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ABSTRACT

©
i

Sampling on two 6ccasions is a va.luablé sampling scheme when observations are taken across
two time points, and the correlation between these observations is high. Under this frame-
work, estimates are based on a weighted average of a two-phase sampling estimator and an
estimator from an independent random sample. There has been recent work in the litera-
ture on resampling methods such as the bootstrap and the jackknife in developing variance
estimators under a two—phé.se sampling scheme. Resampling variance estimators have oper-
ational advantages over linearisation variance estimators. We extend these developments to
sampling on two occasions. An attempt to use new linearisation variance estimators which
make more complete use of the data available is made. Through simulation, a study of the

unconditional properties of the different estimators is performed.
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‘Chapter 1

Introduction

Sampling on two occasions is a valuable sampling scheme when observations are taken across
two time points, and the correlation between these observations is high. Sen (1973) uses
the methodology to estimate the kill of waterfowl per hunter in Ontario in 1968-1969. He
noticed that the kill of waterfowl per hunter and the number of days hunted in the previous
year, 1967-1968, were correlated with the desired estimate, kill of waterfowl in 1968-1969.
Sampling on two occasions is also commonly used in the forest industry, often to estimate
volume and growth. Before this sampling scheme was introduced in the forestry industry,
perthanent sample plots were frequently used. The term permanent indicates the same plots
were sampled across all t\;,me points. It was eventually realized, however, when measurements
over time are highly correlated, it is better to remeasure only a fraction of plots, and then
with the rema.ini.ng resources, establish an independent random sample of new plots. This
is the general framework of sampling on two occasions, often termed sampling, with partial
replacement within the forest industry. Typically one characteristic is being observed, and
the successive occasions are over time.

The general procedure involves taking an initial sample s; at time one of size n; and
observing some characteristic denoted z,,...,z,,. It should be noted that these may be
vector-valued measurements, though we focus on the scalar case. At time 2, a sub-sample

s2 C s of size ny is taken and the same characteristic is again measured and denoted



.
Y1, - - Yn,. Also at time two, an independent random sample s3 of size n3 is taken from the
entire population and the same characteristic is again observed to obtain yn,4+1,-. ., ¥ny4n,-
Note that the units in s; are matched with the same units in s; while units in s3 are
unmatched, and z and y denote the value of the measured characteristic at times 1 and 2
respectively. That is, s; is the set of units measured only at time 1, s; is the set of units
;11easured at both time 1 and time 2, and s3 is the set of units measured only at time 2.
Thus, s; and s; form a two-phase sample over times 1 and 2, while s3 is an independent
sample from the population at time 2. Of interest is to estimate Y, the population mean of

the characteristic at time 2. There are two natural estimates available:
Jir = ¥2 + b(Z1 - I2) and 93 = Liesy Y/ 13,

where 7, and I, are the means of the z, on the first phase sample s; and second phase
sample s3, §, and {3 are the means of the y units in s; and independent random sample
s3. and the regression coefficient b is calculated based on observations in s;. Since these
estimates givé independent information, typically a weighted average of the estimates is

used,

¥

~lr

Yo = WiYr + w2y3 (1.1)

where wy + wy = 1. One could alternatively use the ratio estimator. for example, in replace

of the regression estimator in the above formula as follows:
Jo = wiyr + w2y (1.2)

where §, = (§2/Z2)%,. For simplicity of notation we will often restrict our comment to ..
However, a similar development is available for 3], in each case.
Cochran (1977, p.346) obtains the optimal estimate of Y by weighting the two indepen-

dent estimates inversely as their variances. That is, use

_ V(§i)"? _ V(ga)~!
W= vy e w2 = ey

n (1.1). We could then use the estimated weights

- =1
v(Jir ) and 4 v(§3) (1.3)

U:’] = = N PO Wy = Jr— TN o1
v(gi-) 7t + v(g3) 7! v(g, )" + v(y3) !



where v(yi,) and v(¥3) are consistent estimates of V(§-) and V(g3). This is/the approach
which is often used in the forest industry (see Schreuder, 1987; Ware and Cunia, 1‘962).

In large surv\eys with many measured characteristics, fixed weights may be operationally
more desirable to avoid different weightiﬁg for different characteristics. Cochran (1977,
p. 351) suggests using fixed weights when sampling on more than two occasions to avoid
updating the weights w; and w,. These fixed weights may be simple fractions based on
sample sizes.

The main purpose of this thesis is to consider variance estimation in the context of

sampling on two occasions. We will consider separately the two cases of fixed weights and

weights estimated as in (1.3). In the fixed weight case the variance is
V(i) = wiV(Gr) + wiV(§s)

and the question becomes which estimators of V({i;) and V(§3) should be used. Rao and
Sitter (1995) and Sitter (1997) derive new linearisation variance estimators and jackknife
variance estimators for both the ratio and the regression estirx;ator in the context of two-
phase sampling. Resampling variance estimators have operational advantages over lineari-
sation variances estimators. There is evidence that thev may also have better conditional
properties. We consider these as well as the usual estimate of variance for y;, as given in
Sukhatme & Sukhatme (1970, p.212) to estimate V(gl,).. The usual estimate of variance
for a simple mean, refer to Cochran (1977, p.23), based on s3 is typically used to estimate
V(y3). We consider an alternative choice.

In the tase where weights are estimated as in (1.3), it can be easily shown that treating
the weights as fixed will yield consistent variance estimates. Scott (1984), Ware and Cunia
(1962), and Bickford (1963) review sampling with partial replacement when estimating
volume and growth in the forestr'y setting, and-all suggest using an estimator suggested by
Meier (1953) in a paper on variance estimation of weighted means. Both of these variance
estimators can be written as a function of w; given in (1.3) and thus their performance
depends on the choice of v(%,) and v(y3). Schreuder (1987) considers various estimates
v(yr) including a grouped jackknife and a bootstrap, apd uses these in Meier’s variance

estimator. He concludes that though the jackknife variance estimator or the bootstrap

3



variance estimator may be preferred for skewed populations and small sample sizes, Meier’s &
original estimator is generally preferal;le to the jackknife and the bootstr?p when considering
bias and efficiency. |

We consider various estimators for V() and V(¥3), and compare the one-term lineari-
sation variance estimator to Meier’s variance estimator. An attempt to use new linearisation
estimators which make more complete use of the data available will be made. Through sim-

ulation, a study of the unconditional properties of the different estimators will be performed.



Chapter 2
Two-phase gampling

In this chapter we review results in two-phase sampling. This will facilitate both the nota-
tional and conceptual understanding of sampling on two occasions. Rao and Sitter (1995)
and Sitter (1997) develop variance estimators for the ratio and regression estimators for-
two-phase sampling, also see Dorfman (1994). Simulation studies showed the newly devel-
oped variance estimators to have better conditional and unconditional properties than the

simple linearisation variance estimator given in Sukhatmé & Sukhatme (1970, p.212).

2.1 Two-phase sampling: a review

Under a single-phase sampling framework, the usual ratio and regression estimators require
knowledge of the population parameter X. This information may not be available, and
- thus two-phase sa.mpling.may be employed. In this type of sampling, we first take a large
first-phase sample s; of size n; and observe some auxiliary variable z, which is cheaper or
easier to obtain. Note that the vana& of interest y is not measured in this preliminary
sample. We can now calculate a simple arithmetic mean and get a good estimate, z;, of X,
the population mean. Next a subsample s, of size n; is taken without replacement from s;
and both z and the variable of interest y are measured. With the information observed in
both phases of the sampling procedure, we can now estimate Y, the population mean for

the y variables, usin} either a ratio or a regression estimator. The ratio estimator for Y is



3

gifen by §, = (§2/Z2)%, where Z; = Y, Zi/ny, §2 = i, Vi/n2 and &2 = T, Ti/n2.
The regression estimator is given by 37;, = ¥, + b(Z, ~ T;) where b is the least squares
regression coefficient of y; on z; computed from the second-phase sample. Typically.this
type of sampling is used when the cost ;fﬁciency is improved by taking this large preliminary

sample of a correlated variable z, as opposed to simply taking a larger sample of variate y.

2.2 Variance estimators for the ratio estimator

The standard formula for a design-consistent linearisation variance estimator as given in

Sukhatme & Sukhatme (1970, p.170) for the two-phase sampling ratio estimator, %, =

B

1 1 h 1 Jl
’Uo(‘!?,.) = (Tl_z - n—l') S?I + (;1- - N) 53 (21)

where s?l = Eicsz d?/("? - 1)7 53 = Zicsz(yi _’y~2)2/(n2 - 1)7 d; = ¥i — in a'n’d R = g/j In

this formulation, s is used to estimate S = 3~ (v — Y)?/(N — 1). Rao and Sitter (1995)

(§2/Z2)Z,, is

exploit the identity

: S2 = S} +2RSp: + R*SZ, (2.2)

where Sp; is the population covariance of d; and z; and R = Y /X, and propose a new
" linearisation variance estimator which makes fuller use of the data than the formula given in
equation (2.1). To do this, they note that using 5: to estimate 53 is equivalent to estimating
(2.2) term-by-term using 2, sq4; = Liesy iz —Z2)/(n2 — 1), sgz = Y ies, (Ti— z7)%/(n2-1)
and R as estimates of 53, Sp,, 52 and R. That is (2.1) can be rewritten as :
w(i) = (:_Z-H 33+§(%-%) Rsae + (%_Al) B3, (23)
If instead 531 = Yies, (2i— 1) )2/(ny—1) is used to estimate S2, all z measurements observed

in the sampling procedure are used. Noting the identity given above and using (2.1) we find

_ 1 1 1 1 . )
v1(@r) (—— —) s§+ (—n—— —]—V—) (s§+2de¢ +R25§1)

ny M 1 -
_ 1 1 2 1 1 - 1 1 N2 2 -
= <n2 N)sd+2(nl N)dez+<nl - N)Rsrl (2.4)

6



which is the proposed linearisation estimator given by Rao and Sitter (1995).

A jackknife variance estimator was also developed by Rao and Sitter (1995). In their
delete-one-unit approach, g is recalculated with the 7** element removed for each jes,
giving the jackknife estimate 7:(5). N;)tejt'haf-'g':(j)v = ,[:I?;(j)/fg(j)]il(j) where §2(7), Z2(5)
and Z;(j) are simple means calculated with the j** element removed. In order to calculate

-th

these means, however, we must know if the j** element is in both the first phase and second

phase sample, or the first phase sample exclusively. Thus,

ni;—~zr -

~ it -1
() = _m _
2 J€S1 — S2,
Ed

#2
: ’ ny2—y, .
. -1 J€5s1
¥2(7) = ™

v2 Jj€sy — Sz,

and z,(j) = (m1Z; — z;)/(ny — 1) for all jes;. By applying the usual jackknife formula
4

> () - )? (2.5)

Jesy

vy(¥) = n

n — 1
1
the variance of the n; jackknife estimates is calculated. Note that the above formula ignores

finite population corrections.

Rao and Sitter (1995) also give a linearised version of this jackknife variance estimator
which they derive by approximating (2.5) for large n;. The linearised jackknife variance
estimator was found to be

2\ 2 2 - 2
_ . I S I = Sdr “n S
vLy(9-) = (-:E——) ) <—_—) R—= 4+ R? 2, (2.6)
2
again ignoring finite population corrections. It is interesting to note that this estimator uses
s2, as in Rao and Sitter’s new linearisation variance estimator given in (2.4). They also

combine the above estimator with the appropriate finite population corrections to give a

linearised jackknife variance estimator

— 2 —
o _ (T 1 1Y 5 (ﬂ)(l 1Y - 1 1\ 7202
v2(y,) = <i_2) <n2 N) Sg+2 ) \a ~ —1\7) Rsyz + <n—l- - W) R%s;,.(2.7)



A simulation study was done to investigate the performance of the proposed estimators
relative to the standard linearisation estimator in (2.1). A finite population was created
using various simple models. The conditional and unconditional properties of the new
estimators were studied varying p, the correlation between the auxiliary variable z and the
variable of interest y, and C; = 0./puz, the coefficient of variation of the z’s. Rao and Sitter
found that both v; and v, are more ef‘ficient than vg for p > 0.8 and large C,. Further,
conditional on %,/Z2, v2 and vy both performed better in tracking the conditional MSE
than vo and v,. They argue that conditioning on .‘?1/52 is defensible since Z; is based on a
large sample and thus is close to X, which makes Z,/%, approximately ancillary.

2.3 Variance estimators for the regression estimator N
Sitter (1997) extends the work discussed above to the regression estimator. This estimator
is also commonly used in estimating the population mean, Y, under a two-phase sampling
framework. Sitter develops both a new linearisation variance estimator and a jackknife vari-
ance estimator and investigates their_ relative efficiency and conditional properties through

a simulation study.

The simple linear regression estimator for two-phase sampling is
Gir = Y2 + (21 - 12) (2.8)

where §,,Z2 and Z, are as defined previously, and b = s,m/sﬁ2 where sz, = 3., (7 -
22)(yi — §2)/(n2 — 1) and 2, = ¥,,,.(z; — Z2)*/(ny — 1). Cochran (1977, p.343) gives the
standard linearisation variance estimators of §,,

vo(gy) = (L - i) 3+ (;11_ - %) L (2.9)

n M 1
where d; = y; — §2 — b(z: — Z2), 3 = Diesy d?/(nz—1)and 2, = T, , (v - 52)*/(nz - 1).
Recall in developing the new linearisation variance estimator for the ratio estimator, Rao

and Sitter (1995) used the identity given in (2.2). Sitter (1997) notes a similar relationship

§? = S} 4+ B%S2, (2.10)

v



where B = §;,/52%, S and §? are the population variances of d; and z;. As explained in
the previous section, we have two possible estimates of S2, sgz or sgl. The latter makes

more complete use of the data, and thus Sitter suggests using

2 2 p2.2
Sy, = Sg + b°sz,

in (2.9). Thus Sitter’s proposed linearisation variance estimator is

1 1 1 1
v(gy) = (— - —> 5+ (n— - N) (s3+ 52531)

1

<¥{1§_717) s§+(nl—l-%>b2s§1, (2.11)
refer also to Dorfman (1994). Sitter then goes on to develop the jackknife variance estimator,
again using a delete-one-unit approach. We calculate 41,(5) = %2(J) + b(7)(21(7) — Z2(7))
for each jes;, where Z1(j), Z2(j), and y2(j) are as defined in Section 2.2 and

b — (z;—-Z2)d
b(j) — nz—l)s,z l—kJ)

b j€sy — Sz,

J€sy

4
where kJ = 1/na+(z;—%2)*/{(n2—1)s2,}. We can then apply the general jackknife formula

o) = Y G - ) (2.12)

M e

Sitter also finds the linearised version of his jackknife variance estimator. He notes for

large n3,
- W) =g =] (*—1) -5 (14 alg) des
—b (fﬁ) jesy — sz,

where a; = {na(z; — Z2)(Z) ~ Z2)}/{(n2 = 1)s2,}. The linearised version of vy(Yr) with |

finite population corrections is then

L 2 ) .
= (Lo D)@ (LoLypa [ 5% Lz - 22)
v y(¥ir) = (n2 .N) sy + ( N)b sz, t {( } Z W + H2.13)

n; ng — 1)832 jesa
where
9 1 dzaj b dia;(z; — %)
R = ={— 2 + I ] . 2.14
HQ{HQE(I—ICJ) n1~—1j(>::2 (l—kJ) ( )



A simulation study was used to examine the conditional and unconditional properties of
the new variance estimators versus the simple linearisation estimator given in (2.9). As in
the previous simulation study discussed, a finite population was created from simple models,
i and values of p, the correlation of z and y, and C;, the coefficient of variation of the z’s,
~ were varied. Results from the simulation study were similar to those found for the ratio
simulation study. That is, v;(§;,) and the linearised jackknife variance estimator were found
to be considerably more efficient than vo(§,) for p > 0.8 and large C;. Unconditionally,
vy had the smallest MSE. Conditional properties were studied by conditioning on the size
of Z; — Z,. Sitter found that the jackknife variance estimator and its linearised version

performed better in tracking the conditional MSE than vy or v; when Z; — Z, was small or

large.

s
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Chapter 3 )

Sampling on two occasions

Sampling on two occasions, also called successive sampling or sampling with partial replace-
ment, is considered to be an efficient sampling scheme particularly by those in the forest
industry. In the past, the forest industry sampled the same plots, termed permanent sample
plots, to evaluate volume and growth. It was eventually realized, however, there is a gain
in precision when the measurements taken over time are highly correlated if only a portion
of permanent plots are remeasured and an additional random sample from the population
is taken at the second sampling occasion. Scott (1984) explains that based on his own ex-
perience in the northeastern United States, the correlation between measurements is strong
enough to warrant the use of sampling with partial replacement even with 25 years between
surveys.

Since the estimator we will be primarily discussing is a linear combination of a regression
(or ratio) estimator from a two-phase sample and a mgan from an independent simple
random sample, we expect that by extending the work that was discussed in Chapter 2, we
can develop more efficient variance estimators than those presently in use. Typically the
variance estimator used in the forestry literature under sampling with par'tia.l replacement is
based on that suggested by Meier (1953). Schreuder (1987) has done some work in variafice
estimation when sampling with partial replacement, looking in particular at resampi'mg

methods to get improved variance estimators.

11
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Figure 3.1: Means generated from sampling on two occasions

Time: 1 9

— — 53 (73)

3.1 Sampling on two occasions: the procedure and notation

Typically in this sampling scheme the same characteristic is being measured at each occasion.
Note that more than one characteristic could potentially be observed at each time point
giving rise to vector-valued observations, though we focus on the scalar case. The successive
sampling occasions are typically over time. Consider, for example, measurements being
taken at two time points. We will use z for first occasion (or first time point) measurements,
and y for second occasion measurements. The procedure is then as follows. At time one,
a sample s; of size n, is taken without replacement and z,,...,z,, are measured. At the
second occasion, a subsample s; of size n, from the n; units is taken without replaéement
and ry,...,Tn, are noted and y,, ..., Yo, are measured for the n; matched units. Also at the
second occasion an independent random sample s3 of size n3 is taken without replacement
from the entire population generating the sample y;,...,yn,. Figure 3.1 gives a pictorial
representation of the sampling scheme. S represents the finite population of units. The
means in parentheses are those obtained from the indicated sample, s;,s2 or s3: 7 =
Doiesy Ti/ My T2 = Loies, Ti/ M2y Y2 = Ty, ¥i/m2 and §3 = 3., i/ na.

We are interested in estimating Y, the population mean at time 2. Note from the
above picture we essentially have a two-phase sample, the top arm of the picture, and an

independent random sample at the second time point, the bottom arm. We can find two

12



independent estimates of Y. From the two-phase sample we could use the ratio estimator, .

yr = (§2/Z2)Z;1, or the regression estimator,
Uir = §2 + b(Z, — I2), (3.1)

where b = s,ryz/siz with Sz, = 3, (Ti — Z2)(¥i — §2)/(n2 ~ 1) and 352 = Diesy (T —
77)%/(ny—1). From the independent random sample we have the mean 3 as defined above.

To estimate Y consider a weighted average of the latter two estimates:

~lr

77 = wif + wods. ‘ (3.2)

with w; + w,; = 1. There are essentially two cases to consider here: (i) we could consider
these weights to be fixed constants based, for instance, on the relative sample sizes of s;, s,
and s3; or (ii) we could consider the optimal weights ‘

V(gi,)™! : _ V(§s)~!
V) + VT 2 YT ) 1 V()T (33)

w =

given in Cochran (p.346, 1977) and estimate them to get w; and w; by replacing V'(#i,) and

V(y3) by sample estimates v(#-) and v(y3). That is, we could use

) v(§ir ) !

wy = and Wy = v(%s)” (3.4)

v(gir) "t + v(gs) ! v(gir)7t + o(g3)7t

Meier (1953) explains that although , and 1, are not the maximum likelihood weights,
they proi'ide an a.sym;itotica.lly efficient estimate of Y when both n; and n3 are large, the
estimates of Y are independently and normally distributed with mean Y and uncommon
variances, and sample variance estimates are unbiased.

Note: One could alternatively use ¥, in place of i, in (3.2) to give

-

s U, = wiyr + wals. (3.5)

Then use the weights specified above in (3.3) replacing V(i) by V'(g,).

13
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3.2 Previous work in variance estimation

Consider the estimate given in (3.2). Since the weighted estimates in this expression are

independent, in the case of fixed, or constant, weights we can write
V(g = wiV(r) +wiV(g). (3.6)

This can be estimated by v(§7) = w?v(#i,) + w2v(y3), where v(i,;) and v(y3) are sample
variance estimates. Typically practitioners use vg(¥;-) given in equation (2.9) fc;r the first
term (or vo(¥,) from equation (2.1) if ¥, is being used), and v3(¥3) = (1/n3 — I/N)sjs for
the second term.

If we use estimated weights as in (3.4), but treat them as if they were fixed as in (3.6).

we get

Vg = ( (i) )2V(371)+< o(ga)” )2‘/(?3) (3.7)
S \o(E) 4 v(gs) ! ’ v(Gir) ™ + v(P3) !

and its sample estimate

o) = v(§ir) ! 2-v(_ )+ v(g3)~! 2v(')
Yol = @ @) T T ) et T

T ) (@) (38)

One can show by taking a one-term Taylor Series expansion (see Appendix A) that even
though (3.8) is obtained by treating the weights as fixed, it is in fact a consistent estimator
of V(#!7) for estimated weights. -

Meier (1953) and Cochran and Carroll (1953) discuss variance estimation of a weighted
mean under weighting inversely as the estimated variance, such as w; and w; given above.
The variance formula developed by Meier is commonly used in the forestry literature. Meier
(1953) uses a second order Taylor series expansion in an attempt to get a better variance
estimator. It should be noted Meier’s estimator is not a standard linearisation variance
estimator due to the assumptions made in its development. Applying Meier’'s technique
to the estin;ator in (3.2), the following assumptions are made. The estimates ¥, and ¥3

are independent and normally distributed with mean Y, and variances 0? = V(4%ir) and

H

14
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02 = V(§3). The estimates s = v(§;,) and s3 = v(§3) are unbiased and independent

of each other and of §i, and §3. Moreover, Meier assumes (n; — 1)s?/0? ~ X(zn,-l) and
(n3 — 1)s3/0? ~ x(zns_l). Using these assumptions and a second order Taylor expansion

Meier gives an approximately unbiased estimate of V(§7),

) = e 100 ()
om(¥y) = SR [1+4w1w2 (ml i (3.9)

where m; = n; — 1, my = n3 — 1, and @, and w, are as given in (3.4). Assuming the
assumptions made hold, this estimate of V(") contains bias of order O(1/n2 + 1/n}).

Schreuder (1987) was interested in finding improved variance estimators for the estimator
given in (3.2) with w; and w; as defined in (3.3). To estimate V(y;,) Schreuder uses the
standard linearisation variance estimator given in (2.9). Since ¥; is a linear estimator,
V(93) is estimated using the simple formula v3(§3) = s2, /n3, assuming the finite population
correction is negligible, where 333 = Y iesy (Ui — §3)?/(n3 — 1). He uses these in Meier’s
variance estimator given in (3.9) and calls it the classical method. Schreuder then considers
alternate variance estimators of V(#;,) to use instead in (3.9).

He obtains a jackknife variance estimator using a grouped jackknife procedure. Inggead
of deleting a single observation, a group of n;/n, units (using integer values) was deleted
from random groupings of the sample of n; units in the set s,, and one sample unit was -
deleted from the set s; which corresponds to one of the first phase sample units deleted in
the random group of size n)/n;. There will be n, jackknife estimates in total. Using these

jackknife estimates, Schreuder applies the general jackknife formula

_ ny— 1 ¢ )
v (i) Z(yzr ~ ir)%. (3.10)
He then deﬁnes
~J _ vy(gr) 7! -7 _ va(ga)~?
1 7 v (0r) " THva(ga) T and W2 = ) T+ T

and uses these weights in Meier’s variance estimator given in equation (3.9). This gives
Schreuder’s jackknife variance estimator,

1 1

1
7Ty = 1 + 44 <—~ —)} 3.11
VT, (Fu) TG T e [ + 410y 3 - + m ¢ )

15



A bootstrap variance estimator was also developed by Schreuder (1987). A similar
approach was used to that used in developing the jackknife variance estimator; new weights
were calculated now with vg(#i-) and then substituted back into the variance formula given
in (3.9). A simulation study was used taking samples from forest plots from the northeastern
United States. Efficiency, estimation bias and confidence limit coverage were investigated
in order to determine which estimators are preferable. They found their bootstrap and
jackknife variance estimators to be more efficient in terms of mean sqliared error than the
classical variance estimator given by Meier (1953) only for highly skewed populations. The
classical estimator was found to be the most stable, although the jackknife coverage rates

were found to be the best among all variance estimators.

16



Chapter 4

Development of variance estimators

1

4.1 Fixed weights: w; and wy

4.1.1 Linearisation variance estimator

With fixed weights the linearisation estimator is easily obtained. Consider the estimator
given in (3.2). Since the two-phase sample and the random sample on the second occasion

are independent, we find for fixed w;, and w:

V(gr) = wiV(g) + wiV(d).

w

We could use the linearisation estimator given in Chapter 2 equation (2.9) to estimate
V(9ir). The variance component resulting from the independent random sample on the
second occasion, V(§3), may be estimated using the variance formula for a mean from a

simple random sample. Thus one possible estimator is:

1 1 1 1 1 1
=lry 0,02 2 2 2 2
‘U[)(yw)—wl I:(n—z‘—;;) Sd+<’n—l‘—F> SW] +w2 [(;;——F) ‘Sy:\] | (41)

where 33 = Z:us; d?/("’?—l)* 337 = Ztcs;(yi—g2)2/(n2_1)~ and ‘933 = Zlug(y!-g3)2/(n3—l)'
Note that d, = y, — §2 — b(z, — ;) and b is calculated based on observations from the second

phase of the two-phase sample. We can use the identity 52 = § + B?S? and (4.1) simplifies

1 1 1 1 1 1
vo(!)g) = w? [(n—2 - V) 33 + (;1—1- -~ —7\—]> b2s§2] + w% [(7—1; - ?> 33;] (4.2)

17
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where s2. = ¥, . (zi — £2)*/(n2 ~ 1).
As discussed in Chapter 2, other variance estimators are possible which make fuller use
of the data. Recall Sitter (1997) used the.identity mentioned above to obtain an alternative

lineafisation variance estimator which makes fuller use of the data, see (2.11). We substitute -

.

this estimate in for v(gi,), and find

L,\
1 1 1 1 1 \1 )
bl(gg) = wf [(;2- - —f\—’) 83 + (;l‘l' - 37) bzsi,] + w% [(n—3 - 533] (43)

where s2. = Y., (zi — £1)%/(n1 ~ 1). Based on Sitter’s simulation results, we expect that
v1(9!7) will be more efficient than vo(§'7).

We may also consider various estimators for 53 in V(ys) = (1/n3 — 1/N)53 which make
fuller use of the y-values. For example, we could use all y-values measured in both s; and

$3 to estimate 53 to give

iy 1 1 11 11
vz(.?/fu) = wl2 [(;2— - N) sg + <; - 7\—;) b"’sf,l] + w% [(-TE - N) sfmJ (4.4)

where sfm =3 syuss (Ui —423)*/(n2+n3—1) and §o3 = 3,5, ¥i/(n2+ n3). However, as Rao
and Sitter (1997) discussed and showed in a different context through a simulation study,
positive covariances between terms in variance estimators may be introduced in attempts
to make fuller use of the data in this way. This can result in inflating the mean squared
error of the variance estimator. For example in (4.4) above, if 5323 is positively correlated
with the first term in the square brackets, the M SE of this estimator could be larger than
that for. v (7).

If we instead consider the estimate for Y which uses the ratio estimator instead of the
regression estimator, given in (3.5), and again assume w; and w, are fixed, we can follow a
parallel argument to that given above using results discussed in Chapter 2. We may simply

use the linearisation estimator given in (2.3) to estimate V(%,) to get

i 2 i__l_)J (i_i)‘ (L i)“zz]
vo(yw) wl [(n2 N <d + 2 nl Av del' + nl - ‘V R 51'2
1 1

where 35 = Zics; d?/(ng - 1) with d, = y; - RI" Sdr; = Ztcs; d,’(I,‘ - ‘7‘:2)/(‘"'2 ~ 1) and

18



Recall Rao and Sitter (1995) suggested an alternative linearisation variance estimator
for V(4,) given in (2.4) which makes more complete use of the data. Using this estimator

we find
1 1 1 1 - /1 1 -
_r _ !2 o 2 - _ = - - _ 2.2
ni) = v an N)sd+2(n1 N)de’+\n1 N)Rs"]
1 1
2
+u () %) N (46)

2 could be replaced by sfm.

Also Sy,

4.1.2 Jackknife variance estimator

A jackknife variance estimator may also be found for the fixed weight case. Deleting the ;

'

unit will effect the estimator differently depending on which set s;, sz or s3 the unit is in.

We first rewrite equation (3.2):
o = wifz+b(F1 — £2)] + waba. (4.7)
We now develop the following notation:

nlfl—r -
_ o1t Jes

I Je€ss,

nyIas—~1 .

z2(j) = na-l .
Zq Je(81 N s§) U s3.
n2y-y; .
BGy={ 7 I
Y2 Je(s1 N s5) U s3,
nays—-y .
ya(7) = T Jess

Y3 Jj€s1 U sa,

and
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b— (z,—%2)d
b(]) - (n2-1 LF 1-k,

b Je(s1 N s§) U s3

J€s2

where d; = y; — §2 — b(z, — £;) and k; = 1/ny + (2, — 22)%/{(n2 - 1)s2,}.
Let

77() = wide(d) + w2ga(5)

= wi[y2(7) + 0(7)(Z1(7) - Z2(5))] + w2¥s(J).-

Ignoring finite population corrections, we may apply the usual jackknife formula
w@)= 3 (@) - g™ (4.8)
, Jes1Usy
and v;(§') is the jackknife variance estimator. Note that no bias correction factor is included
m\(4.8). Since we are jackknifing over two sets, s; and s3. the usual correction factor cannot
be qappljed.

We note for large n,

—wyb (%) ‘ j€sy
3711;(]) - 375; = - [b (f#]—___i"Tl) + g{; (1 + -(—I_?F,_))] jéSz
—w? (2,{3;_1711) J€s3

where a; = {ny(z; — 22)(Z; — £3)}/{(n2 — 1)s2,}.

We use the above and (4.8) to obtain

2 p242 2 S s d¥(z; — %)
_iry . 2|54 Sz 25ys 2 I1 —Z2 s\ 2
v ()= wi |2+ 2| 4wl L i — L 4+ R 4.9
HYw) 1[112 n } 2713 l((n2‘1)332)ﬂ232 (l—k])z (4.9)
where
2uw? | 1 d’a b d;a;(z; — ;)
R = 11 = 177 195\ %y 1 )
n2 [n2ﬂ212(1—k]')+n1—1ﬂ232 (l—k])

If we include the appropriate finite population corrections we find

o 11 11 11
l'LJ(yfu) = ,w12 [(‘172‘ - :\—,> 53 + (E - T) bzsil] + w% (-Tg - —/\—) 533
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71— %2 d}(z; - 22)

o (W)E%T—T’LR (4.10)
d*(z; — 7,

) jes 21 : ) + R

_Ir I, — I
= vl(yw) + w? ((n2 — 1)32
F

where vy s indicates that this is a linearised jackknife variance estimator
We can follow a parallel argument to develop a jackknife variance estimator for the

estimator given in equation (3.5). Firstly we can write the jackknife estimate as
(4.11)

<

i 2(7) . s
w = Wy - — T + w ’
Yo (7) 15207) 1(7) + w2ys(J7)

(7), 92(7) and §3(;) are as defined previously. The general jackknifeformula

where f](j), )

gives
wigy) = Y @) -g)™ (4.12)
J€s1Us3
For large n,, we find
'—‘lL]R (_J_fl;—-lx j€31
. L r oz 2103 [ v - Rz .
9.,(7) =49 —W [R (I,f,_:’) + ;;8)) (ylnz_f)] J€s2
—wy (.1__.!:13__—13) Jj€ss.
We assume Z1(7)/Z2(j) = Z1/Z2. use the above result and equation (4.12) to find
R2s2 = R 7.\ 2 o2 s2
es(7,) = wi [—"‘+2(f—‘>—ﬁ+ (I—‘) b R (4.13)
n T2 n z2 n2 n3

If we include the appropriate finite populatioﬁ corrections we obtain the linearised jackknife

éstimator,
. = — R?s 2 — — - — 1R — —_—-—
?'LJ(yw) wl \nl N + wl :22 n N sd.rz + wl 52 n, 1\/
(4.14)

1 ].
2 2
.+_ u/2 (—3 —_ :_..) Syg'

We note that the jackknife uses s to estimate the variance of g3 in both %7 and ¢,
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( 4.2 Estimated weights: w; and w,

4.2.1 Linearisation variance estimator

For the case in which weights are estimated using (3.4), a linearisation variance estimator
may again be obtained. We will develop a general formula for a linearisation variance
estimator which will cover estimators of this form. The notation used in the following
development is taken from Rao and Sitter (1997). These estimators can be written as
a function of means, ie. 6 = g(Z3,W2,0; ), estimating the population parameter § =
g(Z,W,V ), where Z is the population mean of z , W is the population mean of w =
(u T,v T)T and V is the population mean of v where v is observed for the entire first-
phase sample, u is observed only on the second-phase sample and z is observed only on the
independent random sample at time 2. For example, consider the estimator j, = w1y, + w293
with w; and wg fixed. Then using the notation defined above ¥, = Z;, Wy = (d2,7;) =
(¥2,Z2) and Z3 = ¥3, and the estimator can now be written as yj;, = wl‘—:‘éi‘l + wyz;.

We can now write 8 = g(Z + AZ3, W + A2,V + ATy ) = h(AZ3, Aby, AT, )
where AZy = 23 — Z , Ay = w2 — W , and A%, = 6, — V . By a first order Taylor

expansion of 6 = h(AZ3, Mg, ATy ) around the point (0,0,0) , we find
6-60=(02)Th 4 (Aw; )Th ™+ (A5, TRV

where A () = h (1)(0,0,0) , h ™) = h (*)(0,0,0) and h (¥ = h (¥)(0,0,0) denote the
vectors of derivatives with respect to AZ; , AW, and AT, with lengths m, k +{ and [

respectively. We can now get a general formula for the mean squared error of 8.

k4l k4! l l
MSE(6) = RO E(ADrti,, ) + 3 Y hg”)hg",’E(mwmw,)
a=1 4’2 B=1p3"=1
m m k+1 1
+ 3 Y WO E(Az Az ) 123 Y AR E(B#200015)
y=1,4"=] a=13=1
k+l m - I m
+ 23 S ARTE( A B Az,) +2 3 Y YR E(A 50 2,)
a=1~=1 A=1~=1
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Since the two-phase sample and the independent random sample on the second phase are

independent, we may rewrite the above as follows:

k+l k+1 | 1
MSE@) = 33 AR E(Awalid) + Y 3 WA E(Av500,,)
a=1,'= B=1g"=1
m m L k4l
+ XX RO E(Azs,07,0) +2 3 3 RIS E(A 0 Atg)
y=1."= a=1 (=1
m I m
+ Z Z AR E(Aya) E(Dz3,) + 23 3 bYW E(AD15)E(AZs,).
a=1~=1 B=1~=1

Note that E(Aw,) = E(A%3) = E(AZ3,) = 0 and the above simplifies to

k4l k4! (w) 1 i ( o)
MSE($ z:l 2 h(w)h S.c 62: z ha’ Suas

a=la =1 ‘=1

m k+ .

z z z)h(Z)S Z z (W)h(gv)swa,vﬁ (4.15)

where Swaa"'svﬁﬁ" S, and Swa,w@ are covariances of characteristics w, and w_/, vg and
vy, 24 and z v, and w, and v respectively. If we replace the covariance terms in equation

(4.15) by their sample covariances, we obtain the following linearisation variance estimator

) k+l k+l ) l L
w@) = 33 MR+ T 3 R
°=14'21 =g
k41
+ Z z RORDs 423 z h(“’)h(”)swa s (4.16)
1,'=1 a=1 (=1

Note that s,4,3 must be estimated based on the second-phase sample only.
To illustrate, let us return to the example previously discussed. For the estimator ] we

have worked out the vector notation necessary to apply the above general formula. Recall

6 = g(23,%2,01)=9(Z + Az, W + Aw3,V + A6y )

U _ _ .
= wy—t +wezs .

U2

U+ Ay, - _ _ )
= wlm(v +A01)+’LU2(Z+A23)

= h(AZzZ;3, A, AT )
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We calculate the partial derivatives necessary to apply the general M SE formula given
wlg and hg") = wlg._Applymg

in equation (4.15) and find A{*) = wy, A" = w, AW
the formula we obtain
MSE(é) E(AﬁgAﬁD 2w%%E(Aﬁ2A52) + wy ——'—E(szsz)
U? J
+ wszE(Avlévl) + wiE(AZ3AZ) + 2uw? 7 E(8a00)
,U?
2wl — 72 E(AvA0y).
% ignore finite population corrections and evaluate the expectations to

2 52
Rz%J + wit
| ng

Weuse R = ¢ =
find
[ §2 2 2
Vi(gy) = wi ———2R5’”+R2§£+R2i+23§_’1_2
| 2 n2 n2 n ny
[ g2 2 _ pc2 52
S +R2§£+2R(5;¢ RSI)]+w§—y
52

— 2y Yd
- " _712 n
g2
= v |24 RSdI R2S] +wit,
| 72 n n n3
Though we have applied the general formula to an estimator with fixed weights, (4.15)
To illustrate

would also apply to the estimator 77 or § with weights w;, and w, estimated as in (3.4),

provided the estimator w; of w; can be expressed as a function of means
and li)2 =1- wlv
We note that g, =

consider g,’; = W) Yir + WoY3 Where
-1
93

UO(glr)
vo(¥ir )~ T +vs(§3) 1

lbl =
where vo(§-) is as given in (2.9) and v3(§3) = (1/n3 —~ 1/N)s?
Y2+ b(Z, — Z2) can be written as a function of means if the regression coefficient, b, can be

b =
L
z2

~,
 Yiesy(Ti = Z2) (9 — F2)
B Diesy (Ti — T2)?
s Liesy (i — 22)yi
" Pies, (Ti = 12)2
Uy ~ I3y

written as a function of means. We use some simple algebra to find

¥y — 22
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¥ a

Thus b is in fact a function of means, where 4; = 3, z;yi/nz and 9, = 3., z?/n,. The
“variance estimators vo(%;,) and v3(¥3) can be written as functions of means using similar
arguments and algebraic manipulation as shown above. This implies that 7 can be written
as a function of means, and is therefore in the class of estimators to which the general
formula given in (4.15) may be applied. Note that all of the discussed estimators for V(3 )
and V(§3) can be written as functions of means. However, 7" with estimated weights will
be a function of many means, and thus one would be hesitant to use this procedure. That
said, the fact that this general method does apply allows for theoretical developments with
the jackknife.

To use the jackknife procedure we need only be aware that the estimator of interest
6 can be written as a function of means. That is, the jackknife methodology is correct
asymptotically for parameters g that may be written in this form. It is unnecessary to write
it as such and expand. We may simply implement the delete-one-unit jackknife method to
obtain the jackknife estimates, é(j), and apply the general formula ’

w(@) = 3 (6G)-9)” (4.17)

7€81Us3
4.2.2 Jackknife variance estimator

We now develop a general formula for a jackknife variance estimator for the case of estimated

weights. Consider the vector notation given in the previous section where we ¢laimed we

can write the estimator § = g(Z,w,%) . Asin ?heaiﬁxed g’veiggt case, the effect of deleting a
. o P

point will effect these means differently depending on which set, s;,s2, or s3 the point was

originally in. We can write

wWo -W; .
22 20 jesy
Wy Je(s N s§) U sa,

and

25



zZ3 (7)) =

We can now write the jackknife estimate 6(7) = g(£ (). (§),® (j)). To get the general

formula we also note

0 ](slﬂsg)Us&J
and
(2; ~Z3) jess
AZ3 (J)=23(j)— 23 = na-l
0 €51
Thus
8() = g(23+ AZ3 (j), 2+ A2 (j), 51 + Ay (5))

= h(Azs (j), A®2 (§), A% (7))
By a Taylor expansion of (j) = h(AZ3 (§), Az (j), Ay (j)) around (0,0,0) we find
)-8 = (Azs ()Th +(aw, )R ™ + (a8, G)TRY  (418)
and we may now use the jackknife formula

v = 3 () -6)%. (4.19)

Jes1Uss

Let s33 = 57 U s3. Then using the above formula and (4.18) weobtain

k41 k4l
v(f) = ‘Z Z REORY ST Atga(5) D, (5) + Z Z Ry TRGD S Ddya(5)A04:(5)
15'=1 Jes13 B= 1@ =1 7es13
m m k41
+ 3 Z BB S B25,(j)B2,, () +2 3 ‘Z REORY 3T Atbaa(j)A014(7)
y=1,'= Jes13 a=1 g=1 Jens
k4l m . ) { m )
+ 23 STRMIRD YT Awga() D) + 23 Y ASRE 3T Avip()AZa(5)
a=1~=1 STLIE B=1~=1 €313
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where A" is the derivative of h with respect to the components of AW, (j) evaluated

at (0,0,0) .

similarly for izgu)

and A{¥). As in the linearisation variance estimator the

covariance terms between the independent random sample and the double sample are zero

and the above simplifies to

N

§

k4l k+!
vy(0) = E Z AR . Da(4) A%y (5)
15’21 Je813
+ E E h ”)h (w) E Avm(])ALm (7)
B=15"'=1 Je€s13
+ 3 S AR Y Az(5)025,(5)
y=14"'2 LU
K+ 1
+ 23 ST AR ST Awaa(s)Avia(5) (4.20)
a=18=1 jesya

We now turn to the example we have been following, and will use the above to reproduce

the variance estimator given in equation (4.13). That is, we will find the jackknife variance

estimator for the estimate given in equation (3.5). We use the same vector notation specified

previously and we find

» iz + Auz(J))
7] = e aN
()= wn (B R ) (5 + B0 + walzs + A2()).
We calculate partial derivatives and find iz(lv) = wy R, ﬁ(lu') = wl%. il(zw) = —wlR% and

il(lz) = w, where R =

vy(6)

This simplifies to

vy(¥y,)

%. Applying the formula given in equation (4.20) we find

2
T . _ .
wi (:E_D Y- Duy(j)Dua(5) - 2wiR Y Dug(§) D))
€813 PLES K
. = 2 N
w2 i? Gl) S Ab()ARG) + Wi Y AR ()AHG)

Jesy3 J€313

w} Y An(i)an) + ik (:J S Adg()A0(0)

Jes3 J€313

20t (2) ¥ 8u0)500)

Jeos

) 2<f1)282
= wyl|—
I n2

7Y
AL

-\ 2
N
+wfR2(1_:—;)

—2w2R< )S_r!
z3/) ng
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2 = = 2 2
-8 - (ZT1\ S -2 [Z1\ S S
+ wiR*E 4 2wfR(_—) 2V _ow?R? (-_—) =z 4wt
L3

T2/ M r2/ M n3
=\ 2 .2 - 2 2
I K - I\ Sdr o S
= w? __) 544 gu2R? (_) Sdr 2 R2TH 4200
r2 ng _ I2/ M n n3

which is identical to the estimator given in equation (4.13).
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Chapter 5

Simulation study

This chapter describes simulation studies to compare the efficiencies of the discussed vari-
ance estimators, relative to the estimator typically used. Two simulation studies will be
performed: one for the fixed weight case, and one for the case in which the weights are

estimated.

5.1 Models and parameter settings

We need to generate a set of z and y characteristics, where r represents the characteristic
at time 1 and y at time 2. We follow a similar design for the study as used in Rao and
Sitter (1995) and Sitter (1997). We will create a finite population of size N=16.000. We

use models of the following general form
yi = a + Bz, + vz} + zie, (5.1

where ¢; ~ N(0, 02) are independent of z, ~ gamma(g, k), and vary our choice of a, 3,9, k. 7.
and a. Since the z; ~ gamma(g,h), we know y,; = gh and 02 = gh?. The coefficient of
variation of the z’s is then C;=0./u, = 1/,/g. We consider two values of C, 1.0 and V2.
Recall that the method of sampling on two occasions relies on the fact that r and y, the
measurements of the characteristic over two time-points, are highly correlated. Therefore,

we ?1 to vary our choice in p=corr(z;,y;). We use p=0.7 and p=0.85.
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Table 5.1: 22 possible models

No. |81 ~ a | Model R
1) o} 0 0 |yi=¢
2y 1] 0 0 |yi=z,.+ € *
” 3) |0]01] 0 |y =01z2+¢ .
4) 1701] 0 |y =J:.+0.IJ:,2+6, *
5) 107 0 |05}y =16
6) 110 [03]y =1+ 7. *
7) {[0]0.1]05]y =01z2+ /1€
8) 1101105y =1,401z%+ /7.¢ ©

We need to discuss the choices for a, 8,7, and a. Since we will be investigating estimators
which use the linear regression estimator, as opposed to the ratio estimator, the choice of
a will not affect the results and so we set this parameter to 0 in all cases. For simplicity,
consider two levels for each remaining parameter; 3 is Q or 1,4 is 0 or 0.1 and a is 0 or 0.5.
There are 23 = 8 models to consider based on all combinations of these parameter settings.
see Table 5.1.

Note that models 1) and 5) are of no interest since this will produce 0 correlation
between r; and y,. Though models 7) and 8) are of some interest, we exclude them and
study simpler models. Models 2) and 4) present the basic linear model and the linear model
with a moderate size quadratic effect. Model 6) is aéa.in the basic linear model, but the
variance now depends on z. Model 3) represents a departure from linearity with only the
quadratic term plus error. Those mod:els which we will consider have been marked with a
“*" in Table 5.1, and are reproduced in Table 5.2.

For each of the 4 models chosen, we wish to run the simulation at C.=1and C, = V2,
and p = 0.85and p = 0.7. Thus there will be 2 x 2 = 4 simulation runs for each model. C,
dictates the setting of g, and p dictates the setting of o*>. To determine h, we set u,=100 for

models i) and ii) and u,=10 for models iii) and iv). See Appendix B for the development of
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Table 5.2: Models to be used in simulation

No. Model

i) Yi =T+ €

) Vi = i + /Z.6
i) Yi = 0.1:::,2 + €
)

Yi=%; + 0.117? + €

Cov(X,Y) and 0}, and the parameter values used in the 4 simulations for each model. We
give plots of 4 populations, one for each model with p = 0.85 and C; = /2, see Figure 5.1.
For each simulation, we create a finite population of size N = 16,000 and take B =
10,000 independent samples using sampling on two occasions with n; = 200,72 = 80 and
= 100. Scott (1984) discusses a forestry example applying sampling on two occasions
with the above sample sizes. In each iteration we calculate our estimate of Y using §", refer

0 (3.2). We can obtain the “true” mean square error of §.7 through simulation using
1 &,
MSE = 53 (3.p =~ Y, (52)
b=1

where gf;( 5 is the estimate §'7 obtained on the b'" simulation run and Y we calculate from
the finite population. For each of the variance estimators v, we find its simulated mean

square error using
B
MSE(v Z - MSE)? (5.3)

where v(%) is the variance estimate v from the b** simulation run. Since the finite population
is large relative to the sample sizes under investigation, we remove the finite popufation
corrections from all variance estimators. We report relative efficiencies of the variance
estimators using vo(77) as the standard That is, we report M SE(v)/M S E(vo) for each
of the variance estimates v ca.lculated

We also report the percent relative bias for each variance estimator, v. To calculate this
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Table 5.3: Percent relative bias: uw; = 0.2. w; = 0.8

rbias(ve ) ; rbias(r;) rbias{vy) rbiasivy ;) rbiasirc ;)
Co= 10 VI 110 V2 |10 V2|10 3 |10 2 |
p= My=zx4+c¢ —7
07 | 236 0981237 118 | 266 118 241 104 | 330 213
0.85 296 073 é 297 0.73 340 1.11 | 2.30 077 406 1.18%8
o= (i) y = 1+ VEc

0.7 147 0.26 1 148 027 196 061 | 1.59 043 | 278 |69 .

226 026 | 280 074 | 232 035 343 149

p= (W) y=0.117 +¢

0.7 1.37 0.86 125 0 64 156 1.10 1.20 051 ¢ 263 217
i i N

0.85 129 027 1.10 -0.05 ll 158 067 | 099 -0 29 256 1621

p= (lV)y=I+O.112+(

07 | 168 050157 071 | 92 114 154 060 ‘289 215!

| | i
0.85 l’ 1.66 0.33 ' 1.48 0.05 199 074 {138 -016 : 285 159

we use

B 5, R _ MSE
rbiasiv) = Lo=1t M/S?E S x 100. 5.4

5.2 Fixed weight simulation

For the fixed weight simulation we use three different weighting combinations: wy = 0.2 and
vy = 0.8, wy = w2 = 0.5. and v; = 0.8 and uw, = 0.2. These are chosen to represent the
three general cases of large weight on the double sample, equal weight on the double sample
and independent random sample. and small weight on the double sample. For these weights
we calculate vg(_zjf[). 1'1(_17‘1[). r;(’_z}f:,). l‘LJ(f],{:) and L‘J(f/f[) as presented in Chapter 4. Section
1. We report percent relative bias and relative efficiency of the variance estimators.

We first discuss percent relative bias of the estimates. see Tables 5.3 - 5.5. Note
to.t1.t2. vy and vy are vo( gl ). vi(gi). vl gl ). vrs(§17) and vy y'7). respectively. We note
relative bias of v is consistently the highest for weighting combinations w; = 0.2, uw; = 0.8

and wy = 0.5, w7 = 0.5. In Tables 5.3 and 5.4 all other estimators have approximately equal
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Table 5.4: Percent relative bias: wy = 0.5, w9 = 0.5

rbias(vp) rbias(z; ) rbias(vz) rbias(vy ;) rbias(v)
C:=]10 V2 |10 V2|10 V2|10 V2 |10 V2
o= ()y=z+e
0.7 3.13 1.21 3.21 1.31 3.37 1.42 3.57 1.73 | 5.18 3.32
0.85 3.46 1.05 3.57 1.18 3.83 1.40 3.79 1.44 5.10 2.72
p= (i) y =+ Vze
0.7 1.62 -0.55 1.76  -0.41 2.03 -0.22 | 2.77 1.04 5.22 4.25
v0.85 2.43 0.02 2.60 0.19 2.93 0.49 3.23 1.08 | 5.02 3.32
p= (i) y =0.12% + ¢
0.7 1.80 1.83 0.68 -0.15 | 0.86 0.11 0.23 -1.39 | 4.98 5.58
0.85 1.14 0.96 | -0.68 -2.29 | -0.39 -1.84 | -1.81 -4.74 | 4.67 5.37
p= (iviy=z+01z° +¢
0.7 2.25 1.96 1.26 0.22 1.46 0.47 0.91 -0.76 | 4.94 5.16
0.85 1.46 1.31 -0.32 -1.63 | 000 -1.18 | -1.43 -3.72 [ 417 4.85
Table 5.5: Percent relative bias: w; = 0.8, w; = 0.2
rbias(vp ) rbias(v;) rbias(vz) rbias(v ) rbias(v )
C.=|10 V2 |10 V2| 10 V2| 10 V2 i1 V2
p= My=z+c¢
0.7 254 1.02 2.70 1.23 2.72 1.24 3.41 2.07 5.57 4.21
0.85 2.53  0.95 2.76 1.24 2.80 1.27 3.26 1.81 4.87 3.40
p= (i) y =7+ Vze
0.7 0.31 -3.10 0.58 -2.82 0.61 -2.79 | 2.56 0.14 6.37 5.30
0.85 1.09 -1.86 1.45  -1.49 1.49 -1.45 | 2.83 0.44 5.50 4.11
p= (ii) y = 0.12% + ¢
0.7 1.11 1.56 | -1.12 -2.46 | -1.09 -2.42 | -2.02 -4.98 6.45 8.11
0.85 009 096 | -400 -6.53 | -3.96 -6.46 | -6.51 -12.15 | 6.67 9.80
p= (1v) y=1+01z° +¢
0.7 164 190 | -0.38 -1.63 |-035 -1.60 | -1.08 -3.63 6.04 7.36
0.85 0.41 1.76 i -3.84 -513 1 -3.79 -5.07(-648 -10.05| 545 8.68
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Table 5.6: Relative efficiency: w; = 0.2, w; = 0.8

C:=1] 1.0 V2 1.0 V2 1.0 V2 1.0 V2
p= Dy=z+c¢
0.7 | 0.999 0.999 | 0.606 0.589 | 1.000 0.999 | 1.040 1.027
0.85 | 0.999 0.999 | 0.592 0.577 | 1.000 0.999 | 1.033 1.022

p= (i) y =z + Ve
0.7 0.999 0.999 | 0.612 0.599 | 1.000 0.999 | 1.029 1.022
0.85 0.999 0.999 | 0.599 0.588 [ 0.999 0.999 | 1.029 1.021

p= (i) y = 0.12° + ¢
0.7 0.999 0.999 | 0.587 0.593 | 1.000 0.998 | 1.023 1.02}
0.85 0.999 0.999 | 0.583 0.589 | 1.000 0.999 { 1.022 1.020

p= (iv) y=r+0.11:2+c
0.7 0.999 0.999 | 0.585 0.592 | 1.000 0.998 | 1.023 1.021

0.85 | 0.999 0.999 | 0.580 0.589 | 1.000 0.999 | 1.022 1.020

7

relative bias. Table 5.5 indicates relative bias is larger for, v;, v, and vy as the models
depart from linearity for w;, = 0.8, w, = 0.2 for both 1§rge p and large C.. Note that Table
5.5 reports that when the population is given by model (iii) or (iv) where p = 0.85 and
Cr = V2. vpy is underestimating the true MSE by 12.15% and 10.05% respectively. For
these models, vy performs best in terms of bias. For such non-linear populations, larger
sample sizes would be needed to reduce the bias. We ran simulations doubling the size of
ny.n, and n3 for the non-linear models, and found the relative percent bias decrease to
approximately two-thirds of that given in Table 5.5.

Turning to relative efficiency, given in Tables 5.6 - 5.8, we see that for the first weighting
scheme. w, = 0.2 and w,; = 0.8, v, is considerably more efficient than the other variance
estimates in all models considered while vo, t1,vry and vy all perform similarly, refer to
Table 5.6. This may be due to the large weight on the independent random sample, s3.
It appears that if a covariance term has been introduced in v,, it does not outweigh the
benefits of reduced variance in using 3323 as opposed to 333 as in 1.

As weight is removed from s3 and put on the double sample. refer to Table 5.7 where v =
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Table 5.7: Relative efficiency: w; = 0.5, w, = 0.5

MSEgv]'! MSEivzl MSE(v MSE(v

MSE{vg) MSE({vg) MSEin) MSE(vg)
C:=1|.10 V2 1.0 V2 1.0 V2 1.0 V2
p= Hy=z+c¢

0.7 0.942 0915 | 0.983 0.899 | 0.976 0.938 | 1.084 1.002
0.85 | 0.893 0.873 | 0.804 0.752 | 0.906 0.879 | 0.965 0.910

p= (i) y = z + Vze
07 | 0931 0913 | 1.058 1.001 | 1.017 1.002 | 1.155 1.15]
0.85 | 0.894 0.880 | 0.891 0.861 | 0.929 0.908 | 1.004 0.975

p= (i) y = 0.1z7 + ¢
0.7 0.888 0.869 | 0.966 0.945 | 0.899 0.842 | 1.173 1.171
0.85 0.885 0.870 | 0.959 0.939 | 0.893 0.844 | 1.160 1.160

p= (iv)y=z+01z7 +¢
0.7 0.880 0.865 | 0.932 0.926 | 0.887 0.839 | 1.107 1.125
0.85 | 0.877 0.865 { 0.922 . 0.918 [ 0.879 0.839 | 1.089 1.112

wy = 0.5, we find less obvious patterns in the relative efficiencies of the variance estimates.
We see v slightly outperforms v, in all models except model (i). We note vy appears to be
most efficient for model (iii). However Table 5.5 indicates vy is underestimating the true
variance for models (iii) and (iv). The efficiency of v; is similar to that of vg.

Table 5.8 presents the results with w; = 0.8 and w, = 0.2. Here, we put large weight
on the double sample, and small weight on the independent random sample. We see v, is
again more efficient that v, in all models considered. In models (i) and (ii), v; performs well
for p = 0.85. Moreover, vy appears to have good efficiency, though, as previously noted,
its relative bias is high for models (iii) and (iv) with p = 0.85. Tables 5.7 and 5.8 present
results which concur with those found by Sitter (1997); v; and vy  perform better for large
p and large C;.

The nﬁjt striking observation from this simulation is the relative efficiencies of v; and v;

observed above for the different weighting combinations: when more (less) weight is placed

on the double sample. vy (v;) is better. This observation warrants further investigation.
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Table 5.8: Relative efficiency: w; = 0.8, w; = 0.2

MSBs | & eEey SreErid MEEreS

C.=1| 10 V2 1.0 V2 1.0 V2 1.0 V2
p= (Hy=z+¢

0.7 | 0.843 0.753 | 0.893 0.801 | 0.907 0.816 | 1.025 0.904
0.85 | 0.603 0.531 | 0.649 0.575 | 0.631 0.552 | 0.679 0.582
p= (i) y=z+ Ve

0.7 | 0.840 0.784 | 0.895 0.839 | 1.041 1021 | 1.270 1.329
0.85 | 0.667 0.619 | 0.722 0.674 | 0.768 0.722 | 0.882 0.869
p= (ii) y = 0.1z + ¢

0.7 | 0677 0.623 | 0.741 0.687 | 0.670 0.562.34426 1.477
0.85 | 0.664 0.619 | 0.729 0.683 | 0.676 0.559 | 1.40% 1.458
o= (iviy=z+0.12° +¢ /

0.7 | 0.640 0.601 | 0.704 0.664 | 0.646 0.539 | 1.243 1.350
0.85 | 0.620 0.592 | 0.685 0.657 | 0.616 0.529 | 1.216 1.325

5.2.1 Relative efficiency of v,(37) and v,(§")

Recall v1(77) and v,(7"7) as given in Chapter 4. Ignoring finite population corrections. we

have
vi(g) = wivi(@r) + wiva(ds) (5.5)
and
v2(Fy) = wivy(§ir) + wivaa(Pa). (5.6)
where v)(§1,) = s3/n2 + b%s2 /ny. va(§3) = si /n3, and vy3(gs) = 5323/723. The only
difference being that in v all of the y; values are used in the second term.
We can decompose the M SE of the variance estimates v; and v, as follows,
o
MSE(ri(30) = E[wi(@r) + wivs(ga) - wilh — wiln)?
= wiMSE(vi(fir)) + w3MSE(v3(§3))
+ 2ufwlE[(vi(dir) - Un)(va(ds) = U2))s (5.7)
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and

MSE(vy(§7)) = E[wln(gir) + wivas(gs) - wily — wila)?

wiMSE(vi(§1,)) + w3MSE(v23(33))

+ 20lwiE[(ni(ir) - Ur)(vaa(g3) — U2)), (5.8)

where Uy = MSE(§i;) = E(§i- — Y)? and U, = MSE(33) = E(§3 - )2

We treat the set s3 as if it is a sample from the entire set S. but in the simulation we
do not allow units in s; to be sampled again in s3. Subsequently, §;» and §3 are not exactly
independent. However, since the sampling fraction in our simulation is approximately zer%%,
they are approximately independent. Thus, we would anticipate the last term in (5.7) to
be nearly zero. One cannot expect the same of (5.8), since s; is used in both v;(%;) and
v23(§1r ). We would expect M SE(v3(§3)) in (5.7) to be larger than M S5E(v23(y3)) in (5.8)
due to the increased sample size used in the latter. The question then is whether the sum
of the second and third terms in (5.8) is larger or smaller than the second term of (5.7).

Recall to find the “true” MSE of 37“ via simulation we used
MSE = & Z o) — Y%

where yw(b) is the estimate 7 obtained on the bt" simulation run. Note that this “true”

MSE does in fact capture any covariance between y;, and y3. We then use this simulation
estimate of MSE to calculate MSE(v)(57)) and MSE(vy(37)), see (5.3). However. when
we calculate M SE(v;(§7)) using the expansion given in (5.7), the covariance between g,
and {3 is not included in the M SE estimate. Therefore, the two different derivations of
MSE(v1(g")), using (5.3) and (5.7), will yield slightly different results. The same is true
for MS E(vo(%'7)). The difference, however, is negligible since §;, and 3 are approximately

L3

independent as explained above.
We use simulation results and (5.3) to calculate M SE(v,) and MSE(v;) by (5.3) as
exr'-ined in section 5.1. We can also empirically calculate the three terms on the right-

hand of expressions (5.7) and (5.8) using simulation values. We use .
B i ) 1 B
Z Gy~ Y2 U2= B - Z Yae) —
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B
MSE(vi(gir)) = %E(vl(glr)(b) - ),
=1
i 1 & -
MSE(vs3(33)) = Ez(va(ﬂa)(b) - 0)%,
i 1 & .
MSE(vy3(93)) = 5 E(vza(ﬂa)(b) - U2)%
1=1

B
E[(vi(G1;) = U1)(va(g3) — U2)] = E vi(Gir) ey — U1)(v3(83) ) — U2),

and
-~ B - : A
El(vi(gir) = Ur)(v23(53) - = E v1(Gir )y — U1)(v23(93) 6y — U2)

where (b) indicates the value was obtained from the b** simulation run. Since wy = 1 — wy,
we can use simulation results and write MSE(v;(37)) and M SE(vy(§)) as functions of

. We may then plot MSE(v,(3!7)) and MSE(vo(3l7)) over 0 < w; < 1. Figures 5.1-5.4
show the results for each model given in Table 5.2 at each combination of p and C; used in
the simulation.

Figures 5.2 - 5.5 reveal that v,(!7) appears to be more efficient than v1(3"7) for w less
than 0.6, and nearly as efficient for w;, greater than 0.6. This indicates that the gain in
precision by using v,3(¥3) to estimate 53 in v(g!") outweighs the penalty introduced by the
covariance term between vy(%;-) and vp3(%3). We note that both vl(g{U) and v2( ") obtain
their minimum M SE in all models in the neighbourhood of w; = 0.6. This suggests the

optimal weighting for the sample size under investigation is w; = 0.6, w; = 0.4.
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Figure 5.2: Model i): MSE(v;) and MSE(v;) as a function of w,
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Figure 5.3: Model ii): M SE(v;) and MSE(v2) as a function of w,

Model i) p=0.7, Cx=1 Model ii) p=0.85, Cx=1
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Figure 5.4: Model iii): M SE(vy) and MSE(v;) as a function of w,

Model iii) p=0.7, Cx=1 Model iii) p=0.85, Cx=1
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Figure 5.5: Model iv): M SE(v;) and M SE(v;) as a function of w,

Model iv) p=0.7, Cx=1 Model iv) p=0.85, Cx=1
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5.3 Estimated weight simulation

5.3.1 The point estimator §’

To investigate variance estimation for 77 with estimated weights, we first need to discuss
the point estimator itself. Consider the weights given in (3.4). We have a variety of choices
to estimate V() and two possible estimates of V(g3). In Chapter 2 we introduced four
estimates of V(%i,): vo(#ir). v1(ir), vrs(§i-) and vy(gi-). given in equations (2.9), (2.11),
(2.12) and (2.13) respectively. Possible estimates for V(y3) are v3(¥3) = 333/n3 and vo3(§3) =
5323/713. We wish to determine which combination of estimates used to calculate w; and w;

vields the best estimate gjfj. We have 8 such combinations to consider, and thus 8 possible

point estimates, see Table 5.9.

Table 5.9: Estimates of V() and V(¥3)

No. | pair v(gr) | v(¥3)
1 (0,3) | vo(#ir) | va(y3)
(0,23) | wvo(Zir) | v23(¥3)
(1,3) | vi(@r) | vs(¥3)
(1,23) | vi(¥1r) | vas(¥s)
(LJ,3) | vea(gir) | va(¥3)

(LJ,23) | vea(Gir) | v23(¥3)
(J,3) | vi(@r) | va(y3)
(J,23) | vy(@ir) | v23(¥3)

[0.4] -~ L w = w | ]

We employ the same models, and p and C, values as used in the fixed weight simulation.
To investigate the best point estimate, we use (5.2) to calculate the simulated mean square
error for each estimate 37 for the 8 possible weighting combinations. We report the percent

relative bias of the point estimates, see Table 5.10. We estimate this quantity using,
1 & -
rbias(g") = 100 x 5 S (ge® - ¥)/Y, (5.9)
b=1
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where (b) indicates the value obtained from the 5" simulation run. We also report relative
mean squared error in Table 5.11 using combination (1) in Table 5.9 as the standard. We
indicate the choice of v(y;;) and v(y3) used to estimate w, and w, in Tables 5.10 and 5.11
by the pairs in brackets as given in Table 5.9.

Table 5.10 indicates that the bias increases with both p and C;. For models (i) and (ii)
all point estimates considered have similar and small percent relative bias. Results for the
non-linear models. (iii) and (iv), display larger bias. We note that for these two models bias
appears to be reduced by using v,3(#3) to estimate V'(y3). In general, our results suggest
the point estimate 53(0‘23) performs best with respect to bias.

Turning to relative efficiency of the point estimates, see Table 5.11, we find for models
(i) and (ii) estimates perform very similarly in terms of efficiency. For models (iii) and (iv)

estimates which use v23(§3) as opposed to v3(yz) are slightly more efficient.

5.3.2 Variance estimator results

F g
Recall using a one term Taylor series expansion with estimated weights, see Appendix A,

we found the linearisation estimator

=lr 1 = -
= : .10
v(Jy) ST T o) (5.10)

We also discussed Meier’s variance estimator in Section 3.2 for estimated weights. He used

a two term Taylor series expansion and made a number of assumptions in developing,

) = ! i (L s L
uvm(Py) = oI o7 {1+4w1w2 <m1+m2)] (5.11)

where m; = ny — 1, my; = n3 — 1. We consider both of the above variance estimators and
explore all 8 possible estimates for v(§;) and v(§3) given in Table 5.9. That is, we consider
16 variance estimators in total. When computing the efficiency of these variance estymators
using (5.3), we first need an estimate of the true M SE of §7 using (5.2). We find the MSE
of §'7 which uses the same estimates of v(§,) and v(§3) in w; and w; as does the variance
estimate in question. v(§'") or vm(§7). It is this MSE that is used to calculate the mean

squared error of the variance estimator using equation (5.3). For example, to compute the
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efficiency of v(g'7) which uses combination (1) in Table 5.9, we would first calculate the
M SE of the point estimator g{; = W §r + W23 where Wy = vo(Fir) "1/ (vo(§ir )~ + v3(F3)™ 1)
and Wy = 1):5(373);1/(vo(g,,.)’1 + v3(73)”!). We would then use this value in equation (5.3)
to find MSE(v(g'7))3.

We report percent relative bias. calculated using equation (5.4). in Tables 5.12 and 5.13.
The first tabl;; contains results using the linearisation estimator, equation (5.10), and the
second contains results using Meier’s variance estimator, equation (5.11). Again, we indicate
the estimates used for v(¥;,) and v(g3)‘by pairs in brackets. ~ _

We first note that Meier’s variance estimators have similar bias to that of the linearisation
variance estimators, see Tables 5.12 and 5.13. Meier’s correction factor typically increases
the percent relative bias by approximately +2%. Variance estimators appear to have similar
and small bias for model (i). For models (ii), (iii) and (iv) we find variance estimators which
use ¥,3(3) as opposed to v3(§3) have smaller relative bias. For non-linear models (iii) and
(iv). we find larger negative biases for all variance estimators. The problem worsens as both
p and C; increase. For example, for models (iii) and (iv) variance estimators are seriously
underestimating the true variance for p = 0.85 and C; = V2. As we noted in the fixed
weight simulation. bias is reduced by increasing the sample sizes. ny.n, and n3. We found
doubling the sample sizes decreased the biases of the‘variance estimates by approximately
one third in models (iii) and (iv). Generally, our simulation results suggest that "v{0-23)
performs best in terms of bias for the models under investigation.

Tables 5.14 an‘d 5.15 present relative efficiencies of the linearisation and Meier’s variance
estimators respectively. In both tables, relative efficiencies are reported with respect to the
linearisation variance estimator which estimates V() and V(y3) with vo(g,,5 and v3(¥y3)
respectivelv. We note the same patterns exist within each table. However, comparing one
table to the other. we see the linearisation estimators are slightly. more efficient than Meier’s
estimators. For these reasons, we limit our discussion to the results contained in Table 5.14.
Comparing v(13) and +(1.23), (L33) and +(L923)_and v(93) and ©(923), we see that estimators
which use v3(§3) are more efficient than those which use vy3(§3) for all models especially for

(ii1) and (iv). This suggests a covariance term has been introduced by using v,3(¥3) in these
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estimators. For models (i) through (iv), »(1®) and v(£73) are most efficient. The jackknife

variance estimator of V() also appears to give stable estimates.
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Table 5.12: Percent relative bias of linearisation variance estimates
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Chapter 6

Discussion

We have explored variance estimation for the typical point estimator generated under sam-
pling on two occasions. Since this estimator is a weighted linear combination of two esti-
mators, we consider two cases: fixed weights and estimated weights.

Under the fixed weight supposition, we explored three weighting combinations. As we
increased the weight on the linear regression estimator from the double sample, we saw
changes in the percent relative biases and relative efficiencies of the variance estimators in
question. We found for the non-linear populations with w; = 0.8 and w; = 0.2 percent
relative bias increased with both p and C,. An increase in size of the sets s;, s2 and
s3 is necessary ih order to reduce the bias of the variance estimates for these non-linear
populations. In terms of efficiency, we discovered when more weight is placed on the double
sample, vy performs better. whereas when less weight is placed on the double sample, v;
performs better. By breaking down the M SE of these two estimates we were able to plot
the simulated MSE of v, and vg\ over 0 < w; < 1. We found v(%'7) to be more efficient
than vl(ﬂfj) for wy < 0.6 and nearly as efficient for w; > 0.6. This finding suggests v;’s gain
in efficiency by using v.3(73), as opposed to v3(¥3), to estimate V(§3) outweighs the penalty
introduced by the covariance term between vy(#i;) and v23(¥3)-

Turning to variance estimation where the point estimator has estimated weights, we first
discuss the best choice of variance estimates to use in w, and w,. We investigated 8 possible

combinations of @ and w, to use in §7. For models (i) and (ii) we found in terms of
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both bias and =fficiency all point estimates to be virtually equivalent, with 53(0‘23) being a
slight winner. For the non-linear models, (iii) and (iv), we found bias was smaller for those
estimators which used v,3(y3). Overall, the estimator 53(0'23) had smallest bias for models
(1) through (iv).

Turning to estimators of the variance of §7, we considered two general forms: the
one-term Taylor series expansion linearisation variance estimator, and Meier’s variance es-
timator. It is the latter estimator which is typically used by those in the forest industry.
and claims to have a correction‘factor to reduce the order of the bias. We tried the same 8
combinations of estimates for V() and V(g3) as used in the point estimator simulation in
both the linearisation and Meier’s variance estimator. We found for all models considered,
Meier’s correction factor affected the bias very little. Moreover, we found the linearisa-
tion variance estimator to be more efficient than Meier’s estimator. On the basis of this
study we would not recommend using Meier’s variance estimator. It is based on parametric
assumptions, is more complicated and does not seem to enhance performance.

As in the fixed weight simulation, we saw problems with percent relative bias for all
variance estimates for non-linear populations. In such populations we found the bias in-
creased with both p and C,. Again, we found increasing n;, n; and nz reduced the bias
of our estimates. This suggests as populations become more non-linear, larger sample sizes
are required in order to give unbiasedness (or near unbiasedness). In general, it appears
bias is reduced in the linearisation estimators (and Meier’s estimators) by using v23(y3) as
opposed to v3(y3). However, estimators which use vy3(y3) are less efficient. We found the
linearisation variance estimator with v(#) or v s(#ir) estimating V'(§;-) and v3(ya) esti-
mating V/(§3) yield the best variance estimates in terms of efficiency. However, taking bias
into consideration v;3(¥3) is the preferable estimator of V(¥3).

We must consider the results from both the point estimator and the vari:;nce estimator
simulation studies when recommending which estimates of V() and V(¥3) to use. Most
important is the need to minimize the bias and MSE of the point estimator. Recall we found
the point estimate yﬁ;‘o'”’) to give the best results in terms of bias. It also performed well in

terms of efficiency. Next we consider the variance estimator results. We found estimating
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V{(#3) with vy3(y3) reduced bias in all models, at the price of lower efficiency. Based on

these results, we suggest using o (023) and (0.23),

56



Bibliography

(&4

-1

S}

. Cochran, W.G. (1977). Sampling Techniques. Third edition. John Wiley & Sons.

New York.

Cochran, W.G. and Carroll, W.P. (1953). “A sampling investigation of the efficiency

of weighting inversely as the estimated variance.” Biometrics, 10, 447-439.

Dorfman, A.H. (1994). “A note on variance estimation for the regression estimator in

double sampling.” Journal of the American Statistical Association, 89, 137-140.
Meier, P. (1953). “Variance of a weighted mean.” Biometrics, 9, 59-73.

Rao, J.N.K. and Sitter, R.R. (1997). “Variance estimation under stratified two-phase
sampling with applications to measurement bias” in Lyberg, L., Biemer, P., Collins,
M., de Leeuw, E., Dippo, C., Schwarz, N., and Trein, D. (eds.), Survey Measurement
and Process Quality. John Wiley & Sons, New York, Ch. 33.

Rao, J.N.K. and Sitter, R.R. (1995). “Variance estimation under two-phase sampling

with application to imputation for missing data.” Biometrtka, 82, 453-460.

. Schreuder, H.T., Li, H.G. and Scott, C.T. (1987). “Jackknife and bootstrap estimation

for sampling with partial replacement.” Forest Science, 33, 676-689.

Scott, C.T. (1984). “A new look at sampling with partial replacement.” Forest Sci-
ence, 30, 157-166.

. Sen. A.R. (1973). “Theory and application of sampling on repeated occasions with

several auxiliary variables.” Biometrics, 29,381-385.

-1

wn



10.

11.

12.

13.

&

Sitter, R.R. (1997). “Variance estimation for the regression estimator in two-phase

sampling.” Journal of the American Statistical Association, 92, 780-787.

Sitter, R.R. and Rao, J.N.K. (1997). “Imputation for missing values and corresponding

variance estimation.” The Canadian Journal of Statistics, 25, 61-73.

Sukhatme, P.V. and Sukhatme, B.V. (1970). Sampling Theory of Surveys with Appli-
cations. Second Edition. Asia Publishing House, London.

Ware, K.D. and Cunia, T. (1952). “Continuous forest inventory with partial replace-

ment of samples.” Forest Science Monograph, 3. 40 p.

58



Appendix A -

A.1 First order Taylor series expansion to get (3.8)

We have two estimates of Y, i, and 33, with corresponding variances 012 = V(#;r) and
02 = V(§3) respectively. We have consistent estimates of these variances s? = v(y,) and

s3 = v(y3). Then in this general notation the estimator of interest is

glr = (‘S:IZ)—-1 171 + (‘S%)—l ¥
N ) e € (s3)71 + (s3)7!

Let 8 = (§ir.J3,53,52) and @ = (Y,Y,02,03). Then we may write the first order Taylor

expansion

g =g(6)=g(8) +4'(6) (8 -6)

w

where ¢’(0) is the vector of first order partial derivatives evaluated at & . We calculate

derivatives and note —a%g(e) = —a%g(e) = 0. We then simplify to find
1 2
90)=Y +7(Gr~Y)+72(3:-Y)
where y1 = (62)71/((6?)"1 + (62)7!) and 72 = (02)7'/((¢?)7! + (02)™1). Therefore.

E(gy - Y)?

E{m(@ir = Y) + 7243 - Y)}¥
= ENiN o -V +35m -V + nreldr - Y@ - )

= ~io} +202
1
(o) 4 (0l
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If one now replaces o2 and o2 with their consistent estimators s? and s3. we get the same

estimator as given in (3.8).
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Appendix B

B.1 Simulation parameters

Recall z; ~ gamma(g.h). Then E(X) = gh and 02 = gh®. We find Cov(X.Y) for the
general model formula given in (5.1). Note that E(Y) = a + B3u; + 7(0% + u?).
Cov(X,Y) = E(XY)-E(X)E(Y)

= E{X(a+B8X +vX*+ X%)} - uxpyr

= aE(X)+8E(X?) +7E(X®) - uxpy

= agh+ 8gh*(g+ 1)+ 19h%(g + 1)(g +2) — gh{a + Bgh + 7gh*(g + 1)(g + 2)}

= Bgh®+2ygh3(g+ 1)

. We also require 0% for each model:

=Tt ¢6

0’;‘7/ = E{(/"—f'#r)}2

E{(X ~ pz) + €)}?

gh? + o?
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Vi =i + \/Eifz

= o2+ 29{E(X° - E(X)E(XY)} +1*{E(X*) - E(X")E(X*)} + 0/

= gh*{1+ 29[h(g+ 1)(g+2) - ghl+1*[R%(g+ 1)(g + 2)(g+3) — gh®]} + o

E{(Xx¥ VXe - )

UY =
= E{(X - p)? + 2(X = p)(VXe) + (VX))
= ‘73+ﬂr03
= gh*{h +02) o
yx:'71,2+€1
032/ = Cov(7X2+e.7X2+e)
= yHE(X*Y) - E(X*)E(X*)} + 0]
= 2+%gh% g+ 1)(29 + 3) + o7
y = I+ 12l + e
0t = Cov(X +1X’+e X +7X%+¢)
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Table B.1: Parameters for models (i)-(iv)

Hy=zi+¢
p C

g | h Oc

L}

0.7 ] 1| 1 |100]102.02
0.7 | V2| 0.5 200 | 144.28
085| 1 | 1 |100| 61.97
0.85 | v2]0.5|200| 87.65

i) yi = Zi + \/Zi€ _
0.7 | 1 | 1 |100 | 10.202
0.7 | v2]0.5]| 200 | 14.428
085| 1 | 1 |100]| 6.197

V2105|200 8.765

0.85

i) yr = 0.1z? + ¢
1] 10 | 3557
05| 20 | 71.34

0.7 ] 1
0.7 | V2

085 | 1 | 1 | 10 | 14.64
0.85|v2]0.5| 20 | 19.12

i)y =z, + 0.1:1:,2 + €

0.7 | 1 | 1| 10 | 41.26
0.7 | v2]05]| 20 | 84.26
085, 1 | 1|10 | 7.76
0.85|v2]05]| 20 | 25.77
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