PURL II,
A RAPID DEPLOYMENT
SEARCH AND SURVEY
AUTONOMOUS UNDERWATER VEHICLE

by

Peter D. Helland
B.A.Sc., Simon Fraser University, 1995

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF APPLIED SCIENCE
in the School
of

Engineering Science

© Peter Helland 1997
SIMON FRASER UNIVERSITY
October 1997

All rights reserved. This work may not be
reproduced in whole or part, by photocopy
or other means, without the permission of the author

L]

L4 |

National Library

of Canada du Qanada

Acquisitions and Acquisitions et

Bibliographic Services
335 Waellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the,
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your hie Votre reference

z Olr tle Notre reference

L’ auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
¢lectronique.

L’ auteur conserve la propriété du
droit d’auteur qui protege cette thése.
Ni la thése ni des extraits substantiels
de celle-c1 ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-24152-1

Canada

Approval

Name:
Degree:

Title of Thesis:

>

Examining Committee:

Date Approved:

Peter D. Helland
Master of Ap})lied Science

PURL II. A RAPID DEPLOYMENT SEARCH AND
SURVEY AUTONOMOUS UNDERWATER VEHICLE

Dr. John Jones. Chairman (

Pr. John Bird
Professor. School of Engineering Science. SFU
Senior Supervisor

Dr. Steve Hardy
Professor. School of Engineering Science. SFU
Supervisor

Dr,Jim Cavers’
%/ofessor. School of Engineering Science. SFU
xaminer '

October 16, 1997

Abstract

The Underwater Research Lab (URL) at Simon Fraser University in Burnaby,
Canada, is conducting research in the use of autonomous underwater vehicles (AUVs) for
marine science and site survey applications. AUVs are unmanned, untethered, underwater
vehicles that fly through the water without external control. Until recently, AUVs have
traditionally been large, expensive vehicles that were employed only for research or military
applications. The Underwater Research Lab feels there is a need to develop small AUVs
capable of performing a variety of scientific and commercial missions in aqueous
environments.

This thesis focuses on the development of a small and inexpensive AUV, called
PURL II, that can be rapidly deployed in a remote location with little or no logistical support.
Moreover, PURL II will also act as a test bed for acoustic imaging research and limnology
research. Improving AUV sensors, and developing techniques for collecting scientific data
quickly and efficiently increases the usability of AUVs for potential users. The utility of a
small AUV is investigated through various lake trials which culminate in the performance of
a scientific mission measuring the internal waves in a small lake. PURL II successfully
demonstrates many of the capabilities and limitations of a small AUV developed using only

oft-the-shelf components.

il

Acknowledgements

Many people helped make this thesis possible and deserve more recognition and
thanks than a mention in this Acknowledgements. I thank John Bird for giving me the room
to explore and make the mistakes. Harry Bohm for supporting me throughout my thesis,
grounding me in the real world, fabricating the mechanical components, and wiring PURL II.
Bernard Laval and Paul Krautener for listening to my crazy ideas and providing insightful
feedback on the merits and demerits of these ideas. Andreas Huster, for adding structure to
my programming, and solving numerous problems much faster and enthusiastically than I
ever could hope to. From International Submarine Engineering, Sam Roberts and Mike
Boghart for providing me and the URL with excellent support for the control software
PROTEUS. Doug Girling and Dennis Michaelson for friendship and support when
development was going poorly. Kevin Maier for working on the altimeter system. And
finally my family, for putting up with my school schedule and understanding when I was not

a contributing member of the household.

v

Table Of Contents

APPIOVALeviiieeciieeee ettt i
ADSITACE ...ttt ettt iii
ACKNOWIEAZEMENLS....eccveeieeieiierienieete et e v
Table Of CONtENES......eeiveeeeeriierieeieeite et sree e sre e \%
LiSt Of TabIES ..vveieiieieiiiiieeteeieeeeeteeeeee e viii
LISt Of FAGUIES ..ovveiiviieeiiieeee ettt ix
1. INtrodUCHION.......viiiieiieee ettt 1
1.1 General Background..........ccoccooviiiiiiiiiniiii 1
L2 AUV S ettt ettt st re e sre e s b s s ae e 2
1.3 URL and the PURL Programcccceeceerieiieiininiiinnnieiinnncceeeene, 5
1.4 Outling Of TRESIS ...ccecvvreiiiieriiee ettt 7

2. Vehicle Concept and MiSSIONS.......cocceeecveriiireerenieinieniieennens 8
2.1 Vehicle CONCEPtevvveivvieniiriiiiiiiciiisie e 8
2.2 TURL MIiSSIONS...uuutrieiererreeraarreresssurereesasnereessesasrrresessssssessssssnsnessns 9
2.2.1 Autonomous Constant Depth MiSSION........cccceeriirrinceiriieniiiiiiie e 10

2.2.2 Autonomous SaWtoOth MISSION........ccceeriiiiiiriiieiiiiieiie e e 11

2.2.3 Autonomous Bottom Following MiSSIOnccccveeerienieniiiiiiiciciinniinniens 12

2.2.4 Ploted MISSION ...ccuvierieiieeieeireeiseeniteeeesreeree et e s enes e esassssneesrssaennseernsabes 13

3. Design Specifications and Constraints...........cccoeevviviiiiinnnnnen 14
3.1 CONSLIAINES ..oeiiiiriieeeeeirereeseierreeseneee e e seitereeessasreeeesssabantessssensrnnneas 15
3.2 Navigation and Basic Instrumentationcccceeviiivininniicieennnne. 16
3.3 Payloadccceceeeieeieneeen s 16

4. Mechanical Designccccovovieriiiiniiieeiieeeeeee e, 17
O S - ') oV SO O OO RO 18
4.2 FlOAtAtiON..c.ccuvieeeeeiieccieeeeeeee e e s srtesessete e e rraeesareeesenaneessasseesabnneenes 18
4.3 Pressure VeSSl ittt 20
4.4 Actuators / PropulSion........ccccecevieeniiiiiiiinniniicniceeee, 21
4.5 Card Caecccvueeveeeeeeeitiiiiiie st 22
4.6 Cabling And Penetratorsc.ccoeveeciiiiiiniieiiiniicee e, 23

4.7 Mass and Displacement..........coccevvuiiniieniiniiiinienie e 24

5. Electrical DeSigN......cocceveereenieeiiiiiiiiiiiciic e 25
5.1 Power DIStriDULION ...eoeeeieiiiieeieiiiteeeenirceeeseerrece e eesnnnre s 25
5.1.1 Battery Pack........ccocvvieereneieieiieinieniiiiie e 26

5.1.2 Power Switch and Relay PCBcccccoeiiiiiiiiiniiie e 27

5.1.3 Main Power Supply BUSES.......ccociviiniiiiiniiiiieesees e 28

5.1.4 CPU Power Supply BUSEScccoviiiiiiiiiiiiieiicc e 28

5.2 CPU and PC-104 Stackccoieimerrreeriericiieereeeec e cnirennnie e e e e 29
5.3 INStrUMENTATION....c.uvrreiieiirieeeerrireeeerereiee s reneresessratnes e s snresesssesaneas 30
5.3.1 NAVIZALION.....cecerveieereererteriireieeiseeis et s st sbe e 30
5.3.2 Pitch and ROleeeeiieeieeee e aar e 31

5.3.3 Monitoring and AlArmS.........cccceverriiriiiiiimie e 32

5.4 Ethernet NetWOrKccoieeeeiiieeicriee ettt 32
6. Software Designccceeveeviiriiiiiiiiiiiiiiie e 34
6.1 PROTEUS .ottt ettt ee sttt st e s ssbe s st e saa e e nsn s 35
6.2 Event-Based SOIWAIEeeeeieiiiiiieeeciireeeeeee e e e eennns 35
6.3 Configuration Files.........cccoviviiiininiiiiiicici s 36
6.4 CSP Design and Configurationceceeimnniniinnnincnennee, 38
6.4.1 Interface COMPONENLS....c..coverriiiiiiiiiiiiieieteetiee sttt st eas 38
6.4.2 Operator INtErface........ccoivviiiiiiiniiiec 39

6.4.3 Modes Of OPErationc..cocvecuiriiinieiiiniiinesie e 40
6.4.3. 1 IDLE MOGE....couviiietiiiei ettt ettt e e e aa e 40

6.4.3.2 PILOT MOAE «.oevveviviieeiiiiiiiiireee e e reeeeteeeees e s e riinntes s e sbaaibre s e s e sanaes 40

6.4.3.3 MISSTION MOAEovvviiiiiriiieii it siree sttt s e 41

6.4.3.4 ABORT MOUEomvveiieiiiieete ettt e secrsntn et e naan e s e e 41

6.4.3. 5 EXIT MOAE....cooeeieieieee ettt er et e e e 42

6.4.4 TEIRIMEITY ...coveeeiireeeie ittt 42

6.5 Bugs, Conflicts and DefiCienciesooereniiieiinincnncniiine 42
7. Vehicle Control.........ccoovvreeeoiiirreiieeeeeeree e 43
7.1 Propulsion and Heading Controlccooiieinininniniiiiiinn 44
7.2 Depth Controlcccovriviiviiiniiiieini e 47
8. Fibre Optic Linkccooceeviiriiiiiiiiiic e 50
8.1 Design SpecifiCationscooeveeveriieniiininine s 50
8.2 Fibre Optic DESIGNcovivvereiriiiiiiiniiieieee et 51
8.3 LinK BUd@et....cccoruveiriiiiiieiieicieete e 53
8.4 Back RefleCtiOn ..ocuuviieecrieeeeriiiiieeeeietee e eeeeieeree et s sareee e e 53
8.5 Cables and Penetratorscccceveevreereerereieeeenssinenisneecineeesssresassesseanes 54
8.6 Carrying Case/Handling.........cocoveinmminiiiniinnc 54

9. Payloadcceeeiee e 55

9.1 Water Property Sensors......cccceeeeeeveirneriierierinee e ecereee e 55
YA T (T) OF: 11 T=) ¢ WSSO 56
10. Transportation, Launch and Recoverycccevevvcivennennen. 56
11. Vehicle Performanceccooocevvviveieeiiiiiec e 57
11.1 Specific ENeT@Y ..cccevvveeieiiiiienie et 57
11.2 Vehicle Specifications........ccceveervierneeiinnieiree e see e 63
12. Trials and MISSIONS..........cooovvveeeirivreeeeeieeeeeerieeeeieeee e e e ennes 64
12.1 Swimming Pool and Lake Trials.......ccccoccvieevrirecrrenreeereeeeecevee e, 66
12.1.1 OCtOBEr 19, 1995oooeoooeeeeeeeee e see s 66
12.1.2 February 20, 1996............oveeeeeeeeeeeeeeeeseeeseeresesees s eseessassesss s 66
12.1.3 MArch 12, 1996.........ovveeeeeeeeeeeeeeeees e seen 67
12.1.4 September 4, 1996.........coueriiriiiieeereeee et 68
12.1.5 September 17, 1996.........oouvvevveevereeeeeeeeeeeeeeeeeeeeee e esess s 68
12.1.6 September 19, 1996............ovreeeeereeees e seeeees s seeesese s 69
12.1.7 September 23, 1996......coouoiiiieeee et 69
12.1.8 September 27, 1996.......cooiiiiieeetee et 70
12.1.9 MAY 28, 1997oooeoeeeeeeeeeeee e eee s een e 70

12.2 MISSIONS..ccceeiiurrrreeeeriereeeeeeireeeeeeeeanseeaeeasssseeeeeeassasseeeesasnssnsaeassssessnanes 71
12.2.1 MiSSION TTACKSvveiiiieeiiiieeieeeciree ettt e ettt e et et e e vee ettt esavaeennaaesaeessseennes 72
12.2.2 MiSSION PrOfIleS.....ccviiiiiieciiie ettt et ae e etne e ereeeeaneeaees 77

13. Future Enhancementsccooevveeeiiviriieeieeeeec e 79
14, CONCIUSIONS.......uvvirieeiriieee ettt et ercrre e e e e e e e e e 80
S (= (=) 1 161 OSSR 83
ADPPENAIX ONE ..ooiiiiieiiiieiieeetee ettt re e st 85
APPENAIX TWO .oiiiiiieeiiieeie ettt e 99
APPENndix TRI€Ecccevviieeiieieiiieeteete e 159

vil

List of Tables

Table 2-1: Payloads For Different Missions And Researchccccocviniiininnn. 10
Table 3-1 : Vehicle Specifications and Design Constraints for PURL II.......................... 15
Table 3-1: Payload SensOTs........ccceeieieeiermiiiriieie ittt e 17
Table 4-1 : Pressure VESSel........coiiiaiireiierienieiene ettt 21
Table 4-1: Inuktun Thruster Specificationscccoccviviiiiiiiiiiiiiiccee e, 22
Table 4-1: Mass and Displacement..........coccovveeriiiiiiiiiiiciiiicccnnc s 25
Table 5-1: Power Supply Buses....c.coccooveriiiiiiiiiiniiiinee e 26
Table 5-1: Battery Pack Specifications..........ccceeiviiiiiiiiiiiiiicciiinceec e 27
Table 5-1: Specifications For The HE104-512-16 Power Supply Card..............ccccoonnnne. 28
Table 5-1: PC-104 Stack Cards........ccovcueierveriieireesrenieninere et ssese s 29
Table 5-2: PC-104 Stack Resources, Supply and Demand............ccccooiiiiinininiiinnnnn, 30
Table 5-1: Navigation Sensors For PURL ITc..ccooiiiiiiice 31
Table 5-1: Spectron Systems Technology Inc. Dual Axis Inclinometercoooeinins 32
Table 6-1: PROTEUS Interface COMPONENLS.........cceeevvueiiiiiiiiiiiiiieieiiee it 39
Table 6-1: Bugs and DefiCienciescocooriiicciniiiiiiiiiincc e 43
Table 7-1: Depth and Altitude Arbitration LOgICccooiiuiriiiiii 50
Table 8-1: Fibre Optic SpecifiCationscccccoeriiriiiiiiiiiiieeecce e 50
Table 9-1: Sea-Bird SBE-19 CTDcocoiiiiiiiieiiiiiiiiiecieiccicee e 55
Table 9-1: Video Camera and Lights Specificationsccccccoociiininiiiiiciinininnen. 56
Table 11-1: Design Goals and Actual Implementation..............ccocoeveeieiiienicciniennennnnns 64
Table 12-1: MiSSIONn SPECIfICS ..vevveereriiiiieicicit ittt 76

viil

List of Figures

Figure 1-1:
Figure 1-2:
Figure 2-1:
Figure 2-2 :
Figure 2-3:
Figure 2-4:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:
Figure 8-1:
Figure 8-2:
Figure 11-1

Figure 11-2:
Figure 11-3:
Figure 12-1:
Figure 12-2:
Figure 12-3:
Figure 12-4:
Figure 12-5:
Figure 12-6:
Figure 12-7:

PURL 6.ttt sse e et s ont e 7
Constant Depth Mission Profile...........cccccociviniiinnieee e 11
Sawtooth Mission Profile.........ccooeiveiieiiiiiiiiiccieee e 12
Bottom Following Mission Profilecccccooiiiiieiiiiiiiiicccieeeeeee e, 13
A Piloted Mission Profile.........cccocveeiieiiiiiiiniinieciecee e 14
Dry and Flooded Sections Of PURL I1........cocoiiiiiniiiiiiiceeeee e 17
Faring and Tail Fin.........ccoocoiiiiiiiiiceieeeeereeeee e sve s n s 18
The Buoyancy/Gravity And Restoring Moment For A Submerged Body......19
Aluminium Pressure Vessel........ooocoiiiiieiiiiiiiiie et 20
TREUSTET ..ttt ettt s e 21
Card Cage And Electrical COMPONENLS ..cc.vveevvieruieriiiriniireeiieseeeieeeserasieenes 23
SEACON Penetrators And The Fibre Optic Port.........cccccoeeiniirnenniencnnenn. 24

Battery Packcoociiiie e 26
Autonomous Ethernet Configuration.........c.cccveevieveeeinieeeneiieeesieeeseieeesieeenne 33

Piloted Ethernet Configurationoccoeveeeiiiirierneniieneeeece e 34
Net Propulsive Force (NPF) And Turning Moment (TM)........cccceeeveneennnn. 44
Horizontal and Propulsion Control Diagramccccccocceeiiinieenieeenneeninnnen. 46
Thruster Adaptive COntrolcocceeivvciiiiiniininiiiceecer e 47
Depth Control Employing Vertical ThrusSters..........ccvecvirvreicinicriceeennnann. 48

Depth and Altitude Control Diagram.........cccoceeiveiriinicrnnicniiiieecieecnee 49
Fibre Optic System For Ethernet and Video...........cccoecciiiniiniinicciiinccnnnn. 52
1310/1550nm Hybrid Wave Division Multiplexer Couplerc.cccceueennen. 52
: Velocity Vs. Specific Energy (0 Watt Payload)ccoccoeveviiiiiiniiinnnn. 61

Velocity Vs. Specific Energy (125 Watt Payload)cccooceecciiicnnnnnnnn. 62
Velocity Vs. Specific ENergiesc.cooceviiiiniinininncieeecesicneccec e 63
Loon Lake, University of British Columbia Research Forest....................... 65
Mission 4, JED 330, Mission Path......cccocooeeeieiiiiiiieiiieeeccie e 73
Mission 5, JED 336, Mission Path.........ccccoooviiiiiiiiiiiiiiicieeeceeeee e 74
Mission 4, JED 331, Outbound Sawtooth Profilesccceeeeeviinnieiinnnnnn. 75
Mission 5, JED 336, Outbound Sawtooth Profilescocoovviiiiicciiniinnnns 76
JED 331, Mission 4 a, Profiles Spaced 0.5°C Apart........ccccoccecevercveeennnncnn 77
JED 336, Mission 5 a, Profiles Spaced 0.5°C Apart........cccoceeeevccccncncannnnn. 78

ix

1. Introduction

The Underwater Research Lab (URL) at Simon Fraser University in Burnaby,
Canada, is conducting research and development in four areas: underwater acoustics,
autonomous underwater vehicles (AUVs), limnology, and oceanography. AUVs are
unmanned, untethered, underwater vehicles that fly through the water without external
control. Until recently, AUVs have traditionally been large, expensive vehicles that were
employed only for research or military applications. The Underwater Research Lab feels
there is a need to develop small AUV capable of performing a variety of scientific missions
in aqueous environments. This thesis focuses on the development of a small AUV that can
be rapidly deployed to a remote site for search and survey missions in lakes. Moreover, the
AUV will also act as a test bed for acoustic imaging and limnology research.

This work was done in partnership with International Submarine Engineering
Research (ISER) of Port Coquitlam, Canada. ISER is investigating the use of AUVs as
instrument platforms for marine science missions where scientific data about phenomenon
such as out fall plumes and pollution dispersion are collected. ISER is interested in selling
the data to interested parties such as BC Hydro or pulp mills. The URL’s focus is on very
small AUVs that can be easily handled and rapidly deployed by two or three people in
remote locations. Such a small platform can be used for acoustic imaging and limnology
research, and also allows the URL and ISER to develop unique techniques for collecting

scientific data quickly and efficiently.

1.1 General Background

Fresh and salt water covers approximately seventy percent of the Earth's surface and,
when compared to the land masses, is relatively unexplored. From Egyptians on the Nile, to
the British Empire, to the oil tankers and cargo freighters of today, controlling and
conducting commerce on the water’s surface has always been a path to wealth and power.

Until recently it was assumed that the waters of the world were infinite sinks for our

pollution, and infinite sources for our harvesting activities. With the collapse of fish stocks
around the world and pollution washing up on foreign shores, it is now apparent that there is
nothing infinite about our waters. However, finite as the world’s waters are, they remain
essentially unexplored and unknown because of the difficulties involved in penetrating their
depths.

Depending on what properties are being measured, there are a variety of conventional
methods for collecting data and surveying the world’s waters. Divers, profilers, moored
sensors, towed arrays, manned vehicles, and remotely operated vehicles (ROVs), are all
employed in collecting information about the aqueous environment. Unfortunately, most of
these data collection methods require support platforms and equipment that are expensive
and have inadequate response times for certain natural phenomenon (Chryssostomidis, 1993).
For example, ROVs and towed bodies require support platforms that are directly proportional
in size and expense to the size of the ROV or towed body, and the depth of the water to be
studied. For the missions proposed by the URL and ISER, these conventional data collection
methods require support platforms that are not necessarily large, but they must be transported
to, or acquired near, the mission site. Furthermore, the support platforms may be required to
support hydraulic equipment such as a winch, or provide significant quantities of electrical

power for the support equipment and platforms.

1.2 AUVs

Autonomous underwater vehicles (AUVs) are relatively new tools for collecting data
and performing underwater missions. The major difference between AUVs and other data
collection tools is that AUVs are self-propelled and not physically connected to a human
operator. Other data collection platforms such as ROVs, manned submersibles, towed arrays
and moored sensors are not both mobile and disconnected from a human operator. AUVs
have not gained wide spread acceptance in the various underwater communities because they
have not demonstrated real benefits at a price and level of risk that is acceptable to these
communities (Krieder, 1997). When an AUV demonstrates its ability to complete a task cost

effectively, and with low risk, then and only then will that AUV be considered viable.

Large, sophisticated and expensive AUVs have been employed by the military for
missions in the Arctic and other inaccessible regions because the mission requirements were
such that AUVs provided a feasible and economic alternative to other technologies. Cable
laying, surveying, mine detection, and mine countermeasures have been the high priority
items for naval organisations while collecting oceanographic data has been secondary
(Ferguson, 1997; Krieder, 1997). To support anti-submarine warfare activities, the Applied
Physics Laboratory at the University of Washington built two AUVs, the Self-Propelled
Underwater Research Vehicle (SPURV) in 1967, and the Unmanned Arctic Research Vehicle
(UARS) in 1972 (Ferguson, 1997). The Advanced Unmanned Search System (AUSS),
fielded in 1984 by the United States Navy’s Ocean Systems Center, was the first deep water
AUYV that performed search and identification missions (Ferguson, 1997; Bellingham, 1993).
The AUSS had a depth rating of 6000m, a displacement of 1300 kg, and a range of 130 km at
13 km per hour (Bellingham, 1993). In 1995, the AUV Theseus, built by International
Submarine Engineering for the Canadian Department of National Defence, laid a fibre optic
cable under the Arctic ice cap during a mission that exceeded 350 km in range (Ferguson,
1997). The special requirements of military organisations allow them to develop and deploy
large, sophisticated AUVs because they possess the budget, labour, and support equipment
required to handle these vehicles in the field.

Inexpensive and small AUVs had never been built for anything other than technology
demonstrations until James Bellingham built Odyssey I at MIT Sea Grant (Ferguson, 1997).
The goal of the Odyssey AUV program at MIT Sea Grant is the development of a smaller,
longer range AUV that can perform a wide variety of ocean research missions (Bellingham,
1992). These research missions include acoustic mapping of an ice canopy, biological
surveys, seep (plume) detection, mid-ocean ridge magnetics surveys, rapid response to
episodic ocean events, and bottom imaging and scene reconstruction (Chryssostomidis,
1993). Adding to Odyssey’s success is the ability to carry a variety of mission dependent
payloads. The Odyssey II AUV displaces 120 kilograms, is 2.2 meters long, has a depth
rating of 6000 meters, and an endurance of 6-10 hours at 2-3 knots depending on the sensor

payload (Bellingham, 1994). A small, robust AUV do€s not require the support equipment

and personnel that a ROV, towed body or manned submersible requires, thus increasing its
utility in remote applications where it is difficult to bring support to bear.

In addition to MIT Sea Grant, other research institutions such as Woods Hole
Oceanographic Institute (WHOI), and Florida Atlantic University (FAU) are also conducting
research into AUVs and related technologies. The Autonomous Benthic Explorer (ABE)
performs scientific surveys of the sea floor for an extended period of time without support
from the surface. ABE complements existing manned submersible and ROV technology by
repeatedly surveying a hydrothermal vent area over a period of six weeks up to one year
(Yoerger, 1990). After each survey iteration, ABE moors itself to a hitching post and goes
into a low power sleep mode until it is time to perform another survey iteration (Anderson,
1992). Manned submersibles and ROVs cannot perform repeated surveys of a 6000m deep
hydrothermal vent because it is too expensive to be on site for an extended duration of time.
ABE solves this problem because surface support is only required for a short period of time
during the initial deployment and final retrieval phases of a mission. ABE has a
displacement of 450 kg, a 6000m depth rating, a maximum speed of 2 knots, a cruise speed
of 1 knot, a total survey distance of at least 30 km, and an on site mission time of up to one
year (Yoerger, 1990).

WHOI is also developing extremely small AUVs called REMUS vehicles (Remote
Environmental Measuring Units). REMUS vehicles are intended to provide researchers with
a simple, low cost, rapid response capability which facilitates the collection of water property
data (Alt, 1994). The REMUS concept is similar to the SEA SHUTTLE AUV developed in
the 1980°s by the Applied Physics Laboratory at the University of Washington. SEA
SHUTTLE carried conductivity, temperature and depth (CTD) sensors as payload, and
performed autonomous missions under the arctic ice cap. REMUS vehicles displace almost
40kg and are larger than SEA SHUTTLE AUVs, but REMUS vehicles are designed to carry
not only CTD sensors, but also dissolved oxygen sensors. REMUS vehicles will be operated
and controlled from a short base line acoustic tracking system, or pre-programmed to follow
a trajectory determined by bottom moored acoustic transponders (Alt, 1994). The small size,
low cost, and mission specific nature of the REMUS vehicles makes them suited to data
collection tasks where logistics or response time exclude other survey platforms.

4

The Ocean Voyager I, developed in the Ocean Engineering Department of Florida
Atlantic University (FAU), is designed to perform coastal oceanography for the purpose of
sampling coastal regions and ground-truthing satellite spectrometry (Smith, 1994). The
primary difference between Ocean Voyager II (OVII) and similar AUVs such as ABE and
Odyssey is that OVII is designed for shallow-water long-range missions, not deep-water or
under-ice missions. Multiple OVII AUVs can work in conjunction with a support ship to
survey a coastal sea floor more efficiently and inexpensively than if the support ship
employed traditional techniques such as ROVs or towed sleds (Smith, 1994). The OVII has
a 250 kg displacement, 2.4m length, 0.6m diameter, 600m maximum depth, and an eight
hour endurance at 3 knots (Smith, 1994). Ocean Voyager II is designed to increase the

effectiveness of a surface support ship by increasing the surveyed area for a given cost.

1.3 URL and the PURL Program

In recent years, the Underwater Research Lab (URL) at SFU has focused on
underwater acoustic imaging, small AUVs, limnology, and oceanography. The URL has
determined that a gap exists in the current AUV research, and this gap manifests itself in the
absence of a lake only AUV. Because all of the current AUV research is focused on
oceanographic platforms, the AUVs currently being researched may not be appropriate for
many potential lake missions because they provide more capability than is necessary in a
comparatively benign lake environment. Reducing the capability of an AUV can reduce its
cost to manufacture and operate. As stated by Krieder (1997) and Alt (1994), AUVs must
offer real benefits over the current technology at a price that users are willing to pay, and a
level of risk they are willing to accept. The specifications for lake missions are different than
those for ocean missions, and as a result, the URL’s PURL (Probe for the URL) program is
researching potential applications and specifications for AUV operating in small lakes.
Unlike other AUVs such as ABE, Odyssey or the REMUS vehicles (Yoeger, 1990;
Bellingham, 1994; Alt, 1994), the AUVs built for the PURL program avoid custom electrical
components wherever possible. The goal of the PURL program is to develop small AUVs

that employ commercially available off-the-shelf technology, and then test the capabilities of
these AUVs in small lakes.

The PURL program has resulted in the development of two AUVs, PURL I and
PURL II. PURL I (Figure 1-1) was designed for small area search and survey missions in
lakes, but was too slow and never able to carry a sufficient payload. However, PURL [was
considered a success because the URL gained experience designing and operating AUVs,
and some of PURL I's software and electronics were ported to PURL II (Figure 1-2).
Similar to PURL I, PURL II was designed to perform search and survey missions. In
addition, PURL II was also designed to perform rapid response missions, and operate as a
research test bed for limnology and acoustic imaging. Also, greater effort was expended
refining PURL II’s deployment and retrieval system to create an AUV than could be easily
deployed by a two or three person team operating in a remote environment with no support
equipment except that which can be carried by the team. To facilitate limnology research,
acoustic imaging research, and search and survey missions, PURL Il has a larger payload and

greater speed than PURL L.

Figure 1-1: PURL I

Figure 1-2: PURL II

1.4 Outline Of Thesis

The remainder of this thesis details the design, specifications and field trials of PURL
II. First, the many factors influencing the design of PURL I, including the most important
factor, being able to meet mission performance specifications, are discussed. Next, the
mechanical, electrical, and software designs are described from a functional viewpoint. A
detailed description of PURL II’s electrical and software implementation is located in the
Appendices. The field trial results and performance specifications come next with brief
descriptions of the successes and failures of PURL II as a research platform, and search and
survey AUV. Finally, conclusions are drawn about the utility of PURL II as an autonomous
platform, and the suitability of off-the-shelf technologies for autonomous underwater

vehicles.

2. Vehicle Concept and Missions

Autonomous underwater vehicles have been developed in various military and
research institutions, and a few companies are even beginning to sell AUVs commercially.
PURL II is the URL’s autonomous underwater vehicle, and it provides the URL with the
ability to perform underwater robotics research, and search and survey missions in lakes.
PURL II is not intended to be a commercial product but instead a proof of concept that small
AUVs can perform meaningful scientific missions in a variety of operating environments,
specifically remote lakes where little support equipment is available. Nevertheless, PURL II
could be redeveloped as a commercial product if there were customers to support such an

endeavour.

2.1 Vehicle Concept

PURL II is a self-propelled underwater platform capable of delivering a payload to a
predetermined area in small lakes. PURL II is designed for two different, yet interconnected,
purposes. First, PURL Il is designed to be rapidly deployed in a remote lake by two or three
people, and once deployed, perform search and survey missions of the lake bottom and water
column. Second, PURL II is a URL research test bed for both limnology and underwater
acoustic imaging. Depending on the mission or research requirements, PURL II is equipped
with different payloads which can be added and subtracted without affecting the standard
instrumentation. Employing the standard instrumentation, PURL II is capable of depth
keeping, altitude keeping, rudimentary navigation by dead reckoning, and data logging.
Combining a research test bed with a rapid deployment search and survey vehicle results in
an AUV that carries many different sensor payloads on a variety of lake missions. PURL II
is not a commercial product, but instead a proof of concept vehicle showing that a small,
rapid deployment AUV can perform search and survey missions in lakes. Doubling as a
research platform is an additional requirement for the URL because it facilitates future

research and funding for the URL.

As a proof of concept vehicle, PURL II must meet its operational window, but it is
not necessary to optimise vehicle parameters such as drag, power consumption, cost, and
size. The operational window for PURL Il is the ability to perform search and survey
missions in lakes while carrying a variety of payloads. This thesis focuses on the components
required to perform search and survey missions, but is not an extensive description of the
trade-offs made between the various components. The trade-offs that were done involve
balancing time, money, components already in our possession (PURL I), donated
components, and the window of operation. If they met our operational window, components
the URL already possessed were employed whenever possible because they are generally the
cheapest and require the least time to integrate. We are a Canadian university research lab
that does not have the funding to purchase expensive components or pursue exotic
technologies. Achieving the operational window is a demonstration utility under the

constraints of finite money, time and labour.

2.2 URL Missions

The window of operation for PURL II is defined by three autonomous missions and a
piloted mission. The three autonomous missions are a constant depth mission, a sawtooth
mission, and a bottom following mission. When operating autonomously, PURL II is not
connected to the surface in any way except during the launch and recovery phases of the
mission when communications must be established to start-up and shut down PURL II.
During a piloted mission, PURL II is connected to a human pilot via a tether. The payloads
will change depending on the type of mission being performed. For example, if PURL II is
carrying a conductivity, temperature and depth profiler (CTD), an autonomous limnological
research mission could be performed. However, if a video camera is carried, the mission
could be a bottom following search and survey mission or a piloted video inspection mission.
Table 2-1 lists the payloads that PURL II can carry, and the missions that PURL II can

perform with those payloads.

Table 2-1: Payloads For Different Missions And Research

Autonomous Missions Piloted Research
Missions
Payload Constant Sawtooth Bottom Limnology [Imaging
Depth Following
CTD X X X X X
Camera X X X
Side Scan X X X X
Sonar

Note: An ‘X’ indicates that a payload item is employed for that mission type or research

2.2.1 Autonomous Constant Depth Mission

Constant depth missions are a cornerstone in any AUV’s portfolio of missions.
Constant depth missions are useful for limnology because they can measure parameters with
horizontal variability that are sometimes difficult to measure using traditional techniques.
CTD profilers and moored sensor chains operate in a fixed horizontal position, thus requiring
multiple chains or profiles to determine horizontal variability. The density of horizontal
profiles or moored chains may be too sparse to accurately reconstruct the investigated
phenomenon. An AUV travelling at constant depth can provide an excellent platform for
side scan sonar imaging of the bottom because an AUV is unaffected by surface conditions
such as wind, waves, and ice. Figure 2-1 is a diagram of what a constant depth mission

profile may look like.

10

Pre-Dive Check AUV Recovery

and and

Launch AUV Post Processing

Travel At Constant
Depth Collecting Data

Figure 2-1: Constant Depth Mission Profile

2.2.2 Autonomous Sawtooth Mission

The sawtooth mission is aimed at surveying the water column with a water property
profiler such as a CTD. For example, the AUV can repeatedly fly up and down through the
water column as the AUV traverses the lake looking for horizontal variabirlity in the
temperature structure of the lake. If the lake is warmer in a particular region, this may
indicate the presence of a hot fluid out-fall from a source such as a pulp mill or power
generation station. Figure 2-2 shows a sawtooth profile and its primary components of

launch, execution, recovery, and data processing.

11

Pre-Dive Check AUV Recovery

and and
Post Processin
Launch AUV Perform Sawtooth Profile &
While Collecting Data
g (-

Figure 2-2 : Sawtooth Mission Profile

2.2.3 Autonomous Bottom Following Mission

Bottom following missions are well suited to AUVs because AUV have better
manoeuvrability than other sensor platforms such as towed arrays. The bottom following
mission is one of the most dangerous missions for an underwater vehicle because of the risk
of collision. Due to the short range of video cameras underwater, the camera must be
brought close to the bottom to obtain a useful image. AUVs are one of the few sensor
platforms that have both the horizontal and vertical manoeuvrability required to perform a
video survey. Platforms such as ROVs are well suited to vertical video inspection, but
because of their umbilical, they lack the horizontal manoeuvrability required for long range
survey work. Side scan sonar benefits from the constant altitude maintained during a bottom
following mission because the swath width will also be constant. Figure 2-3 shows the

primary components of a bottom following mission.

12

Pre-Dive Check AUV Recovery

and and
Launch AUV Post Processing
o -

Follow Bottom At
Constant Altitude

Figure 2-3: Bottom Following Mission Profile

2.2.4 Piloted Mission

When performing a piloted mission the human pilot at the surface controls PURL II
via a tether in a manner similar to the way an ROV is controlled via an umbilical. In piloted
missions such as video inspection, a pilot’s intelligence is particularly useful because only a
human is capable of determining what is important during an inspection. The tether also
allows the operator to monitor the instrumentation and payload aboard PURL II. During
certain research missions or sensor trials, having real time sensor feedback is important. For
these missions the data is continuously monitored and evaluated, and the mission modified
accordingly. The piloted mission supplements autonomous missions because once an area of
interest has been isolated after an autonomous search and survey mission, the tether is
connected and a human can investigate the area of interest in detail. Figure 2-4 shows an

example of what a piloted mission profile may look like.

13

Pre-Dive Check AUV Recovery

and PURL II Piloted From the and .
Launch AUV Surface Via A Tether Post Processing
= -

Figure 2-4: A Piloted Mission Profile

3. Design Specifications and Constraints

The design specifications and constraints for PURL II reflect the need to develop a
proof-of-concept vehicle that is capable of performing search and survey, and research
missions in lakes (Table 3-1). In addition, the specifications also reflect the limited resources

that the URL possesses and is willing to allocate to the PURL program.

14

Table 3-1 : Vehicle Specifications and Design Constraints for PURL II

Desired Completion Date

December 1996

Price

Is there money in the research account?

Maximum Speed 1 m/s

Minimum Speed Stationary but still maintain depth and heading control
Maximum Depth 70 m

Endurance (min. / max. payload) | 2 hours @ I m/s /1 hour @ 1 m/s

Maximum Displacement 70 kg

Maximum Size

2 m long, 0.5 m wide, 0.5 m tall

Pre and Post Autonomous
Mission Communication

Telemetry and Video Via Copper Cable

Tethered Mission Communication

Telemetry and Video Via Fibre Optic Cable

Transportation 2 compact cars or one pickup truck
Crew 2 or 3 people

Operating Temperatures -5t0 40 °C

Navigation Dead Reckoning

Minimum Instrumentation

Heading, Depth, Altitude, Battery Monitor, Leak Sensor

Payload

CTD Profiler, Video Camera + Lights, Side Scan Sonar, and 2 kg Ballast

3.1 Constraints

Time and money are always two very important constraints in any engineering

design, and PURL II is no exception. The desired completion date for PURL II was

December 1996, and the maximum cost was not determined by a maximum value but by the

URL’s cash flow. Components were purchased to minimise cost, and expensive components

were purchased only when the URL’s research accounts had sufficient funds to cover the

expense. Like all ROVs, but few AUVs, PURL II must maintain depth and heading control

at zero speed because PURL II must be able to perform inspection tasks. A zero speed

requirement precludes the use of actuating planes and rudders for depth and heading control

because these control surface require a forward velocity to be effective. An endurance of one

to two hours, a maximum depth of 70m, a 70kg displacement, and 2m x 0.5m x 0.5m

maximum size were selected so that a two or three person team could operate PURL II in

Loon Lake, Maple Ridge (Figure 12-1). With a two hour endurance and 1 m/s maximum

velocity, PURL II could perform two out-and-back missions before depleting its energy

stores. PURL II and its personnel can be driven to Loon Lake in either two compact cars or a

pickup truck, and PURL II can be carried over uneven terrain to the actual launch site.

15

3.2 Navigation and Basic Instrumentation

PURL II’s navigation method has been employed by mariners for many millennia;
dead reckoning. The minimum instrumentation required to perform dead reckoning is a
heading sensor, a depth sensor, and an altimeter. With these three basic sensors, PURL II
can perform the desired missions with very little knowledge about the structure of a lake.
Strictly speaking, an altimeter is not required for dead reckoning, but due to lack of
knowledge about the lake bottom, an altimeter is required to prevent a bottom collision.
Furthermore, an altimeter allows PURL II to navigate by landmarks such as specified bottom
depths or bottom events such as pinnacles. The navigation system for PURL II is not
sophisticated, but future research in the URL may result in a new acoustic navigation tool
which can be tested on PURL II.

Other standard instrumentation aboard PURL II consists of a leak sensor, and a
battery monitor. A leak sensor is standard on almost any vehicle because leaks must be
caught before they cause serious damage to the electrical components. The battery monitor
is employed in order to obtain the maximum endurance from a vehicle before the battery is
considered discharged, and to ensure the electronics do not fail because of low input
voltages. It is expensive to travel into the field, and it would be an inefficient use of

resources if the AUV did not maximise its mission time.

3.3 Payload

Payload delivery is the reason most vehicle exist, be they personal automobiles, jet
fighters, or autonomous underwater vehicles. PURL II must provide all the resources
(power, space, mountings, buoyancy) required to successfully deploy the payload items listed
in Table 3-1. Payload installation and removal from PURL II must also be transparent to the

standard instrumentation and control.

16

Table 3-1: Payload Sensors

Sensor Specifications
Depth 0to 100m Accuracy <+0.15%F.S.
Temperature -3t040°C Accuracy <+0.01°C
Conductivity 0.0t0 7.0 S/m
Side Scan Sonar Range > 100m, Resolution < 15 cm
Video Camera Resolution > 400,000 Pixels, Colour or B/W, Low Light

4. Mechanical Design

The mechanical design of PURL II was kept as simple as possible to reduce cost,
maintenance, and fabrication time. PURL II is divided into a dry section and a flooded
section, and both are enclosed in the fibreglass faring (Figure 4-1). The dry section is housed
inside an aluminium pressure vessel that maintains a one atmosphere environment for the
batteries and electronics. The flooded section contains the floatation, submersible switch,
altimeter, depth sensor, thrusters, aluminium pressure vessel, and payload. If any of the
components in the flooded section of the AUV require a one atmosphere environment, they

must be in their own pressure canisters.

Fibreglass Faring

\ Bow —p

Flooded Region: Ambient
Pressure, Wet Environment

Pressure Vessel: One Atmosphere
Pressure, Dry Environment

Figure 4-1: Dry and Flooded Sections Of PURL II

17

4.1 Faring

The fibreglass faring for PURL II was purchased from Simrad Mesotech along with
an aluminium pressure vessel. The faring was originally a tow fish body for a side scan
sonar, but it was modified in the URL by adding a PVC insert that made the faring eighteen
centimetres taller (Figure 4-2). Not having to create our own faring saved both time and
money. A new aluminium tail fin was also fabricated in the URL to provide directional
stability for the AUV. The faring and tail fin are 1.92m in length and 0.47m in height, the
width of the faring is 0.18m, and the width of the tail fin is 0.28m.

Stern Bow

le— 1.92

- 0.86

v
.

[=-]

-

Note: All Dimensions in Metres

Figure 4-2: Faring and Tail Fin

4.2 Floatation

Rigid floatation is an essential component of any submersible that does not possess a
variable ballast system. Floatation provides displacement so that PURL II is slightly
positively buoyant. PURL II must maintain positive buoyancy for three reasons. First, when
PURL II is resting idle at the beginning or end of a mission, the vertical thrusters are
disabled, and positive buoyancy is required to keep the AUV at the surface. Second, in the

event of a power or vertical thrusters failure, positive buoyancy is required to return PURL II

18

to the surface for retrieval. Third and finally, the vertical thrusters provide more downward
thrust than upward thrust, and positive buoyancy is required to make the ascent and descent
rates of PURL II symmetric. If PURL II dives more quickly than it rises, the sawtooth
profiles that PURL II creates will not be symmetric. PURL II employs polyurethane foam
with a depth rating of 100m and a mass of 290 kg per cubic meter of displacement. The
polyurethane foam is located inside the top third of the faring, and helps provide PURL II
with a large difference between the location of the centre of gravity (centre of mass) and the
centre of buoyancy. This difference is called the b.g. (buoyancy gravity) and is directly
proportional to the magnitude of the restoring moment when the vehicle is rotated away from

its static equilibrium position (Figure 4-3).

Center of buoyancy The vehicle is rotated. The The restoring moment rotates
above the center of CM and CB do not share the AUV until the center of
mass and share the the same line of action, buoyancy is above the center
same line of action. and a restoring moment is of mass again.

generated.

CB = Center Of Displacement The larger the b.g., the larger the
CM = Center Of Mass restoring moment.

Figure 4-3: The Buoyancy/Gravity And Restoring Moment For A Submerged Body

The equation of the restoring moment for a submerged neutrally buoyant body is:

Restoring Moment = Mass * g * b.g. * sin® = Displacement * p * g * b.g. * sinf (1)

19

where the mass is in kilograms, displacement in cubic meters, b.g. is expressed in meters, p
is the density of water in kilograms per cubic meter, g is 9.81 N/kg and 6 is the pitch or roll
angle. The restoring moment will have units of Nm as expected in the S.I. system. Asa

source of displacement for a small and inexpensive AUV, polyurethane foam is appropriate

because it is simple and has no moving parts or seals that can fail.

4.3 Pressure Vessel

PURL II's aluminium pressure vessel provides a dry, one atmosphere environment
for the batteries and electronics. When the pressure vessel was originally employed in a
Simrad Mesotech tow fish, the depth rating was greater than 300 meters, but we are only
employing it to the 70 meter depth rating of PURL II. Figure 4-4 is a picture of the

aluminium pressure vessel and Table 4-1 lists its specifications.

Figure 4-4: Aluminium Pressure Vessel

20

Table 4-1 : Pressure Vessel
Material Shape Dimensions | Mass (kg) Displacement | Notes

(cm) (kg)
6061 Ribbed 151D, 16.5 | 8.3w/o endcaps, | 25.3 Cylinder is showing some
Aluminiu | Cylinder with | OD, 122 10.8 w endcaps pitting due to corrosion.
m Flat End Caps | Length

Note - ID = inner diameter, OD = outer diameter

4.4 Actuators / Propulsion

Propulsion, heading, and depth control are the largest energy consumers in AUVs.

PURL II employs four thrusters for propulsion, heading and depth control. The two thrusters

mounted horizontally control the heading and propulsion, and the two thrusters mounted

vertically control the depth (Figure 4-2 and Figure 4-5).

Figure 4-5:

Thruster

The thrusters were designed and fabricated by Inuktun Services (Table 4-1). Control

planes are not employed to control the heading because PURL I has a zero speed

manoeuvring requirement which precludes the sole use of planes. Mounting thrusters on side

21

mounted struts reduces the likelihood of snarling the fibre optic tether in the thrusters. Also,
the mechanical complexity of strut mounted thrusters is low in comparison to actuating
surfaces such as planes or rudders. The absence of a protective cage renders the thrusters
vulnerable to damage during transport and handling. For zero speed control, simplicity, low
cost, low weight, and easy maintenance, strut mounted thrusters are consistent with the goals

of PURL II.

Table 4-1: Inuktun Thruster Specifications

Motor | Depth | Weight | Weight Thrust Power Input Encoders

Rating | in Air in Water Consumption | Voltage
Pitman | 50m 043kg | 0.17kg 0.7kg@ | SOW 24 VDC | Incremental, 512
#9412 0.6 m/s Counts Per Revolution

4.5 Card Cage

The card cage is an internal frame inside the pressure vessel where the batteries,
wiring and electronics are mounted. A strong, light and versatile card cage is essential for
any submersible system where easy access to the electrical systems must be maintained.
Mounting components inside pressure vessels is often troublesome because pressure vessels
are either spherical or cylindrical, but the components are generally rectangular. The card
cage creates a rectangular space and consists of three mounting bars running the entire length
of the card cage, and two shorter bars at the fore and aft ends. The open space between the
two shorter bars is used for changing the battery during field operations. The mounting bars
are connected by octagonal bulkheads which provide rigidity and additional mounting
surfaces (Figure 4-6). The bulkheads are 0.25 inch thick octagonal PVC plates, and the
mounting bars are 0.125 inches by 1.0 inches by 46.75 inches with two rows of countersunk
4-40 machine screw holes with 0.5 inch spacing. This card cage allowed the URL to pack
the components quite tightly, thus reducing the overall size and weight of PURL II.

22

e

)

Figure 4-6: Card Cage And Electrical Components

4.6 Cabling And Penetrators

The cabling and bulkhead penetrators for PURL II were kept simple and robust as
appropriate for an underwater vehicle deployed with little logistical support. The two
SEACON AWQ-6/36 penetrators each provide six pie-shaped connectors with six 18 AWG
Tetflon insulated conductors (Figure 4-7). To distinguish between the two penetrators and
their twelve cables, coloured electrical tape was wrapped around the penetrators and the ends
of the cables. The penetrators were wrapped with one band of either blue or yellow electrical
tape. The cables connecting into the blue penetrator were labelled with one to six bands of
blue tape corresponding to their position in the alphabet. Position ‘A’ was represented by
one band, ‘B’ by two bands, and so on up to ‘F’ with six bands of blue tape. The yellow
penetrator and cables followed the same scheme as the blue penetrator. The port for the fibre
optic cable is occupied by a one inch blanking plate when the fibre optic tether is not
connected, and a fibre optic penetrator when the fibre optic tether is connected. The seventy
two conductors and the fibre optic penetrator enter the pressure vessel through the aft end of

the pressure vessel.

23

Figure 4-7: SEACON Penetrators And The Fibre Optic Port

4.7 Mass and Displacement

The mass and displacement of any submersible vehicle are extremely important
because these parameters in part determine the utility, size, and cost of a submersible vehicle.
As the mass of a vehicle increases, the displacement must also increase to maintain neutral
(or slightly positive) buoyancy. If the mass increases beyond the displacement achievable in
a particular vehicle volume, the physical extents of the vehicle must be increased to gain
more displacement. Successful submersible vehicles have a significant payload capacity in
the sense that the displacement of these vehicles is large enough that payloads can be added
without becoming negatively buoyant. A summary of the mass and displacement of PURL
II's components is shown in Table 4-1. Without any payload or batteries, the total mass of
PURL II is 49 kg, and with battery pack Beta added the mass increases to 66.2 kg. The
displacement of PURL II without any payload is 71.1 kg, which provides PURL Il with a
payload carrying capacity of 4.9kg of wet weight. Wet weight is the difference between the
mass of the payload and its displacement. When the CTD profiler, CTD pump, video camera

24

and lights are added, the mass of PURL II increases to 74.8 kg with a displacement of 76.8
kg leaving 2.0 kg free for additional payload. To obtain slightly positive buoyancy and
proper trim, PURL II is ballasted with lead.

Table 4-1: Mass and Displacement

Component Mass (kg) Displacement (kg of H,O)
Battery Pack Alpha (24V 24Ah) 17.0 0
Battery Pack Beta (24V 24Ah) 17.2 0
Battery Pack Gamma (24V 20Ah) 15.8 0
Aluminium Pressure Vessel + End Caps 10.3 253
Faring and Floatation 23.1 40.8
Four Thrusters and Cables 4.1 2.5
Card Cage with Electrical and Electronics Components 59 0
Altimeter and Cable 34 2.0
Depth Sensor, Submersible Switch and Cable 1.8 0.37
Ethernet Cable 04 0.14
Video Camera, Lights and Cables 2.1 1.2
SBE-19 CTD Profiler, CTD Pump and Cable 6.5 4.5
Lead Ballast To Trim To Trim

S. Electrical Design

The electrical design for PURL II focuses on simplicity. Each of the electrical
subsystems is easily isolated from the whole so that in the event of a failure, diagnostics and
bench testing are easy to perform. High quality connectors are employed throughout PURL
IT to ensure reliable electrical connections despite the vibration and jarring that PURL II
experiences during transport, handling, and missions. Furthermore, printed circuit boards
were created for all the non-commercial circuits for which point-to-point soldering or wire

wrapping techniques are often employed.

5.1 Power Distribution

The power distribution system for PURL II is divided into two groups of buses, the
main power supply buses, and the CPU power supply buses (Table 5-1). PURL II's battery

pack provides 24 VDC and is comprised of sealed lead acid batteries which were chosen for

25

their low cost and ability to survive abuse. Appendix One contains the schematic

representation of the power distribution system.

Table 5-1: Power Supply Buses

Buses Voltages (VDC)
Main Supply +24, +15, -15, +5, GND
CPU Supply +12,-12, +5, -5, GND

5.1.1 Battery Pack

Secondary (rechargeable) batteries are the standard energy source for almost all
existing AUVs. Secondary batteries generally have a higher initial purchase cost and lower
energy density than primary (non-rechargeable) batteries, but because they can be recharged,
their cost is amortised over many missions. Power for PURL Il is provided by a
rechargeable battery pack located inside the main pressure vessel (Figure 5-1). Three battery

packs are maintained so that a fully recharged pack is always available.

Figure 5-1: Battery Pack

26

The battery packs are comprised of four sealed lead acid batteries which combine to
create a 24VDC pack rated at 24 amp hours based on a 20 hour discharge rate at 25°C.
Although sealed lead acid batteries have a poor energy density when compared to other
secondary batteries such as Silver Zinc, Nickel Metal Hydride or Lithium Ion, they have
other attributes which make them well suited for PURL II. Only sealed lead acid batteries
are inexpensive, easily maintained, tolerant to improper recharging practices, tolerant to deep
cycle discharging, tolerant to shallow discharging, and possess a long cycle life. Because
PURL II may operate in water as cold as 0°C, and discharge times range from one to three
hours, the battery pack may be de-rated as much as 40% for a one hour discharge rate, or
25% for a three hour discharge rate. Fortunately, the battery pack shares the pressure vessel
with heat generating devices such as electronics and motor controllers, and therefore it is not
anticipated that the temperature inside the pressure vessel will ever fall to zero degrees
Celsius. If users require more energy for a mission than can be supplied by a sealed lead acid
battery pack, they can build their own packs as long as the packs conform to the physical
size, output voltage, and connector specifications of the original sealed lead acid battery pack

(Table 5-1 and Appendix One).

Table 5-1: Battery Pack Specifications

Battery | Output Amp Hours | Watt Hours | Mass (kg) Dimensions Notes

Pack Voltage Ixwxh

o 24 24 576 17 61 x 10x9.5cm | Four 12 Ah Cells

B 24 24 576 17.2 61 x10x9.5cm | Four 12 Ah Cells

X 24 20 480 15.8 61 x 10 x9.5 cm | Newest Pack, Four 10
Ah Cells

Note: All specifications are at 25°C with a 20 hour discharge rate.

5.1.2 Power Switch and Relay PCB

PURL 1I employs a submersible switch for turning power off and on. A submersible

switch is much more expensive than a magnetic reed switch or a cable with a shorting plug,

but the URL has found that once in the field, switching power off and on, and knowing its

present state is sometimes difficult. However, with a submersible switch the power is either

27

off or on, and there is no doubt about its state. The submersible switch controls five relays,
the first four control power to the thrusters, and the fifth switches power to the four main
buses (+24, +15, -15, +5). The relay outputs are fused at five amps for the thrusters, and

three amps for the buses.

5.1.3 Main Power Supply Buses

The main power supply buses are +24 VDC, £15 VDC, and +5 VDC. The +24 VDC
bus is connected directly to the Relay PCB, and the other buses are connected to the Relay
PCB through Vicor DC to DC converters. The converters take +24VDC inputs, have a 25
Watt maximum output, and are between 80% to 90% efficient depending on loading and
output voltage. All the buses share a common ground which is connected to the negative

side of the battery pack.

5.1.4 CPU Power Supply Buses

The PC-104 stack has a Tri-M Systems Inc. power supply card, the HE104-512-16,
that outputs £5 VDC, and 12 VDC for the CPU power supply buses. This power supply
card provides power for the PC-104 stack and the components connected to the PC-104
stack. The input for the Tri-M power supply card is connected to the +24 VDC main power
supply bus and shares a common ground with the main supply buses. The specifications for

the HE104-512-16 are listed in Table 5-1.

Table 5-1: Specifications For The HE104-512-16 Power Supply Card

HE104-512-16 Specifications

5V Output 10 Amps including current supplied to 12V, -12V and -5V regulators
12 V Qutput 2 Amps

-5 V Output 0.4 Amps

-12 V Output 0.5 Amps

Input Range 6to 40V

Efficiency <95%

Temperature Range -40°C to 85°C

Output Ripple 20 mV on 5V supply

28

5.2 CPU and PC-104 Stack

The embedded controller for PURL II is a PC-104 stack which employs an 80486-
DX4 100 as the CPU. The PC-104 standard was chosen for the PURL program because it is

off the shelf, small, inexpensive, moderately rugged, a low power consumer, and it provides

native mode software development. The PC-104 stack has six cards and they provide all the

I/0, data storage, and processing required to operate the standard equipment aboard PURL II

(Table 5-1). Table 5-2 lists the I/O requirements for PURL II, and the resources currently

supplied by the PC-104 stack. When operating autonomously PURL II performs data

logging, and time stamps the data so it can be correlated during post processing.

Table 5-1: PC-104 Stack Cards

Manufacturer: Card

Resources

Advanced Digital Logic Inc.:
MSM 486 DX6 100

Intel 486 DX4-100 CPU, 16 Mbytes Ram, VGA controller, floppy
controller, hard drive controller, 2 RS-232 serial ports, 1 parallel port,
keyboard controller, speaker.

Tri-M: HE104-512-16

+ 5V output, £12V output

Sealevel Communications & 1/0:
C4-104-3521

4 RS-232 Ports

Diamond Systems Corporation:
Sapphire-MM

8 14-bit differential analogue inputs, 2 12-bit analogue outputs, 4 TTL
inputs, 4 TTL outputs.

Ampro: MinitModule /Ethernet-II

1 10Base-T Ethernet Port or 1 AUI Port

URL Breakout

A breakout card for the PC-104 power supply buses and the Sapphire-MM
inputs and outputs.

29

Table 5-2: PC-104 Stack Resources, Supply and Demand

Signal Required Supplied

14-bit Analogue Inputs 3 8

8-bit Analogue Outputs 0 4

RS-232 Serial Ports 4 4 (7 with a PROTEUS upgrade)

Parallel Ports 0 1

Digital Inputs 1-bit 4-bits

Digital Outputs 2-bits 4-bits

UTP Ethernet Ports 1 1

+5VDC 5.2 Amps* 10 Amps (including current to
+12V, -12V and -5V buses)

+12 VDC 0.6 Amps* 2 Amps

-5VDC 0* 0.4 Amps

-12VvDC 0.06 Amps* 0.5 Amps

VGA Video 1 1

Keyboard + Speaker 1 1

IDE Hard Disk Controller 1 1

*Note: The required currents are steady state values, the peak values are higher. Therefore, when adding new
components, the required currents should be multiplied by a safety factor of 1.5 to determine if there is enough
current available from the power supply during peak periods.

5.3 Instrumentation

The standard instrumentation aboard PURL II is employed for navigation, status
monitoring and alarms. All of the instrumentation interfaces with the PC-104 stack, and is
monitored and controlled through the PROTEUS software. The instrumentation suite is the

minimum suite required to meet PURL II’s operational window.

5.3.1 Navigation

Navigation of PURL II is performed by dead reckoning. With a chronometer (clock),
compass, depth sensor, and altimeter PURL II was able to successfully and repeatedly
execute a variety of survey missions. The chronometer is the heart of any navigation system
and the CPU clock is more than sufficient for all of PURL II’s navigational requirements. A
heading reference and depth sensor are the two most important sensors in the navigation
system. As was demonstrated by PURL I, many useful missions can be performed in areas
free of obstacles when only heading, depth and time are combined. The third navigation
sensor is an altimeter. The altimeter measures the time of flight of an acoustic pulse to

determine the altitude of PURL II above the bottom. The altimeter gives PURL II bottom
30

following, bottom avoidance, and bathymetry generation capabilities. For example, PURL II

can fly at a predetermined altitude off the bottom while performing a video or side scan sonar

survey, with the heading, depth and time determining where the AUV is located. Table 5-1

lists the sensors employed for navigating PURL II through the water and over the bottom.

Table 5-1: Navigation Sensors For PURL II

Sensor Range | Accuracy | Resolution Interface Power Notes

KVH C-100 +180° | +0.5° 0.1° RS-232,COM 1, | 0.51 W | Accuracy is reduced by
Fluxgate 9600 Baud, IRQ ferrous materials and
Compass 4, Address 0x3F8 local magnetic fields.
Pressure Sensor 0to +0.20m 0.01m RS-232, COM 3, 1.25 W | Hysteresis of less than

70m 9600 Baud, IRQ 0.05m

5, Address 0x3ES8

Simrad Mesotech | 0.75to | £0.125m | 0.125m RS-232,COM 4, | 4.49 W | Distances less than
Mdl. 819 200m 4800 Baud, IRQ 0.75m are reported as
Altimeter 7, Address 0x2E8 0.75m

5.3.2 Pitch and Roll

Measuring pitch and roll (attitude) is not required for PURL II to meet its operational

window, but attitude can be employed as a diagnostics tool and performance monitor.

During the pre-mission check, PURL II is ballasted so that it is positively buoyant with zero

pitch and roll. Establishing zero attitude minimises the energy required to maintain constant

depth because a tendency to pitch up or down must be compensated by increased energy

consumption in the vertical thrusters. Table 5-1 lists the specifications for the pitch and roll

sensor employed on PURL II.

31

Table 5-1: Spectron Systems Technology Inc. Dual Axis Inclinometer

Model Range Accuracy Resolution | Interface Time Power Notes
Constant
SSY0091 | +20° 10.1°to 10°, | 0.002° 400mV 150ms 0.19 W | The output is displayed
+0.6° to 20° per degree in increments of 0.1°

5.3.3 Monitoring and Alarms

PURL II lacks the system monitoring and redundancy that typify manned vehicles
because PURL II is small, and human life is not endangered. The monitored items are
pressure vessel leaks, low battery voltage, the presence of telemetry, and communication
with the motor controllers. Regardless of the mode of operation, if the leak sensor detects a
leak or the battery voltage falls below 20 VDC, PURL II goes into ABORT mode. If the
telemetry is lost for more than forty seconds when PURL II is tethered and operating in
PILOT mode, PURL II also goes into ABORT mode. Upon entering ABORT mode, the
horizontal thrusters are set to full forward, and the vertical thrusters are set to full up to return
PURL II to the surface for retrieval.

When the motor controllers are operating during an autonomous mission, a watch dog
timer is enabled. The watch dog timer is reset whenever the motor controllers receive
messages via their RS-232 serial link. If communications is lost and the watch dog expires, it
is assumed a software or hardware failure has occurred, and the horizontal thrusters are set to
full forward and the vertical thrusters to full up. The fault management philosophy for PURL

IT is that if anything goes wrong, return to the surface and stay there.

5.4 Ethernet Network

Communications between PURL II, the surface, and Ethernet capable payloads is
conducted through an Ethernet network. An Ethernet network was chosen because off the
shelf equipment is widely available, it allows multiple nodes to communicate with each other
over a single medium, and the addition or subtraction of nodes can be transparent to the other
nodes in the network. PURL II does not currently carry any Ethernet capable payloads, but

the URL is planning to add a digital side scan sonar which may employ an Ethernet interface.

32

Depending on whether PURL II is operating autonomously (without the fibre optic
cable) or is piloted (with the fibre optic cable), the Ethernet network is configured differently.
During autonomous operation, PURL II is not connected to the surface computer except
during start-up, pre-mission and post-mission systems checks, and shut down. Because
surface monitoring is not occurring during an autonomous mission, a single Ethernet node is
sufficient for the pre and post mission communications (Figure 5-2). The autonomous
Ethernet configuration has a single five port hub located aboard PURL II, with a single
unshielded twisted pair (UTP) cable to the surface computer. For piloted missions where
monitoring and control is performed by a human operator, multiple surface nodes may be
monitoring the PC-104 stack as well as scientific payloads that communicate via Ethernet (
Figure 5-3). To facilitate multiple nodes at the surface, the fibre optic backbone is
connected to a hub which can handle up to eight surface nodes. Employing an Ethernet
network allows a small AUV such as PURL II to support multiple configurations and
payloads with no impact on the internal wiring. If wiring changes were required each time
the vehicle changed missions and payloads, PURL II would lose its ability to perform as a

rapid deployment vehicle, and also run an increased risk of faulty wiring.

PURL I1 Surface
______________________________]
! Surt,
PC-104 Stack with a D-Link "Hubby" ' Comufltzcr:ewith
10Base-T Ethernet UTP 5UTPPort © | UTP p
Port Ethernet Hub an |OBase-T
0 Ethernet Port

]

|

I

|

|

|

|

|

: Autonomous Payload
: with 10Base-T \— UTP
|

I

|

|

|

|

|

|

|

disconnected during autonomous
missions. Communications
with the Surface Computer is

for mission lauch and recorvery.

Autonomous Payload
with 10Base-T UTP
Ethernet Interface

|
|
[
|
[
|
Ethernet Interface : NOTE: This UTP cable is
|
|
|
|
|
|
[
[

Note: UTP - Unshielded Twisted Pair (10Base-T)
Figure 5-2: Autonomous Ethernet Configuration

33

Surface

Surface Computer
with an 10Base-T
Ethernet Port

Farrallon "Starlet"
Ethernet Hub, 8

Payload Monitor and
Controller

PC-104 Stack with a
10Base-T Ethernet
Port

Payload with 10Base-
T Ethernet Interface

Payload with 10Base-
T Ethernet Interface

\—UTE_) UTP Ports, 1 AUT AUl
Port
UTP
PURL II
UTP \ l
D-Link "Hubby"
UTP 5 UTP Port UTP
Ethernet Hub
UTP ’

Note:

AUI - Attachment Unit Interface
Figure 5-3: Piloted Ethernet Configuration

6. Software Design

Fibre Optic Ethernet
Transceiver

Single Mode Fibre
Optic Tether

Fibre Optic
Ethernet
Transceiver

AUI

UTP to AUI
Converter

UTP - Unshielded Twisted Pair (10Base-T)

Similar to many other AUVs, PURL II has a significant software component which

handles control, mission execution, telemetry, and sensor interfacing. To simplify software

development for both PURL I and PURL II, an AUV control software package called

PROTEUS was utilised. PROTEUS was developed by International Submarine Engineering

Research, in Port Coquitlam, Canada. Utilising an off-the-shelf software package greatly

34

reduced the development time for PURL II, and provided the URL with a stable platform

from which to develop the software components specific to PURL II.

6.1 PROTEUS

PROTEUS is a real-time scheduler developed by International Submarine
Engineering Research for controlling remotely operated and autonomous underwater
vehicles. PROTEUS employs an object-oriented software architecture implemented in C++.
New software modules, called components, added to the overall software system can be
based on existing components via class inheritance (ISER, 1991). From the users’ standpoint,
the most important property of PROTEUS is that the control systems, telemetry, and mission
scripting can be modified without working on the underlying C++ source code. An AUV’s
control system and mission scripts are entirely described by a set of text configuration files
which are parsed by the mission executor at run time and executed by the PROTEUS kernel.
Because the text files are parsed at run time, configuration changes can be implemented
without re-compiling PROTEUS. The ability to reconfigure the system is particularly useful
while testing and during field work where parameters must be changed to suit new situations.
All of the control loops and signal arbitration are fixed throughout a mission however, and

changes to the configuration files must be made off line while PROTEUS is not running.

6.2 Event-Based Software

Data propagation is the fundamental operating mechanism for PROTEUS. Instead of
real-time software modules communicating through a typical send-receive-reply mechanism
or a global variable blackboard, PROTEUS specifies what actions are performed when a
piece of data is updated. If a piece of data (a variable) changes value, an “event” occurs, and
this event is propagated to each of the relevant software modules (components). A signal
from a peripheral device, a value change in a system variable, a timer tick, or a keystroke are
all examples of what can be considered events in PROTEUS. Events connect components
together, and these components all have well defined inputs, outputs, parameters, and input

to output mappings. Component functions include device interface, operator interface,

35

sensory processing, communications, control, navigation, obstacle avoidance, and fault
diagnostics.

Event-based means that the function of each component is entirely event driven. A
component interacts with the outside world by connecting its inputs and outputs to other
components via events. When the output from one component changes, an event occurs.
This event (new variable value) is propagated to the components whose inputs are connected
to that event. The procedures in the components that are triggered by the event are called
actions. These triggered procedures transform the component inputs into outputs, according
to a well defined mapping specific to that component.

In addition to event propagation, PROTEUS also handles real-time scheduling of the
components once they have been triggered by an event. Each component has a different
priority level, and action procedures with higher priority are executed before those with
lower priority. When an event, or multiple events, trigger a set of components, the
corresponding action procedures are enqueued on PROTEUS’s scheduler waiting list.
Actions enqueued into the scheduler’s waiting list are executed from the highest priority
action down, and on a first-in first-out basis for a given priority level. Actions are always
processed to completion before another action is started unless a hardware interrupt pre-
empts the current action and places a higher priority action into the scheduler’s queue.
Action procedures do not wait for resources or semaphores in the middle of their execution,

synchronisation is always accomplished through event propagation.

6.3 Configuration Files

Although PROTEUS was written in C++, users program their systems in a
configuration language called Control System Probe (CSP). A configuration file is a textual
interface for defining and building control systems. Configuration files list instantiations of
component types, with specifications for the attributes of each component instantiation, and
the input and output events that interconnect components. Configurations draw on a set of

library components that together with the scheduler make up PROTEUS.

36

CSP i1s a declarative language wherein all events and components are defined one at a
time in no order other than they not reference an event or component not yet defined. Within
a component there is no rigid ordering of parameters because each attribute has a name.
Constructing a real-time system from the PROTEUS library of components involves three
steps, choosing the templates for the required components, specifying the parameters for
those components, and defining the interconnections between components. The following

syntax is employed to define a component in a configuration file:

% <component type>
<attribute name> = <attribute value>
<attribute name> = <attribute value>

<attribute name> = <attribute value>

where the component type is one of the PROTEUS library components, attribute name is one
of the inputs, outputs or parameters, and attribute value is either an event or a constant.

Employing the above syntax, the following is an example of a Boolean AND component:

%uncontrolled.int name = Eventl initial = FALSE
%uncontrolled.int name = Event2 initial = FALSE
%uncontrolled.int name = Result_Event initial = FALSE
%and

input_1 = Eventl

input_2 = Event2

output = Result Event

where Eventl, Event2, and Result_Event are all integer events that are either FALSE =0 or
TRUE # 0. Appendix Two contains the CSP files for both PURL II itself and the surface

interface.

37

6.4 CSP Design and Configuration

When designing the configuration for PURL II, several options were available for
implementing operational mode switches and control signal arbitration. It is beyond the
scope of this thesis to describes all the forms of control hierarchies and methodologies that
can be configured using PROTEUS. To simplify configuration and debugging, a mode
switching and arbitration approach was implemented which resembles a discrete component
hardware design. All of the components are always enabled, and they are always taking
input events, acting on them, and outputting the results. Arbitration between a few specific
inputs and outputs is controlled by multiplexers that use the current mode of operation or
other decision criteria to arbitrate signal propagation. The latest release of the PROTEUS
executable is entitled “sfu32-h.exe”. The file “PURL.BAT"” launches the PURL II
configuration, and the file “SURFACE.BAT” launches the Surface configuration.

6.4.1 Interface Components

Although PROTEUS’s library components provided almost all the functionality
required to operate and control PURL II, several interface components had to be written.
Writing interface components was expected because the interface components are specific to
the sensors and peripherals installed aboard PURL II. Table 6-1 lists the interface
components that were added to PROTEUS.

38

Table 6-1: PROTEUS Interface Components

Component Interface Author(s) Notes

KVH_compass KVH C100 compass via Peter Helland, Interrogates the compass whenever it is
RS-232 Doug Girling triggered.

Depth_Sensor Digitec 4-20mA to RS- Peter Helland, Interrogates the depth sensor whenever it is
232 converter via RS-232 | Doug Girling triggered

mesotech809 Simrad Mesotech 809 Kevin Maier, See “The Integration and Characterisation of

altimeter Echo Sounder via RS-232 | ISER a Mesotech 809 Altimeter for the PURL

AUV” by Kevin Maier for more information.
sbel9 SBE-19 CTD via RS-232 | Peter Helland Requires up to 1 minute after starting to get

initialisation information from the SBE-19.

thruster interface

Servo~LINK motor

Andreas Huster,

Adaptive gain control loops dynamically

controller via RS-232 Peter Helland match the thrusters.
Sapphire Board | PC-104 bus Peter Helland, Contains a busy wait that hangs PROTEUS if
Doug Girling the Sapphire-MM card is not in the PC-104

stack.

6.4.2 Operator Interface

The operator interface provided by the SURFACE configuration allows a human

operator to control PURL II and monitor its status. The operator interface is a graphical user

interface where the inputs are controlled by mouse pointer. PROTEUS supports keyboard

inputs, but when the operator is in the field, a mouse is the most practical input device. The

interface is divided into four main sections; mode control and feedback, setpoint control and

feedback, status feedback, and menu bar. Mode control is located on the upper right hand

side of the screen, and allows the operator to specify the desired mode of operation, and

receive feedback about which mode PURL II is currently in. Setpoint control and feedback

is located on the left half of the screen where the operator specifies the desired setpoints

while PURL Il is in PILOT mode. Feedback from the navigation sensors is also displayed on

the left half of the screen. Status feedback, located in the lower right hand side of the screen,

monitors the status of the pitch, roll, battery voltage, telemetry, leak sensor, thrusters, CTD,

CTD pump, camera lights, and data logging. The operator can also switch the camera lights,

CTD pump, and data logging off and on using buttons located beside their status indicators.

The menu bar is where the operator can monitor debugging signals, exit the SURFACE

configuration, and put PURL II into EXIT mode.

39

6.4.3 Modes Of Operation

There are five modes of operation for the PURL II configuration; IDLE, PILOT,
MISSION, ABORT, and EXIT. Each of these modes have specific attributes that govern the
behaviour of PURL II. The SURFACE configuration does not employ modes of operation
because there is no mode-dependent change of the behaviour of the SURFACE
configuration. As a result, the discussion of modes of operation will focus on the PURL II

configuration.

6.4.3.1 IDLE Mode

IDLE mode is the default mode for PURL II when the configuration is initially parsed
at start up. IDLE mode is the dormant state for PURL II, and is employed during the launch
and recovery phases of a mission. In IDLE mode the thrusters are disabled by forcing their

inputs to zero RPM. Disabling the thrusters ensures that it is safe to approach the vehicle.

6.4.3.2 PILOT Mode

PILOT mode is generally entered from IDLE mode, but can be entered from any of
the other modes except EXIT. PILOT mode is employed during the pre-mission checkout to
ensure all the actuators and sensors are functioning properly, and when an operator is piloting
the vehicle via the fibre optic tether. In PILOT mode the operator specifies the desired
setpoints for heading, depth, altitude and velocity via the user interface provided by the
SURFACE configuration. Specifying setpoints is similar to how a ship’s captain specifies
the heading and speed to the crew. PILOT mode assumes that there is a telemetry connection
between the SURFACE and PURL II because the new setpoints must be transmitted from the
SURFACE to PURL II. If the telemetry connection is broken for more than forty seconds,
PURL II enters ABORT mode. The thrusters are enabled in PILOT mode, and receive their
inputs from the depth, altitude, and heading control loops.

40

6.4.3.3 MISSION Mode

MISSION mode is employed during autonomous missions where one of six mission
scripts is executed. MISSION mode is the same as PILOT mode, except the telemetry
connection is not present, and the setpoints are set by the mission scripts not an operator.

Mission scripting is an essential component of any autonomous mission because a
mission script is responsible for sequencing the tasks that will be undertaken by the vehicle.
Mission scripts are the only CSP files that the operator will be changing on a regular basis.
Allowing the operator to modify mission scripts and sequence tasks is potentially dangerous
undertaking because it is likely bugs will be introduced. As a result, templates have been
created for the depth following, bottom following and sawtooth missions. A detailed
description of mission scripts, and mission planning is contained in the PROTEUS
documentation provided by International Submarine Engineering (ISER, 1991). Even an
abbreviated description of mission planning and writing will remain absent from this thesis
because a full and comprehensive understanding of mission scripts is required before writing
mission scripts. If there is a bug in an autonomous mission script, the risk of losing PURL II
increases dramatically, and therefore script writing must be learned properly or not attempted

at all.

6.4.3.4 ABORT Mode

ABORT mode is entered whenever a system failure is detected. Low battery, a leak,
loss of telemetry while in PILOT mode, or the ABORT command from the operator all result
in PURL II entering ABORT mode. Upon entering ABORT mode, the horizontal thrusters
are set to full forward, and the vertical thrusters to full up. These settings attempt to return
PURL II to the surface and keep it there until retrieved. As mentioned previously, there is no
ambiguity about how PURL II is to behave in an ABORT situation, it should return to the
surface and stay there for as long as possible.

In the event that the surface operator determines that the system failure is not critical,
the ABORT condition can be overridden by commanding PURL II into another mode. The
ABORT condition will still exist, but it will no longer send PURL II into ABORT mode.

Overriding the ABORT condition will be necessary during retrieval as a way of stopping the
41

the PROTEUS system employed in PURL II.
thrusters. Otherwise, overriding ABORT should be discouraged and treated very carefully

because it increases the risk of losing or damaging PURL II.

6.4.3.5 EXIT Mode

EXIT Mode is commanded by the surface operator when it is time to exit the PURL II
configuration and return to DOS. EXIT Mode executes a script that shuts down the thrusters,
lights and CTD pump, thus ensuring that it is safe to shut down PROTEUS. If PURL II is
turned off before PROTEUS has exited properly, any logged data that was collected during a
mission may be lost, and PURL II’s hard drive corrupted. To fix a corrupted hard drive, a

disk utility such as DOS’s SCANDISK should be run.

6.4.4 Telemetry

Telemetry between the surface and PURL II is controlled by a telemetry component
in PROTEUS. The telemetry items are listed in the CSP file "xtelem.csp”. Telemetry items
are sent when their corresponding events change value, when a periodic timer expires, or
both. Telemetry items are sent when their value changes because it is desirable to have
updated event values on both the surface and PURL II as soon as possible. Although
Ethernet is not deterministic and maximum message transmission times cannot be
guaranteed, adverse affects due to collisions and lost packets should be minimal. The
Ethernet bandwidth is much larger than the bandwidth consumed by the telemetry
information, and telemetry items are on periodic timers that ensure the latest event values are

updated even if previous telemetry packets were lost.

6.5 Bugs, Conflicts and Deficiencies

There are no confirmed bugs in the current PURL II configuration of PROTEUS, but
there is one bug in the surface configuration. The PROTEUS system also has a variety of
deficiencies that can cause problems if they are not handled correctly or are misinterpreted by

the programmers. Table 6-1 lists the conflicts and deficiencies that are currently known for

42

Table 6-1: Bugs and Deficiencies

Problem Classification | Description

Serial Port Deficiency, PURL II: Occasionally one of the interface components reports a reception

Errors but possibly a | error on the serial port. It is likely that the serial port suffers from an

bug overrun error because the serial port interrupts are not serviced quickly

enough.

Logged Errors Deficiency PURL II: PROTEUS logs that the motor controllers fail to respond after

on Start-up being polled during start up. What is actually happening is that several
polls get enqueued during start-up and are not sent until after start up is
complete. These enqueued polls get sent in such rapid succession that the
motor controllers are not given enough time to respond before the next poll
is sent, and a polling error is logged.

Mouse Pointer | Bug SURFACE: The mouse pointer stops accepting inputs from the operator

Stops Moving and the surface computer must be re-booted to get the mouse functioning.

DOS Timer Conflict PROTEUS seizes the DOS tick and changes it from 65ms to 10ms. This
causes problems with Carbon Copy and therefore Carbon Copy must be
disabled before PROTEUS is run, and re-enabled after PROTEUS has been
exited.

Mission Script | Deficiency If a component does not have a specified priority level, it operates at the

Infinite Loop highest priority level. Mission scripts do not have a priority level. Any
loops implemented in a mission script must incorporate timed waits or else
they may run freely and consume all the processor time.

Not propagating | Deficiency PROTEUS does not propagate the “interval” field of an event through the

“interval” multiply, add, subtract or divide components.

7. Vehicle Control

Controlling the velocity, heading, depth and altitude of PURL II is performed by a

relatively simple yet robust control structure. The dynamics of PURL II change when the

payload, ballast, or tether changes. A fixed set of control parameters were chosen which

work for all vehicle configurations but are not optimal for any. The heading and velocity is
controlled by the horizontal thrusters and the depth and altitude are controlled by the vertical
thrusters. The control loops for PURL II are implemented in CSP. Feedback from the
heading, depth and altitude sensors are processed to create the appropriate control signals for
the horizontal and vertical thrusters. Also, adaptive control loops within the thruster
interface utilise the encoder feedback from the thrusters to ensure that all the thrusters are

properly matched and have the same response to a specified control signal.

43

7.1 Propulsion and Heading Control

The propulsion and heading control for PURL II is performed by the two horizontal
thrusters mounted on struts off the side of the AUV. Differential thrust is employed by the
horizontal thrusters to control heading and propulsion. The thrust from the two horizontal
thrusters can be converted from two vectored thrusts to a equivalent net propulsive force and
a turning moment. The vector sum of the thrust from the two horizontal thrusters is the net
propulsive force (NPF), and the vector difference between the two horizontal thrusters

multiplied by their moment arms generates the turning moment (TM) (Figure 7-1).

A

Thrust from the Net propulsive force
two horizontal NPF and turning
thrusters. moment,

Left 2 Right
Thrust Thrust ™

()

<« —>
2x

Figure 7-1: Net Propulsive Force (NPF) And Turning Moment (TM)

The equations of the NPF and TM are as follows:

Net Propulsive Force = Left Thrust + Right Thrust (2)
Turning Moment = Left Thrust * 4 - Right Thrust * 4 3)

where A is the length of the moment arms for the horizontal thrusters. Although the 0.65 m/s
maximum velocity of PURL II is well below the desired maximum velocity of 1 m/s, the

44

thrusters were deemed adequate for this phase of the PURL program because they can stil] be
employed to demonstrate the utility of a small AUV.

The control loop for heading and propulsion control is anchored by a PID controller
(Figure 7-2). This PID controller accepts the heading setpoint from the heading setpoint
selection logic which arbitrates between the various heading setpoint sources. The feedback
for the PID controller comes from the KVH C100 compass heading, and together with the
heading setpoint generates the heading control signal. After the heading control signal is
converted to a thruster RPM, it is either added or subtracted from the velocity setpoint RPM
to generate the left and right horizontal thrusts respectively. The Thruster Motor Safety
Interlock disables the thrusters in IDLE mode, sets them to full forward in ABORT mode, or
passes the left and right thrusts through in MISSION and PILOT modes.

45

|

AUV_Mode

v

—AUV_CompassHeading» Heading
o . : Setpoint | . Heading
TelemHeadingSetpoint— Selection HeadingSetpoint Controller Control@
—MissionHeadingSetpoint® Logic
AUV_CompassHeading
i HeadingControl RPM
«—RightThrust @ E}_

E VelocitySetpoint RPM

s |

— 5=

5 2 Thruster

£ § Motor ¢ LeftThrust

3 8 Safety

E‘; g Interlock VelocitySetpoint RPM

) = l

o= =

%k

! Q 4—MAX THRUSTER_VELOCITY —

) '_11

< % -« — ZERO

<
Left and Right

thruster_interface

Horizontal Thusters PURL 1 Dynamics 1

Encoder Feedbacks—}

~—VelocitySetpointVelocitySetpoint_RPM—>

AUV_Mode
ZERO » Velocity
o . . Setpoint
TelemVelocitySetpoint-— Selection
—MissionVelocitySetpoint» Logic

Figure 7-2: Horizontal and Propulsion Control Diagram

Upon entering the thruster interface, the control signals for the right and left thrusters

are sent through adaptive control loops to ensure that the thrusters achieve the desired RPM

(Figure 7-3). The motor controllers operate in a velocity mode where the control signal is

46

proportional to the error between the desired and actual velocity of the thruster. As a result,
there would normally be a steady state error between the desired and actual thruster
velocities. However, the thruster interface multiplies the desired RPM by a variable gain
(>1) which increases the commanded RPM sent to the motor controllers. The adaptive
control loops within the thruster interface employ the encoder feedbacks to adjust the gains
for each of the thrusters. The adaptive control loops ensure all the thrusters are matched and
turn at the desired RPM when commanded to do so. The PID heading controller cannot fully
compensate for mismatched thrusters, but the adaptive control loops within the thruster

interface can.

/ +

Thrust Adaptive Gain | _ Thruster Left or Right | Encoder —
Setpoint RPM f(n) Command Thruster Feedback

Error RPM

f(n+1) = f(n) + o e(n) x(n)

where e(n) is Error RPM and
x(n) is Thrust Sepoint RPM
o is the step size

Figure 7-3: Thruster Adaptive Control

7.2 Depth Control

Depth control utilises two vertical thrusters mounted on struts at the bow of the AUV.
Once again, thrusters are employed for control instead of planes because depth control must
be maintained even at zero speed. At zero horizontal speed the vertical thrusters push PURL
I up and down through the water column, whereas when PURL II is moving, the vertical
thrusters pitch the bow up or down, thus making PURL Il behave more like a wing flying
itself up and down through the water column (Figure 7-4).

47

Vehicle at rest in the water,
zero pitch.

CB = Centre Of Buoyancy
CM = Centre Of Mass

Vertical thrusters pitching the
vehicle down, and the
horizontal thrusters driving the
vehicle forward and down.

Figure 7-4: Depth Control Employing Vertical Thrusters

Similar to the heading control system, PURL II’s operating mode determines which
setpoint source will be passed to the vertical PID controllers (Figure 7-5). The vertical
control feedbacks are depth and altitude. The depth and altitude control signals enter
arbitration logic which determines if PURL II should be controlled by altitude or depth
(Table 7-1). Similar again to heading control, the vertical control signal is converted to
RPM, passed through the Thruster Safety Interlock, and finally into the thruster interface
where adaptive control loops ensure that the vertical thrusters are turning at the desired

velocity.

48

AUV_Mode

v

AUV_Altitude——— Altitude

- . : Setpoint | . . . PID | .. _
TelemAltitudeSetpoint— Selection AltitudeSetpoint Controller AltitudeControl
—DMissionAltitudeSetpoint#| Logic -

AUV _Altitude

|
AUV_‘Mode

v

AUV_Depth———»{ Depth 4 oD
——TelemDepthSetpoint—» SS;?C(;;ZL —DepthSetpomt%@% Controller —DepthControl—

—MissionDepthSetpoint— Logic

AUV_Depth
Arbitration
Logic
«¢—VerticalControl RPM— K «—VerticalControl— Betvs;leen
Thruster]?:lp't g)r
titude
3L] gﬁ‘t’; <«MAX_THRUSTER VELOCITY —— e
(9] [P]
< 'é Interlock
£ 3 4¢———7ZERO————— T
= &
£ 3 TelemBottomFollowingEnabled
= 3
S =
o &
> 5
=
< 3
$ <
L 4
Left and Right

thruster_interface

Horizontal Thusters PURL II Dynamics

Encoder Feedbacks—l

Figure 7-5: Depth and Altitude Control Diagram

49

Table 7-1: Depth and Altitude Arbitration Logic

bc =00 be =01 be=11 bec =10
a= Altitude Altitude Altitude Depth
a=0 Depth Altitude Altitude Depth

where: a=1 is Bottom Following Enabled
a =0 is Bottom Following Disabled (i.e. Depth Following)
b =1 is Deeper than the Depth Setpoint
b =0 is Shallower than the Depth Setpoint
c =1 is Less Altitude than the Altitude Setpoint
¢ =0 is More Altitude than the Altitude Setpoint

Note: This Karnaugh map is based on the work of both Peter Helland and Maier, 1997.

8. Fibre Optic Link

The fibre optic link is connected to PURL II whenever a survey task requires the
intervention or supervision of a human operator. The fibre optic link allows a human
operator to view the outputs of the various sensors, especially the video camera, and make

decisions about controlling PURL II.

8.1 Design Specifications

The specifications for the fibre optic link are deceptively simple, but were difficult to
implement because of physical size and monetary constraints. The specifications for the

fibre optic link are listed in Table 8-1.

Table 8-1: Fibre Optic Specifications

Parameter Specification

Fibre Type Single or Multi-Mode Fibre

Number of Fibres 1

Cable Length > 150 m

Depth Rating 100 m

Maximum Cable Diameter <2.5 mm

Armoured Yes

Signals From PURL II to the Surface 10Base-T Ethernet, and Colour or Black and White Video
Signals From Surface to PURL 11 10Base-T Ethernet

50

8.2 Fibre Optic Design

Sending Ethernet bi-directionally and video uni-directionally through a single fibre
requires electrical and/or optical multiplexing. When the components for PURL II were
sourced there were no electrical mulitplexers for video and Ethernet that could fit within the
physical constraints imposed by the pressure vessel. However, Ethernet transceivers, video
transmitters and video receivers that could operate with either single mode or multi-mode
fibres were located. Multiplexing the Ethernet and video signals had to be performed
optically, but a decision had to be made between a multi-mode or a single mode system.
Employing off-the-shelf equipment constrained the number of wavelengths available for both
multi and single mode fibre systems; multi mode components commonly employ 850nm and
1310nm, and single mode components employ 1310nm and 1550nm. Forced to employ two
distinct wavelengths to transmit three signals (Ethernet up, video up, Ethernet down) meant
that one of the two wavelengths would have to be sent in both directions, and back reflection
would cause interference between the signals that shared a common wavelength.

The possibility of using less expensive multi-mode equipment was eliminated because the
back reflection of multi-mode connectors was too high to ensure that interference would not
be a problem. Fortunately, the cost of single mode components (optical and electrical) has
been falling in recent years, and low back reflection components could be sourced for single
mode applications. To ensure that back reflection would not be a problem, link budget and
back reflection calculations were performed on the optical multiplexing system shown in

Figure 8-1 and Figure 8-2.

51

Surface

Video Receiver,
Optelecom Mdl. FC/PC [4-1310nm—]
3253R-LD-FC 1310/1550nm Hybrid
Wave Division
FC/APC
Ethernet FC/PC l&-1550nm—| Multiplexer Coupler, | 4 1310nm—p
Transceiver, Vilink Mdl. HB1113-Z00001 | —1550nm—p
Company Mdl.
VK100-FC-03 FC/PC [—1310nm-»
Fibre Optic
Tether,
Single Mode
PURL II Fibre
Video Transmitter,
Optelecom MdL. FC/PC F—1310nm-»
3253T-LD-FC 1310/1550nm Hybrid | <~ 1310nm-»
Wave Division FC/APC
Ethemet FC/PC 1550nm-¥ Multlplexer COUpler,
Transceiver, Vilink Mdl. HB1113-Z00001
Company Mdl.
VK100-FC-05 FC/PC [«-1310nm—
NOTE: FC = A Fibre Optic Connector
PC = Physical Contact
APC = Angled Physical Contact
Figure 8-1: Fibre Optic System For Ethernet and Video
FC/PC [4-1310nm— Terminated
1310nm, 2x2
Splitter / Coupler
FC/PC |—1310nm 4—1310nm—» 1310/ 1550nm
Wave Division ([¢—» FC/APC
Multiplexer
FC/PC 4————— 1550nm P
<+ 1310nm—»
. . <4 1550nm—»
NOTE: FC = Fibre Optic Connector

PC = Physical Contact
APC = Angled Physical Contact

Figure 8-2: 1310/1550nm Hybrid Wave Division Multiplexer Coupler

52

8.3 Link Budget

The link budget for the fibre optic system shown in Figure 8-1 and Figure 8-2 was
calculated based on a reasonable worst case estimate of the attenuation of the various
components in the system. The maximum total attenuation in the system is 10.6 dB for the
1310nm signals and 3.4 dB for the 1550nm signal. The Ethernet transceiver has a
transmission power of -12dBm and a maximum receive sensitivity of -30 dBm, thus leaving
an allowable loss of 18 dB in the transmission path. Therefore, the 1310nm Ethernet signal
has 7.4dB of signal power margin, and the 1550nm Ethernet signal has 14.4dB. The video
transmitter has a transmission power of -14 dBm and a maximum receive sensitivity of -37

dBm thus leaving 12.4 dB of signal power margin.

8.4 Back Reflection

The sources of back reflection in the 1310nm optical system are connectors,
coupler/splitters, terminations, and wavelength division multiplexers. If a worst case
scenario is assumed, a first order approximation of the back reflection is good enough to
determine whether or not the desired multiplexing scheme would be successful. A first order
approximation means that only the primary back reflections are included in the back
reflection calculation because secondary back reflections would be so small that they are
insignificant (<-150dB) when compared to the primary back reflection (<-50dB). A worst
case scenario assumes that the all the back reflection sources sum coherently, each back
reflection source provides the maximum back reflection specified by the manufacturer
(instead of the typical back reflection), and system attenuation is calculated to increase back
reflection. These three assumptions yield a pessimistic estimate of the total back reflection in
the system, and should provide sufficient safety margin.

The calculated back reflection was -44.2 dB (Appendix Three) and this resulted in a
signal to interference ratio of 32.8 dB for the 1310nm Video signal, and a signal to
interference ratio of 36.8 dB for the 1310nm Ethernet signal. The manufacturers of the

Video and Ethernet receivers would not guarantee that these interference levels were low

53

enough, but the fibre optic equipment was ordered anyway. Upon receipt of the fibre optic

equipment, the entire system was tested and confirmed to function properly.

8.5 Cables and Penetrators

The fibre optic cable and penetrator employed on PURL II is a copy of the system
employed by ISER for the Theseus AUV which deployed over 200 nautical miles of fibre
optic cable under the arctic ice cap in the spring of 1996. The fibre optic cable contains one
9/125pm single mode fibre housed inside a stainless steel tube with a fibre glass and Hytrel
jacket. The outer diameter of the fibre optic cable is 0.1 inches. The fibre optic penetrator
was constructed from a modified Brantner and Associates Inc. XSA-BCL Type 2 penetrator.
This XSA-BCL penetrator has a hollow stainless steel tube that the fibre (the jacket and
stainless steel tubing were removed) was fed through and potted into place with epoxy. The
potted fibre provides the pressure barrier between the ambient pressure outside PURL II and
the one atmosphere environment inside the pressure vessel. When the fibre was potted, the
epoxy also spread into the stainless steel tube, thus preventing water from entering the tube.
The fibre optic cable, penetrator, and connectors form a single unit. If the fibre optic cable is
not in use, the entire cable must be removed from PURL I, and a penetrator blanking plate

placed across the hole vacated by the penetrator.

8.6 Carrying Case / Handling

Safely transporting the fibre optic cable to the mission site, and handling the fibre
optic cable during a tethered mission are two important tasks of the fibre optic case. We
employed a waterproof Pelican case which was modified to provide posts for coiling the fibre
optic cable in a figure eight. The Pelican case also houses another smaller Pelican case
which holds the fibre optic transmitter and receivers, and the Ethernet Hub (Note: UTP -

Unshielded Twisted Pair (10Base-T)

AUI - Attachment Unit Interface
Figure 5-3).

54

9. Payload

PURL II is designed to carry a variety of payloads that can be interchanged with little
or no modification to the vehicle itself. PURL II is currently configured to carry only two
items, a water property profiler (CTD), and a video camera. However, power,
communications, and reserve buoyancy are available for additional payloads such as a side

scan sonar.

9.1 Water Property Sensors

The water property sensors are housed in a conductivity, temperature and depth

(CTD) profiler manufactured by Sea-Bird Electronics Inc, the SBE-19 (Table 9-1).

Table 9-1: Sea-Bird SBE-19 CTD

Component | Depth Weight Dimensions Notes
Rating | Air/H,O
SBE-19 300m 5.1kg/ 1.2 | 9.9cm ¢, Contains conductivity, temperature and depth sensors
kg 73.9cm with up to four additional sensors such as dissolved

Len. oxygen, pH, and fluorometer.

SBE-5T 10500 0.7kg/ 4.5cm ¢, 100mL per second at 2000 RPM, 10-18VDC power, 0.2

Pump 0.3kg 22.1cm Amps
Len.

The SBE-19 is a self-contained CTD profiler that does not require external power
sources or data logging. When the SBE-19 is mounted inside PURL II it requires a pump
and plumbing to flush the sensors with water. The pump employed on PURL II is the SBE-
ST, and it is controlled by switching its power off and on. The SBE-19 can be interfaced
with the PC-104 stack via a RS-232 link, and the CTD data logged by PROTEUS. Because
PROTEUS can interface with the SBE-19, PURL II can be reconfigured to use the SBE-19
outputs as control signals. For example, if the goal of a particular mission is to survey the
thermocline in a lake, PURL II could be configured to perform a sawtooth survey with two

temperatures defining the top and bottom of the vertical profiles.

55

9.2 Video Camera

Underwater vehicles employ cameras for a wide variety of tasks including bio-diversity
surveys, bottom mosaics, visual inspection, and vehicle piloting. Low light cameras are
essential for autonomous surveys because an AUV must carry energy for the lights. Low
light cameras also reduce optical back scatter because as less light is put into the water, less
light is scattered back into the camera from particles suspended in the water. An analogy to
back scatter is the reduction in visibility experienced when high beams are employed while
driving in fog or snow. Extremely low light, black and white SIT and ICCD cameras provide
the best light sensitivity of all cameras (10™ to 10" Lux), whereas low light colour cameras
provides light sensitivities as low as 0.1 Lux. Due to cost and size constraints PURL II does
not carry an extremely low light camera. Instead, PURL II carries a black and white video
camera manufactured by Deep Sea Power and Light called the Micro Sea Cam 1000 (Table
9-1).

Table 9-1: Video Camera and Lights Specifications

Component Type Dimensions | Depth Weight Power Notes
(m) | Air/ Water (kg) | (Watts)
DSP&L MSC | Black & | 6cm Len. 1000 | 0.175/0.100 1.4 0.3 Lux Scene
1000 White 4.4cm Dia. Ilumination
DSP&L Light | Halogen { 11.6cm Len. | 1000 [0.3 /Neutral 50 or Inrush current up to 10
7.9cm Dia. 100 times nominal value.

10. Transportation, Launch and Recovery

Transporting, launching, and recovering AUV are the three tasks that often make
them unwieldy for many potential users because AUVs are generally too large to be handled
inexpensively. PURL II is small and light enough that two or three people can transport it to
the launch site, launch it, run a mission, and recover it with little difficulty or expense. To
facilitate easy handling, a search and rescue stretcher was purchased and modified to act as a
carriage for PURL II. Search and rescue equipment is designed for handling loads (injured

people) that are approximately the same weight and size as PURL II. To aid movement over
56

long distances and rough terrain, a large wheel is attached to one end of the stretcher, and the
unit is rolled over the ground. The stretcher has convenient hand holds and is designed for
carrying, dragging, rolling, lifting and other tasks associated with moving, launching and
retrieving PURL II. PURL II is small enough to be transported in a compact car with a hatch
back and the passenger seat removed, a pick up truck, or a mini-van. Employing readily
available personal vehicles reduces the cost of transporting PURL II because special vehicles
do not need to be rented or purchased. The support equipment also travels in the same
vehicle as PURL 11, and is contained in toolboxes and Pelican cases. The final result is a

mobile AUV that can be transported from the lab to a mission site quickly and easily.

11. Vehicle Performance

For the purpose of mission planning and analysis, the performance parameters of
PURL II can be represented empirically by a few simplified equations. Quantifying the
performance of AUVs reduces the costs and resources required to obtain underwater data
because missions can be planned to make the best use of the available AUV resource. Also,
if an AUV is designed for a specific set of missions, a minimum AUV can be developed that
minimises the resources consumed while operating the AUV. The volume of water surveyed
during a mission is determined not only by the types of sensors carried and their ranges, but
also by the path that the AUV is able to complete in a specified time. In general, the faster an
AUV travels, the more water surveyed. Trade-offs between the speed, size, depth and cost of

AUVs constrain the maximum performance available from current AUV technology.

11.1 Specific Energy

The base components for PURL II include everything but the payload (i.e. the faring,
floatation, pressure vessel, thrusters, navigation sensors, batteries, and electronics). These
base components can be represented in relation to the vehicle's mission by four parameters:
volume, mass, velocity and power consumption. The power consumption calculated without

including the propulsion and payload is commonly referred to as the hotel load. Hotel load

57

represents the overhead energy required to operate all the vehicle’s systems before any useful
survey work is done. As in a company, reducing the overhead (hotel load) is an important
part of increasing efficiency. If all of an AUV’s energy is consumed by the hotel load, there
will be no energy for propulsion and payload sensors. An equation for specific hotel energy

for a given mission with duration t is shown in (4):

en = LRL _ Pu 4)
SW VW

where ey is the specific hotel energy, Py is the hotel load, s is the survey distance, w is the
total weight of the vehicle, and v is the survey speed (Bird, 1997). The specific energy
represents the energy required per unit distance travelled per unit weight of the vehicle. By
definition, ey is directly proportional to the hotel load, and inversely proportional to the
velocity and weight of the AUV. The faster the AUV travels, the less time the hotel load has
to consume the AUV's energy reserves, and the heavier the AUV the more energy that can be
stored in the form of batteries for a given hotel load.

Similar to the hotel load, the payload also consumes power, and the specific payload

energy is shown in (5):

ep = Pt Pr 5)
SW VW

where ep is the specific payload energy, Pp is the payload power consumption, s is the survey
distance, w is again the total weight of the vehicle, and v is the survey speed. It is not
obvious that the specific energies for both the payload and hotel use the total weight of the
vehicle until you remember that the total weight of the vehicle also includes the weight of
whatever payload is carried. Part of a payload could be an extra battery pack, similar to drop
tanks that fighter aircraft carry to increase their range. The mission defines the payload, but
the weight of the vehicle used to calculate the specific energies must include everything

including the payload.

58

The sum of the specific hotel and payload energies represents the energy required to
complete a mission if no energy is expended moving the vehicle through the water.
However, energy is required to thrust an AUV through the water, and the specific energy of

propulsion is shown in (6):

2
er = Dg " P. _ Co Awﬂvv n Pv (6)
aw VW 2aw vw

where er is the specific energy of propulsion (thrust), Dy is the drag force, Cp is the drag
coefficient, A, is the wetted area of the vehicle, a is the efficiency converting electrical
energy into thrust, P, is the battery power required for the vertical thrusters (typically S0W),
and py is the density of the water. The efficiency converting electrical energy into thrust is
assumed to be constant, and at 0.6 m/s o was determined to be 0.0825. 8.25% is an
extremely low efficiency rating, but one of the reasons for this low efficiency rating is that
the thrusters turn a small, low pitch propeller at high speeds. To increase the propulsion
efficiency, the thruster should turn a larger propeller at lower speeds.

The coefficient of drag is determined by friction drag, pressure drag, and Reynolds

number as follows:
Cp = Cf(l + == 4 —j (N

where Cr is the friction drag, r is the length to diameter ratio, and the terms in the brackets
represent the pressure drag on a slender body (Bird, 1997). Since PURL II does not have a
cylindrical cross section, the length to diameter ratio for PURL II was approximated by an
equivalent diameter (0.33m) which yields the same frontal area as PURL II. The equivalent
length to diameter ratio for PURL Il is r = 5.82. Friction drag depends on the Reynolds

number (r.) as shown in (8) and (9).

59

Cr = — (8)

re = — 9

Where C, and C; are determined by the flow around the vehicle, L is the length, v is the
velocity, and v is the kinematic viscosity of water (y = 1.1x10® at 18°C). An estimate of the
coefficient of drag could be determined by approximating PURL II's shape with known
shapes such as cylinders and rectangular boxes, but the shape of PURL II is more complex
because it has appendages. Determining the values of C, and C; relies on the assumption
that the flow around PURL Il is turbulent. At the speeds PURL II generally operates,
assuming turbulent flow is reasonable because PURL II is not well fared and it has non-fared
appendages. For bodies with turbulent flow C, = 0.2 (Bird, 1997), and C; must be
determined from measured data. When the two forms for the specific energy of propulsion
(er) are equated at v = 0.6m/s, A,, = 2.6 m?, pw = 1000 kg/m3 and Dy = 1.4 kg * 9.81 N/kg,
C, equals 0.41.

The total specific energy for a vehicle (ey) is the sum of ey, ep and ey as shown in
(10). It must be reiterated that the calculation of specific energy is an approximation to the
actual performance of PURL II and the development of a detailed model is outside the scope

of this thesis.

2
oy = Pu +Pr + Pv N Co Aw pw v (10)
\A%% 2aw

The graphs for specific energies have different minima depending on the payload and
ballasting. For this crude empirical analysis it is assumed that the payload ranges from zero
watts (a self contained CTD) to 125 watts (CTD, pump, video camera and 100 watt lights),
and that the vehicle is ballasted so that 50 watts is required on average to keep the vehicle at
the desired depth and altitude (Figure 11-1 and Figure 11-2). The wetted area of PURL Il is
approximately 2.6 m”, the mass is 70 kg. The minimum for a zero power payload occurs at a

60

velocity of approximately 0.45m/s and the minimum for a 125 watts payload occurs at
approximately 0.65m/s. The area between the two curves in Figure 11-3 shows the range of
specific energies for payload power consumption between zero and 125 watts. If the payload

power consumption increases above 125 watts, the minimum energy velocity will increase

beyond the maximum velocity of PURL II (0.65m/s).

20
!

16 | T A ¢ Hotet
l . ©0- - ¢ 0W Payload ‘
4, ¢ L 0~ - ¢ Vertical Thrust

| M
E | —f— ¢ Horizontal Thrust

I X I
12 H | —3m— € Mission OW Payload

Specific Energy

Velocity (m/s)

Figure 11-1: Velocity Vs. Specific Energy (0 Watt Payload)

61

20

Specific Energy

Figure

Velocity (m/s)

—a cHotel
—e— ¢ 125W Payload
—&— ¢ Vertical Thrust

—~g— ¢ Horizontal Thrust

11-2: Velocity Vs. Specific Energy (125 Watt Payload)

62

Specific Energy

16 1 ———
! —~@— ¢ Mission 0W Payload

| ! =g ¢ Mission 125W Payload
4 —

0 _ S - -

0 02 04 0.6 0.8 1 1.2

Velocity (m/s)

Figure 11-3: Velocity Vs. Specific Energies

Rarely will PURL II be able to operate at the minimum specific energy point because

the desired mission velocity will be determined by the physical phenomenon being measured

or surveyed. Full throttle is usually the desired velocity setpoint because the phenomenon

being measured must be sampled as quickly as possible. The scientist operating PURL I1

does not care what is the most efficient operating point, he or she wants to collect their data

in as timely a manner as possible.

11.2 Vehicle Specifications

Table 3-1 lists the desired specifications for PURL II. Table 11-1 shows a

comparison between the desired and actual specifications for PURL II.

63

Table 11-1: Design Goals and Actual Implementation

Design Parameter Goal PURL I
Completion Date December 1996 June 1997
Max. : Min. Speed 1 m/s : Stationary 0.65 m/s : Stationarv
Maximum Depth 70m Tested to SOm
Endurance (min. : max. payload) |2hr. @ lm/s : 1hr. @ lm/s 3hr. @ 0.65m/s : 15hr. @
0.65m/s
Maximum Displacement <70kg <70 kg (payload dependent)

Maximum Size

2mx 0.5 mx 0.5m

1.92m x 0.47m x 0.7m

Communication Link

Ethernet (via Fibre and

Ethernet (Fibre and 10Base-T)

10Base-T)
Transportation 2 compact cars or a pickup truck 2 compact cars or a pickup truck
Crew 2 or 3 people 2, but preferably 3 people
Operating Temperature -5t040 °C Field Tested in -2 to 25°C
Navigation Dead Reckoning Dead Reckoning with compass,

depth sensor, and an altimeter

Minimum Instrumentation

Heading, Depth, Altitude, Battery
Monitor, and Leak Sensor

Heading, Depth, Altitude, Battery
Monitor, and Leak Sensor

Payload

CTD, Camera + Lights, Side Scan
Sonar, and 2kg ballast.

CTD, Camera + Lights and 4 kg
ballast.

PURL II does not meet all of the desired specifications. PURL II’s maximum

velocity of 0.65m/s falls well short of the desired maximum velocity of 1m/s. The URL has

plans to upgrade the thrusters aboard PURL II which will hopefully bring the maximum

velocity closer to the desired velocity of 1m/s. Also, the faring and its appendages could be

streamlined to reduce drag and increase velocity. A side scan sonar payload has also not

been added, but the URL has recently purchased an Imagenex side scan sonar and hopes to

add it to PURL II in the coming year. Other than these two shortcomings, PURL II meets the

desired operational window and is therefore considered a success.

12. Trials and Missions

In order to prove PURL II as a useful AUV in small lakes, major components of its

development were lake trials and lake missions. When a design is placed under the

constraints of finite money, finite labour, finite time, and employing only off the shelf

components, the effectiveness of such an AUV is thrown into doubt. All of the subsystems,

software, and sensors were tested in the swimming pool at Simon Fraser University, or at

Loon Lake in the University of British Columbia’s research forest in Maple Ridge (Figure

64

12-1'). The small arm in the Southeast corner of Loon Lake is where much of the testing was
conducted because of its shallow maximum depth (<15m), and its smaller size. If PURL II
is lost in the arm of Loon Lake, divers could search the arm and locate the vehicle within a

few working days.

Relative Distance North (km)

Relative Distance East (km)

Figure 12-1: Loon Lake, University of British Columbia Research Forest

65

12.1 Swimming Pool and Lake Trials

PURL II was usually tested in the SFU swimming pool and then moved to Loon Lake
for field verification. However, towards the end of PURL II’s development cycle, the pool
tests were sometimes skipped. Moving from bench testing straight to Loon Lake is an
indication of the confidence we had in PURL II’s ability to perform missions successfully.

The first PURL II missions were actually run aboard PURL I. PURL I performed as
a test platform for software and sensors until PURL II was operational in September 1996.
Employing PURL I as a test platform allowed us to develop software in parallel with the
electrical, electronic, and mechanical components of PURL II. Moreover, lessons learned
from operating PURL I were applied to PURL II, especially in the areas of mission planning,

and vehicle handling and transportation.

12.1.1 October 19, 1995

Trial: Constant Compass Heading
Vehicle: PURL 1
Location: SFU Pool
Tests: KVH Fluxgate Compass, Heading Control, and PROTEUS Mission Scripting

While following a constant heading, PURL I flew from the shallow to the deep end of
the SFU swimming pool. After a timed wait expired, PURL I turned around and headed back
to the shallow end. PURL I maintained a constant altitude above the bottom of the pool by
dragging a chain. PURL I behaved erratically and turned circles during several of the runs.
This erratic behaviour was later attributed to a PROTEUS bug which corrupted the serial port

receive buffer, thus corrupting the heading information.

12.1.2 February 20, 1996

Trial: 50m Deep Dive
Vehicle: PURL I
Location: Loon Lake Main Body

Tests: Thruster 50m Depth Rating, Depth Sensor, and Depth Control.
66

PURL I dove from the surface to 50m where the vehicle apparently embedded itself
into the bottom and was unable to return to the surface under its own power. PURL I was
retrieved by pulling up the rope it followed to the bottom. We are unsure why PURL I could
not return to the surface, but it appears that the vehicle could not over come the lost
buoyancy when the floatation compressed at depth. The thrusters were unharmed by their

descent to 50m, and the depth sensor functioned properly.

Trial: Sawtooth Profiling
Vehicle: PURL 1
Location: Loon Lake Arm
Tests: PROTEUS Mission Scripting (Looping), Depth Sensor, Depth Control System, CTD
Profiler, First Completely Autonomous Mission

PURL I went out and back on fixed headings in the Arm of Loon Lake. While
following the fixed headings, the vehicle saw-toothed up and down through the water column
between 0.25m and 4m depth. The sensors and control loops for depth and heading appeared
to work well, and the error detection added to the sensor interfaces appeared to catch the
corrupted serial port messages. The CTD profiler was mounted on PURL I for this mission

and it was able to collect data. This is the first completely autonomous mission for PURL 1.

12.1.3 March 12, 1996

Trial: Out and Back at Fixed Depths
Vehicle: PURL I
Location: Loon Lake Main Body
Tests: Depth Control, CTD Profiler and CTD Pump

PURL I went out from the dock in the main body of Loon Lake at 5m depth for 35
minutes, and then turned around and headed back to the dock at 10m depth. PURL I dragged
a surface float to ensure that we would not lose the vehicle if it dived unpredictably or had a
system failure. The CTD pump did not work because its power cable had an intermittent

connection.

67

When the same mission was run a second time, PURL I dived to almost 9m before
returning to the desired out-bound depth of 5Sm. After examining the data logging and error
logging files, it was found that the serial port data was corrupted for an extended period of
time. PURL I did not receive accurate depth data for most of its dive to 9m. The remainder
of the mission was uneventful. After contacting ISER, an updated release of PROTEUS was

sent to the URL which contained several bug fixes.

12.1.4 September 4, 1996

Trial: PURL II Shakedown

Location: SFU Swimming Pool

Tests: Heading and Depth Control, Ethernet Link, Vehicle Velocity and Manoeuvrability.
We had a hard time establishing a reliable Ethernet connection with PURL II because

we encountered general protection faults in memory, and the Ethernet cable may have had a

problem with water intrusion. Once launched successfully, PURL II ran several out and back

missions without any problems. The out and back runs were conducted with either a 0.25m

depth setpoint for the entire mission, or a 0.25m depth setpoint in the shallow end of the pool,

and a 1.0m depth setpoint in the deep end. After the trials, we cleaned and lubricated all the

underwater connectors.

12.1.5 September 17, 1996

Trial: PURL II Shakedown and Altimeter Test
Location: SFU Swimming Pool
Tests: Altimeter, Vertical Control System

Tested the altimeter in bottom following mode and depth following mode. The
altimeter and vertical control systems worked well (for additional information see Maier,
1997). Communications with PURL II was reliable throughout the twelve runs that this trial

entailed.

68

12.1.6 September 19, 1996

Trial: Altimeter Test and Autonomous Missions For The NSERC Demonstration
Location: Loon Lake Arm
Tests: Depth Following Mission, Bottom Following Mission, Sawtooth Mission

Operating autonomously in the arm of Loon Lake, PURL II successfully completed
the constant depth following and bottom following missions. These trials were the first
autonomous missions for PURL Il in a lake. Moreover, this was the first bottom following
mission in a lake. Unfortunately, the sawtooth mission was unsuccessful because PURL 11
veered off course and wedged itself under a submerged log. PURL II eventually extracted
itself and was lost for approximately 30 minutes before it surfaced for retrieval. The mission
script loop controlling the sawtoothing entered a state where it seized all the available
processing time and pre-empted all of the other control tasks. This is a serious deficiency in
the PROTEUS mission scripting language. To prevent a seizure from occurring, timed waits

were added to the sawtooth loop.

12.1.7 September 23, 1996

Trial: Autonomous Missions For The NSERC Demonstration
Location: Loon Lake Small Arm
Tests: Depth Following, Bottom Following, and Sawtooth Missions.
The Depth Following, Bottom Following and Sawtooth Missions were all performed
properly by PURL II.

Trial: Long Distance Mission
Location: Loon Lake Main Body
Test: Endurance

Following a constant heading and constant depth, PURL II travelled out from the
dock in the main body of Loon Lake. After 1500 seconds, PURL II turned around and
headed back to the dock. PURL II travelled approximately 1.8 kilometres round trip, at a
depth of 2 meters and a velocity of 0.6 m/s.

69

12.1.8 September 27, 1996

Trial: NSERC Demonstration Of Depth Following

Location: Loon Lake Arm

Goal: Demonstrate Depth Following, Bottom Following, and Sawtooth Profiles To NSERC
PURL II successfully performed Depth Following , Bottom Following and Sawtooth

Profiling missions for NSERC.

Trial: Altimeter Analysis
Location: Loon Lake Arm
Tests: Altimeter Parameters
PURL II ran sixteen missions across the short axis of the Loon Lake arm. Different
altimeter parameters and settings were tested at different altitudes. For more information on

these trials please see Maier, 1997.

12.1.9 May 28, 1997

Trial: Fibre Optic Cable and Video System Test
Location: Loon Lake Arm
Tests: Altitude For Employing The Video Camera

PURL Il ran a variety of trials across the short axis of the Loon Lake Arm while
towing the fibre optic tether and employing a video camera. The goal of these trials was to
determine what altitudes worked well for the Micro Sea Cam video camera. It appears that
an altitude of between one meter and two meters provides the best results. At higher
altitudes the lights carried by PURL II do not provide enough illumination to achieve enough
contrast for general viewing and object identification. The fibre optic cable and the surface
viewing equipment worked well. The fibre optic cable snagged on the bottom during one of
the runs, but we were able to free the vehicle without entering the water. PURL II can also
be stopped and dragged backwards by the fibre optic cable which allows us to operate in
deep water. If a failure occurs, PURL II can be retrieved by manually pulling it to the

surface.

70

Trial Fibre Optic Cable and Video System Test
Location: Loon Lake Main Body
Tests: Deep Tests of the Fibre Optic Cable and Lights

PURL II ran along the bottom of Loon Lake at depths ranging from 30 meters to 15
meters. PURL II was able to pull the fibre optic cable through the water although its speed
was reduced. The lights appeared to work well, there were no "hot spots" and they provided
enough illumination to travel one meter to two meters above the bottom of the lake. It was
difficult to determine how much fibre optic cable was in the water, therefore pay out
markings should be added to the cable. PURL II and its fibre optic system was deployed and
operated from the URL canoe.

12.2 Missions

During trials, PURL II performed the three basic mission types that can be combined
to create more complex survey and scientific data collection missions. The trials also
showed that PURL II can be deployed in a remote location with little logistical support. One
can drive close to Loon Lake, but for the final 100 to 200 meters to the launch site, PURL II
must be wheeled over rough terrain. To demonstrate that PURL II can actually survey and
collect scientific data, we examined the internal waves caused by wind action across Loon
Lake..

Internal waves are found in stratified waters and have traditionally been investigated
using an array of self-recording sensors such as thermistor chains. While the temporal
resolution of thermistor chains is generally excellent, the spatial resolution is often poor
because the chains are spaced far apart (Laval, 1997b). An AUV can provide good spatial
resolution because it moves horizontally through the water.

Internal waves are studied because density stratification is a barrier to vertical mixing
and transport within the water column (Laval, 1997b). Surface waters tend to be oxygen rich
but nutrient poor, and deeper water tend to be oxygen poor and nutrient rich. Exchanging

oxygen and nutrients between the surface and deeper water is essential for maintaining a

71

healthy lake ecology (Laval, 1997b). When a pollutant is added to a body of water, proper
dispersal is inhibited by stratification, or when water is withdrawn from a reservoir,
stratification determines what type of water is withdrawn. In both cases, knowing the effects
of stratification is important for maintaining healthy bodies of water.

On November 26 (JED 330), November 27 (JED 331) and December 2 (JED 336),
1996, PURL II performed CTD surveys along the long axis of the main body of Loon Lake.
In order to measure the position of the thermocline along the length of the lake, repeated
sawtooth profiles were performed. There is no meteorological data for Loon Lake other than
qualitative data collected on the survey dates. On JED 330 and JED 331 it was overcast with
a light rain and no wind. On JED 336 there was a strong southerly wind and it was snowing
heavily. In the days between JED 331 and JED 336 there was a wind and snow storm
throughout the Greater Vancouver Region including Loon Lake. The wind storm provided
us with the opportunity to collect data that compares the internal waves in Loon Lake during

a period of calm weather with data collected during a wind event.

12.2.1 Mission Tracks

PURL II completed five runs during the three mission days. Figure 12-2 and Figure
12-3 show two of the five mission tracks that were followed (Laval, 1997a). Because PURL
II is not yet equipped with deep water retrieval equipment, a float and string was attached to
prevent loss in the event of a system failure. Figure 12-4 and Figure 12-5 show the sawtooth
profiles and bathymetry data generated during the outbound legs of Mission 4 and Mission 5.
The sawtooth profiles were conducted between ten and twenty meters depth unless the
bottom prevented PURL II from reaching the bottom of the profile. Table 12-1 shows the
mission specifics for the five missions with the outbound leg containing an “a” suffix and the

return leg a “b” suffix (Laval, 1997a).

72

-0.8 -0.6 -0.4 -0.2 0 0.2
Relative Distance East (km)

Figure 12-2: Mission 4, JED 330, Mission Path

0.4

0.6

0.8

Relative Distance North (km)

Relative Distance East (km)

Figure 12-3: Mission 5, JED 336, Mission Path

74

—_
o

B o fro\i11213f14\15/16\17 /18192011 22\3 pa'ps p6l728 09

N
o

BN
o

Relative Distance North [km]

Figure 12-4: Mission 4, JED 331, Outbound Sawtooth Profiles

75

0.2 0.4 0.6 0.8 1 1.2
Relative Distance North [km]
Figure 12-5: Mission 5, JED 336, Outbound Sawtooth Profiles
Table 12-1: Mission Specifics
Mission Day Start End Length (m) | Duration (min) | # of Profiles
la 330 9:58 10:28 640 30 18
1b 330 10:30 11:00 640 30 18
2a 330 11:53 12:35 860 40 26
2b 330 12:35 13:15 860 40 20
3a 331 9:08 10:02 1050 50 28
3b 331 10:02 10:41 850 40 18
4a 331 13:57 14:50 1060 50 30
4b 331 14:50 15:36 1060 50 26
Sa 336 10:23 11:15 1150 50 28
Sb 336 11:16 . 12:09 1000 50 26

76

12.2.2 Mission Profiles

An analysis of the sawtooth profile data collected during the five mission series can

be found in “PURL II / Loon Lake Fall 1996 Raw Data Report” by Bemard Laval. Figure
12-6 and Figure 12-7 show the profiles for the outbound legs of Mission 4 and Mission 5.

After comparing these two profiles. it is possible to see the increased variability in

thermocline depth caused by the wind event.

10

12

18

20

1

T

5 6 7 8 9 101

112 13 14 1516 17 18 19 20 21
Temperature [deg C]

Figure 12-6: JED 331, Mission 4 a, Profiles Spaced 0.5°C Apart

77

10

1 3(|5 7 9 110 113 {15] [17] (19l [21] |23 |2sf (27
12+
2
14t
-
| S §
i e
D d
o
316
18r A
é 8 1 1 14 (16| |4 20 24| [26] |os
20+
1 i i 1 1 1

5 6 7 8 9 10111213 14 1516 17 18 19 20 21
Temperature [deg C]

Figure 12-7: JED 336, Mission 5 a, Profiles Spaced 0.5°C Apart

After the missions were complete, Bernard Laval made several recommendations
about improving the usability of the data collected by PURL II. It is important to stress that
the desires and needs of scientists should be fulfilled by future AUV designs. Scientists will
employ AUVs if, and only if, tasks can be performed at a level of risk and cost acceptable to
the scientists. The following is an abbreviated list of the recommendations made by Mr.

Laval (1997a).

78

1) Better positioning can be facilitated by breaking missions into two parts where the return
leg starts at a fixed location such as a buoy, not where the outbound leg ends.

2) In order to perform limnological studies, a meteorological station recording parameters
such as wind speed and temperature is essential.

3) Increase the resolution of the data logging time stamp to 0.1 seconds. The current time
stamp resolution is one second.

4) Record the times when PURL II passes known landmarks as a method of updating its

position.

13. Future Enhancements

The list of PURL II's future enhancements could be extensive if the scope is not
constrained by time, money, and the URL's research plans. The following is a list of

enhancements that may be pursued in future phases of the PURL II project.

Mechanical Enhancements

e New mounts for both the horizontal and vertical thrusters. They should be fared to
reduce vehicle drag.

e Reducing vehicle drag by filling the holes and depressions in the faring

e Add removable foam sections in the bow and stern of the faring to increase the payload

capacity.

Electrical Enhancements

e Add more powerful horizontal thrusters with larger propellers and lower screw speed.
The horizontal motor controllers may also require changes to handle the increased current

draw of the new thrusters.

Software Enhancements

79

Upgrade the Ethernet utilities available to the operator so that PROTEUS can be
launched without employing Carbon Copy LAN. TCP\IP command calls may be the
solution. Carbon Copy LAN should always be maintained for debugging and verification
purposes.

As ISER upgrades PROTEUS and moves from DOS to QNX, the URL should also move
PURL II to QNX. QNX would eliminate restrictions such as a maximum of five serial
ports. QNX can operate as a real time OS, and DOS cannot.

Increase the data logging resolution from one second to 0.1 seconds.

General Enhancements

Add deep water (>10m) retrieval equipment so PURL II can be relocated and retrieved if
lost in deeper waters.

Finish building up the other fibre optic penetrators and cables that are currently in the
URL.

Add distance markings to the fibre optic cable so that the pay out length is known.
Develop a payload pressure vessel. The payload pressure vessel should be supplied with
power and an Ethernet connection to the main pressure vessel.

Efforts should be made to reduce the time it takes to change the battery pack. Although

not prohibitive, reducing down time increases mission time.

14. Conclusions

Successfully completing the PURL 11 missions proved that AUVs can be employed to

collect data in lakes and other remote locations. PURL II demonstrated its ability to operate

as a rapid deployment search and survey AUV by performing a survey of the internal waves

within Loon Lake. PURL II also operated in a variety of weather conditions ranging from

calm, warm and sunny days, through to windy, cold and snowy ones. PURL II has many

deficiencies such as the absence of an accurate positioning system, but dead reckoning is

adequate for many missions and inspection tasks.

80

The utility of AUVs is inversely proportional to their cost and fear of losing them. If
one cannot afford to lose the AUV, it will never be permitted to perform an autonomous
mission. PURL II operated autonomously in the arm of Loon Lake where SCUBA divers
could retrieve a lost vehicle, but PURL II was always tethered in the main body where
retrieval is not possible at deeper depths. Once deep water location and retrieval equipment
is developed for PURL II, it will operate autonomously in the main body of Loon Lake.
Reducing the cost of a AUV increases its utility because it will be permitted to perform a
greater variety of missions.

Reductions in the cost, size, and power consumption of electronic components will
lead to higher levels of physical and electrical integration, thus reducing the size weight, and
cost of AUVs. Smaller, cheaper and faster are the desired attributes of AUVs because as size
decreases, operating costs decrease, and as speed increases, the quantity of data collected in a
specified period increases. When AUVs demonstrate they can perform tasks at a cost and
level of risk acceptable to users, AUVs will start gaining acceptance in the various
underwater communities.

Off-the-shelf software such as PROTEUS dramatically reduced the time and cost of
developing PURL II. Interface components specific to PURL II were the only software
components that were added to PROTEUS. Employing off-the-shelf software allows
developers to amortise costs over time and among different users. Without PROTEUS it
would have taken substantially more time and money to develop PURL II.

PURL II does not contain many redundant systems because human life is not
endangered by a failure, and the money, weight and space consumed by redundant systems
reduce the AUV’s utility. If a failure is detected, PURL II attempts to return to the surface
for retrieval. If PURL II cannot return to the surface, it must be located and retrieved by
external means such as SCUBA divers or a grapple. Losing the AUV is an unwanted but
acceptable option because the value of the tasks performed are greater than the risk adjusted
cost of losing the AUV and replacing it.

Employing the fibre optic system is warranted only for sophisticated tasks that require
a human operator to apply his or her intelligence to the mission. Whenever possible,
autonomous missions should be employed because they consume fewer resources; the AUV

81

travels faster and surveys a larger volume of water, the pre-mission and post-mission times
are reduced, and the operator(s) can perform other tasks while the AUV is surveying
autonomously. For the foreseeable future, there will always be missions, especially visual
inspection and identification tasks, that require a human operator.

Clients should be defining the performance specifications and mission parameters
from which future AUVs are designed. Bounding what an AUV must accomplish reduces
costs because the design can be minimised. Also, the client will allow the AUV to operate
autonomously because its risks and costs are outweighed by the value of the tasks it
performs.

PURL 1II is a first step along the path of developing small, inexpensive AUVs.
Performing autonomous and tethered missions in Loon Lake with little logistical support
demonstrated PURL II’s ability to be a rapid deployment survey vehicle. Future
enhancements such as deep water location and retrieval equipment will increase PURL II’s
utility and expand the scope of missions it performs. PURL Il is a continuing project in the
Underwater Research Lab at Simon Fraser University that will build on the utility

demonstrated in this thesis.

82

References

Alt, Christopher von, Ben Allen, Thomas Austin and Roger Stokey. July 1994. “Remote
environmental measuring units,” in Proceedings of the 1994 Symposium on AUV
Technology. Cambridge, Massachusetts. 13-19.

Anderson, Jamie M. June 1992. "Model development for control of the autonomous benthic
explorer," in Proc. of the International Offshore and Polar Engineering Conference,
San Francisco, CA: Vol. 2, 468-472.

Bellingham, J. G., C. A. Goudey, T. R. Consi and C. Chryssostomidis. June 1992. "A small,
long-range autonomous vehicle for deep ocean exploration,” in Proc. of the
International Offshore and Polar Engineering Conference, San Francisco, CA: Vol.
2,461-467.

Bellingham, J. G., C. A. Goudey and Chryssostomos Chryssostomidis. April 1993.
"Economic ocean survey capability with AUVs. Systems overview: intelligent
control, navigation, communications, energy storage, propulsion, subsystem power
use," Sea Technology 12-17.

Bellingham, J. G., C. A. Goudey, T. R. Consi, J. W. Bales, D. K. Atwood, J. J. Leonard and
C. Chryssostomidis. July 1994. “A second generation survey AUV,” in Proceedings
of the 1994 Symposium on AUV Technology. Cambridge, Massachusetts. 148-155.

Bird, John S., April 1997. "Size Bounds and Survey Limits of Autonomous Underwater
Vehicles and Marine Mammals," Manuscript in preparation.

Chryssostomidis, Chryssostomos, Henrik Schmidt and James Bellingham. June 1993.
“Autonomous underwater vehicles,” Research Department Of Ocean Engineering At
MIT, 100th Anniversary Issue, Cambridge, Massachusetts: 16-22.

Ferguson, James. 1997. "UUV Evolution: Exploration to Commercialization," Aviation Week
& Space Technology - Association for Unmanned Vehicles Systems International,
International Guide To Unmanned Vehciles / 1997-98.

International Submarine Engineering Research Ltd., 1991. "AUV Mission Planner And
Executor,"

Kreider, John R.February 1997. “UUVs for Underwater Work - Innovation or High Tech
Toy?,” Sea Technology. 25-32.

83

Laval, Bernard, May 1997a. "PURL II / Loon Lake Fall 1996 Raw Data Report,"

Laval, Bernard, John S. Bird, and Peter D. Helland, 1997b. "Observations Of The Spatial
Structure Of Internal Waves In A Small Mid-Latitude Lake," presented at Oceans 97.
Halifax, Nova Scotia. October 6-9, 1997.

Smith, Samuel M. and Stanley E. Dunn. July 1994. “The Ocean Voyager II: An AUV
designed for coastal oceanography,” in Proceedings of the 1994 Symposium on AUV
Technology. Cambridge, Massachusetts. 139-147.

Yeorger, Dana R., Albert M. Bradley and Barrie B. Walden. Nov 1990. "The autonomous
benthic explorer (ABE): A deep ocean AUV for scientific seafloor survey," presented
at Seminar On Autonomous Underwater Vehicles, Tokyo, Japan

84

Appendix One

The following is a list of the schematics that make up the wiring and printed circuit
boards inside PURL II.

Wiring Schematics

Schematic Name Description

Battery Box Wiring and pin out of the battery packs

Power Distribution Power distribution for the main power supply buses
BlueABC Wiring and pin outs for the Blue A,B,C penetrators
BlueDEF Wiring and pin outs for the Blue D,E,F penetrators
YellABCD Wiring and pin outs for the Yellow A,B,C,D penetrators
YellEF Wiring and pin outs for the Yellow E,F penetrators
Fibre Optic/Ethernet Fibre Optic and Ethernet Connections and Cabling
Miscellaneous Compass, Tilt Sensor and Leak Sensor Wiring

Printed Circuit Boards
Schematic Name Description

PC-104 Breakout PC-104 Breakout Board on top of the PC-104 stack

Relay and Fuse Power control relays and fuses

Serial Breakout 10-pin ribbon cable to 3-wire RS-232 converter
Digital Relay Two relays controlled by TTL outputs

Leak Sensor Leak Detector board

85

z [[
UoiISINABY -m::z. 3Z\g
xog Auwiieg
LARAYY
. ‘Zdwnog
PUZ 143n0d 410Q 01 PIIJIUUOD 10U K1 JBBJBYIBJ BYY 1 BBJmYDBJ JQoN LLIN
Moed AJwIIEg By 'BUlBJCYIBY UO) ZJENOG PUR |JBNOJ 01U S8N|d JBBJEYDBJ
ay *BulBuayYSPa JO) PaIDBUUGISIP S pum ‘11 Jdand Jenod oy pesn st
2aRd HJ22309 Y WIYN ZJINOA O3 PRIDBULOCD §1 NRAWNL AURIIRA BMI D ION
AT —
PANALlIYE =
[?
duy g
£
9 9 AZ1 mﬂ [)
—_— CA¥31livg —
3 S g
IR <k v nves
3 T —] O\/T 5 AvZ+
A A AZY —— dey g} aND
z F4 ZAN31lvE = V4 H
)) T aNe
39 W 0 d9 4 0 d opyn
idunc Lve Zyinod 133n0d
AZY
1A¥311Y8 — ‘31I1EWBYIS UolINQluIsLg
I Jenod B4y Ul Cusmog O3
$)1284YO0D |uenod JojDeNUOY ;®3OYN
¥ €

86

¥

XY UAEJ

JL) AL

Jaqunn| BzLSg

uoisinmy

iovInglialsig Jenog
LAMAYY a

fi

J018 Lauilwows) § oban

S1.
T {ino- w- x@
© 1 3ISN3S- n
, 4 mw —] 2018 LBUlWaa) n 1
= — iHlNl
< : [LLE &l
*3SN3S+ “LesSRA BunsSSEJd
1iNO+ N1+ ¢ A4y IPLSINO PAIIRDOOL 61
YOI 1A 2
S1- 0L #Z+
=y
= m (] A ‘Jiinueyds xog
H 1ng- Nl- HJ11nS NS Au®iicg B4y Ul (JBADd JOIIBUUGD
ISN3IS- anzz i
— {wiae B
| "
t3SNIS+ v ?
{inoe+ N1+ = 51 —
+ ¥0O1A
S1+ 0L »Z+ v
== Nns vZ+ <
. C lw.ﬂwu :
= (213
tino- N1~ 1
*ISN3S- anze == m m d9 W 0
- Vo = - ons —J cyInod
R Z2 b ane
1y ©ISNASe €I ns vZ+
CLlno+ Ni+ v2 $AJ N AvZ+
+ HO0JIA
118 JiNndN1}
S+ 0L A¥PZ+ z8e
— ca
v68 BlNdNI]
— 1 31iewBYDS Jguenlg Ul
AoLEY 1461 ey
P mu UlndNil 3SNd ON A¥Z+ Jo4 YNdul APZ+ O
1L
¥ L23V] Jdoo) gurvyg O} —s—
8 1413 Jonol 9utd of —Z8 334 33noa
2 Ld3] Joyoy 9gurd o} >
9 1413 Jolo) Sutd o) —g
2 € [Z | '

87

v [2 | T
TR URKEJ]
L] ARLL
uoisine)y Jequny | wzlsg
oguenig 2ricueyds 4308n1E8 YO
LARAYY dwngd QlD Jo4 Janod 80d VnodimwmJg
$81-0d wOoJy
ST + 100 3ndinp Leyisrg 907
9 A 9 — 1L 0J3U0) dungd QL)
S S
< | 0—0--
¥ A v 1 Olkv.nnnr.
3 3 1o — ZY ON 1Y ON——
| Abend —J]ZY¥ IN_ ¥ ON [
~3 T O—O15— i 7y W03 VY W03 [——
1 1 axuw mwnm 8 ON 18 ON [
49K NO2J d94 .ﬁdqum |8 oM 1@ IN [
8 W02 18 WOO [T
YAWHNG 2 8 Nid 1 z
* Ag+ U 8la
aND g Bl1a
ATEBT
ST S - - Ngd 80d AT¥910
9 A 9 = o= =
z | ——
; * Mu _
- @3d noxeadg
dZd NOD * ¥ 1 vai1-2 wouJd T
789 TLHGID L OOtk 100 yndyng ﬂn:u_m
< A ||||._n 00 00 Z J 110JIU0) I4ELT
1 Z Z
A A oxzZ1 JBYA
\ aﬂ‘m 1 8 3nne
dZd4d NOD 494W NOD d94 NOOJ¥3s
782 11HBLT SLHO1N 8 8 N3d
FRRY T IV-T4
voliInglJysig Janogd
L WOJ4 IENJ ON APZ+
[
i JIVVIWEURIL QAPLA ngl
A S13ydp wJuqr 4y o) sso0l =
3 LEBUB1E BJRWR) OBPIA
‘ls 0341A
1
dvd zouﬂmw 9 A 9 TYNBL1S 0341
YHa3IHYD ‘HIoRVS $Q)-0d
~ E] A E] _ o—0 21 ®yy 03 pP®IdBUUGD
o1 v] 3 A ! H
o5 — L o—o1-t Xy Xy F—
vuog | O ¢ c I €< ¢ s 10—01¢ XL XL HE—
Levuss ndd o+ 3 3 T 3 o< 1 ¥ia
wOR JJNS O oL v V _ A 9%zl obUn AND dNB q
o—F D .rVL_) 1 ¥ 3In7s ¥sa 3
ole dvd NOD dvW NOJY3IS d9W NODJY3IS d94 NOIUIS siy
1 Zy3131 IPEREPETEEVI RN ¥ 8 Nid 512179
nr_uﬂw Ndd TYTH3s
1 9402
ay 3 Luvyasg ILqe) BUINBR)Y/AININILD]L JolkJyauagd peayylng

88

14
LY} .:..-._oH
uoisiAe squnN| ®z1g 2 rousyas
J@9anlg Ul uNOYS sy
4d3qenig s YR
iy Aave annd a3 LaSifucnbtaian el
. =
dz4 NOD 5 519
dund aL3 m|_ sid
o AND OND
O—0 ¥ia
3 C c oo
I 10—+ ¥ X[t
2 | oxzigEwn b EH
XZi1 0 NoRys
) 4 3n78 ye1-2d Up §40D Ol
94 NOD 494 NBHE3s -
1 318937013 48 N3d Plamd ves9ly uid-el
dvi NOD
61385 012
21980 PRIRUINIS | () e
TS 5 Y 3 _
s] 51 Cha
[-Xd d014dUT - . TRA7IVRNUYD ¥ [3 ¥ A Y L
TITENZT = 3
*XY¥ J01d8T : o807/ IITAR € < ALY T C C L PELET7A POL H
- s f < H
=X JI01IdeT TITHR/WIISS % 2 T 3 o0 TTe7IItAA— R
! 9xzL OBYA
FXL JUIdYUT STINE/IITHR 1] T 7 T 3 3078
494 NOD d9% NDDY3IS d5u ND2 494 KBovas
£I991718HN 17901718WA AlA/INEH13 3 8 N3d R ———
qny isudeyil |-gel
VJod § ‘,.AQQNH, OIW1
JOIDBUUOD SP-LH Hitn
TTEUYIIN s doyden F1983 L-ssmgel
84l J0j JealedsSURJ]
YU 343 wWOD-C O3U] 9 9
— dOY30UUeD §p-LY YIIA
al3s3 L-»segel 3 3 p—
v G
T t 1o ST
7 3
9xz.1 089N
7 7 g Inle
494 NO3 494 v3s
8N7d AWHNG a0 8 Nid

89

v | 4 [!
TRg UABJQ | 1790100
I® LLEFR PACY A T Y 4
uolsiney Joquny
a2gyLlea .
LIREIN >1yeusyss ==
uol1iINglJiIsilg JBenoyg +
Ul B3d ¥®ND4 UG Y —g—
K .M 9 vy 1A+ Xy zez ——
5 I 2 +¥010W X1 ZCZ |~
v N3 _ s | o—O}= 1 _ A1 anp aNezez —
L] =y L =3] S
1 Y Lot g N3 aNBZCZ
40100 |5 ‘ £ r 2 D-G-a N A L F1N3 S+ XM ZCZ
QGNB N3 r% Z O—C- T > ONB N3 X1 Z€Z
JISNERL _ 9xZ1 DOUN —¥010H
ZHHL L1¥3A 0 7 a NoI734A TYI3 HOIOH
d9K_NODY d9 I Woav3s >1imueyss : 7410 dHL
$ 7682 ¥HL a A N3d Uo1INglUIsS1Q Janoyd =
Ul 83d J8n04 UD ZY —pg— +
ard i SEH i
+¥0
v N3 s 5 o—0 { aNg aNsZCz
e i = — | OVES
e e | RN
- A 7y A -
ANB N3 [Z z OO “ >—] OND N3 X1 Z€Z
JISAEAL ..|.|._ 9xzl 6BYN -¥0L10H
VEHL LE3n d9u_No PFobuas 2 noniaa ._mm_w»wowmw
No>bY d9 EARY 'L DETS -
€ 782 MHL J A N3 UO1INGlUIELQ Janod =
Ul @3d Jenod U0 $8 —F +
? ? — a3+ XM zeZ
31 3 +¥010M XL ZCZ
v N3 aNg aN9ZCZ
A+ N3 [51 e 1O—O1-2 __ AYZ+
+¥010M " K v O—O- INL Y N3 .
N3 [£ 1 O0—O1F N3 ND
-zu_.o: > 1 £ € > 10017 2 mu S+ mu Nm.m. ’I2e3s #8)-0d
QNS N3 [z 3 O—0- z]OND N3 XL Zfz atqes ueqaiu’uiy ot
TISHUAL _ 9xZ1 OBER -¥oLoH 1980 ueqdiy uld @
¥HL LHD1¥ Dy vt i 8 no1I3A ._wm_u FOLOW
d9U_NO2Y d94 NOJV3s >11nwayss i ¥1D d¥HL
Z 18> M¥HL 8 A N34 UBIINd1a181Q JBAog =
Ul 83d Jenod L0 ZE —yz— +
| R =P
+¥01 X z
v N3 [3 s 0—0 aNp anezez
>mmkzm a 5 =1 OIAVOIO : 1 _ AYZ+ .
+¥010 Y N3 | ——]ome
8 N3 [E z - o012] 8_N3 aNBZLZ ¥l0
-¥0104 [I > 1O O17 F1NI S+ XM ZCZ X1 X1
aNg N3 I O—O- > AND N3 X1 ZCZ Xy Xy
z z z
IISHUAL 9xZ L DOOA -¥oloH *¥T TYTYTS
¥H1 1437 0 7 v N07734A F9L0 HOI0N zZuod
49K NO3 495 N0Jwu3s 19810 ¥HL
1 18D dWHLI 3ILu¥13N3d
19T + JIVENIY| Joledlauad puIvyyLng
¥ [_ Z g L

90

L4 E 4 T
TRg _UARJaT 1/3TEP) 91T
10 ALLL A c66] DAV-TZ TWIE
I
Uoirsiamy Jegunp 8Z\S
Jaties
LIRS
21 IBMRYDG
CO—.—:A—LuM—Q Janod
Ul 3E04 0N AVZ4 O ey
dlieWeYds uoliINqiluisig
J®nogd ®4l U] @ad
JBnOg UO NS pZ+ O] s
T
N1+
—] «lNDJ
35 —{An3/010
—03/004
j’ — mw.:_ue
= 9 - . X
€ C . mnm EELRY
I 2 C T v@1-2d @4l UO €HOI
! —] i} 3311010 oL uoddty uird el
9%Z1 ODUA 3y = T
1 FECTERERY |
dZ4 NOOY d9W NDJIW3IS d94 NOOVIS Sio 3
J8¥2 Hld3d 82 NS ‘Hldda 3 A Nid mwu Z
aND gD 2]
¥1q
X1l X1 rmlj
Xy Xd 7
AT TITITS
Hoeas
EHOd ygy-54 wyy ug whOD
0L uoqqiy uild @i
9 ¥e
+ S13
7 =
. L ans ks [
1a [H]
€ 3 XL K1
2 Xy X¥ [
z A¥@ 191838
- YHOI
1 =
d94 NDOY3IS LT
789 13y
L4 € Z T

91

v | 3 [z I 1

tRg UAREJIT AWk 'LV
L ALLAFAI g¢8Y _JN¥-t¢
uoisiAey Jequny| szvg
IBULEYII/ILIA0 BaqLy
8131y
“JEURNLE DLICWEYDS WoJd)
JO3IDBULGD JNE@ HIIN LRUBYG OBPlA
TONHIS 04dTA
BOR)INS O} IBUJIBYII § 331
38)JNE ¥OJ | 1BUIBYL] ect
®JRjUNS O} OBPIA [1] ngdd
*®3ujJnS B4} DO} B qED diido BU§l 3 Ml a1aA =
LT
anp
Xi d1A AZ)1+ ‘I—U:U
RI1830TA 21+ dd
H03313id0 STEb0 4l JaHT 3
LY] T4 no
din
‘ NOMMOD X¥BDC) —=SEETT TSI IYENTZT 1 X¥ W13 ane
1av 1NY AZ14
X1833) [yyETTTOSWTTONTS | XL 13 p 2w
13T 341 X¥X1 Hi X08 ¥0v7e
XNW 3¥81.4 ANLTLA

Bigd BALE INO 1ED1L1quA BYY
GiA 238 InE BY) WOJ) BLARD JIN L-8€2@@)

TTEVS JIn Jums

‘HI®IE pPI-0d ¥4I WOJ) ®l4ED Jin L-vsemp]

Iy JIN veT-3d

92

‘dey3I1®80) SBJIN ONRY) BYY

JJoy4s

1tin Lessan sunssaud w4y SurJRIUG aBIBA AUR
IBY) OS5 PDUBISIP 1J0YS © AQ PIIRUIIIS IJR IR Y)Y

¥ B E T
Rg URRJJT T/738TH 911U
15 ALLLE-A ¢68Y — DAV-CT T¥VE
Y
yoisiney Jegqunn| ezig
sSnosue| | edS 1}
s 3y

*80d INONRIIG $@1-Dd 343 UO
sindul SoLRuek 84} BYy 06 Josues
LYY BYY Woa | INndino Bo|muy
-81ly
—rr————¢

+

g

~Nioox>
N

vy

*NoeVS §@l~-Dd B4y Uo
1W0) 03 8L qeED> UOqqlu utld Q@1

SPJ1A BURq ON) BPUC SPEB| JOSUDS Hee|y By ION 1
Z1
90 CER o
o s12
s 1%11 s1y
83d Inoeesg . asa
¥01-3d 94l uo e1q N Nl S Ned t I3 OND dNB
oL s=an Leubis == | 1no s = T] Y3 ¥la
uoiidmieg Mean aNp == v [4 Xl Xl
R PH= i ¢
¥¥8 191835
SvAda WIS VO ﬂwu v Hf— 1H0D
kR [k]
AN
¥ E

93

14

TRY UAEIA] VAT AR AN
Is ILLL S| AT ST T 4 AR LT
v
uoisiney Jaqunn] mzisg
ynojesdg y@1-3d
IR
YHNILNINIS ¥44310383S
1aN9 810 [9900 | "zaun 910 0000
] e o
By GND 1911514 p
C 3 o
L o
C 4 TLETGE]
T A3+ ndd
2]
—_—
e cin e
T Uy IPFETLEL:
ez N1 7911910 Aa-
uw” 0000 ZU¥3LIn3NIS E AT ETOEDETY pro
(7= yHYITAIES In0 9079NY aND BDTUNY
[az— 100 81d _
(7 gNB ¥ TEIE —
TINGA nZi- 3
JND A+ __£ 1
eIA0A
(&1 —dND LY R
qN ATT- 2]
+ EWNILNINTS 5
— 115 AZ1+ ndd Y4 C o
¥ 3]
d 11
* —Z1_]
= .
5 ZHN¥31N3Y]
=15 vaND Nda]
TS
o -4 -+ =14 o i
5) o] o] o) 2 £
ZHYILNITIS Zu¥3ILNTETE ZWu3ILATEDY zuEdln g Y3
3 civ zly 11y elv 1z
TTEVEL =z
5 CaND nd3 A
N1 hd 2z |
IN1HJdYS + 57
= 9z |
3 2z]
- v —MN
s 1Y TPEIGED 33
-1 ZaNs ndd T4
g LE)
~ > > = m%—mmm
B E B i 01SNYdXI §
ZW¥ILNTTIS ZwW¥3LnTEIS zwH3ILATEDS zw¥iln
L1y 51y siy viw cH¥ILNINTS
1aNp nad
v [E _ L

94

¥ £ | z 1

H:LL TN T/7SNJA0TIY 131]

1L ILLLEA| {8EY BAU-CZ T W

]
Uorsiaey Jequny 8Z\Sg =
83INn4 pum ReLey
a ZOOPN]
sa
0

]
ZHy
ZOBYNL
va

ZHH¥ILINIY
¥8‘ca 1no

IAS WoJdy AZH
¥2S
H311lns
duy
4

O|o

induy
olsg 1ndul
Oy wndu)
av0s. .
duy § = CHAILNIY
93 £AY13Y S1ndN1
zZeosN1
za
duy 3
- a3 =
o —o M\ _o— 0 !
ZHy¥3in3 duy g o\Yollll 1
ze1e 1no b4 teraseLl -
ZAY13 =
zeorNy
ia
duy §
o —o M\ _o— —0
zZwa31n3 duy § T -
¥o 'ty 1no T4 1ciasTeLy
TAUT3Y
£ [z | 1

95

¥

R URRJI] 1701935
TS RLLA ¢6oY DAT-C¥
yorsiney Jaqunp

1nojeadg LEBlUBS

“¥1Q PUC ¥6Q S1J0YS Z-X[JBdung
“§1D PUR SLY 51J04YSs 1-xf umdwng
‘usdo 2| ®q ued sJasdun(

Yy suotliediddr aJin BRUY)
1sow Jog4 ‘aOR jUBIUL BUAA BUIU
11n) @ Ul 1uasadd BuLeYSpURY
dJE-APIEY BYY IUIAWNDJIND

©3 ¥lg PUB dSq pum ‘SLH pum S1Yy
ANMOME O3 PISFN OJR FIRIYUNE DI0N

Xy $,0d) ®Y3
09qiuy ayy 0y PIIDIUUOD s
[SEFREEEY SR ‘el qe> udoqqig
"Y1 Jo Jutodnela BYL WOU)
134981 AR X 1§
ﬂ z
—l'i
¥3du n:qlg
z-cr
3 cHYILNIY
civiy
d3dHNL T}
r-co
z
2] L]
¥3dHAL ﬂ|~ w um
z-2¢ 8l x4
[3 [AEEIN K|
ZIY1¥3s
¥3dHALT Y
1-zc
z
2] L
AIJHAL Y _ w um
Z-ic o X
z cHYILAINTS
1791835
Y3ILHALTT |

96

v z 1
HLY - BN 1/7A0TI98Td
52 ARLA A 4667 DAV-TT
Y
uoisiney JBqunN | PZars
Aeley Leli6g
®L3v) =
BZZZNZ
ZN "9 °C
zy
M
|4l
ZOOYNI
zZa

(ON) uadp
(ON) pesSoOl)]

(ON) usdp
(ON) P3s01D

{ON) uwdp
(IN) Pesol)

ALl BWJON [o)
AllewdoN | O
uowuwo) O

CH331Nn3
¥is

AlleudoN | o
AlloWwJoN | O

uowwo) | o

CHYIILN3YDS
€1is

AliewdoN | O

ARliewdeN | O
vowuwod (o

cH¥3LN3
Zls

ZH¥3Ln38as

8 Leiibg
U Leiibg

315

(ON) uado ALlRWJON |O
(ON) P®SO1) ALLBEWJUON {O
uowuwoy [o
CHY3LN3
115
¥ € Z T

97

98

¥ € [z 1
TKg _UARBJA | YT/¥g3T 8114
1) LLLE (661 DAV-LT WIEJ
_ Y
uoisiney JequnN | ez\S
Josues MNee
LV)
a
ancve .OP 1 1
[]
Al Z 43dne Z ¥3dunc
t4:] €Y
Neez O] Ul Josues
X\ jedd g, & qiim (%] o 1IN0 JOSUIS
S4ddwWNC 2341 1UOHS APOW WOIEN] 21 quua Znwdaliln3i
0y puRr ‘x1jmdd ¥, UB Yiyin sJIeduwnl id ¥OSN3S
2 Y)Y LLlC 1404S IPOU LRWJION ILqRUI O
*epou I L—
WOI1SNJ URBY) BALYIEURS SsB] RLIyS11S S 1 1 1
BPOW LERWJON 1B4Y S1 BDUBUE) 1P UlaWw By
‘WO31SN) PUC {CWJON :S8POW 1UBJID JJIp ONY
Yl _S®je.Bd0 pJIROR JOSUBG HE®T] BY| BION z M—::.. Z ¥ Ar_sh Z N m—::h
[} a v
— uuh L T
4an91
12
= Y3 250 |7
Wk EF ¥ a
133130 1103503
aN9 | o y j11H3 aND Jniee ‘e
ssuasg soeq| Qo 237703 Q0HLY2 indino za
NS+ |0 F— 9 1.35v8 340NY I} 119s0 T
CHY¥31N3 (4457 230 Y3 23S0
IASN3S Y3 z1 CI: R
+ 17
~
reel < ne
vy 14| N
AND
Zz * NbZ+
d + THH3ILAIY
¥inod v
v € Z T

Appendix Two

The CSP configuration files for PURL II are divided into three groups; common files,
surface files, and PURL II files. Generally, common file names are pre-fixed with an "x",
surface files are prefixed with an "s", and PURL II files are pre-fixed with an "p".

Common Configuration Files:
xconst.csp

xtimer.csp

xtelem.csp

display.csp

xstyle.csp

Surface Configuration Files:
sdef.csp

sheader.csp

sports.csp

main_win.csp

setpoint.csp

stat_win.csp

dbg_win.csp

auv_mode.csp

PURL II Configuration Files:
pdef.csp
pheader.csp
pports.csp
control.csp
sapphire.csp
exitscpt.csp
purl win.csp
payload.csp
missionl.csp
mission2.csp
mission3.csp
mission4.csp
mission5.csp
mission6.csp
log.csp

99

BOTTOM

tlevel name
xcOHSt'csp // Lowest Priority
/* // layer
$Log: xconst.csp § tlayer name TOP
Revision 1.8 1997/02/08 17:26:39 COUSTEAU Lowest Priority
Peter H: Removed ABOVE WATER_DEPTH and TEN_METERS :layer name = HIGH
tlayer name MEDIUM
Revision 1.7 1996/11/24 17:07:22 COUSTEAU :layer name Low
Peter H: Added MAX_NEG_THRUSTER_VELOCITY xlayer name = BOTTOM
Highest Priority
Revision 1.6 1996/08/15 08:33:45 PURL
Peter H: ABORT condition improvements.
#
Revision 1.5 1996/08/09 11:46:55 PURL
AH: changed the interlocking logic to using MotorMode
#
Revision 1.4 1996/08/08 17:20:25 NEMO
changed user interface
#
Revision 1.3 1996/08/06 17:34:47 COUSTEAU
AH: added EXIT mode
#
Revision 1.2 1996/08/06 14:29:21 COUSTEAU
#

added two constants: ABOVE_WATER_DEPTH and
MAX_THRUSTER_VELOCITY
#

Revision 1.1 1996/08/01 12:15:21 dosuser

Initial revision

#

r/

/7 ke kb Kk ko d bk A GETCONST . COP* 4% % % %k ks ko k ko d ke bk k

Const & Define

zfloat.param name=NEGATIVE_ONE

name=FALSE value=0

name=TRUE value=1
.int name=FALSE value=FALSE
.int name=TRUE value=TRUE
.int name=ZERO value=0
.int name=0ONE value=1
.int name=TWO value=2
.int name=TEN

fconst.int name=MAX TELEM COUNTER value=20

define name=MAX THRUSTER_VELOCITY value=5000

define name=MAX _NEG_THRUSTER_VELOCITY value=-

*const.int name=MAX THRUSTER_VELOCITY

value=MAX_THRUSTER VELOCITY

- name=MAX NEG_THRUSTER_VELOCITY

value=MAX NEG_THRUSTER_VELOCITY

// AUV Mode Defines and Constants

zdefine name=IDLE value=10

zdefine name=°PILOT value=20

zdefine name=ABORT value=30
name=EXIT value=35
name=MISSION1 value=41
name=MISSION2 value=42
name=MISSION3 value=43
name=MISSION4 value=44
name=MISSIONS value=45
name=MISSION6é value=46

zconst.int
value=MISSION1
“const.int
value=MISSION2
zconst.int
value=MISSION3
tconst.int
value=MISSION4
fconst.int
value=MISSIONS
tconst.int
value=MISSIONG
idefine
zconst.int

// level

zlevel

// Highest Priority
zlevel

name=IDLE
name=PILOT
name=ABORT
name=EXIT
name=MISSION1
name=MISSION2
name=MISSION3
name=MISSION4
name=MISSIONS
name=MISSIONE
name=DEBUG
name=DEBUG
name = TOP
name = HIGH

name = MEDIUM
name = LOW

value=IDLE
value=PILOT
value=ABORT
value=EXIT

value=40
value=DEBUG

priority = 0
priority =

1
priority = 2
priority = 3

priority
rank = 5
rank = 4
rank = 3
rank = 2
rank = 1

7/

/7

4

xtimer.csp

/.

SLog: xtimer.csp §$

Revision 1.1 1996/08/01
Initial revision

#

*/

12:24:55 NEMO

//

B L B0 10 Ty R e e

zsync name = TimeTick
zsync name = SYS_TwoSecondTrigger
zsync name = SYS_OneSecondTrigger
“Sync name = SYS_TwoHzTrigger
Tsync name = SYS_FourHzTrigger // 4 Hz timed trigger
fsync name = S$YS_FiveHzTrigger
zsync name = SYS_TenHzTrigger
=tick

output = TimeTick

interval = 10
itimer

name = 5YS_Timer

level = TOP

input = TimeTick
ztimer.output

timer = SYS_Timer

interval = 500 // 2 Hz

event = SYS_TwoHzTrigger
ztimer.output

timer = SYS_Timer

interval = 250 // 4 Hz

event = SYS_FourHzTrigger
*timer.output

timer = SYS Timer

interval = 100 // 10 Hz

event = SYS_TenHzTrigger
*timer.output

timer = SYS_Timer

interval = 200 // 5 Hz

event = SYS_FiveHzTrigger
ttimer.output

timer = SYS_Timer

interval = 2000 // 2 Second Timer

event = S5YS_TwoSecondTrigger
ttimer.output

timer = SYS_Timer

interval = 1000 // 1 Second Timer

event = 5YS_OneSecondTrigger
xtelem.csp
/%

$Id: xtelem.csp 1.19 1996/11/22 14:54:15 COUSTEAU Exp $
$Log: xtelem.csp $

Revision 1.19 199%6/11/22 14:54:15 COUSTEAU

Peter H: Changed AUV _Standard Conductivity to
AUV_sStandardConductivity

#

Revision 1.18 1996/11/21 11:45:06 COUSTEAU

Peter H: Added Conductivity, Temperature and Pressure to
the telemetry list.

#

Revision 1.17 1996/0%9/27 16:54:36 PURL

Peter H: Added the lights and pump enables and feedbacks
#

Revision 1.16 1996/09/08 17:05:52 COUSTEAU

Kevin M:added telem for bottom following mode

#

Revision 1.15 1996/09/08 15:29:17 PURL

Kevin M:changed DepthThrustInterlocked to

VertThrustInterlocked
to allow for integrated altimeter and depth control

Revision 1.14 1996/08/24 10:41:43
Peter H: Removed AUV_FifoMeter

PURL
Revision 1.13 1996/08/15 09:13:42 PURL
added SurfaceTelemCheckStatus and AUV_TelemCheckStatus

Revision 1.12 1996/08/14 17:31:44 PURL
added AUV NoTelemetry to a gtelem group

ot I T Ao W

#

Revision 1.11 1996/08/14 17:03:44 PURL
made AUV_NoTelemetry uncontrolled

#

Revision 1.10 1996/08/14 17:00:19 NEMO
added the no telemetry items

#

Revision 1.9 1996/08/09 08:13:35 PURL

3

Peter H: Updated the variable types (i.e. int, float) of
several of the

telemetry items.
the name of

the leak sensor flag to AUV_Leaking.

#

Revision 1.8 1996/08/08 15:05:37 PURL

Peter H: Added AUV_AltSignalStrength and AUV _LowBattery

#

Revision 1.7 1996/08/08 12:31:24 PURL

Peter H: Changed several of the setpoint and feedbacks to
floating point values.

#

Revision 1.6 199%6/08/07 10:20:45 COUSTEAU

removed references to AUV_ExitProteus

Added the low battery flag and changed

#

Revision 1.5 1996/08/06 17:34:47 COUSTEAU
AH: added EXIT mode

#

Revision 1.4 1996/08/02 14:49:31 PURL

changed names of thruster input events

#

Revision 1.3 1996/08/02 13:16:50 COUSTEAU
Peter H: Added the feedbacks for the thrusters
to file

#

Revision 1.2 1980/01/04 00:48:52 dosuser
#

*/

// This file lists xtelem groups and is common between purl
and surface.

II111000000 000000000700 700 00007777007 700717007071770771771777777
/
// definition of telemetry signals

// surface-to-~AUV

zuncontrolled. float name=TelemHeadingSetpoint initial
=0

ncontrolled.int name=TelemVelocitySetpoint initial
=0
tuncontrolled. float name=TelemDepthSetpoint initial
zu:controlled.float name=TelemAltitudeSetpoint initial
=0

zuncontrolled.int name=TelemBottomFollowingEnabled

initial = FALSE

zuncontrolled.int name=TelemEnablelogging initial
= FALSE

funcontrolled.int name=TelemModeSelect initial
= IDLE

zint name=SurfaceTelemCounter
*uncontrolled.int name=SurfaceTelemCheckStatus 1initial
= FALSE

tuncontrolled. int name=TelemEnable CTD_Pump initial
= FALSE

zuncontrolled.int name=TelemEnableLights initial
= FALSE

// AUV-to-Surface

zuncontrolled. float name = AUV_CompassHeading initial
= 0.0

zuncontrolled. float name = AUV Depth initial
= 0.0

zuncontrolled.flecat name = AUV_Altitude initial
= 0.0

tuncontrolled. float name = AUV_AltSignalStrength initial
= 0.0

iuncontrolled.int name = AUV_FollowingBottom initial
= FALSE

funcontrolled.int name = MissionStep initial
=0

tuncontrolled.int name = LocalStep initial
=0

funcontrolled.int name = AUV_Mode initial
=0

zuncontrolled.int name = AUV_IsLogging initial
= FALSE

*uncontrolled.flecat name = AUV_Pitch initial
= 0.0

101

:uncontrolled.float
= 0.0

name = AUV_Roll

initial

:runcontrolled.int
=0

name = AUV _DebugInt4 initial

tuncontrolled.int

name = AUV_LeftThrustInterlocked

zuncontrolled.int name = AUV_DebugInt5 initial
=0
cuncontrolled.int name = SurfaceDebuglIntl initial
=0
*uncontrolled.int name = SurfaceDebuglInt2 initial
?ugcontrolled.int name = SurfaceDebuglnt3 initial
ju:controlled.int name = SurfaceDebugIntd initial
ju:controlled.int name = SurfaceDebugInt5 initial
=0

11707707770770070777071707700777071177

/

// telemetry setup

igtelem
name =
max_frame_length=
delimiter =
timer =
escape =
trigger =
level =
port =
tx_status_output=
rx_status_output=
timeouts_occurred_

LocalTimeoutsOccurred

J1II01770770070770107000101011017777777177

/

// source = surface

// position setpoints

110077007717771017177777

gt

128

3
SYS_TwoSecondTrigger
27

SYS_TenHzTrigger
HIGH

= TelemPort

LocalTxStatus
LocalRxStatus
output =

[1177770777717777717777

initial =0
ncontrolled.int name = AUV_RightThrustlInterlocked
initial = 0
suncontrolled.int name = AUV_VertThrustInterlocked
initial = 0
iuncontrolled.int name = AUV_Left RPM Fb initial
name = AUV_Right RPM Fb initial
name = AUV VertlLeft RPM Fb initial
name = AUV VertRight RPM Fb initial
ncontrolled.int name = AUV_Left PWM_Fb initial
9]
ncontrolled.int name = AUV_Right PWM_Fb initial
0
ncontrolled.int name = AUV VertlLeft PWM Fb initial
=0
runcontrolled.int name = AUV_VertRight_ PWM_Fb initial
=0
name=LocalTxStatus
name=LocalRxStatus
name=LocalTimeoutsOccurred
long name=AUV_IdleMeter
int name=AUV_TxStatus
zint name=AUV_RxStatus
zint name=AUV_TimeoutsOccurred
*int name=AUV_Freemem
zuncontrolled.float name=AUV_BatteryVoltage initial
= 30.0 // A High Battery Voltage
runcontrolled.int name=AUV_LowBattery initial
= FALSE
tuncontrolled.int name=AUV_Leaking initial
= FALSE
tuncontrolled.int name=AUV_NoTelemetry initial
= FALSE
Zint name=AUV_TelemCounter
*uncontrolled.int name=AUV_TelemCheckStatus initial
= FALSE
// Payload
tuncontrolled.int name=AUV_CTD_PumpOn initial
= FALSE
zuncontrolled. float name=AUV_Temperature
initial=0.0
*uncontrolled. float name=AUV_Conductivity
initial=0.0
ituncontrolled. float name=AUV_Pressure
initial=0.0
zuncontrolled.int name=AUV_StandardConductivity
initial=0
tuncontrolled. int name=AUV_LightsOn initial
= FALSE
// Debug variables
*uncontrolled. float name = AUV_DebugFloatl initial
= 0.0
runcontrolled. float name = AUV_DebugFloat2 initial
= 0.0
zuncontrolled.float name = AUV_DebugFloat3 initial
= 0.0
*uncontrolled. float name = AUV_DebugFloatd initial
= 0.0
funcontrolled.float name = AUV_DebugFloat5 initial
= 0.0
*uncontrolled. float name = SurfaceDebugFloatl initial
= 0.0
tuncontrolled.float name = SurfaceDebugFloat2 initial
= 0.0
tuncontrolled.float name = SurfaceDebugFloat3 initial
= 0.0
tuncontrolled. float name = SurfaceDebugFloat4 initial
= 0.0
tuncontrolled. float name = SurfaceDebugFloat5 initial
= 0.0
suncontrolled.int name = AUV Debuglntl initial
=0
zuncontrolled. int name = AUV DebuglInt2 initial
=0
*uncontrolled.int name = AUV_DebugInt3 initial

=0

:gtelem float_data

tgtelem_float_data

tgtelem_int_data

*gtelem_int data

zgtelem float_data

tgtelem_float_data

*gtelem_float data

*gtelem float_data

igtelem_int_data

// Mode Commands

zgtelem _int_ data

102

telem=gt group=1
event=TelemHeadingSetpoint
trigger=TelemHeadingSetpoint
source=SURFACE

telem=gt group=101
event=TelemHeadingSetpoint
trigger=5YS_TwoSecondTrigger
source=SURFACE

telem=gt group=2
event=TelemVelocitySetpoint
trigger=TelemVelocitySetpoint
source=SURFACE

telem=gt group=101
event=TelemVelocitySetpoint
source=SURFACE

telem=gt group=3
event=TelemDepthSetpoint
trigger=TelemDepthSetpoint
source=SURFACE

telem=gt group=101
event=TelemDepthSetpoint
source=SURFACE

telem=gt group=6
event=TelemAltitudeSetpoint
trigger=TelemAltitudeSetpoint
source=SURFACE

telem=gt group=101
event=TelemAltitudeSetpoint
source=SURFACE

telem=gt group=8
event=TelemBottomFollowingEnabled
trigger=TelemBottomFollowingEnabled
source=SURFACE

telem=gt group=4
event=TelemModeSelect

igtelem_int_data

zgtelem_int_data

igtelem_int_data

zgtelem_int_data

trigger=TelemModeSelect
source=SURFACE

telem=gt group=5
event=TelemEnablelogging
trigger=TelemEnableLogging
source=SURFACE

telem=gt group=7
event=surfaceTelemCheckStatus
trigger=sSurfaceTelemCheckStatus
source=SURFACE

telem=gt group=9
event=TelemEnable CTD_Pump
trigger=TelemEnable_CTD_Pump
source=SURFACE

telem=gt group=10
event=TelemEnablelights
trigger=TelemEnableLights
source=SURFACE

// Debug Variables
tgtelem_float data

event=SurfaceDebugFloatl

trigger=5YS_TwoSecondTrigger

zgtelem float_data

event=SurfaceDebugFloat?2

zgtelem float_data

event=SurfaceDebugFloat3

zgtelem_float_data

event=surfaceDebugFloat4

zgtelem float data

event=SurfaceDebugFloath

zgtelem_int_data

event=SurfaceDebugIntl

zgtelem_int_data

event=SurfaceDebugInt2

=gtelem_int_data

event=SurfaceDebugInt3

tgtelem_int_data

event=SurfaceDebugInt4

:gtelem_int_data

event=SurfaceDebugInt5

tgtelem_int_data

event=surfaceTelemCounter

LELIITIELI LI I LI 07T 77077777707 070777777777777777777
/

// source = AUV
// Group 111: Position sensors

zgtelem float_data

telem=gt group=105

source=SURFACE

telem=gt group=105

source=SURFACE

telem=gt group=105

source=SURFACE

telem=gt group=105

source=SURFACE

telem=gt group=105

source=SURFACE

telem=gt group=105

source=SURFACE

telem=gt group=105

source=SURFACE

telem=gt group=105

source=SURFACE

telem=gt group=105

source=SURFACE

telem=gt group=10S

source=SURFACE

telem=gt group=105

source=SURFACE

*gtelem_float_data

:gtelem float_data

~gtelem_float_data

*gtelem_float_data

zgtelem_float_data

zgtelem_float_data

tgtelem_float_data

tgtelem_float_data

zgtelem float data

gtelem_float_data

:gtelem_ float_data

// mission

*gtelem_int_data

tgtelem_int_data

zgtelem_int_data

tgtelem int_data

telem=gt group=20
event=AUV_CompassHeading
source=AUV
trigger=AUV_CompassHeading

telem=gt group=111
event=AUV_CompassHeading
source=AUV
trigger=SYS_TwoSecondTrigger

telem=gt group=21
event=AUV_Depth
source=AUV
trigger=AUV_Depth

telem=gt group=111
event=AUV_Depth
source=AUV

telem=gt group=27
event=AUV_Altitude
source=AUV
trigger=AUV_Altitude

telem=gt group=111
event=AUV_Altitude
source=AUV

telem=gt group=28
event=AUV_AltSignalStrength
source=AUV
trigger=AUV_AltSignalStrength

telem=gt group=111
event=AUV_AltSignalStrength
source=AUV

telem=gt group=31
event=AUV_Pitch
source=AUV
trigger=AUV_Pitch

telem=gt group=111
event=AUV_Pitch
source=AUV

telem=gt group=32
event=AUV_Roll
source=AUV
trigger=AUV_Roll

telem=gt group=111
event=AUV_Roll
source=AUV

telem=gt group=23
event=LocalStep
source=AUV
trigger=LocalStep

telem=gt group=112
event=LocalStep

source=AUV
trigger=5Y5_TwoSecondTrigger

telem=gt group=24
event=MissionStep
source=AUV
trigger=MissionStep

telem=gt group=112
event=MissionStep
source=AUV

// Group 110 -- AUV status and mode feedback
// AUV Status Parameters

tgtelem_int_data

103

telem=gt group=110
event=AUV_IdleMeter
source=AUV
trigger=SYS_TwoSecondTrigger

“gtelem_int_data

tgtelem_int_data

:gtelem_int_data

igtelem_int_data

tgtelem_float data

*gtelem_int_data

zgtelem_int_ data

telem _int_data

zgtelem_int_ data

tgtelem_int_data

*gtelem_int data

*gtelem_int data

tgtelem int_data

2gtelem_int data

‘gtelem int_data

igtelem_int_data

zgtelem_int data

zgtelem_int_data

telem=gt group=110
event=AUV_TxStatus
source=AUV

telem=gt group=110
event=AUV_RxStatus
source=AUV

telem=gt group=110
event=AUV_TimeoutsOccurred
source=AUV

telem=gt group=110
event=AUV_Freemem
source=AUV

telem=gt group=110
event=AUV_BatteryVoltage
source=AUV

telem=gt group=29
event=AUV_LowBattery
source=AUV
trigger=AUV_LowBattery

telem=gt group=110
event=AUV_LowBattery
source=AUV

telem=gt group=30
event=AUV_Leaking
source=AUV
trigger=AUV_Leaking

telem=gt group=110
event=AUV_Leaking
source=AUV

telem=gt group=110
event=AUV_NoTelemetry
source=AUV

telem=gt group=35
event=AUV_IsLogging
source=AUV
trigger=AUV_IsLogging

telem=gt group=110
event=AUV_IsLogging
source=aUV

telem=gt group=36
event=AUV_Mode
source=AaAUV
trigger=AUV_Mode

telem=gt group=110
event=AUV_Mode
source=AaAUV

telem=gt group=22
event=AUV_FollowingBottom
source=AUV
trigger=AUV_FollowingBottom

telem=gt group=110
event=AUV_FollowingBottom
source=AUV

telem=gt group=37
event=AUV_TelemCheckStatus
source=AaUV
trigger=AUV_TelemCheckStatus

telem=gt group=110
event=AUV_TelemCheckStatus
source=AUV

igtelem_int_data

// Payload
:gtelem_int_data

“gtelem int_data

zgtelem float_data

<gtelem float_data

zgtelem_float_data

tgtelem_float_data

tgtelem_float data

:gtelem_float data

igtelem int_data

zgtelem_int_data

zgtelem int_data

zgtelem_int_data

telem=gt group=110
event=AUV_TelemCounter
source=AUV

telem=gt group=33
event=AUV_CTD_PumpOn
source=AUV
trigger=AUV_CTD_PumpOn

telem=gt group=114
event=AUV_CTD_PumpOn
source=AUV)
trigger=SYS_TwoSecondTr1gger

telem=gt group=38
event=AUV_Conductivity

source=AUV)
trigger=AUV_Conduct1v1ty

telem=gt group=114
event=AUV_Conductivity
source=AUV

telem=gt group=39
event=AUV_Temperature

source=AUY
tziggg::AUVfTemperature

telem=gt group=114
event=AUV_Temperature
source=AUV

telem=gt group=40
event=AUV_Pressure
source=AUV
trigger=AUV_Pressure

telem=gt group=114
event=AUV_Pressure
source=AUV

telem=gt group=41)
event=AUV_StandardConductivity

source=AUV o
trigger=AUV_Standardcanductlv1ty

telem=gt group=114
event=AUV_StandardConductivity

source=AUV

telem=gt group=34
event=AUV_LightsOn
source=AUV)
trigger=AUV_LightsOn

telem=gt group=114
event=AUV_LightsOn
source=AUV

// Thruster Feedback

zgtelem_int data

zgtelem_int_data

igtelem_int data

zgtelem_int_data

zgtelem_int_data

104

telem=gt group=113
event=AUV_LeftThrustInterlocked

source=AUV
trigger:SYS_TwoSecondTrlgger

telem=gt group=113
event=AUV_RightThrustInterlocked

source=AUV

telem=gt group=113
event=AUV_VertThrustInterlocked

source=AUV

telem=9gt group=113
event=AUV_Left RPM_Fb
source=AUV

telem=gt group=113

tgtelem _int_data

tgtelem_int data

:gtelem_int data

zgtelem int_data

telem_int_data

tgtelem_int_data

// Debug Variables

:gtelem float data

zgtelem_float_data

zgtelem_float_data

tgtelem_float_data

tgtelem float_data

zgtelem int_data

zgtelem int_data

zgtelem_int_data

tgtelem_int_data

zgtelem_int data

event=AUV_Right RPM_Fb
source=AUV

telem=gt group=113
event=AUV_VertLeft RPM_Fb
source=AUV

telem=gt group=113
event=AUV_VertRight_RPM_Fb
source=AUV

telem=gt group=113
event=AUV_Left PWM_Fb
source=AUV

telem=gt group=113
event=AUV_Right_PWM_Fb
source=AUV

telem=gt group=113
event=AUV_VertLeft PWM_Fb
source=AUV

telem=gt group=113
event=AUV_VertRight PWM Fb
source=AUV

telem=gt group=115
event=AUV_DebugFloatl
source=AUV
trigger=SYS_TwoSecondTrigger

telem=gt group=115
event=AUV_DebugFloat?2
source=AUV

telem=gt group=115
event=AUV_DebugFloat3
source=AUV

telem=gt group=11S5
event=AUV_DebugFloat4
source=AUV

telem=gt group=115
event=AUV_DebugFloat5
source=AUV

telem=gt group=115
event=AUV_DebugIntl
source=AUV

telem=gt group=115
event=AUV_ DebugInt2
source=AUV

telem=gt group=115
event=AUV_DebugInt3
source=AUV

telem=gt group=115
event=AUV_DebugInt4
source=AUV

telem=gt group=1135
event=AUV_DebugInt5
source=AUV

105

display.csp

// VGA display
zgfx.display

2

/7

// GRAPHICS OBJECTS'

/7

zdefine
tdefine
zdefine
idefine
zdefine
tdefine
idefine
idefine
idefine

tdefine
idefine
tdefine
xdefine
tdefine
tdefine
tdefine
xdefine
zdefine
tdefine
tdefine
sdefine
idefine
tdefine
tdefine
tdefine
define
tdefine
zdefine
tdefine
zdefine

zdefine
*define
zdefine
idefine
tdefine
tdefine
tdefine
tdefine
idefine
tdefine
zdefine
*define
tdefine
idefine
zdefine
zdefine
tdefine
tdefine
tdefine
zdefine
idefine
tdefine
tdefine
zdefine
zdefine
tdefine
zdefine
:define
*define
tdefine
zdefine

name =screen

enable =TRUE

level =LOW

refresh =SYS_TenHzTrigger

key_output=KeyPressed

name=DEEP_DEPTH
name=NO_DEPTH
name=MAN_BUTTON_WIDTH
name=MAN BUTTON_HEIGHT
name=MAN_MED_BUTTON_WIDTH
name=MAN MED BUTTON_HEIGHT
name=MAN_BIG_BUTTON WIDTH
name=MAN BIG_BUTTON_HEIGHT
name=MAN_TEXT_WIDTH

name=COL_0 value=0

name=COL_1 value=30
name=COL_2 value=60

name=COL_3 value=9%0
name=COL_4 value=120
name=COL_5 value=150
name=COL_6 value=180
name=COL_7 value=210
name=COL_8 value=240
name=COL_9% value=270
name=COL_10 value=300
name=COL_11 value=330
name=COL_12 value=360
name=COL_13 value=330
name=COL_14 value=420
name=COL_15 value=450
name=COL_16 value=480
name=COL_17 value=510
name=COL_18 value=540
name=COL_19 value=570
name=COL_20 value=600

name=ROW_HEIGHT value=15
name=ROW_0 value=5S
name=ROW_1 value=20
name=ROW_2 value=35
name=ROW_3 value=50
name=ROW_4 value=65
name=ROW_5 value=80
name=ROW_6 value=9S%
name=ROW_7 value=110
name=ROW_8 value=125
name=~ROW_9 value=140
name=ROW_10 value=155
name=ROW_11 value=170
name=ROW_12 value=185
name=ROW_13 value=200
name=ROW_14 value=215
name=ROW_15 value=230
name=ROW_16 value=245
name=ROW_17 value=260
name=ROW_18 value=275
name=ROW_19 value=290
name=ROW_20 value=305
name=ROW_21 value=320
name=ROW_22 value=335
name=ROW_23 value=350
name=ROW_24 value=365
name=ROW_295 value=380
name=ROW_26 value=395
name=ROW_27 value=410
name=ROW_28 value=425
name=ROW_29 value=440

X-Y CO-ORDINATES

value=2

value=0

value=20
value=15
value=29
value=20
value=62
value=25
value=50

106

XStyle.csp fillpattern=interleave

zstyle
/* name=neg_fb_cavity_style_ 2
SLog: xstyle.csp $ foreground=red
Revision 1.1 1996/08/01 12:14:18 dosuser background=red
Initial revision fillpattern=solid
#
*/ style
7/ R R R R N R T name=fb needle style
foreground=green
// color, & style background=green
fillpattern=solid
@screen.color display=screen
istyle
zscreen.color name=black r=0 g=0 b=0 name=neg_fb_needle style
zscreen.color name=blue r=0 g=0 b=130 foreground=blue
:screen.color name=green r=40 g=150 b=40 background=lightgray
zscreen.color name=cyan =0 g=170 b=170 fillpattern=solid
// original Zzscreen.color name=red r=255 g=0
b=0 zstyle
iscreen.color name=red r=230 g=10 b=10 name=plot_style
!screen.color name=magenta r=170 g=0 b=170 foreground=yellow
zscreen.color name=brown r=170 g=85 b=0 background=blue
*screen.color name=lightgray r=170 g=170 b=170 fillpattern=solid
zscreen.color name=darkgray r=100 g=100 b=100
tscreen.color name=tan r=162 g=134 b=90 zstyle
zscreen.color name=lightgreen r=20 g=200 b=20 name=hyde_plot_style
zscreen.color name=lightcyan r=85 g=255 b=255 foreground=darkgray
zscreen.color name=lightred r=255 g=10 b=0 background=lightcyan
iscreen.color name=lightblue r=40 g=40 b=200 fillpattern=solid
zscreen.color name=yellow r=255 g=255 b=0
zscreen.color name=white r=255 g=255 b=255 zstyle
name=ruler_style
tstyle foreground=lightcyan
name=green_button_on_style background=darkgray
foreground=black fillpattern=solid
background=green
fillpattern=solid =style
istyle name=label_style
name=red_button_on_style foreground=black
foreground=black background=lightgray
background=red fillpattern=solid
fillpattern=solid
zstyle istyle
name=yellow button_on_style name=window_style
foreground=black foreground=black
background=yellow background=lightgray
fillpattern=solid fillpattern=solid
istyle
name=button_off_style tstyle
foreground=black name=sp_ number_style
background=lightgray foreground=yellow
fillpattern=solid background=darkgray
istyle fillpattern=interleave /*cga=solid
name=switch_off button_style vga=interleave*/
foreground=black bwforeground=1
background=lightgray bwbackground=0
fillpattern=solid
bwforeground=0 lstyle
bwbackground=1 name=fb_number_style
zstyle foreground=lightcyan
name=switch_on_button style background=darkgray
foreground=black fillpattern=interleave /*cga=solid
background= cyan vga=interleave*/
fillpattern=solid bwforeground=1
bwforeground=0 bwbackground=0
bwbackground=1
istyle
istyle name=general label style
name=indicator_bad_style foreground=blue
background=red background=white
foreground=black fillpattern=solid
fillpattern=solid bwforeground=0
bwbackground=1
xstyle
name=fb_compass_style
foreground=black istyle.setup
background=black style=window_style
fillpattern=interleave object type=window
object_state=any
zstyle
name=fb_cavity_style istyle.setup
foreground=blue style=window_style
background=lightgray object_type=title
fillpattern=solid object_state=active
istyle zstyle.setup
name=neg_fb_cavity style style=window_style
foreground=black object_type=title
background=black object_state=any

107

zstyle.setup
style=window_style
object_type=menu_item
object_state=any

:style.setup
style=plot_style
object type=menu_item
object_state=current

tstyle.setup
style=plot_style
object_type=scroll bar
object_state=any

:style.setup
style=plot_style
object_type=menu_item
object_state=any

/"l ocbject_state=view
// object_type = "window_object”
/7 "window"

7’/ "icon"

/7 "scroll bar”

/7 "border"

1 “title"

/7 "prompt"

/7 "button"

// "menu_item"

// "outline"

/7 "white_ shadow"
/7 "light_shadow"
/7 "dark_shadow"

/7 "black_shadow"
/7

// object_state= "any"

/7 "current”

/7 "view"

/7 "hot_key"”

/7 "active"

// "selected"

/7 'non_selectable"

// fillpattern= "solid"

/7 "line"

/7 "ltslash"

// "slash®

/7 "bkslash"

7/ "ltbkslash"
// "hatch"

// "xhatch"

174 "interleave”
// "wide_dot”
/7 "close_dot"

108

sdef.csp

/>
$Log: sdef.csp $

Revision 1.5 1996/08/16 08:38:13 NEMO

added telemetry checking stuff

#

Revision 1.4 1996/08/15 08:47:07 NEMO

2

#

Revision 1.3 1996/08/06 17:34:47 COUSTEAU
AH: added EXIT mode

#

Revision 1.2 1996/08/01 14:19:31 NEMO

changed ports.csp to sports.csp

#

Revision 1.1 1996/08/01 12:07:03 dosuser
Initial revision

#

>/

J] **kwkdk Ak rkkkkikkk*+s SURFDEF.CSP

ek ko ko ek ke ke ko ok k ko ko ke ok ko k

file="XCONST.CSP"
file="SHEADER.CSP"
file="XTIMER.CSP"
file="SPORTS.CSP"
file="XTELEM.CSP"

“DISPLAY.CSP"
XSTYLE.CSP"

file="MAIN WIN.CSP"
file="SETPOINT.CSP"
file="STAT_ WIN.CSP"
file="DBG_WIN.CSP"
file="AUV_MODE.CSP"

// diagnostic functions

zexit

input=Exit

message="Exiting PROTEUS normally on command from the
user."
*freemem

trigger=SYS_TwoSecondTrigger
output=SurfaceFreemem

tidle.meter
trigger=sYS_TwoSecondTrigger
output=SurfaceldleMeter

'fifo.meter
trigger=5YS_TwoSecondTrigger
output=SurfaceFifoMeter
global full recover=1

// Main Menu & Submenu

zroot.menu
display=screen
name=root
enable=TRUE

*submenu
menu=root
name=system
title="~System "

2submenu.int.output
submenu=system
title="~Exit"
output=Exit
value=TRUE

zsubmenu.int.output
submenu=system
title="~Show Status™
output=SwitchStatusWindow
value=1

*submenu.int.output
submenu=system
title="~Hide Status"
output=SwitchStatusWindow
value=0

Zsubmenu.int.output
submenu=system
title="~Show Debug”
output=SwitchDebugWindow

value=1

“submenu.int.output
submenu=system

title="~Hide Debug"
output=SwitchDebugWindow
value=0

*submenu

menu=root
name=shutdown
title=" AUV Shutdown

zsubmenu.int.ocutput
submenu=shutdown
title="AUV Exit Mode"”
output=TelenModeSelect
value=EXIT

tzero
level=MEDIUM
trigger=ButtonTimer
input=KeyPressed
output=KeyPressed

texception_ log
file="ERROR.TXT”
level=LOW
buffer size=100

zcopy
input=LocalTxStatus
output=SurfaceTxStatus
enable=TRUE

icopy
input=LocalRxStatus
output=SurfaceRxStatus
enable=TRUE

:copy

input=LocalTimeoutsOccurred
output=SurfaceTimeoutsOccurred
enable=TRUE

// telemetry timer

icycle
trigger = SYS_TwoSecondTrigger
level = LOW
init =0
min =0
max = 1000
step =1
reset = AUV_TelemCounter
cutput = SurfaceTelemCounter

109

Sheader-csp // AUV Mode Switching Parameters

zint name = IdleModeSelected
/* ~int name = PilotModeSelected
$Log: sheader.csp $ tint name = AbortModeSelected
Revision 1.6 1996/09/10 10:03:58 COUSTEAU int name = MissionlModeSelected
Peter H: Added initial values to the Status and Debug cint name = Mission2ModeSelected
windows to eliminate :int name = Mission3ModeSelected
error messages that were appearing in the error log file =int name = Mission4ModeSelected
sint name = Mission5ModeSelected
Revision 1.5 1996/08/15 08:33:11 NEMO *int name = MissionéModeSelected
added telem checking stuff
#int name = IdleModeRegquest
Revision 1.4 1996/08/08 17:20:25 NEMO sint name = PilotModeRequest
changed user interface tint name = AbortModeRequest
int name = MissionlModeRequest
Revision 1.3 199%6/08/06 17:34:47 COUSTEAU int name = Mission2ModeRequest
AH: added EXIT mode Fint name = Mission3ModeRequest
% zint name = Mission4ModeRequest
Revision 1.2 1996/08/02 14:53:37 COUSTEAU tint name = MissionSModeRequest
Peter H: Removed all the DEBUG parameters :int name = MissionéModeRequest
#
Revision 1.1 1996/08/01 12:10:49 dosuser // The mode the AUV thinks it is in (Yes PURL does thiunk, but
Initial revision not too well
:int name = InIdleMode
+/ int name = InPilotMode
*int name = InAbortMode
/7 H ok ko ke ko k ok k ok ok K EADER , QS DPA bk kA ke ke k ko k ok int name = InExitMode
*uncontrolled.int name = InMissionMode
// Const & Define
tdefine name=SURFACE value=1
tdefine name=AUV value=0

// sync, int, long

zsync name=0OneSecond

zsync name=Exit

¥sync name=DepthSetpointTrigger
zsync name=HeadingSetpointTrigger
¥sync name=VelocitySetpointTrigger
zsync name=TelemModeSelectTrigger
isync name=EnableLoggingTrigger

name=SurfaceFreemem
name=surfaceldleMeter
name=SurfaceFifoMeter
name=TelDiag
name=SurfaceTxStatus
name=SurfaceRxStatus
name=SurfaceTimeoutsOccurred

zuncontrolled.int name=SwitchStatusWindow
initial=FALSE

zuncontreolled.int name=SwitchDebugWindow
initial=FALSE

tuncontrolled.int name=Dummy
tuncontrolled.int name=KeyPressed

initial=0

zuncontrolled.int name = HeadingSpJog initial

=0

zuncontrclled.int name = VelocitySpJog initial

name = DepthSpJog initial
name = AltitudeSpJog initial

zuncontrolled.int name = VelocitySp initial
0

funcontrolled.int name = ZeroVelocitySp initial

=0

funcontreolled.int name = LargeVelocitySp

initial = 0

funcontrolled.int name = DepthSp initial

=0

zuncontrolled.int name = ZeroDepthSp initial

=0

tuncontrolled.int name = AltitudeSp initial
0

tuncontrolled.int name = ResetAltitudeSp initial

= 10

iuncontrolled.int name = EnableHeadingJog initial

= 0

zuncontrolled.int name = EnableVelocityJog initial
0

zuncontrolled.int name = EnableDepthJog initial

=0
ncontrolled.int name = EnableAltitudeJog initial

0

110

sports.csp

LITILLLTITII70007 770710770777 707777177777777070777777777771777
// Telemetry port

tudp.port
level = HIGH
name = TelemPort

local_socket = 4100
remote_socket = 4000
remote_host = "purl”
signal_size = 4096
max_packet_size = 256

!com.serial.port

name = TelemPort
baud_rate = 38400
parity =0
delimiter =3
port_number =1

buffer_size=256 // Needed for 32-bit PROTEUS.

tserial.port.diag

output = TelDiag
port = TelemPort
trigger = DiagTimer
overrun_errors = TRUE

accumulate = TRUE

main_win.csp

/¥
$Log: main_win.csp $

Revision 1.9 1996/11/22 14:52:23 COUSTEAU

Peter H: Changed AUV_Standard_Conductivity to
AUV_sStandardConductivity

#

Revision 1.8 1996/11/22 12:40:06 COUSTEAU

Peter H: Added CTD display

#

Revision 1.7 1996/10/01 20:31:12 COUSTEAU

Peter H: Added the buttons for the Camera Lights and CTD
Pump

#

Revision 1.6 1996/09/18 16:27:46 COUSTEAU

Peter H: Added the altimeter and changed the variables
names accordingly

Revision 1.5 1996/08/15 08:33:11 NEMO
added telem checking stuff

Revision 1.4 1996/08/08 17:20:25 NEMO
changed user interface

Revision 1.3 1996/08/03 11:34:47 COUSTEAU
Peter H: Not sure what I changed

Revision 1.2 1996/08/02 14:52:53 COUSTEAU

Peter H: Added the display components for the thruster
feedbacks

#

Revision 1.1 1996/08/01 12:09:50 dosuser

Initial revision

#

v/

//*&t*tttt*w*&*t*itﬁtwﬁ‘&ia MAIN WIN.CSP

LR R T R S

// MAIN WIN.CSP is the main window wherein all the buttons,
and feebacks for

// controlling the AUV are located.

R L L R

tgraphics.window
enable=TRUE
name=AUV_Control
title="AUV_ Control™
display=screen
top=1 left=0
width=-1 height=-1
//width=80 height=32
border=TRUE

@AUV_Control.window.label
style=label_ style fill=0
@AUV_Control.window.number

style=label_style
fil1=TRUE

[/ vrErxksrmiddiwsnks Heading Dial **¥eraskkdiiasiiikeihnrn

// Dial showing the feedback for the compass heading

#*clipping.linear.param

name = MAN HeadingDialParam

inputl =0

input2 = +360

outputl = 490

output2 = =270
ZAUV_Control.window.dial

input = AUV_CompassHeading

x = COL_6

y = ROW_4

radius = 40

start_angle =0

sweep_angle = 360

mapping = MAN HeadingDialParam

major =35

tic_size = 25

minor =3

£ill = TRUE

needle style = fb_compass_style

cavity_style = fb_cavity_style
zwindow.label

string = "N"

X = 180

y = 19

window
style
center
fi1l

:window.label
string
x
Y
window
style
center
fill

:window.label
string
x
y
window
style
center
£ill

swindow.label
string
x
y
window
style
center
f£ill

= AUV _Control
label _style
= TRUE
= TRUE

= "E"

= 228

= 65

= AUV_Control
= label_style
= TRUE

= TRUE

= "g"

= 180

= 113

= AUV_Control
= label_style
= TRUE

= TRUE

= "W

= 133

= 65

= AUV_Control
= label style
= TRUE

= TRUE

[/ *EHwxskrdxxsrivxrk Abort Conditions

ek ek ek ko ek b kb d ok kb kb

// Indicates abort conditions

iwindow.button
left
top
on_value
input
label
window
width
height
depth
border
off style
on_style

:window.button
left
top
on_value
input
label
window
width
height
depth
border
off_style
on_style

*window.button
left
top
on_value
input
label
window
width
height
depth
border
off style
on_style

*AUV_Control.window.number
x=COL_9 y=ROW_11

input=AUV_TelemCounter

string=" AUV:"
width=4

:AUV_Control.window.number
x=COL_9 y=ROW_12

=CoL_18
=ROW_10

=TRUE

=AUV_LowBattery

="Low Bat"
=AUV_Control
=MAN_BIG_BUTTON_WIDTH
=MAN_BIG_BUTTON HEIGHT
=NO_DEPTH

=TRUE

=button_off style
=red_button_on_style

=COL_18
=ROW_12
=TRUE

=AUV_Control
=MAN_BIG_BUTTON WIDTH
=MAN_BIG_BUTTON_HEIGHT
=NO_DEFPTH

=TRUE

=button_off style
=red_button_on_style

=COL_18
=ROW_14

=TRUE

=AUV_NoTelemetry
NoTelem"
=AUV_Control
=MAN_BIG_BUTTON_WIDTH
=MAN_BIG_BUTTON_HEIGHT
=NO_DEPTH

=TRUE
=button_off_style
=red_button on_style

input=SurfaceTelemCounter

string="Surface:"
width=4

*window.toggle.button

112

input
output
on_value
label
window
width
height
depth
border
off_ style
on_style
left
top
*window.button
left
top
on_value
input
label
window
width
height
depth
border
off style
on_style

= SurfaceTelemCheckStatus
= SurfaceTelemCheckStatus
= TRUE

= "ChkTelem"

= AUV_Control

= MAN_BIG_BUTTON_WIDTH

= MAN BIG_BUTTON_HEIGHT

= DEEP_DEPTH

= FALSE

= switch_off_button_ style
= yellow_button_on_style
= COoL_13

= ROW_11

=COL 13

=ROW_13

=TRUE
UV_TelemCheckStatus
ChkTelem"

UV_Control
=MAN_BIG_BUTTON_WIDTH
=MAN BIG_BUTTON HEIGHT
=NO_DEPTH

=TRUE

=button_off style
=yellow_button_on_style

[/ ****xkxxksxtvrxrsrvvss Vehicle Depth Feedback Display

ok ok ok ok k ek ko Rk ko ko

// Display the depth of the vehicle graphically

iclipping.linear.param
fb to bar graphs
name
inputl
input2
outputl
output2

*window.vertical.scale
input
mapping
window
width
height

border_width

fill

mercury_style
cavity_style
surface_style

left
top

zwindow. label
string
window
style
center
£fill
X
Y
*window.label
string
window
style
center
fill
X
Y
*window.label
string
window
style
center
fill
X
Y
iwindow.label
string
window
style
center
£fill
X
Yy
*window. label
string
window
style
center
£ill

// mapping neg propellor rpm

Depth_Scale_Param
75

=0

100

0

]

= AUV_Depth
Depth_Scale_Param
AUV_Control

=15

100

1

TRUE
neg_fb_needle_style
= neg_fb_cavity_style
= neg_fb_needle_style
= 165

= 140

I

H

i

= ng»
AUV_Control
label style
FALSE
TRUE
= 183

137

it

= "15"

= AUV_Control
label_style
FALSE

= TRUE

183

157

n3gn
AUV_Control
label style
FALSE

TRUE

= 183

177

I

1t

= "4s5"

= AUV_Control
= label style
FALSE

TRUE

183

= 197

W

= wgon
AUV_Control
= label style
FALSE
= TRUE

:window.label
string
window
style
center
£ill
X
Y

“window.label
string
window
style
center
fill
x
Y

zwindow.label
string
window
style
center
fill
x
Yy

iwindow.label
string
window
style
center
f£ill
X
Yy

:window.label
string
window
style
center
fill
X
Yy

iwindow. label

string
window
style
center
fill

x

Yy

iwindow.label
string
window
style
center
fill
x
y

= 183
= 217

= wygm
= AUV_Control
= label style
= FALSE
= TRUE

= 183
= 237

= "pn
AUV_Control
label_style
FALSE

TRUE

COL_7

160

[

It

"e

= AUV_Control
= label_style
= FALSE

n

TRUE

= COL_7

170

= "p

[

AUV_Control
label style
FALSE

= TRUE

= mem
AUV Control
label style

coL_7
= 180

= FALSE

= mpw

TRUE
coL_7
190

= AUV_Control
= label style
= FALSE
= TRUE
= COL_7

= 200

(m)

= AUV _Control

I

label style
FALSE

= TRUE

203
= 210

/] ¥*xvesursriksrxwix Vehicle Altitude

Hok ok ek ok ok ok kb 4k ke ok ok

// Display the height of PURL off of the bottom.

of the
// is 0 to 200 metres.

:clipping.linear.param

bar graph
name
inputl
input2
outputl
output2

zclipping.linear.param

bar graph
name
inputl
input2
outputl
output?2

:window.vertical.scale
input
mapping

113

The range

//mapping altimeter output to

Coarse_Alt_Scale Param
0

200

100

-0

//mapping altimeter output to

It

It

"

Fine Alt Scale_Param
0

10

100

0

AUV_Altitude
Coarse_Alt Scale_Param

window

width

height
border_width
fill
mercury_style
cavity_style
surface_style
left

top

:window.vertical.scale
input
mapping
window
width
height
border_width
£ill
mercury_style
cavity_style
surface_style
left
top

iwindow.label
string
window
style
center
fill
X
y

*window.label
string
window
style
center
£ill
X
y

*window.label
string
window
style
center
fill
X
Yy

“window.label
string
window
style
center
fill
X
Yy

*window. label

string
window
style
center
fill

x

y

*window.label
string
window
style
center
fill
X
y

/] *EENEEkdkkwwskitrw Ditch

]

[

I

n

I

]

]

#

I

AUV_Control

15

100

1

TRUE
fb_needle_style
fb_cavity style
fb_needle_style
150

260

AUV Altitude
Fine_Alt Scale_ Param
AUV_Control

15

100

1

TRUE
fb_needle_style
fb_cavity_style
fb_needle_style
195

260

200"
AUV_Control
label style
FALSE

TRUE

170

262

"100”m
AUV_Control
label style
FALSE

TRUE

170

310

wge
AUV_Control
label style
FALSE

TRUE

167

355

wign
AUV_Control
label style
FALSE

TRUE

215

262

ngn
AUV_Control
label style
FALSE

TRUE

215

310

agn
AUV_Control
label_style
FALSE

TRUE

215

355

P R R R R R R R i AT

tclipping.linear.param
fb to bar graphs
name
inputl
input2
outputl
output2

:window.vertical.scale
input
mapping
window
width
height
border_width
fill
mercury_style
cavity_style
surface_style
left
top

swindow.vertical.scale
input
mapping
window
width
height
border_width
£ill
mercury_style
cavity_style
surface_style
left
top

twindow.label
string
window
style
center
£ill
X
Yy

*window.label
string
window
style
center
fill
x
Yy

ZAUV_Control.window.number
x
y
input
width
precision

:window. label

string
window
style
center
£ill

X

Yy

zwindow.label
string
window
style
center
fill
X
Yy

[/ Ak kkkk ke Fkkkk R]]

// mapping neg propellor rpm

= Negative_Pitch_Scale_Param

-20
0
50
0

= AUV_Pitch

]

n

Positive_Pitch_Scale_Param

AUV_Control

15

50

1

TRUE
fb_needle_style
fb_cavity_style
fb_needle_style
315

240

= AUV_Pitch

n

I

i

0

I

Negative_Pitch_Scale_ Param

AUV_Control

15

50

1

TRUE
neg_fb_needle_style
neg_fb_cavity style
neg_fb_needle_style
315

290

420"

AUV _Control
label style
FALSE

TRUE

333

= 237

"Pitch"
AUV _Control
label style
FALSE

TRUE

333

= 255

1

]

333

270
AUV_Pitch
5

1

wgn
AUV_Control
label_style
FALSE

TRUE

333

288

w_oqgn

AUV_Control

label _style
FALSE

TRUE

333

335

Ak ok ko h ok ok ok ko kA kb ok ok Ak ko k ok k ok ko ko

zclipping.linear.param // mapping positive roll to

bar graphs

iclipping.linear.param // mapping pos propellor rpm

fb to bar graphs

name = Positive_Pitch_Scale_Param name = Positive_Roll_Scale_Faram
inputl =0 inputl =0

input2 = 20 input2 = 20

outputl = 50 outputl =0

output2 =0 output2 = 50

114

“clipping.linear.param // mapping negative roll to border width =1

bar graphs £i1l = TRUE
name = Negative_Roll_Scale_Param mercury style = fb_needle_style
inputl = =20 cavity_style = fb_cavity style
input2 =0 surface_style = fbineedle:style
outputl =0 left = 490
output?2 = 50 top = 145
:window.horizontal.scale =window.label
input = AUV_Roll string = "28V"
mapping = Positive Roll Scale_ Param window = AUV _Control
window = AUV_Control style = label style
width =50 center = FALSE
height = 15 fill = TRUE
border_ width =1 x = COL_17
£ill = TRUE y = 140
mercury style = neg fb_cavity_style_ 2
cavity style = neg_fb_needle_style zwindow.label
surface_style = neg_fb_cavity_style_2 string = "24V"
left = 323 B B window = AUV_Control
top = 345 style = label style
center = FALSE
iwindow.horizontal.scale £i11 = TRUE
input = AUV_Roll X = COL_17
mapping = Negative_Roll Scale_Param Y = 165
window = AUV _Control
width = 50 zwindow.label
height = 15 string = "15v"
border_width =1 window = AUV_Control
fill = TRUE style = label_style
mercury_style = fb_cavity_style center = FALSE
cavity_style = fb_needle_style fill = TRUE
surface_style = fb_needle_style x = COL_17
left = 273 y = 220
top = 345
2AUV_Control.window.number
indow.label - % = COL_16
string = "+20" Yy = ROW_15
window = AUV_Control input = AUV_BatteryVoltage
style = label style width = 3
center = FALSE precision =1
fill = TRUE
X = 363
y = 365 zwindow.label
string = "B"
*AUV_Control.window.number window = AUV_Control
X style = label style
y center = FALSE
string fill = TRUE
input x = COL_16
width =5 y = ROW_$
precision =1
*window.label
twindow.label string = "a"
string = "o" window = AUV_Control
window = AUV Control style = label style
style = labgl style center = FALSE
center = FALSE £ill = TRUE
fill = TRUE x = COL_16
x = 320 y = 150
Yy = 365 #window.label
' string = """
“window.label window = AUV_Control
string = "-20" style = label_style
window = AUV_Control center = FALSE
style = label style fill = TRUE
center = FALSE x = COL_16
£ill = TRUE Y = 160
x = 260 *window.label
Y = 385 string = mgm
window = AUV_Control
style = label style
// ek ok ok ke ke ke ke ke ok ok kW Battery Monitor center = FALSE
H ko ke ko k ko k k ko ko ko £ill = TRUE
// Display the current voltage of the battery inside PURL. x = COL_1l6
The range 3% = 170
// for the battery voltage is +28 Volts to 15 Volts. zwindow.label
string = "e"
#clipping.linear.param window = AUV_Control
name = Battery Scale Param style = label_style
inputl = 15 B - center = FALSE
input2 = 28 fill = TRUE
outputl = 80 X = COL_16
output?2 =0 y = 180
‘window.label
twindow.vertical.scale string = "r”
input = AUV _BatteryVoltage window = AUV_Control
mapping = Battery_ Scale_Param style = label_style
window = AUV_Control center = FALSE
width = 15 fill = TRUE
height = 80 X = COL_16

115

‘window.label
string
window
style
center
£i11
x
Y

= 190

= “y"

= AUV_Control
= label style
= FALSE

= TRUE

= COL 16

= 200

[/ kEErAAdsdhddiwsnss Lights CONtrol *H*r4driderkaseisiiadnn

// The lights toggle button turns the camera lights off and

on

iwindow.toggle.button
input
output
on_value
label
window
width
height
depth
border
off_style
on_style
left
top

// CTD Pump Feedback button

*window.button
left
top
on_value
input
label
window
width
height
depth
border
off style
on_style

TelemEnableLights
TelemEnablelights
= TRUE

"Lights"”
= AUV_Control
= MAN_BIG_BUTTON_WIDTH
= MAN BIG BUTTON_HEIGHT
= DEEP_DEPTH
= FALSE
= switch_off button_style
= green_button_on_style
= COL_16
= ROW 17

=MAN_BIG_BUTTON_WIDTH
=MAN_BIG_BUTTON_ HEIGHT
=NO_DEPTH

=TRUE

=putton_off_ style
=green_button_on_style

[/ *ewvssrisdbukwwsiss CTD Pump Control

Ak ko ko k ok bk ke k ok ok ok ke ko k

// The CTD pump toggle button turns the CTD pump off and on

iwindow.toggle.button
input
output
on_value
label
window
width
height
depth
border
off style
on_style
left
top

// CTD Pump Feedback button

rwindow.button
left
top
on_value
input
label
window
width
height
depth
border
off_style
on_style

= TelemEnable CTD_Pump
= TelemEnable CTD_Pump
= TRUE

= "CTDPump”

= AUV_Control

= MAN_BIG_BUTTON WIDTH
= MAN_BIG_BUTTON_ HEIGHT
= DEEP_DEPTH

= FALSE

= switch_off_ button_style
= green_button on_style
= COL_16

= ROW 19

=COL_18
=ROW_19

=TRUE

=AUV_CTD_PumpOn

="Pump On"
=AUV_Control
=MAN_BIG_BUTTON_WIDTH
=MAN_BIG_BUTTON_HEIGHT
=NO_DEPTH

=TRUE

=button_off style
=green_button_on_style

[/ WREreEekwsdddskes Data LOgging eV EEERRs AR I LR LS bRk kaak

// The logging toggle button turns the general data logging

off and
// on onboard PURL

*window.toggle.button

input
output
on_value
label
window
width
height
depth
border
off_style
on_style
left

top

// Data Logging Feedback button

*window.button
left
top
on_value
input
label
window
width
height
depth
border
off style
on_style

= TelemEnablelogging

= TelemEnableLogging

= TRUE

= "Logging”

= AUV_Control

= MAN _BIG_BUTTON_WIDTH
= MAN_BIG_BUTTON_HEIGHT
= DEEP_DEPTH

= FALSE

= switch_off button_style
= green button_on_style
= COL_16

= ROW_21

=COL_18
=ROW_21

=TRUE

=AUV_IsLogging

="Log FB"

=AUV_Control
=MAN_BIG_BUTTON_WIDTH
=MAN_BIG_BUTTON HEIGHT
=NO_DEPTH

=TRUE

=button_off style
=green_button_on_style

[/ *¥*¥kxrskwrrsksrxx GBE-19 CTD Values Display

ke ke kR ke ok ok ke

*AUV_Control.window.number

X=COL_13 y=ROW_17
string="C:"
input=AUV_Conductivity
width=9

precision=4

AUV _Control.window.number
x=COL_13 y=ROW_18
string="5:"

input=AUV_StandardConductivity

width=9
precision=4

tAUV_Control.window.number
Xx=COL_13 y=ROW_19
string="T:"
input=AUV_Temperature
width=9
precision=4

*AUV_Control .window.number
%=COL_13 y=ROW_20
string="D:
input=AUV_Pressure
width=9
precision=4

[/ *r ks Addddkdkduwrdt Motor Feedback Display

Fk ek k ok Ak Rk ok ke ke bk ok k Ak kb bk

*AUV_Control.window.label
x=COL_15 y=ROW_23
string="Thruster RPM"

//command RPM
:AUV_Control.window.number
x=COL_14 y=ROW_24

input=AUV_LeftThrustInterlocked

string=" L:"
width=6

AUV _Control.window.number
x=COL_14 y=ROW_25

input=AUV RightThrustInterlocked

string=" R:
width=6

*AUV_Control .window.number
x=COL_14 y=ROW 26

input=AUV_VertThrustInterlocked

string="VL:"
width=6

*AUV_Control.window.number
x=COL_14 y=ROW_27

input=AUV_VertThrustInterlocked

string="VR:"

116

width=6

//actual RPM

*AUV_Control.window.number
x=COL_17 y=ROW_24
input=AUV_Left RPM Fb
width=6

*AUV_Control.window.number
x=COL_17 y=ROW_25
input=AUV_Right RPM_Fb
width=6

:AUV_Control.window.number
x=COL_17 y=ROW_26
input=AUV_VertLeft RPM_Fb
width=6

*AUV_Control.window.number
x=COL_17 y=ROW_27
input=AUV_VertRight RPM_Fb
width=6

//actual PWM

:AUV_Control.window.number
x=COL_19 y=ROW_24
input=AUV_Left PWM_Fb
width=4

*AUV_Control.window.number
x=COL_19 y=ROW_25
input=AUV_Right_ PWM_Fb
width=4

*AUV_Control.window.number
X=COL_19 y=ROW_26
input=AUV VertLeft PWM_Fb
width=4

:AUV_Control.window.number
x=COL_19 y=ROW_27
input=AUV_VertRight PWM_Fb
width=4

117

setpoint.csp

/<

$Log: setpoint.csp $

Revision 1.5 1996/09/10 10:05:03

Peter H: Added the bottom tracking buttons
#

Revision 1.4 1996/08/15 08:33:11

added telem checking stuff

#

Revision 1.3 1996/08/08 17:20:25

changed user interface

#

Revision 1.2 1996/08/06 15:39:19

added altimeter signal strength to user interface
#

Revision 1.1 1996/08/01 12:09:12

Initial revision

#

*/

[/ HA A AR s b xa kv d 4w kb k% SETPOINT.CSP

S

e e sk e ek ek ok kA ok e ok bk ok Kk ke ke

COUSTEAU

NEMO

NEMO

COUSTEAU

dosuser

max =360

and
inputs =TRUE
inputs =HeadingSpJog
output =EnableHeadingJog
:jog.override
name = HeadingSpOvr
trigger = SYS_FourHzTrigger
input = HeadingSpJog
rate = 40
level = MEDIUM
range = HeadingRange)
output = TelemﬂeadingSetpO}nt
initialize = TelemHeadingSetpoint
enable = EnableHeadingJog

// VELOCITY SETPOINT BUTTONS AND FEEDBACK

*AUV_Control.window.label
Xx=COL_1 y=ROW_§
string=" Velocity

// The buttons required to specify the setpoints for the AUV

he
//
fe
1/

ading, depth,
and velocity.

edbacks for
the various setpoints.

This configuration file also displays the

(RPM) "

*AUV_Control.window.number

x=COL_1 y=ROW_7

input=TelemVelocitySetpoint

width=¢€

// All the buttons and feedbacks in this configuration file a

di

splayed

// in the main graphics window "AUV_Control”.

//
ZAl

PILOT MODE LABEL
UV_Control.window.label
x=COL_0 y=ROW 1
string="Pilot Mode Controls"

// HEADING SETPOINT BUTTONS AND FEEDBACK
zAUV_Control.window.label

=Al

x=COL_1 y=ROW_2
string="Heading"

UV_Control.window.number
X=COL_1 y=ROW_3
input=TelemHeadingSetpoint
width=6

:AUV_Control.window.number

/7

x=COL_1 y=ROW_4
input=AUV_CompassHeading
width=6

precision=1

HEADING SETPOINT JOG BUTTONS

twindow.momentary.button

input = HeadingSpJog

cutput = HeadingSpJog

on_value = <2

label = "\x11"

window = AUV Control

width = MAN_MED BUTTON_WIDTH
height = MAN_MED_BUTTON_HEIGHT
depth = DEEP_DEPTH

border = FALSE

off_style = switch_off_button_style
on_style = switch_on_buttonistyle
left = COL_0

top = ROW_3

iwindow.momentary.button

input HeadingSpJdog
output = HeadingSpJog
on_value =2
label = "\x10"

arrow
window = AUV_Control
width = MAN MED_ BUTTON_WIDTH
height = MAN_MED BUTTON_HEIGHT
depth = DEEP_DEPTH
border = FALSE
off style = switch_off_button_style
on_style = switch_on_button_style
left = coL_3
top = ROW_3

// HEADING SETPOINT OVERRIDE

zcircular.range.param

name =HeadingRange
min =0

// VELOCITY SETPOINT JOG BUTTONS

*window.momentary.button
input =
output
on_value
label =
window =
width =
height =
depth =
border =
off style =
on_style
left =
top

“window.momentary.button
input
output
on_value
label =
window =
width
height =
depth =
border
off style
on_style
left =
top

// left arrow

twindow.momentary.button
input =
output
label
on_value
off style =
on_style =
window
width =
height =
depth =
border =
left =
top =

rconst.int

*window.momentary.button
input
output =
label =
on_value =
off_style
on_style
window
width
height =
depth =
border
left =
top

n

il

118

name=LARGE_VELOCITY

VelocitySpJog
VelocitySpJog

-1

"\x1f"

AUV_Control
MAN_MED_BUTTON_WIDTH
MAN_MED_BUTTON_HEIGHT
DEEP_DEPTH

FALSE
switch_off_button_style
switch_on button_style
coL_0

// down arrow

= ROW_8

= VelocitySpJog

VelocitySpJog

1

"\xle"

AUV_Control
MAN_MED_BUTTON_WIDTH
MAN MED_BUTTON_HEIGHT
DEEP_DEPTH

FALSE

switch_off_ button_style
switch_on_button_style
coL o

ROW_6

// up arrow

ZeroVelocitySp
ZeroVelocitySp

ne

1

switch_off button_style
switch_on_button_style
AUV_Control
MAN_MED_BUTTON WIDTH
MAN_MED_BUTTON_HEIGHT

DEEP_DEPTH

FALSE

COL_3

ROW_8

value=3000

= LargeVelocitySp

LargeVelocitySp

"3000"

1

switch_off button_style
switch_on_button_style
AUV_Control

MAN _BIG_BUTTON_WIDTH
MAN MED_BUTTON_HEIGHT
DEEP_DEFTH

FALSE

COL_1

= ROW_8

// VELCCITY SETPOINT OVERRIDE
irange.param

name = VelocityRange

min = -5000

max = 5000
and

inputs =TRUE

inputs =VelocitySpJog

ocutput =EnableVelocityJog
:jog.override

name = VelocitySpOvr

trigger = SYS FiveHzTrigger

input = VelocitySpJog

rate = 500

level = MEDIUM

range = VelocityRange

output = TelemVelocitySetpoint

initialize = TelemVelocitySetpoint

enable = EnableVelocityJog
zcopy

enable ZeroVelocitySp

input = ZERO

output = TelemVelocitySetpoint
zcopy

enable = LargeVelocitySp

input = LARGE_VELOCITY

output = TelemVelocitySetpoint

// DEPTH SETPOINT BUTTONS

*AUV_Control.window.label
x=COL_2 y=ROW_11
string=" Depth (m)"

*AUV_Control.window.number
x=COL_2 y=ROW 12
input=TelemDepthSetpoint
width=6
precision=2

*AUV_Control.window.number
x=COL_2 y=ROW 13
input=AUV_Depth
width=6
precision=2

// DEPTH SETPOINT JOG BUTTONS

depth = DEEP_DEPTH

border = FALSE

off style = switch _off button_style

on_style = switch_on_button_style

left = CoL_0 N

top = ROW_13
twindow.momentary.button

input = DepthSpJog

output = DepthSpJog

on_value = -20

label "\xle\xle"”
arrow

window = AUV_Control

width = MAN_MED_BUTTON_WIDTH

height = MAN MED_BUTTON_HEIGHT

depth = DEEP_DEPTH

border = FALSE

off_style = switch_off_button_style

on_style = switch_on_button_style

left = CoL_o

top = ROW_11
*window.momentary.button

input = ZeroDepthSp

output = ZeroDepthSp

label = "o"

on_value =1

off style = switch_off_button_style

on_style = switch_on_button_style

window = AUV_Control

width = MAN_MED_BUTTON_WIDTH

height = MAN MED BUTTON_HEIGHT

depth = DEEP_DEPTH

border = FALSE

left = COL_4

top = ROW_13

// DEPTH SETPOINT OVERRIDE
*range.param // in DummyDepthSetpoint Units

name =DepthRange
min = -1
max = 70
zand
inputs =TRUE
inputs =DepthSpJog
output =EnableDepthJog

jog.override

// Depth Setpoint: Fine name = DepthSpOvr
2window.momentary.button trigger = SYS FourHzTrigger
input = DepthSpJog input = DepthSpJog

output = DepthSpJog rate =1

on_value =1 level = MEDIUM

label = "\x1f" // down arrow range = DepthRange

window = AUV_Control output = TelemDepthSetpoint

width = MAN MED BUTTON_WIDTH initialize = TelemDepthSetpoint

height = MAN MED_BUTTON_HEIGHT enable = EnableDepthJog

depth = DEEP_DEPTH

border = FALSE zcopy

off style = switch_off button_style enable = ZeroDepthSp

on_style = switch_on_button_style input = ZERO

left = COoL_1 output = TelemDepthSetpoint

top = ROW 13

// Altitude Setpoint Buttons

*window.momentary.button

input = DepthSpJog *window.label

output = DepthSpJog string = "Altitude (m)”

on_value -1 window = AUV_Control

label "\xle" // up arrow style = label style

window = AUV_Control center = FALSE

width = MAN_MED_BUTTON_WIDTH £i11 = TRUE

height = MAN MED BUTTON_ HEIGHT x = COL_2

depth = DEEP_DEPTH Y = ROW_17

border = FALSE

off_style = switch_off button_style :AUV_Control.window.number

on_style = switch_on_button_style X = COL_2

left = COL_1 % = ROW_18

top = ROW_11 input = TelemAltitudeSetpoint

width =6

// Depth Setpoint: Coarse precision =2
zwindow.momentary.button

input = DepthSpJog zAUV_Control.window.number

output = DepthSpJog X = COL_2

on_value = 20 Y = ROW_19

label = "\x1f\x1lf" // down input = AUV_Altitude
Arrow width =6

window = AUV _Control precision =2

width = MAN_MED_BUTTON_WIDTH

height = MAN MED BUTTON_ HEIGHT =AUV_Control.window.number

119

// up

x = COL_O max = 200
Y = ROW_23
string = "AltSigStrength” and
input = AUV_AltSignalStrength inputs =TRUE
width = 6 inputs =AltitudeSpJog
precision =0 output =EnableAltitudeJog
// Altitude Setpoint: Coarse *jog.override
twindow.momentary.button name = AltitudeSpOvr
input = AltitudeSpJog trigger = 5YS_FourHzTrigger
cutput = AltitudeSpJog input = AltitudeSpJjog
on_value = 20 rate =1
label = "\xle\xle" // up level = MEDIUM
Arrows range = AltitudeRange
window = AUV Control output = TelemAltitudeSetpoint
width = MAN MED_BUTTON_WIDTH initialize = TelemAltitudeSetpoint
height = MAN MED_BUTTON_HEIGHT enable = EnableAltitudeJog
depth = DEEP_DEPTH
border = FALSE Tcopy
off_style = switch_off button style enable = ResetAltitudeSp
on_style = switch_on_button_style input = TEN
left = COL_O output = TelemAltitudeSetpoint
top = ROW_17
// toggle AUV into bottom following mode
*window.momentary.button
input = AltitudeSpJog swindow.toggle.button
output = AltitudeSpJog input = TelemBottomFollowingEnabled
on_value = -20 output = TelemBottomFollowingEnabled
label "\x1fAx1f" // down label = "Bot Trk"
ArTrows on_value =1
window = AUV_Control off_style = switch_off button_style
width = MAN MED_BUTTON_WIDTH on_style = green_button_on_style
height = MAN_MED BUTTON_HEIGHT window = AUV_Control
depth = DEEP DEPTH width = MAN BIG_BUTTON_WIDTH
border = FALSE height = MAN_BIG_BUTTON_HEIGHT
off_style = switch_off button_style depth = DEEP_DEPTH
on_style = switch_on_button_style border = FALSE
left = COL_O left = COL_0
top = ROW_19 top = ROW_25
// Altitude Setpoint: Fine
iwindow.momentary.button *window.button
input = AltitudeSpJog input =AUV_FollowingBottom
output = AltitudeSpJog label ="Tracking"
on_value =1 on_value =TRUE
label = "\xle" // up arrow on_style =green_button_on_style
window = AUV_Control off_ style =switch_off button_style //This
width = MAN_MED_BUTTON_ WIDTH is really an off style too.
height = MAN_MED_BUTTON_HEIGHT window =AUV_Control
depth = DEEP_DEPTH width =MAN_BIG_BUTTON_WIDTH
border = FALSE height =MAN_ BIG_BUTTON_HEIGHT
off_style = switch off_button_style depth =NO_DEPTH
on_style = switch_on_button_style border =TRUE
left = COL_1 left =COL_2
top = ROW_17 top =ROW_25
iwindow.momentary.button
input = AltitudeSpJog
output = AltitudeSpJog
on_value -1
label = "\x1f" // down arrow
window = AUV_Control
width = MAN_MED_BUTTON_WIDTH
height = MAN MED_BUTTON_HEIGHT
depth = DEEP_ DEPTH
border = FALSE
off style = switch_off button_style
on_style = switch_on_button_style
left = coL_1
top = ROW_19
:window.momentary.button
input ResetAltitudeSp
output ResetAltitudeSp
label "10m"
on_value =1
off_style = switch off_ button_style
on_style = switch_on_button_style
window = AUV Control
width = MAN_MED BUTTON_WIDTH
height = MAN_MED_BUTTON_HEIGHT
depth = DEEP_DEPTH
border = FALSE
left = COL 1
top = ROW_21

// ALTITUDE SETPOINT OVERRIDE

:range.param
name = AltitudeRange
min =0

120

stat_win.csp

/*
$Log: stat_win.csp $

Revision 1.2 1996/08/24 10:39:21
Peter H: Removed AUV_FifoMeter

#

Revision 1.1 1996/08/01 12:08:12
Initial revision

#

./

[/ WEAEEAs bk a ks a ke rkkidkxx* STAT WIN.C
R T Ty

data.window

display=screen
top=3 left=3
width=32 heigh
name=status
title="Status
enable=Switchs
name_width=20
scrollbar=1
border=TRUE

iwindow.int.data window=status
twindow.int.data window=status
zwindow.int.data window=status
iwindow.int.data window=status
input=AUV_TimecutsOccurred
*window.float.data window=status
input=AUV_Freemem

#window.int.data window=status
swindow.int.data window=status
iwindow.int.data window=status
*window.int.data window=status
zwindow.int.data window=status
input=SurfaceTimeoutsOccurred
*window.int.data window=status
xwindow.float.data window=status
input=SurfaceFreemem

swindow.int.data window=status

PURL

dosuser

Sp

t=20

Window"
tatusWindow

input=AUV_IdleMeter
input=AUV_TxStatus
input=AUV_RxStatus
width=6 precision=0.01
input=AUV_Mode
input=SurfaceldleMeter

input=SurfaceTxStatus
input=SurfaceRxStatus

input=SurfaceFifoMeter
width=6 precision=0.01

input=TelDiag

121

dbg_win.csp

/+
$Log:
Revision 1.1
Initial revision
#
*/

dbg_win.csp §

1996/08/16

08:44:25

NEMO

[] Rk ok ke k ke ke STAT WIN.CSP

B R S 2 2 e E T T

:data.window

int.data
int.data
int.data
int.data
swindow.int.data
twindow.float.data
input=AUV_DebugFloatl
iwindow.float.data
input=AUV_DebugFloat2
*window.float.data
input=AUV_DebugFloat3
=window.float.data
input=AUV DebugFloat4
:window.float.data
input=AUV_DebugFloat5

zwindow.
twindow.
iwindow.
zwindow.

iwindow.int.data
twindow.int.data
iwindow.int.data
twindow.int.data
fwindow.int.data
zwindow.float.data

input=SurfaceDebugFloatl

zwindow.float.data

input=SurfaceDebugFloat?2

zwindow.float.data

input=SurfaceDebugFloat3

:window.float.data

input=SurfaceDebugFloat4

twindow.float.data

input=SurfaceDebugFloat5

display=scree
top=3 left=10
width=32 heig
name=debug
title="Debug
enable=Switch
name_width=20
scrollbar=1
border=TRUE

window=debug
window=debug
window=debug
window=debug
window=debug
window=debug
window=debug
window=debug
window=debug
window=debug
window=debug
window=debug
window=debug
window=debug
window=debug
window=debug
window=debug
window=debug

window=debug

window=debug

n
ht=20

Window"
DebugWindow

input=AUV DebugIntl
input=AUV_DebugInt2
input=AUV_DebugInt3
input=AUV_ DebuglInt4
input=AUV_DebugInt5
width=6 precision=2

width=6 precision=2

width=6 precision=2

width=6 precision=2

width=6 precision=2

input=SurfaceDebugIntl
input=SurfaceDebugInt2
input=SurfaceDebugInt3
input=SurfaceDebugInt4
input=SurfaceDebugInt5
width=6 precision=2

width=6 precision=2

width=6 precision=2
width=6 precision=2

width=6 precision=2

122

auv_mode.csp
.
$Id: auv_mode.csp 1.4 1996/10/01 20:30:41 COUSTEAU Exp $

$Log: auv_mode.csp $
Revision 1.4 1996/10/01 20:30:41 COUSTEAU
Peter H: Moved around some of the buttons

Revision 1.3 1996/08/08 17:20:25 NEMO
changed user interface

1996/08/06 17:34:47 COUSTEAU
AH: added EXIT mode
Revision 1.1 1996/08/01 11:47:21 dosuser

#

#

#

#

#

Revision 1.2
#

#

#

Initial revision

#

*/

[/ AR Ak Ak kv ki kkkdk w4k k+ ik * LUV MODE.CSP

ek ke ke ke kR kK Kk R R ke

// This configuration file contains the components used for
selecting the

// mode of AUV operation and displaying the feedback
indicating which mode

// the AUV thinks its in.

// How the mode selection works

/7

// Both the surface computer and the AUV start up in IDLE
mode.

// The surface computer sends the desired state to the AUV
whenever the

// desired state changes or a periodic timer expires.
periodic timer

// ensures that if the initial state change telemetry was
lost due to a bad

// link, the desired state will reach the AUV in subsequent
telemetry packets.

// The AUV sends its current state to the surface
periodically or on a state

// change.

// The AUV Mode feeback displayed on the surface computer
shows the most

// recent mode information that was successfully transmitted
from the AUV

// to the surface.
and the surface

// must wait to receive a periodic update before a value will
be displayed

// on the screen.

The

Upon startup there is no mode feedback

/] **x*+x%x+ AUV MODE SELECT #*#%% % *++
// The following components are the buttons and glue logic
needed to select

// which mode the AUV should be operating in.

:AUV_Control.window.label

string = "AUV Mode Selection"
X = COL_10
y = ROW_1

zselection
name = AUV_mode_select
input = TelemModeSelect

=AUV_mode_select.selection.output
cheoice = IDLE
event = IdleModeSelected

*AUV_mode_select.selection.output
choice = PILOT
event = PilotModeSelected

*AUV_mode_select.selection.output
choice = ABORT
event = AbortModeSelected

AUV _mode_select.selection.output
cheoice = MISSION1
event = MissionlModeSelected

2AUV_mode_select.selection.output
choice = MISSIONZ
event = Mission2ModeSelected

*AUV_mode_select.selection.output
choice = MISSION3

event

= Mission3ModeSelected

*AUV_mode_select.selection.output

choice
event

= MISSION4
= Mission4ModeSelected

AUV_mode_select.selection.output

choice
event

= MISSIONS
= Mission5ModeSelected

=AUV_mode_select.selection.output

choice
event

[/ s¥+diirwvsnwr Toggle
P L 2 T 4

*window.toggle.button
input
output
label
on_value
off style
on_style
window
width
height
depth
border
left
top

“copy
enable
input
output

:window.toggle.button
input
output
label
on_value
off_style
on_style
window
width
height
depth
border
left
top

:copy
enable
input
output

window.toggle.button
input
output
label
on_value
off style
on_style
window
width
height
depth
border
left
top

zcopy
enable
input
output

*window. toggle.button
input
output
label
on_value
off_style
on_style
window
width
height
depth
border
left

123

= MISSIONE
= Mission6ModeSelected

Buttons For Mode Selection

PilotModeSelected
PilotModeRequest
"Pilot"

1

switch_off button_style
yellow_button_on_style
AUV_Control

= MAN BIG_BUTTON_WIDTH
MAN BIG_BUTTON_HEIGHT
= DEEP_DEPTH

FALSE

COL_11

= ROW_3

I

[

= PilotModeRequest
PILOT
= TelemModeSelect

IdleModeSelected
IdleModeRequest
"Idle"

=1

switch_off button_style
red_button_on_style

= AUV_Control

= MAN_BIG_BUTTON_WIDTH
= MAN_BIG_BUTTON_HEIGHT
= DEEP_DEPTH

FALSE

= COL_9

= ROW_3

]

]

IdleModeRequest
IDLE
= TelemModeSelect

i

= AbortModeSelected

= AbortModeRequest

= "Abort"

=1

= switch_off_button_style
= red_button_on_style

= AUV_Control

= MAN_BIG_BUTTON_WIDTH
= MAN_BIG_BUTTON_HEIGHT
= DEEP_DEPTH

= FALSE

= COL_13

= ROW_3

= AbortModeRequest
= ABORT
= TelemModeSelect

= MissionlModeSelected
= MissionlModeReguest

= "M 1"

=1

= switch_off_button_style
= green_button_on_style
= AUV_Control

= MAN_BIG_BUTTON_WIDTH
= MAN_BIG_BUTTON_HEIGHT
= DEEP_DEPTH

= FALSE

= COL_9

:Copy

:rwindow.

tcopy

*window.

‘copy

twindow.,

“copy

swindow.

¥copy

*window.

top

enable
input
output

toggle.button
input
output
label
on_value
off style
on_style
window
width
height
depth
border
left

top

enable
input
output

toggle.button
input
output
label
on_value
off style
on_style
window
width
height
depth
border
left

top

enable
input
output

toggle.button
input
output
label
on_value
off style
on_style
window
width
height
depth
border
left

top

enable
input
output

toggle.button
input
output
label
on_value
off_style
on_style
window
width
height
depth
border
left

top

enable
input
output

toggle.button
input

output

label

I

ROW_5

= MissionlModeRequest
MISSION1
= TelemModeSelect

= MissionZModeSelected

= Mission2ModeRequest
ny on

=1

switch off button_style

green_button on_style

AUV_Control

MAN_BIG_BUTTON_WIDTH

MAN BIG_BUTTON_HEIGHT

DEEP_DEPTH

FALSE

coL_11

ROW_5

W

i

n

"

= Mission2ModeRequest
MISSION2
= TelemModeSelect

I

= Mission3ModeSelected
= Mission3ModeRequest

= "M 3"

=1
switch off button_style
green_button_on_style
AUV_Control

= MAN_BIG_BUTTON_WIDTH
MAN BIG_BUTTON_HEIGHT
DEEP_DEPTH

FPALSE

coL_13

= ROW_S

I

1t

= Mission3ModeRequest
MISSION3
TelemModeSelect

I

= MissiondModeSelected
MissiondModeRequest
L

=1

= switch_off_button style
= green_button_on_style
= AUV _Control

= MAN_BIG_BUTTON_WIDTH
= MAN_ BIG_BUTTON_HEIGHT
= DEEP_DEPTH

= FALSE

= COL_9

= ROW_7

= Missicn4ModeRequest
MISSION4
= TelemModeSelect

= MissionS5ModeSelected
= Mission5ModeRequest

= "M 5"

=1
switch off button style
= green_button_on_style
= AUV_Control

= MAN_BIG_BUTTON_WIDTH
= MAN_BIG_BUTTON_HEIGHT
= DEEP_DEPTH

= FALSE

= COL_11

= ROW 7

3

= Mission5ModeRequest
MISSIONS
= TelemModeSelect

= MissionéMcdeSelected
MissionéModeRequest
" g"

on_value
off style
on_style
window
width
height
depth
border
left

top

icopy
enable
input
output

// Display the current mission step and the local script step

=1

= switch_off button_style
= green_button on_style

= AUV_Control

= MAN_BIG_BUTTON_WIDTH

= MAN_BIG_BUTTON_HEIGHT
= DEEP_DEPTH

= FALSE

= COL_13

= ROW_7

= MissionéModeReguest
MISSION6E
= TelemModeSelect

1

*AUV_Control.window.number

x=COL_9 y=ROW_9
string="MStep:"
input=MissionSt
width=2

ep

=zAUV_Control.window.number

x=COL_12 y=ROW
string="LStep:"
input=LocalStep
width=2

// Mode Feedback Indica
// The initial value of
buttons are

// illuminated, the sur
successful telemetry

// message contain the AUV mode before it will show the AUV's

current mode

:selection
name
input

“WhatAUVMode.selection.
choice
event

«WhatAUVMode.selection.
choice
event

zWhatAUVMode.selection
choice
event

*WhatAUVMode.selection.
choice
event

*WhatAUVMode.selection.
choice
event

‘WhatAUVMode.selection.
choice
event

*WhatAUVMode.selection.
choice
event

*WhatAUVMode.selection
choice
event

WhatAUVMode.selection.
choice
event

*WhatAUvMode.selection.
choice
event

9

ting What Mode The AUV Thinks its in
AUVMode is DEBUG so none of the

face computer must received a

= WhatAUVMode
= AUV_Mode

output
= PILOT
= InPilotMode

output
= IDLE
= InIdleMode

.output

= EXIT
= InExitMode

output
= ABORT
= InAbortMode

output
= MISSION1
= InMissionMode

output
= MISSION2
= InMissionMode

output
= MISSION3
= InMissionMode

.output

= MISSION4
= InMissionMode

output
= MISSIONS
= InMissionMode

output
= MISSIONE
= InMissionMode

// AUV Mode Feedback buttons

tAUV_Control.window.label

string
X
Yy

zwindow.button

124

= " Mode Feedback"
= COL 16
= ROW_1

=COL_16

zwindow.

*window.

zwindow.

*window.

top
on_value
input
label
window
width
height
depth
border
off style
on_style

button
left

top
on_value
input
label
window
width
height
depth
border
off style
on_style

button
left

top
on_value
input
label
window
width
height
depth
border
off_style
on_style

button
left

top
on_value
input
label
window
width
height
depth
border
off_style
on_style

button
left

top
on_value
input
label
window
width
height
depth
border
off style
on_style

=AUV_Control
=MAN_BIG_BUTTON_WIDTH
=MAN BIG_BUTTON_HEIGHT
=NO_DEPTH

=TRUE

=button_off_ style
=red_button_on_style

=COL_18
=ROW_3

=1

=InPilotMode

="Pilot"

=AUV_Control

=MAN BIG BUTTON_WIDTH
=MAN BIG_BUTTON_HEIGHT
=NO_DEPTH

=TRUE

=button_off style
=yellow_button_on_style

=COL_18

=ROW 5

=1

=InAbortMode

="Abort"

=AUV_Control

=MAN BIG_BUTTON_WIDTH
=MAN_BIG_BUTTON HEIGHT
=NO_DEPTH

=TRUE

=button_off style
=red_button on_style

=COL_18
=ROW_7
=1

nExitMode

Exit"

=AUV_Control
=MAN_BIG_BUTTON_WIDTH
=MAN_BIG_BUTTON_HEIGHT
=NO_DEPTH

=TRUE
=button_off_style

=red button_on_style

~COL_16

=ROW_5

=1

=InMissionMode
="Mission"
=AUV_Control
=MAN_BIG_BUTTON_WIDTH
=MAN_BIG_BUTTON_HEIGHT
=NO_DEPTH

=TRUE

=button_off_ style
=green_button_on_style

125

reset = surfaceTelemCounter

pdef'csp output = AUV_TelemCounter
:greater

/> enable = AUV _TelemCheckStatus
$Log: pdef.csp § inputl = AUV_TelemCounter
Revision 1.7 1996/11/22 12:36:23 PURL input2 = MAX_TELEM COUNTER
Peter H: Added PAYLOAD.CSP to the list of configuration output = LostDownTelemetry
files *greater
4 enable = AUV_TelemCheckStatus
Revision 1.6 1996/08/24 10:40:08 PURL inputl = SurfaceTelemCounter
Peter H: Added altimeter items for control input2 = MAX TELEM_COUNTER
output = LostUpTelemetry
Revision 1.5 1996/08/15 08:29:54 PURL
Peter H: Additional ABORT condition variables zor
enable = TRUE
Revision 1.4 1996/08/14 16:31:32 PURL inputs = LostDownTelemetry
4 debugging inputs = LostUpTelemetry
output = AUV_NoTelemetry
Revision 1.3 1996/08/07 10:20:45 COUSTEAU
removed reference to AUV _ExitProteus *copy
N enable = TRUE
Revision 1.2 1996/08/06 17:34:47 COUSTEAU input = SurfaceTelemCheckStatus
AH: added EXIT mode output = AUVATelemCheckStatus
#
Revision 1.1 1980/01/04 03:17:38 PURL zcopy
Initial revision enable = PilotModeSelected
input TRUE
r/ output = AUV _TelemCheckStatus
/7 kR KAk kA ok ok k44 4k k PURT,DEF, CSP* 4 %k kkkk ik kk kA kkkkk kA RN ECODY

enable = MissionModeSelected
zinclude file="XCONST.CSP" input FALSE

nclude

output

AUV_TelemCheckStatus

file="XTIMER.CSP"
file="PPORTS.CSP"”
file="XTELEM.CSP"

nclude
nclude
nclude
zinclude

// Stop parsing.
tSTOP

file="PURL_WIN.CSP"
file="PAYLOAD.CSP"

file="MISSION]1.CSP"
.csp”
.csp”
.csp”
.csp”
file="MISSICN6.CSP"

zinclude

tinclude file="LOG.CSP"

tidle.meter trigger=5YS_TwoSecondTrigger
output=AUV_IdleMeter

zfreemem trigger=8YS TwoSecondTrigger
output=AUV_Freemem

zexit
input=ExitProteus
message="Exiting Proteus Normally"”

file="ERROR.TXT"
level=TOP
buffer size=25¢

texception_log

*copy
input=LocalTxStatus
output=AUV_TxStatus
enable=TRUE

icopy
input=LocalRxStatus
output=AUV_RxStatus
enable=TRUE

tcopy

input=LocalTimeoutsOccurred
output=AUV_TimeoutsOccurred
enable=TRUE

//Telemetry Alive Timer components

//increment the timer

icycle
trigger = SYS TwoSecondTrigger
level = LOW
init = 0
min =0
max = 10000
step =1

126

pheader.csp

/*
$Log: pheader.csp §

Revision 1.14 1997/02/08 18:13:37 PURL

Peter H: Reseting the WatchDogValue

#

Revision 1.13 1996/09/18 20:37:43 PURL

Peter H and Kevin M: Added items for integrating the
altimeter into the

control system

Revision 1.12 1996/08/30 20:39:53 PURL
Peter H: Removed ThrusterInterlock

Revision 1.11 1996/08/24 10:40:59 PURL
Peter H: Added altimeter items for control

Revision 1.10 1996/08/15 08:31:55 PURL
Peter H: ABORT condition additions

Revision 1.9 1996/08/14 16:27:26 PURL
changed some of the gains, other debugging changes

Revision 1.8 1996/08/09 11:46:55 PURL
AH: changed the interloecking logic to using MotorMode

Revision 1.7 1996/08/09 09:04:51 COUSTEAU
added abort when leaking/low battery occurs

Revision 1.6 1996/08/09 08:05:18 PURL

Peter H: Added the conversion from centimeters to meters.
Added signals and events for latching the battery and leak
sensor alarms.

#

Revision 1.5 1996/08/07 09:34:06 PURL

Peter H: Added the constant for converting from Sapphire A
To D conversions

to appropriate units for use in the rest of the PURL
system.

Added the uncontrolled ints for the pitch, roll, and
battery voltage conveons.

o R R R e E e T

#

Revision 1.4 1996/08/06 17:34:47 COUSTEAU
AH: added EXIT mode

#

Revision 1.3 1996/08/06 14:30:18 COUSTEAU
removed unused signals

#

Revision 1.2 1996/08/02 14:48:56 PURL

removed thruster input events

#

4 Revision 1.1 1980/01/04 03:13:55 PURL

Initial revision

#

*/

// ti—*Q—w\&t\&***t*«\&\&\&w*www«HEADER.csptﬁytﬁtﬂi-t&d.&ww&w***t

[/ ***x#uxrswuwxss General Defines and Constants
ke bk ke ke k ko

layer = LOW
level = HIGH
enable = TRUE

// **x*x+4rsx gyncs are generally timing signals or triggers

ke wk kk

*sync

name=ExitProteus

[/ *rwvrdsversdvssrvsvs AUV status parameters
F e

name=TelDiag
name=CompassDiag
name=DepthDiag

// ******* Sensor Outputs and Events Involved In Thruster
COntrol **+wx+*

:uncontrolled.
zuncontrolled.
ncontrolled.
ncontrolled.

*uncontrolled.

ncontrolled.
ncontrolled.
ncontrolled.

zuncontrolled.

int
int
int
int

.int
.int
.int

int
int
int
int

int

initial=MOTORS_OFF

*uncontrolled.
initial=0.0
*uncontrolled.
initial=0.0
zuncontrolled.
initial=FALSE
funcontrolled.
initial=FALSE
tuncontrolled.
initial=FALSE
uncontrolled.
initial=FALSE
xuncontrolled.
initial=FALSE
zuncontrolled.
initial=FALSE
zuncontrolled.
initial=FALSE

ifuncontrolled.i

initial=0

// Setpoints

float

float

int

int

int

int

int

int

int

float

float

float

float

float

float

float

float

float

float

float

float

tdefine name=SURFACE value=0 tuncontrolled.
censt.int name=SURFACE value=SURFACE 1initial=0.0
name=AUV value=1 ‘uncontrolled.
name=AUV value=AUV initial=0.0
zuncontrolled.
initial=0.0
zconst.float name=LOW_BATTERY_VOLTAGE value=20.0 zuncontrolled.
- B initial=0.0
.int name=DEPTH_TO_RPM value=1 funcontrolled.
.int name=HEADING_TO_RPM value=1 initial=0.0
.int name=VELOCITY_TO_RPM value=1 *uncontrolled.
.float name=CENTIMETERS_TO_METERS value = initial=0.0
- zuncontrolled.
.float name=SAPPHIRE_TO_BATTERY_ VOLTAGE value = initial=0.0
- B Zuncontrolled.
tconst.float name=SAPPHIRE_TO_ANGLE value = initial=0.0
0.0030368695 - zuncontrolled.
initial=0.0
efine name=MOTORS_OFF value=1 zuncontrolled.
define name=MOTORS_CONTROLLED value=2 initial=0.0
idefine name=MOTCRS_ABORT value=3 tuncontrelled.
tconst.int name=MOTORS_OFF initial=0.0
value=MOTORS_ OFF *uncontrelled.
tconst.int name=MOTORS_CONTROLLED initial=0.0
value=MOTORS_CONTROLLED
tconst.int name=MOTORS_ABORT V2ol

value=MOTORS_ABORT

// Behaviours
*behavior name = ControlBehaviour

ek ek ke ko ko ok

suncontrolled.
initial =0

127

int

name=HeadingControl
name=DepthControl
name=AltitudeControl
name=VerticalControl
name=VerticalControl RPM
name=HeadingControl RPM
name=NegHeadingControl RPM
name=VelocityControl RPM
name=LeftThrust
name=RightThrust
name=RightThrust_RH Prop
name=MotorsAbort
name=MotorsControlled
name=MotorsOff
name=MotorMode
name=DepthIn_cm
name=AltitudeIn_cm
name=BelowAltitudeSetpoint
name=AboveAltitudeSetpoint
name=BelowDepthSetpoint
name=AboveDepthSetpoint
name=LogicTermOne

name=AltitudeControlSelected

name=DepthControlSelected

name=WatchDogValue

name=GotoAbortMode
name=AbortCondition

name=HeadingSetpoint
name=VelocitySetpoint
name=DepthSetpoint
name=AltitudeSetpoint
name=AbortHeadingSetpoint
name=AbortVelocitySetpoint
name=AbortDepthSetpoint
name=AbortAltitudeSetpoint
name=MissionHeadingSetpoint
name=MissionVelocitySetpoint
name=MissionDepthSetpoint

name=MissionAltitudeSetpoint

Sapphire Board Inputs and Outputs

name = DumbEvent

tuncontrolled.int name = PitchAToD

initial = 0

runcontrolled.int name = RollAToD

initial = 0

suncontrolled.int name = BatteryAToD
initial = 8000 //A High Battery Voltage
suncontrolled.int name = EnablelLowBattery
initial = FALSE

*uncontrolled.int name = LeakSensorDiglIn
initial = TRUE

funcontrolled.int name = EnableLeakAlarm

initial = FALSE

[/ dEawddkkswwddkd ik AUV Mode Switching Parameters

Ek ke ke kK ok ke kK

name = IdleModeSelected

name = PilotModeSelected

name = AbortModeSelected

name = NotAbortModeSelected
name = ExitModeSelected

name = NotExitModeSelected
name = NotMissionModeSelected
name = MissionModeSelected

zuncontrolled.int name=GoMissionl
initial=FALSE
suncontrolled.int name=GoMission2
initial=FALSE
tuncontrolled.int name=GoMission3
initial=FALSE
iuncontrolled.int name=GoMissiond
initial=FALSE
zuncontrolled.int name=GoMission5
initial=FALSE
#uncontrolled.int name=GoMissioné

initial=FALSE

*uncontrolled.int name=LostDownTelemetry
initial=FALSE
zuncontrolled.int name=LostUpTelemetry

initial=FALSE

[/ kEEAFwEHAA s AERrhAcLr Logging Variables
e e ek ko ke sk ok ok ok kb ke

zsync name = LogTrigger

zZSYnc name = MlLogTrigger
“sync name = M2LogTrigger
rsync name = M3LogTrigger

name = M4LogTrigger
name = MS5LogTrigger
name = M6LogTrigger

tuncontrolled.int name = LogSize

“uncontrolled.int name = MlLogEnable initial =
FALSE

zuncontrolled. int name = M1LogSize
tuncontrolled.int name = M2LogEnable initial =
FALSE

*uncontrolled.int name = M2LogSize
*uncontrolled.int name = M3LogEnable initial =
FALSE

zuncontrolled.int name = M3LogSize
zuncontrolled.int name = M4LogEnable initial =
FALSE

zuncontrolled.int name = M4LogSize
zuncontrolled.int name = MS5LogEnable initial =
FALSE

zuncontrolled.int name = M5LogSize
*uncontrolled.int name = Mé6LogEnable initial =
FALSE

tuncontrolled.int name = Mé6LogSize

128

pports.csp

// Ports on Purl

LILLIILIIL P00 0000000000707 700 7700777070707 770170077077077777777

/7
// Telemetry Ports (UDP or Serial)

sudp.port
level = HIGH
name = TelemPort
local_socket = 4000
remote_socket = 4100
remote_host = "cousteau”
// remote_host = "nemo”
signal_size = 4096
max_packet_size = 256

!com,serial.port
name=TelemPort
baud_rate=38400

/7 data_bits =8
// stop_bits =1
/7 parity=0

delimiter=3
port_number=1
buffer_size=512

tserial.port.diag
output=TelDiag
port=TelemPort
trigger=sYs_TwoSecondTrigger
overrun_errors=TRUE
accumulate=TRUE

L1171 0100770077070770770077770707007007070707701770177701771777777
// KVH Cl00 Compass Interface
// COM1
zcom.serial.port
name=CompassPort
baud_rate=9600

/7 data_bits =8
// stop_bits =1
// parity=0

delimiter=13
port_number=1
buffer_size=512 //256 // Needed for 32-bit PROTEUS
!serial.port.diag

output=CompassDiag

port=CompassPort

trigger=sY¥S_TwoSecondTrigger

overrun_errors=TRUE

accumulate=TRUE

II1IT101T100 0707000770777 7070777077777007707007700170177117777
// Motor Controllers
// COM2
*com.serial.port
name=ThrusterPort
baud_rate=9600

/7 data_bits =38
/7 stop_bits =1
/7 parity=0

delimiter=0
port_number=2

buffer size=512 //256 // Needed for 32-bit PROTEUS

1111100700700 707777777007777777707771770777777001707777777777

111117

// Data Instruments and Digitec 4-20mA to RS232 Interface for

depth sensor

// COM3

zcom.serial.port
name=DepthPort
baud_rate=9600

// baud rate=300

// data_bits =8
// stop_bits =1
// parity=0

delimiter=13
irg_level=5
port_base=0x3e8
buffer_size=512 //256 // Needed for 32-bit PROTEUS
tserial.port.diag

ocutput=DepthDiag

port=DepthPort

trigger=sYS_TwoSecondTrigger

overrun_errcrs=TRUE

accumulate=TRUE

[17700070777777707177770077007770777707777777777777077171777777
// SBE-19 CTD Interface

// COM3

!com.serial.port
name = CTD_Port
baud_rate = 600
data_bits =7
stop_bits =1
parity =2
delimiter = 10
irg_level =5
port_base = 0x3e8
buffer_size = 256

tserial.port.diag
output=CTD_Diag
port=CTD_Port
trigger=sYs_TwoSecondTrigger
overrun_errors=TRUE
accumulate=TRUE

J11170717770071777777777777777171777777771177777171771771117
// Altimeter
// coM4
*com.serial.port
name=AltimeterPort
baud_rate=4800

/7 data_bits =8
/7 stop_bits =1
/7 parity=0

delimiter=0
irg_level=7
port_base=0x2e8
buffer_size=512 //256

129

control.csp

/*
$Log: control.csp §

Revision 1.19 1997/05/10 16:20:39 PURL

Peter H: checked in to restablish the software on the new
hard drive

#

Revision 1.18 1996/11/24 17:06:26 COUSTEAU

Peter H: Changed MAX_THRUSTER VELOCITY to
MAX_NEG_THRUSTER_VELOCITY B

#

Revision 1.17 1996/11/22 12:38:16 PURL

Peter H: Changed depth control to use the CTD pressure
sensor

#

Revision 1.16 1996/09/18 20:37:43 PURL

Peter H and Kevin M: Updated PID gains and integrated
altimeter into the

control system

3

Revision 1.15 1996/09/07 13:38:36 PURL
Peter H: Changed the PID gains for the depth and heading

Revision 1.14 1996/08/24 12:07:15 PURL
Peter H: Moved the vertical thruster to address 3

Revision 1.13 1996/08/19 14:56:09 COUSTEAU
Peter H: Added the thruster interface component and a
ommented out triggeredcopy.

Revision 1.12 199%6/08/15 08:
Peter H: Added an extra ABORT

12:37 PURL
condition.

Revision 1.11 1996/08/14 17:34:19 PURL
debugging and such

Revision 1.10 1996/08/09 17:57:15 PURL
Peter H: Good Question

Revision 1.9 1996/08/09 11:46:55 PURL

AH: changed the interlocking logic to using MotorMode

Revision 1.8 1996/08/09 09:04:51 COUSTEAU
added abort when leaking/low battery occurs

Revision 1.7 1996/08/09 08:08:56 PURL
Peter H: Uncommented the altimeter component and got it
working properly.

SE I I W M AR I I I W W I 3 M M I O 9 A HE T I e

#

Revision 1.6 1996/08/06 17:34:47 COUSTEAU

AH: added EXIT mode

#

Revision 1.5 1996/08/06 17:14:27 COUSTEAU

AH: added altimeter

#

Revision 1.4 1996/08/06 14:30:46 COUSTEAU

rearranged some logic and rearranged the order of

components to improve

the flow of the file.

#

Revision 1.3 1996/08/02 19:28:41 PURL

Peter H: Nothing accomplished the compass serial port still
does not work.

#

Revision 1.2 1996/08/02 14:47:34 PURL

added new thruster component description and modified names
of the thruster inputs and outputs

#

Revision 1.1 1980/01/04 03:14:27 PURL

Initial revision

#

*/

[/ FE Rk ke kS kS d ok kb x k% CONTROL ., CSP

ok ok ko ke ek ok ek ok ek ke ek ke ke ok ke

// This configuration file interfaces with the motors, KVH
Compass,

// Depth Sensors,
generating

// the commands that will be sent to the thruster motors to
control

// the AUV

and Velocity stuff, AND is responsible for

LILITIILIIIIII I 1117077700 00770707777777777770777707777177777

// heading sensor

#KVH_compass
level=HIGH
port=CompassPort

out_heading=AUV_CompassHeading
triEger=SYs_FourHzTrigger
delimeter=13

escape=27

sy

:Depth_Sensor Level—HIGH

port=DepthPort

out_depth=DepthIn_cm /7
i t

peprh In cencinerers trigger=SYS_FourHzTrigger

delimeter=13

escape=27

// Convert the depth from centimeters to meters
imultiply

enable = TRUE

inputs = DepthIn_cm

inputs = CENTIMETERS_TO_METERS

output = AUYV_Depth

J117700710107007177171717777777707771111777777787111777777717
)] e Simrad Mesotech 809 Serial Interface --—---------

name = ALTIMETER_SIGNAL_RANGE value =

*const.int
200

; value = 30
:const.int

name = ALTIMETER_THRESHOLD

‘mesotech809_altimeter

level = HIGH

port = AltimeterPort
mes809working = TRUE

altitude = AltitudeIn_cm /7

1ti In Centimeters .
Atritude signal_strength = AUV_AltSignalStrength // 0

Fo 298 signal_range = ALTIMETER_SIGNAL_RANGE // 0
ro 200 threshold = ALTIMETER THRESHOLD // Q
to 80

// Convert the altitude to meters.
fmultiply

enable = TRUE

inputs = Altitudeln_cm
CENTIMETERS_TO_METERS

inputs = .
AUV_Altitude

output =
)/ wesvdsresrasirvsrsrts Setpoint Selection Logic

T S St e it ‘
// TelemModeSelect contains the all the mode information.

This section))
// breaks out the information into separate modes

// AUV Mode is echoed to the surface

oo enable = TRUE
input = TelemModeSelect
output = AUV_Mode
—
-trlQQEIEdizizf = MEDIUM
enable = TRUE
trigger = GotoAbortMode
input = ABORT
output = TelemModeSelect
e enable = GotoAbortMode
input = ABORT
output = TelemModeSelect
fnateiely enable = GotoAbortMode
inputs = GotoAbortMode
inputs = ABORT
output = TelemModeSelect
lcalc.co
eate pyenable = TRUE
level = LOW
trigger = GotoAbortMode
input = ABORT
output = TelemModeSelect

// iequal used to be :int_equal
% 1
edua = TRUE

enable
= TelemModeSelect

inputl

130

input2
output
requal
enable
inputl
input2
output
:equal
enable
inputl
input2
output

enable
input

output

requal

enable
inputl
input2
output

enable
input
output

*or
enable
inputs
inputs
inputs
inputs
output

%*not
enable
input
output

1701777777777777777717777777777777771777777771777777777777777

// abort logic
zor
enable
inputs
inputs
inputs
output

zand
enable
inputs
inputs
output

= IDLE
= IdleModeSelected

= TRUE

TelemModeSelect
PILOT
PilotModeSelected

TRUE
TelemModeSelect
ABORT
AbortModeSelected

= TRUE

It

AbortModeSelected
NotAbortModeSelected

= TRUE

#

TelemModeSelect
EXIT

= ExitModeSelected

TRUE
ExitModeSelected

= NotExitModeSelected

It

TRUE

IdleModeSelected
PilotModeSelected
AbortModeSelected
ExitModeSelected
NotMissionModeSelected

TRUE
NotMissionModeSelected

= MissionModeSelected

TRUE
AUV_Leaking
AUV_LowBattery
AUV_NoTelemetry

= AbortCondition

= TRUE

i

AbortCondition
NotExitModeSelected

= GotoAbortMode

tcopy // not using controller values for abort

enable = AbortModeSelected

input = AbortHeadingSetpoint

output = HeadingSetpoint
zcopy

enable = ExitModeSelected

input = AUV_CompassHeading

output = HeadingSetpoint
Lcopy

enable = MissionModeSelected

input = MissionHeadingSetpoint

output = HeadingSetpoint

L111710777777777777770707777777777777777777017777771717777777
// Velocity Setpoint multiplexer.

=copy
enable = IdleModeSelected
input = ZERO
output = VelocitySetpoint
copy
enable = PilotModeSelected
input = TelemVelocitySetpoint
output = VelocitySetpoint
!copy
enable = AbortModeSelected
input = AbortVelocitySetpoint
output = VelocitySetpoint
zcopy
enable = ExitModeSelected
input = ZERO
output = VelocitySetpoint
Tcopy
enable = MissionModeSelected
input = MissionVelocitySetpoint
output = VelocitySetpoint

11177777777 7777777777777777777777777777777777717774177177
// Depth Setpoint multiplexer.

117177777777717777777777777777777777777777777777777771771177/ *copy

// mission logic
Tequal

inputl

input?2

output
~equal

inputl

input2

output
zequal

inputl

input2

output
zequal

inputl

input2

output
*equal

inputl

input?2

output
%egual

inputl

input2

output

11717 7771717777777771777777777777777777777771777777177777777

TelemMcdeSelect
MISSION1

= GoMissionl

= TelemModeSelect

4

MISSION2
GoMission2

TelemModeSelect
MISSION3

= GoMission3

= TelemModeSelect

il

MISSIONY

= GoMission4

= TelemModeSelect

il

MISSIONS

= GoMission5

TelemModeSelect
MISSION6
GoMissioné

// Heading Setpoint multiplexer.

zcopy
enable
input
output
zcopy
enable
input
output

= IdleModeSelected

i

AUV_CompassHeading
HeadingSetpoint

= PilotModeSelected

TelemHeadingSetpoint
HeadingSetpoint

*copy
enable = IdleModeSelected
input = AUV_Depth
output = DepthSetpoint

zcopy
enable = PilotModeSelected
input = TelemDepthSetpoint
output = DepthSetpoint

tcopy
enable = AbortModeSelected
input = AbortDepthSetpoint
output = DepthSetpoint

rcopy
enable = ExitModeSelected
input = AUV_Depth
output = DepthSetpoint
enable = MissionModeSelected
input = MissionDepthSetpoint
output = DepthSetpoint

117777777777777777777777777777777777777771777777717717777
// Altitude Setpoint multiplexer.

zcopy
enable = IdleModeSelected
input = AUV_Altitude
output = AltitudeSetpoint
zcopy
enable = PilotModeSelected
input = TelemAltitudeSetpoint
output = AltitudeSetpoint
lcopy
enable = AbortModeSelected
input = AbortAltitudeSetpoint
output = AltitudeSetpoint
Tcopy
enable = ExitModeSelected
input = AUV_Altitude
output = AltitudeSetpoint
zcopy
enable = MissionModeSelected
input = MissionAltitudeSetpoint
output = AltitudeSetpoint

117777777177177777717777771177717177777777177717177117777777717
/17
// Heading PID Controller
zcircular.range.param
name=heading_error_range
i 179.99999

ipid.param

131

name=pid_heading_gains
proportional=300
derivative=-300
integral=2
max_integral=800

:pid.control
error_range=heading error_range
gains=pid_heading_gains
setpoint=HeadingSetpoint
feedback=AUV_CompassHeading
output=HeadingControl
behavior=ControlBehaviour

LI110001777717777777777717777777717777771777777777777717777777

/

// Depth PID Controller

‘range.param
name=depth_error_range
min=-10000.0 //-100.0
max=10000.0 //100.0

tpid.param
name=pid_depth_gains
proportional=-50 //-5000 //-50
derivative=60 //6000 //60
integral=-2 //=200 //-2
max_integral=600

// Temporary fix because the depth component outputs in
centimeters not meters

zuncontrolled.float name=DepthSetpoint_CM initial = 0.0
“const.float name=M_TO_CM value = 100.0
Zmultiply

enable = TRUE

inputs = DepthSetpoint

inputs = M _TO_CM
output = DepthSetpoint CM

ipid.control
error_range=depth_error_range
gains=pid_depth_gains
//setpoint=DepthSetpoint
setpoint=DepthSetpoint_CM
feedback=DepthIn_cm //AUV_Depth
output=DepthControl
behavior=ControlBehaviour

1111777777700 7707077777777777177777777777777777777777777777777

/

// Altimeter PID Controller

irange.param
name=altimeter_ error_range
min=-20000.0 // -200.0
max=20000.0 // 200.0

ipid.param

name=pid_altimeter_gains

proportional=50 // negative
values because

derivative=-60 // altimeter
base of reference

integral=2 // opposite
to depth sensor

max_integral=600

// Temporary fix because the altimeter component outputs in
centimeters not meters

// in order to keep the time stamp
through multiply)

// the setpoint must be converted rather than the altimeter
feedback.

// The time stamp is required in order to use the time-based
integral

// and derivative components of the PID controller.

(which doesn't propagate

zuncontrolled. flecat initial =

0.0

name=AltitudeSetpcint CM

imultiply
enable = TRUE
inputs = AltitudeSetpoint
inputs = M_TO CM
output = AltitudeSetpoint_CM

zpid.control

error_range=altimeter_error_range

gains=pid_altimeter_gains

setpoint=AltitudeSetpoint_ CM

feedback= Altitudeln_cm /7
AUV_Altitude

output=AltitudeControl

behavior=ControlBehaviour

LILELIEPE0 7070700707 007707777777777777770777777770777777777
/7

// Arbitration logic between Depth sensor and Altimeter
control

// of vertical thrusters.
time stamp

// required. Output = Vertical control which is in cm.
// Takes BottomFollowingEnabled as an input

Uses the values in meters - no

zcopy
enable = TRUE
input TelemBottomFollowingEnabled
output = AUV_FollowingBottom

3

#less_equal

enable = TRUE

inputl = AUV _Altitude

input2 = AltitudeSetpoint
output = BelowAltitudeSetpoint

igreater_egqual

enable = TRUE

inputl = AUV_Depth

input2 = DepthSetpoint

output = BelowDepthSetpoint
not

enable = TRUE

input = BelowAltitudeSetpoint

output = AboveAltitudeSetpoint
not

enable = TRUE

input = BelowDepthSetpoint

output = AboveDepthSetpoint
zand

enable = TRUE

inputs = AboveDepthSetpoint

inputs = AboveAltitudeSetpoint

inputs = AUV_FollowingBottom

output = LogicTermOne
Tor

enable = TRUE

inputs = LogicTermOne

inputs = BelowAltitudeSetpoint

output = AltitudeControlSelected
not

enable = TRUE

input = AltitudeControlSelected

output = DepthControlSelected
zcopy

enable = AltitudeControlSelected

input = AltitudeControl

output = VerticalControl
zcopy

enable = DepthContreclSelected

input = DepthControl

output = VerticalControl

1117 17777771777777777777777777777777777771717777777777717177777
/7

// Conversion from controller units to RPM units understood
by motors

imultiply
inputs = VerticalControl
inputs = DEPTH_TOQO_RPM
output = VerticalControl RPM
enable = TRUE

fmultiply
inputs = HeadingControl

// inputs = ZERO
inputs = HEADING_ TO_RPM
cutput = HeadingControl RPM
enable = TRUE

zmultiply
inputs = VelocitySetpoint

132

inputs =
output =
enable =

VELOCITY_TO_RPM
VelocityControl RPM
TRUE

JILLTEITII L 00077 70707700777 077777700700770070770077707707777
/7

// Combining heading and forward velocity control

// Motor Command Generation for the left and right thrusters

cmultiply
inputs = HeadingControl RPM
inputs = NEGATIVE_ONE
output = NegHeadingControl RPM
enable = TRUE

zadd
inputs = NegHeadingControl RPM
inputs = VelocityControl RPM
output = RightThrust
enable = TRUE

imultiply
inputs = RightThrust
inputs = NEGATIVE_ONE
output = RightThrust_ RH_Prop
enable = TRUE

*add
inputs = HeadingControl RPM
inputs = VelocityControl RPM
output = LeftThrust
enable = TRUE

1117707 17070777777077777777777077777777771777077717771771777777
1117177

// ***** Thruster Motor Safety/Interlock **+**=*
// Hardwires the motors to 0 when in IDLE mode,
mission scripts

// set the mission interlock.
about missing

// limbs and all that rot.

or when the

Prevents divers complaining

// WARNING!!! WARNING!!! WARNING!!! WARNING!!
WARNING!!!
// WARNING: It is essential that at the beginning on each

MISSION script or

// BBCORT script the ThrusterInterlock is set so that it is in
a known state.

// ThrusterInterlock could enter an undetermined state if the
AUV goes

// from one mission to another mission or ABORT mode without

moving through

// the IDLE or PILOT modes.

zcopy
enable = IdleModeSelected
input = MOTORS_OFF
output = MotorMode

=copy
enable = PilotModeSelected
input = MOTORS_CONTROLLED
output = MotorMode

icopy
enable = AbortModeSelected
input = MOTORS_ABORT
output = MotorMode

zcopy
enable = ExitModeSelected
input = MOTORS_OFF
output = MotorMode

Tcopy
enable = MissionModeSelected
input = MOTORS_OFF
output = MotorMode

//missions set their own thruster lock status after initial
setting

zselection
name =
input =

MotorModeSelecticn
MotorMode

iMotorModeSelection.selection.output
choice = MOTORS_CONTROLLED
event = MotorsControlled

:MotorModeSelection.selection.output
choice = MOTORS_OFF
event = MotorsOff

MotorModeSelection.selection.output
choice = MOTORS_ABORT
event = MotorsAbort

1171777777777 7777777777777770777777770717777777771477770777117
/

//right thruster

scopy

enable = MotorsOff

input = ZERO

output = AUV_RightThrustInterlocked
zcopy

enable = MotorsControlled

input = RightThrust

output = AUV_RightThrustInterlocked
< Copy

enable = MotorsAbort

input = MAX_THRUSTER_VELOCITY

output = AUV_RightThrustInterlocked

//left thruster

icopy

enable = MotorsOff

input = ZERO

output = AUV_LeftThrustInterlocked
icopy

enable = MotorsControlled

input = LeftThrust

output = AUV_LeftThrustInterlocked
zcopy

enable = MotorsAbort

input = MAX_ THRUSTER_VELOCITY

output = AUV_LeftThrustInterlocked

//vertical thruster

zCOpy

enable = MotorsOff

input = ZERO

output = AUV _VertThrustInterlocked
=copy

enable = MotorsControlled

input = VerticalControl RPM

output = AUV_VertThrustInterlocked
zcopy

enable = MotorsAbort

input = MAX THRUSTER_VELOCITY

output = AUV_VertThrustInterlocked

JI1II147777770077777777777777777777777777717207777777717717777
/171717
// Thruster Motors Interface

zthruster_interface
port =
level =

ThrusterPort
HIGH

max_motor_setpoint =

poll_trigger
mode_trigger

MAX THRUSTER_VELOCITY
= 5YS_OneSecondTrigger
= 5YS_TwoSecondTrigger

timer_value = 80 //101

adaptive_gain = 10 //value =
xx/1000000

inner_loop_gain = 20

watch_dog_value =
warning level
2=Normal l=Sparse O=None

2

command_left RPM
AUV_LeftThrustInterlocked
actual_left RPM
actual_left PWM
left_adaptive_weight
1_motor_address

command_right_ RPM
AUV_RightThrustinterlocked
actual_right RPM
actual_right PWM
right_adaptive_weight
r_motor_address

command vertical left RPM
AUV_vertThrustInterlocked

actual_vertical_left RPM
AUV_Vertleft RPM Fb

actual_vertical left PWM
AUV_Vertleft PWM Fb

133

WatchDogValue //FALSE

// 4=Babbling 3=Debug

= AUV_Left RPM_Fb
= AUV_Left_PWM_Fb
= AUV_DebugFloatl
=1

= AUV_Right_RPM_Fb
= AUV_Right PWM_Fb
= AUV_DebugFloat?2
=2

vertical left_adaptive_weight = AUV_DebugFloat3
vl_motor_address =3

command_vertical right RPM =
AUV _VertThrustInterlocked

actual_vertical right RPM =
AUV_VertRight_RPM Fb

actual_vertical right PWM
AUV_VertRight PWM_Fb

vertical right_adaptive_weight = AUV_DebugFlcat4

vr_motor_address =1

"

‘thruster.control

port=ThrusterPort

level=HIGH

max_motor_setpoint=MAX THRUSTER_VELOCITY

trigger=sSYS_FourHzTrigger

TimerValue = 80 //101

AdaptiveGain = 10 //value =
xx/1000000

InnerlLoopGain = 30

watch_dog_value = WatchDogValue //FALSE
//WatchDogValue

command_left RPM=AUV_LeftThrustInterlocked
actual_left RPM=AUV_Left RPM_Fb

actual left PWM=AUV Left PWM Fb

1 motor_address = 1

command_right RPM=AUV_RightThrustInterlocked
actual right_ RPM=AUV_Right_RPM_Fb
actual_right PWM=AUV Right PWM_Fb
r_motor_address = 2

command_vertical left RPM=AUV_VertThrustInterlocked

actual_vertical left_ RPM=AUV VertLeft RPM_Fb
actual vertical left PWM=AUV VertLeft PWM_Fb
vl _motor_address = 3

command_vertical_right RPM =

AUV_VertThrustInterlocked
actual_vertical right_ RPM=AUV VertRight RPM Fb
actual vertical right_ PWM=AUV_VertRight_PWM_Fb
vr motor_address = 4

134

sapphire.csp

/>
$Log: sapphire.csp $

Revision 1.4 1996/10/01 13:28:07 PURL

Peter H: Added the digital output controls for the CTD pump
and camera lights

#

Revision 1.3 1996/08/09 08:11:30 PURL

Peter H: Added the leak sensor and low battery flags.

#

Revision 1.2 1996/08/07 09:31:29 PURL

Peter H: Added the Pitch and Roll A To D conversions and

converted the input to an angle +-20.

Added the Battery Monitoring A To D conversion and
converted the input tage.
#

Revision 1.1 1980/01/04
Initial revision

#

*/

[/ RHAH kA kR Ak kR AR R * % R h kv + 4 SAPPHIRE.CSP

e e e kb ok ko ok k ok ko k ok ko ok ko ko ok

03:17:10 PURL

// This configuration file interfaces with the Sapphire
Analog I/O, Digital

// I/0 board.

//

// The sensors currently attached to the Sapphire board are:

// 1) Tilt Sensor

// 2) Battery Monitor
// 3) Leak Sensor

//

// The actuators/outputs currently attached to the Sapphire
board are:

// 1y CTD Pump
// 2} Camera Lights
//
Tcopy
enable = TRUE
input = TelemEnable CTD_Pump
output = AUV_CTD_PumpOn
zcopy

enable = TRUE
input = TelemEnableLights
cutput = AUV_LightsCn

:Sapphire_Board
level = HIGH
base_address = 0x300
analog in 0 = PitchAToD
analcog_in_1 = RollAToD
analog_in_2 = BatteryAToD
analeg_in_3 = DumbEvent
analeg in 4 = DumbEvent
analeg_in 5 = DumbEvent
analog_in_6 = DumbEvent
analeg_in_7 = DumbEvent
analog_get_0 = SYS_FourHzTrigger
analog_get 1 = SYS_FourHzTrigger
analog_get_2 = SYS_OneSecondTrigger
analog_get_3 = FALSE
analcg_get_4 = FALSE
analog _get_5 = FALSE
analog_get_6 = FALSE
analog _get 7 = FALSE
analog_out_ 0 = ZERO
analog_out_1 = ZERO
digital_in_0 = LeakSensorDigIn
digital_in_1 = DumbEvent
digital _in_2 = DumbEvent
digital_in_3 = DumbEvent
digital_get_ 0 = S5YS_TwoHzTrigger
digital_get_1 = FALSE
digital get_ 2 = FALSE
digital get_3 = FALSE
digital out 0 = AUV_CTD_PumpOn
digital out_1 = AUV_LightsOn
digital out_2 = ZEROC
digital_out_3 = ZERO

// Scale the Analog To Digital Inputs to meaningful units.
// The Pitch and Roll and converted to degrees.
// The Battery Voltage is converted to Volts.

fmultiply?2
inputl = PitchAToD
input2 = SAPPHIRE_TC_ANGLE

output = AUV_Pitch
behavior = ControlBehaviour

smultiply2
inputl = RollAToD
input2 = SAPPHIRE_TO_ ANGLE
output = AUV_Roll
behavicr = ControlBehaviour

-multiply?2
inputl = BatteryAToD
input2 = SAPPHIRE_TO_BATTERY_VOLTAGE
output = AUV_BatteryVoltage
behavior = ControlBehaviour

// Convert the battery voltage input a boolean flag that
indicates a low
// battery voltage.

:less
enable = TRUE
inputl = AUV_BatteryVoltage
input2 = LOW_BATTERY VOLTAGE
output = EnableLowBattery
zcopy

enable = EnablelowBattery
input = TRUE
output = AUV_LowBattery

// Convert the LeakSensor Digital Input to a high signal
indicating a leak.

// The zcopy acts as a latch where once the leak sensor finds
a leak,

// RUV_Leaking remains TRUE even if the leak sensor no longer
signals a leak.

not
enable = TRUE
input = LeakSensorDigIn
output = EnableleakAlarm
zcopy

enable = EnablelLeakAlarm
input = TRUE
output = AUV_Leaking

135

exitscpt.csp

// Exit Script

/*

SLog: exitscpt.csp $

Revision 1.3 1996/10/01 20:29:05 PURL

Peter H: Turned off the Camera Lights and CTD Pump
#

Revision 1.2 1996/08/08 14:14:44 PURL

Peter H: Changed AUV_ExitProteus to ExitProteus and added
RCS comments.

#

*/

7/

// This script traps on a ShutDown = TRUE enable and calls
the Exit sync

// signal when done.

7/

SILLIIIII 2070700777770 0000700000000 0000000000000000000017
111171771771117777

LILIIISTITIT 71077707 777777777770777777177777777777711777777717
1117117111177177
*global.script

enable = ExitModeSelected
layer = HIGH

repeat = FALSE

name = ExitScript

LIITTTIIT L7071 1100707777077 777777777777777777777777777777
ey

// STEP 1: Turn OFF anything that should be off before the
vehicle exits

/7 Proteus.

zint.set
script = ExitScript
output = MissionStep
value = 1
step=1 thread=1

zint.set
script = ExitScript
output = AUV_LightsOn
value = FALSE
step=1 thread=1
zint.set

script = ExitScript
output = AUV_CTD_PumpOn
value = FALSE

step=1 thread=1

*timed.wait
script=ExitScript
trigger=TimeTick
interval=1000
step=1 thread=1

LILLTI0TT 07007770007 7777700777777777707777077077771777777777177
I1177777077777777
// STEP 2: Wait for motor velocities to drop to zero

=int.set
script = ExitScript
output = MissionStep
value = 2
step=2 thread=1l

zint.confirm
script = ExitScript
input = AUV_Left_ PWM_Fb
value = 0
step=2 thread=1

zint.confirm
script = ExitScript
input = AUV_Right_PWM_Fb
value = 0
step=2 thread=1

tint.confirm
script = ExitScript
input = AUV _Vertleft PWM_Fb
value = 0
step=2 thread=1

zint.confirm
script = ExitScript
input = AUV_VertRight_ PWM_Fb

value = 0
step=2 thread=l

// Time out in case the motors don't respond
‘timed.wait

script=ExitScript

trigger=TimeTick

interval=2000

step=2 thread=2

SII7I717017 000000777 777777777777777777777777777777777717777777

11171717711711177
// STEP 3: Clear the motor watch dog timer

zint.set
script = ExitScript
output = MissionStep
value = 3
step=3 thread=1
zint.set

script = ExitScript
output = WatchDogValue
value = FALSE

step=3 thread=1

L1717 77777077717777770777777777777777777777777777/7777777777
J1171777777771777
// STEP 4: Next Step

zint.set
script = ExitScript
output = MissionStep
value = 4
step=4 thread=1

L11177777700707777770777777777777771077777777777777777777777777
L1177 70777771777

// Final Two steps:

// DO NOT CHANGE THESE STEPS UNLESS YOU ARE SURE YOU KNOW
WHAT YOU ARE DOING

tint.set
script = ExitScript
output = MissionStep
value = 10
step=10 thread=1

// Allow all the signals set in previous steps to move
through the system
timed.wait

script=ExitScript

trigger=TimeTick

interval=1000

step=10 thread=1

zint.set
script = ExitScript
output = ExitProteus
value = TRUE
step=11 thread=1

‘timed.wait
script=ExitScript
trigger=TimeTick
interval=1000
step=11l thread=1

136

purl_win.csp

/*
$Log: purl _win.csp $
Revision 1.6 1996/09/18

20:37:43 PURL

Peter H and Kevin M: Debugging the altimeter

1996/08/15
Peter H: ABORT condition

Revision 1.5

1996/08/09
Peter H: Added debugging

Revision 1.4

Revision 1.3 1996/08/07

Exit menu selection now sets

Revision 1.2 1996/08/07

08:32:45 PURL
testing and debuggin

08:33:57 PURL
for leak sensor and low battery
10:20:45 COUSTEAU

mode to EXIT

09:36:22 PURL

Peter H: Added several display statements for displaying

#

#

#

#

#

#

#
flags.
#

#

#

#

#

#

the Sapphire inputs

#

Revision 1.1 1980/01/04
Initial revision

#

*/

03:21:36 PURL

[/ *rk Ak k ko ko kk ok k ek k k% DURL, WIN.CSP

ek ke ek ok ok ok ok k ok ok ke ke ko ko k ok kK ok ke ko

// PURL_WIN.CSP is the main window

xgraphics.window
enable=TRUE
name=AUV_Control

title="AUV_Control:Purl"

display=screen
top=1 left=0

width=-1 height=-1
//width=80 height=32

//
border=TRUE

@AUV_Control.window.label

width=80 height=24

style=label style fill=0

@AUV_Control.window.number

style=label_style

£fi11=TRUE

*root.menu

display=screen
name=root
enable=TRUE

*submenu

menu=root
name=system
title="~System"”

zsubmenu.int.output

submenu=system
title="~Exit”
output=TelemModeSelect
value=EXIT

#AUV_Control.window.number
x =

y =

input =

coL_1
ROW_2

TelemModeSelect

string="TelemModeSelect:"
width=10

UV_Control.window.number

x = COL_1
y = ROW_3

input =

AUV_Mode

string="AUV_Mode:"
width=10

AUV _Control.window.number

x = COL_1
y = ROW_4
input = AUV_Depth

string="AUV_Depth:"
width=10
precision=2

*AUV_Control.window.number

X =

coL_1

AUV_Control

*AUV_Control

*AUV_Control

AUV _Control

tAUV_Control

zAUV_Control

137

.window.

.window.

.window.

.window.

.window.

.wWindow.

y = ROW_S
input = AUV_Altitude
AUV_Altitude:"

o]
precision=2

number

COL_1

ROW_6
AUV_BatteryVoltage

x =
y =
input =

string="AUV_BatteryVoltage:

width=10
precision=2

number

x = COL_1

y = ROW_7

input = AUV_CompassHeading
strin AUV_CompassHeading:
width=10

precision=2

number

coL 1

y = ROW_8

input = AUV_TelemCounter
string="AUV_TelemCounter:"
width=10

X =

number
x = COL_1
y = ROW_9

input = AUV_Pitch
string="AUV_Pitch:"
width=10
precision=2

number
X = COL_1
y = ROW_10

input = AUV_Roll
string="AUV_Roll:"
width=10
precision=2

number

COL_1

y = ROW_11

input = AUV_Leaking
string="AUV Leaking:"
width=10

X =

payload.csp

/t

$Log: payload.csp §

Revision 1.3 1997/02/08 18:11:42 PURL

Peter H: Converted the configuration back to one that
utilises 5 serial ports

#

Revision 1.2 1996/11/22 16:47:36 COUSTEAU
Peter H: Changed AUV_Standard_Conductivity to
AUV_StandardConductivity -

#

Revision 1.1 1996/11/22 12:37:14 PURL

Initial revision

#

v/

/7 A kA RNk k kb kb kW k*ak** DAYTLOAD,CSP

e

tsbel9
level = HIGH
port = CTD_Port
delimeter = 10
escape = 27
out_temperature = AUV_Temperature
out_conductivity = AUV_Conductivity
out_pressure = AUV_Pressure
standard_conductivity = AUV_StandardConductivity

138

missionl.csp

/>
$Log: missionl.csp $

Revision 1.7 1997/05/10 16:22:02 PURL

Peter H: checked in to re-establish software on the new
hard drive

#

Revision 1.6 1996/11/22 16:48:50 COUSTEAU

Peter H: Added the CTD variables and control

#

Revision 1.5 1996/09/20 16:09:58 PURL

Peter H: Missionl Bathemetry survey of Loon Lake
#

Revision 1.4 1996/09/18 20:37:43 PURL

Peter H and Kevin M: Loon Lake Mission for Sept 19,1996
#

Revision 1.3 1996/08/30 20:38:49 PURL

Peter H: Pool trials

#

Revision 1.2 1996/08/24 11:11:08 COUSTEAU

#

Peter H: Added new logging items, changed the enable and
log trigger

#

Revision 1.1 1980/01/04
Initial revision

#

*/

// Mission 1
7/

// The following is the mission script for MISSION1

7/

7/

SIILILII0 0707070 77777777777717777777777171777777171771777777
1117777771717 7177

03:19:08 PURL

Loon Lake Trial Purl IT

zdefine name=0UT_HEADING1 value=345.0
//130.0
zdefine name=BACK_HEADING1 value=155.0
//320.0
zdefine name=TURN_HEADING1 value=75.0
//220.0

zconst.float
value=QUT_HEADING1
zconst.float
value=BACK HEADING1
onst.float

name=OUT_HEADING1

name=BACK_HEADING1

name=TURN_HEADING1

value=10.0
value=10.0
value=0.5

name=0UT_DEPTH1
name=BACK_DEPTH1
name=SURFACE1
name=0QUT_DEPTH1

xdefine

zconst, float
value=0UT_DEPTHI1
zconst.float
value=BACK_DEPTH1
zconst.float
value=SURFACE1

name=BACK_DEPTH1
name=SURFACE1

value=5.0
value=5.0

efine

zdefine
tconst.float
value=LOW_ALT1
zconst.float
value=HIGH ALT1

name=LOW_ALT1
name=HIGH_ALT1
name=LOW_ALT1

name=HIGH_ ALT1

L1177 77777777707777777777077777770777777777777777777/77777777777
11777717777777
*global.script

enable=GoMissionl

layer=HIGH

repeat=FALSE

name=Missionl

LILLLI7I777777777772777777777777777777277777177777777717177777
1177777 7177777777

// STEP 1

// Wait for the serial link tether to be disconnected and the
vehicle

// placed into the water.
take more

// than 60 seconds

This whole procedure should not

zint.set
script = Missionl
output = MissionStep
value = 1
step=1 thread=1
zint.set

script = Missionl
output = MlLogEnable
value = TRUE

step=1 thread=l

*int.set
script = Missionl
output = AUV_CTD_PumpOn
value = TRUE
step=1 thread=1
zint.set

script = Missionl
output = WatchDogValue
value = 250

step=1 thread=1

Ztimed.wait
script=Missionl
trigger=TimeTick
interval=60000
step=1 thread=1

L1111 77777777077777777777707777777777777777777777777777777177
111117771777 77777

// STEP 2

// Initialize the heading setpoint to the desired heading

// Initialize the depth setpoint to the desired depth

// Initialize the altitude setpoint to the desired altitude
and set either

// bottom following mode or depth following mode

// Initialize the velocity setpoints to zero

tint.set
script = Missionl
output = MissionStep
value = 2
step=2 thread=1
“int.set
script = Missionl
output = MoctorMode
value = MOTORS_CONTROLLED
step=2 thread=1
zfloat.set
script = Missionl
output = MissionHeadingSetpoint
value = OUT_HEADING1

step=2 thread=1
zint.set
script = Missionl
output = MissionVelocitySetpoint
value = 0
step=2 thread=1
zfloat.set
script = Missionl
output = MissionDepthSetpoint
value = OUT_DEPTHI1
step=2 thread=1
:float.set
script = Missionl
output = MissionAltitudeSetpoint
value = LOW_ALT1
step=2 thread=1l
*int.set

script = Missionl

output = AUV _FollowingBottom
value = FALSE

step=2 thread=1

:float.confirm
script = Missionl
input = AUV_CompassHeading
value = OUT_HEADING1
range = 3.0
step=2 thread=1l

tfloat.confirm
script = Missionl
input = AUV_Depth
value = OUT_DEPTH1
range = 0.2
step=2 thread=1

!float.confirm
script = Missionl
input = AUV_Altitude
value = LOW_ALT1
range = 0.5
step=2 thread=1

JIIIII717771171777777
1117777170 7717777

// STEP 3

// Go out for a predetermined time (1800 sec)

zint.set

139

script = Missionl
ocutput = MissionStep
value = 3

step=3 thread=1

‘int.set
script = Missionl
output = MissionVelocitySetpoint
value = 4000
step=3 thread=1

ttimed.wait
script=Missionl
trigger=TimeTick
interval=1800000
step=3 thread=1

LLLLIITI0II 71110777 00710077001117707017077771777711171177777

1111111117717

// STEP 4

// Start the turn to BACK_HEADINGl by going through
TURN_HEADING1 B

// Change the depth setpoint to BACK DEPTH1

// Change the altitude setpoint

/7
#int.set
script = Missionl
output = MissionStep
value = 4
step=4 thread=l
zfloat.set

script = Missionl

output = MissionHeadingSetpoint
value = TURN_HEADING1

step=4 thread=1

zfloat.set
script = Missionl
output = MissionDepthSetpoint
value = BACK _DEPTH1
step=4 thread=1l

zfloat.set
script = Missionl
output = MissionAltitudeSetpoint
value = LOW_ALT1
step=4 thread=1

tint.set

script = Missionl

output = MissionVelocitySetpoint
/7 value = 0

value = -4000
step=4 thread=1

*float.confirm
script = Missionl
input = AUV_CompassHeading
value = TURN_HEADING1
range = 30.0
step=4 thread=1

{float.confirm
script = Missionl
input = AUV_Depth
value = BACK_DEPTH1
range = 0.2
step=4 thread=1

tfloat.confirm
script = Missionl
input = AUV_Altitude
value = LOW_ALT1
range = 0.5
step=4 thread=1

LI007070077077777777707007777771170777171777717777777177777777

11111111717111117
// STEP 5
// Change the heading setpoint to BACK_HEADING1

// Wait until the AUV reaches the desired heading, then move

to the next step

tint.set
script = Missionl
output = MissionStep
value = 5
step=5 thread=1

tfloat.set
script = Missionl
output = MissionHeadingSetpoint
value = BACK_HEADING1
step=5 thread=l

«float.confirm
script = Missionl
input = AUV_CompassHeading
value = BACK_HEADING1
range = 3.0
step=5 thread=l

!float.confirm
script = Missionl
input = AUV_Depth
value = BACK_DEPTH1
range = 0.2
step=5 thread=1

!float.confirm
script = Missionl
input = AUV_Altitude
value = LOW_ALT1
range = 0.5
step=5 thread=1l

JIIIIILIIILI 2001000000000 70 000007 000007717070710777770777777

111717111717171177
// STEP &
// Go back for a predetermined time (1800 sec)

*int.set
script = Missionl
output = MissionStep
value = 6
step=6 thread=1

zint.set
script = Missionl
output = MissionVelocitySetpoint
value = 4000
step=6 thread=1

“timed.wait
script=Missionl
trigger=TimeTick
interval=1800000
step=6 thread=1

LI1I1ITTTTITETIT P77 7777777772007 777777770777777077777777777

1171717717111117
// STEP 7
// Stop the vehicle and return to the surface

tint.set
script = Missionl
output = MissionStep
value = 7
step=7 thread=1

zint.set
script = Missionl
output = MissionVelocitySetpoint
value = 0
step=7 thread=1
zfloat.set

script = Missionl
output = MissionDepthSetpoint
value = SURFACEL
step = 7 thread=1

zfloat.confirm
script = Missionl
input = AUV_Depth
value = SURFACEL
range = 0.3
step = 7 thread = 1

L11177770007070000007077177177017717771777100700000171010171117

171777117717 771777
// STEP 8
// Disable the data logging

*int.set
script = Missionl
output = MissionStep
value = 8
step=8 thread=1

140

tint.set
script = Missionl
output = MlLogEnable
value = FALSE
step=8 thread=1
zint.set
script = Missionl
output = AUV_CTD_PumpOn
value = FALSE

step=8 thread=1

ttimed.wait
script=Missionl
trigger=TimeTick
interval=1000
step=8 thread=1

JILIIIIIIII 0707707707770 77 0000000707700 7007700700171717771777
11711711171177117

// STEP 9

// Put the AUV into IDLE mode

zint.set
script = Missionl
output = MissionStep
value = 9
step=9 thread=1
*int.set
script = Missionl
output = TelemModeSelect
value = IDLE

step=9 thread=1

[/ FEEEEAAkAwLidididbdws Data Logging For Mission 1
Nk Ak ko ok ok

]/ Wk wkkkkkkwwkkkkkxkkkt+ TIMESTAMP TIGGER

ke o e e e ek ek ko ko

zcopy
enable = MlLogEnable
input = SYS_TwoHzTrigger
output = MlLogTrigger

)] wEA ARk kk s kb s hdhkksvbwskxt DATA LOG COMPONENT

ek e ek ok ok ko ko ok

zdata.log
name
path
enable =
time_stamp_trigger = MlLogTrigger
level = LOW
time_stamp byte = 254
escape_byte = 27
byte count_output = MlLogSize

J] REEEA Rk kA kA kA Ak

Aok k ok k ko ko ko ek ke ko

@datal.log.int.data
@datal.log.float.data
@datal.log.double.data

[] Rk Rk ko k k ok ok ko ko

Ak ok k ko ko ko k ok k ok kb ok ok

// Vehicle
.log.
.log.
.log.

Sensor Feedba
float.data
float.data
int.data
.log.int.data
float.data
float.data
int.data

.log.
.log.
.log.

float.data
float.data
int.data

.log.
.log.
.log.

float.data
float.data

.log.
.log.

// Motor Feedbacks
*datal.log.int.data
zdatal.locg.int.data
*datal.log.int.data

*%%xx%x** ALTASES

L ¢

enable=TRUE trigger=MlLogTrigger
enable=TRUE trigger=MlLogTrigger
enable=TRUE trigger=MlLogTrigger

***%% LOG ITEM LIST

kA

cks and Control Items

input = HeadingSetpoint
input = AUV_CompassHeading
input = HeadingControl RPM
input = VelocitySetpoint
input = DepthSetpoint

input = AUV _Depth

input = VerticalControl RFM
input = AltitudeSetpoint
input = AUV_Altitude

input = AUV_AltSignalStrength
input = AUV_Pitch

input = AUV_Roll

input = AUV_Left_RPM_Fb
input = AUV_Right RPM Fb
input = AUV VertLeft RPM_Fb

*datal.log.int.data input =
tdatal.log.int.data input
*datal.log.int.data input
datal.log.int.data input
zdatal.log.int.data input =
// AUV Mode and Status Items
*datal.log.float.data input =
tdatal.log.int.data input
*datal.log.int.data input
t‘datal.log.int.data input
:datal.log.int.data input
// Payload Items
*datal.log.float.data input
tdatal.log.float.data input
*datal.log.float.data input
tdatal.log.int.data input =
*datal.log.int.data input

141

AUV_VertRight_RPM_Fb
AUV_Left_PWM_Fb
AUV_Right_PWM_Fb
AUV _VertLeft_PWM_Fb
AUV_VertRight_PWM_Fb

AUV_BatteryVoltage
AUV_Leaking
AUV_Mode
MissionStep
LocalStep

AUV_Conductivity
AUV_Temperature
AUV_Pressure
AUV_standardConductivity
AUV_CTD_PumpOn

mission2.csp

/*
$Log: mission2.csp $

Revision 1.6 1997/05/10 16:22:02 PURL

Peter H: checked in to re-establish software on the new
hard drive

#

Revision 1.5 1996/11/22 16:48:50 COUSTEAU

Peter H: Added the CTD variables and control

#

Revision 1.4 1996/09/18 20:37:43 PURL

Peter H and Kevin M: Loon Lake Mission for Sept 19,1996
#

Revision 1.3 1996/08/30 20:38:49 PURL

Peter H: Pool trials

#

Revision 1.2 1996/08/24 11:11:08 COUSTEAU

Peter H: Added new logging items, changed the enable and
log trigger

#

Revision 1.1 1980/01/04
Initial revision

#

v/

// Mission 2
/77

/; The following is the mission script for MISSION2

/

// This is the long range mission in Loon Lake 900m out,
back.

/7
LIPILTT7777707777770777777777777777777771777777717771777777717
110700117170107717

03:19:48

PURL

Loon Lake Trial

900m

zdefine name=0OUT_HEADING2 value=330
tdefine name=BACK_HEADING2 value=173
*const.float name=0UT_HEADING2

value=0OUT HEADING2 -

zconst.float name=BACK_HEADING2
value=BACK_HEADING2 -

:define name=SHALLOWZ value=0.25
tdefine name=DEEP2 value=1.5
:define name=SURFACE2 value=0.0

tconst.float name=SHALLOW2
value=SHALLOW2
tconst.float
%zconst.float

value=SURFACEZ2

name=DEEP2 value=DEEP2

name=SURFACE2

LILILTLLTT00007 000007 0770070771727077777770717777117770771177777
1171777770777177
tglobal.script

enable=GoMission2

layer=HIGH

repeat=FALSE

name=Mission2

LILILLITII 7777777007770 77700707 77777777777777777777000007777
10710717 7070777777

// STEP 1

// #Wait for the serial link tether to be disconnected and the
vehicle

// placed into the water.
take more

// than 45 seconds

This whole procedure should not

=int.set
script = Mission2
output = MissionStep
value = 1
step=1 thread=I
zint.set
script = Mission2
output = M2LogEnable
value = TRUE
step=1 thread=1
Zint.set

script = Mission2

output = WatchDogValue

value = 250

step=1 thread=1
itimed.wait

script=Mission2

trigger=TimeTick

interval=45000

step=1 thread=1

LILILLTTT000 00700077 070000 7070777 7770007777707777770777717777
117700071010707777

// STEP 2

// Initialize the heading setpoint to the desired heading
// Initialize the depth setpoint to SHALLOW2

// Initialize the velocity setpoints to zero

// Wait until the AUV is on the desired heading and depth
then move to the

// next step

*int.set
script = Mission2
output = MissionStep
value = 2
step=2 thread=1
“int.set

script = Mission2
output = MotorMode
value = MOTORS_CONTROLLED
step=2 thread=1
zfloat.set
script = Mission2
output = MissionHeadingSetpoint

value = OUT_HEADING2
step=2 thread=1
=int.set
script = Mission2
output = MissionVelocitySetpoint
value = 0
step=2 thread=1
“float.set

script = Mission2

output = MissionDepthSetpoint
value = SHALLOW2

step=2 thread=1

zfloat.confirm
script = Mission2
input = AUV_ConpassHeading
value = OUT_HEADINGZ
range = 3.0
step=2 thread=1
zfloat.confirm
script = Mission2
input = AUV_Depth
value = SHALLOWZ2
range = 0.1
step=2 thread=1l

L1170 770777077700770707707777077007777707707077077777777777077177
[1177170177117177

// STEP 3

// Start up the thrusters and travel at 903
seconds which

// will take us approximately 750m at 0.4m/s or 656.25m at
0.35n/s.

speed for 1875

zint.set
script = Mission2
output = MissionStep
value = 3
step=3 thread=1
zint.set

script = Mission2

output = MissionVelocitySetpoint
value = 4000

step=3 thread=1

*timed.wait
script=Mission2
trigger=TimeTick
interval=60000
step=3 thread=l

FIPPPITI I P2 A7 107700011077017777
110070017017710717

// STEP 4

// Change the depth setpoint to SURFACE2 and go to the
surface for the

// turnaround and marking of the halfway point in the
mission.

/7

zint.set
script = Mission2
output = MissionStep
value = 4
step=4 thread=1
zfloat.set
script = Mission2
output = MissionDepthSetpoint
value = SURFACE2
step=4 thread=1

142

zint.set
script = Mission2
output = MissionVelocitySetpoint
value = @
step=4 thread=1
zfloat.confirm
script = Mission2
input = AUV _Depth
value = SURFACE2
range = 0.1
step=4 thread=1

LISSSILISLISS LTI III I I P07 7000700070001 77001777770077777
I1117117111771777

// STEP S

//

// PURL has now reached the surface and is going to turn
around and wait

// for a while before going to the deep part of the mission
and returning

// home to the start.

’/
zint.set
script = Mission2
output = MissionStep
value = §
step=5 thread=1
tfloat.set

script = Mission2

output = MissionHeadingSetpoint
value = BACK_HEADING2

step=5 thread=1

tfloat.confirm
script = Mission2
input = AUV_CompassHeading
value = BACK_HEADING2
range = 3.0
step=5 thread=1
“timed.wait
script=Mission2
trigger=TimeTick
interval=30000
step=5 thread=1

IILITLITTTTI0 0077770777007 7777777077071007771171777111171777117
11111177171717177

// STEP 6

// Go down to the deep depth for the return trip to the
start.

zint.set
script = Mission2
output = MissionStep
value = 6
step=6 thread=1
zfloat.set

script = Mission2

output = MissionDepthSetpoint

value = DEEP2

step=6 thread=1
zfloat.confirm

script = Mission2

input = AUV Depth

value = DEEP2

range = 0.1

step=6 thread=1

LILLLLLLIILT LI ILIIIT I ISP II T LTSI LTI II 1 7017777777717 7
1117711777771717

// STEP 7

// Start up the thrusters and travel at 90%
seconds which

// will take us approximately 750m at 0.4m/s or 656.25m at
0.35m/s.

speed for 1875

zint.set
script = Mission2
output = MissionStep
value = 7
step=7 thread=1
Zint.set

script = Mission2

output = MissionVelocitySetpoint
value = 4000

step=7 thread=1

timed.wait
script=Mission2
trigger=TimeTick

interval=60000
step=7 thread=1

FILETELLLPI7 7777277777777 07777007 770777777777
11111177777 717777

// STEP 8

// Change the depth setpoint to SURFACE2 and go to the
surface for the

// end of the mission.

/7
“int.set
script = Mission2
output = MissionStep
value = 8
step=8 thread=1
ifloat.set
script = Mission2
output = MissionDepthSetpoint
value = SURFACE2
step=8 thread=1
tint.set

script = Mission2
output = MissionVelocitySetpoint
value = 0
step=8 thread=1
#float.confirm
script = Mission2
input = AUV Depth
value = SURFACE2
range = 0.1
step=8 thread=1

LI1IIII70T7 0007077777770 710077777071707777777077017177777717117
111717117717177717

// STEP 9

// Disable the data logging

=int.set
script = Mission2
cutput = MissionStep
value = 9
step=9 thread=1
zint.set

script = Mission2

output = M2LogEnable

value = FALSE

step=9 thread=1
ttimed.wait

script=Mission2

trigger=TimeTick

interval=1000

step=9 thread=1

SIILILTIT00 770070707777 7707770077777007770777777007777177171177
S1111117711777717

// STEP 10

// Put the AUV into IDLE mode

tint.set
script = Mission2
output = MissionStep
value = 10
step=10 thread=1
Zint.set

script = Mission2

output = TelemModeSelect
value = IDLE

step=10 thread=1

[] #E ¥AwxEEEkksskwsckdrd Data Logging For Mission 2
ek ke ke kb ke k ke bk

[] WA RE ek EAHAd Ak wwwak sk *+ TIMESTAMP TIGGER

P R e T
zcopy
enable = M2LogEnable
input = 8YS_TwoHzTrigger
output = M2LogTrigger

[/ wAEA R RE R E A A A wxkx*ddrw DATA LOG COMPONENT

ek ke Kk ek ok ke ok ek Ak ok k ok

*data.log
name = data2
path = "M2LOG.DAT"
enable = TRUE
time_stamp_trigger = M2LogTrigger

143

level = LOW
time_stamp_byte = 254
escape_byte =27
byte_count_output = M2LogSize

[/ REA kb sk dwkkk kb ki kkdkskkksss ATTASES

R N R R R T R AR RS LR oY

@data2.log
@data2.log
@data2.log

.int.data
.float.data
.double.data

enable=TRUE trigger=M2LogTrigger
enable=TRUE trigger=M2LogTrigger
enable=TRUE trigger=M2LogTrigger

[/ EEEA Ak w ks ko kkkk kb wkkkw+ [OG ITEM LIST

ok ok ek ke o b ko kK

// Vehicle
tdata2.log
zdata2.log
idata2.log

xdata2.log

*data2.log
tdata2.log
:data2.log

*data2.log
xdataZ.log
tdata2.log

%data2.log
#data2.log

// Motor Feedbacks

tdata2.log

¥dataz2.log.
zdata2.log.
zdata2.log.
*data2.log.
%#data2.log.
tdata2.log.

tdata2.log

Sensor Feedbacks and
.float.data input =
.float.data input =
.int.data input =
.int.data input =
.float.data input =
.float.data input =
.int.data input =
.float.data input =
.float.data input =
.int.data input =
.float.data input =
.float.data input =
.int.data input =
int.data input

int.data input

int.data input =
int.data input

int.data input

int.data input

.int.data input

// RUV Mode and Status Items

idata2.log.
zdata2.log.
*data2.log.
zdata2.log.
tdataz.log.

// Payload

zdata2.log.
idata2.log.
%data2.log.
tdata2.log.

xdataz.log

float.data input =
int.data input
int.data input
int.data input
int.data input =
Items

float.data input
float.data input
float.data input
int.data input
.int.data input

Control Items
HeadingSetpoint
AUV_CompassHeading
HeadingControl RPM

VelocitySetpoint

DepthSetpoint
AUV_Depth
VerticalControl RPM

AltitudeSetpoint
AUV_Altitude
AUV_AltSignalStrength

AUV_Pitch
AUV_Roll

AUV_Left_RPM_Fb
AUV_Right_RPM_Fb
RUV_Vertleft RPM_Fb
AUV_VertRight RPM_Fb
AUV_Left PWM_Fb
AUV_Right_PWM_Fb
AUV_VertLeft_PWM_Fb
AUV_VertRight PWM Fb

AUV_BatteryVoltage
AUV_Leaking
AUV_Mode
MissionStep
LocalStep

AUV_Conductivity
AUV_Temperature
AUV_Pressure

AUV_StandardConductivity

ARUV_CTD_PumpOn

144

mission3.csp

/%
$Log: mission3.csp $

Revision 1.7 1997/05/10 16:22:02 PURL

Peter H: checked in to re-establish software on the new
hard drive

#

Revision 1.6 1996/11/22 16:48:50 COUSTEAU
Peter H: Added the CTD variables and control
#

Revision 1.5 1996/09/20 16:10:40 PURL

Peter H: Mission3 Sawtooth of Loon Lake

#

Revision 1.4 1996/09/18 20:37:43 PURL

Peter H and Kevin M: Loon Lake Mission for Sept 19,1996
#

Revision 1.3 1996/08/30 20:38:49 PURL

Peter H: Pool trials

#

Revision 1.2 1996/08/24 11:11:08 COUSTEAU
#

Peter H: Added new logging items, changed the enable and
log trigger

#

Revision 1.1 1980/01/04
Initial revision

#

*/

// Mission 3
/7

// The following is the mission script for Mission3

/7

// A SAWTOOTH mission there and back again.

/7
LI11071771117777
11171717717177777

03:20:32 PURL

Loon Lake Trial

tdefine name=0UT_HEADING3 value=338.0
//340.0 //130.0

zdefine name=BACK_HEADING3 value=155.0
//320.0

tdefine name=TURN_HEADING3 value=70.0
//220.0

zconst.float
value=0UT_HEADING3
zconst.float
value=BACK HEADING3
tconst.float
value=TURN_HEADING3
efine

efine

efine
*const.float
value=SHALLOW3
*const.float
:const.float
value=SURFACE3
tdefine

zdefine
tconst.float
value=LOW_ALT3
zconst.float
value=HIGH_ALT3

name=0UT_HEADING3
name=BACK HEADING3
name=TURN_HEADING3
value=10.0

value=20.0
value=0.5

name=SHALLOW3
name=DEEP3

name=SURFACE3
name=SHALLOW3

name=DEEP3 value=DEEP3

name=SURFACE3

value=5.0
value=5.0

name=LOW_ALT3
name=HIGH_ALT3
name=LOW_ALT3

name=HIGH_ALT3

1111770777177077777777777777777777777777777777777777177777777
111117177117177
*global.script

enable=GoMission3

layer=HIGH

repeat=FALSE

name=Mission3

1171177777177777777777777777777777777777777777777177777777777
111717177717177777

// STEP 1

// Wait for the serial link tether to be disconnected and the
vehicle

// placed into the water.
take more

// than 60 seconds

This whole procedure should not

zint.set
script = Mission3
output = MissionStep
value = 1
step=1 thread=1
zint.set

script = Mission3
cutput = M3LogEnable

value = TRUE
step=1 thread=1

‘int.set
script = Mission3
output = AUV_CTD_PumpOn
value = TRUE
step=1 thread=1
:int.set

script = Mission3
output = WatchDogValue
value = 250

step=1 thread=1

*timed.wait
script=Mission3
trigger=TimeTick
interval=60000
step=1 thread=1

J11117777707777777707777077700707077770770777777777777777777777777
17077717177777777

// STEP 2

// Initialize
// Initialize

the heading setpoint to the desired heading
the depth setpoint to the desired depth

// Initialize the velocity setpoints to zero

// Wait until the AUV is on the desired heading and depth
then move to the

// next step

zint.set
script = Mission3
output = MissionStep
value = 2
step=2 thread=1l

nt.set
script = Mission3
output = MotorMode
value = MOTORS_CONTROLLED
step=2 thread=1

“float.set
script = Mission3
cutput = MissionHeadingSetpoint
value = OUT_HEADING3
step=2 thread=1

zint.set
script = Mission3
output = MissionVelocitySetpoint
value = 0
step=2 thread=1
ifloat.set
script = Mission3
output = MissionDepthSetpoint
value = SHALLOW3
step=2 thread=1
=float.set
script = Mission3
output = MissionAltitudeSetpoint
value = LOW_ALT3
step=2 thread=1
zint.set

script = Mission3

output = AUV_FollowingBottom
value = FALSE

step=2 thread=1

tfloat.confirm
script = Mission3
input = AUV_CompassHeading
value = OUT_HEADING3
range = 3.0
step=2 thread=1

tfloat.confirm
script = Mission3
input = AUV_Depth
value = SHALLOW3
range = 0.3
step=2 thread=1

!float.confirm
script = Mission3
input = AUV_Altitude
value = LOW_ALT3
range = 0.5

145

step=2 thread=1 step=2 thread=1

SILITILLTII7T100 777007777707 777777777707777777777777777777777/ *float.set

117717777 777177777 script = OutSawtooth
// STEP 3 output = MissionDepthSetpoint
// Begin the sawtoothing and continue sawtoothing for 1800 value = SHALLOW3
seconds step=2 thread=1
// (approximately 1100m)
/7 ifloat.confirm
script = OutSawtooth
sint.set input = AUV_Depth
script = Mission3 value = SHALLOW3
output = MissionStep range = 0.3
value = 3 step=2 thread=1
step=3 thread=1 ztimed.wait
script = OutSawtooth
iint.set trigger=TimeTick
script = Mission3 interval=500
output = MissionVelocitySetpoint step=2 thread=1

value = 4000
step=3 thread=1

[HR AR ek kS ke ke 1177770717777 77777777777777777777777771777777777¢077777777777177
// There is a local script in step 3 that repeats the 17111117171117777
sawtooth indefinitely // STEP 4
[] kAR ko k ok ok k ke k ke ke k ok ok ok ok ok ok kk ok k¥ /7
// PURL has reached the halfway point in the mission. It is

“timed.wait going to

script=Mission3 // turn around and then move to the next step.

trigger=TimeTick //

interval=3000000

step=3 thread=1 zint.set

script = Mission3
output = MissionStep

value = 4
// LOCAL SCRIPT IN STEP 3 step=4 thread=1
// SAWTOOTH
/== zfloat.set

- -- script = Mission3
output = MissionHeadingSetpoint

xlocal.script value = TURN_HEADING3
layer=HIGH step=4 thread=1
repeat=TRUE
name=OutSawtooth zint.set
script=Mission3 script = Mission3
step=3 thread=2 output = MissionVelocitySetpoint
value = -4000
/) mmmmmmm - Step 1 Local step=4 thread=1
*int.set “float.set
script = OutSawtooth script = Mission3
output = LocalStep output = MissionDepthSetpoint
value = 1 value = SURFACE3
step=1 thread=1 step=4 thread=1
zfloat.set *float.confirm
script = OutSawtooth script = Mission3
output = MissionDepthSetpoint input = AUV_CompassHeading
value = DEEP3 value = TURN_HEADING3
step=1 thread=1 range = 30.0

step=4 thread=1
:float.confirm

script = OQutSawtooth I 7777770707777777777777777777711771777177
input = AUV_Depth 17777777777 77777

value = DEEP3 // STEP 5

range = 0.3 // Complete the turn and then move to the next step

step=1 thread=1
ttimed.wait

script = OutSawtooth script = Mission3
trigger=TimeTick output = MissionStep
interval=500 value = 5
step=1 thread=1 step=5 thread=1
zfloat.confirm :float.set
script = OutSawtooth script = Mission3
input = AUV Altitude output = MissionHeadingSetpoint
value = LOW_ALT3 value = BACK_HEADING3
range = 0.5 step=5 thread=1
step=1 thread=2
*timed.wait ifloat.confirm
script = OutSawtooth script = Mission3
trigger=TimeTick input = AUV_CompassHeading
interval=500 value = BACK_HEADING3
step=1 thread=2 range = 3.0

step=5 thread=1

// - - Step 2 Local

%int.set J17777717777007177717777711770771177777777777717771171777711777
script = OutSawtooth 11717177177 117777
output = LocalStep // STEP &
value = 2 // Finish going to the surface.

146

*int.set
script = Mission3
output = MissionStep
value = 6
step=6 thread=1
:int.set

script = Mission3

output = MissionVelocitySetpoint
value = 0

step=6 thread=1

zfloat.confirm
script = Mission3
input = AUV_Depth
value = SURFACE3
range = 0.5
step=6 thread=1

LLLLILLTTI T 007777700700 777777777777777707770777777777777
110777071707 77711

// STEP 7

// Set the velocity setpoint and begin sawtoothing again.

// Travel back for 1800 seconds at 4000 RPM shaft speed

tint.set
script = Mission3
output = MissionStep
value = 7
step=7 thread=1
=int.set

script = Mission3

output = MissionVelocitySetpoint
value = 4000

step=7 thread=1

[/ Rk ek kk ko ok kA ke ok k kR ko k k ok Ak ok
// There is a local script here for sawtoothing on the way
back

VA R s R e R s]

Ztimed.wait
script=Mission3
trigger=TimeTick
interval=3000000
step=7 thread=1

// LOCAL SCRIPT IN STEP 7
// BACKSAWTOOTH

%local.script
layer=HIGH
repeat=TRUE
name=BackSawtooth
script=Mission3
step=7 thread=2

Y — Step 1 Local

script = BackSawtooth
output = LocalStep
value = 1

step=1 thread=1

zfloat.set
script = BackSawtooth
output = MissionDepthSetpoint
value = SHALLOW3
step=1 thread=1

*float.confirm
script = BackSawtooth
input = AUV_Depth
value = SHALLOW3
range = 0.2
step=1 thread=1
*timed.wait
script = BackSawtooth
trigger=TimeTick
interval=500
step=1 thread=1

/) mmmmee e Step 2 Local

int.set
script = BackSawtooth
output = LocalStep
value = 2
step=2 thread=1
~float.set

script = BackSawtooth

output = MissionDepthSetpoint
value = DEEP3

step=2 thread=1

*float.confirm
script = BackSawtooth
input = AUV_Depth
value = DEEP3
range = 0.2
step=2 thread=1
“timed.wait
script = BackSawtooth
trigger=TimeTick
interval=500
step=2 thread=1

+float.confirm
script = BackSawtooth
input = AUV_Altitude
value = LOW_ALT3
range = 0.5
step=2 thread=2
timed.wait
script = BackSawtooth
trigger=TimeTick
interval=500
step=2 thread=2

LILE7000T1 2700777777777 7777077777777777070777177777777777777777
1107777771777777

// STEP 8

// Come to the surface for the end of the mission

zint.set
script = Mission3
output = MissionStep
value = 8
step=8 thread=1
int.set
script = Mission3
cutput = MissionVelocitySetpoint
value = 0
step=8 thread=1
:float.set

script = Mission3

output = MissionDepthSetpoint
value = SURFACE3

step=8 thread=1l

=float.confirm
script = Mission3
input = AUV_Depth
value = SURFACE3
range = 0.3
step=8 thread=1

1101007700777 770777077707700777077707770707070777007777077777777777
1117 7777777777777

// STEP 9

// Disable the data logging and stop PURL

iint.set
script = Mission3
output = MissionStep
value = 9
step=9 thread=1
zint.set
script = Mission3
output = M3LogEnable
value = FALSE
step=9% thread=1
zint.set

script = Mission3
output = AUV_CTD_PumpOn
value = FALSE

147

step=9 thread=1

*timed.wait
script=Mission3
trigger=TimeTick
interval=1000
step=9 thread=1

SILELTTII 77777777777 700770777777777777777770000770700771707777
L1777 0777777

// STEP 10

// Put the AUV into IDLE mode

xint.set
script = Mission3
output = MissionStep
value = 10
step=10 thread=1
*int.set
script = Mission3
output = TelemModeSelect
value = IDLE

step=10 thread=1

[/ ARk ok kk ok ke kkkkmkkk*x Data Logging For Mission 3
B e T T]

J] REA A E kA kkk kb wwkthww® TTMESTAMP TIGGER
e e e e ok ko k ok ok ok ok ok ok ok ok kb
zcopy

enable = M3LogEnable

input = SYS_TwoHzTrigger

output = M3LogTrigger

[/ FrA xSk kkkdk kb ekt kkhkdt DATA LOG COMPONENT

D O S T

zdata.log
name = data3
path “M3LOG.DAT"
enable TRUE
time_stamp_trigger = M3LogTrigger
level = LOW
time_stamp_byte = 254
escape_byte = 27
byte_count_output = M3LogSize

[/ WA Ak dkkkhwkkkkw bbbk wkxkrxn* AT TASES

e ke ke ke ek ek ke e ko

@data3.log.int.data
@data3.log.float.data
@data3.log.double.data

enable=TRUE trigger=M3LogTrigger
enable=TRUE trigger=M3LogTrigger
enable=TRUE trigger=M3LogTrigger

/] EEEAE Ak kA ks ok kwwkkkhkkwwkww T,0G ITEM LIST

ok ek ok ek ke kb ko ke ok kK ko k%

Sensor Feedbacks and Control Items

// Vehicle
E .float.data input = HeadingSetpoint

.float.data input = AUV_CompassHeading
.int.data input = HeadingControl RPM
data3.log.int.data input = VelocitySetpoint

.log.float.data input = DepthSetpoint
.log.float.data input = AUV_Depth
.log.int.data input = VerticalControl RPM
.log.float.data input = AltitudeSetpoint
.log.float.data input = AUV_Altitude
.log.int.data input = AUV_AltSignalStrength
.log.float.data input = AUV_Pitch
.log.float.data input = AUV_Roll

// Motor Feedbacks

zdata3.log.int.data input = AUV_Left RPM_Fb

.log.int.data input = AUV_Right_RPM Fb
.log.int.data input = AUV_VertLeft RPM_Fb
.log.int.data input = AUV_VertRight RPM_Fb
.log.int.data input = AUV_Left PWM_Fb
.log.int.data input = AUV_Right_PWM Fb
.log.int.data input = AUV_VertLeft PWM_Fb
.log.int.data input = AUV_VertRight_PWM_Fb

Mode and Status Items
.log.float.data input = AUVvBatteryVoltage
.log.int.data input = AUV_Leaking

*data3.log.int.data
rdata3.log.int.data
data3.log.int.data

// Payload Items
:data3.log.float.data
“data3.log.float.data
zdata3.log.float.data
:data3.log.int.data
~data3.log.int.data

148

input =

input
input

input =

input
input
input

input =

AUV_Mode
MissionStep
LocalStep

AUV_Conductivity
AUV_Temperature
AUV_Pressure
AUV_StandardConductivity
AUV_CTD_PumpOn

mission4.csp

/.
$Log: missiond.csp $

Revision 1.8 1997/05/10 16:22:02 PURL

Peter H: checked in to re-establish software on the new
hard drive

#

*

Revision 1.7 1996/11/22 16:48:50 COUSTEAU
Peter H: Added the CTD variables and control

Revision 1.6 1996/09/27 15:24:10 PURL
Peter H: Mission demonstrated for NSERC

Revision 1.5 1996/09/20 16:11:17 PURL
Peter H: Missiond Bottom following Loon Lake

Revision 1.4 1996/09/18 20:37:43 PURL
Peter H and Kevin M: Loon Lake Mission for Sept 19,1996

Revision 1.3 1996/08/30 20:38:49 PURL
Peter H: Pool trials

Revision 1.2 1996/08/24 11:11:08 COUSTEAU
Peter H: Added new logging items, changed the enable and
og trigger

SE O3 T TS I S 36 3 ;| T T S 36 36 3 g

Revision 1.1 1980/01/04 03:21:00 PURL

Initial revision

#

*/

// Mission 4 : Loon Lake Trial

’/

// The following is the mission script for MISSION4
7/

//

LILLLILLITILIII 0000007700700 7007077707770 7077007070770117777777
11717777777117777

name=0UT _HEADINGA4 value=130.0
name=BACK_HEADING4 value=320.0
name=TURN_HEADINGA4 value=220.0
zconst.float name=0UT_HEADING4
value=QUT_HEADING4
zconst.float name=BACK_HEADING4
value=BACK HEADING4
zconst.float name=TURN_HEADING4
value=TURN_HEADING4
tdefine name=SHALLOW{4 value=0.5
define name=DEEP4 value=10.0
*define name=SURFACE4 value=0.25
zconst.float name=SHALLOW4
value=SHALLOW4
zconst.float name=DEEP4 value=DEEP4
tconst.float name=SURFACE4
value=SURFACE4
tdefine name=LOW_ALT4 value=5.0
:define name=HIGH_ALT4 value=10.0
zconst.float name=LOW_ALT4
value=LOW _ALT4
tconst.float name=HIGH_ALT4

value=HIGH_ALT4

LIP1ITITITT 00077770077 70700777077777777777777777177777777177
11117717777 777
tglobal.script

enable=GoMissiond

layer=HIGH

repeat=FALSE

name=Mission4

LISILSLISLILIILL LTSI ITS LS LSLLLSLS TS IS TSI IS/ / 177777
II111177777777177

// STEP 1

// Wait for the serial link tether to be disconnected and the
vehicle

// placed into the water. This whole procedure should not
take more

// than 45 seconds

tint.set
script = Mission4
output = MissionStep
value = 1
step=1 thread=1
zint.set

script = Missiond4
output = M4LogEnable
value = TRUE

step=1 thread=1

*int.set

script = Mission4

output

valuye =
step=1 thread=1

-timed.wait
script=Mission4
trigger=TimeTick
interval=45000
step=1 thread=1

LI0IIIL011000 0000777007000 770077 0000770 77070770170707170777777777

1101710107177117717

’/
//
//
//
//

STEP 2

Initialize
Initialize
Initialize
Initialize

zint.set

the
the
the
the

script
output
value =
step=2 thread=1

zint.set

= WatchDogValue

250

heading setpoint to the desired heading

depth setpoint to SHALLOW4
altitude setpoint
velocity setpoints to zero

= Mission4
= MissionStep

2

script = Mission4
output
value =
step=2 thread=1

tfloat.set

= MotorMode

MOTORS_CONTROLLED

script = Missiond
output

value =
step=2 thread=1

=int.set

script
output
value =
step=2 thread=1

tfloat.set

script
output
value =
step=2 thread=1

ifloat.set

= MissionHeadingSetpoint

OUT_HEADINGA4

= Missiond
= MissionVelocitySetpoint

0

= Missiond
= MissionDepthSetpoint

DEEP4

script = Missiond
output
value =
step=2 thread=1

zint.set

= MissionAltitudeSetpoint

LOW_ALTA

script = Mission4
output
value =
step=2

:float.confirm
script

input

value =
range =
step=2 thread=1

float.confirm

script
input =
value =
range =
step=2 thread=1

!float.confirm
script
input =

JITIIIIIIIITT 70077707770 77777077770077777077177771/777711777

value =
range

= AUV_FollowingBottom

TRUE
thread=1

= Mission4
=AUV_CompassHeading

OUT_HEADING4
3.0

= Mission4

AUV_Depth
SHALLOW4
0.2

= Mission4

AUV_Altitude
LOW_ALT4
0.5

step=2 thread=1

1117777117777 77

//

STEP 3

// Go out for 500 seconds

zint.set

149

script

= Missiond

output = MissionStep
value = 3
step=3 thread=l

zint.set
script = Missiond
output = MissionVelocitySetpoint
value = 4500
step=3 thread=1

ttimed.wait
script=Mission4
trigger=TimeTick
interval=500000
step=3 thread=1

LILLTLLLTIIIITI 770007777777 77777777717777111007717777711777177
1117117171777177777

// STEP 4

//

// Turn PURL around

/7

zint.set
script = Missiond
output = MissionStep
value = 4
step=4 thread=1

zfloat.set
script = Mission4
output = MissionHeadingSetpoint
value = TURN_HEADING4
step=4 thread=1

zint.set

script = Mission4

output = MissionVelocitySetpoint
/7 value = 0

value = -4000

step=4 thread=1

zfloat.set
script = Mission4
output = MissionDepthSetpoint
value = SURFACE4
step=4 thread=1

xfloat.confirm
script = Missiond
input = AUV_CompassHeading
value = TURN_HEADINGA4
range = 30.0
step=4 thread=1

L101111770 7007007707700 77070770077707070077070170770777777777177777
11171717177717177

// STEP 5

/7

// Finish turning PURL around and move to next step

24

*int.set
script = Missiond
output = MissionStep
value = 5
step=5 thread=1
ifloat.set

script = Missiond

output = MissionHeadingSetpoint
value = BACK_HEADINGA4

step=5 thread=1

zfloat.confirm
script = Mission4
input = AUV_CompassHeading
value = BACK_HEADING4
range = 3.0
step=5 thread=1

zfloat.confirm
script = Missiond
input = AUV_Depth
value = SURFACE({
range = 0.3
step=5 thread=1

LILELLIILLIILIE000 00070000700 70707770700770707077077177700777777
117711 7777177777

// STEP &

// Go back for 500 seconds

zint.set
script = Missiond
output = MissionStep
value = 6
step=6 thread=l
*float.set
script = Missiond
output = MissionDepthSetpoint
value = DEEP4
step=€ thread=1
~float.set

script = Missiond

output = MissionVelocitySetpoint
value = 4500

step=6 thread=1

ztimed.wait
script=Mission4
trigger=TimeTick
interval=500000
step=6 thread=1

LI1711001100 700770777700 700777070007770777771707770017777777777
L0777 77717717077

// STEP 7

// Return PURL to the surface

/7

zint.set
script = Mission4
output = MissionStep
value = 7
step=7 thread=1

tint.set
script = Missiond
output = MissionVelocitySetpoint
value = 0
step=7 thread=1
:float.set

script = Mission4

output = MissionDepthSetpoint
value = SURFACE4

step=7 thread=1

ifloat.confirm
script = Missiond
input = AUV _Depth
value = SURFACE4
range = 0,2
step =7 thread = 1

L1111 170 7700700000007 77077777007070707077777000177777711¢0777717
11711171777771717

// STEP 8

// Disable the data logging

fint.set
script = Missiond
output = MissionStep
value = 8
step=8 thread=1
tint.set

script = Mission4
ocutput = M4LogEnable
value = FALSE

step=8 thread=1

*timed.wait
script=Mission4
trigger=TimeTick
interval=1000
step=8 thread=1

L1177 77177777777007770707701777077077770177777777777777777777777
1171177111771171777

// STEP 9

// Put the AUV into IDLE mode

tint.set
script = Missiond

150

output = MissionStep
value = 9
step=9 thread=1

*int.set
script = Mission4
output = TelemModeSelect
value = IDLE
step=9 thread=1

[/ *AAAvwwxkxxxwhkdkikvsktt Data Logging For Mission 4
A ke ok ko

[/ *AA Ak Ak ko kkkkkkk Akt xk+* TIMESTAMP TIGGER
T
icopy

enable = M4LogEnable

input = SYS_TwoHzTrigger

output = M4LogTrigger

/) *AEAdkkrkkkkwkkbrdkwwwkx DATA LOG COMPONENT

D N Y S A T

zdata.log
name = datai4
path = "M4LOG.DAT"
enable = TRUE
time_stamp_trigger = M4LogTrigger
level = LOW
time_stamp_byte = 254
escape_byte = 27
byte_count_output = M4LogSize

[/ KAAA kA Ak Ak Ak ok kb bt d b kbh kbbb st ATTASES

B R R e

@datad.log.int.data enable=TRUE trigger=M4LogTrigger
@datad.log.float.data enable=TRUE trigger=M4LogTrigger
@datad.log.double.data enable=TRUE trigger=M4LogTrigger

J] dwA e wkkkn ok kk Rk knk* kR4 x LOG ITEM LIST

ke e ke e ek k ok k ke ke ok kR ko

// Vehicle Sensor Feedbacks and Control Items
xdatad.log.float.data input = HeadingSetpoint
tdatad4.log.float.data input = AUV_CompassHeading
:datad.log.int.data input = HeadingControl RPM

2datad.loyg.int.data input = VelocitySetpoint
tdatad.log.float.data input = DepthSetpoint
idatad.log.float.data input = AUV_Depth
“datad.log.int.data input = VerticalControl RPM
tdatad.log.float.data input = AltitudeSetpoint
zdatad.log.float.data input = AUV_Altitude
tdatad.log.int.data input = AUV_AltSignalStrength

¥datad.log.float.data input = AUV_Pitch
%#datad.log.float.data input = AUV_Roll

// Motor Feedbacks

tdatad.log.int.data input = AUV_Left RPM Fb
sdatad.log.int.data input = AUV_Right_RPM_Fb
tdatad.log.int.data input = AUV_VertLeft RPM Fb
tdatad.log.int.data input = AUV_VertRight_ RPM_Fb
datad.log.int.data input = AUV_Left PWM Fb
tdatad.log.int.data input = AUV_Right PWM Fb
%*datad.log.int.data input = AUV VertLeft PWM_Fb
tdatad.log.int.data input = AUV_VertRight PWM Fb

// AUV Mode and Status Items

2datad.log.float.data input = AUV _BatteryVoltage
zdata4.log.int.data input = AUV_Leaking
xdatad4.log.int.data input = AUV_Mode
%datad4.log.int.data input = MissionStep
%datad4.log.int.data input = LocalStep

// Payload Items

zdatad.log.float.data input = AUV_Conductivity
tdatad.log.float.data input = AUV_Temperature
zdatad.log.float.data input = AUV_Pressure
*datad.log.int.data input = AUV_StandardConductivity
zdatad.log.int.data input = AUV_CTD_PumpOn

151

missionS.csp
/e

$Log: missionS.csp $
v/

// Mission 5 Simple test mission Purl II

//PURL will dive to 1 meter, travel on course 200 for 60 sec.
and surface

// The following is the mission script for MISSIONS

7/

/7

1171700770777 770777007707777777777077707777777777770777777077777
1171711171777171777

tdefine name=HEADINGS value=154.0
//130.0

zdefine name=BACK_HEADINGS value=180.0
//320.0 B

zdefine name=TURN_HEADINGS value=180.0
//220.0

fconst.float name=HEADINGS
value=HEADINGS
zconst.float
value=BACK_HEADINGS
zconst.float
value=TURN_HEADINGS

name=BACK_HEADINGS

name=TURN_HEADINGS

zdefine name=DEPTHS value=0.5
tdefine name=BACK_DEPTHS value=0.5
zdefine name=SURFACES value=0.00

name=DEPTHS value=DEPTHS

name=BACK_DEPTHS

2const.float
*const.float
value=BACK_DEPTHS
*const.float
zdefine

idefine
iconst.float
value=LOW_ALTS
zconst.float
value=HIGH_ALTS

value=SURFACES
value=0.0
value=5.0

name=SURFACES
name=LOW_ALTS
name=HIGH_ALTS
name=LOW_ALTS

name=HIGH_ALTS

L111T00171070 0710770777770 777777777077700707707770777777777777777
11111717171177
*global.script

enable=GoMission$

layer=HIGH

repeat=FALSE

name=Mission5

L1117707700 770070107777 770777777777007777777077777777777777177717
11117177171717777

// STEP 1

// Wait for the serial link tether to be disconnected and the
vehicle

// placed into the water.
take more

// than 10 seconds

This whole procedure should not

zint.set
script = Mission$
output = MissionStep
value = 1
step=1 thread=1
zint.set
script = Mission5
output = M5LogEnable
value = FALSE
step=1 thread=l1
*int.set
script = Mission5
ocutput = AUV_CTD_PumpOn
value = FALSE
step=1 thread=1
zint.set

script = Mission5
output = WatchDogValue
value = 250

step=1 thread=1

itimed.wait
script=Mission5
trigger=TimeTick
interval=10000
step=1 thread=1

L0117 107770777 7777777007777 0777777777777777770777777777777777
11711777177177777

// STEP 2

// Initialize the heading setpeint to the desired heading

// Initialize the depth setpoint to the desired depth

// Initialize the altitude setpoint to the desired altitude
and set either

// bottom folleowing mode or depth following mode

// Initialize the velocity setpoints to zero

“int.set
script = Mission5
output = MissionStep
value = 2
step=2 thread=1

// Enable the motors
zint.set
script = Mission5
output = MotorMode
value = MOTORS_CONTROLLED
step=2 thread=1
// Set the intitial heading, depth, velocity and altitude
setpoints.
// Set Bottom Following to TRUE for altitude following,
FALSE for
// depth following.
// These parameters should be initialised at the beginning of
every mission
<float.set
script = Mission5
output = MissionHeadingSetpoint
value = HEADINGS
step=2 thread=1

and

tint.set
script = Mission5
output = MissionVelocitySetpoint
value = O
step=2 thread=1
zfloat.set
script = Mission5
output = MissionDepthSetpoint
value = DEPTHS
step=2 thread=1
=float.set
script = Mission5
output = MissionAltitudeSetpecint
value = LOW_ALTS
step=2 thread=1
zint.set
script = Mission$
output = AUV_FollowingBottom
value = FALSE
step=2 thread=1

// if desired heading and depth have been reached then move
to the
// next step
zfloat.confirm
script = Mission5
input = AUV_CompassHeading
value = HEADINGS
range = 3.0
step=2 thread=1

zfloat.confirm
script = Mission$
input = AUV_Depth
value = DEPTHS
range = 0.2
step=2 thread=1

// if desired heading and altitude have been reached then
move to the
// next step
tfloat.confirm
script = Mission5
input = AUV _CompassHeading
value = HEADINGS
range = 3.0
step=2 thread=2

tfloat.confirm
script = Mission®
input = AUV_Altitude
value = LOW_ALTS
range = 0.5
step=2 thread=2

JI11177777777707777170777077707777777017777770717717777777777117
117111777177717177

// STEP 3

// Go out for a predetermined time

zint.set

152

script = Mission5
output = MissionStep
value = 3

step=3 thread=1

int.set
script = Mission5
output = MissionVelocitySetpoint
value = 4000
step=3 thread=1

“timed.wait
script=Mission$
trigger=TimeTick
interval=30000
step=3 thread=1

LILLLTIIIIT LTI L7 017777 077771777 7777707777777007177177771777777

11117777710777177
// STEP 4

/7

/7

tint.set
script = Mission5
ocutput = MissionStep
value = 4
step=4 thread=1

!float.set
script = Mission$5
output = MissionHeadingSetpoint
value = TURN_HEADINGS
step=4 thread=1

tfleat.set
script = Mission5
output = MissionDepthSetpoint
value = BACK_DEPTHS
step=4 thread=1

'float.set
script = MissionS
output = MissionAltitudeSetpoint
value = LOW_ALTS
step=4 thread=1

tint.set

script = Mission5

output = MissionVelocitySetpoint
// value = 0

value = -4000
step=4 thread=1

!float.confirm
script = Mission5
input = AUV CompassHeading
value = TURN_HEADINGS
range = 30.0
step=4 thread=1

tfloat.confirm
script = Mission5
input = AUV _Depth
value = BACK_DEPTHS
range = 0.2
step=4 thread=1

tfloat.confirm
script = Mission5
input = AUV_Altitude
value = LOW_ALTS
range = 0.5
step=4 thread=1

value = BACK_HEADINGS
step=5 thread=1

!float.confirm

script = Missiond

input = AUV_CompassHeading
value = BACK_HEADINGS
range = 3.0

step=5 thread=1

tfloat.confirm

script = Mission5
input = AUV_Depth
value = BACK_DEPTHS
range = 0.2

step=5 thread=1

'float.confirm

script = Missionb
input = AUV_Altitude
value = LOW_ALTS
range = 0.5

step=5 thread=1

LIT777777777777777777777771777777777777777777777711/777177777
17117711177777177

// STEP 6

// Go back for a predetermined time (1800 sec)

!int.set

int.set

script = Mission5
output = MissionStep
value = 6

step=6 thread=1

script = Mission$

output = MissionVelocitySetpoint
value = 4000

step=6 thread=1

!timed.wait

script=Mission5
trigger=TimeTick
interval=1800000
step=6 thread=1

LI11777770777777077
1111701777777777

// STEP 7

// Stop the vehicle and return to the surface

=int.set

zint.set

tfloat.set

script = Mission$5
output = MissionStep
value = 7

step=7 thread=1

script = Missionb

output = MissionVelocitySetpoint
value = 0

step=7 thread=1

script = Mission5
output = MissionDepthSetpoint
value = SURFACES
step = 7 thread=1

*float.confirm

LIVILIITITITILTIIIS)T T T T T 7707 P FII 70777770777 0000 07077

II111777777777777
// STEP 5
// Change the heading setpoint to BACK_HEADINGS

// Wait until the AUV reaches the desired heading, then move

to the next step

int.set
script = Mission5
output = MissionStep
value = §
step=5 thread=1
tfloat.set

script = Mission5
output = MissionHeadingSetpoint

script = Mission5
input = AUV_Depth
value = SURFACES
range = 0.3

step = 7 thread =1

117177777777 777777177777077777777777771777/777177777777777717
1111771177777777

// STEP 8

// Disable the data logging

tint.set

int.set

153

script = Mission5
output = MissionStep
value = 8

step=8 thread=1

script = Missionb

cutput = MlLogEnable

value = FALSE

step=8 thread=1
int.set

script = Mission$S

output = AUV_CTD_PumpOn

value = FALSE

step=8 thread=1
ttimed.wait
script=Mission5
trigger=TimeTick
interval=1000
step=8 thread=1

1117777 7777777777777777777777177777771177777177777117777111777
111717771717177777

// STEP 9

// Put the AUV into IDLE mode

Zint.set
script = Mission5
output = MissionStep
value = 9

step=9 thread=1

nt.set
script = Mission5
output = TelemModeSelect
value = IDLE

step=% thread=1

[/ Hrxxxxxkwdddsdadkwxws+ Data Logging For Mission 1
R L T T T

J) WrrEEExkkukrA*khi kb s4kxr TIMESTAMP TIGGER

dk ko k ek ok ok ko ek ok k kb ok kb ok kb

zcopy
enable = M5LogEnable
input = SY5_TwoHzTrigger
output = M5LogTrigger

/] **ErEAFEr sk xRk kb vkrhkkkr DATA LOG COMPONENT

ek ok ok ko kK kK

:data5.log.int.data input =
‘data5.log.int.data input
// AUV Mode and Status Items
:data5.log.float.data input =
data5.log.int.data input
:data5.log.int.data input
=data5.log.int.data input
rdata5.log.int.data input =
// Payload Items
:data5.log.float.data input =
data5.log.float.data input
tdata5.log.float.data input
*data5.log.int.data input
:dataS.log.int.data input =

*data.log
name = data5
path = "MSLOG.DAT"
enable = TRUE
time_stamp_trigger = M5LogTrigger
level = LOW
time_stamp_byte = 254
escape_byte = 27
byte count_output = M5LogSize

[] RE Ak kA Ak kA k kA ok ok k ok

R Y

@data5.log.int.data
@dataS.log.float.data
@dataS.log.double.data

**kxxxw* ALTASES

ek k ko k

enable=TRUE trigger=M5LogTrigger
enable=TRUE trigger=M5LcgTrigger
enable=TRUE trigger=M5LogTrigger

[RRA ARk kA kkd kbt ks [OG TTEM LIST

Aok ko k kk ok ok ok k ok k k kk ko k ok ok ok ko ok ok kK

// Vehicle Sensor Feedbacks and

Contrel Items

.leog.float.data input = HeadingSetpoint
.log.float.data input = AUV_CompassHeading
.log.int.data input = HeadingControl_ RPM
.log.int.data input = VelocitySetpoint
.log.float.data input = DepthSetpoint
.log.float.data input = AUV_Depth
.log.int.data input = VerticalControl RPM
tdata5.log.float.data input = AltitudeSetpoint
tdata5.log.float.data input = AUV_Altitude
2data5.log.int.data input = AUV _AltSignalStrength
idata5.log.float.data input = AUV_Pitch
idata5.log.float.data input = AUV_Roll
// Motor Feedbacks
*data5.log.int.data input = AUV_Left RPM_Fb
zdataS.log.int.data input = AUV_Right_ RPM_Fb
*data5.log.int.data input = AUV_VertLeft RPM_Fb
tdataS.log.int.data input = AUV_VertRight RPM_Fb
zdata5.log.int.data input = AUV_Left_ PWM_Fb
tdataS.log.int.data input = AUV_Right_PWM_Fb

154

AUV_VertLeft PWM_Fb
AUV_VertRight PWM_Fb

AUV_BatteryVoltage
AUV_Leaking
AUV_Mode
MissionStep
LocalStep

AUV_Conductivity
AUV_Temperature
AUV_Pressure
AUV_StandardConductivity
AUV _CTD PumpOn

mission6.csp

/e
$Log: missioné
*/

// Mission 6 CTD Collection

//Purpose: to collect CTD data over the sill at
determine if

//there is is a upwelling of coldwater from the
into the arm.

// There is a thermistor chain about 100 meters
the arm in the

// main lake. Purl has to start near the chain,
travel on a heading

// towards the sill maintaining a two meter bottom following
altitude. At a

//specific time over the sill a course correction has to be

made to allow

//PURL to continue down the arm as far as possible at the 2

metre altitude.

// At the end of the run time PURL stops and surfaces.

csp §

Loon Lake to
main lake
in front of

dive and

LILILLLITIIEIL TP 000 0000000700000 70007070700770070177777777
111171100170077777

value=180.0
value=155.0
value=155.0

name=HEADING6
name=NEW_HEADINGS6
name=TURN_HEADING#6
name=HEADING#&

value=HEADING6&
“const.float
value=NEW_HEADING6
zconst.float
value=TURN_HEADING®&
zdefine

sdefine

efine

cnst.flecat
*const.float
value=BACK_DEPTH6
zconst.float

name=NEW_HEADING®&
name=TURN_HEADING6

value=10.0
value=10.0
value=0.0
value=DEPTH6

name=DEPTH6
name=BACK_DEPTH&
name=SURFACE®
name=DEPTHE
name=~BACK_DEPTHE

name=SURFACE6

value=1.25
value=3.00

name=LOW_ALT6
name=HIGH_ALT6
name=LOW_ALT®

value=LOW ALT6
zconst.float
value=HIGH_ALT#

name=HIGH_ALT6&

LILILILILTIELILIIPE00 0TI 000 070700007 000777701077070007777777
sy
iglobal.script

enable=GoMissioné

layer=HIGH

repeat=FALSE

name=Missioné

L1117 107 0077777777777 777777777177777777077777777777177777777
11171771717117777

// STEP 1

// Wait for the serial link tether to be disconnected and the
vehicle

// placed into the water.
take more

// than 60 seconds

This whole procedure should not

zint.set
script = Missioné
output = MissionStep
value = 1
step=1 thread=1
zint.set
script = Missioné
output = MéLogEnable
value = TRUE
step=1 thread=1
tint.set
script = Missioné6
output = AUV_CTD_PumpOn
value = TRUE
step=1 thread=1
zint.set
script = Missioné
output = WatchDogValue
value = 250

step=1 thread=1

ttimed.wait
script=Missioné
trigger=TimeTick

interval
step=1 t

1117170777107077777
LIVIIIIEINI011Y
// STEP 2

// Initialize the
// Initialize the
// Initialize the
and set either

// bottom followin
// Initialize the

tint.set
script =
output =
value =
step=2 t

// Enable
tint.set

the moto

script =
output =
value =
step=2 t

// Set the intitia
setpoints.

// Set Bottom Foll
FALSE for

// depth following
// These parameter
every mission
%float.set

=60000
hread=1

LIVIEILIIII 0070700000070 77700707077777777

heading setpoint to the desired heading
depth setpoint to the desired depth
altitude setpoint tc the desired altitude

g mode or depth following mode
velocity setpoints to zero

Missioné
MissionStep
2
hread=1

rs
Missioné

MotorMode

MOTORS _CONTROLLED

hread=1

1 heading, depth, velocity and altitude

owing to TRUE for altitude following, and

s should be initialised at the beginning of

script = Missioné
output = MissionHeadingSetpoint
value = HEADINGE
step=2 thread=1
tint.set
script = Missioné
output = MissionVelocitySetpoint
value =0
step=2 thread=1
zfloat.set
script = Missioné
output = MissionDepthSetpoint
value = DEPTHE
step=2 thread=1
*float.set
script = Missioné
output = MissionAltitudeSetpoint
value = LOW_ALTG
step=2 thread=1
zint.set
script = Missioné
output = AUV_FollowingBottom
value = TRUE

step=2 thread=1

// if desired heading and depth have been reached then move
to the
// next step
zfloat.confirm
script = Missioné

input = AUV_CompassHeading
value = HEADING®
range = 3.0

step=2 thread=1

zfloat.confirm
script = Missioné
input = AUV _Depth
value = DEPTH®
range = 0.2
step=2 thread=l

// if desired heading and altitude have been reached then
move to the

// next step

zfloat.confirm

script = Missioné

input = AUV CompassHeading
value = HEADING6

range = 3.0

step=2 thread=2

zfloat.confirm

script = Missioné
input = AUV_Altitude
value = LOW_ALT6
range = 0.5

155

step=2 thread=2

LIPIIILLTTI707 770700 770077177707777777707717707771177771111777
110171711111111177

// STEP 3

// Go out for a predetermined time following the bottom at
1.25 meters alt

tint.set
script = Missioné6
output = MissionStep
value = 3
step=3 thread=1
tint.set

script = Missioné

output = MissionVelocitySetpoint
value = 4000

step=3 thread=1

itimed.wait
script=Missioné
trigger=TimeTick
interval=180000
step=3 thread=1

L111TIL1P007 77700707700 70077700700007070007017070777071777077777
17111717171177777

// STEP 4

// After the predetermined time at HEADINGS,
to TURN_HEADINGS6

change heading

*int.set
script = Missioné
output = MissionStep
value = 4
step=4 thread=1

:float.set
script = Missioné
output = MissionHeadingSetpoint
value = TURN_HEADING6
step=4 thread=1

:float.set
script = Missioné
output = MissionDepthSetpoint
value = BACK DEPTH6
step=4 thread=1

zfloat.set
script = Missioné
output = MissionAltitudeSetpoint
value = LOW_ALT6
step=4 thread=1

xint.set

script = Missioné

output = MissionVelocitySetpoint
// value = 0

value =-4000

step=4 thread=1

zfloat.confirm
script = Missioné
input = AUV_CompassHeading
value = TURN_HEADING6
range = 5.0
step=4 thread=1

tfloat.confirm
script = Missioné
input = AUV_Depth
value = DEPTH6
range = 0.2
step=4 thread=1

tfloat.confirm
script = Missioné
input = AUV Altitude
value = LOW_ALT6
range = 0.5
step=4 thread=1

LI110177770107770777007770777777770077707017017777777777717177
117777177177 177777

// STEP 5

// Change the heading setpoint to NEW_HEADING6

// Wait until the AUV reaches the desired heading,
to the next step

then move

“int.set
script = Missioné6
output = MissionStep
value = 5
step=5 thread=1

*float.set
script = Missioné
output = MissionHeadingSetpoint
value = NEW_HEADING#6
step=5 thread=1

zfloat.confirm
script = Missioné
input = AUV_CompassHeading
value = NEW_HEADING6
range = 5.0
step=5 thread=1

!'float.confirm
script = Missioné
input = AUV_Depth
value = BACK DEPTH6
range = 0.2 B
step=5 thread=1

!float.confirm
script = Missioné6
input = AUV_Altitude
value = LOW_ALTE
range = 0.5
step=5 thread=1

LILILITT 1070707777000 7777777707/7777771077777077777777777177
11171777717177177

// STEP 6

// Go on new heading for a predetermined time 10 min or 600
sec or 600000 ms

zint.set
script = Missioné
output = MissionStep
value = 6
step=6 thread=1

*int.set
script = Missioné
output = MissionVelocitySetpoint
value = 4000
step=6 thread=1

“timed.wait
script=Missioné
trigger=TimeTick
interval=600000
step=6 thread=1

L1117 1777007770777070777077777777777777077777777717777771777777
1117111711717177

// STEP 7

// Stop the vehicle and return to the surface

zint.set
script = Missioné
cutput = MissionStep
value = 7
step=7 thread=1
tint.set

script = Missioné

output = MissionVelocitySetpoint
value = 0

step=7 thread=1

zfloat.set
script = Missioné
output = MissionDepthSetpoint
value = SURFACE6
step = 7 thread=1

zfloat.confirm
script = Missioné
input = AUV_Depth
value = SURFACE®6
range = 0.3
step = 7 thread = 1

L1117 1707777 7777770077077 770770777770177717/77/77777777777777
1111177771777777
// STEP 8

156

// Disable the data logging

int.set
script = Missioné
output = MissionStep
value = 8
step=8 thread=1
zint.set
script = Missioné
output = MéLogEnable
value = FALSE
step=8 thread=1
zint.set
script = Missioné
output = AUV _CTD_PumpOn
value = FALSE

step=8 thread=1
ttimed.wait
script=Missioné
trigger=TimeTick
interval=1000
step=8 thread=1

LILIIILIL7 1007000700 070007070 0000000700 700770077077701777170717777
/177777777 777177177

// STEP 9

// Put the AUV into IDLE mode

tint.set
script = Missioné
output = MissionStep
value = 9
step=9 thread=1
zint.set
script = Missioné
output = TelemModeSelect
value = IDLE

step=9 thread=1

/] wwkwerssdvkwwswstsrxt Data Logging For Mission 1
ek ek k ke ko k

[ARk ko kkkwkkwkkkkwwxkk* TIMESTAMP TIGGER
P L L L R T T
zcopy

enable = MéLogEnable

input = SYS_ TwoHzTrigger

cutput = MéLogTrigger

[] KA ek kkkwkhkh ko kkwkww* DATA LOG COMPONENT

e e ko ok ke ok ke ke ko k kK

xdata.log
name = dataé
path = "“M6LOG.DAT"
enable = TRUE
time_stamp_trigger = M6LogTrigger
level = LOW
time_stamp_byte = 254
escape_byte = 27
byte_count_output = MéLogSize

[/ KR EH KR A A A A AN AN Nk kA kA kkkkkkww ATTASES

e A ke ke ok Sk ke ko kR R ok k ko

@datab.log.int.data
@data6.log.float.data
@data6.log.double.data

enable=TRUE trigger=MéLogTrigger
enable=TRUE trigger=MéLogTrigger
enable=TRUE trigger=MéLogTrigger

J] WA R Ak kwk ok Rk kkw ko kwkkkwww 1,0G ITEM LIST

e ek ok ke e ke ke ko ko ok

// Vehicle Sensor Feedbacks and Control Items
tdatab.log.float.data input = HeadingSetpoint
=data6.log.float.data input = AUV_CompassHeading
idata6.log.int.data input = HeadingControl_ RPM
tdataé.log.int.data input = VelocitySetpoint
.float.data input = DepthSetpoint
.float.data input = AUV _Depth
.int.data input = VerticalControl RPM
.float.data input = AltitudeSetpoint
.float.data input = AUV_Altitude
dataé.log.int.data input = AUV_AltSignalStrength

~dataé6.log.
:datab.log.

float.data
float.data

// Motor Feedbacks

zdataé.log.
zdata6.log.
*dataé.log.
zdata6.log.
:data6.log.
*data6.log.
:dataé.log.
zdataé.log.

data
int.data
int.data
int.data
int.data
int.data
int.data
int.data

int.

// AUV Mode and Status

zdataé.log.
zdataé.log.
*dataé.log.
zdatab.log.
:dataé.log.

// Payload

zdata6.log.
:dataé.log.
idata6.log.
idataé6.log.
zdataé.log.

157

float.data
int.data
int.data
int.data
int.data

Items
float.data
float.data
float.data
int.data
int.data

input
input

input
input
input
input
input
input
input

input =

Items

input
input
input
input
input

input
input
input
input
input

AUV Pitch
AUV_Roll

AUV_Left RPM_Fb
AUV_Right_RPM_Fb
AUV_VertLeft RPM_Fb
AUV_VertRight RPM_Fb
AUV_Left PWM_Fb
AUV_Right_PWM_Fb

AUV _VertLeft PWM_Fb
AUV_VertRight_ PWM_Fb

= AUV_BatteryVoltage
= AUV_Leaking

AUV_Mode
MissionStep
LocalStep

AUV_Conductivity
AUV_Temperature

AUV _Pressure
AUV_standardConductivity

= AUV_CTD_PumpOn

log.csp

/ﬁ
$Log: log.csp $

Revision 1.3 199%6/09/18
Peter H and Kevin M: Renamed a log item to

AUV_VertThrust RPM

20:37:43

escape_byte = 27
byte_count_output = LogSize

[/ A A kkk kA kkkwmkkuwkhkwxkvkss ALTASES

ke ek ok ko k ko ko Rk ko ok ek k

@data.log.int.data enable=TRUE trigger=LogTrigger
@data.log.float.data enable=TRUE trigger=LogTrigger
@data.log.double.data enable=TRUE trigger=LogTrigger

#
Revision 1.2 1996/08/24 10:38:22 PURL
Peter H: Added data logging items and changed the enable
and trigger
#
Revision 1.1 1980/01/04 03:14:59 PURL
Initial revision
#
*/
// LOG.CSP
/7
// This file performs the general logging that can be turned
off and on
// by the surface computer. It is generally used for
debugging or measuring
// the performance of a particular action (i.e. the step
response of the
// vehicle while turning
/7
*copy
enable = TRUE
input = TelemEnablelogging
output = AUV_IsLogging

[/ HEEE A xkkkkkk ks kwkksiww TIMESTAMP TIGGER
ok kk R R Rk Kk ek & ek ek kR ke
zcopy

enable = TelemEnablelogging

input = $YS_TwoHzTrigger

output = LogTrigger

[] REmEEE Ak Ak ko wxd Rk wkktw DATA LOG COMPONEMNT

e ke e ok Sk ok ok ok ok ko ok ek

xdata.log
name = data
path = "LOG.DAT"
enable = TRUE
time_stamp_trigger = LogTrigger
level = LOW
time_stamp_byte = 254

[/ WA e wwkhwdhkkkkxkkknkwkwkwtr 106G ITEM LIST

ke e ek ke ek Rk ek ek

// Vehicle Sensor Feedbacks and Control Items

:tdata.log.float.data input = HeadingSetpoint
*data.log.float.data input = AUV_CompassHeading
*data.log.int.data input = HeadingControl RPM
rdata.log.int.data input = VelocitySetpoint
data.log.float.data input = DepthSetpoint
zdata.log.float.data input = AUV_Depth
*data.log.int.data input = VerticalControl RPM
*data.log.float.data input = AltitudeSetpoint
:data.log.float.data input = AUV_Altitude
*data.log.int.data input = AUV _AltSignalStrength
:data.log.float.data input = AUV Pitch
*data.log.float.data input = AUV_Roll

// Motor Feedbacks

tdata.log.int.data input AUV_Left RPM_Fb
tdata.log.int.data input AUV_Right_RPM_Fb
*data.log.int.data input = AUV_VertLeft RPM_Fb
*data.log.int.data input = AUV_VertRight RPM_Fb
*data.log.int.data input AUV_Left PWM Fb
*data.log.int.data input AUV_Right_PWM_Fb
zdata.log.int.data input = AUV_VertLeft PWM_Fb
tdata.log.int.data input AUV_VertRight PWM Fb

// AUV Mode and Status Items

*data.log.float.data input = AUV BatteryVoltage
*data.log.int.data input AUV_Leaking
*data.log.int.data input AUV_Mode
*data.log.int.data input MissionStep
zdata.log.int.data input = LocalStep

158

Appendix Three

Calc Max Calc Max

Vtx (dBm) -14 -14 Vrx (dBm) -37 -37
Ex (dBm) -12 -12 Erx (dBm) -30 =30
Reflection Source Back Reflection (dB) Attenuation (dB)

Calc Max Min Calc Min Max
Splitter/Coupler -55 -55 -60 -3.4 -3 -3.6
WDI315U -55 -55 -55 -0.6 0 -0.8
Termination -60 -60 -60 0 0 0
FC/APC -60 -60 -68 -0.3 0 -0.5
FC/PC -50 -50 -56 -0.2 0 -0.2
FO Cable None None None -0.25 -0.15 -0.25

Back Reflection Relative To a 0 dB input

(mW) (dB) (mW)"0.5 % 32.83997 43.85294 1923.08
Splitter 3.16E-06 -55 0.001778 28.80704 36.83997 69.50222 4830.558
Termination 2.09E-07 -66.8 0.000457 7.40455
WD1315U 6.61E-07 -61.8 0.000813 13.16736
Cable Connector 1.58E-07 -68 0.000398 6.449093
Cable Connector 1.38E-07 -68.6 0.000372 6.018644
Cable Connector 1.2E-07 -69.2 0.000347 5.616926
WDI1315U 3.39E-07 -64.7 0.000582 9.429717
Splitter 2.95E-07 -65.3 0.000543 8.800324
Video Connector 1.95E-07 -67.1 0.000442 7.153172
Ethernet Connector 1.95E-07 -67.1 0.000442 7.153172
TOTALS 5.47E-06 0.006173 100
Total Incoherent Pwr 5.47E-06
Incoherent dBm -52.6181
Total Coherent Pwr 3.81E-05
Coherent dBm -44.19
Video Transmission
Power Tx (dBm) Attenuation (dB) Power Rx (dBm) Max Sensitivity (dBm)
-14 -9.35 -23.35 -37
SIR 32.83997
Ethernet Transmission
Power Tx (dBm) Attenuation (dB) Power Rx (dBm) Max Sensitivity (dBm)
-12 -9.35 -21.35 -30

SIR 36.83997

159

