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ABSTRACT 

Sampling on two occasions is a vduab3e sampling scheme when observations are taken across 

two time points, and the correlation between these observations is high. under this frame- 

work, estimates are based on a weighted average of a two-phase sampling estimator and an 

estimator from an independent random sample. There has been recent work in the litera- 

ture on resampling methods such as the bootstrap and the jackkkfe in developing variance 
I .  

estimators under a two-phase sampling scheme. Resampling variance estimators have oper- 
$ 

ationd advantages over linearisation variance estimators. We extend these developments to 

sampling on two occasions. An attempt to  use new linearisation variance estimators which 
3 

make more complete use of the data  available is made. Through simulation, a study of the 

unconditional properties of the different estimators is performed. 
/- 
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Chapter 1 
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Introduction 

Sampling on two occasions is a valuable sampling scheme when observations are taken across 

two time points, and the correlation between these observations is high. Sen (1973) uses 

the methodology t o  estimate'the kill of waterfowl per hunter in Ontario in 1968-1969. He 

noticed that the kill of waterfowl per hunter and the number of days hunted in the previous 

year, 1967- 1968, were correlated with the desired estimate, kill of waterfowl in 1968- 1969. 

Sampling on t'wo occasions is also commonly used in the forest industry, often to  estimate 

volume and growth. Before this samplhg scheme was introduced in the forestry industry, 

penfaanent sample plots were frequently used. The term permanent indicates the same plots 

were sampled across all tiple points. It was eventually realized, however, when measurements 
'u 

over time are highly correlated, it is better to remeasure only a fraction of plots, and then 

witfi the remaining resources, establish an independent random sample of new plots. This 

is the generd framework of sampling on two occasions, often termed sampl iw with partial 

repl&ement within the forest industry. Typically one characteristic is being observed, and 

the successive occasions are over time. 

The general procedure involves taking an initial sample sl at time one of size nl and 

observing some characteristic denoted X I , .  . . , z,, . It should be noted that these may be 

vector-valued measurements, though we focus on the scalar case. At time 2, a sub-sample 

sz C sl of size nz is taken and the same characteristic is again measured and denoted 



* '  , 

yl, . . . , y,, . Also at time two: an independent random sample s3 of size ng is taken from the 

entire population and the same characteristic is again observed t o  obtain y,, +l , . . . , y,,+,, . 

Note that the units in sz are matched with the same units in sl while units in s3 are 

unmatched, and z and y denote the d u e  of the measured characteristic at  times 1 and 2 

respectively. That is, sl is the set of-units measured only at  time 1, s2 is the set of units 

measured at both time 1 and time 2 ,  and s3 is the set of units measured only at  time 2 .  

Thus, sl and s2 form a two-phase sample over times 1 and 2 ,  while s3 is an independent 

sample from the population a t  time 2 .  Of interest is to estimate Y ,  the population mean of 

the characteristic at  time 2 .  There are two natural estimates available: 

and 

where x 1  and t2 are the means of the z, on the first phase sample sl and second phase 

sample s2, y2 and Y3 are the means of the y units in 3.2 and independent random sample 

sg. and the regression coefficient b is calculated based on obiervations in s2. Since these 

estimates give independent information, typically a weighted average of the estimates is 

used, 
a 

- 

where w l  + w2 = 1 .  One could alternatively use the ratio estimator, for example, in replace 

of the regression estimator in the above formula as follows: 

where yr = ( i j 2 / Z 2 ) 2 1 .  For simplicity of notation we will often restrict our comment to yfi .  

However, a similar development is available for y; in each case. 

Cochran (1977, p.346) obtains the optimal estimate of Y by weighting the two indepen- 

dent estimates inversely as their variances. That is, dse 

in (1.1). We could then use the estimated weights 

w1 = v ( Y I + ) - ~  and wl = 2 ' ( y 3 r 1  
v(ylr)- '  + z , ( y3 ) - '  . (y lr ) - '  + v ( y 3 ) - l '  



where v(y1,) and ~ ( 8 3 )  are consistent estimates of V(glr)  and V(y3). This is the approach 
/ 

which is often used in the forest industry (see Schreuder, 1987; Ware and Cunia, 1962). 

In large surveys with many measured characteristics, fixed weights may be operationally 

more desirable to avoid different weighting for different characteristics. Cochran (1977, 

p. 351) suggests using fixed weights when sampling on more than two occasions to  avoid , 

updating the weights wl and wz. These fixed weights may be simple fractions based on 

sample sizes. 

The main purpose of this thesis is to  consider variance estimation in the context of 

sampling on two occasions. We will consider separately the two cases of fixed weights and 

weights estimated as in (1 .3) .  In the fixed weight case the variance is 

~ ( Y f i )  = w:v(gl,) + w;v(&3) 

and the question becomes which estimators of V(yl,) and V(y3) should be used. Rao and 

Sitter (1995) and Sitter (1997) derive new linearisation variance estimators and jackknife . 
variance estimators for both the ratio and the regression estimator in the context of two- 

phase sampling. Resampling variance estimators have operational advantages over lineari- 

sation variances estimators. There is evidence that they may also have better conditional 

properties. We consider these as well as the usual estimate of variance for yl, as given in 

Sukhatme & Sukhatme (1970, p.212) to estimate V(ijrr). The usual estimate of variance 

for a simple mean, refer to Cochran (1977, p.23), based on 33 is typically used to estimate 

V(y3).  We consider an alternative choice. 

In the ease where weights are estimated as in (1.3) ,  it can be easily shown that treating 

the weights as fixed will yield consistent variance estimates. Scott (1984), Ware and Cunia 

(1962), and Bickford (1963) review sampling with partial replacement when estimating 

volume and growth in the forestry setting, and-all suggest using an estimator suggested by 

Meier (1953) in a paper on variance estimation of weighted means. Both of these variance 

estimators can be written as a function of wl given in (1.3)  and thus their performance 

depends on the choice of v(yr,) and v(y3). Schreuder (1987) considers various estimates 

v(yl,) including a grouped jackknife and a bootstrap, v d  uses these in Meier's variance 

estimator. He concludes that though the jackknife variance estimator or the bootstrap 



variance estimator may be preferred for skewed populations and small ~ a m b l e  sizes, Meier's g 

original estimator is generally preferable to the jackknife and the bootstrap when considering 
a 

bias and efficiency. 

We consider various estimators for V ( y r , )  and V(y3), and compare the one-term lineari- 

sation variance estimator to  Meier's variance estimator. An attempt to  use new linearisation 

estimators which make more complete use of the data available will be made. Through sim- 

$ation, a study of the unconditional properties of the different estimators will be performed. 



Chapter 2 

* 
Ln this chapter we review results in two-phase sampling. This will facilitate both the nota- 

tional and conceptual understanding of sampling on two occasions. Rao and Sitter (1995) 

and Sitter (1997) develop variance estimators for the ratio and regression estimators for 

two-phase sampling, also see Dorfman (1994). Simulation studies showed the newly devel- 

oped variance estimators to  have better conditional and unconditional properties than the 

simple linearisation variance estimator given in Sukhatme & Sukhatme (1970, p.212). 

2.1 Two-phase sampling: a review 

- - Under a single-phase sampling framework, the usual ratio and regression estimators require 

knowledge of the population parameter X. This information may not be available, and 

- thus two-phase sampling may be employed. In this type of sampling, we first take a large 

first-phase sample sl of size nl and observe some auxiliary variable z ,  which is cheaper or 

easier to obtain. Note that the vari of interest y is not measured in this preliminary 

sample. We can now calculate a simple arithmetic mean and get a good estimate, T I ,  of x, 
the population mean. Xext a subsample sz of size nz is taken without replacement from sl 

and both z and the variable of interest y are measured. With the information observed in 

both phases of the sampling procedure, we can now estimate Y ,  the population mean for 

the y variables, usink either a ratio or a regression estimator. The ratio estimator for Y is 



&en by jL = ( f i / f2 ) f l  where Z1 = C,,,, z i /n l ,  y2 = C,,,, y,/n2 and 22 = CiLS2 z;/n2. 

The regression estimator is given by y,, = y2 + b(Z1 - f 2 )  where b is the least squares 

regression coefficient of y, on z; computed from the second-phase sample. Typically. this 

type of sampling is used when the cost efficiency is improved by taking this large preliminary 

sample of a correlated variable z ,  as opposed to simply taking a larger sample of variate y. 

2.2 Variance estimators for the ratio estimator 

The standard formula for a design-consistent linearisation variance estimator as given in 

Sukhatme & Sukhatme (1970, p.170) for the two-phase sampling ratio estimator, y, = 

where sa = G,,, d?/(n2 - l ) ,  st = Clcs2(y, -'q2)'/(n2 - l ) ,  d, = y, - RZ, and R = y / i .  In 

this formulation, s; is used to  estimate St = G c s ( y ,  - Y ) ~ / ( N  - 1).  R m  and Sitter (1995) 

exploit the identity 

where So, is the population covariance of d; and z, and R = Y / X ,  and propose a new 

linearisation variance estimator which makes fuller use of the da t a  than the formula given in 

equation (2.1). To do this, they note that using st to  estimate S; is equivalent t o  estimating 

(2.2) term-by-term using -s], s h  = zits, d,(z; - 52)/(n2 - 1), sz2 = El,;, (2; - f 2 )2/(n2 - 1 ) 

and R as estimates of S i ,  S D I ,  S9 and R. That is (2.1) can be rewritten as 

If instead sll = C,,,, (2, - Z1 )2 / (n l  - 1) is used to estimate S2, all z measurements observed 

in the sampling procedure are used. Noting the identity given above and using (2.1) we find 



which is the proposed linearisation estimator given by Rao and Sitter (1995).  

A jackknife variance estimator was also developed by Rao and Sitter (1'995). Ln their 

delete-one-unit approach, y, is recalculated with the j th  element removed for each j q  

giving the jackknife estimate #,(j). Note that y,"(j) = [ y 2 ( j ) / f  2 ( j ) ] f l ( j )  where ji2(j), z 2 ( j )  

and 51 ( j )  are simple means calculated with the j th  element removed. In order to calculate 

these means, however, we must know if the jt" element is in both the first phase and second 

I phase sample, or the first phase sample exclusively. Thus, 

and Z 1  (j) = ( n 1 z l  - z j ) / (n l  - 1) for all j cs l .  By applying the usual jackknife formula 
4' 

the variance of the nl jackknife estimates is calculated. Note that the above formula ignores 

finite population corrections. 
~ - 

Rao and Sitter (1995) also give a linearised version of this jackknife variance estimator 

which they derive by approximating (2.5) for large n2. The linearised jackknife variance 
0 :. 

A &  

estimator was'"found t o  be . 

again ignoring finite population corrections. It is interesting to  note that this estimator uses 

s:, as in Rao and Sitter's new linearisation variance estimator given in (2 .4) .  They also 

combine the above estimator with the appropriate finite population corrections to give a 

linearised jackknife variance estimator 



A simulation study was done t o  investigate the performance of the proposed estimators 

relative t o  the standard linearisation estimator in (2 .1 ) .  A finite population was created 

using various simple models. The conditional and unconditiond properties of the new 

estimators were studied varying p, the correlation between the auxiliary variable x and the 

variable of interest y, and C, = a,/p,, the coefficient of variation of the z's. Rao and Sitter 

found tha t  both vl -and v2 are more efficient than vo for p _> 0.8 and large C,. Further. 

conditional on Z 1 / Z 2 ,  v;! and V J  both performed better in tracking the conditional MSE 

than vo and v l .  They argue that conditioning on z l / S 2  is defensible since 51 is based on a 

large sample and thus is close to  X, which makes f l / i 2  approximately ancillary. 

2.3 . Variance estimators for the regression estimator ~~~ 
C 

Sitter (1997)  extends the work discussed above to the regression estimator. This estimator 

is also commonly used in estimating the population mean, Y ,  under a two-phase sampling 

framework. Sitter develops both a new linearisation variance estimator and a jackknife vari- 

ance estimator and investigates their relative efficiency and conditional properties through 

a simulation study. 

The simple Linear regression estimator for two-phase sampling is 

/ 

glr = Y 2  + b(z l  - 52)  ( 2 - 8 )  

where y2,  it2 and Z 1  are as defined previo'usly, and b = s,,/sq, where s,, = C , , , , ( x ,  - 

z 2 ) ( y i  - g 2 ) / ( n 2  - 1 )  and s2, = C;,,,(z; - 22)'/(n2 - 1 ) .  Cochran (1977, p.343) gives the 

standard linearisation variance estimators of &,, 

where d, = y; - j& - b(z, - f 2 ) .  s i  = G,,, d : / ( n 2  - 1 )  and s;, = C ,,,, (y, - ~ ) ~ / ( n ?  - 1 ) .  

Recall in developing the new linearisation variance estimator for the ratio estimator, Rao 

and Sitter (1995) used the identity given in ( 2 . 2 ) .  Sitter (1997) notes a similar relationship 



where B = SZy/S:, S i  and S: are the population variances of d; and z,. As explained in 

the previous section, we have two possible estimates of S:, s& or s:, . The latter makes 

more complete use of the data, and thus Sitter suggests using 

\ in (2.9). Thus Sitter's proposed linearisation variance estimator is 
,\ 

refer also to Dorfman (1994). Sitter then goes on t o  develop the jackknife variance estimator, 

again using a delete-one-unit approach. We calculate yl,(j) = yz(j)  + b(j)(Zl( j )  - Z2(j))  

for each j a l ,  where z l ( j ) ,  z 2 ( j ) ,  and g2(j)  are as defined in Section 2.2 and 

5 9 

where k, = l /n2 + (z, - ~ 2 ) ~ / { ( n 2  - 1)sf2}. We can then apply the general jackknife formula 

Sitter also finds the linearised version of his jackknife variance estimator. He notes for 

large n2, 

< 
where a, = {n2(z, - Z2)(z1 - ~ ~ ) } / { ( n ~  - 1 ) ~ : ~ ) .  The Linearised version of vj(yl,) with . 
finite population corrections is then 

where 



A simulation study was used to  examine the conditional and unconditional properties of 

the new variance estimators versus the simple linearisation estimator given in (2.9). As in 

the previous simulation study discussed, a finite population was created from simple models, 

and values of p, the correlation of z and y, and C,, the coefficient of variation of the x's, 

were varied. Results from the simulation study were similar to those found for the ratio 

simulation study. That is, vl(yl,) and the linearised jackknife variance estimator were found 

to  be considerably more efficient than vo(y,,) 'for p > 0.8 and large C,. Unconditionally, 

vl had the smallest MSE. Conditional properties were studied by conditioning on the size 

of ifl - 2 2 -  Sitter found that the jackknife variance estimator and its linearised version 

performed better in tracking the condition2 MSE than vo or vl when if1 - 2 2  was s m d  or 

large. 



Chapter 3 

Sampling on two occasions 

.-y Sampling on two occasions, also called successive sampling or sampling with partial replace- 

ment, is considered to be an efficient sampling scheme particularly by those in the forest 

industry. In the past, the forest industry sampled the same plots, termed permanent sample 

plots, to evaluate volume and growth. It was eventually realized, however, there is a gain 

in precision when the measurements taken over time are highly correlated if only a portion 

of permanent plots are remeasured and an additional random sample from the population 

is taken a t  the second sampling occasion. Scott (1984) explains that based on his own ex- 

perience in the northeastern United States, the correlation between measurements is strong 

enough to  warrant the use of sampling with partial replacement even with 25 years between 

surveys. 

Since the estimator we will be primarily discussing is a linear combination of a regression 

(or ratio) estimator from a two-phase sample and a an from an independent simple 

random sample, we expect that by extending the work was discussed in Chapter 2, we 

can develop more efficient variance estimators than those presently in use. Typically the 

variance estimator used in the forestry literature under sampling with partial replacement is 

based on that suggested by Meier (1953). Schreuder (1987) has done some work in varia&e 

estimation when sampling with partial replacement, looking in particular at resampling 

methods to  get improved variance estimators. 



Figure 3.1: Means generated from sampling on two occasions 

3.1 Sampling on two octasions: the procedure and notation 

Typically in this sampling scheme the same characteristic is being measured a t  each occasion. 

~ o t e  that more than one characteristic could potentially be observed a t  each time point 

giving rise to vector-valued observations, though we focus on the scalar case. The successive 

sampling occasions are typically over time. Consider, for example, measurements being 

taken at two time points. We will use x for first occasion (or first time point) measurements, 

and y for second occasion measurements. The procedure is then as follows. At time one, 

a sample sl of size nl is taken without replacement and 11, . . . , z,, are measured. At the 

second occasion, a subsample s2 of size n2 from the nl units is taken without replacement 

and XI,. . . , x,, are noted and yl, . . . , y,, are measured for the n2 matched units. Also at the 

second occasion an independent random sample 93 of size n3 is taken without replacement 

from the entire population generating the sample yl, . . . , y,, . Figure 3.1 gives a pictorial 

representation of the sampling scheme. S represents the finite population of units. The 

means in parentheses are those obtained from the indicated sample, s l ,  s2 or ss: z l  = 

xIcs, z t / n i .  Z2  = Ctcs2 ~ ~ l n 2 ,  512 = CIcsl y , l w  and 513 = CtCS3 y1ln3. 

We are interested in estimating Y ,  the population mean a t  time 2. Note from the 

above picture we essentially have a two-phase sample, the top arm of the picture, and an 

independent random sample at  the second time point, the bottom arm. We can find two 



independent estimates of Y. From the two-phase sample we could use the ratio estimator, , - 

yr = (ij2/i?2)i?1, or the regression estimator, 

where b = s,,/s~, with s,, = ~ i c s 2 ( x ,  - ?2)(yZ - jj2)/(n2 - 1 )  and s:, = C,,,,(x, - 

22)'/(n2 - 1). From the independent random sample we have the mean p3 as defined above. 

To estimate Y consider a weighted average of the latter two estimates: 

with wl + wz = 1. There are essentially two cases to consider here: (i)  we could consider 

these weights to be fixed constants based, for instance, on the relative sample sizes of s l ,  s2 

' and sg: or (ii) we could consider the optimal weights 
I 

V(Ylr)-' w1 = and w2 = v(y31-l 
V(ylr)*l + V(#3)-l V(ylr)-l + V(y3)-l7 

given in Cochran (p.346, 1977) and estimate them to get wl and w2 by replacing V(yl,) and 

V(y3) by sample estimates v(ylr) and v(y3). That is, we could use 

Meier (1953) explains that although wl and w2 are not the maximum likelihood weights, 
f 

they an asyrnp^totically efficient estimate of Y when both n; and n3 are large, the 

estimates of Y are independently and normally distributed with mean Y and uncommon 

variances, and sample variance estimates are unbiased. 

Note: One could alternatively use y, in place of y1, in (3.2) to give 
/ 

Then use the weights specified above in (3.3) replacing V(fi ,)  by V(ij,). 



* 

3.2 Previous work in variance estimation 

Consider the estimate given in (3.2). Since the weighted estimates in this expression are 

independent, in the case of fixed, or constant, weights we can write 

This can be estimated by v(&) = w:v(yl,) + wiv(ij3), where v(yl,) and v(ij3) ;are sample 

variance estimates. Typically practitioners use vo(yl,) given in equation (2.9) for the first 

term (or vo(y,) from equation (2.1) if y, is being used), and v3(y3) = (1/n3 - ~ / N ) s ; ~  for 

the second term. 

If we use estimated weights as in (3.4)' but treat them as if they were fixed as in (3.6). 

we get 

and its sample estimate 

One can show by taking a one-term Taylor Series expansion (see Appendix A )  that even 

though (3.8) is obtained by treating the weights as fixed, it is in fact a consistent estimator 

of V(yfi) for estimated weights. 

Meier (1953) and Cochran and Carroll (1953) discuss variance estimation of a weighted 

mean under weighting inversely as the estimated variance, such as wl and w 2  given above. 

The variance formula developed by Meier is commonly used in the forestry literature. Meier 

(1953) uses a second order Taylor series expansion in an attempt to  get a better variance 

estimator. It should be noted Meier's estimator is not a standard linearisation variance 

estimator due to the assumptions made in its development. Applying Meier's technique 
I 

to the estimator in (3.2), the following assumptions are made. The estimates yl, and y3 

are independent and normally disthbuted with mean Y ,  and variances o: = V(yl,) and 
L 



022 = V ( Y 3 ) .  The estimates si = v(y1,) and si = v(ij3) are unbiased and independent 

of each other and of yi, and a. Moreover, Meier assumes ( n l  - l ) s : / o :  .- X:nl-I) and 

(n3 - l ) s ; / o ;  ~ f , , , - ~ ) .  Using these assumptions and a second order Taylor expansion 

Meier gives an approximately unbiased estimate of ~ ' ( y f : ) ,  

where ml = 6 - 1 ,  mz = n3 - 1 ,  and wl  and w2 are as given in ( 3 . 4 ) .  Assuming the 

assumptions made hold, this estimate of ~ ( y f : )  contains bias of order O ( l / n i  + l / n i ) .  

Schreuder (1987)  was interested in finding improved variance estimators for the estimator 

given in (3 .2)  with wl and wz as defined in ( 3 . 3 ) .  To estimate V ( y r , )  Schreuder uses the 

standard linearisation variance estimator given in ( 2 . 9 ) .  Since G3 is a linear estimator. 

V ( g 3 )  is estimated using the simple formula v3(Y3) = 52, / n 3 ,  assuming the finite population 

correction is negligible, where si3 = x i , , 3 ( y ,  - ~ j 3 ) ~ / ( n ~  - 1 ) .  He uses these in Meier's 

variance estimator given in ( 3 . 9 )  and calls it the classical method. Schreuder then considers 

alternate variance estimators of V ( y r , )  to  use instead in ( 3 . 9 ) .  

He obtains a jackknife variance estimator using a grouped jackknife procedure. InCtead 

of deleting a single observation, a group of n l / n 2  units (using integer values) was deleted 

from random groupings of the sample of nl units in the set s l ,  and one sample unit was 

deleted from the set s2 which corresponds to one of the first phase sample units deleted in 

the random group of size n 1 / n 2 .  There will be nz jackknife estimates in total. Using these 

jackknife estimates, Schreuder applies the general jackknife formula 

He then defines 

and uses these weights in Meier's variance estimator given in equation (3 .9) .  This gives 

Schreuder's jackknife variance estimator, 



A bootstrap variance estimator was also developed by Schreuder (1987). A similar 

approach was used to  that used in developing the jackknife variance estimator; new weights 

were calculated now with vg(&) and then substituted back into the variance formula given 

in (3 .9) .  A simulation study was used taking samples from forest plots from the northeastern 

United States. Efficiency, estimation bias and confidence limit coverage were investigated 

in order to  determine which estimators are preferable. They found their bootstrap and 

jackknife variance estimators to be more efficient in terms of mean squared error than the 

classical variance estimator given by Meier (1953) only for highly skewed populations. The 

classical estimator was found to be the most stable, although the jackknife coverage rates 

were found to be the best among all variance estimators. 



Chapter 4 

Development of variance estimators 

4.1 Fixed weights: w1 and w:! 

4.1 .l Linearisation variance estimator 

With fixed weights the  linearisation estimator is easily obtained. Consider the  estimator 

given in ( 3 . 2 ) .  Since the  two-phase sample and the random sample on the second occasion 

are independent, we find for fixed wl and w2: 

We could use the linearisation estimator given in Chapter 2 equation (2 .9)  t o  estimate 

V(yi,).  The variance component resulting from the independent random sample on the 

second occasion, V ( y 3 ) ,  may be estimated using the variance formula for a mean from a 

simple random sample. Thus one possible estimator is: 

w h e r e 4  = C , , , ,  dT / (n2 -1 ) , sL  = C , , , , ( Y , - Y Z , ) ~ / ~ ~ Z - ~ ) .  and st, = C , , , , ( y , - ~ 3 ) ~ / i n 3 - l ) .  

Note that  d,  = y, - ji2 - b( z ,  - x 2 )  and b  is calculated based on observations from the second 

phase of the two-phase sample. We can use the identity S; = 52) + B2S: and ( 4 . 1 )  simplifies 

to 



where s2, = CiCS2 (z, - - 1 ) .  

As discussed in Chapter 2, other variance estimators are possible which make fuller use 

of the data. Recall Sitter (1997) used theidentity mentioned above t o  obtain an alternative 

lineafisation variance estimator which makes fuller use of the data, see (2 .11) .  We substitute ' 

this estimate in for v ( y l , ) ,  and find 

where s:, = CICs1 (x; - 5 1 ) 2 / ( n l  - 1 ) .  Based on Sitter's simulation results, we expect that 

vl (Qt) will be more efficient than vo(&).  

We may also consider various estimators for S; in V ( y 3 )  = ( l / n 3  - 1 1 ~ ) s ;  which make 

fuller use of the y-values. For example, we could use all y-values measured in both s2 and 

sg to estimate Si  to give 

where sk3  = CSzUs3(y; - y ~ ) ~ / ( n 2  + n3 - 1) and ~ 2 3  = CSZUS3 yI/ (n2 + n 3 )  However, as Rae 

and Sitter (1997) discussed and showed in a different context through a simulation study, 

positive covariances between terms in variance estimators may be introduced in attempts 

to make fuller use of the data  in this way. This can result in inflating the mean squared 

error of the variance estimator. For example in (4 .4 )  above, if s;, is positively correlated 

with the first term in the square brackets, the M S E  of this estimator could be larger than 

that for vl(Qf:) .  

Lf we instead consider the estimate for Y which uses the ratio estimator instead of the 

regression estimator, given in (3.5), and again assume wl and w2 are fixed, we can follow a 

parallel argument to that given above using results discussed in Chapter 2. We may simply 

use the linearisation estimator given in ( 2 . 3 )  to  estimate V(y,) to get 

where sa = d : / ( n 2  - 1 )  with d, = y, - R Z , .  sdr, = Z ,,,, d,(z ,  - i2)/(f i2 - I )  and 

R = i j 2 / f 2 .  



Recall Rao and Sitter (1995) suggested an alternative linearisation variance estimator ' 

for V(y,) given in (2.4) which makes more complete use of the data. Using this estimator 

we find 

Also s:, could be replaced by s;, . 

4.1.2 Jackknife variance estimator 

A jackknife variance estimator may also be found for the fixed weight case. Deleting the j f h  
, 

unit will effect the estimator differently depending on which set sl, s2 or s3 the unit is in. 

We first rewrite equation (3.2): 

We now develop the following notation: 

and 



jc (s l  n s;) u s3 

where dl = y, - y2 - b ( z ,  - i 2 )  and k2 = l / n 2  + ( 2 ,  - ~ ~ ) ~ / { ( n ~  - 1 ) ~ ; ~ ) .  

Let 

Ignoring finite population corrections, we may apply the usual jackknife formula 

and ~ ~ ( y f u ' )  is the jackknife variance estimator. Note that no bias correction factor is included 

in (4.8). Since we are jackknifing over two sets, sl and s3. the  usual correction factor cannot 

be applied. 

We note for large n2, 

where a,  = { n 2 ( x ,  - Z 2 ) ( i l  - i 2 ) ) / { ( n 2  - 1 ) ~ ; ~ ) .  

We use the above and (4.8) t o  obtain 

where 

If we include the  appropriate finite population corrections we find 



+ w; (( t 1 - 5 2  ) d;(zj - Z2) 
(1 - kj)2 + R  

n2 - w:, j,,, 

where VLJ indicates that this is a linearised jackknife variance estimator. 

We can follow a parallel argument t o  develop a jackknife variance estimator for the 

estimator given in equation (3.5). Firstly we can write the jackknife estimate as 

where f l  ( j ) ,  z2(  j ) ,  i j 2 ( j )  and y3(j) are as defined previously. The general jackknifeyormula 

gives 

For large n2, we find 

We assume f l ( j ) / f 2 ( j )  = z 1 / z 2 ,  use the above result and equation (4.12) t o  find 

If we include the appropriate finite population corrections we obtain the linearised jackknife 

kstimator, 

iVe note that the jackknife uses s i 3  to estimate the variance of ys in both 51: and y i .  



( 4.2 Estimated weights: wl and wz 

4.2.1 Linearisation variance estimator 

For the case in which weights are estimated using (3.4), a linearisation mriance estimator 

may again be obtained. We will develop a general formula for a linearisation mriance 

estimator which will cover estimators of this form. The notation used in the following 

development is taken from Rao and Sitter (1997). These estimators can be written as 

a function of means, ie. 9 = g(f3,62,@l ), estimating the population parameter 8 = 

g ( Z ,  W, ), where Z* is the population mean of r , W is the population mean of w = 

(u. ' , u  T ) T  and is the population mean of u where u is observed for the entire first- 

phase sample, u is observed only on the second-phase sample and z is observed only on the 

independent random sample at  time 2. For example, consider the estimator y: = wl y ,+w2fi  

with wl and w2 fixed. Then using the notation defined above el = Z 1 ,  Cz = ( 2 1 2 ,  Cz) = 

(a, f 2 )  and i3 = 6, and the estimator can now be written as gk = uilgi.1 + w2%. 
I 

We can now write 9 = g(Z + A13, w + Aa2,V + Ael ) = h(Af3,AtZi2,Ael ) 

where Afs = Z3 - 2 , = C2 - W , and A31 = el - . By a first order Taylor 

expansion of 8 = h(AZ3, AG2, Ael ) around the point (0, 0,O) , we find 

vectors of derivatives with respect to  A& , AtZ2 and AUl with lengths m, k + 1 and 1 

respectively. We can now get a general formula for the mean squared error of e .  



Since the two-phase sample and the independent random sample on the second phase are 

independent, we may rewrite the above as follows: 

Note that E(Awza) = E(AClo) = E(A&)  = 0 and the above simplifies t o  

where S,,,t, Suaal, S,t and Swo,vp are covariances of characteristics w, and w,~, vq and 

vgt, z7 and z71, and w, and vp respectively. If we replace the covariance terms in equation 

(4.15) by their sample covariances, we obtain the following linearisation variance estimator 

Xote that swa,"g must be estimated based on the second-phase sample only. 

To illustrate, let us return to  the example previously discussed. For the estimator yL, we 

have worked out the vector notation necessary to  apply the above general formula. Recall 



We calculate the partial derivatives necessary to  apply the general MSE formula given 

&' 0 in equation (4.15) aqd find h v )  = w2, h.?) = wl, h y '  = - w l r  and h p )  = W I T .  Applying 
' - 

the formula we obtain 

ti Y 
1 

We, use R = 7 = F, ignore finite population corrections and evaluate the expectations to 

find . 

Though we have applied the general formula to an estimator with fixed weights, (4.15) 
\ 

would Uso apply t,o the estimator 9; or 9: with weights wl and w2 estimated as in (3.4), 

provided the estimator wl of wl can be expressed as a function of means. To illustrate 

consider yfi = wlylr + w2y3 where 

w1 = y r r l  )-r 
v o ( h  + u 3 ( ~ 3  and w 2 =  1 -  w1, 

where ~ ~ ( y l r )  is as given in (2.9) and v3(b)  = (1/n3 - l / ~ ) s ; , .  We note that i j ,  = 

g 2  + b(21 - Z2) can be written as a function of means if the regression coefficient, 6 ,  can be 

written as a function of means. We use some simple algebra to  find 



Thus b is in fact a function of means, where ii2 = C,,s2 z,y,/n2 and e2 = ClCs2 xT/n2. The 

variance estimators vo(lJlr) and v3(y3)  can be written as functions of means using similar 

arguments and algebraic manipulation as shown above. This implies that & can be written 

as a function of means, and is therefore in the class of estimators to which the general 

formula given in (4.15) may be applied. Note that all of the discussed estimators for V ( y r , )  

and V(ij3)  can be written as functions of means. However, yfi with estimated weights will 

be a function of many means, and thus one would be hesitant t o  use this procedure. That 

said, the fact that this general method does apply allows for theoretical developments with' 

the jackknife. 

To use the jackknife procedure we need only be aware that the estimator of interest 

9 can be written as a function of means. That is, the jackknife methodology is correct 

asymptotically for parameters 9 that may be written in this form. It is unnecessary to write 

it as such and expand. We may simply implement the delete-one-unit jackknife method to 

obtain the jackknife estimates, % ( j ) ,  and apply the general formula 

4.2.2 Jackknife variance estimator 

We now develop a general formula for a jackknife variance estimator for the case of estimated 

weights. Consider the vector notation given in the previous section where we claimed we 

can write the estimator % = g ( f ,  d, B) . As in &e$xed w t case, the effect of deleting a 
'd . d 

point will effect these means differently depending on which set, sl, s2,  or ss the point was 

originally in. We can write 

and 



We can now write the jackknife estimate b ( j )  = g ( f  ( j ) ,  t3 ( j ) ,  ij ( j ) ) .  To get the general 
\ 

formula we d s o  note 

A g l  ( j )  = el ( j )  - el = 

AG2 ( j )  = ( j )  - GZ = 
j4s1  n s;) u ~ 3 .  Y C  

and 

A Z 3  ( 1 )  = 2 3  ( j )  - f g  = 

Thus 

By a Taylor expansion of b ( j )  = 6(ai3 ( j ) ,  AC2 ( j ) ,  Asl ( j ) )  around (0, 0,O) we fig 

e ( j )  - 9  = ( A Z g  ( j ) ) ' h  "' + (A@, ( j ) ) ' h  '"' + (As l  ( j ) )  
Tj, ( v )  (4.18) 

and we may now use the jackknife formula 

Let ~ 1 3  = s1 U s3. Then using the above formula and (4.18) weobtain 



where hbw) is the derivative of h with respect to'the components of At& ( j )  evaluated 

at ( 0 , 0 , 0 )  . similarly for h!) and A?'. As in the linearisation variance estimator the 

covariance terms between the independent random sample and the double sample are zero 

and the above simplifies to 

We now turn to the example we have been following, and will use the above t o  reproduce 

the variance estimator given in equation (4.13). That is, we will find the jackknife variance 

estimator for the estimate given in equation (3.5). We use the same vector notation specified 

previously and we find 

We calculate partial derivatives and find hLv) = wid, hi") = wl$ h p )  = -wl ~2 and 

hiz) = w2 where R = 2. Applying the formula given in equation (4.20) we find 

This simplifies to 



which is identical t o  t he  est imator  given in equation (4.13). 

b 



Chapter 5 

simulation study 

This chapter describes simulation studies to compare the efficiencies of the discussed vari- 

ance estimators, relative to the estimator typically used. Two simulation studies will be 

performed: one for the fixed weight case, and one for the case in which the weights are 

estimated. 

5.1 Models and parameter settings 

We need to generate a set of z and y characteristics, where z represents the characteristic 

a t  time 1 and y at time 2. We follow a similar design for the study as used in Rao and 

Sitter (1995) and Sitter (1997). We will create a finite population of size iV=16,000. We 

use models of the following general form 

where c, - N(0,u;) are independent of z, - gamma(g, h ) ,  and vary our choice of a ,  O, g, h ,  y ,  

and a .  Since the z ,  .v gamma(g, h),  we know p, = gh and a: = g h 2 .  The coefficient of 

variation of the x's is then C,=o,/p, = I/&. We consider two values of C,. 1.0 and a. 
Recall that the method of sampling on two occasions relies on the fact that z and y, the 

measurements of the characteristic over two timepoints, are highly correlated. Therefore, 

"' P to vary our choice in p=corr(z,, y,). We use p=O.i' and p=0.85. 



' 
Table 5.1 : 23 possible models 

No. 1 1 y / a 1 Model 
I I I I 

t We need to discuss the choices for a ,  P ,  -r, and a .  Since we will be  investigating estimators 

which use the linear regression estimator, as opposed t o  the rat io estimator, the choice of 

a will not affect the  results and so we set this parameter to  0 in all cases. For simplicity. 

consider two levels for each remaining parameter; 13 is 0 or 1, y is 0 or 0.1 and a is 0 or 0.5. 

There are 23 = 8 models to  consider based on all combinations of these parameter settings, 

see Table 5.1. 

Note that  models 1) and 5 )  are of no interest since this will produce 0 correlation 

between z, and y , .  Though models 7 )  and 8) are of some interest, we exclude them and 

study simpler models. Models 2 )  and 4 )  present the basic linear model and the  linear model 

with a moderate size quadratic effect. Model 6) is again the basic linear model, but the 

variance now depends on r .  Model 3)  represents a departure from linearity with only the 

quadratic term plus error.  Those modks  which we will consider have been marked with a 

"*" in Table 5.1, and a re  reproduced in Table 5.2. 

For each of the 4 models chosen, we wish to run the simulation a t  C,=l and C, = a. 
and p = 0.85 and p = 0.7. Thus there will be 2 x 2 = 4 simulation runs for each model. C,  

dictates the setting of g, and p dictates the setting of a:. To determine h ,  we set p,= 100 for 

models i)  and i i )  and p,=10 for models iii) and i v ) .  See Appendix B for the development of 



Table 5.2: Models to  be used in simulation 
a 

Model 

y, = x, + €, 

7 
C o v ( X ,  Y) and a$,  and the parameter values used in the 4 simulations for each model. We 

give plots of 4 populations, one for each model with p = 0.85 and C, = 4. see Figure .5.1. 

For each simulation, we create a finite population of size N = 16,000 and take B = 

10,000 independent samples using sampling on two occasions with nl = 200, nz = 80 and 

n3 = 100. Scott (1984) discusses a forestry example applying sampling on two occasions 

with the above sample sizes. In each iteration we cdculate our estimate of Y using yfi, refer 

to (3.2). We can obtain the "truen mean square error of ijfi through simulation using 

1 B 
M S E  = - C ( i j E ( b )  - Y) ' ,  

B 
b= 1 

where is the estimate ij: obtained on the bth simulation run and Y we calculate from 

the finite population. For each of the variance estimators z., we find its simulated mean 

square error using 

where db) is the variance estimate v from the bth simulation run. Since the finite population 

is large relative to  the sample sizes under investigation, we remove the finite population 

corrections from all variance estimators. We report relative efficiencies of the variance 

estimators, using vo(yfi) as the standard. That is, we r epo~ t  M S E ( v ) / M S E ( v o )  for each 

of the variance estimates v calculated. 

We also report the percent relative bias for each variance estimator, v. To calculate this 



Figure 5.1: Example populations for models ( i)-( iv)  

Model (i), p=0.85, Cx=sqrt(2) 

Model (iii), p=0.85, Cx=sqrt(2) 

Model (ii), p=0.85, Cx=sqrt(2) 

Model (iv), p=0.85, Cx=sqrt(2) 



Table 5.3: Percent relative bias: u.1 = 0.2. w2 = 0.8 

we use 

5.2 Fixed weight simulation 

For the h e d  weight simulation we use three different weighting combinations: u.1 = 0.2 and 

u.? = 0.8, q = ulz = 0.5. and w 1  = 0.8 and t c 2  = 0.2. These are chosen to represent the 

three general cases of large weight on the  double sample, equal weight on the double sample 

and independent random sample. and small weight on the double sample. For these weights 

we calculate v a ( y t ) .  v l (  &). e L J ( y f = )  and cJ(r jL)  as presented in Chapter 4 .  Section 

1. \Ve report percent relative bias and relative e f i c i e n c  of the ~ a r i a n c e  estimators. 

IVe first discuss percent relative bias of the estimates. see Tables 5 .3  - 5.5.  So te  

1 1 r o . v l . c 2 . t ' ~ ~  and V J  are co(y!). t .l(yr). c2iy:!. vLJ(tj,') and rJiy,').  respectivel?.. Ii'e note 

relative bias of r . ~  is consistently the highest for weighting combinations u.1 = 0.2. u.2 = 0.3 

and trl = 0.5. u.;, = 0.5. In Tables 5.3 and 5 .4  all other estimators have approximately equal 



Table 5.4: Percent relative bias: uq = 0.5, w2 = 0.5 

t p= I (i) y = z + c  

0.7 

0.85 

P= 

Table 5.5: Percent relative bias: wl = 0.8, w2 = 0.2 

P= 

0.7 

0.85 

( i )  y = z + c  

2.70 1.23 2.72 1.24 3.41 2.07 

2.76 1.24 2.80 1.27 3.26 1.81 

(ii) y = 2 + &c 

0.58 -2.82 0.61 -2.79 2.56 0.14 

1.45 -1.49 1.49 -1.45 2.83 0.44 

(iii) y = 0.1z2 + f 
1.11 1.56 -1.12 -2.46 -1.09 -2.42 -2.02 -4.98 6.45 8.11 

0.09 0.96 -4.00 -6.53 -3.96 -6.46 -6.51 -12.15 6.67 9.80 

( i v )  y = z + 0.1z2 + c 

( iv )  y = z + 0.12' + c 

(ii) y = z + & c  

3.37 1.42 

3.83 1.40 

3.13 1.21 

3.46 1.05 

3.57 1 7 3 1 5 . 1 8  3.32 3.21 1.31 

3.57 1.18 3.79 1.44 

0.91 -0.76 

-1.43 -3.72 

5.10 2.72 

1.46 0.47 

0.00 -1.18 

2.25 1.96 

1.46 1.31 

1.26 0.22 

-0.32 -1.63 



Table 5.6: Relative efficiency: wl = 0.2, w2 = 0.8 

c,= 
P= 

0.7 

0.85 

P= 

I p= I ( iv)  y = I + 0 . l t 2  + c 

P= 

0.7 

0.85 

relative bias. Table 5.5 indicates relative bias is larger for, q, v2 and VLJ 

0.7 0.999 0.999 0.612 0.599 1.000 0.999 1.029 1.022 

0.85 0 9 9 9  0.999 1 0.599 0.588 1 0,999 0999  1 1.029 1.021 

1.0 

as the models 

(iii) y = 0.1 t2  + c 

depart from linearity for wl = 0.8, w2 = 0.2 for both large p and large C,. Note that Table 

5.5 reports that when the population is given by model (iii) or (iv) where p = 0.85 and 

C, = a. V L J  is underestimating the true MSE by 12.15% and 10.05% respectively. For 

these models, vo performs best in terms of bias. For such non-linear populations, larger 

sample sizes would be needed to  reduce the bias. We ran simulations doubling the size of 

nl. nz and n3 for the non-linear models, and found the relative percent bias decrease to 

approximately t w ~ t h i r d s  of that given in Table 5.5. 

Turning to relative efficiency, given in Tables 5.6 - 5.8, we see that for the first weighting 

scheme. u.1 = 0.2 and w2 = 0.8, v2  is considerably more efficient than the other variance 

estimates in all models considered while vo, vl, VLJ and CJ all perform similarly, refer to 

Table 5.6. This may be due to  the large weight on the independent random sample, s3. 

It appears that if a covariance term has been introduced in v2, it does not outweigh the 

benefits of reduced k-ariance in using s;, as opposed to  st3  as in t.,. 

AS weight is removed from s3 and put on the double sample. refer to  Table 5.7 where u.1 = 

M S q v d  
M S q w o )  

1.0 Ji 
( i )  y = t + c  

0.999 0.999 

0.999 0.999 

M S E ( v L  jl 
M S E ( v o )  

1.0 Ji 

0.999 0.999 

0.999 0.999 

1.000 0.998 

1.000 0.999 

0.587 0.593 

0.583 0.589 

M S E ( w j )  
M S E ( u o )  

1.0 Ji 

1.023 1.02k 

1.022 1.020 

(ii) y = z + f i c  

0.606 0.589 

0.592 0.577 

1.000 0.999 

1.000 0.999 

1.040 1.027 

1.033 1.022 



Table 5.7: Relative efficiency: wl = 0.5, wz = 0.5 

I p= I (i)  y = z + c  

I P= I (ii) y = I  + fit 

0.85 

, P= 

w 2  = 0.5, we find less obvious patterns in the relative efficiencies of the variance estimates. 

iVe see 29 slightly outperforms v;! in all models except model (i). We note V L J  appears to  be 

most efficient for model (iii). However Table 5.5 indicates V L J  is underestimating the true 

variance for models (iii) and (iv). The efficiency of V J  is similar to  that of vo. 

Table 5.8 presents the results with wl = 0.8 and wz = 0.2. Here, we put large weight 

on the double sample. and small weight on the independent random sample. We see vl is 

again more efficient that ~2 in all models considered. Ln models (i) and (ii) ,  v~ performs well 

for p = 0.85. Moreover, ~ L J  appears to have good efficiency. though, as previously noted, 

its relative bias is high for models (iii) and (iv) with p = 0.85. Tables 5.7 and 5.8 present 

results which concur with those found by Sitter (1997); vl and V L J  perform better for large 

p and large C,. 

The ost striking obser~ation from this simulation is the relative efficiencies of zll and vz 

observed \ a ove for the different weighting combinations: when more (less) weight is placed 

on the double sample. rl ( r 2 )  is better. This observation warrants further investigation. 

0.7 

0.85 

P= 

0.894 0.880 

(iii) y = 0.12' + c 

0.891 0.861 

1.173 1.171 

1.160 1.160 

( i v )  y = I + 0.12' + r 

0.899 0.842 

0.893 0.844 

0.888 0 . 8 6 9 1 0 . 9 6 6  0.945 

0.929 0.908 

0.885 0.870 

1.004 0.975 

0.959 0.939 



Table 5.8: Relative efficiency: wl = 0.8, u:n = 0.2 

.9b 
c,=l 1.0 Ji 1 1 . 0  Ji 1 1 . 0  Ji 1 . 0  f i  

p= I (i) y = z + t  

0.7 / 0.843 0.753 0.893 0.801 0.907 0.816 1.025 0.904 

0.7 0.677 0.623 0.741 0.687 0.670 0 . 5 6 9  

0.85 0.664 0.619 0.729 0.683 0.676 0.559 

p= ( i v )  y = z + 0.12' + c 

0.7 

0.85 

5.2.1 Relative efficiency of vl(g:) and v2(&) 

0.85 0.603 0.531 

Recall q(&) and v2 (&)  as given in Chapter 4. Ignoring finite population corrections. we 

have 

0.631 0.552 0.649 0.575 

P= I (iii) y = 0 . 1 t 2  + c 

0.840 0.784 

0.667 0.619 

and 

0.679 0.582 

P= 

2 where r l (  y l , )  = s i / n 2  + b2s& I n l .  t 1 3 ( y 3 )  = SZJ In3,  and C 2 3 ( y 3 )  = syl3 In3. The only 

difference being that  in & all of the y, d u e s  are used in the  second term.  

(ii) y = z + & r  

0.895 0.839 

0.722 0.674 

Lye can decompose the M S E  of the bariance estimates vl and v2 as follows. 

'% 

. \ i . S ~ ( r ~ ( y : ) )  = ~ [ t c : t l ~ ( y l , )  + w ; v 3 ( ~ 3 )  ;- w : ~ ~ ~  - Z L ~ ~ C ~ ~ ] ~  

= W ~ ~ V S E ( L ~ ~ ( ~ ~ ~ , ) )  + u ~ ~ M S ~ ( v g ( ~ 3 ) )  

1.041 1.021 

0.768 0.722 

1.270 1.329 

0.882 0.869 



and 

where C1 = M S E ( & )  = E(yr, - Y ) ~  and U2 = MSE(jj3) = E(y3 - E')'. 
We treat the set sg as if it is a sample from the entire set S. but in the simulation we 

do not allow units in s l  t o  be sampled again in 53. Subsequently, yl, and y3 are not exactly 

independent. However, since the sampling fraction in our simulation is approximately zer j- 
they are approximately independent. Thus, we would anticipate the last term in (5.7) to 

be nearly zero. One cannot expect the same of (5.8), since s2 is used in both vl(yl,) and 

v ~ ~ ( & ) .  We would expect MSE(v3(y3)) in (5.7)'to be larger than M S E ( V ~ ~ ( ~ ~ ) )  in (5.8) 

due to  the increased sample size used in the latter. The question then is whether the sum 

of the second and third terms in (5.8) is larger or smaller than the second term of (5.7). 

Recall to find the "truen M S E  of gf= via simulation we used 

1 
M S E  = - C(&(,) - Y ) ~ ,  

B 
b= 1 

where y:(b, is the estimate g: obtained on the bth simulation run. Note that this 'true' 

Jl SE does in fact capture any covariance between y,: and y3. We then use this simulation 

estimate of M S E  to  calculate M S ~ ( v ~ ( j j f = ) )  and M S E ( V ~ ( & ) ) ,  see (5.3). However. when 

we calculate M S E ( v l ( g t ) )  using the expansion given in (5 .7 ) ,  the covariance between yl, 

and y3 is not included in the M S E  estimate. Therefore, the two different derivations of 

- \ ISE(V~(~;)) ,  using (5.3) and (5.7), will yield slightly different results. The same is true 

for ~ s E ( v ~ ( y f U ' ) ) .  The difference, however, is neghgible since GI, and y3 are approximately 

independent as explained above. P 

We use simulation results and (5.3) to calculate M S E ( v l )  and M S E ( v 2 )  by (5.3) as 

expl'ined in section 5.1. LVe can also empirically calculate the three terms on the right- 

hand of expressions ( 5 . 7 )  and (5.8) using simulation values. We use 



and 

where ( b )  indicates the  value was obtained from the bth simulation run. Since Z L ' ~  = 1 - w l .  

we can use simulation results and write M S E ( V ~ ( ~ : ) )  and M S E ( V ~ ( ~ ~ ~ ) )  as functions of 

q.  We may then plot h f ~ ~ ( ~ ~ ( y f i ) )  and , ~ . i ~ ~ ( v ~ ( ~ f i [ ) )  over 0 < wl < 1 .  Figures 5.1-5.4 

show the  results for each model given in Table 5.2 a t  each combination of p and C, used in 

the simulation. 

Figures 5.2 - 5.5  reveal that v2(y f i )  appears t o  be more efficient than v l ( y L )  for u.1 less 

than 0.6, and nearly as efficient for wl  greater than 0.6 .  This indicates tha t  the gain in 

precision by using ~ ~ ~ ( g ~ )  t o  estimate S; in v2(9f i )  outweighs the  penalty introduced by the 

covariance term between v l ( J I r )  and ~ ~ ~ ( i j 3 ) .  We note tha t  both v l ( y : )  and v2(&)  obtain 

their minimum M S E  in all models in the neighbourhood of wl  = 0.6. This suggests the 

optimal weighting for the  sample size under investigation is wl = 0.6, u9 = 0.4. 



Figure 5.2: Model i): M S E ( v l )  and M S E ( v 2 )  as a function of wl 

Model i) p=0.7, Cx=l 

Model i) p=0.7, Cx=sqrt(2) 

Model i) p=0.85, Cx=l 

Model i) p=0.85, Cx=sqrt(2) 



Figure 5.3: Model ii): M S E ( v l )  and M S E ( v 2 )  as a function of wl 

Model ii) p=0.7, Cx=l 

w  1 

Model ii) p=0.7, Cx=sqrt(2) 

Model ii) p=0.85, Cx=l 

w l  

Model ii) p=0.85, Cx=sqrt(2) 



Figure 5.4: Model iii): M S E ( v l )  and h4SE(v2) as a function of ull 

Model iii) p=0.7, Cx=l Model iii) p=0.85, Cx=l 

Model iii) p=0.7, Cx=sqrt(2) 

wl 

Model iii) p=0.85, Cx=sqrt(2) 



Figure 5.5: Model iv):  M S E ( v l )  and M S E ( v 2 )  as a function of wl 

Model iv) p=0.7, Cx=l Model iv) p=0.85, Cx=l 

wl 

Model iv) p=0.7, Cx=sqrt(2) 

wl 

Model iv) p=0.85, Cx=sqrt(2) 

\ 



5.3 Estimated weight simulation 

5.3.1 The point estimator ~1: 

To investigate variance estimation for & with estimated weights. we first need t o  discuss 

the point estimator itself. Consider the weights given in (3.4).  We have a variety of choices 

t o  estimate V(yl , )  and two possible estimates of V ( y 3 ) .  In Chapter 2 we introduced four 

estimates of V(yr , ) :  vo(ylr) .  vl(yl ,) ,  v L J ( Y l r )  and vJ(yl ,) ,  given in equations (2 .9) ,  (2.11). 

(2.12) and (2.13) respectively. Possible estimates for V (  y 3 )  are 03(ys )  = si,/n3 and vz3(y3) = 

st2,/n3. We wish t o  determine which combination of estimates used to calculate ri.1 and Gz 

yields the  best estimate y;. We have 8 such combinations t o  consider. and thus 8 possible 

point estimates, see Table 5.9. 

Table 5.9: Estimates of C ' ( y l r )  and V ( y 3 )  

We employ the  same models, and p and C, values as used in the  fixed weight simulation. 

To investigate the  best point estimate, we use (5.2) t o  calculate the  simulated mean square 

error for each estimate y f :  for the 8 possible weighting combinations. We report the percent 

relative bias of the  point estimates, see Table 5.10. We estimate this quantity using, 



where (b )  indicates the value obtained from the bth simulation run. We also report relative 

mean squared error in Table 5.11 using combination ( 1 )  in Table 5.9 as the standard. We 

indicate the choice of v(ylr) and v(y3) used to  estimate li,* and w2 in Tables 5.10 and -5.11 

by the pairs in brackets as given in Table 5.9. 

Table 5.10 indicates that the bias i nc rwes  with both p and C,. For models ( i )  and (ii) 

all point estimates considered have similar and small percent relative bias. Results for the 

non-linear models, (iii) and (iv), display larger bias. We note that for these two models bias 

appears to be reduced by using v23(Y3) to  estimate Ir(y3) .  In general, our results suggest 
-1r(0,23) the point estimate y, performs best with respect to  bias. 

Turning to  relative efficiency of the point estimates, see Table 5.11, we find for models 

( i )  and (ii) estimates perform very similarly in terms of efficiency. For models (iii) and ( i v )  

estimates which use v23(y3) as opposed to  v3(y3) are slightly more efficient. 

5.3.2 Variance estimator results 
t 

Recall using a one term Taylor series expansion with estimated weights, see Appendix A, 

we found the linearisation 

We also discussed Meier's 

estimator 

variance estimator in Section 3.2 for estimated weights. He used 

a two term Taylor series expansion and made a number of assumptions in developing, 

where ml = n2 - 1, mz = n3 - 1. We consider both of the above variance estimators and 

explore all 8 possible estimates for v(ylr) and v(ji3) given in Table 5.9. That is, we consider 

16 variance estimators in total. When computing the efficiency of these variance e s tba to r s  

using (5.3),  we first need an estimate of the true MSE of yf: using (5 .2) .  We find the MSE 

of yk Which uses the same estimates of v(ijr,) and v(Y3) in GI and zi12 as does the variance 

estimate in question. v(y;) or ~ M ( ~ f i ) .  It is this M S E  that is used to  calculate the mean 

squared error of the variance estimator using equation (5.3). For example, to compute the 
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efficiency of v(yfi) which uses combination ( I )  in Table 5.9, we would first calculate the 

MSE of the point estimator yi = Clyl, + w2y3 where wl = V ~ ( ~ ~ , ) - ~ / ( V ~ ( ~ ~ ~ ) - ~  + v3(y3)-l) 

and G2 = v3(y3)-1/(vO(ylr)-1 + 713(~3)-l). We would then use this value in equation (5.3) 

to  find M S E ( C ( $ ~ ~ ) ) ( ~ > ~ ) .  

We report percent relative bias. calculated using equation (5.4). in Tables 5.12 and 5.13. 

The first tab16 contains results using the  linearisation estimator. equation (5.10), and the 
L 

second contains results using Meier's variance estimator, equation (5.11). Again, we indicate 

the estimates used for v(yI,) and v(ij3)'by pairs in brackets. k 

LVe first note that  Meier's variance estimators have similar bias t o  that  of the linearisation 

variance estimators, see Tables 5.12 and 5.13. Meier's correction factor typically increases 

the percent relative bias by approximately +2%. Variance estimators appear to  have similar 

and small bias for model ( i ) .  For models (ii), (iii) and (iv) we find variance estimators which 

use b23(Y3) as opposed t o  v3(fj3) have smaller relative bias. For non-linear models'(iii) and 

j iv) ,  we find larger negative biases for all variance estimators. The problem worsens as both 

p and C, increase. For example, for mod& (iii) and (iv) variance estimators are seriously 

underestimating the true k-ariance for p = 0.85 and C, = A. As we noted in the  fixed 

weight simulation. bias is reduced by increasing the  sample sizes, n l ,  nz and n3. We found 

doubling the sample sizes decreased the biases of the  variance estimates by approximately 

one third in models (iii) and (iv). Generally, our simulation results suggest tha t  .v(0.23) 

performs best in terms of bias for the models under investigation. 

Tables 5.14 and 5.15 present relative efficiencies of the linearisation and Meier's variance 

estimators respectively. In both tables, relative efficiencies are reported with respect to  the 

linearisation variance estimator which estimates V(yl,) and V(y3) with vo(yl,) and v3(y3) 

respectivelv. We note the  same patterns exist within each table. However, comparing one 

table t o  the other. we see the  linearisation estimators are slightly more efficient than Meier's 

estimators. For these reasons, we limit our discussion t o  the  results contained in Table 5.14. 

Comparing t . ( ' v 3 )  and r(1.23). t.(LJ.3) and t.(LJ.23). and ~ ( ~ 9 ~ )  and ~ ( ~ 9 ~ ~ ) .  we see that  estimators 

u h c h  use v3(jj3) are more efficient than those which use ~ ~ ~ ~ ( y ~ )  for all models especially for 

(iii) and ( i v ) .  This suggests a co\-ariance term has been introduced by using v23(y3) in these 



estimators. For models ( i )  through (iv), and d L J 1 3 )  are most efficient. The jackknife 

variance estimator of V(gr,)  also appears to give stable estimates. 
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Table 5.13: Percent relative bias of Meier's variance estimates 
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Chapter 6 

Discussion 

We have explored variance estimation for the typical point estimator generated under sam- 

pling on two occasions. Since this estimator is a weighted linear combination of two esti- 

mators. we consider two cases: fixed weights and estiinated weights. 

Cnder the fixed weight supposition, we explored three weighting combinations. As we 

increased the weight on the linear regression estimator from the double sample, we saw 

changes in the percent relative biases and relative efficiencies of the variance estimators in 

question. We found for the non-linear populations with wl = 0.8 and w2 = 0.2 percent 

relative bias increased with both p and C,. An increase in size of the sets sl, 5 2  and 

sg is necessary ihorder  to reduce the bias of the variance estimates for these non-linear 

populations. Ln terms of efficiency, we discovered when more weight is placed on the double 

sample. 2il performs better. whereas when less weight is placed on the double sample, v2 

performs better. By breaking down the M S E  of these two estimates we were able to plot 

the simulated MSE of vl and v2 over 0 < w1 < 1. We found v2(jjL) to be more efficient 

than vl(yf:) for w1 < 0.6 and nearly as efficient f6r wl > 0.6. This finding suggests vz's gain 

in efficiency by using vZ3(ij3), as opposed to v3(y3), to  estimate V(y3) outweighs the penalty 

introduced by the covariance term between vl(yl,) and vzs(y3). 

Turning to variance estimation where the point estimator has estimated weights, we first . 
d~scuss the best choice of ~ariance estimates to use in w l  and Zi'> We investigated 8 possible 

combinations of Cl and Zi'z to use in ijfu'. For models ( i )  and (ii) we found in terms of 



* 
both bias and ~fficiency all point estimates t o  be virtually equivalent. with &(0723' being a 

slight winner. For the non-linear models, (iii) and (iv), we found bias was smaller for those 

estimators which used v23($). Overall. the estimator $(0'23) had smallest bias for models 

(i) through (iv). 

Turning to  estimators of the variance of yf=, we considered two general forms: the 

one-term Taylor series expansion linearisation variance estimator, and Meier's variance es- 

timator. It is the latter estimator which is typically used by those in the forest indugtry. 

and claims to have a correction~factor to reduce the order of the bias. We tried the same 8 

combinations of estimates for V(&)  and V(y3) as used in the point estimator simulation in 

both the linearisation and Meier's variance estimator. We found for all models considered, 

Mkier7s correction factor affected the bias very little. Moreover, we found the linearisa- 

tion variance estimator to be more efficient than Meier's estimator. On the basis of this 

study we would not recommend using Meier's variance estimator. It is based on parametric 

assumptions, is more complicated and does not seem to  enhance performance. 

As in the fixed weight simulation, we saw problems with peicent relative bias for all 

variance estimates for non-linear populations. In such populations we found the bias in- 

creased with both p and C,. Again, we found increasing n ~ ,  722 and ns reduced the bias 

of our estimates. This suggests as populations become more non-linear, larger sample sizes 

are required in order to give unbiasedness (or near unbiasedness). In general, it appears 

bias is reduced in the linearisation estimators (and Meier's estimators) by using v23(y3) as 

opposed to v3(y3). However, estimators which use v2s(ij3) are less efficient. We found the 

linearisation variance estimator with vl(yl,) or vLJ(ylr) estimating V(yl,) and v3(y3) esti- 

mating V(y3) yield the best variance estimates in terms of efficiency. However, taking bias 

into consideration v23(y3) is the preferable estimator of V(y3). 

We must consider the results from both the point estimator and the variance estimator 

simulation studies when recommending which estimates of V(yl,) and V(y3) to  use. Most 

important is the need to minimize the bias and MSE of the point estimator. Recall we found 
-1r(0,23) the point estimate y, to give the best results in terms of bias. It also performed well in 

terms of efficiency. Next we consider the variance estimator results. iVe found estimating 



V ( y 3 )  with v 2 3 ( p 3 )  reduced bias in all models, a t  the price of lower efficiency. Based on 
-1r(0.23) these results, we suggest using y, and 
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Appendix A 

A. l  First order Taylor series expansion to get (3.8) 

We have two estimates of Y,  yl, and Y 3 ,  with corresponding variances a: = 1 7 ( y l , )  and 

a: = V ( y 3 )  respectively. We have consistent estimates of these variances si = v(y i , )  and 

si = v (y3 ) .  Then in this general notation the estimator of interest is 

2 2 Let 0  = (yi,, J 3 ,  s l ,  s 2 )  and 0  = ( Y ,  Y ,  a:, a;). Then we may write the first order Taylor 

expansion 

where g'(0) is the vector of first order partial derivatives evaluated a t  0  . We calculate 

a derivatives and note 7 g ( 0 )  = q g (  a 0 )  = 0. We then simplify to  find 
a* 1 

2 - 1  where yl = ( o : ) - ' / ( ( a ~ ) - '  + ( u 2 )  ) and 72 = (u ,~ ) - ' / ( (u : ) - '  + ( a ; ) - ' ) .  Therefore. 



If one now replaces a: and a; with their consistent estimators s: and si. we get the same 

estimator as given in (3.8).  



Appendix B 

B. 1 Simulation parameters 

Recall x, .v gamma(g, h ) .  Then E ( X )  = gh and a: = gh2.  We find C o v ( X ,  Y )  for t h e  

general model formula given in (5.1). Note tha t  E ( Y )  = a + 0p,  + ?(a: + p: ) .  

C O V ( X ,  Y )  = E ( X Y )  - E ( X ) E ( Y )  

= E { X ( a  + /3X + y ~ 2  + X a c ) )  - pxpy 

= a E ( X )  + O E ( X ~ )  + ~ E ( x ~ )  - pxpy 

= agh + Bgh2(g + 1)  + ygh3(g + l ) ( g  + 2 )  - gh{a  + Bgh + ygh3(g + l ) ( g  + 2 ) )  

= pgh2 + 2 ~ g h ~ ( ~  + 1 )  

We also require a; for each model: 





Table B.l:  Parameters for models ( i ) - ( iv)  

10.85 1 1 1 1 1 100 1 61.97 1 
0.8.5 fi 0.5 200 87.65 

ii) y, = 2, + f i r ;  
r i I I I 1 

iii) y, = 0.12; + c, 




