* *

Similar’ity Search.in Time Series Data Sets”

»
oF ’:{%%—
g \,,7] v %?x "“?i/u)
i ~ Betty Bin Xia ,, |
M.S. , Jilin Unlversmm ,19@.? D

A
B.S., J11m 1vev§tyll§90

A THESIS SUBM]TTED'IN%ﬁRT[A’[a FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCILNCE
in the School
- of

Computing Science

&

@ Bet‘ty Bm Xia 1998 ‘ '
SIMON FRASER UNIVERSITY
December 1997

All rights reserved. This work may not be

-reproduced in whole or in part, by photocopy

or other means, without the permission of the author. ~ T

l*..

~ National Library
of Canada du Canada

Acquisitions and Acquisitions et

Bibliotheque nationale - ot

r 4

Your file Votre référence .

»

Our file Notre rélérence

- Bibliographic Services services bibliographiques
- 395 Wellington Street™ 395, rue Wellington '
Ottawa ON K1A ON4 " Ottawa ON K1A ON4
Canada ~ . Canada

The author has gr:antedﬁ a non-
exclusive licence allowing the
National Library of Canada to ' %
reproduce, loan, dlstrlbute:r or sell
copies of this thesis in microform,
paper or electronic formats.

-

*

£l

‘The author retains ownership of the

copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission. :

- Bibliothéque nationale du Canada de

S &

L’auteur a accordé une licence non
exclusive permettant a la

“reproduire, préter, distribuer ou

vendre des copies de cette these sous -

" la forme de mcroﬁche/ﬁMde

reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du

droit d’auteur qui protége cette thése

Ni la thése ni des extraits substantiels

- de celle-ci ne doivent étre imprimés

ou autrement reproduits sans son
autorisation. ‘
¥ f%;(3
g

0-612-24275.7

v\"
*

NG

APPROVAL-+ "~
Name: . Betty Bin Xia D
-"Degree: S Master of Science
) o . . |
| Title otl thesis: - Similarity Search in Time Series Data S.ets

9. _ ' ; . .

Examining Committee: Dr. Arvind Gupta
' Chair

Dr. Jiawei Han
Senior Supervisor

-

Dr. Qiang Yang

Supervisor

Dr. Veronica DahL

.
External Examiner

Date Approved:

1

-

Abstract

v

Similarity search on time-series ddta sets is of growing importance in data mining.
With the increasing amount,of data of time-series in many applications, from financial
to scientific, it is important to study the methods of retrieving similarity patterns
efficiently and user friendly for business decision making. B

The thesis proposes methods of efficient retrieval of all objects in the time-series |
dafabase With a shape similar to a search template. The search template can be either
a shape or %6%811ce of data. Two search modules, subsequence search and whole
sequence search" are designed and 1mplemented

We study 4 set of linear transformatiorg that can be u%ed as the basis for similarity
querles on time-series data, and, design an innovative representatlon technique which
abstracts}h; shape notion so that the user can interactively query and answer the
multi-level similarity patterns. The wavelet analysis ‘tecﬂhnique and the OLAP tech-
nique used in knowledge discovery and data warehousing are applied in our system.-
The fretrieval'technique we propose is efficient and robust in the presence of noise, and

can handle several different notions of similarity including changes in scale and shift.

Keywords: time-related database, data warehouse, data minfng. and wavelet analy-
sis. * '

he 3

Acknowledgments |

»

s

I would like to particularly thank rﬁy supervisor, .Dr. Jiawei Han for getting me
interested i in the area of data mining and data warehousing, and his consistent and
sound Cnthues of my ideas and work. I am particularly grateful for his enthusiasm,
constant support, and encouragement. His enthusiasm for work will always be a source
of inspiration in my future career. |

[am grateful to Dr. Qiang Yang for his great help throughout my study and
serving on my supervisory committee. I also warﬂ"’to‘tfﬁan’k Dr. Veronica Dahl for
graciously consenting to be mf external examiner and Dr. Arvind Gupta for serving
as the Chairman of my defense. o

I must thank my DBMiner friends, those we worked together day and night a.n;i
gave me a lot of technical help. Special thanks go to Sonny Chee, Qing Chen, Shan
Cheng, Jenny Chiang, Wan Gong, Micheline Kamber, Kris Koperski, Yijun Lu, Nebo-
jsa Stefanovic, Osmar Zaiane, Slzuhua Zhang, Hua Zhu, Jie Wei, Hongsheng Qin, for
their valuable suggestions and help in these two years of ssudy as well as their friend-
ship. Thanks to all the other friends I have made at Simon Fraser University for
making m’y stay at SFU an enjoyable period of time.

["'will always indebted to my family, especially my parents Lixian Xia and Yulu
Liu, my husband Wei Tian, and my brother Quan Xia. [would like to thank them
for their love. This thesis would not have been possible without all their support and

confidence in nre.

v

9
s

Dedication

-
-

£

v

3

ratm

T

r
<
s 2,
< :
. .
Contents =¥ ®
Abstracto . i
Acknowledgments L. e e L v
Dedication e e e F '. R
List of Tables #... e e e e Vil
List of Figures. q o i
1 Introduction~ e e e e 1
1.1 Data Mining and Data \\arehousmg Technique 1
1.2 Motivations for Slmllarlty \Immg in-Time-Series Data Sets . . 3
1.3 The Goals of Similarity Miner System e ' 6
1.4 Thesis Organization e -7
2 Related Work . . .~ I R 3
2.1 One Dimension String Similarity Searching Lo 3
2.2 Two Dimensions Polygoﬁs Similarity Searching 1l
2.3 The Similarity Search in Data Mining BT 12
2.4 The Similarity-Based Queries L 14
3 The Similarity Miner System. e e e . 16
3.1 General Deﬁmfloﬂs L O 1
3.2 The Archlte@ture of Slmllarlty Mmﬂ b}stem B |
3.3 Challenges in the Design of the Similarity Miner Module . . . 23
4+ Wavelet Analysis S e e 25
1.1 From the Fourier Transforms to the Wavelet Transforms . . . 26
4.1.1 Fourier Analysis e e 26
4.1.2 Similarities between Fourier and Wavelet Transforms 238

vi

=

&

" ey

i : .
J,, 4.1.3 Dissirnilaritji:és i:ietween Fourier and W'avele:t Transforms 28
2’ Multi-resolution Analysis Ce e - 31
4.3° Fast Wavél‘et 'Tr'ansformiAlgoritlrms Ch 32
Tmplementatlon of Wavelet Forward Transform and Inverse Trans— :
form.................x_ e e e 36
5 Subsequence Search Module e e e e T 42
5.1 .Problem Statement . . .‘ e L
- =5.2 Térrninplogy RO e S 13
53 Algorithm e e S £
53.1 Building the Cube L 50
©5.3.2 Wavelet Filter. SR e e e 50
5.3.3 Encodirlg R Ce e S e 55
A 5.3.4 Multi-Levek Resolution Search e e e c ... 60
5‘3 i Experiment Results‘. 5 .‘ 66
5.4.1 Execution Experiment Ce e e 66
5.4.2 Scalablhtv Study.o L. 69
6 \Vhole Sequence Se&rch Module Tl
: 6._1 . _Problem Statement ; P LT
6.2- b: Terminology°., ... T T2
| 6.3 .Alggorﬁhms ’* A
6.3.1 " Brute-Force Approach)(............. A T
- 6.3.2 A Feasible Approach e .. |
6.3.3 Valldlty -and Accuracy of Algorlthn‘f6 3 e 8l
6.4 prerlment’ Results, .~ ‘. Ce S 4 S4
e 6.4.1 Execution Experiment e .. 85
6.4.2 Scalability Study 86
7 Conclusions A R . 89
' 71 Summary T e e S .89
7.2 Discussion IR o 90
73 " Future Work e 91
Bibliography FE 92
vil

A

List of Tables :

.

2.1 Table D: an edit distance-based approach . . . ;...
4.1 The coefficients for the wavelets in Figure 4.3 e
5.1 The shape definition table e,
5.2 The chop length scheme based on the time hierarchy level
5.3 The chop length scheme based on the number of attribute values

7
@

Vil

[hly |
Ut

Lt
oL

List of Figures

2.1

3.1
3.2
3.3
34

Construction of suffix treeso ’

1

General architecture of similarity miner system
A cube abofit the sales of cars during 4 years A
Partiat orderg(l *hierarchy for ‘time’ dimension =+

Partial or(leled hierarchy for Car Type dlmensmn and Location dimen-

o o :
SION - % Lo L T e e e e e e e e e e e e e e e e
." L o L .

M
\\ avel'ét fon\ard transform e e e e e ..

%@ \Vavelet inverse transform (recomtructlon) e e e e e

4.3
4.4

1

[\ }

Jrr Ot
= v I

(1}
[}

Several different familjes of wavelets

‘l;.mﬂr = ‘;ml @ ‘/‘/Jmln % ‘{v}mln+1 q:) T EL] L‘f.}.maz—l """" S s
. N y
A segmented piecewise linear representation. (a) original data, and (b)

- ﬂ"‘\ -
the segmented version of this sequence.

The illustration of the shape definition table
The shape deﬁnmon hlerarch%z tree e
Wavelet filter o o I
A concept hierarchy of the time dimension: (a) with the same numbers
ofsnblmgs

A concept hierarchy of the time dimension: (b) with different numbers

cofsiblings. L L e

()Tlmesequences = (10 10, 11 11,8,8,13,13). and (b) time sequence
= (10,10,10,10,11,11,11,11,8,8 8,8,13,13.13,13).

o
-1

Ut
0.9]

5.9

6.1

6.8
6.9

~n,
&

A stock data sequence Aof_SS—cP index from Jan. l,‘ 1.2)210 to Dec. 31,

1992, with 40 : 1 c’ompési/on ratio, and 15.37% relative [,2 error, with -

"e-—:0.0l after the reconstfuction. *.

The test result of subsequence search gnodule T

(a) Time sequence § = (10,10,10,11,11,1L,8,8,8,13,13,13), and (b) .
time sequence § = (40,40,40,44,44,44,32,32,32,52,52,52). :

(a) Time: sequence 5 = (7,6,9,8,8,7,9,9,8,8), and (b) time sequence
p=(13,12,15,14,14,13, 15,15, 14,14). .. oo

From the V] space

Jmazx

space transforms to the Vj _
(a) The original sequences of seriesl and series2, and (b) after normal-

1zation De = 0. e

(a) The original.sequences of seriesl and series2, and:(b) after normal- -

. »

ization De= 9.1476, after wavelet Dw=2.398.

(a) Series| and series2 before the normalization, and (b) series3 and

seriesd before the normalization.

(a) Seriesl and series2 after the normalization, and (b) series3 and

. seriesd after the normalization.. R

>

(1) The test result of whole sequence search module

(2) The test result of whole sequence search module

67

69

oL
3 -1 O

-

Chapter 1

Introduction

¢ w
The research in this thesis grows out from the development of data mining techniques.
With the rap(id develol.zment of automated data collection tools, database systems; and
data warehouse technologies, the scientific community has shown a rapidly growing
interest in the discovery of hidden information in database‘-s and data warehouses.
also known as Data Mining. Many enterprises need to store and analyze sequences
of time-stamped data, also called time-series data: It is very important to develop
techniques to mine the useful patterns or knowledge from it. A time series cn he
defined as * a sequence of real numbers, each number representing a value at a time
point™ 3, 2] . Time-series data sets are of gfowing impor?ance in many new database
applications, such as data mining or data warehouse. We are especia;ly interested in
mining similarity patterns in large sets of time-series data. In this chapter, we give a
brief introduction of the notions of time-series data sets and the data mining and data

warehouse technique which our system is based on, and then address the motivation

of similarity search.

1.1 Data Mining and Data Warehousing Technique

Data warehousing is a collection of decision support technologies, which is to help
people make better and faster decisions. We have seen rapid growth of data ware-

house systems in the past few years. Data warehousing has been successfully adopted

1

CHAPTER 1. INTROQUCTION . - | 2
. | N o , . |

¢ N

by many industries: manufacturlng, retail, financial'services, transportatlon ;elecom- .

-

mumcatlons and medical.
* A data warehouse is a “subject-oriented, integrated, time-varying, non-volatile
'c’o‘llection of data that is used primarily in organizational decision making”™ [9]. The

data warehouse. s‘,uppo’r‘tsjon-line analytical processing (OLAP), and it is targeted for

decision support. Data warehouse contains historical, summarized and consolidated -

" data, which can be from several operational databases over potentldlly long periods
of time. Thus the slze of the data warehouse tends to be hundreds of gigabytes to ter-
abytes, and the workloads depend mostlv on the ad hoc, complex queries that require

accessing millions of records and performlng a lot of scans, joins, and aggregates

As its name suggests, a data warehouse acts as a ¢entral storage area (a. ‘ware: |

house™) for the data. It is also a data cleanser and a data organizer for easy and

intelligible access of data. Whereas, data warehousing is a process of construction

and utilization of data warehouse.

Data mining tool is one of the front-end tools of the data warehouse to do querying L

and data analysis. .

Mining information and knowledgé from large databases is not a new idea and
has been recognized by many industrial companies as an importapt area with an
opportunity of business success.

With the explosive growEh of data in databases, and these databases contain trea-

sures-of information that allows the company to detect trends or ,pattéms and react

flexibly to them. However this information is hidden in the mount s of data, and
cannot be discovered using Con.ventional database management svs'féms. The so-
lution is data mining. It has become a research area with increasing lmportance
[28, 33, 37]. Data mining is a technique to reveal the strategic information Ridden in
large databases. This information, e.g. trends and patterns, can be used to improve
business decision making.

Data mining, which is also referred to as knowledge discovery-in databases, means
: - R

“a process of nontrivial extraction of implicit, previously unknown and poten‘fially

useful information (su¢h as knowledge rules, constraints, regularities) from data in

-

databases” [33]. :

o

CHAPTER 1. INTRODUCTION S '3

»

D‘ata mining is very useful for the company manacr‘ers such as helping the company
to find and reach better customer, gaining critical busmess ms1ght to heélp ralsmg

proﬁts etc.’
9 s » . 4 .

- L4 *‘

1.2 ,Motivatioris‘for Simi!éri».ty’ Minin@ inT'irhe-’Series
~. Data Sets . N | . ' :

In the last few years, stormg and anal)zmg sequences of time-stamped data are be-
coming more and more prmcnpal in many enterprises. For example, financial firms
assomate a stock’s high, low, closing price, and volume with a given day, and intelli-
gence agenues associate complex satellite data wnth the time the data was collected
Time-related data is used by many other kinds of enterprlqes as well, including manu-
facturing (assembly line events), Jou;nalnsm (news dlqutches), earth science (%6‘15”11?
events), and engineering (code changes).) ' &

In the Information Age, knowledge is power, and informatidll is the key to profits.
so the ability to manage time-series data accmatel) effi(:lently and flexibly is vital
to.business success. To mine 51m11ar1ty patterns %om large time-series data s%ts is
especially important. ' o i@t

From the following examples, we study the 1mportant appf"catlons of the similarity

search in time-series data sets.

Example 1.2.1 Suppose there at® about 10 years of data about the daily. closing
price of IBM company and Microsoft company. ‘A user may want to find if they
behaved in approximately the same wa.v in all the times, or during the-years 0%985
to 1987 period, or even (lurmg the months of July 1988 to November 1988. A user -

may dynamically drill-down or roll-up along the time dimension to explore the desiljt‘d

* information.

S
.

Example 1.2.2 Given two time sequences of the tem&rature in two regions of the
world, one may want to find years when the temperature patterns in two rég"%ns of

the world were similar.

CHAPTER 1. INTRODUCTION=# . 1
. oo~ v,/rv {" 5

. & ,
Example 1.2.3 Given a bunch of time sequences of the stocks for the companies, we

may want to find other cdmpanies whose stock price fluctuations resemb'}g‘Michsoft’s
during a vear or at all the times. _ B

}
4

These are the cases that people want to ¢compare two or more’time-related data -

~ sequences, but there-are also the cases that the users want, to analysis the trend for

oile,ti‘me sequence data, such as the following example.

Ekampl_e 1.2.4 For one company, a user may want to find that its stock price in-
creased sharply up to September 1980, and-then crashed sharply. One may likely to
perform data ana‘l) sis on different resolutions of shapes, such as the overall shape or

the detail shape. o %
. :;:r' Tiay

~ _In these examples, the approximate maiching is usually more useful than exact

. Mo TR AT T
matching. since it will be very rare to. have exact match for two data sets.
The above, examples indicate some interesting applications of the similarity search
in time-series data sets. To implement them successfully, there are seme challenges

as follows: 4

N

e What is similarity. The meanmg of similarity may vary (lepend’)g on the ap-
plication domain and even the purpose of the query. Work in this area is usually
specific to one particular domain and uses one specnﬁc notion of similarity. Such
as in the 2-dimension space polvgons searching, or in the multimedia databases
image searching, or in the text-pfocessing system the text string searching. The
research domain in this thesis is in databases with time-series of real numbers.
The syntax and semantics for smnlarit} queries, which account for approximate

matching. scaling and shlftmg are given in later chapters.
,%\
e Two kinds of similarity problems. For our l-dimension time-serfes do-
main, two basic problems in this area are First(All)-Occurrence Subsequence

Matching and First{All)-Occurrence(s) Whole Sequence Matching. For the All-

Occurrences Matching problems (either subsequence or whole-sequence), there

»

ey

_CHAPTER 1. INTRODUCTION - 5

_also exist two addutional categories: approrimate matching and” exact match-

ing [16]. The definitions and implementations of the above problems are ad-

dressed in the following chapters.

7 -

Efficient retrieving. This system is designed towards on-line interactive min-
ing, thus-efficiency is very important. Although there are many methods de-
velgped [1, 2, 14], new models and techniques should be developed to support

’

on-line analysis of voluminous time-series data, -

%

Validity and accuracy. To minimize the occ{;fences of the false dismuissals,
the validity and acturacy of the matching result ‘should be taken into consider-

ation.

Friendly user interface. To represent the querying and the result of the
similarity search. a friendly user interface should be designed. That means, it
should be taken into consideration of how to design a good user int'erfacqor

a representational language which can directly capture the notions of sequence

shapes and is intuitive for human interactively querying and answering.

Noisy data. There are two kinds of noisy data: one is due to the unavoidable
imprecision of measuring devices and clocking strategies; the other is the short
interval gap, which means some very small regions of data have sharp jumps or
valleys, but the tinle intervals are so small that can be ignored without influence
the whole sequence trend. If we do not do.preprocessing to the noisy data, they
will influence the searching result. A well-known solution for comparing two
sequences.a and b is Euclidean distance, which is vesy sensitive to the short-term
jumps or valleys. Other kinds of distance metric are also very sensitive to the
noisy data. To make these noisy data uninfluenced the similarity search, they
must be removed or some preprocessing must be done to smooth the sequence

data before doing the similarity search.

Regular vs. irregular time-series. Time series data varies in how pre-

dictably the data arrives: In some cases, the data is associated with a regular

CHAPTER 1. INTRODUCTION ’ 6

time interval (daily, monthly, or quarterly). In other cases, the data may be
irregular, such as network managemeht‘events,‘and assembly line trouble re-
ports. Our similarity miner module currently supports regular time series, and
will soon be extended to A§{1pport‘irregular time series as well. In our mod-
ule, fime-series data are’ sequefites of real numbers representing measures at

uniformly-spaced temporal instances [16, 25, 35, 24].

1.3 The Goals of Similarity Miner System

The simila;ity miner system is one of the knowledge discovery modules of our re-
latianal data mining system, DBMiner, researched and developed in our laboratory
[21]. Besides the similarity. miner module, currently, the discovery modules of DB-
Miner include characterizer, comparator, classifier, associator, and predictor.

Similarity search is a fairly importarit issue in the time-related data mining area.
The goal of this thesis is to implement it on the bases of the data mining cube which
is developed in our lab. Cube is a data structure foy efficient retrieval of the data
needed. '

Two similarity miner modules have been designed in tiis thesis. One is subse-
quence search module; the other is whole sequence search module. In the subsequence
search modulc the problem to solve is given a query shape template @, finding the

e

module, the problem to solve is given a query time-series da’t\a ”&mnce Q and asset .

of time sequences with equal length as Q, finding all of th;data sequences that match
() approximately. ’
The goals of our system are to (1) provide fast response time, (2) élipport in-
teractive analysis. (3) make it flexible for user to use. allowing multi-level similarity
search, e.g. from exact matching to blurry matching, (4) make the implementation
independent of the kinds of the data sources, and (5) make the system robust in the

presence of noise.

CHAPTER I. INTRODUCTION ™ : . 7

1.4 Thesis Org?ization

The organifation of the rest of the thesis is stated in the following. First, a review
of the previous related work on the time-related data mining and similarity search is
presented in Chapter 2. Chapter 3 describes the general properties of our similarity
search system in time-series domain including the discussion of the system architec-
ture, and some notations. Chapter 4 addresses the background knowledge of the
wavelet analysis techniclue. Chapter 5 presents the subsequence search module. and
the algorithins and performance study are included. The whole sequence search mod-
ule, including algorithms and performance study, is discussed in Chapter 6. Chapter

T sumamarizes the thesis and discusses the future research issues.

g

Chapter 2

Related Work

L3

<

‘ . There has been a great deal of research in similarity search area, especially in recent

;i;;y:Eal's. In this chapter, we will discuss the different approaches in this area. It includes
';"b"'jtg’(;}'miques on the similarity search and similarity search in the data mining area.

There are many different similarity search algorithms that are determined by the

kinds of searching space to deal with. The work in text retrieval and pattern recog-

nition that deals with matching characters and patterns is usually considered to be

searching in discrete space. The problem of searching similarity in a database with

time-series of real numbers is considered to be searching in continuous space.

There has been a lot of work on similarity search in discrete and continuous spaces.

2.1 One Dimension String Similarity Searching

There has been a lot of work on finding text subsequences that approximately match
a given string {31, 29, 10, 44. 15, 43, 20, 13]. Text sequences normally consist of
a few discrete symbols as opposed to continuous numbers that makes the similarity
measurres and the search methods quite different.

A classical string searching problem is, given two strings, text T[1---1] and paltern
P[1---]. to determine whether the text T' contains an occurrence of the pattern P as
a subsfl'ing‘ that is, whether T can be written as T = yPy’. An approrimate string

matching problem means a substring P’ of 7" such that at most & editing operations
qp g g O]

v @)

4

CHAPTER 2. RELATED WORK - - 9

(insertions,deletions, changes) are needed to convert P’ to P [42, 26).

e Edit distance-based approach

Generally they use the concept of edit distance [17, 41] to'measure the goodness-
of approximate occurrences of a pattern. The edit distance between two strings;
Aand Bin alphabet 3~ can be defined as the minimum number of editiﬁg’sféps
needed to convert A to B. Each editing step is a rewriting step of the form
a— € (a deletion), ¢ — b (an insertion), or a — b (a change) where a, b aresin
S and e 15 ihe empty strihg. Assuming the cost of each of these operations is
1. the edit distance is the minimum number of operations needed to obtain a
pattern from a text. A dynamic programmniing solution for this problem is given
in [36, 15, 42, 26, 44]. Let D be an m+ 1 by n + 1 table such that D(:, j) is the
minimum edit distance between pyp;--- p; and any substring of T ending at ¢;.

Then

DO0.j) = 0, 0<;<n K
Dii—1,j)+1 o

D(i,)) = ming D(i—1,j—1)+ ifp,=t; then 0 else | -
D@, j—1)+1

. The three parts of this formula corresponds to deletions, changes. and insertions
respectively. Table D can be evaluated column-by-column. Whenever D{m, j)
is found to be at most k for some j, there is an approximate occurrence of P
ending at t; with edit distance D(m.j) < k. Hence j is a solution to the &

differences problem.

Example 2.1.1 In Table 2.1 there is an example of table D for T' = bcbacbbb
and P = cacd. The pattern occurs at positions 5 and 6 of the text with at most

two differences.

CHAPTER 2. RELATED WORK - | 10

o
01 23 4 56 7 8
b ¢ b ac¢c b b b
0 0O 000 OO O 0O
1l ¢|{1 1T 0 1 1 0 1 1 1
2 al2 2 1 1 1t 1 1 2 2
3 ¢33 3 2 2 21 2 2 3
4 d(4 4 3 3 3 2 2 3 3

Table 2.1: Table D: an edit distance-based approach

All the algorithms presented in [47, 41, 15, 45, 20, 43] work within this model. -
but they use different approaches in**rést.ri'cting/_theémlmber of entries that are
necessary to evaluate in table D. The trivial solution is to COI;lpllt:e all entries
of table D in time O(mn). Considering computation along diagonals gives a
simple way to limit unnecessary computation. It is easy to show that entries on
every diagonal h are monotonically increasing [11]. Therefore the computation
along a diagonal can be stopped, when the threshold value of & + 1 is reached.

hecause the rest of the entries on that diagonal will be greater than k. This idea

*

leads to Algorithm EDP(Enhanced Dynamic Programming) working in average
time O(kn) [12].

‘There are other algorithms [15. 20, 13] similar to EDP with running time O(kn).
Whereas. there is no single method always the fastest. The speed of these

algorithms varies according to the alphabet size, the series length and the value

of k.

e Suffix tree-based approach

Another popular approach is to support updates for dvnamic strings using suffix -
tree in(lexing technique in [31, 29, 40, 41]. There are several appealing properties
for the suffix tree: the 5ic"g)nstru’ction of the suffix tree takes linear time and linear
space: the frequency and position information of substrings are readily available
in the suffix tree; the suffix tree serves as a natural and compact representation
of sequential. patterns. The major benefit of using suffix tree is that the suffix

tree can be easily updated to solve the incremental similarity search problem.

CHAPTER 2. “RELATE’D WORK ‘ | . 11

3 | |
A string S can be mapped to a tree T in which root-to-leaf paths are suffixes of
S and terminal nodes represent uniquely starting positions of suffixes. Formally,

the suffir tree T for S satisfies the following properties:

1. Each arc of T represents a non-empty substring of S,

2. Each non-terminal node of T, except the Toot, must have at least two

offspring arcs,

3. Substrings represented by offspring arcs of the same node must begin with

different characters.

£

Example 2.1.2 Consider the string S =.abcebedbe$, we can build the suffix
tree T" of S by inserting suffixes into T one at a time, starting from the longest
suffix abecebedbe. In Figulre 2.1 is the suffix tree after all suffixes of S are inserted.
For any substring a of S, by féllowing the path from the root that spells out
we can find the Asul)tﬁ"containiﬁg all starting positions of a in terminal nodes.
For instance, by following the path that spells out bc, 1.e.. arc(A, B) in this case,
we’find the root B of the subtree containing starting positions 2,5,8 of bc in its

terminal nodes.

2.2 Two Dimensions Polygons Similarity Search-
ing

Shape matching is an important image processing operation. (Considerable work has
been done on this problem, with different techniques being used to identify shapes.
usually in terms of boundary information or other local features [4]. | ‘

There are quite a few streams of work in this area. One technique is to index
an image after having analyzed it and recognized its semantic componénts [3]. Such
techniques are not applicable with an image with no semantic information.

The other technique is to compute properties of local boundary features of objects,

and then to index these [19]. Their idea relies on small features and hence is not robust.

CHAPTER 2. RELATED WORK : 12

Figure 2.1: Coustruction of suffix trees

Jagadish in {24] introduces an indexing technique to retrieve shapes, which are
similar to a given query shape, from a database. In this paper, he shows that the
technique can be used for an area-based similarity measure. even in the preserice of

scaling and/or shifting in one or all dimensions.

2.3 The Similarity Search in Data Mining

The problem of discovering similarity patterns in massive time series data sets is an
important and .non-trivial one, on which a lot of work has been done [1, 11, 2, 34].
To our knowledge, [1] is the first work which proposes a solution for similarity
matching sequences. In [1}, it is assumed that all sequences are of the same length,
and each sequence is considered as a point in an N-dimensional space. Then, two
sequences are considered similar when the Euclidean distance between them is less
than a threshold value e. Since each sequence is mapped to a point, they use R"-
tree [5] as the index structure. Sequences are represented as A'-dimnensional points

using K features for each sequence. Discrete Fourier Transform (DFT) is used for

CHAPTER 2. RELATED WORK « o 13

feature extraction since it preserves the Euclidean distance. First A terms after the
transformation are used tb represent a sequence.

Faloutsos et al. extend the method proposed in [1} to locate subsequen'ces, that
match a query sequence or a subsequence of it [14]. DFT is used for feature extraction;
however, in order to transform subsequences, a sliding window of size W' is used and
put at every possible position on every data sequence. Therefore, instead of one point
for a feature vector, there is a trail of points in the feature space. To index these points,
the trails are divided into sub-trails and each of these subtrails is represented with
its minimal bounding rectangle (MBR). Similarity queries are answered by applying
the same transformation to the query sequence, and the MBR that enclose the trails
for the query object is used as the query window. Sequences whose MBR'’s intersect
with the MBR of the query sequence is further checked for matching.

Agrawal et al. [2] give a method to retrleve similar sequences in the presence of
noise, scaling and translation in time series. In theif method, two sequences are
considered similar if they have enough non-overlapping time-ordered pairs of subse-
quences that are similar. Some portions of sequences that are considered as outliers
are left out in the matching proces;, and the matching subsequences need not be
aligned along the time axis. Testing;:the similarity of two subsequences is done by
checking if one lies within an envelope of a specified width around the other. ignoring

the é%lt’hé’?’ ’”Wl atomic subsequences that represent all the sequences are indexed

using R-trees, basp(l on some features of these atomic sequences. Thls method also -

depends on thgaequen(e elements to be mostly correlated (i.e., not very distant from
each other), sinte outliers are discarded in the matching process.

Davood et al. [34] use moving average method for stock data to smooth out
short term fluctuations, and add time warping and reversing in their transformation
language. It is implemented using the Fourier transform to transform the data to the
frequency domain, and using R-tree index \‘method.

One common.feature of these methods [1, 14, 2, 34] is that they use the Discrete
Fourier Transform (DFT) to map time sequences into the frequency domain and keep
the first few coefficients in the index. Two sequences are considered similar if their

Euclidean distance is less than a user-defined threshold. DFT preserves the Euclidean

Tt

e

CHAPTER 2. RELATED WORK 14

-

distance between sequences, and. the first few coefficients after the transformation
characterize the sequence in general,provided that consecutive sequence elements are
-correlated most-of the time. The fact that it is a distance preserving transformation
mal\'.es‘»”DFT attractive for indexing. However, it can be used only for s’equences of
the same lengths Also, it i’ not very effective for sequences with mostly uncorrelated
elements. In other'words, DFT is well suited to sequences, which are locally stationary -
in time. However, nlafly sequences contain transient behavior, é.g. short interval
jumps or valleys, like the stock market data.

Another search diréction is the periodic pattern . directed search in time-series
databases. Problems related to periodicity search is stated as problems of finding
‘ pzzllerns occurring at regular intervals, which means given a sequence of events, we
would like to find the patterns which repeat over time and their recurring intervals
(period), Wan [18] has proposed some possible solution to the problem of finding

periodic dehaviors in large data sets.

L

2.4 The Similarity-Based Queries

There i1s a vast class of database applications where it is important to be able to pose
uneriesin terms of sinfilarity of objects; rather than equality or inequality [25]. ;

The meaning of similarity may vary depending on different application '(lomains.v
In other words, the notions of sirnile'lrity will be different in different. domains, such
as sequence similarity searching in a time ‘sequence database, approximate st,ring‘
searching in text, images, and genome /protein matching {1, 17. 24].

Jagadish et al. [25] develop a domain-independent framework to pose similarity
queries on.a database. It provides a full-fledged query language to support queries,
such as “find all objects that are similar to ,some“’objects in class A and are not similar
to any object in class B.” The framework has three components: a pattern language
P, a lransformation rule language T, and a query language L. An expression in P
specifies a set of data objects. An object A is considered similar to an object B, if

B can be reduced to it by a sequence of transformations defined in T. The query

language proposed by the paper is an extension of relational calculus with predicates

I}

o~

' CHAPTER 2. RELATED WORK . , 15

that test whether-an object A canrbé transformed into a member of the set of objects
described by the expression e using the transformation ¢, at a cost bounded by ¢. The
framework can be “tuned” to ihe needs of a specific application domain by the choice
of P, T, and L. |

For time-series approximate similarity queries, Goldin et al. [16] propose a frame-

>

work that allows the ‘user to pose a wide variety of queries. and allows shifts -and
positive scales tfansformations. The main contribution of them is that they formalize
the intuitive notions of exact and approximate similarity bc;tWeen time-series pat-
terns and data. The resulting set of constraint queries support the indexing scheme
propc.)sed in {1, 14].)

Agrawal et al. [3] present a shape definition language, called SDL. for retrieving -
objects based on shapes contained in the histories associated with these objects. Tt is-
" a small, yet powerful, language that allows a rich variety of queries about the shapes
found in historical time sequences. An interesting .fea;tufe of SDL is its ability to
perform blurry matching. A “blurry™ match is one where the user cares about the

overall shape but does not care about specific details. But there is no support for

shifts and scales transformations in this language.

= Chapter 3

The Similarity Miner System-

e v =

In this chapter we describe the architecture of our similarity miner system and explain -
our definition of similarity queries and the notions that will be used in our system.

N e
oy
g -

3.1 General Definitions

Here we will clarify some notations and concepts that are generally discussed in the

time-series similarity search area.

¢ Time sequence or time-series data are sequences of real numbers represent-
ing measures at uniformly-spaced temporal instances [16]. The /th element of a

sequence S is S[i], and a subsequence of S ?)nsisting of elements : through j is

- S[i,y). The length of the sequence S[i, j] is equal to j —i + 1.

e Two similarity problems. In the time-series similarity search area, the sim-

ilarity problems can be classified into two categories:

a. All-Occurrences Subsequence Matching: given a query sequence () of length
n and a much longer data sequence S of length 4V, find. the first {all)
occurrences of a contiguous subsequence within S that matches Q approx-

imately:

4

16

b

CHAPTER 3. THE SIMILARITY MINER SYSTEM : 17

b. All-Occurrences Whole-Sequence Matching: 'given a query sequence (Q of
length n and a set of V data sequences, all of the same length n, find the

first (all) of the data sequences that match) approximately.

The first case is under the condition that the query sequence is smaller, and we
. look for subsequences in the larger sequence that best match the query sequence..

The second case is under the condition that the sequences to be compared have

Wtw?

the same lehgth n, and we look for the sequences that match the query sequence.

These two cases are all solved in this thesis in the subsequence search module

e

and the whole sequeye search module respectively .

e Similarity queries

We consider_four different types of queries i our system. These are:

i Full match. A full match for a given query ghape is a database shape that

has the same shape a$ the query shape.

il Match with shift. Usually, when we think of what a shape looks like. we do
not care about the position of the shape in any coordinate svstem. Thus.
we would like to retrieve similar shapes from the database irrespective of

their positions in the coordinate system used to describe them.

iii Match with scaling. Besides not caring about the position of the shape,
" we may*‘hot care about the size either. For example, the size may depend
on how far the shape is seen from the human eye, or what scale factor is
sed for the representation. In such a case. we can throw out the scale
factor to retrieve‘the similar shapes: In the real implementation, we may
wish to permit independent scaling along the X and Y axes or a uniform

scaling along the X and Y axes.

iv Match with the combination of scaling and shifting. Often, the sim-
ilarity search criterion is enlarged to allow the combination of scaling and
shifting, that means, to allow the scaling and shifting existing at the same

time, not independently.

AT

CHAPTER 3. THE SIMILARITY MINER SYSTEM 18

°

) ’Approximaté match

%%~ In the former descriptions, we describe the basic digciplin‘c to retrieve shapes

that match a given query shape. We are only interested in the approximate
matching here, and the reason has already been illustrated in the introduction.

The “mat'ciling approximately” is defined as [16]:

Definition 3.1 Given a tolerance ¢ > 0 and a distance metric D between
sequences, sequences Sy and-S; match approrimately within tolerance ¢ when

D(51.5;) <.

Currently, a large number of distance metrics have been proposed based on
similarity in the literature. One of the generally used distance metTics is called
Euclidean distance, which is defined as follows:

~

Definition 3.2 The Fucltdfan dlslan(f b([llfffl tuo stque‘nrfs Sy and S, is

*

Di (S0, 52) = (38 M—sz{] /2 (3.1)

1<l

['is the length of the sequence.

Ao
vy

Akke. -

3.2 The Architecture of Similarity Miner System

The similarity miner system is one of the-knowledge discovery modules of our re-
lational data mining system. DBMiner, researched and developed in our laboratory

[21]. Besides the similarity miner module, currently, the discovery modules of DB-

_Miner include characterizer, comparator, (labmﬁel associator, and predictor.

[n this section. we Wwill mtxoduce the archltecture of the similarity miner module.
Figure 3.1 shows thegeneral architecture of similarity miner system which consists

of

(1) a graphical user interface for 1ntgactne mining and the (l]spla\ of data mining

result in the form of charts and text edit box; «

CHAPTER 3. THE SIMILARITY MINER SYSTEM 19 .

LGmphical User Interface J

!

N
- Similarity Miner Module e 2 2
o s @y s
N ~ - ™
Shape-Driven Search Automatic Search
‘ ‘Wavelet Filter J CNnmml Form Trnnsformalin]
3 - ¥
3 —
L Encoding . j [Wavelet Transform j
¥
[Mulli-level Resolution Mauﬁ [Distance Computation)
L . \ + J

t
B ' L Data Cube J

Time-Related Data Concept Hierarchy Shape Definition Hierarchy

Figure 3.1: General architecture of similarity miner system

PO

Our system is primarily focused on the data mining environment in which the
user through our graphical user interface can find all similar time subsequences
in a given sequence and be able to find all similar time sequences that match
a given query sequence. Also through our user interface, the user can change
at run time the similarity threshold, so called the “tolerance of outliers”, the
query sequence pattern, and the resolution level of similarity, while maintaining
efficiency of matching. Furthermore. the user can use OLAP operations to drill

down and roll up along any dimensions of the cube.

(2) the similarity miner modules;
We have designed two similarity mining modules: subsequence search module
and whole sequence search module, which will be discussed in detail in later
chapters: |

(3) the DBMiner multi-dimensional data cube; .

The DBMiner multi-dimensional data cube is the common engine shared among

*

CHAPTER 3. THE SIMILARITY MINER SYSTEM + 20

several DBMiner mddules and it is a multi-dimensional array structure, in which
each dimension represents a genéralized attrlbute and each cell stores the value
of some aggregate attrlbutes The advantages of it are less space and efficiency.
It is implemented by our Intelligent Database Systems Research, labor&torw{’i]
The similarity miner module and other mining modules are implemented on the

basis of DBMiner multi-dimensional data cube. For the time-related data sets,

e Dimensions of the cube may have following categories:
1. time.

. fimé-rflatcd attribute.

o

3. non-time-related attribute.
e Measures can be :

1. count. It is the default measure for all kinds of the cubes. It js a
numerical measure, which represents the count of the tuples in the

raw data.

S

time-related attribute value. Since our research domain is the time-
related real numbers, here we are only interested in numerical measure
containing only numerical data and also being able te be computed by

¥

cube partition and aggregation, such as count, sum, max.
¥
¢
With these dimensions and measures, OLAP operations can be performed

by stepping up and down along any dimensions shown in Figure 3.2.

e Roll-up generalizes one or a few dimensions and performs appropriate
aggregations in the corrésﬁonding measure(s). For time-related data cube
in Figure 3.2, when the roll-up is performed along the time dimensibn, such
as from "month” genetalizes to “quarter ", the count measure and the sales

amount measure are aggregated correspondingly.

e Drill-down, which specializes one or a few dimensions and presents low-
level objects, collections, or aggregations, can be viewed as a reverse oper-

ation of roll-up.

CHAPTER 3. THE SIMILARITY MINER SYSTEM 21

ALL

Car HONDA
Type ~ BMW
GMC

TOYOTA

v &
1990 1991 1992 1993 Al = &

Time

Figure 3.2: A cube about the sales of cars during 4 vears

e Slice_and_dice. which corresponds to reducing the dimensionality of the
data, i.e., taking a projection of the data on a subset of dimensions for
selected values of the other dimensions. For exaniple, we can slice_and_dice

sales data for a specific product.

Example 3.2.1 Figure 3.2 shows an ex[ample of a cube which is constructed
after sucking the useér required information from the raw data. The dimen-
sions are “Time”. “Location” and “Car Type”. The measures are “counts”
and “sales amount”. In this case, “Location™ and “(C'ar Type” are non-time-
related attributes, “Time” is the time-related attribute, and “sales amount” is
the time-related attribute value.

(4) the data- and knowledge-base: storing the time-related data, cSncept hierarchies,

and the shape definition hierarchy.

The concept hierarchy is an important function module of DBMiner. It is a

partial order organization of concepts in databases. Some partial orders among

L4 Y
. . ¢
CHAPTER 3. THE SIMILARITY MINER SYSTEM 22
Any
‘-‘ o
/(ear
Quarter \
i Week
4 Month /
| \ .

Figure 3.3: Partial ordered hierarchy for ‘time’ dimension

data exist in a database. For example, "B.C.” is a part of *C'anada”. It provides
essential background knowledge for data generalization and multiple-level data’
mining. For example, to mine the knowledge of the time-related databases at
multiple-levels, time is a dimension that 15 of particular significance. and we

need the built-in concept hierarchy for the time dimension.

Example 3.2.2 Figure 3.3 is the concept hierarchy for time domain, “Day” is
the child of “Month”, and *Month” is the child of "Quarter”, and "Quarter™ is

the child of “Year™.

Each dimension in a cube can be described by three ways: 1. a set of attributes,
2. a combination of attributes and concepts defined by expert, and 3. a pure set

- of concepts defined by expert, like in Figure 3.3 for the time dimension. These
three ways form a partially ordered hierarchy for a dimension.

Y

Example 3.2.3 For the cube in example 3.2.1, the partially ordered hierarchy

of the “Car Type” dimension and “Location™ dimension is shown in Figure 3.4.

The shape definition hierarchy is a hierarchy specially designed for the subse-
quence search module to achieve the goal of mining the similarity at multiple

levels. We will introduce it in detail in later chapters.

CHAPTER 3. THE SIMILARITY MINER SYSTEM | : 23

Industry Country
Category State
Car Type City

Figure 3.4: Partial ordered hierarchy for Car Type dimension and Location dimension

The main part of our similarity miner systemn is the similarity miner module, which
is designed and implemented. The challenges of the design of similarity miner module

will be discussed in the following section.

3.3 Challenges in the Design of the Similarity Miner
Module |

To design a good similarity miner system, there will be many challenges.

Sequence matching problem can be characterized on the basis of the type of se-
quences, and the domain of elements in sequences. The data on which our knowledge
discovery tools operate can be characterized by the traditional distinction between
categorical data and numerical data [27]. We may have sequences of different lengths,
the elements of sequences can be categorical datadpr numerical data. All these issues
affect the design of the similarity miner system to'efﬁciently handle the sequence data
and similarity match queries. In this thesis, we address the general problem of match-
ing szquences of the same lengths as well as different lengths, and put our emphasis
on numerical sequences. . "

Queries on continuous data are more complex to process than the gueries on

discrete data. There 1s a lot of work that has been done on the discrete data in

CHAPTER 3. THE SIMILARITY MINER SYSTEM 24

similarity search area, such as text similarity search. In recent years, the study of
similarity matching on the continuous data begins to be popular, such as the stock -
data similarity analysis. In this thesis our study is focused on the time-series data
sets in which the data are real nu'mbers, and we have designed methods, which adopt
some techniques of the discrete similarity search methods, and at the same time, the

specific characteristics of the continuous data are also taken into consideration.

e T
27

Chapter 4

Wavelet Analysis

Since the wavelet analysis technique is used in both of the two modules of our similarity
system, in this chapter we will introduce the background knowledge about the wavelet
analysis. '

As everyone knows, any signal can be port‘ra§’ed as an overlay of sinusoidal wave-
forms of assorted frequengies. But while classical Fourier analysis co;&s superbly with
naturally occurring sinusoidal behavior — the kind seen in speech signals — it is ill
suited to representing signals with discontinuities, such as the edges of features in
images 16]. \'\’:hereas, another 'pOWer[ul concept: wavelet analysis has swept applied
mathematics and engineering resefrch. It involves l‘epres{?nting general functions in
terms of simpler, fixed building blocks at different scales and positions. This has been
found to be a useful approach in several different areas. For example, in signal and
image processing. It has been testified that getting rid of signals of noise 1s often much
easier in the wavelet domain than in the original Fourier domain. With wavelets, noise
can be removed from a great many signal types, intluding those with jumps, spikes
and other non-smooth features [6].

Wavelets are a family of functions of orthogonal basis, which unlike the sine and
cosine wave of.the Fourier Transform (FT), do not have to have inﬁhite duration.
They can be non-zero for only a small range of the wavelet function [12, 13]. This
“compact support” nature allows the Wavelet Transform (WT) to translate a time-

domain function into a representation that is not only localized in frequency, like the

I~
It

| s o
CHAPTER 4. WAVELET ANALYSIS - N SR 26

FT, but in time as well. This ability has brought forth new dewﬂopments in the fields
of signal analysis, image processing, and data compression. ,

Like Fourier analysis, however, wavelet analysis uses an algorlthm to decompose a
signal into simpler elements. Wavelet analysis is far more efficient than. Fourier anal-
7ysns whenever a signal is dominated by transient behavior or dlSCOHtlnllltIQ§. Wavelet
analysis owes its efficiency to the fast pyramid algorithm. The algorit‘h;i}; is used
to compute the wavelet transform that is to decompose the signal into componént
wavelets. ’ .

Wavelet noise removal is superior to traditional Fourier techniques, and 1t has been
shown to waotk well for our stock time-related databases.

Since our research domain of time-series databases is one dimension, we only cover

one-dimensional wavelet transforms and basis functions.

4.1 From the Fourier Transforms to thej’ Wavelet
Transforms |

Fourier and wavelet analysis have some very strong links. Let us have a look at Fourier

analysis first.

4.1.1 Fourier Analysis

e Fourier Transforms

It has bee;l'known for quite some time that techniques based on Fouripr series
and Founer transforms (FT) are reliable tools in sigI{al analysis. The main
idea of the I'T is that it expands the original function in terms of orthonormal
functions of sine and cosine waves. The Fourier coefficients of the transformed
function then represent the contribution_of each sine and cosine wave at each

frequency.

e Discrete Fourier Transforms

v
-

CHAPTER 4. WAVELET ANALYSIS

The Discrete Fourier Transform (DFT) estimates the Fourier transform of a
function from a finite number of its sampled points. The sampled points are
“supposed to be typical of what the signal looks like at all other times. In other
words, DFT represents a given function in terms of discrete sine and cosine wave
series, and is the most often used form in the FT. It works under the assumption
that the-original time-domain function is periodic in nature. Thus, the DFT
has difficulty with signals have sharp transitions at ceriain time locations. As a
’result, for those transition components, a large number of Fourier modes may be
needed. Another problem with’the DFT is that only the frequency information
is provided, and the information about the translation of the signal in time is

not provided.

e Windowed Fourier Transforms

If f(t) is a non-periodic signal, the summation'of the periodic functions, sine
and cosine, does not accurately represent the signal. The windowed Fourier
transform (WEFT) is one solution to the problem of better representing the
non-periodic signal. The WFT can be-used to give information about signals

simultaneously in the time domain and in the frequency domain.

With the WFT, the input signal f(t) is chopped up into sectious.'an.d each
section is analyzed for its frequency content separately. This windowing is ac-
complished via a weight function that places less emphasis near the interval’s
endpoints than in the middle. The effect of the window is to localize the signal

in time [18].

e Fast Fourier Transform

To approximate a function by the discrete transform, requires applyving a matrix
whose order is the number of sample points n. Since multiplying an n x n
. matrix by a vector costs on the order of n? arithmetic operations, the problem
gets quickly worse as the number of sample points increases. However, if the
samples are uniformly spaced. then the Fourier matrix can be factored into a

product of just a few sparse matrices, and the resulting factors can be applied

o
oD

CHAPTER 4. WAVELET ANALYSIS

to a vector in a total of order n log n arithmetic operations. This is the so-called

fast Fourier transform or FFT [18]

4.1.2 Similarities between Fourier and Wavelet Transforms

The fast Fourier trar]sf(;rrh (FFT) and the discrete wavelet transform (DWT) are
both linear operatious that generate a data structure that contains log, n segments
of various lengths.) t

The mathematical properties of the matrices involved in the transforms are similar
as well. Both transforms can be viewed as a rotation in function space to a different
domain. For the FFT, this new domain contains basis functions that are sines and
cosines. For the wavelet transform, this new domain contains more complicated basis

functions called wavelets, or mother wavelets.

4.1.3 DBissimilarities between Fourier and Wavelet Transforimns
:ﬁr .
The most_interesting dissimilarity between these two kinds of transforms is that
wavelet functions are localized in space. Fourier sine and cosine functions are not.
This localization feature, along with wavelets’ localization of frequency, makes many
functions and operators using wavelets “sparse” when transfermed into the wavelet
domain. This sparseness, in turn, results in a number of useful applications such as
data compression. detecting features in images. and removing noise from time series.

Let us look at the standard Fourier transform,

(F f)(w \/‘TF /(lte"“’tf | (L)

Like wavelet transform, it also gives a representation of the frequency content of
f. but information concerning time-localization cannot be read off easily from F f.

Windowed Fourier transform is a standard technique for time-frequency lo-
calization, which is achieved by first windowing the signal f, so as to cut off only a

well-localized slice of f, and then taking its Fourier transform:

CHAPTER 4. WAVELET ANALYSIS 2

(T f)(wg /dsf (s — t)e™is, (4.2)

Its discrete version is when ¢ and w are assigned regularly spaced values: f =

nto, w = mwy, where m, n range over Z, and\‘bwo, to > 0 are fixed. f[‘hen (4.2) bfcomes
%
12(f) = [dsf(sTgls = nto)e™™" (4.3)

The wavelet transform provides a similar time-frequency description, with a few

important differences. The wavelet transform formulas analogous to (4.2) and (4.3)

are
(7 f)(a.b) = 102 [a e) (L.1)
and
T () = ag™" [dtfOgtagmt - nby).)
In both cases we assume Lﬁat ¥ satisfies
/dw(t),: 0 O (1.6)

Formula (1.5) is again obtained from (4.1) by restricting a.b to only discrete values:
‘@ = al', b= nboal in this case, with m, n ranging over Z, and ao > 1, by > 0 fixed.

One Sz'réril(“l,r_i_t_y, between the wavelet and windowed Fourier transforms is clear:
both (1.2) ahll (4.4) take the inner products of f with a family of functions indexed
by two labels, g“t(s) = €™*°g(s — t)=in (4.2), and ©*%(s) = |a 21,(bY in (4.4).
The functions ¢'(a.b) are called “wavelets™: and the function v is sometimes called

“mother wavelet”. -

The difference between the wavelet and windowed Fourier transforms lies in the

R na,b

shapes of the analyzing functions g~ and vot. All the g*!, regardless of the value

of w, have the same width. In contrast, the ¥'*® have time-widths adapted to their

CHAPTER 4. WAVELET ANALYSIS 30

frequency: the high frequency ones ¥*® are very narrow, while the low frequency
ones ¥'*? are much broader. As a result, an advantage of wavelet transforms over the
windowed Fourier transforms is that the windows vary, “zoom in” on very s’hOrt-lived‘
high frequency phenomena, such as transients in signals (or singularities in functions).
The wavelet analysis provides immediate access to information that can be obscured
by other time-frequency methods such as Fourier analysis [12]. |

Usually the following integral powers of 2 for frequency partitionfng is used: ..

P(2r—k), jkeZ

Notice that ¥'(2/.r — k) is obtained from a single wavelet function ¥'(x) by a binary
dilation (i.e. dilation by 2’) and a dyadic translation. With the normalization, the

-

following functions age usually used [10]: T
viu(r) =202 — k), jikeZ (4.7)

Definition 4.1 [10] A function ¢ € L*(R) is called an orthogonal wavelet. if the
family {v;c} in (4.7) is an orthogonal basis-of L*(R): that is,

<li!‘j,ka lr’/'l,m)’: 6j,l ’?Bk.m‘ﬁ ja k.lom € Z,

-

and every [€ L*(R) can be written as
floy="> cuvulr) (1.8)
o Gk=—so T

where ;1 is the Kronecker symbol and the _convrrgenc_ek{f:,f the series in (4.8) s in
L2(R) : - s

. &

The series representation of f in (4.8) is called a wavelet series. Analogous to the

notion of Fourier coefficients, the wavelet coeflicients ¢; is given by

cik = (fjk). ‘ (9

o

r

CHAPTER 4. WAVELET ANALYSIS : ' - | .31

4.2 Multi-résglution Analysis

The constructions of the wavelet basis as in (4.7) and other different ones can all

be realized by a “multi-resolution analysis”. Multi-resolution analysis provides a

natural framework for the understanding of wavelet bases. The idea behind it is

to write L2-functions f as a limit of successive approximations, each of which is a

smoothed version of f, with more and more concentrated smoothing functions. The

successive approximations thus use a different resolutions [11]. A multi-resolution

analysis consists of a sequence of successive approximation spaces V;. More precisely.

the closed subspaces V; satisfy (here the scaling factor is 2):

(1) a family of embedded closed subspaces V;l CL¥R),me Z,

-, VooV cwhaeviah o (1.10)
(2))
o UV, = L*R) (L.11)
“. JEZ d

JEZ -~

If we denote by P, the orthogonal projection operdior onto Vj, then (4.11)
ensures that lim;.. P,f = f for all f € L*(R).

There are many ladders of spaces satisfying (4.10)-(4.12) which have nothing to do
with “multi-resolution™. The multi-resolution aspect is a consequence of the additional

requirement as follows.

(3) all the spaces are scaled versions of the central space Vy:

fhyeV, &= f(277) e Vg (h.13)

or

f)E Ve == f(2) €V, ‘ (4.14)

. NV ={0} | (4.12) .

CHAPTER 4. WAVELET ANALYSIS V | 32

L 4

(4) V5 is invariant under integer translations,

feWw f(-—-n)e W _ (4.15)

(5) For every j€ Z, define W, to be the orthogonal complement of space V; in V4,

Vi =V.PW, B (4.16)
(6) For Vj #j..
F
W, LW/ (4.17)
and l
VLW (4.18)

(7) we denote Py, and Py, as the orthogonal projection onto V; and W respectively,
afd o; and ¥*;; denote the orthogonal basis in V) and W, with] k € Z. then

‘e have

>

Po f=P f+Py[f= Z (f o;x)0ik + Z (f, ii‘j‘k>ll‘j,k (-1.19)
’ L k=—x k=—~c -

<

‘ (S)E{PFOI‘ jmina jmar Q Zﬁi%j-min < jmara we have

Jmnar—1
"fima.r = v}mln 6}} @ lt/] . ('120)

4.3 Fast Wavelet Transform Algdrithms

Multi-resolution analysis leads naturally to a hierarchical and fast scheme for the
computation of the wavelet coefficients of a given function. Before we discuss about
the wavelet transform algorithm, let us write out some interesting properties of ¢ and

L.

CHAPTER ¢ WAVELET ANALYSIS 33

(1) For ¢, € Vo C V4, and ¢, , is an orthonormal basis in V), we have

Zhn(plvn
o2 - \/—Zh ’1~n (4.21)

¢

v(r) = Z(-l)n+l/l—n+1¢1.n
= \/_Z)" h_0(22 —n) ' (4.2

o
I~
~

with

hn = (6,01.,), and Z [h,|? =

n L

(2) Suppose that we have computed or given the inner products-of f with d;; at
some given fine scale j = 0. By rescaling f we can easily compute (f, v ;) for
J < =1L, from (f,0;414):

(fove) = D Gorak(fr 0541n) (1.23)

where g, = (1. ¢1.,) = (=1)""Th_,4,. We also can easily compute (f, ;) for

J < =1, from (f,¢;414):

(f.ojk) = Zhn+2k(f~ Qjt1n) (4.24)

From the above observation, we have a general procedure: starting form (f, ¢o), we
compute (f, ¥~y &) by (4.23). We can then apply (1.23) and (4.24) dgain to compute
(fovak), (f,0-2k) from (f,¢_1.,), etc. At every step we compute not only the
wavelet coefficients (f, ;%) of the corresponding j-level, but also the (f, 9,) for the
same j-level, which are useful for the computation of the next level wavelet coefficients.

The whole process can also be viewe;i as the computation of successively coarser
approximations of f, together with the difference in “information” between every two

successive levels. In this view we start out with a fine-scale approximation to f,

e . b . o =
=, - B
(S9N

_ CHAPTER 4. WAVELET ANALYSIS 34

Figure 4.1: Wavelet forward transform

f? = Py, recall that P; is the orthogonal projection onto V}. and we decompose f9 €
Vo=V_1 3 W_iinto f = f~' 4+ 67!, where f~! = P_, f° = P_, f is the next coarser
approximation of f in the multi-resolution analysis, and 67! = f— f=! = (J - P_)f°
is what is “lost™ in the transition f® — f~!. I; each of these V,, I, spaces we have
the orthonormal bases {éj_k};\;eg and {¢;}rez respectively, so that

L= oo [= e 8= Y B,
n . n

n

Formulas (4.23) and (4.24) give the effect on the coefficients of the orthogonal basis

transformation {@o, }rez — {¥'-1.n}nez in Vo
~1 7T o0 —-1 —— 0
FI S e M S
n n

In general for any j < 0 we have,

o

e —m <= -

[a™ =0 hocandds
&7 =Y, Gasarel,

Remark 4.1 The transition ¢ — &~ 1. ! corresponds to a change of basis in Vi,

namely

{dik k€ Z} - {ojmn ke ZYU{vjnl ke 3).

CHAPTER 4. WAVELET ANALYSIS - LT s
) e ;‘1?, ,a“ A *
%\’aq .= z?;;v_w\;:%% ' ‘ < - -

The decomposition of the signal & at the level j inté®a_lower résolu_tioﬂzﬁz gifri&l o1
and a difference (or detail) signal d’=" forms the basis for the pyratiid algorithm
described in [30]. _ f . ‘ o

-

" With the notations @ = (an)nez, @ = (G-,)nez and (Ab)r = ¥, as2k_nb,, we can

rewrite this as
c'=HE, d7'=GS

The coarser approximation f~' € V_;, = V., & W_, can again be decomposed into

fl=f246"2 f2¢ V_g, 672 € W_,, with

f_2 = Z'C;zé—zn~ 6—2 = Z dgzlf«/'—?.n
n " n

E=4

Schematically, all these can be represented as in Figure 4.1.
Since all we have done is a succession of orthogonal basis transformations, the

~ Inverse operation, or the reconstruction, is given by the adjoint matrices. That is

gi;'en by
o= P ’
_ Zd_léj~1'k + Z(l{,—]L"j—l.k u
k k ,
Therefore, t

su
l

(f.6)n) g
= Z({-—l’(¢j—l.kv Ojin) + Zdi—l<l¢"j—1.k, Ojn)
k k

- Z [hn+2kC[i;_1 + gn+2k(li_1}
k

An important aspect of the whole decomposition is that it is a fast algorithm.

Let us look at the Haar basis for a moment. The Haar basis is the simplest. wavelet

¢, then we have to compute N/2 averages
2
n

basis. If we start with N data points

¢y and N/2 differences d.; from the N/2\averages c! we compute N/4 averages c

n*

and N/4 differences d2, and so on. The total number of computations is therefore

&

CHAPTER 4. WAVELET ANALYSIS ' . 36
L L S U Y

ad d

Figure 4.2: Wavelet inverse transtform (reconstruction)

2 (-‘- + l + .) = 2N. For more sophisticated wavelet"baﬁes,: %W _&

dlfferences involve more than just two numbers, but the same argument h()Ldbw
If every “generalized average or difference” involves A coefficients of the pre\louz
level (rather than 2 as in the Haar Ca'sle"), t.hén the total number of computations is
2KV [13], which is faster than the fast Fourier transform-whose computations is of

order nlog n.

4.4 Implementation of Wavelet Forward Transform

and Inverse Transform

In this section, the implementation of the wavelet forward and inverse transform is

S L

introduced. The steps are as follows:

(1) Select the Wavelet Basis

a

Wavelet transforms do not have a single set of basis functlons like the Fourier
transform, which utilizes just the sine and cosine functlons Instead, wavelet=
transforms have an infinite set of possible basis functions...The dj_ffere;g{;yqzelét
families make different trade-offs between how compactly the basis functions are

localized in time and how smooth they are.

~

o8 '

CHAPTER 4. WAVELET ANALYSIS

06

04

02

.00

1.0 45 00 05

1
L

(a)Harr2 ¢

06 - 08

0.2 04

00
~

(c) Daubechies_1 ¢

[+X}

04
/

0.2

0.0
|
¢

(e)Coiflet 6 ¢ .

02 04 o6

-0.2 [N¢]

-0.6 0.4

00 0.2 04 0.6

02

D4

08

06

00 02 04

-02

04

37

—
|

]

05 10 15 20

- (b) Harr2 ¥

.~ 08

/o

2 4

((])Da.ubechrie‘s_‘i AN

(f)Coiflet_6

Figure 1.3: Several different families of wavelets

w

CHAPTER 4. WAVELET ANALYSIS

38

n | h, In =
Carr_2 0 | 0.7071067311865475 | 0.7071067811865475
1 | 0.7071067811865475 | -0.7071067811865475
Daubechies_4 | 0 0:48296291.31;445341 -0.1294095225512603
‘ — 1N “_0..83651630373‘78080 -0.2241433680420133
2 1 0.2241438680420133 | 0.8365163037378080)
. 3 1-0.1294095225512603 | -0.4829629131445341
Coiflet 6 -2 1-0.072732619512854 0.015655728135465
-1 { 0.337397662457381 -0.072732965112707
0 | 0.85257202021226 -0.38486434686420
1 }0.384864341636420 0.85257202021226
2 1 -0.072732965112707 | -0.33789766245781
3 | -0.015655728135465 | -0.072732619512354

Table 4.1: The coefficients for the wavelets in Figure 13

Within each family of wavelets are wavelet subclasses distinguished by the num-
ber of coefficients, so called filter length. In Figure 4.3 several different families
of wavelets are illustra‘ted, and the number next to the wavelet name represents
the filter length (the number of wavelet coefficients) for the subclass of wavelets.
Their corresponding coefficients are summarized in Table 4.1. Usually, fun-ction

o is called “father wavelet™, and the function #' is called *mother wavelet™.

- Because we have a choice among an infinite set of basis functions, we may wish

to find the best basis functions for a given signal. A basis of adapted waveform
is the best basis function for a given signal. The chosen basis carries substantial
information about the signal, and if the basis description is efficient (that is.
very few terms in the expansion are needed to represent the signal), then that

signal information has been compressed.

In general, higher-order wavelets (i.e., those with more non-zero coefficients)
tend to have high compressibility which.is‘more adapted according to the adapted

waveform criterion.

The Haar wavelet is used for educational purpose because it represents a simple

interpolation scheme, but the order of it is only 1, thus it is not quite.-applicable

CHAPTER 4. WAVELET ANALYSIS 39

in real life. Daubechies families of wavelet systems are very good for representing |
polynomial behavior. One disadvantage of Daubechies is that they are not

symmetric. The absence of similarity can lead to phase distortion.

From the theories and the experiments on the real data, we find the Coiflet
wavelet basis functions adapt well to our stock data, and we select the filter

lengths (the number of non-zero coefficients) of 6.

One reason that we select Coiflet wavelet is its symmetry property, and the
other reason is the order of it is not quite low and has good compressibility.
The filter length of 6 is reasonable for the tiine-related data, such as th‘e stock
data. The‘data in one week is quite related to each other, whereas to relate the

stock data in more than one week sounds not reasonable.

"To find the best-adapted wavelet basis functions for a given signal is not easy
work. The research in this area is not quite mature vet. This can be our future

work.

(2) Determine the Bandwidth (Scale) of a Finite Sequehce.

Given a finite length sequence, the bandwidth can be determined. The band-
width means the number of spaces to transform: from the finest space to the

coarsest space.

Given NV pbints, forr foaa €V, =1, setting 2% = N — 1, so

Jmax

Aj = |logy(N — 1)] . (4.25)

i

AJ = Jmar — Jmin is the number of possible bandwidth that can be obtained in

a wavelet analysis with the scale factor is 2 [16].

Example 4.4.1 Consider a time sequence § = (10,10,11,11,8,8,13,13), §
could be the closing price of a stock. The number of data points NV is 8,
the original data § = (10,10.11,11,8,8,13,13) is in space V, .. = Vo, A) =

Jmar — Jmin = |log,(8 — 1)} = 2 according to equation (4.23). So the number of

spaces to transform is 2.

CHAPTER 4. WAVELET ANALYSIS 40

i
- e e
V. ¢
J max
| \
V. W .
J max 1 Jmax ~ 1
| \

Jmax -2 Jmax 2

1

'

:
V-jmin"'l \ijin"'l

- W .
vj min . dmin
. . 7 . 7. T 1. L. Loee. i b "'_
Flgure 4‘.1' “Jmaz - ‘Jm!n \E’ L‘ Jmin (}7 ‘L.Imzn+l 2y i ‘I.Imaz—l

(3) Compute the Coefficients of the Sub-Space

Let ¢;ov = (f.0j—1k) and dj_1x = (f.¥;-1x) be the coefficients in V; and
W, respectively, according to Figures 1.1 and 1.1, where ¢,_,x is determined
by a dot product of the masking coefficients h with a subset of V; namely

[Vizksrmn = Vioktrna,] Where h = {hn}mes | referring to equations (4.21) and
(4.24).

d;_ x is determined by a dot product of the masking coefficients g with a subset
of Vi namely [V)ak4rnm = Vi2ktrma:] Where § = {gn}/me | referring-to the
equations (1.22) and (4.24).

In our implementation, we use the Coiflets wavelet basis, referring to Figure 1.3

and Table 4.1.

—

» .
h = (—0.072732619512854, 0.33789766245731. 0.85257202021226,
0.38486484686420, —0.072732965112707, —0.015655728135465)

» and

CHAPTER 4. WAVELET ANALYSIS 41

= (0.015655728135465, —0.072732965112707, —0. 384b64b46b6470
Ob525 202021226, —0.33789766245781, —0. 072732619512854),

with 7, = ~2, and 7T = 3.

—k

Chapter 5

Subsequehce Search Module

% ST L.

5.1 Problem Statement

The subsequence search module is ;(lesigned to solve the problem of “First (All)-
Occurrence Subsequence Matching”, which means “given a query shape Q. find the
similar shape subsequences in a time-series sequence.”

The shape query @, also called search template, used in our system is a string of
svmbols. Each different symbol represents a primitive shape unit. Since the query ()
is a shape, so it is also called a shape-driven module.

The concept of “subsequence” search in similarity study is compatible to that
of “substring™ search in the complexity theory. The reason of our using the notion
of “subsequence” search here is to follow the conventional notation proposed by the
papers [1, 2, 14, 16] in the one-dimensional time-related data similarity search area.

Following is an example that this module can solve.

Example 5.1.1 Find the duration with the.sales trend of mini-vans is *UUDD"
(with two sharp ups and two sharp downs) between Jan. 1940. to Jan. 1996. After
the subsequence search module, ;ve may find that there is a subsequence from 1973 to
1980 having the trend similar to the query “two sharp downs followed by two sharp
ups”. P ‘ K }

Here the symbol ‘U’ represents “sharp up”, ‘D’ represegn-ts “sharp down”, and

>

42

CHAPTER 5. SUBSEQUENCE SEARCH MODULE) 43

}
/

(a)

by

Figure 5.1: A segmented piecewise linear representation. (a) original data, and (b)
the segmented version of this sequence. E

“UUDD™ is the shape query Q.

5.2, Terminology

In this section, we introduce some notations that will be used in the subsequence
search module.

i
The subsequence search module functions as follows: the user through the user

interface gives\the shape query they want to ask, and the tolerance threshold, then’

the fnodple findy the similar part of the sequence for the user. This is the subsequence
matching problem, as we introduced in the former section. In our module we combine
the OLAP techniques, allowing the user to drill up and down along the time dimension
- dccording to thg time concept hierarchy, and also allowing the user to search the

"’” sxmlifarxty/aigng multi-level resolutions. Here are some definitions for implementing

these functions: -

o Piecewise linear representation

The first thing- we should solve is to find a representation method that can

T

CHAPTER 5. SUBSEQUENCE SEARCH MODULE 44

capture the sequence shape information, represent the data seqﬁence, and fur-
thermore facilitate the similarity search. There are numerous techniques for
representing sequence data. The representation can critically influence the sen-)
sitivity of the distance metric and also can substantially determine the efficiency
of the matching process. Thus a robust representation, which is computationally
efficient to work with, is what we are looking for. We are interested in designing
a representational language which can directly capture the notions of sequence

shapes and which is‘intuitive as a language for human interaction.

To make the problem easier, we chop the sequence of data into many segments
with equal length, and use a straight line, which can mostly approximate this
bunch of data, to represent each segment. Thus the original data sequence
is converted to a new kind of data sequence, just like in Figure 5.1 (a) and
(b). This method is called piecewise linear segmentations. which provide both
an intuitive and practical rﬁethod for-representing curves in a simple form. It

generalizes the data from high order to low-order polynomial.

From continuous space to discrete space

After changing the sequence of data into piecewise linear representation, each
segment is changed into a straight line. Since the shape information is contained
in the slope trend of the lines, it naturally prompts us to use a meaningful symbol
to represent each line. For instance, if the-slope is positive, and is around 80

degree, then use ‘U’ to represent it, which means the trend of this line is sharp

N

up.
Thus the original data sequences are generalized by the piecewise linear repre-
sentation, and the searching space is changed from the continuous space to the

discrete space, making the problem much weasief to solve, and intuitive for the

—user tounderstand;: - -~ . ; : Lo -

N
.)]

Multi-resolution level of shapes

"We classify the shapes into different resolution levels. During the time of trans-

ferring the sequence data from the‘co'nti_nuous_space to the discrete space, the
<N : N)

-~

CHAPTER 5. SUBSEQUENCE SEARCH MODULE ' 15

a

symbols are selected from a specific resolution level. The lower the level of the

search resolution, the more “blurry” of the searching result we get.

e A library of primitive shapes
We provide a library of primitive shapes with the same length. Combinati'o“fil_;_pf
these primitive shapes can form any kinds of trends the users want as a query.

e The length of each unit 4

»

T{le length of each unit shape, also called the length of each chopped segment,
is a natural segmentation of time. Natural segmentation of time means that for
the time-related cube we created, the chop length is determined according to
the current level of the time dimension on the time hierarchy. This is just one
of the methods to determine the chop length, later we will discuss it in more

detail.

Example 5.2.1 For a cube on which we are doing the mining, if the time™
dimension of it nd® is at ‘month’ level, then the chop length is 12. If the time

*

dimension of it now is at *quarter’ level, then the chop length is 4.

e The query in the subsequence search module 2

=

The query in the subsequence search module is a slope trend, which is a string
of symbols the users give. Each symbol implies a primgive slope trend with a
unit length. So a string of symbols in a specific resolution level means the union
of the primitive trends at a resolution level. The trend length is the sum‘%{ each

primitive unit length.

Example 5.2.2 Consider a query trend the users ask: “uussUUUdUU”, which
medns two unit length of slower ups, followed by two stable downs, three sharp

ups. one slower down and two sharp ups. Thus totally the query length is 10

>

unit trend]engths.

i
P e

M&\;’ Jon.

e

Ly -

CHAPTER 5. SUBSEQUENCE SEARCH MODULE o 16

t .

R (Incréase) (0.5,90)

u (slower up) (0.5, 45)
u, (slower up ;) (0.5, 15)
u,; (slower up 1;) (0.5,5)
uy; (slower up ;2) [05,10)
u,3 (slower up 13) [10,15)

u, (slower up) [15, 30)
Uy, (slower up o) [15
Uz (slower up 22) [20,
uy3 (slower up 73) {25

us (slower up 3) [30,45)
u (slower up 3;)430,35)
U3, (slower up a2) [35.40)
usyf,lowcr up 33) [10,45)

U (sharp up) [15,90)

U, (sharp up,) [45 60)
U, (sharp up*yy) [43.°
U, (sharp up 3) [50,5’
U 3 (sharp up ;3 [55

O’JU‘ U‘
O\Jl

U, (sharp up 2) [60,75
U (sharp up 2;) [6
U, (sharp up ;) [6:
U 3 (sharp up 23) {7

-

-1

b

5)
0)
5)

o o o 2

~1

"

U; (sharp Up 3) [75,90]

5,9
Uz (sharp up 1)
)
)

o

.
’.

Ui, (sharp,up 32
U 33 (sharp up 33

Y O O
O A
o o O

[75.80)
[30,85)
85,90)

-
9
k)

O

F (Decrease) (—90,—0.5)

d (slower down) (—45,—0.5)
d; (slower down ;) (—15,-0.5)
d,; (slower down 1;) (—53,~0.5)
d,; (slower down 2) (=10, 5]
d,3 (slower down j3) (—15,—10]

d, (slower down ;) (—30,—15] ~
dy; (slower down o) (—20,—15]
dy, (slower down 23) (—25, —20] -
dys (slower down ,3) (—30, —25]

ds (slower down 3) (—13, -30]
ds, (slower down 31) (—35,—-30]
d;; (slower down 3;) (—10, —35]
ds3 (slower down 33) (—45. —40]

D (Sharp down) (—90, —15]
D, (sharp down ;) (—60, —15]
Dy, (sharp down ;) (—50, —15]
D, (sharp down 1) (—55. —50]
D13 (sharp down 3) (—60, —55)

D, (sharp down ;) (—73,—60]
D3, (sharp down ;1) (—65, —60]
D3, (sharp down 32) (—=70,—653
D,; (sharp down 23) (=75, —70]

D (sharp down 3) {(—90, =75
D5, (sharp down 33) (—80,—75
Ds;, (sharp down 3;) (-85, —80]
D, (sha.rp down 33) (—90, —85]

&

(stable down) [~0.5,0)

H (Horizontal) [-0.5,0.5)
s
S

(stable up) [0,0.5]

Table 5.1: The shape definition table

CHAPTER 5. SUBSEQUENCE SEARCH MODULE : 47

e The shape definition table

In this system, we chop the data sequences int.O‘manyrchunks of equal length.
Each chunk is called a unit. The (-7, 7) space is divided into a number of
non-overlapping intervals, each corresponding to a symbol £ The symbols and
intervals are kept in the shape definition table. Then we use the corresponding
character symbol to represent the trend degree of each unit according to the
shape definition table of Table 5.1. Four layers of symbols are designed in the
table. The higher layers are divided into some subranges at the lower layers.
The two values beside each symbol are degree range values represent the degree
intervals belong to these symbols. This idea is demonstrated more clearly in
Figure 5.2, in which different levels of shape symbols are expressed at different
degree ranges. For example, R(0.5,90) in Figure 5.2 means if a slope value falls
in between 0.5 degree to 90 degree, then use symbol “R’ to represent. this slope
value. "R’ means “Rise”, whereas ‘F’, which is the opposite of ‘R’, means *Fall’,
and "H’ means ‘Horizontal’. ‘R’, ‘F’ and "H’ symbols represent the coarsest
shape trend. To make the shape trend finer, the degree range value of ‘R’ can
be divided by 2, and we get Lf[4.5,90’j?éﬁd u(0.5,45], representing sharp up and
slow up respectively. Followirig the same way, the degree range values of ‘U’ and
‘u’ can be further divided by 3 respectively to make the trend shape expressed

much finer. Thus users can search the similar trend in different resolution levels.

Figure 5.2 only shows half of the shape definition of Table 5.1.#in which the
degree values are positive. The other half is almost the same, except that the .

degree values are negative.

We use a shape definition hierarchy tree to-express this table and the hierarchy
of this table more clearly. .

The shape definition hierarchy tree

In this system, the users are given the choice of selecting to mine different
resolution levels of the similarity arnong sequences. The higher the level the

users want, the more “blurry”™ matching of sequences the users get. Thus to

CHAPTER 5. SUBSEQUENCE SEARé‘h‘MODULE . 48

Figure 5.2: The illustration of the shape definition table

implement the similarity searching in r;illltiple levels, we introduce the shap:?
hierarchy tree. It is presented ’in Figure 5.3. The highest level is Any, we call
it the 0 level. The second level only has three general shapes: ‘R’ (Rise), ‘F’
" (Fall), and ‘H" (Horizontal). This level is the ;ﬁost “blurry” level. The third

| level has higher resolittion, and the shapes include ‘u’ (slower up), ‘U’ (sharp
up), ‘d’ (slower down), *D’ (sharp down), 'S’ (stable 1ip), and ‘s’ (stable down).

Each shape type is then further divided into three subtypes in the fourth level,

and so on.

The purpose of giving the shape definition hierarchically is to allow the user to
find the similarity at different resolutions interactively through the user inter-
face. If we look at a sequence with a large “window”, we would notice gross
features. Similarly, if we look-at a sequence with a small “window”, we would
notice small features. The goal of mining the similarity at multiple-levels is to

mine from forest to trees as users specified.

»

5.3 Algorithm X

P T g P

{ o
" CHAPTER 5. SUBSEQUENCE SEARCH MODULE 49
‘ . Any | '

A\/I\/N

AL AANANN,

Uy Uy U iy e uy wy Y 4y Yy YU, GG LU 4 dy d dy) dy g & dpd D R,0,000, B, By D, B,

-

Figure 5.3: The shape definition hierarchy tree

T !,/i ’

. We now give the formal algorithm for the subsequence search module. N e

~ Algorithm 5.3.1 Finding ihe similarit'y subsequences according to the search tem-

plate : shape.

Input: (i) A time-series data, (ii) the query shape sequence (quefy pattern), (1i1)
the shape definition table and the shape hierarchy tree, (iv) the tolerance threshold
k for approximate match, and (/) the matchmg resolution level

Output: The sets of all the subsequénces that are apprommately similar to the
query pattern with at most & differences.

Method: Changing the searching space from the continuous space to the discrete

space, and implementing multi-level resqiution search.

1. Building the cube, which is the summarization of the raw data of the database

according to the user’s require. The details are illustrated in Section 5.3.1.

e

CHAPTER 5. SUBSEQUENCE SEARCH MODULE 50

- - k7 T
original . reconstructed
data — forward — threshold | o inverse ——> data
transform coefficients transform
sequence sequence
si\ -

T

Figure 5.4: Wavelet filter

o

Wavelet filter, which is using wavelet technique to remove the noisy data. Sec-’

tion 5.3.2 describes it in detail.

3. Encoding, which is to transform the data from the continues space to the discrete

space. It is discussed in Section 5.3.3.

1. Multi-Level resolution search, which is to find the similarity pattern and allow
users doing multi-level resolution search. The details are discussed in sectior

5.3.4.

*

These four steps are illustrated in detail in the following subsections.

5.3.1 Building the Cube

Our similarity searching system is created on the basis of the DBMiner cube structure.
Cube is a multi-dimensional data structure that is a summarization of the data people '
are interested in. The purpose of the cube structure is for efficient retrieval of the
data which are used by other front end mining tools such as association and similarity
mining tools.

Before building the cube, two most important items for the cube should be de-
termined first: dimensiohs and meastres. As we have introduced before, since we
are working on the time-series data similarity search, one of the dimensions must be
the “time”. the selection for other dimensions can be the same as other mining tools
22, 38]. One of the measures can be the time-series data value that you want to find

the trend of, such as the closing price, or the sales amount, etc.

~

5.3.2 Wavelet Filter

CHAPTER 5. SUBSEQUENCE SEARCH MODULE. ‘ "51

-Informally, we consider two sequences similar if the non-matching 'parts are less
than the similarity threshold. The small n(i)n—mdt'chiv_ng\regions are%tr)eated as noisy
data and are ignored. Sometimes, there exist sharp jumps, spikes and non-smooth
features in the time-related ’s‘equences. JS(')‘ the goal is to find a way fo make our
similarity searching algorithm insensitive to the noisy data as much as possible.

Wavelet filter is just the right tool to filter out the noisy data and exclude the
sharp jurhp; and spikes, to make the final sequence a smoother one. 7

Using the wavelet anaiy'sis technique to filter out noise or short-term fluctuations.is
presented as Figure 5.4. The meaning of the terms of noise or short-term fluctuations

in our application domain is defined as follows:

Definition 5.1 The noisy data is the short interval gap, in which some very small
regions of data has sharp jumps or valleys, but the time intervals are so small that

can be ignored without influence the whole sequence trend.

This algorithm tries. to eliminate the noisy data, in other words. this algorithm is
for de-noising or, more precisely, _c;oﬂérent structure ertraction. This is a difficult and
ill-defined problem, since what is “noise” is not always well defined. We choose to use

Ps

threshold to quantify it.

~ The technique of Figure 5.4 works in the following way. When we take the wavelet

transform of a data set, we decompose a data set into “averaging” part and “details”
part, which is the forward transform step. Some of the resulting wavelet coefficients
of the details are small, and they might be omitted without substantially affecting

the main features of the data set. The idea of thresholding then is to set to zero all

coeflicients that are less than a particular threshold, which is the thresholding step. -

The coefficients that are less than a particular threshold are considered as noise. Then
we invert the transform to reconstruct’the original signal minus the noise, which .is
the inverse transform step. Wavelet noise-removal has been shown to work well in
Figure 5.8 which shows a pair of “before™ and “after” of a stock data sequence of
S&P index from Jan. 1, 1940 to Dec. 31, 1992, and we can see that the noise is
removed and at the same time the basic features of the signal are kept. Besides

wavelet methods, other approaches such as the Fourier transform are also possible.

CHAPTER 5. SUBSEQUENCE SEARCH MODULE 52

However, our approach is better than the Fourier transform in many aspects which

s *==sshas.been discussed in Chapter 4.

w B
~ e

“ R
R dhts.
=

Algorithm 5.3.2 Noisy data removal.

Input: (i) A sequence of data which is a time-related measure of the constructed

cube, and (i1) chop threshold € (e < 1).

Output: A reconstructed data sequence of this time-related measure of the cube.

Method: Wavelet forward and inverse transform.

1.

&

‘Wavelet forward transform.

Using the wavelet forward transform method, which is described in Chapter

1, to transform the sequence data from the time domain to the time-frequency

r

domain. The original data is supposed at V space, changing the original data

Jmar

from V;

Jmar

space to V,_ space, with j,.. defined to be 0, and jn.;» determined

by the bandwidth calculation, referred to Figure 4.1 and Figure 4.4 in Chapter
1.

Thresholds the goefﬁcients.

(a) To filter out the high frequency part, set the first two levels of the wavelet

_2 spaces to zero, referred to Fig-

Jmar Jmax

coefﬁcienté of the W; _, and W

ure 4.4. -

(b) Do:L* enﬂe“ggyi‘:gl_ﬁggg on the coefficients [46], filtering out the small coefficients
: _sto W,

Jman?

R

that lessthan the de-noising threshold on the spaces from W;,,_,

referred to Figure 4.4. These small coeflicients are called non-significant

coefficients. It has the following three sub-steps:

(i) Find M, the largest absolute value Wavelet coefficients in “mother

wavelet” space from W to W;

Jmazx Jmin”
(i) If a coefficient |d[i, k]| is less than sqrt(e)* M, then d[z, k] is set to zero.
d[i, k] is the coefficients of “mother wavelet” space at ith resolution

level of kth position;

1]

- CHAPTER 5. SUBSEQUENCE SEARCH MODULE ' , 53

e

3.

(iii) Continue to do step (ii) truncating any coefficients that meet (ii),

~which are used in.the reconstruction step, until the “mother wavelet”

space Qr%m Wi ae-3 to W, are covered. 2
Ising C-like syntax, thi:s"s(te;p (b) can be written as follows. T e

=

M ;"ma}|d[z‘,7§]?‘|§"’ N o
for (z = jmaxr —;3;:1'(<: Jminit 4+ +) {
if |d[e, k)] < sqrt(e)« M /
dli. k] = 0;
else

ik = dli K])

Wavelet Inverse Transform.

’.

Wavelet inverse transform to the original time domain V, . from the space V;

mn

referred to Figure 4.2.

Explanation of.the Algorithm 5.3.2.

1.

o

In order to delete the parts of sharp jumps and valleys with short intervals of
the data sequence, the coefficients of the first two levels of *mother wavelet” are
chopped at step 2 (a). Since the data sequence is decomposed into “averaging”

part and “details” part, these coefficients, which are chopped, represent the

~ very high frequency information of the original data sequence. Thus this step

is very important, since it deletes one kind of the noisy data which have very

Eal

high frequencies. -

What we basically do at step 2 (b) is using the L2 energy chop on the coefficients

method [46]. The equation is as follows:

i

Af lelj,m, klI? < ex E then c[j,m, k] =0,
where E = max{|c[j.m, k]|*} -

o

[t g

et T R AN

- . s

CHAPTER 5. SUBSEQUENCE SEARCH MODULE 54

which is equivalent to the following equation:

If e[y, m, k]| < sqri(e) « M then cfj,m,k} =0,
where M = max{|c[j, m, k]|}

The basic reason of doing the threshold chopping is that each coeflicient of the
“mother wavelet” represents the “detail” information about the data sequence at
a given location and at a given scale. The coefficients with small valuet less than
a particular threshold represent non-significant part and can be considered as
noise. Thus they can be omitted and still can get good quality of approximation
of the original data sequence. In other words, the wavelet transform allows us

to focus on the most relevant parts of the sequence.

There are other methods of threshold chopping besides L? Energy Chop on the
coefficients, such as based on the noise standard deviation estimation at each

scale method [18, 39]. which is more complicated to implement.

3. The process of noise removal of this algorithm is quite like that of keeping only

important coefficients in data compression algorithms. Like the data compres-
sion algorithms, for the noise removal algorithms, there are two concepts that

we are most interested in, which are compression ratio and relative error.

Definition. 5.2 The compression ratio is the number of bits the initial data
sequence takes to store on the computer divided by the number of bits required

storing the compressed data sequence.”

The equation of relative L? erroris as follows:

E z (Zkeo(org[k] = rec[k])?)!/?
(ZLO(OF‘(}Y[L'\])?)I/?

where n is the number of the data in the sequence, org[k] is thhiginal data

sequence at position k, and rec[k] is the reconstructed data sequence at position

k.

a

o P i L
T

i

Y

|
|
|
CHAPTER 5. SUBSEQUENCH SEARCH MODULE | 55

|
[
|
|-
|

| time level | chop length N |

‘ ye;r’ ' 2
‘qufarter’ 4
‘month’ 12
‘day’ 28-31

Table 5.2: The chop length scheme based on the time hieragchy level

5.3.3 Encoding

After the noise-removal of the welilvelet filter, the next step is to transform the problem
from the continuous space to the discrete space. In other words, change the continuous
real values to a limited number of symbols so that it excludes the preprocessing
- procedures of doing amplitude sc%alin,g and offset translation like other algorithms in

[2, 18]. It solves the problem of how to compare the sequences in different value
I

domaiuns. ‘

We first divide the one-dimensional time-related sequence into many chunks with
equal length, and according to 'Ehl approximate trend degree of each chunk, using a
corresponding symbol at-a user-s l‘eciﬁed resolution level on the shape hierarchy tree
to represent each chunk of data. 'I%ie key is to find-the right way of getting appropriate

chop lengths in different resolution}\ levels. -

1
|

Algorithm 5.3.3 Encoding the dd\ta sequence.

Input: (i) A reconstructed datz;Y sequence of a time-related measure of the cube,
and (ii) the shape definition table a‘:“pd the shape hierarchy tree.

Output: A string of symbols rebresent the shape of the data sequence.

Method: |

|
1. Determine the chop length, which is a natural segmentation of time according

to the time concept hierarchy. It has two sub—steps as follows:

(a) Get the current time leve] on the time concept hierarchy.

i

CHAPTER 5. SUBSEQUENCE SEARCH MODULE 56
-~ Any
1991) . 1992 .
Q1.91 Q291 0391 Q491 Q192 0292 Q3.92 Q4.92

Jan.91 Feb.91 Mar91 Oct.91 Nov.9l Dec.9l Jan.92 Feb.92 Mar92 ... Oct.92 Nov.92 Dec.92

Figure 5.5: A concept hierarchy of the time dimension: (a) with the same numbers
S * -

of siblings

(b) According to the current time level and the chop length scheme in Table 5.2.

get the corresponding chop length V.

o

To represent,cach bunch of data of length .V, using the 1east square method (7]

to get the best linear approximating line ax + b for each bunch of data.

3. Represent each bunch of data by a corresponding symbol.

(a) Get the slgpe value of each approximating line. .

(b) Use the corresponding symbol to represent each approximating line accord-

ing to the shape definition table of Tabli5.l.

4. Store the resulted string of symbols in an array.
Explanation of Algorithm 5.3.3.

1. We allow the OLAP operations “drill down", “roll up” and other operations to
work on the cube, such as drilling down and rolling up along the time dimension
of the cube, so that the users can get the similarity information at different time

granularities. Since the higher the level generated along one dimension, the fewer

CHAPTER 5. SUBSEQUENCE SEARCH MODULE 57

AN N /N I

Jan.91 Mar.91 May, 91 June9l Jan.92 Feb.92 Mar.92 July.92 Aug.92 Oct.92 Nov92 Dec.92 |

Figure 5.6: A concept hierarchy of the time dimemsion: (b) with different numbers of
siblings.

o

we usnally meet with that the number of siblings is not the same at a concept

Any]

¢
1991 1992 .
/ ' |
/\ | /}\ ,I
Q191 Q291 Q1.92 Q3.92 Q4.92 11

the number of data are on that dimension, the chop length N should be variant |
at different time granularities, and N must be greater than 2, otherwise we

cannot get a approximating line with only one data.

¥

There are two methods to deteri:ine the chop length V at diﬂérent time gran-

ularities.

(1) The first method is that .V is determined by the current concept hierarchy
level of the time dimension. In other words, the chop length ‘N is a natural
segmentation of time based on the current concept hierarchy level of the time
dimension. For example, if the time difnension 1s at month level now, then the
chop length N is 12. Table 5.2:is the scheme we used in this method. One
disadvantage of this method is that it is not appropriate for one special and

complicated occasion as in Figure 5.6, when the time hierarchy is not like what

level. What we usually run into is shown as in Figure 5.5 that th“,e number of
siblings is the same at every concept level. Fortunately. the situations like in

Figure 5.6 are very rare in the time-related databases. To handle ‘this kind of

<

. - P K ’ . ‘
CHAPTER 5. SUBSEQUENCE SEARCH MODULE

SO

U Number of attribute values f Chop length N I“Thé' number of sym‘bolsﬂ .

-2 50000 2000 ~ 223
10000 ~ 50000 - -1000 10 ~ 50
5000 ~ 10000 500 10 ~ 20 v
1000 ~ 5000 250 1~20
500 ~ 1000 - 100 3~ 10
100 ~ 500 25 1~ 20
30 ~ 100 10 2~ 10 ”
<30 2 < 25

~ ¥ v

Table 5.3: The chop length scheme based on the number of attribute values

-
Pl

time hierarchy can be our future wark. -

(2) The second method is that N is only dependent on the number of attribute
values on the current time dimension. A possii)le scheme for the chop length NV
can be in Table 5.3. Fof examplev, if the number of ?ﬁt}iﬁuge values in current \
time dimension is between 10000 to 50000, then the (‘h(;p leng‘fﬁ N'is set to 1000
and the number of symbols we get will be between 10 to 50. From the table
we can see that the number of symbols after the encoding step will be around
4 to 50 no matter how many of the attribute values on the time dimension,
and the chop length is varied based on the current number of attribute values.
Thus the scheme looks yéaSonable. One disadvantage of this method is that it
is not natural for the user, since it has nothing to do with the “time” concept

hierarchy.

We select the chop length scheme (1) in our algorithm for its natural, intuitive-

ness anfmplicity.

3. The least squares approach at step 2 is to determine the best approximating
line when the error involved is the sum of the squares of the differences between
the y-values on the approximating line and the given y-values. Hence, constants

a and b must be found that minimize the least squares error:

y

% CHAPTER 5. SUBSEQUENCE SEARCH MODULE o ‘ 59

&, N |
> [y — (azi +9)]? “ (5.1)
1=1

Let ar; + b denote the ith value on the approximating line and y; the ith given

y-value.

The solution of constants a¢ and b is as foll;)ws:
_ m(3 72, ry:) — (K F (DR TH (5.2)

m(TL, of) = (X 2:)?

b:(L) (En, v — (,11.%(iz Ti) ’ (5.3)
m(L7L, @f) — (2, r:)?

The least squares method is the most convenient procedure for det%]fnining
best linear approximaiion,rand it is a good method from the theoretical point
of view. It puts substantially more weight on a point that is out of line with the
rest of data but will not allow that “point to completely dominatgt'he approxi-
mation [7] There are also other niethods to get the linear approximation. such
as minimax approach and absolute.deviation approach, etc. It is testified

that thev are not as good as the least squares method.

.-We divide the (—Z.Z) space into a number of non-overlapping intervals, each

corresponding to a symbol k, and each unit of numbers is now replaced by
the symbol £ associated with the interval to which it belongs. The symbols
and intervals are kept in the shape definition table. Since the size of the
intervals implies the resolution, ta give the user the choice of different levels of

resolution, the table is created in hierarchical intervals.

. The purpose of using the shape definition table is to provide a small set

of shape primitives unit lines with different slopes. The users can randomly
combrne theseoumt lines and form a shape they are interested in. This shape

can be used as querles proposed to our system requesting to find out the similar

-part m_the data»sequellces. %his method of generating simikarity queries is quite

intuitive and originative.

CHAPTER 5. SUBSEQUENCE SEARCH MODULE | 60

5.3.4 Multi-Level Resolution Search

Now the one-dimensional time-related sequence has been changed into a string of -
symbols after the above steps. Each symbol in the string implies the trend of the
corresponding group of data. Thus a query trend the users ask can be indicated with
a combmatlon of such symbols at a specified resolution level. So the problem now is
to match the query‘ trend string.with the source string, which means it becomes the
strmg matching problem. - .

. There are many algorithms in the string matching area. especially in the area of
approximate string matching. The approximate string matching task is to find all
approximate occurrences of the pattern in the text with at most & differences, given
a pattern string, a text string, and an integer k. An.approximate occurrence means
a substring P’ of T such that at most k editing operations (insertions, ,deletions,

V]

changes) are needed to congert P’ to P.

Example 5.3.1 Consider the text stri‘ngg T = bcbacbbb and the pattern string P =

cacd, and k= 2. The similar pattern found is cbac and bach.

To give the user the flexibility to select different similarity levels, we support the
multilevel string matching by using the shape definition hierarchy tree in Figure 5.3.

The algorithm is as follows:
Algorithm 5.3.4 Multi-level resolution search

Input: (1)A s’tring of symbols that represent the shape of the data sequence; (ii) the
query shape sequence(query pattern); (iii) the shape definition table and the shape
A‘hiérarehyjtree; (w) the tolerance threshold k for approximate matching; and (v) the
matching resolutlon level. '

Output: The sets of all the subsequences that are approximately similar to the query
pattern with at most & differences. | ﬁ

Method: . ’ - ,‘.ﬁ

s

1. Generalize or specialize the input string of symbols to the corresponding queryv

shape matching level.

CHAPTER 5. SUBSEQUENCE SEARCH MODULE ' 61

2. Use the string matching algorithm: Enhanced Dynamic Programming (EDP)
Algorithm [26] to find the similar subsequences referred to Chapter 2.

Using C-like syntax, the EDP algorithm can be written as follows. The function

name is” DoStringMatch.

-fc;v
" DoStringMatch(QueryPattern) R =
{ \”?‘\. N ‘h
top=Fk+1; //k is the threshold for approrimation.
for(: = 0;¢: <=m;i++) <« // mis the length of the pattern string.
h() = 15 //initialize hfi].
for(j = 1;J <= n;j++) //n is the length of the source string.
{
c=0;

for(z = 1;1 <= top; 1++)
{ .
// if the pattern string at i is the same as source string at j.
if(Query Pattern(i] == SourceString(j])
e =c
: '
else

// hli — 1) is the entry of D(i — 1.j). h[i] is the entry of D(:.j — 1), and
//c is the entry of D(: — 1,j —1) in Table D .31 of Chapter 2.
’ e = min(h[i = 1], hli],c)+ L;
c= h[i);
hi] = e;
} :
while(h{top] > k)

top — —;
if(top == m)

Report _Match(3); //J is the match position.
else

top++;

2

k-3 © o

CHAPTER 5. SUBSEQUENCE SEARCH MODULE . ‘ 62

3. Stitching the neighbored similarity result together. ,,F
Using C-like syntax, the stitching algorithm can be written as follows, the fiinc-

tion name is DoStitching.

DoStitching() -
77 initialize FinalMatch to empty. FinalMatch is the array to store
//the stitched matching strings.
FinalMatch = NULL;
"// NumMatch is the number of matching subsequences.
while(i < NumMatch)
{ 4 .
// if the matching positions are neighbors, then they should be stitched.
. while(d: f(match_position|i], match position[i + 1]) == 1) '
{ |
// stitch the neighbor subsequences together.
StitchedString = match(i) + match(i + 1))
~ —overlap(match(i), match(i + 1)); -
//Get the final stitched string.
FinalMatch = FinalMatch + StitchedString
| —overlap(FinalMatch, StitchedString);

4. Scaling the query pattern, continue to do steps 2 and 3, till the scaling factor is

four.

CHAPTER 5. SUBSEQUENCE SEARCH MODULE - 63

Using C-like syntax, the scaling algorithm can be written as follows.

DoScaling()
{

for (int scale = 0; scale <= 4; scale ++)

¢ -

// len_queryPattern is the string length of the query pattern
for (int ¢ = 0;¢ < len_QueryPattern; 1++)
{

for (int j = 0;7 <= scale;j ++)//duplicate the symbol at .1 to j times.

{

ScaledQueryPattern + = QueryPattern.Get At(z);

}
DoStringMatch(ScaledQueryPattern); // do step 2

DoStitching(); // do step 3
} .

5. Output all approximate occurrences of the query pattern including the stitched

and the scaling ones.
Explanation 6f:_Algorithm 5.3.4.

1. At stepl ,the string of symbols which represents the shape of the original data
sequencé, should be generalized or specialized to the corresponding query shape

level ba‘sed'on the shape hierarchy tree we defined.

Example 5.3.2 Assume the shape string we get from the original source data
after Algorithm 5.3.3 is “uuuuUUddddDD”, which means “four slow ups, fol-
. lowed&y two sharp ups, four slow downs and two sharp_ downs™. It is at the

third level on the shape definition hierarchy tree shown in Figure 5.3. If .

i

whit

CHAPTER 5. SUBSEQUENCE SEARCH MODULE 64

o

.

" V - i s
our query pattern is “RRFFF” which means “two rises'followed by three falls”, -
which is at the second level on the shape definition hierarchy tree shown
in Figure 5.3. They are at different resolution levels (the shape string of the

original source data has higher resolution than the'query pattern string), thus

‘they cannot be compared with each other directly, So the shape strings of

the original source data should be generalized to a lower resolution level. Af- .
ter the generalization of the original shape string “uuhiulUddddDD”, we get
“RRRRRRFFFFFF”. The comparison.result we get is that the éimilar part -

with the query pattern is from position 5 to position 9 in the original sha" '

“string. o ' R

At step 2, we use the Enhanced Dynamic Progfa.mming (EDP) mét,hod to get -
the similar subsequences. It is an edit distance-based approach introdyced in

Chapter 2. This approach is applied for match‘ing sequences of different lengths . -

-which computes the minimum number of operations (deletions, changes and in- -

. sertions)-required to change a sequence into another one. The detail information

can be referred to Chapter 2.

Usually the results of matching positions are likely to be neighbors to each other,
especially when the shape syfnbols of the query pattern are with consecutively

the same symbols, such as “ddd”(three slow downs). In this case, we usually
like to stitch them together. Actually, it is a special case of scaling problem.

Following is a stitching example.

Example 5.3.3 If the query is to find the duration with the sales trend of -
mini-vans is “dd” (two slow downs) between Jan. 1940 to Jan. 1996. The query _
pattern here is two Consecutivgly same symbols. After the subsequence search
module while the searching level is at year level, the searching results are as
follows : '

“from 1942 to 1943, the similar pattern 15 'dd’;

from 1943 to 1944, the similar pattern is ‘dd’;

frm‘n 1944 to 1945, the similar pattern is ‘dd’ ".

CHAPTER 5. SUBSEQUENCE SEARCH MODULE | 65 -

T T
‘saqt daf &

closing price
closing prce

r
L
L

~
-
o
@
8
S
=
>
~
-
-
@
3
[
=
-3

Figure 5.7: (a) Time sequence s = (10,10,11,11,8,8,13,13), and (b) time sequence
p=(10.10,10,10,11,11,11,11,8,8,8,8,13,13,13,13). ’ o

After the s:titching algorithm, the searching result is : 4 7
“from 1942 to 1943, the similar paltern is ‘dd’; : P
jrom 1943 to 1944, the similar pattern is ‘dd;
from 1944 to 1945, the similar pattern is *dd’;

from 1942 to' 1945, the similar pattern is *dddd’ ~.

.'I

_' .

™ s

4. At step 4, scaling problem is considered in our algorithm, an.example of scaling

' prol‘)lem is shown in Example 5.3.4.

Example 5.3.4 Consider two time sequences in Figure 5.7, 5= (10,10, 11,
11,8,8,13,13) and p = (10,10,10,10,11,11,11,11,8,8,8,8,13,13,13,13). & :
and p could be the closing price of two stocks. A typical query is “is p sim-
ilar to § 7”. The sequence p is twice as lo}lg as &, so they cannot be compared
directly. If the time axis of §'is scaled by 2, i.e., every value “v;" is replaced by
“vi, v’ the resulting sequence will be identical to p. This operation is usually

called scaling.

According to the above example, we allow scaling along the time axis in our

e

2

CHAPTER 5. SUBSEQUENCE SEARCH MODULE h - 66

subsequence search module. Following is an example of having this scaling
capability. . .
" Example 5.3.5 If the query is to find the duration with the sales trend of mini-
vans is “UD” (one sharp up followed by one sharp down) between Jan. 1940 to
Jan. 1996. The query pattern here is not with consecutively sarﬁersymbols as
example 5.3.3. After the subsequence search module while the searching level is
at year level, the searching result is as follows :
“from 1945 to 1946, the Sirfzilar pattern s *UD’ ™. ‘
After the sc;ling »;g:g;hm, the searching result is as follows:
“from 1945 to 1946, the similar pattern is ‘UD" 7;
from 1944 to 1947, the similar pattern is ‘UUDD’ 7;
from 1943 to 1948, the similar pattern is ‘UUUDDD’ ™.

*

5.4 .Experiment Results

We implément our algorithm on top of the DBMi‘ner cube ' [22, 33| developed in our
lab. The data we run are from a stock data sequence called S&P index obtained from
the www site “http://WWW.isse.gmu.edu:SO/ jllin/mining/data.html”, which is shown
in Figure'5.8, r axis is the time from Jan. 1, 1939 to Dec. 31, 1992, y axis‘ is the
closing price at the'time.

In this section we first iﬁt_rodl{qe tl;é execution of the subsequence search algorithm
Algorithm 5.3.1 step by step using the real stock data S&P index which is time-related.

and then we discuss the performance of the algorithm. . .

.

_ 5.4.1 Execution Experiment .

To get the similarity'shape information, we process from the following four sub-steps

according to Algorithm 5.3.1:

CHAPTER 5. SUBSEQUENCE SEARCH MODULE 67

500 T
“index.dat” -—

s
450 - e

350

250

Closing Price

150

Time

(a) The original Data

500 T T T AR T
“recfile dat” ——
450 - -

400 | ~

350

250 |-

Closing Price

200
150
T J_H_,_,_,—r’fﬁ_/ ' : -
L
T 't i A .

I
400000 500000 600000 Ti 700000 800000 900000
me

(b)After the Wavelet Filter

~,

Figure 5.8: A stock data sequence of S&P index from Jan. 1, 1940 to Dec. 31, 1992,
with 40 : 1 compression ratio, and 15.37% relative L? erfor, with ¢ = 0.01 after the
reconstruction. ' ‘

g'

CHAPTER 5. SUBSEQUENCE SEARCH MODULE S

1. Building the cube. For this sam};le database, the cube can ha':/e,ﬁoznliy one di--

mension, which is “time”, and no other dimensions are needed’in this case. The

“closing price” of the stock can be a measure of the cube. ‘The drill down, roll

- "up and other OLAP operations can be operated on the cube. Along the “time” -

. . - . ~ - . . y
dimension, one can roll up from “month” to “quarter”, or drill down from “year”

‘to “quarter” according to the hierarchical knowledge for the “time” dimension.

2. Wavelet filter. We use the wavelet technique as a filter to filter out noisy data,

".and making the data smoother so_that the later steps not have to worry about

the noisy data, such as sharp jumps.and valleys. The effect of the wavelet filter

on this S&P index data is shown in Figure 5.8

3. Encoding. The sequence _dat;a are changed from the continuous space to the

<

discrete space at this step, in other words, we design a shape language in which
svmbols are used to represent the slope trends, changing the sequence data to a
string of sy mbols which reflect the overall trend of the sequence data. For this
example, the shape of the S&P index stock data at the “year” lev el and at the

third resolution level of the shape hierarchy, is *unuuuuuuuuuuuuuusSsduuU-

UuU". The length of each symbol implies two years. so use these 26 symbols to

represents the 52 years data from 1940 to 1991. The meaning of this string of
symbols 1s “In the first 32 years, which is from 1940 to 1971, is all the way slow
ups; there is a stable down in 1972 and 1973, a stable up in 1974 and 1975, and
another stable down in 1976 and 1977 then followed by a slow down in 1978
and 1279, two slow ups from 1980 to 1983, two sharp ups from 1984 to 1987,
one slow up in 1988 and 1989, and finally a sharp up in 1990 and i991 " Thus
“the overall shape character of the whole sequence is represented so intuitively

by such a short string of symbols

1. Multi-level resolution search. At this stage, the similarity searching problem

is changed to the string searching problem. So the searching query can be a

~ string of symbols representing shapes, which is very intuitive for the users to

understand.

\
\

\
CHAPTER 5. SUBSEQUENCE SEARCH MODULE ' 69
: e |

700

v
*shape.dat® -a—

query processing time(msec)
T

100 N . ‘l L n

[o] 5000 10000 15000 20000 25000 30000
Sequence length

Figure 5.9: The test Tesult of subsequence search module

e Given a searching template query @, such as “ssé”(3 stable downs), and a
tolerance threshold & =1, which means allow one symbol to be different
in the final searchipg result After the similarity seaxching process, the

answer we get is “From 191) to 1977 there is a match string ‘sSs” ;

e Given another searching template query'Q =“uuuuu”(five slow ups), with
k = 0, the answer is “From 1940 to 1971 there is a match string ‘uuuuuuu-
uuuuuuuuu’ 7, we use the stitching algorithm here to stitch the neighbored

similar patterns together.

-
L 2o

5.4.2 Scalability Study
g
The su‘bsequence search medule is composed of four steps: hml(hng the cube,

wavelet ﬁlter encodmg and multi-level resolutlon search Since bulldmﬂr the cube step

is outside the scope of our discussion, we will not@ include this step in our computation
of the execution time here. Thus the execution %time we compute will start from the
wavelet filter step. We have described in Chapter 4 that the total execution time of
_the wavelet filter step is O(M N), where M is the filter length, and N is the sequence

CHAPTER 5. SUBSEQUENCE SEARCH MODULE 7 70

length. In the encoding step, we use the least squa,'re approach, and it is easy to

see the execution

time is O(V), where N is the sequence length. For the last step of

multi-level resolu}ion search step, the major sub-steps is the EDP (Enhanced Dynamic

Programming) st

ring matching algorithm, and it works in average time O(kV) [26],

where k is the matching threshold and N is the sequence length. Since M and k are

always very smal

] that can be omitted, Thus we can say the execution time of the

subsequence sear¢h.module is of order O(N), where -N is the length of the sequence.

The original s

speed, we duplica

equence length of R&P_index is 648. To testify the implementation
te the data to different lengths. We varies the length of the sequence

from 600 to 30000. Figure 5.9 shows the execution result. The execution time almost

linearly increases

vith the increasing of the sequence length.

Whole Sequence Seaféh Module

_ string of symbols. Whereas, in the whole sequence search module, a bunch of

-

_..ﬁ,‘____._,_M-.\.,_ﬂ____m._x_._-

Chapter 6

] 3

@

-

6.1 Problem Statement]

The whole, sequence search module is des;igned ‘to solve the problem of “First(All)-

Occurrence Whole Sequence Matching”, which is “given a query time-series data Q

and a set of time-series data sequence with equal length as @, finding first (all) of the

sequences that match) approximately™.

The main difference between the whole sequence-seargh module and the

)

sub-

sequence search module described in Chapter 5 i$ the assilmption of the prablem.

FR

The assumption of the subsequence search module is that only one data sequericeq.

is given, and the search template of query Q) is a shape composed of a mean

sequences with the same length n are given, and the search query @ is a sequer,

data of length n. Thus they are for different domain problems.

ngful

An example of this domain problem is as follows:

Example 6.1.1 Given the stock price of Microsoft in the duration of 1980 to

?996.

data-

ice of

and a s,eht of stock p'ricés of other companies in the same duration, find the companies -

whose stock price fluctuations resemble Microsoft's.

In the following sections, the terminolb.gy used in this domain and the :algorit%:hms

we designed for this module will be introduced,

71

& -

¢

Query procgseing thima(msac)

Query procesaung ime{msec)

6 8 6 8
The number of sequances. The number of sequances

(a) R (b)

Figure 6.1: (a) Time sequence 5 = (10,10,10,11,11,11,8,8.8,13,13,13), and (b)
)- |

| _ time sequence p = (40, 40,40,44,44,44,32,32,32,52,52, 52

6.2 Terminology

- =- .o Similarity definition. Before we seriously discuss what is similarity, let us

" look at the following motivating examples:

4

_ Exarﬁple 6.2.1 Consider two timﬁ@equences in Figure 6.1, §= (10,10, 10,
11,11, 11,8,8:8,13. 13, 13) and 7 = (40,40, 40, 44, 44, 44,32, 32,32, 52,52, 52). &,
“and ﬁcould be the closing price of two stocKs. A typical query is “is p similar to
§7”. Each value of sequence p is four times as large as that of s, so theyﬁcannot
be Comparé@irectly. If each value on § is scaled by 4 along the y axis, 1.e.,
every Tvafue “v;7 1s replaced by “4v;”, the resulting sequence will be identical to

p. This operation is usually called scaling.

Examplé 6.2.2 Consider two time sequences in Figure 6.2, 5= (7,6,9,8,
3, 7,49’?&9,&8) and p = (13,12,15,14, 14, 13,15, 15, 14, 14). Suppose they are two ’
time sequences that correspond to the closing prices of two stocks. Is “p similar
to s 7", The value of sequencehg is around 8, whereas the value of p'is around

14, but they go up and down in exactly the same way. If everv value in the

CHAPTER 6. WHOLE SEQUENCE SEARCH MODULE 73

T T T T T T
“seqd dal 2) ‘saqd dal +—

Homing price
i =
. .
A ' - .
L et
PR
closing price
&S =
z v
v .

Figure 6.2: (a) Time sequence 5= (7,6,9,8,8,7,9.9,8,8), and (b) time sequence
p=(13,12,15,14,14,13,15, 15, 14, 14).

sequence § is added by 6, the resulting sequence will be identical to p. This

operation is usilal'ly called shifting.

The two sequences in each_of the above two examples are not close to each other
in an Euclidean sense, but a good similarity search model should allow scaling
and shifting one of the sequences to match another sequence. Combinations of |
scaling and shifting are shape-preserving transformations, known as similarity

transformations in the mathematical field of Transformational Geometry [32,
- 16]. ¢

Definition 6.1 A simiarity transformation T, , over n-sequences is by mappiﬁg
each element x; to ax r; +b. (a,b) € [R* x R].

‘ ;
We restrict a*> 0, which implies that a sequence symmetric to X w.r.t. the
x-axis is not considered similarrto it. -

P2

Definition 6.2 Let D be, a distance metric between sequences, we say that X
is approxémately similar to Y if there erist some (a,b) € [R* x R} and ¢ > 0,
such that D(X, T,y(Y)) < € [1@%}]

)

CHAPTER 6. WHOLE SEQUENCE SEARCH MODULE : 74
| F

Definition 6.3 An ,apﬁroximate similarity class is th€ set of sequences approzr-

imately similar to a given one. This set of sequences-tonstitutes an equivalence

class called similarity class. We shall denote the simglarity class of X by X~.

In a transformation Tos, a is called the scaling factor and b is the shifting
factor. If a is 1, the transformation is a pure shift; if bis 0, it is a pure scale.
The identity transformation is a pure shift; the product of two scales is also a
- scale. From these, we conclude that the set of all scalings of a given sequence is

an equivalence class. The same is true of the set of shiftings.

Definition 6.4 The Euclidean distance between two sequences Sy and Sy is:
> + . N .
D($1,52) = (¥ (Sili] - Sl . © (6.1)
. 1<i<l ,
ra 2
In the similarity search aréd, the Euclidean distance is a general concept used
as the similarity distance metric. We use the Euclidean distance as the distanc .

metric in this module.

6.3 Algorithms

Our algorithm is focused on the processing of the time series that is a sequence of
real numbers, each representing a value at.a time point. Two approaches will be

introduced in this sectiqn as follows.

6.3.‘1 Brute-Force Approach

A brute-force approach is a naive approach for solving the whole séquence matching
problem which is to compute the Euclidean distance (or other kinds of distance)
between ‘any two time sequences, and call two sequences similar-if their distance is

" less than a user-defined threshold. The algorithm is formally illustrated as follows:

Algorithm 6.3.1 A Brute-Force whole sequence similafiiy_ search algorithm. Ld
] * : g ‘_% »

=

CHAPTER 6. WHOLE SEQUENCE SEARCH MODULE : : - 15

Input: (i) A query sequence (), and a éet of n 4slequences S; with the same rlen‘gth_l
as Q. and (ii) distance threshold.e. |

Output: The set of sequences which is approximately similar to the query sequence
Q. ’

Method:

Using C-like syntax, the steps can be written as follows.

// Assume X is the similarity class.
X = NULL; // initialize X.
for (1 =0;: < nii+ +)

{

//compute the Fuclidean distance of Q@ and S;. ,
De(Q. S) = (Ligj< o QU] = S:IDHY2 Y .
//if De < € then Q and S; are similar. ’
if (De(@Q, 5:) <) :
a X=X+S5; // put S; into the similarity class.
} N
//X contains all the sequences that are approrzmately stmilar to query Q.
output(.X); ’

Explanation of Algorithm 6.3.1. - ‘ a

1. In this algorithm, every sequence S5; is compared with the query sequence ()
through computing the Euclidean distance. If the distance of () and S; is less -

than the threshold ¢, then put S5; into X set, which is the similarity class set.

o

The time sequences are usually veryr long, so this algorithrﬁ can be time con-
suming if without some preprocessing. Another problem with this algorithm
is that it cannot solve the scaliné and shiftin; problems as in Example 6.2.1
and 6.2.2, which are not close to each other if using this Brute-Force élgorithm.
A good algorlthm should be de51gned to allow scaling and shifting one of the o

sequences to match another sequence

CHAPTER 6. WHOLE SEQUENCE SEARCH MODULE 76

3. This algorithm doesn’t have any preprocessing of the noisy data.

- 6.3.2 A Feasible Approach

To address the disadvantages of the Brute-Force algorifhm, we apply some transfor-
mations before computing the Euclidean distance. -

In this section we demonstrate how our approach can be used to eliminate noise
or short-term fluctuations and shift or scale thé data before computing Euclidean

distance.
Algorithm 6.3.2 A feasible whole sequence similarity search algorithm.

Input: (i) A query sequence), and a set (;f N sequences with the same length as @,
and (i1) a distance threshold ¢ > 0.

Output: The set of sequences which is approximately similar to the query<sequence
Q.

- Method:

1. Normalization: transform the query sequence and the set of series into the
normal forms. This transformation is a similarity transformation as defined in

Definition 6.1.

Using C-like syntax. this step can be written as follows.

for(int ¢ = 0:¢ < N1+ +)//N is the number of sequences
{ | .
~ mean(S[i]) = ComputeMean(S[i])); // compute the average of S;.
std(S[t]) = ComputeStd(S[i]); // compute the standard deviation of S;.
for (int j = 0y <len(S[i]);j++) //len(S[i}) is the length of S[i].
{ N
© NormS[i]{j] = (S[}][J] — mean(S[i]))/std(S[:]): //compute the

//normalization for each value on the sequence S;.

) | -

-

-

CHAPTER 6. WHOLE SEQUENCE SEARCH MODULE . 7

\
..
2. Wavelet transform: transform each’sequence to a coarser version { the original

\

version. ') N

(i) Transform the normalized data sequences from the initial space V;,, to a

coarser space ‘/jm.

o Which is the middle space between the initial space and

the coarsest space V; N\

mn " AN

“mother wavelet” spaces.

Combpute the Euclidean distance of the coarser version.

Using C-like syntax, this step can be written as follows.

imid SPACE.

// Assume Cs, is the coefficients of sequence S; at 'V,
Assume Co is the coefficients of the query sequence Q at V; . space.
) Q q Y q Jmad
len: is the length- of sequences at space V; ., and len; s the
Jmad g q p Jmud Jmazx

4

//original length of sequences at the initial space V

Jmazr*

X =NULL; // X is the similarity class for Q. 1
for(int 1 = 0;1 < N;i+ +) //N is the number of sequences:
{ -

len; ., =len; . [2imd;

int sum = 0;

for(int m = G;m <len;_ ;m+ +)

sum = sum + (Cg[m] — Cs,[m])%

Dy = (sum)?. //compute the Euclidean distance.

if (Dw <=¢€) //if Dw < e then Q and S; are similar

X =X+4S;; //putS; into the similarity class.

= Explanation of Algorithm 6.3.2.

(i) Only keep the coefficients of the V;_ , space. delete the coefficients of the \

\

¥

1.

o

1trjmtd r:t) I/‘/.7'17nd+1 % Y‘D LI/

"n . b,
oo &

R -

-

CHA{TER 6. WHOLE SEQUENCE SEARCH MODULE 78

ra N
4

= -

To account -for scaling and shifﬁing we normalize the sequence values of each
sequence and form a new set of normalized sequences at step 1. Let’s look at
some definitions here [16]: _

F
Definition G;i&A_nt.n:sque@'cg X is a sequence {.rll,---,;r,}} of real numbers.
Fach n-sequence X has an average méZm(X) aﬁnd a standard deviation std(z):

mean(X) = (1/n) Z I
1<i<n
std(X) = ((1/n) 3 (2: — mean(X))?)"2

1<i<n

Definition 6.6 An n-sequence X is normal if mean(X) = 0 and std(X) =

Given amy data sequﬁ’ﬁ%e X, v(X) denotes the normal form of X=, where X~
is-the §imjlarit,v class of X. Since a similarity class has exactly one normal
form [16] v(x) is unique for a similarity class. If mean(X) is the average of
*X and’ ctd(\) is the devtation of X, then X = std(X) * v(X) + mean(X).

Therefore, we can compute v(.X) from X by the inverse transformation:

o(X) X —mean(X)

},a = T ad(X) (6.2) -

- g

Thus, the normallzatlon procedure 1S the reverse procedure of the similarity

transformation accordmg to Definition 6.1.

At step 2, the bandwidth can be determined before doing the wavelet transforf.
mation given a finite length of sequence, referred to Chapter 4. The bandwidth
Ajis |log,(n — 1)|, where n is the length of the sequence. Thus we define the
middle level to be jmis = [Aj/2]. ‘

We assume the original sequence is at the V) . space, Figure 6.3 shows the

Jmax
space decomposed into subspaces till the ‘Jm'd

. . ":‘4’1; N

original data sequence at V;

Jmaz

with the subspaces is : Vj

Jmax

space, and the relationship of V;

Jmazx

Jmaz—1- o S

CHAPTER 6. WHOLE SEQUENCE SEARCH MODULE . 19

<

* Ijmax
V. W .
Jmax 1 . Jmax !
| ~
: N
y 2\
- v' wJ » .
! \
i AR
| \
| \\
V. W.
Ymin Jmin

Jmazx

Figure 6.3: From the V,__. space transforms to the V;, space
g p Jmd

We have discussed in Chapter 4 that the coefficients in space V is the coarser
part and the coefficients in space W is the detail. part of the original data
sequence. The lower the level of space V, the coarser of the original sequence.
The coarsest space V) = space has only one coefficient, which is the average
value of the original sequence. Since the middle level Vj_ . is not too coarse and
not too fine, we select to compute distance of the coefficients at the V; space
level. We do not care about the detail part at the W spaces, since they can
be treated as noisy data. What we are interested in is the overall frend of the

sequences, and the coefficients at V] _ , are just what we need to represent the

md

overall trend of the sequences.

The lower the level of space'V, the fewer the number of coeflicients, thus the
fiumber of coefficients at V; _ level will be n/2/m4, where n is the original length
of each sequence. Thus the number of coefficients to be computed is decreased

sharply at the middle level.
- we

¢

7 -

CHAPTER 6. WHOLE SEQUENCE SEARCH-MODULE 80

-~

3. After getting the coefficients of each sequence at space V; we compute the

mad?
Euclidean distance of these sequences according to equation (6.1) at step 3. If
the Euclidean distance between the query sequence @ and S; is less than the

threshold ¢, then put S; into the similarity class set X.

Any proper distance metric D for N sequences can be used instead of Dg. Since
~our data is discrete data, and the Euclidean distance is a standard distance

metric in discrete data processing, we chose to use it here.

4. Actually, if we skip step 2, only do step 1 and step 3, the similarity search
can also be implemented. In other words, after the normalization of the data
sequences at step 1, the Euclidean distances of these normalizéd‘sequenc'es can .

‘Nbe computed. If the Euclidean distance iAs less ‘than a user-defined threshold,

" then they are said to be simyar. This Euclidean dis\tance is called similarity
distancé which will be introduced later. This method works fine for smooth
sequences which have no noisy data. However, in real life, if 1$ very common to
have short intervals of sharlp jumps and valleys in the time-related datdand the
Fuclidean distance metric is very sensitive to the noisy data. it is very necessary . _
to add step 2 to solve the neoisy data problem. Let us look at the following

examples.

¥

Examplé 6.3.1 In Figure 6.4(a), the overall trend of two sequences’seriesl
and series2 are similar from the human eye. Actually every value in series2 s
three times of seriesl and added by two. Thus after the similarity transformation
also called the normalization of step 1 they are overlapped as can be seen in
Figure 6.4(b). This is the no noisy data occasion. The Euclidean distance in

this erample is zero.

Example 6.3.2 In Figure 6.5(a). the values of serie§1 and series2 are al-
most the same as Figure 6.4(a) except that there is one noisy data on series?2.
The Fuclidean distance metric is very sensitive to the noisy data, only one
short interval sharp jump can make the two sequences not stmilar in the Eu-

clidean sense. After the normalization step these two sequences are shown in

* - - . -

"l g -

CHAPTER 6. WHOLE SE?@UENCE SEARCH MODULE ' 81

8

AR

womsmssmononor] TIVHISHIBAHANY
oM '

¥ () : (b)

Figure 6.4: (a) The original sequences of seriesl and series2, and (b) after normaliza-
tion De = 0.

Figure 6.5(b). It can be clearly seen that the noisy data still there after the
normalization, and the Euclidean distance after the normalizationwus 9.1476. if
“we set threshold € to 3, then these two sequences 15 dissimilar if witha‘t' ste)) 2.
But, after we add step 2 n, the noise are decreased greatly, and the Euc/idean
distance after the step 2 becomes 2.398. It is less than 1!16 threshold 3, and we
get the answer that seriesl and series2 are similar, Thzs answer is just what

we want.

.

Ut

The threshold € can be varied according to the length of the data sequences.

The longer of the sequences, the bigger value of the threshold € should be.

6.3.3 Validity and Accuracy of Algorithm 6.3.2

In the simil/arity search area, the analysis of validity and accuracy of the algorithm
is very mmportant. Otherwise, people cannot evaluate how good the algorithm is.
In this section we will give some descriptions. about the validity and accuracy of

Algorithm 6.3.2.

-

CHAPTER 6. WHOLE SEQUENCE SEARCH MODULE | 82

A 1)
:&WMHMWMWMMW !ULMUM M\'h HW' Lﬂ” M J J\Wﬂ
- (i) ‘.;., — r_;o = (b)‘;, -

Figure 6.5: (a) The original sequences of seriesl and series2, and (b) after normaliza-
tion De= 9.1476, after wavelet Dw=2.398. ’

We have said before that after step.l of normalization of the sequences, we can
skip step 2 of-wavelet transform, and directly do step 3 of computing the Euclidean

iy
s

distance. We define the similarity distance is [16]:

Ds(X.Y)'= De(w(X)Y)) (6.3)

£

where X and Y are two data sequences, v{X) is the normalization of sequence X. Se-
quences with different scales and shifts cannot be compared without the normalization
proeedure. Other algorithms [16, 2] are developed on the basis of the normalization
step, to make the algorithm more efficient. Thus the similarity distance as described
in equation (6.3) is used as a criterion to analysis the validity and accuracy of the

- similarity algorithms.
(i) Validity
To establish the validity o_ftthis algorithm, we need to show that
“Ds(X,Y) < € = Dw(C(X),C(Y)) <e, (6.4)

where Dy is the Euclidean distance that we get from algorithm 6.3.2, and C'(X)

is the coefficients of the sequence X at V; _ , space.

L !
. ﬁ \ o

: : - LT
z | ’ \ | Vo L |
As we know, CV&) is elther the average value of two nelghbor Values as in Haar

wavelets, or theksum of s some nelghbor values axs in other wavelet transformatlom

like Cmﬂets in Yvhleh each value is given dlﬂ'erent welghts and the total of the
welghts is 1 at eleh dlﬂe\rent scales. T ’ v \.; f:

-

(6. 4) vve just need to prove: tfhat Dw < Ds. To mal\e things

_easy, we use the i{aar wa\velet transform in whmch V space coefﬁaemts are the

To prove equatiot

average value of t{mo nelghbor values; and W space coeflicients are the half of

the difference of two nelghbor values. If we can prove Haar wavelets we can

prove other kinds o(wavelets transforms
&

i

\'\ .
For the normallzed \sequences X(ao,al, -,a,) and’ Y(aa,‘a;,---,a;), Ds =

» + ’ | X <
(T7_o(ax ﬂ.ak))1/2 a§«nd Dy = Z/%(azk'f'a?kt G2k ‘2‘2k~t1)2)1/2, where QL-*-;lgii_l_

2

and -———T——*— are a value of C X) and C(Y) res ectlvel i SRR
p y-
Since the coefﬁcnents a,t W s ace areassumed to be zerd in our algorithm, Wh]Ch
p g
neans (a2k _;2":}1 _ a?k‘%;?k'tl)2 : 0’ we ha\re_ . “‘\' \'\
2 Aok + Aakpr @hy + dy az - 02;+1 by = Ayt 2\ /2
;7T 2%k 2k+1 12 : : 2 2k41\2\11/2"
Dy = (Y ((FEEEL 2Tkl (SR B Byl
k=0 < boe . < = ‘
Mz, £ — a. o al
—- 2k — Gy} o T2k4+1 T C9k41 121411/2
— 2 ———=z (L. eRkvl
k=0 < e
n/2 : o
- —)(Z((Cl?k - alzk)2 + (@2k41 = aI2k+1)z))1/2 \
Since "
. B £ 3;;:—‘ - P
R nf2:
N / 2 ® / 2 1/2
‘ -, y (Z((“?k — ay)” + (@2k41 — aze44)7)) /
o k=0
o
s = (-)
R k=0
= Ds
we have: ~a
8
1
Dy = —=Ds < Ds

CHAPTER 6. WHOLE\SEQUENCE SEARCH MODULE - 84

Figure 6.6: (a) Seriest and series® before the normalization, and (b) series3 and series4
before the normalization.

w(C(X),C(Y)) < e whenever Ds(X,Y) < e

[t immediately follows that

(i1) Accuracy
To establish acduracy, we wang to know how likely it is that Ds(X,Y) < e
provided that Dy (C(X).C(Y))\< €. The cases when Dy (C(X),C(Y))< € but
Ds(X,Y) > € represent false alaryns, and we want to minimize their occurrences.

Therefore, we would likethe ratio\Dy (C(X),C(Y))/Ds(X,Y) to be close to 1.

The actual ratio strongly depends\on the nature of data and the selection. of

the wavelet basis. In our future wor\k, we will do further analysis about this to .-

make our algorithm provide good acépracy.

6.4 'Experiment Results

-+

Like the subsequence search algorithm 5.3.1, Alggrithm 6.3.2 is also implem'ented on

top of the DBMiner cube [22] developed in our laby

" CHAPTER 6. WHOLE SEQUENCE SEARCH MODULE - * 85

A : ?i

10 s oy 10
normal! A— sensst- A—
noma2 A— sanas? 6—
8 S)
6 4 [
4t 1 al
F L 2r E
0t 4 o_.
! : 3
LN 4
2t o 2} N
" 2 " "
1] 2 4 6 8 10 1?2 1] 2 4 [8 10 2
(a) (b)

Figure 6.7: (a) Seriesl and series2 after the normalization, and (b) series3 and series4
after the normalization. ‘

We ran e}zﬁ‘riments on synthetic sequences for this algorithm for the purpose of
easy testing.” - |

1 this section we first introduce the execution of the whole sequence search
Algorithm 6.3.2 step by step using ‘a synthetic data which is time-related and then
we discuss the performance of the algorithm.

. i . T2
6.4.1 Execution Experiment |

To show the validity and accuracy of Algorithm 6.3.2, let us look at the following

experiment result. ' _

Example 6.4.1 In Eigure 6.6(a), geriesl = (10, 10‘,;‘170, 11,1111,

8.8,8, 13,13, 13) and series2 = (32,32,32,35.35,37,26,26.27, 41,41, 41), almost every
value of series is three times and pius two of the seriesl, except that only two values
are different. The trends of them looks quite similarin the human eye. In (b), series3

=(10.10,10.11,11,11,8,8,8,13,13,13) and sertesd4 = (32,10, 32,10, 35, 35, 10, 26, 26,

41,10, 41), the two sequences are quite different. and they cannot be considered similar

in the human eye.

S
e e

' CHAPTER 6. WHOLE SEQUENCE SEARCH MODULE g6

. 3
If we usé the Brute-Force Algorithm 6.3.1, the Euclidean distance of seriesl and’
series2 in (a) is 81.49, and the Euclidean distante of series3 and seriesd m‘(b) is 65.95.
Thus in the Euclidean sense, seriesl and series2 are dissirﬁilar, although they -should
be considered similar in the human eye. So the Brute-Force algorithm is not applicable
for this case. Thus to account for the scaling and shifting, we should nofmalizé the
sequences. _ |

The four series are normalized in Figure 6.7, (a) is the normalizaéion of seriesl

and series2, (b) is the normalization of series3 and seriesd. The similarity distance

after the normalization are Ds = 0.38 and Ds = 4.09 for (a) and (b) respectively.

It shows that the similarity distance after the normalization is decreased sharply for
the similar sequences: seriesl and series2 in this case, whereas, for series3 and series4
the similarity distance is still very high. If we set the threshold € to 0.2, seriesl and
series will still be considered dissimilar under this threshold.

: ;éhe purpose of wavelet transform procedure is to keep the main features of the

sequences while smoothiﬁg them. It has shown that after the wavelet transform, the

" Euclidean distance of (a) in Figure 6.7 becomes much smaller which is 0.168, and the

Euclidean distance of (b) in Figure_f)'.T still large which is 3.133. Under the threshold
€ of 0.2, we get the conclusion that seriesl and series2 are similar, whereas series3 and

series are dissimilar.

From here, we can see the validity of this algorithm: Dy is always less than Ds.
It also shows the good accuracy of this algorithm, for the dissimilar sequences, like
series3 and seriesd, the search answer is,“dissimilar”; For the similar sequences, like

seriesl and series2, the search answer is “similar”.

6.4.2 Scalability Study

The whole sequence search module is to compare a bunch of sequences with a

query sequence and the sequences are with the same length.

*
N
s . & 7
3
- .
10000 . —— - . : —
: “TestResuit! dat* a—
9000 | 4
8000 |- e
B =
< 7000 + g
2
s 6000
= L - i
E
54
@ 5000 o
a
@
]
& 4000 | g
o
[}
=)
S 3000 } .
- 2000 | - ‘ . . .
P o
1000 |- -
L] £
-0 i N Y i I 1
[200 400, 600 1000 1200 1400

e Th Sequences

Figur_e 6.8: (1) The test result of whole sequence search module

® 4500 - T - T T T T
A “TestResult.dat® -+— L
& - 1000 L]
) ,;égsoo ko |
+ 8 aooo} .
£
GE) .
= 2500 } .
on
£
2
°§’ 2000 | 4
a
=
63 1500 -
{
- 1000 | .
N 500 .
% 0 A i - L i AL L
] . 500 1000 1500 2000 2500 3000 3500 4000

The number of sequences

Figure 6.9: (2) The test result of whole sequence search module

f ;

£ »

CHAPTER 6. WHOLE SEQUENCE SEARCH MODULE - - 88

/’ T) . ﬁ

Like the. subsequence search module the whole sequence search module is com-
posed of three steps: normalization, wavelet transform and computatlon of the Eu-
clidean dlsta.nce Thus the execution time should account. for these three step's As— ‘
sume A is the number of sequences participated in the similarity search, and they -
llave ‘the same length N. The execution time of normalization step:is O(K'N). At
the wavelet transform step, the execution time is O(mK N), where m is the filter
length desctibed in Chapter 4. At the computation of the Eucli(lean distance step,

the execution time is O([\ N). Thus the total execittion time of the whole‘%quence
A ,

search module can be of order O(K N). ’f‘ | i S .

Each svnthetlc sequence X is a random sequence produced rand&mly\rg{lls;ed&the

¢

rand() function. -

We first vary thé length Q,£ the sequences from 100 to 1300 while we keep the
number of sequences fixed to 1000 The performance 1esult is shown in Figure 6.3.

In the next e.\’pe-rxment, we kept the sequence length fixed to 123 while we vary the
number of sequences from 2 to 1.000. The result we get is demonstrated in Figure 6.9.

We can see that if the Sequence length is fixed. the execution time is linearly
increased with the growth of the number of. sequence’s. Similarly, nizhen the number
of sequences: is fixed, the execution time is linearly increased with the gr‘ox\'t,h of the\\
sequence length. We.have tested that our algorithm even can work in very large*

databases. . @

o

)
.

Ladre

“This thesis has discussed the algorithms and implementations of similarity analysis in

Chapter7 e

Conclusmns

»

» Py
w4

This chapter summarizes the résearch and lmplementatlon work oﬁ,{brs thesis, and
~
disc uss{s the majoxgcontnbutlons of our worl\ compared te other re%earch work in this

L3

area: ‘ ' - ' o~

»

7.1 Summary

-

time-related databases. We have proposed two rhodules: subsequence search module
and whole sequence searc.h module. The wavelet techniques have been analyze‘d‘and
used in these two modules.
Firstly, the background knowledge of wavelet a'rilalysiS has been described, and the
reason why we-use wavelet tecfmique instead of Fourier Transforhl is explained. The
“cornpact support feature of wavelet determmes that it has better performance than
Fourier analysis whenever a %1g1,1a1 l; (lommated by transient behavior or (llscont«mu-
?ities. It is also verified that wavelet technique works fine for our data in time-related
databases. The implgmentati:)n of wavelet transform in our system is also introduced,
in which we use the fast pyramid algorithm to decompose the signal into component
wavelets. - e |

Secondly, the algorithin and 1mplementat|on of the subsequence search module is

introduced. The search template is a meanmgiul string of swnbols like tokens that :

89

o

" CHAPTER 7. CONCLUSIONS .

7unplemented on top of the ‘DBMiner i«

‘represent “the shape lIIl‘OFllldtLOEL:- 161

_structure in our DB\Tm@r S\ stem The search can be achleved in multlple abstract;

"concept lex; els and also- m multrple shape 1esolutlon levels The search querv deslgned*' H

i his Wway is ven mtmtlw fox tlle users to underé'tand

T hlr(ll\ two a pproaches are mtroducecl for the whole sequence search module The |

search’ template 1s a sequence of data with the same length as the source sequences

¢~ \We have verified that the Blute-che approach is so poor that 1t does not account -
i for the scalting, shifting and noisy data problems The other fea.srble &pproa.ch has -
been testified that‘ it not only accounts for the scalmg, shlftlng and n01sy da.ta, but o

AdlsO proves to bhe valid and has good accuracy.

The ex pulments show th&t the execution time of our twor modules is. lme&rly -

[; . T
= 7 increased by mcxeamm both the number and the length -of sequences X
7.2 Discussion R e

- To conclude,the thesis, we discuss the major contributions of our work tompared to
) oo 7 - - 7 . J - B ’ . .
other similarity search systems, and summarize the research work that has been done -.

so far as well as the future research areas on this method. BN

1. In the similarity-based querles in subsequence search area, it has the following

o s‘lgmﬁcant features: o ' 5

s

- : M R - -

o We design a set of shape tokens, which can be Vrepresented as similarity
language. The users can use these tokens as a way-to express thelr search
queries. It is a simple and intuitive way for user to understa,nd Interestmg

thmg is that these tokens can muffle noise data in a certam way.

- e The shape tokens are de51gned ta represent multi- level resolutions so that :

= the users can express their queries in multi-levels.

e An interactively querying and answering user interface is designed and

implemented . .

’

" CHAPTER 7. CONCLUSIONS | 91

Based on our knowledge, it is the first time that the wavelet- technique is used

o

in the similarity analysis of large data sets. We have given sufficient analysis of

the wavelet features and the a]gorithms to apply these features in our similarity

b search modules. Its superability compared to the Fourier Transforin has been
verified. : : ' S .
3. In both of the subsequence and whole sequence search modules. the scaling and
- shifting problems have heen accounted for. |

4. Because of the adoption of the wavelet technique, both modules are=robust in

the presence of noise and short-term fluctnations.

7.3 Future Work

E 4
« The niajor limitation of this method is that its application domain is limited to the one

4 4 ditnensional regular time-series data in which the data are in uniform }im(‘ intervals,
tal‘{(l:lat(*r the method should be extended to the irregular time-series data. / -¢
\For the noise term. itis difficult to give a quantified definition. It is highly de-
pended on the features of data. We will do further empirical analysis on this in our
future work.

Another problem is that we only test our method on one kind of stock data.
and later we will use more stock data or data in other domains to further refine our
algonithms to fit any kinds of time-series data. 4

Furthermore, the result of the similarity search can be further used for mining
other rules, such as association, prediction. and classification. For example. according
to the shape pattern result, we may find that a sharp juinp of the stock market always

-associates with the election of a new president. This is an association rule. Other

rules can also be found. This will be a good research direction, and will be used in

decision support of the industry area.

Bibliogréphy |

[1] R. Agrawal, C. Faloutsos, and A. Swami. Effictent similarity search in sequence
databases. In Proc. 4th Intl. Conf. on Foundations of Data Organization and
Algorithms, pages 69-81, October 1993.

[2] R. Agrawal, K.-I. Lin, H.S. Sawhney, and K. Shim. Fast similarity search in
the presence of neise, scaling, and translation in time-serjies-databases. In Proc.
2Ust Int. Conf. Very Large Data Bases, pages 490-501, 7ifeh. Switzerland. Sept.

1995.)

[3] R. Agrawal, G. Psaila. E. L. Wimmers: and M. Zait. Querying shapes of his-
tories. In Proc. 21st Int. Conf. Very Large Data Bases, pages 502-514, Zurich.
Switzerland’, Sept. 1995. : .

[4] N.J. Avache and O. D. Faugeras. HYPER: A new approach for the recognition
_and position of two-dimensional objects. [EEE Trans. Pattern Analysis and -

Machine Intelligence, 3:14-51, 1986. , .

[5] N. Beckmann, H.-P. Kriegel, R. Schaeider. and B. Seeget. The R*-tree: An
efficient and robust access method for points and rectangles. In Proc. 1990 ACM-
SIGMOD Int. Conf. Management of Data, pages 322-331, Atlantic City, NJ. June
1990. “ |

[6] A. Bruce, D. Donoho. and H. Gao. Wavelet analysis. [EEE Softwarr, [;ages
© 26-35, October 1996. B

BIBLIOGRAPHY . . I | 93

7]

[3]

9]

[10]

(1
[12]
[13]

1) «

9
R. Burden and-J. Faires. Numerical Analysis, 5 ed. PVVS Publlshmg Compan),

- 1993 : 7

)

S. K. Chang, Y. Cheng, S. S. Iyengar, and R. L. Kashyap. A new method of
image compression using irreducible covers of maximarl rectangles. [EEF Trans.

on Software Engineering, 14:651--658, May 1988.

S. Chaudhuri and U. Dayal. An-overview of data w#rehou‘sing and OLAP tech-
nology. ACM SIGMOD Record, 26:65+74, 1997.

C. K. Chui. An Introduction to Wavelets. Académic Press, Inc, 1992.

[. Daubechies. Orthonormal bases of Compactlv supported wavelets., Comm. Pur(

and Appl. \[%th 11:909-996, 1983.

[. Daubechies. Ten Lectures on Wavelets. The Society for Industrial and Applied
Mathematics, Rutgers Universitv and AT&T Bell Laboratories. 1992.)

K

[. Daubechies. Different Pmspfctu(s on Wavelets.” American Mathematical So-
c1et\ Providence. Rhode Island. 1993.

(. Faloutsos. M. ‘Rar‘iganatllali, and Y. Manolopoulos. Fast sub.s‘(;quondce matching
in time-series databases. In Proc. 1994 ACM-SIGMOD Int. Conf. Management
of Data, p-ages_ 419-429, Minneapolis, May 199-1.

7. Galil and K. Park. An improved algbrithm for approximate striﬁg matching.
SIAM Journal on Computing, 19:989-999, 1990.

D. Q. Goldin and P. . Kanellakis. On similarity queries for time-series databases:

~Constraint specification and implementation. In fst Intl. Conf. on the Principles
and Practicc of Constraint Progmmming.‘ﬁe{ges 137153, LNCS 976, 1995:

G. H. Gonet, M. A. Coﬁgén, and S. A. Benner. Exhaustive matching of the entire

‘protein sequence database. Science, 256:1443-1462, 1992.

W. Gong. Periodic pattern search in time-related.data sets. In M.Se. Thesis,

Simon Fraser University, November 1997.

.’3‘» 9

[19]

="

'BIBLIOGRAPHY . = =~ S o4

A. Graps. An 1ntroduct10n to wavelets. [EEE (omputahonal Sczence and Engi-
neering, 2:350-61, 1995, . . R |

[20] W. L. Grosky, P. Neo, and R. Mehrotra. A pictorial index mechanism for model

-based matching. In Proc. Fifth [EEFE Int'l Conf on Dat(z Engineering. pages

130~ 137, i

' Angeles CA, 1989 .

R. Grossi and F.Luccio. Slmple and efficient string matchjné with k mismatches.
Information Processing Letters, 33:113-120.1939.

J. Han. Data mining techniques. Tutorial Notes, 1996 ACM-SIGMOD Int. Conf.

Management of Data. pages 1-71. June 1996.

tJ. Han,iJ. ('hiangg\S. Chee, J. Chen, Q. Chen, S. Cheng, v Golng.‘ M. I\'amb(;r.
k. Koperski, G. Liu, Y. Lu, N. Stefanovic, L. Winstoqe, B. Xia, O. R. Zaiane.
S. Zhang, and H. Zhu. DBMiner: A system for data mining in relational databases -
and data warchouses. In Proc. (', ASCON97: Mecting of Minds, pages 219-260.

Toronto. (Canada. November 1997. Cn

J. Han. Y. Fu, W. Wang. J. Chiang. W. Gong., K. Koperski. D. Li. Y. Lu..
A. Rajan. N. Stefanovic, B. Xia, and O. R. Zaiane. DBMiner: A-system for

mining knowledge in large relational databases. In Proc. 1996 Int1 ('onf. on Data

Mining and [\nou ledge Discovery (KDD96). pages 250 -))) Portland, Or(gon

_ August 1996.

23

[26]

H. V. Jagadish. A retrieval technique for similarity shapes. In Proc. 1991 ACM-
SIGMOD Int. Conf. Management of Data, pages 203-217. Denver, Colorado,
1992. '

H. V. Jagadish. A. O. Mendelzon, and T. Milo. Similarity-based qneri(i In

Proc. 1{th ACM Symp. Principles of Database Syslfms pages=36- 15, Sdn Jose,

California, 1995.

e

BIBLIOGRAPHY o R

[27]

- B33l

[34]

[35]

}*Of the ACM, 23:262-272, April 1930.

P. Jokinen, J. Tarhio, and E. Ukkonen. A comparisen of approximate string
matching algorithms. 'Software-Practice and Experience, 26:1439-1458, December
1996. 2 |

3

F. N. Kerlinger. Foundations of Behavioral R-Aesea’r"('h. Holt, Rinechart and Win-
ston, New York, third edition, 1936. . '

W. Klosgen and J. Z;vtkow. Knowledge discovery in database terming%gy:. In
.M. Fayvvad, G. Piatgtsky-Shapir'o,'P. ;Smryth, and R. Uthurusamy, editvoer;s‘, Ad-
vances in Nnowledge Discovery and [\)ata';\[ining. pages 573-592. AAAI/L\IIT
Press, 1996. _ ,

14

G. M. Landau and U. Vishkin. Fast and parallel and serial approximate string

matching. Journal of Algorithms, 10:157--169, 193%.

LY
S. Mallat. A theory for fultiresolution signal decomposition: The wavelet repre-

sentation. [EEE Trans. Pattern Analysis and Machine Intelligence. 11:674-693.
1939.

L3

E. M. McCreight. A space=economical suffix tree constructjon algorithm. Journal

Modenov and Pakhomenko. Geometric Transformations. Academic Press. 1965.

3

‘D. E. O'Leary. Knowledge discovery as a threat to database security. In

G. Piatetsky-Shapiro and W. J. Fgaivley, ~editors, Knowledge Discovery in

Databases, pages 507 516. AAAI/MIT. Press. 1991.

D. Rafiei and A. Mendelzon. Similarity-based (ill(‘l‘i(‘S for time series data. In
Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data, pagés 13-23. Tucson,

Arizona. 1997.

[36] W. G. Roth. Mimsy: A system for analyzing time series data in the stock market

domain. In M.Sc. Thesis, University of Wisconsin. Madison. 1993.

BIBLIOGRAPHY . . o | 96

[37]

[38]

[39]

(13
i

[45]

[46]

tt

[}

P. Sellers. The theory and computation of evolutionary distances: Pattern recog-

nition. Journal of Algorithms, 1:359-372, 1980.

A. Silberschatz, M. Stonebraker, and J. D. Ullman. Database research: Achieve-

ments and opportunities into the 21st century. ACM SIGMOD Record, 25:52-63.

1March 1996.

E. Simoudis, J. Han, and U. Fayvad (eds.). Proc. 2nd Int. Conf. on Data Mining
and [\'nowlf(lg:? Discovery (KDD96). AAAI Press, August 1996.

P

e

J. L. Starck, F. Murtagh, and A. Bijaoui. Mu]tiresolutri,o’r‘i(support applied to

image and fitering and restoration. Graphical Modeks and Image Processing.

DT:420-431, 1995.

(. A. Stephen. String searching algorithms. Lectures Notes Series on Computing.
World Scientific. 3. 1994,

E. Ukkonen. Algorithins for approximate string matching. Information Control.

64:100 -113. 1985.

E. Ukkonen. Finding approximate patterns in strings. Journal of Algorithms.s

6:132- 137, 1985.

E.-Ukkonen. Approximate string matching with g-grams and maximal matches.’

Theoretical Computer Science, 92:191-211, 1992.

E. Ukkonen. Approximate matching over suffix trees. In Combinatorial Pattern

Matching, jth Annual Symposium. volume 634, pages 223- 242, Springer-Verlag,

June 1993.

E. Ukkonen and D. Wood. Approximate string matching with suffix automata.

Journal of Algorithms, 10:353-364, 1993.

E. Veuni. Compactly supported m-band wavelets. Department of Physics and

Astronomy. Missouri University, 1996.

Lo

o
RER S

BIBLIOGRAPHY | . 97

[48] R. Wagner and M. Fischer. The string-to-string correction problem. Journal of
the ACM, 21:168-173, 1975.)

N
-

