlstant at p ,  and default cannot occur prior to maturity, then the loan value is 

while the value of the borrower's claim is  

where c (s, T ;  P l ( 1  - 1 1 ) )  is  the value of a European call option on the collateral with ezpirgr 

date T and exercise price equal to P l ( 1  - 1 , )  

As in section 4.1.2, F(s, 0) = 0. 

4.2.3 Penalized default 

Since the behaviour of the contracting parties is constrained such that default and forecle 

sure ma;l only occur at maturity, the penalized default game is indistinguishable from the 

strategic default game. 

4.3 Perpetual loans 

Consider a perpetual loan with contractual coupon rate c applied to a notional principle 

P. This implies a continuous stream of contractual payments p = cP. Since the dividend 

flow and the Markov process followed by s are assumed to be time independent, the s t ra te  

gies employed by the borrower and lender are stationary. The (current) value functions 

L(s, t )  and B(s,  t )  are independent of time, and the exercise policies can be characterized 

as constant critical- or 'trigger' values of s at  which the default options of the borrower 

and the foreclosure option of the lender are exercised. This time independence also implies 

that L t ( s ,  t )  and Bt(s, t )  are zero in the partial differential equations (3.3)' (3.4), (3.25) and 

(3.26). Hence we are left with ordinary differential equations for which analytical solutions 

may be determined under appropriate assumptions. In particular, if we restrict the b e  

haviour of the borrower suchrthat he. only defaults in either the lower or the upper default 

region, then closed form solutions for B(s, 0) and L(s ,  0) are forthcoming. Allowing default 

in both regions yields boundary conditions for the control problems which result in a pair 
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of simultaneous quadratic equations in the optimal default levels of the collateral, g and S 

that would require numerical solution for particuiar parameter values. 
- 

tL 

4.3.1 Terminating default 

.Jones (1995) presents analytical results under similar assumptions to those specified in the 

terminating default game. Constraining the borrower's behaviour such that default only 

occurs in the lower default region, he demonstrates that the value of the collateral which 

triggers default by the borrower, is strictly less than value of the remaining contractual 

payments capitalized at  the risk-free rate of interest, 9 < p / r  (Jones, 1995, p.12). This is 

in accordance with our assertion that from the lender's perspective rational default by the 

borrower occurs at  values of s ( t )  which are 'too low'. Jones (1995) also observes that the 

value of the loan or the lender's claim is decreasing in p in the vicinity of the default region. 

"There is thus a positive incentive for the lender to offer permanently reduced payments 

if default is imminent, ..." (Jones, 1995, p. 13). It is precisely this willingness to accept 

reduced payments in certain states which makes strategic default by the borrower possible. 

4.3.2 Strategic default 

Anderson, Sundaresan and Tychon (1996) provide analytical results for a perpetual loan 

contract within the context of the strategic default game with constant bankruptcy costs. 

By assuming a negative credit spread, c - r < 0, the borrower's optimal default strategy is 

characterized by a single lower default region and hence closed form solutions for the claim 

values, the critical level of the collateral value, 5, below which strategic default occurs, and 

the strategic debt service payment flow p*, are forthcoming. They find that the critical 

value of s is smaller than the notional principal, 3 < P, and that the strategic debt service 

payments offered are a small fraction of the contractual payments. 

While closed form solutions are not forthcoming when c - r > 0, it is possible to find 

closed form expressions for the strategic debt service flows in the default regions without 

solving for the boundaries of these regions explicitly. 

Proposition 5 Strategic default will occur in the case of a perpetual, interest-only loan with 

a constant, instantaneous payment flow p = cP, and collateral paying constant proportional 

dividends d l  at sufic4ently low levels of the collateral value, 5 and at suficiently high levels 

of the collateral value, i? if c - r > 0, with strategic debt service payments of 
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(1 - 1)sdl for s 5 5 

for s 2 5 

If c - r < 0 there will be a sangle lower strategic default boundary with stmtegic debt ser ' ~ e  

payments of 

p*(s) = (1 - l)sdl for s 5 

Proof of the proposition is in appendix A.3. 

4.3.3 - Penalized default 

In the context of a perpetual loan, the indenture which allows the lender to apply a (penalty) 

rate of interest to outsta~iding debt service payments has no effect on the behaviour of the 

contracting parties in the absence of a technical default provision.4 There exists no way for 

the lerlder to recoup oustanding payments. Hence the penalized default game will p;oduce 

the same behaviour as in the strategic default game. 

4.4 The limits to lending 

In the case of a pure discount loan, when foreclosure costs and dividend flows are absent, 

the supply of credit is limited to 

for a given credit spread, c - r ,  when the borrower and lender play the terminating default 

game. This follows from proposition 1. 

Consider what happens as the contractual rate c, rises. The principal due at maturity, 

P, increases. Consequently the probability of default at maturity increases. In other words, 

the probability of the call option on the collateral being 'in the money' at  maturity declines, 

4The presence of a technical default provision effectively tempers the borrower's incentive to  engage in 
strategic default. Whenever the borrower engages in strategic default, the balance of outstanding debt service 
payments, k, increases. This increases the upper boundary of the technical default region, increasing the 
probability of technical default at some time in the future. When the lender exercises her technical default 
option a t  t ,  she has a claim to b ( t )  + k(t). Thus, the greater the extent to which the borrower indulges in 
strategic default, the greater the probability of technical default at  ever increasing levels of 8.  
C 
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a i d  hence the value of this option at  the loan origination date declines. It is clear that as 

c - 7. -+ 00, C ( S ,  T; P) + 0, and, LCs, 0) + s. The same reasoning produces the same result 

in the strategic default game (proposition 2).  In fact, this result applies to all forms of loan 

coiltracts under any assumptions about the rational strategic behaviour of the contracting 

parties. 

In the absence of dividend flows and foreclosure costs, the ratiorial lender will lend the full 

lrlarket value of the collateral, if offered a sufficiently high contractual interest rate. With a 

sufficiently high rate, default by the borrower occurs with certainty. The lender is effectively 

purchasing the collateral. With zero bankruptcy costs, the full value of the collateral ,is 

preserved in the foreclosure process. Zero dividend flows imply that the borrower cannot 

'extract' value from the collateral. This insight is due to Jones (1995) which we summarize 

" in the following proposition 

Proposition 6 (Jones, 1995, p. 10) If there are no bankruptcy costs and no dividend flows 

frurrt the collateral, then the supply of credit approaches the collateral value as the wntmctual  

Iuun rate nppruuches oo. That is 

lim L(s,O) = s 
C-r -+a2 

Corrsider, again, the supply of credit in the case of the pure discount loan under the 

assurnptiolls of the terminating default game. With a positive dividend flow, d l ,  and no 

foreclosure costs, the supply of credit is limited to 

L(s, 0) = s ( ~ ) e - ~  - c (s, T ;  P )  (4-6) 

for a given credit spread, c - r. Now, as c - r + oo, L(s,0) + s(0)e-O. Allowing for 

positive foreclosure cost as well, implies that L(s, 0) + (1 - 1 , ) s ( ~ ) e - ~  as c - r -+ oo. 
The same result is forthcoming in the strategic default game. The following proposition 

summarizes 

Proposition 7 If dividend flows and foreclosure costs are proportional to the collateral 

value, the supply of credat under pure diswunt loans is limited to 
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In general we assert that for any type of loan contract, in this world of symmetric 

information, credit will only be 'rationed' to less than the full market vdue of the collateral 

if foreclosure costs are positive and/or the collateral generates a dividend flow. The upper 

bound on the amqunt of credit a rational lender would extend is strictly less than the 

collateral value, no matter how high the contractual interest rate specified in the loan 

contract. Note as well that the amount of credit extended is independent of the objective 

expected rate of capital appreciation in the collateral. 

4.5 Contract design i ---- 
A contract which allows the borrower and lender to engage in the strategic default game 

is efficient in the sense that there is no deadweight loss due to foreclosure. However, the 
Bi 

terminating default game yields a higher value for the lender's claim a t  t = 0, if I I  > 0, and 
4 -'. hence implies that a greater amount of credit will be extended for any given credit spread. 

Of course, the increase in value to the lender moving from the strategic default game to 

the terminating default game comes at the expense of the borrower. However, the borrower 

may be willing to enter i n b  a contract which tempers his incentive to engage in strategic 

default and lowers the value of his claim, if it means that his project is funded. 

In section 3.2.1 we suggested that the penalized default game might be effective in 

rni tigating credit rationing. However, given the constraints imposed on the behaviour of 

the contracting parties here for the sake of generating analytical solutions, the penalized 

default game 'collapses' into the strategic default game for all the loan contracts considered. 

To assess the effectiveness of penalized default in mitigating credit rationing we must relax 

these constraints. To this end, we employ a numerical approach to finding solutions in the 

riex t chapter . 

While our analytical results are based on restrictive assumptiuns about the behaviour 

of the contracting parties, a number of important insights are forthcoming. Two are of 

particular interest. (1) Positive dividend flows from the collateral or positive foreclosure 

costs are necessary and suflicient for the existence of credit rationing as we have defined it. 

(2) Strategic debt service, while it reduces the value of the lender's claim, ceteris paribus, 

is efficient in that it removes the possibility of foreclosure and hence avoids the deadweight 

costs associated with foreclosure. 
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Numerical results 

For loam of finite maturity with regular debt service payments, the critical levels of s at  

which terminating or strategic default occurs vary with the remaining time to maturity of 

$he loan contract. Analytical solutions for these levels of s are not available. Instead, we 

:ernploy a finite difference procedure to approximate the functions which satisfy the partial 

differential equations for representative cases or boundary conditions. The state space is 

represented by a discrete grid of s and t (and k in the two state variable case) values. A 

solution is a set of L and B values for these gridpoints, together with an indication whether 

each point is in one or more of the termination regions (e.g. F). Working 'backwards' 

from maturity, T, the pde's ar@lved7 for each time step using a Crank-Nicholson discrete 

approximation for the partial derivatives. At each time step the values of the agents' posi- 

tions are checked to determine whether these values could be increased by exercising options 

available to the agents at  that time.' Listings of the FORTRAN code used to implement 

the Crank-Nicholson algorithm are in appendix E.2 This approach allows us to consider 

the full range of contractual indentures simultaneously. We have two objectives. First, we 

attempt to establish whether the propositions in chapter 4 apply in the case of term loans 

with debt service payments. Secondly, we explore the impact of the varbus indentures on 

credit rationing and the expected foreclosure costs at  the origination date of the contract. 

'See Hull(1997) and Wilmott et a1 (1993) for accessible treatments of the Crank-Nicholson finite difference 
method. 

'A routine written by Prof. R. A .  Jones which implements the Crank-Nicholson algorithm in Jones (1995) 
is included. 
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5.1 Effects of the loan parameters 

Appendix B illustrates how L(s, 0), B(s ,  0), F (s ,  0) and the loan to value ratio, L%Load, 

change as we alter various loan parameters. %Loan is the contractual value of the loan, 
- 

$1, as a proportion of the minimum collateral value for which L(s, 0) = 1 at the given 

contractual rate. The details of the benchmark contract, a pure discount loan, are specified 

on page 64.3 Note that we assume that foreclosure costs are 10% of the valui of the collateral 

at the time that foreclosure occurs." 

In the tables, panels labeled (a) and (c) report results for the terminating default game, 

while panels labeled (b) and (d) report results for the strategic default game. We report 

results based on two assumptions regarding the borrower's strategic behaviour. In panels 

labeled (a) and (c) the borrower is denied the opportunity to exercise his terminating default 

option in the upper default region. In panels labeled (b) and (d) the borrower is free to 

exercise his terminating default option in both upper- and lower regions. 

Table (i) demonstrates how higher dividend rates generated by the collateral (without 

commensurate increases in the contractual payment flows) reduce the willingness to lend 

against given collateral. Since the results are identical for the two versions of the terminating 

default game, we report a single panel for (a) and (c). Similarly, we report a 

for (b) and (d).5 Note that the willingness to lend is greater in the termin 

games thau in the strategic default games. This is consistent with propositions 1 and 2 

in chapter 4. Also, since foreclosure never occurs in the strategic default games, expected 

foreclosure costs at the loan origination date are zero. 

Table (ii) reveals the negative effect of increasing foreclosure costs on the willingness to 

lend. In both games t,he presence of an upper terminating default region only matters when 

foreclosure costs are zero. In this case the willingness to lend is greater when the borrower is 

denied the option of terminating default in the upper region. There is an initial increase in 

the willingness to lend as 1,  rises above zero. This is due to the decline in terminating default 
. 

in this upper region. As 1 ,  continues to increase the willhigness to lend declines. The effect 

of increasing foreclosure costs is more pronounced in the case of the strategic default games 
3 We consider a pure discount loan so that our results may be compared to the propositions in section 4.1. 
4 ~ e  include foreclosure costs in our benchmark contract so that we can contrast the  effects of variations 

in the loan parameters in both the terminating default game and the strategic default game. In the absence 
of foreclosure costs, the equilibria of these games 'converge'. 

'For the term of the loan, T = 5, and the foreclosure costs 1 I = 0.1, a uedit spread below 0.06 does not 
induce the borrower to rationally exercise his terminating default option in the upper default region. , 
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than ill the terminating default games. Table (iii) shows the negative impact of t& loan BB 

term. while table (iv) reveals the negative impact of increased uncertainty about thefuture 

value of the collateral. Table (v) indicates that larger payment flows, which imply faster 

amortization, increase willingness to lend. Table (vi) makes the important observation that 

the amount of credit extended, expressed as a proportion of the initial coflateral value, is - 
not affected by the level of the risk free interest rate, r. Under the risk-adjusted probability 

~neasure, &. the expected rate of return on all assets is equal to T . ~  

Tables (vii)-(ix) reveal properties of the 'supply curve' for   red it.^ In table (vii) with 

1 ,  = 0. the credit supply curve slopes 'upward' for all cases, (a)-(d). In the absence of 

foreclosure costs there is no difference between the results generated by the terminating 

default games and the strategic default games. There is, however, a significant difference 

between the games which permit terminating default in the upper default region, (c) and 

(d). and those that do not, (a) and (b). The willingness to lend is significantly greater in 

the case of the latter games. In cases (c) and (d) the borrower exercises his terminating 

default optioli costlessly in the upper region, restricting the value of the of the lender's claim 

to tile co~ltractual balance, b(t), at every point in time. In cases (a) and (b) the value of 

the lender's claim exceeds b(t) for 'high' values of s since the borrower cannot exercise his 

teri~irlating default option. 

In table (viii), with 1 ,  = 0.1, we contiriue to observe that, when terminating default in 

the upper region is not allowed, the willirlgness to lend is greater, albeit much less so, in . 

the terminating default game (a) than in the strategic default game (b). The same result 

does rwt hold in @he cases where upper terminating default is permitted. For c - T < 0.06, 

the willirlgrless to lend is greater in the terminating default game (c), but for c - T > 0.06 

it is greater for the strategic default game. For credit spreads greater than or equal to 0.06 

upper termir~ating default is rational for sufficiently high values of s. This default occurs 

more frequently in the terminating default game than in the strategic default game where 

the borrower has the addi ' nal option of strategic d e f a ~ l t . ~  In table (ix) we observe a 

'backward bending' suppl k" curve for credit in the terminating default games.g Foreclosure 
/ 

costs are sflciently onerous such that terminating default never occurs in the strategic 

6 ~ n  increase in r may reduce the market value of the collateral which would lead to a decline in the 
absolute amount of credit that would be extended. 

' B ~  supply curve we mean the required credit spread, c - r as a function of the loan amount. 
'compare the values for F(s,O) in (c) and (d). 
9 A backward bending supply curve was never observed in the strategic default game. 
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default games. 

5.2 Rational default and foreclosure st rat egies 

5.2.1 Interest-only loans 

Appendix C.l (page 71) reports results for an experiment designed to illustrate proposition 5 
\ 

in chapter 4. We use a long term loan (T = 50 years) to approximate the perpetual loan.1•‹ 

We ignore technical default and prepayment here. The 50 year term is divided into 500 

intervals of length, dt = 0.1. At the contractual rate, c = 0.08, the contractual payments 

are pdt = 0.008 per time interval. The contractual payments only cover the interest on the 

principal. The principal remains P = 1 over the term of the loan. The contracting parties 

play the strategic defadt game. 

The first panel of table 1 displays the value of the lender's claim, L(s, t). -The second 
d 

panel displays the value of the borrower's claim, B(s ,  t), while the third panel displays the 

debt service payments. At t = 50, the boundary of the upper strategic default region lies in 

the interval 1.85 < S < 1.90. In the debt service payments table, we see that the payments 

offered by the borrower are less than the contractual amount for s > 1.85. The boundary of 

the upper default region, 3, remains in this interval for the first 35 years of the loan term. 

Thereafter s declines with the declining term to maturity.' Within the upper default region 

the debt service payments offered by the borrower reach a minimum of 0.005 which amounts 

to a return on the principal equal to the risk free interest rate of 0.05% per annum. The 

value of the lender's claim is always equal to the~principal ($1) in the upper default region. 

The boundary of the lower strategic default region, 2, lies in the interval 0.70 < g < 0.75 

over the entire term of the loan. For s 5 0.6 the payments offered by the borrower are 

p*dt = (1 - 1 ,)dl sdt. Thus, in both default regions, the strategic payments offered by the 

borrower converge to the levels for a perpetual loan determined in proposition 5. 

'O~he  parameter values used to generate the tables in appendix C. l  are presented on page 71. 
"In the case of a perpetual loan, the boundaries of the upper and lower default regions remain unchanged. 

See section 4.3.2. 
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5.2.2 Partially arnort izing loans 

Appendix C.2 reports results of experiments conducted under the assumptions specified 

ill chapter 3 for 'representative' parameter  value^.'^ Tables 1 - 10 display numerically 

obtained values for L ( s ,  t )  and B(s ,  t ) ,  identifying the regions of S x T or S x K x T, where 
.f.9 the various options,' available to the contracting parties are exercised. When these regions 

overlap, terminating default takes precedence over foreclosure due to a binding dividend 

flow corstraint, over foreclosure due to technical default. Tables 1-3 report results for 

the terminating default game described in section 3.1.1. In table 1 we observe the lower 

t,erminating default region indicated by '*'. There no prepayment option here, and given 

the credit spread c - r = 0.03, the upper terminating default region is not visible in the 

subset of S x T dis~layed. '~  

Table 2 allows for prepayment and technical default. We now observe an upper termina- 

tion region (the prepayment region) identified by '+'. This prepayment region disappears 

well before maturity, T. With little time remaining to maturity, the cost of paying a now 

ullwarranted high interest rate over the remaining term, falls short of the cost of refinancing 

the loan. The lower terminating default region lies well below the region of technical default 

when there remains a significant period of time until maturity, T. The borrower must have 

substantial negative equity before rationally defaulting if time remains for the collateral 

value to recover. This region is also larger in table 2 than in table 1, i.e. terminating de- 

fault occurs at higher values of s in table 2 than in table 1, save for a curious 'dip' in the 
% 

default region over the interval t = 1 to t = .5. This serves as an example of the complex 

effects of contractual indentures, such as technical default, on the rational behaviour of the 

contracting parties. 

Of course, all of this is moot. The borrower never gets to exercise this terminating 

default option since the lender preempts him by foreclosing along the boundary of the 

technical default region. This foreclosure is indicated by ':'. States in which the lender 

does not exercise her technical default option, even though the technical default condition 

is satisfied, are identified by '-'. 
The presence of the prepayment provision reduces the value of L for 'high' values of s 

 he parameter values used to generate the tables in appendix C.2 are presented on page 71. The results 
are based on a time interval of dt r .0208 years. The contractual debt service payment over a single interval 
is pdt r .0021. 

I31n fact, for this credit spread, term of the loan, T = 5 years and magnitude of the foreclosure costs, 
11 = 0.1, there is no upper default region for any (s, t ) .  
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compared to the corresponding values in table 1, while L is higher for 'low' values of s in 

table 2 than the corresponding values in table 1 due to the-presence of the technical default 

provision. I 

For tables 1 and 2 the combined value of B and L approaches (1 - l l )s( t)  as s( t )  + 0, 

approaches s ( t )  - f l  b(t) as s(t)  + oo when prepayment is a viable option (the prepayment a 

region of table 2) and approaches s(t)  outside of the prepayment region. The value of the 

positions of all parties to the contract, including bankruptcy trustees in the event of default 

or fo'reclosure, arid new lenders in the event of prepayment, is conserved and sums to s(t). 

Table 3 allows for a dividend flow constraint in addition to prepayment and technical 

default. Foreclosure due to techr~ical default in table 2 is now replaced by foreclosure due 

to the binding cash flow constraint, indicated by '#'. Furthermore, the dividend constraint 

yields foreclosure in some states in which it was not possible for the lender to foreclose 

in table 2. For example, at  (s , t )  = (0.95,2.0) the lender forecloses in table 3 since the 

dividend flow off the collateral is insufficient to cover the contractual payment flow.14 In 

table 2, however, the borrower is not constrained to service the debt out of the dividend 

flows, a i d  consequently does not default. 

The dividend constraint has a significant effect on the borrower's lower terminating 

default region, and on the borrower's rational prepayment strategy. The borrower now 

prepays at lower levels of s over the interval 4 years to maturity (t  = 4) to .5 years to 

maturity ( t  = 0.5).15 Over the interval, t = 1 to t = 0.5 the prepayment region has an 

upper bound.16 Here the borrower is not prepaying due to a suddenly unreasonable credit 

sprea;d, he is prepaying to avoid the ever increasing likelihood that the dividend constraint 

will become binding and that the lender will foreclose. The refinancing costs are significantly 

less than the foreclosure costs that would be imposed on him a t  these levels of s. The 

lower terminating default region has expanded to extend to the boundary of the foreclosure 

region. The dividend constraint lowers the value of the borrower's claim far 'low' values of 

s and hence increases the region in which terminating default is rational. Again, however, 

terminating default does not occur in this game as the borrower is always pr-pted by the 

lender's foreclosure. 

14The contractual debt service payment over a single interval, pdt e ,0021, is greater than the dividend 
flow off the collateral, dl8 zz ,0020 when jts market value is s = 0.95. 

I51n the tables t refers to 'time to maturity' whereas in the preceding analysis t referred to  calendar time. 
' 6 ~ a l l  that we asserted in section 3.1.1 that for the functional form of the refinancing costs we employ 

there will be no upper bound to the prepayment region, in the absence of a dividend constraint. 



It is interesting to note that this loan contract does not appear to 'survive' to maturity. 

There does not seem to be a 'path' for s to maturity ( t  = 0) which does not traverse a 

boundary of a termination region.I7 

Table 4 reports the results for the strategic default game without a dividend constraint on 

the debt service payments offered by the borrower. As expected the value of the borrower's I 
1 

position for any s ( t )  is higher than the values reported in tables 1-3, while the converse is 

true for the lender. The third panel of table 4 displays the strategic debt service payments. 

It is clear that strategic default occurs at  both low and high collateral values, which is 

consistent with the analytical  result^.'^ In the strategic default regions, L is always equal to 

minimum of the contractual balance and the value of the coqateral net of foreclosure costs 

( 's l iq') .  Also, the strategic behaviour of the borrower, unfettered by cash flow constraints, 

successfully avoids foreclosure or default in all states of the contract. In this game the values 

of the claims of the borrower and lender always sum to s. 

Table 5 indudes the prepayment and technical default provisions. The value of the. 

lender's claim is now greater for all (s, t )  where the borrower makes the full contractual 

payment, while the value of the borrower's claim is diminished in this region. The third 

panel of table 5 reveals that the strategic default region is now larger. The presence of the 

prepayment provision allows the borrower to extract more value from the, lender at 'high' 

levels of s. Note however that on the boundary of the technical default region the borrower 

offers the lender debt service payments which are considerably greater than the contractual 

payment. This is to avoid foreclosure due to technical default. The borrower offers the 

lender debt service payments such that L = (1 - l l )s ,  since this is what the lender would 

receive if she chose to exercise her foreclosure option. This accounts for the lower values of 

the borrower's claim in table 5 compared to the values in table 4 a t  corresponding (s, t). 

Thus it appears that L increases while B falls with the introduction of the technical 

default indenture and the prepayment option. Tables 6 and 7 provide an interesting insight 

into the effect of the prepayment option on the values of the contracting parties' claims. 

Close study of the tables reveals that in the presence of strategic debt service with the cash 

flow constraint in place, the prepayment, option enhances the value of the lender's position 

in the continuation region of the state space. For example, in table 6 L(1.45'5.0) = 0.997 

17 We should be careful in asserting that is unambiguously true, given the 'coarseness' of the grid in table 
3. A finer grid may yield a path to maturity for s. 

''Strategic default occurs whenever the debt service payments are less than the contractual payments of 
.0021. 
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and L(1.30,3.5) w 0.960, while in table 7, L(1.45,5.0) = 1 and L(1.30'3.5) = 0.965.'' This 

increase in the value of the lender's claim is not due to higher debt service payments. In 

fact, the debt service payments in the third panel of table 7 are all less than or equal to the 

debt service payments in the third panel of table 6. 

This occurs despite the fact that the prepayment option is never exercised! Note as well 

that the cash flow constraint induces foreclosure and hence bankruptcy at 'intermediate' . 
levels of s( t) .  Quite surprisingly, bankruptcy does not occur at low levels of s(t) as one 

would iut uitively expect, the technical default option notwithstanding. 

Tables 8-10 report results for the penalized default game. The strategy space for this 

game is three dimension+l (S x K x T,). The tables represent cross sections of this space 

at s = 1.1, the assumed fair market value of the collateral at the origination date. Each 

table includes an extra panel in which the critical debt service payments p are revealed.'' 

Along the vertical axis of the K x T space in each panel of the tables we measure the actual 

outstanding debt service payments k(t), and along the horizontal axis we measure time 

to maturity, t. Also, the maximum outstanding debt service payment amount K(t) ,  and 

t,he coutractual balance b(t), is indicated for every t along the horizontal axis." For all 

combinations of k(t) and K( t )  which are infeasible (i.e. k(t) > ~ ( t ) ) ,  the values of the 

claims and the debt service payments are set to zero.22 This has no bearing on the values 

of the tlaims in the feasible region of the strategy space. 

Table 8 reports results for the current default rule. For 'low' values of k(t) there seems to 

be 110 clear relationship between the value of the claims and k ( t ) .  For 'higher' values of k(t), 

the value of the borrower's claim is decreasing in k(t) while the value of the lender's claim 

is increasing in k(t). Similarly, the strategic debt service payments offered by the borrower 

exhibit no clear relationship to k(t) when these values are 'low', but are increasing in k(t) 

when theses values are 'high'. Also, the debt service payments offered, p* are significantly 

srnaller than the critical debt service payments, fi  for all (k, t), but equal to or greater than 

the contractual payment, p. Hence the borrower avoids foreclosure in this region of the 

''This result seems to be pervasive. In more than 100 cases studied, the inclusion of the prepayment 
provision in the strategic default game with a dividend constraint was never associated with a decline in the 
value of the lender's claim. 

''The critical debt service payments are payments which render the lender indifferent between foreclosing 
and allowing the loan to continue, see section 3.1.2. 

"The maximum outstanding debt service payments at any t is the amount which would be owing to the 
lendez if the borrower had made no payments since the origination date of the loan to the present time. 

"For example, at t = 5, K(5) = 0. So, for k(5) > 0, the values of the claims are set to zero. 
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strategy space.23 a 
The observed behaviour of the values of the claims and the strategic debt service pay- 

lrlents appears to be consistent with our conjecture on page 32. 

Table 9 includes the prepayment, technical default and dividend constraint indentures in 

the penalized default game with the current default rule. The inclusion of these indentures 

affects the values of the claims and the strategic debt service payments significantly. L is 

peater for all (s, t) in table 9 than in table 8, while the converse is true for B. Also, the 

c ion-monotonicity' of B and L with respect to k(t) is absent. It seems as if the presence of 

the contractual indentures dominates the opposing effects of lower debt service payments, 

p* and higher k(t) on L and B. 

Again, p* < p in table 9, but this does not induce foreclosure since p* = p for all (s, t )  

in this region of the strategy space. More importantly, since the borrower always makes the 

contractual debt service payments, we can conclude that, at least for s = 1.1, k(t) = 0 over 

the entire term of the loan contract. The borrower never engages in strategic default in this 

region of the strategy space. This explains the changes in L and B when moving from table 

8 to table 9. 

Table 10 reports results for the same set of contractual indentures, save one. Foreclosure 

is xlow governed by the outstanding payment rule. For k(t) > 0, the values of L, B and p* 

are significantly different from those in table 9. This is due to the fact that for any k(t) > 0 

it is rational for the lender to default. As in table 9, however, k(t) = 0 for all t over the 

term of the loan as the borrower always offers p* = p. 

The numerical results reported in appendix C appear to be broadly consistent with the 

analysis developed in chapter 3. 

5.3 Credit rationing 

Appendix D reports the results for a number of experiments conducted to determine the ef- 

fect of changes in various parameters on the 'loan to value' ratio and the expected foreclosure 

costs a t  the loan origination date, F ( s ,  0) 

Table 1 (i) reports the effect of changes in the credit spread on the loan to value ratio for 

a number of games and combinations of contractual indentures. Consider columns (a), (b), 

2 3 ~ n d e r  the current default rule the lender cannot foreclose if the boirower aTers p' 2 p, for any k ( t ) ,  see 
section 3.2.1. 
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(c). (d), ( f )  and (g). These columns report results for the three classes of games described 

in chapter 3 without any additional contractual indentures such as prepayment or technical 

default. Refer to the key on page 93 for a description of these games. As we would expect, 

the loan to value ratios in column (c) are lower than those in column (a) for a large range 

of credit spreads ( c  - r < 0.16). This is a consequence of the negative effect which strategic 

debt service has on L as the borrower effectively renegotiates the contract in his favour in the 

strategic default regions. It is interesting to note that for 'high' credit spreads (c- r > 0.16) 

the loan to value ratios are greater inkolumn (c) than in column (a). We conjecture that 

this is due to the fact that at these excessive levels of the credit spread, default in the 

terminating default game is very likely to occur for high values of s (i.e. there is a 'large' 

upper terminating default region). This imposes an upper bound on L which is absent in 

the strategic default game (column (c) ). 

Note also that at as we move from c - r = 0.06 to c - r = 0.07 there is a decline in the 
I loan to value ratio in column (a). This is due to the emergence of the upper terminal default 

region which reduces L at  'high' levels of s. For the strategic default game (column (c)) 

this upper terminal'default region emerges at much higher credit spreads (c - r i 0.12) and 

there is no decline in L near the boundary of this region due to the strategic debt service 

payments offered by the borrower. 

Columns (b) and (d) add the dividend constraint to the terminating default game and 

the strategic default game respectively. Again, we observe a decline in the loan to value 

ratio in column (b) as we move from c - r = 0.05 to c - r = 0.06, as the upper terminating 

default region emerges. There is no such 'dip' in %Loan for the strategic default game 

(colurnn (d)).  

Adding the dividend constraint increases the loan to value ratios in the terminating 

default game for c - r 5 0.05 (compare columns (a) and (b)). For c - r 2 0.06, the loan to 

value ratios fall with the addition of the dividend constraint. This, we infer, is a consequence 

of the interaction between the dividend flow constraint and the rational default behaviour 

of the borrower. In the case of the strategic default game, the addition of the dividend flow 

constraint increases %Loan for all but two levels of c - r where the ratio remains the same. 

In general we conclude that the dividend flow constraint mitigates credit rationing in the 

strategic default game while its effect in the terminating default game is ambiguous. 

Column (f)  reports the results for the penalized default game with the current default 

rule for foreclosure and a dividend constraint, while (g) reports the results for'the same 
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garne with the outstanding payment rule for foreclosure. It is clear that the form of the 

foreclosure rule has no effect on the extent of credit rationing. The penalized default game 

yields less credit rationing than the strategic default game with the same indentures (d). 

Notice also that in terms of mitigating credit rationing, this game fares almost as well as 

the terminating default game with a dividend constraint (b).24 

Consider columns (e), (h)  and (i) which report results for the strategic default game 

(e), the penalized default game with the current default rule for foreclosure (h) and the 

outstanding payment rule for foreclosure (i) when the prepayment and technical default 

irideritures are included. The effect on credit rationing is clear. In every case credit rationing 

is reduced by adding these indentures to the respectivegmes. Furthermore the penalized 

default games yield modest reductions in credit rationing compared to the strategic default 

game for some credit spreads. Again we observe that the form which the foreclosure rule 

takes is of no consequence. 
P 

In chapter 1 we reported that the strategic debt service models of Anderson and'Sun- 

daresan (1996), Anderson, Sundaresan and Tychon (1996) and Mella-Barral and Perraudin 

(_1996) for valuing default risky bonds, generate higher credit spreads than models based on 

approach of Merton (1974). The implication of this result within the framework developed 

here is that ute should observe a greater degree of credit rationing in the strategic default 

garne than in the terminating default game, which we do.* However, when we include 

common indentures such as prepayment and technical default, or we relax the assumption 

that concessions extracted from the lender are irreversible (the penalized default game), we 

observe levels of credit rationing which are comparable to those generated by the terminat- 

ing default game. Consequently we should be weary in assuming that strategic behaviour on 

the part of the borrower (and the lender) will have a significant impact on credit rationing 

or, alternatively, on the credit spreads associated with default risky loan contracts. 

Table 1 (ii) repeats the exercise discussed above for foreclosure costs of, 1 ,  = 0.35. 

Increasing the foreclosure costs increases the extent of credit rationing across all the cases 

considered. The same general result prevails with respect to the extent to which particular 

2 4 ~ n  fact, for c - r > 0.12, the penalized default game is characterized by less credit rationing than the 
terminating default game. 

2 5 ~ n  the strategic debt service models, the loan to value ratio is exogenous. The credit spread is determined 
in the Markov perfect equilibria of the games considered. In the hamework developed here, the credit 
spread is exogenous and the loan to value ratio is determined in the Markov perfect equilibria of the games 
considered. Hence, factors which increase the credit spread in the strategic debt service models should, in 
principle, increase the extent of credit rationing in this context. 



CHAPTER 5. NUMERICAL RESULTS 

combinations of contractual indentures are most effective at mitigating credit rationingz6 

Again, the penalized default game with either foreclosure rule, and the prepayment and 

technical default indentures yields the smallest scope for credit rationing. 

Table 1 (iii) repeats the exercise for a dividend rate of, d l  = 0.2. Again, the overall 

extent of credit rationing increases, as we would expect. There is li e to choose between 

the penalized default game (with either foreclosure rule) and the strategic default game with Y 
the prepayment and technical default indentures included for the purp9es of minimizing 

credit rationing. With large dividend flows, the dividend constraint is o y binding for very 4 
small values of s and has no effect on the extent of credit rationing lcoQpare (a) and (b), 

and (c) and (d)). f 

5.4 Foreclospre costs 

Table 2 ( i )  reports the expected foreclosure costs at the origination date, F (3, O), for the same 

parameter values employed to generate table 1 (i). As expected, the terminating default 

game with the dividend constraint (b) yields the highest F, while the strategic default game 

without auy additional contractual indentures yields F = 0 for all credit spreads. The 

strategic default game with only the dividend constraint (d) yields roughly the same F as 

the penalized default games with only a dividend flow constraint, (f) and (g). These games 

with the full complement of contractual indentures, yield significantly lower values for F for 

every level of the credit spread. 

Table 2 (ii) repeats the exercise for 1 ,  = 0.35 and corresponds to table 1 (ii). Now, we 

observe that the strategic default games,(c) and (d), and the penalized default games, (f) 

arid (g), which do not include the prepayment and technical default indentures yield F = 0 

for all levels of the credit spread. The onerous foreclosure costs dissuade the lender from 

foreclosing at any (s, t )  over the term of the loan contract. For the games which include the 

prepayment and technical default indentures, (e), (h) and (i), F > 0 for at  least some levels 

Table 2 (iii) reports the expected foreclosure costs for d l  = 0.2 and corresponds to table 

1 (iii). Again for games (c), (d), (f) and (g), F = 0 for all levels of c - r .  For games (e), 

"one exception is that for a credit spread of zero, the terminating default game (a) yields the highest 
loan to value ratio. Loan to value ratios of zero imply that the value of s at which L(s,  0) = 1 exceed 5 which 
is the upper limit for s on the grid of s and t values employed to generate the numerical solutions for L and 
B. In othw words, zeros imply loan to value ratios smaller than 0.2. 
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(11) and ( i ) ,  F is positive for aH levels of c - r .  The high dividend rate allows the borrower 

to extract value from the collateral at  a greater rate. This increases the willingness of the 

lender to invoke the appropriate indentures (such as technical default) to terminate the loan 

prior to maturity. 

Tables 3 and 4 provide another perspective on the effects of foreclosure costs and dividend 

flows. Consider table 3. There is a general tendency for L and B to decrease when k l  

increases, notwithstanding a small number of exceptions. The loan to value ratio, %Loan, 

is decreasing in l1  for games (d) and (f), but the results in games (a) and (h) are ambiguous. 

In table 4, L is decreasing in d l  and B is increasing in d l  for all games considered. Similarly 

%Loan is decreasing in d l  for all the games. 

Based on the small set of results reported in this chapter, a number of general conclusions 

can be drawn. First, contracts which tend to be effective in mitigating credit rationing tend 

to be associated with significant levels of expected foreclosure costs at  the time of origination. 

Second, contractual indentures such as prepayment and technical default, when included in 

the loan contract, tend to interact in a complex manner, rendering the relationship between 

variables such as the value of the contracting parties claims, or the extent of credit rationing 

and the various loan parameters, ambiguous. However we have demonstrated that these 

indentures are important in reducing the extent to which credit rationing occurs. 



Chapter 6 

Conclusion 

The primary objective of this study was to develop a general framework to study the rich 

possibilities and subtle interactions that occur in ostensibly 'simple' (standard) loan con- 

tracts. In doing so, the framework developed Anderson and Sundaresan (1996) has been 

exteided such that the de facto contract renegotiation which occurs is not necessarily i r re  

versible and not entirely one-sided. We have developed games in which the lender is able 

to extract concessions from the borrower in certain states of nature, in the presence of the 

appropriate contractual indentures. 

It is worth reiterating that none of the results obtained in this study rely on ariy elements 

of asymmetric information, adverse selection or costly state verification. Instead, the key 

ingredients in this analysis are costly foreclosure and 'risky' collateral. 

To summarize, we restate the major qualitative results reported here. (1) The upper 

limit on what a rational lender would lend may be a modest fraction of the current market 

value of the collateral, regardless of the interest rate the borrower offers. (2) The loan 

supply curve to a particular borrower may be backward bending, with the lender preferring 

a lower loan rate over a higher one. (3) The amount lendable is sensitive to the scope 

for opportunistic behaviour on the part of the borrower. This scope for opportunism is 

increasing in the costs associated with seizure of the collateral in the event of foreclosure. 

A number of interesting implications emerge for loan contract design. Loan contracts, 

which penalize the borrower for strategic default, by applying penalty rates of interest to 

outstanding interest balances, temper the incentive for the borroweFto engage in strategic 

debt servicing in many instances. This reduces the severity of &edit rationing. c'ommon 

contractual indentures such as a prepayment option for the borrower and a technical default 

57 
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provision are also very effective in mitigating credit rationing. 

Furthermore, the inclusion of a prepayment option for the borrower in the presence of 

corlsiderable scope for strategic debt service, may enhance the value of the lender's position. 

Corlventional wisdom suggests that prepayment options on debt contracts diminish the value 

of the lender's position. 

Loan contracts which tend to be effective in reducing credit rationing may be inefficient in 

the sense that there are significant levels of expected 'deadweight' foreclosure costs associated 

with them. On the other hand, contracts which are efficient in the sense that they minimize 

expected foreclosure costs are associated with significant levels of credit rationing.' 

Some implications for policy with respect to loan contracts and bankruptcy proceedings 

follow from the analysis. Most importantly, if credit rationing-like phenomena naturally 

occur without information asymmetry or moral hazard, then there is little reason to suspect 

market failure requiring government action. If action is called for, it suggests policies of 

nmoving  regulatory restrictions dn the enforceable forms loan contracts can take. 



Appendix A 

Analytical results 

A.1 Risk neutral valuation 

We assume that the Markov process describing the evolution of the collateral value is time 

independent. 

ds = asdt  + asdz 

If markets are complete with respect to '3-risk', there exists a unique probability measure, 

Q equivalent to the true measure, P such that 

ds = (r - d)sdt + asdz' 

where z' is a Wiener process under Q.' The expression (r - d ) s  is the 'risk-adjusted drift' 

in the collateral value, i.e. the expected rate of capital appreciation on the collateral in an 

equilibrium where agents are risk neutral. Under this measure, the value of agents' claims 

is the expected value of all future income flows, discounted at  the risk-free interest rate. 

By equivalent risk neutral valuation, the value of the lender's claim becomes 

' A rigorous treatment of the 'equivalent martingale measure' is provided by Harrison and Kreps (1979) and 
Harrison and Pliska (1981). The existence of the measure Q implies the absence of arbitrage opportunities, 
while its uniqueness is a consequence of market completeness. A market is complete with respect to 's-risk' 

n if all 8 states of nature can be spanned by existing securities (see Huang and Litzenberger, 1988, pp. 126 

& \  -129). 
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Allowirlg the passage of a small interval of time, dt, and rewriting the lender's claim in a 

forin re~rlinisce~lt of a Bellman equation 

L(s, t) = p(s, t)dt + E! [L ( s  + ds, t + dt)] Cdt 

Taking a Taylor series expansion of the right side of this expression, applying Ito's lemma 

and iguoring terms which approach zero 'faster' than dt as dt + 0 

1 s 2  L ( s ,  t )  = p ( s ,  t)dt + ( 1  - rdt)  L(s, t )  + Lt(s, t)dt + ( r  - d)sL,(s, t)dt + -0 3 L s s ( ~ ,  t)dt 
2 I 

Suppressing the arguments of the functions and rearranging 

*- . . . 1 2 . 2  -o 5 L,, + (r - d)sL, + Lt + p  = rL  
2 

Similarly, the value of the borrower's claim is 

This yields 
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A.2 Pure discount loans 

Proof of Proposition 1 

The value of the lender's claim at maturity, T  is 

max (0, (1 - l l ) s (T ) )  for s(T) 5 P 
L(s ,  T )  = 

for s(T) > P 

Tius 'payoff' can be replicated by a portfolio containing 1 - 1 ,  units of the collateral and a 

short position in 1 - I units of a European call contract on the collateral with expiry date 

T  and exercise price , P, and a long position in 1 P units of a European 'digital' caK2 

Consequently the value of the lender's position at  the origination of the loan contract is 

At T, the value 'of the borrower's claim is 

B(s, T )  = max (0, s(T) - P )  

This is simply the terminal payoff on a European call option on the collateral with exercise 

price P and expiry date, T .  In addition the borrower retains the dividend flow generated 

by the collateral 
9 

Thus, at  the origination of the loan, the value of the borrower's claim is 

'A  European digital option pays at maturity, one unit of currency if it is in-themoney, and pays zero 
otherwise. This option appears in the value function due to the discontinuity in the lender's payoff at 
maturity if 1 1  > 0. 

t 
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Proof of Proposition 2 

The value of the lender's claim at maturity, T is 

L(s, T) = min ((1 - l l )s ,  P) 

This 'payoff' can be replicated by a portfolio containing 1 - 1, units of the collateral and a 

short position in a European call contract on (1 - 1 1 )  units of the collateral a t  an exercise 

price of P / ( 1  - 1 1 ) . 3  Consequently the value of the lender's position at the origination of 

the loan contract is 

a.J Since the strategic beh iour of the lender prevents foreclosure at  T, the value of the bor- 

rower's claim is simply 

B(s, T) = s(T)  - L(s, T) 

Thus, at  the origination of the loan, the value of the borrower's claim is 

30 f  course, this payoff profile can also be replicated by a long position in a risk-free bond and a short 
position in a European put contract on the collated, see Merton(1974). 
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A.3 Perpetual loans 

Proof of Proposition 5 

In the case of perpetual loans the value functions L  and B  are independent of time. Con- 

sequently, the pde's become 

1 2 2  -a s  Bss + ( r  - d)sB,  + ds - p*(s) = r B  
2 ( A 4  

where p*(s) is the instantaneous debt service flow offered by the borrower. If c - r > 0, 

there will be two strategic default regions where the borrower chooses p*(s) so that 

, . { F Z , ) ~  for .9 5 s  
L ( s )  = 

for s  2 2 

Substituting into equation A. 1 yields 

(r - d l ) s ( l  - 1 1 )  +p* = r(l - 11)s for s I: 2 

p* = rP for s  >_ 3 

K hich implies ' 

{ y l l ) s d l  for ' 5 2  
~ * ( 4  = 

for s  2 3 

If c - r < 0, there exists only a lower strategic default region where the borrower offers 

p * ( s ) = ( l - l l ) s d l  for s < s  
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Effects of the contract parameters 

Results presented here are based on the following parameter values, unless otherwise indi- 

cated: 

Collateral: 

do dl 10 11 4 0 )  

0.2 0 0 0 0.1 1.1 

Contract: 

T T P  

5 0.05 0 

The following combinations of games and contractual indentures are studied: 

(a) Terminating default - lower terminating default only 

(b) Strategic default - lower terminating default only 

(c) Terminating default - lower- and upper terminating default 

(d) Strategic default - lower- and upper terminating default 
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(a) 0.929 

(c)  0.912 

0.879 

0.829 

0.778 

0.728 

0.678 

0.628 

0.577 

0.527 

0.477 

0.426 

(b) 0.929 

(d) 0.912 

0.874 

0.807 

0.730 

0.641 

0.543 

0.438 

0.326 

0.220 

0.110 

0.000 
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h 

(iii) T 

F %Loan 

(iv) a 
(4 ( c )  

P ' = L  B F %Loan 

1.492 0.995 0.001 0.104 0.905 

1.492 1.002 0.026 0.072 0.910 

1.492 0.967 0.073 0.060 0.868 

1.492 0.924 0.122 0.054 0.797 

1.492 0.879 0.171 0.050 0.713 

1.492 0.834 0.219 0.047 0.623 

1.492 0.789 0.267 0.044 0.533 

1.492 0.745 0.314 0.041 0.438 

1.492 0.700 0.361 0.039 0.000 

1.492 0.654 0.409 0.037 0.000 

1.492 0.603 0.460 0.037 0.000 
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(vi) r 
(4 (c) 

r P L B F %Loan 
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(vii) c - r I' 
/ 

1 ,  = o  
(4 (b) (c) (4 

c - r  P L B F %Loan L B F %Loan 

c - r  P 

(viii) c - r 

1 ,  = 0.1 
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I ,  = 0.1 
(c) (4 

c - r  P L B F %Loan L B F %Loan 

0.00 1.284 0.823 . 0.240 0.037 0.000 0.819 0.281 0.000 0.000 

0.02 1.419 0.862 0.192 0.046 0.656 + 0.857 0.243 0.000 0.646 

0.04 1.568 0.895 0.150 0.055 0.754 0.889 0.211 0.000 0.745 

(ix) c -  r 

1 ,  = 0.35 
(a) (b) 

c - r  P L B F % L o p  L B F %Loan 

0.00 1.284 0.732 0.240 0.128 0.000 0.666 0.434 0.000 0.000 
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E l  = 0.35 
(c) (4 

c - r  P L B i %LOW L B F %LOW 
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Rational default and foreclosure 
'r 

strategies 

C. 1 Interest-only loans 

Results presented here are based on the following parameter values: 

Collateral: 

a do 

0.2 0 

Coiitract: 

T r 

50 0.05 

Key to tables: 

L(s, t) 

B b ,  t) 
sliq 

div 

b(t) 
t 

c - r  p P 

0.03 0.08 1 

= value of lender's claim 

= value of borrower's claim 

= ( 1  - 1 )s, value of collateral net of foreclosure costs 

= d l  sdt, dividend per time interval 

= contractual balance at t 

= time remaining to maturity 
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Table 1: Strategic 

0.%01 0.450 
0.451 0.405 

a - 0 . 4 0 1  0.360 
0.351 0.315 
0.301 0.270 
0.251 0.225 
0.201 0.180 
0.151 0.135 
0.101 0.090 
0.051 0.045 
0.001 0.000 

s I sliq 
b(t) 

t 

default 
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2.201 .02201 
2.151 .02151 
2.101 .02101 
2.051 .02051 
2.001 .02001 
1.951 .01951 
1.901 .01901 
1.851 .01851 
1.801 .01801 
1.751 .01751 
1.701 .01701 
1.651 .01651 
1.601 .01601 
1.551 .01551 
1.501 .0150l. 
1.451 .01451 
1.401 .01401 
1.351 .01351 
1.301 .01301 
1.251 .01251 
1.201 .01201 
1.151 .Oil51 
1.101 .01101 
1.051 .01051 
1.001 .01001 
0.951 .00951 
0.901 .00901 
0.851 .00851 
0.801 .00801 
0.751 .00751 
0.701 .00701 
0.651 .00651 
0.601 .00601 
0.551 .00551 
0.501 .00501 
0.451 .00451 
0.401 .00401 
0.351 .00351 
0.301 .00301 
0.251 .00251 
0.201 .00201 
0.151 .00151 
0.101 .00101 
0.051 .00051 
0.001 .0000l 

s I d i v  I -  
b ( t ) :  

t : 

Debt s e r v i c e  payments : 

Contractual payment (p*dt) = .0080 
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C. 2 Partially amortizing loans 

Results presented here are based on the following parameter values: 
0 

Collatera,& 

a do dl 10 11 fo  JI 4 0 )  
0.2 0 0.1, 0 0.1 0 0.04 1.1 

Contract: 

T r c - r  w - c  p P 

5 0.05- 0.03 0.05 0.1 0.877 

Key to tables: 4 

L(s, t ) = value of lender's-.claim 

B (s, t ) = value of borrower's claim 

sliq 

Loan status: 

= ( 1  - 1 ) s ,  value of collateral net of foreclosure costs 

= contractual balance at t 
- time remaining to maturity 

4 maximum outstanding debt service payments at t 

= actual outstanding debt service payments at  t 

terminating default 

prepayment 

technical default 

foreclosure due to technical default 

foreclosusre due to cash flow constraint 



APPENDIX C. RATIONAL DEFAULT AND FORECLOSURE STRATEGLES 76 

Table 1: ~erminating default 

s I sliq 
b ( t )  

t 

1.501 1.3501 
1.451 1.3051 
1.401 1.2601 
1.351 1.2151 
1.301 1.1701 
1.251 1.1251 
1.201 1.0801 
1.151 1.0351 
1.101 0.9901 
1.051 0.9451 
1.001 0.9001 
0.951 0.8551 
0.901 0.8101 
0.851 0.7651 
0.801 0.7201 
0.751 0.6751 
0.701 0.6301 
0.651 0.5851 
0.601 0.5401 
s I sliql 

b ( t )  : 
t : 
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Table 2: Terminating default: prepayment, technical default 



, 

AND FORECLOSURE STRATEGIES 78 
*- 

Table 3: Terminating default: prepayment, technical defaule. c p h  flow con- 
straint 

1 - - 
, L ( s , t )  : 

1.601 1.4401 l.OOO+ 0.990+ 0.97% 0.968+ 0.957+ 0.945+ 0.932+ 0.919+ 0.931 0.905 0.477 
1.551 1.3951 1.0OW 0.990+ 0.979+ 0.968+ 0.957+ 0.945+ 0.932+ 0.919+ 0.931 0.995 0.877 
1.501 1.3504 1.000+ 0.990+ 0.979+ 0.968+ 0.957+ 0.945+ 0.932+ 0.919+~0.931 0.905 0.877 
1.451 1.3051 1.000+ 0.990+ 0.979+ 0.968+ 0.957+ 0.945+ 0.932+ 0.919+ 4.931 0.905 0.877 
1.401 1.2601 1.000+ 0.990+ 0.979+ 0.968+ 0.957+ 0.945+ 0.932+ 0.919+ 0.93@ 0.905 0.877 
1.351 1.2151 0.993 0.990+ 0.979+ 0.968+ 0.957+ 0.945+ 0.932+ 0.919+ 0.929 ,0.904 0.877 
1.301 1.1701 0.985 0.981 0.979+ 0.968+ 0.957+ 0.945+ 0.932+ 0.919+ 0.928 0.904 0.877 
1.251 1.1251 0.974 0.971 0.968 0.962 0.957+ 0.945+ 0.932+ 0.919+ 0.926 0.903 0.877 
1.201 1.0801 0.962 0.958. 0.956 0.952 0.948 0.945+ 0.932,+ 0.919+ 0.922 0.902 0.877 
1.151 1.0351 0.946 0.944 0.941 0.939 0.936 0.934 0.932+ 0.919+ 0.906+ 0.901 0.877 
1.101 0.9901 0.928 0.926 0.924 0.923 0.921 0.921 0.921 0.919+ 0.906+ 0.899 0.877 
1 .O5l 0.9451 0.907 0.906 0.904 0.903 0.903 0.903 0.905 0.919+ 0.906 0.895 .0.877 
1.001 0.9001 0.882 0.882 0.881 0.881 0.880 0.880 0.882 0.888 0.906+ 0.892+ 0.877 
0.951 0.8551 0.85511 0.85511 0.85511 0.85511 0.85511 0.85511 0.85511 0.855s 0.906+ 0.892+ 0.877 
0.901 0.8101 0.810* 0.81011 0.81011 0.81011 0.810# 0.81011 0.810s 0.810s 0.81011 0.81011 0.877 
0.851 0.7651 0.765* 0.765* 0.765* 0.765* 0.765* 0.765* 0.765* 0.765* 0.765* 0.765* 0.765* 
0.801 0.7201 0.720* 0.720* .720* 0.720* 0.720* 0.720* 0.720* 0.720* 0.720* 0.720* 0.720* 
0.751 '0.6751 0.675* 0.6755 %' .675* 0.675* 0.675* 0.675* 0.675* 0.675* 0.675* 0.675* 0.675*1 
0.701 0.6301 0.630* 0.630* 0.630* 0.630* 0.630* 0.630* 0.630* 0.630* 0.630* 0.630* 0.630* 
0.651 0.5851 0.585* 0.585* 0.585* 0.585* 0.585* 0.585* 0.585* 0.585* 0.585* 0.585* 0.585* 
0.601 0.5401 0.540* 0.540*.0.540* 0.540* 0.540* 0.540* 0.540* 0.540* 0.540* 0.540* 0.540* 
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Table 4: Strategic default 
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'Debt service  payments : 

Contractual payment (p*dt) = .0021 
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- Table' 5: Strategic default: prepayment, technical default 

L(s,t) : 

1.601 1.4401 1 .OOO 0.990 0.979 0.968 0.957 0.945 0.932 0.919 0.906 0.892 0.877 
1.551 1.3951 1.000 0.990 0.979 0.968 0.957 0.945 0.932 0.919 0.906 0.892 0.877 
1.501 1.3501 0.999 0.990 0.979 0.968 0.957 0.945 0.932 0.919 0.906 0.892 0.877 
1.451 1.3051 0.997 0.988 0.978 0.968 0.957 0.945 0.932 0.919 0.906 0.892 0.877 
1.401 1.2601 0.993 0.985 0.976 9.966 0.955 0.945 0.932 0.919 0.906 0.892 0.877 
1.351 1.2151 0.987 0.979 0.971 0.962, 0.952 0.942 0.932 0.919 0.906 0.892 0.877 
1.301 1.170 
1.251 1.125 
1.201 1.080 
1.151 1.035 
1.101 0.990 
1.051 0.945 
1.001 0.900 
0.951 0.855 
0.901 0.810 
0.851 0.765 
0.801 0.720 
0.751 0.675 
0.701 0.630 
0.651 0.585 
0.601 0.540 

s I sliq 
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Debt service payments : 

Contractual payment (p*dt) = .0021 
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Table 6: Strategic default: technical default, cash flow constraint 
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Debt service payments : 

Contractual payment (p*dt) = .0021- 



0 
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Table 7: Strategic default: prepayment, technical de'fault, cash flow constraint 



APPENDIX C. RATIONAL DEFAULT AND FORECLOSURE STRATEGIES 86 

Debt service  payments : 

Contractual payment (p*dt) .0021 
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Table 8: 

0.3521 1 
0.3345 1 
0.31691 
0; 2993 1 
0.2817 1 
0.2641 1 
0.2465 1 
0.22891 
0.21131 
0.1937 1 
0: 1761 1 
0.1585 1 
0.14091 
0.12321 
0.1056 1 
0.0880 1 
0.07041 
0: 0528 1 
0.0352 1 
0.01761 
0.0000 1 
k ( t )  I _  

K ( t ) :  I 
b ( t ) :  I 

t: I 

0.3521 1 
0.3345 1 
0.31691 
0.2993 1 
0.2817 1' 
0.2641 1 
0.2465 1 
0.2289 1 
0.21131 
0.19371 
0.1761 1 
0.1585 1 
0.14091 
0.1232 1 
0.1056 1 
0.0880 1 
0.07041 
0.0528 1 

Penalized default, current default rule 
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Debt service  paymepts: s = 1.10 
Dividend (d,l*dt) = .0023, Contractual payment (p*dt) 

0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0118 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0112 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0106 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0100 
O.(bOOO 0.0000 0.0000 0.0000 0.0000 0.0095 0,0095 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0089 0.0089 
0.0000 0.0000 0.0000 0.0000 0.0000 0.%0083 0.0083 
0.00'qO 0.0000 0.0000 0.0000 0.0000 0.0077 0.0077 
0.0000 0.0000 0.0000 0.0000 0.0071 0.00?1 0.0071 
0.0000 0.0000 0.0000 0.0000 0.0065 0.0065 0.0065 
0.0000 0.0000 0.0000 0.0000 0.0059 0.0059 0.0059 
0.0000" 0.0000 0.0000 0.0054 0.0054 0.0054 0.0054 
0.0000 0.0000 0.0000 0.0048 0.0048 0.0048 0.0048 
0.0000 0.0000~ 0.0000 0:0042 0.0042 0.0042 0.0042 
0.0000 0.0000 0.0036 0.0036 0.0036 0.0036 0.0036 
0.0000 0.0000 0.0030 0.0030 0.0030 0.0030 0.0030 
0.0000 0.0000 0.0024 0.0024 0.0024 0.0024 O.OC?4 
0.0000 0.0000 0.0037 0.0037 0.0037 0.0037 0.0037 
0.0000 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 
0.0000 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 
0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 

Crit ical  payments: s 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0901 
0.0000 0.0000 0.0901 
0.0000 0.0000 0.0901 
0.0000 0.0000 0.0901 
0.0000 0.0873 0.0901 
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Table 9: Penalized default: current default rule, prepaydent, technical default, 
cash flow constraint 

L(s,t): s = 1.10 
0.35211 0.0000 0.0000 0.0000 
0.33451 0.0000 0.0000 0.0000 
0.31691 0.0000 0.0000 .O.OOOO 
0.29931 0.0000 0.0000 0.0000 
0.28171 0.0000 0.0000 0.0000 
0.26411 0.0000 0.0000 0.0000 
0.24651 0.0000 0.0000 0.0000 
0.22891 0.0000 0.0000 0.0000 
0.21131 0.0000 0.0000 0.0000 
0.19371 0.0000~0.0000 0.0000 
0.17611 0.0000 0.0000 0.0000, 
0.15851 0.0000 0.0000 0.0000 
0.14091 0.0000 0.0000 0.0000 
0.12321 0.0000 0.0000 0.0000 
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J B 

.Debt eerv ice  payments: s ='l.lO 
Dividend (d,l*dt) = .0023. Contractual payment (p+dt) = .0021 

0:0000 0.0000 0.0000 O.QO00 0.0000 0.0000 0.0021- 0.0021- 0.0021- 0.0021- 0.9900 ' 

0.0000 0.0000 0.0000 0.0000 0.0000. 0.0000 0.0021- 0.0021- 0.0021- 0.0021- 0 .WOO- 
o . 0000 0.0000 o'.oooo o.oooo 0. 0000 0. 0000 0.0021- 0.0021- 0.0021- 0.0021; %. 9900 
0.0000 0.0000 0.0000 0.0000 0.0000 8.0000 0.0021- 0.0021- 0.0021-.0.0021- 0.9900 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0021- 0.0021- 0.0021- '0.0021'- 0.0021- 0.9900 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0021- 0.0021- 0.0021- 0.0021- 0.0021- 0.9900 
0.0000 0.0000 0.0000 0.0000 ' 0.0000 0.0021- 0.0021- 0.0021- 0.0021- 0.0021- 0.9900. 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0021- 0.0021- 0.0021- 0.0021- 0.0021- 0.9900 
0.0000 0.0000 0.0000 0.0000 0.0021- 0.0021- 0.0021- 0.0021- 0.0021- 0.0021- 0.9900 
0.0000 0.0000 0.0000 0.0000 .0021- 0.0021- 0.0021- 0.0021-' 0.0021 0.0021 Oi9900 
0.0000 0.0000 0.0000 0.0000 0 0021- 0.0021- 0.0021- 0.0021 0.0025 0.0021 0.9900 a 0.0000 0.0000 0.0000 0.0021- .0021- 0.0021- 0.0021 ' 0.0021 0.0021 0.0021 0.9900 
0.0000 0.0000 0.0000 0;0021- 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.9900 
0.0000 0.0000 0:OOOO 0.~0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.9900 
0.0000 0.0000 0.0021 0.0021 0.0021 '0.0021 0.0021 0.0021 0.0021 0.0021 0.9827 
0.0000 0.0000 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.9651 
0.0000 0.0000 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.002l' 0.0021 0.9476 
0.0000 0.0000 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.9299 
0.0000 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.9123 
0.0000 0.0021 0.0021 0.0021 0.0021 0.0021- 0.0021 0.0021 0.0021 0.0021 0.8947 
0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.9021 0.0021 0.0021 0.8770 

Crit ical  payments: s = 1.10 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000- 0.0765- 0.0846- 0.0916- 0.0994- 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0765- 0.0846- 0.0916- 0.0994- 0.0000 
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Table 10: Penalized default: outstanding payment rule, prepayment, technical 
default.; cash flow constraint 

L(s,t): s = 1.10 
0.35211 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.990011 0.990011 0.990011 0.990011 0.9900 
0.33451 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.990011 0.990011 0.990011 0.990011 0.9900 
0.31691 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.990011 0.990011 0.990011 8.990011 0.9900 
0.29931 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.990011 0.990011 0.990011 0.990011 0.9900 
0.2817 I 0. O O ~ O  0.0000 0.0000 6.0000 0.0000 0. 990011 0. 990011 0.99001) 0. 990011 0. 990011 0. WOO 
0.26411 0.0000 0.0000 0.0000 0.0000 0.0000 0.990011 0.990011 0.990011 0.990011 0.990011 0.9900 
0.24651 0.0000 0.0000 0.0000 0.0000 0.0000 0.990011 0.990011 0.990011 0.990011 0.990011 0.9900 
0.22891 0.0000 0.0000 0.0000 0.0000 0.0000 0.990011 0.990011 0.990011 0.990011 0.990011 0.9900 
0.21131 0.0000 0.0000 0.0000 0.0000 0.990011 0.990011 0.9900% 0.990011 0.990011 0.990011 0.9900 
0.19371 0.0000 0.0000 0.0000 0.0000 0.990011 0.990011 0.990011 0.990011 0.9900# 0.990011 0.9900 
0.17611 0.0000 0.0000 0.0000 0.0000 0.990011 0.990011 0.990011 0.990011~0.990011 0.990011 0.9900 
0.15851 0.0000 0.0000 0.0000 0.990011 0.990011 0.990011 0.990011 0.990011 0.990011 0.990011 0.9900 
0.14091 0.0000 0.0000 0.0000 0.9900# 0.990011 0.990011 0.990011 0.990011 0.990011 0.990011 0.9900 
0.12321 0.0000 0.0000 0.0000 0.990011 0.990011 0.990011 0.990011 0.990011 0.990011 0.990011 0.9900 
0.10561 0.0000 0.0000 0.990011 0.990011 0.990011 0.990011 0.990011 0.990011 0.990011 0.990011 0.9827 
0.08801 0.0000 0.0000 0.990011 0.990011 0.990011 0.990011 0.990011 0.990011 0.990011 0.9797V0.9651 
0.0704 1 0.0000 0.0000 0. 990011 O.99OO# 0. 9900d 0.990011 0. 990011 0.989611 0. 976111 0.962111 0.9475 
0.05281 0.0000 0.0000 0.990011 0.990011 0.990011 0.990011 0.985011 0.972011 0.958511 0.944511 0.9299 
0.03521 0.0000 0.990011 0.990011 0.990011 0.990011 0.979911 0.967411 0.954411 0.940911 0.926911 0.9123 
0.0176 1 0.0600 0.990011 0.990011 0.98570 0.974211 0.962311 0.949811 0.936811 0.923311 0.909311 0.8947 
0.00001 0.9287 0.9266 0.9247 0.9220 0.9194 0.9157 0.9135 0.9054 0.8984 0.8906 0.8770 
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Debt service  payments: s = 1.10 
Dividend (d-l*dt) = .0023, Contractual payment (p*dt) = .0021 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000011 0.000011 0.000011 0.000011 0.9900 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000011 0.000011 0.000011 0.000011 0.9900 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000011 0.000011~0.OC0011 0.000011 0.9900 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000011 0.000011 0.000011 0.000011 0.9900 
0.0000 0.0000 0.0000 0.0000 0.0000 0.000011 0.000011 0.000011 0.000011 0.0000t 0.9900 
0.0000 O..OOOO 0.0000 0.0000 0.0000 0.000011 0.000011 0.000011 0.000011 0.000011 0.9900 
0.0000 0.0000 0.0000 0.0000 0.0000 0.000011 0.000011 0.000011 0.000011 0.000011 0.9900 
0.0000 0.0000 0.0000 0.0000 0.0000 0.000011 0.000011 0.000011 0.000011 0.000011 0.9900 
0.0000 0.0000 0.0000 0.0000 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.9900 
0.0000 0.0000 0.0000 0.0000 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.9900 
0.0000 0.0000 0.0000 0.0000 0.00000 0.000011 0.000011 0.000011 0.000011 0.000011 0.9900 
0 .OOOO 0.0000 0.0000 0.00001) 0.000011 0.000011 0.000011 0.00001) 0.000011 0.000011 0.9900 
0.0000 0.0000 0.0000 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.9900 
0.0000 0.0000 0.0000 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.9900 
0.0000 0.0000 0.000011 0.000011 O.OOOO# 0.000011 0.000011 0.000011 0.000011 0.000011 0.9827 
0.0000 0.0000 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.9651 
0.0000 0.0000 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.9475 
0.0000 0.0000 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.9299 
0.0000 0.000011 0.000011 0.0000% 0.0b0011 0.000011 0.000011 0.000011 0.000011 0.000011 0.9123 
0.0000 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.000011 0.8947 
0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.8770 

Crit ical  payments: s = 1.10 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0765% 0.084611 0.091611 0.099411 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.076511 0.084611 0.091611 0.099411 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.076511 0.084611 0.091611 0.099411 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.076511 0.084611 0.091611 0.099411 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.074311 0.0765% 0.084611 0.091611 0.099411 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.074311 0.076511 0.0846% O.O9l6# 0.099411 0: 0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.074311 0.076511 0.084611 0.091611 0.099411 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 0.074311 0.076511 0.084611 0.091611 0.099411 0.0000 
0.0000 0.0000 0.0000 0.0000 0.070611 0.0743% 0.076511 0.084611 0.091611 0.099411 0.0000 
0.0000 0.0000 0.0000 0.0000 0.070611 0.074311 0.076511 0.084611 0.091611 0.099411 0.0000 
0.0000 0.0000 0.0000 0.0000 0.070611 0.074311 0.076511 0.084611 0.091611 0.099411 0.0000 
0.0000 0.0000 0.0000 0.068011 0.070611 0.074311 0.076511 0.0846% 0.091611 0.099411 0.0000 
0.0000 0.0000 0.0000 0.068011 0.0706# 0.0743% 0.076511 0.084611 0.091611 0.099411 0.0000 
0.0000 0.0000 0.0000 0.068011 0.070611 0.074311 0.076511 0.084611 0.091611 0.09948 0.0000 
0.0000 0.0000 0.0653 0.068011 0070611 0.074311 0.076511 0.084611 0.091611 0.099411 0.0000 
0.0000 0.0000 0.065311 0.068011 0.070611 0.074311 0.076511 0.084611 0.091611 0.089111 0.0000 
0.0000 0.4000 0.065311 0.068011 0.070611 0.0743# 0.0765s 0.084311 0.077711 0.071511 0.0000 
0.0000 0.0000 0.065311 0.06801) 0.070611 0.074311 0.071511 0.066711 0.060111 0.053911 0.0000 
0.0000 0.063M 0.0653 0.068011 0.070611 0.064211 0.053911 0.049111 0.042511 0.036311 0.0000 
0.0000 0.063411 0.0653 0.063711 0.054811 0.046611 0.036311 0.031511 0.024911 0.018711 0.0000 
0.0634 0.0653 0.0566 0.0482 0.0393 0.0311 0.0209 0.0160 0.0095 0.0032 0.0000 
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Credit rationing 

Results presented here are based on the following parameter values, unless otherwise indi- 

cated: 
Collateral: 

Contract: 

. T r w - c - p  P 

5 0.05 0.05 0.1 0.877 

The following combinations of games and contractual indentures are studied: 

* 

(a) Terminating default - / 
.I 

>. 3 (b) ~ e r r n i n a t i n ~  default, dividend flow constraint 

(c) Strategic default 

(d) Strategic default, dividend flow constraint 

(e) Strategic default, dividend flow constraint , technical default, prepayment 
t 

( f )  Penalised default, current default rule, dividend flow constraint 

(g) Penalised default, oustanding payment rule, dividend flow constraint 

(h) Penalised default, current default rule, dividend flow constraint, technical default, 

prepayment 

(i) Penalised default, outs tanding default rule, dividend flow constraint, technical default, 

prepayment 
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Table 1: Loan to value ratios 

1 (ii) 

1 ,  = 0.35 

% Loan 
(c) (4 (el (f) (g) (h) 
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4 

1 (iii) 

Table 2: Expected foreclosure costs at origination 
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1 

2 (ii) 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
2 (iii) 
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Table 3: hreclosure costs 
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Table 4: Dividend Flow 



Appendix . . E 

Computer Code e , 

........................................................................ 
t CREDTAB 
........................................................................ 

This program employs the Crank Nicholson finite difference 
algorithm to determine the values of ~(s,b) and B(s.0) in the 
terminating default game and the strategic default game. 

........................................................................ 
implicit double precision (a-h,k-1.0-z) 
integer sstep, tstep, scount, smaxcount, sminconnt, timesteps. 

& tabstep, dcount 
parameter (sstep=100, tstep=240) 
dimension vl(0: sstep) , vb(0: sstep) , s (0:sstep). balt (0:tstep). 

& div(0:sstep). liq(0:sstep). sliq(0:sstep). 
& arr (0:sstep. 1 :4), stratpay(0: sstep) , parm(l6), 
& vlex(0: sstep,O: tstep). vbex(O:sstep,O:tstep). 
& vlcum(0: sstep ,O:tstep). vbcum(0:sstep ,O:tstep). 
& stratpaytab(0:sstep ,O: tstep) . thtab(0: tstep) , 
& critpay (0:sstep). pay (0: sstep) 
character*8 A, B, change, strat, amort, coup, prep. 

& tdef , cash, hdef 
dimensidn SYM(O:sstep,O: tstep) 
character*l SYM 
character*12 inf ile 

c set input and output files 

write(*,*) 'Enter input file' 
read(*, 6) inf ile 

5 format (a121 
open(3, filexinfile, status='oldl, form='formatted') 
open(8, file='credtab.ont', form='formatted') 

c crank-nicholson algorithm parameters: 
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d&a irnin, imax, smin, smax, i f u t  / 1. 0 ,  0.0, 5.0. 0 / 

c contract paradeters : 

read(3,*) sigma. divO, d iv l ,  tmat, cspread, r ,  
& p,  liqO, l i q l ,  SO.' ref1 

write (* ,700) 
write(* ,720) 

& 
write(* ,730) 

& 
write(* ,740) 
write (* ,750) 
write(* ,760) 

'Col lateral :  ' 
' r ' ,  'sigma', 'divOJ, 'd ivl '  
' r e f l ' ,  ' ~ ( 0 )  
r ,  sigma, div0, d iv l ,  liqO, 
r e f l ,  SO 
'Contract:' 
'TI, 'c-r ' ,  'p '  
tmat, cspread, p 

' 1  

l i q l  

iq0' .  ' l i q l ' ,  

write(* ,*) 'Change parameter value (y/n) : ' 
read(*,20) A 
i f  ( A  .eq. 'y' .o r .  A .eq. ' Y ' )  then 

10 continue 
write(*.*) 'Enter parameter:' 
read(*,20) B 
i f  (B .eq. 'c-r '  .o r .  B .eq. 'C-R') then 

write(*,*) 'Enter c-r : '  
read*, cspread 

e l s e  i f  ( B .eq. 'p' .or .  B .eq. 'P') tben 
write(*,*) 'Enter p: '  
read*, p 

e l s e  i f  ( B .eq.  'tmat' .o r .  B .eq. 'TnAT') then 
write(*,*) 'Enter tmat:' 
read*, tmat 

e l se  i f  ( B .eq. 'liqO' .o r .  B .eq. ' L I Q O ' )  then 
write(*,*) 'Enter liqO:' 
read*, liqO 

e l s e  i f  ( B .eq. ' l i q l '  .o r .  B .eq. 'LIql ')  then 
write(*,*) 'Enter l i q l : '  
read*, l i q l  

e l se  i f  ( B .eq. 'sigma' .o r .  B .eq. 'SICMIL') then 
write(*,*) 'Enter s i p a : '  
read*, sigma 

e:se i f  ( B .eq. 'divO1 .or .  B .eq. 'DIVO') then 
write(*,*) 'Enter div0:' 
read*, divO 

e l s e  i f  ( B .eq. 'd ivl '  .o r .  B .eq. 'DiV1') then 
write(*, *) 'Enter d iv l :  ' 
read*, d iv l  

e l s e  i f  ( B .eq. 'SO'  .or .  B .eq. 'SO') then 
write(*.*) 'Enter SO: '  
read*, SO 

e l s e  i f  ( B .eq. 'r '  .or .  B .eq. ' A ' )  then 
write(*,*) 'Enter r : '  
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/ 

. . ' read*, r 
e l s e  i f  ( B .eq. ' r e f l '  . o r .  B .eq .  'REF1' 

v r i t e (* .* )  'Enter  r e f l : '  
read*, r e f  1 

endif  
\ 

write(*,*) 'Change another parameter (y/n) 
read(*.  20) change 

then 

, 

i f  (change ,eq.  'y '  . o r .  change .eq.  'Y') gotc  10 
endi f  

c s e t  t a b l e  dimeneions f o r  output 

wr i t e (* ,* )  'En abmax, stabmin, s i n t '  
read*,  stabmax, stabmin,  s i n t  2; 

wri te(* ,*)  'Enter  t :  start, 's top,  s t e p '  , P 

read*,  t a b s t a r t ,  t abs top ,  t a b s t e p  
'W 

d t  = tmat / d b l e ( t s t e p )  
" d s  = (srnax - sudn) / dble(ss tep1 

s c o u t  = i d n i n t ( ( s 0  - smin) / ds) 
smaxcount = idnin t ( (s tabmax - smin) / ds)  
smincount = idnin t ( (s tabmin - smin) / ds) 
dcount = i d n i n t ( s i n t  / ds)  
s t a r t c  = i d n i n t ( t a b s t a r t  / d t )  
s topc  = i d n i n t ( t a b s t o p  / d t )  

c s e t  pde c o e f f i c i e n t  parameters 

c = r + cspread 
' parm(1) = sigma 

parm(2) = r 
parm(3) = divO 
parm(4) = d i v l  

c s e t  behavioural  assumptions and con t r ac t  d e t a i l s  

w r i t e  (* ,*) ' S t r a t e g i c  debt  s e r v i c e  (y/n) : ' 
read(*,20) s t r a t  

i f  ( s t r a t  .eq .  'y'  . o r .  s t r a t  .eq.  'Y') then  
v r i t e  (8 ,*I ' S t r a t e g i c  debt  s e r v i c e  ' 

endif  

wr i t e (* ,* )  'Cash flow cons t r a in t  ( y / d  : ' 
read(*.20) cash 
i f  (cash .eq.  'y '  . o r .  cash .eq .  ' Y ' )  then 

v r i t e ( 8 , * )  ' Cashflow cons t r a in t  on' 
endif  

wr i t e (*  ,*) ' Fu l l  & t i s a t i o n  (y/n) : ' 

i f  (arnort . eq .  'y '  . o r .  amort .eq.  'Y') then 
\ 
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., 

write(8,*) ' Full amortisation' 
p = c*exp(c*tmat)/ (exp(c*tmt) -1dO) 

else 
write(* ,*) 'Coupon loan (y/n)i ' 
read(*, 20) coup 
hf (COUP .eq. 'y' .or. coup .eq. 'Y') then 

vrite(8,*) ' Coupon loan: p = c' 
p = c  

endif 
endif 

write(* ,*) 'Prepay (y/n) : ' 
read(*,20) prep 
if (prep .eq. 'y" .or. prep .eq. 'Y') then 

write (8, *) ' Prepayment ' 
endif 

write(*,*) "Technical default (y/n) : ' 
read(*. 20T tdef 
if (tdef .eq. 'y' .or. tdef .eq. 'Y') then 

write(8,*) ' Technical default' 
endif , 

print*, 'High default (y/n):' 
read(*, 20) hdef 
if (hdef .eq. 'y' .or. hdef .eq. 'Y') then 

write(8.*) ' High default' 
endif 

c outstanding loan balance at maturity . 

call cnset (sstep,smin,smar,dt,ifn,ifut,imin,imax,parm,arr) 

do 100 i = 0, sstep 

s(i) = smin + dble(i) ds 
div(i) = (divO + s(i)*divl) dt 
liq(i) = s(i)*liql + liq0 
sliq(i) = max(Od0, s(i) - liq(i)) 

if (strat .eq. ' y '  .or. strat.eq. 'Y') then 
vl(i) = min(sliq(i), balt(0)) 
vb(i) = s(i) - vl(i) 
stratpaytab(i.0) = vl(i) 



SYM(i.0) = 
e l s e  

i f  ( s ( i )  - b a l t ( 0 )  .It. -1d-10) t h e n  
v b ( i )  = O.OdO 
v l ( i )  = s l i q ( i )  

i 
SYM(i.0) = I * '  

e l s e  
v b ( i )  = s ( i )  - b a l t ( 0 )  
v l ( i )  = b a l t ( 0 )  
S m ( i , o )  = 

e n d i f  
e n d i f  

c o n t i n u e  3. 

t i m e  l o o p  

t = OdO 
t i m e t a b ( 0 )  = OdO 
j = O  

c o n t i n u e  

c a l l  &s tep  ( t ,  vb ,  arr) 
c a l l  c n s t e p  ( t ,  v l ,  a r r )  

do 120 i = 0 ,  s s t e p  
v l e x ( i ,  j)  = v l ( i 1  
v b e x ( i , j )  = v b ( i )  

c o n t i n u e  

do 140 i = 0 ,  s s t e p  

v l l i q .  = m i n ( s l i q ( i 1 ,  b a l t  ( j ) )  
v b l i q  = s l i q ( i )  - v l l i q  
vldlow = s l i q ( i )  
vbdlov = OdO 
v l c h i  = b a l t ( j )  
vbdhi  = s l i q ( i )  - b d t (  j) 
v l p r e p  = b a l t  (j 1 



APPENDIX E. COMPUTER CODE 

vbprep = s ( i )  - r e f  
c r i t p a y  ( i )  = max(Od0, v l l ) q  - v l ( i ) )  
s t r a t p a y  ( i )  = min(conpay , c r i t p a y  ( i )  ) 

i f  ( tdef  .eq.  'y '  .and. s t r a t  .eq.  ' y ' )  then 
i f  ( s ( i )  . I t .  b a l t ( j ) )  then  

s t r a t p a y  ( i )  = c r i t p a y  ( i )  
endif  

endi f  

i f  ( s t r a t  .eq.  'y '  . o r .  s t r a t  .eq.  ' Y ' )  then 
pay ( i )  = s t r a t p a y  ( i )  

e l s e  
pay ( i )  = conpay 

endi f  

v lcont  = v l ( i )  + pay( i )  
vbcont = vb( i )  + d i v ( i )  - pay( i )  
v l ( i )  = vlcont  
v b ( i )  = vbcont 
SYM(i,j) = ' ' 

i f  (vbcont . I t .  W o w )  then 
vb ( i )  = v b d l o q + z  
v l ( i )  = v l d l o L  
SYM(i,j) = '* '  

goto 140 
endif  

i f  (hdef .eq.  'y'  . ~ d .  prep .eq.  ' y ' )  then  
i f  (vbcont . I t .  max(vbdhi.vbprep)) then  

i f  (vbprep .gt. vbdhi) then  
v b ( i )  = vbprep 
v l ( i )  = vlprep  
SYM(i,j) = '+' 

e l s e  
v b ( i )  = vbdhi 
v l ( i )  = v ldh i  
SYM(i,j) = I * '  

endif  
goto 140 . 
endif  

e l s e  i f  (hdef . e i .  . 'y ' .and .prep  .eq .  In') then 
i f  fvbcont .It. vbdhi) then  

v b ( i )  = vbdhi 
v l ( i )  = v ldh i  
SYM(i,j) = ' * '  

goto 140 
endif  

e l s e  i f  (hdef .eq.  'n '  .and .prep  .eq.  'y ' )  then  
i f  (vbcont .It. vbprep) then  

vb ( i )  = vbprep 
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vl(i) = vlprep 
SYM(i,j) = '+' 

b goto 140 
endif ' 

endif 

if (cash .eq. 'yJ .or. cash .eq. 'Y') then 
if (pay(i) .gt. div(i)) then C - 

vb(i) = vbliq 
vl(i) = vlliq 
SYM(i,j) = '# '  
goto 140 

end9 
endif 

C 

if (tdef .el. 'y' .or. tdef .eq. ' Y ' )  then 
.It. balt (j) ) then 

SYM ,j) = I - '  if (s(f 
if (vlcont .It. vlliq) then 

vl(i) = -vlliq 
vb(i) = vbliq 
SYM(i,j) = I : '  

goto 140 
endif 

endif 
endif 

140 continue 

'do 160 i = 0, sstep 
vlcum(i, j) = vl(i) 
vbcum(i,j) = vb(i) 
stratpaytab(i, j) = pay (i) 

160 continue 

if (t .It. tmat - ld-10) goto 110 

***** output ......................................................... 

vrite (8.700) 'Collateral : ' 
vrite(8,720) 'r', 'sip', 'd-O', 'd-l', '1-0'. '1.-l', 

. &  'f-lJ, '~(0)' 
vrite(8.730) r, sigma, div0, divl, liqO, liql, 

& ref 1, s (scount) 
vrite (8.740) 'Contract: ' 
vrite(8.755) 'T', 'c-r'. 'p', 'P' 
vrite(8.760) tmat, cspread, p, balt(0) 



APPENDIX B. COMPUTER CODE 

write(8,630) s(i), sliq(i). (vlex(i, j) . 
& SYM(i, j) , j = startc ,stopc.-tabstep) 

500 continue 
write(8,660) 's I ', 'sliql ' 
write(8.665) 'bal:', (balt(j),j=startc,stopc,-tabstep) 

write(8.670) 't: ', (timetab(j1, j=startc,stopc,-tabstep) 

write(8.620) 'VLCUM: ' 
do 505 i = smaxcount, smincount, -dcount 

write(8,630) s(i), sliq(i), (vlcum(i, j) , 
& SYM(i, j) , j = startc .stopc ,-tabstep) 

505 continue 
vrite(8.660) 's I ' . 'sliql ' 
write(8.665) 'bal: ' , (balt (j), j=startc,stopc ,-tabstep) 
write(8.670) 't: ' , (timetab(]), j=startc ,stopc,-tabstep) 

4 

write(8,620) 'VBH: ' 
do 510 i = smarcount, smincount, -dcount 

write(8,630) s(i), sliq(i1. (vbex(i. j) , 
& a" ' SYM(i, j) , j = startc,stopc,-tabstep) 

510 continuez 
write(8,660) 's I ', 'sliql' 
write(8.665) 'bal: ' . <halt (j) , j=startc ,stopc.-tabstep) 
write(8,670) 't: ' , (tin;etatdj), j-startc ,stopc.-tabstep) 

write (8,620) 'VBCUM: ' 1 " 
1' 

do 520 i = smaxcount, smi$#,caupb, -dcount 
write(8,630) s(i), sliq(i) , (vbcum(i. j) , 

& SYH(i, j) , j = startc .stopc ,-tabstep) 
520 continue 

vrite(8.660) 's 1'. 'sliql' 
write(8.665)' 'bal: ' , (balt (j) . j=startc ,stopc.-tabstep) 
write(8,670) 't: ' , (timetab(j), j=startc.stopc,-tabstep) 

c print stratpay table 

write (8.620) ' Stratpay table : ' 
write (8.625) 'Contractual payment (p*dt) = ' , conpay 
do 550 i = s ~ ~ ~ c o u n t ,  smincount, -dcount 

write(8.640) s(i), div(i), (stratpaytab(i, j) , 
& SYH(i, j) , j=startc,stopc,-tabstep) 

560 continue 
vrite(8.660) 's I ' . 'div I ' 
vrite(8.680) 'bal: ' , (balt(j), j=startc ,stopc ,-tabstep) 
write(8.680) 't: ' , (timetab(j1, j=startc,stopc,-tabstep) 

620 format (/ a19 /) 
625 format (a35. f5.4 /) 
630 format (lx, f4.2, '1'. 11, f5.3. 'l', 2x. BO(f5.3, al, 1x1) 
640 format (lx, f4.2, '1'. lx,.f5.4, 'I1, 2x, aO(f5.4, al, lx)) 
660 format (2x, a4, a7) 
665 format (a13, 2x, 80(f5.3, 2x1 /) 
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670 format (a13, 2x, 80(f5.3, 2x) /) 

680 format (9x, a4, 2x. 80(f5.3, 2x1) 

700 format(/ 2x, all /) 
720 format(2x, 8(a6. 2x1) 
730 fonnat(2x. 8(f6.2. 2x) /) 

740 format(/ 2x, a9 /) 
750 format(2x. 3(a6. 2x1) 
755 format(lx, 4(a6, 2x)) 
760 format(21, 3(f6.2, 2x1, f6.4 / /)  

stop 
end 

double precision function coeffo 

implicit double precision (a-h,k-1,o-z) 
dimension parm(l5) 

entry fna(s,ifn,parm) 
sigma = parm(1) 
fna = sigma * sigma * s * s * 0.5d0 

return 

entry fnb (s, ifn, parm) 
r = parm(2) 
div0 = parm(3) 
divl = parm(4) 
fnb = (r - divl) * s - divO 

return 

entry fnc(s,ifn.parm) 
fnc = -r 

return 

entry fmin(t, ifn,parm) 
fmin = 0.0 

return 

entry fmax(t ,ifn,parm) 
fmax = 0.0 

return 
end 
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........................................................................ 
LOANTAB 

........................................................................ 
This program employs the Crank Nicholson finite difference 
algorithm to determine the values of L(s,O) and B(s.0) in the 
penalized default game. 

........................................................................ 

implicit double precision (a-h, 0-2) 
integer sstep, tstep, outstep, stratstep, scount, osmax 
parameter (sstep =loo, tstep 5240, outstep =40, stratstep =30) 
double precision liq(O:sstep), loanrat, maxoutpay(0:tstep). 

& newoutpay, maxstratpay, liqO, liql 
dimension vltab(0:sstep.0:outstep,0:tstep), 

% vbtab(O:sstep.0:outstep,~:tstep), 
& vlgrid(0: sstep.0: outstep,O: tstep) , 
8 vbgrid(0:sstep,0:outstep,0:tstep). 
& stratab(0:sstep,0:outstep,0:tstep), 
& crittab(0:sstep,0:outstep.0:tstep) 
dimension vl(0: sstep.0: outstep), vb(0:sstep.O:outstep). 

& s(0:sstep) , arr(0:sstep. 1:4), parm(l5). 
& vltemp(0: sstep) , balt (0:tstep). timetab(0:tstep). 
& outpay (0: outstep) , vbintrp(0: stratstep), 
& vlintrp (0: stratstep), stratpay (0: stratstep), 
& sliq(O:sstep), div(0:sstep). critpay(0:stratstep) 
dimension SYM(O:sstep,O:outstep,0:tstep,0: stratstep), 

0 SYMOUT(O:sstep,O:outstep,0:tstep) 
character*l SYM. SYMOUT 
character*8 A, B, change, amort, coup, prep, tdef, cash, out. 

0 hdef 
character*l2 infile 

print*, 'Enter input file' 
read(*,5) infile 

5 format (a121 
open(3, file=infile, form='formatted') 
open(8, file='loantab.out', form='formatted') 

c crank-nicholson algorithm parameters: 
data imin, imax, amin, smax, ifut / 1, 0, 0.0, 5.0. 0 / 

c financial model parameters: 

read(3. *) sigma, div0, divl, tmat, cspread, r, 
& p, liqo, liql, SO, refl, pspread 

print 900,- 'Collateral : ' 
print 920, 'r'. 'sigmaJ, 'divOJ, 'divl', 'liqo', JliqlJ, 

& 'reflJ, '~(0) 
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p r i n t  930. r ,  ,sigma, d iv0 ,  d i v l ,  l iqO, l i q l .  r e f l ,  SO 
p r i n t  940. 'Contrac t : '  

* 
p r i n t  945, 'TI, ' c - r ' ,  'p-c ' ,  'p '  
p r i n t  960, tmat. cspread,  fspread, p 

9 

p r i n t * ,  'Change parameter value ( ~ / n ) : '  
read(*,20) A 
i f  (A .eq.  ' y '  . o r .  A .eq.  'Y') then 

10 continue 
p r in t* .  'Enter  parameter: '  
read(*,20) B 

i f  (B .eq .  ' c - r '  . o r .  B . eq .  'C-R') then  
p r i n t * ,  'Enter  c - r : '  
read*, cspread 

e l s e  i f  (B .eq. 'p-c' . o r .  B .eq.  'P-CJ) then  
p r in t* .  'Enter p-c: '  
read*, pspread 

e l s e  i f  ( B .eq .  'p'  . o r .  B .eq .  'PI) t hen  
p r in t* .  'Enter  p : '  
read*, p 

e l s e  if ( B .eq.  ' tmat '  . o r .  B .eq .  'TMAT') then  
p r i n t * ,  'Enter  tmat : '  
read*, tmat 

e l s e  i f  ( B .eq .  ' l iqO1 . o r .  B . eq .  'LIQO') then  
p r i n t * ,  'Enter  l iqO: '  
read*, l iqO 

e l s e  i f  ( B .eq .  ' l i q l '  . o r .  B .eq.  'LIql ' )  then  
p r i n t * ,  'Enter  l i q l  : ' 
read*, l i q l ,  

e l s e  i f  ( B . eq .  'sigma' . o r .  B .eq.  'SIGMA') then  
p r i n t * ,  'Enter  sigma:' 
read*, sigma 

e l s e  i f  ( B . eq .  'divO1 . o r .  B .eq.  'DIVO') then  
p r in t* .  'Enter  divO: ' 
read*, divO 

e l s e  i f  ( B .eq .  ' d i v l '  . o r .  B . eq .  'DIV1') then  
p r i n t * ,  'Enter  d i v l : '  
read*, d i v l  

e l s e  i f  ( B .eq .  'SO '  . o r .  B .eq.  'SO') then 
p r i n t * ,  'Enter  S O : '  
read*, SO 

endif  
p r in t* .  'Change another parameter (y/n) : ' 
read(*,20) change 
i f  (change .eq .  'y '  . o r .  change .eq.  'Y') goto 10 
endif  

p r i n t * ,  'Enter  t :  s t a r t ,  s t o p ,  s t e p '  
read*, t a b s t a r t ,  tabs top .  t a b s t e p  
p r i n t * ,  'Enter  osmax: 0 - ' ,  ou t s t ep  
read*, osmax 
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c = r + cspread 
p r a t e  = c + pspread 
d t  = tmat / d b l e ( t s t e p )  
d s  = (smax - smin) / db le ( s s t ep )  
scount  = idnix t t ( ( s0  - smin) / ds)  
c s t r t  = i d n i n t ( t a b s t a r t  / d t )  
c s t p  = i d n i n t ( t a b s t o p  / d t )  
parm(1) = sigma 
parm(2) = r 
parm(3) = div6 
parm(4) = d i v l  

p r i n t * ,  'Cash f l o v  c o n s t r a i n t  (y /n) : '  
read(* ,20)  cash 
i f  (cash .eq .  'y '  . o r .  chs4  .eq .  'Y') then  

w r i t e ( 8 ,  *) ' Cashflov <&ns t r a in t l  
endi f  

p r i n t * .  ' Fu l l  amor t i s a t i on  f y / n ) : '  
r ead i* ,  20) amort 
i f  (amort .eq .  ' y '  . o r .  amort .eq. 'Y') then  

v r i t e  (a,*) ' F u l l  amor t i s a t i on '  
p = c*exp(c*tmat)/ (exp(c*tmat) -1dO) 

e l s e  
p r i n t * .  'Coupon loan  (y/n) : ' 
read(* ,20)  coup 
i f  (coup . eq .  ' y '  . o r .  coup . eq .  'Y') t hen  

v r i t e ( B , * )  ' Coupon loan:  p = c '  
p = c  

endif  
endi f  

p r i n t * .  'Prepay (y /n) : '  
read(*.  20) prep 
i f  (prep  .eq .  ' y J  . o r .  prep .eq .  'Y') then  

v r i t e  (8. *) ' Prepayment' 
endi f  

p r i n t * .  'Technical  d e f a u l t  ( y /n ) : '  
r ead (* ,  20) tdef  
i f  ( t de f  . eq .  'y '  . o r .  tdef  . eq .  .'YJ) then  

v r i t e  (8 ,  *) ' Technical  d e f a u l t  ' 
endi f  

p r i n t * ,  'High d e f a u l t  (y/n) : ' 
read(* ,  20) hdef 
i f  (hdef .eq.  'y '  . o r .  hdef .eq .  'Y') then 

v r i t e ( 8 . * )  ' High d e f a u l t '  
endi f  

p r i n t * ,  'Foreclose on outpay (y /n ) : '  
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read(*,20) out 
if (out .eq. 'y' .or. out .eq. 'Y') then 

write (8, *) ' Foreclosure on outpay ' 
endif 

format (a81 

pay = p*dt 

do 40 i = 0, sstep 
s(i) = smin + dble(i) ds 
div(i) = (divO + s(i)*divl) dt 
liq(i) = s(i)*liql + liqO 
sliq(i) = max(Od0, s(i) - liq(i)) 

continue 

do 80 i = 0 ,  sstep 
do 70 j = 0 ,  outstep 

do 60 k = 0, tstep 
SYMOUT(i,j,k) = ' ' 
do 50 1 = 0, stratstep 

SYM(i.j,k.l) = ' ' 
continue 

continue 
continue 

continue 

outstanding loan balance at .maturity 

balt(0) = exp(c*tmat)-(exp(c*tmat)-ldO)*(p/c) 
maxoutpay(0) = (exp(prate*tmat)-ldO)*(p/prate) 
doutpay = maxoutpay(O)/dble(outstep) 

call cnset (sstep.min.smar,dt,ifn,ifut.imin.imax,parm.arr) 

do 110 j = 0, outstep 
outpay (j) = OdO + dble( j) *doutpay 
do 100 i = 0, sstep 

vl (i, j )  = min(sliq(i), balt(0) + outpay (j)) 
vb(i,j) = s(i) - vl(i,j) 
vbtab(i, j,0) = vb(i, j) 
vltab(i,j,O) = vl(i, j) 
vbgrid(i.j.0) = vb(i,j) 

vlgrid(i, j ,O) = vl(i, j) 
stratab(i,j.O) = vl(i,j) 
SYMOUT(i,j,O) = ' 

100 continue 
110 continue 



time loop 

t = OdO 
k = O  
timetab(0) = OdO 
continue 

do 145 j = 0, outstep 
call cnstep (t, vb(O,j), arr) , 
call cnstep (t, vl(O.j), arr) 
do 135 i = 0, sstep 

vb,grid(i,j.k+l) = vb(i,j) 
vlgrid(i, j ,k+l) = vl(i, j) 

continue 
continue 

write(*,*) 'Time loop: k = '. k 

t = t + d t  
k = k + l  
timetab(k1 = t 
maroutpay (k) = (exp(prate* (tmat-t) ) -1dO) (p/prate) 
balt(k) = exp(c*(tmat-t))-(exp(c*(tmat-t))-IdO)*(p/c) 

loan balance loop 

continue 

ref = (balt(k) + outpay(j)) * (Id0 + refl) + ld-10 

250 i = 0, sstep 
if (cash .eq. 'y' .or. cash .eq. 'Y') then 

maxstratpay = div(i) 
else 

maxstratpay = outpay (j) + pay 
endif 
dstrat = maxstratpay / dble(stratstep1 
vlliq = min(sliq(i), balt(k) + outpay(j)) 
vbliq = sliq(i) - vlliq 
vbdlow = OdO 
vldlow = sliq(i) 
vbdhi = sliq(i) - balt(k) - outpay(j) 
vldhi = balt(k) + outpay( j) 
vbprep = s(i) - ref 
vlprep = balt (k) + outpay (j) 

stratpay loop 

do 170 1 = 0, stratstep 
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. stratpay(1) = OdO + dble(1) * dstrat 
- netout = outpay( j) + pay - stratpay (1) 

if (netout .gt. OdO) then 
nevoutpay = netout*exp(prate*dt) 

else 
nevoutpay = OdO 

endif 
b 
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n = 1  
if (outpay (n) .It. newoutpay) then 

n = n + l  
goto 160 

endif 

alpha = (nevoutpay-outpay (n) ) / (outpay (n-1) -outpay (n) 
vlintrp(1) = alpha*vl (i ,n-1) + (1-alpha)*vl (i ,n) , 

vbintrp(1) = alpha*vb(i,n-1) + (1-alpha)*vb(i ,n) 
critpay(1) = max(Od0, vlliq - vlintrp(1)) 
vlcont = vlintrp(1) + stratpay(1) 
v b c h  = vbintrp(1) + div(i) - stratpay(1) 
vbintrp(1) = vbcont 
vlintrp(1) = vlcont 

if (vbcont .It. vbdlow) then 
vbintrp(1) = vbdlov 
vlintrp(1) = vldlov 
SYM(i,j,k,l) = '*' 

goto 170 
endif 

if (hdef .eq. 'y' .and. prep .eq. 'y') then 
if (vbcont . It. max (vbdhi . vbprep) ) then 

if (vbprep .gt. vbdhi) then 
vMntrp(1) = vbprep 
vlintrp(1) = vlprep 
SYM($, j ,k,lY = 

else 
vbintrp(1) = vbdhi 
vlintrp(1) = vldhi 
SYM(i,j,k,l) = ' * I  

endif 
goto 170 
endif 

else if (hdef .eq. ' y '  .and. prep .eq. In') then 
if (vbcont .It. vbdhi) then 

vbintrp(1) = vbdhi 
vlintrp(1) = vldhi 
SYM(i.j.k.1) = ' * '  

goto 170 
endif 

else if (hdef .eq. 'n' .and. prep .eq. 'y') then 
if (vbcont .It. vbprep) then 
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vbintrp(1) = vbprep 
vlintrp(1) = vlprep 
SYM(i,j,k,l) = '+' 

goto 170 
endif 

endif 

if (out .eq. 'y' .or. out .eq. 'Y') then 
if (stratpay(1) .It. min(outpay(j) + pay. 

critpay(1))) then 
vlintrp(1) = vlliq 
vbintrp(1) = vbliq 
SYM(i,j.k,l) = '#I 

goto 170 
endif 

else if (stratpay(1) .It. min(pay, critpay (1)) then 
vlintrp(1) = vlliq 
vbintrp(1) = vbliq 
SYM(i,j,k,l) = I#' 

goto 170 
endif 

if (tdef .eq. 'y' .or. tdef .eq. ' Y ' )  then 
if (s(i) .It. balt(k) + outpay(j)) then 

SYM(i,j,k,l) = '-' 
if (vlintrp(i1 .It- vlliq) then 

vlint+(l) = vlliq 
vbintrp(1) = vbliq 
SYH(i, j ,k,l) = ' :  ' 

goto 170 
endif 

endif 
endif 

170 ' continue 

vbmax = OdO 
do 190 1 = 0, stratstep 

vbmax = max(vbintrp(l), V~IIULX) 
continue 

1 = 0  
if (vbintrp(1) .It. vbmax - ld-10) then 

1 = 1 + 1  
,goto 200 
endif 
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250 continue 

if (t .It. tmat -1d-10) goto 130 

260 :vl(i,O) .It. Id0 - ld-10) then 
i = i + l  

if (i .It. sstep) goto 260 
endif 

if (i .eq. sstep .and. vl(i,O) .It. Id0 - ld-10) then 
write(*,*) 'vl(',i,'O) = ', vl(i.0) 
sfair = OdO 
loanrat (j) = OdO 

else 
alpha = (ldO-vl(i,O))/(vl(i-1,0)-vl(i.0)) 
sfair = alpha*s(i-1) + (1-alpha)*s(i) 
lopnrat (m) = ldO/sf air 

endif 

sfairout(rn) = sf air 
vlout (m) = vl (scount ,O) 
vbout (m) = vb(scount ,0) 

350 continue 

vrite(8,900) 'Collateral: 
write(8,920) 'r', 'sigma', 'd-0'. 'd-1'. '1-O', '1-1'. 

& If-l', '~(0)' 
vrite(8.930) r, sigma, div0, divl, liqO, liql, 
8 ref 1, s ($count) 
write(8,940) 'Contract:' 
write(8,960) 'TI, 'c-r', 'p-c', 'p', 'P' 
vrite (8,960) tmat , cspread, pspread, p, balt (0) 
vrite (8,970) 'Claim values : ' 
vrite(8,980) 'L'. 'B', 'Sfair', '%Loan1 
vrite(8,990) vlout, vbout, sfairout, loanrat 

vrite(8,800) 'VBGRID: s = ' , s(scount) 
do 650 j = osrnax, 0, -1 

vrite(8.810) outpay( j) , (vbgrid(sconnt, j ,k) , 
& SYHOUT(scount, j ,k) , k = cstrt, cstp, -tabstep) 



APPENDIX E. COMPUTER CODE 

650 continue 
vrite (8,820) ' outpay ' -# 

write (8,820) 'maxout : ' , (maroutpay (k) , k=cstrt ,cstp,-tabstep) 
vrite(8,820) 'balt: ' ,  (balt(k), k=cstrt.cstp,-tabstep) 

- ' vrite(8,825) 't: ', (timetab(k), k = cstrt, cstp, -tabstep) 

write(8,800) 'VLGRID: s = ' , ~(scount) 
.. do 670 j = osmax, 0, -1 

I 

vrite(8,810) outpay(j), (vlgr,id(scount, j ,k), 
& SYMOUT[scount,&&?, k = cstrt, cstp, -tabstep) 

670 continue -, ~ 2% 
write (8,820) ' outpay ' $3 

write (8,820) 'maxout : ' , ' (maxoutpay'yk), k==strt ,cstp, -tabstep) 
vrite (8,820) 'balt : ' , (balt (k) , k=%strt, cstp,-tabstep) 
write(8,825) 't: ' , (timetab(k1, k = cs&, cstp, -tabstep) 

vrite(8.800) 'VB: s = ', ~(scount) f 
do 700 j = osmax, 0, -1 

write(8,810) outpay(j1, (vbtab(scount, j ,k) $,, " 
& SYMOUT(scount,j,k), k = cstrt&cstp, -tabstep) 

700 continue %k 
write (8,820) ' outpay ' 
vrite(8.820) 'maxout: ' , (maroutpay (k) , k=cstrt ,cstp,-tabstep) 
vrite (8,820) 'balt : ' , (balt (k; , k=cstrt , cstp,-tabstep) 
vrite(8.825) 't: ', (timetab(k1, k = cstrt, cstp, -tabstep) 

vrite(8,800) 'VL:  s = ' ,  ~(scount) 
do 720 j = osmax, 0, -1 

write(8,810) outpay(j).(vltab(scount,j.k), 
& SYMOUT(scount , j ,k) , k = cstrt, cstp, -tabstep) 

720 continue 
write (8,820) 'outpay ' 
vrite(8.820) 'maxout:', (maxoutpay(k), k=cstrt,cstp,-tabstep) 
vrite(8.820) 'balt : ' , (balt (k) , k=cstrt. cstp,-tabstep) 
write(8,825) 't: ' , (timetab(k), k = cstrt, cstp, -tabstep) 

write(8,800) 'Stratpay: s = ' ,  ~(scount) 
vrite (8.805) 'Div = ' , div(scount1 
vrite(8.805) 'Pay = ', pay 
do 730 j = osmax, 0, -1 

vrite(8,810) outpay(j),(stratab(scount,j,k), 

8 SYMOUT(scount, j ,k) , k = cstrt,cstp.-tabstep) 
730 continue 

write(8.820) 'outpay ' 
write(8,820) 'marout:', (maxoutpay(k), k=cstrt,cstp,-tabstep) 
write(8,820) 'balt: ', (balt(k), k=cstrt,cstp,-tabstep) 
vrite(8,825) 't: ' ,  (timetab(k1, k = cstrt, cstp, -tabstep) 

e 

write(8.800) 'Critpay: s = ' ,  ~(scount) 
write (8,805) 'Div = ' , div(scount) 
write(8,805) 'Pay = ' , pay 
do 740 j = osmar, 0, -1 

Y\ 
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write(8.810) outpay(j).(crittab(scount,j,k), 
& SYMOUT(scount , j ,k) , k = cstrt ,cstp,-t~bstep) 

740 continue 
write (8,820) 'outpay ' 
write(8,820) 'maxout:', (maxoutpay(k), k=cstrt,cstp,-tabstep) 
write(8,820) 'balt: ', (balt(k), &cstrt,cstp,-tabstep) 
write(8,825) 't: ' , (timetab(k1, k = cstrt, cstp, -tabstep) 

800 format ( / a20, f4.2 / )  

805 format (a6. f5.4 /) 
810 format (2x, f6.4, ' 1 ' .  2x, 80(f6.4, al, Ix)) 
820 format (a8, ' 1  ' ,  2x, 80(f6.4. 2x1) 
825 format (a8, ' I 1 ,  2x, 80(f6.4, 2x1) 

format(/ 2x, all /) 

format(2x, 8(a6, 2x1) 
format(2x. 8(f6.2. 2x) / )  
format(/ 2x, a9 /) 
format(2x. 4(a6, 2x)) 
format(2x, 5(a6. 2x1) 
format(2x, 4(f6.2, ax), f6.4 /) 
format(/ 2x, a12 /) 
format(2x. 4(a8, 2x1 /) 

format(2x, 4(f8.6. 2x1) 

stop 
end 

double precision function coeffo 

implicit double precision (a-h ,k-1 ,o-z) 
dimension par~n(l5) 

entry fna(s,ifn,parm) 
sigma = parm(1) 
fna = sigma sigma * s s 0.5d0 

return 

entry fnb(s,ifn.parm) 
r = parm(2) 
div0 = parm(3) 
divl = parm(4) 
fnb = (r - divl) * s - divO 

return 

entry fnc(s, ifn,paxm) 
r = parm(2) 
fnc = - r  

return 



APPENDIX fi. COMPUTER CODE 

entry frnin(t,ifn,parm) 
fmin =O.OdO 

return 

entry frnax(t .ifn,parm) 
fmax = 0 .OdO 

return 

end 
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SUBROUTINE CNSET (IN,SMIN,SMAX,K,IFN,IFUT,ISMN,ISMX,PARM.ARR) 

C*********************************************************************** 
C 
C SUBROUTINE CNSET (. . . ) 
C 
C Subrout.ine s e t s  up c o e f f i c i e n t  a r r ay  needed f o r  Crank-Nicholson 
C algori thm t o  so lve  1 s t a t e  va r i ab le  p l u s  time p a r t i a l  d i f f e r e n t i a l  
C equat ions .  Use i n  conjunction v i t h  r o j t i n e  CNSTEP. PDE has form 
C 
C FNA * U s s  + FNB U s  + FNC * U - U t  = 0 
C 
C Arguments: I N  number of g r i d  i n t e r v a l s  i n  s t a t e  space S  
C SMIN minimum value of s t a t e  va r i ab le  S  
C SMAX maximum value of s t a t e  v a r i a b l e  S  
C K s t e p  s i z e  i n  time d i r e c t i o n  
C IFN f l a g  a v a i l a b l e  f o r  pass ing  t o  coe f f .  f c n s .  
C IFUT f l a g  s e t t i n g  FNC = 0 f o r  f u t u r e s  con t r ac t  p r i c i n g  
C ISM f l a g  f o r  SHIN boundary ( 0  f o r  quadra t i c  e x t r a p o l . )  
C I S M  f l a g d o r  SMAX boundary ( 1  f o r  given values 1 
C PARM vector  of model parameters f o r  coe f f .  f c n s .  
C ARR output  a r r ay  of c o e f f i c i e n t s  f o r  CNSTEP 
C dimension (4 ,  IN+l) by c a l l i n g  program 
L 

C Other rou t ines  c a l l e d :  func t ions  F N A .  FNB. FNC(S,IFN.PARM) must be 
C e x t e r n a l l y  def ined and ava i l ab le  t o  subrout ine .  
C 
C Author: R .  A .  Jones 
C 

IMPLICIT DOUBLE PRECISION ( A-H, K-L. 0-Z ) 

COMMON /CNCOM/ N,ISMIN,ISMAX,IIFN,XPARH(15) 
DIMENSION' PARM( 15 1, a( O:IN. 4  

N = I N  
IIFN = IFN 
ISMIN = ISMN 
ISMM = ISW 
DO 50 I = 1 ,  16 

50 XPARM(1) = PARM(1) 
H = ( SMAX - SHIN ) / DBLE( N 
FUTURE = 1DO 
IF  1 T . E . l  FUTURE=ODO 

S = SMIN + DBLE(1) H 
AX = FNA(S,IFN,PARM) * 2D0 K 
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BX = FNB(S,IFN,PARM) * H * K 
CX = FNC(S,IFN,PARM) FUTURE * 2D0 * H H * K 
DENOM = CX - 2D0 AX - 4D0 * H * H 

ARR(1,l) = ( AX - BX ) / DENOM 
ARR(I,2) = ID0 
ARR(I,3) = ( AX + BX ) / DENOM 
ARR(I,4) = ID0 + 8D0 * H H / DENOM 

C***TEST ONLY 
C IF (I .EQ.21) PRINT*,'ARR: ', (ARR(1,III) ,III=1,4) 

100 CONTINUE 

IF ( ISMIN .EQ. 1 ) THEN 

C CASE OF KNOWN VALUE AT SHIN: ISMIN = 1 
ARR(O.1) = OD0 
ARR(0,2) = ID0 
ARR(0,3) = OD0 

ELSE 

C CASE OF QUADRATIC EXTRAPOLATION AT SMIN: ISMIN = 0 
G = ARR(1,3) / ( ARR(2,2) + 3D0 * ARR(2,3) ) 

ARR(0,l) = OD0 
ARR(0,2) = G * ARR(2,3) - ARfl(1.1) 
ARR(0,3) = G * ( ARR(2,l) - 3D0 ARR(2.3) - ARR(l.2) 
ARR(0,4) = G 

ENDIF 

IF ( ISMAX .EQ. 1 THEN 

C CASE OF KNOWN VALUE AT SMAX: ISMAX = 1 
ARR(N,1) = OD0 
ARR(N.2) = ID0 
ARR(N.3) = OD0 

ELSE 

C CASE OF QUADRATIC EXTRAPOLATION AT SMAX: ISMAX = 0 
C = ARR(N-1,I) / ( ARR(N-2,2) + 3D0 ARR(N-2.1) ) 

ARR(N.1) = G ( ARR(N-2,3) - 3 W  ARR(N-~.~) - ARR(N-1.2) 
ARR(N,2) = C ARR(N-2.1) - ARR(N-1.3) 
ARR(N.3) = OD0 
ARR(N.4) = G 

ENDIF 

RETURN 
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END 

SUBROUTINE CNSTEP ( T, U, ARR ) 

C****** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C 
C SUBROUTINE CNSTEP ( . . . I  
C 
C Subroutine takes 1 s tep  i n  time direct ion i n  solving 1 s t a t e  variable 
C PDE using Crank-Nicholson algorithm. T is current time used only f o r  
C passing t o  boundary value functions FMIN(T) and FMAX(T) i f  ISMIN or 
C ISMAX are s e t  t o  1. U(0:N) is N+l dimensional vector of solut ion so 
C f a r .  ARRO is coe f f i c i ent  array s e t  up by CNSETO . 
C 
........................................................................ 

IMPLICIT DOUBLE PRECISION ( A-H, K-L, 0-Z ) 
COMMON /CNCOM/ N, ISMIN, ISMAX, IFN, PARM(15) 
DIMENSION ARR( 0:N. 4 1, U( 0:N ) 

NOTE: PARAMETER NMAX MUST BE .GE. N FOR TRIDAG ALGORITHM 
PARAMETER ( W A X  = 200 ) 
COMMON /TRICOM/ D( O : W M  1, GAM( 0:NMAX ) 

SET UP RIGHT HAND SIDE OF SYSTEM TRIDIAGONAL SYSTEM (ABCIU = D 

DO 100 I = 1, N-1 
D(1) = - ARR(I,l)*U(I-1) - ARR(I,4)*U(I) - ARR(I,3)*U(I+1) 

CONTINUE 

IF ( ISMIN .Ea. 1 ) THEN 
GET SOLUTION VALUE AT W I N  
D(0) = FMIN(T.IFN,PARM) 

ELSE 
D(0) = D(2) * ARR(0,4) - D(1) 

END IF 

IF ( ISMAX .Ea. 1 THEN 
GET SOLUTION VALUE AT RMAX 
D(N) = FMAX(T.IFN.PARM) 

ELSE 
D(N) = D(N-2) ARR(N.4) - D(N-1) 

ENDIF 

RETURN 
END 

C**** TRIDIAGONAL SOW. ALGORITHM FROM "NUMERICAL RECIPES", P. 40 ****** 

C SOLVES: (ABCIX = D FOR X. N=DIMENSION. A,B,C,D, NOT ALTERED 



APPENDIX E. COMPUTER CODE 
da 

C NOTE: SUBSCRIPTS RUN FROM 0 AND SCRATCH VECTOR CAM VARIABLE DIMEN. 

SUBROUTINE TRIDAG ( A, B. C. D, CAM. X, N ) 

IMF'LICIT DOUBLE PRECISION ( A-A, K-L, 0-Z ) 

DIMENSION A ( O : * ) .  B(O:*) .  C ( O : * ) ,  D(O:*) ,  GAM(O:*). X(O:*) 

BET = B ( 0 )  
X ( 0 )  = D ( 0 )  / BET 
DO 10 J = 1, N 

GAM(J) = C ( J - 1 )  / BET 
BET = B ( J )  - A ( J )  * GAM(J) 
X(J )  = ( D ( J )  - A ( J )  X ( J - 1 ) )  / BET 

10 CONTINUE 

DO 2 0  J = N-1, 0 ,  -1 
2 0  X(J) = X ( J )  - GAM(J+l)  X ( J + l )  

RETURN 
END 
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