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Abstract 

Case-based reasoning(CBR) is a recent approach to problem solving, in which domain knowledge is 

represented as cases. The case retrieval process, which retrieves the cases most similar to  the new 

problem, depends on the feature-value pairs attached to cases. Different feature-value pairs may 

have different importance in this process, which is usually measured by what we call the feature 

weight. 

Three serious problems arise in the practical applications of CBR regarding the feature weights. 

First, the feature weights are assigned manually by humans, not only making them highly informal 

and inaccurate, but also involving intensive labor. Second, a CBR system with a static set of feature 

weights cannot cater to a specific user. It would be desirable to  enable the system to acquire the 

user preferences automatically. Finally, a CBR system often functions in a changing environment, 

either due to the nature of the problems it is trying to  solve, or due to the shifting needs of its user. 

We wish to have a CBR system that always adapts to the user's changing preferences in time. These 

three problems comprise one of the core tasks of case base maintenance problem. 

Our approach to these problems is to maintain feature weighting in both the static and dy- 

namic contexts. The static feature weighting method grasps the irregular distribution information 

of feature-value pairs within a case base. Our intuition is that the more cases a feature-value pair 

is associate with, the less information it conveys. The dynamic feature weighting method examines 

the feature weights in a changing environment. We integrate a neural network into CBR, in which, 

while the reasoning part is still case based, the learning part is shouldered by a neural network. We 

hope that this integrated framework would be a living system, which learns a user's preferences over 

time, and simulates these preferences with its own behavior. 

We propose and implement the underlying algorithms for these two feature-weighting methods. 

Our empirical tests produce the optimal results that we desire, and confirm our hypotheses and 

claims. Our work contributes much to the research in the maintenance of knowledge bases. 
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Chapter 1 

Background 

Case-based reasoning(CBR) is a recent approach to  problem solving and knowledge reuse. 

In the field of artificial intelligence(AI), CBR differs from many other learning and problem- 

solving techniques in its representation of knowledge and learning process. Basically, a 

case-based reasoner will retrieve a case it deems most similar t o  a new problem currently 

being addressed, then it will adapt that case t o  fit the new problem, after that ,  the adapted 

case will be applied t o  solve the problem, which makes further adaptations possible, and 

finally, the new adapted case will be saved for future reuse. In CBR, knowledge is represented 

as cases which are stored for future reuse and analysis while the learning process is through 

the accumulation of new cases as well as through the refinement of the case retrieval quality. 

In recent years, CBR gained wide acceptance both in the industrial world and in the 

academic field. These can be witnessed by many successful industrial applications[49] and 

an increased rate of research papers in CBR at international A1 conferences[3, 261. 

1.1 Introduction to CBR 

A case base is composed of cases. As defined in [24], A case is a conceptualized piece of 

knowledge representing an experience that teaches a lesson fundamental to achieving the 

goals of the reasoner. Essentially, a case has two parts. The first part is a specific piece 

of knowledge the case grasps. The second part is the context with which that  piece of 

knowledge is associated. This context defines a specific circumstance under which the case 

will be retrieved t o  form a solution to  a new problem. 

People use cases to  help understand and access old situations and to  help solve new 
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Figure 1.1: The Cycle of Case-Based Reasoning(CBR) 

problems. In CBR, reasoning is viewed as a process of remembering one or a small set 

of concrete previous cases, and drawing decisions on the comparisons between them and 

the new situations. The intuition behind CBR is that situations do recur with regularity. 

What has been done before in a situation is likely to be a possible solution to  a similar new 

situation, forming a good starting point in the solution-searching process. 

Basically, we can view the process of CBR as a cycle[24, 41, 31. Figure 1.1 is adapted 

from [3] and illustrates it. The cycle is composed of the following four general steps. 

1. Case Retrieval: Retrieve the most similar case(s) to a new problem from a case 

base. 

2. Case Reuse: Reuse the retrieved case to solve the problem. 

3. Case Revise: Revise the retrieved case with the hope it could fit the new problem. 

4. Case Retain: Retain the revised case as a new case in the case base. 
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The first and foremost step in CBR is to  retrieve the most similar cases in a case base 

according to  the new problem posed by a user. In many practical implementations, this new 

problem is often represented as a query, whose format is system-dependent. For instance, 

it can be of a free-text description, or a set of question-answer pairs. Unlike the query in 

a database application, a case-based reasoner may return a list of cases which are deemed 

most similar to  the query. There is no necessary requirement that these cases match the 

query exactly. After the first step, a process called case reuse will be triggered so that 

the relevant portions of the retrieved cases will be extracted to form a solution to  the new 

problem. Because the old problems rarely match the new one exactly, the formed solution 

must be adapted to fit the new problem. This process is called case revise. Usually the 

final step is case retain, in which the adapted case will be saved appropriately in the case 

base for future use. 

There are two important sub-steps from case revise to case retain we must address[24]. 

After a proposed solution has been extracted, it often needs to be justified and evaluated 

before it can be tried to  solve the problem in a new situation. When all knowledge necessary 

for this evaluation is available, this step can be thought as a validation step. However, in 

many real-world applications, there are too many unknown factors to make such a validation 

possible. Often, to  justify whether or not the proposed solution is the best candidate, there 

is a need to  recursively call memory processes to  retrieve cases with similar solutions, and 

compare and contrast the proposed solution with them. As an example, if an already-known 

failing case with the similar solution exists, then the reasoner must consider whether or not 

the proposed solution might be of the same problem. In the next step, the proposed solution 

will be actually tried out in the real world. Feedbacks from its application to  a new problem 

will be obtained and analyzed. If the result is met as expected, then there is no need for 

further analysis. Otherwise, the anomalies should be analyzed, and what resulted in them as 

well as what can be done to prevent them should be figured out. The purpose of this process 

is to give the reasoner a chance to evaluate how good its proposed solution is. There are 

several possible ways to do such an evaluation. Sometimes it is done using the comparisons 

with previous cases; sometimes it is done according to the feedbacks from the real world; 

and sometimes it is done using an artificial simulation. The evaluation will make possible 

the need for additional adaptations of the proposed solution. 
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1.2 Applicability of CBR 

There is much evidence that people do use CBR in their daily reasoning process. Some of 

the evidence, which we can observe, just happens around ourselves. For instance, in order 

to prepare a meal for a dozen of guests, we often recall previous similar menus for possible 

suggestions. Some other evidence is the result from the research experiments. As cited in 

[24], Ross has shown that people learning a new skill often refer back to previous problems 

to refresh their memories on how to deal with the new tasks. Many research results, which 

were conducted in the car mechanics and the physicians' daily ~ractices[24], further support 

this evidence. In addition, psychologists have also found that people always use cases to 

make decisions when they solve new problems[24]. 

1.2.1 Advantages 

As a reasoner, CBR has many advantages as compared to other techniques. 

r It provides proposed solutions quickly, avoiding the time necessary to obtain them from 

scratch. These proposed solutions form a good start point in solving new problems, 

although there is a need to evaluate them. 

r It does not require that the domain be completely understood before a reasoner can 

draw proposed solutions to  a new problem. It provides a chance to  make assumptions 

and predictions according to what worked in the past without a complete understand- 

ing of the domain. 

r It provides a reasoner a way for evaluating solutions when there is no algorithmic 

method available for such an evaluation. Again according to what worked in the past, 

it provides a possible method for dealing with a situation where there are too many 

unknown or undetermined factors for evaluating solutions. 

It provides a way for warning the potential problems that arose in the past for the 

new situations. 

r It helps a reasoner focus on the important parts of a problem by figuring out what 

parts in a problem are important in the reasoning process. When a reasoner attempts 

to  adapt a solution, it hopes that such an adaptation would include more of what 

resulted in previous successes and less of what caused previous failures. 
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1.2.2 Disadvtanges 

There exists no reasoning process which is perfect without any weaknesses. Of course, CBR 

is not an exception to this fact. 

0 A case-based reasoner might rely totally on its previous experiences without any vali- 

dation process when facing a new situation, which might result in incorrect solutions. 

A case-based reasoner might allow cases to bias too much in solving a new problem, 

which might result in inappropriate cases, costing valuable problem-solving time or 

leading to expensive errors. 

All these disadvantages are related to using cases poorly or inappropriately to  reason. 

However, CBR is a natural way of the reasoning of people, and the efforts of explaining 

the reasoning process in it might give us an opportunity to learn how to reason better 

using cases. In addition, the case memory technology will allow us to build decision-support 

systems that enhance the human memory by providing the appropriate cases while still 

allowing the human users to reason in a natural way. These will, undoubtedly, enable CBR 

to avoid the negative weaknesses, making it a promising solution as one of the reasoning 

and learning attempts in AI. 

1.3 Successful Examples for CBR 

1.3.1 CASEY - A Research Project 

In [24], several automated case-based reasoners are described in detail. CASEY is a case- 

based diagnostician. Its input is the description of a new patient, which is composed of 

normal signs, present signs and symptoms. Its output is a causal explanation of the disorders 

the patient might have. It has a case base of approximately twenty-five cases, all of which 

were diagnosed by the Heart Failure Program(to be discussed later). When presented with 

a new patient, CASEY searches its case base to see if there exists a similar case. If such a 

case is found, it will be used to diagnose the patient. Otherwise, it passes the control on 

to  the Heart Failure Program, which will diagnose the patient and then return its result to  

CASEY for future use. CASEY is constructed atop the Heart Failure Program, a model- 

based diagnostic program that diagnoses heart failures with unusual accuracy. However, 

CASEY does more than the Heart Failure Program does. CASEY includes two steps to  do 
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a case-based diagnose for a new patient. First it searches the case base for similar cases and 

uses the model-based evidence rules to determine which of the retrieved cases is sufficiently 

similar to suggest an accurate and possible diagnosis solution. Then it applies the model- 

based repair rules to  adapt the old solution to  accommodate the new situation. For more 

detailed discussions on evidence rules and repair rules in CASEY, see [24]. While CASEY 

maintains the same accuracy as the Heart Failure Program, it performs much better if the 

efficiency is measured. It is shown that a speedup of two to three orders of magnitude is 

achieved if the CASEY holds a relevant case in its case base. The relevant cases provide 

a good starting point for constructing a causal explanation, and the time for constructing 

such a solution from scratch is saved. This system shows a potential to  use CBR to speed 

up the model-based programs without any loss of accuracy. 

1.3.2 CLAVIER - An Industrial Application 

CLAVIER[24, 491 is one of the first commercial applications of CBR technology. It is a sys- 

tem for configuring the layout of composite airplane parts for curing in an autoclave. These 

parts are made up of composite materials. Each part has its own heating characteristics 

and must be cured correctly. Otherwise it will have to be discarded. One problem is that 

an autoclave's characteristics are not well understood. To make the problem worse, many 

parts will be fired in a single large autoclave, and will interact with each other to alter the 

heating and cooling characteristics of the autoclave. Fortunately, the experts in Lockheed 

kept a file of the previous successful layout configurations for deciding how to layout a new 

autoclave. However, this was still complicated by the fact that layouts were never identical 

because the different parts were required at different times and because the design of the 

parts kept changing. So there was a need to select a previous successful layout deemed 

to be similar to a new autoclave, and then adapt the old layout to fit the new one. This 

situation resembled the CBR paradigm closely. When Lockheed decided to  implement a 

knowledge-based system to assist the operators, they chose CBR technology. In CLAVIER, 

each case is a layout of an autoclave, which is composed of the information describing parts, 

their relative positions in the autoclave, and the production statistics such as start and 

finish time, pressure, and temperature. The development of CLAVIER started in 1987, and 

it has been used since the fall of 1990. CLAVIER started with approximately twenty cases 

and has collected over one hundred since it has been used. As its experiences grow, it is 

becoming more accurate in its case retrievals, requiring considerably less adaptation now 
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Application Types 

Customer Service 

Fault Diagnosis 

Help Desk 

Maintenance 

Quality Control 

-- 

Companies 

Black&Decker 
London Electric 

National Westminster Bank 
NCR 

Apple Computers 
Caledonian Paper 
General Dynamics 

Matra Space Corporation 

AT&T Bell 
Compaq 

Lucas Arts 
Nokia 

British Airways 
Cfm International 
General Electric 
General Motors 

Daimler-Benz 
ITT 
NEC 

Volkswagen 

Table 1.1: What Types of CBR Are Companies Using? 

than before. 

1.3.3 Other CBR Applications 

Shown in Table 1.1, which is adapted from [49], is a partial list of the types of CBR appli- 

cations, as well as which companies are using them, and for what purposes they are being 

used. 
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CBR Products 

ART'Enterprise 
CBR2 

CASE-1 

Table 1.2: CBR Products and Their Developers 

Developers 

Inference Corp. 

Astea International 
CaseAdvisor 
Casepower 

Eclipse 
ESTEEM 

KATE 
ReMind 

1.3.4 Some CBR Tools 

Simon Fraser Univeristy 
Inductive Solutions Inc. 

The Haley Enterprise 
Esteem Software Inc. 

AcknoSoft 
Cognitive Systems Inc. 

Along another aspect, we can also see that more and more CBR tools have been developed 

and commercialized into the market. Table 1.2, which is adapted from a website1, shows a 

partial list of CBR products and their developers. 

1.4 Research Areas in CBR 

In recent years, while CBR enjoys its success in the industrial world, it also attracts more 

and more attention from the academic field. On one hand, most of the research problems 

are directly from the CBR applications, on the other hand, the solutions to these problems 

in turn further promote its successful applications. 

In general, there is no perfect method in A1 which could be a universal approach to  all 

the application domains. CBR could not be an exception to this fact[3]. Based on Figure 1.1, 

we can see that every step in the CBR cycle is crucial in the construction and use of a CBR 

system. In order to deal with different situations in different domains, different methods 

will be desired for each step. To find out which one is better for which application, it is 

always required that the theoretical proposals and empirical experiments be complemented. 
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1.4.1 Case Representation 

The first step in developing a case-based reasoner is to build a case base. How to represent 

knowledge using cases is a nontrivial problem. 

There are usually three major components to the content of a case[24]. 

1. Problem Description: the status of the situation where this case occurred, and if 

appropriate, what problem is needed solving at that time; 

2. Solution: the explicitly stated or implicitly derived solution to the problem described 

in problem description; 

3. Outcome: the resulting status of the situation when the solution was executed. 

At present, there is no widely acceptable standard as to  what information should be con- 

tained in a case. Of the three components in a case as above, the first two represent a 

shortcut for a case-based reasoner. However, as indicated in [24], in situations with many 

unknown or undetermined factors, severe inaccuracies might happen when the cases that 

only contain the problem descriptions and solutions are used to  reason. A system, which 

mindlessly uses the knowledge it stores to solve problems and stores every new problem and 

solution, will become more and more efficient, but it will also suffer repeating its mistakes as 

often as its good solutions, making itself untrustable. To this end, the third part, outcome, is 

used to  allow a reasoner to record and analyze the feedbacks from the outside environment. 

It will record what happens as a result of the execution of the solution, whether the result 

is a success or failure, in what way it succeeds or fails, and when available, an explanation 

of why for such a success or failure. 

No matter what will be contained in a case, there are two basic pragmatic criterion we 

need to consider when deciding the information in a case: the functionality and the ease of 

the acquisition of the information that will be in a case[24, 491. 

Once the information contained in a case for a particular domain or application has 

been decided, the general structure for the representation of this information is quite formal. 

Tables 1.3 and 1.4 are examples of two types of the representation of a case. It is easy to  

see that the case in Table 1.3 is detailed to some very small feature-value pairs, while the 

case in Table 1.4 only has two major parts: problem description and problem solution. 



CHAPTER 1. BACKGROUND 

Table 1.3: First Example of Case Representation 

Feature 
Value 

t 
. - -  - - 

1 3. If problem continues, generate trouble ticket. 

Make 
Toyota 

Problem Description 
No reception on low band 

Table 1.4: Second Example of Case Representation 

Problem Solution 
1. Check no splitter on cable, fine tune TV channels. 
2. If problem continues, unplug TV for 30 seconds, replug. 

1.4.2 Case Retrieval 

Name 
Camry 

The retrieval step starts with a new problem description, and ends when a best matching 

previous case has been found. 

Feature Indexing 

Broadly speaking, the indexing problem in CBR is the problem of deciding what cases 

are to be retrieved at appropriate times while guaranteeing that those retrieved cases are 

applicable to  a new problem. Feature indexing involves assigning indices to  cases to facil- 

itate their retrieval. The indices associated with a case are combination of its important 

descriptors or features, which distinguish it from others. When assigning indices to  a case, 

we need to observe the following guidelines[24, 491. 

Doors 
4 

Type 
Luxury 

0 Indexing should represent the concept that is normally used by the reasoner to  describe 

the content in a case. 

0 Indexing should address the purpose for which a case will be used. 

Engine Size 
8 

0 Indexing should be predictive on the usefulness of a case 

Price 
$30,000 

Indexing should anticipate the increase of a case base. 

0 Indexing should be concrete enough to be recognized in the future. 
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After the indices for all the cases in a case base have been decided, strategies such 

as attaching importance values to indices have been used in order to assess the similarity 

between an input problem and the previous cases. Usually, this importance value is measured 

by what we call the feature weight. For example, in PROTOS[39], each feature in a stored 

case has been assigned a degree of importance[3]. In CREEK[2], a similar mechanism is 

adopted, which stores both the predictive strength(discriminat0ry value) of a feature with 

respect to  a set of cases, and the feature's criticality, i.e. how the lack of the feature will 

affect the case solution. 

The indexing problem is a central and very attractive problem in CBR. It is also the 

central topic in this thesis. It will be further discussed in the following chapters. 

Retrieval 

The case retrieval algorithm is at the heart of CBR. It is, according to  the description of a 

new problem, responsible for retrieving the most similar cases from a case base using the 

indices of the cases. The indices and the organizational structure of the case base will guide 

a retrieval algorithm to search for the potential useful cases. 

A number of strategies have been proposed in the CBR literature for the case retrieval 

algorithms. Some of them are serial, while others are parallel; Some use flat-indexed struc- 

tures, but others use hierarchical-indexed structures. Some use indices to  construct struc- 

tures that distinguish cases from each other at a very small granularity while others dis- 

criminate cases at a more coarse level. Each method has its advantages and disadvantages. 

For example, for a flat case base the best case will be surely retrieved, but if the case base 

is very large, the search would be very time-consuming. On the other hand, if a case base is 

organized into a tree structure, the search cost is relatively small, but there is no guarantee 

that the most similar cases will be retrieved. There is always a trade-off between these two 

extremes. 

Among those well-known and most discussed retrieval methods are nearest neighbor 

algorithm, and induction tree. 

0 Nearest Neighbor Algorithm This method involves the computation of the similarity 

between an input case and the previous cases based on a weighted sum of the fea- 

tures' similarity. The problems in this approach are how to determine the underlying 

similarity function, and how to determine the feature weights. We will discuss this 
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approach in more detail in Chapter 2. The search time for this method will be in- 

creasing linearly with the size of a case base. Therefore it will be more effective when 

a case base is relatively small. CASEY, a research project mentioned above, employs 

this method to index the cases by their surface features as well as the internal states, 

which are part of their diagnoses. 

Induction Tree Quinlan's ID3 and its successor C4.5[36] use information gain algo- 

rithm to determine which features are more important in discriminating cases, thus 

forming a decision tree with each branch representing a feature-value pair and each 

level representing a feature. The more important the feature is, the higher level it will 

be. The biggest problem in this method is how to deal with the missing or undeter- 

mined feature values. Typically this method is most efficient when there are relatively 

small number of features dominating a case base. ReMind and CBR Express in CBR2 

in Table 1.2 use inductive decision trees in their retrieval process. 

There are also some other retrieval methods, such as knowledge guided induction, tem- 

plate retrieval, etc.[3]. 

1.4.3 Case Reuse 

There are two main approaches to reusing the previous cases[3, 24, 20, 121. 

Reuse the previous problem solution(which is called the transformational reuse). 

Reuse the previous method that derived the solution(which is called the derivational 

reuse). 

In the first technique, the retrieved solution will not be applied to  a new case. Rather, 

some transformation operator will be applied to it first, transforming it into a solution 

to the new case. The transformational reuse does not look at how a problem was solved 

but focuses on the equivalence of the solutions. Usually the transformational operators are 

highly domain-dependent, and a control facility to manipulate them is required. CASEY is 

such an application of the transformational reuse, in which a new explanation is built from 

an old explanation by rules. In each rule, the condition part indexes the differences between 

the new and old explanations, while the action part represents a transformation operator. 
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In contrast to  the transformational reuse, the derivational reuse looks at  how a previous 

problem was solved. The retrieved case maintains the information about the method used 

for solving the retrieved problem, including a justification of the operators used, the sub- 

goals considered, the alternatives generated, the failed paths, and so on. The derivational 

reuse will apply this method to a new problem in a new context. Generally, the problem- 

solving systems using this reuse technique are for planning problems. An example of the 

derivational reuse is the Analog/Prodigy System[20], which reuses previous plans designated 

by the commonalities of the goals and the initial situations, and resumes a means-ends 

planning if the retrieved plan fails or is not found. 

1.4.4 Case Revision 

The case revision consists of two tasks. One is to evaluate the problem solution generated by 

the case-reuse process. The other is to repair the problem solution using domain-dependent 

knowledge. To evaluate a problem solution, one needs to  apply it to a problem in the real 

world. The result from this application will be fed back for case revision. CHEF[24] is such 

a CBR system, in which a case(cooking recipe) is applied to an internal model which is 

assumed to produce feedbacks for its revision. Case revision involves detecting differences 

between the current case and retrieved explanations for it. For example, in CHEF, some 

causal knowledge is used to generate an explanation of why certain goals of a retrieved 

recipe were not attained. To revise a case, the failure explanations will be used to modify 

the case in such a way that the failure does not occur. Again in CHEF, the failed plan is 

modified by a revision module which will add steps to the plan. This revision will guarantee 

that the causes of the errors will not occur. 

1.4.5 Case Retainment 

This is the process that incorporates the useful knowledge from a new problem solving 

process into an existing case base. The reasoner will learn from the success or failure of 

the retrieved solution, which is triggered by the outcome of the evaluation and possible 

revisions. If a new problem is solved by the use of a previous case, a new case might be 

built or the old case might be generalized to subsume the new problem. If the problem is 

solved by other methods, including getting feedbacks from a user, then an entirely new case 

will have to be created. In any circumstance, a decision needs to be made about what to  use 
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for the learning process, such as relevant problem description, problem solutions, and even 

an explanation or justification as to why a solution is appropriate to the current problem. 

Another source of learning is the problem-solving method or the reasoning path. Failures in 

the reasoning may also be a source of learning. When a failure is encountered, the system 

can then get a previous similar failed case, and use it to improve its understanding of the 

present failure. 

1.4.6 Integrated Approaches 

In most CBR systems, general domain knowledge is represented by cases. However, the 

representation and the use of that domain knowledge might need more than CBR itself. It 

involves integration of CBR and other problem solving methods. Thus, the overall architec- 

ture of a CBR system is to determine the interactions and control strategies between CBR 

and other components[3]. For instance, CASEY integrates a model-based causal reasoning 

program with CBR to diagnose heart diseases. The whole process is as follows. When the 

CBR module fails to  provide a desired solution, CASEY will start a model-based module 

to  solve the new problem and stores the solution as a new case for future reuse. Since the 

model-based model is complex and time-consuming, CBR in this integrated framework is 

essentially a possible way to achieve speed-up learning. 

Another such system is the CaseAdvisorTn system developed by the CBR group at Simon 

Fraser University(SFU). The core of the system is the paradigm of CBR. However, many 

other features have been integrated into it to make it more attractive. Decision tree is a 

tree-like structure which can be shared by several cases. It will be used as a set of step- 

by-step instructions on how to solve a new problem. This feature is especially useful in the 

diagnosis domains. Rule base is another feature which is based on the observation that the 

description of a new problem sometimes implies some of its feature-value pairs, which are 

desirable to be selected automatically in the case retrieval process. In order to  retrieve cases 

more accurately, some information retrieval algorithms are also employed in the system, such 

as trigram match[25]. Constraint-satisfaction algorithm is another attempt integrated into 

the system in order to solve the constraint problem among different feature-value pairs. 

In this thesis, a machine learning method will be incorporated into this system with the 

hope that it would learn from a user's behavior, and simulate it in its own behavior. 

The integration of CBR with other reasoning and learning methods is closely related to  

the general issue of the architecture for a unified problem-solving and learning approach, 
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which represents the current trend in the machine learning literature[3]. CBR itself is a 

combination of problem solving (during case retrieving and reusing) and learning (during 

case retaining). However, we can still introduce other learning methods into CBR in order 

to improve its performance? Definitely, this is an interesting, and also important dimension 

into CBR research. 

1.5 Relationship of CBR to Other Methods 

In the family of reasoning methods, the relationship between CBR and others will help us 

better understand CBR. 

r Memory-based reasoning(MBR) is often regarded as subsumed by CBR. MBR solves a 

new problem by retrieving the previously solved problems as a start point. However, 

its primary goal of reasoning focuses on the retrieval process, in particular, on the use 

of parallel retrieval schemes to enable retrieval without conventional index selection. 

r Analogical reasoning uses the same cognitive models as CBR. However, analogical 

reasoning originally concerns more about the abstract knowledge and structural sim- 

ilarity among cases, while CBR is more concerned about how to form the reasonable 

correspondence between a new case and the old cases based on the pragmatic consid- 

erations about the usefulness of the result. CBR does more than analogical reasoning 

does. Besides the research in the mapping in analogical reasoning, CBR also studies 

the related processes that are both before and after the mapping. 

r Database systems are designed to make exact matching between the queries and the 

stored information, which is not always the case in CBR. Rather, CBR just retrieves 

the most similar cases, which might include conflicts with some of the features specified 

in the retrieval query. The possibility as to whether a case is retrieved not only depends 

on itself, but also on its competitors. Despite these differences, there are some aspects 

of the CBR and database technologies that can benefit from each other. For instance, 

as indicated in 1261, to  manage large case bases in CBR applications, it is advocated 

to  use relational database management systems, combined with other mechanisms to 

allow flexible query specification and partial matching during the case retrieval. 
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CBR involves not only the reasoning process, but also the learning process. In contrast 

to other learning methods, we can also see that CBR is of some advantage. 

Inductive learning: Unlike traditional symbolic and other approaches to  inductive 

learning, which define concepts by generalizations on the exemplars, CBR systems 

define concepts entirely as specific cases. This brings many advantages[26]. It enables 

system to use a concrete case to support its decisions. The system gives user a chance 

to  verify a case's applicability. It is also useful to solve conflicts. Finally it enables 

incremental learning because a CBR system can be seeded with a set of seed cases, 

the coverage of a case base can be enlarged by adding new cases incrementally if such 

an addition is proved to be needed. 

a Explanation-based generalization: In explanation-based generalization, rules are used 

to explain why a training example has some particular properties, and the explanations 

are used to guide the generalizations. The generalizations are stored for future use. In 

contrast, CBR generalizes cases at storage time. However, it adapts them when such an 

adaptation is needed to  solve a new problem. Another difference is that, in addition to  

the generalization, more types of operations will be executed in the adaptation process 

in CBR, such as specialization, substitution, and possible modification. 

1.6 Case-Base Maintenance Problem 

The problem of maintaining a case base over time is called case-base maintenance problem. 

When constructing a case base, there are two perspectives we need to  consider. The first 

one is that the case base itself is changing, with the addition of new cases, the deletion of 

old cases, and the modification of existing cases. While these actions enhance the power 

of the case base gradually, they also bring some information which is undesirable to the 

already existing cases. Inconsistent and redundant cases pose a problem to the growth and 

expansion of a case base. A strategy is proposed in [38] to deal with this kind of case-base 

maintenance problem. 

In this thesis, we examine the case-base maintenance problem along another direction. 

In our experience with practical applications of CBR technology, three serious problems 

arise with regard to the feature weights. First, the feature weights are assigned manually by 

humans, not only making them highly informal and inaccurate, but also involving intensive 
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labor. Second, a CBR system with a static set of feature weights cannot cater to a specific 

user. It would be desirable to enable the system to acquire a user's preference automatically. 

Finally, a CBR system often functions in a changing environment, either due to  the nature 

of the problems it is trying to solve, or due to the shifting needs of its user. We wish to  

have a CBR system that always adapts to a user's changing preference in time. These three 

problems comprise one of the core tasks of case-base maintenance problem. Maintaining an 

updated set of feature weights over time is crucial in the use of a CBR system. This thesis 

will present an integrated CBR framework which will attempt to solve these problems 

1.7 Summary 

We hope that this chapter would introduce the background knowledge in CBR to the readers. 

The possible and potential research areas in CBR are also discussed. 

Currently more and more CBR systems come out from the laboratory and are commer- 

cialized into the industry world. Because of its merits, many industrial practitioners are 

turning to CBR to automate various aspects of their tasks, such as help desk, customer 

service, quality control, equipment maintenance, and so on. 



Chapter 2 

Feature Indexing and Weighting 

2.1 Introduction 

We have shown in Chapter 1 that there are mainly three pieces of information in a case. 

They are problem description, problem solution, and outcome. If we consider them as the 

lesson a case teaches, then we need to  decide within what context such a lesson will be 

useful. We call this context a case's indices. We have mentioned the indexing problem in 

Chapter 1. We will discuss it in more detail in this chapter. 

2.1.1 A Small Example of Case Base 

Throughout the rest of this thesis, we will use a small case base to study some simple 

examples to get a better understanding of some key concepts in our explanations. However, 

when necessary, some other examples will also be shown complementarily to  better address 

the situation in question. 

The small case base is adapted from [50] and is shown in Table 2.1. Each row of the 

table represents the loan information about a person. In the table, the column Loan status 

represents the situation whether a bank makes a profit or loses money, which is divided 

into four groups. They are very good(the bank makes a big profit), good(the bank makes 

a profit), bad(the bank loses some money) and very bad(the bank loses a lot of money). 

Column 2 represents a person's monthly income. The column Job status stands for whether 

the income of a person is paid at an hourly rate(i.e. waged) or paid annually(i.e.salaried). 

The fourth column represents a person's monthly repayment for her/his loan. 
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Case 1 
Case 2 
Case 3 

- - 

Table 2.1: A Small Case Base of Four Loan Cases(1 unit = $100) 

I Case 4 1 bad 

We will attach concrete meanings to these four columns when we use them in explaining 

different concepts. 

Loan status 

good 
very bad 

very good 
18 units I salaried 1 4 units 

2.1.2 k-NN Algorithm 

Lying at  the core of CBR is the case retrieval process. k - N N  is one of the frequently used 

algorithms to retrieve most similar cases in a case base(A1so see discussions in Chapter 1 

for other retrieval algorithms). 

Basically, k - N N  assumes that each case in a case base is defined or indexed by a set of 

n(numeric or symbolic) features. Given an input query Q, k - N N  retrieves a set of k  cases 

most similar to Q(i.e. these k  cases have the least distance from Q) from the case base. 

For a case C and a query Q,  the following formula is used to  compute the distance between 

them[51]. 

Monthly income 

42 units 
40 units 
30 units 

n 
c Q 2  distanee(C, Q) = (X(W, t di f f erence(fi , fi ) ))'I2 

i=l 
(2.1) 

where W; is the weight assigned for feature f;, difference is the similarity function for 
Q different values of a feature, and fy and f; are the values of feature fi in case C and query 

Q , respectively. 

The larger the distance between two cases is, the smaller the similarity between them 

is. On the contrary, the smaller the distance is, the larger the similarity is. 

There are different representations of difference function difference in Formula 2.1. 

Formula 2.2 is one of them[51]. 

Job status 

salaried 
salaried 
waged 

Monthly repayment 

2 units 
6 units 
3 units 
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( Ix - y l  if feature f is numeric 

if feature f is symbolic and x f y 
di f f erence(x, y) = 

if feature f is symbolic and x = y 
(2.2) 

( 0.5 if z or y is unknown 

where x,  y are two values of feature f .  

In some implementation of Formula 2.1, all features use the same weights. This will 

allow redundant, irrelevant, and other imperfect features to skew the similarity computation. 

Hence, many variants have been proposed that the more relevant features in a case base be 

assigned higher weights in order to show their higher relevancy. 

After the similarity to the input query is computed for each case, all the cases in a case 

base are scored. Cases with higher scores are ranked higher than those with lower scores. 

It can be easily seen from Formula 2.1 that a case whose description is more similar to  a 

query's is scored higher than that whose description is less similar. 

In the following discussions, we will use the formulas shown here t o  do some simple 

calculations on Table 2.1. 

2.1.3 Features in CBR 

People use CBR with the hope that their previous experiences would be efficiently and 

accurately recalled. Although other steps in CBR cycle are also very important(see Figure 

1.1), the case retrieval step bridges the gap between the past and the present. Its efficiency 

and accuracy have a direct influence on the overall performance of a CBR system. As the 

indexing problem aims to solve the efficiency and accuracy problem in CBR, it is not a 

surprise to  see that it is regarded as the central and very active research area in the CBR 

literature[3]. 

In practical implementation, the indexing problem has been addressed as a problem 

of how to assign indices to the cases in a case base. In a case the indices might be the 

combinations of features that are responsible for its failure or success, which can be used to 

help a reasoner avoid the errors that happened in the past or help suggest a solution to a 

new problem. 

For example, in the case base shown in Table 2.1, the four columns of the table can be 

used to  represent four different features. Based on the experiences with the loan transac- 

tions, the domain experts would like to choose two features monthly income and monthly 
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repayment to  form the indices to the case base, since they satisfy the above discussions as 

well as the guidelines discussed in Chapter 1 for choosing a set of good indices. 

For a particular case, the set of its features interprets a situation, in which someone 

might remember that case. Some of the features are just directly derived from a case's 

problem description and solution, while some are inferred from the information that is more 

abstract. For example, if we just extract features from problem description and solution, 

there are few common points between basketball and chess. However, if we go to  a higher 

level, we can find these two games still share some abstract features, such as that both 

games are competitive, each side attempts to set up a situation which is of disadvantage to  

the other side, and so on. If a chess expert just notices the surface features about basketball, 

such as two teams, a ball, a field of certain size, and etc., it is almost impossible for her or 

him to  see the similarity between the two games. Thus, the retrieval and matching processes 

in CBR need do their work based on more than just superficial features. 

A case's indices will tell us under what appropriate circumstance to retrieve it. The 

stored previous cases in a case base are indexed by these indices. A CBR system wiU then 

use a new problem as the target indices, and search for the most similar cases, whose indices 

match those target ones most. 

How to choose a set of good indices for a case is very important in CBR. Researches on 

indexing over past 10 years have shown[24] that the good indices in a case base are features 

or combinations of features which will distinguish a case from others. The predictiveness of 

indices is the most concerned aspect for choosing them(A1so see discussions in Chapter 1). 

2.1.4 Weights in CBR 

The indexing problem is scattered into the whole case retrieval algorithm, including the 

processes of searching, matching, and ranking. 

Of these processes, we are especially interested in matching and ranking, which are re- 

lated to this thesis. They represent a best-case-selection process. The searching process 

searches in a case base for the most similar cases to a new problem. It requests the match- 

ing process to  compute the similarity between the problem and a case using certain features 

represented by the case's indices. At this point, a more comprehensive evaluation of simi- 

larity will be executed. This evaluation will take into account the weights of the matching 

features. According to such a series of feature matchings, searching process collects a set 

of cases that match the new problem most. These cases will be scored according to their 



C H A P T E R  2. FEATURE INDEXING AND WEIGHTING 

similarity computed. 

We will use Formulas 2.1 and 2.2 to do some simple calculations on the unweighted and 

weighted similarity between an incoming case and an old case. We still use the small case 

base as shown in Table 2.1. Given a target T of a person's loan with the monthly income of 

30 units(l unit = $loo), and monthly repayment of 2 units, if we do not use the weight in 

the computations of the distance between cases, the distance score of Case 1 with regard to  

this target will be ((42 - 3 0 ) ~  + (2 - 2)2)1/2 = 12, and the distance score of Case 2 will be 
2 112 ((40 - 3 0 ) ~  + (6 - 2) ) P 10.8. From this computation, we can see that Case 2 is more 

similar to the target T. However, if the domain experts do not think the features monthly 

income and monthly repayment are equally important in the similarity computation, and 

may assign a weight of 1 to feature monthly income, and a weight of 4 to  the feature monthly 

repayment. Then the distance score of Case 1 will be ((42 - 3 0 ) ~  x 1 + (2 - 2)2 x 4)lI2 = 12, 

but now the distance score of Case 2 will be ((40 - 3 0 ) ~  x 1 + (6 - 2)2 x 4)lI2 - 12.8. This 

time the result is totally different; Case 1 is closer to the target T. Thus from this example, 

we can see how important the role of the feature weights is in the case retrieval process. 

With different weight assigned to the cases in a case base, the case retrieval result might be 

different. 

The weight of each feature designates the purpose for which a retrieved case will be used. 

The ranking process will choose those cases that best address a reasoner's purpose. How to 

assign an appropriate weight to a feature is the feature-weighting problem. A function used 

to compute the similarity between cases can only be as good as the knowledge it has of the 

weights of the features of a case[24]. The weight associated with each feature tells us how 

much attention needs to be paid to the matching or unmatching of that feature. 

Global vs. Local Weight Assignment 

As one dimension to consider the assignment of feature weights, they can be assigned glob- 

ally, over a large set of cases or over the whole case base, or they can be assigned locally, 

over a small set of cases or individual cases. 

For the global assignment, in order to determine which features of a case tend to be 

important for a match, a thorough analysis of all the cases in a case base is required. 

The domain experts will employ their knowledge and experiences to decide which features 

are more important, and which are less. Usually the assignment work is done during the 

construction of a case base. Another way to assign global weights is to  do a statistical 



CHAPTER 2. FEATURE INDEXING AND WEIGHTING 

evaluation of a known number of cases to determine which features predict different outcomes 

and/or solutions best. Those that are good predictors are then assigned relatively higher 

weights. A single static value of weight for each feature works well enough for a case base 

when there is little or no variation in the importance of a feature across different problems. 

However, this situation does not hold for every domain. For tasks in some domains, the 

feature weights vary locally with the context of the matching process. Consider a baseball 

club boss uses a case base of baseball players' information to determine a fair salary for a 

new player. When the boss considers the similarity between a new player and an old one, 

the feature weights of individual players are different depending on what position the new 

player will play on the field. For instance, when the boss tries to determine the salary for a 

pitcher, the feature 'batting average' will be having lower weight than that when determining 

the salary for a fielder, which means that 'batting average' is a more important feature for 

fielder than for pitcher. This suggests that while the global weight assignment works for 

the domains with little or no variations in the importance of features, the local weight 

assignment puts the feature weights into a changing context, thus having more convincing 

and practical significance. 

Static vs. Dynamic Weight Assignment 

Along another dimension of the weight assignment, they can be assigned statically, or they 

can be computed dynamically. In the dynamic assignment, it is required to take into con- 

sideration the influence from the context in which the matching is happening. When a case 

base is used only for one purpose and the relative weights of different features are consistent 

across the cases, assigning one set of weights to  all the features will be possible. However, 

when the cases in a case base are to be used for several different purposes, each of which 

requires different focus on the different characteristics of the cases, several different sets of 

weights might be required. Actually, when a case base serves for different purposes, different 

matching criteria may be necessary. Each of those criteria is associated with the conditions 

stating a circumstance it will be used. Which weights should be used or not used in the 

computation is dependent on the current context. 
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Our Views on Weight Assignment 

Our view of the dynamic nature of the feature weights is based on a broader sense than 

above, much more motivated from the practical application needs. We have considered the 

situation mentioned above. However, we go further, making a dynamic context engulf more 

meanings. 

First, we think that a CBR system is dynamic, in which different users with different 

purposes may have different views on the cases in a case base. Therefore, they would 

like t o  have different feature weights for a case. In addition to the example of a 

case base of football players which shows that a user may use a case base under 

different contexts. We consider another example. For a case base of human resource 

data, different information is stored about individuals, such as her/his height, weight, 

sighting ability, running speed, health situation, what skills s/he has, what education 

degree s/he is holding, and so on. A basketball player recruiter may weigh the feature 

height more importantly than others when choosing a player, while a pilot recruiter 

may weigh the  feature sighting ability more importantly. Our example shows that 

the dynamic context also includes the situation that the users may be different for 

the same case base. Different users, even in the same community, may have different 

views on the  individual cases, which need be reflected in the feature weights in the 

similarity computation. 

Second, we think that a CBR system is not only a dynamic system, but also a behavior- 

learning system. If we consider the most similar cases produced by the retrieval process 

in a CBR system are the result of a CBR system's behavior, then we greatly hope 

this behavior would simulate a user's behavior to the greatest extent, thus making it 

possible t o  produce the most desired cases. From this viewpoint, we imagine that a 

CBR system with the learning ability could learn from a user's behavior, and adjusting 

its own behavior accordingly. The result of the learning is that a CBR system's 

behavior gradually approximate a user's behavior. As identified in [24], there is a 

tension between using indices to designate usefulness and direct a search and allowing 

them not t o  overly restrict what can be retrieved. Behind this tension is the problem 

of how to accurately decide the feature weights in the case retrieval process. Our view 

that a CBR is a behavior-learning system helps suggest a solution to  it. Instead of the 

current weight assignment practice which is relatively static, we regard the process of 
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weight assignment as a dynamic process that never stops. It keeps alive with the work 

sessions of a CBR system. Our desired accuracy and non-overrestriction of indices will 

be achieved iteratively through its learning. 

When we human beings reason, we always attach different importance to different 

factors[9] in the searching of final goals, reflecting our own behaviors. When we use 

CBR, we also want to  incorporate this phenomenon into it. A CBR system's behavior 

is encoded into the weights assigned to the features. Weights, in turn, when used in 

the similarity computation for the cases in a case base, reflect the system's behavior. 

The comparisons between a CBR system's behavior and a user's desired behavior will 

present the differences between them, guiding the behavior-learning process as what 

to be done in the feature weights. 

Third, we think a CBR system is not only a dynamic system, a behavior-learning 

system, but further an evolutionary system. We now put a CBR system into a more 

dynamic context. Within a short-time period, there may be no apparent changes in a 

user's behavior. However, a user's behavior might be changing with time. For the same 

problem, s/he might have different views at different times. Thus in the long run, the 

system needs to  have an ability to capture regularities hidden in a user's behavior to  

accommodate the possible changes. Such a system is a responsive system which keeps 

its pace with the changes in its environment and reflects them in its own behavior. For 

example, in a printer diagnosis application using CBR, at first we may consider that 

the paper jamming is the biggest factor when the problem that paper can not get out 

occurs, and assign a relatively higher weight to  its corresponding feature. However, 

with the improvement of paper quality, we might change our view. We lower down 

its weight. Furthermore, with the improvement of mechanical technology, the paper 

jamming will become less likely a dominating factor in the problem. Thus we want 

to  reduce this weight to a relatively small value. These changes need be reflected in 

the system, along with the time passing, to  make their corresponding effects gradually 

appear in the following work sessions. 

The above three views are in accordance with the tasks with regard to the case-base 

maintenance problem discussed in Chapter 1. For a general picture, a case-based reasoner 

is a living system, which can fine-tune its weights according to its user's behavior, respond 

to  its changing environment, and provide its different users with different set of weights. 
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Before we go on to the specialized discussions in this thesis, we first examine what have 

done in the same direction for these tasks. This will help understand what we will do. 

2.2 Related Work 

A CBR system in our imagination is a self-adjusting system. It will monitor a user's 

behavior, take the user's feedbacks, and adjust itself to reflect them in its own behavior. It 

can be easily seen that this process, in fact, forms a self loop. With more and more folds of 

the loop, the system's behavior tends to approximate its user's. 

We project our system into a larger background. In general, as more and more A1 systems 

are being used to address the real world applications, how to acquire knowledge and how 

to take advantage of this pool of knowledge become a very difficult task. This is due to  the 

high degree of variety and complexity of the real world situations. In addition, the fast- 

changing outside world makes this task even more difficult. Thus, the knowledge acquisition 

has long been identified as a main problem in constructing a knowledge base. Obviously, 

CBR provides a relatively flexible approach to deal with this problem(see [24, 3, 261, and 

our discussions in Chapter 1). However, even with a well-constructed knowledge base, the 

reasoner can still encounter reasoning failures. The reason for this is due to  the inability 

for the reasoner to  properly access[l] and apply its knowledge, and also due to  the fact that 

the once-updated knowledge may become outdated. Recently more and more researchers in 

AI[l] are becoming interested in how to monitor the performance of the reasoner, compare 

its current behavior with a user's desired one, and seek the opportunity to learn from this 

information in order to  improve the quality when the knowledge is used next time. 

2.2.1 Learning Agents 

In [42], it is proposed that the problem of AI is to describe and build components that reduce 

the stupidity of the system in which they function. To interpret this, a goal of post-modern 

A1 should be the improvement of how a host system functions through the development 

of intelligent parts to  it. It is suggested the intelligent parts in a big system be called 

intelligent components rather than intelligent agents. Although whether or not this will be 

widely accepted in A1 is not sure, the paper does demonstrate an important direction in A1 

- the integration of intelligent parts with the host system. Recognizing the limitations and 

taking advantages of the capabilities of the host system is the secret of the building such an 
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intelligent component that is robust and successful. The task of the intelligent component 

is to help the host system choose a response good enough to  meet the system's needs in a 

timely fashion. We can see that, although this paper[42] mainly discusses the integration of 

the intelligent components with the host system, it does give us some suggestion. Can we 

do something similar in CBR? 

Maes[29] argues more about the feasibility and application needs from the practical 

fields for such integrations. It is pointed out that the technological developments are not 

in line with a change in the way people interact with computers. Thus there is a need 

to change the current dominant metaphor or direct manipulation, which requires the user 

to  initiate all tasks explicitly and to monitor all events. In order for an untrained user to  

make effective use of the computers of tomorrow, it is suggested that techniques from AI, in 

particular so-called 'autonomous agents', can be used to  implement a complementary style 

of interaction, which has been referred to as indirect manipulation. A user is engaged in a 

cooperative process in which s/he and the computer agents both initiate communications, 

monitor events, and perform tasks. Besides these, the paper argues that two basic problems 

need to  be solved when constructing such an agent. They are competence and trust. The 

paper disqualifies two previous approaches to constructing an intelligent agent in the light of 

these two basic problems. Instead, it proposes an alternative approach that relies on machine 

learning techniques. It presents a hypothesis which is that under certain conditions, an 

intelligent agent can 'program itself'(i.e., it can acquire knowledge it needs to assist its user). 

The agent is given minimum amount of background knowledge, and it learns appropriate 

'behavior' from its users. It is shown that in order to fulfill this task, there are several 

preconditions. One is that the use of the application has to involve substantial amount of 

repetitive behavior(within the actions of one user or among users). Another one is that the 

repetitive behavior is potentially different for different users. It is believed that such an 

intelligent agent has several advantages. It requires less work from the ordinary users, and 

over time, it can easily become customized to individual and organizational preferences and 

habits. 

The paper demonstrates several examples of such intelligent agents. One is Maxim[53] 

which assists a user with the daily incoming emails. It can learn to prioritize, delete, forward, 

sort and archive mails on behalf of its user. Interestingly, this agent is very generic, and 

when attached to a meeting scheduling software package, it becomes an assistant to a user for 

scheduling of meetings(such as acceptance/rejection, scheduling, rescheduling, negotiating 
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2.2.2 case-Based Learning 
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k - N N  algorithm, which predicts that the value for a given case's goal feature is the most 

frequent goal value among its k  most similar stored cases in the concept description. 

CBL2 is identical to CBLl  except that it retains only incorrectly classified cases in its 

concept description. The goal of such retainment is to avoid computing a needlessly large 

number of similarity assessments during the prediction attempts. CBL3 is further improved 

to  deal with the noisy cases on the basis of CBL2. It keeps a track of the frequency for which 

a stored case, when selected as one of the current case's most similar stored cases, matches 

the current case's goal feature value. After that it uses a statistical test of significance to  

ensure that only the stored cases with significantly high frequency will participate in the 

final prediction of the goal feature values. 

CBL4 is another CBL algorithm introduced in the paper. It mainly aims at the sit- 

uation where the feature weights vary greatly among the predictor features, for instance, 

the irrelevant features exist. In CBL4 the feature weights are learned rather than told. It 

will be adjusted after each prediction attempt during the training process by comparing the 

current training case with its most similar stored cases. CBL4 initially assigns equal weight 

to  each feature. It increases the weights for features whose values are similar when the 

correct predictions are made. Otherwise it decreases the feature weights. The adjustment 

delta is determined by the difference between a feature's values for the two cases' whose 

similarity is being assessed. This is a learning process. The performance of the prediction 

is evaluated, and based on the result of the evaluation, the weights of the relevant features 

are adjusted for the next use. Actually, CBL4 can tolerate irrelevant features quite well as 

shown in the paper. However, it is also pointed out there is a need for further research work 

on CBL4 as it does not perform well when the weights of features are context sensitive in 

the sense expressed in [lo]. Here the experts recognize that the feature weights depend on 

the combinations of the other feature-value pairs currently describing a case. The paper 

suggests a new algorithm GCM-ISW, although not implemented, to deal with the situation. 

This new algorithm employs a separate set of feature weights for each (case, goal feature) 

pair. These newly introduced weights allow the algorithm to encode different weights for 

a feature depending on both the case and the feature whose value is to be predicted. The 

reader is referred to  [7] for detailed discussions on this algorithm. 
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2.2.3 Feature Weighting 

Aha in [9] argues that people represent categories not only with the exemplars from those 

categories, but also with a set of specific weights associated with each feature of the exem- 

plars. The same result is claimed in [24] that the concepts are not represented simply by 

a single set of feature weights. Rather, a feature weight in similarity calculation depends 

on its context, i.e., the other features that are present for a particular exemplar. In addi- 

tion, people can learn the feature weights in the concept learning process even when they 

have little guidance for doing so. Aha shows an experiment in order to confirm the above 

hypothesis as whether the human subjects can learn categories that require features to  be 

weighted differently for different category exemplars. As expected, the hypothesis is true. 

The GCM-ISW, the last one suggested as above, but not yet implemented, now has been 

implemented in the experiment with the predicted result, which is that the selective atten- 

tion process of a psychologically plausible learning algorithm must be a context-dependent 

function. 

Wettschereck et al. in [51] survey a family of so-called feature weighting techniques 

along five dimensions. The goal of these techniques is to automatically assign weights to  

features using little or no domain-specific knowledge. We are especially interested in the 

first dimension called feedback. This dimension is related to  whether or not the feature 

weighting method receives feedbacks from the k-NN variant algorithm being used. The 

survey discusses two kinds of such feedback methods. One is called incremental hill-climber, 

whose purpose is to  modify the weights so that the modifications will increase the similarity 

between the cases in the same class but decrease the similarity between the cases in the 

different classes. There are some examples of this kind of feature-weighting method. They 

are EACH[44], IB4[6, 521, and RELIEF[23]. The adjustment policies in these examples are 

further discussed in the survey. As indicated, a drawback of these methods is that they 

process each training case only once, and are thus sensitive t o  the order of the presentation 

of the cases. 

The second suite of feedback methods in the survey is called continuous optimizers. 

These feedback methods repeatedly update feature weights using randomly selected training 

cases. The update algorithm employed plays a crucial role in these methods. As shown in the 

survey, GA-WKNN[23] uses a genetic algorithm to update features' weights. Lowe[27] uses 

the function's gradient to increase the learning speed. Its purpose is to optimize the features' 
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weights using the conjugate gradient algorithm to minimize LOOCV(Leave-One-Out-Cross- 

Validation[5l]) error on the training set. The derivative of this error for each feature weight is 

used to  guide the search. The survey compares the feedback methods with the non-feedback 

methods. It claims four hypotheses, of which three are related to the feedback methods. 

These three hypotheses are: when the data are not carefully pre-processed, the non-feedback 

methods can perform poorly substantially, the feedback methods achieve higher accuracy 

than the non-feedback methods in the domains with a few interacting features, and the 

feedback methods enjoy faster learning rates. 

For other comprehensive discussions on feature weighting methods, see [13]. 

2.2.4 Introspective Learning 

Introspective learning is an approach to  learning problem-solving knowledge by monitoring 

the run-time process of a reasoner[l7,14,37, 11. As indicated in [I], the need for introspective 

learning, and its increasing popularity have been across a range of A1 problem-solving 

paradigms, from planning to  case-based reasoning. 

Actually, it can be found that the introspective learning method discussed here can be 

used to  solve the problems in the feature weighting mentioned above. 

In 1171, Fox et al. describes their experiment with introspective learning in CBR. The 

ROBBIE system described is an application of an introspective self-model t o  the task of 

refining the indices used to retrieve cases. Its goal is to  improve reasoning process when 

encountering failures in its reasoning. The introspective learning component in the system 

monitors its reasoning process by comparing it to a declarative model which is used to  

describe the system's ideal reasoning process. Once a failure is found, the model is used 

to  create an explanation of the failure in terms of other failed assertion, and to suggest a 

repair. They report some experimental results on the system, and based on the results they 

claim that even under knowledge-poor initial conditions, the introspective learning process 

of new feature indices improves the success rate of the system over case learning alone. But 

they still indicate that there exists a problem with the ordering of the presentation of the 

problems. They also say that they are encouraged by the success of the ROBBIE system to 

expect the introspective learning to  provide more advantages for CBR and elsewhere in the 

future. 

Bonazno et al. in [1] demonstrates another system which combines introspective learning 

with CBR. They first pose the problem with their experiences in constructing a CBR system 
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for Air Traffic Control. The problem is that it is difficult to determine the important features 

and adjust their relative importance. The situation is further complicated by the fact that 

the features are highly context-sensitive. The predictiveness of a feature depends heavily 

on the current context. They use so-called 'pulling' and 'pushing' operations to  adjust the 

feature weights. Given a target T and two cases A and B. If it is judged that A is a correct 

solution to T but B is not, the learning method will 'push' B away from T ,  and 'pull' A 

closer to T .  As to its weight updating policy, their introspective learning method uses a 

decaying learning process. The following two formulas show this. 

Fc increase: W;(t + 1) = W;(t) + A;- 
Kc 

Fc decrease: W;(t + 1) = W;(t) - Ai- 
Kc 

where Kc represents the number of times that a case has been correctly retrieved, Fc repre- 

sents the number of times that a case has been incorrectly retrieved, and A; determines the 

initial weight change. The ratio between Fc and Kc is used to reduce the influence of the 

weight update as the number of successful retrievals increases. Here, when to  trigger the 

adjustment of the weights using the above two formulas is a crucial point, and will definitely 

influence the adjustment delta, affecting the retrieval quality afterwards. The paper does 

not discuss this. In addition, the paper does not consider that the 'push' and 'pull' opera- 

tions are local to target T. Given another target S which is relevant t o  B, the adjustment 

of B, i.e. the 'push' or 'pull' operation, might make it closer to T ,  which is contradictory to  

the first action that pushes B away from T. The paper reports good result based on their 

empirical tests. It is claimed that the failure-oriented rather than the success-oriented learn- 

ing contributes most to this result. They have also state that their learning method does 

not work well for pivotal cases(A pivotal case is one that provides coverage not provided 

by other cases in a case base[48]) as the redundancy in a case base is essential in such a 

learning process. 

2.2.5 Other Learning Methods 

If we consider the weight update policies[l] as the punishments or rewards, then we can 

regard the introspective learning as a kind of reinforcement learning[41]. In CBR litera- 

ture, there are also some research work in the integration of reinforcement learning with 

CBR. The advantage of reinforcement learning[l5] is that it requires only knowledge of its 
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present state and infrequent real values of reward to learn the actions necessary to bring 

the system into some desired goal state. Another advantage is that it learns even when the 

information available is very limited. Ricci et a1.[40] introduce a new approach to compute 

nearest neighbor based on a local metric called AASM(asymmetric anistropic similarity 

metric), which is based on two assumptions. The first one(anisotropic) states that the case 

metric is defined locally: the space around a case in memory is measured using the metric 

attached to that case. The second one(asymmetric) states that the distance between two 

points in a continuous feature space F; is not symmetric. In order to implement the second 

assumption, two different sets of weight are used for each feature. The model introduced 

in the paper employs a reinforcement learning procedure for adapting the local weights t o  

the input space. It implements an anytime nearest k-NN algorithm, in which, given an 

input case c, if the nearest neighbor nn correctly classifies c, the distance between them 

will be decreased(rewards), while if the nn incorrectly classifies c, the distance will be in- 

creased(punishments). The paper presents a procedure that,  starting from a case base C, 

and a set of weight w, iteratively changes the weights in w with the goal to  improve the 

accuracy of the retrieval computed with respect to a given goal function G. In the paper, a 

learning step is defined as a mapping. 

One possible interpretation of this mapping is that Weights + Cases = NewWeights. 

The learning procedure in that method is an algorithm that iteratively chooses a case and 

calls the learning step on it until an exit condition is satisfied. The paper shows the detailed 

formulas for the learning step. However, the biggest arguable point is that it never proves 

that those formulas will be convergent, which is required to  satisfy the final exit condition. 

The paper claims that one advantage of the method is that AASM can be run as a black 

box without setting problem-specific parameters. Another advantage is that AASM can be 

assigned a fixed amount of memory and a fixed time to  reply to a query. The system will 

perform better and better as the amount of memory and the time to  reply increase. The 

paper also claims that a drawback of the model is that for each case it is needed to  save two 

additional sets of weight for the input space. The experimental results are shown on the 

basis of the model to  support their claims. It is pointed that the improvement in run-time 

performance and the reduction of the number of cases needed to obtain the same accuracy 

of nearest neighbor compensate that drawback. 
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In [22], Howe et al. claim the same as in [24] that some case bases use a set of weight 

globally which remains constant throughout the whole testing, while others contain features 

that vary in weights across the case space. In the latter situation, local weighting methods, 

in which feature weights can vary from case to  case or feature value to feature value, can be 

applied in such domains. The locality of particular weighting algorithms can be visualized on 

a spectrum, from global methods that compute a single weight set for all cases, to extremely 

local methods that compute a different weight set for each case. The paper focuses on 

the intermedium of such spectrum. It presents a coarsely local feature weighting method, 

which allow weights to  vary at the class level. This method is called class distribution 

weighting(CDW). The intuition behind this method is that although classes are certainly 

not always homogeneous, it is reasonable that for many domains the dominating features 

of a class are the same for most or all the member cases belonging to it. Instead of a 

single global set of weights, CDW computes a different weight set for each class in the 

set of training cases. The mathematical foundation for the computation is the statistical 

properties of the subset of a class in the training data set. The weights for a particular 

class on a given feature are based on the comparison between the distribution of the feature 

values for the cases in that class and the distribution of these values for cases in all classes. 

If the distributions are highly similar, the feature is considered useless for distinguishing 

that class from others, and thus it is assigned a lower weight. If the distributions are highly 

dissimilar, the feature is considered useful and will be assigned a higher weight. 

The paper examines three variants of CDW. The first one is Global Mean CDW, in which 

the feature weights will be averaged across all classes to produce a single global weight set. 

It can be easily seen that this variant works well in domains where the relevant features are 

the same for all classes. The second one allows the weights to vary locally according to the 

feature values of the test case. Specifically, the feature set is expanded so that each case 

is described by a set of binary features corresponding to all the feature-value combinations 

in the original training set. Since the expanded data set uses a separate feature for each 

of original feature-value pair in the training cases, applying CDW to it will generate the 

weights that vary for individual feature-value pairs. This variant is called EF-CDW, which 

is identical to  CDW for domains whose features all have binary values. EF-CDW has a 

finer locality than the standard CDW since it varies among individual feature-value pairs. 

The combination of GM-CDW and EF-CDW is Global Mean Expanded Feature CDW. The 

features will be transformed to  expanded-feature format, the standard CDW algorithm will 
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then be applied to it, and the expanded-feature weights on the classes are averaged to get a 

global weight for each expanded feature. The paper claims that it should perform especially 

well on tasks where only certain feature-value pairs are relevant, but do not vary from class to  

class. The paper selects eleven tasks in order to experiment their claims. ~t is shown that a t  

least one of the CDW variants significantly improves the performance for nine of the eleven 

tasks. Because there is no single technique appropriate for all the tasks, it is concluded that 

different tasks require different degree of locality in feature weighting. ~ ~ ~ i c a U ~  the variants 

of CDW is based on the static situation of classification tasks. The foundation it is based on 

is the statistical information, which does not take into consideration the dynamic context 

as indicated in [24] and this chapter. It gives us some hint that the information 

behind the distribution of the feature-value pairs across a case base does hide some useful 

knowledge which can be used to help us in the weight assignment. 

For some other research results on the introspective learning reinforcement 

learning methods, feature weighting methods, and the improvements on the efficiency and 

accuracy of the case retrieval algorithms in CBR, see [15, 14, 11, 31, 19, 81. 

2.3 My Method 

Case-base maintenance is a key task in CBR. HOW to assign the weight and 

how to maintain an updated set of feature weights in response to the in a dynamic 

environment are the tasks of the case-base maintenance problem(see discussions in Chapter 

1). 
As discussed above, there are some useful static information hidden in a case base when 

it has been constructed. The distribution of the feature-value pairs within a Case base is not 

uniform, reflecting different views on different pairs from the domain experts- IVhat can 

we do with this pool of information? My method will employ statistical method to analyze 

the static distribution of the feature-value pairs within a case base, with t h e  hope that the 

irregular distribution of the feature-value pairs would provide us some hint a s  how to assign 

weights to  them. 

The feature weights in a case base are not static from their nature, s i~ lce  they need to  

reflect the changing outside environment. Hence, only using the static adjusting method 

can not maintain a set of suitable and updated weights over time. In this  thesis we will 

examine how to integrate CBR with another machine learning method in order  to facilitate 
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its use in a changing context. Undoubtedly, a dynamic CBR system, which changes over 

time according to  the changes in its environment, will not only further strengthen its original 

power as a reasoning and learning agent, but also definitely enhance its popularity in the 

real world applications. 

2.4 Outline of Thesis 

In this thesis, we will present the theoretical and experimental frameworks for a static weight 

adjusting method and a dynamic weight learning method. The underlying algorithms for 

these two feature-weighting methods will be discussed, and the relevant empirical test results 

will be demonstrated. 

In Chapter 3, we will discuss the static weight adjusting method which explores the 

statistical information inherent in a case base to adjust the feature weights statically and 

globally. The mathematical foundation for such an adjusting method will be presented and 

justified. 

In Chapter 4, a novel dynamic weight learning method will be integrated into CBR for 

feature weighting as a further improvement over the static adjusting method. We will discuss 

the practical motivations as well as the theoretical foundations for such an integration. 

Chapter 5 will be focused on the system design and implementation of the two methods 

as presented in the previous chapters. 

Empirical test results will be presented in Chapter 6 in order to  evaluate the performance 

of the two feature-weights methods. Various practical considerations will be discussed in 

the light of accuracy and efficiency. 

Finally, in Chapter 7, we will conclude the thesis with a summary of our work. We will 

also show and discuss some further work along the same direction. 



Chapter 3 

Static Weight Adjusting Method 

3.1 Introduction 

The domain experts construct a case base using their previous problem-solving experiences. 

In the process of the construction, they will extract and derive various surface and abstract 

characteristics[24] from the case base, which are often represented as feature-value pairs. 

They will assign a set of such feature-value pairs to the individual cases. In addition, they 

will also attach a feature weight to each of these pairs, expressing how important they think 

a pair will be when it participates in the computation of k-NN algorithm. The weight of 

each feature-value pair for a particular case is heavily dependent on the experts' previous 

experiences. It encodes the domain-specific knowledge. The feature-value pairs and their 

weights form a context in which a case will be retrieved. 

An example using Table 2.1 on the influence of weights on the case retrieval result is 

shown in Section 2.1.4. In that example, the weight assigned to the feature monthly income 

is the same across all the possible values of that feature. The same applies to  the feature 

monthly repayment. Here, we will use the weights which are constant at a more granular 

level - feature-value pairs. Each feature-value pair will be assigned a weight, and the weight 

will be the same for all its associated cases. But different feature-value pairs may have 

different weights, even if they share the same feature. For instance, not only the weight 

for feature-value pair (repayment,2units) may be not the same as that for feature-value 

pair (monthlyincome, 50units), but also the weight for (monthlyincome, 50units) may be 

different from the  weight for (monthlyincome,40units). Therefore the weight is local to  

each feature-value pair. Obviously such a more granular weight assignment may produce 
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different case retrieval result from the weight assignment at the level of features. 

In practice, for two cases C1 and C2, it is not necessary that the set of feature-value pairs 

associated with C1 be exactly the same as that associated with C2 - not only the number of 

the features are not necessarily the same, but the feature-value pairs for each case are not, 

either. Maybe a feature-value pair is associated with C1 but not associated with Cp. This 

will provide a great flexibility since it does not impose the requirement that all the cases 

in a case base use a single standard set of features. This can be explained convincingly in 

some real situations. For instance, in the domain of computer sales, a new computer model 

has a new feature which is unique among all the other features. Undoubtedly, there is no 

need to  assign this feature to all the other computer models. On the other hand, if a new 

problem, which requires to find some specific computer model, has a requirement that is 

corresponding to that unique feature, definitely that computer model should be retrieved 

with a relatively high rank. This is reasonable as currently only that model has that unique 

feature; clearly it will be the most potential candidate for further consideration. Although 

matching other features of that computer model may not produce a higher ranking score for 

it,  matching this unique feature ought to make it rank higher than other models, or change 

its rank dramatically as compared to  other models. 

This is a useful phenomenon. In constructing a case base, if a feature-value pair is just 

assigned to  one case, then we hope that it would have more importance when it participates 

in the similarity computation. We expand this small hint into a larger scenario. What will 

be if a feature-value pair is associated with two cases, or with three cases, and finally with 

all the cases in a case base. In that extreme situation, we do think this feature-value pair 

is less useful since matching it will contribute to the ranking scores of all the cases, making 

it difficult for us to  distinguish which case is a potential candidate to be the goal we desire, 

while which is not. 

Now we reach the very intuition on which our static feature-weighting method is based. 

3.2 Formal Description of Static Adjusting Model 

The intuition we have drawn is that the more cases a feature-value pair is associated with, 

the lower weight it is assigned, and conversely, the fewer cases, the higher weight. 

After a case base has been constructed, there is some information hidden in the as- 

sociations between the cases and the feature-value pairs. Such associations describe the 
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Many Cases Associated 

A Bad Feature-Value Pair 

Few Cases Associated 
Two Good Feature-Value Pairs 

Feature-Value Pair k 

Figure 3.1: When is A Feature-Value Pair Good or Bad? 

distribution of feature-value pairs within the case base. We will attempt to  measure the 

usefulness of each feature-value pair by measuring its distribution across the whole case 

base. The weight for a given feature-value pair will be determined from the number of cases 

it is associated with versus the total number of cases in the case base. 

We use Figure 3.1 to show the distribution of individual feature-value pairs within a case 

base. Feature-value Pair i is associated with almost all the cases, such as C1, C2, C3, C5, . -  a,  

C,-l, and C,. We say it is less useful because it conveys little information about the cases 

we need. If it matches one of the feature-value pairs of a new problem, then all these cases 

will be changed with no one more distinguishable than others. On the contrary, Feature- 

Value Pair j is associated with only three cases C1, C3, and Cq. Matching it means that the 

number of candidate cases will be narrowed down greatly, making only a few distinguishable. 

Therefore, we consider it useful. The same argument applies to Feature-Value Pair k. As 

indicated in the figure, we call Feature-Value Pair i ,  which is associated with almost all the 

cases, a bad feature-value pair, while we call Feature- Value Pair j and Feature- Value Pair k 

good feature-value pairs, since they provide more information we want. 

Let C represent a case base, in which there is a total of Tc cases. In C ,  each case is 

represented as C1, C2, C3, - - -, CTc. For this case base, there is a total of N features. For 
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each feature F;, there are mi values, where i = 1,2 , .  a ,  N. 

We use V ,  to  represent the j t h  value of feature F;, where i = 1 ,2 , .  . . , N and j = 

1,2, . -  0 ,  m;. The total number of feature-value pairs 

For each feature Fi and its j t h  value, define 

where 

in this case base is 

(3.1) 

1 if Vj is attached to Ck 
Si,j,k = 

0 otherwise 

Thus Di,j represents the statistical distribution information of individual feature-value 

pairs in this case base. Obviously, 0 5 D; ,j 5 Tc holds. We also can see that we treat each 

V,,j equally, independent of the feature it is associated with. In fact, V,,j belongs to the 

expanded-feature set discussed in Chapter 2. If a case base contains N features defined by 

F = {Fl, Fz, .  . . , FN), and each feature Fi has a value set VE = {V,J, V , J ,  - - ., Vi,mi), then 

the expanded-feature set is Fe = VFl U Vfi U . U VFN. 
We call Formulas 3.2 and 3.3 the information-collecting step, in which the statistical 

distribution information will be collected from a case base. 

To find the raw weight for each V,,j, we compare the number of its associated cases with 

the number of all the cases in a case base: 

where Wilj represents the weight of feature-value pair Vi,j. 

We call Formula 3.4 the weight-adjusting step. In this step, we assign the statistical 

information that each feature-value pair provides back to its weight. 

If V,,j is not associated with any case, we will leave it alone, and do not compute its 

weight. 

All these work can be done after a case base has been constructed and before its practical 

use to solve new problems. All the information it needs to do such an adjustment is static, 

which is hidden in the associations between the cases and the feature-value pairs in a case 

base. This is why we call it static adjusting method. 
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FV3 FV4 FV5 FVh FV7 FV8 FVY FVI 

Feature-Value Pairs 

Figure 3.2: Distribution of Feature-Value Pairs 

In this adjustment, we do not take into account the dynamic context in which a case 

will be retrieved. Neither do we consider the interactions between the individual features. 

In addition, once adjusted, the weight for each feature-value pair will be the same for all 

the cases it is associated with. Therefore, such a set of weights is global. As indicated in 

[24, 221 (also discussed in Chapter 2),  the global weights work well for the domains in which 

the importance of each feature-vale pair is constant across the whole case base. They have 

little sensitivity to  the problem context. 

3.3 Algorithm for Static Adjusting Met hod 

3.3.1 An Example 

As an example, we create an artificial case base with 45 cases. We graph the feature-value 

pairs along with the number of their associated cases. For simplicity, we do not use V,,j to 

represent a feature-value pair. We just use FV; to represent it since, as mentioned above, 

each feature-value pair is a member in the expanded-feature set F e ,  and we can use just one 

subscript to represent it. Also for simplicity, we do not show all the feature-value pairs. We 

just show the first ten. 

In Figure 3.2, the X-axis represents the feature-value pairs discretely, while the Y-axis 



CHAPTER 3. STATIC WEIGHT ADJUSTING METHOD 

Figure 3.3: Weights of Feature-Value Pairs 

represents the number of cases each feature-value pair is associated with. From the figure, 

it can be seen that FV4  is associated with just 4 out of 45 cases, while FVlo is associated 

with all the cases. They occupy the two extremes. Other feature-value pairs take the places 

in between them. For instance, FV5  is associated with 14 cases, and F V 7  is associated with 

41 cases. 

Our desired picture after we apply the static adjusting algorithm to this artificial case 

base is plotted in Figure 3.3. The X-axis and Y-axis represent the same as those in Figure 

3.2, but the order of the feature-value pairs is re-arranged from the lowest to the highest in 

the number of their associated cases along the X-axis. Therefore FV4  stands at the first 

position, the next is FVs, and so on, until the last one FVlo. The Z-axis represents the 

weight adjusted for each of these feature-value pairs. The range of the weight is from 0 

to 1.0. From the figure, we can see that because FV4  is just associated with 4 cases, it 

is adjusted to have the highest weight of 0.95, while FVlo, the highest in the number of 

associated cases, has the lowest weight of only about 0.1. 

3.3.2 Implemental Considerations 

From Figures 3.2 and 3.3, we also notice that if we use Formula 3.4 to  compute the weight 

for FVlo, it will be 0. However, in Figure 3.3, its weight is about 0.1. Although very low, 

it is not 0. The rationale behind this is that although this feature-value pair is considered 
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to  be less useful, it still contributes a little information to the final ranking of the cases. It 

is better than nothing. 

Therefore we reconsider the weight computation method represented in Formula 3.4 from 

an implementation angle. Using a more generic expression, Formula 3.4 can be rewritten as 

follows. 

This formula states a property about the relationship between the weight of a feature- 

value pair and the number of the cases it is associated with. It is that the weight of a 

feature-value pair is the inverse of the result of the number of its associated cases versus 

the total number of cases in a case base. The realization of Formula 3.4 will depend on 

the concrete implementation and different applications as long as it observes the property 

stated as above. 

Another consideration is that the size of a case base plays an important role in the weight 

computation. Obviously, in a case base of 100 cases, if a feature-value pair is associated 

with 10% of all the cases, then we can think this feature-value pair is relatively good since 

matching it only changes ten cases' ranks dramatically. However, if a case base has 1000 

cases, then we would not like to think that 10% of all the cases is so good since matching it 

will be changing the scores of 100 cases, which still does not convey too much information 

about which case is more useful. If we use Formula 3.4 to compute the weights for these 

two situations, both weights will be 0.9. Obviously, we do not want this result in the case 

base that has 1000 cases. From this, we can see that for the case bases with different sizes, 

there are different standards to judge whether a feature-value pair is good or not. 

In our implementation, we define six types of case bases according to their sizes. They 

are micro case base, small case base, medium case base, large case base, huge case base, and 

very huge case base with 21-100 cases, 101-200 cases, 201-500 cases, 501-1000 cases, 1001- 

2000 cases and 2001 or more cases, respectively. We also consider an extreme situation of 

the size of a case base. If the number of cases in a case base is below 21, then we think it is 

too small to have any statistical information inside with regard to the associations between 

the cases and the feature-value pairs. In this situation, we do nothing to the weights of the 

feature-value pairs. 

In order to  use different standards to  judge the goodness of the feature-value pairs for 

different case-base sizes, we define five groups for each case-base type. They are very good, 

good, average, bad, and very bad. We preset both the minimum and maximum percentage 
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M.W. for the Very Good Group 

M.W. for the Good Group 
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Figure 3.4: Mapping from Feature-Value Pairs to Groups 

ranges of cases for each group. For instance, in a micro case base of 80 cases, a feature-value 

pair associated with 11%-20% of all the cases is in the good group. However, in a medium 

case base of 400 cases, a feature-value pair associated with 11%-20% of all the cases might 

belong to the average group. Thus, all the standards to judge whether a feature-value pair 

is very good, good, average, bad, or very bad in a case base will be relative to  the size of 

the case base. 

In addition, we also preset five minimum weights for the five groups in each case-base 

type. Any feature-value pair falling into a particular group should have at least the min- 

imum weight for that group. This will map the weights of all the feature-value pairs into 

five distinct value sets, which will distinguish the feature-value belonging to different 

groups. 

All these parameters are preset in the system, and the domain experts can, based on 

their options, change them. 

3.3.3 General Algorithm 

The static weight adjusting algorithm can be considered as a mapping shown in Figure 3.4. 

For a feature-value pair, the weight adjustment algorithm will map it into one of the five 

groups according to the number of cases it is associated with, and then assigns it a weight 

which is equal or more than the minimum weight corresponding to that group. 
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The static adjustment algorithm is described as follows: 

1. According to the number of cases Tc, decide the minimum and maximum percentage 

ranges of cases for each group; convert these percentage ranges into the actual number 

of cases 

2. For each feature-value pair 

Collect i n  D;,j the number of cases it is associated with, where i and j represent 

the j th value of i th feature; 

According to D; j, decide to which group this feature-value pair belongs; 

Store in  M I N n u m  the minimum range of the group represented by the number 

of cases; 

Store i n  M A X n u m  the maximum range of the group represented by the num- 

ber of cases; 

Store in  Wm the minimum weight of the group; 

Store in  Wtm the minimum weight of the next higher group (For instance, 

if the current group is average, then the next higher group is good. If the 

current group is very good, then store 1.0 to W t m ) ;  

Assign the weight to this feature-value pair using the following formula. 

Formula 3.6 shows the desire that we want to give the domain experts a chance to  show their 

own views on how to  judge a feature-value pair in different case-base types. The domain 

experts may have different views when they assign feature weights. Thus they would like 

to  use different standards to judge whether a feature-value pair is good or not. Also they 

may want to distinguish the feature-value pairs, which are judged good, from other pairs 

to a great extent. In Formula 3.6, the weight of a feature-value pair depends not only on 

the group it belongs, but also on the minimum weight specified for that group. We hope 

that once adjusted, the weights of the feature-value pairs in a case base would distribute 

into different value sets. Although the difference among the feature-value pairs belonging 

to  the same group is not so apparent, the pairs belonging to different categories will have 

weights quite different from each other. This is helpful when searching similar cases, since 
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matching a good feature-value pair is quite different from unmatching it, or quite different 

from matching the pairs which are not judged good. 

We will show the test results of this algorithm in Chapter 6. We will see that Formula 

3.6 works well for our testing data. However, we do not rule out other alternatives for this 

adjustment computation. We think that the concrete implementation considerations and 

empirical experiments are essential in choosing such an alternative. 

3.3.4 Computational Analysis of Algorithm 

It can be seen that for each feature-value pair in a case base, we need to check each case to 

see whether it is associated with the feature-value pair. If we use N to represent the number 

of cases in a case base, and M to represent the total number of feature-value pairs, then 

we need at most O(N * M )  to statically adjust the weights for all the pairs. However, in 

practice the cases and the feature-value pairs in a case base are always not fully connected. 

The total time for this algorithm is, in fact, less than O(N * M).  In Chapter 6, we will show 

this situation. 

3.4 Summary 

Compared to the methods of Howe et a1.[22](also discussed in Chapter 2)) we can find that 

if the feature-value pairs in our algorithm are applied to  the classes of cases, rather than the 

individual cases, then our algorithm is much like the third variant of CDW-Global Mean 

Expanded Feature CDW. Both methods are based on the statistical information from a case 

base. Their statistical information is about the classes of cases while ours is concerned with 

the individual cases. Besides that, we employ a different formula to compute the weight 

adjustment. 

The static weight adjusting method is based on the statistical information hidden in a 

case base. Such an adjustment may not accurately reflect a user's real intention. Sometimes 

a user wants to  adjust the weights of some particular feature-value pairs with more attention 

but put less importance on others. The static adjusting method is unable t o  fulfill this 

goal. It will just follow some pre-defined rules, say a formula, a threshold, or some other 

standards, to make its decisions for the adjustment without any discrimination on whose 

weight actually needs to be adjusted and whose in fact does not. In the dynamic learning 

method to  be presented next we will try to overcome this flaw. 



Chapter 4 

Dynamic Weight Learning Method 

4.1 Introduction 

In Chapter 3, a static weight adjusting method is introduced into CBR. We call it static 

adjustment because the process involved in the adjustment totally depends on the statistical 

distribution of the feature-value pairs along a case base. We also observe that after the 

adjustment, the weight of each feature-value pair will be the same for the whole case base. 

Hence, this adjustment is global which is appropriate when the importance of each feature- 

value pair is constant across a case base. 

We can easily find that the static weight adjustment is far behind what we conceive with 

regard to the dynamic nature of feature weights discussed in Chapter 2. Sometimes we need 

to  attach different weights locally to each feature-value pair for individual cases in order to  

reflect a user's real intention more accurately and serve different purposes for different users. 

Why does a user choose this case rather than the others? It is because, after inputting a 

new problem description and specifying the feature-value pairs, s/he thinks this is the right 

case desired. On the other hand, this means the current feature-value pairs contribute 

much to  the ranking score of this case. Although s/he does not express this explicitly, s/he 

desires to assign these feature-value pairs higher weights because next time when the same 

problem occurs again, the corresponding case will be scored higher and identified quickly. 

The weights for these feature-value pairs need to  be strengthened. In contrast t o  this, a 

user may be unhappy with the current cases that have higher scores. 'Why does this case 

get such a high score? It is actually not the case I want', a user may ask this. The user's 

real intention a t  this time is that this case is not so helpful based on the current problem 
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description and the feature-value pairs. The user does not want to see it when the same 

problem is encountered again the next time. This means that the weights of the current 

feature-value pairs should not contribute so much to  this case; they should be weakened. 

This is the real intention from a user. Undoubtedly, a system capable of learning a user's 

behavior needs t o  capture and reflect this intention in its own behavior accordingly. We 

also observe that  different users may have different views on a particular characteristics of 

a case; thus they may want to  assign different weights to  i t ,  showing their own personal 

interests. Furthermore, a user's behavior is changing over time, making it reasonable for us 

to  think about the feature weights as time-related. 

Given the facts as above, there is a strong need to  introduce a learning component into 

a CBR system. In our imagination, this component is very similar to  that introduced in 

[29], and should have the following functionality. First of all, it will act as an interface 

between a user and the core of a CBR system. Any action a user takes will be captured 

by the system. Second, the actions thus captured will be fed back into the system, and 

based on the learning model employed, the difference between the system's actual behavior 

and a user's desired behavior(which can be specified by the user implicitly or explicitly) 

will be computed, and the result will be incorporated back into the system(i.e. the weights 

for indexing the cases). Third, the learning component will accommodate different sets of 

weights, representing the fact that different users can have their own set of weights in order 

to show their individual interests when they use a case base. 

We will attempt to  explore the idea of introducing a backpropagation neural network into 

a CBR system. As pointed out by Aamodt et al. in [3], i n  knowledge-intensive approaches 

to CBR, learning may also take place within the general conceptual knowledge, for example 

by other machine learning methods or through interactions with the user. In our attempt, 

we combine a neural network and CBR into an integrated entity. While the reasoning part 

is still case based, the feature-value indexing part is now shouldered by a backpropagation 

neural network. A user's feedback or intention will be captured, memorized and incorporated 

into the weights of the feature-value pairs in a case base. We do such an integration with 

the hope that the case retrieval quality would be improved and refined gradually in order to  

approximate a user's behavior, while the whole integrated framework would be active over 

time to keep the same pace with its user's latest interests. 
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Scenario f ( I i ,  L) Meaning 
1. L + Ir' L before K 
2. Ii' + L Ii before L 
3. L + Ii Ii' supports L 
4. K + L L supports K 
5. K L Ir' and L support each other 

Table 4.1: Scenarios for Knowledge-Base Systems(K) and Learning Systems(L) 

4.2 Machine Learning in Knowledge-Based Systems 

Aha[5] indicates that a hybrid system involving large knowledge base may profitably in- 

tegrate an expert system and a learning system, provided that the learning system can 

manipulate the knowledge base appropriately. This integration is based on the argument 

from Simon[46] that learning can be more efficient than programming for large knowledge- 

based systems. 

As shown in Table 4.1[5] the combinations of positions of K and L form different sce- 

narios, where K represents a knowledge-based system, and L represents a learning system. 

The simple and basic functionality of such a hybrid system can be expressed as follows. 

RawData i f ( K ,  L) -+ Output 

where function f (K, L) is a black box representing one of the scenarios as above. 

In Table 4.1, scenarios 1 and 2 represent a serial processing diagram in which the result 

from one system feeds directly into the other. The examples for such kinds of hybrid systems 

are in [30, 471. Scenarios 3 and 4 represent a master-slave relationship, in which one system 

supports the other. For example in scenario 3, the learning system will consult with the 

domain knowledge before producing output. One such hybrid system is CN2[35]. Similarly, 

the knowledge-based system in scenario 4 is supported by a learning system before producing 

output. One example for such a combination is described in [4]. Scenario 5 represents 

another hybrid diagram in which a knowledge-based system and a learning system support 

mutually and cooperatively, taking advantage of each other while overcoming their own 

drawbacks. In [34], the expert system modifies the parameters used by the learning system, 

which in turn uses a set of domain-dependent rules for making predictions. 
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Within these five scenarios, we are particularly interested in scenario 4. In our inte- 

grated framework the knowledge system will be CBR while the learning system will be a 

backpropagation neural network. 

In CBR itself the reasoning and learning processes are combined together. The learning 

process takes place through the addition of new cases and the refinement of feature weights. 

In order to  observe the scenarios designated as above to show a clear picture, we move the 

refinement of feature weights out as a separate learning component. The component for the 

addition of new cases will still be kept in CBR. 

When they construct a case base using their domain knowledge and previous experiences, 

the domain experts will assign weights to  the feature-value pairs of all the cases, which 

represent the desired context in which each individual case will be retrieved and reused. 

However, such prior specifications may not be always accurate and updated. Thus, after 

the initial construction and during the practical use, we employ a backpropagation neural 

network to  learn and refine these weights dynamically, which will produce the optimal case 

retrieval result a user desires. This combination can be represented by scenario 4 in Table 

4.1. In our integration, such a hybrid system which can learn to adjust the weights of feature- 

value pairs for a particular case or solution based on the success or failure of using that case 

or solution to  solve a user's problem. For those matching feature-value pairs that have been 

judged to result in a successful case or solution, their weights need be strengthened, while 

for those causing a failure, their weights will be weakened. 

4.3 Neural Networks 

4.3.1 Components in A Neural Network 

A neural network is motivated by the model of biological brains[54, 281. It is one of the 

connectionist approaches which rely on a large number of simple computational units. This 

approach undermines the distinction between the data and the process inherent in the 

traditional computing practice. The units of computation, much like biological neurons, 

function independently. As a machine learning method, a neural network is different from 

others in that it represents knowledge implicitly in the patterns of interactions between 

components rather than expressing knowledge explicitly and manipulating it through an 

inference engine. 

The basis of a neural network is an artificial neuron, which is shown in Figure 4.1. 
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0 Output = F:WxX->O 
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X = [XI, X2, X3, ..... Xn] 

0 is the set of possible outputs 

X1 
x2 X3 

Figure 4.1: An Artificial Neuron 

Basically an artificial neuron consists of the following[28]: 

r Input values, Xi. These input values may come from the environment or the activation 

of other neurons. Each of them may be of a discrete value from set {-1,l) or (0, I ) ,  

or a real-valued number; 

r A set of real-valued weights, W;; 

r A set of activation values. The neuron computes its activation value from its weights 

and inputs. This value may become the input to  other neurons or affect the result of 

the system as a whole; 

r A n  activation function, F ,  that computes a neuron's activation value as a function of 

its weights and input data. 

In addition to  those properties for individual neurons, there are also some global char- 

acteristics for a neural network, such as 

The network topology of the connections between the individual neurons; 

r The learning algorithm used in its learning process; 

r The environment which includes the interpretation imposed on the input data to the 

network and the processing output result. 



C H A P T E R  4. DYNAMIC WEIGHT LEARNING METHOD 

Neurons 

Output Layer 

A Set of Connections and 
Corresponding Weights 

Hidden Layer 

A Set of Connections and 
Corresponding Weights 

I1 I2 I3 In-1 In Input Layer 

Figure 4.2: A Possible Architecture of Neural Network 

Take a look at Figure 4.2 for one kind of a neural network's topology. 

4.3.2 Delta Rule 

There are many possible learning rules in a neural network, such as Hebbian learning rule, 

delta learning rule, Widrow-Hoff learning rule, and etc.. For further detailed information, 

see [54]. Of these learning rules, we are most interested in delta learning rule. 

Given an activation function F(which will be given a realization in this chapter) as 

shown in Figure 4.1, we may define the amount of error as the difference between the actual 

output and desired output. The delta rule adjusts the weights as a function of this error. 

For neuron i ,  let 0; be the actual output and D; be the desired output. As shown in 

Figure 4.1, W; represents the weight from input Xi to this neuron. Let F' represent the 

derivative of F. The following formula is used to compute the learning delta value which 

will be used in the weight adjustment of W;. 

n 

si = ( D ~  - O ; ) F / ( ~  wi * xi) (4.1) 
i=l 

From the mathematical perspective, the delta rule is often referred to gradient descent 

learning[28]. 

The delta rule is valid for continuous activation functions and can be used in the 

supervised-learning process(A learning process in which at each time step when the input is 
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Figure 4.3: A Backpropagation Neural Network 

applied, the desired response of the learning system is provided by the outside environment, 

and then compared with the actual response[54]). It is central to  the functioning of the 

backpropagation learning in a multilayer network. 

4.3.3 Backpropagation Neural Networks 

A backpropagation neural network is one kind of neural networks. It works in the supervised- 

learning mode. Its learning rule is the generalized delta rule(which we will show later). The 

algorithm in this learning process is called an error backpropagation training algorithm. 

Figure 4.2 is a typical structure which can be used to  construct a backpropagation neural 

network. The backpropagation training algorithm gains its input/output mapping knowl- 

edge within a network by experiential accumulations. Input will be fed into the network 

sequentially during the backpropagation training. If an input is submitted and its output 

is determined to be erroneous, the connection weights will be adjusted so that the current 

overall error is reduced. The input/output mapping, the comparison between the actual and 

desired outputs, and the adjustment if necessary, will continue until all the data samples 

from the training set are learned within an acceptable error range. 

The above learning process is also shown in Figure 4.3. The neurons in a backpropagation 

neural network are connected in layers, with the neurons at layer k passing their activations 
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only to layer k + 1. In solving a problem, output is computed first at the input layer, 

through a hidden layer(or possible several hidden layers), and finally to the output layer or 

the outside environment. Given the desired output, the network calculates the error in the 

output neurons at the output layer. The error for a neuron at the hidden layer is a function 

of the errors on all the neurons that use its output. In general, the error for a neuron at 

layer k is a function of the errors of all the neurons at layer k + 1 that use its output. 

In a backpropagation neural network, activations move forward through the network in 

a layer-by-layer fashion while the error propagations transfer backward in a similar fashion. 

4.3.4 Mathematical Description 

In a backpropagation neural network, usually the activation function is 

whose value range is (-1, l ) ,  or 

whose value range is (0 , l ) .  In both formulas, X > 0. It is called the activation rate which 

decides how fast the curve of the function will change with the change of x. 

The computation of output begins from the input layer. As shown in Figure 4.3, the 

input to the network is represented as z; for i = 1,2 ,3 , .  . . , I. 
The output of the hidden layer is yj(j = 1,2,3,  . a ,  J), defined as follows. 

where Vj,; is the weight attached to the connection between neuron j at the hidden layer 

and neuron i at the input layer. 

The output of a neuron at the output layer is ok(k = 1,2,3, .  . - , I<) ,  which can be 

computed using the following formula. 

where Wk,j is the weight attached to the connection between neuron k at the output layer 

and neuron j at the hidden layer. 
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Now compute the overall error: 

where d k  is the desired output designated by the outside environment. 

The computation of errors begins from the output layer. The delta rule discussed above 

is now generalized to  compute the necessary weight adjustment for each layer in a back- 

propagation neural network. For the output layer, the learning delta value for neuron k will 

be computed as follows. 
1 

So,k = -(dk - ~ k ) ~ ( l  - 0;) 
2 (4.7) 

wherek= l , 2 ,3 , . .  . , K .  

The delta value for neuron j  at the hidden layer will be computed using the following 

formula. -. 

where j = 1,2,3, .  . . , J .  

Then the weights attached to the connections between the output layer and the hidden 

layer will be adjusted using the above learning delta value(Formu1a 4.7). 

where k =  1 , 2 , 3 , . . . , K , a n d  j =  1 , 2 , 3 , . . - , J .  

Finally the weights attached to the connections between the hidden layer and the input 

layer will be adjusted using the above learning delta value(Formu1a 4.8). 

where j = 1 ,2 ,3 , . . . ,  J, and i = 1 , 2 , 3 , . - - , I .  

In Formulas 4.9 and 4.10, 17 is the learning rate which decides how fast the adjustment 

speed is. 

Repeat Formulas 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, and 4.10 for the each data sample in the 

training set. If this process finishes, check E < E to see if it holds, where E is a small 

positive number specified by the domain experts. If true, stop the train process. Otherwise, 

the whole training process will be restarted from the beginning using the same training data 

set. 

For details on the mathematical foundations, the generalized delta rule, and the appli- 

cations of backpropagation neural networks, see [54, 28, 41, 321. 
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4.3.5 Bayesian Neural Networks 

Bayesian neural networks parallel the backpropagation neural networks in that both employ 

the local, gradient-descent learning rule. They even have the same network structures. 

However, a Bayesian neural network is used to learn the representation of a probabilistic 

function, particularly a belief network[43]. Neal in [33] shows that a Bayeisan neural network 

can be used to  define the probabilistic models for regression and classification tasks. It uses 

the outputs from the network to define a conditional distribution for one or more targets, 

given the various possible input values. The result of Bayesian neural-network learning is 

a trade-off between the prior belief in a model against its degree of agreement with the 

observed data. 

From this observation a Bayesian neural network is quite different from a backpropa- 

gation neural network in their learning targets. In addition, although both have the same 

network structures, nodes in a Bayesian neural network represent the well-defined semantics 

and well-defined probabilistic relationships with each other. These properties seldom appear 

in a backpropagation neural network. 

In CBR, if we consider that a user's behavior is encoded in the weights assigned to 

the feature-value pairs of all the case in a case base, then we can find that this behavior is 

variable from user to user, and from time to time even for the same user. It is difficult to find 

a prior probabilistic model to  describe it. It is also difficult to predict how a user's behavior 

changes with time. Thus, with these facts in mind, we select the backpropagation neural 

network as the learning component in CBR to explore the possibility of the integration of a 

knowledge-based system and a learning system. 

4.4 Motivations for Integration 

The desire to use a backpropagation neural network as the learning component in CBR is 

also motivated by the study of a case base itself. In our experiences with different domains, 

our first observation is that in many domains some information in the content of a case can 

be shared concurrently by several cases. This piece of information, if copied to  anywhere 

a case uses it, will be redundant and possibly inconsistent, making the maintenance of a 

case base difficult[38]. Thus we hope to separate such a piece of information from each case, 

and use a pointer to  represent it anywhere it is needed. Of the pieces of information that 

compose a case(see Chapter I), we find that while problem description is relatively unique, 
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problem solution maybe shared by several cases. Another observation is that a problem 

may have several possible solutions, with each solution having different importance, based 

on the current problem description as well as the feature-value pairs matched. The same 

solution has, possibly, different ranking scores in different cases. These observations also 

can be supported by the example of route planner in [20]. There are always several routes 

connecting the start point and the end point. Another example is that a medicine advisor, 

when dealing with the same symptom, may suggest several prescriptions appropriate for it. 

In the original structure of a case base, there are basically two layers. We can regard 

that the cases are situated at the output layer of the structure while the feature-value pairs 

are a t  the input layer. The feature-value pairs are connected to  their associated cases, 

forming an index into the case base. The weights are attached to the connections between 

the feature-value pairs and the individual cases to decide which case will be retrieved and 

how it will be scored when a new problem is presented. Now in the light of the observations 

as above, we need to  reconsider this structure. 

We change the original two-layer structure of a case base into a three-layer structure. 

We extract the solutions from each case, and put them onto a third layer. This makes it 

possible to  share a solution by several cases, and meanwhile reduces the redundancy in the 

case base. In order to make these changes possible, a second set of weights is essential, which 

will be attached to  the connections between cases and their possible solutions. This second 

set of weights represents how important a solution is to a particular case if this solution is 

a potential candidate for this case. In addition, it distinguishes a solution within several 

cases if the solution belongs to  several cases at the same time. 

A case base, after the changes as above, will be three-layered with connections between 

two adjacent layers. The whole structure is graphed in Figure 4.4. In order to examine the 

locality of each feature-value pair attached to  individual cases, we still use the expanded- 

feature set discussed in Chapters 2 and 3. In the figure, the feature-value pair layer and the 

case layerare the same as before. But we call the case layer the problem layer(it is also shown 

in the figure) from now on in this chapter in order to emphasize that we have separated 

the solution part from the problem part in a case, and a case is now mainly represented by 

its problem description. The solutions in each case are separated out, forming a solution 

layer. The second set of weights is a new one, which will be specified in the construction 

of a case base by the domain experts. Just like the weights attached to the connections 

between the feature-value pairs and the problems, the second set of weights will also be 
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Figure 4.4: New Structure of A Case Base 

learned dynamically in the use of the system. 

Based on the discussions on the learning component(see Chapter 2), as well as the 

necessary changes we have made into our system as above, we can see that, on one hand, 

we need an underlying learning component which employs a certain learning mechanism 

in order to  fulfill our goal, and on the other hand, such a learning component needs to 

accommodate the changes we have made as above. 

It can be easily seen that the three-layer structure shown in Figure 4.4 is very similar 

to  that of a backpropagatoin neural network. Furthermore, the two sets of weights inspire 

us to adapt the learning mechanism in a back-propagation neural network, which is very 

mature in the A1 literature. However, as we also can see, although the structure in Figure 

4.4 has the similarity to that of a backpropagation neural network, it is actually not a neural 

network. In order to  adapt it into CBR, some modifications are essential. 

4.5 Learning Model and Mathematical Description 

4.5.1 User's Learning Model 

The learning process in our method is similar to that in a backpropagation neural network. 

However, our learning process is an interactive one, while in a backpropagation neural 

network the learning process is a batch and automatic one. 

In our learning model, there is no explicitly-defined training data. The training process 
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Trainer = User Trainee 

Figure 4.5: User's Learning Model 

Query + 

is incorporated into the use of the CBR system. A user's responses to the system's behavior 

form an implicit source of training data. Besides this, in contrast to a neural network, a 

trainer is not distinguished from a user in this model. 

Figure 4.5 shows this model. The model has two parts. One is the trainer or user. The 

other is the trainee or the CBR system with a neural-network learning component. The two 

parts will interact with each other with the trainee simulating the behavior of the trainer. 

A learning loop is as follows. The trainer initializes a query to the CBR system. According 

to  this query the system produces some retrieval result, and returns it back to the trainer. 

The trainer might make judgement on the retrieval result, and feedback this information to 

the system. Then the system will capture and learn this feedback information. 

In the following discussions, we make assumptions about our learning model. 

Retrieval Result 

Judgement on Result 

1. In our learning model, an end-user also plays the trainer's role. They can be the same 

person. Our model serves its user individually. The training process proceeds with 

her/his use of the system, and will never stop. 

A CBR System 
with Learning 

Component 

2. The inputs to  the system might not cover the whole input space in a domain. However, 

they will cover the inputs which will occur with higher possibilities. 

3. Our learning model is an interactive one. It needs an end-user to feedback information 

in order to change itself. 

In neural-network learning process, there will be a training stage and a testing stage. 

However, in our model, under the first assumption, there will be no testing stage. Only the 
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training stage exists in our learning model. The training stage will last forever with the 

retrieval results approximately converging to the optimal ones specified by the user. 

Under the second assumption, our system will learn the inputs which will appear with 

higher possibilities. The retrieval error for these frequently-used inputs will become smaller 

and smaller. Even though the retrieval error for the uncovered inputs might be large, as the 

possibilities under which these uncovered inputs occur are very low, therefore the overall 

error of the system will still be very low. 

Under the third assumption, our system needs the feedback information from a user as 

its learning source. The more information a user provides, the faster the learning will be. 

Only the information fed back from the user will make the learning process possible. 

4.5.2 Mathematical Description 

With regard to  the structure shown in Figure 4.4, we introduce some symbols in order to 

facilitate our description. 

In a case base, there is a total of N features. For each feature F;, there are mi values, 

where i = 1,2, .  . . , N. The case base contains J problems and K solutions. 

For the structure shown in Figure 4.4, there is a total of I = r Z l  rn; feature-value 

pairs, or nodes in the feature-value pair layer. We label these feature-value pairs as FV;, 

where i = 1,2,3, .  . .,I. In the problem layer, we use Pj to  represent each problem, where 

j = 1,2 ,3 , -  -, J. In the solution layer, we use Sk to  represent each solution, where k = 

1,2,3,  . .  ., K. 

The first set of weights Vj,; is attached to the connection between problem Pj and feature- 

value pair FV; if there is an association between them, and the second set of weights W k j  

is attached to the connection between solution Sk and problem Pi if Sk is a solution to Pj. 

Computation of A Problem's Score 

A problem's score is computed first based on the feature-value pairs which are selected by 

a user at the feature-value pair layer. 

The score will be computed using the following formula. 
n 

where j = 1,2,3,  - - . , J ,  Sp3 is the score of the problem Pj,  and Xi is 1, if there is connection 

between problem Pj and feature-value pair FV; and FV; is selected. Otherwise Xi is 0. 
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We can see that the computation of Sp, is exactly the one employed in a backpropagation 

neural network shown in Formula 4.4. However, in order to  adapt it into CBR system, 

we need to  add a parameter which will be discussed in the practical system design and 

implementation in Chapter 5. 

Formula 4.11 has the property that the higher c:=, Y y i X ;  is, the higher Sp, is. This 

property is also demonstrated in k-NN algorithm in the case retrieval process discussed in 

Chapter 2. 

When the problem scores are computed, they will be presented to  a user for her/his 

judgement. The user may select a problem for further consideration. S/he may confirm or 

disapprove it based on her/his preference. 

Computation of A Solution's Score 

We only compute the scores of the solutions associated with the current selected and con- 

firmed problem. The computation of a solution's score is corresponding to the computation 

of an output in a backpropagation neural network. However, they have some differences, 

requiring that we use the following formula to compute it. 

where Ss, is the score of solution Sk, and Sp3 is the score of problem Pj. If there is no connec- 

tion between solution Sk and problem Pi, then we do not include it in c:=~ ( W k ,  * Sp, * a )  

We can easily see that except for the parameter a ,  all the remaining are the same as 

those in Formula 4.5. We call a the bias factor. The reason we introduce bias factor is that 

in the structure shown in Figure 4.4, a user should first select which problem at the problem 

layer is the most desired one based on her/his current preferences. This information needs 

to  be reflected in the following computations of the solution scores. We imagine that the 

selected problem has a higher bias factor whereas the unselected problems have a lower one, 

making the selected problem contribute more than the unselected ones in the computation 

of the solution scores; thus the solutions of the selected problems will possibly have relatively 

higher scores. However, this is only what we desire. As shown in Formula 4.12, the actual 

final solution scores will be computed globally, giving the true picture of why a solution 

gets a higher score, why a solution gets different scores in different associated problems, and 

which problem contributes most in the computation of a particular solution score. 
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Delta Learning Rule For Solutions and Problems 

As soon as the score of a solution is computed, it will be presented to a user for her/his 

judgement. If the user thinks that this solution is the right one and has an appropriate 

score, s/he can confirm it. Otherwise, s/he can disapprove it. In both situations, a user can 

have the option to  specify what the desired score of the solution is. This information will 

be captured by the learning component, and will be used in the computation of the errors. 

We have also considered another situation that if a user does not specify the desired score, 

but just makes confirmation or disapproval on a solution, a default adjustment value will 

be added or deducted from the computed solution score automatically to  get the desired 

score. For instance, if a solution gets an actual computed score of 80, and is disapproved, 

the desired score of this solution will be 75 if the current default adjustment is 5. However, 

a user can specify the desired score to 71, 73, or some value else as long as the specified 

value is less than 80. 

The computation of the learning delta value is first done at the solution layer. According 

to  the computation of solution scores(see above), we only compute the learning delta values 

for the solutions associated with the current selected and confirmed problem. The 

following formula is employed. 
1 

deltask = - * (Ds ,  - S s k )  * ( 1  - s;,) (4.13) 
2 

where deltas, is the learning delta value for solution Sk ,  and Dsk is the desired score for 

Sk .  The formula here is the same as Formula 4.7 used in a backpropagation neural network. 

The learning delta values then are propagated back to  the problem layer. The compu- 

tation of the learning delta value at this layer is done using the following formula. 

where deltap3 is the learning delta value of problem Pj. If there is no connection between 

solution Sk and problem Pj,  then we do not include it in ~ f = ,  (deltask * Wkrj ) .  Again the 

formula here is the same as Formula 4.8. 

Weight Adjustments 

After computing the learning delta values for weight adjustments, next we need to  adjust 

the weights from the solution layer to the problem layer, and then from the problem layer 

to the feature-value pair layer. 
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We will adjust the weights attached to  the solutions which are associated with the current 

selected and confirmed problem. The weights attached to the connections between the 

problems and the solutions will be adjusted first using the learning delta values computed 

in Formula 4.13, and the problem scores computed in Formula 4.11. The formula for this 

adjustment is: 

W;;w = WL,~ + 9 * deltask r Sp3 (4.15) 

where W,?;w is the new weight to be computed, and w;,? is the old weight attached to the 

connection between solution Sk and problem Pj. 

Compared with Formula 4 . 9 , ~  is the learning rate. However its meaning is different from 

that in a backpropagation neural network. Recall that in the computation of the solution 

scores, we introduce the bias factor in order to adapt a backpropagation neural network 

into a CBR system. Accordingly, when we adjust the weights we still have to consider this 

fact. We hope that the learning rate would be higher for the selected problem than that for 

the unselected ones, which means that the speed of the weight adjustment for the selected 

problem is faster. 

The weights attached to connections between the problems and the feature-value pairs 

will be adjusted next using the learning delta values computed in Formula 4.14. It is shown 

as follows: 

V F w  .I,$ = l$d + T )  I deltap3 t Xi (4.16) 

where yfw is the new weight to be computed, and yfd is the old weight attached to the 

connection between problem Pj and feature-value pair FV;. X; is 1, if there is a connection 

between problem Pi and feature-value pair FV;  and FV; is selected in the new problem. 

Otherwise X; is 0. 

The learning rate 7 is the same for all the weights. This is in accordance with the 

computation of the problem scores. The computation formula for adjusting weights be- 

tween the problems and the feature-value pairs is exactly the same as that employed in a 

backpropagation neural network. 

Adjustments for Problems 

After a new problem is presented, all the previous problems will be scored according to  

Formula 4.11 with the promising ones at the higher ranks. If a user wants to  feed back some 

information to  the system directly at the problem layer as whether a problem is desired or 
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not, what should we do? We can employ a single layer neural network to fulfill this task. 

If we do not consider the solution layer in Figure 4.4, the structure is a single layer neural 

network. 

We still use Formula 4.11 to  compute the problem scores. But we hill use the following 

formula to  compute a new weight. 

where each symbol represents the same as before. However, as Xi can be 1 only when 

there is a connection between feature-value pair FV; and problem Pj and F V ;  is selected, 

such an adjustment is local only to a selected problem as compared to  the global adjustment 

computed in Formula 4.16, which might affect all the weights connecting the selected feature- 

value pairs and the problems. 

A Simple Example 

In order to introduce a neural network into a CBR system, we have discussed many formulas 

which can be used to fullfil the task. For simplicity's sake, we will use a small example t o  

show how to adjust the weights associated with the feature-value pairs and the problems. 

We take the small case base shown in Table 2.1 as our demonstration. We select column 

2, 3, and 4 of the table as the features to  form the indices for a problem. All the relevant 

feature-value pairs' weights will be initialized to  0.5. 

Assume there is a target T which is described by the feature-vabe pairs as (monthly 

income, 30 units), (job status, salaried), and (monthly repayment, 5). Using Formula 4.1 1, 
2 the "Ore of Case be l+e-(0.5+0+0.5*1+0.5+0) - 1 = 0.25, the score of Case 2 will be 

2 2 
l+e-(0.5*0+0.5*1+0.5*1) 

- 1 = 0.46, the score of Case 3 will be l + e ~ ( o ~ 5 ~ l + o , 5 ~ o + o ~ 5 ~ o )  - 1 = 0.25, 
2 and the score of Case 4 will be l + e - ~ 0 ~ 5 ~ 0 + 0 ~ 5 + 1 + 0 , 5 ~ 0 )  - 1 = 0.25. 

After these problems, along with their scores, are presented to  a user, s/he may be not 

satisfied with the score of Case 2. s/he thinks it is desirable to have its score of 0.8. Thus 

s/he can tell the system that the score of Case 2 should be 0.8. The system will capture this 

response, and use Formula 4.17 to compute the necessary adjustment: for the feature-value 

pairs associated with Case 2. In this example(assume 1.1 = 0.9), all the adjustments will be 

1. 2 * 0.9 * (0.8 - 0.46) * (1 - 0.46~) = 0.032. After the weights are adjusted, the system will 

compute all the problem scores again to  see whether Case 2 has the desired score of 0.8. 

This process sometimes needs to  repeat several times. 
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4.5.3 Learning Policy and Updating Policy 

There are two aspects we need to consider when constructing a learning component for 

feature weighting: learning policy and updating policy. Basically, four different learning 

policies are possbile[l]: 

1. If there has been a retrieval success, then the learning component will increase the 

weights of matching features; 

2. If there has been a retrieval success, then the learning component will decrease the 

weights of unmatching features; 

3. If there has been a retrieval failure, then the learning component will increase the 

weights of unmatching features; 

4. If there has been a retrieval failure, then the learning component will decrease the 

weights of matching features; 

Different learning algorithms choose different combinations of these four policies. Our 

strategy employs (1) and (4), i.e., for a problem or solution retrieval success or failure, we 

will increase or decrease the weights of matching feature-value pairs. In Figure 4.4, only the 

feature-value pairs which are selected will get input as 1, making themselves contribute to  

the problem scores and the final solution scores, and thus getting adjusted. 

In our integrated framework, the updating policy is a set of Formulas 4.13, 4.14, 4.15, 

4.16, and 4.17 shown above. 

4.5.4 Learning Process 

In a backpropagation neural network, there is a training sample set. The sample data in 

that set will go through the network one by one - a learning process in which the weights 

connecting adjacent layers are adjusted. This process will have to  repeat several times in 

order to  get the final satisfactory goal. 

In the integration of CBR with a backpropagation neural network, we assume that there 

is no such an explicit sample training data set. A user will just tell the system whether 

a retrieved problem or solution is desired or undesired. The system will capture these 

responses, and feed them back into the neural network learning component. 
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In the short term, we can not see this as a learning process. But in the long run, it 

actually is. A user's preferences are demonstrated in their responses to  the system's behavior 

during the use of the system. If we take only one preference a t  a time, we can adjust 

the weights t o  accurately approximate it. However, because of the interactions between 

the feature-value pairs, for a set of a user's preferences, maybe it is not possible for the 

adjustments t o  be accurate for all the preferences in just one loop. This requires an iterative 

process. Every iteration through all the preferences will tend t o  approximately delineate 

them gradually, trembling around the desired case scores at  increasingly small distances. 

Interestingly, a user may not know this. Every time when s/he thinks that  a problem's 

or a solution's score is too high, s/he just tells the system t o  lower it t o  a score specified 

explicitly or implicitly. If the score is thought t o  be too low, s/he can also tell the system t o  

increase it. This process iteratively proceeds, until there is no such abnormalities happening. 

Although the final score of each problem or solution may not be exactly the same as its 

correspondent in the user's ideal preferences, the difference is within an acceptable range. 

The relative ranks among the problems or solutions will reflect which problem or solution 

is more relevant and which one is less. 

The learning process in such an integrated CBR system will never stop in the sense that  

the environment is changing over time. The changes of a user's preferences will also be 

melted into the above process. 

The dynamic weight learning algorithm is described as follows: 

Forever 

1. For the current problem description and input feature-value pairs, retrieve similar 

problems using Formula 4.11; 

2. If the score of a selected problem is too high or too low, repeat adjusting the weights 

attached to the connections between this problem and its feature-value pairs using For- 

mula 4.1 7 based on its desired score specified implicitly or explicitly; 

3. If the selected problem gets confirmed, retrieve its associated solutions using Formula 

4.12; 

4. For each of the associated solutions, decide whether its score is too high or too low, 

and repeat adjusting the two sets of weights using Formulas 4.13, 4.14, 4.15, and 4.16; 
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5. Recompute the problem and solution scores. Wait for the user's next action(maybe 

s/he adjusts the other problems or inputs a new problem). 

4.5.5 Computational Analysis of Algorithm 

Based on the structure of the integrated framework we describe as above, we now attempt 

to  analyze the rough complexity of the dynamic weight learning algorithm. Because the 

learning process in our integrated framework will be iterative until an exit condition is 

satisfied(which will depend mainly on a user's specified desired score of a problem or a 

solution. See above discussions), we only analyze the computational complexity for the 

learning process of just one iteration. 

Given a new problem which is input as a set of feature-value pairs, in order to compute 

the similarity between it and every previous problem, we take each problem in turn, and 

check whether it is associated with some feature-value pairs describing the new problem. 

Under the above three-layer structure, for the feature-value pair layer, we set the selected 

flag of a feature-value pair to  1 if it is in the input set of feature-value pairs for the new 

problem. Assume that  there are I feature-value pairs at  the feature-value pair layer, J 

problems a t  the problem layer, and K solutions at  the solution layer. For each problem 

at  the problem layer, in order to use Formula 4.11 to  compute its score, we need to  check 

each feature-value pair at  the feature-value pair layer to  see whether there is an  association 

between them and the feature-value pair is selected for the new problem. This will be done 

in 0 ( 1  * J ) .  For the same argument, for each solution at  the solution layer, in order to  use 

Formula 4.12 t o  compute the score, we need t o  check each problem a t  the problem layer 

t o  see whether there is an association between them. Obviously, this is done in O ( J  * K). 

Therefore we need a total of time O ( I *  J )  + O ( J  * li) to  get the final solution scores 

a t  the solution layer. However, recall the algorithm as above. When the problem scores 

a t  the problem layer are computed, the problems will be presented t o  a user for her/his 

judgement, and we only compute the solution scores for the selected and confirmed 

problem. Thus on average, the total forward time of the three-layer structure is reduced t o  

O ( I *  J )  + O ( J  * 11'/2). 

The weight adjustment will be computed along the opposite direction. If a user feeds 

back her/his response directly at  the problem layer as whether a retrieved problem is right 

or not, as discussed before, the adjustment is local to  this selected problem. We need t o  

check each feature-value pair at  the feature-value pair layer t o  see whether it is associated 



CHAPTER 4. DYNAMIC WEIGHT LEARNING METHOD 

with the selected problem and currently selected as an input feature-value pair. This will 

be done in O ( I ) .  If a user feeds back her/his response a t  the solution layer, the learning 

delta for that layer can be done in O ( K )  using Formula 4.13. The learning delta for the 

problem layer can be done in O ( J  * Iir) using Formula 4.14. Thus the total time for the 

computation of learning deltas will be in O ( K )  + O ( J  * K). After the computations of the 

learning delta values, the adjustment for the weights attached t o  the associations between 

the solution layer and problem layer will be done in O ( J  * K) using Formula 4.15 while 

the weights attached t o  the associations between the problem layer and the feature-value 

pair layer will be adjusted in O ( I *  J )  using Formula 4.16. Therefore the total time for the 

adjustment will be 0(1 * J )  + O ( J  * K ) .  

Based on these analysis, we can see that for one iteration of the algorithm the time 

will be a t  most 0 ( n 2 ) ,  where n is the maximum among the number of feature-value pairs, 

the number of problems, and the number of solutions in a case base. However, in our 

implementation, the neural network structure is not fully connected. Only if an association 

exists between a feature-value pair and a problem or between a problem and a solution do 

we store the connection t o  represent it. Thus, in the practical implementation, the total 

time is less than 0 ( n 2 ) .  

4.5.6 Real-Time Response 

It can be easily seen that  the algorithm introduced as above is an interactive process. Thus 

the system will be changed every time a user feeds back her/his response. 

After a user feeds back her/his judgement t o  the system, the system will employ the 

learning algorithm t o  adjust the relevant weights. Then the scores of the problems and the 

solutions will be computed again and presented t o  the user for further judgement. All these 

are done in the background. The foreground output of the system will keep updated over 

time as a user uses the system. 

4.6 Summary 

The scenario of an interactive problem solving is now introduced into a CBR system. With 

the integration of a backpropagation neural network, a CBR system is now capable of 

learning from its environment. 
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Originally, maintaining an updated set of weights in CBR is on the shoulder of the 

domain experts. Now it becomes an internal self-adjusting component within an  integrated 

CBR framework. The system itself can learn to adjust its own behavior to  simulate a user's 

behavior, and furthermore, it no longer plays a slave part in the relationship with its human 

users. It is now a self-autonomous component which is responsible for its own behavior. 

The human users' interactions form a source of useful information the system can absorb 

and use. 

The integration of CBR with a backpropagation neural network provides a possible solu- 

tion to  the problem of dynamic nature of a CBR system. The characteristics of the structure 

of a case base, the knowledge encoded in the connections between solutions, problems, and 

feature-value pairs, and the repetitive using and learning processes over time in CBR are 

the inspirations of such an integration. However, although all these sound reasonable, it is 

essential that  this integrated framework be validated through the experimental tests. 



Chapter 5 

System Design and Development 

5.1 Introduction 

We implement both the static weight adjusting algorithm and the dynamic weight learning 

algorithm in the framework of the ~ a s e ~ d v i s o r ~ ~  system, which is introduced in Chapter 

1. CaseAdvisorTn is a case-based reasoning system implemented using both C++ and Java. 

This system is domain-independent, and is appropriate for many domains. It can be running 

in the PC  and Internet environments as either a stand-alone or a clientlserver system. Up 

to  now, it has been applied to  many industrial applications and is now on its way t o  the 

commercial market. 

Figure 5.1 shows the working process of the CaseAdvisorTn system. The whole system 

is divided into two separate modules, with the first one called Case-Authoring Module, and 

the second one called Problem-Resolution Module. 

5.1.1 Case-Authoring Module 

The left side of Figure 5.1 is the Case-Authoring Module, in which the domain experts will 

convert the unstructured documents from a domain into cases. In the system, a case has two 

generic parts. They are problem description and one or several possible problem solutions. 

Each part is not further partitioned. One such case is shown in Table 1.4 in Chapter 1. 

The module provides a form to create the content in a case, i.e. case name, problem 

description, and problem solution(s). In order t o  accommodate various applications, they 

will also, based on their needs, attach some accessories to  each case, such as a file, a decision 
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Figure 5.1: Case-Advisor System 

tree and a list of the keywords extracted from the case name and/or the problem description. 

The keywords can also be generated directly by the domain experts. 

The feature-value pairs in a case base are now represented as the question-answer pairs. 

When creating a case, the domain experts will also associate a set of question-answer pairs 

to each case, and assign a weight to each of them in order to index this case in the Problem- 

Resolution Module. This process generates a local weight set for each case, which provides 

great flexibility since if the domain experts want to  assign weights globally, they can set 

the weight of each question-answer pair to be equal for each case it is associated with. 

Furthermore, it is not required that each case be associated with the same set of question- 

answer pairs. This provides more flexibility, since a particular case can be associated with 

a unique question-answer pair which might make it distinguish from others. 

5.1.2 Problem-Resolution Module 

The Problem Resolution-Module is on the right side of Figure 5.1. After a case base has 

been constructed in the Case-Authoring Module, it can be used to  solve new problems in a 

domain in the Problem-Resolution Module. When encountering a new problem, a user first 

gives a high level description on what the problem is, using the keywords in that domain as 

many as possible. The system will use this description to  retrieve a set of potential cases 

which might be similar to  the current problem description. All the retrieved cases will be 

ranked from high to  low by their scores. Thus, the scores in this module show the relative 
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comparison of the relevancy of each case to  the new problem. 

Then, the user may want to  answer some questions, specifying what characteristics 

the new problem has. The system will use the weights assigned to these question-answer 

pairs to  index the potential cases, making the promising cases have relatively high scores. 

This process further ranks the potential cases, reducing the case searching space. With 

the answering of more questions, the score of the more relevant case will get higher and 

higher, and at the same time, the less useful case will be ranked lower and lower. The more 

question-answer pairs are matched in a case, the higher score that case will finally get. It 

can be seen that the case retrieval strategy in the ~ a s e ~ d v i s o r ~ "  system is a variant of k-NN 

algorithm. 

Although the CaseAdvisorTn system gets positive appraisal from its industrial applica- 

tions, in order to further facilitate its use and improve its performance, we still need to  do 

more with it. 

In the system, the Case-Authoring Module takes the responsibility of constructing a 

case base. A user's real concern is the case retrieval quality in the later use of the Problem- 

Resolution Module. Although the domain experts try to  use the weights to represent how 

important each characteristic is for each case, it is not easy for such a representation to  be 

appropriate for every user. A user may have her/his own views on individual cases. On the 

other hand, in the Problem-Resolution Module, the weights assigned in the Case- Authoring 

Module play a very important role in the case retrieval process, since, a user will use them, 

based on her/his interests, to narrow down the number of cases with the hope that the 

desired ones would have higher scores while the undesired ones would have relatively lower 

scores. The process will give the user more confidence on which case is the one s/he needs. 

To improve the case retrieval quality of the system, we introduce the static weight 

adjusting and dynamic weight learning components into the system. We hope that after 

importing these two components, the system will be a living system which will participate 

in the activities of a user in a dynamic environment. On one hand, the system can statically 

obtain its weights under the instructions of the domain experts, on the other hand, it can 

dynamically tune its weights in response to a user's behavior. 
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5.2 Design for Static Weight Adjusting Component 

We rely on the statistical information hidden in the associations between the cases and the 

question-answer pairs in a case base for our static adjusting task. Of the two modules, 

the static weight adjustment will be executed in the Case-Authoring Module, just after a 

case base has been constructed. In the Problem-Resolution Module, the statically adjusted 

weights will then be used t o  retrieval the most similar cases. Thus the main design work is 

put into the Case-Authoring Module. 

5.2.1 Adjusting Weights Statically 

Information Collection 

Recall the formal description of the adjusting model in Chapter 3, the first part of the static 

adjusting algorithm is to  collect the statistical information from the associations between 

the cases and the question-answer pairs in a case base. 

Figure 5.2 shows such information for each question-answer pair. In the figure, the 

first list shows the question-answer pairs(i.e., the feature-value pairs) while the second list 

displays the weight for each case initially specified by the domain experts. The third one 

lists the statically adjusted weights. Initially, the information in the third list is the same 

as that  in the second list. However, after adjusted, they might be different. 

Also in order t o  demonstrate a clear picture of the static information about a case base, 

the total number of cases and the number of cases associated with each question-answer 

pair will be shown out for reference a t  the bottom of Figure 5.2. These information will be 

used to  adjust the weights statically. 

Adjustment Process 

We have discussed in Chapter 3 that  we divide a case base into five groups. They are v e r y  

good group, good group, average group, bad group, and v e r y  bad group. 

The adjusting process is composed of the following three steps. 

Step 1. As shown in Figure 5.3, the five groups are represented by five different colors. 

Each group corresponds t o  one part in a range bar. From left t o  right in the bar, the 

ranges are very good, good, average, bad, and very bad, each of which is represented 

by its corresponding color. The whole range bar is 100 percent. Also you can see there 
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Figure 5.2: Static Information in A Case Base 

are four small carets above or below the range bar with which the domain experts can 

drag to  specify each range. 

The domain experts can specify the ranges based on their domain knowledge. They 

can also click on the default button to  retrieve the system default percentage ranges 

for each group. 

0 Step 2. Figure 5.4 shows the corresponding minimum weight for each group. If 

one question-answer pair falls into one particular group, it should have at least the 

minimum weight for that group. The domain experts can specify the minimum weight 

for each group. After specified, each minimum weight will be checked to make sure 

that they fall between 0 and 100, and they are in the order that the one for the very 

good group is the highest while the one for the very bad group is the lowest. The 
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Figure 5.3: Step 1 in Static Weight Adjusting Process 

system, according to  the size of a case base, has its own default minimum weight for 

each group, which can be retrieved. 

Step 3. The information specified in Steps 1 and 2 will be displayed in Step 3, as 

shown in Figure .5.5. This step will not let the domain experts do anything but trigger 

the adjustment. The question-answer pair which is being adjusted will be highlighted 

in the box under the title Question-Answer. The whole adjusting process will be 

displayed in the progress bar under the title of Adjustment Progress. 

All the parameters in this process have their default values set by the system. However, 

the above three steps provide the domain experts a chance to  modify them, according to 

their experiences, their domain knowledge, and their own views. 

The size of a case base plays an important role in determining these parameters. We 

consider an extreme situation in which a case base is too small, say - only 20 cases. In this 
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situation, we do not do the adjustment, since such a case base is too small for the collected 

statistical information to  be reliable. 

5.2.2 Using Statically Adjusted Weights 

There is no particular user-interface in the Problem-Resolution Module for the static weight 

adjusting component, since the weights specified in the Case-Authoring Module are transpar- 

ent to  the end-users(which is not true in the dynamic weight learning component). However, 

there is still a menu item which give an end-user an option to decide which set of weights 

they prefer to  use, the one specified by the domain experts or the one adjusted statically in 

the Case- Aut horing Module. 
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Figure 5.5: Step 3 in Static Weight Adjusting Process 

5.3 Design for Dynamic Weight Learning Component 

In contrast to the static weight adjusting component, the dynamic weight learning com- 

ponent moves the weight adjustment from the Case-Authoring Module to the Problem- 

Resolution Module. The main work for this component is done in the Problem-Resolution 

Module. Using the same convention in Chapter 4, we will use problem instead of case when 

referring to  a case in our description. 

5.3.1 Constructing and Using Solution Base 

In Chapter 4, we have discussed the extraction of solutions from cases. Constructing a 

solution base for a case base is relatively easy as compared to  the construction of a case 

base. 

A solution is composed of two parts, the solution name and the solution body. The 
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Figure 5.6: Create A New Solution 

solution name is a pointer that will be used in any problem that has this solution attached, 

while the solution body provides the actual solution. A solution base can be constructed 

before the construction of a case base if the domain experts, based on their domain knowledge 

and experiences, can determine beforehand all the solutions in a case base. See Figure 5.6 

for the user-interface of constructing a solution base. 

When creating a problem, the domain experts will analyze its solution(s). They will 

search for each solution in the solution base, and then associate it with the problem. Mean- 

while, they will assign a weight representing the importance of the solution in this problem. 

Figure 5.7 shows this process. Because all these weights, along with the weights attached to  

the associations between the problems and the question-answer pairs in the case base, will 

be adjusted dynamically in the Problem-Resolution Module, so the system sets a default 

value of 0.5 for each of them. However, the domain experts can change it 

All these work is done in the Case-Authoring Module. Compared to the static adjusting 

component the most important work for the dynamic learning component is in the Problem- 

Resolution Module. The work involved in the Case-Authoring Module is easier for the 
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Figure 5.7: Associate A Solution to  A Case 

dynamic learning component. 

5.3.2 Using and Learning Weights Dynamically 

After introducing a neural-network learning component into the Problem-Resolution Mod- 

ule, the system is now capable of learning a user's behavior from her/his use of the system. 

The whole process of the Problem-Resolution Module is now shown in Figure 5.8. We will 

explain this figure later. 

Users Own Weights 

As discussed in Chapters 2 and 4, different users may want t o  have different sets of weight in 

order to  demonstrate their personal behaviors and interests. Figure 5.9 shows this process. 

When a user uses the system, s/he needs to identify herlhimself by choosing her/his own 
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Figure 5.8: Back-propagation Neural Network Learning in Problem-Resolution Module 

sets of weights. Also when a new user is going to  use the system, s/he can create her/his 

own weights which will be copied from the default ones specified in the Case-Authoring 

Module by the domain experts or from the ones statically adjusted there. 

Thus, although all the users are using the same case base, their personal behaviors and 

interests can be different. This scenario also anticipates the future for a distributed case 

base, in which multi-users can share the same case base but use different weights. 

Learning Weights Dynamically 

In order t o  use the result of the trigram matching(see [25] for more discussions on tri- 

gram matching) in the problem retrieval process when computing the problem scores, we 

reconsider Formula 4.1 1, and change it as follows. 

where Tj  is the result of the trigram matching for each problem Pj. 

This formula not only incorporates the result of trigram matching, but also represents a 

situation where even entering a problem description without answering any questions still 

retrieves some problems, although their relevancy might be low. However, if a case base is 

very small, then this result may give some useful hint for choosing the most similar problems. 
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Figure 5.9: A User's Own Weights 

As shown in Figure 4.4, the two sets of weights - one attached to  the associations between 

the question-answer pairs and the problems, and the other attached to  the associations 

between the problems and the solutions in a case base - are now not transparent to  the 

user@ contrast to  that in the static weight adjusting component). 

In Figure 5.8, the system, according to a user's current problem description and a set 

of selected question-answer pairs(labe1 I ) ,  will access the weights(labe1 2) to  compute the 

problem scores, and present the result to  the user for her/his judgement(labe1 3). If the 

user feeds back her/his judgement to  the system(labe1 41, the system will use the learning 

component to learn this information, and if necessary, modify the weights accordingly(labe1 

7). For the problem which is confirmed positively, the scores of its associated solutions will 

be computed(labe1 2) ,  and be presented to the user for further judgement(labe1 5). If a t  

this time the user feeds back some information to  the system(labe1 6), the system will again 

use the learning component to learn it and modify the corresponding weights(labe1 7). It 

can be easily seen that this process is in accordance with the learning algorithm discussed 

in Chapter 4. 

We now demonstrate the implementation of this algorithm from an angle of user- 

interface. When a user enters the description of new problem and answers a set of questions, 

the problem scores will be computed. They will be ranked according to their scores with 

the problems having higher scores placed at the beginning. If a user chooses a problem, the 
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Figure 5.10: Problem's Confirmation or Disapproval 

system will prompt a box shown in Figure 5.10 to  let her/him decide how s/he judges it. Is 

it the one s/he desires, the one s/he does not want, or the one that s/he is not sure right 

now? This information will be fed back to  the system for the corresponding adjustments. 

After a problem is positively confirmed, the user can take a look at its associated solu- 

tions, which are also ranked by the scores computed using the formulas in Chapter 4. In 

Figure 5.11, for each solution, again the user has a chance to  decide whether it is correct, it 

is wrong, or it is not decided yet. The system will learn from this judgement to adjust its 

weights. 

In Figures 5.10 and 5.11, there are two button. One is labelled Option ... which can 

be used by a user to  specify explicitly the desired score of a problem or a solution. The 

other is labelled Learning which will be used to  trigger the learning process for the current 

desired score and actual score of a problem or a solution. Thus whether to  learn the current 

judgement of a problem or a solution is still up t o  the user. 
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Figure 5.11 : Solution's Confirmation or Disapproval 

5.4 Summary 

The static weight adjusting algorithm is mainly implemented in the Case-Authoring Mod- 

ule, while the dynamic weight learning algorithm is constructed in the Problem-Resolution 

Module. This is in accordance with the different sources of information on which these two 

algorithms are based. The information for the static weight adjusting algorithm is from a 

case base itself, while the information for the dynamic weight learning algorithm is from 

the end-users. The user-interfaces presented in this chapter for these two feature-weighting 

components are still in their laboratory stage. The feedbacks from the real use of the system 

will be essential in order to  further improve and tune them. 



Chapter 6 

Empirical Tests 

6.1 Introduction 

We have introduced two feature-weighting methods into the framework of CBR, and im- 

plemented them in the ~ a s e ~ d v i s o r ~ '  system. In the implementation of the system, the 

feature-value pairs are represented by question-answer pairs, which can be specified by the 

domain experts when they construct a case base, and used by the end-users when they solve 

new problems. 

The static weight adjusting method uses the statistical information hidden in the asso- 

ciations between question-answer pairs and cases. The size of a case base and the number 

of cases a question-answer pair is associated with are the two factors in determining how 

much weight should be assigned to  that pair. There are no interactions between the system 

and its end-user. However, the domain experts can specify adjustment parameters based 

on their domain knowledge and previous experiences. In our adjusting method, the weight 

adjusting work is done in the Case-Authoring Module. 

The dynamic weight learning method learns the unpredictable information hidden in 

an end-user's behavior. A user's interactions with the system provide the guidance in 

determining how much the weight for a particular question-answer pair is in order to  capture 

the user's behavior. In our learning method, the weight adjusting and using are interleaved 

in the Problem-Resolution Module; the weights for question-answer pairs will be adjusted 

in response to  the feedbacks from the end-user, and the adjusted weights, in turn, will be 

used in the following case-searching processes. 
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6.2 Test for Static Weight Adjusting Method 

As discussed in Chapter 3, the static weight adjusting algorithm is appropriate for a case 

base in which the importance of each feature-value pair is constant, or globally the same 

across the whole case base. 

We hope to  confirm through the experiments that the static weight adjusting method 

is feasible to  compute a weight statically for each question-answer pair. We first use an 

artificial case base to  demonstrate that the static weight adjusting component we design 

and implement can be employed to take advantage of the statistical information hidden in 

a case base; we will also show that different adjustment parameters in the adjusting process 

will result in different weights, which might affect the final score for the same case even when 

the same question-answer pairs are selected. Then we use a case base in the real world which 

is from Roger's Cable Company to  show that the weights adjusted by our method delineate 

roughly the weights initially assigned by the domain experts from the company. 

6.2.1 Experiment of An Artificial Case Base 

Experiment Setup 

We create an artificial case base of 75 cases with six questions. There are 21 question-answer 

pairs within these questions. Because we use question-answer pairs t o  index the case base, 

we are not really concerned with the content in each case. We just take a close observation 

on the associations between the question-answer pairs and the cases. 

Table 6.1 lists the distribution information about the number of associated cases(N.A.C) 

for each question-answer pair in the case base. From the table we can find that this distri- 

bution is not uniform. For question-answer pair QA.9, there are 70 cases associated with 

it, while for another question-answer pair QA.8, the number of its associated cases is only 

five. This irregular distribution information reflects the specific domain knowledge for each 

case conceived in the domain experts7 minds when they construct a case base. It is also the 

information we need to  grasp in the static weight adjusting method. 

We also need a set of adjusting parameters for the adjustment work. Recall in Chapter 3, 

we require the domain experts to  specify, in their minds, how to judge whether a question- 

answer pair belongs t o  very good, good, average, bad, or very bad group, and meanwhile 

to  specify their corresponding minimum weights, according to  the size of the case base, as 

well as their own domain knowledge and experiences. Although we preset these parameters 
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Table 6.1: Distribution of Cases among Question-Answer Pairs 

QA Pairs 

QA.l 

N.A.C. 

37 

Table 6.2: Percentage Ranges and Minimum Weights for Two Tests 

Groups 

Percentage Ranges 
Number of Cases 

Minimum Weights( 1) - \ , (  I I I I 

based on the size of a case base in the system, they can still be respecified by the domain 

experts to  show their own views on how goodness a question-answer pair is. 

We hope that the selections of a small number of question-answer pairs would result in 

the desired cases we want. Thus, reasonably, the very good group will correspond to a small 

portion of the case base. By doing so, only a small number of question-answer pairs will 

be falling into this group, and if they are selected in the case-searching process, only the 

scores of a small number of cases will change. For the same reason, the very bad group will 

correspond to  a large portion of the case base because the question-answer pairs falling into 

that group convey little information in the search process. 

We show in Table 6.2 the percentage ranges of each group and their corresponding 

minimum weights for our test. 

QA Pairs 

QA.12 

Average 

21%-40% 
16-30 
0.5 

N.A.C. 

22 

Very Good 

1%-10% 
1-7 
0.8 

Minimum Weights(2) I 0.9 

Bad 

41%-60% 
31-45 

0.3 

Good 

11%-20% 
8-15 
0.6 

0.6 0.8 

Very Bad 

61%-100% 
46- 75 

0 
0.4 0.1 
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Q-A Pairs / Groups ( Weight ( 1  Q-A Pairs I Groups / Weight I 

QA.13 very bad 
QA.3 average 0.57 QA.14 average 
QA.4 average 0.54 QA.15 very good 
QA.5 good 0.65 QA.16 average 0.56 

Table 6.3: First Adjusting Result for Each Question-Answer Pair 

QA.6 
QA.7 
QA.8 
QA.9 
QA.10 
QA. l l  

Table 6.4: Typical Cases and Their Associated Q-A Pairs 

good 
bad 

very good 
very bad 

bad 
bad 

Cases 

Case2 

Experiment Result 

Q-A Pairs Associated 

QA.l ,  QA.8, QA.9, QA. l l ,  QA.16, QA.13, QA.19 

A First Experiment 

We show in Table 6.3 the adjusting result using the first set of minimum weights 

specified in Table 6.2. From the table we can see that  since question-answer pair 

QA.8 belongs t o  the very good group, it is assigned at least the minimum weight for 

that  group. Another example shows that  as QA.12 belongs to  the average group, it is 

assigned 0.55, more than the minimum weight of the average group but less than that 

of the good group. 

0.62 
0.32 
0.86 
0.05 
0.32 
0.47 

If we graph the data in this table in the same way as that  in Figure 3.3 in Chapter 3, 

it can be easily found that  they share the same distribution pattern of the weights for 

the feature-value pairs or question-answer pairs. 

QA.17 
QA.18 
QA.19 
QA.20 
QA.21 

average 
good 

average 
bad 

very bad 

0.57 
0.74 
0.50 
0.38 
0.22 
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Q A . ~  Q A . ~  Q A . ~  Q A . ~  QAX Answering 
Very Bad Bad Very Bad Very Good Very Good 

Questions 

Figure 6.1: Cases-Scoring Process of First Test 

In our first experiment, we examine a number of cases. The adjusted weights reflect 

our views discussed in Chapter 3. As an example, we selected four cases from the case 

base as shown in Table 6.4 with their associated question-answer pairs. 

We check the case-scoring process for these four cases when some questions are an- 

swered. In Figure 6.1, the X-axis represents the process of answering questions, while 

the Y-axis represent the case-scoring process. We first select QA.9. As this question- 

answer pair belongs to  the very bad group, it cannot contribute much to the case 

scores. From the figure, we can see that Case2, Case8, Case20, and Case34 are all 

scored 3 out of 100. For the same reason the selection of QA.1, which belongs to 

the bad group, still does not contribute much to  all the case scores. The selection of 

QA.13 will increase the scores of Case2, Case8, and Case20 a little bit, since QA.13 

is also a member in the very bad group. Case34 remains unchanged since it is not 
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QA.10 I bad 1 0.42 11 QA.21 1 very bad 1 0.32 [ 
I I I I 

QA.l l  I bad 1 0.51 1 )  
- - 

Table 6.5: Second Adjusting Result for Each Question-Answer Pair 

Groups 

average 
very bad 

Q-A Pairs 

QA.l 
QA.2 

associated with QA.13. However, when we select QA.8, a member of the very good 

group, the scores of Case2 and Case8 migrate dramatically from 31 to  62. Because 

Case20 is not associated with that pair, so its score remains almost the same. Selec- 

tion of QA.15, which belongs to  the very good group, is very interesting; it makes two 

cases change their scores dramatically. In this situation, Case8 migrates from 62 to  

82, while Case20 migrates from 29 to  61. Because Case2 is not associated QA.15, its 

score does not change. 

Weight 

0.51 
0.37 

Weight 

0.71 
0.26 

Groups 

bad 
bad 

When the case-scoring process ends, Case8 ranks first, with Case2 and Case20 in the 

second place and third place. Obviously, because this answering process involves two 

very good question-answer pairs, their associated cases change the scores dramatically. 

On the other hand, because Case34 is not associated with these pairs, its score changes 

little. We can also find this for Case20. From the selection of QA.9 to  the selection 

of QA.8 along the X-axis, its score changes steadily, from high to low or from low to 

high. Only after its associated pair QA.15 is selected does its score change greatly. 

Q-A Pairs 

QA.12 
QA.13 

A Second Experiment 

Different percentage ranges and minimum weights will result in different weights, af- 

fecting the case scores in the case retrieval process. We use the second set of minimum 

weights specified in Table 6.2 for our second experiment. The percentage ranges for 
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Case2: -0- 
Cases: jt 

Case2O: 

Case34: -0- 

I I I I I I > 
Q A . ~  QA.I Q A . ~  Q A . ~  QAJS Answering Questions 

Very Bad Bad Very Bad Very Good Very Good 

Figure 6.2: Case-Scoring Process of Second Test 

each group is still the same. It can be seen from the table that we increase the mini- 

mum weights for each group. Therefore, the weights, once adjusted, will have higher 

values than those in the first experiment. 

The result is shown in Table 6.5. To examine those weights, we also use them to test 

the typical cases specified in Table 6.4. Figure 6.2 is the scoring process. Again it can 

be easily seen that the question-answer pairs belonging to  the very good group are 

responsible for the dramatic changes of the case scores. From the figure, we can see 

that, because of the higher weight of each question-answer pair, the four cases start t o  

separate from each other from the selection of QA.l. When we check the case scoring 

process for all the four cases during the selections of question-answer pairs, it can be 

seen that they all have similar patterns to  those in Figure 6.1. 

However, there is one exception in the figure. Note that Case20 jumps from the score 
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Q-A 
Pairs 

QA.l 
QA.2 
QA.3 
QA.4 
QA.5 
QA.7 
QA.8 
QA.9 

QA.10 

N.A.C. 

26 
1 
1 

25 
1 
2 
1 
1 
5 

Initial 
Weight 

0.10 
1 .oo 
1 .oo 
0.11 
0.99 
0.63 
0.80 
0.90 
0.61 

Q- A 
pairs 

Q A . l l  
QA.13 
QA.14 
QA.15 
QA.16 
QA.17 
QA.18 
QA.19 
QA.20 

N.A.C. Initial 
Weight 

0.95 
0.82 
0.90 
0.95 
0.73 
0.90 
0.70 
0.90 
0.90 

Q- A 
Pairs 

QA.21 
QA.22 
QA.24 
QA.25 
QA.26 
QA.27 
QA.28 
QA.29 
QA.30 

N.A.C. 

2 
3 
1 
1 
1 
1 
1 
1 
1 

Initial 
Weight 

0.41 
0.56 
0.80 
0.90 
0.75 
0.75 
0.85 
0.80 
0.80 

Table 6.6: Distribution Information in Roger's Cable Case Base 

of 36 t o  80 when QA.15 is selected, ranking itself before Case2. In contrast, in Figure 

6.1, a t  this point, Case2 ranks higher than Case20. We attribute this to  the higher 

weight of QA.15 than that  in the first experiment. From here we can see that the 

specifications of different percentage ranges and their corresponding minimum weights 

will sometimes result in different case scores. Although we can see this as the different 

views of different domain experts, however, sometimes it is undesirable. Therefore we 

think that  the static weight adjusting process is a repetitive work, involving alternating 

between the adjusting and testing processes in order t o  get a better weight quality. 

6.2.2 Experiment for Roger's Cable Case Base 

Experiment Setup 

The case base which is being used in Roger's Cable Company is created using the Case- 

Authoring Module in the caseAdvisorTn system. This case base is used by the technical 

representatives of the company to  solve the customers' problems on the help desk. Up 

t o  now, this case base has collected 28 cases and five features or questions. Within the 

five questions, there is a total of 30 question-answer pairs. We label each question-answer 

pair as QA.i, where i = 1,2 ,  30. Table 6.6 shows all the question-answer pairs and 

their number of associated cases(N.A.C.). Also shown the table is the weights assigned 

initially t o  the individual question-answer pairs by the domain experts from the company. 

As question-answer pairs QA.6, QA.12, and QA.23 are not associated with any case, based 

on the discussions in Chapter 3, we will not consider them in the static weight adjusting 



CHAPTER 6. EMPIRICAL TESTS 

process. 

Of all the cases, QA.l is associated with 26 out of them, and all the associations are 

attached a weight of 0.10. The same situation is true for QA.18, all of whose associated 

cases have a weight of 0.70. QA.4 has the same weight 0.10 for 24 out of its associated 25 

cases. The exception one is attached with 0.20. This demonstrates that in some situation it 

is reasonable for the weight for a question-answer pair to  be constant for all of its associated 

cases. 

For a question-answer pair, if the weights attached to  its associations of cases are not 

equal, we will average them in order to compare them with the weights assigned by the 

static adjusting method. For instance, QA.10 is associated with five cases with the weights 

of 0.90, 0.70, 0.30, 0.40, and 0.75. The average weight for this question-answer pair is 0.61. 

We use three sets of adjustment parameters to  do our tests. These parameters are shown 

in Table 6.7. 

Experiment Result 

Groups 

Percentage Ranges(1) 
Number of Cases(1) 

Minimum Weights( 1) 

Percentage Ranges(2) 
Number of Cases(2) 

Minimum Weights(2) 

Percentage Ranges(3) 
Number of Cases(3) 

Minimum Weights(3) 

We show the adjustment result in Table 6.8. If we sort the initial weights for all the question- 

answer pairs from low to high, we can see from the table that this relative order is maintained 

in the first and third sets of adjusted weights. For instance, the initial weight for QA.l is 

less than that for QA.7, whose initial weight, in turn, is less than that for QA.ll .  This order 

is preserved in their corresponding adjusted weights. In the second set of adjusted weights, 

the weights for QA.21 and QA.22 are reversed from their positions in the initial weights. 

Table 6.7: Three Sets of Adjustment Parameters for Roger's Cable Case Base 

Average 

31%-50% 
9- 14 
0.50 

31%-50% 
9- 14 
0.50 

31%-50% 
9- 14 
0.50 

Very Good 

1%-10% 
1-2 

0.70 

1%-20% 
1-5 

0.80 

1%-10% 
1-2 

0.70 

Good 

11%-30% 
3-8 
0.60 

21%-30% 
6- 8 
0.60 

11%-30% 
3- 8 
0.60 

Bad 

51%-70% 
15-19 
0.30 

51%-70% 
15-19 
0.30 

51%-70% 
15-19 
0.30 

Very Bad 

71%-100% 
20-28 

0 

71%-100% 
20-28 
0.05 

71%-100% 
20-28 
0.05 
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Q-A 
Pairs 

QA.l 
QA.2 
QA.3 
QA.4 
QA.5 
QA.7 
QA.8 
QA.9 
QA.10 
QA. l l  
QA.13 
QA.14 
QA.15 
QA.16 
QA.17 
QA.18 
QA.19 
QA.20 
QA.21 
QA.22 
QA.24 
QA.25 
QA.26 
QA.27 
QA.28 
QA.29 
QA.30 

Initial 
Weight 

0.10 
1.00 
1.00 
0.11 
0.99 
0.63 
0.80 
0.90 
0.61 
0.95 
0.82 
0.90 
0.95 
0.73 
0.90 
0.70 
0.90 
0.95 
0.41 
0.56 
0.80 
0.90 
0.75 
0.75 
0.85 
0.80 
0.80 

Weight 

(1) 
0.07 
1.00 
1 .oo 
0.11 
1 .oo 
0.70 
1 .oo 
1 .oo 
0.66 
1.00 
1.00 
1 .oo 
1 .oo 
0.70 
0.70 
0.60 
1 .oo 
1 .oo 
0.70 
0.70 
1.00 
1 .oo 
1 .oo 
1 .oo 
1.00 
1.00 
1 .oo 

Weight 

( 2 )  
0.11 
1 .oo 
1.00 
0.14 
1 .oo 
0.95 
1.00 
1 .oo 
0.80 
1 .oo 
1.00 
1.00 
1 .oo 
0.90 
0.95 
0.60 
1.00 
1 .oo 
0.95 
0.90 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1.00 

Weight 

(3)  
0.11 
1.00 
1.00 
0.14 
1.00 
0.70 
1.00 
1.00 
0.66 
1.00 
1.00 
1.00 
1.00 
0.70 
0.70 
0.60 
1.00 
1.00 
0.70 
0.90 
1 .oo 
1 .oo 
1.00 
1.00 
1.00 
1.00 
1.00 

Table 6.8: Adjustment Results for Three Sets of Adjustment Parameters 
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L I I I I I I I I I I I I I I I I I I I I I I I I I I I  e 
1 2 3 4 5 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 

Question-Answer Pairs 

Figure 6.3: Adjusted Weights vs. Initial Weights for Roger's Cable Case Base 

All the other pairs in that  adjustment maintain the relative order. 

In Figure 6.3, we graph the initial weights assigned by the domain experts from the 

company and the adjusted weights assigned by our static adjustment method using the 

third set of the adjustment parameters. In the figure, the X-axis represents the question- 

answer pairs. For space's sake, we just label each question-answer pair as 1,2,. . .,30. Because 

QA.6, QA.12 and QA.23 are not associated with any case, so we omit them. The Y-axis 

represents the weights ranging from 0.00 t o  1.00. From the figure, it can be clearly seen 

that  the curve of the adjusted weights approximates the curve of the initial weights a t  

more than half of the points(question-answer pairs). Of the 27 question-answer pairs, the 

adjusted weights of 15 pairs out of them are very close to  their initial counterparts, while 

the remaining 12 pairs maintain their relative order as discussed above. 

However, some question-answer pairs which have different initial weights now get the 

same weights. For instance, the weights for the question-answer pairs which are just associ- 

ated with one case are now all assigned with the same weight of 1.00. In our static adjusting 

method such a question-answer pair belongs t o  the very good group. This phenomenon is 

obvious in the above figure in the last several question-answer pairs. Although they have 
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different initial weights, they all have the same adjusted weight, with no one being more 

distinguishable(Their relative order is still the same). This is in accordance with what we 

have predicted in Chapter 3. 

We think that the most important argument for such a static adjusting method is that 

the relative order is the same for both the initial weights and the adjusted weights. From 

this experiment result, it can be seen that our method fulfills the goal. 

6.2.3 Repetitive Adjusting 

It is difficult for the parameters in the static weights adjusting component to  be accurate 

when they are first specified. This requires that the static weight adjusting algorithm be 

a repetitive process, in which the domain experts' knowledge and previous experiences will 

be applied. Adjusting and testing processes maybe repeat alternatively several times before 

the final adjusted case base is put into the practical use. 

6.2.4 Running Time for Static Weight Adjusting Method 

In the practical implementation, the cases and the question-answer pairs in a case base are 

usually not fully associated. If we save the information beforehand about the associations 

between cases and question-answer pairs (represented as (question,answer)) as a set of 

triples (case, question, answer) along the construction of a case base, then the time spent 

is linearly proportional to the size of this set. This time is less than O(N * M) discussed 

in Chapter 2. In our experiment, the size of the triple set in the artificial case base is 634, 

which is less than half of 75 * 21 = 1575. For the Roger's Cable case base, our method takes 

about 10 seconds to  finish the adjustment work. 

6.3 Test for Dynamic Weight Learning Method 

As discussed in Chapter 4, the dynamic weight learning method will incorporate a user's 

behavior and preferences into the weights attached to  the associations between the feature- 

value pairs and the cases, and between the cases and the their associated solutions in a case 

base. 

After integrated with a backpropagation neural network as a learning component, a 

CBR system is a responsive system which will be changing with its environment. We hope 
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to confirm through the experiments that our dynamic weight learning method is feasible to  

adjust the weights in a CBR system. A user's preferences can be learned by our system in 

an efficient and timely fashion. Besides, the learning quality is optimal, approximating a 

user's preferences gradually. Furthermore, the system will change over time in response t o  

its user's changes 

6.3.1 A User's Preference 

In the practical use of a CBR system, when a new problem is encountered, a user will extract 

its features, and use them to search in the case base. Thus, for a new problem, there is a 

set of features corresponding to it. 

Let us further consider from another angle about this set of features. After a user inputs 

a set of features into a CBR system, s/he desires to get a set of most similar cases with the 

scores ranking from high to  low. Thus there is a correspondence between a set of features 

and cases and their associated scores. For a different new problem, there is a different set 

of features. Even for the same set of features, different users may have different views(i.e. 

weights), thus resulting in different case scores. We can consider that a set of features form 

the context in which a set of cases and their scores will be produced. 

For a new problem in a domain, there is always a set of appropriate features which can 

be used to  describe it. However, not every set of features can represent a new problem, 

since maybe there is some inconsistent and contradictory information in it. For instance, 

two particular feature-value pairs might be mutually exclusive. Take the small case base 

in Table 2.1 as an example, the feature-value pair (job status, salaried) and (job status, 

waged) is mutually exclusive. 

Using the same convention as that in Chapter 4, in order to  emphasize that we have 

separated the problem solution from the problem description in a case, we use problem 

description or just problem instead of case in the following discussions. This is also in 

accordance with the three-layer structure we introduce in Chapter 4. 

Let Q be the set of feature-value pairs in a case base. Let Q, be a subset of 2Q, 

where 2Q is the power set of Q, and in Q,, each member is a valid combination of feature- 

value pairs in the case base. For instance, if Q = {(fl, vl), (fi, v2), (f3, v3)), and the 

feature-value pairs ( f l ,  vl) and (f2, v2) are mutually exclusive, then the set Q, will be 

{{(fi, VI)), ( ( f 2 ,  ~ 2 ) ) ~  ((f3, ~ 3 ) ) ~  ((f17 'I), (f3, ~ 3 ) ) ,  (( f2 ,  (f3, ~ 3 ) ) ) .  Let P be the set of 

all the problems in the case base. Let S be the set of all the solutions in the case base. Let 
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I = {1,2,3, .  . a ,  100) represents the possible ranking scores of a problem or a solution. In 

the following, we define a user's preference in a case base. 

Definition In a case base, a user's preference is defined as two functions. The first 

function is called p-function shown as follows: 

The second function will be executed after p-function. It is called s-function: 

We can see from the above definition that a user's preference is composed of two parts(p 

and s) represented by two functions. p-function takes a valid set of feature-value pairs as 

its input and produces a set of problems and their associated ranking scores. After this, the 

user may select a promising problem for further consideration. s-function takes the same 

valid feature-value pair set and this selected problem as its input and produces a set of 

solutions and their associated ranking scores. 

Let us take a look at a simple example for this definition. Using the same feature- 

value pair set Q in the previous example, assume that P = {pl,p2,p3), and S = {sl, s2). 

Given a valid feature-value pair set q, = {( fl, vl), ( f3, v3)) in Q,, p(q,) might produce 

{(pl, 70), (p2, 50)). If problem pl is selected for further consideration and solution sl is 

associated with pl,  then s((q,, pl)) might produce {(sl, 70)). 

From this viewpoint, the neural network learning component we introduce into a CBR 

system is attempting to  simulate these two functions in its weights. It takes a user's pref- 

erence and outputs a set of problems, and a set of solutions afterwards. If the user is not 

satisfied with the output, s/he can feed back her/his response to the system, which, in turn, 

will change its weights to  reflect the response. 

6.3.2 Experiment for Movie Case Base 

Experiment Set up 

The CBR Group at  SFU participated in the Open House sponsored by SFU in 1996, and 

there they demonstrated their product C a s e ~ d v i s o r ~ ~  using a movie case base. The case 

base consists of problems(cases) with each representing a movie. A user can input some 

keywords about the movie s/he desires and answer some questions such as what type of 
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movie do you like?, who is your favorite actor? and etc.. The system will retrieve a set of 

possible movies for the user t o  choose. 

In order to  do our experiment, we restructure this case base. Right now, each problem 

represents a specific type of movie, such as comedy movie, science fiction movie, family 

movie, action movie, and etc.. For each type of movie there are several possible solution 

movies which belong t o  that specific type. The question-answer pairs(feature-value pairs) 

are the same as before. Thus, it can be seen that the whole case base, once restructured, is 

a three-layer hierarchy with the question-answer pairs at the bottom layer, the problems a t  

the middle layer, and the solutions a t  the top layer. 

There are 25 question-answer pairs QA.l7QA.2,. .,QA.25, ten problems or types of movie 

P l , P 2 , - .  .,P10, and 15 solution movies S l , S 2 , - .  .,S15 in the case base. In our experiment, 

all the weights are initialized t o  0.5. 

A First Experiment 

The first experiment is designed for the demonstration of a situation where a user is satisfied 

with all the problem retrieval results except one. The user's preference contains only one 

valid set of question-answer pairs. It can be learned very quickly. Recall in Chapter 4 that 

we discuss that  the weights for a problem are local, independent of the interactions from 

other problems in the dynamic weight learning component. 

Experiment for Desired Problem Scores 

The experimental data  is shown in Table 6.9. The question-answer pairs involved in 

this experiment are QA.5, QA.7, QA.12, and QA.20, while the problems involved are 

P2, P3, P4, P5, P6, P7, P8, P9, and P10. Problem P 1  is not included since it is 

not associated with any of the four question-answer pairs. This is in accordance with 

Formulas 4.11, and 4.17. However, if a user does specify such a problem in her/his 

valid set, our system will detect and report it. 

Before the learning, the retrieval result for these problems from the system is shown 

in Table 6.10. After the first round through all the problems' desired scores specified 

Table 6.9, the retrieval result is shown in Table 6.11. From the table, we can find 

that  because there is no interactions among problems, our system quickly brings the 

retrieval result into the optimal state we desire. 



CHAPTER 6. EMPIRICAL TESTS 

0 Experiment for Desired Solution Scores 

Problem & 
Scores 

Q-A 
Pairs 

Next we will try to  adjust the weights attached to the connections between problems 

and their associated solutions as shown in a user's preference(part s). Under this 

situation, we do not care too much about the actual scores of the problems, we focus 

our attention on the final solutions of those promising problems. In practice, we would 

like to choose the problems retrieved with higher scores for further analysis. However, 

we still need to  maintain the order of their ranking positions in order t o  show their 

relative importance in the user's preference. 

P 7  = 50 
P 8  = 20 
P 9  = 40 

Table 6.9: A User's Preference(Part p) 

Problems & 
Scores 

Q-A 
Pairs 

Table 6.12 shows the solutions associated with the four problems which are at the first 

four highest positions in Table 6.9. 

Problems & 
Scores 

P 6  = 34 P10 = 73 
P 7  = 56 
P 8  = 34 
P 9  = 34 

Table 6.10: Initial Problem Retrieval Result 

In this experiment, we take each problem in turn. We first select problem P3, and try 

to  adjust the scores of its associated solutions. Then we process problem P10, after 

that we take problem P7, and the last problem we take is P2. This forms one training 

round. There is a total of 4 rounds during our training in this experiment. 

Problem & 
Scores 

Problems & 
Scores 

After each round, we sample the scores of the solutions associated with all the four 

problems. We show the initial solution retrieval result, and the corresponding retrieval 

Problems & 
Scores 
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Problems & Problems & Problems & 
Scores Scores Scores 

P 3  = 93 P 7  = 50 
P 4  = 20 P8 = 20 
P 5  = 39 P 9  = 39 

Table 6.11: Problem Retrieval Result after First Round 

Table 6.12: A User's Preference(Part s) 

Problems 

P 3  

result after each round until round 4 in Table 6.13. We can see from the table that 

after four rounds of adjustments, the final solution scores are getting t o  the desired 

scores. 

Solutions & Scores 

S4 = 95, S9 = 95. 5'14 = 70 

We can find some interesting information from the table. Solutions ,911 and 5'1 are 

only associated with problem P10, so their desired scores are reached faster than other 

solutions. We attribute this to  the fact that there are no other solutions interacting 

with them. Solution S14 belongs to  problems P3, P 2  and P7. However, it has different 

scores in these cases. A more interesting observation is made between solutions S 3  and 

5'6. These two solutions belong to  problems P 2  and P7. But their ranking position 

within these two problems are totally reversed. Solution S 3  is higher in problem 

P 2  while solution S6  is higher in problem P7. All these are in accordance with the 

prediction we make in Chapter 4. 

After four rounds of adjustments, we also take a look at  the relative positions of the 

four problems. The scores of these four problems have been changed. But they still 

occupy the first four positions within all the problems with their relative positions 

unchanged. 
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Initial 

Round 1 

Round 2 

Round 3 

Round 4 

P I 0  

$11 = 90 
S 1 =  88 

Sl l  = 90 
S1= 80 

S11 = 90 
S 1 =  80 

S11 = 90 
S1= 80 

Table 6.13: Training Process of Solutions 

A Second Experiment 

0 Experiment for Desired Problem Scores 

In this experiment, a user's preference includes several valid sets of question-answer 

pairs in the learning process. Different from the last experiment, the interactions 

between different problems will make the learning process longer, which is predicted 

in the learning algorithm shown in Chapter 4. The experimental data is shown in 

Table 6.14. There are 4 valid sets of question-answer pairs in the table. 

In our training, we take each valid set in turn. Valid set 1 is first input t o  the system, 

and its problems and their scores will be learned. Then valid set 2, valid set 3, and valid 

4 set will be learned one by one. This forms one training round. In this experiment, 

the training process is composed of five rounds. 
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1 1  Pairs 

QA.22 
Valid Set 3 QA.5 

Scores 

P 1  = 40 
P 2  = 40 
P 3  = 70 
P 4  = 20 

P3 = 20 
P 4  = 95 
P6 = 20 
P7 = 20 

P 2  = 60 
P 3  = 95 
P 4  = 20 
P 5  = 45 

Scores 

P 5  = 95 
P6 = 40 
P7 = 40 
P 8  = 10 

P 8  = 80 
P 9  = 40 
P10 = 60 

Scores 

P9 = 60 
P I 0  = 60 

Table 6.14: A User's Preference(Part p) 

We use two data-sampling procedures. 

1. For the first four rounds, after each round finishes, we input the four valid sets 

into the system one by one again. But this time, we do not require the system 

to learn. We just take a look at  the problem retrieval result for each valid set. 

We sample the retrieval result after each round. Thus, there are four such result 

data sets, each of which is composed of the problem scores under each valid set. 

They are result data set 1,  2, 3,  4.  

2. For round 5 ,  we take the other data-sampling procedure. After valid set 1 is 

presented to  the system, and its problems and their scores are learned, we input 

other three preferences to  the system but do not trigger the learning process. We 

take a look at the retrieval results for all these 4 valid sets, and sample them. 

When this finishes, we take valid set 2 and repeat the same procedure. The same 

procedure then is applied to  valid set 3 and valid set 4. Thus, when round 5 

finishes, we also get four result data sets. They are result data set 5 ,  6 ,  7, 8. 
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Valid Set 3 60 94 20 44 10 54 
Valid Set 4 93 86 75 

Result Data Set 8 P1 P 2  P 3  P 4  P 5  P 6  P 7  
Valid Set 1 39 41 67 20 94 38 39 
Valid Set 2 21 94 10 20 
Valid Set 3 60 94 20 44 10 54 
Valid Set 4 94 85 75 

Table 6.15: Problem Retrieval Result after Five Rounds 

Thus we obtain a total of eight retrieval result data sets. For simplicity, we show only 

five of them in Table 6.15. They are result data set 1, 5, 6, 7, and 8. 

We look at each problem in turn in Table 6.15. It can be found that of the ten problems, 

eight problems P I ,  P2,  P3,  P4, P5, P7, P8, and P I 0  satisfy our designated scores. 

Their actual scores are tending to approximate around the desired scores at small 

distances. We take problem P 3  as an example. We sample its 8 scores for each valid 

set in the eight result data sets during the five training rounds. Its scoring process is 

plotted in Figure 6.4. 
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Figure 6.4: Training Process for Problem P3 
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In the figure, the scoring process in each valid set is represented by a small graph, 

where the X-axis represents the No. of the result data set, and the Y-axis represents 

the rough score of a problem. It can be seen that scoring process of problem P3 is 

around its desired score at a small distance for all the four valid sets. 

The two abnormal problems are P6 and P9. Problem P6 satisfies valid set 1 with a 

score close to  the desired score of 40. However, it is abnormal for valid set 2. Of all 

the question-answer pairs in the four valid sets, problem P6 is associated only with 

QA.l and QA.7. QA.7 only appears in valid sets 2 and 3. So problem P6 should get 

the same scores in these two sets. However, as indicated in these two sets, the scores 

for problem P6 are different from each other. So only within these four valid sets, it 

is not possible to  get the different scores of problem P6 in valid set 2 and valid set 3. 

The same argument applies to  problem P9. Problem P9 is associated with QA.3 and 

QA.7. QA.7 is in valid sets 1, 2, and 3 while QA.3 is only in valid set 2. Therefore, 
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when computing the problem scores, in valid sets 1 and 3, only QA.7 contributes to  

the score of problem P9, so it should get the same scores in these two valid sets, which 

is not true in the actual valid sets. This gives rise to  the abnormality. 

Valid Set 1 

Valid Set 2 

Valid Set 3 

Valid Set 4 

We also note that for problem P6,  it satisfies valid set 1 since it is associated QA.l, 

which gives it a chance to  adjust its score. This is the result of interactions among 

the different question-answer pairs in the learning process. We think that with more 

valid sets of question-answer pairs in a user's preference, the learning quality will 

become better and better. In a real application, a user might not have a preference 

consisting of only several valid sets as specified exactly as those in Table 6.14. Different 

combinations of valid sets interact with each other, contributing to  the final optimal 

retrieval result. 

If we just think the problems at  the higher ranking positions are promising, then we 

can see from the table that our learning component produce the optimal retrieval 

result within only several rounds. 

Table 6.16: One User's Preference(Part s) 

Problems 

P 5  
P 3  
P I 0  

P 4  
P I 0  

P 2  
P3 
P 2  
P 3  
P 7  

Experiment for Desired Solution Scores 

Solutions & Scores 

S4  = 95, S6 = 80, S8  = 60, S9 = 40 
S9 = 90, S4 = 80, S14 = 50 
Sl l  = 80, S1 = 70 

5'11 = 90, 5'12 = 60 
S11 = 80, S1 = 70 

S 3  = 90, S6 = 60, S14 = 60 
S9 = 95, S4 = 90, 5'14 = 50 

S 3  = 95, S6 = 60, 5'14 = 60 
S9 = 90, S4 = 80, S14 = 60 
S 3  = 80, S7 = 70, S6 = 40, 14 = 20 

Next we will try to  adjust the weights attached to the connections between problems 

and their associated solutions in this user's preference(part s). Also we do not care 

too much about the actual scores of the problems, we pay our attention to  the final 

solutions of those promising problems. 
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Solutions & Scores 
S 4  = 92,  S 6  = 73,  S 8  = 71 ,  S 9  = 44 
S 9  = 90,  S 4  = 74,  S14  = 20 
S11  = 80, S 1  = 78 
S11  = 80,  5'12 = 93 
S11 = 87,  S l  = 83 
S 3  = 67,  S 6  = 37, 5'14 = 27 
S 9  = 97,  S 4  = 94,  S14  = 42 
5'3 = 86,  S 6  = 48,  5'14 = 39 
S 9  = 86,  S 4  = 75,  5'14 = 31 
S 3  = 80, S 7  = 70,  S 6  = 40,  14 = 20 

Solutions & Scores 
S 4  = 95,  S 6  = 82,  S 8  = 61,  5'9 = 57 
S 9  = 85,  $4 = 83,  S14  = 39 
5'11 = 69,  S 1  = 63 

Round 1 
Valid Set 1 

Valid Set 2 

Valid Set 3 

Valid Set 4 

Round 2 
Valid Set 1 

Valid Set 2 

Valid Set 3 

Valid Set 4 

Round 3 
Valid Set 1 

Valid Set 2 

Valid Set 3 

Valid Set 4 

,511 = 80,  S12  = 54 
S11  = 80,  S l  = 69 
S 3  = 77,  S 6  = 48,  S14  = 37 
S 9  = 96,  S 4  = 93, 5'14 = 61 
S 3  = 86,  S 6  = 53,  S14  = 45 
S 9  = 88,  S 4  = 77 ,  5'14 = 48 
S 3  = 74 ,  S 7  = 62,  S 6  = 39, 14 = 19 

Solutions & Scores 
S 4  = 94,  S 6  = 82, S 8  = 61,  S 9  = 58 
S 9  = 80,  S 4  = 80, 5'14 = 44 
5'11 = 71 ,  S 1  = 65 
S11  = 83,  5'12 = 56 
5'11 = 80,  S 1  = 69 
S 3  = 86,  S 6  = 57,  S14  = 48 
S 9  = 94,  S 4  = 91,  S14  = 66 
S 3  = 92,  S 6  = 62,  $14 = 58 
S 9  = 89,  S 4  = 80,  5'14 = 61 
S 3  = 79 ,  S 7  = 69,  S 6  = 39, 14 = 19 

Problems 
P 5  
P 3  
P10 
P 4  
P10 
P 2  
P 3  
P 2  
P 3  
P 7  

Problems 
P 5  
P 3  
P I 0  
P 4  
P10 
P 2  
P 3  
P 2  
P 3  
P7 

Problems 
P 5  
P 3  
P10 
P 4  
P I 0  
P 2  
P 3  
P 2  
P 3  
P 7  

Table 6.17: Solution Retrieval Result after Three Rounds 
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- I 1  - / Is the account enabled/in pay status? 11 Yes 

Questions asked technical representative 

What type of problem is sub experiencing? 
Which channels have the problem? 
Is the problem affecting more than 1 outlet? 

Table 6.18: A User's Query 

Answers from Customer 

Hong Kong TV 
All 
No, Only 1 outlet is being affected. 

We apply our learning component to  the data shown in Table 6.16. The whole training 

process is composed of 3 rounds. We sample the solution retrieval result after each 

round, which takes and learns each valid set one by one. If we only take the relative 

ranking positions of the solutions in each problem in each valid set, we can find that 

there is no abnormality within all the solutions in Table 6.17 after only three rounds. 

Their relative ranking positions observe the ones designated in the user's preference 

as shown in Table 6.16. 

If we set that the range of f 5 around a desired score of a solution is acceptable, then 

we find from Table 6.17 that of 29 solutions produced by four valid sets, only seven 

solutions fall into the unacceptable score range. If we consider that this process only 

takes three rounds, then such a result is optimal, confirming our hypotheses discussed 

in Chapter 4 and at the beginning of this section. 

6.3.3 Experiment for Roger's Cable Case Base 

Experiment Set up 

We have briefly discussed the case base from Roger's Cable Company in the test for static 

weight adjusting method. A customer will call the technical representatives on the help 

desk in the company. S/he will describe what her/his current problem is. A technical 

representative will input such a description into the Problem-Resolution Module. Then 

s/he will select some questions and ask them to the customer. Based on the answers to  

these questions, the Problem-Resolution Module will retrieve a set of relevant cases and 

their scores. 

As an example, assume that a customer has a problem to watch some channels. S/he can 

call and tell a technical representative about this. The technical representative will input the 
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Description 
Solution 

Description 
Solution 

86 
Hong Kong TV will not work with VCR or converter 
TV set requires re-tuning to accommodate NTSC signal. 
Advise Sub to  phone K.S. Video at 876-8320 for re-tuning. 
If sub is unable, generate trouble ticket for FSR to re-tune TV. 

46 
Converter hookup problems 
Converter will change channels but TV set does not. 
Check connections with converter, TV set, and any other equipment. 
Make sure TV set is on channel 3. 

Table 6.19: Case Retrieval Result 

description of the problem, such as problem with channel, or just channels to the Problem- 

Resolution Module. Then the representative will ask the customer some questions. We show 

in Table 6.18 the questions posed by the technical representative and the answers replied by 

the customer. After these questions are answered, the Problem-Resolution Module retrieves 

a set of cases. These cases are ranked by their scores from high to low. We list in Table 

6.19 the two cases with the highest scores produced by the query shown in Table 6.18. 

Now in this experiment we will also apply our dynamic learning method to this case 

base. In order to  do our experiment, we set up two copies of the case base with different 

sets of weights. The first copy of the case base uses the weights specified by the domain 

experts from the company. The second copy has the weights initialized to  0.5. If we think 

the weights in the first copy represent a user's preference in the company, then we will learn 

these weights in the second copy using our dynamic learning method. 

We select 13 out 28 cases(prob1ems) from the case base. These 13 cases are frequently 

used in the company. Accordingly we also select seven valid sets of question-answer pairs 

in the case base. In the first copy of the case base, the seven case retrieval results produced 

by these seven valid sets cover all these 13 cases. Each of them occupies one of the three 

highest positions in one of the seven case retrieval results. Thus we can think that these 

seven valid sets represent the user's preference in the company. 

The case base in the company is used for the purpose of solving a customer's technical 

problem. All the technical representatives in the company use the same weights when 
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dealing with new problems. Therefore there is only one user's preference during their work. 

Besides this, this preference is constant within a relative long time. We also observe that the 

interactions among question-answer pairs are little, i.e. a case's coverage is in little common 

with another case's. For this situation, we claim that  our dynamic learning method will 

quickly simulate the user's desired preference. Another fact we need t o  notice is that there 

is no solution layer in this case base. The connections are only between cases and question- 

answer pairs. As indicated in Chapter 4, our learning model can employ single-layer neural 

network t o  do weight adjustments if the user wants to  input judgement a t  the problem layer. 

The whole learning process is as follows. We open the two copies of case base in two 

separate Problem-Resolution Modules. For the first copy, we input one of the seven valid 

sets of question-answer pairs. The module produces a set of cases and their scores. For the 

second copy, we input the same valid set. Also a set of cases and their scores is produced. By 

comparing these two sets of cases and their scores we can find the differences between them. 

For each of the three highest cases produced by the first copy, we find its correspondent in 

the cases produced by the second copy. Then according t o  its score produced by the first 

copy, we specify its correspondent's score and trigger the learning action in the second copy. 

The comparison, specification, and learning process will be applied t o  each of the 7 valid 

sets in turn until all the seven case retrieval results produced by the second copy are around 

the ones produced by the first copy. 

In the use of a CBR system a valid set of question-answer pairs is actually a query t o  

the case base, which produces a set of cases and their scores. Thus we can call such a valid 

set a query. 

Experiment Result 

In our experiment, the whole training process takes four rounds, each of which is composed 

of query 1 t o  query 7. All the scores of the 13 cases produced by the second copy converge 

to  their desired scores produced by the first copy. 

We can define the error of a case produced by a valid set of question-answer pairs in the 

learning process is the absolute difference between its computed score and its desired score. 

In our test,  the desired score of a case is produced by the first copy of the case base while 

the computed score is produced by the second copy. 

For each query, we take a look a t  the case having the highest score. Thus we get a total 

of seven cases. We check these cases7 errors by comparing their computed scores produced 
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Error Corwergence Chart for 7 Highest 
Cases in 7 Queries 

Training Process 
4 

Figure 6.5: Error Convergence Chart for Seven Highest Cases in Seven Queries 

by the second copy with their desired scores produced by the first copy during the training 

process. The error convergence chart for these seven cases is graphed in Figure 6.5. 

We also take a look at the case having the second-highest score produced by each query. 

We still get a total of seven cases. We check these cases' errors as above during the training 

process. The error convergence chart is now graphed in Figure 6.6. 

In the above two figures, the X-axis represents the training process shown as queries. 

The Y-axis represents the case score. We can find that all the errors converge to 0, which 

means that all the case scores converge to their desired scores. We attribute this result to  

the observation we state in the experiment setup(see the beginning of this section). Also 

the small number of training rounds confirm our claim made there. 

If we think the domain experts from the company have the valid sets or queries and 

their corresponding scores in their minds, then we can ask them to train our second copy 

as an ordinary user, just as shown in the learning model in Chapter 4. Once trained, such 

a copy can be used by other technical representatives in the company. 
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Figure 6.6: Error Convergence Chart for Seven Second-Highest Cases in Seven Queries 

However we have to  indicate that although our method has brought the 13 cases to  

their desired scores, we cannot guarantee that after the four training rounds in the learning 

process, these 13 cases's scores will still converge to  their desired ones, Maybe the user will 

change her/his input distribution. Or a different user might come. All these will destroy 

the previous convergence state and trigger another learning process. 

6.3.4 Some Analysis 

Comparison with Bonzano et al.'s Method 

We have discussed a learning method proposed by Bonzano et al.[l] for the weight adjust- 

ments in Chapter 2. Here, we try to  compare our method with theirs. Bonzano et al. employ 

an introspective learning the adjust the feature weights. We argue that their method could 

not deal with a situation that two targets will make a problem to take two contradictory 

operations, 'push' or 'pull7. Our method, taking advantage of a neural network learning 
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method, tackles this situation effectively. The essence of our algorithm is an overall eval- 

uation of the contribution of each particular weight to  the final output error. It takes the 

error as an overall behavior of the system, thus it modifies the weights so that the error 

decreases not just for one problem, but for all the problems. For each user's preference, the 

modification is local to it. However, when a user's several preferences are presented to  the 

system, the system will adjust them as a whole without any locality. Furthermore, with 

more and more preferences, the system behavior tends to increasingly approximate a user's 

desired behavior closely. For instance, from the above experiments, after several rounds, 

the system has already simulated a user's preference to an optimal degree. 

As for the pivotal case(problem)[48](See Chapter 2 for its definition), our system can 

still adjust its retrieval to an acceptable state. Recall in Chapter 4, we argue that if a 

user responses to  a problem retrieved by the system at the problem layer, our system will 

employ Formula 4.17 to  adjust its weights, and the adjustment will be local to it. This 

means that even a case(prob1em) is pivotal, its weights can still be adjusted, and do not 

need the interactions from other problems. This, in fact, provides an approach to  dealing 

with a pivotal ~ase(~rob1em) in the learning process. 

Learning Parameters 

We have used several parameters in the learning process. The activation rate X is used in 

Formulas 4.11 and 4.12. The higher this parameter is, the faster the activation function 

f(x)  will change along with of the change of x. In our implementation, we preset this rate 

to 1.0. A user can change it when using the system. In addition to the activation rate, 

we also introduce a bias factor. In our implementation, when the system uses Formula 

4.12 to compute to  the scores of the solutions for a selected problem, the bias factor the 

selected problem is 8.0. For the unselected problems this factor will be 2.0/(n - I) ,  where 

n represents the number of the problems this solution is associated with. We deduct 1 from 

this number in order to  exclude the selected problem itself. 

The learning rate 17 in adjustment Formulas 4.9 and 4.10 decides how fast the learning 

speed is. Based on the discussions in Chapter 4, we hope that learning speed for the selected 

problem could be faster than that for the unselected problems. In our implementation for 

Formula 4.9, we choose the learning rate 6.0 for the selected problem, and 6 * 0.66/(n - 1) 

for the unselected problems, where n represents the number of problems this solution is 

associated with. For Formula 4.10, the learning rate is the same for all the problems. Again 
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a user can change this rate based on her/his option in the system. 

For more discussions on the activation rate and learning rate, see [54]. 

When a problem or solution is judged to be correct or wrong, if a user does not specify 

the desired score for it,  our system will add or deduct an adjustment delta from the actual 

score. The default value for this parameter is 5.0. A user can also specify this default value 

as long as it is between 1.0 to 10.0. 

Convergence and Real-Time Response 

Zurada in [54] discusses various factors affecting the convergence of the training of a back- 

propagation of neural network, including the initial weights, the activation rate, the learning 

rate, the momentum method, and so on. It is proposed that the effectiveness and conver- 

gence of the backpopagation learning algorithm depend heavily on the value of the learning 

rate, which should indeed be chosen experimentally for each domain. It is further argued 

that the values ranging from to 10 for a learning rate have been reported throughout 

the technical literature as successful for many computational backpropagation experiments. 

In our implementation, we choose 6.0 for our learning rate. During the use of our system, 

on average it takes only about 5-10 seconds for the system to finish the adjustment task, 

and then make the scores of the problems and/or solutions updated. From this viewpoint 

our system is real-timed. A user's action will be captured by the system, and be reflected 

in its own behavior very quickly. This confirms what we have discussed in Chapter 4, and 

at the beginning of this section about what a learning component should be. 

However, we also note that a worst situation happens when a problem has several solu- 

tions which need to  adjust simultaneously and the adjustment deltas are large. The system 

will be divergent. For this reason, we limit the adjustment delta within f 10 from the actual 

score of a problem or a solution to  avoid this situation. Under such a restriction, the system 

never encounters the divergence in our use up to  now. 

6.4 Summary 

We have shown the empirical test results of the static weight adjusting algorithm and the 

dynamic weight learning algorithm. Based on the discussions throughout the chapter, we 

can find the test results show that these two methods fulfill our goals set in the previous 

chapters, confirming the hypotheses we make about them. 
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Our static weight adjusting method digs out the statistical information hidden in a case 

base. In the experiment, although it is not accurate for every feature-value pair, it maintains 

the order of their relative importance in the minds of the domain experts. In contrast t o  

this, our dynamic learning method captures the interactions between the system and its end- 

user, and seeks the chance t o  change itself. In the test, the system gradually approximates 

a user's behavior within an optimal number of iterations. If we enlarge this scenario, we 

can find that  during the use of the system, a user's behavior is demonstrated through the 

interactions with the system. Once it changes, the changes will be captured. Therefore, we 

conclude that  our integrated framework changes its behavior accordingly whenever its user 

changes her/his behavior. 



Chapter 7 

Conclusion and Future Work 

In this chapter, we will summarize our work on the static weight adjusting and dynamic 

weight learning methods. Besides these we will also discuss the limitations of our two 

feature-weighting methods. Going further we will discuss what we want to  do in order to  

further enhance the power of our methods with regard to  the feature-weighting task in the 

case-base maintenance problem. 

7.1 Summary 

Our work aims to  improve the predictiveness of the feature weights in the case retrieval pro- 

cess in CBR. During our use and experience of CBR to  solve knowledge-intensive problems, 

the static and dynamic characteristics of a CBR approach inspire us to  think about a case 

base from both static perspective as well as dynamic perspective. 

Some of the inspiration is directly from our use of a CBR system to solve new problems. 

In the case retrieval process, we find that when a feature-value pair or question-answer pair 

is selected, the scores of a set of cases will be migrated from high to  low or from low to high, 

either dramatically or slightly. If the number of migrated cases is small, then we can easily 

distinguish these cases from others. We always like t o  choose the one whose ranking score 

migrates from low to high dramatically as a potential candidate for further consideration. 

This lays down the foundation of the intuition on which our static weight adjusting method 

is based. Further analysis on the associations between the cases and their associated feature- 

value pairs in a case base reveals that there is some useful statistical information hidden 

there. The distribution of the feature-value pairs within a case base is not uniform, with 
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some feature-value pairs associated with more cases while some associated with few. We 

collect this information, and then accordingly assign back the weights to the corresponding 

associations. Our hope is that this assignment would demonstrate our observations as shown 

above for a case base. The empirical tests we have done show that the static weight adjusting 

method fulfills this goal. 

The needs from practical applications of CBR also encourage us t o  think about its 

dynamic nature. In practice, we often encounter a situation that an end-user is not satisfied 

with the result produced by the retrieval algorithm using the feature weights, which are 

specified by the domain experts during the construction of a case base. In addition, different 

users may have different purposes when using the same case base. Obviously, a single set 

of weights is unable to  deal with the situation. We project this situation into a larger 

background. In our imagination, a CBR system is a responsive system. Its behavior needs 

to  simulate its end-user's behavior, incorporating her/his own preferences. Furthermore, 

a user's behavior is changing, requiring that a CBR system keep its own pace with the 

changes. After analyzing these needs, we are encouraged to  introduce a learning component 

into CBR so that while CBR is still responsible for the reasoning process, the learning 

component now shoulders the burden of the learning process in the integrated framework. 

The learning component will learn its behavior from its end-user's in a dynamic contexts 

over time. We combine a backpropagation neural network with CBR based on the analysis 

of their similarities. However we also take into account the dissimilarities between them 

within the frame of CBR. Empirical experiments in our tests show that such an integrated 

framework achieves the goal we desire. 

The case retrieval process is of key importance in the use of a CBR system. How to  

maintain a set of suitable and updated weights for feature-value pairs, in order to obtain an 

ideal retrieval quality for end-users, is a crucial task in CBR. Statistical information hidden 

in a case base itself needs to  be dug out, while the dynamic contexts, participated in by not 

only the domain experts but also the end-users of a CBR system, also need to  be further 

examined and analyzed. We hope that our work would be a beneficial attempt along these 

directions. 
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7.2 Limitations 

7.2.1 Limitations of Static Weight Adjusting Method 

The static weight adjusting method we introduce into CBR is based on the intuition that 

a feature-value pair associated with a small number of cases in a case base conveys more 

information, and thus needs to be assigned a higher weight. Although we have shown some 

desired result produced by the method, we cannot regard it as a general standard to judge 

every case base. 

Sometimes domain experts do not want only one feature-value pair to dominate the 

similarity computation between two cases. Rather they want an overall evaluation of all 

the relevant feature-value pairs. Under this situation, the feature-value pair which is asso- 

ciated with a small number of cases would also be considered bad, just as the pair which 

is associated with too many cases. The weight assignment in this situation will observe a 

normal distribution. A feature-value pair associated with too many or too few cases will be 

considered to  convey little information, while a pair associated with almost half of the cases 

in a case base will be considered to  convey more information. 

As an example, we show this distribution in Figure 7.l(for a case base of 100 cases). 

In the figure, the desired weight assignment is a normal distribution, where the X-axis 

represents the number of associated cases while the Y-axis represents the desired weight. 

For a feature-value pair, if the number of its associated cases is around 50 cases, then it 

should have the highest weight. On the contrary, if a feature-value pair is associated with 

20 or 90 out 100 cases then it will have a very low weight, which is about 0.11 or 0.09 in the 

figure. Obviously, our method cannot deal with such a distribution of weight assignment. 

7.2.2 Limitations of Dynamic Weight Learning Method 

Follows are some limitations with our dynamic weight learning method. 

1. Convergence problem. Although in our experimental tests, nearly all the cases con- 

verge to their desired scores, we actually encountered divergence several times due to  

the interactions among different cases. How can we know whether our method will be 

convergent for a particular domain beforehand? Experiences and domain knowledge 

might be useful when dealing with such a problem. 
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Desired Weight Assignment 

Figure 7.1: Normal Distribution of Weights 

2. Different users. One of the assumptions of our learning model is that the user of our 

system should be one person. If a different user comes, s/he might not satisfy the 

previous optimal case retrieval result. How can we do to  deal with such a situation? 

Maybe we have to  discard the previous learning result, and trigger another learning 

process. 

3. Training and testing stages. In the learning process, the input space at  the training 

stage might not cover the input space at the testing stage. For the input which was 

trained before, its retrieval result will be optimal. For the input that was never trained 

before, we cannot guarantee that our method can still produce the optimal retrieval 

result. How can we do with such a situation? 

4. Learning parameters. We have many learning parameters to  decide in order to  trig- 

ger the learning process. Such decisions have to  be made based on the analysis of 
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individual domains. This brings inconvenience to ordinary users. 

5. Scaleup problem. Assume a case base, after trained, gets to  its optimal retrieval state. 

At this time, maybe more new cases come, how can we do with them? Because of the 

interactions among different cases, maybe these new cases' presence in the case base 

will not only need to learn themselves, but also make other cases to  relearn, destroying 

the previous optimal state. From this viewpoint, our method is more applicable t o  

the case bases which are relatively steady. How to deal with scaleup problem is also 

the direction along which we want to  do further work. 

7.3 Future Work 

Our proposed methods and their performance provide the convincing arguments on the 

consideration from both the static and the dynamic perspectives about a CBR system. 

However, in order to  improve the methods we propose, there is still some work to  do. 

Although we have tested our work using some artificial and real world data, more data 

will be needed to  further tune and validate the underlying algorithms for these methods. 

For instance, we need to do more tests of static weight adjusting method on different sizes of 

case bases to  decide what the adjustment parameters will be appropriate for each size. For 

dynamic weight learning method, we need to put it into a real problem-solving environment 

and let multi-users use it simultaneously. After a period of time, we will check whether the 

performance of the weights tend to approximate an individual user's preferences to  a desired 

extent. 

We collect the statistical information hidden in the associations between cases and 

feature-value pairs and define five groups for the adjusted weights of individual feature- 

value pairs using Formula 3.6. Definitely, this is not the only computation method with 

regard to  this information hidden in a case base. We need more attempts on different 

weight computation methods and compare with each other for their performance. This not 

only needs theoretical arguments but also practical experiments. 

As indicated [MI, any function that is monotonically increasing and continuous such that 

its defining area is R and its value area is (-1, +1) can be used as the activation function in 

a backpropagation neural network. We have used the one(see Chapter 3), which is currently 

most used, in our implementation. Although their performance satisfies our desire, we can 
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never stop searching for the one which is optimal in a CBR framework. Again this attempt 

not only involves mathematical theory, but also the empirical and practical experiments. 

Our attempts can not stop. If we go further along the static nature and dynamic nature 

of a case base, we can find more interesting topics which deserve further research and 

application efforts. 

In the static weight adjusting method, after we collect the distribution information 

hidden in a case base, if we find a case whose associated feature-value pairs are all belonging 

to  bad group or very bad group, can we think that this case is not so useful? In our intuition, 

matching any of its associated feature-value pairs will not be able to make it distinguished. 

What can we do with such a case? If we take another look at such situation, we may find a 

feature whose values all fall into the bad group or very bad group. Since matching any of its 

values does not contribute much to any case, is this feature not a relevant or useful feature in 

this case base? This is a question we want to  ask. On the contrary, if a feature's values are 

all in the very good or good groups, is there any hidden useful information behind it? From 

these facts, if we check each individual cases and each individual features after collecting 

static distribution information, we can dig out a lot of useful information. Because of the 

time and space limit, we are unable to  realize this in our implementation. 

Within the learning component we introduce to  a CBR system, we maintain a system 

transcript which records what happened in the past in the learning process. This transcript 

is much like a relational table with each record consisting of the case identity of the confirmed 

case, the current keywords, the current feature-value or question-answer pairs matched, and 

so on. Obviously, there is some useful information hidden in it. For instance, we may find 

that after several particular feature-value pairs are matched, one particular case must be 

confirmed for its correctness. Can we borrow some techniques from data mining[21, 181, 

which combines together the A1 and Database technologies in computer science, t o  find 

some useful information from this transcript? 

If we think that the associations specified between the cases and the feature-value pairs 

by the domain experts represent their domain knowledge and experiences, after the static 

weight adjusting and dynamic weight learning, how do we deal with the feature-value pairs 

with too low weights? Although we do not think they are useful, can we unassociate them 

with their associated cases? If it is feasible, does this process provide us with an approach 

to  dealing with irrelevant and noisy features? 

In the light of the questions posed as above, we still have a lot to  do in order to further 
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our work. With many recent successes of CBR in the industrial world, it can be foreseen 

that  CBR will be gaining more and more acceptance. This, in turn,  inspires us to further 

improve a CBR system's performance. Thus, the static as well as dynamic views we take 

on CBR are expected to  be a promising direction which will attract more and more efforts 

and attentions. 
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