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Abstract 

The proportionality of heat current, J, to temperature gradient, V T ,  is an accepted 

tenet of thermal physics, Fourier's law, and can be written as J = -mVT, where K 

represents the thermal conductivity. This behaviour has been shown empirically, but is 

difficult to derive from first principles. In the past, the thermal conductivity has been 

calculated for many different dynamical models to help shed light on the foundations 

of Fourier's law. Systems that have a finite K that is also an intensive property of the 

lattice are considered to have normal thermal conductivity. Surprisingly, this property 

has been demonstrated for only two dynamical systems. One is the well known Toda 

model (a lattice of exponentially bound particles) the other is the ding-a-ling model 

(a lattice of alternately free and harmonically bound particles) [G. Casati, J.  Ford, F. 

Vivaldi, and W. M. Visscher, Physical Review Letters 52, 1861 (1984)l. 

The initial aim of the research was to measure dynamic quantities of the ding-a- 

ling model and to  look for correlations with a possible transition to normal thermal 

conductivity. This work was delayed initially when we were unable to confirm Casati, 

Ford, Vivaldi, and Visscher's (CFVV) assertion that the thermal conductivity of the 

ding-a-ling model was independent of chain length. We have shown that what CFVV 

quote as an asymptotic value of K is only a transitory plateau, and K actually increases 

for longer chains. Ultimately, however, a saturation value can be established and 

CFVV's conclusion that the ding-a-ling model displays normal thermal conductivity 

is correct. In fact, the model appears to possess normal thermal conductivity for all 

parameter values explored, though it does demonstrate a transition in the length of 

chain needed to observe this Fourier law behaviour. We were able to demonstrate that 

this tmnsition in scale coincides with transitions in a number of dynamical measures of 



the system, such as, the collision rate, the energy density, and the Lyapunov exponent 

A. The change in scaling law seen for X is known to correspond to  a transition to  total 

chaos, where all stable regions of phase space have vanished. To examine this further, 

we have explored the Poincark sections for the two particle periodic ding-a-ling lattice, 

including the existence and stability of fixed points. 

The numerical tractability of the system enabled large amounts of data to be 

calculated to ensure the robustness of the results and to attain very good statistics. We 

were able to establish a N - i  length dependence of K as it approached its asymptotic 

value. As well, we quantified the slight curvature observed in the temperature profile 

due to the temperature dependence of m. Also the simplicity of the model enabled 

us to get good analytic estimates of dynamical quantities (such as collision rate and 

energy density), which were confirmed numerically. 



Contents 

... Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii 
... 

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  viil 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

2 The Ding-a-ling Model . . . . . . . . . . . . . . . . . . . . . . . . . .  8 

2.1 Evolution of the model . . . . . . . . . . . . . . . . . . . . . .  10 

3 Calculation of the thermal conductivity . . . . . . . . . . . . . . . . .  14 

3.1 Method of Calculation . . . . . . . . . . . . . . . . . . . . . .  14 

3.2 Details of Convergence . . . . . . . . . . . . . . . . . . . . . .  15 

3.3 Calculation of VT . . . . . . . . . . . . . . . . . . . . . . . .  19 

3.4 Calculation of J . . . . . . . . . . . . . . . . . . . . . . . . .  25 

3.5 Comparison with CFVV . . . . . . . . . . . . . . . . . . . . .  25 

3.6 Temperature dependence of k . . . . . . . . . . . . . . . . . .  27 

3.7 Effect of shrinking AT . . . . . . . . . . . . . . . . . . . . . .  30 

3.8 Long-Chain Limit . . . . . . . . . . . . . . . . . . . . . . . . .  32 

. . . . . . . . . . . . . . . . . . . . . . . . .  3.9 Stiff-Spring Limit 34 

4 Analysis of the Dynamics . . . . . . . . . . . . . . . . . . . . . . . . .  42 

4.1 Particle Paths . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 

4.2 Path Length of Soliton-like Pulses . . . . . . . . . . . . . . . .  43 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.3 Phase Space 48 

. . . . . . . . . . . . . . . . . . . . . . . . . .  4.4 Energy Density 57 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  4.5 Collision Rate 59 

4.6 Lyapunov Exponents . . . . . . . . . . . . . . . . . . . . . . .  60 



. . . . . . . . . . . . . . . . . . . .  4.6.1 Calculation of X 61 

. . . . . . . . . . . . . .  4.6.2 Results for the X calculation 65 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 Alternative Models 71 

. . . . . . . . . . .  5.1 The Linear Plus Complex Oscillator Model 72 

. . . . . . . . . . . . . . . . . . . . . . .  5.1.1 Phase Space 73 

5.1.2 Establishing a stable thermal gradient . . . . . . . .  78 

. . . . . . . . . . . . . . . . . . . . . .  5.2 Linearized Ding-a-ling 83 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 Conclusion 87 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Bibliography 89 



List of Tables 

3.1 Comparison of our values for k ,  VT, (J) with N = 5,9 for w = 10 

. . . . . . . . . . . . . . .  ( E  = 0.015) and those presented by CFVV 25 

4.1 Comparison of our values for X with N = 21 and w = 0.3 and 0.4. These 

values are the averages of 20 runs and the errors represent the standard 

deviation of the sample. (a) Uses the technique to generate initial 

conditions for long lattices, perturbation of 1 x 1 x lo4 transient 

collisions per particle, modulus used was d m .  (b) As (a) except 

uses the technique to generate initial conditions for short lattices. (c) 

As (a) except perturbation of 5 x  lo-'. (d) As (a) except perturbation 

of 2 x (e) As (a)  except 1 x lo5  transient collisions per particle. ( f )  

As (a) except 1 x lo3 transient collisions per particle. (g) As (a) except 

different set of 20 initial conditions. (h) As (g) but modulus used was 

@. (i) As (g) but modulus used was a . . . . . . . . . . . . . . .  66 

4.2 Intersection of power-law fits of the Lyapunov exponent for short lattices. 68 

vii 



List of Figures 

2.1 The collision function as a function of time. The function is evaluated at 

each s; until the sign of s; changes indicating that the root is bounded. 11 

2.2 The position distribution for weak and stiff springs (a) w = .3 ( E  = 16.7)  

(b) w = 10 ( E  = .015). . . . . . . . . . . . . . . . . . . . . . . . . . .  12 

2.3 The shift in the average position of the particles relative to their lattice 

. . . . . . . . . . . . . . . . . . . .  sites for various chain lengths N. 13 

3.1 The convergence of T3 the temperature of particle 3 (the second free 

particle on the left ), the flux J, the temperature gradient VT, and 

the thermal conductivity K. This data was calculated for N = 11 and 

E = 0.09375 with the standard deviation a, in the fluctuations of K 

such that a, = 1% at convergence. The dashed lines represent the 

measured a in all quantities. . . . . . . . . . . . . . . . . . . . . . . .  
3.2 The system convergence time for various numbers of particles N with 

w = . 5 ( ~ = 6 ) .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 

3.3 The system convergence time for E with N = 101. . . . . . . . . . .  20 

3.4 The temperature profile for various energy densities E .  . . . . . . . . .  21 

3.5 The difference between the temperature of the reservoir and the tem- 

perature evaluated from the linear fit at the position of the reservoir. 

The solid line corresponds to data evaluated for the left reservoir, while 

the dashed line corresponds to  the right. . . . . . . . . . . . . . . . .  22 

3.6 The normalized difference between the effective temperature gradient 

and the applied temperature gradient. . . . . . . . . . . . . . . . . .  23 

... 
Vll l  



3.7 The temperature gradient for various numbers of particles N. . . . . 24 

3.8 The flux for various numbers of particles N. . . . . . . . . . . . . . . 26 

3.9 Comparison of thermal conductivity K with the CFVV results for w = 1 

(E = 1.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

3.10 Thermal conductivity K for w = 1 (E = 1.5) with very large lattices. . 28 

3.11 The thermal conductivity for various numbers of particles N. . . . . 29 

3.12 Temperature profile with w = 2. The solid line is a linear fit through 

the data; the dashed line is a fit using Eq. (3.8) with /3 the only variable 

parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

3.13 The value of K as a function of T, for w = 2 and chain lengths of 9 and 

31 particles with AT = .2. The dashed line is a linear fit through the 

points between 1.5 and 2.5 for N = 9. . . . . . . . . . . . . . . . . . . 31 

3.14 K for various AT with central temperature of 2, spring constant w = 2 

(E  = .375) and chain of N = 31 particles. . . . . . . . . . . . . . . . . 32 

3.15 Resistivity for long chains and large E. The solid line is a least-squares 

fit for^-$<0.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

3.16 Resistivity for long chains and medium E. Only every second data point 

is displayed for E > 4.5 to  make the graph more readable. The solid 

line is a least-squares fit for N - 3  < 0.12. . . . . . . . . . . . . . . . . 36 

3.17 Resistivity for long chains and small E. The solid line is a least-squares 

fit for^-$<0.20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

3.18 Resistivity for long chains and very small e. The solid line is a least- 

squares fit for N - +  < 0.32. . . . . . . . . . . . . . . . . . . . . . . . . 38 

3.19 Resistivity for infinite chains (the intercept in Fig. 3.16 to 3.18). The 

solid line is the analytic result from Eq. (3.21) . . . . . . . . . . . . . 39 

3.20 The square of the normalized slope in Eq. (3.10). The open circles 

correspond to a positive slope while the filled circles correspond to  a 

negative slope. The dashed line is used to guide the eye only. . . . . 39 



Lattice dynamics for a 7 particle chain with different w: (a)w = 0.5 

( E  = 6.0) (b)w = 2 (E = .375) (c)w = 5 (E = .06). The solid lines 

represent the paths of the free particles while the dashed lines represent 

the bound particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

Distribution of path lengths for soliton-like pulses. The paths are mea- 

sured relative to the position of the first oscillator. The area under the 

curves has been normalized so the total probability is 1. . . . . . . . . 49 

Distribution of path lengths for soliton-like pulses. The paths are mea- 

sured relative to the position of the first oscillator. The y-axis repre- 

sents the number of pulses within a particular bin. . . . . . . . . . . . 50 

Mean free path length for soliton-like pulses. . . . . . . . . . . . . . . 51 

Poincark section for the two particle periodic ring with (a)w = 0 . 2 ( ~  = 37.5) 

(b)w = 7.0(& = 0.0306) (c)w = 9 . 9 ( ~  = 0.153) and an energy of 1 per 

particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 

Two particles on a periodic ring, the solid circle represents a bound 

particle while the empty circle represents a free particle. . . . . . . . 53 

Relative unoccupied area in energetically accessible phase space. . . . 54 

Magnitude of eigenvalues vs. the spring constant. . . . . . . . . . . . 57 

The ratio of the true energy density to  E for a 99 particle reservoir system. 58 

4.10 Reduced collision rate per particle for a 98 particle periodic ring. . . . 60 

4.11 Lyapunov exponent for 98 particle lattice with E = 9.375 and 16.667 as 

a function of system time to show the convergence. . . . . . . . . . . 63 

4.12 Lyapunov exponent for 98-particle lattice, with X calculated both per 

unit time and per collision. For comparison, ji2 is replotted. . . . . . 69 

4.13 Lyapunov exponent, calculated per collision, for small lattices. . . . 70 

5.1 Phase space of the LPCO system showing the reduction of chaos in the 

weak-spring limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 



5.2 Phase space of the LPCO system showing that total chaos is achieved 

in the stiff-spring limit but (like the ding-a-ling system) the model has 

small periodic regions that appear at  larger UJ .  These periodic regions 

appear in (b) for vf = 1 and 4 = -T ,  0 . . . . . . . . . . . . . . . . .  75 

5.3 The energy and momentum distributions for the particles in the lattice. 

The reservoirs are the same as in the ding-a-ling model ( J v J  exp(v2/2T))/T. 79 

5.4 The energy and momentum distributions for the particles in the lattice. 

The reservoirs are Gaussian exp(v2/2T)/ JxT/2. . . . . . . . . . . . .  82 

5.5 Comparison of the displacement for a harmonic oscillator and for the 

piece-wise linear potential used in the LD model. . . . . . . . . . . .  84 

5.6 The collision function as a function of time. The dashed lines represent 

. . . . . . . . . . . .  the maximum extension of the bound particle. 85 



Chapter 1 

Introduction 

Although Fourier's law of heat conduction (heat current being proportional t o  the 

thermal gradient) is very commonly observed, it is far from clear what properties 

of the dynamical system are responsible for the observed behaviour. "Neither phe- 

nomenological nor fundamental transport theory can predict whether or not a given 

classical many-body Hamiltonian system yields an energy transport governed by the 

Fourier heat law." So reads the first sentence of the paper by Casati, Ford, Vivaldi, 

and Visscher [CFVV84](CFVV), in which they introduced the so-called ding-a-ling 

model, as the simplest system in which the Fourier heat conduction law could be 

demonstrated. The model consists of a one-dimensional chain of atoms, alternately 

free and harmonically bound, which interact through hard elastic collisions. CFVV 

demonstrated that this model exhibits chaotic dynamics, and presented numerical ev- 

idence that,  for moderately long chains, the thermal conductivity approaches a value 

independent of the length of the chain. 

The impetus for studying the relationship between dynamics and nonequilibrium 

statistical mechanics began with the work of Boltzmann. The Boltzmann transport 

equation is the basis of much of kinetic theory and is quite physically intuitive. All that 

is required is the equations of motion of the particles (a dilute gas) and the assumption 

of a random velocity distribution prior to  each collision event. This randomness 

assumption (the "Stosszahlansatz" ) , while physically reasonable, has little rigorous 

basis. Nonetheless, its widespread success has given physicists great confidence in its 
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correctness. In 1929 Peierls [Pei29] generalized the Boltzmann equation to apply to  the 

interaction of phonons in solids. This was less physically intuitive, since phonons do 

not possess well-defined positions and velocities as do particles in a gas. Nevertheless, 

Peierls provided a framework for much of the theoretical work in the study of thermal 

conduction in solids. In particular, he identified some phonon collision processes, due 

to lattice anharmonicity (Umklapp processes), which do not conserve momentum and 

lead to thermal resistance. 

With the advent of the computer as a research tool in the early 1950s came the 

opportunity to  test some of these theories. The celebrated work of Fermi, Pasta, 

and Ulam (FPU),  lucidly reviewed by Ford [For92], pioneered the use of this tool 

and uncovered a wealth of new physics. FPU studied a harmonic chain with weak 

nonlinea.rity. Instead of the expected equipartition of energy among the modes, they 

found a recurrent behaviour, which is now known to be related to the Kolmogorov, 

Arnold, Moser (KAM) theorem, but which was originally very puzzling. In particu- 

lar, the mode overlap criteria put forward by Izrailev and Chirikov [IC66] proposed a 

critical energy for widespread chaos. This would effectively couple the normal modes 

and allow equipartition to take place at  a parameter range different from those tried 

by FPU. Northcote and Potts [NP64] were able to show energy sharing among nor- 

mal modes of the harmonic-plus-hardcore potential (a lattice of harmonically coupled 

finite-sized particles with hard collisions). In a series of recent papers, Pettini and 

co-workers have quantified the time scale for the approach to equipartition, using 

both analytic [CLP95] and numerical [PL90] [PCSSl] techniques. Furthermore, they 

have established that as long as there are regions of chaos present in the phase space 

of their dynamical systems, their systems always approach equipartition. They do, 

however, observe a change in time scale at the energy corresponding to a transition 

to total chaos (an absence of any stable regions in phase space). 

This study of the temporal aspects of energy transport has been complemented by 

a great deal of work on the spatial aspects of energy transport, heat conduction. The 

theory of how heat conducts through non-metallic solids has quite successfully been 

shown to conform to the empirical Fourier law, which can be written as J = -KVT, 

where J is the heat current, V T  the temperature gradient, and m represents the 
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thermal conductivity. In terms of the phonon picture of Peierls, the value of K is 

governed by the mean free path length 1 of the phonons, 

where C is the specific heat per unit volume, and v is the sound velocity. In real 

materials, there are many factors that contribute to the measured value of K ,  for ex- 

ample there are defects, impurities, dislocations, and Umklapp processes due to  the 

anharmonic interatomic potentials. The most obvious starting point for a theoreti- 

cal justification of Fourier's law would be to place a Id  chain of coupled harmonic 

oscillators between two simulated reservoirs at different temperatures. Though there 

are no resistive mechanisms, its simplicity allows for analytic solution, as was done 

by Rieder e t  al. [RLL67] in 1967. He found that the heat flux was proportional to 

the temperature difference instead of the temperature gradient and, so, did not obey 

Fourier's law. Away from the reservoirs the particles had approximately the mean 

temperature of the two reservoirs. This failure for the harmonic lattice can be at- 

tributed to the lack of coupling in the normal modes. Dean [DeaGO] [DeaGl] took 

the firsts steps to identifying the crucial ingredients in establishing normal thermal 

conductivity. He studied the effect of adding disorder to  the harmonic lattice. This 

approach recognizes that even the purest cryst a1 contains isotopic impurities; thus, 

by using a random mass distribution it was hoped that the problems of the simple 

harmonic lattice would be overcome. However, analysis of the spectra revealed that 

the disorder caused localization of the high frequency modes and failed to make the 

thermal conductivity normal. The disorder did result in a temperature gradient and, 

therefore, a finite K .  The length dependence of this K was worked out by Ishii and 

Matsuda [MI701 [Ish73]. For free ends, they found n oc N ; ;  while for fixed ends, they 

found K oc N - i .  This was confirmed numerically by Visscher [Visil]. 

Many lattices were tested to see the effect of adding anharmonicity to  disordered 

systems. For instance, Payton e t  al. [PRV67] investigated a disordered system with 

and without Lennard-Jones anharmonicity. They found that the addition of the an- 

harmonicity increased the calculated conductivity. This same dependence was found 
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by Jackson et al. [JPW68] in a system with cubic anharmonicity. This result was sur- 

prising, since, from the phonon description of heat conduction, one would consider this 

a resistive mechanism of phonon scattering. An explanation is that the anharmonic- 

ity acts to couple the localized high-frequency modes to the low-frequency modes, 

increasing conduction. Since introducing these anharmonic terms to the dynamics 

generally makes the systems more computationally intensive, the length dependence 

of K was not tested. 

With the introduction of anharmonicity into the discussion, we switch from the 

phonon as the particle-like carrier of energy to the soliton. This also leads to an energy 

flux proportional to  the temperature difference, and, so, a nonlinear lattice with only 

soliton energy transport will also not obey Fourier's law. Toda [Tod79] has reviewed 

the relevant concepts related to solitons and heat conduction, as well as covering an 

argument linking solitons to the increase of K found by adding anharmonicity to disor- 

der. Miura [Mi11731 investigated the collisions of solitons in a harmonic-plus-hardcore 

lattice and found some energy loss due to the collisions. This was an indication that 

diffusive energy transport could result from the decaying solitons. 

Because of the difficulties found by FPU and others, many people came to  believe 

that normal thermal conductivity could not occur in one dimension [MT78]. These 

arguments relate to the fact that we can at best expect only a subset of the 2 and 3 

dimensional physics to appear in 1-d. For instance, we cannot expect to see turbulence 

in a 1-d lattice. The lack of interaction of longitudinal and transverse modes might 

alter the fundamental character of thermal conductivity. 

Eventually, however, Mokross and Buttner [MB83] gave evidence that the diatomic 

Toda lattice exhibited a transition to normal thermal conductivity, which later was 

verified by the more detailed numerical investigation of Jackson and Mistriotis [JM89]. 

The monatomic Toda [Tod75] lattice uses exponential coupling and has an integrable 

Hamiltonian. The diatomic Toda lattice has the mass ratio of the adjacent pairs of 

particles, r ,  as a variable parameter. At r = 1 the diatomic Toda lattice reverts to  

its integrable monatomic form. For r = 0.5, Mokross and Buttner found indications 

of Fourier-law behaviour. Jackson and Mistriotis found a larger chain-length limit for 

the onset of normal thermal conductivity and also took the opportunity to investigate 



CHAPTER 1.  INTRODUCTION 5 

the transition to  Fourier law conductivity. By calculating K for a range of r and 

chain length, they confirmed length independence of K for 0.5 5 r 5 0.75, provided 

the chains contained at least 250 particles. Applying the concept of soliton decay 

via soliton collisions, they found that for the sa8me range of r the soliton collisions 

produced optimal energy decay. Since it was presumed that chaos played a role, 

it would have been natural to consider the calculation of the Lyapunov exponent. 

However, this was rejected, since it is an indicator of the exponential separation of 

adjacent trajectories for infinite time. The argument was that this would be irrelevant 

for the time scale of pulse transits across the lattice. An alternative measure was 

suggested that measured sensitivity to initial conditions on the correct time scale. 

The separation of trajectories, d(t),  originally near the same point in phase space r 
are fitted to both an exponential and linear function for a short time T. The better 

fit indicates the exponential or linear nature of the region of phase space. That is, for 

the divergence is considered linear, where A, B, C and k are found from the fits. From 

a distribution of initial conditions they were able to show that the diatomic Toda 

lattice displayed exponential separation of trajectories on the relevant time scale for 

0.5 5 r 5 0.75, as above. 

Soon after Mokross and Biittner had shown that the diatomic Toda lattice could 

support normal thermal conductivity, CFVV found a second such lattice, the ding- 

a-ling model. This persuasive work gave arguments for a direct connection between 

normal thermal conductivity and dynamical chaos in a very simple system. This 

simplicity made the model attractive from a computational point of view. They also 

showed that the value of the thermal conductivity given by the Green-Kubo formula 

is in agreement with that obtained directly from numerical simulation. 

In recent years, the diatomic Toda lattice has received much of the attention in 

the study of thermal conduction. Gendel'man and Manevich [GM92] found analytic 

estimates of the value of K in certain limiting cases. Nishiguchi and Sakuma [NS90] 

used the diatomic Toda lattice to investigate the effect of the temperature dependence 

of K on the temperature profile. Also, they looked at separating the contribution to 
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the flux by the soliton pulses (ballistic flux, as they called it) from that of the diffusive 

processes. 

There have also been more failures in the search for Fourier-law models. A revisit 

of the Lennard-Jones [MA881 and FPU [KM93] lattices has still not been able t o  

demonstrate Fourier-law behaviour in these systems, although perhaps longer lattices 

(and more computer power) are all that are needed. 

Since the ding-a-ling model shows such promise as a tool for exploring the micro- 

scopic aspects of heat conduction, the original purpose of this work was to  examine in 

more detail the relations between thermal conductivity and aspects of the dynamics, 

such as Lyapunov exponents. After reproducing the results of CFVV and extending 

them, we were surprised to  discover that the conductivity value which they had re- 

ported as the long-chain limit was actually only a transitory plateau. The thermal 

conductivity does, indeed, converge to a long-chain l i~ni t ,  but only at lengths consider- 

ably greater than those reported by CFVV. Moreover, the approach to  the long-chain 

limit can be non-monotonic as a function of length. 

The ding-a-ling model, as well as some of the details of the techniques used t o  

evolve it, are introduced in Ch. 2 of this thesis. In Ch. 3, we present results for the 

thermal conductivity, which confirm the earlier results of CFVV, as far as they went, 

but which also show surprising new results in regions that they did not explore. Also, 

we examine the methods used to calculate the quantities needed for the evaluation 

of K,  that is, the temperature gradient and the flux. The temperature dependence of 

K causes some difficulties by introducing a curvature in the temperature profile. The 

shape of this curvature and measures to address its effect on the calculation of K are 

discussed. The asymptotic limit of 116, for long chains, is analyzed in some detail 

including an analytic estimate of the value for stiff springs. In Ch. 4, we study the 

dynamics of the model, illustrating the distinctions between the weak-spring and stiff- 

spring limits and the transition between the limits. The paths traveled by colliding 

particles are used to provide physical intuition for these distinctions, as well as to  

provide visual evidence of soliton-like pulses. The average path length of these pulses 

is one of several measures, including the collision rate and energy density, that are 

used to quantify the onset of the transition from the stiff- to weak-spring limit. This 
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transition appears to be linked to the onset of total chaos. Phase-space plots and 

the calcula.tion of Lyapunov exponents are used to examine this point. With the 

identification of various properties of thermal conductivity in the ding-a-ling model, 

it is important to consider other models, as is done in Ch. 5 .  Here, we propose two 

models that share some similarities with the ding-a-ling model and discuss how the 

differences affect the evolution of the dynamical model. Finally, we summarize the 

conclusions in Ch. 6. 



Chapter 2 

The Ding-a-ling Model 

The ding-a-ling lattice consists of a set of alternately free and bound particles. The 

Hamiltonian for the N particle ding-a-ling model, as described by CFVV, is 

1 H=C( vi + w:x:) + hard point core, 
2 ;=I 

(2.1) 

where w; equals w for even i and zero for odd i, all particles have unit mass, and the 

ith particle has a position xi measured relative to its lattice site, and a velocity v;. 

Two versions of this model will be studied. To calculate the thermal conductivity, we 

use an open system - a chain with a free particle at each end, which interacts with a 

thermal reservoir. The reservoir assigns the free particle a random velocity from an 

appropriate distribution, and is discussed fully in Ch. 3. To calculate the Lyapunov 

exponent, we use a closed ring of particles. The open chains contain an odd number 

of particles and the closed rings contain an even number of particles. 

The dynamics of a closed ring depends on only a single dimensionless parameter, 

E = E/w21:, where E is the average energy per particle and lo is the lattice spacing. 

CFVV fix E and lo ,  and use w as a variable parameter. We use E as our fundamental 

parameter and have confirmed the scaling by varying both E and w in some of our 

calculations. 

In the case of the chain interacting with reservoirs, the total energy is not fixed, 

so we must infer its average value from the temperature. The average temperature 

T, is midway between the temperature of the left and right reservoirs, TL and TR. 
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If we assume equipartition, then the average energy of the free particles is iTm, and 

the average energy of the bound particles is T,. This leads to an average energy of a 

system particle of $Tm. So, the quantity 

is used to parameterize our open system (we set lo = 1 and Boltzman's constant 

The parameter E should be regarded as a conventional reparameterization of the 

temperature as a dimensionless energy. It is only approximately equal to the energy 

density (more precisely the dimensionless energy per particle). The average energy of 

a free particle is $T.  The average total energy of a bound particle ranges from T in the 

low-density limit to $T in the high energy density limit, where collisions prevent the 

spring from stretching very far. As a result, the true energy density ranges from E to 

:E, as we go from the low- to  the high-density limits. No confusion will arise, provided 

we regard the values of E for an open chain as merely re-expressing the temperature 

in dimensionless units. Only when a result computed at constant E is compared with 

one computed at constant T can any ambiguity of interpretation arise. This is done 

in Fig. 4.12, where it does not cause any trouble. 

Between collisions, the motion has an analytic solution; in order to evolve it for- 

ward in time, one must simply calculate the time of the collision events and then 

evolve the system from collision to collision. This means that the system is more 

naturally described in terms of a mapping than as a solution to  a Hamiltonian with 

infinite potentials to represent the hard collisions. However, since many of the phys- 

ical quantities are calculated per unit time, rather than per collision, it is necessary 

to have a mixed notation. A superscript 0 will identify quantities measured just af- 

ter the collision, and this quantity will have a j subscript to identify which collision. 

For instance, x$ and v$ represent the position relative to its lattice site and veloc- 

ity for particle i at the time just after collision j ,  while x;(t) and v;(t) represent the 

same quantities at  the arbitrary time t ,  measured relative to  the first collision. The 
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evolution of the position of particle i between collision j and j + 1 is 

sin(w(t - ri) + $6) i even 
x;(t) = 

i odd 

where A:, and 4; are the amplitude and phase of the oscillator, and rj is the time of 

the collision j. In order to  calculate the time of collision j ,  we must find the possible 

collision time t:' for each particle pair i and i + 1 such that 

the term 1 being the lattice spacing. Then we select the earliest collision time as 

the actual collision time for the system. To complete the collision we must evolve 

the system to  time rJ ,  then exchange the velocities of the particles involved in the 

collision. If we define the system's state (made up of all its position and velocity 

coordinates) after collision j by r Q ,  then 

rp = f (r;-1) ( 2 . 5 )  

maps the physical system from the time of system collision j - 1 to system collision 

j ,  and swaps the velocities of the pair of particles involved in the collision. 

2.1 Evolution of the model 

Following the procedure outlined above, one can design an efficient algorithm to  

evolve the system forward in time. Some care does need to be taken in the root-solving 

phase of the calculation, as this is where the bulk of the computation takes place. 

Root solving is accomplished by combining Brent's technique with the Secant 

method. Brent's technique is outlined in Numerical Recipes[PTVF92] and is guar- 

anteed to converge but is not as fast as the less reliable secant method. So, Brent's 

method is used initially to get close to the root and then, the secant method is used 

to complete the calculation to an accuracy of lo-''. If the secant method fails for 

some reason, then Brent's method is used for the complete calculation. 
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Figure 2.1: The collision function as a function of time. The function is evaluated at  
each s; until the sign of s; changes indicating that the root is bounded. 

Theoretically, an advantage of using a map such as the ding-a-ling system over an 

ODE is that between collisions the dynamics is analytic so we don't need to evaluate 

the functions at the intervening times. However, the root solver requires that we 

have points on either side of the root to begin with. Naively evaluating our collision 

function at discrete time steps to bracket this root would negate the computational 

advantage of the model over models that require the solution of an ODE. Also, we 

risk stepping over a possible root thus missing a collision. 

The collision function can be written as 

where we have used Eq. (2.4) and Eq. (2.3). (Note this is the collision of a bound 

particle on the left and a free particle on the right. There is a complementary equation 

for the reverse situation.) This function has been plotted in Fig. 2.1 to demonstrate 

the root-bracketing strategy. First, there can be no collision unless the free particle 

is within f A of the bound particles (between the dashed lines in the figure). Thus 

the function is evaluated at so. Now in order that we do not step over any possible 

roots, we evaluate r at the minima and maxima (sl, s 2 ,  and s3). With this strategy, 
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(a) Weak Springs 
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Position 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Position 

Figure 2.2: The position distribution for weak and stiff springs (a) w = .3 ( E  = 16.7) 
(b) w = 10 ( E  = .015). 
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Normalized Chain Position 

Figure 2.3: The shift in the average position of the particles relative to their lattice 
sites for various chain lengths N. 

we can expect to bracket the root in a minimum number of steps. 

Evolving this model in time allows us to discover its position-distribution charac- 

teristics. In Fig. 2.2(a), we see that, except for the end particles, both the free and 

bound particles display similar Gaussian distributions for this weak-spring example. 

Fig. 2.2(b) demonstrates the changes seen when we use a stiffer spring. In particular, 

the bound particles are much more localized, and the free particles' probability dis- 

tributions become flat away from the bound particles, as one would expect. Also, the 

peaks in the distributions for the bound particles are higher on the right, since this 

is the cold end of the lattice where they are more tightly bound. 

As seen in Fig. 2.2, the position distributions are not perfect Gaussians. The actual 

average positions of the particles were calculated in Fig. 2.3, where we see the error in 

assuming the particles average position is at their lattice sites does not exceed h0.1 

which is acceptable. It is interesting that one can see the systematic offset caused by 

the constant flux of energy from left to right. 



Chapter 3 

Calculation of the thermal 

conductivity 

3.1 Method of Calculation 

The calculation of the thermal conductivity for the system is performed in a manner 

similar to  that described in CFVV [CFVV84]. A temperature difference AT is placed 

across the lattice to create a temperature gradient V T  and the energy flux J is then 

monitored. The thermal conductivity k is - JIOT. To establish the temperature 

gradient, we place heat reservoirs at different temperatures at either end of the lattice. 

These are random number generators that take the particles that enter the reservoir 

and eject them back into the system with a velocity of the appropriate distribution. 

The probability distribution used is 

which is the velocity distribution for particles ejected from a pinhole in the side of an 

oven. The difference between the energy of the particles entering and leaving during 

the rn th reservoir interaction, AE,, is used in the calculation of the flux, 
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where t ,  represents the time of the nth reservoir interactions. After eliminating the 

initial transients, we calculate a sufficient number of collisions so that J,  Jm. The 

value of the local temperature is calculated as twice the average kinetic energy of 

each particle. Then, we assume that the position of the particles is, on average, at 

its lattice site and we perform a linear fit to the data. The slope is the effective 

temperature gradient,VTeE. It will, in general, differ from the applied temperature 

gradient, VT,,,, because there is a temperature jump at the ends of the lattice, similar 

to a Kapitza resistance. For this reason, the end particles are never included in any 

of our VTeE calculations. They function merely as the interface between the reservoir 

and the system. 

To compare the results for different parameter values, we find it useful to consider 

dimensionless quantities. For example, 3 - J / u 3  is a dimensionless flux, and K - k/w 

is a dimensionless thermal conductivity. We have found, as expected, that we obtain 

approximately the same K for different T, and w, if they are chosen such that E is 

constant. 

Details of Convergence 

In the calculation of K ,  many tests and checks are performed t o  validate the converged 

value. First, the initial conditions are set up and the system is evolved to eliminate 

initial transients; then the relevant quantities are calculated. When fluctuations are 

sufficiently small, the results are output. 

The initial conditions are chosen so as to  minimize the time it takes to bring the 

system to  an equilibrium state. For short lattices, the velocities were chosen such 

that u = fig, where g is a Gaussian distributed random number. The positions of 

the bound particles were set to x = gl/T/w. Then a free particle would be placed 

between each pair of bound particles with a uniform probability distribution. If the 

position of any two bound particles overlapped, then the whole set was rejected. The 

energy was then scaled to the desired energy by scaling the velocity and position of 

the particles. Initial conditions generated in this fashion produce position distribution 

similar to those seen in the evolution of the system (see Fig. 2.2). 
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For longer lattices, however, this process was too time consuming, and a simpler 

system was used. The velocity of each particle was chosen to give the correct energy 

at  its position in the temperature gradient. The bound particles were placed on their 

origins and the free particles were given a uniform distribution between -1 and +l. 

Now, the system is evolved forward, and the flux is calculated. The flux at both 

reservoirs is calculated; once the difference is less than 1%, the system is deemed to  

have reached a steady state. Now, this transient data is discarded, and the main 

calculation phase is begun. 

To calculate K ,  we need to calculate the slope of the temperature gradient and the 

flux through the lattice. To establish convergence criteria, we estimate the standard 

deviation in the flux, CT, and the standard deviation in the temperature of one of the 

particles, CT. This is done by calculating J and T for a reasonable-sized time bin. 

The fluctuations in these quantities are then used to estimate the relative error in K ,  

When the calculation is sufficiently stable (typically a relative fluctuation of 1%) 

further tests are performed on the data to ensure that the result is not atypical. The 

continuously calculated values are not used unless they are within 1% of the binned 

averages. Also the fluxes at the two ends must be within 1% of each other. In Fig. 3.1, 

we see how the data converge in the particular case of N = 11 and E = 0.09375 for 

an error in K of 1%. 

In Fig. 3.2, we see the time to achieve a 1% error in K for various N. From the 

figure, we see that for shorter lattices, it takes a longer system time for convergence. 

For very long lattices, the convergence time seems to be independent of the chain 

length. This results because the error in r; (the main stopping criteria) has two 

contributions, the error in VT and 3. When the lattice is long, the calculation of VT 

is easier since the linear fit of the temperature profile is improved with the increased 

number of data points. Since the sum of the two sources of error is constant, then 

the error in the flux must dominate in the very large lattices. The error in the flux is 

dependent mostly on the reservoir-interaction rate, which will be independent of N. 

In the small-N limit, the error in K is mostly from the difficulty in calculating VT for 
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Figure 3.1: The convergence of T3 the temperature of particle 3 (the second free 
particle on the left ), the flux J, the temperature gradient V T ,  and the thermal 
conductivity K .  This data was calculated for N = 11 and E = 0.09375 with the 
standard deviation a, in the fluctuations of K such that a, = 1% at convergence. The 
dashed lines represent the measured a in all quantities. 
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Figure 3.2: The system convergence time for various numbers of particles N with 
w = .5 ( E  = 6). 
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short lattices; it gets worse the shorter the lattice. 

The situation is a little different if we look at system convergence time as a function 

of E. We see from Fig. 3.3 that there is a minimum. This feature can also be explained, 

once again, by discussing the contributions to the error. For small E, the error in 

J dominates since a reduction in E makes the system effectively colder and thus 

collisions with the reservoir are less frequent. As e is increased, the system gets 

hotter and converges more quickly. For larger e, the error in V T  dominates. Because 

the Kapitza resistance is larger (see Fig. 3.4), the effective temperature gradient is 

smaller, so the relative error is larger due to  fluctuations. Also, the larger energy 

creates larger fluctuations in T for the individual particles. This gets worse as E gets 

larger. As a result convergence times are increased. 

Calculation of V T  

Fig. 3.4 shows the temperature profiles for a range of E. For small E (stiff springs), 

the coupling to  the reservoirs appears to  be good; while for large E ,  there is a distinct 

temperature jump at the left (TL = 2.5) and right (TR = 1.5) reservoirs. These 

temperature jumps do not cause any particular concern, since we are only interested 

in the gradient of t.he profile, which is still uniquely defined by the linear fit to  the 

data. However, since the smaller gradients do take longer to converge, this does 

affect the calculation. The slight curvature of the profiles is due to the temperature 

dependence of K and will need to be addressed in the calculation of VT. As pointed 

out by Nishiguchi and Sakuma [NS90], the curvature in the temperature profile can 

be a source of error in the calculation of K.  We include only the central 60% of the 

particles in the calculation of V T .  This section of the lattice has a much more linear 

T profile and, thus, a more accurate value of K could be calculated. In Sect. 3.6, we 

will discuss the exact form of this curvature. 

We explore the temperature jump more fully in Fig. 3.5, and we look at the way the 

shrinking reduces the effective temperature gradient in Fig. 3.6. The jumps are not 

symmetric at opposite reservoirs due to the curvature in the profile. This curvature 

also causes a reversal of the sign of the jump for the E = 0.015 case shown. This 



CHAPTER 3. CALCULATION OF T H E  T H E R M A L  CONDUCTIVITY 2 0 

Figure 3.3: The system convergence time for E with N = 101. 
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Figure 3.4: The temperature profile for various energy densities E .  

reversal can be seen more clearly in Fig. 3.5 in the case where we have fixed the 

length at N = 9, as a change in sign of the jump at around e = E,. In Fig. 3.6 we see 

that this creates a slope such that VTef f  > VT,,, for small e. 

The behaviour of the gradient with varying chain length is shown in Fig. 3.7. We 

expect a 1/N dependence of V T  from its definition as the slope of the temperature 

profile. This is clearly the reason V T  -+ 0 for large N. However, for large e ,  we also 

see V T  -+ 0 as N -t 0. As we have just seen in Fig. 3.5 and Fig. 3.6, the temperature 

jumps are large in this limit, and a large temperature jump reduces VTef f .  A better 

understanding of the temperature jumps would help us to explain the size and position 

of these minima in V T  (and the resulting minima in the plots of h: versus chain length 

we will see in Fig. 3.11). Both the role the soliton-like pulses play in the formation of 

the temperature gradient and these temperature jumps should also be explored. 
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Figure 3.5:  The difference between the temperature of the reservoir and the temper- 
ature evaluated from the linear fit at the position of the reservoir. The solid line 
corresponds to data evaluated for the left reservoir, while the dashed line corresponds 
to the right. 
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Figure 3.6: The normalized difference between the effective temperature gradient and 
the applied temperature gradient. 
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Figure 3.7: The temperature gradient for various numbers of particles N 
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3.4 Calculation of 3 

Compared to the calculation of VT, the calculation of the flux J encounters few 

complications. The flux is calculated for both sides and is only acceptable if the two 

values are within 1% of each other. As seen in Fig. 3.8, the flux decreases as the lattice 

size is increased. This is expected since, as we have seen, the gradient's magnitude 

will shrink as the lattice size is increased. 

3.5 Comparison with CFVV 

CFVV presented results for the thermal conductivity as a function of the chain 

length (their Fig. 3). We compared data from their plot with our own data for the 

equivalent value of E and with the temperature of the left reservoir, TL, set to  2.5 and 

the right, TR, set to 1.5. Our data, Fig. 3.9, clearly agree with the results of CFVV. 

However, it is premature to conclude, as CFVV did, that this corresponds to  the 

asymptotic limit of the thermal conductivity. In Fig. 3.10, we show that this is only 

a minimum and that bulk thermal conductivity cannot be said to  have been observed 

until N > 200. The minimum is deepest for large energy densities and disappears 

entirely for very small density, as can be seen in Fig. 3.1 1. 

CFVV also produced a table of k ,  J, and V T  values for w = 10, which are also 

confirmed by our calculations. 

Table 3.1: Comparison of our values for k,  VT ,  (J) with N = 5,9 for w = 10 
( E  = 0.015) and those presented by CFVV 

k 
VT 
( J )  

CFVV 
0.374 f 0.008 

-0.180 
0.0672 

CFVV 
0.376 f 0.022 

-0.105 
0.0396 

our results 

0.373 f 0.004 
-0.182 f 0.001 
0.0678 f 0.0002 

our results 

0.361 3r 0.004 
-0.105 4 0.0005 
0.0380 f 0.0002 
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Figure 3.8: The flux for various numbers of particles N. 
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Figure 3.9: Comparison of thermal conductivity K with the CFVV results for w = 1 
( E  = 1.5). 
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3.6 Temperature dependence of k 

If Fourier's law, J = -kVT, is valid, we would expect that after initial transients have 

died out, there would be a uniform gradient of temperature along the chain. Fig. 3.12 

shows that the local temperature (computed as twice the average kinetic energy of 

each particle) actually has a smooth nonlinear variation with position. We interpret 

the curvature as being due to the temperature dependence of the conductivity k .  If 

k increases with T ,  then the decrease of k(T)  from left to  right along the chain must 

be compensated by an increase in BT. 

We have calculated k ( T )  directly by varying the central temperature (Fig. 3.13). 

To ensure that the variation of k ( T )  along the chain does not affect our results, we 

use a small temperature difference AT. In Fig. 3.13 we see results for chains of 9 and 

31 particles with AT = 0.2. The results are different from what one might expect 

for an anharmonic lattice. For example, the work of Maeda and Munakata [MM95] 

shows a different relationship for small T, k(T)  n T-i. This results because they 
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Figure 3.10: Thermal conductivity K for w = 1 (e = 1.5) with very large lattices. 
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were modeling the FPU P lattice (harmonic lattice with quartic anharmonicity). For 

small T ,  the anharmonic term will not contribute and one expects a divergent k for 

an integrable (harmonic) lattice. For the ding-a-ling lattice, as the energy is reduced, 

the bound particles are more tightly bound to their sites. Because this attenuates 

soliton-like energy transport, one does not expect k to  diverge as T --t 0. In fact, 

we see k -+ 0 in Fig. 3.13. On the other hand, the high-T regime should produce 

divergent k since, in this limit, the lattice behaves as free particles on a wire (an 

integrable system). 

From Fig. 3.13, we see that the temperature dependance of K between T = 1.5 

and 2.5 is approximately linear, and we shall use this to predict the curvature of T ( x )  

in Fig. 3.12. Following a procedure described by Gebhart [Geb93], we approximate 

k(T) as 

k(T) = kT + P(T - TT), (3.4) 
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Figure 3.11: The thermal conductivity for various numbers of particles N. 
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calculation of k, and k, is k(T,). From Fourier's law, we have 

L k(T')dT1 = - J X  Jds' ,  
2 

where the left-most (i = 2) particle involved has a temperature Tt. Since J is constant 

along the lattice, we have 

- lx Jdx'  = - J ( x  - 2) (3.6) 

and using Eq. (3.4) we get 

We now use these two equations to solve for T(x) ,  

where y is k,/P - TT. Notice that the fit for T is exact for x = 2 (the left end), while 

k is exact for T = T, (the right end). 

The temperature profile data of Fig. 3.12 was fitted to the formula (3.8), using 

p as the only adjustable parameter. The nonlinear least-square fit yields the value 

p = 3.0. This may be compared to  the slope of the k(T) curve in Fig. 3.13 at the 

central temperature T, = 2, which yields /3 = 2.8. The agreement between the two 

independent determinations of ,B is satisfactory. 

3.7 Effect of shrinking AT 

In order to  measure the effect of shrinking AT, we tried reducing the applied tem- 

perature difference. For this calculation, we used all but the end particles in the 

calculation of VT,  instead of only using the 60% as we typically do. This is thus a 

worst case. Using very small A T  incurred a greatly increased convergence time and 

was only practical for short lattices. In any case, the K extrapolated to A T  = 0 is not 

appreciably different from that calculated for A T  = 1 (the value we use in most of our 

calculation), as we can see from Fig. 3.14. The fitting form of a constant term plus a 
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Figure 3.12: Temperature profile with w = 2. The solid line is a linear fit through the 
data; the dashed line is a fit using Eq. (3.8) with ,6' the only variable parameter. 

Figure 3.13: The value of K as a function of T, for w = 2 and chain lengths of 9 and 
31 particles with AT = .2. The dashed line is a linear fit through the points between 
1.5 and 2.5 for N = 9. 



C H A P T E R  3. CALCULATION OF T H E  T H E R M A L  CONDUCTIVITY  32 

Figure 3.14: K for various AT with central temperature of 2, spring constant w = 2 
(E = .375) and chain of N = 31 particles. 

quadratic was used because K should be even in VT. (A linear fit was also calculated 

for comparison but produced larger residuals.) The deviation seen for large AT can 

be attributed to both the temperature dependence of K: and correction to Fourier's 

law. 

3.8 Long-Chain Limit 

In addition to confirming the results of CFVV, we wish to determine the range of 

parameters, E and N, over which Fourier's 1a.w applies. Although Fig. 3.10 shows 

clearly that a constant value of K has been reached in this case, it is more effective to  

plot the thermal resistivity, p = l / c ,  as a function of N - i .  We use N-f rather than 

l /AJ as the variable because it yields a good linear fit for large N (see Fig. 3.15 to  

3.18). The linear function 
1 

p(N) = pN-. + p a ,  (3.9) 
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is thus used to describe our large-N resistivity data. A positive intercept of the p axis 

(p, > 0) for N-: i 0 implies that the conductivity has a finite limit for arbitrarily 

long chains. A zero intercept implies that K diverges as N + co, and so Fourier's law 

would not apply. A negative intercept would imply that K diverges for some finite N .  

In fact, however, the appearance of a negative intercept in Fig. 3.15 merely means 

that the data are insufficient to  resolve an intercept very close to zero. 

Although we have no explanation for the N i  dependence, Toda [Tod79] has pre- 

dicted ~f behaviour for an isotopicly disordered lattice. He found 6 .-. N f  for free 

boundaries and 6 .-. N - i  for fixed boundaries. However, his analysis involved local- 

ization of normal modes, which is not relavent to the ding-a-ling model. 

The plots of resistivity, Fig. 3.15 to  3.18, give a fairly complete picture of the 

behaviour as we vary E .  Fig. 3.15 shows the weak-spring limit, in which we might 

expect Fourier's law to break down. These data demonstrate the limit of our numerical 

capabilities, since we would need to calculate K for much longer lattices in order to  

resolve whether the intercept is positive or negative. In Fig. 3.16 and 3.17 we can 

say with confidence that, for these values of E ,  we have a positive intercept. We can 

also see a very distinct maximum in p, for some values of E, which corresponds to  the 

minima in Fig. 3.1 1. The maxima have disappeared in Fig. 3.18. 

The intercepts in Fig. 3.15 to 3.18 tell us how the conductivity behaves for an 

infinite lattice, so i t  is useful to plot it as a function of E,  as in Fig. 3.19. (We have 

not included the intercepts from Fig. 3.15 since they are not accurate enough.) We can 

see quite clearly the change in behaviour from small E (stiff springs) t o  large E (weak 

springs). The power-law variation in p, for E > E,  implies that infinite conductivity 

should occur only in the limit of vanishing spring constant, which is the integrable 

limit of the free particle hard point gas. We introduce E,  = 0.04 at this point, since it 

functions well as a benchmark for the breakdown of the stiff-spring limit. Its value is 

derived from the scaling properties of the Lyapunov exponent and is discussed fully in 

Sect. 4.6. We will put a vertical bar in our plot at E,  to distinguish the two regimes, 

stiff and weak spring. 

The slope p changes sign, with p 2 0 for E 2 E,. If we rewrite Eq. (3.9) in a 
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normalized form, 

where p = p/p,  and ,!i = p/p,. For p ( N )  to be within some S of 1, we must take 

N > Ns,  where 

Fig. 3.20 shows that as E increases, for E > e,, we need increasingly larger lattices to 

approximate the asymptotic limit; however, for E < c ,  only short lattices are needed, 

and N6 is not strongly dependent on c .  A dashed line is used in Fig. 3.20 to emphasize 

that the slope does go through zero and show the dominant features. Fourier's law is 

always obeyed provided the lattices are long enough. 

3.9 Stiff-Spring Limit 

It is possible to deduce the value of the thermal conductivity by means of a simple 

argument, which should be valid in the limit of very stiff springs on the bound par- 

ticles. We assume that each bound particle behaves as a harmonic oscillator with a 

Maxwellian velocity distribution governed by the local temperature. A free particle 

bounces back and forth between two bound particles. At each elastic collision it ex- 

changes velocities with the bound particle, and so on average it carries energy from 

the higher to the lower temperature side. 

Let v+ be the speed of a free particle traveling in the positive direction (down the 

temperature gradient), and v- be its speed of return in the negative direction. The 

contribution to the energy flux from this round trip will be equal to the difference 

between the energies carried in the two directions divided by the time for the round 

trip, 

The factor of 2 in the denominator comes from the distance between the bound 

particles, which is 2 lattice units. 

We can estimate the conductivity if we replace the velocities in Eq. (3.12) by their 

rms averages G ,  which are related to the temperature by equipartition, $G2 = AT 2 
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Figure 3.15: Resistivity for long chains and large E .  The solid line is a least-squares 
fit for N - i  < 0.12. 



CHAPTER 3. CALCULATION OF THE THERMAL COND UCTIVITY 3 6 

Figure 3.16: Resistivity for long chains and medium E .  Only every second data point 
is displayed for E > 4.5 to make the graph more readable. The solid line is a least- 
squares fit for N - $  < 0.12. 
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Figure 3.17: Resistivity for long chains and small E .  The solid line is a least-squares 
fit for N-i  < 0.20. 



r 
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Figure 3.18: Resistivity for long chains and very small E .  The solid line is a least- 
squares fit for N-; < 0.32. 



CHAPTER 3. CALCULATION O F  THE THERMAL CONDUCTIVITY 3 9 

Figure 3.19: Resistivity for infinite chains (the intercept in Fig. 3.16 to 3.18). The 
solid line is the analytic result from Eq. (3.21) 

Figure 3.20: The square of the normalized slope in Eq. (3.10). The open circles 
correspond to a positive slope while the filled circles correspond to a negative slope. 
The dashed line is used to guide the eye only. 
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(Boltzmann's constant has been set to unity). Writing the temperature of the left 

and right bound particles as T+ = T - V T  and T- = T + V T  and neglecting the 

difference between v+ and v- in the denominator, we obtain J = -OT/(?T-i).  

whence the conductivity becomes 

In terms of our dimensionless parameters, tc = klw and E = 3T/4w2, this becomes 

A better approximation is obtained if we average the energy current J in Eq. (3.12) 

over the distributions of v+ and v-. The appropriate distribution, PT(v), is the 

probability that a free particle will transit at speed v between two bound particles. 

The Boltzmann distribution, which is the probability that a randomly selected particle 

will ha,ve instantaneous velocity v, differs from PT(v) by a factor proportional to  the 

transit time (v-I). Hence, the appropriate distribution is 

Upon simplifying Eq. (3.12), we obtain the average energy current 

where the distributions for v+ and v- are given by Eq. (3.15) with temperatures T+ 

and T-, respectively. The calculation of the averages in Eq. (3.16) are 

so we have 

If we now expand J in a Taylor series in VT,  we have 
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This results in an approximate value for the conductivity of k = dm or in dimen- 

sionless variables 

K = &. 
These are compared to the results of the numerical simulations in Fig. 3.19. One 

can see approximate agreement with the slope corresponding to the exponent of in 

Eq. (3.21). 

The essential assumption in this simple argument is the neglect of correlations 

among the particles. This assumption becomes more reasonable in the st,iff limit, 

when the bound particles oscillate very rapidly compared to the motion of the free 

particles. But the systematic difference between Eq. (3.21) and the numerical results 

in Fig. 3.19 indicates that correlation effects are not entirely negligible, even in that 

limit. 



Chapter 4 

Analysis of the Dynamics 

In order to demonstrate the role of chaos in establishing Fourier's law of heat con- 

duction, we need to study a system that has both an integrable and a non-integrable 

limit. The ding-a-ling model becomes integrable in the zero spring-constant limit. 

As the spring stiffness increases, the dynamics becomes more chaotic. We wish to  

observe the transition between two such regimes and to correlate the dynamics with 

the behaviour of the thermal conductivity. The transition between the two regimes 

is continuous rather than sharp; but, evidence for it can be found in many different 

aspects of the dynamics. 

4.1 Particle Paths 

The ding-a-ling model was expected to support a Fourier law conductivity because the 

energy transport via soliton-like pulses should be suppressed by the phase random- 

ization caused by the oscillating bound particles. In Fig. 4.1, we see the displacement 

of particles as a function of time, with the "left" and the "right" labels on the y-axis 

marking the position of the corresponding reservoirs and the tics marking the lattice 

sites. 

Particle trajectories cannot cross each other. They merely exchange velocities in 

elastic collisions. The apparently smooth lines, in Fig. 4.l(a),  from one end of the 

lattice to the other, represent the transmission of energy without its being scattered or 
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diffused. These soliton-like pulses are typical of the weak-spring limit. As the spring 

constant increases, the trajectories of the bound particles become more curved, as is 

shown in Fig. 4.l(b). This causes the soliton-like pulses to propagate along curved 

paths in the space-time diagram. Sometimes the spatial direction of propagation is 

reversed, corresponding to the reflection of soliton-like pulses. Energy from the pulse 

is exchanged with the potential energy of the springs, making soliton-like pulses less 

effective as a mechanism of energy transport. In the stiff-spring limit, Fig. 4.1(c), 

the pulses are effectively destroyed and diffusive energy transport is dominant. The 

transition between the dominant energy transport mechanism being soliton-like pulses 

or diffusion will clearly depend on the length of the lattice. The weaker the spring, the 

longer must the lattice be in order for energy diffusion to dominate. This is consistent 

with the results of Fig. 3.15-3.18 and Fig. 3.20, which show that,  as the spring becomes 

weaker, longer lattices are needed to approximate the bulk conductivity limit. 

Path Length of Soliton-like Pulses 

Solitons were originally found by Zabusky and Kruskal [ZK65] in a variation of the 

FPU model. This was a continuum limit of the FPU lattice that described a partial 

differential equation with solutions that were localized disturbances that retained their 

shape and energy on collision. While there is no continuum limit of the ding-a-ling 

model to provide partial differential equations with such solutions, in Fig. 4.l(a) we 

see what appear to  be particle-like disturbances that travel, undeviated, across the 

lattice. Their apparent constant velocity (hence constant kinetic energy) is the main 

reason for the association with the soliton concept. Also, they are localized, existing 

precisely at the location of the corresponding particle. Energy transport via pure 

solitons generates a flux proportional to the temperature difference rather than the 

temperature gradient since it is independent of lattice length. Hence, they cause 

deviations from Fourier-law behaviour. 

From the description of the particle trajectories in Sect. 4.1, we can see how 

the soliton-like pulses can propagate energy in the lattice and how the exchange of 

potential and kinetic energy while traveling as a bound particle alters their kinetic 
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Figure 4.1: Lattice dynamics for a 7 particle chain with different w: (a)w = 0.5 
(E = 6.0) (b)w = 2 (a = .375) (c)w = 5 (E = .06). The solid lines represent the paths 
of the free particles while the dashed lines represent the bound particles. 
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energy. If we monitor the kinetic energy from when it leaves the reservoir, as it is 

passed from free to bound particles and from bound to  free particles, we can measure 

the decay of these energy carriers. In Fig. 4.l(b), we can see that some of these soliton- 

like pulses do not reach the opposite reservoir; instead, they reverse their direction. 

A soliton-like pulse that has reversed can be considered terminated, since it is not 

carrying energy from one reservoir to the other. This termination distance is the 

path length of the soliton-like pulse. These reversals can only occur when the particle 

carrying the soliton is a bound particle. The path length is, thus, measured relative to 

the lattice site of the first bound particle in the chain. The distribution of these path 

lengths for a number of different E is displayed in Fig. 4.2. Each curve is normalized 

so that the area under the curve is equal to  1. In Fig. 4.3 we have replotted Fig. 4.2 

on a semi-log scale (to emphasize the exponential decay) using the unnormalized bin 

counts of the histogram. 

These figures were constructed by allowing an open system to  evolve (in the same 

way used to calculate the thermal conductivity with TL = 2.5, TR = 1.5, and N = 299 

for lo5 collisions per particle), while monitoring the decay of the soliton-like pulses. 

These decay lengths were assigned to bins to  form a histogram. The histogram has a 

bin width of 2 lattice spacings, since the free particles cannot terminate a soliton-like 

pulse. 

In general, the distributions decay exponentially; however, for large E ,  we see that 

a maximum is reached, followed by this exponential decay. In the weak-spring limit, 

we also see very long tails, indicating that a significant fraction of the energy transport 

can be attributed to these pulses, even for reasonably large lattices. 

The average value of the path lengths was calculated. This mean-free-path length, 

A,  is a good indicator of how effective the pulses are for a given E .  In Fig. 4.4, we 

see that A increases monotonically, with E obeying a power law in the two regions 

separated by E,. Because the pulses can only terminate when the bound particle 

extends to its amplitude, it is reasonable to  assume that A is related to the amplitude 

A of an oscillator having the energy of the reservoir that created the pulse. In the 

stiff-spring limit, we can make a rough estimate of this dependence on A by assuming 

that the pulses go no farther than the second bound particle. We will then have pulses 
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that suffer one collision and thus have an average path length of A, as well as those 

that suffer two collisions and thus have an average path length of 2 + A. The mean 

free path will be calculated from the contributions of both 

where PI is the probability of suffering one collision before terminating and P2 is the 

probability of suffering two. To calculate the probabilities Pi we assume that if the 

free particle is within A of the bound particle it will collide so as to allow the pulse 

to travel to the second bound particle. Otherwise the pulse will terminate after the 

first collision. From Fig. 2.2(b) we see that in this stiff-spring limit the probability 

distribution is approximately uniform between the bound particles (a total width of 

2). So we estimate that the probability of this occurring is A/2; this implies 

I 
Using this with Eq. (4.1) and simplifying we have 1 

We now need to express this in terms of E .  From equipartition, we have E = TL (TL 

is the temperature of the left reservoir). Since the energy of the oscillator is A2w2/2 

we have 

where we have used Eq. (2.2) to express the amplitude in terms of E .  For TL = 2.5 

and T, = 2, we have A = 2 which has been plotted in Fig. 4.4. This is only 

an estimate of the lower bound on A (since we neglect pulses that suffer more than 2 

collisions) but is a good approximation in for E < E,. 

In the weak-spring limit, we can also make a rough estimate of the functional 

form of A. From Fig. 2.2, we see that,  in this limit, the position distributions are 

approximately Gaussians of equal width. The most probable position for the particles 
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of the lattice is their respect'ive lattice sites. If we then try to model a typical soliton- 

like trajectory, we could start by saying tha.t the collisions all occur at the lattice sites. 

We need not restrict the velocities of these particles as long as this is so. To start this 

model pulse off, the free particle farthest to the left has just left the reservoir with a 

velocity corresponding to a temperature of TL. While traveling as a bound particle, 

this pulse will exchange kinetic energy for the particle's potential energy. After each 

collision, an energy of $w2Ax is lost to soliton-like pulse. Given the initial conditions 

we will always have Ax = 1 and so the loss of energy is iw2 .  Since its initial energy 

is iTL, the pulse can suffer only ($TL)/($w2) such collisions before it exhausts its 

energy. Since these types of collisions are 2 lattice sites apart, we ha,ve an estimate of 

this weak-spring mean free path length 

where we have again used Eq. (2.2) to express the amplitude in terms of E .  For 

TL = 2.5 and Tm = 2, we have A = 1 0 ~ / 3  which has also been plotted in Fig. 4.4. 

To estimate the error associated with deviations from the initial conditions, consider 

the effect of the displacement of a bound particle by some small f Sx from its lattice 

site. The amount of energy lost by the subsequent collision with the neighbouring 

free particle (on its lattice site) will be iw2(1 - 6s). On the other hand, if this bound 

particle were t o  start on its lattice site and collide with a free particle displaced by f Sx, 

the energy loss would be $w2(1 -+ Src) . Thus, the symmetry in the position distributions 

ensures that the deviations in the initial positions of the free particles have no net 

effect; however, the deviations in the initial positions of the bound particles do tend to 

always decrease the amount of energy lost. As a result, Eq. (4.6) is an underestimate 

of the mean free path. While the underestimate in Fig. 4.4 appears quite large, the 

power of the E dependence seems to  be accurate. Indeed, a fit of the data for E > 1 

estimates that power as 0.94 rather than the 1 in Eq. (4.6). 

From the study of the path lengths of the soliton-like pulses, we see that in the 

stiff-spring limit, they are suppressed. The mean free ~ a t h  can be accurately ~redic ted 

by considering only two collisions in this limit and is proportional to &. A can also 

be shown to be linearly dependent on E in the weak-spring limit. The division between 
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these two regimes occurs at approximately E = E,. 

Phase Space 

For any system to be a good candidate for a demonstration of the role chaos plays 

in its ability to support a temperature gradient and obey Fourier's Law, that system 

should have both an integrable and a non-integrable limit. In the ding-a-ling model 

when the spring constant goes to zero, we have the integrable free particle gas and, 

as we increase the spring constant, we expect increasingly chaotic dynamics. The 

best way to see this is with a Poincark section of the phase space for the two particle 

periodic lattice. In Fig. 4.5 we have used the following coordinate system: 

and we use a section such that ql = 0 (at a collision) and pl > 0. Note, we have 

plotted only the upper half of the phase space, since by symmetry the lower half is 

identical. 

Poincark sections give a strong visual indication of the chaoticity of the phase 

space. In Fig. 4.5(a), we see the KAM tori circling a fixed point in the surface of 

sections. The destruction of this fixed point, with increasing e ,  is an indication of the 

transition between two dynamical regimes. 

From Fig. 4.5(a), we know that the main fixed point has p2 = 0, so the velocity 

of the bound particle is equal to the negative of the velocity of the free particle and 

the section is such that the particles have just collided. The sign of the relative 

velocities, as defined for a section with pl > 0, is such that the particles would collide 

on the right of the loop, as in Fig. 4.6(c). After colliding, they exchange velocities 

and swing around toward the left. By symmetry, the particles must both be on their 

lattice sites at some intermediate time, as in Fig. 4.6(b). Proceeding to the left, the 

particles collide again, Fig. 4.6(a) and retrace their paths back to the state described 
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Path Length of Soliton-like Pulse 

Figure 4.2: Distribution of path lengths for soliton-like pulses. The paths are mea- 
sured relative to  the position of the first oscillator. The area under the curves has 
been normalized so the total probability is 1. 
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Path Length of Soliton-like Pulse 

Figure 4.3: Distribution of path lengths for soliton-like pulses. The paths are mea- 
sured relative to the position of the first oscillator. The y-axis represents the number 
of pulses within a particular bin. 
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Figure 4.4: Mean free path length for soliton-like pulses. 

by Fig. 4.6(c). The fixed point thus maps the system from a configuration similar t o  

that shown in Fig. 4.6(c), onto itself. 

To explain analytically the fixed point's destruction, we need to evaluate the po- 

sition of the fixed point in phase space. Since the particles have just collided, their 

positions must satisfy Eq. (2.4) 

where x j  and x6 are the position of the free and bound particles relative to their 

respective lattice sites. Also, the velocities are equal in size but opposite in direction, 

so that 

-Vf = Vb = v, (4.9) 

where vf and vb are the velocities of the free and bound particles after the collision. 

From energy conservation, we have 
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Figure 4.5: Poincark section for the two particle periodic ring with 
(a)w = 0 . 2 ( ~  = 37.5) ( b ) w  = 7 . 0 ( ~  = 0.0306) ( c )w  = 9 . 9 ( ~  = 0.153) and an energy of 
1 per particle. 
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Figure 4.6: Two particles on a periodic ring, the solid circle represents a bound particle 
while the empty circle represents a free particle. 

where we have made use of the initial condition on the energy as specified by CFVV. 

Solving for v yields 

The time t to travel from (b) to (a) is the same for both particles; hence, 

Using this with Eq. (4.11) and Eq. (4.8) and solving numerically for v,  xf and xb, we 

can predict the position of the fixed point in phase space. There are no real solutions 

for E > 0.151 (corresponding to w > 2.57 for an energy per particle of 1 as specified 

by CFVV), which is consistent with the Poincari. sections. This dimensionless energy, 

cp = 0.151, is a convenient marker to identify the values of E for which we may expect 

to see changes in the properties of the physical quantities of our system. It will be 

particularly relevant for measurements made on short chains. 

The second fixed point shown in Fig. 4.5 (b) and (c) is somewhat more interesting. 

If we start with all the energy in the free particle and the bound particle at  rest at its 

lattice site, then the free particle will collide and exchange velocities with the bound 

particle. The bound particle will swing out and back, collide with the free particle, 

and the free particle will travel all the way around the ring and collide with the bound 

particle. This is an interesting fixed point since it seems to be very persistent and 

goes stable and unstable periodically in w, as shown in Fig. 4.7. Here, we have divided 

the phase space up into cells and then counted the number of points in each cell for 
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Figure 4.7: Relative unoccupied area in energetically accessible phase space. 

1.4 x lo6 collisions. Then, for a given w we calculated the number of cells not visited 

by the trajectory relative to the total number of cells energetically accessible to it. 

There are several peaks between w = 3 and 7; however, they are from fixed points 

different from the ones described above. For larger w,  one can see the periodicity. 

Although the peaks are decaying (stable regions in phase space are shrinking), they 

are still visible for w = 200. 

Stability analysis was performed on this fixed point, to help explain the periodicity 

in Fig. 4.7. We first need to linearize about this secondary fixed point which occurs at  

a (Q,, p 2 )  coordinate of (fi, fi). There are four collisions before the system returns to 

the same point in phase space. We will use the following notation: FP = (xi, vf, xb, vb) 

and 6 is the time relative to the last collision for i = 1,2,3,4. These collisions will 



occur at 
i FO - 

1 - ($1, o,o,  $2) , t, = l 
C ro - - 

2  - ($1, -2,0,O) , t 2  = T / w  

IT;= (-1,o,o,-2) , t,= 1 

F: = (-I, +2,0,0) , t4 = T / W ,  

where we know that the time for the free particle to travel around the loop is 1 and 

the time for the oscillator to swing out and back is half a period, T / W .  So we must 

iterate the map Eq. (2.5) four times to return to the fixed point. For a point near the 

fixed point this is 

F? + d-ij = f(4)(F; + dyj-l), 

where we have used the map f as defined in Eq. (2.5), f(4) signifies the map iterated 

four times, and dyj is the size of the perturbation after j such four-fold iterations. 

We wish to convert this to 

d ~ j  = F(dyj-l). (4.15) 

The sequence is 

where d r y  and d r ?  correspond to d y j  and d?;._l. In order to evaluate f ,  we must 

solve for the perturbed collision time 6 + d&. We can do this by using the collision 

criteria ql = 0 and Eq. (2.3), 

to solve for d& corresponding to a perturbation dFp. In particluar, we have 
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from linearizing Fig. 4.20 and solving for dc .  The new. map F(dx J, duJ, dxb, dvb) is 

now linearized about dy = 0. Then, the coordinates are translated to q's and p's 

using 

Further, we set dql = 0 and dpl = -dp2 to ensure, respectively, that the particles 

collide and that energy is conserved. Finally, this leads us to 

where 

The eigenvalues of M are 

These are plotted in Fig. 4.8. Since the Poincark section is an area-preserving map, 

the product of the eigenvalues is 1 for all w. The only way for the fixed point to be 

stable (that is, to have the magnitude of both eigenvalues less than or equal to  1) is 

for e* to be a complex conjugate pair of magnitude 1. This is the case for the plateau 

regions in Fig. 4.8. The complementary unstable ranges of w are shown as shaded in 

Fig. 4.7, where we see good agreement with the destruction of the periodic regions 
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Figure 4.8: Magnitude of eigenvalues vs. the spring constant. 

of phase space. As stated previously, there are several fixed-points that appear for 

w < 7, so the shading is only shown for w > 7, where the only fixed point present is 

the one we are interested in. For w < 1, the point in phase space is no longer a fixed 

point, since the amplitude of the oscillator is larger than 2 (the length of the loop), 

which would brake up the sequence Eq. (4.13) by introducing new collisions. 

4.4 Energy Density 

As mentioned in Ch. 2, the true energy density is equal to E in the stiff-spring limit 

but is only of E in the free particle limit. By calculating 

where E is the energy per particle, we will have a measure of which 

in for a particular E .  In Fig. 4.9, we can see that there is a transition 

regime we are 

region around 
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Figure 4.9: The ratio of the true energy density to E for a 99 particle reservoir system. 

E = 1 separating the two limits. The total energy of the system can be attributed to 

three different sources. In the stiff-spring limit, $ of the total comes from the kinetic 

energy of the free particles, $ from the kinetic energy of the bound particles, and 5 
from the potential energy of the bound particles. In the weak-spring limit ( E  -+ co) 

the potential energy contribution becomes negligible. This leads to a,  = $ in this 

limit and a. = 1 in the opposite limit where the potential energy is not restricted. 

From Fig. 4.9 we see the value of a is slightly greater than 1 in the stiff-spring 

limit, which may be attributed to the temperature dependence of K .  This causes the 

average temperature of the lattice to be larger than the average of the two reservoirs, 

Tm 
This quantity a plays a role in our calculation when we wish to know the tem- 

perature of a periodic chain, because in this case we specify the energy via the initial 

conditions not the temperature. Rewriting Eq. (4.29) using the definition of E in 

Eq. (2.2), we have 
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4.5 Collision Rate 

The collision rate also shows a transition region that divides the two asymptotic limits. 

The definition of the collision rate per particle is 

where T is the typical time between collisions and each collision takes place between 

2 particles. In order to  determine the asymptotic limits we need to estimate T .  

In the stiff-spring limit of E -+ 0, with a free and a bound particle originally at 

their respective origins, the position of the collision is determined by the amplitude 

of the oscillator. That is, since the oscillator's deviation from equilibrium is small, 

due to the strong spring, we can assume that a typical collision also takes place 

near the equilibrium position of the oscillator. We can estimate the time between 

such collisions as the time it takes the free particle to travel from its lattice site to 

the bound particles lattice site, and back. To do this we make use of the collision 

definition Eq. (2.4) 

where vj is the velocity of the free particle, and the time, 7, includes both the time 

to travel from the origin to the collision and back. We have chosen particle i to be 

a free particle and particle i + 1 to be a bound particle so vf is a positive quantity, 

and from equipartition of energy we have vj = a. This leads to a collision rate of 

Ro = &/4 in the stiff-spring limit. 

We now approximate R,, the collision rate in the E 4 cc limit. The bound 

particle behaves like a free particle, vf = -vb x &, thus 

This leads to a value of R, = 4 9 2 .  

We would like to remove the E dependence present in the limiting values in the 

form of a. Since it is E and not T, that we specify in the closed system, we define 

the reduced collision rate R as 
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Figure 4.10: Reduced collision rate per particle for a 98 particle periodic ring. 

where we made use of Eq. (4.30). This quantity is calculated for a 98 particle chain in 

Fig. 4.10 and shows two distinct limiting values. Using Eq. (4.34), we have estimates 

of R in the two limits 
1 1 

which can be seen to  agree well with the asymptotes in Fig. 4.10. The discrepancies 

are probably due to  the neglected correlations. 

4.6 Lyapunov Exponents 

The maximum Lyapunov Exponent, A, is a common indicator of the onset of chaos 

and would appear to  be an ideal candidate for a dynamical indicator of the transition 

to  normal thermal conductivity. X is defined as 
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where I? is the state vector describing the position of the system in phase space after 

evolving a time t from its initial state of ro or ro plus a small displacement SF . We 

see from this definition that X is a long time average measuring the exponential rate 

of separation of trajectories that are initially close in phase space. So, we have X > 0 

in a chaotic region and X = 0 in a stable region. However, the relevant time scales 

for the conduction of heat via a lattice are the time for a particle to  cross a lattice 

spacing or the transit time of soliton-like pulses across the lattice. These times are 

short, so the relevance of the long-time average X on its own is uncertain; but, it will 

be made clear in what follows. 

4.6.1 Calculation of A 

The Lyapunov exponent was calculated on a per collision basis, Xc,  which eliminates 

some technical problems with attempts to calculate the Lyapunov exponent on a per 

unit time basis, At .  The definition of Xc is 

where, in contrast to being measured after a time t in Eq. (4.37), is the state vector 

calculated after the nth collision. The calculation of the Lyapunov exponent for a map 

is outlined by Rasband [RasSO]. Briefly, one evolves both a fiducial and perturbed 

trajectory from just after one collision to  just after the next collision. Then, one 

renormalizes the perturbed trajectory with a scale factor. The maximum Lyapunov 

exponent is simply the sum of the log of these scales divided by the total number of 

collisions. 

To understand the details of this, we make use of the fact that, since the separation 

of the trajectories is small, the vector defined by the difference between the perturbed 

and fiducial state vectors is tangential to the system's evolution. One can think of 

the evolution of this perturbation as the evolution of a vector w in tangent space. We 

will start by addressing the calculation of At then Xc.  Consider Eq. (4.37) rewritten 

in terms of w, 
1 Ilw(t)ll At = lim -In-. 

t+oo t IIwo lI 
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To calculate At directly without periodic renormalization would lead to overflow errors 

on the computer. So, every ti we calculate a scale factor a; and use it to keep the size 

of w E wo. For example, 

That is, as long as we know the product of all the scale factors, we can always work 

back to the original unscaled w(t) .  In fact, at ti all that is required to find w(t;) is 

this product of the a's, 

and 
n  

IIw(tn) ll = n a n -  
i=l 

This leads us to a new definition for At ,  

1 
= n i c c  lim - x ( l n n i ) .  t 

n i=l 

If X is calculated on a per-collision basis, this becomes 

1 
Ac = lim - x ( 1 n  ai), 

nice n i=l 

where 
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Figure 4.11: Lyapunov exponent for 98 particle lattice with E = 9.375 and 16.667 as 
a function of system time to show the convergence. 

0.0022 

that is, wi is calculated at collision i rather than at time ti (the distinction is more 

than semantic, as will be explained). The calculation of Xc then is reduced to the 

accumulation of the log of the scale factors. To initiate the evolution, we need to 

define the perturbation. With the position of the perturbed and fiducial trajectories 

at collision i represented by rf; and I?,;, respectively, we make the identification 

- 
----- 

E = 16.667 - 
I 

E = 9.375 

and 

0.002 I I I 

0 2 x 1 0 ~  4x lo4 6 x l T .  8x104 1 x 1 0 ~  l . 2x lo5  
System ime 

where S is the initial perturbation. 

There are some elements of the implementation of this algorithm that need to  be 

made explicit. To arrive at an initial fiducial trajectory, we use the same technique 

developed for the calculation of K .  Typically, we evolve these generated coordinates 

for lo5 collisions per particle to eliminate transients, then we take the coordinate at 



CHAPTER 4. ANALYSIS OF THE DYNAMICS 64 

this time for rf 0. TO calculate the perturbation to add to the rfo to get r p o ,  we 

generate a vector of uniformly distributed random numbers. This vector, wo, is then 

scaled so llwoll = 6, where 5 is our prescribed perturbation (typically Then, 

the fiducial and perturbed trajectories are evolved forwards in time. We cannot take 

more than one step in our evolution before rescaling because of the possibility that 

the collisions that occurred for the fiducial traject'ory are not the ones that occurred 

for the perturbed trajectory (in this case the trajectories would not be topologically 

conjugate as required). The system is then evolved for enough collisions so that an 

accurate value for X can be assured (greater than lo6 collisions per particle) from 

plots such as Fig. 4.11. In fact, this figure is a "worst case" since these large E values 

converge the slowest. 

There is a problem with the scaling procedure as outlined in the algorithm since 

it doesn't include the constraint that the particles may not pass through each other. 

This is the major problem with the direct calculation of At .  Consider a pair of col- 

liding particles, the fiducial pair xj;(tf j),  xf;+l ( t j  j) and the perturbed pair x,;(t, j), 

~ , ; + ~ ( t ,  j), where the subscripts f and p represent fiducial and perturbed trajectories 

for particle i at  collision j. Since tf  # t, j, we must evolve the sooner of the two 

collisions forward to a common time tj. This will separate the colliding pair slightly. 

Now we must calculate the scale factor and renormalize. We adjust the perturbed 

coordinates of these colliding particles, 

It is clear that this procedure may well cause the scaled perturbed particles to pass 

through one another, since there is no restriction that 

where the term 1 is needed to account for the different origins. Since we know that 

Eq. (4.55) does apply for the fiducial coordinates, it is the second terms in Eq. (4.54) 

that cause the trouble. If particles i and i + 1 were in contact in both fiducial and 
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perturbed systems, then these terms would be equal and the scaling would simply be 

a translation of the pair. This is the case for the calculation of Xc, since we no longer 

need t o  evolve the trajectories to the same time. We have estimated At by calculating 

the product of Xc and the collision rate. This is an acceptable approximation as 

long as the difference between the time of collision for the perturbed and fiducial 

trajectories do not contribute on average. 

The numerical computation of X can be tricky. The computed value may appear 

to be converging to a limit, only to abruptly shift to another value. This sequence 

of apparent convergences may depend on the initial conditions, even within a single 

chaotic region of phase space. Only when the trajectory has sampled all of the avail- 

able phase space can we be sure of true convergence, and that is hard t o  ensure for 

a many-particle system. We have verified that our results for X are not sensitive to  

changes in the initial conditions, size of the displacement of the perturbed trajectory 

from the fiducial trajectory, and the type of norm used to measure the separation 

between trajectories. Table 4.1 presents some of this data. 

4.6.2 Results for the X calculation 

Like the energy density and the collision rate, the Lyapunov exponent displays a 

change in behaviour during the transition between the two limits. In Fig. 4.12 we 

see that Xc obeys a power law with a sharp change in slope. A power-law fit of the 

data for the two limits is also shown in the figure to emphasize the behaviour. At  

also obeys a power law, with some deviations; however, the sharp transition is not 

seen. Since the ratio of Xc and At is the collision rate and the collision rate displays 

two essentially constant regions separated by a transition region, one would expect 

to see some reflection of this in Fig. 4.12. The sharp change in slope for Xc is at  

approximately the same E as the start of the transition region in both Fig. 4.9 and 

4.10. While there is some evidence of a change of behaviour for At at E rn 10 (where 

the transition region ends), more data would be required to  confirm this. 

The data in Fig. 4.12 is for a 98-particle lattice, from which we infer the behaviour 

of an infinite lattice. To understand how the features in Fig. 4.12 depend on lattice 
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Table 4.1: Comparison of our values for X with N = 21 and w = 0.3 and 0.4. These 
values are the averages of 20 runs and the errors represent the standard deviation 
of the sample. (a) Uses the technique to generate initial conditions for long lattices, 
perturbation of 1 x 1 x lo4 transient collisions per particle, modulus used was 
d m .  (b) As (a) except uses the technique to generate initial conditions for short 
lattices. (c) As (a) except perturbation of 5 x  lop8. (d) As (a) except perturbation of 
2 ~ 1 0 - ~ .  (e) As (a) except 1x105 transient collisions per particle. (f)  As (a) except 
1x103 transient collisions per particle. (g) As (a) except different set of 20 initial 
conditions. (11) As (g) but modulus used was @. ( i )  As (g) but modulus used was 
fl 

size, we show some smaller lattices in Fig. 4.13. As expected, E, accurately predicts 

the transition in the 2 particle case, but for 98 particles the transition occurs at a 

smaller E .  Note also that for N > 2 there is a noticeable curvature which changes 

from convex to concave. This fea,ture is still noticeable for N = 98. 

An idea of Pettini and Landolfi [PL90] may explain the physical significance of the 

change of slope in Fig. 4.12. They studied the time to equipartition of two different 

coupled anharmonic oscillator systems and found that there is a change in scaling 

behaviour for A(&) beyond the energy density for which all stable regions of phase 

space disappear. The value of the energy density at which this strong stochasticity 

threshold, as they call it, occurs was later verified by an analytical technique [CLP95]. 

In the work of Pettini and Landolfi, the time scale for a system's approach to 
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equipartition was studied, and two time scales, one fast and one slow, were discov- 

ered. The slow approach to equipartition is characteristic of a system soon after the 

onset of chaos. In this case chaotic trajectories diffuse through phase space along the 

intersection of the homoclinic manifold of the large dimensional phase space, that is, 

along the threads of the so called Arnold web. As the energy density increased a tran- 

sition in the time scale to equipartition was observed. This is due to a breakdown of 

the Arnold web, so that now the system is able to diffuse freely ra.ther than just along 

the resonances. This transition in time scales is seen to occur at the same critical 

dimensionless energy as the strong stochasticity threshold. 

We have found very similar results for conductivity in the ding-a-ling system. In 

Fig. 4.12 there is a change in the power law dependence of our Lyapunov exponent 

calculations at the same dimensionless energy as a change in length scale for conver- 

gence to a Fourier law conductivity. Pettini and Landolfi found that for c > E ,  the 

time to reach equipartition for a system with only a few initially excited normal modes 

increased as a power law, while for E < E,  the tim,e was independent of E .  We have 

seen in Fig. 3.20 that the length scale needed to reach a Fourier law regime had both 

a power law and an approximately constant region. Note that the integrable limit 

for the ding-a-ling system is high energy, rather than low energy as in the systems 

studied by Pettini and Landolfi, so the dependence of the transition on energy density 

is reversed. 

Since the strong stochasticity threshold is meant to  indicate the destruction of 

all stable regions in our large dimensional phase space, it is instructive to look also 

at X for the 2 particle case in Fig. 4.13, since then we have Poincark sections that 

will confirm this. There is a lot of structure around E = E,, which corresponds to  the 

dimensionless energy of the destruction of the main fixed point. The solid vertical line 

at E, does indeed appear to separate different kinds of behaviour for the Lyapunov 

exponent. For larger N the transition E is smaller, converging to the value E, as 

shown in Fig. 4.12. Table 4.2 shows how this critical E varies with the chain length. 

In Ref. [CLP95] it is proven that the infinite chain limit of E, exists, and Table 4.2 

shows that in the ding-a-ling system it reaches quickly. 

In Fig. 4.12 we see that the transition in the value of ,G2 does coincide with the 
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N 1 critical E 

0.031 
0.055 
0.032 
0.042 

Table 4.2: Intersection of power-law fits of the Lyapunov exponent for short lattices. 

transition in A. In Ref. [PL90] it was stressed that equipartition is always reached if 

one waits long enough and that the transition is simply one of scale. For our system 

we find that the Fourier law should always be obeyed if one makes the lattice large 

enough. 
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Figure 4.12: Lyapunov exponent for 98-particle lattice, with X calculated both per 
unit time and per collision. For comparison, ji2 is replotted. 
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Figure 4.13: Lyapunov exponent, calculated per collision, for small lattices. 



Chapter 5 

Alternative Models 

Having achieved success at producing normal thermal conductivity with the ding-a- 

ling model, we considered other models. They are needed both to confirm and to ex- 

tend the range of possible observations about Fourier's law. It has been shown [JM89] 

that increasing the number of dimensions does not qualitatively affect the system's 

thermal properties, so higher dimensional systems were not investigated. Before 

proposing alternate models, we consider some of the essential features of the ding-a- 

ling model. 

The computational efficiency that the ding-a-ling model achieves is primarily due 

to the possibility of describing its time evolution as a map. Its success at demon- 

strating normal thermal conductivity can be attributed to the chaotic nature of the 

map. To see this normal behaviour in very short lattices, the model used stiff-springs 

to produce random phases between collisions and to minimize energy transport via 

solitary pulses. 

The goal in proposing a model was to  enhance the useful properties found in 

the ding-a-ling model while only eliminating aspects that were not essential to the 

physics. The most time consuming part of the evaluation of the ding-a-ling model 

was the calculation of the collisions times. This required the use of a rootsolver. The 

elimination of this step could improve the computational power of the routine by an 

order of magnitude. With this efficiency we may be able to extend the investigation of 

Fourier law conductivity to its limits, including the way it breaks down as the chaos 
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is reduced. For the ding-a-ling model, this is in the weak-spring limit, where it is 

difficult to get accurate asymptotic values of K ,  as shown by Fig. 3.15. 

5.1 The Linear Plus Complex Oscillator Model 

The linear plus complex oscillator (LPCO) lattice is similar to the ding-a-ling in that it 

is a chain of free and oscillatory particles. However, the oscillators are highly idealized, 

having both real and imaginary momentum components but with a fixed position. The 

reason for having the oscillators fixed was to make this model computationally more 

efficient than the ding-a-ling model, since it allowed for the calculation of the collision 

times without the need for the evaluation of a root involving a transcendental function. 

The lack of a variable position lead to the addition of an imaginary component of the 

momentum so the oscillators still contributed one degree of freedom (a 2-d phase 

space) just like the oscillators in the successful ding-a-ling model. 

In this system the free particles travel from lattice site to lattice site and collide 

elastically so as to exchange real momenta. The fact that the collisions occur only 

at the lattice sites makes this model somewhat similar to  the stiff-spring limit of the 

ding-a-ling model. Unlike the ding-a-ling model the free particles can pass through 

the bound particles, so they can travel throughout the lattice. (This is a necessity 

since the oscillator may have a momentum in the same direction as the free particle 

at  the time of collision but the bound particle must remain fixed to  its lattice site.) 

The free particles do not collide with each other but only with bound particles. The 

momenta of the bound particles can be described by the following, 

for rj < t 5 rj+l, where we have used the same notation as used in Ch. 2, A:j and 

$O. 2.7 are the amplitude and phase of the oscillations of particle i between collision j 

and j $1. The calculation of the collision time 7;. is performed by choosing the value 

of the earliest free particle collision with a bound particle lattice site. The details of 

the execution of the map are worked out in the next section for the two-particle case. 

The generalization to large lattices should be obvious. 
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5.1.1 Phase Space 

It is necessary that the model have a chaotic limit. To examine this we make use 

of the method of Poincark sections, as we did in Sect. 4.3 for the ding-a-ling model. 

The implementation of this technique requires the definition of the map for a loop 

containing one free and one bound particle. 

The equations of motion for the system between collisions are 

and 

where 1 is the length of the loop and At is the time between collisions. These equations 

apply between collisions. We will need some notation to distinguish between events 

before and after the collisions, 

q ( t ;  f 6) = q;, (5.4) 

where q is some measured quantity and ti the time of collision i. The collisions are 

assumed to be elastic so the following conditions hold: 

where p~ = % ( p )  and pl = S(p) .  This leads to the mapping, 

where we have 
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(a) UJ = 0.10 

Figure 5.1: Phase space of the LPCO system showing the reduction of chaos in the 
weak-spring limit. 
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(a) w = 2.00 

Figure 5.2: Phase space of the LPCO system showing that total chaos is achieved in 
the stiff-spring limit but (like the ding-a-ling system) the model has small periodic 
regions that appear at larger w.  These periodic regions appear in (b) for vf = 1 and 
+- r, 0 
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Note that,  q$ is the phase in complex space for the momentum p just after collision 

i ,  while $I is the phase just before collision i. Also, a will be constant between the 

collisions. So we have 

i 
-1 PI+ - i+l id = tan - 4 -  - -. 

p i +  I.;+ I 
If we use Eq. (5.1 1) to eliminate Ati we have 10 variables p ~ * ,  PI*, vj*, a*, &. We 

will use Eq. (5.5) to  choose either + or -, that is, evaluate just before or just after 

the collision. This will reduce the possible number of variables further to  5. Then we 

will use Eq. (5.6) to Eq. (5.14) to reduce this further to 3 variables. Finally, energy 

conservation will allow us t o  reduce it to the 2 variables needed to define a Poincarir 

section. 

Start with Eq. (5.9) and use Eq. (5.5) with (Eq. (5.6) and Eq. (5.8) to get rid of 

- - [ ( .  v ~ + ) ~  + ( i  a+ sin - + &+ . ) ) 2 ] '  

v.f + l 

Start from Eq. (5.10) and eliminate p~ and pr as above, 

= t a n  (3 sin (F + ,+)) . 
v;+ ~ f + l  

Start from Eq. (5.5) and use Eq. (5.7) to give 

- - a: cos (+ + ,+) . 
~f + l 



CHAPTER 5.  ALTERNATIVE MODELS 

Dropping the plus signs gives these equations that apply just after the collision, 

oi sin (G + q+) 
4i.l = t a n  [ v; ) 
.;" = ai cos (g + * j  . 

Since the energy is conserved in the collision, we have 

This allows us to reduce the number of variables to 2 and leaves us with a useful map. 

So, using variables evaluated just after the collision gives 

( 2 ~  - (v;)~) ' sin (f$ + 9') 
#i+l = tan-1 (5.27) 

V> 

where we have used Eq. (5.26) with Eq. (5.22) then Eq. (5.23). 

We have implemented Eq. (5.27) and Eq. (5.28) for a few values of w as shown 

in Fig. 5.1 and Fig. 5.2. The important result is that,  as seen in Fig. 5.2(a), there is 

total chaos for large w and that,  as seen in Fig. 5.l(a), the chaos will be reduced by 

lowering w.  The fact that there is a small periodic region for w = 3 (see Fig. 5.2(b)) 

should not cause concern since similar-sized periodic regions were found for large w 

in the two particle ding-a-ling loop (see Fig. 4.5). For all larger w values examined, 

the chaos appears total. 
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5.1.2 Establishing a stable thermal gradient 

As with the ding-a-ling model, we place the LPCO system between two reservoirs 

at different temperatures and measure the flux J and the temperature gradient V T .  

From this, we wish to calculate the thermal conductivity K = - JlOT. 

The first step is to set up the reservoirs. The obvious choice is to use the same 

reservoirs as used in the ding-a-ling lattice (Eq. (3.1)). In Fig. 5.3, we see the results 

of this choice of reservoir. We have used a lattice of 50 free and 50 bound parti- 

cles between two reservoirs both set to a temperature of 2. The resulting average 

momentum distribution of all free particles (Fig. 5.3(a)) is unusual in that, per colli- 

sion, the distribution corresponds to a temperature of approximately 4. The correct 

distribution for a particle with T = 2 is shown with a solid line. The distribution 

per unit time is even more peculiar, displaying a strongly singular behaviour at the 

origin. This heavy weighting of slow velocities for the free particles results from the 

fixed distance between collisions, since these slow particles take a long time to travel 

across the lattice spacing. In the ding-a-ling lattice, a slow particle would likely be 

met by an oscillator with a large amplitude, thus reducing its lifetime. The average 

momentum distributions for the two components of the bound particles also show an 

unusual temperature dependence. These were only calculated on a per-collision basis. 

The energy distribution of the oscillators was also calculated, and while it shows this 

same distribution per unit time as per collision, that distribution also corresponds 

approximately to a temperature of 4 instead of 2. 

From Fig. 5.3, we see that the real and imaginary momenta of the bound particles 

and the momentum of the free particles have the same distribution per collision, but 

their temperature is not the same as the reservoir's. To address this, we recognized 

that the momentum distribution of the free particles per collision was Gaussian. Be- 

cause this is the distribution leaving the bound particles, we should perhaps use a 

Gaussian for the reservoirs since they should interact with the free particles as the 

bound particles do. Also, we realized the average temperature of a particle leaving 

our previous reservoirs was 2T (due to the weighting of the faster particles) and that 

this was exactly what we were seeing with our equilibrium system temperature of 4. 
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(a)Free particle momentum distribution 

I 
--t-- per collision - 
--X-- per unit time - 
- exp ( -v2 /2~ ) /  J*, for T = 2 - 

- 
- 
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(b)Bound particle momentum distribution per collision 

- 
- -X- - Imaginary component - 
- exp(-zr2/2~)/  J1TT/2, for T = 2 - 

- 
- 

0 1 2 3  4 5  6 7 8 9 10 
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(c)Energy distribution 

--I--- per collision - 
--X-- per unit time 

exp(-E/T)/T, for T = 2 
- 
- 

0 1 2 3  4 5  6 7 8 9 10 
Energy 

Figure 5 . 3 :  The energy and momentum distributions for the particles in the lattice. 
The reservoirs are the same as in the ding-a-ling model (Ivl exp(v2/2T))/T. 
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These two points lead us to try a pure Maxwell velocity distribution 

for our reservoirs. We have recalculated the system's momentum and energy distri- 

butions in Fig. 5.4 using reservoirs with this velocity distribution. Now we have all 

the momenta in equilibrium with each other and the reservoirs. 

For an explanation as to why the original reservoirs are failing to establish the 

correct equilibrium distribution for the system, we must look at  how the distribution 

is derived. The process we are trying to simulate when the end particle collides with 

the lattice boundary is the collision of a system particle with a member of a large col- 

lection of particle in equilibrium at  a temperature T (the reservoir). Conceptually, the 

Maxwell velocity distribution for the particles inside the 1-d reservoir at  temperature 

T is 
1 

P(v)dv cx exp(--v2/~)dv.  
2 

(5.30) 

This is the probability of finding a particle with a velocity between v and v + dv 

per unit length of the reservoir. When an interaction between the system and the 

reservoir occurs the particle is absorbed by the reservoir and ejected back into the 

system with the first collision it has in the reservoir. It is the velocity distribution 

of these reservoir particles that we use as our reservoir distributions. Consider only 

those reservoir particles within dv of v. They move a distance vdt in time dt. Since 

we assume the particles in the reservoir are uniformly distributed in space, then the 

probability a particle would collide with the position of the system particle 

time dt is v P ( v )  per unit time. When we normalize this to a unit probability 

Eq. (3.1) 

Since this is the probability of a collision with a reservoir particle of velocity 

in the 

we get 

(5.31) 

v,  and 

the collision is elastic, it is also the probability distribution for the system particle 

ejected back into the system. This argument works fine for the ding-a-ling lattice. 

However, in the LPCO system, the free particles that enter the reservoir expect to  

interact with an ensemble of bound complex oscillators. In this way we are treating 
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the reservoir as a large version of the lattice in equilibrium at T = 2. These bound 

particles are in an equilibrium distribution (Eq. (5.30)) but they don't move so they 

are all equally likely to interact with the free particle. That is, the probabilities are 

not weighted by their velocities. Thus the correct probability distribution to use to 

simulate a reservoir is the normalized equilibrium distribution Eq. (5.29). 

With this modified reservoir distribution in place, we were able to produce thermal 

gradients and calculate energy fluxes; however, there were large fluctuations. This 

slow convergence was found to be due to the singular momentum distribution for 

the free particles. These slow particles were "frozen out" of the system for long 

periods. Longer run time improved the probability of getting yet slower particles in 

the system. Adding a noise floor to the velocities allowed the data to  converge. From 

this converged data, we calculated a value for the thermal conductivity that appeared 

to  be independent of length; however, we could not call it normal. The values of K we 

found were dependent on the level of noise we added. In order to get convergence, the 

dynamical system had to be distorted in a fashion that made the results unrelated to 

a physical system, and we do not present the results. 

In defining the LPCO model, we attempted to achieve some gain in computational 

efficiency over the ding-a-ling model by recognizing that in the stiff-spring limit the 

oscillator was approximately always at its lattice site. What we did not appreciate was 

the crucial role even these small oscillations play in the resulting velocity distribution 

of the free particle. In a ding-a-ling system if the free particle leaves a bound particle 

(after a collision) with a very small velocity it will likely have a second collision, with 

the same bound particle, that increases its speed. This means the probability that a 

free  article has a velocity within dv of 0 leaving a bound particle, in a ding-a-ling 

model, is 0. This is true even in the stiff-spring limit where the oscillations are small. 

In an LPCO system, a free particle leaving a bound particle never collides with the 

same bound particle in the subsequent collision. If it leaves with a small velocity, it 

will keep it. As a result, the probability of having a v within dv of 0 is finite. In fact, 

the velocity distribution is the same as the velocity distribution of the bound particle 

it just collided with (Gaussian). 

So the LPCO model is not analogous t o  the stiff-spring ding-a-ling. The fixed 
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(a)Free particle momentum distribution 
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Figure 5.4: The energy and momentum distributions for the particles in the lattice. 
The reservoirs are Gaussian e x p ( v 2 / 2 ~ ) /  
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positions of the "oscillators" are an over-simplification that leads to the pathological 

behaviour requiring custom reservoirs to establish stability. We should expect to  be 

able to couple an LPCO system to a reservoir (at some T )  of any kind of particles 

and have the lattice achieve equilibrium at the same T as the reservoir. Since this 

is not the case, it would appear that the LPCO model is not a physical system and 

should be abandoned. 

5.2 Linearized Ding-a-ling 

Recognizing that the LPCO model was too idealized, we suggest an alternative model. 

This model retains the simplicity of the ding-a-ling model but offers the possibility 

of greater computational efficiency without eliminating the position distribution of 

the bound particles to achieve this efficiency. In this model we replace the harmonic 

oscillators with constant forces that oppose motion away from the particles', origin. In 

terms of the potential energy we are replacing a parabolic potential with a piece-wise 

linear potential so we call the model the linearized ding-a-ling (LD). The Hamiltonian 

N 1  
H = (-v: + ailxil + hard point core, 

i=l 2 

where a; equals a for even i and zero for odd i and where all particles have unit mass. 

The dimensionless energy density is defined as E = E / a &  (we will set lo = 1). The 

average energy of the potential term for the bound particle is 

Since equipartition of energy predicts the average kinetic energy of the free and bound 

particles is i T ,  the average energy of a free bound pair is T. We then have a definition 

of E in terms of temperature, 
T' 

&I-. 

a 
Comparing this with Eq. (2.2), we see that the coefficient of 314 has been changed 

to 1. This will be the "true" energy density in the small-amplitude limit, where the 

oscillator will be allowed to sample all of its range of oscillation. 
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- - - - - _ _ _ _  
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Figure 5.5: Comparison of the displacement for a harmonic oscillator and for the 
piece-wise linear potential used in the LD model. 

As with the ding-a-ling model, between collisions the system is analytic. The 

evolution of the position of the particles between collision j and j + 1 is 

f u ( t ) a  ( ( t  - ~j + $) mod 7 / 2 1 2  + up, ( ( t  - + $) mod 7-12) + xpj i even 
x ; ( t )  = 

0 
v $ ( t  - TJ + xi j  i odd 

for rj < t 5 rj+l, 

(5.35) 

where q5 is the phase, 7 is the period, and u ( t )  is a step function that is defined as 

( t  - T, + 4) mod 7 1 2  < 7 1 2  
u ( t )  = 

( t  - ~j + 4) mod 7 1 2  > 7 1 2  

Although the equation of motion for the bound particle is more complicated than that 

for a harmonic oscillator, it looks very similar with the lobes of the sinusoid replaced 

by parts of a parabola. In Fig. 5.5, we compare the two motions. The collision 

criterion is still Eq. (2.4). This collision criterion demonstrates the advantage of the 

LD model. Since it no longer contains a trigonometric function, and does not require 

a root solver to evaluate the time of the collision. To demonstrate the proposed 
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Figure 5.6: The collision function as a function of time. The dashed lines represent 
the maximum extension of the bound particle. 

technique for solution, consider Fig. 5.6, which shows the collision criterion as the 

zero of 
0 r ( t )  = x i ( t i j )  - X ~ + ~ ( ~ P , )  - 1. (5.37) 

The amplitude of the bound particle is A = v2/2a, where v is the velocity at  the ori- 

gin. From this, we can establish when the oscillator is in range of the free particle (so 

in the Fig. 5.6). Once this is done, we solve for the zero using the curyent parabola; 

if that zero occurs after the oscillator passes through its origin (reversing the acceler- 

ation), we then use the subsequent parabola (sl and s2 mark these transitions). The 

collision event is found after a maximum of 2 functional evaluations, and the function 

itself is a polynomial, which is far more computationally efficient than evaluating a 

trigonometric function, as was needed in the ding-a-ling model. 

With the LD model, we have addressed the issue of improved computational effi- 

ciency while avoiding the problems encountered by the fixed bound particle positions 

of the LPCO system. The only concern might be the effect of the discontinuous slope 

of the potential. Of course, the collisions themselves contributed effectively infinite 
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potentials in the ding-a-ling model without causing any problems, so it seems reason- 

able to assume that these discontinuities will not be an issue in terms of establishing 

the thermal properties of the model. 



Chapter 6 

Conclusion 

We have shown that,  although CFVV were premature in their declaration, the ding- 

a-ling system does, indeed, obey Fourier's law. In fact, this Fourier law behaviour is 

very robust: the system shows normal thermal conduction for all parameter ranges, 

as long as the lattice is long enough. This indicates that, though normal thermal 

conductivity has appeared elusive in the past, this may perhaps be explained if the 

size of the lattices needed for the particular model studied were too large to compute. 

The computational efficiency and relatively short lattices needed in the ding-a-ling 

model allowed us to  expose its full range of thermal dynamics. 

It has been rather difficult to quantify normal thermal conductivity. Initial claims 

of normal thermal conductivity in both the ding-a-ling and diatomic Toda lattice have 

subsequently been shown to be premature. This indicates that the method of verifica- 

tion of this Fourier behaviour is important. Typically, we assume that the value of the 

thermal conductivity K should be finite and independent of the length of the chain. 

This intensive property applies in the thermodynamic limit of large system size. By 

extrapolating resistivity ( l l n )  to infinite chains (l/n -+ 0),  we were able to show 

that the conductivity should not diverge for any finite dimensionless energy, E. By 

performing this operation for a large range of parameters ( E  and N), we validated 

the values of E for which this extrapolation was credible. Beyond simply confirming 

Fourier-law behaviour, investigated the length scale for which normal thermal con- 

ductivity was reached. This was done using the square of the normalized slope of 
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the resistivity, f i 2 ,  as a function of E .  From ,G2(e), we found that for stiff-springs, the 

length of chain Ns needed for normal thermal conductivity was insensitive to e. For 

weak springs, N6 was strongly dependent on E ,  obeying a power law. To get a normal 

thermal conductivity required longer and longer lattices for larger c.  This p2 data 

therefore attempts to quantify what is meant by the thermodynamic limit. 

The approach of the conductivity to its infinite-lattice limit is non-monotonic. 

This escaped the notice of CFVV and caused us a great deal of concern at first, 

since we were not expecting it. The literature is clear that the main culprit in the 

failures of attempts to verify Fourier's law has been the transport of energy via solitary 

pulses. This produces infinite thermal conductivity, so one would expect that, as one 

approaches the asymptotic normal thermal conductivity, it would be from above. 

This is not the case for the ding-a-ling model (or for the diatomic Toda model, for 

that matter). It is an interesting phenomenon whose explanation is not yet fully 

understood. 

We have gained a better understanding of the ding-a-ling model. Its simplicity 

allowed us to  make largely accurate predictions of certain quantities. Assuming a 

linear temperature dependence for the thermal conductivity, we predicted the shape 

of the temperature profile. We estimated the correct slope for K ( T )  from a fit using 

the predicted form of the temperature profile. The fi scaling of the conductivity in 

the stiff-spring limit was also verified. This approximation reduces the lattice to a 

single free particle between two reservoirs at  the local temperatures. The randomness 

present, as a result of the strong chaos, allows the substitution of bound particles 

with reservoirs and the stiff springs allow for an accurate estimate of the free particles 

transit time. A similar approach worked well for estimates of the collision rate in the 

two limits, stiff- and weak-spring. The probabilistic approach was again successful at  

estimating the mean free path length of the soliton-like pulses. In our examination of 

the phase space, there were two notable fixed points that were analytically explored. 

The value of E for the destruction of the main fixed point in the CFVV Poincark 

sections was confirmed. The secondary fixed point had a periodic stability that could 

be predicted from linear stability analysis. 

A dominant theme running throughout this work is the distinction between the 
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stiff- and weak-spring limits. The reduced collision rate and the ratio of the dimen- 

sionless and actual energy densities most clearly show the extent of these asymptotic 

limits and the range of the transition region. In particular, they established that the 

changes in length scale of the thermal conductivity, K ,  coincide with the onset of the 

stiff-spring limit. The onset of the weak-spring limit may also coincide with some in- 

teresting physics; however, this regime is more difficult to  explore and most measured 

quantities have large error bars. 

The graph of the log of the Lyapunov exponent versus the log of E shows a change 

in slope a t  the same value of E, as does the length scale p 2 .  The importance of 

this result, besides being another dynamical measure that predicts changes in the 

conductivity of the system, is that it allows us to  make contact with a theoretical 

basis for an understanding of the role of chaos in thermal conductivity. By drawing 

analogies with the work of Pettini and Landolfi [PL90], we suggest that there are 

differences between the thermal conductivity of a dynamical system that is weakly 

chaotic and one that is totally chaotic. Thermal conductivity across the lattice is 

affected when the trajectories in phase space are allowed to travel across as well as 

along the resonances. 

We found no transition to infinite thermal conductivity, as all our calculations 

show that Fourier's law will be obeyed for a large-enough system. As E + cc, the 

length of the system that is needed to approximate Fourier's law also diverges to  

infinity. Since E -+ cc is the integrable limit of the free particle gas, it would seem 

that the transition from finite to infinite thermal conductivity depends on the presence 

or absence of chaos. 
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