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Abstract

This thesis develops a framework for studying the design and valuation of collateralized loan
contracts in a dynamic setting under complete information and uncertainty. Contingent
claims valuation techniques are integrated into a game theoretic setting in which borrowers
and lénders behave noncocperatively to maximize the values of their claims as specified by
the terms of the loan contract and applicable bankruptcy laws.

The analysis presumes that the market value of the loan collateral follows a diffusion
procéss. The borrower attempts to deviate from the terms of the loan contract to enhance
the value of his claim. This behaviour is tempered by contractual provisions which allow the
lender to foreclose and seize the collateral in the .face of such deviation. Hence the rational
borrower engages in ‘strategic default’, deviating from the terms of the contract without
provoking foreclosure. However, certain contractual indentures do yield foreclosure in some
states along the equilibriumn path of the game analyzed.

Consistent with empirical evideuce, foreclosure is assumed to be costly. The incidence
of these costs on the contracting parties is state dependent. Also, the level of the market
value of the collateral at which foreclosure occurs is determined endogenously.

Results are obtained analytically and by numerical methods. Noteworthy results include:
(1) The upper limit on credit extended by a rational lender is a modest fraction of the
initial market value of the collateral when foreclosure costs and dividend flows are positive,
regardless of the interest rate the borrower offers. (2) The credit supply curve facing a
particular borrower may be ‘backward bending’, with more credit supplied at lower interest
rates than higher interest rates. (3) Strategic default by the borrower has a significant
negative effect on the quantity of credit supplied for any given contractual interest rate. (4)
A contractual indenture which allows the lender to recover prior concessions made to the

borrower, at a later date, mitigates this negative effect. (5) The quantity of credit extended

il



is decreasing in the volatility of the market value of the collateral, the cash flows generated
by the collateral and the term to maturity of the loan contract. “

For the purposes of this study results (1) and (2) are referred to as ‘credit rationing’.
Such credit rationing prevails despite the lack of any informational asymmetries between

the borrower and lender.
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Chapter 1

Introduction

Black and Scholes (1973) ard Merton (1973, 1974), were the first to recognise that the debt
of a firmn can be viewed as a contingent claim on its assets. This markecj the first significant
development in the modeling‘ and pricing of default risky debt. Numerous extensions to
this frainework have emerged.! Black and Cox (1976) incorporated classes of senior and
Junior debt. Brennan and Schwartz (1977) and Ingersoll (1977) studied copv;rtible bonds
aud coupon paying debt. Brennan and Schwartz (1980) allowed for stochastic interest rates.
Cox, Ingersoll and Ross (1980) modeled variable rate debt. Mason and Bhattacharya (1981)
included a jumnp process for the underlying asset value, while Jones, Mason and Rosenfeld
(1984) incorporated callable debt.

While tl.lese contributions have been important in their own right, they all seem to be
characterized by a common shortcoming. Empirical evidence suggests that the default risk
premia on corporate debt significantly exceed those 'unpiied by these models. For example,
the estimnates of Jones, Mason and Rosenfeld (1984) systematically overestimate observed
- bond prices. Kim, Ramaswamy and Sundaresan (1993) report that the credit spreads on
AAA rated corporate bonds ranged from 15 to 215 basis points with an average of '%7 basis
points, while credit spreads on BAA rated bonds ranged from 51 to 787 basis points with
an average of 198 basis points over the period 1926 to 1986. Merton’s model, however, is
unable to generate credit spreads in excess of 120 basis points, even when excessive debt
ratids and volatility parameters are used (Pan, 1995).

Recent contributions to the contingent claims literature on corporate debt (Anderson

'Only a small number of noteworthy contributions are listed here. See Cooper and Martin (1996) and
Ingersoll (1987, chapter 19) for comprehensive summaries.
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3 ,
and Sundaresan, 1996, Anders®n, %Sundaresan and Tychon, 1996 and Mella-Barral and Per-

raudin, 1996) claim that these models fail due to their stylized treatment of ﬁnamna.l &istress,
defa.ult and bankruptcy procedures. To illustrate the nature of this problem consider Mer-
ton’s original analysis of zero- coupon debt (Merton, 1974). The boundary condition on the

b

value of the bond at maturity T is:

(3 T) = min(s, P) (1.1)

This states that the bond value at maturity is the minimum of the principal P, or the value
of the firm s. This condition implies a model of the bankruptcy process. Upon default of the
debt contract (s < P), the bondholders seize the assets of the firm instantly and costlessly,
and then liquidate the assets or continue to operate them without any loss of value. This
assumption about the bankruptcy process has an important bearing on };he predictions of
the models which employ it.

Research on the resolution of default and the implications of bankruptcy procedures has

established a number of stylized facts:?

L]

1. The formal renegotiation of debt contracts in the face of financial distress, by private
‘workouts’ or via the bankruptcy courts, is costly, both because of direct costs and

because of disruptions of the firm’s activities.

2. Bankruptcy procedures allow considerable scope for opportunistic behaviour by the

parties to the loan contract '

3. Deviations fromr absolute priority of claims on the assets of the firm are common.?

[

. .
4. Debtholders of firms experiencing financial distress are often persuaded by equityhold-

ers to accept concessions prior to formal bankruptcy proceedings.
Based on a sample of 11 retailing firms and 5 industrial firms operating under the
protection of Chapter 11 of the US Bankruptcy Reform Act of 1978, Altman (1984) reports

*This literature is voluminous. Important contributions include Altman (1984), Franks and Torous (1989,
1993), Warner(1977a, 1977b) and Weiss (1990). See Pan (1995) and Longhofer and Carlstrom (1995) for
useful surveys.

3The absolute priority rule is the theoretical standard by which financial contracts are resolved when a
debtor is insolvent. In short, a debtor shall receive no value from his assets until all creditors have been
repaid in full.
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that the sum of direct and indirect reuego’tiatiofl costs amounted to 8.7% of market value
one year prior to bankruptcy for the retailing firins and 15% for the industrial firms.

Violations of the absolute priority of claims in Chapter 11 reorganizations are well doc-
wnented. Betker Z’T995) and Franks and Torous (1991) find that equityholders of publicly
traded companies that go through reorganization receive value approximately 75% of the
time, even though their creditors do not receive,the full value of their claims. The magnitude
of these deviations is not small. Eberhart, Moore and Roenfeldt (1990) find that the firm’s
equityholders retain approximately 7.6% of the firm’s value.

These bankruptcy facts are absent from the contributions cited in the opening remarks
to this chapter. They are in large part due to the ‘second best’ nature of loan contracts
{Freixas and Rochet, 1997). In an ideal werld, a loan contract would specify, at every date

over the term of the loan and for every state of nature:
1. The payment to be made by the borrower to the lender
2. The interest rate to be applied to the outstanding principle
3. A possible adjustment in the collateral requiréd by the lender
4. The actions (in particular investment decisions) to be undertaken by the borrower.

In practice loan contracts are much less complex. Payinent obligations (points 1 and
2) and collateral (point 3) are generally specified for the duration of the contract, whereas
actions to be taken (point 4) are left to thc borrower. Consequently loan contracts typically
leave a great deal of scope for opportunistic behaviour by {he borrower.

Early attempts to incorporate some of these stylized facts include Bergman and Callen
(1991) who study the extraction of concessions from debtholders during financial distress
in a static model of capital structure detegmnination. Kim et ;.1. 6993) and Leland (1994)
include costly bankruptcy in a contingent claims model of éorporate debt, while Longstaff
and Schwartz (1995) incorporate departures from absolute priority. These models simply
immpose the various bankruptcy facts on the underlying analysis. The bankruptcy facts do
not emerge as a consequence of the rational behaviour of the contracting parties and the
indentures of the loan contract. T

A‘ilgierso? and Sundaresan (1996), Anderson, Sundaresan and Tychon (1996) and Mella-
Barral and Perraudin (1996) have incorporated a game theoretic framework into the stan-

dard model of contingent claims valuation such that the bankruptcy facts are endogenised
%
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in the model. Central to the analysis is a game in wHich borrowers attempt to deviate from

the indentures of the debt contract to enhance equity value. This behaviour is tempered

by contractual provisions which allow debtholders to foreclose and seize the collateral in

the face of such deviation. Hence borrowers engage in ‘strategic ‘défault’, deviating from
the terins of the contract without inducing foreclosure. Deviations from absolute priority
and the extractlon of concessions from debtholders occur along the équilibrium paths of the
gaines modeled The threshald value of the colla.teral at which control thereof is passed from
borrower to lender is determined endogenously in ‘these models, as is the compensation to
be received by lenders when this default boundary is reached.

The implications for the valuation of default =risky debt are significant. These models
generate credit sprea.dé consistent with the empirical evidence, without resorting to unreal-
istically high bankruptcy costs or excessive levels of firm asset volatility. ' We shall refer to
these models as ‘strategic debt service models’.?"

Our objective is to combine the structure of these strategic debt service models with the
approach developed by Jones (1995) to develop a framework which explores the implications
of default risk and ‘the rational opportunistic behaviqur of the contracting parties for the
- extension of credit by banks, within the context of ‘standard’ collateralized loan contracts.®
In particular, we are interested in the implications for credit rationing. For our purposes,
credit rationing refers to instances in which the amount of credit which the lender is willing
to extend falls short of the financing requirement of the borrower. Variations in tllyinterest
rate specified in the loan contract do not remedy this situation.® Unlike many attemp¥s to

study the phenomenon of credit rationing, we do not rely on assumptions of informational

“There exists an extensive body of research pertaining to strategic behaviour and incentive compatibility

within the context of debt contracts. See, for example, Bolton and Scharfstein (1990) and Dewatripoint and
. Maskin (1895). However, this literature does not employ a contingent claims valuation framework.

SWe cflim that the strategic debt service models are in fact better suited to situations like this where a
single lender interacts with a borrower. In the case of publicly traded corporate bonds, coordination problems
amongst the bondholders are bound to occur as they decide on the appropriate reaction to the opportunistic
behaviour of the bond issuer. While Anderson and Sundaresan (1996) cough the propositions of their model
in terms of corporate bond yields, the game they develop is one played by a single borrower and lender.

®This definition of credit rationing is due to Jaffee and Russell (1976) and Gale and Helwig (1985).
Alternative approaches to credit rationing such as that of Baltensperger (1978) would contend that what we
describe here'is not credit rationing at all. He argues that the lender’s refusal to supply additional credit
despite the borrower’s willingness to pay a higher rate of interest is not a sufficient condition for credit
rationing. The borrower must be willing to pay all the ‘nonprice’ elements of the loan contract as well. One
of these elements would be to supply additional collateral. In our framework the initial market value of the
collateral is fixed. The borrower cannot add to this. See Freixas and Rochet (1997, chapter 5)for a survey
of the credit rationing literature.
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asymnetries or costly state verification.” Here, as in Jones (1995) and the strategic debt
service models, borrowers and lenders have ‘full information’ at the time a debt contract is
negotiated. Neither party can inﬂuence/the riskiness of the underlying collateral and hence,
the subsequent riskiness of their claims as specified in the contract. Our objective is to
provide a benchmark analysis of credit relations based on rational strategic behaviour and
option value alone. These elements are pervasive, whether information asymmetries exist
or not. ‘ 7
Our analysis extends the framework of the strategic debt service models in an impofta.nt
way. We include contractual indentures which allow the lender to extract concessions from
the borrower in certain states of nature. Thus, unlike the approach adopted in the work
cited above, the ongoing implicit contract renegotiation is not always advantageous to the
borrower. ‘
As in the case of the strategic debt service models, costs associated with the renegotiation
of loan contracts or the transfer of ownership of assets in the event of default, play a
central role in our analysisf While the literature on the costs associated with bankruptcy
of companies which issue publicly traded debt is extensive, far less research effort has been
directed at establishing the magnitudes of the cost associated with default on bank loans.
Asarnow and Edwards (1995) study the losses incurred by Citibank on defaulted bank
loans over the period 1970 to 1993. For a portfolio of general commercial and industrial
loans they find that the loss incurred in the event of default amounted to 34.79% of the
outstanding principal.® The part of this loss which may be associated with loan ren%gotiation
and attempts to seize and liquidate collateral amount-to at least 10% of the principal for
{ the entire portfolio and amount to 13.68% for loans with principal amounts exceeding $10
illion.® |
Our analysis also sheds light on the design of loan contracts and allows us to draw
some conclusions regarding the social efficiency of a variety of contractual arrangement§
which typify actual bank lending practices. Lenders who are cognizant of the limitations of
standard loan contracts to constrain the opportunistic behaviour of borrowers may demand
collateral requirements which exceed the fair market value of a project, in order to satisfy’a.

borrower’s financing requirements. If the borrower has no additional collateral, the lender

7 Jaffe and Stiglitz (1990) survey the literature based on these assumptions.
®Unfortunately, this portfolio contains a mix of secured and unsecured loans.
®Henceforth, we shall refer to these costs as foreclosure costs.
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will choose to extend an amount of credit (if any) which falls short of the borrower’s financing
requiremeasts. _He?ce, economigally viable projects may go uﬁfunded when the borrower has
insufficient funds to cover the unfunded balance of the project’s value. From a social welfare
sta.ncipoint this is clearly inefﬁcient.m'

The analysis developed here is presented as follows. Chapter 2 sets out the parameters
of the representative loan contract and describes the environment in which the lender and
borrower operate. Chapter 3 describes the games ofsstrategy which may be played out
between the contracting parties. Chapter 4 provides analytical solutions and chapter 5
provides numerical solutions to these games-and considers the implica:tions for the values
of the claims of the borrower and the lender. Chapter 5 also reports the implications for

credit rationing and considers some issues in contract design. Chapter 6 concludes.

ai
4

Ny

'®Harris and Raviv (1991, 1992) survey the incomplete contracting approach to loan contracts and financial
structure.



Chapter 2

The contracting environment

/

In keeping with the contingent claims approach, we develop a continuous time ‘arbitrage-
free’ valuation framework. Risk-free interest rates are assumed constant. By assyming
comfplete markets we afford the agents the opportunity to hedge their respective positions
at prevailing market rates for such ‘insurance’. o

Two fe‘atures of our environment account fof credit rationing. First, the collateral is
assumed to generate a service flow or dividend'stream ove} the multiperiod term of the
loan contract. These flows contribute to the initial market value of the collateral. However,
m the case of default, the lender is unable to recover the value of such flows which have
accrued to the borrower. Consequently, the value of the lender’s claim is determined. not
by the initial market value of the collateral, but by the expected value of the collateral at
thekmlknown date of default, discounted to the present.

Second, the option to default belongs to the borrower. He controls the timing of its
exercise and the extent of the default. Default refers to any behaviour by the borrower
which is not in compliance with the indentures of the loan contract. In the game theoretic
framework developed here we distinguish between two types of default. Term::n;ting default
induces foreclosure as a best response by the lender. Terminating default may be a rational
choice of the borrower or it may occur due to binding constraints which make it impossible
for the borrower to avoid. Strategic default does not induce foreclosure as a best response
by the lender. Instead the lender allows the loan to continue. Hence, strategic default
implies that the borrower is successful at extracting concessions form the lender. Strategic
debt service is a particular type of strategic default. Here, the lender accepts debt service

payments from the borrower which fall short of the contractual payments. The presence of

7
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 foreclosure costs increases the scope for strategic default by increasing the ‘reluctance’ of
the lender to foreclose in certain states of nature. The borrower can appropriate value form
the lender by following a strategic default policy which amounts to ongoing renegotiation

of the loan contract in favour of the borrower."

4

2.1 The debt contract

We employ a simple multiperiod, specified collateral, non-recourse loan contract similar to |
the coutract described in Jones (1995). The lender advances a sum to a borrower in e.‘xchange
for the borrower’s promise to make a scheduled sequence of payments over some interval of
timne. For a finite interval, [0, T], the contract may call for a lump-sum payment at T. For
an initial sum of $1 and continuous payments at a rate of p per year over the interval [0, T,

with a lump-sum payment, P, at T, the contractual loan rate, c , satisfies:

-
el

t
1= p/ e~ Tdr + b(t)e (2.1)
0

'The outstanding loan balance at t € [0, T] is:

3

b(t) = e — (e — )p/c (2.2)
s

The lump-sum ;[é_g;yija‘exlt is simply: ~

P = b(T) ' (2.3)

Perpetual loans and pure discount loans (discount notes) are simple special cases of
equation 2.1. In the case of a perbetual loan, the contractual rate ¢ is the coupon rate
applied to a notional principle P. This implies a continuous stream of payments, p = cP

which satisfies:

- .
1= cP/ e “Tdr (2.4)
0

This implies that P =1 and b(t) =1, for t € [0, 00). In the case of a pure discount loan, a*

single contractual payment is specified at T. Equation 2.1 now becomes:

'Since we confine our attention to strategic debt service in this paper, we will use the terms strategic
default and strategic debt service interchangeably.
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1 = Pe=T (2.5)

2.1.1 Remedies in the event of default

Loan contracts typically-include a number of indentures which specify remedies available to
the lender in the event of a breach of the contract (default) by the borrower. We confine

our atteition to the following remedies:

Foreclosure .

A fuudamental indenture contained in all loan contracts is meeting the currently scheduled
payment of interest and principal. If the borrower fails to make these payments in a timely
fashion he is deemed to be in default. Default entitles the lender to foreclose and seize the
collateral. If the value of the collateral net of foreclosure costs, exceeds the outstanding loan
balance, the lender is obligated to return this surplus to the borrower. Foreclosure always

iinplies the termination of the loan contract. .

Penalty rates

Default does not force the lender to foreclose. She may be wgilling to defer the payment
in question to some later timne. In such cases, the lender may apply a ‘penalty’ rate of
interest, equal to or perhaps greater than the contractual rate, to any overdue debt service
payments until such time as the payments are brought up to date. The penalty rate w to
be applied is specified in the contract. Let k(t) represent the balance of outstanding debt

service payments at t. Over the term of the loan the change in this balance is

dk(t) = [wk(t) + p — p*]dt (2.6)

where p* represents the continuous payment stream offered by the borrower in lieu of the
contractually specified stream, p.2 So, if the borrower does not make any payments over the
term of the loan, and the loan is not terminated prior to maturity, the outstanding balance

at maturity will be:

’In the analysis which follows we assume that k(t) > 0. In other words, if the borrower offers p* > p
when k(t) = 0, the contractual balance b(t) is adjusted as if p* = p.
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b(T) + k(T) = P + p/w(e*T - 1) (2.7)

This provides the lender with an alternative remedy to foreclosure when the borrower be-

comnes delinquent in his payments.

Technical default

Loan contracts often afford the lender the option to declare a ‘technical default’ under
circumstances specified in the contract. For example, the contract may specify that the
borrower is in default whenever the collateral value falls below some predetermined propor-
tion of the outstanding loan balance even though the borrower has made all contractual
payments to date. In the event of such technical default the lender may foreclose. We
assume that the technical default provision, if it is included, allows the lender to foreclose
whenever the value of the collateral falls below the contractual loan balance, s(t) < b(t).?
This indenture; if it is present in the contract, may allow the lender to extract a payment

flow p*, from the borrower which ezceeds the contractual flow p, in certain circumstances.

2.1.2 Additional indentures

Loan contracts often contain indentures which prevent the borrower from undermining the
lender’s claimm on the underlying collateral. For example, the contract may prohibit the
issuance of any additional claims on the collateral. In the case where the collateral is the
assets of the firm, the loan contract may deny the borrower the option of issuing additional
debt or equity.! In the analysis which follows we model this indenture by imposing a ‘cash
flow’ constraint on the borrower’s debt servicing choices: all debt service payments must
be financed by the cash flows generated by the underlying collateral when this indenture is

present in the contract.

3Technical default provisions are often significantly more onerous from the borrower’s point of view.
Default ratios in the neighbourhood of 1.5 times the collateral value are common.

*In what follows we will demonstrate that restrictive covenants of this nature have far reaching implications
for the behaviour of the borrower after the contract is in place, and consequently for the value of the lender’s
claim. Denying the borrower the option of issuing additional debt ur equity to finance scheduled debt service
payments on the original loan, in times of financial distress, may not seem to be in the interests of the
lender. We will demonstrate that, under certain assumptions, this restriction actually enhances the value of
the lender’s claim.
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2.1.3 The borrower’s options

In addition to his default option, the borrower has the option to pay off the loan prior to
matuyrity by inaking a payment equal to the outstanding balance. If the borrower exercises
this option, we assume he incurs transaction costs, of negotiating a new loan to refinance
the old f[b(t)], in addition %o incurring a new obligation with a market value equal to
the outstanding balance b(t).> Prepayment is rational in instances where the value of the
collateral has risen sufficiently since the origination of the loan to render the loan less
(default) risky. The borrower is now paying a premium, ¢ — r, over the risk free rate which
is consistent with greater default risk. A new lender would be willing to accept a smaller
premium. If the benefit of the lower premium over the remaining term of the loan exceeds
the refinancing costs, the borrower will exercise this option. ‘

The prepayment option is generally viewed as being detrimental to the lender. In the
absence of explicit compensation to the lender in the event of prepayment, one may expect
to observe contracts‘vghich expressly deny this option to the borrower.® However, the legal
enforceability of such a provision is not clear (Jones, 1995, p.5f). Unlike the prepayment
or refinancing of fixed rate loans that occurs when the genera:l level of interest rates has
declined, the lender has a far more onerous burden of proof in claiming that prepayment
in the face of an increase in the market value of the collateral is damaging. Aﬁer.all, the
lender was charging a premium to compensate for the possibility of default. If default is
now less likely, why should the lender continue to receive the risk premium? Thus, whether
or not the contract specifically provides for, or prohibits, this option, it may be available to
the borrower.

If the borrower is effectively constrained in his prepayment behaviour, he may choose
to default in circumstances where he would otherwise prepay. Terminating default may be
rational when the credit spread is sufficiently large. Thus, default at ‘high’ collateral values

‘is a (costly) substitute for prepayment.”

SWe assume a competitive loan market.

®One of the surprising results of our analysis is that in the presence of certain indentures, a prepayment
option actually benefits the lender.

"We are assuming that the refinancing costs associated with prepayment are lower than the foreclosure
costs which would be imposed on the borrower in the event of terminating default at high collateral values.

&
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2.2 The collateral

Let s(t) be the equilibriumn narket value of the collateral at time t. Assume this value

follows a continuous Markov process over time:

ds(t) = a(s, t)dt + os(t)dz(t) (2.8)

where z(t) is a standard Brownian motion, o is a constant volatility parameter and a(s, t) is
the expected instantaneous drift in 5.2 The collateral generates a continuous dividend flow
at the rate d(s,t) which accrues to the borrower provided that foreclosure has not occurred.
In the event of foreclosure, the lender seizes the collateral, incurring foreclosure costs I(s, t).
If the market value net of foreclosure costs exceeds the outstanding balance

We assuine that s(t) is costlessly and continuously observed by both parties to the

v

countract.

2.3 The market

We assume that the borrower and lender have access to a market in which they can con-
struct a transaction cost-free hedge against s-risk. Such a market is said to be dynamically
complete with respect to s-risk. At each instant there exist securities or portfohﬁs of secu-
rities that are locally perfectly correlated with s, allowing either party to hedge dgainst the
randoin variations in s. For example, if s is the value of the assets of a borrowing firm, risk
of fluctuation in their value might be hedged by selling short shares of publicly traded firms
in the samne industry (Jones, 1995, p.4).

In addition, both parties can trade in default free bonds that provide a constant contin-
uously compounded yield of r per year.? . |

Working in a dynamically complete market setting with symmetric information allows

8For the stochastic differential equation (4) to describe a unique stochastic (Ito) process, a(s,t) and o(s,t)
must be Borel measurable and satisfy Lipschitz and growth conditions (see Duffie, 1988, p.225).

®For loans of moderate duration the loan contract described here is roughly equivalent to a floating rate
contract with a constant ‘credit spread’, ¢ — r. Contractual payments would be adjusted as r changes to
maintain the same balance schedule b(t) as in the fixed rate case. It seems contradictory to assume that the
borrower can borrow elsewhere at default free rates. For the arbitrage valuation argument which follows, we
require that the party in control of the default option is in this situation. This party could be the borrowing
firm itself provided that the collateral supporting the loan is only some part of the firm’s assets, and the
lender does not have recourse to the remaining assets. Alternatively, the shareholders of the firm, protected
by limited liability, may be in control of the default decision (Jones, 1995, p.4f).



CHAPTER 2. THE CONTRACTING ENVIRONMENT \ 13

one to obtain equilibrium option exercise strategies and contract values that are independent
of the risk attitudes, personal circumstances and expectations about future collateral value
of the contracting parties. It enforces consistency between collateral characteristics such as
cash flows and capital appreciation. It also facilitates a tractable analysis of the welfare

inplications of the various contractual indentures referred to here (Jones, 1995, p.3).



Chapter 3 :

Y

The games borrowers and lenders

play

Ouce the debt contract is established, the borrower and lender engage in a noncooperative
gaine in which they choose strategies to maximize the values of their claims. Given the
stochastic process for s(t), we describe a continuous time stochastic game of perfect infor-
mwation.! The players have comnplete information with respect to the environment (i.e. the
stochiastic process governing collateral values and the ‘history’ of collateral values to the
present time), their payoffs and the game itself.

The gaine is essentia.lly/ one of ongoing contract renegotiation, in which the agents at-
temnpt to deviate from the terms of the agreement whenever it is advantageous to do so. We
develop a number of variations on the following basic subgame. At every point in time, the
borrower exercises choice over the instantaneous debt service flow which he offers the lender,
p*. The borrower makes this offer with full knowledge of the rational response which it will
induce from the lender. The lender’s rational response maximizes the value of her claim,
given the borrower’s offer and the indentures of the loan contract. For example, if the offer
falls short of the contractual flow, p, the borrower is in default. Default entitles the lender

to foreclose or to invoke other remedies afforded her by the contract. The contract may also

'The basic property of stochastic games is that the history of the game at each point in time can be
summarized by a ‘state’. Current payoffs depend on this state and on current actions. (Fudenberg and
Tirole, 1991, p.503). Continuous time stochastic games are known as ‘differential games’ since the evolution
of the state variables are described by differential equations. Perfect information implies that all information
sets in the extensive form of the game are singletons. In other words, players ‘move’ sequentially and their
actions are observed before the next move occurs (Fudenberg and Tirole, 1991, pp.72-73).

v
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entitle the lender to foreclose, under certain circumstances, in the absence of default on the
part of the borr(;wer, or in cases where the Borrower is in default due to some prior breach of
the contract which has not yet been remedied (see section 2.1). Thus the lender’s respbnse
to the borrower’s ofifer determines whether or not the game continues and the payoffs to the
agents. ? ) '

We restrict our analysis to the Markov perfect equilibria of the game. We find these
equilibria by restricting the strategy space of the players to the set of ‘Markov’ or ‘state-
space’ strategies in which the past influences current play only through its effect on a
finite number of state vafia.bles that suminarize the direct effect of the past on the current

environient. In other words, the past matters only to the extent that it directly affects

- the current payoffs of the players.? A Markov perfect equilibrium is a profile of Markov

strategies for the players that yields a Nash equilibrium in every proper subgame (Fudenberg
and Tirole, 1991, p.501). Each player’s choice of an optimal strategy is a control problem in
whiclh the player takes into account the inHluence of his actions on the state, both directly
and indirectly through the influence of the state on the strategies of the player’s opponent.

Modeling noncooperative games in continuous time can present subtle difficulties (see
Fudenberg and Tirole, 1991, pp.118-119). We heed the advice of Fudenberg and Tirole
(1985) by describing the equilibrium of a discretized version of the game and then take limits
as the time interval goes to zero. Discretization allows the specification of the sequence of
moves by the agents in a coherent fashion. '

We divide the time to maturity of the loan contract into a number of small intervals,
each of length d¢. At the start of every interval, the borrower offers to service the loan at a
rate of p* for the duration of the interval which implies a payment of p*dt.® Similarly, the
contractual payment for the interval is pdt. No further action is taken by either agent until
the start of the next time interval when the borrower makes a new offer.

We develop two classes of Markov games. First we describe one state variable games in
which the market value of the collateral s(t), is the only state variable. Then we describe

games of two state variables in which we add a second state variable which captures some

’In games of repeated play, past play may influence current and future strategies, not because it has a
direct effect on the environment, but rather because players believe that the past matters in some way. By
restricting the strategy space to Markov strategies we ignore such beliefs. In other words, different histories
of the state of the game which have a common current state age assumed to imply the same payoﬁ's for the
players for any given set of current actions.

3For the purposes of the description of the game, the payment, appropriately discounted, can be made at
any point in time during the interval, or it may be paid continuously over the interval.
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aspects of the history of the game in a ‘payoff relevant’ fashion. In each case we impose the

indentures of the stylized loan contract, described in section 2, on the borrower and lender.

3.1 One state variable games -

We assume that the current values (;f s and t embody all relevant information upon which
the current actions of the lender and borrower are based. In particular the borrower’s choice
of the debt service flow can be expressed as p*[s(¢),t]. There is no scope here for past play
to influence current payoffs. At any point in time the state of the game is determined by
the current realization of s(t) and the current actions of the players.

For a finite term loan, the state space S x T, where S = [0, 00) denotes the range of
values for s, and T = [0, T], denotes the range of values for ¢, contains all possible states for
the players strategies. A strategy constitutes the specification of a number of regions or
closed subsets in S x T in which specific actions are taken by the player.® For example, the
borrower defaults whenever (s,t) € D, where D is a closgd subset of S x T. His prepayment
policy, P, is another closed subset of S x T. The lender forecloses whenever (s,t) € F, where
F C S x T. Similarly, any other actions which the contract may afford the players may be
represented by closed subsets of S x T.

The loan contract is terminated whenever foreclosure or prepayment occurs, or when
the maturity date is reached. The boundaries of F and P are referred to as the termination
boundaries of the game, and the regions themselves are the termination regions. The open
subset of S x T in which the loan contract is not terminated (the complement of F U P) is
referred to as the continuation region, C.

Let €2r(s,t) and Qp(s,t) represent the termination values of the lender’s claim and
borrower’s claim, respectively. The continuation value the lender’s claim, L(s,t), is
simply the value to the lender of the remaining cash flows from the loan if the collateral
value at time ¢ is s and the loan has not been terminated at an earlier date. L(s,0), the
value of the lender’s claim at the loan origination date, represents the maximum amount of
credit that the lender would extend to the borrower in exchange for the promised sequence of

contractual payments. Similarly, B(s,t) represents the continuation value of the borrower’s

“For infinite horizon cases, T = oo, players’ strategies depend only on s. In this case the game is said to
be ‘stationary’ (Fudenberg and Tirole, 1991, p.521).

For the valuation problems to be solved by the borrower and lender over the course of the game it is
necessary that these sets be closed subsets of S x T.



CHAPTER 3. THE GAMES BORROWERS AND LENDERS PLAY 17
' 4

position, taking into account his options under the contract, assuming the contract has not
yet been terminated. '

In discretized form the continuation values of the claims may be expressed as

L(s,t) = p"[s(t), t}dt + E® [L(s +ds,t + dt)]e—'d‘
= p*[s(t), t)dt + L~ (s, 1) (3.1)

B(s,t) = [d(s, t) —p*[s(¢), t]] d? + EtQ [B(s +ds, t+ dt)] et

- [d(s, t) — p*[s(t), t]] dt + B~ (s, ) : (32)

In the above E?9 is the expectation operator under the equivalent martingale - or risk
adjusted probability measure, Q. Since the values of the claims depend on future realizations
of s, they are uncertain. The assumption that markets are complete with respect to s-risk
allows us to assume that the borrower and lender evaluate future payoffs or cash flows
using the same martingale equivalent probability measure (see Harrison and Kreps, 1978).
VL‘(s, t) and B~ (s,t) are respectively the ‘ex debt service’ and ‘ex dividend’ values of the
claims. The default free instantaneous interest rate , T, 18 the discount rate.

Given the assumptions specified in sections 2.2 and 2.3, the standard afbitrage or repli-
cation arguments of contingent claims pricing imply that L(s,t) and B(s,t) satisfy the

~ following stochastic partial differential equations in C when dt — 08

1, . :
5023%“ + [rs —d(s,t)] Ly + Ly + p*[s(t),t] = rL (3.3)

1
50232335 + [rs —d(s,t)] B + By + d(s,t) — p*[s(t),t] =B (3.4)

With the exception of the p*[s(t),t] term on the left-hand side of both equations, these
equations are the standard partial differential equations which emerge repeatedly in the
valuation of claims contingent on a state variable which follows the Markov process described -

in equation (2.8). A heuristic derivation of these equations is provided in appendix 1.7

®The arguments of L(s,t) and B(s,t) are suppressed in the equations.
"Duffie (1988, sections 15 and 21) is one of many sources for a rigorous derivation of the partial differential
equations used in the valuation of contingent claims.
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»

Many sblutions exist for these eqllgat,ions. Invoking the apprOpria\E‘e\Iiyunda.ry conditions
at maturity and the so-called ‘free-boundary’ conditions which mustshold on the termination
boundaries of S x T, allows us to select the appropriate solutions for the players’ optimal
control problems. These boundary tonditions will be determined by the specific indentures
of the.contract, and the restrictions imposed on the strategy space of the borrower and
lender. I . -

The free bounda.ry\condit‘iéhs'whjch characterize optimal policies, and determine the sets
D, F and P are termed ‘value matching’ and ‘high contact’ or ‘smooth pasting’ conditions
(Dixit, 1993).8 The value matching condition requires that the continuation value and
the termination value of a particular claim be equal on the boundaries of the termination
regions. The sinooth pasting condition requires that the first derivative in the s direction
of the value function of the option exercisér be continuous on the boundg.ry'/af, ﬁhese sets.
For example, suppose that the borrower is in control of termination of the gaiile along a
particular boundary, s(t). The value matching condition implies B(s,t) = Qp(s,t), and the
smooth pasting implies By(s,t) = 0Q2p(s, t)/ds. This calculation assumes that the strategies
followed by the players are fixed. Consequently, it determines a subgame perfect Nash
equilibrium in the Markov strategies whiéh is characteristic of a Markav perfect equilibrium.

Equations (3.3) and (3.4) constitute the continuous time representation of the solutions

to the claim values, L(s,t) and B(s,t), for a general class of one state variable games. This
formulation gives us much of the facility of contingent claims analysis while at the same
time allowing us to build on game theoretic modeling of financial distress and contract
renegotiation. The same general solition techniques are applicable to a variety of problems.
We may consider a number of variations on the game. In each case we solve the same partial
differential equations. All that changes from one case to another will be the specification of
p*[s(t),t] and the boundary conditions.
o We consider two versions of the one state variable game. First, we describe a benchmark
case in which the scope for the borrower and lender to behave strategically to effectively
renegotiate the terms of the loan contract, is limited. OQur approach here is very similar to
that of Jones (1995). Then we expand the scope for strategic behaviour, particularly for
the borrower, proceeding along éhe lines of Anderson and Sundaresan (1996) and Anderson;
Sundaresan and Tychon (1996).

8Samuelson (1965) seems to be the first person to have coined the phrase ‘high contact’ in his pioneering

efforts in this area.
<
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3.1.1 Terminating default

We proceed by initially ignoring the techniqcal default provision. 'We assume that tﬁe lender
does not entertain any attempt by the borrower to alter the terms of the contract. In
particular, the lender always forecloses whenever the borrower offers p* < p for any t < T,
or if he offers P* < P at T. Thus default is ‘terminating’ in that it forces foreclosure which
terminates the game. There is no scope here for the borrowe/r to explore the possibility of
offering the lender payments which, while they fall short of the contractual amounts, do
not induce the lender to foreclose.” Thus default is always characterized by the borrower
offering the lender a debt service flow of zero, while the debt service flow is always equal to

the contractual payment flow in the continuation region.

0 fqr(s,t) €D

Pls(t).1) = {p for(s,t) ¢ D

Since his control variable, p*[3ft), t], is binary, the borrower’s control problem is reduced
" to an ‘optimal stopping’ problem. At every point in time he can either terminate the game
(default or prepay) or continue (make the contractual debt service payment). The borrower
has a clear ‘first-mover advantage’. The lender cannot foreclose until the borrower defa.ultg,
in the absence of a technical default provision. Under these circumstances, D = F. T};e
lender ‘chooses’ an optimal strategy in ‘na.me oﬁly. The foreclosure restriction together
with the absence of a technical default provision means that her actions are completely
determined for every (s,t) € S x T. ‘ ' '

Consequently we can describe the Markov perfect equilibrium of the game in the case of
a (finite) terin loan, by restricting our attention to the borrower’s optimal étopping problem.
We consider the optimal actions for the borrower to pursue at maturity which determine
the boundary conditions for his problem. Then we ‘step back’ through time considering his
optiinal actions until the origination date (t = 0) is reached. This allows us to describe the
free boundary conditions in the state space which characterise his rational behaviour.

At maturity, the borrower offers a lump sum payment, P* to offset the outstanding

balance, P = b(T'). Since an offer of P* < P forces foreclosure, his rational offer is

pr 0 for s(T)KP
P for s(T)>P

®Strategic default or strategic debt service is considered in the next version of the game.
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‘
So, at maturity there is a single, (lower) termnination region, (s,T) € F if s(T) < P. The

values of the clains at T are

L{s,T) = max {0,s(T) - I(s,T)} B(s,T)=0 for‘ik’s(T) <P (3.5)
L{s,T)=P B(s,T)=s(T)- P for s(T)> P (3.6)

The lower termination region extends back from T to the loan origination date, t = 0.
Default occurs in this region when the continuation value of the borrower’s claim is driven
to zero. Since default forces foreclosure, the termination values of the claims in this region

are

"

Qr(s,t) = max{0,s(t) — (s, 1)}
Qp(s,t) =0 (3.7)

Note that the va.lué of the lender’s claim is never less than zero. This follows from the
assumnption that the lender can abandon the collateral if the foreclosure costs exceed its
warket value. The value of the borrower’s claim is also never less than zero since his
liz;bility under the loan contract is limited to the market value of the collateral.

The boundary of this region, s(t), is also the lower termination boundary for the game.
On this boundary the value matching condition for the borrower’s problem, B(s,t) =

p (§’ t)a 1Inphes

d(s,t)—pdt+ B (s,8) =0 (3.8)

B{s,t) is strictly positive whenever the dividend flow from the ’(;rl'ateral exceeds the con-
tractual debt service flow, d(s,t) > p, since B~ (s,t) > 0.10 us any (s,t), such that
d(s,t) > p, is not an element of the lower default region since it is not rational for the
borrower to default under these circumstances. '

It is rational for the borrower to continue servicing the debt when the dividend flow

from the collateral falls short of the contractual payment flow, d(s,t) < p, if the ex dividend

'%This is a consequence of the borrower’s limited liability under the loan contract.
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value of his claim is sufficiently large, B~ (s,t) > [p — d(s, t)]d¢t."!

Prior to maturity, s(t) < b(t) + I(s,t), since there is some finite probability that the
value of the collateral will recover sufficiently such that B(s,T) > 0.!2 Thus, B(s,t) > 0 for
s(t) < s(t) < b(t) + (s, t), even though the borrower would receive nothing in the event of
default é.nd foreclosure. The borrower’s default decision problem is similar to the stopping
problem faced by the holder of an American option. In the interval, s(t) < s(t) < b(t)+I(s,t),
the ‘intrinsic value’ of the borrower’s claim is zero, but the ‘time value’ is positive.

As we move back in time, sufficiently far away from T, a second termination region
ewnerges for sufficiently ‘high’ values of the collateral if ¢ — r is sufficiently large. This upper
region has a lower bound, 5(¢) which is also the upper termination boundary for the game.'3
As the collateral value rises, the probability of default diminishes. The credit spread, ¢ —r,
originally set when the collateral value was lower, now seems unwarranted. Faced with the
prospect of making the high contractual payments for the remaining term to maturity of
the loan cobntract, the borrower will choose to default or prepay the loan if his proceeds
from doing so exceed the continuation value of his claim.!* If the cost incurred by the
borrower in negotiating a new loan to refinance the outstanding balance, f[b(t)], is less than

the foreclosure costs, (s, t), the borrower will prepay the loan instead of defaulting.!® The

terinination values of the claims in this region are

QL(s,t) = b2)
¢ " Qp(s,t) = s(t) — min {l(s, t), f[b(t)]} — b(t)) (3.9)

'""The borrower may have other resources to draw on to finance the contractual payments in these cir-
cumstances, or, in the absence of appropriate contractual indentures, the borrower may be able to issue
additional claims against the collateral.

'?In fact, for ‘reasonable’ parameter values the boundary of the lower default region, s(t) can be significantly
lower than the outstanding balance, b(t) if there is sufficient time remaining to maturity.

"3For valuation purposes we only consider foreclosure costs of the linear form, I(s,t) = lo + [18(t). In this
case, the upper default region is a compact set for finite term loans, i.e.; there is an upper bound to the
region. Since foreclosure costs are monotonically increasing in s, at sufficiently high levels of 8, the foreclosure
costs will exceed the benefits associated with termination in order to avoid the seemingly unwarranted credit
spread.

'4Since the foreclosure cost are a ‘deadweight loss’ form the point of view of the borrower and lender, a
clear incentive exists for the parties to renegotiate the terms of the contract (the credit spread, in particular)
as 3{t) approaches 3(t). Such renegotiation is ruled out here. Prepayment or default are (costly) substitutes
for renegotiation. In the strategic default version of the game, section 3.1.2, we allow for ‘de facto’ contract
renegotiation via the strategic behaviour of the contracting parties. _

'*We assume that refinancing costs are of the form f[b(t)] = fo + fib(t), for valuation purposes. Since
these costs are not increasing in 8, the prepayment region will not have an upper bound.

LY
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On the boundary of the-upper termination region, the value matching condition, B(3,t) =
{1p(3,t), inplies that the foreclosure- or refinancing costs incurred by the borrower in de-
fault are exactly equal to the present value of the extra cost associated with servicing the
loan over the remaining term to maturity at the contractual rate ¢ which is now greater
thau the fair market rate for the lower default risk.'® The value matching condition may

be expressed as

[d(3,t) - p]dt + B~(5,t) = 5(t) — min {z(g, ), f[b(t)]} — b(2) (3.10)

The borrower’s optimal strategy is characterized by a termination set which consists
of two disjoint regions or subsets in,S x T. The continuation region C is then defined by
s(t) < s(t) < 3(t).

. We sumnmarize the borrower’s optimal stopping problem in the following Bellman equa-

tion

B(s,t) = max {sz,;(s, t), [d(s,t) — pldt + B~ (s, t)} (3.11)

where Qg (s,t) combines the termination values of the borrower’s claim in the two termina-

tion regions

Qp(s,t) = max {0, s(t) — min{l(s, t), fb(t)]} — b(t)} (3.12)

Frb;n the lender’s perspective, default does not occur ‘soon enough’ along the lower
termination boundary. The lender would alwz:ys prefer the borrower to follow a strategy of
defaulting at the last moment the loan could be fully repaid by the liquidated collateral,
s(t) = b(t) + I(s,t). The borrower’s rational behaviour of timing default so as to maximise

the value of his claim, is detrimental to the value of the lender’s claim.

Technical default

Under appropriate restrictions on the loan parameters, a technical default provision will
remedy this situation to some extent by allowing the lender to pursue an ‘active’ foreclosure

strategy for ‘low’ values of s. Recall that the technical default provision allows the lender to

'®With sufficiently little time remaining to maturity the cost incurred in servicing the loan at a rate
greater than the fair market rate for the reduced default risk will be less than the foreclosure costs incurred
by defaulting. Thus, the upper stopping region and the upper stopping boundary do not extend to T for
any 3.
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foreclose whenever s(t) < b(t). Provided that the credit spread and the contractual payment
flow are confined to ‘reasonable’ ranges, the boundary of the technical default region, b(t),
will lie above the boundary of the lower default region.!” This allows the lender to foreclose
at levels of s(t) above those at which the borrower would choose to default, enhancing the
value of her claim.'8

For s(t) < s(t) < b(t), the lender solves the following optimal stopping problem'®

L(s,t) = max{2(s,t), pdt + L™ (s,t)} (3.13)

where the terinination value of her claim 1s

Qr(s,t) = max{0, s(t) — I(s,t)} (3.14)

Now the value matching condition for the lender on the lower termination boundary of the

game, s(t), for some interval [0, t], satisfies??

pdt + L™ (s, (t)) = max{0,s(t) — (s, t)} ' (3.15)

Note that if we change the technical default provision such that the lender may foreclose
whenever s(t) < b(t) + (s, t), the loan is effectively riskless. The lender always recovers the
contractual balance in the event_of foreclosure or prepayment. Since the riskless interest
rate is assumed to be constant, there is no ‘reinvestment risk’ if the contract is terminated
prior to maturity. In this case the lender would be willing to lend $1 at the riskless rate,
ie., c=r2 |
Figure 3.1 depicts the strategy space for the terminating default game. We assume that

prepayment is preferred to terminating default for ‘high’ values of the collateral.

'"By reasonable we mean values which are not too large. For example, for a 5 year loan, ¢ — r = 0.03,
p=0.1, and I(s,t) = .15s(¢) will suffice. ~

'8Under these conditions, F & D.

'We assume here that the borrower continues to offer a debt service flow of p in this region since it lies
‘outside’ his lower default region. There is however, an incentive for the borrower to consider offering debt
service flows which exceed p in an attempt to stave off foreclosure if this enhances the value of his claim. We
allow for this in the strategic default game.

20The borrower is no longer in control of the termination of the game along the lower termination boundary
so long as the technical default boundary lies above his lower default boundary. Thus, the lower boundary
is no longer a ‘free boundary’ for the borrower.

?'We are able to generate numerical results, for the case of a tetm loan, based on the methods described
in chapter 5 which are consistent witn this observation.

~
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Figure 3.1: Strategy space - Terminating Default

This completes the description of the Markov perfect equilibrium for the terrxﬁnating
default game in the case of a term loan. For perpetual loans similar reasoning applies
except that we simply need to specify the boundaries of D and P in terms of s for any t, as

these boundaries are invariant with respect to t.22

3.1.2 Strategic default

We relax the assumption that the lender always forecloses in the event of default. Default
merely ‘activates’ the lender’s foreclosure option. The lender will not foreclose if doing so
does not increase the value of her claim. This allows the borrower to explore the possibility
of offering the lender a debt service flow which falls short of the contractual payment flow
and hence implies default, but does not induce foreclosure. Thus- weallow for deviations .
from the terms of the original contract, or ongoing contract renegotiation.

We assume that if the lender accepts a debt service offer which is less than the contractual

payment she surrenders any claim on the unpaid amount. In other words the outstanding

21n the case of a perpetual loan, the control problems for the borrower and lender are stationary.
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balande; b(t), is adjusted as if the full contractual payment had been made. Hence the
contract is effectively renegotiated, in favour of the borrower, whenever such an offer is
accepted. We refer to this strategic behaviour on the part of the borrower with respect to
the debt service flow as strategic default.

As before we proceed by initially ignoring technical default. In the absence of a tech-
nical default provision the lender can never foreclose if the borrower offers the contractual
instantaneous debt service flow, p. Since the continuation value of the borrower’s claim is
strictly decreasing in p*, his debt service offer will never exceed p for t < T. Similarly, his
offer at maturity, P*, will not exceed P, the contractval balance at maturity.

We describe the Markov perfect equilibrium for a term loan. At maturity the borrower
offers a lump-sum payment in lieu of the outstanding balance, P = 8(T). The borrower

offers the sinallest payment, P* which does not provoke foreclosure

P* = min {P, max{0, s(T) - l(s,T)}} (3.16)

This imnplies a single default region at maturity, (s, T) € D if s(T) < P +1(s,T).B

Consequently the values of the claims at maturity are

L(s,T) = P*
B(s,T) = s(T) — L(s,t)
= max{l(s, T}, s(T) — P} (3.17)

For P > s(T) — l(s,T) > 0, the borrower avoids foreclosure by offering the lender ari)
amount equal to what she would receive if she liquidated the collateral, s(T) — [(s,T). This
allows the borrower to retain [(s,T), the amount which would be dissipated if foreclosure
occurred. If s(T)—I(s,T) < 0, the borrower retains s(T), while the lender receives nothing.2
Clearly it is never rational for the borrower to provoke foreclosure at maturity.

For t < T, the rational strategies of the players are based on similar reasoning. Since
foreclosure imposes a ‘dead-weight’ loss on the borrower, he never induces foreclosure along

the equilibrium path of the game. Similarly, for high collateral values, where prepayment was

23This default region is not a termination region for the game.

24We assume here that since the lender has nothing to gain by foreclosing, she does not foreclose. In
a setting in which borrowers and lenders have occasion to enter into contracts repeatedly over time, this
assumption may not be reasonable. Lenders may foreclose with nothing to gain to temper borrowers’ incentive
to behave strategically in future contracts.
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rational in the terminating default game, the borrower now prefers to avoid the refinancing
costs associated with prepayment by engaging in strategic default instead. In other words,
ongoing debt renegotiation in favour of the borrower is preferred to prepayment. For every
time interval in the discretized form of the game, there exists a critical instantaneous debt
service flow, p which leaves the lender indifferent between foreclosing and allowing the loan

to continue until the start of the next time interval %,

p[s(t), t}dt = max{0, Q(s,t) — L™ (s,t)} (3.18)

where (2 (s,t) represents the value of the lender’s claim if she forecloses

21, = min {b(t), max{0, s(t) ~ i(s. 1)} } (3.19)

To determine this critical level of the instantaneous debt service flow, the borrower
must take into account the value to the lender of the subgames along which the contract is
not terminated. The borrower evaluates future payoffs to the lender using the martingale
equivalent probability 1measure, Q.

Suppose at t, s(t) is realized. The borrower’s optirzal debt service offer for the next

interval, dt, is:

p°[s(t), t}dt = min{pdt, pdt} (3.20)

The continuation values of the claims are again expressed in equations (3.1) and (3.2).

As we move back in time from T, we observe the emergence of two disjoint default
regions.” Within these regions, p*{s(t),t] < p. Strategic default, which does not induce
foreclosure, is preferred to terminating default which terminates the contract. The lender
1s willing to accept debt service flows below the contractual flow since the probability of
(terminating) default diminishes as s(t) increases. Unlike the upper termination region in
the terminating default game, this region extends to T. As the term to maturity declines,
the lower boundary of the upper default region, 3(t), declines as well. With less time
reinaining to maturity, the risk of the collateral value deteriorating before maturity, becomes
smaller and the lender is willing to accept progressively smaller debt service flows without

foreclosing.

25The upper default region only exists if the credit spread, c — r, is positive.
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Prepayment, if permitted, may”still occur just below the lower bound of the upper
default region, but at significantly higher levels of ¢ — r than in the terminating default
gamme. Again, it may be rational for the borrower to incur the refinancing costs associated
with prepayment rather than to pay the high credit spread over the remaining term of the
loan.

In the lower default region the borrower is able to offer a debt service flow less than
the contractual flow due to the low collateral value, and consequently, the low value of the
lender’s claim in foreclosure. The presence of foreclosure costs would further reduce the
value of the lender’s claim. This adds to the borrower’s ability to ‘extract’ value from the
lender.?® As the tern to maturity diminishes, the upper boundary of the lower default set
increases. With less time remaining to maturity the probability that the collateral value will
recover diminishes, lowering the ex debt service value of the lender’s claim. Progressively
larger debt service flows are required to keep the lender from foreclosing.

So, the borrower’s choice of the instantaneous debt service flow solves the following

coutrol problem?”
B(s,t) = max {[d(s, t) — p'ldt + B~ (s, t)} ©(3.21)
o

Technical default

The presence of a technical default provision alters the borrower’s strategy. Assume again
that the lender can foreclose if s(t) < b(t), irrespective of the debt service flow offered by
the borrower. To avoid foreclosure in the technical default region the borrower’s offer must

now satisfy

p*[s(t), t]dt = pdt (3.22)

Again, if the technical default boundary lies above the boundary of the lower default

region, s(t) < b(t), over some range of |0,T|, the borrower may be able to offer the lender

*While positive foreclosure costs enhance the scope for strategic default or strategic debt service when the
collateral value is low, they are not necessary for strategic default. In the absence of foreclosure costs, the
borrower can avoid foreclosure at low collateral values by offering the lender the entire dividend flow from
the collateral if the dividend flow is less than the contractual debt service flow. From the lender’s point of
view, receiving the dividend flow is just as good as owning the collateral. Of course, the borrower prefers this
strategy to inducing foreclosure since there is some positive probability that the collateral value will recover.

*"The borrower now has a continuous control variable, p*[s(t),t] € [0, p] which he chooses at every point
in time to maximize the value of his claim.

d=
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debt service flows which exceed the contractual flow to prevent foreclosure whenever s(t)

satisfies s(t) < s(t) < b(t).

We assume that any offered debt service flow in excess of the

contractual flow is not reflected in the contractual balance b(t). The balance continues to

be adjusted as if the contractual debt service payments are being made: Thus,the technical

default provision allows for renegotiation of the contract in favour of the lender.

The case of a perpetual loan is similar except that the boundaries of the default re-

gions remain unchanged through time as the borrower and lender solve stationary control

probleins. d

Figure 3.2 depicts what the strategy space for the terminating default game.

This completes the construction of a Markov perfect equilibrium for the strategic default

game. The most important feature is that strategic default does not provoke foreclosure

and the borrower never exercises his prepayment option. This can be interpreted as the

outcome of the ongoéng negotiation process between borrower and lender over the term of

the loaun.

The absence of foreclosure along the equilibrium path of the strategic default game is

troublesome in that it is plainly unrealistic. In reality foreclosure does occur. Anderson
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and Sundaresan (1996) obtain foreclosure in equilibrium in some states by assuming that
debt service flows mnust be financed by the dividend flow generated by the collateral. This

implies the following restriction on the borrower’s debt service offers 1

% Pls(0).t) € 0.d(s,)] forall (s,5) €S xT

This can be viewed as a simple indenture designed to protect the lender’s claim on the
underlying collateral. In the case where the collateral is the assets of a firm, the indenture
effectively prohibits the firm from issuing additional claims on the collaterai (debt or equity)
or selling assets to finance the debt service flow.

The dividend flow constraint is binding whenever p > d(s,t). In these states it is rational
for the lender to foreclose. The precise effect of this indenture on the equilibrium strategies
of the borrower and lender, and hence the location of the foreclosure set in the state space,
S x T, will depend on assum’t)tions about the dividend flow, d(s,t).2® In cases where the
constraint is binding in some subset of S x T, the effect is to enhance the value of the lender’s

claim at the expense of the borrower.

3.2 Two state variable games

In the terminating default game, any concessions made by either party in the process of
contract renegotiation are assumed to be irreversible. For example, suppose that, for some
time, the collateral value deteriorates significantly and the borrower successfully negotiates
a debt service flow sinaller than the contractual flow over this period. However, after this
period the collateral value recovers such that the terms of the original contract become
binding once more. The contract does not provide for the lender to recover any of the
concessions which she made to the borrower over this interval.

We relax the assumption of irreversible concessions for the lender.?® Now the lender may
agree to renegotiated terms with the understanding that in the event that circumstances
reverse themselves, she will have some recourse to recover any concessions which she made.

In particular, we assume that the loan contract includes an indenture which allows the

8B0Of course, if the loan contract were a pure discount note (p = 0), the dividend flow constraint would
have no effect on the strategies of the borrower and lender. Also, if the dividend flow were sufficiently large
the constraint would never binding.

?We continue to assume that any concessions made by the borrower, such as offering p* > p, in the
technical default region are irreversible.
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lender to add outstanding debt service payments, which originate from concessions made,
to the contractual loan balance. Furthermore, the contract may provide for a ‘penalty’ rate
of interest to be applied to these outstanding amnounts. The purpose of this feature of the
contract is to temper the borrower’s incentive to service the debt strategically, increasing
the value of the lender’s position. The lender has a claim to these outstanding payments at

maturity or at the tine that default or foreclosure occurs.

3.2.1 Penalized default

We model the behaviour of the borrower and lender within this revised negotiating environ-
ment by developing a game in which past play has a bearing on the current actions chosen
by the borrower and the lender. Let k() represent the balance of outstanding debt service
payinents at t. Over the time interval dt, the change in this balance is given by equation 2.6
on page 9. : -

We retain the Markov property of the games to be described by assuming that the current
values of s, k and t embody all releva.n‘t information upon which the current actions of the
borrower and lender are based. So, at any point in time the state of the game is determined
by the current values of the state variables, s(t) and l{(t), and the current actions of the
borrower and lender. In particular the borrower’s choice of the instantaneous debt service
flow can be expressed as p*{s(t), k(t), t]- :

For a term loan, the state space is now S x Kx T, where K = [0, K]. K represents
the maximum value of outstanding debt service payments which can accumulate over the
tern of the loan.®® Strategies are described by the location of the closed sets D, F and P in
SxKxT.

In discretized forin, the value of the claims in C are

L(s,k,t) = p"[s(t), k(t), }dt + E? [L(s +ds, k + dk, t + dt)] e~mdt
= p*[s(t), k(t), t)dt + L~ (s, k. 1) (3.23)

B(s, k,t) = [d(s, t) — p*[s(2), k(2), t]] dt + E® [B(s +ds, k +dk, t + dt)] e—dt

%°1f the borrower does not make any payments over the term of the loan, and the loan survives to maturity,
the value of the outstanding debt service flow at maturity is K = max k@ = p/w(e*T - 1).
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- [d(s, t) — p*[s(t), k(t), t]] dt + B (s, k, t) (3.24)

By the arbitrage arguinents which apply in our complete markets setting, L(s,k,t)
» and B(s, k,t) must satisfy the following stochastic partial differential equations in C when

dt — 03!
e

1
Eazssts +rs—dlLs+[wk+p—-p*|Ly+ Ly +p*" =1L (3.25)

1., .
50252333 +[rs—d|Bs+[wk+p—p'|Be+ B +d—p° =rB (3.26)

We consider two versions of the foreclosure ‘rule’. First, we assume the loan contract
stipulates that the lender can only foreclose in the event of current default. Any past action
by the borrower which constituted default at that time cannot be invoked for the purpose of
foreclosure at the present time. In other words, the lender has the opportunity to foreclose
at the time default occurs, but not thereafter.3? Hence the lender accepts the renegotiated
termns of the contract, for°the next time interval if she chooses to” accept a debt service
flow which falls short of the contractual flow. This is identical to the foreclosure rule in
the strategic default game. However, unlike the strategic default game, the lender does
not ‘forget’ the default in the sense that the contract allows her to add the outstanding
debt service payments, k(t), to her claim on the collateral. We refer to this version of the
foreclosure rule agthe ‘current default’ foreclosure rule.

The second vellsion of the default rule considered allows, the lender to foreclose at any

time, t, if k(t) > 0. The borrower must restore the balance of outstanding debt service flows,

k(t) = 0, in order to ‘deactivate’ the lender’s foreclosure option. We refer to this version of
the foreclosure rule as the ‘outstanding payment’ foreclosure rule.
We proceed, again, by ignoring technical default for the moment. At mafurity, the

borrower offers a lump sum payment

P* = min {P + k(T), max{0, s(T) — l(s,T)}} (3.27)

This implies a single default region at maturity, (s,7) € D if s(T) < P+ k(T) + (s, T).

The values of the claims at maturity are

3!'The arguments of the functions are suppressed in these equations.
32Unless, of course, default occurs at a later time again.

S
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L(s,k,T) = P* g e ¥
B(s,k,T) = s(T) — L(s, k,t) ’
= max{l(s,T),s(T) — P — k(T)} (3.28)

For t < T, the critical debt service low which leaves the lender indifferent between

foreclosing and allowing the loan to continue is

¢
Bls(t), k(t), t]dt = max {o, (s, k,t) — L™ (s, k, t)} (3.29) "
where, t‘,he~ foreclosure value of the lender’s claim is
(s, k, t) = miq.{b(t) + k(t), max{0, s(t) — {(s, k, t)}} (3.30)

“ Under the ‘current default’ rule, the lender cannot foreclose if p* > p, whereas under the
outstanding balance rule the lender cannot foreclose if k(t) = 0. ‘

We state the borrower’s optimal control 3roblem as

B(s,t) = max { 255, k,) , max {[d(s, t) — p*ldt + B~ (s, k, t)}} (3.31)

The presence of a second state variable complicates the analysis of the rational behaviour
of the borrower, for t < T, considerably. The continuation value of the borrower’s claim

(equation 3.24) is no longer monotonically decreasing in the instantaneous debt service flow
offered, p*. A ‘low’ debt service flow offer allows the borrower to retain a greater share of the ]
dividend flow, increasing, ceteris paribus, the value of his claim. At the same time, however,
the instantaneous rate of growth in k(t) increases by the difference between the contractual
flow and the offered flow, which lowers the ex-dividend value of his claim.33 Thus, we
can no longer assert that the borrower will always make the smallest offer which prevents
_ foreclosure. Unlike the strategic default game it may now be rational for the borrower to
engage in terminating default or prepayment or to induce foreclosure, even in the absence of
a dividend flow constraint or other constraints on his debt service strategy. Consequently,

in the absence of assumptions about the values of the parameters which define the precise

1t is possible for there to be more than one level of the debt service flow over the next ipterval .which
maximizes the value of the borrower’s claim. In such cases we assume that the borrower makes the lowest
offer. )
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nature of the loan contract, general propositions about the strategiés of the borrower and
lender are not forthcoming. |

However, some observations can be made. For collateral values significantly higher than
b(t) + k(t) there is a high probability that the collateral value will be greater than P+ k(T)
at maturity. At these high collateral values the borrower will not choose to offer p* < p
as this would increase the amount owing at maturity. Thus a debt service offer lower than
the contractual flow, if it is accepted by the lender, does not constitute renegotiation of the
contract in favour of the borrower. In fact, if interest accrues at a ‘penal’ rate, w > ¢, on
the outstanding debt service flows, then renegotiation of this kind favours the lender!

We defer further remarks pertaining to the properties of this ve}sion of the renegotiation

game to the next chapter where we employ numerical methods to glean further insights.



Chapter 4

Analytical results

We consider the effects of the behaviour described in chapter 3 on the values of the claims
of {he borrower and lender, and the debt servicing strategies which emerge.

To facilitate valuation we make a number of ‘time independence’ assumptions which
unprove the tractability of the analysis. First, we assume that the instantaneous drift in

the collateral value is time independent, a(s,t) = as(t)

ds(t) = as(t)dt + os(t)dz(t) (4.1)

Furthermore we assume that the dividend flow generated by the collateral, loan refi-
nancing costs and bankruptcy costs are independent of time and are homogeneous of degree
one in their remaining arguments; d(s,t) = ds, f(b) = fib and I(s,t) = l;s. This allows the
solutions obtained for L(s,t) and B(s,t) to be interpreted as the values of the agents’ claims
per dollar of credit extended at the contract origination date. These values are independent
of loan scale and s(t) may be interpreted as the collateral value per dollar of credit initially
extended.

Analytical solutions to the linked partial differential equations (3.3), (3.4), (3.25) and
(3.26) are generally not available. However, imposing either one of two additional assump-
tions does yield solutions if we ignore indentures such as prepayment, technical default and
dividend constraints.

First, if the contracting agents are resiricted to exercising their options at the contract
maturity date only, then optimal éxercise policies are described by single critical values of the

. collateral at maturity. The values of agents’ positions are then easily determined. Second, if

34
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-

the contract does not have a maturity date (the loan is perpetual), then the strategies of the
borrower and lender are invariant with respect to time, and can be described by conistant
critical .values of the collateral. Again, some solutions are forthcoming.

In chapter 5 we relax these assumptions. We employ a finite difference proce;iure which
allows us to consider cases in which the options available to the contracting parties may be
rationally exercised prior to maturity. This numerical framework also allows us to consider
the effects of prepayment and technical default options and dividend constraints which are
often contained within the set of indentures in actual loan contracts.

We consider a number of stylized loan contracts.

4.1 Pure discount loans ‘ .

Since a discount loan specifies a single contractual payment at T, the borrower will not
rationally default at ‘low’ values of s prior to T. In the absence of regular debt service
payments, the value of tile borrower’s claim can never fall below zero, even as s(t) — 0.
However,. if the credit spread c — r is sufficiently large, it may be rational for the borrower
to default at ‘high’ collateral values for the reasons described in section 3.1.1.! In order to
obtain closed from expressions for L(s,0) and B(s,0), we allow the borrower to exercise his

‘high default’ option at naturity only.

4.1.1 Terminating default

Given the assumptions with respect to the contract parameters and the constraints on the
behaviour of the contracting parties, we now restate (3.6), the value of the lender’s claim

and the borrower’s claim at maturity

L(s,T) = max {0, (1 — 1;)s(T)} for s(T)<P
e for s(T)>P

B(s,T) = max {0, s(T) — P}

The values of these claims at ¢ = 0 are stated in the following proposition

'If the foreclosure costs are sufficiently large, it would not be rational for the borrower to exercise his
‘upper default’ option for a given credit spread. For example, if I, = 1, the borrower will never default prior
to maturity for any s(t) and any ¢ — r, in the case of a pure discount bond.
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Proposition 1 If the borrower and lender play the terminating default game, foreclosure
costs and dividend ﬂ(;ws are proportional to the collateral value, and there are no debt service

payments over the term of the loan, then the loan value is
L(5,0) = (1-1,) [S(O)e-” - c(s,T;P)] + 1, P&(s,T; P)
while the value of the borrower’s claim is

" B(s,0) = s(0)(1 — e ) +¢(s,T; P)

where ¢(s,T; P) is the value of a European call option on the collateral with ezpiry date T
and ezercise price equal to P, and é(s, T; P) is the value of a European ‘digital’ call option

with the same terms.?

Proof of the proposition is in appendix A.2. The value of the lender’s claim is simply the
‘after foreclosure cost’ value of the collateral ‘stripped’ of its dividend flow, net of the value
of the borrower’s call option on the collateral, plus the value of a digital call option on
the collateral. This option appears in the value function due to the discontinuity in the
lender’s payoff at maturity if [y > 0. The value of the borrower’s claim is simply thé sum
of a European call option on the collateral and the present value of the dividend stream
generated by the collateral over the term of the loan. _

The expected present value of the foreclosure costs, F(s,0) = s(0) ~ B(s,0) — L(s, 0}, is

F(s,0) =1, [S(O)e-” — ¢(s,T; P) — P&(s, T; P)]- (4.2)
In the absence of foreclosure costs, F(s,0) = 0, which implies that the sum of the claims

equals the market value of the collateral.

4.1.2 Strategic-default

The values of the lender’s claim and the borrower’s claim at maturity (3.17) are now

L(s,T) = min{P, (1 - 1,)s(T)}
B(s,T) = max {l;s(T),s(T) — P} (4.3)

2A European digital option pays at maturity, one unit of currency if it is in-the-money, and pays zero
otherwise. This option appears in the value function due to the discontinuity in_the lender’s payoff at
maturity if {; > 0.
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The rational borrower will engage in strategic default for s(T) < P/(1 —{,), offering the
lender a payment of (1 —[;)s(T).

Proposition 2 If the borrower and lender play the strategic default game, bankruptcy costs
and dividend flows are proportional to the collateral value, and there are no debt service

payments over the term of the loan, then the loan value is

L(s,0) = (1 -1)) [S(O)e”‘{r —c (s,T; —P——)]
1-1

while the value of the borrower’s claim is

B(s,0) = s(0) [1 -(1- ll)e‘d'r] +(1-1)c (s,T; I—_}%l‘)

where ¢ (s, T; P/(1 — 1)) is the value of a European call option on the collateral with ezpiry
date T and ezercise price équal to P/(1 -1))

Proof of the proposition is in appendix A.2. The value of the loan or the lender’s claim is
simply the ‘after foreclosure cost’ value of the collateral ‘stripped’ of its dividend flow, less
the value of the borrower’s call option on the collateral. Note that the value of claims sum

to the value of the collateral
L(s,0) + B(s,0) = s(0)

The borrower’s strategic behaviour ensures that foreclosure never occurs. Hence, F(s,0) =
0.

4.1.3 Penalized default

Since the contract calls for a single payment at maturity, the penalized default game collapses
to the strategic default game. Any shortfall between the borrower’s offered payment, P*
and the contractual balance, P, is immediately due in the form of outstanding debt service

payments, k(T) = P — P*. Thus the borrower offers

P* = min {P, max{0, (1 — ll)s(T)}} (4.4)

This i1s the same offer made in the strategic default game. Consequently the values of the
claims at maturity are identical to the corresponding values in the strategic default game.

The same applies to the values of the claims at t = 0.
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4.2 Term loans with debt service pa{yments

We continue to assume that the borrower can only exercise his default options at maturity.
Sinilarly, the lender can only foreclose at maturity. Hence, the loan continues to maturity

with certainty.?

]

4.2.1 Terminating default

The teriminal values of the claimns, L(s, T) and B(s, T), are identical to those in section 4.1.1.

The values of the claims at t = 0 are

Proposition 3 If the borrower and lender play the terminating default game, foreclosure
costs and dividend flows are proportional to the collateral value, contractual payment flows

are constant at p, and default cannot occur prior to matarity, then the loan value is
L(s,0) = (1 = 1) [s(O)e—d’T — (s, T; P)] + ‘r'i (1-eT) + 1, Pé(s,T; P)
while the value of the borr;wer’s claim 1s
B(s,0) = s(0)(1 — e 9T) — g (1- e—rT) +c(s,T; P) .

where c(s,T; P) is the value of a European call option on the collateral with ezpiry date T
and exercise price equal to P, and é(s,T; P) is the value of a European ‘digital’ call option

with the same terms.

The values of the claims are identical to those in section 4.1.1 except for the presence of
the present value of the debt service payments to be made over the term of the loan. There

is no change in the expected foreclosure costs at the loan origination date F'(s,0).

4.2.2 Strategic default

L(s,T) and B(s, T) are identical to the expressions in section 4.1.2. L(s,0) and B(s, 0) differ

from the expressions in propostion 2 only due to the presence of the debt service payments

3Restricting the default options of the borrower in this fashion implies that the borrower always offers the
lender the full contractual debt service payments, even if this means that the value of his claim is negative!

e
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Proposition 4 If the borrower and lender play the strategic default game, foreclosure costs
and dividend flows are proportional to the collateral value, contractual payment flows are
constant at p, and default cannot occur prior to maturity, then the loan value is

L(s,0) =(1-1)) [S(O)e"{r —c (S,T; I%)] + g (1- e_'T)

while the value of the borrower’s claim is

B(s,0) = s(0) [1 —(1- ll)e_'ﬁ] +(1=l)e (s,T-, -l—f—ll) - g (1-eT)

where ¢ (s, T; P/(1 — 1)) is the value of a European call option on the collateral with expiry

date T and exercise price equal to P/(1 —[)

As in section 4.1.2, F(s,0) = 0.

4.2.3 Penalized default

Since the behaviour of the contracting parties is constrained such that default and foreclo-
sure may ounly occur at maturity, the penalized default game is indistinguishable from the

strategic default game.

4.3 Perpetual loans

Consider a perpetual loan with contractual coupon rate ¢ applied to a notional principle
P. This implies a continuous stream of contractual payments p = ¢P. Since the dividend
flow and the Markov process followed by s are assumed to be time independent, the strate-
gies employed by the borrower and lender are stationary. The (current) value functions
L(s,t) and B(s,t) are independent of time, and the exercise policies can be characterized
as constant critical- or ‘trigger’ values of s at which the default options of the borrower
and the foreclosure option of the lender are exercised. This time independence also implies
that L,(s,t) and By(s,t) are zero in the partial differential equations (3.3), (3.4), (3.25) and
(3.26). Hence we are left with ordinary differential equations for which analytical solutions
may be determined under appropriate assumptions. In particular, if we restrict the be-
haviour of the borrower such that he only defaults in either the lower or the upper default
region, then closed form solutions for B(s,0) and L(s,0) are forthcoming. Allowing default
in both regions yields boundary conditions for the control problems which result in a pair
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of siinultaneous quadratic equations in the optimal default levels of the collateral, s and 3

that would require numnerical solution for particular parameter values.

@

4.3.1 Terminating default

Jones (1995) presents analytical results under similar assumptions to those specified in the
terminating default game. Constraining the borrower’s behaviour such that default only
occurs in the lower default region, he demonstrates that the value of the collateral which
triggers default by the borrower, is strictly less than value of the remaining contractual
payneuts capitalized at the risk-free rate of interest, s < p/r (Jones, 1995, p.12). This is
in accordance with our assertion that from the lender’s perspective rational default by the
borrower occurs at values of s(t) which are ‘too low’. Jones (1995) also observes that the
value of the loan or the lender’s claim is decreasing in p in the vicinity of the default region.
“There is thus a positive incentive for the lender to offer permanently reduced payments
. if default is imminent, ...” (Jones, 1995, p. 13). It is precisely this willingness to accept

reduced payments in certain states which makes strategic default by the borrower possible.

4.3.2 Strategic default

Anderson, Sundaresan and Tychon (1996) provide analytical results for a perpetual loan
contract within the context of the strategic default game with constant bankruptcy costs.
By assuming a negative credit spread, ¢ — r < 0, the borrower’s optimal default strategy is
characterized by a single lower default region and hence closed form solutions for the claim
values, the critical level of the collateral value, s, below which strategic default occurs, and
the strategic debt service payment flow p*, are forthcoming. They find that the critical
value of s is smaller than the notional principal, s < P, and that the strategic debt service
payments offered are a small fraction of the contractual payments.

While closed form solutions are not forthcoming when ¢ — r > 0, it is possible to find
closed form expressions for the strategic debt service flows in the default regions without

solving for the boundaries of these regions explicitly.

Proposition 5 Strategic default will occur in the case of a perpetual, interest-only loan with
a constant, instantaneous payment flow p = cP, and collateral paying constant proportional
dividends d; at sufficiently low levels of the collateral value, s and at sufficiently high levels

of the collateral value, 3 if c — r > 0, with strategic debt service payments of
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—l)sdy for s
p.(s):{(l )sdy f <s

rP for 8>3

If c — 7 < 0 there will be a single lower strategic default boundary with strategic debt ser 'ce

payments of
p'(s)=(1-1)sdy for s<s

Proof of the proposition is in appendix A.3.

4.3.3 " Penalized default

In the context of a perpetual loan, the indenture which allows the lender to apply a (penalty)
rate of interest to outstanding debt service payments has no effect on the behaviour of the
contracting parties in the absence of a technical default provision.* There exists no way for
the lender to recoup oustanding payments. Hence the penalized default game will produce

the same behaviour as in the strategic default game.

4.4 The limits to lending

In the case of a pure discount loan, when foreclosure costs and dividend flows are absent,

the supply of credit is limited to

L(s,0) = s(0) — c¢(s,T; P) (4.5)

for a given credit spread, ¢ — r, when the borrower and lender play the terminating default
game. This follows from proposition 1.

Consider what happens as the contractual rate c, rises. The principal due at maturity,
P, increases. Consequently the probability of default at maturity increases. In other wofds,

the probability of the call option on the collateral being ‘in the money’ at maturity declines,

“The presence of a technical default provision effectively tempers the borrower’s incentive to engage in
strategic default. Whenever the borrower engages in strategic default, the balance of outstanding debt service
payments, k, increases. This increases the upper boundary of the technical default region, increasing the
probability of technical default at some time in the future. When the lender exercises her technical default
option at ¢, she has a claim to b(¢) + k(t). Thus, the greater the extent to which the borrower indulges in
strategic default, the greater the probability of technical default at ever increasing levels of s.

-
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and hence the value of this option at the loan origination date declines. It is clear that as
¢c—1 =00, c(s,T; P) = 0, and, L(s,0) = s. The same reasoning produces the same result
in the strategic default game (proposition 2). In fact, this result applies to all forms of loan
contracts under any assumptions about the rational strategic behaviour of the contracting
parties. -

In the absence of dividend flows and foreclosure costs, the rational lender will lend the full
market value of the collateral, if offered a sufficiently high contractual interest rate. With a
sufficiently high rate, default by the borrower occurs with certainty. The lender is effectively
purchasing the collateral. With zero bankruptcy costs, the full value of the collateral is
preserved in the foreclosure process. Zero dividend flows imply that the borrower cannot
‘extract’ value from the collateral. This insight is due to Jones (1995) which we summarize

in the following proposition

Proposition 6 (Jones, 1995, p.10) If there are no bankruptcy costs and no dividend flows
from the collateral, then the supply of credit approaches the collateral value as the contractual
loan rate approaches oo. That is

lim L(s,0)=s

c—r—0oc

Cousider, again, the supply of credit in the case of the pure discount loan under the
assuimptions of the terminating default game. With a positive dividend flow, d;, and no

foreclosure costs, the supply of credit is limited to

L(s,0) = (0)e™ T - ¢(s,T; P) (4.6)

for a given credit spread, ¢ — r. Now, as ¢ — r — 00, L(s,0) — s(0)e~4T. Allowing for
positive foreclosure cost as well, implies that L{s,0) — (1 —{;)s(0)e 9T as ¢ ~ r — 0.
The same result is forthcoming in the strategic default game. The following proposition

suininarizes

Proposition 7 If dividend flows and fo.reclosure costs are proportional to the collateral

value, the supply of credit under pure discount loans is limited to

L(s,0) < (1 = 1;)s(0)e™ T
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In general we assert that for any type 6f loan contract, in this world of symmetric
information, credit will only be ‘rationed’ to less than the full market value of the collateral
if foreclosure costs are positive and/or the collateral generates a dividend flow. The upper
baund on the amguut of credit a rational lender would extend is strictly less than the
collateral value, no matter how high the contractual interest rate specified in the loan
contract. Note as well that the amount of credit extended is independent of the objective

expected rate of capiial appreciation in the collateral.

4.5 Contract design (

TS

A contract which allows the borrower and lender to engage in the strategic default game
is efficient in the sense that there is no deadweight loss due to {oreclosure. However, the
terminating default game yields a higher value for the lender’s claim at t = 0, if {; > p, and
hence implies that a greater amount of credit will be extended for any given credit s;}ea.d.
Of course, the increase in value to the lender moving from the strategic default game to
the terminating default game comes at the expense of the borrower. However, the borrower
may be willing to enter into a contract which tempers his incentive to engage in strategic
default and lowers the value of his claim, if it means that his project is funded.

In section 3.2.1 we suggested that the penalized default game might be effective in
mitigating credit rationing. However, given the constraints imposed on the behaviour of
the contracting parties here for the sake of generating analytical solutions, the penalized
default game ‘collapses’ into the strategic default game for all the loan contracts considered.
To assess the effectiveness of penalized default in mitigating credit rationing we must relax
these constraints. To this end, we employ a numerical approach to finding solutions in the
next chapter.

While our analytical results are based on restrictive assumptivns about the behaviour
of the contracting parties, a number of important insights are forthcoming. Two are of
particular interest. (1) Positive dividend flows from the collateral or positive foreclosure
costs are necessary and sufficient for the existence of credit rationing as we have defined it.
(2) Strategic debt service, while it reduces the value of the lender’s claim, ceteris paribus,
18 efficient in that it removes the possibility of foreclosure and hence avoids the deadweight

costs associated with foreclosure.



Chapter 5

Numerical results

For loans of finite maturity with regular debt service payments, the critical levels of s at
which terminating or strategic default occurs vary with the remaining time to maturity of
the loan contract. Analytical solutions for these levels of s are not available. Instead, we
-employ a finite difference procedure to approximate the functions which satisfy the partial
differential equations for representative cases or boundary conditions. The state space is
represented by a discrete grid of s and ¢ (and k in the two state variable case) values. A
solution is a set of L and B values for these gridpoints, together with an indication whether
each point is in one or more of the termination regions (e.g. F). Working ‘backwards’
from maturity, T, the pde’s ar;;_ﬁsblved’ for each time step using a Crank-Nicholson discrete
approximation for the partial derivatives. At each time step the values of the agents’ posi-
tions are checked to determine whether these values could be increased by exercising options
available to the agents at that time.! Listings of the FORTRAN code used to implement
the Crank-Nicholson algorithm are in appendix E.2 This approach allows us to consider
the full range of contractual indentures simultaneously. We have tw6 objectives. First, we
attempt to establish whether the propositions in chapter 4 apply in the case of term loans
with debt service payments. Secondly, we explore the impact of the various indentures on

credit rationing and the expected foreclosure costs at the origination date of the contract.

'See Hull(1997) and Wilmott et al (1993) for accessible treatments of the Crank-Nicholson finite difference
method.

? A routine written by Prof. R. A. Jones which implements the Crank-Nicholson algorithm in Jones (1995)
is included.

44
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5.1 Effects of the loan parameters

Appendix B illustrates how L(s,0), B(s,0), F(s,0) and the loan to value ratio, ‘%Loan’,
change as we alter various loan parameters. %Loan is the contractual value of the loan,
$1, as a proportion of the minimum collateral value for which L(s,0) = 1 at the given
contractual rate. The details of the benchmark contract, a pure diseount loan, are specified
on page 64.3 Note that we assume that foreclosure costs are 10% of the value of the collateral
at the time that foreclosure occurs.* )
In the tables, panels labeled (a) and (c) report results for the terminating default game,
while panels labeled (b) and (d) report results for the strategic default game. We report
results based on two assumptions regarding the borrower’s strategic behaviour. In panels
labeled (a) and (c) the borrower is denied the opportunity to exercise his terminating default
option in the upper default region. In panels labeled (b) and (d) the borrower is free to
exercise his terminating default option in both upper- and lower regions. '
Table (i) demonstrates how higher dividend rates generated by the collateral (without
comnmensurate increases in the contractual payment flows) reduce the willingness to lend

against given collateral. Since the results are identical for the two versions of the terminating

fault

games than in the strategic default games. This is consistent with propositions 1 and 2

default game, we report a single panel for (a) and (c). Similarly, we report a sjgele panel
for (b) and (d).> Note that the willingness to lend is greater in the termina&

in chapter 4. Also, since foreclosire never occurs in the strategic default games, expected
foreclosure costs at the loan origination date are zero.

Table {ii) reveals the negative effect of increasing foreclosure costs on the willingness to
lend. In both games the presence of an upper terminating default region only matters when
foreclosure costs are zero. In this case the willingness to lend is greater when the borrower is -
denied the option of terminating default in the upper region. There is an initial increase in .
the willingness to lend as /| rises above zero. This is due to the decline in terminating default
in this upper region. As !; continues to increase the willingness to lend declines. The effect

of increasing foreclosure costs is more pronounced in the case of the strategic default games

3We consider a pure discount loan so that our results may be compared to the propositions in section 4.1.

“We include foreclosure costs in our benchmark contract so that we can contrast the effects of variations
in the loan parameters in both the terminating default game and the strategic default game. In the absence
of foreclosure costs, the equilibria of these games ‘converge’. _

For the term of the loan, T = 5, and the foreclosure costs I; = 0.1, a credit spread below 0.06 does not
induce the borrower to rationally exercise his terminating default option in the upper default region.
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°

than in the terminating default games. Table (iii) shows the negative impact of tffe loan
term, while table (iv) reveals the negative impact of increased uncertainty about the future
value of the collateral. Table (v) indicates that larger payment flows, which imply faster
amortization, increase willingness to lend. Table (vi) makes the important observation that
the amount of credit extended, expressed as a proportion of the initial collateral value, is
not affected by the level of the risk free interest rate, r. Ur;der the risk-adjusted probability
measure, (), the expected rate of return on all assets is equal to r.°

Tables (vii)-(ix) reveal properties of the ‘supply curve’ for credit.” In table (vii) with
[y = 0, the credit supply curve slopes ‘upward’ for all cases, (a)-(d). In the absence of
foreclosure costs there is no difference between the results generated by the terminating
default games and the strategic default games. There is, hoﬁrever, a significant difference
between the games which permit terminating default in the upper default region, (c) and
(d). and those that do not, (a) and (b). The willingness to lend is significantly greater in
the case of the latter games. In cases (c) and (d) the borrower exercises his terminating
default option costlessly in the upper region, restricting the value of the of the lender’s claim
to the contractual balance, b(t), at every point in time. In cases (3) and (b) the value of
the lender’s claim exceeds b(t) for ‘high’ values of s since the borrower cannot exercise his
terininating default option.

In table (viii), with /; = 0.1, we continue to observe that, when terrhinating default in
the upper region is not allowed, the willingness to lend is greater, albeit much-less 80, in -
the terminating default game (a) than in the strategic default game (b). The same result
does not hold in ¢he cases where upper terminating default is permitted. For ¢ — r < 0.06,
the willingness to lend is greater in the terminating default game (c), but for ¢ — r > 0.06
it is greater for the strategic default game. For credit spreads greater than or equal to 0.06
upper termninating default is rational for sufficiently high values of s. This default occurs
more frequently in the terminating default game than in the strategic default game where
the borrower has the additsenal option of strategic default.® In table (ix) we observe a
‘backward bending’ suppl/‘f’u:(e for credit in the terminating default games.’ Foreclosure

, ) e . .
costs are sufficiently onerous such that terminating default never occurs in the strategic

%An increase in r may reduce the market value of the collateral which would lead to a decline in the
absolute amount of credit that would be extended.

"By supply curve we mean the required credit spread, ¢ — r as a function of the loan amount.

8Compare the values for F(s,0) in (c) and (d).

°A backward bending supply curve was never observed in the strategic default game.



CHAPTER 5. NUMERICAL RESULTS 47

default games.

5.2 Rational default and foreclosure strategies

5.2.1 Interest-only loans

Appendix C.1 (page 71) reports results for an experiment designed to illustrate proposition 5
in chapter 4. We use a long term loan (T = 50 years) to approximate the perpetual loan.'°
We ignore technical default and prépayment here. The 50 year term is divided into 500
intervals of length, d¢ = 0.1. At the contractual rate, ¢ = 0.08, the contractual payments
are pdt = 0.008 per time interval. The contractual payments only cover the interest on the
principal. The principal remains P = 1 over the term of the loan. The contracting parties
play the strategic default game.

The first panel of table 1 displays the value of thg lender’s claim, L(s,t)..The second
panel displays the value of the borrower’s claim, B(s,t), while the third panel displays the
debt service payments. At t = 50, the boundary of the upper strategic default region lies in
the interval 1.85 < 5 < 1.90. In the debt service payments table, we see that the payments
offered by the borrower are less than the contractual amount for s > 1.85. The boundary of
the upper default region, 3, remains in this interval for the first 35 years of the loan term.
Thereafter 3 declines with the declining term to maturity.!! Within the upper default region
the debt service payments offered by the borrower reach a minimum of 0.005 which amounts
to a return on the principal equal to the risk free interest rate of 0.05% per annum. The
value of the lender’s claim is always equal to therprincipal ($1) in the upper default region. -

The boundary of the lower strategic default region, s, lies in the interval 0.70 < 5 < 0.75
over the entire term of the loan. For s < 0.6 the payments offered by the borrower are
p*dt = (1 — l;)d,sdt. Thus, in both default regions, the strategic payments offered by the

borrower converge to the levels for a perpetual loan determined in proposition 5.

'®The parameter values used to generate the tables in appendix C.1 are presented on page 71.
'"'In the case of a perpetual loan, the boundaries of the upper and lower default regions remain unchanged.
See section 4.3.2.
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5.2.2 Partially amortizing loans

Appendix C.2 reports results of experimnents conducted under the assumptions specified
in chapter 3 for ‘representative’ parameter values.'? Tables 1 - 10 display numerically
obtained values for L(s,t) and B(s,t), identifying the regions of S x T or S x K x T, where
the various options, available to the contracting p%.;rties are exercised. When these regions
overlap, terminating default takes precedence over foreclosure due to a binding dividend
fiow coustraint, over foréclosure due to technical default. Tables 1-3 report results for
the terminating default game described in section 3.1.1. In table 1 we observe the lower
terminating default region indicated by ‘+’. There is no prepayment option here, and given
the credit spread ¢ — r = 0.03, the upper terminating default region is not visible in the
subset of S x T displayed.!'?

Table 2 allows for prepayment and technical default. We now observe an upper termina-
tion region (the prepayment region) identified by ‘+’. This prepayment region disappears
well before maturity, T. With little time remaining to maturity, the cost of paying a now
unwarranted high interest rate over the remaining term, falls short of the cost of refinancing
the loan. The lower terminating default region lies well below the region of technical default
when there remains a significant period of time until maturity, 7. The borrower must have
substantial negative equity before rationally defaulting if time remains for the collateral
value to recover. This region is also larger in table 2 than in table 1, i.e. terminating de-
fault occurs at higher vahgs of s in table 2 than in table 1, save for a curious ‘dip’ in the
default region over the interval t = 1 to t = .5. This serves as an example of the complex
effects of contractual indentures, such as technical default, on the rational behaviour of the
contractfhg parties.

Of course, all of this is moot. The borrower never gets to exercise this terminating
default option since the lender preempts him by foreclosing along the boundary of the
technical default region. This foreclosure is indicated by ’. States in which the lender
does not exercise her technical default option, even though the technical default condition
1s satisfied, are identified by ‘-’.

The presence of the prepayment provision reduces the value of L for ‘high’ values of s

'2The parameter values used to generate the tables in appendix C.2 are presented on page 71. The results
are based on a time interval of d¢ =~ .0208 years. The contractual debt service payment over a single interval
is pdt ~ .0021.

*In fact, for this credit spread, term of the loan, T = 5 years and magnitude of the foreclosure costs,
[ = 0.1, there is no upper default region for any (s,t).
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compared to the corresponding values in table 1, while L is higher for ‘low’ values of s in
table 2 than the corresponding values in table 1 due to the-presence of the technical default
provision. .

For tables 1 and 2 the combined value of B and L approaches (1 —,)s(t) as s(t) — 0,
approaches s(t) — f1b(t) as s(t) = oo when prepayment is a viable option (the prepayment
region of table 2) and approaches s(t) outside of the prepayment region. The value of the
positions of all parties to the contract, including bankruptcy trustees in the event of default
or foreclosure, and new lenders in the event of prepayment, is conserved and sums to s(t).

Table 3 allows for a dividend flow constraint in addition to prepayment and technical
default. Foreclosure due to techuical default in table 2 is now replaced by foreclosure due
to the binding cash flow constraint, indicated by ‘#’. Furthermore, the dividend constraint
yields foreclosure in some states in which it was not possible for the lender to forec‘lose
in table 2. For example, at (s,t) = (0.95,2.0) the lender forecloses in table 3 since the
dividend flow off the collateral is insufficient to cover the contractual payment flow.!? In
table 2, however, the borrower is not constrained to service the debt out of the dividend
flows, and consequently does not default. .

The dividend constraint has a significant effect on the borrower’s lower terminating
default region, and on the borrower’s rational prepayment strategy. The borrower now
prepays at lower levels of s over the interval 4 years to maturity (¢t = 4) to .5 years to
maturity (¢t = 0.5).'"> Over the interval, t = 1 to t = 0.5 the prepayment region has an
upper bound.'® Here the borrower is not prepaying due to a suddenly unreasonable credit
spread, he is prepaying to avoid the ever increasing likelihood that the dividend constraint
will become binding and that the lender will foreclose. The refinancing costs are significantly
less than the foreclosure costs that would be imposed on him at these levels of s. The
lower terminating default region has expanded to extend to the boundary of the foreclosure
region. The dividend constraint lowers the value of the borrower’s claim for ‘low’ values of
s and hence increases the region in which terminating default is rational. Again, however,
terminating default does not occur in this game as the borrower is always preempted by the

lender’s foreclosure. . .

'“The contractual debt service payment over a single interval, pdt = .0021, is greater than the dividend
flow off the collateral, d1s = .0020 when its market value is s = 0.95.

'*In the tables ¢ refers to ‘time to maturity’ whereas in the preceding analysis ¢ referred to calendar time.

'®Recall that we asserted in section 3.1.1 that for the functional form of the refinancing costs we employ
there will be no upper bound to the prepayment region, in the absence of a dividend constraint.



CHAPTER 5. NUMERICAL RESULTS 50

It is interesting to note that this loan contract does not appear to ‘survive’ to maturity.
There does not seem to be a ‘path’ for s to maturity (¢ = 0) which does not traverse a
boundary of a termination region.!”

Table 4 reports the results for the strategic default game without a dividend constraint on
the debt service payments offered by the borrower. As expected the value of the borrower’s
position for any s(t) is higher than the values reported in tables 1-3, while the converse is
true for the lender. The third panel of table 4 displays the strategic debt service payments.
It is clear that strategic default occurs at both low and high collateral values, which is
consistent with the analytical results.!® In the strategic default regions, L is always equal to
minimum of the contractual balance and the value of the collateral net of foreclosure costs
(‘slig’). Also, the strategic behaviour of the borrower, unfettered by cash flow constraints,
successfully'avoids foreclosure or default in all states of the contract. In this game the values
of the claimns of the borrower and lender always sum to s.

Table 5 includes the prepayment and technical default provisions. The value of the,
lender’s claim is now greater for all (s,¢) where the borrower makes the full contractual
paymnent, while the value of the borrower’s claim is diminished in this region. The third
panel of table 5 reveals that the strategic default region is now larger. The presence of the
prepayment provision allows the borrower to extract more value from the lender at ‘high’
levels of s. Note however that on the boundary of the technical default region the borrower
offers the lender debt service payments which are considerably greater than the contractual
payment. This is to avoid forcclosure due to technical default. The borrower offers the
lender debt service payments such that L = (1 —[,)s, since this is what the lender would
receive if she chose to exercise her foreclosure option. This accounts for the lower values of
the borrower’s claim in table 5 compared to the values in table 4 at corresponding (s, t).

Thus it appears that L increases while B falls with the introduction of the teghnfca.l
default indenture and the prepayment option. Tables 6 and 7 provide an interesting insight
into the effect of the prepayment option on the values of the contracting parties’ claims.
Close study of the tables reveals that in the presence of strategic debt service with the cash
flow constraint in place, the prepayment option enhances the value of the lender’s position

in the continuation region of the state space. For example, in table 6 L(1.45,5.0) ~ 0.997

'"We should be careful in asserting that is unambiguously true, given the ‘coarseness’ of the grid in table
3. A finer grid may yield a path to maturity for s.

'8Strategic default occurs whenever the debt service payments are less than the contractual payments of
.0021.
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and L(1.30, 3.5) 22 0.960, while in table 7, L(1.45,5.0) =~ 1 and L(1.30, 3.5) = 0.965.'° This
increase in the value of the lender’s claim is not due to higher debt service payments. In
fact, the debt service payments in the third panel of table 7 are all less than or equal to the
debt service payments in the third panel of table 6.

This occurs despite the fact that the prepayment option is never exercised! Note as well
that the cash flow constraint induces foreclosure and hence bankruptcy at ‘intermediate’ -
levels of s(t). Quite surprisingly, bankruptcy does not occur at low levels of s(t) as one
would intuitively expect, the technical default option notwithstanding.

Tables 8-10 report results for the penalized default game. The strate'gy space for this
gaine is three dimensional (S x K x T). The tables represent cross sections of this spz;.ce
at s = 1.1, the assumed fair market value of the collateral at the origination date. Each
table includes an extra panel in which the critical debt service payments p are revealed.2’
Along the vertical axis of the K x T space in each panel of the tables we measure the actual
outstanding debt service payments k(t), and along the horizontal axis we measure time
to maturity, ¢. Also, the maximum outstanding debt service payment amount K (t), and
the contractual balance b(t), is indicated for every t along the horizontal axis.2! For all
combinations of k(t) and K (t) which are infeasible (i.e. k(t) > K(i)), the values of the
claimns and the debt service payments are set to zero.?? This has no bearing on the values
of the tlaims in the feasible region of the strategy space. _

Table 8 reports results for the current default rule. For ‘low’ values of k(t) there seems to
be no clear relatiouship between the value of the claims and k(t). For ‘higher’ values of k(t),
the value of the borrower’s claim is decreasing in k(t) while the value of the lender’s claim
18 increasing in k(t). Similarly, the strategic debt service payments offered by the borrower
exhibit no clear relationship to k(t) when these values are ‘low’, but are increasing in k(t)
when theses values are ‘high’. Also, the debt service payments offered, p* are significantly
smaller than the critical debt service payments, p for all (k,t), but equal to or greater than

the contractual payment, p. Hence the borrower avoids foreclosure in this region of the

'®This result seems to be pervasive. In more than 100 cases studied, the inclusion of the prepayment
provision in the strategic default game with a dividend constraint was never associated with a decline in the
value of the lender’s claim.

?0The critical debt service payments are payments which render the lender indifferent between foreclosing
and allowing the loan to continue, see section 3.1.2.

2'The maximum outstanding debt service payments at any ¢ is the amount which would be owing to the
lender if the borrower had made no payments since the origination date of the loan to the present time.

*2For example, at t = 5, K(5) = 0. So, for k(5) > 0, the values of the claims are set to zero.
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strategy space.? X

The observed behaviou!} of the values of the claims and the strategic debt service pay-
ments appears to be consistent with our conjecture on page 32.

Table 9 includes the prepayment, technical default and dividend constraint indentures in
the penalized default game with the current default rule. The inclusion of these indentures
affects the values of the claims and the strategic debt service payments significantly. L is
greater for all (s,t) in table 9 than in table 8, while the converse is true for B. Also, the
‘non-monotonicity’ of B and L with respect to k(t) is absent. It seems as if the presence of
the contractual indentures dominates the opposing effects of lower debt service payments,
p* and higher k(t) on L and B. _

Again, p* < p in table 9, but this does not induce foreclosure since p* = p for all (s, t)
in this region of the strategy space. More importantly, since the borrower always makes the
contractual debt service payments, we can conclude that, at least for s = 1.1, k(t) = 0 over
the entire term of the loan contract. The borrower never engages in strategic default in this
region of the strategy space. This explains the changes in L and B when moving from table
8 to table 9.

Table 10 reports results for the same set of contractual indentures, save one. Foreclosure
is now governed by the outstanding payment rule. For k(t) > 0, the values of L, B and p*
are significantly different from those in table 9. This is due to the fact that for any k(t) > 0
it is rational for the lender to default. As in table 9, however, k(t) = 0 for all t over the
termn of the loan as the borrower always offers p* = p.

The numerical results reported in appendix C appear to be broadly consistent with the

analysis developed in chapter 3.

5.3 Credit rationing

Appendix D reports the results for a number of experiments conducted to determine the ef-
fect of changes in various parameters on the ‘loan to value’ ratio and the expected foreclosure
costs at the loan origination date, F(s,0).

Table 1 (i) reports the effect of changes in the credit spread on the loan to value ratio for

a number of games and combinations of contractual indentures. Consider columns (a), (b),

*3Under the current default rule the lender cannot foreciose if the borrower oTers p' > p, for any k(t), see
section 3.2.1.
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(c), (d), (f) and (g). These columns report results for the three classes of games described
in chapter 3 without any additional contractual indentures such as prepayment or technical
default. Refer to the key on page 93 for a description of these games. As we would expect,
the loan to value ratios in column (c) are lower than those in column (a) for a large range
of credit spreads (¢ —r < 0.16). This is a consequence of the negative effect which strategic
debt service has on L as the borrower effectively renegotiates the contract in his favour in the
strategic default regions. It is interesting to note that for ‘high’ credit spreads (c—r > 0.16)
the loan to value ratios are greater in*olumn (c) than in column (a). We conjecture that
this is due to the fact that at these excessive levels of the credit spread, default in the
terminating default game is very likely to occur for high values of s (i.e. there is a ‘large’
upper terminating default region). This imposes an upper bound on L which is absent in
the strategic default game (column (c)).

Note also that at as we move from ¢ — + = 0.06 to ¢ — r = 0.07 there is a decline in the
loan to value ratio in column (a). This is due to the emergence of the upper terminal default
region which reduces L at ‘high’ levels of s. For the strategic default game (column (c))
this upper terminal default region emerges at much higher credit spreads (c-r 0.12) and
there is no decline in L near the boundary of this region due to the strategic debt service
paynents offered by the borrower.

Columns (b) and (d) add the dividend constraint to the terminating default game and
the strategic default game respectively. Again, we observe a decline in the loan to value
ratio in column (b) as we move from ¢ —r = 0.05 to ¢ — r = 0.06, as the upper terminating
default region emerges. There is no such ‘dip’ in %Loan for the strategic default game
{colunn (d)).

Adding the dividend constraint increases the loan to value ratios in the terminating
default game for ¢ — r < 0.05 (compare columns (a) and (b)). For ¢ —r > 0.06, the loan to
 value ratios fall with the addition of the dividend constraint. This, we infer, is a‘consequehce
of the interaction between the dividend flow constraint and the rational default behaviour
of the borrower. In the case of the strategic default game, the addition of the dividend flow
constraint increases % Loan for all but two levels of ¢ — r where the ratio remains the same.
In general we conclude that the dividend flow constraint mitigates credit rationing in the
strategic default game while its effect in the terminating default game is ambiguous.

Column (f) reports the results for the penalized default game with the current default

rule for foreclosure and a dividend constraint, while (g) reports the results for the same
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game with the outstanding payment rule for foreclosure. It is clear that the form of the
foreclosure rule has no effect on the extent of credit rationing. The penalized default game
yields less credit rationing than the strategic default game with the same indentures (d).
Notice also that in terms of mitigating credit rationing, this game fares almost as well as
the terminating default game with a dividend constraint (b).%4

Consider columns (e), (h) and (i) which report results for the strategic default game
(e), the penalized default game with the current default rule for foreclosure (h) and the
outstanding payment rule for foreclosure (i) when the prepayment and technical default
indentures are included. The effect on credit rationing is clear. In every case credit rationing
is reduced by adding these indentures to the respective games. Furthermore the penalized
default games yield modest reductions in credit rationing compared to the strategic default
game for some credit spreads. Again we observe that the form which the foreclosure rule
takes is of no consequence. P

In chapter 1 we reported that the strategic debt service models of Anderson and“Sun-
daresan (1996), Anderson, Sundaresan and Tychon (1996) and Mella-Barral and Perraudin
(1996) for valuing default risky bonds, generate higher credit spreads than models based on
approach of Merton (1974). The implication of this result within the framework developed
here is that we should observe a greater degree of credit rationing in the strategic default
game than in the terminating default game, which we do.?® However, when we include
coimnmon indentures such as prepayment and technical default, or we relax the assumption
that concessions extracted from the lender are irreversible (the penalized default game), we
observe levels of credit rationing which are compa;able to those generated by the terminat-
ing default game. Consequently we should be weary in assuming that strategic behaviour on
the part of the borrower (and the lender) will have a significant impact on credit rationing
or, alternatively, on the credit spreads associated with default risky loan contracts. |

Table 1 (ii) repeats the exercise discussed above for foreclosure costs of, {; = 0.35.
Increasing the foreclosure costs increases the extent of credit rationing across all the cases

considered. The saine general result prevails with respect to the extent to which particular

**1n fact, for ¢ — r > 0.12, the penalized default game is characterized by less credit rationing than the
terminating default game.

**In the strategic debt service models, the loan to value ratio is exogenous. The credit spread is determined
in the Markov perfect equilibria of the games considered. In the framework developed here, the credit
spread is exogenous and the loan to value ratio is determined in the Markov perfect equilibria of the games
- considered. Hence, factors which increase the credit spread in the strategic debt service models should, in
principle, increase the extent of credit rationing in this context.



CHAPTER 5. NUMERICAL RESULTS 95
‘ o

combinations of contractual indentures are most effective at mitigating credit rationing.?®
Again, the penalized default game with either foreclosure rule, and the prepayment and
technical default indentures yields the smallest scope for credit rationing.

Table 1 (iii) repeats the exercise for a dividend rate of, d; = 0.2. Again, the overall
extent of credit rationing increases, as we would expect. There is little to choose between
the penalized default game (with either foreclosure rule) and the strat:ghdefa.ult game with
the prepayment and technical default indentures included for the purpdses of minimizing
credit rationing. With large dividend flows, the dividend constraint is on}y binding for very
small values of s and has no effect on the extent of credit rationing {compare (a) and (b),
and (c) and (d)).

5.4 Foreclosure costs

Table 2 (1) reports the expected foreclosure costs at the origination date, F (s, 0), for the samne
parameter values employed to generate table 1 (i). As expected, the terminating default
game with the dividend constraint (b) yields the highest F', while the strategic default game
without any additional contractual indentures yields F = 0 for all credit spreads. The
strategic default game with only the dividend constraint (d) yields roughly the same F as
the penalized default games with only a dividend flow constraint, (f) and (g). These games
~ with the full complement of contractual indentures, yield significantly lower values for F for
every level of the credit spread.

Table 2 (ii) repeats the exercise for /; = 0.35 and corres;;onds to table 1 (ii). Now, we
observe that the strategic default games,(c) and (d), and the penalized default games, (f)
and (g), which do not include the prepayment and technical default indentures yield F =0
for all levels of the credit spread. The onerous foreclosure costs dissuade the lender from
foreclosing at any (s,t) over the term of the loan contract. For the games which include the
prepayment and technical default indentures, (e), (h) and (i), F > 0 for at least some levels
of c —r.

Table 2 (iii) reports the expected foreclosure costs for d; = 0.2 and corresponds to table

1 (ii1). Again for games (c), (d), (f) and (g), F = 0 for all levels of ¢ — r. For games (e),

?®One exception is that for a credit spread of zero, the terminating default game (a) yields the highest
loan to value ratio. Loan to value ratios of zero imply that the value of s at which L(s,0) = 1 exceed 5 which
is the upper limit for s on the grid of s and t values employed to generate the numerical solutions for L and
B. In other words, zeros imply loan to value ratios smaller than 0.2.
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(h) and (i), F is positive for all levels of ¢ — r. The high dividend rate allows the borrower
to extract value from the collateral at a greater rate. This increases the willingness of the
lender to invoke the appropriate indentures (such as technical default) to terminate the loan
prior to naturity. 7

Tables 3 and 4 provide another perspective on the effects of foreclosure costs and dividend
flows. Comnsider table 3. There is a general tendency for L and B to decrease when [,
increases, notwithstanding a small number of exceptions. The loan to value ratio, % Loan,
* is decreasing in !, for games (d) and (f), but the results in games (a) and (h) are ambiguous.
In table 4, L is decreasing in d| and B is increasing in d, for all games considered. Similarly
% Loan is decreasing in d; for all the games.

Based on the small set of results reported in this chaf)ter, a number of general conclusions
can be drawn. First, contracts which tend to be effective in mitigating credit rationing tend
to be associated with significant levels of expected foreclosure costs at the time of origination.
Second, contractual indentures such as prepayment and technical default, when included in
the loan contract, tend to interact in a complex manner, rendering the relationship between
variables such as the value of the contracting parties claims, or the extent of credit rationing
and the various loan parameters, ambiguous. However we have demonstrated that these

indentures are important in reducing the extent to which credit rationing occurs.



Chapter 6

Conclusion

The primary objective of this study was to develop a general framework to study the rich
possibilities and subtle interactions that occur in ostensibly ‘simple’ (standard) loan con-
tracts. In doing so, the framework developed Anderson and Sundaresan (1996) has been
extended such that the de facto contract renegotiation which occurs is not necessarily irre-
versible and not éntirely one-sided. We have developed games in which the lender is able
to extract concessions from the borrower in certain states of nature, in the presence of the
appropriate contractual indentures.

It is worth reiterating that none of the results obtained in this study rely on any elements
of asymmetric information, adverse selection or costly state verification. Instead, the key
ingredients in this analysis are costly foreclosure and ‘risky’ collateral.

To suminarize, we restate the major qualitative results reported here. (1) The upper
limit on what a rational lender would lend may be a modest fraction of the current market
value of the collateral, regardless of the interest rate the borrower offers. (2) The loan
supply curve to a particular borrower may be backward bending, with thé lender preferring
a lower loan rate over a higher one. (3) The amount lendable is sensitive to the scope
for opportunistic behaviour on the part of the borrower. This scope for opportunism is
increasing in the costs associated with seizure of the collateral in the event of foreclosure.

A number of interesting implications emerge for loan contract design. Loan contracts,
which penalize the borrower for strategic default, by applying penalty rates of interest to
outstanding interest balances, temper the incentive for the borrower to engage in strategic
debt servicing in many instances. This reduces the severity of credit rationing. C;)mmOn

contractual indentures such as a prepayment option for the borrower and a technical default
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provision are also very effective in mitigating credit rationing.

Furthermore, the inclusion of a prepayment option for the borrower in the presence of
cousiderable scope for strategic debt service, may enhance the value of the lender’s position.
Conventional wisdom suggests that prepayment options on debt contracts diminish the value
of the lender’s position. .

Loan contracts which tend to be effective in reducing credit rationing may be inefficient in
thie sense that there are significant levels of expected ‘deadweight’ foreclosure costs associated
with them. On the other hand, contracts which are efficient in the sense that they minimize
expected foreclosure costs are associated with significant levels of credit rationing.’

Some implications for policy with respect to loan contracts and bankruptcy proceedings
follow from the analysis. Most importantly, if credit rationing-like phenomena naturally
occur without information asymmetry or moral hazard, then there is little reason to suspect
market failure requiring government action. If action is called for, it suggests policies of

removing regulatory restrictions on the enforceable forms loan contracts can take.



Appendix A

Analytical results

A.1 Risk neutral valuation

We assume that the Markov process describing the evolution of the collateral value is time

independent.

ds = asdt + osdz %

If inarkets are complete with respect to ‘s-risk’, there exists a unique probability measure,

Q equivalent to the true measure, P such that
ds = (r — d)sdt + osdz’ .

where z' is a Wiener process under Q.! The expression (r — d)s is the ‘risk-adjusted drift’
in the collateral value, i.e. the expected rate of capital appreciation on the collateral in an
equilibrium where agents are risk neutral. Under this measure, the value of agents’ claims
is the expected value of all future income flows, discounted at the risk-free interest rate.

By equivalent risk neutral valuation, the value of the lender’s claim becomes

T
L(s,t) = B U p(s,t)e™""dT + L(s, O)e"(T")]
t

' A rigorous treatment of the ‘equivalent martingale measure’ is provided by Harrison and Kreps (1979) and
Harrison and Pliska (1981). The existence of the measure Q implies the absence of arbitrage opportunities,
while its uniqueness is a consequence of market completeness. A market is complete with respect to ‘s-risk’
if all s states of nature can be spanned by existing securities (see Huang and Litzenberger, 1988, pp. 126
-129). :
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Allowing the passage of a small interval of time, dt, and rewriting the lender’s claim in a

formn reminiscent of a Bellman equation
L( = ; Q . —rdt
s,t) = p(s,t)dt + Ey [L(s+ ds,t +dt)]e

Taking a Taylor series expansion of the right side of this expression, applying Ito’s lemma

and iguoring terms which approach zero ‘faster’ than dt as dt — 0
) ,
L(s,t) = p(s,t)dt + (1 — rdt) | L(s,t) + L¢(s,t)dt + (r — d)sL(s, t)dt + 50’32L,s(s, t)dt]

Suppressing the arguments of the functions and rearranging

1, .
EUZSZL” +(r~d)sLy+ Ly+p=rL

Similarly, the value of the borrower’s claim is
T .
B(s,t) = EtQ {/ (ds(t) — p(s.t))e”""~9dr + B(s, T)e "(T~Y
s t
This yields

l .
éazszBss +(r—d)sB;+ Bi+ds~p=rB
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A.2 Pure discount loans -~

Proof of Proposition 1

The value of the lender’s claim at maturity, T is

L(s,T) =

max {0,(1 - 1,)s(T)} for s(T)<P
p for s(T)> P

This ‘payoff’ can be replicated by a portfolio containing 1 — [, units of the collateral and a
short position in 1 —{; units of a European call contract on the collateral with expiry date
T and exercise price , P, and a long position in {; P units of a European ‘digital’ call.?

Consequently the value of the lender’s position at the origination of the loan contract is

r T
L(s,0) = (1 = 1) [s(0) - EOQ (/ S(T)de—erT) —c(s,T; P)] + 1, Pé(s, T; P)
| 0

T
= (1-1;) |s(0) - / s(Ov)de("d)Te‘”d'r—c(s,T;P)} + 1, Pé(s, T; P)
L 0 .

=(1-1) -s(O)e"{r —c(s,T; P)] + L Pé(s, T; P)

At T, the value of the borrower’s claim is
B(s,T) = max {0,s(T) — P}

This is simply the terminal payoff on a European call option on the collateral with exercise
price P and expiry date, T. In addition the borrower retains the dividend flow generated
by the collateral

Thus, at the origination of the loan, the value of the borrower’s claim is

B(s,0) = s(0) [1 - e_‘fr] +c(s,T; P)

A European digital option pays at maturity, one unit of currency if it is in-the-money, and pays zero
otherwise. This option appears in the value function due to the discontinuity in the lender’s payoff at
maturity if [; > 0. \
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Proof of Proposition 2

The value of the lender’s claim at maturity, T is
L(s,T) = min{(1 - I;)s, P}

This ‘payoff’ can be replicated by a portfolio containing 1 — [, units of the collateral and a
short position in a European call contract on (1 — [{) units of the collateral at an exercise
price of P/(1 —1;).> Consequently the value of the lender’s position at the origination of

the loan contract is

L(s,0) = (1 - 1y) [3(0) - B¢ (/OT ds(T)e‘"dT> —¢ (3’T5 I_ig)]

| 1-1
=(1-1) [S(O)ef‘” - (S’T; l_f_ll)]

Since the strategic behwzliour of the lender prevents foreclosure at T', the value of the bor-
rower’s claim is simply

B(s,T) = s(T) - L(s,T)

Thus, at the origination of the loan, the value of the borrower’s claim is

B(5,0) = s(0) [1 = (1 = 1)e™] + (1= ti)e (S’T; Tiil?)

30f course, this payoff profile can also be replicated by a long position in a risk-free bond and a short
position in a European put contract on the collateral, see Merton(1974).

&
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A.3 Perpetual loans

Proof of Proposition 5

In the case of perpetual loans the value functions L and B are independent 6f time. Con-

sequently, the pde’s become

%0'252[453 +(r —d)sLy + p*(s) =rL ~ (A.1)

1
50232335 + (r —d)sB; +ds —p*(s) =rB (A.2)

where p*(s) is the instantaneous debt service flow offered by the borrower. If ¢ — r > 0,

there will be two strategic default regions where the borrower chooses p*(s) so that

L(s):{(l'l‘)s for s

<s
P for s>3s
Substituting into equation A.l yields

(r—d)s(l=-0)+p*=r(l-1)s for s

*

pf =rP for s

w hich implies *

. (L—=1)sd) for s<
p'(s) = «
rP for s>

. If ¢ = r < 0, there exists only a lower strategic default region where the borrower offers

p*(s)=(1-1l))sdy for s<g

R NS -
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Appendix B

Effects of the contract parameters

Results presented here are based on the following parameter values, unless otherwise indi-_

cated:
Collateral:
o d d L L s(0)
02 O 0 0 01 1.1
Contract:
T T p
5 005 0

The following combinations of games and contractual indentures are studied:
a) Terminating default - lower terminating default only
b) Strategic default - lower terminating default only
c) Terminating default - lower- and upper terminating default

d) Strategic default - lower- and upper terminating default

(
(
(
(
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(i) d,
(a) (c) (b) (d)
dy P L B F %Loan L B F %Loan
000 1492 0.879 0.171 0._050 0.713 0.874 0.226 0.000 0.703
0.02 1.492 0.822 0.223 0.055 0.645 0.818 0.282 0.000 0.636
0.04 1492 0.764 0.279  0.057 0.583 0.760 0.340 0.000 0.576
0.06 1.492 0.705 0.337 0.058 0.528 0.701 0.399 0.000 0.521
0.08 1.492 0.647 0.396 0.057 0.478 0.644 0.456 0.000 0.471
0.10 1492 0591 0453 0.056 0.432 0.589 0.511 O.QOO 0.426
0.12 1.492 0.538 0.509 0.053 0.391 R 0.537 0.564 0.000 0.386
0.14 1492 0489 ° 0.561 0.050 0.354 0.488  0.613 0.000 0.349
0.16 1.492 0444 0.610 0.046 0.320 0.443 0.658 0.000 0.316
0.18 1.492 0.402 0.656 0.042 0.290 0.402 0.700 (?.'000 0.286
0.20 1.492 0.364 0.698 0.038 0.262 0.364 0.738 0.000 0.258
(ii) &
(a) (c) (b) (@) |
L P L B F %Loan L B F %Loan
0.00 1492 (a)0.929 0.171 0.000 0.781 (b) 0.929 0.171 0.000 0.781
(c) 0912 0.188 0.000 0.635 (d) 0.912 0.188 0.000 0.635
0.10 1.492 0.879 0.171 0.050 0.713 0.874 0.226 0.000 0.703
0.20 1.492 0.829 0.171 0.100 0.660 0.807 0.293 0.000 0.625
0.30 1.492 0.778 0.171 0.151 0.619 0.730 0.370 0.000 0.547
0.40 1492 0.728 0.171 0.201 0.587 0.641 0.459 0.000 0.469
0.50 1.492 0.678 0.171 0.251 0.561 0.543 0.557 0.000 0.388
0.60 1.492 0.628 0.171 0.301 0.539 0.438 0:662 - 0.000 0.000
0.70 1.492 0.577 0.171 0.352 0.521 0.326 0.774 0.000 0.000
0.80 1.492 0.527 0.171 0.402 0.506 0.220 0.880 0.000 0.000
090 1.492 0.477 0.171 0.452 0.493 0.110 0.990 0.000 0.000
1.00 1.492 0.426 0.171 0.503 0.481 0.000 1.100 0.000 0.000
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(i) T
(a) (c) (b) (d)

T P L B F  %Loan L B F %Loan

1 1.083 0938 0.124 0.038 0.777 0.928 0.172 0.000 0.756

2 1.174° 0916 0.142 0.042 0.750 0.907 0.193 0.000 0.732

3 1.271  0.900 0.154 0.046 0.733 0.893  0.207 0.000 0.719

4 1377 0887 0.163 0.050 0.719 0.882  0.218 0.000 0.710

5 1.492 0879 0.171 0.050 - 0.713 0.874 0.226 0.000  0.703

6 1616 0871 0.177 0052 0.706 0.867 0.233 " 0.000 0.698

7 1751 0.864 0.182 0.054 0.701 0.861 0.239 0.000 0.694

8 1.896 0.860 0.187 0.053 0.698 0.855 0.245 0.000 0.691

9 2054 0854 0.191 0.055 0.694 0.851 0.249 0.000 0.688

10 2.226 0.850 0.194 0.056 0.690 0.847 0.253 0.000 0.684

11 2411 0.846 0.198 0.056 0.685 0.842 0.258 0.000 0.678

(iv) o
(a) (c) (b) (d)

o P ‘L B F %Loan L B F %Loan
000 1.492 0995 0.001 0.104 0.905 0.990 0.110 0.000 0.900
005 1.492 1.002 0.026 0.072 0.910 0.986 0.114 0.000 0.895
0.10 1.492 0.967 0.073 0.060 0.868 0.957 0.143 0.000 0.854
0.15 1.492 0.924 0.122 0.054 0.797 0.917 0.183 0.000 0.785
020 1492 0879 0.171 0.050 0.713 0.874 0.226 0.000 0.703
025 1492 0.834 0.219 0.047 0.623 0.830  0.270 0.000 0.615
0.30 1.492 0.789 0.267 0.044 0.533 0.786 0.314 0.000 0.527
0.35 1.492 0.745 0.314 0.041 0.438 0.742 0.358 0.000 0.431
0.40 1.492 0.700 0.361 0.039 0.000 0.697 0.403 0.000 0.000
045 1.492 0.654 0.409 0.037 0.000 0.651 0.449 0.000 . 0.000
0.50 1.492 0.603 0.460 0.037 0.000 0.601 0.499 0.000 0.000
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(v)p
(a) (c) (b) (d)

p P L B F %Loan L B F %Loan
0.00 1.492 0.879 O.l%l 0.050 0.713 0.874 0.226 0.000 0.703 -
0.02 1.369 0.921 0.132 0.047 . 0.772 0.904 0.196 0.000 0.685
0.04 1246 0.950 0.105 0.045 0.822 0.924 0.176 0.000 0.656
0.06 1.123 0.971 0.084 0.045 0.861 0.939 0.161 0.000 0.690
0.08 1.000 0.986 0.070 0.044 0.888 0.949 0.151 0.000 0.714
0.10 0.877 0997 0.059 0.044 0.905 0.956 0.144 0.000 0.741

~, 0.12 0.754 1.005 0.052 0.043 0.915 0.961 0.139 0.000 0.755
0.14 0.631 1.010 0.048 0.042 0.922 0.965 0.135 0.000 0.755
0.16 0.508 1.014 0.045 0.041 0.926 0.968 0.132 0.000 0.769
0.18 0.385 1.018 0.045 0.037 0.930 0.970 0.130 0.000 0.784
0.20 0.262 1.020 0.045 0.035 0.933 0.972 0.128 0.000 0.784
(vi) r
' () (c) (b) (d)

r P L B F %Loan L B F %Loan
0.00 1.162 0.879 0.171  0.050 0.712 0.874 0.226 0.000 0.703
001 1.221 0.880 0.171 0.049 0.713 0.874 0.226 0.000 0.703
0.02 1.284 0.879 0.171 0.050 0.712 0.874 0.226 0.000 0.703
003 1350 0.880 0.171 0.049 0.714 0.874 0.226 0.000 0.703
0.04 1419 0.879 0.171 0.050 0.713 0.874 0.226 0.000 0.703
0.05 1.492 0.879 0.171  0.050 0.713 0.874 0.226 0.000 0.703
0.06 1.568 0.879 0.171  0.050 0.713 0.874 0.226 6.000 0.703
0.07 1649 0.879 0.171 0.050 ‘, 0.713 0.874 0.226 0.000 0.703
008 1.733 0.879 0.171 0.050 0.712 0.874 0.226 0.000 0.703
009 1.822 0.879 0.171  0.050 0.713 0.874 0.226 0.000 0.703
0.10 1.916 0.879 0.171 0.050 0.712 0.874 0.226 0.000 0.703
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(vi) c—r /
l] = 0 '
(a) (b) (c) (d)
c-r P L B F %Loan L B F %Loan
0.000 1.284 0.860 0.240 0.000 0.000 0.860 0.240 0.000 0.000
0.020 1.419 0.908 0.192 0.000 0.717 0.897 0.203 0.000 0.571
0.040 1.568 0.950 0.150 0.000 0.827 0.925 0.175 0.000 0.678
0.060 1.733 0.986 0.114 0.000 0.890 0.947 0.153 3600 0.741
0.080 1.916 1.017 0.083 0.000 0.930 0.963 0.137 0.000 0.784
0.100 2.117 1.041 0.059 0.000 0.955 0.976 0.124 0.000 0.816
0.120 2.340 1.060 0.040 0.000 0.972 0.985 0.115 0.000 0.851
0.140 2.586 1.073 0.027 0.000 0.983 0.991 0.109 0.000 0.870
0.160 2.858 1.083 0.017 0.000 0.990 0.996 0.104 0.000 0.889
0.180 3.158 1.090 0.010 0.000 0.994 0.999 0.101 0.000 0.889
0.200 3.490 1.094 0.006 0.000 0.997 1.000 0.100 0.000 0.909
(vill) e — r .
s
L =0.1 . -
(a) (b)

c-r P L B F %Loan L B F %Loan

000 1.284 0.823 0.240 0.037 0.000 0.819 0.281 0.000 0.000

0.02 1.419 0.862 0.192 0.046 0.656 0.857 0.243 0.000 0.646

0.04 1568 0.895 0.150 0.055 0.754 0.889 0.211 0.000 0.745

0.06 1733 0921 0.114 0.065 0.808 0916 0.184 0.000 0.801

0.08 1916 0.942 0.083 0.075 0.843 0.938 0.162 0.000 0.837

0.10 2.117 0.958 0.059 0.083 0.865 0.954 0.146 0.000 0.860

0.12 2340 0.970 0.040 0.090 0.878 0.967‘ 0.133 0.000 0.875

0.14 2586 0978 0.027 0.095 0.887 0.975 0.125 0.000 0.885

0.16 2858 0983 0.017 0.100 0.893 0.981 O.M 0.000 0.891

0.18 3.158 0.986 0.010 0.104  0.896 '0.985 0.115 0.000 0.895

020 349 0988 0.006 0.106 0.898 0.987 0.113 0.000 0.897
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L =0.1
(c) (d)

c-r P L B F %Loan L B F %Loan
0.00 1.284 0.823. 0.240 0.037 0.000 0.819 0.281 0.000 0.000
0.02 1419 0.862 0.192 0.046 0.656 0.857 0.243 0.000 0.646
0.04 1568 0.895 0.150 0.055 0.754 0.889 0.211 0.000 0.745
0.06 1733 0914 0.114 0.072 © 0.761 0.916 0.184 0.000 0.795
0.08 1916 0.919 0.090 0.091 0.747 0.928 0.164 0.008 0.804
0.10 2.117 0.927 0.073 0.100 0.757 0936 0.150 0.014 0.816
0.12 2340 0.934 0.061 0.105 0.773 0.944 0.140 0.016 0.829
0.14 2586 0.941 0.052 0.107 0.789 0.951 0.133 0.016 0.841
0.16 2.858 0.947 0.045 0.108 0.800 0.957 0.128 0.2.15 0.852
0.18 3.158 0.952 0.039 0.109 0.800 0.962 0.124 0.014 0.860
0.20 3.490 0.956 0.035 0.109 0.816 0.967 0.121 0.Qi2 0.867

(ix)c—r

{1, =0.35

(a) (b)

c-r P L B F %Loan L B F %Loan
0.00 1.284 0.732 0.240 0.128 0.000 0.666 0.434 0.000 0.000
0.02 1419 0.749 0.192 0.159 0.561 0.681 0.419 0.000 0.466
.04 1568 0.757 0.i50 0.193 0.631 0.692 0.408 0.000 0.538
006 1733 0.757 0.114 0.229 0.662 0.700 0400 0.000 0.579
0.08 1916 0.757 0.083 0.260 0.681 0.706 0.394 0.000 0.604
0.10 2117 0.752 0.059 0.289 0.689 0.709 0391 0.000 0.621
0.12 2340 0.745 0.040 0.315 0.689 0.712 0.388 0.000 0.631
0.14 2586 0.738 0.027 0.335 0.687 0.713 0.387 0.000 0.638
0.16 2.858 0.732 0.017 0.351 0.682 0.714 0.386 0.000 0.640
0.18 3.158 0.727 0.010 0.363 0.676 0.714 0.386 0.000 0.641
0.20 3490 0.723 0.006 0.371 0.671 0.715 0.385 0.000 0.650

]
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[, =0.35
(0 “ (@
c-r P L B F %Loan L B F %Loan
0.00 1.284 0.732 0.240 0.128 0.000 0.666 0.434 0.000 0.000
0.02 1419 0.749 0.192 0.159 0.561 0.681 0.419 0.000 0.466
0.04 1568 0.757 0.150 0.193 0.631 0.692 0.408 0.000 0.538
0.06 1.733 0.757 0.114 0.229 0.662 0.700 0.400 0.000 0.579
0.08 1916 0.757 0.083 0.260 0.681 0.706 0.394 0.000 0.604
0.10 2.117 0.752 0.059 0.289 0.689 0.709 0.391 0.000 0.621
0.12 2340 0.745 0.040 0.315 0.689 0.712 0.388 0.600 0.631
0.14 2586 0.738 0.027 0.335 0.687 0.713 0.387 0.000 0.638
0.16 2.858 0.732 0.017 0.351 0.681 0.714 0.386 0.000 0.640
0.18 3.158 0.727 0.010 0.363 0.663 0.714 0.386 0.000 0.641
0.20 3.490 0.722 0.006 0.372 0.642 0.715 0.385 0.000 0.649
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Appendix C

Rational default and foreclosure

strategies

C.1 Interest-only loans

Results presented here are based on the following parameter values:

Collateral:
o do
02 0
Contract:
T r
50 0.05
Key to tables:
L(s,t)
B(s,t)
slig
div
b(t)
t

b UL fo fi s(0)
0 01 0 004 1.1

c—-1T7 p P

0.08 1

value of lender’s claim

value of borrower’s claim

(1 = ;)s, value of collateral net of foreclosure costs
d1sdt, dividend per time interval

contractual balance at ¢

time remaining to maturity
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Table 1: Strategic default

O O O O O OO O O H i M = 4 e e e e e e e = = RN NN

CO0OO0OO0OO0OO0OO0OO0OCOO

.20!
.15
.10}
.05]
.00}
.951
-90]
.85]
.801
.751
.70}
.651
.601
.55|
.50]
.45|
.40|
.35]
.30}
.25
.20]
.15}
.10|
.05]
-00]
.95}
.901
.85
.801
.75}
.70
.651
.601

.980|
.935]1
.890]
.845]
.800]
. 755
.710}
.665|
.620|
.575]
.5301
.485}
. 440}
.395|
.350!
.305|
.260|
.2151
.170|
.125]
.0801
.0351
.990]
.945|
.900!
.855]|
.810|
.7651
.7201
.675]
.630!
.585}
.540}
.495]
.450]|
.405]
.3601
.315]
.270|
.226|
.1801
.135]
.090]
.045|
.000]

L(s,t):
.000
.000
.000
.000
.000

.000
.000
.997
.994
.990
.985
.979
.972
.964
.955
.945
.933
.921
.907
.892
.875
.857
.837
.816
.792
.766
.737
.705
.670
.630
.585
.5640
.495
.450
.405
.360
.315
.270
.225
.180
.135
.090
.045
.000

OO0 0000000000000 O0OO0OO0OO0OOOO0OO0OOOOOOOCOOO OO OO I ;M M 1 1

.000 -

.000
.000
.000

.000
.000
.000
.000
.997
.994
.990
.985
.979
.972
.964
.955
.945
.933
.921
.907
.892
.875
.857
.837
.816
.792
.766
.737
.705
.670
.630
.585
.540
.495
.450
.405
.360
.315
.270
.225
.180
.135
.090
.045
.000

COO0OO0O0CO0O0DO0ODO0OO0O0DO0DO0OO0OOOOOO0O0OOOOOOO OO OO OO O M m 1 M 4 1 =

600 -

OO O0OO0O00O0O000O0OCO0O00O0O0O0O0O0O0OO0O0O0O0O00O00COCOO0OOOOO M EH L R mMRm
P M
X
b

OO0 0000000000000 OO0O0O0OOO0OO0O0OCOCOCOOOOOOOOO K I ikt Him m
- o
w
b

OOOéOOOOOOOdOOOOOOOOOOOOOOOOOOOOOOOOO0-‘o-n-bb-»-:n-bt-at-
o
=]

COO0O0O0CO0O0OO0DO0CO0OO0DO0OO0O0O0O0OO0DOO0OO0OO0OO0O0OOCOOOOOOCOOOCOOOO I I I H I 1=
W
ﬂ

1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 1.000
1.000 1.000 .1.000
0.998 ' 0.998 0.999
0.995 0.995 0.996
0.991 0.991 0.993
0.986 0.986 0.988
0.979 0.980 0.983
0.972 0.973 0.976
0.964 0.965 0.968
0.955 0.956 0.959
0.945 0.946 0.949
0.934 0.934 0.938
0.921 0.922 0.925
0.907 0.908 0.911
0.892 0.893 0.896
0.875 0.876 0.879
0.857 0.858 0.860
0.837 0.838 0.840
0.816 0.816 0.818
0.792 0.792 0.794
0.766 0.766 0.767
0.737 0.737 0.738
0.705 0.705 0.706
0.670 0.670 0.670
0.630 0.630 0.630
0.585 0.585 0.585
0.540 0.540 0.540
0.495 0.495 0.495
0.450 0.450 0.450
0.405 0.405 0.405
0.360 0.360 0.360
0.316 0.316 0.315
0.270 0.270 0.270
0.225 0.225 0.225
0.180 0.180 0.180
0.135 0.135 0.135
0.090 0.090 0.090
0.045 0.0456 0.045
0.000 0.000 0.000
1.000 1.000 1.000
20.00 15.00

10.00

-

CO0OO0OO0O0O0OO0OO0O0O0O0OO0O0OO0OO0OOOOOOCOOOO0OOEOCOOOOCOOO OO I M 1 H I I IH e

g
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O OO0 00O OO0 OOOO O OO O O O H M K H o e e e e e e b DD DN

.20]
.15]
.10|
.051
.00}
.95]
.90
.85]
.801
751
.701
.65]
.601
.55]
.501
.45|
.40|
.35]
.301
.25]
.201
.151
.101
.05]
.00}
.95|
.90]
.851
.80
.75]
.701
.651
.60]
551
.501
.45]
.40]
.35]
.30|
.25]
.20}
.15]
.101
.05]
.00}

s |

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.980]
.935|
.890|
.845]
.800!
L7551,
.710]
.665]}
.6201
.575|
.530]
.485|
.4401
.395]1
.350]
.3051
.260]1
.215]
.1701
.125]
.080|
.035]
.990]
.945}
.9001
855]
.810]
.7651
.720}
.675]
.6301|
.5685]
.540]
.495]
.450]
.405]
.360|
.315|
.270}
.225]
.180]
.135]
.090|
.0451|
.000]
sliq|
b(t):
t:

QOO0 0000000 OQOO0OOO0DO0OOQOCO0OO0OO0OO0OO0OOOOOO0OOOOOODO0OOOOOO OO I 1 ik i =
—-
0

CO0O0O0O00O0DO0DO0O0O0OOOO0OO0OOO0OO0OO0OO0OO0ODOQOOOOOOOOOOOOOO OO OO I 1 ik = =

211
.161
.110
.060
.010
.960
.909
.860
.811
.764
.718
.673
.629
.585
.543
.502
.462
.423
.386
.349
.314
.280
.248
.218
.189
.163
.139
117
.099
.084
.073
.068
.063
.058
.052
.047
.042
.037
.031
.026
.021
.016
.010
.005
.000

OO 0000000000000 O0OO0OO0OO0ODOOOQCOOO0OO0OO0OO0OODOOOOOOOO O OO M i 1 1 =
o P
ore
o

CO0O 00000000000 OQO0OO0CO0OO0OO0DO0DO0DO0OOOOOO0OO0OO0DOO0OO0OOOOOOOO M M i i k=
o . « e
—-
~

1.209 1.207 1.204
1.158 1.157 1.154
1.108 1.107 1.104
1.058 1.056 1.054
1.008 1.006 1.004
0.958- 0.956 0.954
0.907 0.906 0.904
0.857 0.856 0.854
0.809 0.807 0.804
0.762 0.759 0.753
0.716 0.713 0.705
0.670 0.667 0.657
0.626 0.622 0.611
0.583 0.579 0.566
0.541 0.537 0.523
0.500 0.496 0.481
0.460 0.455 0.440
0.421 0.417 0.401
0.383 .0.379 0.363
0.347 0.343 0.327
0.312 0.308 0.293
0.278 0.275 0.260
0.246 0.243 0.229
0.216 0.213 0.200
0.188 0.185 0.174
0.161 0.159 0.149
0.138 0.136 0.128
0.116 0.115 0.108
0.098 0.097 0.092
0.083 0.082 0.080
0.073 0.072 0.071
0.068 0.067 0.066
0.062 0.062 0.061
0.057 0.057 0.056

.0.052 0.052 0.051
0.047 0.046 0.046
0.042° 0.041 0.041
0.036 0.036 0.036
0.031 0.031 0.031
0.026 0.026 0.025
0.021 0.021 0.020
0.016 0.016 0.015
0.010 0.010 0.010
0.005 0.005 0.005
0.000 0.000 0.000
1.000 1.000 1.000
15.00 10.00 5.000

OO0 00000000 OCOO0OO0OO0OO0OO0OO0OO0OO0OOCO0OOO0DO0OOO0OO0OOO0OOOOOOOOO O H I M b
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o

O O OO0 O O0OO0OO0OOQO OO O OO OO OO H K I K I e e s e - b b - e e == DN NN

.20]
.15}
.10l
.05}
.00] .
.951
.901
.851
.80t
751
.70t
.65]
.60/
.551
.501
.45]
.40
.35]
.301
.25]
.201
.15]
.10]
.051
.001
.951
.90]
.851
.80]
751
.70l
.65]
.60l
.551
.50]
.45}
.40|
.35]
.30l
.25]
.201
.151
.10|
.05]
.001

s |

.0220]
.0215]
.0210/
.0205]
02001
.0195|
.0190!
.0185]
.01801
.01751
.01701
.0165]
.0160]
.0155]
.01504
.0145|
.0140]
.0135]
.01301
.0125]
0120/
.0115]
.0110]
.0105]
.01001
.0095 |
.0090]
.0085 |
©.0080]
00751
.00701
.00651
.0060|
.0055]
.0050|
.0045|
.0040]
.0035]
.0030]
.0025]
.0020|
.0015]
.0010]
.0005]|
.0000(

b(t):
t:

Debt service payments:

Contractual payment (p*dt) = .0080

.0050
.0050
.0051
.0052
.0054
.0058
.0068
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0078
.0060
.0054
.0049
.0046
.0040
.0036
.0031
.0027
.0022
.0018
.0013
.0009
.0004
.0000

.0050
.0050
.0051
.0052
.0054
.0058
.0068
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
. 0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0078
. 0060
.0054
.0049
.0045
. 0040
.0036
.0031
.0027
.0022
.0018
.0013
.0009
.0004

.0050
.0050
.0051
.0052
.0054
.0058
.0068
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080

©.0080

.0080
.0080
.0080
.0080
.0080
.Q080
.0080
.0080
0080
.0080
.0080
.0078
.0060
.006¢
.0049
.0045
.0040
.0036
.0031
.0027
.0022
.0018
.0013
.0009

.0050
.0050
.0051
.00562
.0054
.0058
.0068
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0078
.0060
.0054
.0049
.0045
.0040
.0036
.0031
.0027
.0022
.0018
.0013
.0009
.0004
.0000

.0050
.0050
.0051
.0052
.0054
.0058
.0068
.0089
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0080
.0078
.0060-
.0054
.0049
.0045
.0040
.0036

.0031

.0027
.0022
.0018
.0013
.0009
.0004
.0000
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.0050 .0050
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.0080 .0080
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.0080 .0080
.0080 .0080
.0080 .0080
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.0080 .0080
.0080 .0080
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.0049 .0049
.0045 .0045
.0040 0040
.0036 .0036
.0031  .0031
.0027 .0027
.0022  .0022
.0018 .0018
.0013 .0013
.0009 .0009
.0004 .0004
.0000 .0000
1.000 1.000
25.00 20.00
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C.2 Partially amortizing loans

Results presented here are based on the following parameter values:

-
Collateral:
g do dl 10 11 f() fl 3(0)
0.2 1 0.1 0 0.1 0 004 1.1
Contract:

T r c—T1r w-—c¢ - p P
5 0.05 003 005 0.1 0877

Key to tables: v
L(s,t) = value of lender’s-claim
B(s, t‘) = value of borrower’s claim
sliq = (1 —1,)s, value of collateral net of foreclosure costs
b(t) = contractual balance at ¢
t = time remaining to maturity -
* K(t) Tz maximu;n outstanding debt service payments at t
k(t) = actual outstanding debt service payments at t

Loan status:
' = terminating default
‘+’ = prepayment
‘> = technical default
7 = foreclosure due to technical default

‘#’ = foreclosusre due to cash flow constraint

-2
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Table 1: Terminating default

1.60]|
1.55]1
1.50]
1.45]
1.40]
1.351
1.30]
1.25]
1.20]
1.15]
1.101
1.05|
1.001
0.951
0.90|
0.851
0.801
~0.751
0.701
0.65!
0.60]
s |

1.601
1.55]|
1.501
1.45]
1.40!
1.35!
1.301
1.25]
1.201
1.15]
1.10!
1.05]
1.00}
0.95]
0.901
0.851
0.80]
0.75]
0.70l
0.651
0.60]|

O O O O OO O OO O O M I H b b b b b b

O OO O O O O O O O O H i i a o M e b b

.4401)
.395]
.350|
.3051
.2601
.215]
.1701
.1251
.080|
.0351
.990|
.945|
.9001
.8551
.810]
.7651
.7201
.6751
.6301
.5851
.5401

L(s,t):
1.056
1.048
1.039
1.029
1.018
1.006
0.993
0.978
0.961
0.942
0.921
0.898
0.871
0.842
0.809
0.772
0.731
0.684
0.630%
0.586%
0.540%

w0
W
©0
O OO0 O0OO0OOO0OOO0O0OOCO O H ™ I I+ =

.035
.028
.021
.013
.004
.993
.981
.968
.952
.935
.915
.893
.868
.839
.807
71

.567
.521
.475
.430
.387
.344

. 004
.999
.993
. 986
977
. 967
.956
.942
.926
.908
.888
.864
.837
.805
770
.729
.683
.630% 0.
.585* 0.
.540* 0.

.583
.536
.490
.444
.399
.356
.313
.272
.232
.194
.158
.125
.095
.068
.044
.025
.011
,002
.000% 0.
.000% 0.
.000% 0.

(=
(=
©0

OO0 O0OO0OO0OO0OO0OO0OO0DOO0OOOOOOOO

©C 00000000000 OO0OO0OOO O

976 0.955 0.931 0.905 0
973 0.954 0.931 0.905 0
970 0.952 0.930 0.905 0O
967 0.950 0.930 0.905 0
962 0.947 0.929 0.906 0
956 0.943 0.927 0.904 0
949 0.938 0.924 0.904 0
941 0.932 0.920 0.903 0
930 0.923 0.915 0.902 0
917 0.912 0.907 0.898 0
902 0.899 0.896 0.893 0
883 0.881 0.881 0.88¢ 0
agég 0.861 0.862 0.869 0
838~ 0.835 0.838 0.846 O
805 0.805 0.808 0.815 0
770 0.770 0.772 0.776 O
729 0.730 0.731 0.729 0O
.683 0.684 0.684 0.677 O
630% 0.630% 0.630* 0.630% 0
585+ 0.585% 0.585% 0.585% 0
540% 0.540% 0.540% 0.540* 0
932 0.919 0.906 0.892 0
000 1.500 1.000. 0.500 O
.621 0.644 0.669 0.695 0
.572 0.594 0.619 0.645 0
524 0.545 0.569 0.595 0
.476 0.496 0.519 0.545 0
.429 0.448 0.470—0.495 0
.383 0.400 0.421 0.445 0
.338 0.353 0.372 0.396 0
.293 0.307 0.324 0.346 0
.251 0.263 0.277 0.297 0
1210 0.220 0.232 0.248 0
.171 0.179 0.188 0.200 0
.135 0.141 0.147 0.155 0
.102 0.106 0.109 0.113 0.
.073 0.075 0.076 0.075 0
.048 0.049 0.048 0.044 O
.027 0.027 0.026 0.021 O
.012 0.012 0.010 0.007 0
.003 0.002 “9.002 0.000 O
.000* 0.000% 0.000% 0.000% 0.
.000% 0.000% 0.000% 0.000% 0.
.000* 0.000% 0.000% 0.000% 0.
.932 0.919 0.906 0.892 O.
.000 1.500 1.000 0.500 O.

76

.723
.673
.623
.5673
.623
.473
.423
.373
.323
.273
.223
.173

123

.073
.023
.000*
. 000+
.000*

000=*
000+
000=_
877
000
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Ll
Table 2: Terminating default: prepayment, technical default

O O O O O O O O M 1 1 b b b b b bt b b s b

O O O O O O © O b b o b b pb b pb b pd pd b b

.60 1.440]|
.551 1.395]
.50] 1.350]
.45] 1.305|
.40 1.260]|
.35 1.215]
.30] 1.170]
.25} 1.125}
.20| 1.080]
.15 1.035]|
.10] 0.990|
.05] 0.945]
.00} 0.900}
.95| 0.855]
.90} 0.810]|
.85] 0.765]|
.80| 0.7201
.751 0.6751
.70 0.630}|
.65} 0.5851
.60| 0.540|
s | sliq!
b(t):

t:

.60| 1.440¢
.55} 1.395|
.60] 1.350]
.451 1.305]
.40}e1.260]|
.35] 1.215]|
.301 1.170}
.25] 1.125|
.20| 1.080l
.15] 1.035]|
.10l 0.990]
.05] 0.945]
.00] 0.9001
.95] 0.855]
.90| 0.810}
.85] 0.765]
.801 0.7201
.75} 0.675]
.701 0.630|
.65] 0.5851
.601 0.540]
s | sliql
b(t)

L(s,t):
1.000+
1.000+
1.000+
1.000+
1.000+
0.992
0.984
0.973

'0.960

v - - " " = " " = o S o e 5 e o e e o

-

0.990+
0.990+
0.990+
0.990+
0.990+
0.990+
0.979
0.969
0.956
0.941
0.924
0.904
0.881

: 0.855:

0.811~
0.765#*
0.720#
0.675%
0.630*
0.585%*
0.540%*

OO0 O0OO0OO0OO0OO0ODO0OO0OO0ODO0OO0CO0OO0OO0OO0OO0OODOO O

979+ 0
979+ 0.
.979+ 0
979+ 0
.979+
.979+
.970

961

0

0

0

0
.950 0
.936 0
.920 0
.902 0
.880 0.
0

0

0

0

0

0

0

0

3
OO0 0000000000 OOOQIOOO

.968+

968+

. 968+
.968+
. 968+
. 968+
.961
.9583
.942
.930
.916
.898

.957+
.957+
.957+
.957+
.957+
.957+
.951
.943
.934
.922
.909
.893

OO0 O0OO0OO0OO0O0DO0OO0DO0OO0OO0O0,00000O0OO0O

OO0 0000000000 OOOO0OOOOOO

—
N
[
OO O0OO0OO0OO0OO0OO0DO0ODO0OO0OO0ODO0DO0ODODOO0OODOO O

.945+
.945+
.945+
.945+
.945+
.945+
.942
.937
.929
.918
.904
.886

OO0 000000 O0OO0OO0OO0OO0OOO0OO0OO0OOOO

0.932+
0.932+
0.932+
0.932+
0.932+
0.932+
0.936

0.934

0.927

0.917

0.903
0
0
0
0
0
0
0
0
0
0

.864

.631+
.581+
.631+
.481+
.431+
381+
.332
.284
.238
.193
.149
.108

CO 0000 O0OO0OO0OO0CO0ODO0DQDO0ODOOO0OOOOO

C O O0OO0OO0DO0OO0OO0OO0ODOO0OOODODOLOOOODOOO

.919+ 0.
.945
.951
.950
.947
.943
.938
.932
.923
.913
.899

CO0OO0O0OO0OO0OO0ODO0OO0OO0OO0OOOOOOOOOO

C O O0OO0OO0OO0OO0OCO0OO0OOOOOODOODODOODOOO

77
931 %o.gos 0.877
931 "0.905 0.877
.930 0.905 0.877
.930 0.905 0.877
.929 0.905 0.877
.927 0.904 " 0.877
.924 0.904 0.877
.920 0.903 0&77
.915 0.902 0.877
.907 0.898 0.877
.896 0.893 0.877
.881 0.884 0.877
.862 0.869 0.877
.839 0.846 0.877
810: 0.815 0.877
773- 0.776- 0.765% .
731- 0.729- 0.720%
684- 0.677- 0.675+
630* 0.630* 0.630*
585% 0.585% 0.585+
540* 0.540* 0.540%
906 0.892 0.877
000 0.500 0.000
669 0.695 0.723
619 0.645 0.673
569 0.595 0.623
519 0.545 0.573
470 0.495 0.523
421 0.445 0.473
372 0.396 0.423
324 0.346 0.373
277 0.297 0.323
231 0.248 0.273
186 0.200 0.223
142 0.155 0.173
097 0.113 0.123
051 0.075 0.073
000: 0.044 0.023
006- 0.021- 0.000+
004- 0.007- 0.000+
000- 0.000- 0.000+
000+ 0.000+ 0.000+
000* 0.000* 0.000%
000* 0.000* 0.000+
906 0.892 0.877
000 0.500 0.000
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DEFAULT AND FORECLOSURE STRATEGIES

Table 3: Terminating default:‘
straint

O O O O O O O O 1 ;b ;b b b it b b bt b b b i

O O O O O O © O M I b b b b b s b pd A e

.60}
.55
.50!
.45]
.40|
.35¢
.30}
.25]
.20}
.151
.10l
.05]
.00}
.95
.90]
.851
.80/
.751
.70|
.651
.60/

s |

.601
.55
.501
.45]
.40l
.35|
.301
.251
.201
.161
.10} -0.
.051
.00!
.95
.901
.85|
.801
.751
.70l
.65}
.60l

1.440|
1.395]
1.3504
1.3051
1.260]
1.215]
1.170|
1.125]
1.080]
1.035|
0.990|
0.945]
0.900}
0.8551
0.810|
0.765|
0.720]

‘0.6751
0.630|

0.585]
0.540|

OCO0OO0OO0OO0OO0O0CO

L(s,gs:
1.000+
1.000+
1.000+
1.000+
1.000+
0.993
0.985
0.974
0.962
0.946
0.928
0.907
0
0
0
0
0
0
0
0
0

OO0 000000000 OLOOOOODODOOO

TO 0O 000000000 O0OOOOOODOLOOOO

0
(=
]
QO O0OOWPOOO0OO0OO0OO0O0OO0OODOOOOOOO

8
C O O0OO0OO0CO0OO0ODO0OO0OO0OODOOO0OOODOCOOO

-
o
<4
C 0000000000000 00O0OO0 0O

-
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p;'epayment, technical default;- cash flow con-

0.500

968+ 0.957+ 0.945+ 0.932+ 0.919+ 0.931 0.905 0.877
968+ 0.957+ 0.945+ 0.932+ 0.919+ 0.931 0.905 0.877
968+ 0.957+ 0.945+ 0.932+ 0.919+ 0.931 0.905 0.877
968+ 0.957+ 0.945+ 0.932+ 0.916+ 0.931 0.905 0.877
968+ 0.957+ 0.945+ 0.932+ 0.919+ 0.930" 0.905 0.877
968+ 0.957+ 0.945+ 0.932+ 0.919+ 0.929 0.904 0.877
968+ 0.957+ 0.945+ 0.932+ 0.919+ 0.928 0.904 0.877
962 0.957+ 0.945+ 0.932+ 0.919+ 0.926 0.903 0.877
Q52 0.948 0.945+ 0.932+ 0.919+ 0.922 0.902 0.877
939 0.936 0.934 0.932+ 0.919+ 0.906+ 0.901 0.877
923 0.921 0.921 0.921 0.919+ 0.906+ 0.899 0.877
903 0.903 0.903 0.905 0.919+ 0.906+ 0.895 .0.877
881 0.880 0.880 0.882 0.888 0.906+ 0.892+ 0.877
855% 0.855# 0.855%# 0.855% 0.855% 0.906+ 0.892+ 0.877
810# 0.810# 0.810# 0.810# 0.810# 0.810% 0.810% 0.877
765+ 0.765+ 0.765% 0.765+ 0.765+ 0.765% 0.765+ 0.765%
720% 0.720% 0.720*% 0.720% 0.720% 0.720% 0.720% 0.720+
675% 0.675+ 0.675% 0.675+ 0.675% 0.675* 0.675% 0.675%
630 0.630* 0.630% 0.630* 0.630* 0.630* 0.630* 0.630+
585+ 0.585% 0.585% 0.585+ 0.585% 0.585% 0.585% 0.585+
540+ 0.540* 0.540% 0.540+ 0.540+% 0.540% 0.540+% 0,540+
.968 0.957 0.945 0.932 0.919 0.906 0.892 0.877
.500 3.000 2.500 2.000 1.500 1.000 0.500 0.000
.593+ 0.605+ 07618+ 0.631+ 0.644+ 0.667 0.695 0723
.543+ 0:555+ 0.568+ 0.581+ 0.594+ 0.617 0.645 0.673
.493+, 0.505+ 0.518+ 0.531+ 0.544+ 0.567 0.595 0.623
.443:§QV455+‘9.468+ 0.481+ 0.494+ 0.516 0.545 0.573
.393+ 0.405+ 0.418+ 0.431+ 0.444+ 0.465 0.495 0.523
.343+ 0.355+ 0.368+ 0.381+ 0.394+ 0.414 0.444 0.473
.293+ 0.305+ 0.318+ 0.331+ 0.344+ 0.362 0.393 0.423
.243 0.255+ 0.268+ 0.281+ 0.294+ 0.311 0.342 0.373
.196 0.206 0.218+ 0.231+ 0.244+ 0.259 0.289 0.323
.151 0.159 0.168 0.181+ 0.194+ 0.208+ 0.236 0.273
.109 0.114 0.122 0.131 0.144+ 0.158+ 0.181 0.223
069 0.073 0.078 0.084 0.094+ 0.108+ 0.126 0.173
034 0.036 0.038 0.041 0.046 0.058+ 0.073+ 0.123
000# 0.000# 0.000# 0.000# 0.000% 0.008+ 0.023+ 0.073 -
000# 0.000# 0.000% 0.000%8 0.0008% 0.000%# 0.000%# 0.023
000% 0.000% 0.000* 0.000% 0.000* 0.000% 0.000% 0.000%*
000% 0.000% 0.000* 0.000% 0.000% 0.000% 0.000% O.000%*
000* 0.000% 0.000% 0.000* 0.000% 0.000* 0.000+ 0.000%
000+ 0.000% 0.000+ 0.800% .0.000% 0.000% 0.000% 0.000%
000* 0.000* 0.000* 0.000% 0.000% 0.000% 0.000% 0.000%
000+ 0.000% 0.000* 0.000% 0.000% 0.000% 0.000% 0.000%*
968 0.957 0.945 0.932 0.919 0.906 0.892 0.877
500 3.000 2.500 2.000 1.500 1.000 0.000
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Table 4: Strategic default

O O O O O O O © I b o b b b b b b b b b b

O O O O O O O O 1+ o b b b pb b pb b b b b s

.60|
.55|
.50]
.451
401
.351
.30]
.25]
.20}
.15]
.10]
.05}
.00|
.951
.901
.851
.801
.751
704
.65]
601

.60}
.55]
.501
.45]
40|
.351
.30!
.25]
.201
.15|
.10]
.05]
-00]
.95]
-901
.851
.80}
.751
.701
.651
.601

Q O O O O O O O O O O K b b b b b b b

O OO O OO OO O O O M = = = =

.440|
.395]
.3501
.305]
.2601
.215}
.170|
.125]
.080/|
.035]
.990|
.945]
.900|
.855|
.810|
.765|
.7201
.6751
.6301
.585]
.540|

L(s,t):
1.000
0.999
0.996
0.991
0.985
0.977
0.967
0.955
0.941
0.924
0.905
0.883
0:859
0.830
0.798
0.762
0.720
0.675
0.630
0.585
0.540

OO OO O0OO00O0OO0OO0OO0DO0ODO0DO0OO0OOOOOOCO

.990
.989
.987
.983
.978
971}
.962
.950
.937
.921
.903
.881
.857
.829
.797
.761
.720
.675

OOOOOOOOOOOOOO‘O\OOOOOO

COO0OO0OO0ODO0OO0OCO0O0OO0OO0COO0OOOOOOOOO

OO 00000000000 O0OO0OOOCOOOO

OO0 0000000000 O0ODO0ODO0OOOOOO

OO0 O0OO0ODO0OO0OO0OO0OO0O0O0OO0DO0CO0OO0OLOOOOOO

O O0OO0OO0OO0O0ODO0CO0OO0O0OO0OO0D0DO0OODOOOOOO

CO0OO0OO0DO0OO0OO0OO0OO0OO0OO0OO0OO0OOOOOOOO
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QOO0 O0OO0O0O0O0O0CO0OO0OO0CO0O0OO0O0CO0OOO0OOO0O O

OO0 0000000000000 O0OOO0OO0O0 OO

.621
.571
.523
.475
.430
.386
.345
.305

OO0 000000000000 O0OO0O0OO0OO0O0O

C OO0 O0OO0CO0OO0OO0OO0OO0O0OO0CO0OO0ODO0O0OO0OOOO OO

OO0 0000000000000 O0ODO0OO0OOO O

OO0 0000000000000 OOO0OOOC

OO 0O O0OO0O0CO0OO0O0OCO0OO0OO0ODO0DO0OO0OO0OODOOO

.681
.631
.581
.631

.431

OO0 O0OO0OO0OO0OO0OO0DO0OO0O0OO0OO0DO0OO0OOODOOO O

OO0 00000000000 OOO0OOOOOO

- - - " o o T o o = S e A i A i P e S Y S e S D At e
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O O O O O O O O I 1 1 e s e e e

.601
.551
.50]
.451
40|
.351
.301
.25]
.201
.15]
.10l
.05]
.00}
.95]
.90]
.85]
.801
.75}
.70l
.65]
.60]

‘Debt service payments:

Contractual payment (p*dt) = .0021

.0020
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0018
.0014
.0013
.0012
.0011

.0015
.0016
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0019
.0014
.0013
.0012
.0011

.0015
.0015
.0017
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0019
.0014
.0013
.0012
.0011

e

80

5.000

.0017 .0015
.00217720019
.0021  .0021
.0021 0021
.0021 .0021
.0021 0021
.0021 7 .0021
.0021  .0021
.0021 .0021
.0021  .0021
.0021  .0021
.0021  .0021
.0021  .0021
.0021 0021
.0021  .0021
.0021  .0021
.0019 .0019
.0014 .0014
.0013  .0013
.0012  .0012
.0011 .0011
4.500 4.000
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Table 5: Strategic default: prepayment, technical default

O O O O O O O O rH b ;b b b ;b b pd e b b

O OO O O O O O i 1 1 = i i e b b b e e

.60]
.55}
.501
.45
.40]
351
.30]
.251
.201
.15}
.101
.05]
.00!
.95]
.901
.85
.801
.751
.70|
.65}
.601

s |

.601
.55]
.501
.45]
.40]
.35}
.30}
.25]
.20]
.15}
.10]
.05}
.00|
.95]
.90l
.85]
.80}
.75
.70l
.65]
-60]

O O O O OO OO O O O = = = b = e b a b

O O O OO O OO O O O M H M =

.440]|
.395]
.3501
.305]
. 2601
.215]
.170]
.125]
.080}
.035]
.9901
.945|
9001
.855]
.8101
.7651
.7201|
.6751
.630]
.585]
.540(

L(s,t):
1.000
1.000
0.999
0.997
0.993
0.987
0.979
0.969
0.956
0.942
0.925
0.904
0.881
0.8556-
0.810-
0.765~-
0.720-
0.675-
0.630-
0.585~
0.540-

0.990
0.990
0.990
0.988
0.985
0.979
0.972
0.963
0.952
0.938
0.922
0.903
0
0
0
0
0
0
0
0
0

.979
.979
.979
.978
.976
971
.965
.957
.946
.934
919°
.900

OO0 000000000 O0OO0ODO0DODOOOOOOO

.968
.968
. 968
.968
.966
.96

OCO0OO0OO0OO0OO0OOOOODOOCOOOCODbDBOODOO

(o]
W
7]

O O0OO0O0O0OO0OO0OO0OO0OO0OO0ODODOOODOODOOOO

81

e s e e e A e e e e S B . e e e Y S R o o

1.000 0.990 0.979
5.000 4.500 4.000

{\

CO0OO0O0OO0OO0DO0ODO0OO0OOQCO0OO0OO0ODOODOOOOOO

.632
.582
.532

OO0 00000 O0OO0OO0OO0OO0OOOO0OO0OOOOCOO

.957 0.945 0.932 0.919 0.906 0
857 0.945 0.932 0.919 0.906 O
.957 0.945 0.932 0.919 0.906 O
L957 0.945 0.932 0.919 0.906 O
.955 0.945 0.932 0.919 0.906 O
.952 0.942 0.932 0.919 0.906 ©
.947 0.938 0.929 0.918 0.906 O
.940 0.932 0.924 0.915 0.905 O
931 0.924 0.917 0.909 0.901 O
919 0.913 0.907 0.901 0.894 0
906 0.899 0.895 0.890 0.884 O
891 0.882 0.879 0.876 0.871 O
874 0.862 0.860 0.857 0.854 O
855- 0.838 0.837 0.835 0.833 O
810- 0.810- 0.810- 0.810- 0.810- 0
765- 0.766- 0.765- 0.765- 0.765- O
720~ 0.720- 0.720- 0.720- 0.720- O
675- 0.675- 0.675- 0.675- 0.6765- O
630- 0.630- 0.630- 0.630- 0.630- 0
585- 0.585- 0.585- 0.585- 0.585- 0
540- 0.540- 0.540- 0.540~ 0.540- 0
957 - 0.945 0.932 0.919 0.906 O
000 2.500 2.000 1.500 1.000 O
644 0.656 0.668 0.681 0.694 0O
594 0.606 0.618 0.631 0.644 O
544 0.556 0.568 0.581 0.594 O
494 0.506 0.518 0.531 0.544 0O
.445 0.456 0.468 0.481 0.494 O
398 0.408 0.419 0.431 0.444 O
353 0.362 0.371 0.382 0.394 0
311 0.318 0.326 0.335 0.346 O
270 0.276 0.283 0.291 0.299 0
231 0.237 0.243 0.249 0.256 O
194 0.201 0.206 0.211 0.216 O
159 0.168 0.171 0.175 0.179 0
127 0.138 0.140 0.143 0.146 O
095- 0.112 0.113 0.115 0.117 O
090- 0.090- 0.090- 0.090- 0.090- 0
085- 0.085- 0.085- 0.085- 0.086-.0
080- 0.080- 0.080- 0.080- 0.080- 0
075- 0.075- 0.075- 0.075- 0.075- O
070- 0.070- 0.070- 0.070- 0.070- O
065- 0.065- 0.065- 0.065~0.066- 0
060- 0.060-'0.060- 0.060- 0.060- 0
957 0.945 0.932 0.919 0.906 O
000 2.500 2.000 1.500 1.000 O
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QO O O O QO O O Pt b b bbb pid pid b pb b b b b b

.60|
.551
.50]
.45]
.40]
.351
.30]
.25]
.201
.15]
.101
.051
.001
.95
.90|
.851
.801
.751
.70}
.651
.60]

Debt service payments:

Contractual payment (p*dt) = .0021

82

.0033/ .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015
.0032]/ .0018 .0016 .0015 .0015. .0015 .0015 .0015 .0015 .0015 .0015
.0031] .0021 .0021 .0018 .0016 .0015 .0015 .0015 .0015 .0015 .0015
.0030/ .0021 .0021 .0021 .0021 .0019 .0016 .0015 .0015 .0015 .0015
.0029| .0021 .0021 .0021 .0021 .0021 .0021 .0017 .0016 .0015 .0015
.0028] .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0019 .0016 .0015
.0027! .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0018 .0016
.0026| ‘%0021 .0021  .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0016
.0025| . .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021
.0024! .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021
.0023| .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021
.00221 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021
.00211 .0021 .0021 .0021 .0023 .0021  .0021 .0021 .0021 .0021 .0021
.00201 .0041- .0042- .0044- .0046- .0050- .0021 .0021 .0021 .0021 .0021
.0019] .0018- .0018- .0018- .0018- .0019- .0036- .0037- .0039- .0041- .0021
.0018| .0016- .0016- .0016- .0016- .0016- .0017- .0017- .0017- .0017- .0025- .
.0017) .0015- .0015- .0015- .0015- .0015- .0015- .0015- .0015- .0015- .Q015- .
.0016/ .0014- .0014- .0014- .0014- .0014- .0014- .0014- .0014- .0014~ .0014- .
.0015| .0013- .0013- .0013-..0013- .0013- .0013- .0013- .0013- .0013- .0013- .
.0014] .0012- .0012- .0012- .0012- .0012~ .0012- .0012-°.0012- .0012- .0012- .
.0013| .0011- .0011- .0011~ .0011- .0011- .0011- .0011- .0011- .0011- .0011- .
iV | o o e e e e e————— e e e e e e e e e e e o e e
b(t): | 1.000 0.990 0.979 0.968 0.957 0.945 0.932 0.919 0.906 0.892
t: | 5.000 4.500 4.000 3.500 3.000 2.500 2.000 1.500 1.000 0.500
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Table 6: Strategic default: technical default, cash flow constraint

L(s,t):

1.60] 1.4401 1.000 0.990 0.979 0.968 0.957 0.945 0.932 0.919 0.906 0.892 0.877
1.55] 1.3951 1.000 0.990 0.979 0.968 0.957 0.945 0.932 0.919 0.906 0.892 0.877
1.50) 1.350) 1.000 0.990 0.979 0.968 0.957 0.945 0.932 0.919 0.906 0.892 0.877
1.45| 1.305] 0.997 0.989 0.979 0.968 0.957 0.946 0.932 0.919 0.906 0.892 0.877
1.40} 1.260] 0.993 0.986 0.977 .0.968 0.957 0.945 0.932 0.919 0.906 0.892 0.877
1.35| 1.215| 0.987 0.981 0.973 0.965 0.955 0.945 0.932 0.919 0.906 0.892 0.877
1.301 1.170!/ 0.980 0.974 0.967 0.960 0.952 0.943 0.932 0.919 0.906 0.892 0.877
1.25| 1.126] 0.970 0.965 0.959 0.953 0.946 0.938 0.929 0.919 0.906 0.892 0.877
1.20] 1.0801 0.958 0.954 0.949 0.944 0.939 0.932 0.924 0.916 0.905 0.892 0.877
1.15) 1.035] 0.943 0.940 0.936 0.932 0.928 0.923 0.917 0.910 0.901 0.891 0.877
1.101 0.990] 0.925 0.923 0.921 0.918 0.915 0.911 0.906 0.901 0.895 0.888 0.877
1.051 0.945! 0.905 0.904 0.902 0.900 0.898 0.896 0.893 0.889 0.885 0.881 0.877
1.00f 0.900/ 0.881 0.881 0.880 0.879 0.878 0.877 0.875 0.874 0.872 0.869 0.877
0.95| 0.855! 0.855# 0.855% 0.855# 0.855# 0.855# 0.855# 0.855# 0.855# 0.855# 0.855# 0.855
0.90/ 0.810] 0.810- 0.810- 0.810- 0.810- 0.810- 0.810- 0.810- 0.810- 0.810# 0.810% 0.810
0.85| 0.765] 0.765- 0.765- 0.765- 0.765- 0.765- 0.765- 0.765- 0.765- 0.765- 0.765- 0.765 >
0.80] 0.720] 0.720- 0.720~ 0.720- 0.720- 0.720- 0.720- 0.720- 0.720--0.720- 0.720- 0.720
0.75| 0.675] 0.675- 0.675- 0.675- 0.675- 0.675- 0.675~ 0¢675; 0.675- 0.675- 0.675- 0.675
0.70! 0.6301 0.630- 0.630- 0.630- 0.630- 0.630- 0.630- OMO- 0.630- 0.630- 0.630
0.65| 0.585] 0.585- 0.585- 0.585- 0.585~ 0.585- 0.585- 0.585- 0.585- 0.585- 0.585- 0.585
0.60!1 0.540! 0.540- 0.540~ 0.540- 0.540- 0.540- 0.540- 0.540- 0.540- 0.540- 0.540- 0.540

8 | 8liql e e e e et e e e e e e oo

B(s,t)

1.601 1.440)/ 0.559 0.573 0.587 0.603 0.619 0.637 0.655 0.674 0.693 0.708 0.723
1.55| 1.395/ 0.506 0.520 0.534 0.550 0.566 0.584 0.603 .0.622 0.642 0.658 0.673
1.50] 1.350] 0.453 0.466 0.481 0.496 0.512 0.530 0.549° 0.570 0.590 0.608 0.623
1.45( 1.305] 0.402 0.414 0.427 0.442 0.458 0.476 0.496 0.517 0.538 0.558 0.573
1.40] 1.260] 0.363. 0.363 0.375 0.388 0.404 0.422 0.441 0.463 0.486 0.507 0.523
1.35] 1.215} 0.305 0.314 0.324 0.336 0.350 0.367 0.386 0.408 0.432 0.456 :0.473
1.30! 1.170] 0.258 ¢§.267 . 0.276 0.286 0.299 0.313 0.331 0.362 0.377 0.404 0.423
1.25] 1.125] 0.214 0.221 0.229 0.238 Q.249 0.261 0.277 0.296 0.321 0.361 0.373
1.20] 1.0801 0.172 0.178 0.184 0.192 0.201° 0.211 0.224 0.241 0.264 0.296 0.323
1.15} 1.035/ 0.133 0.137 0.142 0.148 0.155 0.164 0.174 0.188 0.208 0.238 0.273
1.10] 0.990] 0.096 0.099 0.102 0.107 0.112 0.118 0.126 0.137 0.153 0.179 0.223
1.05| 0.9451 0.061 0.063. 0.066 0.069 0.072 0.076 0.082 0.089 0.099 0.119 Q.173
1.001 0.900f 0.030 0.031 0.033 0.034 0.036 0.038 0.040 0.044 0.049 0.060 0.123
0.95] 0.855| 0.000% 0.0008 0.000% 0.000% 0.000# 0.000% 0.000# 0.000% 0.000% 0.000% 0.095
0.90{ 0.810! 0.017- 0.017- 0.017- 0.018- 0.018- 0.018- 0.018- 0.016- 0.000# 0.000% 0.090
0.85| 0.765| 0.029- 0.029- 0.029- 0.030- 0.030- 0.031- 0.031- 0.029- 0.025- 0.033- OEPBS
0.80] 0.720] 0.037- 0.038- 0.038~ 0.039- 0.040- 0.040- 0.041- 0.040- 0.043- 0.054-*0.080
0.751 0.6751 0.044- 0.044- 0.045~ 0.045- 0.046- 0.047- 0.048- 0.049- 0.054- 0.065- 0.075
0.70} 0.630] 0.048- 0.048- 0.049~ 0.050~ 0.050- 0.051- 0.053- 0.065- 0.060- 0.067- 0.070
0.65] 0.585| 0.050- 0.050- 0.0561- 0.062- 0.052- 0.054- 0.055- 0.057- 0.061- 0.064- 0.065
0.60f 0.5401 0.050- 0.051- 0.051- 0.052- 0.053- 0.064- 0.055- 0.067- Qi0§9— 0.060- 0.060

S | S Aql e e e e e e s ——————

b(t): 1.000 0.990 0.979 0.968 0.957 0.945 0.932 0.919 0.906 0.892 0.877
t: 5.000 4.500 4.000 3.500 3.000 2.500 2.000 1.500 1.000 0.500” 0.000

-
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O O O O O O O O H 1 b b b b o b b b

.60}
.55]
-501
.45}
.401
.351
. 304,
.25]
.201-
151
.10
.05]
.00]
.95/
.S0]|
.851
.801
.75]
.70l
.65]
.601

s |

.0033|
.0032]
.0031 |
.00301
.0029|
.0028|
.0027|
.0026|
.0025|
.0024 |
.0023)
.0022|
.0021]
.0020|
.0019]
.00181
.0017|
0016
.0015| -
.0014]
.0013}

b(t):
t:

Debt service payments:

Contractual payment (p#dt) -

.0015
.0017
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.00418
.0018-
.0016-

=.0015- -

.0014-
.0013-
.0012-
.0011-

.0015
.0015
.0019
.0021
.0021
%0021
.0021
10021
.0021
.0021
o021
.0021
.0021
.0042#
.0018-
.0016-
.0015-
.0014-
.0013-
.0012-
.0011-

- o s e e e e o e e e e e e e e e e ot i e e

.0015
.0015
0016
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
°.0021
.0043#
.0018- .
.0016-
.0015-
.0014-
.0013-
.0012-
.0011-

= .0021/1”"—‘\\

.0015 .0015 .0015
.0015 .0015 .0015
.0015 .0015 .0015
.0017 .0015 0015
.0021 .0019 .0016
.0021  .0021 .0021
.0021 0021 .0021
.0021  .0021 .0021
0021 .0021 .0021
.0021  .0021 .0021
.0021  .0021° .0021
.0021  .0021 .0021
.0021  .0021 .0021
.0044#8 00458 .00218
0018~ .0018- .0018-
.0016- .0016- .0016-
.0015- .0016- .0015-
.0014-. .0014- .0014-
.0013- .0013- .0013-
.0012- .0012- .0012-
.0011- .0011- .0011-

.0015
.0015
.0015
.0015
.0015
.0016
.0021
.0021
.0021
.0021
.0021
.0021 -
.0021
.0021#
.0019-
.0016-
.0015-
.0014-
.0013-
.0012-
.0011-

.0015
.001%
.0015
.0015
.0015
.0015
.0017
.0021
.0021
.0021
.0021
.0021
.0021
.0021#
.0019-
.0016-
.0015-
.0014-
.0013-
.0012-
.0011-

.0015
.0015
.0015
.0015
.0015
.0015

-.0015
.0017
.0021
.0021
.0021
.0021
.0021
.0021%
.0019%
.0016-
.0015-
.0014-
.0013-
.0012-
0011~

84
@
.0015 .8770
.0015 .8770
.0015 .8770
.0015 .8770
.0015 .8770
.0015 .8770
.0015 .8770
.0015  .8770
.0017  .8770
.0021 .8770
.0021 .8770
.0021 .8770
.0021 .8770
.0021# .8550
.0019# .8100
.0016- .7650
.0015- 7200
.0014- .6750
.0013- .6300
.0012- 5850
.0011- .5400

1.000 0.990 0.979 0.968 0.957 0.945 0.932 0.919 0.906 0.892 0.877

5.000 4.500 4.000 3.500

LR

3.000 2.500 2.000 1.500 1.000 0.500 0.000
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Table 7: Strategic default: prei)ayment, technical default, cash flow

O O O O O O O © = I b 2 b b b b b h s

O O O O O O O O H I = = e e

.601
.55}
.501
.45|
.40]
.35}
.30l
.25]
.20}
.15}
.101
.05}
.00]
.95|
.90]
.85}
.801
.751
.701
.651
.601

s |

60|
551
.501
.451
.40
351
301
.25]
.20
151
.10
.05
.00!
.951
.90
851
801
.75)
70
.65
.60}

O O O O OO O OO O O M I = I B = =

QO O O O O O O OO O O = = = = 1 b = = s

.440]1
.395]
.3501
.305(
.260|
.215]
-170l
.125]
.0801
.035]
.990]|
.945]|
9001
.855]
.810|
.7651
.7201
.675]
.630!
.585]
.540|

L(s,t):
1.000
1.000
1.000
1.000
0.997
0.991
0.983
0.972
0.960
0.944
0.927
0.906
0.882
0.855#
0.810-
0.765-
0.720-
0.675-
0.630-
0.585~
0.540-

.990
.990
.990
.990
.989
.985
.978
.968
.956
.942
.925

OO0 O0OO0CO0OO0O0OO0OO0OO0ODO0ODO0OO0DO0OO0OOOOOOO

C OO0 0O VVDO0OO0OO0OO0OO0DO0OO0OO0OO0OO0OO0OO0OO0OOOO
[
(=
fary

OO0 O0OO0OO0O0OO0OO0OO0OO0ODO0OO0QO0OOO0OOCOO OO

QOO0 0000000000000 0O0OO0OO0OO0OCO

.979
.979
.979
.979
.979
.976
971
.963
.952
.939
.922

.968
.968
.968
.968
.968
.968
.965
.958
.947
.935
.920

_OOOOOOOOOOOOOOOOOOOOO

.957
.957
.957
.957
.957"
.957
.956
.953
.944
.932
.917

OO0 OO0 O0OO0OO0OO0O0ODO0OO0DO0OO0OO0OO0OOOOO

-
-
(=]
C OO0 O0OO0CO0OO0OO0CO0O0OO0O0OO0O0OO0OO0OOOCOO O

QOO0 O0O0OO0OO0O0DO0ODO0OO0OO0OO0OOOOODODOOO

=3
-
[4,)

C OO0 000000000 OO0OOOO0OOCOO OO

.945
.945
.945
.945
.945
.945
.945
.943
.938
.929
.915

.932
.932
.932
.932
.932
.932
.932
.930
.925
.918
.908

OO0 O O0O0OO0OO0OO0OO0OO0OO0OO0OO0DO0OO0OOODODOOO

.660
.608
.556
.503

O OO0 POOO0OO0OO0OO0ODO0OO0OO0OODOOOOO OO

.919
.919
.919
.919
.919
.919
.919
.919
.917
.912
.904

.677
.626
.575°
.523
.470
.417
.362
.307
.252
.198
.145
.095
.048
.000#
.0265-
.042-
.053-
.060-
.062-
.061-
.058-

0.906
0.906
0.906
0.906
0.906
0.906
0.906
0.906
0.906
0.904
0.900
0.897
0.891
0.855#
0.810-
0.765-
0.720-
0.675-
0.630~
0.585-
0.540-~

.892
.892
.892
.892
.892
.892
.892

[r:]
©o
N
QOO O0OO0OO0OO0O0OO0COO0OOO OO

C OO 00O O0OO0O0COO0OO0OO0OO0O0ODO0OO0OO0OOO0CO
g
[

85

constraint

.877
.877
.877
.877
.877
.877
.877
877 -
877
.877
877
BT7
.877
.855
.810
.765
L7206
.675
.630

——— - - = e T - = o AR e i s P e e . W D Y e o o S S e o o

919
.500

0.906
1.000
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O O OO O O O O M M M 4 4 s s bt s b i

.60]
.55]
.50!
.45|
.40]
.351
.301
.25
.20!
151
.10]
.05]
.00}
.95
.90|
.85}
.801
.75|
701
.65]
.601

.0033|
.0032]
.0031]
.0030|
.0029]
.0028]
.0027|
.00261
.0025]
.0024]
.0023]
.0022]
.0021]
.00201
00191
.0018}
.0017|
.00161
.00151
.0014|
.0013|

b(t): |
t: |

Debt service payments:

Contractual payment (p*dt) =

.0015
.0015
.0016
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0040#
.0018-
.0016~
.0016-
.0014-
7.0013-
.0012-
.0011-

.0015
.0015
.0015
.0017
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.00418
.0018-
.0016-
.0015- ..
.0014-~
.0013-
.0012~
.0011-

.0015
.o#i5
.0015
.0017
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0021
. 00423
.0018-
.0016-

0015-

.0014-
.0013-
.0012-
.0011~

.0015
.0015
.0015
.0015
.0016
.0021
.0021
.0021
.0021
.0021
.0021
.0021
10021
-0043#
.0018-
.0016-
.0015-
.0014-
.0013-
.0012-
.0011-

.0021

.0015
.0015
.0015
.0015
.0015
.0016
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.0044s
.0018~
.0016~
.0016~
.0014~
.0013-
.0012~
.0011-

.0015
.0015
.0015
.0015
.0015
.0015
.0019
.0021
.0021
.0021
.0021
.0021
.0021
.0021%
.0018-
.0016-
.0015-
.0014-
.0013-
.0012-
.0011-

.0015
.0015
.0015
.0015
.0015
.0016
.0021
.0021
.0021
.0021
.0021
.0021
.0021
.00213%
.0019-
.0016-
.0015-
.0014-
.0013-
.0012-
.0011-

.0015
.0015
.0015
.0015
.0015
.0015
.0016
.0020
.0021
.00a1
.0021
.0021
.0021
.0021#
.0019-
.0016-
.0015-
.0014-
.0013-
.0012-
.0011-

.0015
.0015
.0015
.0015
.0015
.0015
.0015
.0016
.0020
.0021
.002%
.0021
.0021
.0021#
.0017-~
.0016-
.0016-
.0014-
.0013-
.0012-
.0011-

.0015
.0015
.0015
.0015
..0015
.0015
.0015
.0015
.0016
.0018
.0021
.0021
.0021
. 0000
.0000
.0014-
.0015-
.0014-
.0013-
.0012-
.0011-

86

.8770
.8770
.8770
.8770
.8770
.8770
.8770
.8770
.8770
.8770
.8770
.8770
.8770
.8650
.8100
.7650
.7200
.6750
.6300
.5850
.5400

1.000 0.990 0 979 °0.968 0.957 0.945 0.932 0.919 0.906 0.892 0.877
5.000 4.500 4.000 3.500 3.000 2.500 2.000 1.500 1.000 0.500 0.000
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Table 8: Penalized default, current default

0.3521]
0.3345]
0.3169|
0.2993|
0.2817]
.2641 |
.2465]
.2289|
.2113]
.1937|
117611
.15851
.14091
.1232|
.1056|
.08801
.07041
0.0528|
0.0352]
0.01761
0.0000!
k(t) |
K(t): |
b(t): |

t: |

CO0OO0OO0O0OO0OO00O0OO0OO0OOo

.3521}
.3345|
.3169]
.2993]

.2641!
.2465]
.2289|
.2113]
.19371
.1761|
.1585|
.1409]
.1232]
.10561
.0880|
.0704/
.0528]
.03562]
.01761
.0000|
k(t) |

OO0 00000000 O0OO0OO0DO0OO0O0OOOO O

.2817}

.10
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.9023
.9018
.9012
.9006
.9000
.8994
.9006
.8995
. 8996
.8970

OO0 000000000000 OO0OODOdOO

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

9011

.9005
.8999
.8993
.8987
.8981
.8975
.8970
.8964
.8976
.8964
. 8966
.8939

COO0O0OO0OO0OO0O0OO0O0O0O0O0OO0OOO0OOOOOO

- - = - i e > o " o Y it e o i e S o A = e S o 1 T B S o i o o o >

L(s,k,t): s
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.9052
0.0000 0.9054
0.9054 0.9027
0.0000 0.0517
1.0000 0.9898
5.0000 4.5000

B(s,k,t): s
0.000Q0 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0800
0.0000 0.0000
0.0000 0.1975
0.0000 0.1974
0.1961 0.1977
0.0000 0.05617
1.0000 0.9898
5.0000 4.5000

©C OO0 O0OO0OO0OO0OO0DO0OO0OO0OO0OO0OO0D0DO0OOOOOLOO

(=]

OO0 00000 O0OO0OOQO0OO0OO0O0OOOOOOO

OO0 OO0 OO0 O0OO0OO0OO0OO0O0O0COOOOOOO

87
.8998: 0.8972 0.8954 0.8945 0.9900
.8992° 0.8966 0.8948 0.8939 0.9900
.8986 0.8960 0.8942 0.8934 0.9900
.8980 0.8954 0.8936 0.8928 0.9900
.8974 0.8949 0.8930 0.8922 0.9900
8968 0.8943 0.8924 0.8916 0.9900
.8962 0.8937 0.8918 0.8910 0.9900
.8957 0.8931 0.8912 0.8904 0.9900
.8951 0.8925 0.8907 0.8898 0.9900
.8945 0.8919 0.8901 0.8893 0.9900
.8939 0.8913 0.8895 0.8887 0.9900
.8933 0.8907 0.8889 0.8881 0.9900
.8927 0.8902 0.8883 0.8875 0.9900
.8921 0.8896 0.8877 0.8869 0.9900
.8915 0.8890 0.8871 0.8863 0.9827
.8910 0.8884 0.8866 0.8857 0.9651
.8904 0.8878 0.8860 0.8851 0.9475
.8916 0.8891 0.8872 0.8864 0.9299
.8904 0.8879 0.8860 0.8852 0.9123
.8906 0.8880 0.8862 0.8854 0.8947
.8880 0.8854 0.8835 0.8827 0.8770
3669 0.4432 0.5246 0.6115 0.7043
9322 0.9192 0.9057 0.8917 0.8770
0000 1.5000 1.0000 0.5000 0.0000
2027 0.2053 0.2070 0.2078 0.1100
2033 0.2058 0.2076 0.2084 0.1100
2039 0.2064 0.2082 0.2090 0.1100
2045 .0.2070 0.2088 0.2096 0.1100
2051 0.2076 0.2094 0.2102 0.1100
2057 0.2082 0.2100 0.2107 0.1100
2063 0.2088 0.2106 0.2113 0.1100
2068 0.2094 0.2112 0.2119 0.1100
2074 "0.2099 0.2117 0.2125 0.1100
2080 0.2106 0.2123 0.2131 0.1100
2086 0.2111 0.2129 0.2137 0.1100
2092 0.2117 0.2135-°0.2143 0.1100
2098 0.2123 0.2141 0.2149 0.1100
2104 0.2129 0.2147 0.2154 0.1100
2109 0.2136 0.2163 0.2160 0.1173
2115 0.2141 0.2159 0.2166 0.1349
2121 0.2146 0.2164 0.2172 0.1526
2109 0.2134 0.2162 0.2160 0.1701
2121 0.2146 0.2164 0.2171 0.1877
2119 0.2144 0.2162 0.2170 0.2053
2122 0.2148 0.2166 0.2173 0.2230
3669 0.4432 0.5246 0.6116 0.7043
9322 0.9192 0.9057 0.8917 0.8770
0000 1.5000 1.0000 0.5000 0.0000

<@
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Debt service paymepts: s = 1.10

Dividend (d_1*dt) = .0023, Contractual payment (p*dt) = .0021
0.3521] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0118 0.0118 0.0118 0.0118 0.9900
0.33451 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0112 0.0112 0.0112 0.0112 0.9900
0.3169/ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0106 0.0106 0.0106 0.0106 0.9900
0.2993{ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0100 0.0100 0.0100 0.0100 0.9900
0.2817] 0.6000 0.0000 0.0000 0.0000 0.0000 0.0095 0.0095 0.0095 0.0095 0.0095 0.9900
0.26411 0.0000 0.0000 0.0000 0.0000 0.0000 0.0089 0.0089 0.0089 0.0089 0.0089 0.9900
0.2465| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0083 0.0083 0.0083 0.0083 0.0083 0.9900
0.2289] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0077 0.0077 © 0077 0.0077 0.0077 0.9900
0.2113i 0.0000 0.0000 0.0000 0.0000 0.0071 0.0071 0.0071 0.0071 -0.0071 0.0071 0.9900
0.19371 0.0000 0.0000 0.0000 0.0000 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 ©0.9900
0.1761] 0.0000 0.0000 0.0000 0.0000 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.9900
0.1585(1 0.0000° 0.0000 0.0000 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.9900
0.1409! 0.0000 0.0000 0.0000 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048 0.9900
0.12321 0.0000 0.0000 0.0000 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.9900
0.1056! 0.0000 0.0000 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.9827
0.0880] 0.0000 0.0000 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.9651
0.0704] 0.0000 0.0000 0.0024 0.0024 0.0024 0.0024 0.0C24 0.0024 0.0024 0.0024 0.9475
0.05281 0.0000 0.0000 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.9299
0.0352] 0.0000 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.00256 0.0026 0.9123
0.0176| 0.0000 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.8947
0.0000/ 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.8770
() | e e e e e — i ————— e
K(t): | 0.0000 0.0517 0.1068 0.1656 0.2284 0.2954 0.3669 0.4432 0.5246 0.6115 0.7043
b(t): | 1.0000 0.9898 0.9792 0.9681 0.9566 -0.9446 0.9322 0.9192 0.9057 0.8917 0.8770
+ t: | 5.0000 4.5000 4.0000 3.5000 3.0000 2.5000 2.0000 1.5000 1.0000 0.5000 0.0000
Critical payments: s = 1.10

0.3521] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1020 0.1046 0.1065 0.1073 0.0000
0.3345{ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1020 0.1046 0.1065 0.1073 0.0000
0.31691 0.0000 0.0000 0.0000 (.0000 0.0000 0.0000 0.1020 0.1046 0.1065 0.1073 0.0000
0.2993| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1020 0.1046 0.10656 0.1073 0.0000
0.28171 0.0000 0.0000 0.0000 0.0000 0.0000 0.0991 0.1020 0.1046 0.1065 0.1073 0.0000
0.2641( 0.0000 0.0000 0.0000 0.0000 0.0000 0.0991 0.1020 0.1046 0.1065 0.1073 0.0000
0.2465( 0.0000 0.0000 0.0000 0.0000 0.0000 0.0991 0.1020 0.1046 0.1065 0.1073 0.0000
0.2289] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0991 Jk1020 0.1046 0.1065 0.1073 0.0000
0.2113} 0.0000 0.0000 0.0000 0.0000 0.0961 0.0991 0.1020 0.1046 0.1065 0.1073 0.0000
0.1937 0.0000 0.0000 0.0000 0.0000 0.0961 0.0991 0.1020 0.1046 0.1065 0.1073 0.0000
0.1761| 0.0000 0.0000 0.0000 0.0000 0.0961 0.0991 0.1020 0.1046 0.1065 0.1073 0.0000
0.1585/ 0.0000 0.0000 0.0000 0.0930 0.0961 0.0991 0.1020 0.1046 0.1065 0.1073 0.0000
0.14091 0.0000 0.0000 0.0000 0.0930 0.0961. 0.0991 0.1020 G.1046 0.1065 0.1073 0.0000
0.1232| 0.0000 0.0000 0.0000 0.0930 0.0961 0.0991 0.1020 0.1046 0.1065 0.1073 0.0000
0.1056] 0.0000 0.0000 0.0901 0.0930 0.0961 0.0991 0.1020 0.1046, 0.1065 0.1073 0.0000
0.08801 0.0000 0.0000 0.0901 0.0930 0.0961 0.0991 0.1020 0.1046 0.1065 0.0970 0.0000
0.0704f 0.0000 0.0000 0.0901 0.0930 0.0961 0.0991 0.1020 0.1043 0.0926 0.0794 0.0000
0.05281 0.0000 0.0000 0.0901 0.0930 0.0961 0.0991 0.0970 0.0866 0.0750 0.0618 0.0000
0.0352] 0.0000 0.0873 0.0901 0.0930 0.0961 0.0890 0.0794 0.0690 0.0574 0.0442 0.0000
0.01761 0.0000 0.0873 0.0901 0.0887 0.0803 0.0714 0.0618 0.0514 0.0398 0.0265 0.0000
0.0009! 0.0867 0.0892 0.0813 0.0732 0.0648 0.0558 0.0463 0.0359 0.0243 0.0110 0.0000
Kt e ———— e —————————

| 0.1068 0.1656 0.2284 0.2954 0.3669 0.4432 0.5246 0.6115 0.7043
b(t): | 1.0000 0.9898 0.9792 0.9681 0.9566 0.9446 0.9322 0.9192 0.9057 0.8917 0.8770
I 4.0000 3.5000 3.0000 2.5000 2.0000° 1.5000 1.0000° 0.5000 0.0000
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Table 9: Penalized default: current default rule, prepaynient, t.echnical default,

cash flow constraint
L(s,t): s = 1.

-
(=]

0.3521] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.9156- 0.9075~ 0.9005- 0.8927- 0.9900
0.3345] 0.0000 0.0000 0.0000 0.0000 0.0000 - 0.0000 0.9156- 0.9075- 0.9005- 0.8927- 0.9900
0.31681 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9156- 0.9075- 0.9006- 0.8927- 0.9900
0.2993] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9156- 0.9075- 0.9005- 0.8927- 0.9900
0.28171 0.0000 0.0000 0.0000 0.0000 0.0000 9178- 0.9156- 0.9075- 0.9005- 0.8927- 0,9900
0.26411 0.0000 0.0000 0.0000 0.0000 0.0000 .9178* 0.9156- 0!9075— 0.9005- 0.8927- 0.9900
0.2465/ 0.0000 0.0000 0.0000 0.0000 0.0000 0.9178- 0.9156- 0.9075- 0.9005- 0.8927- 0.9900
0.2289] 0.0000 0.0000 0.0000 0.0000 0.0000 0.9178- 0.9156- 0.9075~ 0.9005- 0.8927- 0.99200
0.2113} 0.0000 0.0000 0.0000 0.0000 0.9216- 0.9178- 0.9156- 0.9075- 0.5005- 0.8927- 0.9900
0.1937] 0.0000 0.0000 0.0000 0.0000 0.9216- 0.9178- 0.9156- 0.9075- 0.9005 0.8927 0.9900
0.17611 0.0000 0.0000 0.0000 0.0000 0.9216- 0.9178- 0.9156- 0.8075 0.9005 0.8927 0.9900
0.1585! 0.0000 0.0000 0.0000 0.9242- 0.9216- 0.9178- 0.9156 0.9075 .0.9005 0.8927 0.9900
0.1409] 0.0000 0.0000 0.0000 0.9242- 0.9216 0.9178 0.9156 0.9075 0.9005 0.8927 0.9900
0.12321 0.0000 0.0000 0.0000 0.9242 0.9216 0.9178 0.9156 0.9075 0.9005 0.8927 0.9900
0.1056]1= 0.0000 0.0000 0.9268 0.9242 0.9216 0.9178 0.9156 0.90756 0.9005 0.8927 0.9827
0.08801 0.0000 0.0000 0.9268 0.9242 0.9216 0.9178 0.9156 0.9075 0.9005 0.8927 0.9651
0.0704] 0.0000 0.0000 0.9268 0.9242 0.9216 0.9178 0.9156 0.9075 0.9005 0.8927 0.9476
0.05281° 0.0000 0.0000 0.9268 0.9242 0.9216 0.9178 0.9156 0.9076 0.9005 0.8927" 0.9299
0.03521 0.0000 0.9288 0.9268 0.9242 0.9216 0.9178 0.9156 0.9075 0.9005 0.8927 0.9123
0.01761 0.0000 0.9288 0.9268 0.9242 0.9216 0.9178 0.9156 0.9075 0.9005 0.8927 0.8947
0.00001 0.9287 0.9266 0.9247 0.9220 0.9194 ©0.9157 0.9135 0.9054 0.8984 0.8906 0.8770
-6 % L U
K(t): | 0.0000 0.0517 0.1068 0.1656 0.2284 0.2954 0.3669 0.4432 0.5246 0.6115 0.7043
b(t): | 1.0000 0.9898 0.9792 0.9681 0.9566 0.9446 0.9322 0.9192 0.9057 0.8917 0.8770
t: | 5.0000 4.5000 4.0000 3.5000 3.0000 2.5000 2.0000 1.5000 1.0000 0.5000 0.0000
B(s,t): s = 1.10
0.3521] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1313- 0.1453- 0.1674-'0.1944- 0.1100
0.3345/ 0.0000 0.0000 0.0000 0.0000. 0.0000 0.0000- 0.1313- 0.1453- 0.1674- 0.1944- 0.1100,
0.3169! 0.0000 0.000¢ 0.0000 0.0000 0.0000 0.0000 0.1313- 0.1453- 0.1674- 0.1944- 0.1100 -
0.2993] 0.0000 0.0000 00,0000 0.0000 0.0000 0.0000 0.1313- 0.1453- 0.1674- 0.1944~ 0 1100
0.2817] 0.0000 0.0000 0.0000 0.0000 0.0000 0.1220- 0.1313- 0.1453- 0.1674- 0.1944- 0.1100
0.2641f 0.0000 0.0000 0.0000 0.0000 0.0000 0.1220- 0.1313- 0.1453- 0.1674~ 0.1944~ 0.1100
0.2465] 0.0000 0.0000 0.0000 0.0000 0.0000 0.1220- 0.1313- 0.1453- 0.1674~ 0.1944- 0.1100
0.2289] 0.0000 0.0000 0.0000 0.0000 0.0000 0.1220- 0.1313- 0.1453- 0.1674- 0.1944- 0.1100
Q.2113F 0.0000 0.0000 0.0000 0.0000 0.1147- 0.1220- 0.1313- 0.1453- 0.1674- 0.1944- 0.1100
0.1937] 0.0000 0.0000 0.0000 0.0000 0.1147- 0.1220- 0.1313- 0.1453- 0.1674 0.1944. 0.1100
0.17611 0.0000 0.0000 '0.0000 0.0000 0.1147- 0.1220- 0.1313- 0.1453 0.1674 0.1944 0.1100
0.16851 0.0000 0.0000 0.0000 0.1088- 0.1147- 0.1220- 0.1313 0.1453 0.1674 0.1944 0.1100
0.1408! 0.0000 0.0000 ©0.0000 0.1088- 0.1147 L 0.1220 0.1313 0.1453 0.1674 0.1944 0.1100
0.1232] _0.0000 0.0000 0.0000 0.1088 0.1147 0.1220 0.1313 0.1453 0.1674 0.1944 0.1100
0.1056] 0.0000 0.0000 0.1040 0.1088 0.1147 0.1220 0.1313 0.1453 0.1674 0.1944 0.1173
0.0880!; 0.0000 0.0000 0.1040 0.1Q§8 0.1147 0.1220 0.1313 0.1453 0.1674 0.1944 0.1349
0.0704] 0.2000 0.0000 0.1040 0.1088 0.1147 0.1220 0.1313 0.1453 0.1674 0.1944 0.1525
0.0528] 0.9000 0.0000 0.1040 0.1088 0.1147 .0.1220 0.1313 0.1453 0.1674 0.1944 0.1701
0.0352] 0.0000 0.0998 0.1040 0.1088 0.1147 0.1220 0.1313 0.1463 0.1674 0.1944 0.1877
0.0176] 0.0000 0.0998 0.1040 0.1088 0.1147 0.1220 0.1313 0.1453 0.1674 0.1944 0.2053
0.00001 0.096} 0.0997 0.1038 0.1087 0.1146 0.1219 0.1311 0.1451 0.1673 0.1942 0.2230
G 2 T
K(t): 0.0000 0.0517 0.1068 0.1656 0.2284 0.2954 0.3669 0.4432 0.5246 6115 0.7043
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.Debt service payments: s = '1.10

Dividend (d_1#dt) = .0023, Contractual payment (p#dt) .0021

0.3521] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0021- 0.0021- 0.0021- 0.0021- 0.9900
0.3345| 0.0000 0.0000 0.0000 0.0000 0.0000- 0.0000 0.002i- 0.0021- 0.0021- 0.0021- 0.9900°
0.3169] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0021- 0.0021- 0.0021- 0.0021:?0.9900
0.2993! 0.0000 0.0000 0.0000 0.0000 0.0000 ©.0000 0.0021i- 0.0021- 0.0021-.0.0021- 0.9900
0.2817] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0021- 0.0021- 0.0021- 0.0021- 0.0021- 0.9900
0.26411 0.0000 0.0000 0.0000 0.0000 0.0000 0.0021- 0.0021- 0.0021~ 0.0021- 0.0021- 0.9900
0.2465! 0.0000 0.0000 0.0000 0.0000 ' 0.0000 0.0021- 0.0021- 0.0021- 0.0021- 0.0021- 0.9900
0.2289] 0.0000 0.0000 ©0.0000 0.0000 0.0000 0.0021- 0.0021- 0.0021- 0.0021- 0.0021- 0.9900
0.21131 0.0000 0.0000 0.0000 0.0000 0.0021~ 0.0021- 0.0021- 0.0021- 0.0021- 0.0021- 0.9900
0.1937| 0.0000 0.0000 0.0000 0.0000 Q.0021~ 0.0021- 0.0021- 0.0021- 0.0021 0.0021 0:.9900
0.17611 0.0000 0.0000 0.0000 0.0000 §>0021- 0.0021- 0.0021- 0.0021 0.0021 0.0021 0.9900
0.1585! 0.0000 0.0000 0.0000 0.0021- J.0021~ 0.0021- 0.0021 " 0.0021 0.0021 0.0021 0.9900
0.14091 0.0000 0.0000 0.0000 0.0021~ 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.9900
0.1232{ 0.0000 0.0000 0:0000 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.9900
0.1056! 0.0000 0.0000 0.0021 0.0021 0.0021 " 0.0021 0.0021 0.0021 0.0021 0.0021 0.9827
0.0880| 0.0000 0.0000 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.9651
0.0704! 0.0000 0.0000 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021* 0.0021 0.9475
0.0528| 0.0000 0.0000 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.9299
0.0352| 0.0000 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.9123
0.01761 0.0000 0.0021 0.0021 0.0021 0.0021 0.0021° 0.0021 0.0021 0.0021 0.0021 0.8947
0.0000/ 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.8770
Kt | o e —————————————— et m————
K(t): | 0.0000 0.0517 0.1068 0.1656 0.2284 0.2954 0.3669 0.4432 0.5246 0.6115 0.7043
b(t): | 1.0000 0.9898 0.9792 0.9681 0.9566 0.9446 0.9322 0.9192 0.9057 0.8917 0.8770

t: | 5.0000 4.5000 4.0000 3.5000 3.0000 2.5000 2.0000 1.5000 1.0000 0.5000 0.0000

Critical payments: s = 1.10

0.3521| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000- 0.0765- 0.0846- 0.0916- 0.0994- 0.0000
0.33451 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0765- 0.0846- 0.0916- 0.0994- 0.0000
0.3169!1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0765- 0.0846- 0.0916- 0.0994- 0.0000
0.2993| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0765- 0.0846- 0.0916- 0.0994- 0.0000
0.28171 0.0000 0.0000 0.0000 0.0000 0.0000 0.0743- 0.0765- 0.0846- 0.0916- 0.0994- 0.0000
0.2641f 0.0000 0.0000 0.0000 0.0000 0.0000 0.0743- 0.0765- 0.0846- 0.0916- 0.0994- 0.0000
0.2465| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0743- 0.0765- 0.0846- 0.0916- 0.0994- 0.0000
0.2289| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0743- 0.0765- 0.0846- 0.0916- 0.0994- 0.0000
0.2113] 0.0000 0.0000 0.0000 0.0000 0.0706- 0.0743~ 0.0765- 0.0846- 0.0916- 0.0994- 0.0000
0.1937f 0.0000 0.0000 0.0000 0.0000 0.0706- 0.0743- 0.0765- 0.0846- 0.0916 0.0994 0.0000
0.1761] 0.0000 0.0000 0.0000 0.0000 0.0706- 0.0743- 0.0765- 0.0846 0.0916 0.0994 0.0000
0.1585| 0.0000 0.0000 0.0000 0.0680~ 0.0706- 0.0743- 0.0765 0.0846 0.0916 0.0994 0.0000
0.1409] 0.0000 0.0000 0.0000 0.0680- 0.0706 0.0743 0.0765 0.0846 0.0916 0.0994 0.0000
0.12321 0.0000 0.0000 0.0000 0.068Q.; 0.0706 0.0743 0.0765 0.0846 0.0916 0.0994 0.0000
0.1056| 0.0000 0.0000 0.0653 0.0680 0.0706 0.0743 0.0765 -0.0846 0.0916 0.0994 0.0000
0.0880| 0.0000 0.0000 0.0653 0.0680 0.0706 0.0743 0.0765 0.0846 0.0916 0.0891 0.0000
0.07041 0.0000 0.0000 0.0653 0.0680 0.0706 0.0743 0.0765 0.0843 0.0777 0.07156 0.0000
0.0528/ 0.0000 0.0000 0.0653 0.0680 0.0706 0.0743 0.0715 0.0667 0.0601 0.0539 0.0000
0.0352] 0.0000 0.0634 0.0653 0.0680 0.0706 0.0642 0.0539 0.0491 0.0425 0.0363 0.0000
0.0176| 0.0000 0.0634 0.0653 0.0637 0.0548 0.0466 0.0363 0.0316 0.0249 0.0187 0.0000
0.0000] 0.0634 0.0653 0.0566 0.0482 0.0393 0.0311 0.0209 0.0160 0.0095 0.0032 0.0000

3G -5 T SRS PR — -
K(t): | 0.0000 0.0517 0.1068 0.16566 0.2284 0.2954 0.3569» 0.4432" 0.5246 0.6115 0.7043
b(t): | 1.0000 0.9898 0.9792 0.9681 0.9566 0.9446 0.9322 0.9192 0.9057 0.8917 0.8770

| 5.0000 4.5000 4.0000 3.5000 3.0000 2.5000 2.0000 1.5000 1.0000 0.5000 0.0000
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Table 10: Penalized default: outstanding payment rule, prepayment, technical

default; cash flow constraint
L(s,t): s = 1.10 ’

0.35211 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9900# 0.9900# 0.9900# 0.9900# 0.9900
0.3345| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9900%# 0.9900# 0.9900# 0.9900# 0.9900
0.31691 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9900# 0.9900% 0.9900# 9.9900% 0.9900
0.2993] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9900# 0.9900# 0.9900# 0.9900# 0.9900
0.28171 0.0000 0.0000 0.00004 G.0000 0.0000 0.9900# 0.9900# 0.9900# 0.9900# 0.9900# 0.9900
0.26411 0.0000 0.0000 0.0000 0.0000 0.0000 0.9900# 0.9900# 0.9900# 0.9900# 0.9900# 0.9900
0.2465| 0.0000 0.0000 0.0000 0.0000 0.0000. 0.9900# 0.9900# 0.9900# 0.9900% 0.9900# 0.9900
0.2289! 0.0000 0.0000 0.0000 0.0000 0.0000 0.9900% 0.9900# 0.9900# 0.9900# 0.9900% 0.9900
0.2113] 0.0000 0.0000 0.0000 0.0000 0.9900# 0.9900# 0.9900# 0.9900# 0.9900# 0.9900% 0.9900
0.19371 0.0000 0.0000 0.0000 0.0000 0.9900# 0.9900# 0.9900# 0.9900# 0.9900# 0.9900# 0.9900
0.1761]1 0.0000 0.0000 0.0000 0.0000 0.9900# 0.9900# 0.9900# 0.9900#°0.9900%# 0.9900# 0.9900
0.1585] 0.0000 0.0000 0.0000 0.9900# 0.9900# 0.9900# 0.9900# 0.9900# 0.9900# 0.9900# 0.9900
0.1409! 0.0000 0.0000 0.0000 0.9900% 0.9900# 0.9900# 0.9900%# 0.9900# 0.9900%# 0.9900%# 0.9900
0.12321 0.0000 0.0000 0.0000 0.9900% 0.9900# 0.9900# 0.9900# 0.9900# 0.9900%# 0.9900# 0.9900
0.1056] 0.0000 0.0000 0.9900# 0.9900# 0.9900# 0.9900# 0.9900%# 0.9900# 0.9900# 0.9900% 0.9827
0.0880]1 0.0000 0.0000 0.9900# 0.9900# 0.9900# 0.9900# 0.9900%# 0.9900# 0.9900%# 0.9797# 0.9651
0.0704]1 0.0000 0.0000 0.9900% 0.9900# 0.9900# 0.9900# 0.9900# 0.9896# 0.9761# 0.9621# 0.9475
0.0528] 0.0000 0.0000 0.9900# 0.9900# 0.9900# 0.9900# 0.9850# 0.9720# 0.9585# 0.9445% 0.9299
0.03521 0.0000 0.9900# 0.9900# 0.9900# 0.9900# 0.9799# 0.9674# 0.9544# 0.9409% 0.9269%# 0.9123
0.0176] 0.0000 0.9900# 0.9900# 0.9857# 0.9742# 0.9623# 0.9498% 0.9368# 0.9233#% 0.9093#% 0.8947
0.0000] 0.9287 0.9266 0.9247 0.9220 0.9194 0.9157 0.9135 0.9054 0.8984 0.8906 0.8770
G
K(t): | 0.0000 0.0517 0.1068 0.1656 0.2284 0.2954 0.3669 0.4432 0.5246 0.6115 0.7043
b(t): | 1.0000 0.9898 0.9792 0.9681 0.9566 0.9446 0.9322 0.9192- 0.9057 0.8917 0.8770
t: | 5.0000 4.5000 4.0000 3.500043.0000 2.5000 2.0000 1.5000 1.0000 0.5000 0.0000
B(s,t): s = 1.10 ~
0.35211 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000# 0.0000# 0.0000# 0.0000# 0.1100
0.3345( 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000# 0.0000%# 0.0000# 0.0000# 0.1100
0.3169] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000# 0.0000# 0.0000# 0.0000# 0.1100
0.2993| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000# 0.0000% 0.0000# 0.0000% 0.1100
0.2817| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000# 0.0000%# 0.0000# 0.0000# 0.0000# 0.1100
0.2641{ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000# 0.0000% 0.0000% 0.0000# 0.0000# 0.1100
0.2465| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.1100
0.2289! 0.0000 0.000C 0.0000 0.0000 0.0000 0.0000# 0.0000# 0.0000# ‘0.0000# 0.0000# 0.1100
0.2113] 0.0000 0.0000 0.0000 0.0000 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.1100
0.1937] 0.0000 0.0000 0.0000 0.0000 0.0000# 0.0000# 0.0000%# 0.0000# 0.0000# 0.0000# 0.1100
0.1761| 0.0000 0.0000 0.0000 0.0000 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.1100
0.1585| 0.0000 0.0000 0.0000 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.1100
0.1409] 0.0000 0.0000 0.0000 0.0000# 0.0000# 0.0000# 0.0000%# 0.0000# O0.0000# 0.0000%# 0.1100
0.12321 0.0000 0.0000 0.0000 0.0000# 0.0000%# 0.0000# 0.0000# 0.0000% 0.0000# 0.0000# 0.1100
0.10561 0.0000 0.0000 0.0000# 0.0000%# 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.1173
0.0880/ 0.0000 0.0000 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.0103# 0.1349
0.07041 0.0000 0.0000 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.0004# 0.0139# 0.0279# 0.1525
0.0628| 0.0000 0.0000 0.0000# 0.0000%# 0.0000# 0.0000# 0.0050# 0.0180# 0.0315# 0.0455% 0.1701
0.0352| 0.0000 0.0000% 0.0000% 0.0000# 0.0000# '0.0101# 0.0226# 0.0356%# 0.0491# 0.0631# 0.1877
0.01761 0.0000 0.0000# 0.0000# 0.0043# 0.0158%# 0.0277# 0.0402# 0.0532# 0.0667# 0.0807# 0.2053
0.U000| 0.0961 0.0997 0.1038 0.1087 0.1146 0.1219 0.1311 0.1451 0.1673 0.1942 0.2230
)33 2 - e e e e e e e e e
K(t): | 0.0000 0.0517 0.1068 0.1656 0.2284 0.2954 0.3669 0.4432 0.5246 0.6115 0.7043
b(t): | 1.0000 60.9898 0.9792 0.9681 0.9566 0.9446 0.9322 0.9192 0.9057 0.8917 0.8770

t: | 5.0000 4.5000 4.0000 3.5000 3.0000 2.5000 .2.0000 1.5000 1.0000 0.5000 0.0000
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Debt service payments: s = 1.10

Dividend (d_1#dt) = .0023, Contractual payment (prdt) = .0021
0.3521} 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000# 0.0000%# 0.0000# 0.0000% 0.9900
0.33451 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000# 0.0000# 0.0000# 0.0000%# 0.9900
0.31691 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000# 0.0000#%.0.0C00# 0.0000# 0.9900
0.2993{ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000# 0.0000# 0.0000# ©.0000# 0.9900
0.28171 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000% 0.0000# 0.0000% 0.0000# 0.00C0# 0.9900
0.2641] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000# 0.0000% 0.0000# 0.0000# 0.0000%# 0.9900
0.2465| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000%# 0.0000# 0.0000# 0.0000# 0.0000# 0.9900
0.2289| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000% 0.0000# 0.0000# 0.0000# 0.0000%# 0.9900
0.2113| 0.0000 0.0000 0.0000 0.0000 0.0000%# 0.0000# 0.0000# 0.0000# 0.0000%# 0.0000# 0.9900
0.1937{ 0.0000 0.0000 0.0000 0.0000 0.0000# 0.0000# 0.0000# 0.0000% 0.0000# 0.0000# 0.9900
0.1761f 0.0000 0.0000 0.0000 0.0000 0.0000% 0.0000# 0.0000# 0.0000# 0.0000%# 0.0000# 0.9900
0.15851 0.0000 0.0000 0.0000 0.0000% 0.0000% 0.0000%# 0.0000% 0.0000# 0.0000% 0.0000% 0.9900
0.1409| 0.0000 0.0000 0.0000 0.0000% 0.0000# 0.0000# 0.0000# 0.0000%# 0.0000# 0.0000# 0.9900
0.1232] 0.0000 0.0000 0.0000 0.0000# 0.0000# 0.0000# 0.0000%# 0.0000# 0.0000# 0.0000# 0.9900
0.10561 0.0000 0.0000 0©.0000% 0.0000# 0.0000% 0.0000# 0.0000# 0.0000%# 0.0000# 0.0000# 0.9827
0.0880| 0.0000 0.0000 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.9651
0.0704| ©.0000 0.0000 0.0000# 0.0000%# 0.0000% 0.0000# 0.0000# 0.0000% 0.0000% 0.0000% 0.9475
0.05281 0.0000 0.0000 0.0000# 0.0000# 0.0000% 0.0000% 0.0000# 0.0000# 0.0000% 0.0000# 0.9299
0.03521 0.0000 0.0000% 0.0000# 0.0000% 0.0000# 0.0000# 0.0000# 0.0000% 0.0000# 0.0000# 0.9123
0.0176{ 0.0000 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.0000# 0.8947
0.0000! 0.0021 0.0021 0.0021 0.0021 0.0022 0.0021 0.0021 0.0021 0.0021 0.0021 0.8770
(L) | e - - m———— e ————————————
K(t): | 0.0000 0.0517 0.1068 0.1656 0.2284 0.2954 0.3669 0.4432 0.5246 0.6115 0.7043
b(t): | 1.0000 0.9898 0.9792 0.9681 0.9566 0.9446 0.9322 0.9192 0.9057 0.8917 0.8770
t: | 5.0000 4.5000 4.0000 3.5000 3.0000 2.5000 2.0000 1.5000 1.0000 0.5000 0.0000
Critical payments: s = 1.10

0.3521] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0765# 0.0846# 0.0916# 0.0994# 0.0000
0.3345( 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0765# 0.0846# 0.0916# 0.0994# 0.0000
0.3169] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0765# 0.0846# 0.0916# 0.0994# 0.0000
0.2993! 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0765% 0.0846# 0.0916# 0.0994# 0.0000
0.2817| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0743# 0.07656# 0.0846# 0.0916# 0.0994# 0.0000
0.2641f 0.0000 0.0000 0.0000 0.0000 0.0000 0.0743# 0.0765# 0.0846# 0.0916# 0.0994# 0.0000
0.24651 0.0000 0.0000 0.0000 0.0000 0.0000 0.0743# 0.0765# 0.0846# 0.0916# 0.0994# 0.0000
0.2289] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0743# 0.0765# 0.0846# 0.0916# 0.0994# 0.0000
0.2113] 0.0000 0.0000 0.0000 0.0000 0.0706# 0.0743# 0.0765# 0.0846% 0.0916# 0.0994# 0.0000
0.1937] 0.0000 0.0000 0.0000 0.0000 0.0706# 0.0743# 0.0765# 0.0846# 0.0916# 0.0994# 0.0000
0.1761| 0.0000 0.0000 0.0000 0.0000 0.0706# 0.0743# 0.0765# 0.0846# 0.0916# 0.0994#% 0.0000
0.1585] 0.0000 0.0000 0.0000 0.0680# 0.0706# 0.0743# 0.0765% 0.0846# 0.0916% 0.0994# 0.0000
0.1409] 0.0000 0.0000 0.0000 0.0680# 0.0706% 0.0743# 0.0765# 0.0846# 0.0916# 0.0994#% 0.0000
0.1232] 0.0000 0.0000 0.0000 0.0680# 0.0706# 0.0743%# 0.0765% 0.0846# 0.0916# 0.0994# 0.0000
0.10561 0.0000 0.0000 0.0653% 0.0680# 0.0706# 0.0743# 0.0765# 0.0846# 0.0916# 0.0994# 0.0000
0.08801 0.0000 0.0000 0.0653# 0.0680# 0.0706# 0.0743# 0.0766# 0.0846# 0.0916# 0,0891# 0.0000
0.07041 0.0000 0-0000 0.06538 0.0680# 0.0706# 0.0743# 0.0766% 0.0843# 0.0777# 0.0715# 0.0000
0.0528! 0.0000 0.0000 0.0653# 0.0680# 0.0706% 0.0743# 0.0715# 0.0667# 0.0601# 0.0539# 0.0000
0.03521 0.0000 0.0634# 0.0653# 0.0680# 0.0706# 0.0642# 0.0539# 0.0491# 0.04258 0.0363# 0.0000
0.01764 0.0000 0.0634% 0.0653#% 0.0637# 0.0548#%# 0.0466# 0.0363#%# 0.0315# 0.0249# 0.0187# 0.0000
0.00001 0.0634 0.0653 0.0666 0.0482 0.0393 0.0311 0.0209 0.0160 0.0095 0.0032 0.0000
32
K(t): 0.0000 0.0517 0.1068 0.1656 0.2284 0.2954 0.3669 0.4432 0.5246 0.6115 0.7043
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Appendix D
Credit rationing

Results presented here are based on the following parameter values, unless otherwise indi-

cated:
Collateral:

o dy d) lo L fo fi s(0)
02 0 0.1 0 0.1 0 004 1.1
Contract: ‘ .
. T T w—c- p p =
5 005 005 0.1 0877

The following combinations of games and contractual indentures are studied:

a) Terminating default
b) Terminé.ting default, dividend flow constraint
c) Strategic default

d) Strategic default, dividend flow constraint

B a4y

) Strategic default, dividend flow constraint, technical default, prepayment

) Penalised default, current default rule, dividend flow constraint

g) Penalised default, oustanding payment rule, dividend flow constraint

h) Penalised default, current default rule, dividend flow constraint, technical default,
prepayment

(i) Penalised default, outstanding default rule, dividend flow constraint, technical default,

prepayment
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Table 1: Loan to value ratios

1y

1 (i)
% Loan -
c—r| P (a) (b) () , (@ (e) (f) (g) (h) (i)
0.00 0.716 | 0.268 0.399 0.207 0.320 0.348 0518 0518 0.523 0.523
0.01 0.767 | 0.620 0.706 0.500 0.580  0.580 0.617 0.617 0.617 0.617
0.02 0.820 | 0.704 0.759 0.571 0.635 0.635 0.658 0.658 0.660 0.660 -
0.03 0.877 | 0.752 0.788 0.620 0.667 0.741 0.678 - 0.678 0.715 0.715
0.04 0.937 | 0.787 0.807 0656 0690 0.755 0.703 0.703 0.769 0.769
0.05 1.000 | 0.811 0.822 0678 0.702 0.784 ~ 0.715 0.715 0.784 0.784
0.06 1.067 | 0.825 ’ 0.816 0.702 0.727 0.816 0.729 0.729 0.833 0.833
0.07 1.137 | 0.812 0.799 0.714 0.741 0.833 0.742 0.742 0.833 0.833
0.08 1.211 |{ 0.805 0.793 0.741 0.741 0.833 0.755 0.755 0.851 0.851
0.09 1.290 | 0.804 0.793 0.741 0.755 0.851 0.770 0.770 0.851 0.851
0.10 1.372 | 0.806 0.797 0.755 0.769 0.851 0.771 0.771 0.851 0.851
0.12 1.552 | 0.813 0.804 0.789 0.800 0870 0.800 0.800 0.870 0.870
0.14 1.751 | 0.821 0.813 0.816 0.816 0.870 0.820 0.820 0.870 0.870
0.16 1.973 | 0.829 0.822 0.829 0.832 0.889 (0.834 0.834 0.889 0.889
0.18 2220 | 0.837 0.828 0836 0.838 0.883 0.844 (0.844 0.889 0.889
0.20 2494 | 0.842 0.835 0.845 0.847 0.889 0.851 0.851 (0.889 (.889
1 (i)
I, =035
% Loan :
c—r [ P (a) (b) (c) (d) (e) f) (g) (h) (i)
0.00 0.716 | 0.243 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.01 0.767 | 0.541 0.448 0.360 0.360 0.360 0.000 0.000 0.000 0.000
0.02 0.820 | 0.606 0.516 0.412 0.412 0412 0.442 0442 0.442 0.442
0.03 0.877 | 0.637 0.561 0.449 0.449 0.449 0468 (0.468 (.468 0.468
0.04 0.937 { 0.662 0.596 0.476 0.476 0.476 0489 0.489 (.489 0.489
0.05 1.000 | 0.679 0.624 0494 0.494 0.494 0503 0.503 0.503 0.503
0.06 1.067 | 0.687 0.643 0506 0.506 0.506 0.517 0.517 0.556 0.556
0.07 1.137 | 0.691 0.656 0.519 0.519 0.519 0527 0.527 0.625 0.625
0.08 1.211 | 0.694 0.665 0.533 0533 0.533 0.541 0.541 0.645 0.645
0.09 1.290 | 0.696 0.672 0.541 0541 0.541 0.544, 0.544 0.645 0.645
0.10 1.372 | 0.697 0.676 2 0.548 -0.548 0.548 0.556 0.556 0.645 0.645
_0.12 1.552 | 0.691 0.675 0.571 0571 0.563 0.573 0.573 0.667 0.667
0.14 1.751 | 0.687 0.673 0.588 0.58_8 0.580 0590 0590 0.714 0.714
0.16 1973 | 0.683 0.671 0.598 0598 0.597 0606 0.606 0.741 0.741
0.18 2.220 { 0.677 0666 0606 0606 0.606 0.609 0.609 0.769 0.769
0.20 2494 | 0.672 0.661 0612 0.606 0.615 0.615 0.800 0.800

0.612
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*

1 (iii)

d, =0.2

% Loan
c—r| P (a) (b) (c) (d) (e) (f) (g) (h) (i)
0.00 | 0.716 | 0.000 0.000 0.000 0.000 0.000 0349 0.349 0.383 0.383
0.01 | 0767 | 0.399 “0.399 0.323 0.323 0.377 0.409 0.409 0.463 0.463
0.02 | 0.820 | 0.460 " §.460 0377 0.377 0.471 0438 0.438 0.606 0.606
0.03 | 0877 | 0.495 6.404 0417 0417 0.656 0459 0.459 0.645 0.645
0.04 | 0937 | 0.521 0.521 _0.444 0.444 0.702 0484 0.484 0.690 0.690
0.05 | 1.000 | 0.540 0.540 0465 0.465 0.714 0.500 0.500 0.690 0.690
0.06 | 1.067 | 0.552 ~0.552 0.482 0.482 0.784 0.516 0.516 0.800 0.800
0.07 | 1.137 | 0.562 0.562 0.494 0.494 0.784 0.527 0.527 0.800 0.800
0.08 { 1.211 | 0.569 0.569 0.506 ©6.506 0.800 0.535 0.535 0.800 0.800
0.09 | 1.290 | 0.575 0.575 0.513 0.513 0.816 0.541 0.541 0.800 0.800
0.10 | 1.372 | 0.576 0.576 0.519 0.519 0.816 0.547 0.547 0.833 0.833
0.12 | 1.552 | 0.577 0.577 0.541 0.541 0.833 0.560 0.560 0.833 0.833
0.14 | 1.751 | 0.580 0.579 0.550 0.550 0.851 0.573 0.573 0.833 . 0.833
0.16 | 1.973 | 0.582 0.582 0.561 0.561 0.870 0.588 0.588 0.870 0.870
0.18 | 2.220 | 0.584 0.584 0.566 0.566 0.870 0.589 0.589 0.870 0.870
0.20 | 2494 { 0.586 0.586 0.571 0.571 0.870 0.595 0.595 0.870 0.870

y N
Table 2: Expected foreclosure costs at origination
2 (1)

F(s,0)
c-r| P (a) (b) (c) (d) (e) (f) (8) (h) (1)
0.00 | 0.716 { 0.028 0.084 0.000 0.084 0.075 0.084 0.084 0.071 @071
0.01 | 0.767 | 0.032 0.084 0.000 0.083 0078 0.084 0084 0.077 0.077
0.02 | 0.820 | 0.037 0.084 0.000 0.084 0.080 0084 0.084 0.079 0.079
0.03 | 0877 | 0.042 0.085 0.000 0.084 0.078 0.084 -0.084 0.078 0.078
0.04 | 0937 | 0.046 0.085 0.000 0.084 0.077 0.084 0.084 0.0%7 0.077
0.05 | 1.000 | 0.051 0.085 0.000 0.084 0.076 0.084 b.084 0.076 0.076
0.06 | 1.067 | 0.054 0.087 0.000 0.084 0.076 0,084 OWS4 0.074 0.074
0.07 | 1.137 ; 0.065 0.094 0.000 0.083 0.074 0.083 0.083 0.073 0.073
0.08 | 1.211 | 0.072 0.096 0.000 0.083 0.073 0.082 0.082 0.072 0.072
0.09 | 1.290 { 0.078° 0.098 0.000 0.082 0.071 0.082 0.082 0.070 0.070
0.10 | 1.372 | 0.082 0.099 0.000 0.081 0.070 0.080 0.080 0.069 0.069
0.12 | 1.552 | 0.085 0.099 0.000 0.080 0.067 0.078 0.078 0.066 0.066
0.14 | 1.751 | 0.088 0.100 0.000 0.079 0.065 0.076 0.076 0.065 0.065
0.16 | 1.973 | 0.088 0.100 0.000 0.079 0.064 0.075 0.075 0.059 0.059
0.18 | 2.220 | 0.088 0.100 0.000 0.079 0.059 0.074 0.074 0.058 0.058
0.20 | 2494 | 0.088 0.100 0.000 0.079 0.057 0.073 0.073 0.059 0.059
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o

2 (ii)
1 =0.35
F(s,0)
c—r | 7P (a) (b) (c) (d) (e) (f) (g) (h) (i)

0.00 | 0.716 | 0.100 0.296 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.01 | 0.767 | 0.114 0.296 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.02 | 0.820 | 0.130 0.296 0.000 0.000 0.000 0.000 0.000 0.000 0.000
003 | 0877 | 0.149 0.296 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.04 | 0937 | 0.161 0.296 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.05 | 1.000 | 0.177 0.296 0.000 0.000 0.000 0.000 0.090 0.000 0.000
0.06 | 1.067 | 0.191 0.297 0.000 0.000 0.000 0.000 0.000 0.067 0.067
0.07 | 1137 | 0.208 0.299 0.000 0.000 0.000 0.000 0.000 0.136 0.136
0.08 | 1.211 | 0.218 0.302 0.000 0.000 0.000 0.000 0.000 0.172 0.172
0.09 | 1.290 | 0.231 0.305 0.000 0.000 0.000 0.000 0.000 0.195 0.195
0.10 | 1.372 | 0.240 0.307 0.000 0.000 0.000 0.000 0.000 °0.214 0.214
0.12 | 1.552 | 0.258 0.315 0.000 0.000 0.000 0.000 0.000 0.235 0.235
0.14 | 1.751 | 0.271 0.320 0.000 0.000 0.000 0.000 0.000 0.244 0.244
0.16 | 1973 | 0.279 0.324 0.000 0.000 0.026 0.000 0.000 0.243 0.243
0.18 | 2220 { 0.284 0.328 0.000 0.000 0.025 0.000 0.000 0.241 0.241
0.20 | 2494 | 0.287 0.330 0.000 0.000 0.019 0.000 0.000 0.232 0.232

' ' 2 (iii)

X dy =0.2
, F(s,0)
c—r| P (a) (b) (c) (d) (e) (f) (8) (h) (i)

0.00 | 0716 | 0.032 0.033 0.000 0.000 0.087 0.000 0000 0.082 0.082
001 | 0.767 | 0.034 0.035 0.000 0.000 0.088 0.000 0.000 0.084 0.084
0.02 | 0.820 | 0.036 0.037 0.000 0.000 0.089 0.000 0.000 0.085 0.085
0.03 | 0877 | 0.038 0.039 0.000 0.000 0.089 0.000 0.000 0.085 0.085
0.04 | 0937 | 0.039 0.041 0.000 0.000 0.088 0.000 0.000 0.084 0.084
0.05 | 1.000 | 0.040 0.041 0.000 0.000 0.088 0.000 0.000 0.085 0.085
0.06 | 1.067 | 0.041 0.042 0.000 0.000 0.088 0.000 0.000 0.086 0.086
0.07 | 1137 | 0.043 0.043 0.000 0.000 0.087 0.000 0.000 0.085 0.085
0.08 | 1.211 ; 0.043 0.044 0.000 0.000 0.086 0.000 0.000 0.084 0.084
0.09 | 1.290 | 0.044 0.045 0.000 0.000 0.084 0.000 0.000 0.084 0.084
0.10 | 1.372 | 0.043 0.045 0.000 0.000 0.0”3 0.000 0.000 0.082 0.082
0.12 | 1.552 |{ 0.044 0.045 0.000 0.000 9.080 $.000 0.000 0.080 0.080
0.14 | 1.751 | 0.044 0.046 0.000 0.000 0.077 0.000 0.000 0.078 0.078
0.16 | 1973 | 0.045 0.046 0.000 0.000 0.077 0.000 0.000 0.078 0.078
0.18 | 2.220 | 0.045 0.046 0.000 0.000 0.073 0.000 0.000 0.074 0.074
020 | 2.494 | 0.045 0.046 0.000 0.000 0.071 0.000 0.000 0.072 0.072
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Table 3: Koreclosure costs

’

3 (a)

I o L B F % Loan
0.000 0877 0.947 0.153 0.000 0690
0.020 0877 0941 0.144 0015 0.697

’ 0.040 0.877 .0.941 0.138 0.021 0.750

- 0.060 0877 0.937 0.138 0.025 0.779

0.080 0.877 0.928 0.138 0.034 0.765

0.100 0.877 0.920 0.138 0.042 0.752

0.120 0.877 0.911 0.138 0.051 0.740

0.140 0877 0.903 0.138 0.059 0.729

0.160 0.877 0.894 0.138 0.068 0.718

0.180 0877 0.886 0.138 0.076 0.707
0.200 0.877 0.877 0.138 0.085 0.698 -

3 (d)

L P L B F %Loan
0.000 0877 0996 0.104 0.000 0.851
0.020 0877 098 0.097 0017 0.800
0.040 0.877 0.974 0.092 0.034 0.755
0.060 .0.877 0.961 0.089 0.050 0.727
0.080 0.877 0.946 .0:086 0.068 0.690
0.100 0.877 0.93L 0.085 0.084 0.667
0.120 0.877 0.916 0.083 0.101 0.635
0.140 0877 0.£00 0082 0.118 0615
0.160 0.877 0.884 0.082 0.134 0.597
0.180 0.877 0.868 0.081 0.151 0.571
0.200 0877 0.851 0.084 0.165 0.556

3 '

L P L B F %Loan
0.000 0877 0990 0.110 0.000 0.800
0.020 0.877 0.980 0.104 0.016 0.770
0.040 0.877 0.969 0.099 0.032 0.744
0.060 0.877 0956 0.096 0.048 0.717
0.080 0.877 0.942 0.094 0.064 (.692
0.100 0877 0.928 0.093 0.079 0.669
0.120 0877 0914 0.092 0.094 0.646
0.140 0877 0.899 0.091 0.110 0.627
0.160 0.877 0.883 0.090 0.127 0.607
0.180 0.877 0.868 0.090 0.142  0.591
0.200 0.877 0.852 0.091 0.157 0.573

3 (h)

I o L B F %Loan
0.000 0877 0.990 0.110 0.000 0.800
0.020 0877 0980 0.104 0016 0.770
0.040 0877 0969 0.099 0.032 0.744
0.060 0.877 0956 0.096 0048 0.717
0.080 0.877 0.942 0.095 0.063 0.690
0.100 0.877 0930 0.095 0.075 0.714
0.120 0877 0917 0.095 0.088 0.714
0.140 0.877 0904 0.096 0.100 0.714
0.160 0877 0.891 0.096 0.113 0.714
0.180 0.877 0.876 0.096 0.128 0.714
0.200 0877 0.857 0.099 0.144 0.714
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Table 4: Dividend Flow

. 4 (a)

d, P L B F %Loan
0.000 0877 0997 0.059 0044 0905
0.020 0.877 0.987 0.070 0.043 0.888
0.040 0877 0974 0.083 0043 0.865
0.060 0.877 0959 0099 0042 0834
0.08C 0877 0.941 0.117 0042 0.796
0.100 0877 0.920 0.138 0.042 0.752
0.120 0.877 0.896 0.162 0.042 0.703
0.140 0877 0.869 0.190 0.041  0.650
0.160 0877 0.839 0220 0041 0.597
0.180 0877 0.809 0.251 0.040 0.544
0.200 0.877 0778 0.284 0.038 0.495

4 (d)

d P L B F  %Loan
0.000 0877 0.990 0.000 0.110 0.889
0.020 0.877 0.990 0.000 0.110 0.889
0.040 0877 0.990 0.000 0.110 0.889
0.060 0.877 0.990 0000 0.110 0.889
0.080 0.877 0.990 0.000 0.110 0.889
0.100 0877 0.931 0.085 0.084° 0.667
0.120 0877 0.891 0.149 0060 0.588
0.140 0877 0.862 0.201 0.037 0.541
0.160 0.877 0.834 0267 0.000 0.500
0.180 0.877 0.805 0.296 0.000 0.455
0.200 0877 0.775 0.326 0.000 0417

4 (f)

d; P L B F %Loan
0.000 0877 0990 0.000 0.110 0.870
0.020 0877 0.990 0.000 0.110 0.870
0.040 0.877 0.990 0.000 0.110 0.870
0.060 0.877 0.990 0.000 0.110 0.870
0.080 - 0.877 - 0.990 0.000 0.110 0.870
a,f00" 0877 0928 0093 0079 0869
0120, 0.877 0.894 0.152 0.054  0.609

©0.140 0877 0.869 0.203 0.028 0.573
0.160 0.877 0.843 0.258 0.000 0.532
0.180 0.877 0.819 0.282 0.000 0.503
0.200 0.877 0791 0.311 0.000 0.459

4 (h)

d, P L B . F %Loan
0.000 0.877 1.000 0.060 0.040 0.909
0.020 0.877 1000 0.060 0.040 0.909
0.040 0877 1.000 0.060 0.040 0.909
0.060 0.877 1.000 0.060 0.040 0.909
0.080 0.877 0.990 0.062 0.048 0.870
0.100 0.877 0930 0095 0075 0714
0.120 0.877 0922 0.100 0078 0.714
0.140 0.877 0.916 0.104 0.080 0.690
0.160 0.877 @910 0.107 0083 0.690
0.180 0.877 0.907 0.109 0084 0.667
0.200 0877 0.902 0.113 0085 0.645
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Computer Code

e e e P e T
* CREDTAB »
e L S L P e At e
This program employs the Crank Nicholson finite difference
algorithm to determine the values of L(s,9) and B(s,0) in the
terminating default game and the strategic default game.
L D e
implicit double precision (a-h,k-1,0-z)
integer sstep, tstep, scount, smaxcount, smincount, timesteps,
& tabstep, dcount
parameter (sstep=100, tstep=240)
dimension v1(0:sstep), vb(0:sstep), s(0:sstep), balt(0:tstep),
div(0:sstep), liq(0:sstep), sliq(O:sstep),
arr(0:sstep,1:4), stratpay(O:sstep), parm(15),
vlex(0:sstep,0:tstep), vbex(0:sstep,0:tstep),
vlcum(0:sstep,0:tstep), vbcum(O:sstep,0:tstep),
stratpaytab(0:sstep,0:tstep), timetab(O:tstep),
critpay(0:sstep), pay(0:sstep)
character*8 A, B, change, strat, amort, coup, prep,
& tdef, cash, hdef
dimensidn SYM(QO:sstep,0:tstep)
character*1 SYM .
character*12 infile

R R RPRR

LA S A A T e L s
c set input and output files

vrite(*,*) ’Enter input file’
read(*,5) infile
5 format (al2)
open(3, file=infile, status=’old’, form='formatted’)
open(8, file=’credtab.out’, form='formatted’)

c crank-nicholson algorithm parameters:
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&

&

&

10

write(*,730)

3

contract parameters:

p, liq0, liql, s0O, refl

write(*,700) ’Collateral:’
write(*,720) ’r’, ’sigma’, ’div0’,

'refl’, ’s(0)’

refl, sO

write(*,740) ’Contract:’
vrite(*,750) *'T’, ’c-r’, ’p’
write(*,760) tmat, cspread, p

continue

write(*,*) ’Enter parameter:’

read(*,20) B

if (B .eq. ’c-r’ .or. B .eq.
write(*,*) ’Enter c-r:’
read*, cspread

else if ( B .eq. ’p’ .or. B
write(*,*) ’Enter p:’
read#*, p

else if ( B .eq. ’tmat’ .or.
write(*,*) ’Enter tmat:’
read*, tmat

else if ( B .eq. ’liq0’ .or.
vrite(*,*) ’Enter liq0:’
read*, 1iqO

else if ( B .eq. ’liql’ .or.
write(*,*) ’Enter liql:’
read*, liql

else if ( B .eq. ’sigma’ .or.

vrite(*,*) ’Enter sigma:’
reads*, sigma

else if ( B .eq. ’div0’ .or.
write(*,*) ’Enter divO:’
read*, div0

else if ( B .eq. ’divl’ .or.
write(*,*) ’Enter divi:’
read*, divl

else if ( B .eq. ’s0’ .or. B
write(*,*) ’Enter s0:’
read=x, s0

else if ( B .eq. ’r’ .or. B
write(*,*) ’Enter r:’

data imin, imax, smin, smax, ifut / 1, 0, 0.0, 5.0, 0 /

read(3,*) sigma, div0, divl, tmat, cspread, r,

*divl’, ’liq0’, ’liql’,

r, sigma, div0, divl, liq0, liql,

vrite(*,*) ’Change parameter value (y/n):’
read(+,20) A '
if (A .eq. ’y’ .or. A .eq. ’f’) then

’C-R’) then

.eq.

’P’) then

.eq.

*TMAT’) then

B .eq. 'LIQO’) then
B .eq. 'LIql’) then

B .eq. ’SIGMA’) then
B .eq. ’'DIVO’) then \
B .eq. ’DiV1’) then
.eq. ’S0’) then
.eq. ’R’) then
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? read*, r

else if ( B .eq. ’'refl’ .or. B .eq. ’REF1’) then
vrite(*,*) ’Enter refl:’
read*, refl \$
endif
write(#,*) ’Change another parameter (y/m):’
read(*,20) change
if (change .eq. 'y’ .or. change .eq. ’'Y’) gotc 10
endif -

set table dimensions for output

write(*,*) ’Enfer s : stabmax, stabmin, sint’
read*, stabmax, stabmin, sint

write(*,*) ’Enter t: start, *stop, step’ PR
read*, tabstart, tabstop, tabstep

]

dt = tmat / dble(tstep)

ds = (smax - smin) / dble(sstep)

scount = idnint((s0 - smin) / ds)
smaxcount = idnint((stabmax - smin) / ds)
smincount = idnint((stabmin - smin) / ds)
dcount = idnint(sint / ds)

startc = idnint(tabstart / dt)

stopc = idnint(tabstop / dt)

set pde coefficient parameters

c = r + cspread

parm(1) = sigma

parm(2) = r

parm(3) = div0

parm(4) = divil N

I

set behavioural assumptions and contract details

write(#,*) ’Strategic debt service (y/n):’
read(*,20) strat

if (strat .eq. ’y’ .or. strat .eq. ’Y’) then
write(8,*) ’ Strategic debt service’
endif

write(#,*) ’Cash flow constraint (y/m):’
read(*,20) cash
if (cash .eq. 'y’ .or. cash .eq. ’Y’) then
write(8,*) ’ Cashflow constraint on’
endif . ’
write(*,*) ’Full amertisation (y/n):’
read(*,20) amort :
if (amort .eq. ’y’ .or. amort\.eq. ’Y’) then
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20

T

<.

“w

write(8,*) ’ Full amortisation’
P = c*exp(c*tmat)/(exp(c*tmat)-1d0)
else '
write(*,*) ’Coupon loan (y/m}:’
read(*,20) coup
© Af (coup .eq. ’y’ .or. coup .eq. ’Y’) then
" write(8,%) ’ Coupon loan: p = c’
pP=c .
endif .
endif

conpay = pxdt

write(*,*) ’'Prepay (y/m):’

read(*,20) prep

if (prep .eq. ’y’ .or. prep .eq. ’Y’) then
write(8,*) ’ Prepayment’

endif

write(*,*) ’Technical default (y/n):’

read (*,207 tdef

if (tdef .eq. 'y’ .or. tdef .eq. ’'Y’) then
write(8,*) ’ Technical defamlt’

endif

print*, ’High default (y/m):’
read(*,20) hdef
if (hdef .eq. 'y’ .or. hdef .eq. ’Y’) then
write(8,*) ’ High default’
endif
format(a8) -
outstanding loan balance at maturity
balt(0) = exp(c*tmat)-(exp(c*tmat)-1)*(p/c)
solve L(s,0) and Bé!,o) LA R R A LR Ll e P e e
call cnset (sstep,smin.smax,dt,ifn,ifut,imin,imax.p&m,arr)
do 100 i = 0, sstep
s(i) = smin + dble(i) =*eds
div(i) = (divO + s(i)*divl) =edt

]_iq(i) s(i)#liql + lqu
sliq(i) = max(0d0, s(i) - liq(i))

[}

if (strat .eq. ’y’ .or. strat.eq. 'Y’) then
v1(i) = min(sliq(i), balt(0))
vb(i) = s(i) - vl(i)
stratpaytab(i,0) = vl(i)

102



APPENDIX E. COMPUTER CODE" ' 103

. SYM(i,0) = ’ °
else
if (s(i) - balt(0) .1lt. -1d-10) then ,
vb(i) = 0.0d0 /
vl(i) = sliq(i)
SYM(i,0) = 7%’
k
else .
vb(i) = s(i) - balt(0) <

" vl(i) = balt(0)
SYM(i,0) = ? ?
endif
endif

vlex(i,0) = vl(i)
vlewm(i,0) = v1(i)
vbex(i,0) = vb(i)
vbcum(i,0) = vb(i)
100 continue
c time loop » <
t = 040
timetab(0) = 0d0
v 3 =0

110 continue

call cmstep (t, vb, arr)
call cnstep (t, vl, arr)

t t + dt ’

ERER

timetab(j) =t
balt(j)=egp(c*(tmat-t))-(exp(c*(tmat-t))-1d0)*(p/c)
ref = bal#(j) * (1d0 + refi) + 1d-10

do 120 i = 0, sstep
vlex(i,j) = vl(i)
vbex(i,j) = vb(i)

120 continue

do 140 i = 0, sstep
vlliq = min(sliq(i), balt(j))
vbliq = sliq(i) - vlliq

vldlow = sliq(i)

vbdlow = 0d0

vldhi = balt(j)

vbdhi = sliq(i) - balt(j)
vliprep = balt(j)
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vbprep = s(i) - ref
critpay(i) = max(0dO, vll}q - vl(i))
stratpay(i) = min(conpay, critpay(i))

if (tdef .eq. ’y’ .and. strat .eq. ’y’) then
if (s(i) .1t. balt(j)) then
stratpay(i) = critpay(i)
endif
endif -

if (strat .eq. 'y’ .or. strat .eq. ’Y’) then
pay(i) = stratpay(i)

else
pay(i) = conpay
endif
vlcont = vi(i) + pay(i) o
vbeont = vb(i) + div(i) - pay(i) -

vl(i) = vlcont
vb(i) = vbcont
SYM(i,j) =

if (vbcont .1lt. vbgiow) then
vb(i) = vbdlows.
v1(i) = vldlo¥,,
SYM(i,j) = ’#’

goto 140

endif

if (hdef .eq. ’y’ .and. prep .eq. ’'y’) then
if (vbcont .1t. max(vbdhi,vbprep)) then
if (vbprep .gt. vbdhi) then
vb(i) = vbprep
vl(i) = vliprep
SYM(i,j) = '+’
else
vb(i) vbdhi
vl(i) = vlidhi
SYM(i,j) = ’»’
endif
goto 140
endif
else if (hdef .eq. 'y’ .and .prep .eq. ’n’) then
if (vbcont .1t. vbdhi) then
vb(i) = vbdhi

vl(i) = vldhi
SYM(i,j) = ’»?
goto 140
endif

else if (hdef .eq. ’'n’ .and .prep .eq. ’y’) then
if (vbcont .1t. vbprep) then
vb(i) = vbprep



)

APPENDIX E. COMPUTER CODE .

vl(i) = vlprep
SYM(i, j) = ’+’
. goto 140
endif’
endif

if (cash .eq. ’y’ .or. cash .eq. 'Y’) then -

if (pay(i) .gt. div(i)) then P
vb(i) = vbliq
vl(i) = vlliq
SYM(i,j) = '#°
goto 140
endif
enéif

if (tdef .eq. 'y’ .or. tdef .eq. ’'Y’) then
if (s(i .1t. balt(j)) then
syMéi,j) = -
if (vlcont .Jt. vlliq) then
vl(i) =.vlliq
vb(i) = vbliq /
SYM(4i,j) = ¢
goto 140 -
endif
endif

endif

J—

140 continue

"do 160 i = O, sstep
vlcum(i,j) = v1(i)
vbeum(i,j) = vb(i)
stratpaytab(i,j) = pay(i)

160 continue

if (¢t .1t. tmat - 1d-10) goto 110
xkEkk output AR RRkRk R Rk Rk Rk kR Rk kR Rk ko kR ko kok R

write(8,700) ’Collateral:’
vrite(8,720) 'r’, ’sigma’, ’d_0’, °d_1’, ’1_0°’, ’1_1’,

-& '£.17, ’s(0)°
write(8,730) r, sigma, div0, divl, 1liq0, liql,
& refl, s(scount)

write(8,740) ’Contract:’
write(8,755) 'T’, ’c-r’, ’p’, 'P’
write(8,760) tmat, cspread, p, balt(0)

c print L(s,t) and B(s,t) tables

write(8,620) °’VLEX:’
do 500 i = smaxcount, smincount, -dcount
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500

505

510

520

560

620
625
630
640
660
665

vwrite(8,630) =s(i), sliq(i), (vlex(i,j),
SYM(i,j), j = startc,stopc,-tabstep)
continue
write(8,660) 's [|’, ’sliql’
write(8,665) ’bal:’, (balt(j),j=startc,stopc,-tabstep)
write(8,670) ’t:’, (timetab(j),j=startc,stopc,-tabstep)

write(8,620) ’VLCUM:’
do 505 i = smaxcount, smincount, -dcount
vrite(8,630) s(i), sliq(i), (vlcum(i,j),
SYM(i,j), j = startc,stopc,-tabstep)
continue
write(8,660) ’'s |’, ’sliql’
write(8,665) ’bal:’, (balt(j),j=startc,stopc,-tabstep)
write(8,670) ’t:’, (timetab(j),j=startc,stopc,-tabstep)
f/-
write(8,620) ’VBEX:’
do 510 i = smaxcount, smincount, -dcount
vrite(8,630) s(i), sliq(i), (vbex(i,j),
.77 SYM(i,j), j = startc,stopc,-tabstep)
continue"
write(8,660) ’s |’, ’sliql’
write(8,665) ’bal:’, (balt(j).j=startc,stopc,-tabstep)
write(8,670) ’t:’, (tiﬁétab(j), j=startc,stopc,-tabstep)
write(8,620) ’VBCUM:’ ¢ :’n;
do 520 i = smaxcount, smi@éoig@, -dcount
write(8,630) s(i), sliq(i), (vbcum(i,j),
SYM(i,j), j = startc,stopc,-tabstep)
continue
write(8,660) ’'s |’, ’sliql’
write(8,665) ’bal:’, (balt(j),j=startc,stopc,-tabstep)
write(8,670) ’t:’, (timetab(j), j=startc,stopc,-tabstep)

print stratpay table

write(8,620) ’Stratpay table:’

write(8,625) ’Contractual payment (p*dt) = ’, compay

do 550 i = smaxcount, smincount, -dcount
vwrite(8,640) s(i), div(i), (stratpaytab(i,j),

& SYM(i,j), j=startc,stopc,-tabstep)

continue

write(8,660) ’s |’, ’div |’

write(8,680) ’bal:’, (balt(j),j=startc,stopc,-tabstep)
write(8,680) ’t:’, (timetab(j),j=startc,stopc,-tabstep)

format (/ al9 /)

format (a35, £5.4 /)

format (1x, f4.2, ’|’, 1x, £5.3, ’|’, 2x, 80(£f5.3, al, 1x))
format (1x, f4.2, ’}’, 1x,.f5.4, ’|’, 2x, B0(f5.4, al, 11))
format (2x, a4, a7)

format (al3, 2x, 80(£5.3, 2x) /)
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670
680

700
720
730
740
750
755
760

ek kkE

format (al13, 2x, 80(f5.3, 2x) /)
format (9x, a4, 2x, 80(£f5.3, 2x))

format(/ 2x, all /)

format (2x, 8(a6, 2x))

format (2x, 8(£f6.2, 2x) /)
format(/ 2x, a9 /)

format(2x, 3(a6, 2x))

format(2x, 4(a6, 2x))

format (2x, 3(£6.2, 2x), f6.4 / /)

stop
end
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double precision function coeff()

implicit double precision (a-h,k-1,0-z)
dimension parm(15)

entry fna(s,ifn,parm)

sigma = parm(1)

fna = sigma * sigma * s * s * 0.5d0
return

entry fnb(s,ifn,parm)

r = parm(2)

div0 = parm(3)

divl = parm(4)

fnb (r - divl) * s - div0
return

i

entry fnc(s,ifn,parm)
fnc = -r
return

entry fmin(t,ifn,parm)
fmin = 0.0
return

entry fmax(t,ifn,parm)
fmax = 0.0

return

end
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R

» LOANTAB bl

e T T T T T PP
This program employs the Crank Nicholson finite difference
algorithm to determine the values of L(s,0) and B(s,0) in the
penalized default game.

R e P PR P T

implicit double precision (a-h, o-z)

integer sstep, tstep, outstep, stratstep, scount, osmax
parameter (sstep =100, tstep =240, outstep =40, stratstep =30)
double precision liq(O:sstep), loanrat, maxoutpay(O:tstep),

& newoutpay, maxstratpay, liq0, liql

dimension vltab(O:sstep,0:outstep,0:tstep),

; vbtab(0:sstep,0:outstep,0:tstep),
vlgrid(O:sstep,p:outstep,O:tstep),
vbgrid(0:sstep,0:outstep,0:tstep),
stratab(0:sstep,0:outstep,0:tstep),
crittab(0:sstep,0:outstep,0:tstep)

dimension v1(0:sstep,0:outstep), vb(0:sstep,0:outstep),
s(0:sstep), arr(0:sstep,1:4), parm(15),
vitemp(0:sstep), balt(0:tstep), timetab(0:tstep),
outpay(0O:outstep), vbintrp(0O:stratstep),
vlintrp(0:stratstep), stratpay(0:stratstep),
sliq(0O:sstep), div(0:sstep), critpay(O:stratstep)

dimension SYM(Q:sstep,0:outstep,0:tstep,0:stratstep),

& SYMOUT (0:sstep,0:outstep,0: tstep)

character*l SYM, SYMOUT

character*8 A, B, change, amort, coup, prep, tdef, cash, out,
& hdef

character*12 infile

& P RP R RP

& & PR

Rk Rk input LA R E Rt aE e R R R R R R P IR P L L]

print*, ’Enter input file’
read(*,5) infile
5 format (a12)
open(3, file=infile, form=’formatted’)
open(8, file='loantab.out’, form='formatted’)

c crank-nicholson algorithm parameters:
data imin, imax, smin, smaz, ifut / i, 0, 0.0, 5.0, 0 /

c financial model parameters:

read(3,*) sigma, div0, divi, tmat, cspread, r,
& p, 1iq0, liql, sO, refl, pspread

print 900,  'Collateral:’
print 920, ’'r’, ’sigma’, ’div0’, ’div1’, ’liq0’, ’liqt’,
& ‘refl’, ’s(0)’
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print 930, r, sigma, div0, divl, 1liq0, liql, refl, s0O
print 940, ’Contract:’
print 945, °’T’, ’c-r’, ’p-c’, ’p’
print 960, tmat, cspread, pspread, p “
print*, ’'Change parameter value ﬂx/n):’
read(*,20) A
if (A .eq. 'y’ .or. A .eq. ’Y’) then
10 continue
print#*, ’Enter parameter:’
read(*,20) B

if (B .eq. ’c-r’ .or. B .eq. ’C-R’) then
print*, ’Enter c-r:’
read*, cspread
else if (B .eq. ’p-c’ .or. B .eq. ’P-C’) then
print*, ’Enter p-c:
read*, pspread
else if ( B .eq. ’p’ .or. B .eq. ’'P’) then
printx, ’Enter p:’
read*, p
else if ( B .eq. ’tmat’ .or. B .eq. 'TMAT’) then
print*, ’Enter tmat:’
read*, tmat )
else if ( B .eq. ’1iq0’ .or. B .eq. 'LIQO’) then
print*, ’Enter 1iq0:’
read*, 1liq0
else if ( B .eq. ’liql’ .or. B .eq. 'LIQl’) then
print*, ’Enter liql:’
read#*, liql
else if ( B .eq. ’sigma’ .or. B .eq. ’SIGMA’) then
print#*, ’Enter sigma:’
read*, sigma
else if ( B .eq. 'div0’ .or. B .eq. ’DIVO’) then
print*, ’Enter divO0:’
read*, div0
else if ( B .eq. ’divl’ .or. B .eq. ’'DIV1’) then
print*, ’Enter divi:’
read*, divil
else if ( B .eq. ’s0’ .or. B .eq. ’S0’) then
print*, ’Enter s0:’ '
read*, s0
endif
print*, ’Change another parameter (y/m):’
read(*,20) change
if (change .eq. 'y’ .or. change .eq. ’Y’) goto 10
endif

print#*, ’Enter t: start, stop, step’
read*, tabstart, tabstop, tabstep
print*, ’Enter osmax: O - ’, outstep
read*, osmax
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¢ =1 + cspread

prate = c + pspread

dt = tmat / dble(tstep)

ds = (smax - smin) / dble(sstep)
scount = idnint((s0 - smin) / ds)
cstrt = idnint(tabstart / dt)
cstp = idnint(tabstop / dt)
parm(1l) = sigma

parm(2) = r

parm(3) = div{

parm(4) = divi

print*, ’Cash flow comstraint (y/m):’
read(*,20) cash ' B
if (cash .eq. 'y’ .or. cash .eq. ’Y’) then
write(8,*) ’ Cashflow constraint’
endif
print*, ’Full amortisation (y/m):’
read(*,20) amort R
if (amort .eq. 'y’ .or. amort .eq. 'Y’) then
write(8,*) ’ Full amortisationm’
p = c*exp(c*tmat)/(exp(c*tmat)-1d0)
else
print*, ’Coupon loan (y/m):’
read(*,20) coup
if (coup .eq. ’y’ .or. coup .eq. ’'Y’) then
write(8,%) ’ Coupon loan: p = ¢’
P=c
endif
endif

print*, ’Prepay (y/m):’

read(*,20) prep

if (prep .eq. 'y’ .or. prep .eq. ’Y’) then
write(8,*) ’ Prepayment’

endif

print*, ’Technical default (y/m):’

read(*,20) tdef

if (tdef .eq. 'y’ .or. tdef .eq. ’Y’) then
write(8,#) ’ Technical default’

endif

print*, ’High default (y/n):’

read(#,20) hdef

if (hdef .eq. ’y’ .or. hdef .eq. ’'Y’) then
write(8,*) ’ High default’

endif

print#*, ’Foreclose on outpay (y/m):’

YR
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20

40

50
60
70
80

Ty

100
110

read(*,20) out

if (out .eq. ’y’ .or. out .eq. ’'Y’) then
write(8,*) ’ Foreclosure on outpay’

endif

format (a8)
pay = p*dt

do 40 i = 0, sstep
s(i) = smin + dble(i) w ds
div(i) = (div0 + s(i)=*divl) w dt
liq(i) = s(i)*liql + liq0
sliq(i) = max(0d0, s(i) - liq(i))

continue

do 80 i = 0, sstep
do 70 j = 0, outstep -
do 60 k = 0, tstep
SYMOUT(i,j,k) = *
do 50 1 = 0, stratstep
SYM(i,j,k,1) = ?
continue
continue
continue
continue

outstanding loan balance at .maturity

bait(O) = exp(c*tmat)-(exp(c*tmat)-1d0)*(p/c)
maxoutpay(0) = (exp(prate*tmat)-1d0)+*(p/prate)
doutpay = maxoutpay(0)/dble(outstep)

solve L(8,0) and B(sS,0) #ksssdrssssssssbsbbbbbbsbsbrsbbbbhshbrbhds
call cnset (sstep.smin,smax,dt,ifn,ifut,imin.imax,parm,arr)

do 110 j = 0, outstep

outpay(j) =040 + dble(j)*doutpay

do 100 i = 0, sstep
vl(i,j) = min(sliq(i), balt(0) + outpay(j))
vb(i,j) = s(i) - vl(i,j)
vbtab(i, j,0) = vb(i,j)
vitab(i,j,0) = v1(i,j)
vbgrid(i,j,0) = wvb(i,j)
vlgrid(i,j,0) = vl(i,j)
stratab(i,j,0) = vl1(i,j)
SYMOUT (i,j,0) = * °

continue

continue
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130

135
145

150

r

time loop

t = 0d0

k=0

timetab(0) = 0d0
continue

do 145 j = 0, outstep
call cnstep (t, vb(0,j), arr)
call cnstep (t, v1(0,j), arr)
do 135 i = 0, sstep
vbgrid(i,j,k+1) = vb(i,j)
vligrid(i,j,k+1) = vl(i,j)
continue
continue

write(*,*) ’'Time loop: k = ’, k

t t + dt

k=k+1

timetab(k) = t

maxoutpay(k) = (exp(prate*(tmat-t))-1d0)#(p/prate)
balt(k) = exp(c*(tmat-t))-(exp(c*(tmat-t))-1d0)*(p/c)

loan balance loop
j=0

continue

ref = (balt(k) + outpay(j)) * (1d0 + refl) + 1d-10

do 250 i = 0, sstep
if (cash .eq. ’y’ .or. cash .eq. ’Y’) then
maxstratpay = div(i)
else
maxstratpay = outpay(j) + pay
endif
dstrat = maxstratpay / dble(stratstep)

vlliq = min(sliq(i), balt(k) + outpay(j))
vbliq = sliq(i) - vlliq

vbdlow = 04O

vldlow = sliq(i)

vbdhi = sliq(i) - balt(k) - outpay(j)
vldhi = balt(k) + outpay(j)

vbprep = s(i) - ref

vlprep = balt(k) + outpay(j)

stratpay loop

do 170 1 = 0, stratstep
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stratpay(l) = 0d0 + dble(l) * dstrat
netout = outpay(j) + pay - stratpay(l)
if (netout .gt. 0dO) then

newoutpay = netout*exp(prate*dt)

else

newoutpay = 0d0 ? .
endif

E)
n=1
160 if (outpay(m) .lt. newoutpay) then

n=mn+1

goto 160
endif

alpha = (newoutpay-outpay(n))/(outpay(n-1)-outpay(n))
vlintrp(l) = alpha*vl(i,n-1) + (1-alpha)*vl(i,n)
vbintrp(l) alpha*vb(i,n-1) + (1-alpha)*vb(i,n)
critpay(l) = max(0d0, vlliq - wlintrp(l))

vlcont = vlintrp(l) + stratpay(l)

vbeont = vbintrp(l) + div(i) - stratpay(l)

vbintrp(l) = vbcont

vlintrp(l) = vlcont

if (vbcont .lt. vbdlow) then
vbintrp(l) = vbdlow
vlintrp(l) = vldlow
SYM(i,j,k,1) = ’#’

goto 170

endif

if (hdef .eq. ’y’ .and. prep .eq. ’'y’) then
if (vbcont .1t. max(vbdhi,vbprep)) then
if (vbprep .gt. vbdhi) then ’
vbintrp(l) = vbprep
vlintrp(l) = vlprep
SYM(i,j,k,1} = 7+’
else
vbintrp(l) = vbdhi
vlintrp(l) = vldhi
SYM(i,j,k,1) = ’*’
endif
goto 170
endif
else if (hdef .eq. 'y’ .and. prep .eq. ’'n’) then
if (vbcont .1lt. vbdhi) then
vbintrp(l) = vbdhi
vlintrp(1l) = vldhi
SYM(i,j,k,1) = ’#’
goto 170
endif
else if (hdef .eq. ’'n’ .and. prep .eq. ’y’) then
if (vbcont .1t. vbprep) then
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vbintrp(l) = vbprep
vlintrp(l) = vlprep
SYM(i,j,k,1) = ’+’
goto 170
endif
endif

if (out .eq. ’y’ .or. out .eq. ’Y’) then
if (stratpay(l) .lt. min(outpay(j) + pay,
& critpay(l))) then
vlintrp(l) = vlliq
vbintrp(l) = vbliq
SYM(i,j,k,1) = '8’
goto 170
endif
else if (stratpay(l) .1lt. min(pay, critpay(l))) then
vlintrp(l) = vlliq
vbintrp(l) = vbliq
SYM(i, j,k,1) = ‘&’

goto 170
endif
if (tdef .eq. 'y’ .or. tdef .eq. ’Y’) then v
if (s(i) .1lt. balt(k) + outpay(j)) then
SYM(i,j,k,1) = ’-*
if (vlintrp(i) .lt: vlliq) then
vlintrp(l) = vlliq
vbintrp(l) = vbliq
SYM(i,j,k,1) = *:°
goto 170
endif
endif
endif
170 continue
vbmax = 0d0
do 190 1 = 0, stratstep ‘ .
vbmax = max(vbintrp(l), vbmax) i
190 continue
1=0
200 if (vbintrp(l) .1t. vbmax - 1d-10) then
l1=1+1
~goto 200
endif
vb(i,j) = vbintrp(1)
vl(i,j) = vlintrp(1)

vbtab(i,j,k) = vbintrp(1)
vltab(i, j,k) = vlintrp(l)
stratab(i,j,k) = stratpay(l)
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SYMOUT (i,j,k) = SYM(i,j,k,1)
crittab(i, j,k) = critpay(l)

250 continue

J=in
if (outpay(j) .1t. maxoutpay(k)) goto 150

if (¢ .1t. tmat -1d-10) goto 130

kxkkk Sfair, '/.Loa.n kb hbk kb kb kb kb kb k kb bk ko ko Rk kg
o
260 “if (v1(i,0) .1t. 1d0 - 1d-10) then
T =+
if (i .1t. sstep) goto 260
endif

if (i .eq. sstep .and. v1(i,0) .1lt. 1d0 - 1d-10) then
write(*,*) ’v1(’,i,’0) = ’, v1(i,0)

sfair = 0d0
loanrat(j) = 0d0
else
alpha = (1d0-v1(i,0))/(v1(i-1,0)-v1(i,0))

sfair = alpha*s(i-1) + (1-alpha)#*s(i)
lopnrat(m) = 1d0/sfair
endif

sfairout(m) = sfair
vlout(m) = vl(scount,0)
vbout (m) vb(scount,0)

350 continue

*hkk output AL R L A R R R i e R Rt R R R R R RISt

write(8,900) ’Collateral:’
write(8,920) ’r’, ’sigma’, ’'d_0’, ’d_1’, ’1_0’, ’'1_1’,

& £.17, ’s(0)?
write(8,930) r, sigma, div0, divi, liq0, 1liql,
& refl, s(scount)

write(8,940) ’Contract:’

vrite(8,950) ’T’, ’c-r’, ’p-c¢’, 'p’, ’P’
vrite(8,960) tmat, cspread, pspread, p, balt(0)
write(8,970) ’Claim values:’

write(8,980) °’L’, ’B’, ’Sfair’, ’JLoan’
write(8,990) vlout, vbout, sfairout, loanrat

write(8,800) ’VBGRID: s = ’, s(scount)
do 650 j = osmax, 0, -1
write(8,810) outpay(j), (vbgrid(scount, j,k),
& SYMOUT (scount, j,k), k = cstrt, cstp, -tabstep)
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650

670

700

720

730

continue

write(8,820)
write(8,820)
vrite(8,820)
write(8,825)

write(8,800)

do 670 j = osmax, 0, -1

’outpay °’ -t
’maxout: ’, (maxoutpay(k), k=cstrt,cstp,-tabstep)
'balt: ’, (balt(k), k=cstrt,cstp,-tabstep)

’t: ’, (timetab(k), k = cstrt, cstp, -tabstep)

’YLGRID: s = ’, s(Scount)

write(8,810) outpay(j),(vlggid(scount,j,k),

continue

write(8,820)
write (8,820)
write(8,820)
write(8,825)

write(8,800)

do 700 j = osmax, 0, -1

SYMOUT (scount, k), k = cstrt, cstp, -tabstep)
N

o
7y

outpay ' Rt _
’maxout:’,’(maxoutpaytk), k=cstrt,cstp,-tabstep)
‘balt: ’, (balt(k), k=€strt,cstp,-tabstep)

't: 7, (timetab(k), k = cstrt, cstp, -tabstep)

'yB: s = ’, s(scount) ¢

write(8,810) outpay(j), (vbtab(scount,j;k)ﬁﬁglﬁ

continue

write(8,820)
write(8,820)
write(8,820)
write (8,825)

write(8,800)

SYMOQUT (scount, j,k), k = cstrtégéftp; ~tabstep)

’outpay ’
‘maxout:’, (maxoutpay(k), k=cstrt,cstp,-tabstep)
’balt: ’, (balt(k), k=cstrt,cstp,-tabstep)

‘t: 7, (timetab(k), k = cstrt, cstp, -tabstep)

'YJL: s = ’, s(scount)

do 720 j = osmax, 0, -1
write(8,810) outpay(j),(vltab(scount,j,k),

continue

write(8,820)
write(8,820)
write(8,820)
write(8,825)

write(8,800)
write(8,805)
write(8,805)

SYMOUT (scount,j,k), k = cstrt, cstp, —tabstep)
‘outpay '’
‘maxout:’, (maxoutpay(k), k=cstrt,cstp,-tabstep)
'balt: ', (balt(k), k=cstrt,cstp,-tabstep)
*t: ’, (timetab(k), k = cstrt, cstp, -tabstep)

’Stratpay: s = ’, s{(scount)

'Div = ’, div(scount)
H

'Pay = ', pay

do 730 j = osmax, 0, -1
. write(8,810) outpay(j),(stratab(scount,j,k),

&
continue
write(8,820)
write(8,820)
write(8,820)
write(8,825)

write(8,800)
write(8,805)
write(8,805)

SYMQUT (scount,j,k), k = cstrt,cstp,-tabstep)
’outpay '’
‘maxout:’, (maxoutpay(k), k=cstrt,cstp,-tabstep)
‘balt: ’, (balt(k), k=cstrt,cstp,-tabstep)

*t: ’, (timetab(k), k = cstrt, cstp, -tabstep)
»

’Critpay: s = ’, s(scount)

'Div = ’, div(scount)

'Pay = ’, pay

do 740 j = osmax, 0, -1

=
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write(8,810) outpay(j), (crittab(scount,j,k),

& SYMOUT (scount, j,k), k = cstrt,cstp,-tabstep)
740 continue

write(8,820) ’outpay ’

write(8,820) ’maxout:’, (maxoutpay(k), k=cstrt,cstp,-tabstep)

write(8,820) ’balt: ’, (balt(k), k=cstrt,cstp,-tabstep)

write(8,825) ’t: ’, (timetab(k), k = cstrt, cstp, -tabstep)
800 format ( / a20, £f4.2 /)
805 format (a6, £5.4 /)
810 format (2x, £6.4, ’|’, 2x, 80(f6.4, al, 1x))
820 format (a8, ’|’, 2x, 80(f6.4, 2x))
825 format (a8, ’|’, 2x, 80(f6.4, 2x))

900 format(/ 2x, all /)

920 format(2x, 8(ab6, 2x))

930 format(2x, 8(£6.2, 2x) /)

940 format(/ 2x, a9 /)

945 format(2x, 4(a6, 2x))

950 format(2x, 5(a6, 2x))

960 format(2x, 4(£6.2, 2x), £6.4 /)
970 format(/ 2x, al2 /)

980 format(2x, 4(a8, 2x) /)

990 format(2x, 4(£f8.6, 2x1))

Iy

stop
end

**x%x% function definitions kkkkkkkkkbhukkhhhhkrhkhrkkkhhkhhrrkkhkhnnkkkE
double precision function coeff()

implicit double precision (a-h,k-1,0-2z)
dimension parm(15)

entry fna(s,ifn,parm)

sigma = parm(1)

fna = sigma *esigma * s *0s %0.5d0
return

entry fnb(s,ifn,parm)

r = parm(2)

div0 = parm(3)

divl = parm(4)

fnb = (r - divl) * 3 - div0
return

entry fnc(s,ifn,parm)
r = parm(2)
fnc = -r

return
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5
entry fmin(t,ifn,parm) QM
fmin = 0.0d0 '
return
-

entry fmax(t,ifn,parm)
fmax = 0.0d0
return

end

n
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SUBROUTINE CNSET (IN,SMIN,SMAX,K,IFN,IFUT,ISMN,ISMX,PARM,ARR)

Cotobodoa ok ook ok R ok o ok ok ok ok Bk ok o R ok ook o R ok o ook ol o ok ok ok o R ROk

A0 O0O0a000000000a0a00a000a0aaa0n

SUBROUTINE CNSET (...)

Subroutine sets up coefficient array needed for Crank-Nicholson
algorithm to solve 1 state variable plus time partial differential
equations. Use in conjunction with routine CNSTEP. PDE has form

FNA = Uss + FNB » Us + FNC * U - Ut = 0

Arguments: IN number of grid intervals in state space S
SMIN minimum value of state variable S
SMAX maximum value of state variable S
K step size in time direction
IFN flag available for passing to coeff. fcnms.

IFUT flag setting FNC = O for futures contract pricing
ISMN flag for SMIN boundary (0 for quadratic extrapol.)

ISMX flag .for SMAX boundary (1 for given values )
PARM vector of model parameters for coeff. fcms.
ARR output array of coefficients for CNSTEP

dimension (4,IN+1) by calling program

Other routines called: functions FNA, FNB, FNC(S,IFN,PARM) must be

externally defined and available to subroutine.

Author: R. A. Jones 15 Decembed®1988

ottt o sk ool s o oo oo oo o oo R R R R R RO OR R R R R R R RO R R R R Rk K R

50

Crxxk

IMPLICIT DOUBLE PRECISION ( A-H, K-L, 0-Z )
COMMON  /CNCOM/ N,ISMIN,ISMAX,IIFN,XPARM(15)
DIMENSION PARM( 15 ), ARR( 0:IN, 4 )

N = IN

ITFN = IFN
ISMIN = ISMN
ISMAX = ISMX

DO S0I =1, 16
XPARM(I) = PARM(I)
H = ( SMAX - SMIN ) / DBLE( N ) -
FUTURE = 1DO
IF ( IFUT .EQ. 1) FUTURE = 0DO

FIRST DO ’INTERIOR’ COEFFICIENTS #**##ststsssahbhuhbrshrtssssxss
D0 100 I =1, N-1

SMIN + DBLE(I) » H
FNA(S,IFN,PARM) * 2D0 #» K

172
I

i}

AX

A
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BX = FNB(S,IFN,PARM) * H * K
Ccx FNC(S,IFN,PARM) » FUTURE #* 2D0 * H # H * K

DENOM = CX - 2D0 wAX - 4D0 * H * H
ARR(I,1) = ( AX - BX ) / DENOM :
ARR(I,2) = 1DO
ARR(I,3) = ( AX + BX ) / DENOM
ARR(I,4) = 1DO + 8DO * H #» H / DENOM

C+++TEST ONLY

c IF (I.EQ.21) PRINT+,’ARR: ’, (ARR(I,III),III=1,4)

100 CONTINUE

Ce#** THEN HANDLE BOUNDARIES ACCORDING TO FLAGS ##kkxsdkkskkkskksdkrkikk
IF ( ISMIN .EQ. 1 ) THEN

C CASE OF KNOWN VALUE AT SMIN: ISMIN =1

ARR(0,1) = 0DO
ARR(0,2) = 1DO

ARR(0,3) = 0DO
ELSE
c CASE OF QUADRATIC EXTRAPOLATION AT SMIN: ISMIN = O
G = ARR(1,3) / ( ARR(2,2) + 3DO * ARR(2,3) )

ARR(0,1) = 0DO

ARR(0,2) = G * ARR(2,3) - ARR(1,1)
ARR(0,3) = G * ( ARR(2,1) - 3DO % ARR(2,3) ) - ARR(1,2)
ARR(0,4) = G

ENDIF

IF ( ISMAX .EQ. 1 ) THEN

c CASE OF KNOWN VALUE AT SMAX: ISMAX =1
ARR(N,1) = o0ODO
ARR(N,2) = 1DO
ARR(N,3) = 0DO
ELSE
C CASE OF QUADRATIC EXTRAPOLATION AT SMAX: ISMAX = 0
G = ARR(N-1,1) / ( ARR(N-2,2) + 3DO % ARR(N-2,1) )
ARR(N,1) = G # ( ARR(N-2,3) - 3DO # ARR(N-2,1) ) - ARR(N-1,2)
- ARR(N,2) = G % ARR(N-2,1) - ARR(N-1,3)
ARR(N,3) = 0DO
ARR(N,4) = G ‘
ENDIF

RETURN
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END
SUBROUTINE CNSTEP ( T, U, ARR )

Cresxa bbb d kb bk bR AR AR R R AR AR AR AR AR R ARk Rk kR kR Rk Rk kR kR h

SUBROUTINE CNSTEP (...)

Subroutine takes 1 step in time direction in solving 1 state variable
PDE using Crank-Nicholson algorithm. T is current time used omly for
passing to boundary value functions FMIN(T) and FMAX(T) if ISMIN or
ISMAX are set to 1. U(O:N) is N+1 dimensional vector of solution so
far. ARR() is coefficient array set up by CNSET().

aaogoaogaogacgaan

[ L R R e s e st T s e et I st sttt sttty

IMPLICIT DOUBLE PRECISION ( A-H, K-L, 0-Z )
COMMON /CNCOM/ N, ISMIN, ISMAX, IFN, PARM(15)
DIMENSION ARR( O:N, 4 ), U( O:N )

C NOTE: PARAMETER NMAX MUST BE .GE. N FOR TRIDAG ALGORITHM
PARAMETER ( NMAX = 200 )
COMMON /TRICOM/ D( O:NMAX ), GAM( O:NMAX )
c SET UP RIGHT HAND SIDE OF SYSTEM TRIDIAGONAL SYSTEM (ABC)U = D
DO 100 I =1, N-1
D(I) = - ARR(I,1)*U(I-1) - ARR(I,4)*U(I) - ARR(I,3)*U(I+1)
100 CONTINUE

IF ( ISMIN .EQ. t ) THEN

c GET SOLUTION VALUE AT RMIN
D(0) = FMIN(T,IFN,PARM)
ELSE
D(0) = D(2) = ARR(0,4) - D(1)
ENDIF

IF ( ISMAX .EQ. t ) THEN

c GET SOLUTION VALUE AT RMAX
D(N) = FMAX(T,IFN,PARM)
ELSE
D(N) = D(N-2) # ARR(N,4) - D(N-1)
ENDIF

CALL TRIDAG ( ARR(O0,1), ARR(0,2), ARR(0,3), D, GAM, U, N )

RETURN
END

C+#+* TRIDIAGONAL SOLN. ALGORITHM FROM "NUMERICAL RECIPES", P. 40 *sx*xx

c SOLVES: (ABC)X = D FOR X. N=DIMENSION. A,B,C,D, NOT ALTERED



APPENDIX E. COMPUTER CODE

C - NOTE: SUBSCRIPTS RUN FROM O AND SCRATCH VECTOR GAM VARIABLE DIMEN.

SUBROQUTINE TRIDAG ( A, B, C, D, GAM, X, N )

IMPLICIT DOUBLE PRECISION ( A-H, K-L, 0-Z )
DIMENSION A(O:*), B(0:*), C(0:+), D(0:%), GAM(O:*), X(0:*)

BET = B(0)
X(0) = D(0) / BET
p010J=1, N
GAM(J) = C(J-1) / BET
BET = B(J) - A(J) * GAM(J)
X(J = (DJ) - A(J) #X(J-1)) / BET
10 CONTINUE

DO 20 J = N-1, O, -1

20 X(J) = X{(J) - GAM(J+1) # X(J+1)
RETURN
END
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