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Abstract 

Numerical methods for calculating the trajectories of solid particles moving under the 

action of hydrodynamic forces in a low Reynolds number fluid are investigated. Under 

the assumption of a vanishing Reynolds number, the fluid flow is governed by the 

Stokes equations and the total forces acting on the particles are zero. This is the basis 

of the Quasi-Static Approximation in low Reynolds number hydrodynamics: particles 

adjust their velocity instantaneously to maintain a force-free configuration, and their 

motion is computed as a sequence of steady-state solutions to the Stokes equations. 

The Stokes equations are formulated as an integral equation based on complex-variable 

theory for the biharmonic equation and are solved numerically using a spectrally- 

accurate discretization scheme. Several methods are investigated for integrating the 

initial value problem for computing the particle trajectories. These methods include 

the forward and backward Euler7s methods, the Runge-Kutta schemes available in 

Brankin, Gladwell and Shampine's RKSUITE package, and the Adams-Pece formulae 

in Shampine and Gordon's ODE package. The performance of these time-integration 

schemes is tested on examples of computing the motion of neutrally-buoyant ellipses 

in a shear flow. Our results show that the ODE package is best for high accuracy 

simulation, and RKSUITE is most efficient when low to moderate accuracy is required. 
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Chapter 1 

Introduction 

The motion of particles in low Reynolds number hydrodynamics has a wide application 

in a number of diverse fields such as colloid science, aerosol and hydrosal technology, 

and blood flow (see, e.g. [lo,  211). In treating unsteady motion of small particles, the 

Quasi-Static Approximation is often used, which neglects the particles' inertia and 

assumes the particles adjust their velocity instantaneously to maintain a force-free 

configuration. Thus their motion is composed of a sequence of steady states. 

A number of numerical methods have been developed to study particle motions un- 

der the Quasi-Static Approximation, These include Stokesian Dynamics (c-f. [I,  27]), 

multipole collocation methods (c.f. [7]) and boundary integral equation techniques 

(c.f. [27]). In general, these methods are either low-order accurate or are limited 

to studying particles of regular shape. In [9], Greengard et al. presented an inte- 

gral equation method based on complex-variable theory for the biharmonic equation. 

These methods are highly efficient and accurate. Kropinski 1131 extended these meth- 

ods by developing an integral equation formulation to compute particle trajectories 

in a slow viscous flow. However, in this paper the performance of various time inte- 

gration schemes was not investigated. In this thesis, we investigate the forward and 
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backward Euler's methods, various Runge-Kutta schemes and the Adams-Pece meth- 

ods on calculating the trajectories of elliptical cylinders in a shear flow. We compare 

their performance in terms of both accuracy and computational efficiency. 

In Chapter 2, we start with a review of the equations governing low Reynolds 

number hydrodynamics and give the basis for the Quasi-Static Approximation. The 

relevant complex variable theory for the biharmonic equation is discussed, and we 

conclude this chapter by formulating the Sherman-Lauricella integral equation. 

In Chapter 3, we discuss the numerical discretization of the Sherman-Lauricella 

integral equation. A review of the time-integration schemes for the initial value prob- 

lems is also given in this chapter. 

In Chapter 4, examples of the motion of neutrally-buoyant particles in a shear 

flow are studied. The numerical results are presented and analyzed. 

Finally, in Chapter 5, we present our conclusions on the best time integration 

scheme and we discuss some areas for future work. 



Chapter 2 

General Theory 

There are many problems in fluid dynamics that deal with situations in which the 

inertia forces can be neglected. This type of flow is called slow viscous flow or Stokes 

flow (c.f. [4, 15, 251). There are many fields in Science and Engineering in which 

Stokes flows are important, for example colloid chemistry and biology. Many practical 

devices, such as fluid-lubricated bearings, and many modern industrial processes, such 

as the manufacture of color film or magnetic recording tape, involve Stokes flows. 

In this chapter, we consider the motion of a solid particles in incompressible Stokes 

flows. First, we derive the dimensionless governing equations and discuss the Quasi- 

Steady approach. In section 2.2, we discuss the complex variable theory for the 

biharmonic equation, and in section 2.3, we derive the integral equation based on this 

theory. 
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2.1 The Governing Equations and The Quasi-Static 

Approximat ion 

We consider slow viscous flow in a two-dimensional infinite domain D with boundary 

r which is M-ply connected. The boundary l? consists of the boundaries of the solid 

particles which are denoted by r l ,  r 2 , .  . . , rM (see Figure 2.1). 

I . .  

Figure 2.1: An unbounded multiply-connected domain. The solid particle boundaries 
are denoted by rl , . . . , r M .  

The motion of the fluid is governed by the principles of classical mechanics and 

thermodynamics for conservation of mass, momentum and energy. Application of 

these principles to a Newtonian, incompressible, isothermic fluid gives us the Navier- 

Stokes equations(see [4, 15, 251): 

p(du/dt  + u Vu)  = -Vp + pV2u, 

V . u  = 0, 

for x E D, where p is the fluid density, u = (u, v)  is velocity field, p is the pressure, 

and p is the dynamic coefficient of viscosity. 

On the boundary rk of the k-th particle, the no-slip boundary condition is applied: 
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where Vk = (uk, vk) is the translational velocity, Ok = dOk/dt is the angular velocity 

and xk = (xk, Y ~ ) ,  Ok are respectively the center of mass and the angle of an axis fixed 

with respect to the particle(see Figure 2.2). 

Figure 2.2: The k-th particle rotates in the plane: (xk, yk) is its centre, Ok is its 
orientation angle, and n is the unit vector normal to its boundary. 

To study the motion of the particles in the flow, we must consider the forces acting 

on the particles. According to Newton's second Law, equations of motion for each 

particle are 

where mk is the mass and Ik is the rotational inertia of the k-th particle. Here, the 

total force Fk is the sum of the applied force such as gravity and the hydrodynamic 

force, i.e. 

F~ = F;PP' + F ~ Y ~ T O  

Similarly, for the total torque we have 

T~ = T;PP~ + T:Y~TO 
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The hydrodynamic forces and torques are given by [13, 151 

where n is the unit vector normal to the particle's surface (see Figure 2.2), pointing 

into the fluid, and a is the stress tensor defined by [13, 151 

The particle trajectories are calculated by solving the equations of motion (2.3) cou- 

pled with the Stokes equations (2.1) and boundary conditions (2.2). 

In order to  measure the magnitude of various physical effects, we write equations 

(2.1) in terms of dimensionless variables. Let the characteristic length of a particle 

be d and the characteristic velocity be a certain U .  Scaling the velocity and the 

spatial coordinates by these characteristic values and the pressure by pU/d ,  the 

scaled Navier-Stokes equations are 

R(du/dt  + u Vu)  = -Vp + V2u,  

V - u  = 0, 

for x E D, where R = pdU/p is the Reynolds number. 

The Reynolds number represents the ratio between convective inertia forces and 

viscous effects. In the case of a Stokes flow, the viscous effects dominate and R + 0. 

This is the usual consequence of considering the motion of very small particles d << 1, 

for example. We can then approximate the Navier-Stokes equations by the Stokes 

equations: 

Vp = V2u,  V .  u = 0, x E D. (2.5) 

We scale the variables in the dynamic equations (2.3) similarly. If we choose d/U as 

a reference time and pUd as a force, these equations become 
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When R --+ 0, we obtain the approximation 

The above equation says that the particles adjust their velocities and angular velocities 

instantaneously to maintain a force-free configuration. This is the basis of the Quasi- 

Steady Approximation: the particle trajectories are composed of a sequences of steady 

states. The following initial value problem is used to compute the trajectories of the 

particles: 

together with a given initial configuration. Equations (2.6) are coupled with the 

Stokes equations (2.5) and boundary conditions (2.2). 

2.2 The Complex Variable Theory for the Bihar- 

monic Equation 

For two-dimensional Stokes flow, equations (2.5) can be rewritten as 

These equations can be expressed more compactly by introducing a scalar stream 

function W(x,y) [4, 151: 
d W  

u=- 
d W  , 2)= --. 

d y  dx 
Substituting (2.8) into (2.7), gives us 

and after eliminating the pressure p, the biharmonic equation is obtained: 
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The no-slip boundary condition (2.2) becomes 

The vorticity field has only one component, perpendicular to the plane of the flow, 

Substituting the expression for vorticity (2.10) into (2.9), we get 

which are just the Cauchy-Riemann equations ([4, 151). Thus ( and p are conjugate 

harmonic functions, so they are the real and imaginary parts of an analytic function 

f of a complex variable z, i.e., 

f (2) = c + i ~ ,  

where z = x + iy. 

We now derive an expression for W(x,  y) in terms of complex variables. Let 4(z) = 

g(x, y) + iij(x, y) be one of the infinitely many analytic functions whose derivative is 

a(( - ip). It is easy to verify that 

is also harmonic, since 

If x is the analytic function whose real part is G(x, y), then we have 
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However, xg(x, y )  + yij(x, y) = Re[~d(z ) ] ,  so that 

Thus the stream function W(x, y) can be expressed in terms of a pair of complex 

potentials 4(z) and ~ ( z ) .  This follows from the fact that W satisfies the biharmonic 

equation. 

The functions $(z) and $(z) = ~ ' ( 2 )  are known as Goursat's functions. The 

velocity components and stress components can be expressed in terms of Goursat7s 

functions. Calculating the derivative of W from equation (2.11) leads to Muskhel- 

ishvili's formula [17, 18, 191 

This provides an expression for the velocity. In a similar way, the pressure, vorticity, 

and the stress tensors can be expressed in terms of the Goursat7s functions, 

and 

Muskhelishvili7s formula (2.12) must satisfy the no-slip boundary conditions. In 

terms of complex variables this is 

where Vk = uk + ivk, and zk = xk + i yk for x E rk. Thus we have reduced the problems 

in Stokes flow to a problem in complex variable theory. 
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We now view the force Fk as a complex variable function with Fk = ( F ,  + iFy)k .  
hydro  The hydrodynamic force Fk can also be written in terms of the Goursat functions 

4 and .11, (131 
F':Ydr0 - 

- 2[6 - ?Irk 1 (2.14) 

where [ f  ( z ) ]  means the increment in f  ( z )  as the curve rk is traversed in the clockwise 

direction. An expression for the hydrodynamic torque acting on particle k is 

2.3 Integral Equation Formulation 

We now discuss a construction of the analytical functions 4 ( z )  and $ ( z )  which satisfy 

(2.13) on the boundaries of the domain. Following the discussion by L. Greengard e t  

al. [9] ,  we start with the Sherman-Lauricella represent ations 

where w(<) is an unknown complex density, Cj are complex constants and bj are real 

constants. 

The singularities centred in each particle are directly related to the hydrodynamic 

force and torque acting on that particle. These relations are given by [13]: 
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According to Quasi-Static approximation, the total force and torque acting on the 

particle are zero. Thus, we have 

Therefore, the singularity strengths Ck and bk are given by 

To obtain the Sherman-Laricella integral equation, we substitute the representa- 

tions (2.16) into Muskhelishvili7s formula (2.13) and take the limit as z tends to a 

point T on the boundary I?. This gives [13] 

where g ( ~ )  is 

In (2.17), ~ ( t ) ,  Vk and Rk are unknowns. To complete the system, we add some 

contraints (c.f. [13] for a discussion) 

Provided that the contours rk are smooth, (2.17) is a Fredholm integral equation 

of the second kind with a smooth kernel, and therefore the Fredholm alternative 

applies. A discussion on invertibilit~ for this type of integral equation can be found 

in [17, 18, 191. 



Chapter 3 

Numerical Methods 

To calculate the trajectories of solid particles in a Stokes flow, we must integrate 

the equations (2.6) in time. This integration is coupled with the solutions to the 

integral equation (2.17) which calculate the particle velocities based on the Quasi- 

Static Approximation. 

We introduce the numerical methods in two parts. In section 3.1, we discuss the 

numerical solution for the integral equation, and in section 3.2, we discuss the methods 

to solve the initial value problem. 

3.1 Numerical Solution of Integral Equations 

In order to solve the Sherman-Lauricella integral equation (2.17) and (2.18), we use 

a Nystrom discretization algorithm based on the trapezoidal rule. This quadrature 

achieves superalgebraic convergence for smooth functions on smooth periodic bound- 

aries, i.e. this algorithm converges with a exponential rate. For this purpose, assume 

that we are given N points on each particle boundary r k ,  equispaced in some parame- 

terization rk : [I,  Lk] i r k .  At each point 9 on boundary r k ,  there is a corresponding 

unknown value w l .  We denote the derivative (rk)' as dk and assume that we are given 



C H A P T E R  3. NUMERICAL METHODS 13 

the derivative value d: at the discretization points. The step length in the discretiza- 

tion of rk is defined by hk = Lk/N,  where Lk is the length of the curve r k .  The total 

number of discretization points is M N .  

The discretized Sherman-Lauricella integral equation (2.17) is 1131 

where = g(r:). The kernels Kl and IC2 are given by 

when r: # r,"; when tr  = t:, IC1 and 1(2 are replaced by the appropriate limits (c.f. 

[9, 131): 

where n: denotes the curvature at the point r;. Equations (2.17) discretized as 

Using a complex conjugation operator C, we can rewrite equations (3.1) and (3.2) as 

where E, Fl, F2 are coefficient matrices, and 
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Therefore, the following system of equations is obtained: 

The coefficient matrix is a (2MN + 3M) x ( M N  + 3M) matrix, where the 2 M N  x 3M 

matrix E represents the influence of the unknown particle velocities in the discretized 

Sherman-Lauricella equation and the 3M x 2MN matrix F represents the discrete 

constraint equations (3.2). 

The linear system (3.3) is solved using Gaussian Elimination. The cost of com- 

putation for Gaussian Elimination increases with the number of unknowns and is 

proportional to (2MN + 3M)3. We view M as being fixed, thus the cost is 0(N3) .  

We only consider the cases with small N ( N  < 256) and M ( M  < 2). However, for 

more complicated problems involving many particles and a more refined discretization, 

the computational cost of Gaussian Elimination becomes too expensive. In [9, 131, 

the matrix equation are solved iteratively using the Fast Multipole Method (FMM) 

(c.f. [5, 81) to compute the matrix-vector products efficiently. This method reduces 

the cost to O(N) [5, 8, 91. 

3.2 Numerical Methods for the Initial Value Prob- 

lem 

We wish to investigate the performance of various numerical methods to integrate 

(2.6). Here, we compare the performance of RKSUITE [2], Shampine and Gordon's 

ODE package [22] and the forward and backward Euler's methods. 

We write the initial value problem into vector form: 

dy 
- = f ( t , y ) ,  ~ ( 0 )  = Yo, dt 
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where y is the vector of unknowns and yo are the initial conditions. The vector y 

contains the particles7 orientations, 

and the vector f ( t ,  y )  contains the velocities, 

Thus for M particles, (3.4) is a system of 3M equations. We now discuss the various 

methods in detail. 

3.2.1 The Forward and Backward Euler's Methods 

One of the most straightforward methods to solve the initial value problem (3.4) is 

the forward Euler's method. Consider the time interval [To, TI] over which we want 

the solution y(t) .  Subdividing [To, TI] into n equispaced time intervals, our stepsize 

is 

We find approximations to y at  time tJ ,  where 

and these approximate values are denoted by y j  E y(t j)  and are found from 

where f j  = f ( t j ,  yj) .  In general, for one-step method, the local truncation error ~j is 

defined by 

T' = Y(tj $ At) - yj+l. 
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So the local truncation error of Euler's Method at t j  is the remainder of the first 

Taylor approximation 

y ( t j  + At) = y(t j)  + Atyl(tj) + !y11(()At2 

= y(t j)  + Atf (tj, y(t j))  + 0 (At2 )  
(3.6) 

where t j  < ( < t j  + At. The local truncation error rj in Lagrange's form is 

1 
T' = -yl'(tj + ( ~ t ) ( A t ) ~  = =(At2), where 0 < C < 1. 

2 

Thus the forward Euler's method is a first order method. One disadvantage of this 

method is that it is not unconditionally stable [16]: a stable time step size depends 

on the nature of the problem. 

The backward Euler's method is similar to the forward method except it uses fj+' 

instead of f': 

yj+l = yj  + ~ t f j + l ,  (3.7) 

where fj+l = f (tj+l, yj+l).  

This scheme requires the value of fj+', which is not known at step j. However, we 

can approximate f j+l  and yj+' with following scheme: 

This iterative process continues until for a given small S, there is a 1 such that 

The number of iterations to obtain appropriate fj+l and yj+l depends on the constant 

S and time step At. A smaller S or larger At  will normally need more iterations. 

The backward Euler's method has the same order of convergence as the forward 

method, but it is absolutely stable independent of the stepsize [16]. 
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3.2.2 Runge-Kutta Methods and RKSUITE 

The Euler's method was derived from the 0 (A t2 )  Taylor expansion to approximate 

the solution to the differential equation. This technique can be extended to obtain 

higher order convergence. The method based on this technique is the nth-order Taylor 

method 

The Taylor method has the disadvantage of requiring the computation and evaluation 

of the derivatives of f (t ,  y) .  Runge-Kutta methods use the high order local truncation 

error of the Taylor method while eliminating the computation and evaluation of the 

derivatives of f ( t ,  y), since 

For example, we can derive a second-order Runge-Kutta method by using 

and approximating f j  + %(fl)j with alf( t j ,  y j )  + a2f(t j  + pAt ,yj  + qAtfj), 

where the constants a l ,  a2, p and q are determined by 

1 
a l  + a 2  = 1, and a2p = a2q = -. 

2 

This constraint is set so that the approximation is 0 (At2) .  

RKSUITE is a suite of codes based on Runge-Kutta formulae. It implements 

three Runge-Kut t a  formula pairs, (2,3), (4,5) and (7,8), which are corresponding to 

3rd, 5th and 8th order methods, respectively. One of these pairs must be selected for 

the integration. 
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Generally, the nth-order Runge-Kutta scheme can be written as 

yj+l = y j  + ~ t d ( t j ,  yj ,  At) 

with a local truncation error rj+l of order O(Atn).  Suppose there is another method 

with a local truncation error of order O(Atn+'); then we have [3] 

and this implies for some constant k 

These schemes are called an (n, n + 1) pair, and (3.10) can be used to control error. 

Since in general the global error of the methods cannot be determined, the local 

truncation error is used to control the global error. The object of error control is to 

estimate an appropriate step size so that the error is less than a tolerance e. Changing 

the step size from At  to qAt, where q is a positive number, and bounding ~ ~ + ~ ( q A t )  

The value of q determined at the i th step is used to repeat the calculation using qAt, 

if necessary, and predict an appropriate initial choice of At  for the next step. 

RKSUITE uses relative local error control, with the error tolerance being the 

desired relative accuracy. The code tries to advance the integration as far as possible 

subject to the specified accuracy. At each step, an appropriate step size for its next 

step is chosen automatically so that the integration will proceed efficiently while 

keeping the local error estimate smaller than the tolerance. If the step size is too 

big for the formula to pass the tolerance control, the code will adjust the step size 
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and try again. Poor choices of the tolerance parameters may lead to low accuracy, 

inefficient computation or even termination of the program. Thus, it is important to 

select appropriate tolerances for local error control when RKSUITE is used to solve 

initial value problems. 

3.2.3 Adams Methods and ODE Package 

The Euler's methods and Runge-Kutta methods are all one-step methods since the 

approximations for time ti+' involve the information from the previous time step. 

Methods which include information from more than one time step are called multistep 

methods. The Adams method is one example. 

Any solution of the differential equation (3.4) can be written as 

The Adams method approximates this solution by replacing f ( s ,  y(s))  with a polyno- 

mial interpolating the computed derivative values f' , and then integrating the poly- 

nomial. An Adams formula of order k at t j  uses a polynomial Pk j ( t )  interpolating 

the computed derivative at  the k + 1 preceding points, 

This leads to 

where the coefficients a; are determined from the interpolation. 

When a0 = 0, the method is explicit; otherwise, the method is implicit. In 

practice, implicit methods are used to improve approximations obtained by explicit 

methods. The combination of an explicit and implicit methods is called predictor- 

corrector (PECE) method (c.f. [3, 241). The procedure of PECE is: predict P j f l ,  

evaluate f g l ,  correct to get yj+' and evaluate fj+' to complete the step. 
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If the Euler's method (k = 1) is used as the predictor and the trapezoidal rule 

(k = 2) as the corrector, the PECE formulae are 

In general, if the predictor is of order k and the corrector of order k + 1, then 

where pi is a constant, and vkf;+'-' is defined by 

ODE is a package of codes developed by Shampine et  al. [24] based on the Adams 

methods in PECE form. The package includes a integrator (STEP), an interpolation 

routine, and a driver (DE). The code starts an integration by using (3.13), which 

requires only the differential equation and the initial condition. Upon completion of 

the first step, the code stores y l , f l  and fO, which is exactly the information that is 

needed for a second order predictor and third order corrector to take the second step. 

With the results from second step, a third order predictor and fourth order corrector 

can be estimated. In this way the code can increase the order of accuracy. Thus ODE 

package uses variable-order methods. 

The Adams methods are most advantageous for problems in which function evalua- 

tions are expensive, or when moderate to high accuracy is requested. Some additional 

features are provided in the ODE code, such as the capability to detect and deal with 

moderate stiffness or detect and return the presence of severe stiffness. The code uses 
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relative and absolute error tolerance to control the local error, but does not control 

the global error directly. If a constant step size is used in the implementation of the 

code, the global error depends mainly on the time step. The error tolerances are used 

to ensure the efficient completion of each step. However, an unreasonable choice of 

the tolerances will result in wasted computation or error return from the code. 



Chapter 4 

Numerical Results 

We investigate the performance of the numerical methods described in Chapter 3 

on examples of particles moving in a shear flow. All of the algorithms have been 

implemented in FORTRAN using double-precision arithmetic. All CPU times cited 

are for a SUN ULTRA 1 workstation. 

4.1 The Rotation of an Ellipse in Shear Flow 

In this example, we first consider the slow motion of a solid elliptical cylinder in a 

simple shear flow, rotating under the action of hydrodynamic forces. The undisturbed 

shear flow is given by (u, v) = ( ~ y ,  0) (see Figure 4.1). 

Under the Quasi-Static Approximation, Jeffrey [12] obtained an analytical solution 

to describe the rotation of an ellipsoid. For a two-dimensional ellipse with an initial 

orientation given by x2/a2+ y2/b2 = 1, the ellipse rotates with variable angular velocity 

(see Fig 4.1) given by 
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Figure 4.1: A neutrally buoyant  ellipse rotating i n  a s imple shear fEow ( u ,  v) = ( ~ y ,  0). 
T h e  ellipse i s  initially at  0 = 0. 

and the angle 0 changes with time according to 

Note that the angular velocity and the angle depend only on the length ratio of the 

two semi-axes. We use these formulas to check the errors associated with various 

numerical methods mentioned in Chapter 3. 

In 1131, Kropinski checked the spatial accuracy of the integral equation method 

to obtain the instantaneous angular velocity of the ellipse. The relevant ratio used is 

b / a  = 10, and the results showed that the solution converges very rapidly according 

to the spectral accuracy of the discretization. Here, we compute the case with the 

ratio bla = 117. The superalgebraic convergence is seen in the results (Table 4.1): 

the solution is exact to machine precision with N = 256. 

The number of discretization points N needed to adequately resolve the spatial 

discretization depends on the geometry of the ellipse. As the aspect ratio increases, 

more points are needed. This is demonstrated in Table 4.2. 

We use Jeffrey's solution (4.1) and (4.2) to investigate the performance of FE 
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Table 4.1: The instantaneous angular velocity of an ellipse with bla = 117. N denotes 
the number of discretization points on the ellipse. The exact value is R = -0.02. 

Table 4.2: The error in the instantaneous angular velocity of an ellipse with diflerent 
aspect ratios b la  . N = 64 is the number of discretization points on the ellipse. 

Ratio 
2 
4 
8 
16 
32 

(the forward Euler's method), BE (the backward Euler's method), RKSUITE and 

PC - fllllfll 
5.5511151231260 x 10-l6 
1.9892976155233 x 10-l2 
4.1727766043054 x 
2.0814887720058 x lo-' 
2.2231407762913 x lo+' 

the ODE package in calculating the particle's rotation. The aspect ratio of the ellipse 

we use is b la  = 2, and the number of discretization points on the ellipse is 64, thus 

the spatial discretization error is negligible (see Table 4.2). 

We begin with a constant time step of At = 0.1, and integrate (2.6) with FE and 

BE over time from 0 to  16, which corresponds to two complete rotations of the ellipse. 

We find the maximum error in the angle and angular velocity is approximately 

We use this number as the relative error tolerance of RKSUITE (in this case, the 

(2,3) Runge-Kutta pair is used) and ODE package. Figure 4.2 shows the error in the 

axis angles A0 and the angular velocity AR/lRl . The exact solutions are shown in 

Figure 4.2 (a) and (b). 
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Figure 4.2: The results for time step At = 0.1, for an ellipse with bla  = 2. Plot (a) 
and (b) show the exact values for 8 and R from Jeffrey's solution. Plot (c) and (d) 
show the errors for various time integration schemes. 

The errors for FE and BE methods are qualitatively similar and the minimum 

errors occur when the ellipse returns to its initial configuration, i.e. the axis angle is 

T, 27r, . . .. Smaller errors are seen for RKSUITE and ODE, but the error distribution 

shows no observable pattern. The comparison of CPU time and maximum errors for 

these methods are shown in Table 4.3. 

We show similar comparison for At = 0.01 and At = 0.001 in Figures 4.3 and 4.4 

and Tables 4.4 and 4.5. As can be seen, FE and BE show a convergence rate of At, as 

predicted. The ODE package achieves the smallest error (lo-' and lo-'' for time step 

of 0.01 and 0.001 with a tolerance of and converges very fast. RKSUITE is the 
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I I I 

1 ODE 1 2.745405955 x 1 2.024073351 x 1 18.1 1 

Method 
FE 
BE 

RKSUITE 

Table 4.3: The comparison of maximum errors and CPU time among various initial 
value methods. The time step is At = 0.1. RIiSUITE uses (2,3) pair. Relative error 
tolerance for RICS'UITE and ODE is 

Poll4 
1.521379955 x 
1.459203235 x 
2.411457801 x 

Table 4.4: The comparison of maximum errors and CPU time among various initial 
value methods. The time step is A t  = 0.01. RILS'UITE uses (2,3) pair. Relative error 
tolerance for R I G U I T E  and ODE is 

Method 
FE 
BE 

RKSUITE 
ODE 

max(l+?) 
2.299314193 x 
2.198248979 x 
8.470804508 x 

Table 4.5: The comparison of maximum errors and CPU time among various initial 
value methods. The time step is A t  = 0.001. R I G U I T E  uses (4,5) pair. Relative 
error tolerance for RKSUITE and ODE is 

CPU t ime 
39.2 

240.9 
10.5 

m a x ( W / d  
1.476411103 x 
1.470237034 x 
2.194438446 x 
3.721113195 x lo-' 

Method 
FE 
BE 

RKSUITE 
ODE 

m a 4  1%: 1 )  
2.210983255 x 
2.201142879 x 
8.906136417 x 
2.753160012 x lo-' 

m a x ( M / ~ >  
1.472006184 x 
1.471655672 x 
7.987708795 x lop4 
6.400131076 x 10-l1 

CPU t ime 
473.5 
1720.8 
24.0 
163.1 

max(l%l)  
2.202343256 x 
2.201385026 x 
4.351326924 x 
4.797014671 x lo-'' 

CPU t ime 
4694.2 
13953 
48.9 

1889.7 
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Figure 4.3: The results for time step At = 0.01, for an ellipse with b /a  = 2. Plot (a) 
and (b) show the errors for various time integration schemes. Plot (c) and (d) show 
the errors for ODE. 

fastest method, but the accuracy it achieved is similar to that for FE and BE. This is 

mainly due to the relatively large tolerance we used. For instance, if we use the same 

time step At = 0.01, integrate (2.6) with the (4,5) Runge-Kutta pair, with tolerance 

of and lo-', the relative velocity error (0, - R)/ IRI improves from to 

lo-' (see Table 4.6). In comparison, to achieve an accuracy of using the Forward 

Euler's method, a time step of At = 0.00001 is needed and approximate 108 hours 

CPU time is required. 

With a smaller error tolerance, the CPU time for RKSUITE increases. From 

Table 4.4 and Table 4.6, to achieve a similar level of accuracy (lo-' for ODE and 
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Figure 4.4: The results for time step At = 0.001, for an ellipse with bla = 2. Plot (a) 
and (b) show the errors for various time integration schemes. Plot (c) and (d) show 
the errors for ODE. 

for RKSUITE), RKSUITE requires 576.7 seconds of CPU time with 2370 func- 

tion evaluations, while ODE requires 163.1 seconds of CPU time and 687 function 

evaluations. 

Thus, among the initial value methods we test, the ODE package and RKSUITE 

give satisfactory performance for coupling with the integral equation method to  sim- 

ulate the motion of particles in shear flow. More specifically, if a high accuracy is 

required, ODE is best; if only low to moderate accuracy is required, RKSUITE gives 

fastest performance. 
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1 Tolerance 1 m a x ( I e I )  I CPU time I Function Evaluation 11 

Table 4.6: The comparison of different tolerances for RICSUITE. The time step is 
A t  = 0.01. (4,5) Runge-Kutta pair is used. 

4.2 The Motion of Two Cylinders in a Shear Flow 

In this example, we study the motion of two neutrally buoyant cylinders in a shear 

Stokes flow. The circles are initially located in the top half of the plane. We investigate 

the change in motion of these two particles as the initial separation decreases. As 

particles come into close contact, an increase in mesh refinement is needed to resolve 

the integral equation. In [13], Kropinski studied this problem and showed for adequate 

resolution, the arc length spacing of mesh hl and hn of these two particles in close 

contact must satisfy 

where E is the distance of closest approach. 

We consider two cylindrical particles in a simple shear flow. The cylinders have a 

radius of 1, and their centres are located initially at  (0,1.5) and (0,3.6), respectively. 

Thus the distance of closest approach between them is E = 0.1. By formula (4.3)) hl 

and h2 should be less than 0.025. If we use equal mesh spacing in arc length, then the 

number of discretization points must be greater than or equal to 256. We can verify 

this by computing the trajectory of the centers and the axis angles with 256, 128, 64, 

32 discretization points on each cylinder until t = 16. The relative differences with 

N = 256 are shown in Table 4.7. 
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Table 4.7: The diflerence in trajectories in  comparison with N = 256. The ODE 
package is used with At = 0.1 and integration continues until t = 16. 

Figure 4.5 shows that the maximum differences occur when the distance between 

the particles becomes near its minimum. 

The trajectories of the particles are computed by integrating (2.6) until t = 32 

with the ODE code. The relative error tolerance is set to be and each particle 

is discretized with 256 points and the time step is At = 0.1. The particle positions 

at  12 different times are shown in Figure 4.6. The total CPU time needed to reach 

t = 32 is approximately 14 hours. 

As can be seen in Figure 4.6, under the action of the hydrodynamic forces, each 

particle rotates about its center and moves to the right. Because their initial separa- 

tion is close, the two particles tend to rotate as a single body, held together by the 

lubrication forces of their interaction [13]. This motion is periodic, as shown in Figure 

4.7, with the time of the period being approximately 28. 

When e is larger, the interaction between the two particles is weaker, and their 

motion is qualitatively different. For instance, we use the same example as above, 

but the particles are initially located at (0,1.5) and (0,3.8), so e = 0.3. According 

to (4.3), each particle is discretized with 128 points. The same time step A t  = 0.1 

and relative error tolerance of are used. The particle positions at  five different 

times are shown in Figure 4.9. For this example, the total CPU time is approximately 

2 hours. From Figure 4.9, it is clear to see that the particles move apart from each 

other. This tendency is shown by the trajectories of their centres in Figure 4.8. 
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Figure 4.5: The differences of trajectory computed with N = 256 and N = 128. ODE 
is used with time step At  = 0.1: (a) the distance between two centers of the circles 
from t = 0 to t = 32, (b) the difference of x-axis distance, (c) the difference of y-axis 
distance, (d) the difference of the axis angle. 

An important factor in selecting a time-integration scheme is to determine whether 

or not the problem under consideration is stiff. Generally, the system (3.4) is consid- 

ered stiff if the Jacobian matrix 

has all negative real part eigenvalues, and the eigenvalues satisfy [14, 161 

At a time t,  from the position of a particle (x, y, 0)) the velocities (u,  v,  R) can be 
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Figure 4.6: The trajectories of two cylindrical particles in shear flow. ODE is used 
with time step At = 0.1. e = 0.1, N = 256. 
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Figure 4.7: The trajectories of two cylindrical particles in shear flow in x-axis and 
y-axis. ODE is used with time step At = 0.1. e = 0.1, AT = 256. 

Figure 4.8: The trajectories of two cylindrical particles in shear flow in x-axis and 
y-axis. ODE is used with time step At = 0.1. E = 0.3, N = 256. 
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Figure 4.9: The trajectories of two cylindrical particles in shear flow. ODE is used 
with time step At = 0.1. E = 0.3, N = 128. 
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found using the integral equation method. Now by deviating the position element x 

with a small value 6, the numerical derivatives in the Jacobian matrix 

can be computed. Similarly, we can differentiate with respect to y and 8 to compute 

the Jacobian matrix, from which the eigenvalues can be obtained. 

For instance, this approach can be used to investigate the problem discussed in 

this section. Tables 4.8 and 4.9 list the maximum and minimum real parts of the 

eigenvalues for the first and second problem at t = 0, t = 5, t = 10, and t = 15. 

Table 4.8: The maximum and minimum values of the eigenvalues for Jacobian matrix 
at various time. E = 0.1, and S = 

time 
0 

Table 4.9: The maximum and minimum values of the eigenvalues for Jacobian matrix 
at various time. E = 0.3, and S = 

max(Re(Xj)) 
4.302616747 x 

time 
0 

Since the real part of the eigenvalues are not all negative, it can be concluded that 

the problems under consideration are nonstiff. 

Our results showed that the ODE package coupled with the integral equation 

methods worked well with the problems. But for the Forward Euler's method, the 

min(Re(X j)) 
-4.322004377 x 

max(Re(Xj)) 
1.213992448 x 

min(Re(Xj)) 
-2.433470114 x 
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first order method, only a smaller stepsize can give a reasonable result. A bigger 

stepsize leads to a wrong solution (see Figure 4.10). 

Figure 4.10: The comparison of trajectories of two cylindrical particles in shear flow 
in x-axis and y-axis by FE with time step At = 0.1 and At = 0.01. e = 0.1, N = 256. 



Chapter 5 

Concluding Remarks 

We have investigated numerical methods for computing the motion of neutrally- 

buoyant solid particles in a Stokes flow. The solid particles satisfy the Quasi-Static 

Approximation in low Reynolds number hydrodynamics: particles adjust their veloc- 

ity instantaneously to maintain a force-free configuration, and their motion is com- 

puted as a sequence of steady-state solutions to the Stokes equations. 

In this thesis, the performance of several time-integration schemes is tested for 

integrating the initial value problem for computing the particle trajectories. We use 

the Forward and Backward Euler's methods, the Runge-Kut t a  schemes (implemen- 

tation by RKSUITE package) and Adams-Pece formulae (by ODE package). The 

ODE package achieved, by several orders of magnitude, the highest level of accuracy. 

ODE uses variable-order schemes, this result is consistent with the conclusion by T. 

E. Hull e t  al. [ll] that variable-order methods are generally better than those whose 

orders are fixed. RKSUITE ~rovides three different order pairs, but still uses a fixed 

order when the pair is set. RKSUITE can achieve high accuracy if an appropriate 

relative error tolerance is selected, however it is computationally expensive. When 

only moderate to low accuracy is required, this code is significantly faster than others. 
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The hydrodynamic interactions among solid a articles in a shear flow is investigated 

in Section 4.2, and it was shown that these problems are not stiff. Our results show 

that the integral equation method discussed in Chapter 3 coupled with the ODE 

solver works well for small simulations. However, when the particles come into close 

contact or the particles have complicated shape, refined mesh spacing is needed. 

Searching for more efficient time-integration schemes for particle simulation is 

worthy of further study. Another area of future research is to develop an appropriate 

mesh-adaption scheme for more complex simulation problems. 
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