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Abstract 

Similarity search on time-series data sets is of growing importance in data mining. 

With the increasing amount of data of time-series in many applic&ions, from financial 
* 

to  scientific, it is important t o  study the methods of retrieving-similarity patterns 

efficiently and user friegdly for business decision making. 

The thesis proposes methods of efficient retrieval of a11 objects in the time-series 

database bith a shape similar t o  a search template. The search template can be either 

a shape or a. ec uence of data. Two search modules, subsequence search and whole 3 
sequence search, are designed and implehentcd. 

.t 

. \\e study ri set &f linear transforrnatiorq that can be used as the b ~ s i s  for similarity 

cqukries on time-series data, and. design an innovatiw representation technique which 
L f 

ahs,tracts the shape notion so that the user can interactively query and answer the 
I - 
rnulti-level similarity patterns. The wavelet analysis technique arid the OLAP tech- 

nique used in knowledge discovery, and data warehousing are applied in our system. 

The retrieval teahnique we propose is efficient and robust in the presence of noise, and 
e 

can handle several different notions of similarity including changes in scale and shift. 

Keywords: time-related database, data warehouse, dab mining. and rvavelet analy- 

sis. ' - 
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Chapter 1 

Introduction 

.+r 

The research in this thesis grows out from the development of data mining techniques. 

\Yith the rapid development of automated data collection tools, database systems: and - 
data warehouse technologies, the scientific community has shown a rapidly growing 

interest in the discovery of hidden information in databases and data warehouses, 

also known as Data Mining. hlany enterprises need to  store and analyze secluence~ 

of tinie-stamped data, also called tirne-series data: It is very important to develop 

techniques to mine the useful patterns or knowledge from it. A time series can he 

defined as " a sequence of real numbers, each number representing a value at  a tirlie 

point" [3. 21 . Time-series data sets are of growing imporiance in rilany new database 

applications, such as data mining or data warehouse. We are especiallj. interested in 
w 

mining similarity patterns in large sets of time-series data. In this chapter, we give a 

brief introduction of the notions of tinie-series data sets and the data mining and data 

warehouse technique which our system is based on, and then adclress the motivation 

of similarity "search. 

1.1 Data Mining and Data Warehousing Technique 
1) 

Data warehousing i s  a collection of drcb ion  support technologies, which is to  help 

people make better and faster decisions. kVe have seen rapid growth of data wai-e- 

house systems in the past few years. Data warehousing has been successfully adopted 
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Q 

by many industries: manufacturing, retail, financial'services, transportation, ielecom- 
m 

- - , . 
municationg a n d  medical. .. A data warehouse is a "subject-ori6nted. integrated, time-varying, nop%olatile 
# collection OF data that  i s  used primarily in organizational decision makingC 191. The 

data  warehouse suppoks on-line analytical processing (OLAP), and it is targeted 6 r  ' 

decision support. Data warehouse contains historical, summarized and consolida-ted - 

data, which can be from several operational databases, over potentially long periods 

of time. Thus the'size of the data warehouse tends t o  be hundreds of gigabytes t o  ter- + 

O abytes, and the workloads depend mostly on the ad hoc. ~ o m p l e ~ ~ u e r i e s  that require 
* b 

accessing mi4lions of records and performing a lot of scans, joins, and aggregates. 
-kr 

As its name suggests, a data warehouse acts as a tentral storage area ( a  "ware- c. 

house") for the data. It is also a data- cleanser and a data organizer for easy and , 

intelligible access of data. Whereas, data warehousing is a process of construction 

and utilization of data  warehouse. 

Data mining tool is one of the front-end tools of the +\a warehouse to do querying -& 

+* 

and data analysis. 
- A  

Mining informatioh and knowledge from large databases is not a new idea and 

has been recognized by many indust,rial con~panies as an importapt area with an 

opportunity of business success. 

lVith the explosive growth of clata in databases, and these databases contain trea- 

sures of information that  allows the &mpaoy to  detect trends or p t t e r n s  and react 
-$- < 

flexibly to them. However this information is hidden in the mount&% of data, and 

' cannot be discovered using conventional database management systems. The so- 

lution is data mining. It has become a research area with increasing importance 

[28, 93, 3'71. Data mining is a technique to  reveal the sfrafcgic ir$ornzqlion Kidden in 

large databases. This information, e.g. trends and patterns, can be used to  improve 

business decision making. 

Data mining. which is also referred to  as knoudedge discoixry i n  dofabase?, means 
La 

"a process of nontrivial extraction of implicit, previously unknown and potentially 

useful information (su$ as knowledge rules, constraints, regularities) from clata in 
- - 

clatabases" [:33]. 
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, + i '  . ' 

Data mining is very useful for t he  company hanagers, such as helping the company 
f 

to  find and reach better customer, gaining critical business $sight to-help raising 
I 

' profits, etc. 
C I  

4 s ' r s  
. J  * 

'IC 

1.2 ' s,Motivations % for Simitarity . , Minink .. inTirne4eries , a 

I. 

- Data Sets - , 

i' 
* - 

+ '- f * 

In theJast few years, storing and analyzing sequences of time-stamped data are he- 
++ * ' ' coming more and more principal in many enterprises. For example, financial firms 

& 
associate a stock's high, low, closiig price. and volume with a given day, and intelli- 

ies associate complex satellite data with the time the daka was collected. 

d data is used by many other kinds of enterprises as well, including manu- 

facturing (assembhj line events), journalis& ('news dispatches), earth scierjce 

events), and engineering (code changes). 

In the  Information Age, knowledge is power, and information is the key to profits. 
' 3- 

so t h e  ability to manage iime-series data accurately, efficiently. and flexibly is vital 
B 

to  business success. To mine similarity patterns $om large time-series dal'i s@s is 
p %? 

especially important. 
t 

. a  +% 
From the following examples. we study the important App~cations of the siniilarity 

search in t ime-series dat? sets. 

I 

& Example 1.2.1 Suppose there are about 10 years of data about the daily, closing 
3 

price of IBhl company and Nlicrosoft company. A user may &ant to find i f  they 

behaved in approximately the same way in all the times, or during the-years 
C 

to  19&' period, or even during the months of July 1988 t o  November 1988. 

may dynamically drill-down or roil-up along the time dimension to  explore the desired 

information 

L .  
"i. 

Example 1.2.2 Given two time sequences of the t e m s r a t u r e  in two regions of the ' 

world, one may want to  find years when thetemperature patterns in two re 

the world were s h i l a r .  
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Example 1.2.3 Given a bunch o f t  ime sequences of the stocks for the companies, we 
' -  

may want to  find other cbrnpanies whose stock price fluctuations resernblkhlicrosoft's 
4 - + ~ *  during a year or at  all the times. 4 % I 

These are the cases that people want to  ~ ~ m p a r e  two or moreetirne-.related data * -. 
sequences, but t'here-are also the cases that the users wanhto analysis the trend for 

one time sequence data, such as the follow ng example. - 

Example 1.2.4 For one company, a user may want to  find that  its stock price in- 

creased sharply up to  September 1980, andathen crashed sharply. One may likely to 

perfornl data anadysis on different resolutions of shapes, such as the overall shape or 

the detail shape. - Y 9 
.$ c 

\ 

- In these exanlples, the approximate matching is risoally more useful than exact 
\ -  --.a --... 

matching. s~ncc  it wilT be very rare to have exact match for two &tta sets. 

The ahovq,examples indicate some interesting applications of the similarity search 

in time-scries data sets.' To implement them s u c c e s s f ~ ~ l ~ ,  there arf> ssmc cliallcngcs 

as follows: 
4 _ 
$ 

. @- 
What is similarity. The meaning of similarity may vary tlepenc g on the ap- 'v 

C) 

4# G -- plication domain and even the purpose of the qucry. IVork in this area is usually 
- 

specific to one particular domain and uses one specific notion of similarity. Such 

as in the ?-dimension space polygons searching. or in the rnultir~~edia databases 

image searching, or in the text-processing system the text string searching. The  

research domain in this thesis is in databases with time-series of real numbers. 

The syrltax and semantics for similarity queries, which account for approximate 

matching, scaling and shifting, are given in later chapters. 
C 
7 

Two kinds of similarity problems. For our 1-dimension time-se14es do- 

main, two basic problems in this area are First (All)-Occurrcncc Subsequence 

.llntching and First(All)-Occ~~rrence(s) IVhole S ~ q u c n c e  illatching. For the .All- 

Occurrences \latching problems (either subsequence or whole-scquer~ce), there 
. , 
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$, also exist two addihional categories: approximate matching and exact match- 

ing 1161. The definitions and implementations of the Above problems are ad- , 
dressed in the following chapters. - 

0 Efficient retrieving. This system .is designed towards on-line interactive min- 

ing, thus*&ciency is very important. Although there are many methods de- 
f^ 

% l 

D velcped [I.  2, 1-11, new models and techniques should be developed to  support 
-. .+x 

on-line analysis of voluminous time-series data, '  
I 

' s - 
t 

0 validity and accuracy. Tq minimize the of the fplse disrni.ssnls. 

the validity and accuracy of the rnatchieg result .hiould betaken into consider- * 

ation. 

- 
0 Friendly user interface. To represent the querying and the result of the 

Similarity seqrch. at friendly user interface should he designed. That nieans, .it 
& .--- . * . . I - ,- -* " 

shodd be taken into consideration of how to design a good Kser interface, or = 

2 

a representational language which can directly capture the notions of sequence 

shapes and is intuitive for human interactively querying and an'swering. 

0 Noisy data. There are t k o  kinds of noisy data: one is clue to the unavoidable 
'P 

imprecision of measuring devices and clocking strategies; the other is the short 

interval gap, which means some very small regions of data have sharp jumps or 1 

valleys, but the time intervals are so small that can be ignored without influence 

the whole sequence trend. If we do not do.prcprocessing to  the noisy dab, they 

will influcnce the searching result. A well-known solution for comparing two 

sequences.n and b is Euclidean distance, which is ve.6~ sensitive to  the short-term 
2 

jumps or valleys. Ot,her kinds of distance metric are also very sensitive to  the 

noisy data. To make these noisy data uninfluenced the similarity search, they 

must be removed or some preprocessing must be done to  smooth the sequence 

clata before doing the similarity search. 

0 Regular vs. irregular time-series. Time series data varies in how pre- 

dictably the data arrives: In some cases, the data is associated with a regular 
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t ime interval (daily, monthly, or  quarterly). In other  cases, the  da ta  may be  
4 

irregular, such a s  network management events, and assembly line trouble re- 
f 

ports. Our  similarity miner module currently supports regular t ime series. and 

will soon be extended t o  jbpport irregular t ime series as  well. In our mod- 

ule, time-series da ta  a& s&quefies of real numbelts representing measures a t  

uniform1y~-spaced temporal instances [16, 25, 3.5, 241. 
* .  

1.3 The ' ~ o a l s  of Similarity Miner System 

 he similarity miner system is one of the  knowledbe discovery lnodules of our re- 

lational data mining system, DBXIiner. researched and developed in our laboratory 

[2 I]. Besides the  similarity miner n~odule ,  currently, the  discovery modules of DB- 

1Iiner inclricle characterizer. comparator, classifier, associator, and  predictor. 
-, 

~ i n ; i l a r i t ~  search is a fairly important issue in the  time-related data  mining area. 
r 7 I he goal of this thesis is t o  implenlent i t  on the  bases of the  da ta  mining cube which 

is dtvcloped in our lab. Cube is a da ta  structure fog efficient retrieval of the  da ta  

r~cecled. 

Two similarity miner modules have been designed in this thesis. One is subse- 

quence search module; t he other is whole sequence search niodule. In the  suhsequencc 
i 

search module, the  problem t o  solve is given a query shape template Q, finding the  

, similar shape subsequences in the  time-serjes sequence. In the  whole sequence searc-ly 
+b ** - - -. akakakak 

nlodule. the  problem t o  solve is given a query the-series d a T a y  uence Q, and &set , - 
..4 - - ..: --A* 

of t ime sequences with equal length as Q ,  finding all of t h e  da ta  sequences tha t  match 

Q approximately. / 

T h e  goals of our system are  t o  ( 1 )  provide fast response time, (2)  support in- 

teractive analysis. ( 3 )  make it flexible for user t o  use. allowing multi-level similarity 

search, e.g. from exact matching t o  blurry matching, (1) make the  implementation 

independent of the  kinds of the  da ta  sources, and ( 5 )  make the  system roblist in thc  

presence of noise. 



CHAPTER 4. INTRODUCTION ' 

1.4 Thesis Org 

The organitt ion of the rest of the thesis is stated in the following. First,' u review 

of the previous related work on the time-related data mining and similarity search is 

presented in Chapter 2. Chapter 3 describes the general properties of our similarity 

search system in time-series domain including the discussion of the system architec- 

ture, and some notations. Chapter 4 addresses, the background knowledge of the 

wavelet analysis technique. Chapt,er 5 presents the subsecpence search module, and 

the algorithms and performance study are incl~~ded.  The whole sequence search mod- 

ule, including algorithms and performance study, is discussed in Chapter 6. Chapter 

7 surnniarizes the thesis and discusses the future research issues. 

". 



Chapter 2 

Related Work 

d 

-.% * * 

. ~ , ,. There has been a great deal of research in similarity search area, especially in recent 

xears. In this chapter, we will discuss the  different approaches in this area. It includes .-+ 
b.' % - 

.techfiiques on the  similarity search and similarity search in the  da ta  mining area. 

T h e w  are many different similarit? search algorithms tha t  a re  determined by the  

kinds of searching space t o  deal with. T h e  work in text retrieval and pattern rccog- 

nition tha t  deals with rnatching characters and pat t t rns  is usually corrsitleretl t o  be  

searching in discrete space. T h e  problem of searching similarity in a database with 

ti~ne-series of real niimbers is considered t o  be,searching in continuous space. 

There has been a lot of work on similarity search in discrhte and continuous spaces. 

One Dimension String Similarity Searching 

There has been a lot of work on finding text subsecjuences that approximately match 

a given string [:31, 29. -10, -14. 15, -1.5, 20, -131. Text sequences normally corisist of 

a few discrete symbols as opposed t o  continuous numbers tha t  makes the  similarity 

measures and the  search methods quite  different. 

A classical string searching problem is, given two strings. text T[l - . - i] and putt ern 

PI1 - .  - j ] ,  t o  determine whether the  text 7' contains an occurrence of the  pattern P as 

a substring, that  is, whether T can he written as T = y Py'. An approzirnatc string 

nzntchirtg problem means a substring I" of 7' sugli tha t  a t  most k editing operat io~is  
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(insertions.de1etions. changes) are needed to  convert P' to  P [42, '61. 

Edit distance-based approach 

Generally they use the concept of edit distance [AT, 411 to measure the goodr~ess - ,  , 

of approximate occurrences of a pat tern. The edit disfance between two strings, 

'4 and B in alphabet C ,  can be defined as the mininlum number of editingsteps 

needed to convert '4 to  B. Each editling step is a rewriting step of the form 

a 4 E (a  deletion), c --+ b (an insertion), or n --+ b ( a  change) where a, b ar&n 

C and c is the empty string. Assuming the cost of each of these operations is 

1. the edit clistance is the minimum number of operations needed to obtain a 

pattern from a text. .A dynamic programming solution for this problem is given 

i t 1  [X, 15, 42, 26, 4-11. Let D be an m + 1 by n + 1 tahle such that D(i ,  j )  is the 

niinimum edit distance between p1p2. - - pi and atiy substring of I' ending at t,. 

TLen 

The three parts of this formula corresponcls to deletions, changes. and insert.ions - 
respectively. Table D can be evaluated column-t)y-col~~rnn. h'hmever I ) ( m ,  j )  

is found to be at  most k for sorne j ,  there is an approximate occurrence of P 

ending at t ,  with edit distance D ( m .  j) 5 k. Hence j is a solution to  thc k 

differences problem. 

Example 2.1.1 In Table 2.1 there is an example of table D for T = bcbacbhb 

and P = c a d .  The pattern occurs at  positions 5 and 6 of the text with at  most 

two differences. 
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p. 

Table 2.1: Table D: an edit distance-based approach 

All the algorithms presented in [47. -11. 15, 45. 20, -131 work within this model. -& 

but t h e .  m e  different approaches inGrestrict ing_t he ,number of ent rim that are 

necessary to evaluate in table D. The trivial solution is to  compute all entries 

of tahle D in time O(mr2). Considering computation along diagonals gives a 

simple way to limit unnecessary computation. It is easy to show that entries on 

e t w y  diagonal h are monotonically increasing [4l]. Therefore the computatio11 

along a diagonal can be stopped, when the thresholt! valw of X. + 1 is reached. 

hccausc the rest of the entries on that tliagorial will he greater than X.. This idea 

leads to .llgorit tim EDP(Enhancec1 b n a n i i c  Progranlniing) working i n  average 
T 

titne O ( k n )  [-!?I. 
There are other algorithms 115. 20, -131 sirriilar to  EDP witti running time O(kr1). 

\\-hereas. there is no  single method always tlic fastcst. The s p e d  of these 

algorithnis varies accorclirig to  the alphabct size, the series length and the value 

Snffix trcc-based approach 

Another popular approach is to support updates for dynamic strings using suffix 

trce indexing technique in [:31,29, 40, 4-11. There are several appealing propert ips . 

for the suffix tree: the {onstrtiction of the suffix tree takes linear time and linear I . F r  
hpace: the frequency and posit ion informat ion of subst rings are readily available 

in the suffix tree; the suffix t rce serves as a natural and compact represer~tatiori 

of sequential patterns. The rnajor benefit of lising suffix tree is that the suffix 

trce can he easily updated to  solve the increniental similarity search ~roblcrii.  - 



7 
.A stcing S can be mapped to  a tree T in which root:to-leaf paths are sufixes of 

S and terminal nodes represent uniquely starting positions of suffixes. Formally, 

the su.ff;x tree T for S satisfies the following prokrties:  

1. Each arc of T represents a non-empty substring of S ,  

2. Each non-terminal node of T ,  except the eroot, must have at  least two 

offspring arcs, 

13. Substrings represented by offspring arcs of the same node must hegin with 

different characters. 

i 

Example 2.1.2 Consider the string S ~ c t b c c b c d b c 8 ,  we car1 build the suffix 

t ree T of 5' by inserting suffixes- into T one at  a time. start inb from the longest 
.? 

suffix ubc~bcdbc. In Figure 2.1 is the suffix tree after all suffixes of S are ir~serted. 

For any substring cr of 5'. by fdllowing the path from the root that spells out 
% 

we can find thy suht -containirig a14 stcarting positions of 0 in terminal nocles. 

For instance, by following the path that spells out bc. i.e., arc(A, B )  in this case, 

we'fi~id the root B of the subtree containing starting positions 2 . 5 ,  S of bc in its 

terminal nocles. 

2.2 Two Dimensions Polygons Similarity Search- 
. . 

ing 

Shape matching is an important image processing opcration. Considerable work has 

been done on this problem, with differenttechniques heing used to  identify shapes. 

usually in terms of boundary information or other local features [-I]. 

There arc quite a few streams of work in this area. One technique is to irdex 

an image after having analyzed it and recognized its sehantic components [S]. Such 

techniques are not applicable with an image with no semantic information. 

The other technique is t o  compute properties of local boundary features of objects, 

and then to  index these [19]. Their idea relies on small features and hence is not robust. 
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Figure 2.1: C'cmstruction of suffix trees 

.Jagacli\h in 1211 introduces an indexing technique t o  retrieve shapes. which arc  

similar t o  a given query shape, from a database. I11 this paper, he shows that  the  
3 

technique cKn he  ~ ~ s e t l  for an area-based similarity measure. e\-en in the  prrs&& of 

scaling and/or  shifting in one or  all dimensions. 

2.3 The Similarity Search in Data Mining 

T h e  prohlem of discovering similarity patterns in massive t ime series da ta  sets is an  

important and.non-trivial one, on which 9 lot of work has been clone [ I ,  1-4. 2, 341. 

'To our knowledge, [ I ]  is t h e  first work which proposes a solution for sirnilarity 

rriatching sequences. In [I], it is assumed that  all sequences are of the  sanle length, 

a d  each sequence is considered as a point in an N-clirnensional space. 'rheri, two 

sequences arc considered siniilar when the  Euclidean distance between them is less 

than a threshold value c .  Since each sequence is mapped t o  a point, they use A?- 

tree [5]  as the  index structure. Sequences arc reprcscnted as 1;-dirnerisional points 

using I< features for each sequence. Discrete Fourier Transform ( D F T )  is used for 
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feature extraction since it preserves the Euclidean distance. First I< terms after the 

transformation are used to  represent a sequence. 

Faloutsos et al. extend the method proposed in [1] to locate subsequences that 

match a query sequence or a subsequence of it [11]. DFT is used for Feature extkction: , 

however, 'in order to  trar~sform subsequences, a sliding window of size Ct' is use? and 

put at  every possible position on every data sequence. Therefore, instead of one point 

for a feature vector, there is a trail of points in the feature space. To index these points, 

the trail6 are divided into sub-trails and each of these sribtrails is represented with 

its mini~nal bounding rectangle (XIBR). Similarity queries are answered by applying 

the same t rar~sforrnation to  the query sequence, and the M R R  that enclose the trails 

for the query object is used as the query window. Sequences whose hIBR's intersect 

with the lLIBR of the query sequence is further checked for matching. * 

Xgrawal et al. [2] give a method to  retrieve similar sequences in the presence of 
b 

noiw. scaling and translation in time series. In  their method, two sequences are 

co~isiclered similar i f  they have enough non-overlapping time-ordered pairs of suhse- - 

c~uenccs that are similar. Some-portions of sequences that are considered as outliers 

are left out in the matching process, and the matching suhscquences need not he 

aligned along the time axis. Testing the similarity of two stibsequences is done by 
- checking if one lies within an  envelop^ - of - a specified width around the other, ignoring 

the &<flic~s? 
i. 

1. atomic subsequences that represent all the sequences are indexed 
- .  

using R-trees. basecl on some features of these atomic sequences. This method also 

quence elements to  be mostly correlated (i.e.. not very distant from 

each ot her), since outliers are discarded in the mat ching process. 

Davood et al. [:I41 use moving average method for stock da t a  to  smooth out 

short term fluctuations, and add time warping and reversing in their transformation 

language. It is implemented using the Fourier tran2for.m to transform the data to  the 

frequency domain, and using R-tree index method. 

One common.feature of these methods [ l ,  11, 2, 341 is that thGy use the Discrete 

Fourier Transform (DFT) to  map time sequences into the frequency domain and keep 

the first few coefficients in the index. Two sequences are consiclered sitnilar if their 

Euclidean distance is less than a user-defined threshold. DFT preserves the Euclidean 
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distance between sequences, and the first few coefficients after the transformation 

J 
'pL: 

characterize the sequence in general,-provided that consecutive sequence elements are 

.correlated most-of the time. The fact that it is a distance preserving trar~sformation 
4 

makes DFT attractive for indexing. However, it can be used only for sequences of * 

the same length? Also, it &not  very effective for seqiences with mostly uncorrelatecl 

elements. In other+words, DE'T is well suited to  sequences. which are locally stationary 

in time. However, many sequences contain transient behavior, e.g. short interval 

jumps or valleys, like the stock market data.. 

Another search directipn is the periodic pattern directed search in time-series 

databases. Problems related to  periodicity search is stated as p r o b l t m s  o f  Jirlding 

p n t f t r n s  occurring a t  regular intcruals ,  which means given a sequence of event,s. we 

would like to find the patterns which repeat over time and their recurring intervals 

(period) Wan [-IS] has proposed some possiblc solution to  the problem of fincling Z 
prrioclic&ehaviors in large dat,a srt,s. . 

The Similarity-Based Queries 

There is a vast class of d a t a b ~ s e  applications where it is important to  be able to pose 

queries-in terms of s in f i l n r i t y  d objects, rather than equality or inequality [ 25 ] .  - 
'The meaning of similarity may vary depending on different application domains.- 

f 

In other words, the notions of similarity &ill be different i r i  different domai~is, such 

as sequence sirnilarit,y searching in a time "sequence database, approximate string 

searching in text, images. and gmome/proteiri matching [ I .  17. 241. 

.Jagdish et al. [25] develop a domain-independent framework to  pose sirnilari ty 

queries on. a database. It provides a full-fledged query language to  support queries, 

siich as '.find all objects that are similar to  pome objects in class A and are not similar 

to  any object in class B." The framework has three components: it pattern language 

P, a t m n s j o r m a i i o n  rule tanguage  T, and a query  language L. An expression in P 

specifies a set of data objects. .An object A is considered similar to  an object B, i f  

B cap be reduced to it by a sequence of transformations defined in T. The query 

language proposed by the paper is an extension of relational calc~ilus with predicates 
> 
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i. 

tha t  test whether-an object A caw be transformed into a member o f t h e  set of objects 

described by the  expression e using the  transformation 1 ,  a t  a cost bounded I& c. T h e  

framework can be  "tuned" t o  the  needs of a specific application donlain by the  choice 

of P, T, and L. 

For time-series approximate similarity queries, Coldin et. al. 1161 propose a. frame- 

work tha t  allows theyuser t o  pose a wide variety of queries, and allows sh i f t sand  

positive scaies t ;ansformations. T h e  main contribution of them is i hat  they f o r n d i z e  

the  intuitive notions of exact and approximate similarity between time-series pat- 

terns and data.  T h e  resulting set of constraint queries support t,he indexing scheme 

a proposed in [ I ,  141. 1 

Agranal e t  a l .  [3] present a shape definition language. called SUL. for retrieving 

objects based on shapes contained in the  histories associated with these objects. I t  is- 
* 

a sniall, yet powerful, language tha t  allows a rich variety of queries about the  shapes 
--& 

found in historical t ime sequences. Ari interesting feature of S D L  is its ability t o  
\ 

perform blurry matching. X "tdur.ry" match is one where the  user cares about the  

overall shape but does not care about specific details. But there is no support for 

shifts and scales trarisforniatior~s in this language. 
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The Similarity Miner System 

In this chapter we describe the  architett,ure of our similarity miner system and explain 

our definition of similarity queries and the  notions tha t  will be used in our system. 

3.1 General Definitions I 

Q 

Here we will clarify some notations and concepts that  a re  gcrierall- cliscusseti in the  

t irne-series similarity search area. 

Time sequence or time-series data are sequences of real numbers represent- 

ing measures a t  uniformly-spaced temporal instances [16]. T h e  it  h element of a 

sequence S is .S'[i], and a suhsequenG*of S p n s i s t i n g  of elements i through j is 

S [ I ,  j } .  T h e  length of the  sequence S[ i ,  j ]  is equal t o  j - i + 1. 

Two similarity problems. In the  time-series similarity search area, t h e  sim- 

ilarity problems can he  classified into two categories: 

a. .All-Occurr~nces Subsf-gut nce ,\latching: given a query sequence It) of Iengt ti 

n and a much longer da ta  sequence $ of length A', find the  first fa l l )  

occurrences of a contiguous subsequence within S t ha t  matches Q approx- 

imately: 
4 
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b. All-Occurrences Ct/hole-Sequence Matching: 'given a query sequence Q of 
3 

length n and  a set of iV da ta  sequences, all of t h e  same length n ,  find the  c 
first (all) of the  d a t a  sequences tha t  match Q approximately. 

T h e  first case is under the  condition that  the  query sequence is smaller, and we 
*. r 

look for subsequences in the  larger sequence tha t  best match the  query sequence.. 

, - T h e  second case is under the  condition that  t h e  sequences t o  b e  compared have 
"P * 

t he  same length n, and we look for the  sequences that  rr~atch the  query sequence. 

These .two cases are  all solved in this thesis in the  subscquencc s ~ n r c h  module 

and the  whole scqucrr e search module respectively . I- Similacity queries 

MP col~sider~four different types of queries in our  system. These are: 
t 

i f i l l  match. .A fu l l  match for a given qricry shape is a database s h a p  that  

has t h e  sarnc.shape aS the  query shape. 

iinMatch with shift. ITsually, when we think of what a shape looks likc, we do 

riot care about  the  position of the  shape in any coordinate systcrn. Thus. 

ive ivoulcl like t o  retrieve similar shapes from the  database irrespective of 

their positions in the  coordinate system &d t o  ctescribe them. 

... 
111 Match with scaling. Besides not caring about  the  position of the  shape. 

we rnay+ot care about the  size either. For cxan~ple .  the  size may depend 

on how far the  shape is seen from the  human eye. or  what scale factor is 6 

dsed for the  representation. 111 such a case. we can throw oqt  the  scale 
i 

factor t o  retrieve'the siniilar shapes. In the real i rnplem~ntat ion,  we rnay 

wish t o  permit independent scaling along the  .Y antl 1-  axes or  a uniform - 
scaling along the  S antl 1' axes. 

iv Match with the combination of scaling and shifting. Often, the  sim- 

ilarity search criterion is enlarged t o  allow the  combination of scaling and 

shifting, t h a t  means, t o  allow the  scaling and shifting existing a t  the  same 

t irtie,- not i ndependent ly. 

S 
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Approximate match 

In the former descriptions, we describe the basic discipline to  retrieve shapes 

that match a given query shape. IVe are only interested in the approximate 

matching here, and the reason has already been illustrated in the introduction. 

The "matching approximately" is defined as [16]: 

Definition 3.1 Given  a tolerance c > 0 and  a distance m t t r i c  D b t f u w n  

s q ~ u c n c e s ,  srqucncts  S1 and  S2 rnatch npproxirrtntrly within tolernnc.e . b- c when 

D(Sl,  S 2 )  < 6 .  

Currently, a large number of distance rnetrics hare hem proposed t,ased on 

similarity in the literature. One of the generally used distance rne(;ics is called 

Eucl id fnn  distance,  - which is defined as follows: 

=, 

Definition 3.2 The E n c l ~ d c a n  d r d n n c t  b f t w t c n  tu-o sfgrf~rtcc.\ ,\I1 and .q2 l.5 

L 

2 11.2 DE(SI.  5.2) = ( z ( ~ ~ [ i ]  - Sv2[)]) ) (3.1 ) 
151 

The Architecture of Similarity ~ h e r  'system 
r 7 1 he similarity miner system is one of t h e  knowledge discovery modu1t.s of our re- 

lational data mining system. DBlliner, researched and developed in our laboratory 

[?I]. Besides the similarity miner module, currently. the discovery nlodules of DB- 
l l iner include charac er, comparqtor. - clpif ier l  associator, and predictor. 

\ - ~" 

In this section. w 1 introduce the architecture of the similarity miner xnodule. 

Figure ;3.l shows t he2eneral architecture of similarity miner system which consists 

of 

(1) a graphical user interface for intgactive mining and the- display of data rnining - 
result in the form of charts and text edit box; rr 
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Graphical User Interlace 

I - Similarity Miner Module 

Shape-Drivm .Search 

Wavelet TrunsCrtnn I 

I D a b  Cube I 

Time-Related Data 

Figure 3.1 : General architecture of sirnilarity rtlirrer system 

. d -  . ." * *.-<- 

' I . .  

Our system is primarily focused on the  da ta  mining erivironment in which the  

uscr through our  graphical user interface can find all similar' t i ~ n c  subsequcnccs 

in a gil-en sequence and be abie t o  find all similar t ime sequences that  match 

a given query sequence. .Also through our uscr interface, the  user can change 

a t  run t ime the  similarity threshold, so called the  b'tolerance of outliers", the  

query sequence pattern, and the  resolution level of similarity, while mainta i~i ing  

efficiency of matching. Furthermore. the  user can use OLAP operations t o  drill 

down and roll up  along any dimensions of the  cube. 

(2) the  similarity miner modules: 

I\,.e have designed two similarity mining ~iiodules: subsequence search module 

arid whole sequence search module, which will he discussed in tiet,ail ill later 

chapters; 

(3) the  DBhIiner mul t i -d irnens ionnl  dn ta  cube;  

T h e  DBXliner rrt ulf  i -d imens iona l  dnta cube  is the  conlmon engine shared among 
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1 
several DBhIin'er modules and it is a multi-dimensional arrzy structure. in which 

each dimension represents a generalized attribute and each cell stores the value 
P 

of some aggregate attributes. The advantages of it are less space and efficiency. 

It is implemented by our Intelligent Database Systems Research labara to~~2:3] .  
--, r* 

The similarity rniner module and other mining modules are implernented on the - 
basis of DBMiner nzrrlti-dinirnsional data cube. For the time-related data sets, 

Dimensions of the cube rnay have following categories: 

1 .  t imt .  

2. tirnc-rclutfd nttrtbute. 

3. non-time-rclattd attribute. 

Measures can be : 

1 .  count. It is the default measure for all kinds of the culxs.' It js a 

numerical measure, which represents the count of the tuples i n  thc 

raw data. 

2. time-rrlntfci nttrilute mzlue. Since our research domain is the time- 

related real numbers. here we are only interested in numerical measure 

containing only numerical data ant1 also being able to  be computed by 

cube partition and aggregation, such as connt, sun). tnax. 
', 

\Vith these dimensions arid measures, OLAP operations can be perfornwtl 

by steppirig up and down along any dimensions shown in Figure 3.2 

Roll-up generalizes one or a few dimensions and performs appropriate 

aggregations in the corr<sponding rneasure(s). For tirile-related data cube 

in Figure 3.2, when t h e  roll-up is performed along the tirrie dimensibn, such 

as from '.monthv geneTalizes to  "quarter ", the count measure and the sales 

amount measure* are aggregated correspondingly. 

Drill-down, which specializes one or a few din~ensioris and presents low- 

level objects, collections, or aggregations, can he viewed as a reverse oper- 

at ion of roll-up. 
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Figure 13.2: A cuhe about the salcs of cars during 3 years 

0 Slice-and-dice. which cosrespon(1s to reducing the dinwnsionalitc. of the 

data, i.e., taking a pbjection of the data on a subset of dimensions for 

selected values of the  other dimensions. For example, we can slice-ancl,dice 

sales data  for a specific product. 

Example 3.2.1 Figure 3.2 shows an example of a cuhe which is constructed 

aft.er sucking the us& required information from the raw data. The diinen- 

sions are ..Time". "Location" and "Car Type". The measures are "counts" 

and "sales amount". In this case, "Location" and ' T a r  Type" are rion-time- 

related attributes, T i m e "  is the time-related attribute, and "sales amount" is 

the t imc-related attribute value. 

(4) the data- and knowledge-base: storing the time-related data, c&icept hierarchies. 

and the shape definition hierarchy. 

The concrpt Pi trarchy is an importarit function module of DBMiner. It is a 

partial order organization of concepts in databases. Some partial orders among 
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Year 

Week 

Day 

Figure 3.:3: Partial ordered hierarchy for 'time' dimension 

, 

data exist in a database. For example, "R.C." is a part of Y"nada". It provides 
I 

essential background knowledge for data generalization and rnultiple-level data 

mining. For example, to  mine the kriowletlge of the ti~ne-related da t ahses  at 

nlultiple-levels, time is a dirAension that is of particular significancr. and we 

need the built-in concept hierarchy for the time dirnensiori. 

Example 3.2.2 Figure 3.3 is the concept hierarchy for time dornain, '*Day" is 

the child of .-Slonth", and .*Slonth" is the child of ..Quarter", and bbQuarter" is 

thc child of ..Year". 

Each dimension in a cube can be described by three ways: 1. a set of attributes, . 

2. a combination of attributes and concepts defined by expert, and 3. a pure set 

of concepts defined by expert, like in Figure :3.:3 for the time dimension. These 

three ways form a partially ordered hierarchy for a dimension. 

Example 3.2.3 For the cube in example 3.2.1, the partially ordered hierarch. 

of the T a r  Type" dimensiori and '.I,ocation" dirnerision is shown in Figure :j.4. 

The shnpe definition hierarchy is a hierarchy specially designed for the subse- 

quence search module to  achieve the goal of mining the similarity at  multiple 

levels. IC'e will introduce it in detail in later chapters. 
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Industry 

Category 

Country 

State 

Car Type City 

Figure 3.4: Partial ordered hierarchy for Car Type dimension and Location dimension 

The main part of our similarity miner system is the similarit. miner niodule, which 

is designed arlcl i~nplemented. The challenges of the design of similarity miner module 

will he tliscussd in the following section. ' 

F 

3.3 Challenges in the Design of the Similarity Miner 

Module 

To design a good similarity miner system, there will be marly challenges. 

Sequence matching problem can be characterized on the basis of the type of se- 

quences, and the domain of elenlerits in sequences. The clat,a on which our knowledge 

discovery t 001s operate can he characterized by the traditional distinction between 

cafcgorical data and numerical data [Z]. We may have sequences of different lengths, 

the elernents'of sequences can he categorical d a t a @ -  numerical data. A11 these issues 

affect the design of the similarity miner system to efficiently handle the sequence data 

and similarity match queries. In this thesis, we address the general proble~n of match- 
4' 

ing sequences of the same lengths as well as different lengths, and put our emphasis 

on numerical sequences. 
b 

Queries on continuous data are more complex to  process than the queries on 

discrete data. There is a lot of work that has been done on the discrete data in 
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similarity search area, such as text similarity search. In recent years, the study of 

similarity matching on the continuous data begins to he popular, such as the stock . 

data  similarity analysis. In this thesis our- stlidy is focused on the time-series data 

sets in which the data are real numbers. and we have designed methods, which adopt 

some techniques of the discrete similarity search methods, and a t  the same time, the 

specific characteristics of the continuous data are also taken into consideration. 
i. 

-\ 



Chapter 4 

Wavelet Analysis 

Since the  uwrelet analysis technique is used in both of the  two modules of our similarity 

system, in this chapter we will introduce the  background knowledge about the  wavelet 

analysis. 
t As everyone knows: any signal can he  portrayed as an overlay of sinusoitlal wavtn- 

forms of assortrd frrquenries. But while classical Fo~irier analysis CO* superbly with 

naturally occurring sinusoidal behavior - the  kind seen in speech sigrials - it is i l l  

suited t o  representing signals wit,h discontinuities, such as  the. edges of features in 

images -[6]. lVhereas, anot her powerful concept : wavelet analysis has swept applied 
2 mathematics a i d  engineering resesrch. It involves representing general fu~ic t ior~s  in 

terms of simpler, fixed building blocks a t  different scales and positions. This has been 

found t o  be  a useful approach in several different areas. For example, in signal and 

image processing. I t  has been testified tha t  getting rid of signals of noise is often much 

easier i11 the  wavelet domain t,han in the  original Fourier clomain. With  wavelets, noise 

can be removed from a great many signal types, including those with jumps, spikes 

and other  non-smooth features [GI. 

LVavelets are a family of functions of orthogonal basis, which urilike the  sine and 

cosine wave of the  Fourier Transform ( F T ) ,  d o  not have t o  ]lave infinite duration. 

They can be non-zero for only a small range of the  wavelet function [12, 131. This 

"compact support" nature allows the  lb'avelet Transform (M'T) t o  translate a tirne- 

domain function into a representation that is n o t  only localized in frequency. like the  
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FT. but in time as well. This ability has brought forth new 36, developments in the fields 

of signal analysis, image processing, and data compression:. 

Like Fourier analysis, however, wavelet analysis uses an algorithnfi to decompose a 

signal into simpler elements. Wavelet analysis is far more efficient thah Fourier anal- 

ysis whenever a signal is dominated by transient behavior or discontinuitks. iVavelet 

analysis owes its efficiency to the fast pyramid algorithm. The algorithm is used 

to compute the wavelet transform that is to decompose the signal into component 

wavelets. 

Wavelet noise removal is superior to traditional Fourier techniques, and it has been 

shown to w d k  well for our stock time-related databases. 

Since our research domain of tirne-series databases is one tlirnension, we only cover 

one-dimensional wavelet transforms and basis functions. 

\ 

4.1 F'rom the Fourier Transforms to thq! Wavelet 

Transforms 

Fourier and wa\det analysis have some very strong links. Let us have a look at Fourier 

analysis first. 

4.1.1 Fourier Analysis 

Fourier Transforms 

It has beeiknonn for quite some time that techniques based on Fourier series 

and Fourier transforms (FT)  are reliable tools in signal analysis. The main 

idea of the F?' is that it expands the original function in ternis of orthonormal 

functions of sine and cosine waves. The Fourier coefficients of the transformed 

function then represent the contributiosof each sine and cosine wave at each 

frequency. 

Discrete Fourier Transforms 



The Discrete Fourier Transform (DFT)  estimates the Fourier transform of a 

function from a finite number of its sampled points. The sampled points are 

supposed to  be typical of what the signal looks like a t  all other times. In other 

words, DFT represents a given function in terms of discrete sine and cosine wave 

series, and is the most often used form in the FT.  It wdrks under the assumption 

that the original time-domain function is periodic in nature. Thus, the DFT 

has difficulty with signals have sharp transitions at  certain time locations. .As a 

result, for those transition components, a large number of ~ o u r i e r h o d e s  may be 

needed. Another pro&lem withcthe DFT is that only the frequency information 

is provided, and the information about the translation of the signal in time i5 

not provided. 

IVindowed Fourier Transforms 

If f ( t )  is a non-periodic signal, the sunlrnation'of the periodic functions, sine 

and cosine, does not accurately represent the signal. 'The windowed Fourier 

transform ( W F T )  is one solution to  the problenl of better representing the 

lion-periodic signal. The PvFT can be-used to  give iriforniation about signals 

simultaneously in the time domai~i and in the frequency domain. 

\Kt11 the WFT, the input signal f(t) is chopped u p  into srctions. and each 
r 7 section is analyzed for its frequency content separately. I his windowing is ac- 

complished via a weight function that places less emphasis near the intervd's 

endpoints than in the middle. The effect of the window is to  localize the signal 

in time [IS]. 

Fast Fourier Transform 

To approximate a function by the discrete transform, requires applying a matrix 

whose order is the  number of sample points 72. Since multiplying an n x 11 

matrix by a vector costs on the order of n 2  arithmetic operations, the problgn 

gets quickly worse as the number of sample points increases. However, i f  the 

samples are uniformly spaced, then the Fourier matrix can be factored into a 

product of just a few sparse matrices, and the resulting factors can he applied 
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t o  a vector in a total of order n log n arithmetic operations. This is the  so-called 
4 

fast Fourier t rans form or FFT (181. 

4.1.2 Similarities between Fourier and Wavelet Transforms 

T h e  fast Fourier transforrh ( F F T J  and the  discrete wavelet transform (DWT) are 

both linear operat ions tha t  generate a da ta  struct,ure tha t  contains log2'n segments 

of various lengths. 

T h e  mathematical properties of the  matrices involved in the  transforms are  similar 

as-well. Both transforms can be viewed as a rotation in function space t o  a different 

domain. For t h e  F F T ,  this new domain contains basis functions that  are sines and 

cosines. For the  wavelet transform, this new domain contains more complicated basis 

functions called wavelets, o r  mother wavelets. 

4.1.3 Dissimilarities between Fourier and Wavelet Transforms , 

f & 
1 

T h e  most . interesting clissimilarity between these two kinds of transforms is that' 

\ wavelet functions a re  local'ixd in  space. Fourier siric and cosine functions a re  not. 

This localization feature, along with wavelets' localization of frequency. makes m a n .  

functions and operators using wavelets "sparse" when transfsrmed into 'the wavelet 

domain. This sparseness, in turn,  results in a number of tlseTi11 applications such as 

d a t a  comprcssion. detecting features in images. and removing noise from t ime series. . 
Let us look a t  the  standard Fourier transform. 

Like wavelet transform, it also gives a representation of the  frequency content of 

f, but information concerning time-localization cannot b e  read off easily from Ff. 
Windowed Fourier transform is a standard technique for time-frequency lo- 

calization, which is achieved by first windowing the  signal f ,  so as t o  cut off only a 

well-localized slice of f ,  and then taking its Fourier transform: 
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Its discrete version is when t a n d  to a r e  assigned regularly spaced values: t, = 

n tO ,  ZL' = mzrlo, where m, n range over Z, and  zco, to > 0 a r e  fixed. Then  (3 .2)  becomes 
4 

T h e  wavelet transform probides a similar tirne-frequency description, with a few 

important  differences. T h e  wavelet tra.nsform forrnulas analogous t o  ( 4 . 2 )  a n d  (1.:3) 

a r e  

- 1 /2  f - b  (I'"~" f ) ( n ,  b )  = lcll j cl t . f ( t ) i7(--)  
(l 

a n d  

r' 

In both cases we assume t h a t  L, satisfies 

Formula (4..3) is again obtained from (-3.1) by restricting c1.h t o  only discrete values: 

(1 = (I : ,  b = n b o n ~  in this  case, with m ,  n ranging over  2, a n d  no > 1,  ho > 0 fixed. 

O n e  similarity, between t h e  wavelet arid windowed Fourier transforms is clear: 

bo th  (4 .2 )  and  (4 .4)  t ake  thedinner  products of f' with a family of fur~ct ions indexed 

by two labels, g*'(s) = ei"'g(s - t).in (4 .2 ) ,  a n d  c ~ " . ~ ( ( s  = l u ( - ~ c ~ ( ~ )  in (1 .4 ) .  

T h e  functions v ( n .  b) a r e  called "wavelets": and  t h e  function L J  is sornetiriws called 

"mot her wavelet". 

T h e  diflc rc nce between t h e  wavelet and  wintlowecl Fourier transforms lies in t h e  

shapes of t he  analyzing functions yWvf and  $7"~~ .  A11 t h e  g",', regardless of t h e  value 

of d, have the  same  width. 'In contrast .  t he  t,/)"sb have t ime-widths adapted  t o  their ,~ 
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frequency: the  high frequency ones @ " v b  are  very narrow, while the  low frequency 

ones $ y a y b  are much broader. As a result, an advantage of wavelet transforms over tbe  

windowed Fourier transforms is tha t  the  windows vary, "zoom in" on very short-lived. 

high frequency phenomena, such as  transients in signals (or  singularities in functions). 

T h e  wavelet analysis provides immediate access t o  information tha t  can be  obscured 

by other  time-frequency met hods such as Fourier analysis [12]. 

Vsually the  following integral powers of 2 for frequency partitioning is us.4: . 
: * 

• ’ ,  

Notice that ~ 7 ( P . r  - k )  is obtaiped from a single wavelet function $(z) by a b i ~ i a v  

dilation (i.e. dilation by ' 21 )  and a dyadic trandation. IVith the  normalization, the  . 
following functions a e  usually used [lo]: Z ;  

b 

Definition 4 .1  [IO] A function $7 E L2(R) is callfd n n  or.thogona1 uwwl t t ,  if f h f  - .  
family { L ' ~ . ~ )  i r z  ( 4 .7 )  is a n  orthogorlpl basis& L2(R):  that is, 

i 

nrra! c IY ry f E L2(R) can bt ulritten as 

where ~ 5 , ~ ~  is thr I<r.ontcker syrnbol and t h e  cortwrgen$e. f fhe  s e r i f s  in (4.8) is in 
.I d 

T h e  series representation of f in (4.8) is ca.lled a w e w f e t  scr-its. Analogous t.o the  

notion of Fourier coefficients, t he  wavelet coefficients c,.k is given by 
. - . . 
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4.2 MUM-resthut ion Analysis 
e 

The constructions of the wavklet basis as in (4.7) and other different ones can all 

be realized by a "multi-resolution analysis". hlulti-resolution analysis provides a 

natural framework for the understanding of wavelet bases. The  idea behind it is 

to  write L2-functions f as a limit of successive approximations, each of which is a 

smoothed version of f. wit.h more and more concentrated smoothing functions. The 
d 

successive approximations thus use a different resolutions [ I l l .  A multi-resolution 

analysis consists of a sequence of successive approximat ion spaces I;. hlore precisely, 
\ 

the closed subspaces 1; satisfy (here the scaling factor is 2): 

% 

(1) a family of embedded closed suhspaces V, c L2(R), m E Z,  
f 

- ..-\,'_, c \ J l  c 1,;; c I.; c c . . .  
7 

n L; = {o} ( - k . K )  . 
~ € 3  .-=- < 

- " ./*= 

If  we denote by P, the orthogonal projrction operdtor onto I;, then (-1.11) 

ensures that limJ,., PJ f = f for all f E LL(R). c-5- 
7 

There are many ladders of spares satisfying (-1.10)-(4.12) which hare nothing to  (lo 

with '.n~ulti-resolution". The multi-resolution aspect is a consequence of the  additional 

requirement as follows. 

(3) ali the spaces are scaled versions of the central space I;: 
t 

f (.) € I.; e f (rJ+) f I." (4 .13)  . 
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t 

% 
- 

(4) Vo is invariant under integer translations. 

(5) For every j *E 2, define 117, t o  he the  orthogonal complement of space 1: in y+l 

-_ I 

(6) For V j  # j!?. 
r+ 

and 

e denote PL; and PLr; as the  orthogorlal project ion onto 1 3 1  and It; respectively. 

d d,,k and L'),,. denote the  orthogonal basis in 1;; and It; wi th  j, k E 2. then 

4.3 Fast Wavelet Transform Algdrit hms 

\Iulti-resolution analysis leads naturally t o  a hierarchical and fast scheme for the  

computation of the  wavelet coefficients of a given function. Before we discuss aboirt 

the  wavelet transform algorithm, let us write out  some interesting properties of 4 and 
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(1) For 4: rl) E C / o  C &, and is an  orthonormal basis in 1 5 ,  we have 

F 
(2) Suppose tha t  we have computed or  given the  inner products-of f with d , , ~ ,  at  

some given fine scale j = 0. By rescaling f we can easily compute ( f ,  b7,,1,) for 

j < -1, from ( f , ~ ~ + ~ , k ) :  

n + l  whcrc yn = (G.. d l , , )  = ( - 1 )  h - n + l .  I17e also can easily compute ( f ,  ~ ] , k )  for 

j l -1, from ( f .  d J + l , k ) :  

From the  above observation, we have a general procedure: starting form ( f ,  q O , n ) .  we 

compute ( f ,  ( ) - l . k )  hy (4.23). \Ve can then apply (-1.23) and (4.24) dgain t o  compute 

( f .  L ~ I - L , ~ ) ,  ( f ,  6 - 2 , k )  from ( f ,  Q - ~ , ~ ) ,  etc. At every step we compute not only the  

wavelet coefficients ( f ,  t,!J,k) of the  corresponding j-level, hut also the  ( f ,  6 , . k )  for the  

same j-level, which are  useful for the  computation of the  next level wavelet cbefficicnts. 

T h e  whole process can also he  viewed as t h e  computation of successively coarser 

approximations of f ,  together with the  difference in "information" between every two 

successive levels. In this view we star t  out  with a fine-scale approximation t o  f, 



Figure 4.1 : h'avelet forward trarisfornl 
9 

fo = Po. recall tha t  PJ is the  orihogonal projection onto  L;. and we deconipose f O  E 

I; = 111 3 C f ' - l  into f O  = f- '  + 5-' ,  where f - '  = P-l f O  = P- is the  nest  coarser 

approximation of f  in the  multi-resolution a~iqlysis, and b-I = f u  - f -' = ( I  - P-1 ) fo - 
is wliat is "lost" in the  transition f  O -+ f - I .  111 each of t hcsc I , ,  I\', spaces we h a w  

the  orthonormal bases { Q ~ , ~ ) & ~  and {C ' J . k ) kEz  respectively. so that  

Forrrir~las ( l .23)  and (-1.24) give t,he effect on the  coefficier~ts of thc  orthogonal basis 

transformation {dO,n )n 'Ez  -+ { J.-l ,n)nE3 in &: 

111 general for any .j 5 0 we have, 

Remark 4.1 The transition c' - c'-'.rl'-l corresponds to a change o/ basis i n  1;. 

nnrnciy 
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The decomposition of the signal & at the level j intdaJowe 
- %  - I .  

- ,  2- and o digereme (or detail) signal dJi'-I forms the bqsis for the p y S i i d  algorithm f__ 

descrzbed in [30]. ,- - 
.s 

With the notations a = u = (=)nE3 and ( - 4 b ) k  = En ~ 2 k - ~ b ~ ,  we can 

rewrite this as 

The coarser approximation f-' E K 1  = 1.L2 3 can again be decomposed into 

f-' = f-' + 6-< E 1L2, 6-' E i t r - 2 ,  with 

Scllmmat icall~., all these can be rc$resented as in Figure 4.1. 

Since all we have done is a succession of orthogonal hasis transformations, the 

inverse operation, or the reconstruction, is given by the adjoint inatrices. That is 

given by 

Therefore, 

.An important aspect of the whole decomposition is that it is a fast algorithm. 

Let us look a t  the Haar basis for a moment. The Haar basis is the simplest wavelet 

basis. If we start with we have to compute N / 2  averages 

cb, and i V / l  differences c: we compute N/4 averages cf 

and .V/1 differences 4 .  of computations is therefore 
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s 

Figure 4.2: Wavelet inverse transforrn (reconstruct ion) 

) 
4- +e a 

2 (+ + f + - - = 2 .  For more sophisticated wavelet-- . +& -. 
4 

~~diKerrncrs" involve more than just two numbers, but the  same argument hol~ls; 
-' 3E& 

If  every "generalized average or  difference" involves Ii coefficients of the  previous 

level (rattier than 2 as  in the  Haar case), then the  total nurnber of cornputat ions is 

2Ii.Y [l:J], which is faster than the  fast bbui-ier transfor-mnhose computations is of 

ordcr 11 log 1 2 .  

4.4 ~m~lementation of Wavelet Forward Transform 

and Inverse Transform 

In this section. the  implementation of the  wavelet forward and inverse transform is 
L + 

intm&u;ed. T h e  steps are  a s  follows: 

(1) Select the Wavelet Basis 
0 

bVavelet transforms do not have a single set of basis functions like the  Fourier 

transform, which utilizes just the-sine and cosine functions. Instead, wave1e.t- 

transforms have an  infinite set of possible basis f u n c t i m .  -The differqnt wavekt  
- 

families make different trade-offs hetween how compactly the' hasis functions are  . 

localized in t ime and how smootk they are. 
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Figure 4.3: Several different families of wavelets 
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Table 4.1 : T h e  coefficients for the  wavelets in Figure 4.3 

C a n 2  

Dau bechies-4 
'c1 

\Vithin each family of wavelets a re  wavelet subclasses distinguished by the  nuni- 

her of coefficients, so called filter length. 111 Figure -1.3 several different families 

of wavelets a re  illustrated, and the  number next t o  the  wavelet riame represents 

, n 
0 
1 
0 
1 

the  filter length ( the  number of wavelet coefficients) for the  subclass of wavelets. 

Their corresponding coefficients are  summarized in Table 4.1. LTsually, funct ion 

2 
3 I- - 

o is called '.father wavelet", and the  function d1 is callecl "mother wavelet". 

h n  

0.70'i106781 1865475 
O.i'O7lO6'i'Bll865~i'5 
OA8D6'29l3lUS-ll 
0.8365163037:375080 

Because we have a choice among an  infinite set of basis functions, we may wish 

t o  find the  best basis functions for a given signal. A basis of adnptcd vwc*fforrn 

is the  best basis function for a given sig~ial.  T h e  chosen basis carries substaritial 

information about the  signal, and if the  basis clescription is efficient ( tha t  is. 

very few terms in the  expansion are needed t o  represent the  signal), then that  

signal information has been compressed. 

Yn 7 

0.707106781 1865475 
-O.7Oi'lO6781 l8654'i5 
-0.1294O95'3'255 12603 
-0.224 143S6804%0133 

0.224 lG868042OI 33 
-O.l29-IO9.i%'255126O:3 

In  general. higher-order wavelets (i.e., those with more non-zero coefficients) 

tend t o  have high conipressibility w h i c ~ ~ ~ o r e  adapted according t o  the  adapted 

waveform c j ter ion.  

0.8:36.5163037378080 
-0.482962913144ri341 

T h e  Haar wavelet is used for educational purpose because it represents a simple 
I 

interpolation scheme, but t,he order of it is only 1 ,  thus it is not quite-applicable 
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in real life. Daubechies families of wavelet systems are very good for representing 

polynomial behavior. One disadvantage of Daubechies is that they are not 
t 

symmetric. The absence of similarity can lead to phase distortion. 

From the theories and the experiments on t.he real data, we find the Coiflet 

wavelet basis functions adapt well to  our stock data, and we select the filter 

lengths (the numb& of non-zero coefficients) of 6. 

One reason that we select Coiflet wavelet is its symmetry property, and the 

other reason is the order of it is not quite low and has good compressibility. 
< -  - 

The filter length of 6 is reasonable for the tiirk-related data. such as the stock 
? 

data. The data in one week is quite related to each other, whereas to relate the 

stock data in more than one week sounds not reasonable. 

To find the best-adapted wavelet basis functions for a given signal is not easy 
+ - ; S~F-. 

9 work. The research in this area is not quite mature ~ e t .  This can be our future 

work. 

(2) Determine the Bandwidth (Scale) of a Finite Sequence. 

Given a finite length sequence, the bandwidth cari he deter~nincci. The bnnd-  

width means the number of spaces to transform: from the finest space to the 

coarsest space. 

A j  = jrnnr - jmln is the numher of possible bandwidth that can be obtained in 

a wavelet analysis with the scale factor is 2 [16]. 

4 Example 4.4.1 Consider a time sequence S' = (10,10,11,11,8.S,1.3,1:3), s 

could he the closing price of a stock. The number of data points ,V is 8. 

the original data s ' =  (10,lO. 11.11,8,S,1:3,13) is in space I.;,,,,, = I,;, A j  = 

j m a r  - jnlrn = Llog2(8 - 1)J = 2 according to equation (4.25). So the number of 

spaces to transform is 2. 
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W .  
J max -' 

Vj min W j min 

(3) Compute t h e  Coefficients of the Sub-space 

Let ~ ~ - 1 . k  = (f, dJ-l,l;) and dJ-,,k = (f. be the  coeficie~its  in I.; and 

If', respectively, according t o  Figures 4.1 and 4.4, where c,-l,k is determined 

by a clot product of the  masking coefficients with a subset of I.; narnel!. -. 
[ ~ ; , z k + T m I n  . . . q,2k+rm.,] where h = {h&"=",'m,n. referring t o  equations (4.21) and 

(4.24). 

djj_l,k is determined by a dot procluct of the  masking coefficients with a subset 
.+ 

of I< namely [1.;,21.+Tm.b . . - y,2k+rma,], >vhere g = { L / ~ } ~ T ~ ~ , ,  referringi-to the  

eyuati.ons (4.22) and (-1.24). 

111 our. implementation, we use the  Coiflets wavelet basis, referring t o  Figure 4.3 

and Table 4.1 

and 
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with ~~i~ = -2, and T,,, = 3. 



Chapter 5 

Subsequence Search Momle Q. 

i _ . / _ ~ -  -- . .' s-- -. .> . =. 

6.1  Problem Statement t' 
'*: 

T h e  subsequence search module 1s- designed to solve the  problem of "First (All)- 

Occurrence Subsequence lfatching".  which rneans b'given a querx shape Q, find the  

similar shape subsequences in a time-series sequence.'' 

T h e  shape query Q. also called search template, used in our system is a string of 

symbols. Each different symbol represents a primitive shape unit.  Since the  query Q 
is a shape, so it is also called a shape-driven module. 

T h e  concept of "subsequence" search in similarity s tudy is compatible t o  that  

of "substring" sexrch in the  complexity theory. T h e  reason of our  using the  notion 

of Lbsubsequence" search here is t o  follow the  conventional notation proposed by the  

papers [I ,  2, 14, 161 in the  one-dimensional time-related d a t a  similarity search area. 

Following is an example tha t  this modide can solve. 

Example 5.1.1 Find the  duration with the-salc's trend of mini-vans is "1il;DD" 

(with two sharp ups and two sharp downs) between Jaa .  1940 t o  Jan.  1996. After 

the  subsequence search module, we may find that  there is a subsequence from 1'373 to  

1980 having the  trend similar t o  the  query "two sharp downs follo~vecl by two sharp - 
ups" . I 

E 
Here the  symbol 'U'  represents "sharp up", 'Dl represents "sharp down", and 

i 

42 
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I 

Figure 5.1: .A segmented piecewise linear representation. ( a )  original data,  and ( h )  
the  segmented version of this sequence. 

"1-1-DD" is the  shape query Q. 

5.2 Terminology 

In this section, we introduce some notations that  will be used in the  subseyuencc 

search module. 
\ 

T h e  subsequence search module functions as follows: the  user through the  user 

e shape query they want t o  ask, and the  tolerance threshold, then 

the  similar part  of the  sequence for the  user. This  is the  subsequence  

matching problem, as we introduced in the  former section. In our module we combine 

the  OLAP techniques, allowing the  user t o  drill up  and down along the  t ime dimension 

- a ~ c o r d i n g  t o  the  time concept hierarchy, and also allowing the  user t o  search the  
&.- - * -* 

'+ similarity along multi-level resolutions. Here are some definitions for implementing --. 

these functions: -7 

0 Piecewise linear representation + . 

T h e  first thing w e  should solve is t o  find a representation method tha t  can 
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capture the  sequence shape information, represent the  d a t a  sequence, and fur- 

thermore facilitate the  similarity search. There are  numerous techniques for 

representing sequence data.  T h e  representation can critically influen'ce the  sen- a 

sitivity of t h e  distance metric and also can substantially determine the  efficiency 

of the  matching process. Thus  a robust representation, which is computationally 

efficient t o  work with, is what we are  looking for. Lye are  interested in designing 

a representational language which cBn directly capture the  notions of sequence 

shapes and which is.intuitive as a language for human interaction. 

To make the  problem easier, we chop the  sequence of d a t a  into many segments 

with equal length, and use a straight l i ~ e ,  which can mostly approximate this 

hunch of data ,  t o  represent each segment. Thus  the  original d a t a  sequence 
" is converted t o  a new kind of d a t a  sequence. just like in Figure 5.1 (a)  and 

( b ) .  This method is called piecewise linear segmentations. which provide both 

an intuitive and practical method foprepresenting curves in a simple form. It 

generalizes the  da ta  from high order t o  low-order polylioniial. 

F'rom continuous space to discrete space 

After changing t h e  sequence of da ta  into piecewise linear representation, each 

segment is changed in to  a straight line. Since the  shape information is contained 

in the  slope trend of the  lines, it naturally prompts us t o  use a meaningful symbol 

t o  represent each line. For instance, if the  slope is posifive, and is around 80 

degree, then use 'li' t o  rep.resent it ,  which means the  trend *of this line is sharp 
- - 

2 u p .  , . 

Thus  the  original da ta  sequences a re  generalized by the  piecewise linear repre- 

sentation, and the  searching space is chatlged from the  c o n ~ n u o u s  space t o  thc  

discrete space, making the  problern~mu~chkasiei  t o  solve, and intuitive for the  
- ---- - ttm t o t ~ n d e r s t a n d .  @ % - 9 

1 ' - - %  . . . ~ulti-resolution level of shapes 
-. 

.\\:e classify t h e  shapes into different resolution levels. During the  t inle o f  trans- 

ferring the  sequence da ta  from the  c&ltiAnuous.space t o  the cliscretr spare, the  - dt' - ' 
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symbols are  selected from a specific resolution level. T h e  lower the  level of t h e  

search resolution, the  more "blurry" of the  searching result we get. 

A library of primitive shapes 

\Ye provide a library of primitive shapes with the  same length. Cornbinat ia-of  
* r-- 

these primitive shapes can form any kinds of trends the  users want as  a query. --'---L: m 

The length of each unit 4 

* 
T h e  length of each unit shape, also called the  length of each chopped segment, 
i 

is a natural segmentation of time. Natural segmentation of t ime means tha t  for 

the  time-related cube we created, the  chop length is determined according t o  

the  current level of t,he t ime dimension on the  t ime hierarchy. This i s  just one 

of the  methods t o  det,errnine the  chop length, . - later we will discuss it in more 

detail. 
I. *: I 

Example 5.2.1 Fop a. cube on which we are  doing t h e  mining, i f  the  timeaL . -.- w 

The query in 
Q 

n&~ is a t  .month1 - level, then the  chop length is 12. If the t ime 

now is a t  'quarter' level, then the  chop length is 4. 

the subsequence search module 

T h e  query in the subsequence search module is a slope trend, which is a string 

of symbols the  users give. Each symbol implies a prin ve slope trend with a 'lli unit length. So a string of symbols in a specific resolution level nwans t h e  nn'ion 

of the  primitive trends a t  a resolution level. T h e  trend length is the  sum of each 
Y 

primitive unit length. 

Example 5.2.2 Considel. a query trend the  tisers ask: bLunssUlllidl[li".  which 

rnedns two unit length of pslower ups, followed by two st able downs, three sharp 
b 

ups. one slow& down and two sharp ups. Thus  totally the  query length is 10 
- 

unit trend lengths. 
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R (Increase) (0.5,90) 

u (slower up) (0.5,45) 
ul (slower up j (0.5.1.5) 

ull  (slower up 11) (0.5, Fj) 

.u12 (slower up 12)  [05,10) 
u13~(slower up 13) [lo, 15) 

- - -.. ._-- 
u2 (slower up ,) [l5,3O) 

- 

u 2 ~  (slower up 21) [15,.20) 
-.u22 (slower up 22)  [20,25) 
u23 (slower up 23)  [2.5,30) 

u3 (slower up 3) [:30,45) 
u 3 ~  (slower up 31 ).d:3O, 3.5) 
u 3 ~  (slower up 32 [:35.40) 
u3,~s lower  up 33) [4O. 45) 
I 

U (sharp up) [45,90) 
U (sharp up 1 ) [45.60) 

U I 1  (sharp 1 1 p ~ ~ 1 )  [4.Tjr50) 
U I 2  (sharp up 1 2 )  [50,55) 
U13 (sharp up 13) [55,60) 

U2 <$6rp up 2 )  [60, T i )  
U z l  (sharp up 21 ) [60.6,5) 
ULL (sharp up 2,) [65,70) 
U23 (sharp up 23) [TO, 75) 

% ,. 
US (sharp Cp 3) [75, 901 

U3i (sharp up 31 ) [75.80) 
U32 (sharp. up 3 2 )  [so, 85) 
U33 (sharp up 33) [S5,90) 

F (Decrease) (-90, -0.5) 

d (slower down) (-4.5, -0..5) 
dl (slower down 1 )  (-15, -O..i) 

dll (slower do%n (-5, -0.5) 
d12 (slower down 1 2 )  (-10, -.5] I 

dI3 (slower down 13) (-15, -101 - 

d2 (slower down 2 )  (-30, -1.51 
d21 (slower down 21) (-20, - 151 
d22 (slower down 2 2 )  (-2.5, -201 
d23 (slower down Z3) (-:3O, -251 

d3 (slower down 3) ( -4.5, -301 
d-31 (slower down 31 ) (-3.3, -301 , 

dn2 (slower down 3 2 )  (-40. -3.51 
d33 (slower down 33) (-4.1). -401 

D (Sharp down) (-90, -4.51 
Dl (sharp down 1 )  (-60, -451 

Dll (sharp clown 1 1 )  (-50. - 4.51 
D12 (sharp down 1 2 )  (-55. -50] 
6,3 (sharp down 13) (-60, -551 

1 

D2 (sharp down 2 )  (-7.5, -601 
D21 (sharp down 2 1 )  (-6.5, -601 
D22 (sharp down 2 2 )  (-70, -6.51 

(sharp down 23)  (-75, -701 

D3 (sharp down 3) (-90, -75] 
Ds1 (sharp down 31) (-80, -X] 
0 3 2  (sharp down 3 2 )  (-S5, -SO] 
D33 (sharp down 33) (-90, -851 

H (Horizontal) [-0.5,0..5] 
s (stable down) [-0.5,0) 
S (stable up) [O, 0.51 

- 
Table Fj.1: The shape definition table 

.. 
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a The shape definition table 

In this system,-we chop the data sequences into many chunks of equal length. 

Each chuilk is called a unit. The (-;, ;) space is divided into a number of 

non-overlapping intervals, each corresponding to  a symbol k. The symbols and 

intervals are kept in the shape definition table. Then we use the corresponding 

character symbol t o  represent the trend degree of each unit according to  the* 

shape definition table of Table 5.1. Four layers of symbols are designed in the 

table. The higher layers are divided into some fubranges a t  the lower layers. 

The two values beside each symbol are degree range values represent the degree 

intervals belong to these symbols. This idea is demonstrated more clearly in 

Figure 5.2, in which different levels of shape symbols are expressed at  different 

degree ranges. For example, R(0.5,90) in Figure 5.2 means if a slope value falls 

in between 0.5 degree to  90 degree, then use symbol -'R' t o  represent. t,his s l w e  

value. 'R'  means "Rise", whereas 'F", which is the opposite of 'R', means 'Fall', 

and 'H'  means 'Horizontal'. 'R', 'F' and 'H' symbols represent the coarsest 

. shape trend. To make the shape trend finer, the degree range value of ' R '  can 
f 

be divided by 2, and we get 1;[45,907 and u(O..5,45], representing sharp up and 

slow up respectively. Following the same way, the degree range values of '17' and 

'u' can be further divided by 3 respectively to  make the trend shape expressed 

much finer. Thus users can search the similar trend in different resolution levels. 

Figure .5.2 only shows half of the shape definition of Table 5.l.rin which the 

degree values are positive. The other half is almost the same, except that t h e .  

degree values are negative. 

We use a shape definit,ion hierarchy tree toexpress this table and the hierarchy 

of this table more clearly. 

The shape definition hierarchy .. . tree 

In this system, the users are given the choice of selecting to  mine different, 

resolution levels of the similarity among sequences. The higher the level the 

users want, the more "blurry" matching of sequences the users get. Thus to  , 
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Figure 5.2: T h e  illustration of the  shape definition table 

C 

implement the  similarity searching in n~ul t ip le  levels, we introduce the  shape 
* 

hierarchy tree. It is presented in Figure 5.n. T h e  highest level is ,4119, we call 

it the  0 leivel. T h e  second level only has three general shapes: 'R' (Rise). 'F' 

(Fall),  and 'H' (Horizontal). This level is the  most  "blurry" level. T h e  third - 

level has higher resolittion, qnd the  shapes include 'u' (slower up),  'U '  (sharp 

up),  'd' (slower down), 'D' (sharp down), .S' (stable lip), and 's' (stable down). 

Each shape type is then further divided into three subtypes in the  fourth level, 

and so on. 

T h e  purpose of giving the  shape definition hierarchically is t o  allow the  user t o  

find the  similarity a t  different resolutions interactively through the  user inter- 

face. If we look a t  a sequence with a large "window", we would notice gross 

features. Similarly, if  we look-at a sequence with a small "window", we would 
- - 

notice small features. T h e  goal of mining the  similarity a t  multiple-levels is t o  

mine from forest t o  trees as  users specified. 
% 



Figure 5.3: The shape definition hierarchy tree 

5.3 Algorithm i 
> -* ,A& - 

-- 
x - - - -  -. \Ye now give the formal algorithm for the subsequence search module. Z ---- -- < 

.I 

Algorithm 5.3.1 Finding t he  s imi lar i t y  subsequenccs according to the  search tern- 

Input: ( i )  A time-series data, ( i i )  the query shape sequence (query pattern), ( i i i )  

the shape definition table and the shape hierarchy tree. ( iv) the tolerance threshold 

k for approximate match; and ( v )  the matching resolution level. 

Output: The sets of all the subsequ6nces that are approximately similar to* the 

query pattern with a t  most k differences. . 
Method: Changing the searching space from the contirluous space to  the discrete 

T 

space, and implemznting multi-level resolutioll search. 
* 

1. Building the cube, which is the summarization of the raw data of the database 

according to  the user's require. The details are illustrated in Section 5.3.1. 
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original 

sequence l - 2 F E L  I thr@oId - 1  - 1 inverse 
coefficients transform 

Figure 5.4: Wa.velet filter 

reconstructed ] - data 
sequence 

.% 

-1 - -  " 

2. Wavelet filter. which is using wavelet technique to  remove the noisy data. ~ e c - '  

tion 5.:3.2 describes it in detail. 

3. Encoding, which ismto transform the data from the continues space to  the discrete 

space. It is discussed in Section 5.3.3. 

-1. 3lulti-Level resolution search, which is to find the similarity pattern and allow 

users doing multi-level resolution search. The details are discussed in sect ion 

These four steps are illustrated in detail in the following subsections 

5.3.1 Building the Cube 

Our similarity searching system is created on the hasis of the DBlIiner cuk be structure. 

C'uhe is a multi-dimensional data structure that is a summarization of the data people ' 

are interested in. The purpose of the cube structure is for efficient retrieval of the 

data which are used by other front end mining tools such as association and similarity 

mining tools. 

Before building the cube. two most important items for the cube should be de- 

termined first: dimensio'ns and meashres. As we have introduced before, since we 

are working on the time-series data similarity search, one of the dimensions must be 

the "time". the selection for other di~nensions can be the same as other mining tools 

[22, 381. One of the measures can be the time-series data value that you want to find 

the trend of, such as the closing price, or the sales amount, etc. 

5.3.2 Wavelet Filter 
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-Informally, WE consider two sequences similar if the non-matching parts are less 

than the similarity threshoid. The small non-matching regions are treated as rioisy 

data  and are ignored. Sometimes, there exist sharp jumps, spikes and non-smooth 

features in the time-related sequences. 'SO the goal is t o  find a way io  make our 

similarity searching algorithm insensitive to  the noisy data  as much as possible. 

Wavelet filter is just the right tool to  filter out the noisy data -and exclude the 

sharp ~ u m p s  and spikes, to  make the final sequence a smoother one. 

Using the wavelet analysis technique to filter out noise or short-term fluctuatioos.is 

presented as Figure 5.4. The meaning of the terms of noise or short-term fluctuations %---, 

in our application domain is defined as follows: 

Definition 5.1 The noisy data is the short intewal gap, in which some very small 

rtyions of data has sharp junays or z*alleys, but the time interaals are so small that 
0 

can be ignond without inJEuence the whole sequence trend. 

This algorithm tries. to  eliminate the ~iojsy data, in other words. this algorithm is 

for dc-rroisrng or, more precisely. &rent slructure eriractioa. This is a difficult and 

ill-defined problem, since what -is "noise" is not always well defined. \Ye choose to  use 

threshold to quantify it. 

The technique of Figure .5.f works in the following way. W'hen we take the wavelet 

transform of a data set, we decompose a data set into "averaging" part and "details" 

part, which is the forward transform step. Some of the resulting wavelet coefficients 

of the det.ails are small, and -they might b e  omitted wit haut substantially affecting 

the main features of the data set. The idea of thresholding then is to  set to  zero all 

coefficients that are less than a particular threshold, which is the thresholding step. 

The coefficients that are less than a particular threshold are considered as noise. Then 

we invert the transform to  reconstruct'the original signal rqinus the noise, whicl1.i~ 

the inverse transform step. bravelet noise-removal has been shown to  work well in 

Figure fj.8 which shows a pair of "before7' and "after" of a stock data sequence of 

S h P  index from Jan. 1. 1940 to  Dec. 31, 1992, and we can see that the noise is 

removed and at  the same time the basic features of the signal are" kept. Besides 

wavelet met hods. other approaches such as the Fourier transform are also possible. 
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However, dur approach is better than the Fourier transform in many aspects which 

. .  - been discussed in Chapter 4. 
-, - ' 

- _2- ,? 
Algorithm 5.3.2 Noisy data rentoz?al. 

Input: ( i )  A sequence of data which is a time-related measure of the constructed 

cube, and ( i i )  chop threshold 6 ( c  < 1). 

Output: A reconstructed data sequence of this time-related measure of the cube. 

Met hod: Wavelet *forward a.nd inverse transform. 

Wavelet forward transform. 

Using the wavelet forward transform method, kvhich is described in Chapter 

1. to transform the sequence data frbm the time domain to  the time-frequency 

domain. The original data is supposed at Lj,,, space, changing the original data 

from space to  space, with j,,, defined to be 0, and j ,,,, determined 

h. the bandwidth calculation, referred to Figure 4.1 and Figure .4.1 in Chapter 

1. 

Thresholds the coefficients. , 

(a) To filter out the high frequency part, set the first two levels of the wavelet 3 I 

coefficients of the fl;,,,,,-l and CI;,,,-L spaces to zero, referred to Fig- - 
ure 4.4. 

(b) Db L2 en- $bop on the coefficients [36], filtering out the small coefficients 
<-=- 2.. -ws-*- 

that less'than t h e  de-noising threshold on the spaces from Ct;,,, -3 to tt;,,,,n , 
* ,\-- 

referred to Figure 4.4. These small coefficients are called non-significant 

coeficienfs. It has the following three sub-steps: 

(i) Find hi,  the largest absolute value Wavelet coefficients in "mother 

wavelet" space from It;,,, to bt;,,,, . 

( i i )  If a coefficient Id[i, k]I is less than sqrt(c)*M, then d[i. k ]  is set to zero. 
- - -- - .r 

d[i, k] is the coefficients of "mother wavelet" space at  it h resolution 

level of kth position; 

- 
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(iii) Continue t o  d o  s tep  (ii) truncating any coefficients tha t  meet (ii) ,  

which a re  used in, the  reconstruction step, until t h e  "mot her wavelet7' 

space [re m CV3 ,,,- 3 t o  Cf/;,,, are covered. 8- 
gi 

[?sing C-like syntax, thi i .s tep (b )  can be  written as follows. -.- ..= - a- 
& -  - 

+ - 

for ( i  = j,,, - :3; i <= j,,,; i + +) { 
if Id[i, k]I < s q r t ( r )  * 1bl 

d[i. k] = 0; 

else 

-_1* - 5 - -QL&] = d[i, k] } ; 

3. \IVa.vele't Inverse Transform. 

\b'avelet inverse transform t o  the  original t ime domain LIJmar from the  space L;m,n 

referred t o  Figure 4.2. 

Explanation of.the Algorithm 5.3.2. 

1. In order t o  delete the  parts of sharp jumps and valleys with short intervals of 

the  da ta  sequence, the  coefficients of the  first two levels of "mot her wavelet" are 

chopped a t  ste$ 2 (a). Since the  d a t a  seqtience is decomposed into "\averaging" 

part and "details" part,  these coefficients, which are  chopped, represent the  

very high frequency information of the  original da ta  sequence. Thus  this s tep 

is very important ,  since it deletes one kind of the  noisy d a t a  which have very 

high frequencies. e 

2. What  we basically d o  a t  s tep 2 ( b )  is using the  L%energy chop on the coeficients 
u. 

4 

method [46]. T h e  equation is as  follows: 
z 

- 7  

I f  Ic[j, rn, k)12 < r * E then c[j,  m. I;] = 0, 

whcm E = ma.r{Ic[j. nt, k]I2) . 
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which is ecluivalent to the following equation: 

If Ic[j, m,  k]I < sqr t (c )  * hl then  c[j, nt,  k ]  = 0, 

where ill = mas{lc[j, nl,  k ] ] )  

The basic reason of doing the threshold chopping is that each coefficient of the 

"mother ~vavelet'~ represent,s the 'detail" information about the data sequence at, 

a given location and at  a given scale. The coefficients with small valueg less than 

a particular threshold represent non-significant part and can be considered as 

4 noise. Thus they can be omitted andstill  can get good quality of approximation 

of the original da ta  sequence. In other words, the wavelet transform alloxvs us 

to  focus on the most relevant parts of the sequence. 

There are other methods of threshold chopping besides L 2  Energy Chop on the 

co~fJlcicnts, such as based on the noise standard drrliation estimation at each 

scalr nlethod [IS, 391, which is more complicated to  implement. 

3. The process of noise removal of this algorithm is quite like that of keeping only 

i~iiportant coefficients in data cornpression algorithms. Like the data compres- 

sion algorithms, for the noise removal algorithms, there are two concepts that 

we are most interested in, which are compression ratio and relative error. 
. < 

Definition5.2 The compression ratio is the number of bits the initial data 

sequence takes to store on tAe x o m p u ~ e r  ._._ , dirided by the number of bits required 

storing the compressed data sequence:* 

The equation of relative L2 error is as follows: 

where n is the numbei of the data in the seiluence, org[k] is th&iginal data 

sequence a t  position k, and rec[k] is the reconstructed data sequence at  position - - -%. 



- 

Table 5.2: The chop lendth scheme based on the time hierqchy level 

'quarter' 
'rndmth' 

5.3.3 Encoding 

timb level 

'ye&-' 
4 
12 

After the noise-removal of the wdwlet filter, the next step is t o  transform the problem - 
I 

chop length N 
9 - 

from the continuous space to  the aiscrete Space. In other words, change the cont,inuous 
I 

real values to a limited numbe of symbols so that it excludes the preprocessing 'i 
procedures'of doing amplitude sdaling an? offset translation like other algorithms in 

1 e 

[ 2 .  181. It  solves the problem 01 how to compare the sequences in different value 
I . -  

domains. 
I 
I 
I 

\17e first divide the one-dimen ional time-related sequence into many chunks with 

equal length, and according to  th \ approximate trend degree of each chunk, using a 

corresponcling symbol a t - a  user,+ ecified resolution level on the shape hierarchy tree 

to represent each chunk of data. T 'I, e key is to  find the right way of getting appropriate 

chop lengths in different reso~utiod levels: 

Algorithm 5.3.3 Encoding the  ddta sequence. 

Input: ( i )  A reconstrpcted d a t i  sequence of a time-related measure of the rube, 

and ( i i )  the shape definition table and the shape hierarchy tree. 

Output: A string of symbols represent the shape of the data sequence. 
I 

Method: 

1. Determine the chop length, which is a natural segmentation of time according 

to  the time concept hierardhy. f t  has two sub-steps as follows: 

(a) Get the current time level bn the time concept hierarchy. 
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- Any 

Figure 5.5:  X concept hierarchy of the time dimension: (a)  with the same rlunlber2 
of siblings. 

@ 
(b) According to  the current time l e ~ e l  and the chop length scheme in Table 5.2. 

get the corresponding chop length N. 

2. TO represent each hunch of data of length 5, using the least  square method [i] 

t,o get the best linear approximating line u.c + b for each hunch of data. 

3 .  Represent each bunch of data by a corresponding symbol. 

(a) Get the slqpe value of each approximating line. - 
(b) Use the corresponding symbol to  represent each approximating line accord- 

ing to the shape definition table of 'Pahi 5.1. &' 
1. Store the resulted string of symbols i n  an array. 

Explanation of Algorithm 5.3.3. 

1. We allow the OLAP operations "driil down", "roll up" and other operations t o  

work on the cube, such as drilling down ancl rolling up along the time dimension 

of the cube, so that the users can get the similarity information at  different time 

granularities. Since the higher the level generated along one dimension, the fewer 
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Jan.91 Mar.91 May.91 June91 Jan. 92 Feb.92 Mar. 92 July.92 Aug.92 Oct.92 Nov92 Dec.92 

Figure 5.6: A concept hierarchy of the  tinle dimension: ( b )  wit,h different numbers of 
siblings. 

the  number of d a t a  are  on tha t  dimension, the  chop length .V should be variant 'i 
a t  diff~rent  time granularities. and iV must be  greater than 2 ,  otherwise we 

cannot get a approximating line with only one data .  

2. There are two methods t o  deter ine the  chop length -2' a t  different time gran- 

ularities. t 
\ 

( 1 )  T h e  first method is tha t  iV is determined by the  current concept hierarchy 

level of the  time dimension. In other words, the  chop length rV is a natural 

segmentation of t ime  based on the  current concept hierarchy level of the  time i 
dimension. For example, i f  the  time dimension is a t  month level now, then the  

chop length N is 12. Table 5.2 is the  scheme we used in this method. One 1 
disadvantage of this method is tha t  it is not appropriate for one special and 

complicated occasion as in Figure 5.6, when the  time hierarchy is hot like what  

we usually meet with tha t  the  number of siblings is not the  same a t  a concept 

I rwl .  CC'hat we usually run into is shown as in Figure 5.5 tha t  the  number of \ 
siblings is the  same a t  every concept level. Fortunately, the  situations like in 

Figure 5.6 are very rare in the  time-related databases. To handle this kind of 



Table Fj.3: The chop length scheme based on t,he number of attribute values 
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1 \ 
- .  

< 

5 time hierarchy can be our future wsrk. 
> .  

( 2 )  The second method is that IV is only dependent on the number of attfibute . 
f 

~ a l u e s  on the current time dimension. A possihle schernc for the chop length il '  
7 

can be in 'Fable 5.3. For example, if the number of attriRGe values in current \ 

-'* *̂  \ 

time dimension is between 10000 to  50000, then the chop len i tx  Y i s  set to  1000 

. , 

.+ 
, 

I 
C 

s % 

I 

and the nun~bcr  of symbols we get will be between 10 to  50. From t.he table 

-a 

- 

we can see that the number of symbols after the encoding step will he around 

The number of symbols 

.- > 25 
10 7 5 0  
10 -20  - _  
4 - 20 
5 - 1 0  
4 - 2 0  
5 -  10 

9 

< - 2 3  

-1 to .50 no matter how many of the att.ribute values on the time dimension, 

Kumber of attribute values 

2 50000 
10000 - .50000 ' 

5000 - 10000 
1000 - 5000 
,500 -- 1000 
100 - 500 
50 - 100 

5 50 

-.' 

- 

and the chop length is varied based on the current number of attribute values. 

Thus the scheme looks reasonable. One disaclvantage of this method is that .it 

Chop length iV 
' '2000 

61 000 
500 
2.50 
100 . 
2 5 
10 
.> - 

is not natural for the user, since it has nothing to  do with the "time" concept 

hop length scheme (1) i t1  our algorithm for its natural, intuitive- 

3 .  'The least  squares approach at  step 2 is to  determine the best approximating 

line when the error involved is the sum of the squares of the differet~ces between 

the y-values on the approximating line and the given y-values. Hence. constants 

a and b must be found that minimize the least squares error: 



\ 
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Let a.ri + b denote the i th value on the approximating line and y, the ith given 

y - d u e .  

The solution of constants a and b is as follows: 

The l e a s t  squares method is the most convenient procedure for det 

best linear approximation, and it is a good method from the theoreti 

of view. It puts substantially more weight an a point that is out of line with the 

rest of data b u t ~ ~ v i l l  not allow that Point to cbmpleteIy dominate t he approxi- 

mation [ T I .  There are also other methods to  get linear approximation. such - 

as minimax approach and etc. It is testified 

that they are not as good 

M'e divide the (-:, E )  space into a number of non-overlapping intervals. each 

corresponding to  n symbol h ,  and each unit of numbers i$ now replaced by 

the symbol k associated with the interval to  which it belongs. The symbols 

and intervals are kept in the shape d e f i n i t i o n  t a b l e .  Since the size of the 

intervals implies the resolution, t a  give the user the choice of different levels of 

resolution, the table is created in hierarchical intervals. 

The purpose of using the shape d e f i n i t i o n  t a b l e  is to  pravide a small set 

o[ shape primitives: unit lines with different slopes. The users can randomly 

combhe  tk-unit  lines and form a shape they are interested in. This shape 
1 

can be k e d  as queries proposed to our system requesting to  find out the similar 

paft in the dat-ar*quences. M i s  method of generating simihrity queries is quite 

intuitive and originative. p 



5i3.4 Multi-Level ~ l s o 1 u t i o n  Search 

Now the one-dimensional time-related sequence has been changed into a string of 

symbols after the above steps. Each symbol in the string implies the trend of the 

corresponding group of data. Thus a query trend the users ask can be indicated with 

a combination of such symbols a t  a specified resolution level. ,So the problem now is -* - <  

t o  match th'e qnerjr trend s t r i n ~ w i t h  the source string, which means it becomes the 

string matching problem. - . 'h 

---There are many algorithms in the string matching area, especially in the area of 

approximate string matching. The approximate string matching task is to  find all 

approx%~ate occurrences of the pattern in the text with a t  most k differences, given 

- a pattern string, a text string, and an integer b.  An approximate occurrence means 

a substring PI of T such that a t  most k editing operations (insertions, deletions, 
dh., 

changes) are needed to  conqert PI t o  P. 

Example 5.3.1 Consider the text string T = bcbacbbb and the pattern string P = 

cued, and X: = 2. The similar pattern found is cbac and bacb. 

To give the user the flexibility t o  select, different similarity levels, we support the 

multilevel string matching by using the shape definition hierarchy t r ~  in Figure 5.3. 

'The algorithm is as follows: 
4 

Algorithm 5.3.4 .\lulfi-level resolution scurch 

Input: ( i ) A  string. of symbols that represent the shape of the data  sequence; ( i i )  the 

query shape seyuence(query pattern); ( i i i )  the shape definitidn table and the shape 

hierarehytree; (iv) the tolerance threshold b for approximate matching; and ( v )  the 

matching resolution level. 

Output: The sets of all the subsequences that are approximately similar to  the query 
6 

pattern with a t  most k differences. 

Method: - 4 

-v 
v .  

1. - ~ e n e r a l i z e  or specialize the input string of symbols to  the corresponding query 

shape matching level. 
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2. Use the string matching algorithm: Enhanced Dynamic Programming ( E D P )  

Algorithm [26] t o  find the similar subsequences referred to  Chapter 2. 

Using C-like syntax, the E D P  algorithm can be written as follows. The  function - 

name is" DoStringMatch. 
- a * 

a {  

top = k + 1; 

- & '- . '. 
/ / I ;  is the threshold for approximation. 

for(i = 0; i <= m; i++) . // n2 is the length of the pattern string. 

h[i] = i ;  //in i f  ialize h[i]. 

for(j  = 1 ;  j <= n; j++) //n is the length of the source string. 

forti = 1 ;  i <= 8op; i++) 

i 
/)' if the pattern string at i is the same as sourcc str:ing a t  j .  

if(Que1-yPattcrn[i] == SourceString[j]) t̂ 

€ = c; 

else 

// h[i - 11 is the entry of D( i  - 1 ,  j ) ,  h[i] is the entry of D( i .  j - l ) ,  and 

/ / c  is the entry of D( i  - 1 ,  j -.I) in Table D 2.1 of Chapter 2. 
/ 

E. = min(h[i  - I ] ,  h [ i ] ,  c)-+ 1 ;  

c = h[i] ;  

h[i]  = 6;  

1 < 

while(h[top] > k )  

top - -; 
i f( top == nz) 

Report-Match(j); 

else 

/ / j  is the match position. 
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, . 

:3. Stitching the neighbored similarity result together. 
. 

Using C-like syntax, the stitching algorithm can be written as follows, the func- 

tion name is DoStitching. 
a 

Dostitchingo 
7 

. - .  

T$ initialize Finaldlatch to empty. Finalhlatch is the army  to store 

//the stitched matching strings. 

FinalMatch = NULL; 

// iVumhlatch is the number of matching subsequences. 

while(i < ilrzmi21atch) 

// if the matching positions are neighbors, t h f n  they should be stitched. 

. while(& f (match-position[i], matchpo.l;ition[i + 1 1 )  == 1 )  

{ 
// stitch the neighbor subsequcnccs togethgr. 

St i tchcdString = match(i).+ match( i  + 1 )  

-or~erlap(match(i) ,  match( i  + 1 ) ) ;  

//Get the final stitchcd string. 

FinaliZiatch = Finul~ l la tch  + Sti tchedStriny 

4. Scaling the query pattern, continue to  do steps 2 and 3, till the scaling factor is 

four. 
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Using C-like syntax, t h e  scaling algorithm can be  written as  follows. 

DoScaling( ) 

for (int scale = 0; scale <== 4; scale ++) 

/ len-queryPattern is the string length of the query pattern 

for (int i = 0; i < len-QucryPattern; i++) 

{ 
for (int j = 0; j <= scale; j ++)//duplicate thc symbol nf .i to j times. 

ScaledQueryPattern + = Query Pattern.Cet A t ( i ) ;  

DoStringhlatch(Sca1edQueryPattern); // do step 2 

Dosti tchingo;  // do step 3 

0 

5 .  Outpu t  all approximate occurrences of the  query pat tern including the  stitched 

and the  scaling ones. 

, . -  

Explanation of Algorithm 5.3.4. 

1. At s tep ,l, -the string of symbols which represents the  shape of the  original da ta  

sequenc8, should be generalized or specialized t o  the  corresponding query shape 

level based on the'shape hierarchy tree we defined. 

Example 5.3.2 Assume the  shape string we get from the  original source da ta  

after Algorithm 5.3.3 is "uuuuUl!ddddDD", which means -"four slow ups, fol- 

. lowedby two sharp ups, four slow downs and two sharp*dorvns". It  is a t  the  
C 

third level on the  shape d e f i n i t i o n  h ie ra rchy  tree shown in Figure 5.3. If _ 
"r 
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our query pattern is "RRFFF" which means "two rises*followed by three falls", 

which is a t  the second level on the shape def i n i t  iod hierarchy tree+ =shown 

in Figure 5.3. They are a t  diffe~ent resolution levels (the shape string of the 

original source data .has higher resolution than the'query pattern string), thus 

they cannot be compared with each other directly, So the shape stiings of 

the original source data should be generalized to a lower resolution level. Af- a 

ter the generalization of 'the original shape st>ring "uubuUUdd$dDD", we get . 
"RRRRRRFFFFFF7'. The comparison result we get is that the  similar part 

with the query pattern is from position 5 to  position '9 in the original sha 

- string. 

2. At step 2, we use the Enhanced Dynamic Programming (EDP) mkthod to  get 

the similar subsequences. It is an edit distance-based approach introdyced in 

Chapter 2. This approach is applied for matching sequences of different lengths 

which computes the minimum number of operations (deletions, changes ,and in- - 
JC 

, s&tions).required to  change a sequence into another bne. The detail information 

can be referred to  Chapter 2. 

3. Gsually the results of matching positions are likely t o  be neighbors t o  each ot l~er ,  

especially when the shape symbols of the query @.tern are with consecutively 
. *  

the same symbols, such as "dddV(three slow downs). In this case, we usually 

like to  stitch them together. Actually, it is a special-cas; of scaling problem. 
> 

Following is a stitching example. 

- Example 5.3.3 If the query is to  find the duration with the sales trend of 

mini-vans is "dd" (two slow downs) between Jan. 1940 to  Jan. 1996. The query, 

pattern here is two consecutively same symbols. After the subsequence search 

module while the searching level is at  year level, the searching results are as 

follows : 
- "from 1949 to 1943, the similar pattern is"dd'; 

from 1943 to 1944, the similar pattern is 'dd.'; 

from 1944 to 1945, the szmilar pattern is 'dd'  ". 
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Figuze 5.7: (a )  Time sequence i' = (10,10,11,11;8,8,13,13), and (b )  time sequence 
$= (lO.lO,lO, 10. 11, 11, 11, ll.S,S,S,S, 1:3, 1:3,13,13). . . 

After the stitching algorithm, the searching result is : 
e . A 

"from 196.2 to  1943, the similar paltern is 'dd' ;  j7 +.- 

from 1943 to 1944, the sirnilar pattern i s  'dd' ;  
--r 

front 1.944 to 1945, the similar pattern is 'dd' ;  if 
from 1942 to' 1945, the sirnilar pattern is 'dddd' ". 

4. At step 4, scaling ~ r o b l e m  is considered in our algorithm, an-example of scaling 

problem is shown in Example -5.3.4. 

Example 5.3.4 .Consider two time sequences in Figure 5.7, .ii = (10,18,11, t 

+ 11,8,8,13,13) and p' = (10710,10710,11,11,1,117S78,S7S13713713, 1 s , 

and p' could be the closing price of two stocks. A typical query is "is sim- 
' 3" ilar to s . . The sequence $is twice as long as <, so they cannot be compared 

directly. If the time axis of s' is scaled by 2 ,  i.e., every value " L ~ , "  is replaced by 
11 bb~y,, v ,  L, the resulting sequence will be identical to  p'. This operation is usually 

called scaling. 

According to the above example, we allow scaling along the time axis in our 
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subsequence search module. Following is an example of having this scaling 

capability. m b _ _. . 

Example 5.3.5 If the query is to find the duration with the sales trend & mini- 

vans is "UD" (one sharp up followed by one sharp down) between Jan. 1940 to 

Jan. 1996. The query pattern here is not with consecutively same symbols as 

example 5.3.3. After the subsequence search rnodule while the searching level is 

at year level, the searching result is as follows : 

$-on1 19&5 to 1946, the similar pattern is 'LID' ". 
----A- e -.a- 

ilfter the scaling algorithm, the searching result is as follocvs: 

"j?om 1945 to 1946, the similar pattern is 'UD'  "; 

from 1944 to 1947, the similar pattern is 'UUDD' "; 

from 1943 to 1948, the similar pattern is 'I;UCfDDD' ". 

Experiment Results . 

I 
\ire implement our algorithm on top of the DBhIiner cube [Z, 381 developed in our 

lab. The data we run are from a stock data sequence called S&P index obtained from 

the w w ~  site "http://www.isse.gmu.eclu:d0/ jllin/rnining/data.html", which is shown 

in Fig~ire'5.8, s axis is tlie time from Jan. 1. 1939 to DK. 31. 1992, y axis is the 

closing price at  the'time. 

In this section we first introduce the execution of the subscqutnce starch algorithm . . 
Algorithm -5.3.1 step by step using the real stock data ScPLP index which is time-related 

and then we discuss the performance of the algorithm. -. % 

L 

5.4.1 Execution Experiment 
i 

To get the similarity shape information, we process from the following four sub-steps 

according to Algorithm 5.3. l i  
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Figure 5.8: A stock data  sequence of S&P index from Jan.  1, 1940 to Dec. 31, 199'2, 
with 40 : 1 compression ratio, and lS.R'i% relative L2 erpor, with 6 = 0.01 after the 
reconstruction. 
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* - 
1. Building the cube. For this' sample database, the cube can have only one di-- 

mension, which is "time", and no other dimensions are needed'in this case. The 

.'dosing priee" of the stock can b e  a measure of the cube. The drill down, roll 
I ' 
up and other OLAP operations can be operated on the cube. Along the "time" 

dimension, one can roll up from "month" to  "quarter", or drill down from ''y~ar" 

-to "quarter" according to  the hierarchical knowledge for the '.timev dimension. , 

L 

2. Wavelet filter. We use the wavelet technique as a filter t o  filter out noisy data, . - 
and making the data smoother so that the later steps not have to  worry about 

the noisy data, such as sharp jumpsand valleys. The effect of the yaveLet filter 

on this SkP index data is shown in Figure 5.8. 

3 .  Encoding. The sequence data  are changed from the continuous space to  the 

rliscret,e space a t  this step, in other words, we design a shape language in which 

symbols are used to  represent the slope trends, changing the sequence data to a 

st ring of symbols' which reflect the overall trend of the sequence data. For this 

example, tl;e shape of the S k P  index stock data at  the '.yearT' leveland a t  the 

third resolution level of the shape hierarchy, is "uuuuuuuuuuuuuuuusSsduuU- 

LJuU". The length of each symbol implies two years, so use these 26 symbols to  
- 

represents the 52. years data from 1940 to  1991. The meaning of this string of 
, , 

symbols is "In the first 32 years, which is from 1940 to 1971, I S  all the u:uy slou, 

ups: there is a stablr down in 1972 and 197.3, a stable up in 1974 and 1975. and 

another stable down in 1976 and 1977; then followed by a slouy down in 1978 

and 1.979, tulo slow ups from 1980 to 1983, two sharp ups from 1984 to 1987, 

one slow up in 1988 and 1989, andjnal ly  a sharp u p  in 1990 and 1991.: Th~rs  

the overall shape character of the whole sequence is represented so intuitively 

- by such a short string of symbols. 

-1. Multi-level resolution search. At this stage, the similarity searching problem 

is changed to  the string searching problem. So the searching query can be a 

string of symbols representing shapes, which is very int,uitive for the users to 



, . 
Figure 5.9: T h e  test;esult-of sub~equence  search module 

Given a searching template query Q ,  such as "sss"(3 stable downs), and a 

tolerance threshold k =. 1, which means allow one s ~ m b o l  t o  b e  different 

in the  *final searchipg result. After t h e  similarity searching process. the  
t- 

answer we get is "From 1974 t o  1977 there is a match str ing 's~s '  "; 

Given another searching template query Q ="uuuuu"(five slow ups), with 

k = 0, t h e  answer is "From 1940 t o  1971 there is a h a t c h  string 'uuuuuuu- 

u u u u u u u u u ~  ", we use the  stitching algorithm here t o  stitch the  neighbored 

similai pat terns together. 

w%- 

5.4.2 Scalability Study 
i - 

T h e  subsequeqce search module is composed'of fouf steps: tpd&ng. the  cube, 
f. 9 

wavelet filter, encoding and  multi-level resolution search. Since building th: cube s tep  

is outside the  scope of our  discussiqn, we will not include this s tep in ourEomputation 

of the  execution t ime  here. Thus  the  executionxtime we compute will s tar t  from the  

wavelet filter step. We have described in Cbapter  4 tha t  the  total execution t ime  of 

the  wavelet filter s tep  is O(ICIN), where W is the  filter length, and N is the  sequence 
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length. In the encoding st,ep, we use the least square approach, and it is easy to  

see the execution time is O(N) ,  where IT is the sequence length. For the last step of 

multi-level resolu\ion scarch step, the major sub-steps i s~ the  EDP (Enhanced Dynamic 

Programming) s t .~ing matching algorithm, and it works in average timeO(l;iV) [26], - - 

where k is the mbtching threshold and N is the sequence length. Since A l  and A- are 

always very small that can be omitted, Thus we can say the execution time of the 

subsequence seardh module is of order O ( N ) .  where iZi is the length of the sequence. 
' 

The original slequence length of $&P.index is 648. To testify the implementation 

speed, we duplicate the data to  different lengths. We varies the length of the sequence 

from 600 to 30000. Figure ii.9 shows the execution result.   he execution time almost 

linearly increases bvith the increasing of the sequence length. 



Chapter 6 

I Whole Sequence Search Module ; 

s - & 

6.1 Problem stitemelit 

The whole, sequence search module is designed -to solve t,he problem of " ~ i r s ~ ( r \ l l ) -  
#' I 

Occurrence Whole Sequence hlatching", which is '.given a query time-series data Q 
I 

and a set of time-series data sequence with equal length as Q,  finding first (all) \of, the 
I * 

sequences that match Q a.pproxinmtely". 1 
I 

~ h r  main difference between the whole sequence5eaugh module and thq sub- 
/ 

sequence search module described in Chapter ri is the as&mption of the pr Llem. 9 * 
The assumption of the subsequence search module is that only one data seq ence, 1 
is given. and the search template of query Q is a shape composed of a mean/ngful 

1 ,*. 

string of symbols. Whereas, in the whole sequence search module, a bunch o(dat,a. 

sequences with the same length n are given, and the search query Q is a seque ce of 

data of length n. Thus they are for different domain problems. 
1 .  

I -  
An example of this domain problem is as fo l lo~s :  

1 

Example 6.1.1 Giuen the stock price of Migrosoft in the duration of 1981) to 996, 
*' i' 

and a sgt of stock prices of other companies in the same duration, find the comp nies ! 
whose stock price jluctustions resemble hficrosoft 's. 

i 

\ 
i 

In the following sections, the terminology used in this domain and the-algorithms 

we designed for this module will be introduced, 
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Figure 6.1: (a) .Time sequence .G' = (10,10,10,11,11,11.8,8.8,1~3,1:3,1:3). and (b)  

. - time sequence p' = (40,40,40,44,44,44,32,  :32,32,.52, .52,52). 

6 2  Terminology 
+ 

- Similarity definition. Before we seriously discuss what is similarity, let us 
B 

look at the following motivating examples: 
- I 

Example 6.2.1 Consider two t i ~ n i e ~ u e n c e s  v in Figure 6.1, d =  (10.10,lO. 
+ 

1 1 ,  1 1 , l l ,  8, &$, 13,13,1:3) and y'= (-10.40, 4O,.N, 4-1,44, :E, 32,132, Fi2, Fi2, ri2). s , 

-and p'cduid be the closing price of two s t o c k  A typical query is ..is @similar to  
3 

,??". Each value of sequence p' is four times as large as that  of ,i', so they cannot 
P- l5'e compared directly. If each value on d is scaled by 4 along the y axis, i x . ,  

every ~a i t l e -  ''ui7' is replaced by L . 4 ~ , " ,  the resulting sequence will be identical to  

p'. This operation is usually called scaling. 

- 
Example 6.2.2 ~ o k i d e r  two time sequences in Figure 6.2, = (7,6,9,8, 

4 >+@ 8, (, 9,9,& 8) and p'= (1:3,12, 15,14,14,13,15,15,14,14). Suppose they are two 

time sequences that  correspond t~o  the closing prices of two stocks. Is "p'similar 

to  2 ?'" The value of sequence Z is around 8, whereas the value of p' is around 
b '  

14, hut they go up and down in exactly the  same way. If evkry value in the 
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m 

' -T4 (4 
b'  

Figure 6.2: ( a )  Time sequence s'- = (7,6,9,S, 8 ,7 ,9 ,9 ,8 ,  S), and ( b )  time sequence 
$= (13,12,1.5,14,14,13, 1.5.15, 14,14). 

sequence 3' is added by 6, the resulting sequence will be identical to  $. This 

operatioh is usuaily called shifting. 

B e  The two sequences in each-of the above two examples are not close to each ot,her 

in an Ejlclideari sense, but a good similarity search model should allow scaling 

arid shifting one of the sequences to  match another sequence. Combinations of 
L scaling and shifting are shape-preserving transformations, known as similarZty 

t m n s f o r m a t i o n s  in the mathematical field of Transformational Geometry [:32, 

'- 161. a 

Oefinition 6.1 A sirnilnrity t ransformat ion Ta,b ouer  n - s tqu tnces  is  by mapping 

each element r ,  t o  u * s; + b. ( a ,  b )  E [R+ x R]. 
6 

We restrict a h >  0, which implies tha a sequence symlnetric .to .Y w.r.t. the 

x-axis is not considered similar to it. 

t % 

Definition 6.2 Let D be, a distance metr ic  betwten sequencks, we s a y  that  9 

is appror tha te ly  s imi lar  t o  )-I if therc exist s g m c  (a , 'b)  E [R+ x R } - a n d  c 2 0, 

such that D(S,  Ta ,a ( l - ) )  < c [l 
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Definition 6.3 An approximate similarity class is t t of sequences approx- 

imately similrlr to a given one. This set of sequence titutes an equivalence 

class called similarity class. Illre shall denote the similarity class of .Y b y  &*. 

In a transformation Ta,b, a is called the scaling factor and b is the shifting 
- facfor. If a is 1 ,  the transformation is a pure shift; if b is 0, it is a pure scale. 

The identity transformation is a pure shift; the product of two scales is also a 

scale. From these, we conclude that the set of all scalings of a given sequence is 

an equivalence class. The same is true of the set of shiftings. 

Definition 6.4 The Euclidean distance,betwcen two stqucnces S1 and S2 is: 

111 the similarity search ar&, the Euclidean distance is a general concept used 

as the similarity distance metric. We use the Euclidean distance as the clistan 

metric in this module. 
J 

6.3 Algorithms 

Our algorithm is focused on the processing of the time series that is a sequence of 

real numbers. each representing a value a t  a time point. T w o  approaches will be 

introduced in this section as follows. 

6.3.1 Brute-Force Approach 

.A brute-force approach is a naive approach for solving the whole sequence matching 

problem which is to  c ~ m p u t e  the Euclidean distance (or other kinds of2 distance) 

between 'any two time sequences, and call two sequences similar-if their distance is 

' less t,han a user-defined threshold. The algorithm is formalky illustrated as follows: 

Algorithm 6.3.1 11 Brute-Force d o l e  % sequence simdarity search algorithm. - 4  

* - * &  1 
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Y n p u t :  (i)  A query sequence Q, and a set of n sequences Si with the same 1ength.l 

as Q. and ( i i )  distance  threshold.^. 

Output: The set of sequences which is approximately similar to  the query sequence ' 

v * 
Q. 
Met hod: 

Using C-like syntax, the steps can be written as follows. 

// Assume ,Y is the similarity class. 

X = N U L L ;  // initialize X. 
d 

for ( i  = 0; i < n: i + +) 

{ .* 

//compute the Euclidcan distance o f Q  and S,. 
2 112 

DE(QJ'A = (L,< dQ[jI - Wl) 
/ / I [  DE j c thtn Q and S, are similar. 

i f  (DE(Q, .>',) l c )  
y S = X + ,C,: / y  put St into the similarity class. 

1 
5 

//.Y contains d l  t h  sfquences that are apyro.rimat~ly similar to qutry Q .  

. .  
Explanation of Algorithm k3.1; 

1. In this algorithm, every equerice S, is rompdred with the quer? sequence Q 
t 

through computing the Euclidean distance. If the distance of Q and S, is less 

than the threshold c, then put S', into .I' set, which is the similarity class set. 

2 .  .The time sequences are usually very long, so this algorithm can be time con- 

suming if without some preprocessing. Another problem with this algorithm 
8 

is that it cannot solve the scaling and shifting problems as in Example 6.2.1 . , 

and 6.2.2, which are not close to each other if using this BruteTForce algorithm. 

A good algorithm should be designed to allow scaling and shifting one of the 
5 3% 

sequences to match another sequerke. 
R 
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3. This algorithm doesn't have any preprocessing of the noisy data. 

6.3.2 A Feasible Approach 

To address the disadvantages of the Brute-Force algorithm, we apply some transfor- 

mations before computing the Euclidean distance. a 

In this section we dernonstrate how our approach can be used to  eliminate noise 

or short-term fluctuations and shift or scale t he  J a t a  before computing Eucliclean 

distance. 
? - 

- Algorithm 6.3.2 A feasible whole sequence similarit3 search algorithm. 

Input: ( i )  A query sequence Q, and a set of N sequences with the same length as Q, 

an$ ( i i )  a. distance threshold c > 0. 

Output: The s e t  of sequences which is approximately similar t o  the query sequejice 

Method: 

1. Normalization: transform the query sequence and %he set of series into the 

normal forms. This transformation is a similarity transformation as. defined in 

Definition 6.1. 

Using C-like syntax. this step can be written a~~fol lows.  

for(int i = 0: i < N; i + +)//A' is the number of sequences 

{ 
ff 

h e a n ( S [ i ] )  = Conzputei l lean(S[i]) ;  // compute the average of S,. 

s tc l (S[ i])  = C o m p z ~ t e S t d ( S [ i ] ) ;  // compute the standard dc~yiation ,of S,. 

for (int j = 0; j < l e n ( S [ i ] ) ;  j + +) //len(S[i]) is the length o fS[d .  

{ 
lVornzS[i][j]  = ( S [ i ] [ j ]  - m e a n ( S [ i ] ) ) / s t d ( S [ i ] ) :  //computeAthe 

/normnli,-ation for each value on the sequence S; 
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2. Wavelet transform: transform each7sequence to a coarser versionkf the original 
,- . - \ 

version. \ ' \ 
\ 

(i) Transform the normalized data sequences from the initial space P;,\,, to a 

coarser space V,,,, which is the middle space between the initial space gnd 

the coarsest space l/;,,". \ 

'\ 

(ii) Only keep the coefficients of the 1/,,,, space. delete the coefficients of the '- 
"mother wavelet" spaces. 

3. Comfmte the Euclidean distance of the coarser version. 
\ 

Cs'ing C-like syntax, this step can be written as follows. 

%// ;ls.s-uhe CS, is thc coeficients of sequrncc S, at 1,>,,, space. 

/ / A s s u m e  CQ is t h ~  coeflcients of the qucry sequence Q at I.:,,,,,, space. 

// len,,,, is the length-of sequences at space I;,,,, und lcn,,,, is the 

//original length of sequences at the initial space I,;,,,. 

.Y=IVULL;  / / S i s t h ~ s i m i l a r i t y c l a s s j o r Q ~  \ 

int s u m  = 0; Q 

for(int rn = 8; 772 < len,,,,: r n  + +) 

s u m  =sun ,  + (cQ[,] - C s , [ n ~ ] ) 2 ;  

D,v = (sum)'' '; //compute the Euclidean distance. 

i f  (Dw <= c )  //if Dcv < e then Q and 5'; are similar 

X = S + S,; // put 5'; into the similarity class. 

1 

Explanation of Algorithm 6.3.2. 
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1. T6 account -for scaling and shifting, w e  normalize the sequence .values of each 

sequence and form a new set of normalized sequences at  step 1. Let's lopk ak 

some definitions here 1161: 
* 

P 
Definition 64k.4n .n-sequence - .  -Y is a sequence { x l , .  - - , x n )  of real numbers. 

- - m ' % , . ,  

Each n-sequence .Y has an average m e a n ( X )  %nd a standard dtoiation s td (x ) :  

mean(.Y) = ( l / n )  x x,; 
1<i<n 

Definition 6.6 An n-squence .Y is normal if n?ean(.Y) = 0 and std(.Y) '= I 

Given ang. data sequ$&e S, v(.Y) denotes the normal form of S*, where S* 

is-?he Similarity class of X. Since a similarity class has exactly one normal 

form [16], v ( x )  is unique for a similarity class. If rnean(.X7) is the average of 
"= ..# ;.Y, a n d a t d ( l )  is the deviation of .Y, then S = 6td(.Y) * v ( S )  + rnean(.Y). 

Therefore, we can compute v( ,Y)  from S by the inverse transformation: 

d 'r 
L- 

% 

Thus, the normalization procedure is the reverse procedure of the similarity 

transformation according to Definition 6.1; 

2. At step 2, t,he bandwidth can be determined before doing the wavelet transfers . 

mation given a finite length of sequence, referred to  Chapter 4. The bandwidth 

A j  is Llog2(n - I)], where n is the length of the sequence. Thus we define the 

middle level to be jmid = [Aj/2]. 
@ 

We assume the original sequence is at  t.he 1.5,,, space, Figure 6.3 shows the 

original dat'a sequence at space decomposed into subspaces till the y,,d 
space. and the relationship of C;,,, with the subspaces is : b;,,, = ym,d tE 

y l m , d  S y m r d + l  CF . 6 Ct;mar - 1 ' lleJ "9 
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v.  
J min 

Figure 6.13: From the space transforms to the lSm,, space 

\Ve have discussed in  Chapter 4 that the coefficients in space V is the coarser 

part and the coefficients in space 1.F is the detail part of the origina.1 data 

secpenc'e. The lower the level of space V, the coarser of the original sequence. 

The coarsest space L,;,r,,, space has only one coefficient, which is the average 

value of the original sequence. Since the middle level bimld is not too coarse and 

not too fine, we select to compute distance of the coefficients at the C:,,, space 

level. We do not care about the detail part at the 1Y spaces, since they can 

be treated as noisy data. What we are interested in is the overall trend of the 

sequences, and t,he coefficients at Ymld are just what we need to represent the 

overall trend of the sequences. 

The lower the level of space V ,  the fewer the number of coefficients, thus the 

*umber of coefficients at V,,,, level will be n/2Jm~d, where n is the original length 

of each sequence. Thus the number of coefficients to be computed is decreased 

sharply at the middle level. 
iw 

f 
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After getting the  coefficients of each sequence a t  space VJmrd, we compute the 

Euclidean distance of these sequences according to  equation ( 6.1) at step 3. If 

the Euclidean distance between t,he, query sequence Q and Si is less than the 

threshold 6 ,  then put 5'; into the similarity class set ,Y. 

Any proper distance metric D for hr sequences can be used instead of DE. Since 

our data is discrete data, and the Euclidean distance is a standard distance 

metric in discrete data processing, we chose to  use it here. 

Actually, if we skip step 2, only do step 1 and step :3, the similarity search 

can also be iniplemented. In other words, after the norrnalization of the data 
f 

sequences a t  step 1, the Euclidean distances of these normalized'sequences can 

be computed. If the Euclidean distance is less than a user-defined threshold, 

t,hen they are sa-id t , o  be s i m F .  This ~uc l idean  distance is called similarity 

d i s f a n c ~  which will he introduced later. This method works fine for smooth 

sequences which have no noisy data. However, in real life. i f i s  ve~:y common to  

have short intervals of sharp jumps and valleys in the time-related Tat&and the 

Euclidean distance metric is very 3ensitiy to'the noisy data, it is very necessary. 

to  add step 2 to  solve the noisy data problem. Let us look at  the following 

example;. 

Example 6.3.1 In Figure 6.4(a),  the ot~erall trend of two seyuencfs ' ser ies l  

and s e r i e s 2  are similar from the human eye. Actually every ualue in s e r i e s 2  is 

thrvc times o f ser i t s l  and added by two. Tbus after the similarity traniformation 

also called the normalixt ion of step 1 ,  they are overlapped as can be sten in 

Figure 6.4(b). This is the no noisy data occasion. T h f  Euclidcan distance in 

this erample is zero. 

Example 6.9.2 In Figure 6.5(a). the values of s e r i e s 1  and s e r i e s 2  are al- 

most the same as Figure 6,4(a) except that thcre is one noisy data on s e r i e s 2 .  

The Euclzdean distance rnetric is very sensitive to the noisy data, only one 

short i n t e r ~ ~ a l  sharp jump can make the two sequences not similar in the Eu- , 

clidean sense. After the norma1i:ation step these two sequences are shown in 
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Figure 6.4: ( a )  The original sequences of seriesl end  series2, and ( b )  after normaliza- 
tion D e  = 0. 

Figure 6.5(b). I t  can be clearly seen that  the  n o i s y  data still  therc a f ter  the  

norrnczl ixt ion,  a n d  the  Euclidean distance a f t e r  the n o r m a 1 i x t i o n : f i  9.147'6, if  
e 

we set thrcshold e t o  3, t h e n  these  t w o  sequences i s  dissinzilar if triihdut s t cp  2. 

B u t ,  after we add  s t ep  2 i n ,  the  noise are decreased greatly, a n d  thc Euclidean 

distance 4 c r  thc  s t ep  9, becomcs 2.398. It i s  lcss t h a n  a l e  thrcshold 3, a n d  we 
I 

get the  answer  that  series1 a n d  series:! are s in t i la f .  T h i s  a n s w t r  is  juat &hat 

we want.  

5. The threshold c can be varied according to the length of t,he data sequences. 

The longer of the sequences, the bigger value of the threshold e should be. 7 
* I 

6.3.3 Validity and Accuracy of Algorithm 6.3.2 
I 

In the similarity search area, the analysis of validity and accuracy of the algorithm 
% 6 I 

is very important. Otherwise, people cannot evaluate how good the algorithm is. 
I 

In this section we will give some descriptions. about the validity and accuracy of I 
Algorithm 6.3.2. I 
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- .  
Figyre 6.5: ( a )  The original sequences of series1 and series2, and (b )  after norrnaliza- 
tion ~ e =  9.1476, aft.er wavelet Dw=2.398. 

. . 

\\'e have said before that after step 1 of normalization of the-sequences, we can 

skip step 2 06-wavelet transform, and directly do step 3 of computing the Euclidean 

distance. We define the similarity distance is [16]: " b  

. Ds(-Y,  Y )  = DE(v( .Y) ,  u ( Y ) ) ,  (6.3)  ' 
* 

where X and Y are two dat,a sequences. u { S )  is the normalization of sequence S. Se- 

quences with different scales and shifts cannot be compared without the normalization 

proeedure; Other algorithms [16, 21 are dewloped on the basis of the normalization 

step, to  make the algorithm more efficient,. Thus  the sinlilarity distance as described 

in equation (6.3) is used as a criterion to  analysis the validity and accuracy of the 

similarity algorithms. 

(i) Validity g 

To establish the validity of this algorithm, we need to  show that 

where Drv is the Euclidean distance that we get from algorithm 6.:3.2, and C(X)  

is the coefficients of the sequence X at Ymtd space. 
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* l 1  \ + I  il I 
I I. I 
1 As we kqow, is either the  average value cd two neighbor vdbes  as in Haar , 

I I 

wavelets; or the  sum of $ome neighbor values 4s in other wavelet tri+risforrnations 1 \ : 

like Coiflets, in khieh e+ch value is given diffirent weights and thv total of the  I 
. , 

I I 
* - L 

weigks  is 1 a t  efch diffekent scales. _ ~ e  , I 

To prove equatiob (6.4, y e  just need to  prove h a t  Dw < Ds. To b a k e  things 
i \  

*easy, we use the  k a a r  -wakelet transform in &hick V space coefficiants are the  

average value of t k o  neigAbor values, and CV- s iace  coefficients are the  half of ' 

the  difference of tiyo neighbor values. If we can prove Haar wavelets, we can 
I 

prove other kinds o wavelets transforms. f I b 

For the normalizedisequences- ,Y ( a O ,  a , ,  . - - , a,) and Y (4, a;, . - - , ah 1. Ds = 
n / 2  'J2k+u;k+l - ~ & + ~ : k + l  2 112, ?2k+"2k+l ' 

I ' I 2  And DLv '=,(xr=o( - ) , 2 ) )  > 2 

and are a value of C(S) and C(I') rqspectively. G 

Since the coefficients 4 1V space a r e  a s s u m ~ d  to  be zer6 in our algorit hrn. which 

) ( a 2 * - a 2 k t l  + 2 = 0, We have: \ 

2 2 
Z 

we have: 
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Figure 6.6: ( a )  Series1 and series before the  normalization, and ( b )  series3 and series4 
before the  normalization. \ 

0 
It immediately follows tha t  rt.(C,'(-Y), C'(Y))  5 c whenever Ds(.Y. E') 5 6 

\ ( i i )  Accuracy 

To establish ac&racy, we wa know how likely it is tha t  D s ( X ,  Y )  5 6 

provided tha t  Drv(C(X). T h e  cases when Drv(C(.V). C'(1'))-5 6 but 

D s ( S ,  Y f  2 6 represent and we want t o  minimize their occurrences. 

Therefore, we would l i k e e e  ratio (C(.Y), C(Y))/.Ds(,Y, 1') t o  be  close t o  1. 

T h e  actual ratio strongly the  nature of c l a h  and the  selectioni of 

the  wavelet basis. In our future worb. we will d o  further analysis about this t o  . 
a \ 

make our algorithm provide good ac&iracy. 
C 

6.4 'Experiment Results 

-+ a .p%. 
Like the  subsequence' search algorithm 5.3.1, Alg rithm'6.3.2 is also implemented on 

top  of the  DBMiner cube 1221 developed in our laQl 
\ 
\ 
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Figure 6.7: ( a )  Series1 and series2 a.fter the  normalization, and ( b )  series3 and series4 
after the  normalization. 

riments or) synthetic sequences for this a lgor i th~n for the  purpose of 
* 

I 

v h i s  section we first introduce the  execution of the  whole sequence search 

Algorithm 6.3.2 s tep  by step using'a  synthetic d a t a  which is time-related and then 

we discuss the  performance of the  algorithm. 

i 

6.4.1 Execution Experiment 

To show the  validity and accuracy of ~ l ~ o r i t h n ;  6.:3.2, 1e.t us look a t  the  following 

experiment resalt. 
/ 

i: Example 6.4.1 In R g u r e  6.6(a),  feriesl = (10.10. LO. 11,11.11, 
" - >  - 

\ 8,8,8,1:3,13,1:3)'and series2 = (32,32,32.R.5,39,:37,26,26,~i1 41,41,41), almost every 

value of series2 is three times and plus two of the  series1,~except tha t  only two values 
+ 

are  different. T h e  trends of them looks quite s imilarin-the human eye. In (b), series3 
0 

= ( l o ,  10,40,11,11, 11 ,8 ,8 ,8 ,  1:3,1:3,13) and series4 = (32; 10,:32,10,:35,35,10,26,26, 

41, 10ILtl) ,  t he  two sequences are  quite  different. and they cannot b e  considered similar 

,in the  human eye. 
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2 

If we use the Brute-Force Algorithm 6.3.1, the Euclidean distance of seriesl and 

seriesl in (a )  is 81.49, and the Euclidean distance of series3 anh series4 in7(b) is 65.95. 

Thus in the Euclidean sense, seriesl and series2 are dissimilar, although they should 
s 

be considered similar in the human eye. So the Brute-Force algorithm is not applicable 

for this case. Thus to  account for the scaling and ihifting, we should normalize the 

sequences. 
P -. 

The four series are normalized in Figure 6.7. (a )  is the normalizahn of seriesl 

and series2, ( h )  is the norn~alization of series3 and seGes4. The similarity d i d a w e  

after t,he normalization are Ds = 0.38 and Ds = 4.09 for ( a )  and (b)  respectively. 

It shows that the similarity distance after the normalization is decreased sharply for 
- 

the similar sequences: seriesl and series2 in this case, whereas, for series3 and series3 
i _ 

.L Ad =k the similarity distance is still very high. If we'set the threshold c to 0.2, series1 and 

series2 will still be considered dissimilar under this threshold. . * 

$he purpose of wavelet transform procedure is to keep the main features of the 

seq;lcnces while smoothing them. It has shown that after the wavelet transform, the 

Euclidean distance of ( a )  in Figure 6.7 becomes much smaller which is 0.168, and the 

Euclidean distance of ( h )  in Figure 6.7 still large which is :3.188. ljnder the threshold 
5 

+ c of 0.2. we get the conclusion that series1 and series',, are similar, whereas series3 and 

series.1 are dissimilar. 

From here, we can see the validity of this algorithm: Dbv is always less than Ds. 

It also shows the good accuracy of this algorithm, for the clissimilar sequences, like 

series3 and series-l, the search answer is,"dissimilar"; For the similar sequences, like 

seriesl and series2, the search answer is "similar". 

6.4.2 ~cdabili?y Study 

The whole sequence search module is to  compare a bunch of sequences with a 

query sequence and the sequences are with the &me length. 
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Figure 6.8: (1) T h e  test result of whole sequence search module 
.n. 

Figure 6.9: (-2) T h e  test result of whole sequence search module 
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Like thk-subsequence sea rch  module, the whole sequence search module is corn- * 
posed of three steps: normalization, wavelet transforp and computation of the Eu- . - , . Y 

clidean distance. Thus th; execution time should account for. these three step: As- - / . 
sume 11' is the number of sequences participated in the similarity search, and they 

$ 

have "the same length AT. The execution time of normalization step: is O( l<iV). At 
. * 

the wavelet transform step. the execution t ime is O(rnZ<:2'), where n2 is the filter 

sciibed in Chapter 4. At the computation, of the ucliclean diskance step, 

the executhn- time is O(Z<.Y). Thus the total exec&jon time of the who1 
w - y  

search module can he of order O(I<.V). a 

-# 1 .* - 
Each synthetic sequence .Y is a random sequence produced randomly&sebthe 

, 
r a n d ( )  function. - \\.e first vary th6 leneth c& the sequences from 100 to !300 while wt.* keep the 

\ 

,-- > - .  
nurnher of sequences fixed to 1000. The performance i.esult'is shown in Figurn 6.8. 

In the next e s p r h e n t ,  we kept the seyuenc"kength fixed to 1% while we vary the 

number of sequences from2 to 1;000. The result we get is denlonstratecl in Figure 6:9. 

\\k can see that i f  the *Pquence length is fixed. ,the execution time,is linearly 
& "  

increased with the growth of the nurnber of. sequences. Si~nilarly, when the nurnber 

of scquences is fixed, the executim time is linearly increased with the growth of the 
2, , 

sequence length. \l~'e~have tested that our algorithm even can work in very large" 
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v 
r d  

This chapter sum&ariz& the reqearch and impl&nentation work o o h i s  t k i s .  and 
8- .4 1% 

discuss s the major contributions of our work compared to  other research work in this e g % 

!b area: /-- 

7.1 Summary 

'This thesis has cliscussed the algorithms and implementations of similarity analysis in - 
time-related datatmses. \Vc ha\;c proposed two modules: suhscquence search niotlulc 

and whole sequence search module. The wavelet techniqlics 'have beer1 analyzed and 

used in these two modules. 

Firstly, the background knowledge of wavelet a,nalysis has been tlescribed, and the * ' 

reason why we,use wavelet technique instead of b'ourier Transform is explained. The , . 
"cornpact support'l feature of wavelet determines that it has hctter perforrnance than 

F.- w 

Fourier analysis whenever a s i g 1 ~ 1  ~s~clorrlinated by transiei~t behavior or ciiscontiri~i- 

' ities. It is also iwified that wai-elet technique works fine for our data in time-rqlated 
9 B 

databases. The implementation of wavelet transform in our systcrn is also int rotlticed, 

in which we use the'fast pyramid algorithm to decompose the signal into c o m ~ o n m t  

wavelets. o 
\ 

1 

Secondly. t h e  algorithm and implementation of the subs&tluence searrhoiodule is 

I 8 
in&oductd. The search template is a meaningful string of symbols like tokens that : 



1wcr1 testified t l ~ ~ t "  i t  not onl? accounts for the scaling, sliifting and rioisy data, but 

alBo provcls t.o t x  valifl ajicl has good accuracy. 

@ .. -- . r 
%. - : i ~lcseascd I)>- Gcreasing both the pumber and the length -of sequences. 

X . * 

I f 

,t. 8 .  

. - 7 .2  Discussion 
O.9 g p  

- To conclude,the .thesis. we discuss the major contributions of our work . - bornpared to  
+ 

other similarity search systems, and summarize the research work that has been'done ' 

so far as we11 as the future research areas on this method. 

* a 

1. In the similarity-based queries in subsequence search area, it %as the following 

a gignificant features: ' 

4 -e 
. \  C ~ 7 

We design a set of shape tokens, which can be represented as similarity 
i 

language. Thc users can use these tokens as a way-to express their search 

queries. It is a simple and intuitive way for user to  un"derstand. Interesting 

thing is that these tokens can muffle noise data in a certain way. 

. The shape tokens are designed t s  represent multi-level resolutions so that - 

the users can express their queries in multi-levels. 

e' An iateractively querying and answering usfer interface is designed and 

implemented. 
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2. Based on our knowle&y. it is the  first t ime that  the  wavelet- technique is u ~ e d  
I 

in the  siniilarity analysis of large da ta  sets. b'e have given sufficient analysis of 

the  wavelet features and the  algorithms t o  apply these features in our similarity 
I search modules. Its superability compared t o  the'Fourier Transform has been 

verified. 

:3. In both of the  subsequence and whole sequence search niotlulcs. the  scaling and 

shifting problems have been accountctl for. 

4. Because of the  adoption of the  wavelet technique, hot h rnodules arewohr~st  in 

the  prcscnce of noise and short-term f luc t~~at ions .  

* .  7.3 Future Work 
* ' t 

The niajor liriiitation of this rrictliotl is that its applic-atiori tlor~iairi is l i r ~ i i t c d  t o  the  onc . 
a f .  y t~idnmsio!ia~ rt.pl11ar time-series da ta  in which ttic tlat,a a rc  in ~~riiforrii titile iriter\.als,., 

-0 ' $iprl later the rnethotl should be t:xtendetl t o  tlir irregular tirnc-series t i a h .  
iC I 

3 k-  For the rioise term. it is difficult t o  give a ql~antified defi~iition. I t  is liigtily tlc- 

pcritled or1 the features of tlata. \l'e will (lo furt1icr enipirical analysis on this in our 1 

f l i t  rirc work. 
@ Xriothcr problem is that  ivc only test 'our rnct'hotl on one kind of stock dat.a. 

arid later w e  will rise more stock data  or da ta  i l l  other dornairis t o  further rcfiric our 

algorit tirris t o  fit any kinds of t ime-scries data. 

Furt herniore, the  result of the  similarity search can 1)c further used for rrii~iirig 

other r~i lcs ,  such as association.   re diction, ahd classification. For example. accordirig 

t o  the  shape pattern rcsult. we may find that a sharp jurnp of the  stock rnarkct always 
r 7 

,.associatt~s with the  clectiori of a neiv president. I his is an association rule. Other. 

rules can also he found. This will he a good research direct ion. and ~ v i l l  tw ristd i r i  

clc~ision support of the  industry area. 
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