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ABSTRACT

-~
The key issue for operational users of hydrologic models is whether distributed

models perform sufficiently better than lumped models to justify the increased time and
effort required for their appliCatiEn. The research had two main objectives: (1) to
compare a quasi-distributed model to two lumped models to determine if there is a
benefit associated with the increased demand for catchment data and (2) to determine if
the statistical significance of differences in model performance can be quantified.

The models tested were a lumped black-box model, a lumped conceptual model,
and a quasi-distributed conceptual model which requires topographic analysis of a digital
elevation model. The models were compared using the evaluation procedure proposed by
V. Klemes, which has four levels: (1) a split-sample test, (2) a proxy-basin test for
géographic transposability, (3) a differential split-sample test for climatic transposability,
and (4) a proxy-basin differential split-sample test for both geographic and climatic
transposability. Model perfom%xhéé was‘_\gc‘?mpared for two small forested catchments
(19.8 and 38.3 ha) within the University of Bl"i‘t‘ié‘h‘C(}lum\pia Research Forest,

approximately 50 km east of Vancouver. The model efficiency (Em) defined by Nash was

used to compare model performance for the entire storm hydrograph, the peak ﬂowsade

“the time-to-peak values.

The statistical analysis, which included the Jackknife method and ANOVA
testing, showed that at levels | and 2, using a significance level of 0.05, there are no
statistical differences in model performance. This finding confirms there is no significant
benefit in applying the quasi-distributed model and that the simpler lumped models would

1]



"provide acceptably similar simulations under those conditions. At level 3, the quaéi-
distributed model performed statistichlly significantly better than both lumped models in
both catchmgnts.-‘The statistical analysis provides justification for using the quasi-
distribﬁtedjqodel when simulating runoff events larger than those used for calibration.
The statistical ‘analysis for level 4 indicated that the quasi-distributed model performed
significantly better than the lumped models in one catchment but not the other, such that
the quasi-distributed model is no worse than the other two models but may perform better
in certain catchments.

This research has provided further information on the relative performance of
quasi-distributed and lumped rainfall-runoff models, and demonstrated that the ANOVA

design including the Jackknife method is a workable method and could be a valuable tool

for assessing statistical significance of differences in model performance.
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CHAPTER 1

INTRODUCTION

Many scientific disciplines use models to describe systems in simpler terms and to
predict system response. In hydrology, rainfall-runoff models enable users the ability to
forecast the runoff from a catchment from the amount of precipitation received @t
catchment. During the last three decages rainfall-runoff models have become accebted
and important tools in operational hydrology for estimating inf(;nnation fequired for
water resources planning, design, and operation. Rainfall-runoff mf)dels are also
impdrtant to researchers m gaining a better understanding of the processes involved -
within a hydrologic system.

In the 19605 aind 1970s, rainfall-runoff models were relatively simple, spatially
lumped and repfesented hydrological processes using algebraic equations incorporating
empirical parameters, e.g., the UBC Watershed model (Quick and Pipes, 1972) and the
HBYV model (Bergstrém and Forsman, 1973). Increasing availability of cg;nputing
power, coupled with a desire to simulate sediment and chemical transpoh pathways
within a catchment, led to the development of more “‘physically bésed" and spatially

distributed models, such as the Systeme Hydrologique Europeen (SHE) model (Abbot et

\3> ’
al., 1986, the Institute of Hydrology Distributed Model (IHDM) (Beven et al., 1987),

and TOPMODEL (Beven and Kirkby, 1979).
Despite the optimism associated w}il_m/cievelopment of these newer, more complex

.
models, there have been few studies that have tested whether more complex models



/

actually perform l;etter in operational applications than simplef models (Beven, 1989). |
Where comprehensive intercomparisons of hydrologic rﬁodels have been conducted, such
as the WMO (1975) study of conceptual runoff models and t.he WMO (1986) study of
snowmelt-runoff models, the statistical signiﬁ.cance of differences in model performance
has not been satisfactorily addressed (Cavadias and MOl‘il"l, 1985).
This thesis addresses two broad questions: (1) are more complex models superior

-to simpler models for operational applications, and (2) can the statistical significance of
differences in model performance be established? The remainder of this chapter reviews
the characteristics of hydrologic models and existing procedures for comparing models to

provide the context for the specific research questions.

1.1 Characteristics of hydrologic models

1.1.1 Mathematical and spatial representation of processes

As shown in Figure 1.1, rainfall-runoff model types range in terms of thc?ir spatial
and mathematical representations. The simplest black-box models (e.g. regression
equations) attempt no explicit representation of processes, while physically based models
solve diffe.rential equations which represent field processes such as irifiltration and
overland flow hydraulics. Conceptual models represent processes in terms of algebraic
equations which attempt to approximate the solutions to the governing differential

equations.
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DISTRIBUTED

¢ (accounts for ®
variations over physically based -
cdatchment) k fully distributed

SPATIAL °
DESCRIPTION quasi-distributed

. d y
LUMPED lumped conceptual

(treats catchment

® )
as homogeneous) lumped black box

&
>

complex process

no process pr
description . dcs@nptnon '
(statistical relation) (differential equations)
PROCESS DESCRIPTION

Figure 1.1 Rainfall-runoff model types range in both spatial and process description.

In terms of spatial description, models are either lumped or distributed depending
on whether the spatial distribution of hydrological parameters within the catchment is
considered.l A lumped model ignores spatial variability and treats the catchment as a
homogeneous entity while a distributed model accounts for the spatial variability of the

catchment.

(LAY



An advantage of lumped models is their limited demand for spatial data.
However, they need sufficiently long meteorological and hydrological records for their
caiibration, which may not always be available. These models make little or no use of
information about topograph);soil type and patterns and changes of vegetation. -
Therefore, use on another catchment, or predicting effects of land use change by changing
parameter values, cannot be done with confidence (Bevén etal., 1984).

Distributed models, on the other hand, attempt to account for the spatial
variability in the physical characteristics of a catchment. For example, since water flows
downhill, representing the topography of a catchment using a distributed parameter
should provide relevant information regarding the spatial variability of the flow
(Ambroise et al., 1996).

There are two types of spatially distributed models. A geometrically distr{buted
model expresses variability in terms of actual points and their orientation within a
catchment, whereas a probability~distribut¢d model describes spatial variability
statistically (Clarke, 1973). Probability-distributed models are also referred to as quasi-
distributed.

In principle, distributed models should bé superior to lumped models in terms of
demanding less calibration of the parameters, when the model is applied to another
catchment, since they are supposedly taking account of catchment characteristics. They
do, however, require spatial data input such as a digital elevation model (DEM), while the

lumped models do not. The key issue for operational users is whether distributed models



perform sufficiently better than lumped models to justify the increased time and effort to
acquire and process the spatial input data required for their application.
' - -
1.1.2 Operational versus resegrch applications
Any comparison and evaluation of rainfall-runoff models requires discussion of

the type of application being assessed. Operational models are applied for purposes such
as evaluating stormflow for delineating floodplain limits or designing reservoirs (e.g.,
Fedora and Beschta, 1989). Research models, on the other hand, are used where the
purpose is to contribute to the understanding of hydrological processes such as
infiltrability (Smith and Hebbert. 1979) or hillslope scale processes (Freeze, 1980).

Operational models usually tend to be empirical and spatially lumped with an
emphasis on ease of application. Research models, on the other hand, being mainly
concerned with the internal hydrological processes being modelled,l are more complex,
spatially distributed models. Fully distributed models, due to their extensive data
demand, are unlikely to be used for operational purposes, at least not in the near future
(Beven, 1989). The difference when evaluating the two different applications is that the
complex process models must be compared against Aétailed field observations to assess
performance for research purposes, whereas the operational models only attempt to
simulate observed discharge values for }orecasting purposes and are not usual]y overly
concerned with the internal hydrological processes. The emphasis in this thesis is on

evaluation of model performance for operational purposes. .



1.1.3 Event-based versus continuous simulations

Models can be used to simulate either long, continuous hydrographs o‘r:isolated
ev'ents. Continuous simulations are used, for example, when the interannual variability of
reservoir inflows is of interest (e.g. Bergstrom, 1979). Event-mode simulations are
commonly used when interest is focused on catchment response to specific rainfall and/or
snowmelt events, for example for computing design floods for structures (Hughes, 1984).
This study used event-mode simulations to compare model predictions é)f storm
hydrographs and peak flows in rainfall-driven catchments.

Continuous simulations commonly run with a coarser time resolution, typically
one day for most snowmelt runoff models (WMO, 1986), while event-mode runs
typically employ time steps of one hour or less. Another difference relates to specifying
initial conditions such as reservoir storages and soil moisture conditions. This issue is
not so critical in continuous simulations, especially for multi-year runs, where the effect
of initial conditions typically becomes negligible after the first y?:ar of simulation. For
event-mode runs, initial conditions can have a critical influence on modelled catchment
response and must be controlled for in some way. For this study, initial soil moisture
conditi(;ns were specified for the events. This issue 1s addressed in Section 2.5.

Use of event-mode simulations in this study allowed for a relatively large number
of events to be included‘wiE’l}.a relatively high time resolution (1 hr), while minimizing
the amount of meteorological and runoff data to be processed. It also avoided problems
with simulating evapotranspiration and its effect on soil moisture in the periods between

events.



1.2 Evaluation of model performance

1.2.1 Concept of operational validation

The issues of model validation can be confusing for model developers and model
users. Firstly, the terms verification and validation have been used interchangeably by
s&me researchers but also have been distinctly defined by others. Rykiel (1996) defines
model verification as a demonstration that the computer model is a correct
implementation of the logical model. Validation has been defined as 4 demonstration that
a model performs adequately for the intended application. As there is no set standard in
the hydrological modelling definition of these terms, I will use the term validation to refer
to the models’ ability to simulate an independent data set other than from which it was
calibrated although the usage may differ from that promoted by some hydfologic
modellers.

Secondly, it is important to distinguish between operational validation, used in
this study, and conceptual validity, which concerns a model’s theoretical basis. An
operationally validated model may work well for a specific use but may not be
conceptually valid, i.e. a correct representation of the real system (Rykiel, 1996). For
example, many simulation models are developed to meet practical management needs.
These models are usually validated by comparing simulated to observed values to
determine model performance. The ambiguity arises when inferences about the model’s
ability to reproduce reality are made from the validation results. A model’s output may
agree with observed data, but this correspondence does not guarantee that its internal

structure 1s able to reproduce the actual processes operating in the real system. Any



inferences made regarding the scientific basis of the model would be scientific hypothesis
testing and not model validation.

Operational validation means that a model is acceptable for its intended purpose
since it meets specified performance requirements (Rykiel, 1996). Validation does not
require that the model applies to more than one condition unless that situation is part of
the validation requirement; Good predictions do not have to be obtajne(; only from a
model that is entirely n-lechanistically correct and, conversely, invalidafion ‘does not imply
that the scientific contevr‘n of a model is wrong.

The models used in this study were operationally validated by simulating entire
observed hydrographs of rainfall-runoff events for the purpese of model comparison. In
this study, Klemes’ (1986) evaluation scheme, introduced in the following section, and

graphical and numerical criteria (Section 2.7.3) were used for the bperational validation

of the models.

1.2.2 Klemes’ hierarchical approach to operational testing

Klemes (1986) proposed a hierarchical method for the comparison of different
types of hydrological models. The system, explained in detail in Section 2.7.2, is
hierarchical since the modelling tasks are ordered according to their increasing
complexity and demands on model capability.

Klemes’ system includes tests for geographic and climatic transposability.
Transposability refers to a model’s ability to perform satisfactorily when applied to other

catchments or climatic conditions for which it was not calibrated. Model transposability

M



has long been recognized as the major aim and the most difficult aspect of hydrological
simulation models (Klemes, 1986). In many countries, especially in the developing
world, basic data for water assessment are sparse or in some cases almost non-existent.
This lack of available data is”one reason why it is important to develop realistic models
that can be applied to ungauged catchments where a historical record of streamflow is not
available. Despite this fact, relatively little effort has been expended on the testing of the
transposability of existing model types in comparison to the number of published papers
on hydro‘logic modelling.

The procedure recommended by Klemes consists of four levels of testing and
aims to test (1) not only a model’s abil"ity to simulate current conditions in a given
catchment (split-sample test), but also (2) its geographic transposability to other
catchments within the same region (proxy-basin test). The proxy-basin test for
transposability is crucial when dealing with the problem of x;ai‘nfall-runoff modelling on
ungauged basins. A model’s transposability within a cﬁtchmenl (3) is also tested in how
well it would reflect changes in climatic inputs or land use (differential split-sample test).
The differential split-sample test can also be used to evaluate a model’s ability to predict
unusually large or rare events that may not be represented in the recorded runoff data.
The highest level of testing involves evaluating model performance when testing for 0(4)
geographic and climatic transposability simultaneously iproxy-basin differential split-
sample test). Such universal transposability is the ultimate goal of hydrological
modelling, a goal that may not be attained in decades to come (Klemes, 1986). However,

models with this capability are in high demand and hydrologists are being encouraged to



develop them despite the fact that so far even the much easier problem of simple
geographical transposability within a rygion has not yet been satisfactdrily resolved (e.g.,
Chiew and McMahon, 1994; Karnieli et. al., l99ﬁ). [t is important to implement a
standard testing framework such as Klemes proposed so as to raise the level of
operational credibility given to simulation models, to discourage exaggerated claims of

model performance and to encourage research leading to better models.

1.2.3 The issue of statistical significance in model comparisons

In addition to Klemes’ framework, statistical analysis can be an important tool in
contributing to the rigour and objectiveness in model comparison studies. In this thesis, I
refer to statistical analysis as the evaluation of statistically significant differences between
model performance values. Instead of merely being able to state that one model
performed better than another at a certain level of testing, researchers need to be able to
ascertain if one model performed statistically significantly better than another mode] or if
the model performance values are not appreciably different. Statistical significance is an
important issue since the difference between validation results of the models being
compared may simply be a result of sampling variability.

The study by Cavadias and Morin (1985) was one of the few, if not only, that
attempted to address the issue of statistical significance of runoff models. Cavadias and
Morin used two different approaches ld compute approximate confidence intervals for the

validation results of the operational snowmelt runoff models compared in the

international World Meteorological Organization intercomparison study (WMO, 1986).
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The first approach was the use of a standard two-way analysis of variance and the second
was the use of the Jackknife method.

The ANOVA method, using year and model as the two factors, provided unusable
confidence intervals as the researchers found that the basic assumptions of the analysis of
variance (homoscedasticity, independence and normality of the residuals) could not be
met. Also, since the ANOVA was based on the<pooled standard deviation, the difference
in variances between models could not be accounted for.

The Jackknife statistic, however, was able to account for the different variabilities
of 'the models since the method generates a distribution based on the data. Although
Cavadias and Morin found that the Jackknife method could not provide non-symmetric
confidence intervals and is valid only for identically and independently distributed
random variables, the researchers determined that the Jackknife statistic allowed for a
superior model comparison of validation data over the ANOVA method.

The Jackknife method, described in Section 2.7.3, was used in this study to
calculate the differences in variability between the models’ performance to allow for
statistical analysis. Statistical analysis 1s a powerful final step in model comparison

studies that gives meaning to model performance values, making the results conclusive.

1.3 Previous model comparison studies
This thesis focuses on a comparison of spatially lumped and quasi-distributed

modelling techniques. Previous model comparison studies are reviewed in this section to



provide a background to the research and to demonstrate the relative lack of model
comparisons of lumped and distributed models found in the literature.

Numerous studies have éompared models of the same type, including Singha’s
(1976) comparison of unit hydrograph models, the Burges and Lettenmaier (1977) study
of time series models, the Weeks and Hebbert (1980) comparison of conceptual rainfall-
runoff models, and the World Meteorological Organization (WMO) study comparing
operational forecast models (Sittner, 1976). These studies do provide valuable
information but since the crucial task in applied hydrology is often to determine the
appropriate model for a given application, more and better comparative analyses of

|
models of different types as opposed to a single model type are essential (Kundzewicz,
1986).

More recently, the relative merits of simple hydrologic models versus more
complex hydrologic models have become a topic of debate (Beven and Binley, 199(2;
Grayson et al., 1992; Beven, 1993). An assumption made by some model dev?fg;{)ers and
users is that the more complex models are superior to black box or lumped models.
Although several studies have assumed that there 1s an optimal level of model complexity
(Van Genuchten, 1991; Jakeman and Hornberger, 1993), increasing model complexity is
usually thought to increase model performance. Many studies comparing simple and
complex models have shown, however, that simple models can perform as well as
complex models (Naef, 1981; Wilcox et al., 1990; Franchini and Pacciani, 1991; Chiew

etal., 1993).



These assumptions have also applied to the more specific comparison of lumped
and distributed models. Many researchers feel that incorporating spatial ‘variabilit}{ of a
basin into a model should promote confidence when simulating distributed output
(Beven, 1989). The theoretical advantages of distributed models over lumped models,
however, have not always proven to be valid in praclicg(Loague and Freeze, 1985).

Loague and Freeze (1985) compared two simple lumped models and a more
complex distributed model using data from three small upland catchments. They found
that the three model types used in their study all performed poorly but the sinﬁﬂér, less
data intensive lumped models provided as good or better predictions than the more
complex, distributed model. The models, however, were tested only at the lowest Ievel of
Klemes' tests (split-sample) and were not tested for transposability. Hughes ajnd Beater
(1989) found that simpler, lumped versions of the models they examined performed as
well as the more complex, quasi-distributed versions. Like Loague and Freeze, Hughes
and Beater did not test for transposability.

Distributed models, being less dependent on historical records and reflecting the
catchment characteristics, should in principle perform better than lumped models when
transposed to another catchment. Several studies have tested for transposability of quasi-
distributed models but, unfortunately, did not corﬁpare the distributed model to another
model during the study (e.g., Ambroise et‘al., 1985; Chiew and McMahon ,1994; Karnieli
et al., 1994). Incidentally, the testing for transposability in these studies was considered

to be unsuccessful by the authors.



Michaud and Sorooshian (199 cdmﬁared simulations from a complex
distributed model, a simple distributed model, and a simple lumped model. When -
calibration was performed, the simple distributed model proved to be as accurate as the
complex distributed model. The spatially lumped model performed very poorly.
Although they did not use Klemes' test for transposability, they did compare the
simulations produced without calibration. Without calibration, the complex distributed
model was more accurate than the simple distributed model. This result is not to indicate
that the more complex model may be used with greater confidence on an ungauged
catchment, however. The authors concluded that the more complex models shduld not be
abandoned despite their disa'ppointing performance, but rather their potential deserves
more research.

Refsgaard (1994, cited by Michaud and Borooshian, 1994) used Klemes' system
and subjected models to all levels of testing. He applied a lumped conceptual model, a
distributed model of moderate complexity, and a distributed model of high complexity to
three African watersheds. Refsgaard recommended that the lumped model, being the
easiest to apply. be chogen over the other more complex models when calibration data are
available. For ungauged watersheds, however, he recommended that distributed m:)dels
be used Whendata on the physical characteristics of the watershed are obtainable.

Refsgaard and Knudsen (1996) compared three different models on three
catchments using all levels of Klemes’ testing scheme. They concluded that all models,
when calibrated, performed equally well while the distributed models performed

marginally better than the lumped model when there was no calibration. The results of
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these studies reinforce the need for operational models that reflect some sort of basin
characteristics to allow for transposability.

With the results of these comparative studies, the development, application, and
evaluation of complex distributed models coptinues to be an active area of research. The
more complex models have their drawbacks such as overparameterization and data
requirements: but their potential as research tools is encouraging, especially with the
increasing availability of spatially distributed watershed data received from remote
sensing (Beven, 1989, 1992; Beven and Binley, 1992; Jensen and Mantog'lou, 1992;
Grayson et al., 1993). Although there appears to be agreement regarding the potential of
the distributed types of models, there is no consensus as to whether they offer a
significant improvement in performance when compared to the well proven lumped
conceptual model type. Klemes' (1986) validation tests in combination with statistical
analysis of the results are important to carry out in comparative studies to address the

question of optimal complexity and transposability of rainfall-runoff models.

1.4 Research objectives o,

The research had two main objectives: (1) to compare a quasi-distributed model

to two lumped medels to determine if there is a benetit associated with the increased

<

> demand for catchment data and (2) to determine if the statistical significance of

differences in model performance can be quantified.
The models used in this study were (1) a lumped black box rainfall-runoff model,

(2) a lumped conceptual model, and (3) a quasi-distributed conceptual rainfall-runoff
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model, TOPMODEL.' [ compared model performance for the three different types of
rainfall-runoff models by applying them to two small forested catchments within the
University of British Columbia (UBC) Research Forest.

The working hypothesis was, _}hat the more c‘onceptual, quasi-distributed model
should perform better than the lumped models when transposed to another catchment
and/or climatic conditions, sin‘ce it accounts for the catchment topography and actual field
processes. Also, the study expldred the feasibility of carrying model"comparisons
through a further step of testing for statistically significant differences. This research
contributes to the st;te-of-the-art of hydrologic modelling by providing further
information on the relative performance of quasi-distributed and lumpped rainfall-runoff
models, specifically in forested catchments with shallow permeable soils. The research
will also contribute to the progress of rainfall-runoff modelling in general by promoting a

more rigorous method for model comparison.

1.5 Structure of the thesis

Chapter two presents the methods and ddta sources used in this research,
including information on the study area, meteorological data, the selection of rainfall-
runoff events, the generation of topographic information, and th’e model t;,valuation
criteria. The models used are described in detail in Chapter three. The results of the
model comparison are presented in Chapter four with the discussion of the results

following in Chapter five. Chapter six will summarize the key findings and outline

suggestions for further research.
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CHAPTER 2

METHODS AND DATA SOURCES

This chapter describes the study area, streamflow and precipitation data, and the
selection of rainfall-runoff events used in the study. Model evaluation and performance

criteria such as the testing scheme and method of statistical analyses are presented.

2.1 Study area
The study focused on two catchments within the University of British Columbia
(Malcolm Knapp) Research Forest, located approximately 50 km east of Vancouver, B.C.

(Figure 2.1). The two catchments are the East-upper and the South watersheds as referred

N
\

to by Feller (1988). The East-t?f)per watershed will be herein referred to as East
catchment. East catchment has an area of 38.3 ha with almost all (93%) of its area
covered by mature forest. South’catchmenthas an area of 19.8 ha with 100% of its area
covered by mature forest. South catchment ranges in elevation from 175 mto 319 m
while East catchment ranges from 280 to 447 m.

The climate of the forest is characterized by frequent cloudiness, wet, mild
winters, cool and relatively dry summers, and a long frost free period (Klinka and
Krajina, 1986). Precipitation, mainly produced by Pacific frontal systems, ranges from
2000 to 2500 mm per year of which over 70% falls between October and April (Utting,

1979). Less than 15% of the total precipitation oceurs as snow because of the moderating

effects of the Pacific and the low elevation (Utting, 1979).
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The Research Forest is typical of coastal forested mountainous terrain (Power,
1984). The dominant forest cover is western herr,ll\(\)ck (Tsuga heterophylla) with smaller
proportions of western red cedar (Tsuja plicata) and bouglas fir (Pseudotsuga
menziesii). The stands are about 70 years old, having been logged and replanted in the
1920’s, and have crown closures of 75-95 percent.

Klinka and Krajina (1986) summarized the geology at the Research Forest as
predominantly quartz diorite, a finding supported by visible outcrops within the study
catchments. The bedrock is overlain by thin and continuous deposits of glacial origin
which are coarse-grained with average textural values of 57% sand, 41% silt, and 2% clay
(Klinka and Krajina, 1986).

The soils within the Research Forest range from 0.5 to 2 m in depth and are highly
permeable, underlain by a relatively impermeable compact till or bedrock at an average
depth of I m (Utting, 1979). The dominant soil class is humic-ferric podzol and,
texturally, the soils are coarse with Sandy Loam being typical (Utting, 1979). The soils in
the Research Forest exhibit a strongly structured B horizon due to the presence of many
roots, stones, and cemented aggregates (Tischer, 1986). Hydraulic conductivities are
about 10 to 10" m s™" in the Research Forest soil, and about 107 to 10° ms™ in the
underlying till (Utting, 1979; Cheng, 1988).

The Research Forest is relatively homogeneous in terms of climate, soil, and
forest cover characteristics. The most significant difference between East and South
catchments is the topography. This is important as the two catchments proviae an
excellent opportunity to compare the performance of quasi-distributed and spatially

N
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lumped models to determine if incorporating topographic information into a model

provides better runoff estimates.

2.2 Streamflow data

Dr. M. Feller of the Department of Forest Science, UBC, has been measuring
discharge in both South and East catchments since 1985 and has made the siage charts

-

and corresponding stage-discharge equations available for this project. Stage charts for
each event in each catchment were digitized at every change in slope to generate 2 file of
stage-time data at irregular intervals. The stage-time values were converted into hourly
discharge values by first interpolating the stage at six minute intervals, converting each
stage value into a discharge value by using the stage-discharge relation for each
catchment, and then integrating the ten, six-minute values into one average hourly

discharge value. These hourly averages constitute the observed streamflow values used

for evaluation of model performance.

2.3 Precipitation data

2.3.1 Data sources

Historical climate data were obtained from the Atmospheric Environment Service
(AES) for station 1103332 (Haney UBC RF Administration). The station, including a
tipping bucket precipitation gauge, 1s located at the Research Forest headquarters within

the UBC Research Forest at an elevation of 143 m. approximately 1.5 km from South



catchment and 2 km from East catchment (Figfure 2.1). The data include hourly and daily
precipitation totals both for rain and snowfall. I compared the hourly precipitation data
from the tipping bucket gauge for 24 hour periods to the daily totals to verify the
correctness of the hourly values.

Gauges were placed in clearings outside of each of the two catchments for
comparison to the headquarter data (Figure 2.1). Four gauges were placed in one clearing
near South catchment and four gauges were placed in each of two clearings outside of
East catchment, due to its larger size. The precipitation collected in the gauges was
measured every two weeks from Septcmbé:r, 1994 to June, 1995. These data were
assumed to equal above-canopy precipitation. Data from Hetherington’s (1976) Ph.D.

thesis were also drawn upon to help define above-canopy precipitation at East catchment.

2.3.2 Extrapolation of headquarter precipitation data

The précipitation data recorded at the headquarter climate station were
extrapolated to each catchment as above-canopy precipitation and used as input to a
canopy storage (throughfall) model. | assumed uniform spatial distribution of rainfall
within each catchment because of the relatively small sizes of the two catchments. It was
assumed that above-canopy precipitation at each catchment (P.) followed a simple
proportional relation with precipitation at Research Forest headquarters (Phg):

P. = b Py - 2.1
where b 1s a constant of proportionality. Separate values of b were calculated for each
catchment and each two week period, as follows:

21



b = P./ Phq (2.2)
- The values of b based on the bi-weekly intervals were then averaged for each catchment.
Tt should be noted that the agreement between the bi-weekly values does not guarantee
agreement at the hourly time scale.

At South catchment, a proportionality factor of 0.94 was found to apply (Figure
2.2). At East catchment, ratios were¢alculated for sites at the north and south ends and
averaged. Due to problems with animals disturbing gauges at the north end of East
catchment, data from Hetherington (1976) were used to estimate a ratio of 1.19. For the
south end, a ratio of 1.13 was calculated (Figure 2.3). The average of the two ratios, 1.16,
was therefore used in Equation 2.1 to estimate the above-canopy precipitation for East
catchment from Headquarter data. There were fewer depth values collected at East
catchment (Figure 2.3) than South catchment (Figure 2.2) because of the problem with

animals chewing gauges at East catchment.
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2.4 Throughfall data

Throughfall is the portion of'the above canopy precipitation that reaches the forest
floor directly through gaps in the forest canopy and includes canopy drip. Quantitatively,
it is the difference between precipitation and the combination of canopy interception loss
and stemflow (Lee, 1980).

Throughfall was sampled every tMﬁom September, 1994 to June, 1995,
to calibrate a canopy-storage model independently of the rainfall-runoff models.
Throughfall was sampled along one 100 m transect in South catchment and two 50 m
transects in East catchment (Figure 2.4). Two transects in East catchment were used
because of the larger size of the catchment and the ability to access East catchment from
more than one location.

I randomly placed one gauge along each 10 m section of the transect and
randomly relocated each gauge within the same 10 m section after each bi-weekly
collection period to minimize sampling bias. If it was impossible to place a gauge at its
randcmly generated site becuu;‘e of a stump, rock, etc., then the gauge was placed 5 cm
nearer the zero mark of the 10 m section.

The throughfall gauges consisted of funnels attached to 4 L polyethylene
containers which were secured in the field by wooden stakes. The throughfall gauges had
a funnel diameter of 106 mm yielding a gauge capacity of 450 mm of throughfall. Bi-

weekly collection periods were adequate to guard against overflow.
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For each catchment, I calculated the average precipitation for each collection

period for the throughtall gauges under the canopy. Comparing the average throughfall

values to the volumes in the clearings, the average interception loss was 23% with a range

from 0% to 58%. The wide range of values is due to the varied precipitation events

throughout the study period and the sampling variability. These values are comparable to

a past interception calculation done at South catchment {Thompson, 1994) and with

interception amounts from other studies (Rothacher. 1963; Patric, 1966; Loustau et al.,

1992).



2.5 Selection of rainfall-runoff events

Events were defined as periods of significant rainfall separated by at least six

hours of rainfall intensities averaging less than 0.1 mm h'1 (Harr, 1977; Pierson, 1980).
The events were determined using stage and precipitation data that were available for
both South and East catchments from 1985 to 1992. Each event started at least four (one
hour) timesteps before precipitation began so that the first observed discharge value was
still on a recession curve. I excluded events in which snowfall was recorded or thé Stage
records indicated a freeze-up as the stage record for that event would not correctly
represent the actual flow.

To avoid complications with specifying initial soil moisture conditions for each
event, it was assumed for all model runs that there were no initial losses of throughfall
inputs to soil moisture storage. An attempt was therefore made to include only events for
which the catchment was initially *wetted up.” Accounting for antecedent soil moisture
in the events before the models are applied minimizes the possibility of confounding by
having to optimize the soil parameters for each model. This procedure therefore results
in a less ambiguous test of the transformation routines of the models.

In a first cut, I narrowed the list of rainfall-runoff events down to 63 for each
catchment by including only events that occurred during the wet season, between the
months of October and May, to minimize the effect of soil moisture losses to
evapotranspiration. In a closer analysis of the remaining events, a hydrological response

value was calculated which represents how ‘wetted up’ a catchment is. Following



Hewlett and Hibbert (1967), the hydrological response HR for each event was calculated
as

HR=(Qq/TF (2.3)
where (g 1s the quickflow (Ls') and TF is the throughfall (mm). A constant separation
slope of 0.0055 L's'ha'hr' was used to divide the hydrograph of each event into quick
and delayed ﬂ0\.zv (Figure 2.5). |

I identified the events with significantly low hydrological response values
(HR < 0.30) as not being sufficiently ‘wetted up’. Figures 2.6 and 2.7 show that when the

hydrological response 1s plotted against the initial discharge (Qmin), the event with an HR

less than 0.30 appear to be set off from the rest of the events, indicating the catchment in
these events have been dried out sufficiently to require a large amount of the throughfall

to infiltrate before quickflow begins.

100 -
80 -
= 60
o
= quick
S w0 flow separation slope
o T TR R -
delayed flow
0 - .
0 6 12 ¥ 24 30 36 12 48 54
time [h]

o

Figure 2.5 Hydrograph representing separation of event 3, South catchment.
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events with an HR below (.30 (below the dotted line) were deleted.



From the initial 63 events, eight events with an HR < 0.30 were eliminated in
which substantial soil moisture losses appeared to have occurred. May events were also
deleted t(; avoid events where there may have been notable evapotranspirative losses of
soil moisture. As a result, 52 events remained for each catchment. The partitioning of
these events into calibration and validation data sets is discussed in Section 2.7.2 with the

description of the testing scheme. Event dates and data set breakdowns are shown in

Appendix 1.

2.6 Topographic indices

The quasi-distributed rainfall-runoff model, TOPMODEL, represents catchment
topography by means of the probability distribution of a topographic index, In(a/tanf3),
where a is the area drained per unit contour and f3 is the local slope angle. The In(a/tanf3)
attribute is an important component of many physically based geomorphic and hydrologic
models, as it 1s assumed to characterize the spatial distribution of soil moisture, surface
saturation, and runoff generation processes (Beven and Kirkby, 1979; Hornberger et al.,
1985; O’Loughlin, 1986; Moore et al., 1988; Romanowicz et al., 1993).

The topographic indices were derived from Digital Elevation Models (DEMs),
which were generated for both South and East catchment by digitizing UBC Research
Forest 1:5000 topographic maps. These maps have a 5 m contour interval, and were the
most recent and of the largest scale available.

The DEMs have a 10 m grid size. Zhang and Montgomery (1994) applied the

same quasi-distributed model used in this study, TOPMODEL, to forested catchments
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with moderate slopes. Tﬂey showed that simulations using a_'10 m grid size showed
significant improvements over using a 30 m grid size but that no real benéﬁt was gained
with a finer resolution below 10 m. They.argued thata 10 m grid size provided anr
optimal trade-off between topographic ré:solution and minimizing daia storage
requirements when modelling a moderately-steep forested catchment. Moore and
Thompson (1996) found that topographic indices derived from an 8 m grid provided
%

statistically significant predictions of soil saturation at a site adjacent to South catchment,
while indices derived from a 16 m grid had little predictive power. Hence, the 10 m érid
size 1s a reasonable choice for South and East catchmen:s.

The topographic indices were generated by a computer program developed by Dr.
R.D. Moore of Simon Fraser University. For each grid point within a catchment, the
program calculates the upslope contributing area (A) draining through a point usiﬁg a
multiple flow direction algorithm described by Wolock and McCabe (1995), which is
similar to that used by Quinn er ul. (1991). The accumulated upslope area for any one
cell is distributed amongst all of the eight neighbouring cells which are lower than it. The
fraction of the area draining though each grid element to each downslope diréction 1S
proportional to the gradient of each downhill flow path, so that steeper gradiients will
naturally attract more of the accumulated area. The multiple flow path method is
assumed to give a more realistic pattern of contributing area on the hillslope:portion of
the catchment than the single flow path method (Quinn er al., 1991, Wdlock and

McCabe, 1995). Contour width (1) and slope angle (tan f3) are generated for each grid

cell and, with the upslope contributing area (A), used to calculate the topographic index
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In(a/tanff). The distribution of the topographic index for each catchment is shown in

Section 3.5.3 with the description of the quasi-distributed model.

2.7 Model evaluation and performance criteria

2.7.1 Calibration and validation

Calibration 1s the process whereby parameters of the model are adjusted to make
the simulated output best match the observed data, based on evaluation of graphs and
numerical indices. Validation involves running the calibrated model on an independent
data set. Since data which contain largzzr hydrologic variability are more likely to result in
more reliable parameter estimates, the ;:alivbration data sets for the first two levels of
testing were Clyloscn such that they cover the greatest variability of events. The validation
data sets for the first two le‘vels of testing were also chosen such that they also cover the
variability of events to best test the model’s ability to estimate a greater range of runoff

events. The calibration and validation data sets for the third and fourth level of testing

e NG

were determined by event volume as described in Section 2.7.2.

2.7.2 Klemes' (1986) hierarchical tests
Klemes' hierarchical testing scheme was used to evaluate model perfformance.
The system 1s hierarchical since the modelling tasks are ordered according Yo their

increasing complexity.
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i) Split-sample test
This is the most elementary test of a model and the most commonly used i? the
hydrolog-ié liierature. One calibration and one validation set is used for the split-sample
test. Using the 52 events ihat remained after meeting the criteria of event selection, 26
events were available for each of the calibration and validation sets for the first and
second level of testing. The parameters of the model are calibrated using the calibration
o

set. The model is then tested by running the calibrated model using the input data of the
validation set. The model passes the split-sample test if validation performance is
adequate for the intended application. The split-sample test may provide useful

information when the objective is to estimate and fill in missing streamflow data of

events of a similar magnitude to those for which a model was calibrated.

it} Proxy-basin test
This level of testing in Klemes' system evaluates geographic transposability. The
calibration and validation data sets of events used for the proxy-basin test are the same
sets used for the split-sample test of level 1. Instead of calibration and validation being
carried out on one catchment, the model is calibrated on one catchment and validated on
the other. Using the two gauged basins South and Eust, a model is calibrated on South
catchmeny and validated on East Catchment, and also calibrated on East catchment and

validated on South catchment. .



iii) Differential split-sample test

For the differential split-sample test, the same approach as the split-sample test is
followed but the calibration and validation data sets are divided by climatic conditions or
event volume. For example. calibrating a model for a dry period and then running a test
using data for a wet period provides a necessary, though not sufficient, test of whether the
model is valid for predictiné the effects of a change to a wetter climate. In this study, the
calibration set comprises the small volume events and the validation set is the large
volume events. The models are thus tested whether they can be reliably used to simulate
events of a greater magnitude than those for which it was calibrated.

For the third and fourth level of comparison. in which the’model is being verified
on larger runoff volume events from which it was culik)rutqd. the events needed to be split
into large and small events. [ ranked thmtw volume and split the events into

A

two sedﬁ;, small and large volume events, deleting the middle! six events to emphasize the

1N

]
difference between the two sets (Appendix 1). The calibration set is composed of the

small volume events and the validation set is composed of the large volume events sinc¢
it is usually the change from small and average peak events to the rare large peak flows
that are of concern.
iv) Proxv-basin diﬂerential split-sample test b
This level of testing evaluates both the geographical and climatic transposability
of a model and is the most stringent test. It was carried out by calibrating for the small

events at South catchment and validating on the large events at East catchment, and
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conversely, calibrating for the small events at East and validating on the large events at

South.

2.7.3 Model performance criteria
%) Numerical and graphical criteria

Thfe best basis for judging model performance is a comparison of model estimates
with observations both quantitatively (numerically) and qualitatively (visually) (Willmott,
1984). Even if a model is based on the best available knowled.ge, comparison of the
results with observations is the only way of establishing confidence in the simulation.

No single index of goodness-of-fit is suitable for describing how well a particular
model performs. Therefore, I used a number of quuntitqtive indices for model evaluation:
(1) the Nash model efficiency value, (2) percent deviation, (3) mean and (4) standard
deviation. These criteria, like any other criteria, are only estimates of model performance
that are specific to thevperiod modelled and dependent on ihg quality of the observed data
(Bergstrom, 1991).

Among thre most commonly used indices is the model efficiency coefficient Egy of
Nash and Sutcliffe (1970) (e.g. Beven et al., 1984; Loague and Freeze, 1985; Gan and
—Burges, 1990; Chiew and McMahon, 1994). The model efficiency expresses the fraction

of the measured streamflow variance that is accounted for by the model:

i(Q\Im - th\):
Em=1 - = (2.4)

’_ZI (Qoh\ ) Z)“h\)z
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where Qgim and Qgps are the average hourly simulated and observed discharges
‘ﬁ,

respectively at each hourly timestep ¢, and Q s is the average observed discharge over

all timesteps. The model efficiency has a maximum value of 1.0 which represents a
perfect fit between simulated and observed values. A model efficiency of zero indicates
that the mean of the observed data is as efficient a predictor as the model, while a
negative efﬁgien;y indicates that the model is a worse prédictor than the observed mean.

The model efficiency has been shown to be the best objective function for
reflecting the overall fit of a hydrograph (Servat and Dezetter, 1991). It is appropriate to
use the model efficiency for event modelling since its strengths lie in eYaluating the
overall hydrograph shape and fit to peak flows while its weakness is assessing the fit to
low flows. Therefore, the model efficiency value E;, (Equation 2.4) was used to calibrate
the models according to the overall fit of the hydrograph. The optimum parameter values
for each calibration data set were determined by the maximum E;, v;fiue attained.

The model efficiency E, was also calculated for event volumes, peak discharges,
and time—tolpeak values using the appropriate variables in Equation 2.4. In addition,
percent deviations (WMO, 1986) were calculated for cvent volumes, peak discharges, and
time-to-peak. For example, the following formula evaluates the percent deviation for

peak dischargex

a Qk;_y_kan
{ PE oy Z8PRam 1) 0 (2.5)

deviation [%] = Z
kauh,\‘

=1
where Opk,,, and Qpk,,, are the observed and simulated peak discharges reSpecliveLy at
each hourly timestep ¢. The arithmetic mean and standard deviation were also calculated
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for the event volume, peak discharge, and time-to-peak. Performance of the models was
assessed graphically uéing linear scale plots of simulated and observed hydrographs
versus time, and scatterplots of observed and predicted values for peak discharge, runoff
volumes, and time-to-pe%k.

it) The Jackknife procedure

A problem with comparing model performance based on the numerical indices
described above is that they depend on the selection of events used to calculate them. A
different set of Lvenls would be associated with different performance indices.

A method is needed to account for this sampling variability and to determine
statistically if one model is performing significantly better than another model under the
conditions tested. For this purpose, the Jackknife procedure was used to generate

*sampling distributions of possible model performance values based on each data set of
cvents. Variance estimates for these objective functions were then calculated and further
statistical analysis performed to determine statistical signiﬁcance‘.

The Jackknife procedure has become a general tool for estimating both the value
of a statistic, its variance, and its confidence region in the field of ecology (Potvin and
Roff, 1993) and other fields where the sampling distribution is difficult to derive or the
distribution is likely to be highly skewed. It is considered a robust and multipurpose
procedure since it 1s applicable and reliable under a wide variety of conditions (Miller,

1974; Neter et al., 1982).
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Specifically, the Jackknife procedure was used to generate estimates of a
population mean of the root mean square error (RMSE), defined as:

05

1 n 2
RMSE = n 2 (Qsim - QObS) (26)
r =1

wher\e QOsim and Qops are the simulated and observed discharges at each hourly timestep .

The E;;, and RMSE are related by the equation

n- RMSE?
Em = l - (2.7)

Z (Qobs - aobs ) )
Lr=1

J
The Jackknife estimate is obtained by consideration of all possiblé subsets of the

data in which one event has been eliminated from the original set. For example, to
" estimate J (the Jackknife estimate of the average root mean square error, RMSE) with n

events in a data set, an RMSE value, which I will call J;, is calculated n times, each time
omitting one event. A pseudovalue (S;) is calculated for each altered data set with its one

deleted event as:
S; = nRMSE - (n-1) J (2.8)

The Jackknife estimator J is simply the mean of the n pseudovalues:
J = (Un) ) S, (2.9)
d=1

where d refers to the number of datasets. Therefore, for each value of RMSE, a

distribution of possible RMSE values for that data set are generated and statistical
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analysis can now be performed to determine if the RMSE estimates, and indirectly the
Nash model efficiency coefficients, are significantly different.

The benefit of using the RMSE instead of the Ep, in the Jackknife procedure is’
that the RMSE does not have an upper limit, such that it makes the RMSE more
amenable to statistical interpretation than the E,. The concern is that the Jackknife
procedure generates pseudo-Ep, numbers greater than unity, which-are not valid for Ey,
values. For example, a pseudo-Ey, value greater than one indicates a better than perfect
fit and an RMSE less than zero, which is impossible. [n addition, it was simple to
transform the RMSE pseudo-values so that their distributions conformed to the
z*;sumptions of analysis of variance. As shown by Equation 2.7, the E, values are
transformations of the RMSE values, so the results of analyzing RMSEs could be easily
interpreted in terms of the model efficiency coefficients.

d

iti) Analysis of Variance
The Jackknifed model performance value for each model wit‘hin each catchment
was compared using two-way fixed effects analyses ot variance (ANQVAS) at each of the
four levels of testing to determine if model performance differences were statisti;:ally
significant. The four ANOVAGs used the fixed effects of model and catchment and
included the model-catchment interaction. The ANOV As are of a fixed-effects model
type since the model and catchment factors have been specifically selected for analysis

and have not been randomly selected. Therefore, no inferences can be drawn about any

other levels of the two factors except the ones used in the study.
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The RMSE pseudovalues calculated in this study are independent values and, after
transformation by adding | and then taking the log of all pseudovalues, had common
variance and met the assumptions of the ANOVA. The Tukey t method was used for the
investigation of significant effects once they had been determine‘d through the ANOV As.

The following chapter describes the models used in the study.

39



CHAPTER 3

DESCRIPTION OF THE MODELS

In this chapfer, the characteristics of forested catchments are first discussed, with
the following sections describing the structure, governing equations, and the calibration
of parameters for the canopy storage model and each of the three rainfall-runoff models.

The program code for each of the models can be found in Appendix 2.

3.1 Distinctive characteristics of forested catchments
3.1.1 Influence of forest canopy

The hydrology of a forested catchment differs from that of a non-forested
catchment.‘The c‘anopy cover, depending on the density, intercepts much of the
precipitation. In the UBC Research Forest, as in other temperat\e regions, about 30% of
precipitation is intercepted and only 70% reaches the soil surface (Klinka and Krajina,
1986). This interception loss to a forest canopy greatly influences the amount of water

reaching the soil surface and resulting in streamflow. It is crucial, then, to account for the

amount of water actually reaching the forest floor in a canopy storage model before using

\

the precipitation as input to the rainfall-runoff model.

It 1s also important to calibrate a canopy storage model as a separate component
from the runoff models to avoid confounding. Confounding in the statistical sense refers
to the influence of variables or factors which have not been properly taken into account.

Since the objective of this study 1s primarily to test only the transformation routines of the
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rainfall-runoff models, it is important to separate out any interactions they may have with
a canopy storage model. To minimize problems of interpreting model performance in the
presence of model interactions, the canopy storage madel has been calibrated

independently of the streamflow data.

3.1.2 Forest soil infiltrability

The high infiltrability of forest soils and subsequent subsurface flow dictates the
hydrologic modelling approach required. With hydraulic conductivities typically about
i0'4 td 107 ms™! in the Research Forest soil (Cheng, 1988) and the low rainfall intensities
associated with the dominant frontal systems of the study area (Loukas and Quick, 1996),
virtually all the water that reaches the ground surface infiltrates to become soil moisture
and subsurface flow. The high infiltrability is a result of a permeable layer of humus on
top of the mineral soil and tree roots and other vegetation that create macropores in the
soil giving rapid vertical percolation. The high infiltration rates result in Hortonian
overland flow (surface flow that has not infiltrated) being virtually non-existent. The
subsurface flow is considered the most important component of the runoff of a forested
catchment (Band er al., 1993).

Saturation overland flow can also be a contributing factor to runoff due to the high
infiltrability and shallow soils of the study catchments. Saturation overland flow occurs
when subsurface flow is unable to discharge all the water that infiltrates into the soil. The
water table rises to the ground surface and any throughfall falling on the saturated areas

then runs off as overland flow. The source area for saturated overland flow is of variable
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size as it expands in area during a storm event, then shrinks as the soil drains (Bernier,
1985). Saturation overland ﬂetgu'sually occurs in areas adjacent to stream channels and
other areas of the catchment where there is flow convergence. The quasi-distributed

model used in this study accounts for saturation overland flow.

3.2 Canopy storage model

3.2.1 Structure and governing equations

The amount of water reaching the soil surface, required as input to the rainfall-
runoff models, was computed by solving the canopy water balance through the course of
a storm. The canopy storage model was developed using some of the assumptions
underlying Gash’s (1979) analytical model of interception and has both a low demand for
data and a simple but realistic approach to the interception process.

Figure 3.1 illustrates how during a storm, the canopy is wetted up and throughfall
occurs when the canopy becomes saturated. The canopy storage model estimates this
throughfall along with stemflow and free throughfall (precipitation through canopy gaps)
to account for the total input reaching the soil surface. .

For each ten minute time step, evaporation from the canopy (E) 1s calculated as
E = E(S./50) | (3.1)
where E is the niean evaporation rate from a fully wetted canopy (mm h™'), the canopy

storage S, i§ the amount of water being held in the canopy at the beginning of the time
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Figure 3.1 Generalized variation of canopy saturation and throughfall (TF) over one
storm event.

step (mm), and S, is the canopy storage capacity (mm). Following the assumptions of the

Gash (1979) model, E is treated as a constant value for a given forest stand. The canopy
storage capacity is defined as the amount of water left on the canopy in zero evaporation

conditions when rainfall and throughfall have ceased (Gash and Morton, 1978).

As water evaporates and the canopy receives precipitation (P.), the canopy storage
is updated: 7

Si= S+ P - L (3.2)
It is assumed that no canopy drip occurs unless the canopy storage capacity is full; hence,
there is no drip during the wetting up phase.

Throughfall (TF) and stemflow (SF) occur when the computed canopy storage
exceeds its storage capacity (S = S.):

TF = S-S, . (3.3)
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SF = Pi(P.) R
where (p,) is the proportion of the rainfall diverted to trunk and stemflow. Following the
calculation of TF and SF. the canopy storage ig setto Sc. -

The throughfall and stemflow are integrated over six 10 minute time steps giving
Jhourly values. For each hourly timestep, the total input to the soil surface used in the
rainfall-runoff models (/) 1s computed as

L =TF/(Il-p)+ P.(p)+ SF, (3.5)
where p is the free throughfall (gap) coefficient, which determines the amount of above

canopy precipitation (P,) falling directly to the forest floor through canopy gap\S.

3.2.2 Calibration of parameters
The canopy parameters are the free throughtall (gap) coefficient (p), the stemflow
coefficient (p,), and the canopy storage capactty (S.). | calculated the gap coefficient (p)
for each catchment by using crown closure codes trom the UBC Reseuarch Forest map of
forest cover. A weighted average of percent crown closure within each catchment was
calculated by multuiplying the amount of area covered by a closure class by the average
percentage value of that closure class (Table 3.1). The gap coefficient was calculated as
p = 1 -crown closure (3.6)
giving values of 0.159 and 0.203 for South and East catchment respectively. | assumed a
value of two percent of total rainfall for the stemflow coefficient (p,). based on past

rese;;;ch done at the UBC Research Forest (Hutchinson and Roberts, 1981).



Table 3.1 Distnibution of crown closure for South and East catchments.

percent of total catchment area in
each crown closure class

average

crown closure class South catchment East catchment
(% closure) closure
class O (0-5 %) 2.5% 4%
class 3 (26 - 35 %) 30.5% 1%
class 5 (46 - 55 %) 50.5% 2%
class 8 (76 - 85 %) 80.5% 59% 56%
class 9 (86 - 95 %) 90.5% 41% 37%

The two remaining parameters, the canopy storage capacity (S.) and the mean

cvaporation rate ( £ ), were calibrated for each catchment by comparing measured and

modelled throughfall and determining the maximum model efficiency values (described

in Section 2.7.3). All combinations of a wide range of possible S, and E values were

used in the search for optimal values. The initial ranges of values used were 0 to 10 mm
for S. and 0 to 6 mmh' for E. These ranges more than cover the maximum values of
1.0 mm for S. and 0.46 mﬁh'] for E used by other researchers applying Gash-type
throughfall models (Gash and Morton, 1978; Gash, 1979; Gash et al., 1980; Pearce and

Rowe, 1981; Hutjes er al., 1990; Loustau er al., 1992). The intervals used were 0.02 mm

for S, and 0.001 mmh™' for £ which provide parameter estimates which are precise

-

enough for the purposes here.
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Figures 3.2 and 3.3 show the response surfaces of model efficiency values for
South and East catchments, with the bold lines representing a total volume error of zero
percent. The Nash coefficients, shown by the grey contour lines, represent how ‘yvcll the
throughfall model performed when comparing the observed and simulated throughfall for
each time period for different parameter values. The zero pcrcéﬁt error line indicates that
the total overall volume of throughfall of observed values did not differ from the model
simulated values as calculated by |

Z (TF()bx —TF sim)
=l X100 = 0% (3.7)

n
Z TF ops

1=1

where TF,,,1s the observed throughfall value and TF,, is the simulated throughfall value

for each two week period. t. The optimum values for S, and E for each catchment were
chosen by taking the values with the highest Nash coefficients that fell on the zero
percent error line of total overall volume.

The resulting shapes of the response surfaces correspond with past research that
concluded that canopy storage models are most sensitive to evaporation and least
sensitive to canopy parameters (Gash, 1979; Loustau et al., 1992). Evaporation from the
saturated canopy and after rainfall has ceased are the major components of interception
loss while evaporation during the wetting phase plays a minor role in interception loss.

The resulting throughfall model parameters are shown in Table 3.2 with the free

throughfall and stemflow coefficients determined independently of model calibration,
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while the canopy storage capacity and mean evaporation rate were determined by the

calibration of the canopy storage model.

Table 3.2 Values of throughfall parameters for South and East catchments.

parameter South catchment  East catchment
free throughfall coefficient p 0.159 0.203
stemflow coefficient- p, 0.02 0.02
canopy storage capacity (mm) S, 3.30 2.31
0.228 0.335

mean evaporation rate (mm h") E
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Figure 3.2 Calibration response surfacé of the canopy storage model for South
catchment. The contours represent values of the Nash coefficient, as defined by Eq. 2.4
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Figure 3.3 Calibration response surface of the canopy storage model for East
catchment. The contours represent values of the Nash coefficient, as defined by Eq. 2.4
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3.3 Lumped black-box model

3.3.1 Structure and governing eq;}'atg'ons

The simplest of the three rainfall-runoff models is the lumped black-box model
which consists of two linear reservoirs in parallel (Figure 3.4). This model represents the
catchment as being composed of one slow and one tast reservoir that simuitaneously
contribute to the outflow.

This dual reservoir model incorporates three parameters. The parameter f,

determines a fraction of the total amount of precipitation input (/) reaching the soil

precipitation

input
I
™1 1*(1-1)

fractign of input fraction of input

to slow reservoir to fast reservoir
v

E T
l 'Sy
I [ . U_;I r_—
| oi=hs | 0=t
0= + O

Figure 3.4. Schematic diagram of the black-box model, showing its parallel linear
Teservoir structure.
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surface (as calculated by the canopy storage model) which enters the slow reservoir
storage (S)). The remaining fraction of the input (1-f,) enters the fast reservoir storage
(S7). The remaining two parameters are the recession constants for each of the two
reservolirs, k; and k» (s'l ), which control the rate of outflow from each reservoir. The
changes in storage of the reservoirs are calculated at six-minute intervals as:

AS = f1 - A)—k;- S, (3.8)
Mzz(lQ—f])-A)—kz-Sz (3.9)
where A is the area of the catchment (m”). The discharge from each of the reservoirs at

six minute intervals 1s calculated as:
0=k S (3.10)
0> =k §S: (3.11)
The six minute discharge values are integrated to equal the total hourly discharge from

the catchment:

10
Q. =( 2.(0) + Q1) )/10 (3.12)

1=/

3.3.2 Initial conditions

Initial conditions were specified by assuming that, prior to the start of each event,
all baseflow originates from the slow reservoir (S;) and the fast reservoir (S>) I1s empty.
The storages are initialized as

Sty = Q<(n/kl (3.13)

524()) =0 (3-14)
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where §) () and S ) represent the initial storages and Q) is the observed discharge at

time t=0.

3.3.3 Calibration of parameters

Two sets of parameters for each catchment were necessary for the runoff models.
One set was required for level | and 2 testing in which the calibration data set covered the
range of events and the second sét was required for level 3 and 4 testing in which the
calibration set consisted of the small volume events. The method of calibration was the
same for each calibration data set and 1s as follows.

The recession constant for the slow reservoir, k|, was initially estimated as being -
equal to the slowest of the three recession coefficients that were first derived for the
lumped conceptual model. The recession constants for the lumped conceptual model

»
were calibrated, as described in Section 3.4.3, by fitting a function to eighteen recession
curves. The function is

Q=0 + et + 0re™ (3.15)
where Q 1s the discharge for timestep t; ), O, and Qs are the initial discharges from
each of the three reservoirs of the lumped conceptual model, which vary from event to
event; and ki, k», and k3 are the recession constants. The recession parameters were

estimated by minimizing a loss function based on the squared differences between

observed and predicted discharges as follows:
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_l— Z 5 (3.16)

where dij is the difference between predicted and observed discharges for the j™ time in
the i"™ recession segment; n; is number of observations in the i" segment (Moore, 1997).

Using the initial value of &y, derived from the fitting of the recession curves for the
cali‘i)ration of the lumped conceptual model, the black-box: model was run 'using iterative
q loops of all possible combinations of the two remaining parameters, f, and k>. Model
efficiency (Ey,) values were generated for each combination of parameter values. The
range of f) used was 0 to | with an interval of 0.002. A range of 0 to 0.5 h™ with an
interval of 0.0002 h'' was used to calibrate k». The initial k, parameter was adjusted to
maximize the best fit yielded by the f; and k; parameters. The f; and k> parameters were
then adjusted to finally obtain the three optimum parameters for the lumped dual parallel
reservoir model (Table 3.3). The response surfaces of model efficiency (Nash values)
show how the model performed in each catchment using the various f; and k, parameters

with the initial optimum k, value (Figures 3.5 and 3.6).

Table 3.3 Parameters for South and East catchments for the dual reservoir model.

South catchment East Catchment
parameters level | level 3 level 1 level 3
fi 0.010 0.018 ~0.160 0.260
ki (b~ 0.0076 0.0096 0.0098 0.0082
ky (h')« 0.0704 0.0360 0.0614 0.0378

* converted (o units of s | in model program
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Figure 3.5 Calibration response surfaces for the black-box lumped model for South
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Figure 3.6 Calibration response surfaces for the black-box lumped model for East
catchment. The contours represent values of the Nash coefficient, as defined by Eq. 2.4.
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3.4 Lumped conceptual model

3.4.1 Structure and governing equations.

The lumped conceptual model consists of three linear reservoirs in a serial
configuration (Figure 3.7). Unlike the lumped black-box model, the lumped conceptual
model is slruclur.ed to represent the dominant hydrologic pathways in the study
catchments. The three reservoirs represent (1) an upslope zone in which surface
saturation never occurs, (2) a near-stream zone in which surface saturation-does occur, at
least transiently during storms, and (3) a surface storage comprising saturation overland
flow and channel storage. The storages in the three reservoirs are denoted S, S, and S3,
respectively. Each reservoir has an associated recession constant k;, where ‘1’ represents
the reservoir number. The upslope reservoir is assumed to have the lowest recession
constant and the overland ﬂow and channel reservoir the highest.

Water drains from the upslope reservoir to the near-stream zone at a rate given by

Q1 =k S (3.17)
where Q) 1s the discharge (Ls'). Water discharges from the second, subsurface reservoir
to the overland flow and channel storage at a rate given by

Q2 = k2 55 (3.18)
Catchment outflow is assumed to equal the discharge from the third reservoir, computed
as

0 = ks S; | (3.19)
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Figure 3.7. Schematic diagram of the lumped conceptual model, illustrating its
triple serial reservoir structure.

4

The parameter f; represents the fraction of the catchment which functions as the
. N : @
upslope reservoir. while the quantity | - f; represents the fraction of the catchment 1n the
near-stream zone. The fraction of the catchment which is saturated to the ground surface
1s assumed to be proportional to the subsurface storage in that zone, and is computed as

fsat = d)SZ (320)

where @ 1s a parameter determined by calibration.
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The model is based on a set of differential equations which represent the water

balances of the three reservoirs.

ds . |

——1=1'f1'A—k151 (3.21)

dt

ds

’;%zl(l—fl—wz)A+k]S]_k2$2 (3.22)

ds

—di:]-wz-A‘ﬂ-szz—k:;S} (3.23)
!

The differential equations were integrated at 6-minute intervals using a fourth-order
Runge-Kutta scheme based on the algorithm described by Press et al. (1986). The 10
values of Qs for each hour were then averaged and used as the model output for the 1-

hour time step for comparison with the observed discharge.

3.4.2 Initial conditions
Initial conditions were specified by assuming that each rainfall event followed a
sufficiently long baseflow period to assume near-steady-state such that

Q1= Q= (s : (3.24)

The three storages were therefore initialized at the beginning of each event as

Swm = Qu 1k ' ' (3.25)
4

S:(()) = Q() //\2 (326)

Sz = Qo 1 k3 (3.27)

where Q is the initial observed discharge.
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3.4.3 Calibration of parameters

Recess"ion constants for the three reservoirs. ky, k2, and k3, were determined by
fitting a recession equation to eighteen event recession curves using the approach
described by Moore (1997). The?f'unction 18!

Q=0+ Qre™ + Qre™ - (3.28)
where Q is the discharge for time t; Qy, Q>, and Qs are the initial discharges from each of
the three reservoirs, which vary from event to event; and k;, k2, and k3 are the
corresponding recession\coefﬁcicnts, which are assumed to be constant for alllevents.
The recession parameters were determined by minimizing a loss function (Egljat_ion 3.16)
based on the squared differences between observed and predicted discharges described in
Section 3.3.

Using the fitted recession values, ki, ka2, and &, the model was run using iterative
loops of combinations of lt;e two remaining parameters, f; and ¢. Model efficiency (En)
values were generated for all coymbinations of the parameters. The range of f; used was
0 to | with an interval of 0.002. A wide range of different magnitudes (102 to 10%) for
the ¢ parameter were used. All five parameters were then adjusted to optimum values
which gave the maxi.mum model efficiency value E,,,. The optimum parameter values are
shown in Table 3.4 and the response surfaces representing the model efficiency value

results for each set of calibration events are shown 1n Figures 3.8 and 3.9.
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Table 3.4 Parameters for South and East catchments for the triple reservoir model.

South catchment East catchment
parameters level 1 level 3 level 1 level 3
h 0.002 0.176 0.152 0.340
0 o 2.1e-07 2.8e-07 6.3e-08 8.0e-08
ki (h')« 0.0119 0.0121 0.0074 0.0071
ky (h'y « 0.0578 0.0463 0.0541 0.0513 |
ki (h''y» 0.1231 0.0757 0.1256 0.0932

* converted to units of s in model program
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Figure 3.8 Calibration response surfaces for the conceptual lumped model for South
catchment. The contours represent values of the Nash coefficient, as defined by Eq. 2.4.
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Figure 3.9 Calibration response surfaces for the conceptual lumped model for East
catchment. The contours represent values of the Nash coefficient, as defined by Eq. 2 4.
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3.5 Quasi-distributed model

TOPMODEL (Beven and Kirkby, 1979) was selected to represent the quasi-
distributed model type. TOPMODEL is not a definitive model structure but rather is a set
of concepts that conceptually simulates distributed hydrologic response by usiﬁg an index
that represents the topography of the catchment. TOPMODEL uses the topographic
index, In(a/tanf), to explicitly link topographic form to subsurface water flow and the
production of surface runoff, where a is the area drained per unit contour and S is the
local slope angle. The model 1s appropriate to use in this study since the shallow soil of
the UBC Research Forest allows for the topography to significantly control the soil
moisture distribution (Moore and Thompson, 1996).

The TOPMODEL concepts are gaining acceptance among researchers and have
been applied to a variety of catchments and hydrological modelingg problems (e.g. Beven
et al., 1984; Hornberger er al., 1985; Quinn er al., 1991; Durand er al., 1992; Ambroi§e et
al., 1996). Figure 3.10 demonstrates the gain in popularity since the late 1980’s.
TOPMODEL has attracted attention because it is physically realistic and explicitly
accounts for catchment topography, its mathematics are relatively straightforward and
well documented. and it requires a relatively small number of parameters.

TOPMODEL is one of the few "conceptual” models that accounts explicitly for
the saturation excess overland flow mechanism and integrates the variable contributing
area concept, both of which are essential to model the studied catchments accurately

(Jordan, 1994, lorgulescu and Jordan, 1994).
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Figure 3.10 Time series of frequencies of appearance of TOPMODEL in the published
literature.

3.5.1 Structure and governing equations

TOPMODEL is a quasi-distributed model which means that the hydrologic
response 1s not accounted for at each specific point within the catchment, but rather ts
determined for the whole of the catchment by delineating different proportions of the
catchment area which have the same lopogra;hic index (Figure 3.11). The use of the
topographic index In(a/tanf3), which can be considered an index of hydrologic similarity,
1s important to the simplicity of the TOPMODEL approach because it is not necessary to
carry out calculations for every point, since every point with the same index value will
have the same predicted response given the precipitation input (Ambroise et al., 1996).

TOPMODEL assumes the soil water storage in a catchment can be represented by

one linear and one non-linear storage for each In(a/tanf3) increment. For each increment,
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Figure 3.11 Schematic diagram of quasi-distributed model TOPMODEL, modified from
Homberger er al. (1985).

water input first enters the unsaturated zone store (uzs;). This water then flows vertically

(¢.,) at a constant rate from the unsaturated zone store into the saturated zone store (szsi):
g = uzs,/(1d S)) . (3.29)

The rate of vertical drainage for each In(a/tanf3) increment is a function of the unsaturated

storage by the parameter rd. the unsaturated zone time delay, and the soil moisture deficit,

S... which i1s equivalent to the quantity of water required to fill the unsaturated store.



The saturated zone acts as a nonlinear reservoir, with the water flowing laterally
from the saturated zone as baseflow discharge., Oy, determined by

Qv = Ty tanf exp(-S /m) : (3.30)
where Ty is the lateral transmissivity, S is the mean catchment deficit, and m is a
recession parameter expressing the exponential decay rate of the saturated transmissivity
with depth.

Saturation overland flow, Q. is generated when the saturation deficit for a certain
increment becomes zero. The grid cells in the catchment which have those particular
In(a/tanfB) index values become saturated to the surface and make up the saturated
contributing area. Areas of high values of In(a/tanf3). i.e. areas of convergence or low
slope angle, will become saturated first and as the catchment becomes wetter, the
saturated contributing area will increase.

For each hourly time step, contributions of (, and Q¢ from all the topographic
increments are summed to give a total discharge for the catchment.

O = O+ Qo (3.31)

Two assumptions are made: (1) that there is an exponential relation between
storage and discharge, and (2) that lheedirection of the local hydraulic gradient is parallel
to the local ground slope (i.e. the water table is parallel to the surface). Since this
research is operational, the validity of these assumptions of internal processes 1s not

evaluated.
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3.5.2 Initial conditions
Initial conditions were specified by assuming that each rainfall event followed a
sufficiently long baseflow period such that there is no storage in the unsaturated zone.
uzsioy = 0 (3.32)
The saturated zone outflow parameter szq 1s first initialized as:
szq = exp (In(Tp) - &) (3.33)
where A is the areal integral of the In(a/tanf}) index. The mean catchment deficit S is

then initialized as a function of the szg:

Sy = -m In(Qy/ s2q) (3.34)
where Q, is the initial observed discharge. The mean catchment deficit dictates the local
storage deficits for each topographic index increment which controls the total discharge
from the saturated zone and the flow from the unsaturated zone once water input is

received.

3.5.3 Calibration of parameters

Three parameters required calibration: m, td, and T,. The optimum values of the
parameters (Table 3.5) were determined by using iterative loops in the computer code
which evaluated the best fit, by calculating the highest model efficiency value, from each
possible combination of the three parameter values. The range used for m was 0 to 50
mm with an interval of 0.1. The range used for td was Oto 1.0 h'' with an interval of

0.001. The range used for T, covered the magnitudes of 10* to 10'°mm*h™". The values



chosen amply covered the ranges used by other researchers (Beven er al., 1984; Durand

et al., 1992; lorgulescu and Jordan, 1994; and others). Figures 3.12 and 3.13 show the

-response surfaces generated that have the highest model efficiency (Nash) values for the

combination of the three parameters td, m and T, for each calibration set.

Table 3.5 Parameters for South and East catchments for the distributed model.

South catchment East Catchment
parameters level | level 3 level | level 3
m fmm) 6.0 6.9 13.8 12.5
td (h') 0.130 0.112 0.036 0.031
To (mm’h™) 1.1e+06 8.1e+04 4.9¢+05 3.6e+05
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Figure 3.12 Calibration response surfaces for the quasi-distributed model for South
catchment having the highest Nash values for all combinations of the three parameters m, td,

and To.
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In addition to the calibrated parameters, the topographic index, In(a/tanf), and A,
the areal integral of the In(a/tanfl) index, were generated from the digital elevation data.
Figure 3.14 shows cumulated topographic index curves in which the percent area of
catchment that would be saturated is calculated for each In(a/tanff) increment of 0.5.
Figures 3.15 and 3.16 show the spatial distribution of the topographic index In(a/tanf) for
South and East catchments. The higher the index value in a 10 m grid cell within a
catchment, the wetter the cell and the more frequently that cell will be saturated during a

L4
storm event.
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Figure 3.14 Cumulative distribution of the In(a/tanf3) index for South and East catchments.
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Figure 3.15 Spatial distribution of the topographic index In(a/tanf) in South catchment
using a 10 m grid size. Contour interval 1s 10 m with UTM coordinates (m) for reference.
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CHAPTER 4

RESULTS

The results are presented in order from level one testing (split-sample) to level
four testing (proxy-basin differential split-sample). Although performance statistics are
presented for both calibration and validation runs, only a sample of hydrographs for
validation runs are presented. One small volume and one large volume event for each
catchment are represented in the hydrographs for graphical comparison. A complete set

of scatterplots is found in Appendix 3.

The final section of this chapter presents a comparison of model performance. An
important contribution is the introduction of the Jackknife technique, in combination with
ANOVA, to provide a statistical assessment of the significance of differences in model

performance.
gv

4.1 Level 1 - Split-sah‘lplé test

4.1.1 Level 1 - Split-sample test calibraltior; results WL
7. -

: -8
The split-sample level of testing tests the models’ abilities to simulate events that are

similar to those used for calibration within the same catchment. Table 4.1 shows the(:’ /‘ .
. B
Nash coefficients for the calibr'fltion data set. The most important criterion for the'?:no-del
comparison is the E,(Q;) value since it represents overall model performance arffd was the
value used for the calibration of the model parameters. E.,(Q,) is the model efficiency
‘1\ |

value (E,) of the average hourly discharge rate (Q,) in which the simulated valtes are
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compared to the observed values at each hourly timestep for the entire rainfall-runoff
" event. The model efficiency valuesn forevent vovlumel(Qvo‘l), peak ;discharge (ka); iind'
time-to-peak values (tp) are also shown. ’i‘he percent devviat‘io'ns (WMO, l975)yfc;r ﬁ
volume, peak discharge, and time-to-peak are algo pﬁ:sented in-the table as calculated bya
Equation 2.6:

When calibrated, all three models fit the observed values simﬂarly in terms of the;
overall Nash value, E,(Q,). although the quasi-disFributed n;odel yielded a gl?ghtly bét“tcr -
fit for both catchments. The quasi-distributed model performed l?etter th;m .thev lumped
models in terms of simulating peak discharges (Qpx). b;n worse in terms of simulatiné :

»

event volume (Q,). The quasi-distributed model best simu]ated the timing of the peak
‘ ' t
flow whereas the lumped models responded too quickly to the throdghfa.,lldnpu)t._
~ Table 4.2 shows the test s;tatiétics for ealibration of each of the models and allo;iv;s for

. comparison to observed values for each of the indices, The standard deviation values

reveal that all three models reproduced the variability in volume and time-to-peak but the

lumped medels did not simulate the variability in the peak discharges nearly as well as -

’ - ~ the q’uasi,—distribulted model.

“
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Table 4.1 Calibration goodness-of-fit indices for level | (split-sample) testing showing all model
. efficiency Em values and percent deviation values.

En % deviations

catghment model . Q Quol Qi Lok Qo Ok tox
_south dual reservoir ~ 0.843 0.951 0.681 0.765 +25. -144 -127

~triple reservoir  0.894 0.957 0.776 0.822 +23 -145 -138
quasi-distributed  0.93] 0.899 0.934 0.975 -16.6 66 +0.1

east  dualreservoir  0.859 0960 0720 0942 427 -114 -8.1
triple reservoir  0.898 0.945 0.795 0.979 +8.0 -1t4 -43
quasi-distributed  0.930 0940  0.872 0905 -11.7 -104 +6.0

g

v »
s , ,
Table 4.2 Calibration test statistics for level 1 (split-sample) testing comparing the means and
standard deviation of the means of the three models to the observed values. (n=26)

a. South catchment

2

mean standard deviation of mean )
Q\ol = ka tpk . Qvol Vka (pk
data [10°L]  [Ls'] ~  [h] (1o°r]  (Ls’'] (h]
observed 1.3 14 27.6 9.2. 83.6 130 %
dual Areslervoir 11.6 954 - . 24.1 7.7 42.6 139
triple reservoir 11.6 953 238 7.8 509 . 13.0
quasi-distributed 9.5 104.0 276 7.2 78.9 12.3
) 'b. East catchment =
mean ' standard deviation of mean
. \Q\IVI ka ) [pk onl ka (pk
data (10°L]  [Ls'} [h] [10°L}]  [Ls”] [h]
observed 246 2055 26.3 17.0 151.1 14.8
~ dual reservoir 252 182 242 15.7 82.0 13.9
triple reservorr 265 1820 252 162 96.5 13.6
quési-distribuled 207 0 1842 . 278 163 155.8 132
. -
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4.1.2 Level 1 - Split-sample test validation results

Table 4.3 shows the validation indices for all models at level 1. Comparable to
the calibration runs, all three modelfpérformed similarly in terms of E,(Q;) when
validated, with the quasi-distributed model simulating the overall hydrograph better than
the two lumped models in both catchments. Although the qua;i-disuibuted model and
the lumped models both umderestimated the peak discharges, the quisi-distributed model
was better at predicting the amount of peak flow. The lumped models were better at
predicting overall event volumes, however. While the lumped models slightly
overestimated event volumes, the quasi-distributed model considerably underestimated
event volumes. The quasi-distributed model did not respond as q:Jickly to the initial
precipitation input at the beginning of an event as did the lumped models, thus
overestimating the time-to-peak.

Table 4.4 shows the test statistics for validation of each of the models. Agai llk‘é
the calibration run, the standard deviation values reveal that all three models simulated
the variability in volume and time-to-peak but the lumped models did not reproduce the
variabiiity in the peak discharges as well as the quasi-distributed model.

The hydrographs (Figures 4.1 to 4.4) allow for a graphical comparison of
simulated to observed hourly dischdrge rates for one small evém and one large event - .
(from the validation dataset) within each catchment. The~quasi—distributcd model
proVided a better fit of the entire hydrograph than the lumped models, especially for

larger events. The quasi-distributed model simulated the peaks better but underestimated

the rising and recession limbs, resulting in an underestimate of volume. The lumped
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models generally overestimated the rising limb, underestimated the peaks, and slightly
overestimated the recession limb, resulting in overall event volumes being similar to

observed but not simulating the observed peaks as well as the quasi-distributed model.

4.1.3 Level I - Split-sample test comparison summary

Overall, the quasi-distributed model slightly outperformed the lumped models using
the split-sample test, especially when simulating peak discharge and the variability of
peak flows. The lumped models did slightly better when estimating overall event

volumes.

Table 4.3 Validation goodness-of-fit indices for level | (split-samplghtesting showing all model
efficiency Em values and percent deviation values.

E, ] % deviations

catchment model Q: Quol Qo tox Qual Qpk Lok
south dual reservoir 0.797 0914 0.589 0.833 +3.7 -159 -143

triple reservoir  (0.861 0916 0.708 0.864 +36 -159 -125
quasi-distributed  0.890  (.766 0.906 0.954 -16.5 64 423

east dual reservoir  0.811 0916 0.559 0.865 +24 -137 99
triple reservoir  0.869 0.888 ().683 0.898 +79 -136 -39

o @
quasi-distributed  (0.890  (0.833 0.910 0.823 -13.1 -103  +9.7
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Table 4.4 Validation test statistics for level 1 (split-sample) testing comparing the means and
standard deviation of the means of the three models to the observed values. (§26)
[

a. South catchment

mean standard deviafion of mean

Quol Qpx tok Quol Q tok

data [10°L]  [Ls"] [h] (10°L]  [LsY, ~ [h)
observed 10.1 112.6 239 48 84.7 11.0
dual reservotr 10.5 94.7 20.5 4.1 359 11.5
triple reservoir 10.4 94.7 209 4.1 45.7 11.4
quasi-distributed 8.4 105.3 245 3.7 79.7 11.2

b. East catchment

mean standard deviation of mean

Q.al Qpk tok Quol Qpk tox

data [10°L) [Ls™ (h] [10°L) [Ls') [h)]
observed 22,5 208.4 23.0 94 165.4 12.4
dual reservoir 227 179.8 20.7 8.4 66.4 11.5
triple reservoir 239 180.1 22.1 8.9 84.8 13.5
quasi-distributed 19.3 186.9 252 8.1 153.6 12.9
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Figure 4.1 Hydrographs of 4 small event (event 2), South catchment, level 1.
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Figure 4.3 Hydrographs of a large event (event 61), South catchment, level 1.
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Figure 4.4 Hydrographs of a large event (event 61), East catchment, level 1.
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4.2 Level 2 - \Proxy-basin test
4.2.1 Level 2 - Proxy-basin test validation results

The second level of testing, the proxy-basin test, tests a model’s ability to simulate
runoff in a catchment for which it was not calibrated. The calibration statistics are the
same as for level |, and were presented in section 4.1.1. The models were geographically
transposed and validated on the other catchment for level 2 testing.

As shown by the overall model efficiency values (En(Q;)), in Table 4.5, the quasi-
distributed model performed best when calibrated on South and validated on East
catchment, but performed worse than both lumped models when transposed from East to
South, even though it had the best calibration fits for both catchments. The lumped
models performed comparably in both catchments. The quasi-distributed model
performed poorer than both lumped models when simulating volume, particularly when
transposed from East to South catchment. All three models did poorly in predicting pea’k
discharge, especially going from East to South catchment. The models underestimated
peak flows when validated in South and overestimated peak flows in East catchment.

Similar to performance values of the split-sample test, the lumped models were
unable to reproduce the variability in peak discharges (Table 4.6), but were able to
duplicate the variability in event volume and time-to-peak. The quasi-distributed model
simulated the variability of peaks better than the lumped models when transposéd to
another catchment but overestimated variability in East catchment and underestimated

variability in South catchment.
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Table 4.5 Validation goodness-of-fit indices for level 2 (proxy-basin) testing showing all model
efficiency Em values and percent deviation values.

Enm % deviations

catchment’ model Q. Quol Qpx tok Quor Qpk tox
East (¢)  dualreservoir 0.759 0882 0374 0840 -54 -310 -132

South (v) triple reservoir 0.707 0.857 0.211 0910 2.7 -428 +34
quasi-distnbuted  0.652 0.588 0.403 0.766 -247 -454 +13.6

South (C) dual reservoir 0.777 0.828 0.673 0.853 +123 +48 -114
East(v) triple reservoir 0734 0793 0712 0847  +141 +262 -11.9
quasi-distributed  0.800 0.773 0.680 0.891 -99 +288 ‘-1‘8

* (c¢) calibration catchment, (v) validation catchment

Table 4.6 Validation run statistics for level 2 (proxy-basin) testing comparing the means and
standard deviation of the means of the three models to the observed values. (n=26)

a. Calibrated on East catchment, validated on South catchment

mean standard deviation of mean

Qv Qpk Lok - Quol Qux Lok

data (10°L}  [Ls"] [h] [10°L)  [Ls'] [h]
observed 10.1 112.6 239 48 84.7 11.0
dual reservoir 9.5 77.7 20.8 37 293 11.5
triple reservoir ’ 98 64.3 - 247 39 28.7 12.7
quasi-distributed 7.6 61.4 27.2 37 50.0 13.6

b. Calibrated on South catchment, validated on East catchment

mean standard deviation of mean

Qual Qok ok Quol Qpk tpk

data [10°L]  [Ls"] (h) (10°L]  [Ls'] [h]
observed 225 208.4 23.0 94 165.4 12.4
dual reservoir 249 2183 203 9.2 81.4 11.6
- triple reservoir 253 263.0 202 93 114.9 11.6
quasi-distributed 20.0 2684 225 8.4 180.5 11.1
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Fizéures 4.5 to 4.8 illustrate the contrasting simulations of the models when
geographically transposed between catchments. Thc hydrographs of all th;ee models
show a flatter, less responsive simulation curve resulting in the underestimation of
volumes and peak flows in South catchment. In East catchment, the simulation
hydrographs of the lumped modgls are generally more peaked and overestimate the rising
and falling limbs, leading to overestimation of volumes and peak flows. The simulated

hydrographs of the qﬁasi—distributed model in East catchment also overestimated the peak

discharge but underestimated the rising and recession limb.

4.2.2 Level 2 - Proxy-basin test comparison summary

When transposing from East to South catchment, all the models underestimated
;peak discharges and volumes, with the quasi-distributed model performing the pooreét
overall of the three models. Surprisingly, the dual reservoir rﬁodel performed better than
the other two, more complex, models. When transposing from South to East catchment,

the quasi-distributed model performed better overall than the two lumped models,

although it markedly overestimated peak discharge.
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Figure 4.5 Hydrographs of a small event (event 20), South catchment, level 2.
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Figure 4.7 Hydrographs of a large event (event 15), South catchment, level 2.
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4.3 Level 3 - Differential split-sample test

4.3.1 Level 3 - Differential split-sample test calibration results

For the differential split-sample test, the three m;)dels were calibrated uéing a
dataset consisting of small volume events and then validated on a dataset of large volume
ev\enls of the same catchment. The following results indicate the abilities of the models
to simulate runoff events larger than what was used for calibration.

Table 4.7 shows that all three models provided comparable overall fits to the

observed data, with all models calibrating to the small events of East cglchment slightly

better than the events of South catchment. Like the previous results, the lumped models

5
provided better predictions of event volumes than the quasi-distributed model, whide the S

quasi-distributed model better simulated peak discharge rates.

Table 4.7 Calibration goodness-of-fit indices for level 3 (differential split-sample) testing
showing all model efficiency Em values and percent deviation values.

En. % deviations

catchment model Q: Q.o Quk Lok Q.ol Qpk Lok

\Olu[h dual reservoir 0.792 (.793 0.457 0.619 . +2.5 -16.3  -21.5
triple reservoir ~ 0.846  0.815 0.648 0.645 37 -143 -205
quasi-distributed  0.865 * 0.646 0.809 0.881 -125 74 <43

east  dual reservoir 0.863 (.853 0.574 0.894 +0.4 -13.7 -8.7
triple reservoir 0.901 ().833 0.753 0.905 2.8 -11.8 -74
quasi-distributed  0.879 ().668 0.780 (.853 -124  -78 +5.5




Table 4.8 Calibration test statistics for level 3 (differential split-sample) testing comparing the
means and standard deviation of the means of the three models to the observed values. (n=23)

a. South catchment

mean standard deviation of mean

Q.o Qok Lok Qo Qpx Lok

data [10°L]  [Ls") [h] [10°L]  [Ls’] [h]
observed 5.8 52.7 233 1.8 27.8 9.3
dual reservoir 59 441 18.3 1.6 11.0 8.8
tnple reservoir 6.0 45.2 18.5 1.7 15.7 8.8
quasi-distributed 5.0 48.8 223 1.5 234 9.0

b. East catchment

mean standard deviation of mean

Q! Qo Lok Qua Qo tok

data [10°L]  [Ls"] (h] [1o°L)  (Ls'] [h]
observed 13.8 110.0 18.9 4.1 47.0 8.5
dual reservoir 13.8 949 17.2 39 243 8.0
triple reservoir 14.2 97.0 17.5 43 " 345 7.9
quasi-distributed 120 101.4 20.0 3.6 52.0 8.6

- C A
e

v
-
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4.3.2 Level 3 - Differential s;f\?it-sample test validation results

The quasi-dsstributed model was superior to both lumped models when validated
on the large events of both catchments, having the )highesl model efficiency values
(E(Q;)) of any validation run at any level of testing (Table 4.9). The quasi-distributed
model actually performed better on the larger validation events than on the smaller events
used for calibration in both catchments. All three model:s performed well at pre_dicting
volume. Unlike other levels of leslihg, the quasi-distributed model performed as well as

the lumped models when simulating volume, although still providing an underestimation.
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The quasi-distributed model outperformed the lumped models particularly when
simulating peak discharge rates. The quasi-distributed model was able to predict peak
discharge well, slightly overestirﬁating the average flow, while the lumped models
m'a[kc::ily underestimated the peaks. The negative model efficiency values (Ey, (Qpk)) in
Tablch: 4.9 indicate that the lumped model’sy predictions were worse than merely using the
mean observed discharge rate as the estimated value. Table 4.10 shows that the quasi-
distnbuted model, as in other levels, provided a much better estimate of the variability of
peak flows than the lumped models. o

Figures 4.9 to 4.12 show the flattened hydrographs of the lumped models wh.ichl |
were unable to simulate peak flows. The figures show how well the quasi-distributed |

model simulated the entire observed hydrograph. The quasi-distributed model predicted

the peaks, as well as the rising and falling limbs, acceptably, even for the larger events.

4.3.3 Level 3 - Differential split-sample test comparison summary

For the differential split-sample test, the quasi-distributed model performed
exceptionally well while the lumped models performed poorly. The quasi-distributed
model was able to simulate large peak discharge rates while the lumped models
underestimated the peak flows by nearly 50 percent in both catchments. These results
indicate that the quasi-distributed model performed particularly well when predicting
events outside of the range‘for which it was calibrated while the lumped models did not

provide reasonable predictions.
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Table 4.9 Validation goodness-of-fit indices for level 3 (differential split-sample) testing”
showing all model efficiency Em values and percent deviation values.

En % deviations
catchment model Q: Qual Qpk Lok Qo Qpi tk__
south  dual reservoir  0.684 0837 0595 0919  -103 -51.8 +49
triple reservoir  0.774 0832 -0206 0921  -92 -444 35
quasi-distributed  0.911 0.817 0.809 0.994 167 47 -1.7

east dual reservoir 0.760 0.873 -0.120 0.945 -6.2 .-452 +1.0
riple reservoir 0810 0841 0165 0949 41 -378 -04
quasi-distributed (0.924 0.893 0.804 0.903 -107 472 24

Table 4.10 Validation test statistics for level 3 (differenual split-sample) testing comparing the
means and standard deviation of the means of the three models to the observed values. (n=23)

a. South catchment

mean standard deviation of mean

le ka [pk Qvol ka [pk

data (10°L]  [Ls"] [h] [10°L]  [Ls"] [h]
observed 159 173.7 28.2 . 8.2 87.5 15.0
dual reservoir 14.3 83.8 29.6 6.0 297 17.5
triple reservoir 14.5 96.7 29.2 6.0 3510 177
quasi-distributed 13.3 181.9 27.7 6.4 98.9 14.8

b. East catchment

mean standard deviation of mean

Q.o Qpk Lok Quol Qpk ok

data [10°L]  ILs'] (h] [10°L]  [Ls"] [h]
observed 334 296.5 29.7 14.9 172.3 16.5
dual reservoir 314 162.6 30.0 11.6 57.9 17.2
tnple reservoir 320 184.4 29.6 11.5 68.8 17.5
quasi-distributed 298 317.7 29.0 14.3 191.4 15.7
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Figure 4.9 Hydrographs of a small event (event 21), South catchment, level 3.
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Figure 4.10 Hydrographs of a small event (event 21), East catchment, level 3.
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Figure 4.11 Hydrographs of a large event (event 9), South catchment, level 3.
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Figure 4.12 Hydrographs of a large event (event 9), East catchment, level 3.
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4.4 Level 4 - Proxy-basin differential split-sample test

4.4.]1 Level 4 - Proxy-basin differential split-sample test validation results
The proxy-basin differential split-sample test requires the models to be calibrated
on a dataset of small events of one catchment and validated on the large events of a
second catchment. The calibration results were presented in section 4.3.1 for each
catchment. The validation results (Tables 4.11 and 4.12) show that, overall, the quasi-
distributed model performed markedly better than the lumped models when transposed
from East catchment to the larger events of South catchment, but performed slightly
worse than the lumped models when transposed from South to East catchment. The

lumped models both perfogmed better when transposed to East catchment than they did

- e

ot =

when transpose:j to South catchment.

Like the overall ;;féﬁnance. the lumped models provided better predictions of
volume at East catchment than the quasi-distributed model, and worse predictions of
volume at South catchment. The prediction of peak flow rates were poor by all three
models. Similar to the performance of the lumped models when simulating large flows
withip one catchment (Level 3), the lumped models extremely underestimated peak
discharge rates of the large events in the second proxy catchment, especially in South
catchment where the Nash coefficients were negative values. The quasi-distributed

model underestimated peaks in South catchment and overestimated peaks in East

catchment by approximately a third of the observed peak flow.
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Figures 4.13 to 4.16 illustrate that the lumped models generated flattened

simulation hydrographs which did not reproduce the peaks nor fit the recession limbs.

The quasi-distribﬁted model is better than the lumped models at fitting the shape of the

observed hydrograph and able to simulate the recession curves and predict peak

discharges slightly better, especially for the larger events.

4.4.2 Level 4 - Proxy-basin differential split-sample test comparison summary

For the proxy-basin differential split-sample test, as for the proxy-basin test, the

quasi-distributed model performed better overall in one catchment and worse overall in

the other catchment when compared to the lumped models. All three models were unable

to simulate peak discharge rates.

Table 4.11 Validation goodness-of-fit indices for level 4 (proxy-basin differential split-sample)
testing showing all model efficiency Em values and percent deviation values.

E. % deviations

catchment’ model Q, Quol Qpx Uk Quol  Qp Lok

East (¢) dual reservoir 0612 0.699 -0913 0919 -16.3 -579 +5.1

South (v) triple reservoir 0.594 0616 -1.00 0.836 -16.6 -60.0 +12.2

quasi-distributed  (0.846 ,:().750 0.532 0.957 -20.8 -29.4 +5.4
South (¢)  dual reservoir 0.781 0.985 0.188 0.945 03 377 410 '_ o
East (v) triple reservoir  0.874  0.929 0.543 0.943 £33 -195 60 . ;:;2‘;
~quasi-distributed  (1.765 ().867 0.162 0916 -10.2 +37.0 7.0 S

* (c) calibration catchment. (v) vahdation catchment
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Table 4.12 Validation test statistics for level 4 (proxy-basin differential split-sample) testing
comparing the means and standard deviation of the means of the three models to the observed
values. (n=23)

a. Calibrated on East catchment, validated on South catchment

mean standard deviation of mean

Quol Qpk ok Qvol Qo Lok

data [10°L)  [Ls"] (h] [10°L}  [Ls"] [h]
observed 15.9 173.7 28.2 8.2 87.5 15.0
dual reservoir 133 73.2 29.7 54 25.8 17.5
triple reservoir 133 69.5 31.7 54 27.1 17.3
quasi-distributed 12.6 122.6 29.7 6.4 71.0 16.8

b. Calibrated on South catchment, validated on East catchment

mean standard deviation of mean

Qua Qox Lok Qv Qpx tok

data [10°L]  [Ls"] [h] [10°L]  [Ls"] (h]
observed 334 296.5 29.7 14.9 172.3 16.5
dual reservoir 333 184.9 300 13.1 66.5 17.2
triple reservoir 347 238.8 279 13.4 81.1 15.0
quasi-distributed 30.0 406.3 276 14.5 221.7 14.5

&4

v
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Figure 4.13 Hydrographs of a small event (event 39), South catchment, level 4.
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Figure 4.15 Hydrographs of a large event (event 5), South catchment, level 4.
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4.5 Summary of model comparisons

The model efficiency coefficient (E,) of the average hourly discharge rate (Q,) is
the main criterion used for comparing g\;erall model performance as it represents the
ability of the model to simulate the entire hydrograph, Table 4.13 presents the validation

run values for each model, within each catchment, for each level of testing.

Table 4.13 Model efficiency values (Em(Qy)) for all validation simulations.

dual parallel reservoir triple serial reservoir quasi-distributed

Level South East South East South East
1 0.797 0.811 0.861 ().869 0.890 0.890

2 0.759 0.777 0.707 0.734 0.652 0.800

3 (0.684 0.760 0.774 ).810 0911 0.924

4 0.612 0.781 0.594 0.874 0.846 0.765

Table 4.14 summarizes which model performed the best at each level for each
catchment. The quasi-distributed model demonstrated the best overall performance.

However, the lumped models outperformed the quasi-distributed model in one of the two

catchments in the proxy-basin and differential split-sample tests.

Table 4.14 Top performing model at each level of testing within each catchment.

Level South East
1 quasi-distributed quasi-distributed
2 dual parallel reservorr quasi-distributed
3 quasi-distributed quasi-distributed

4 quasi-distributed triple senal reservoir
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Knowing which model outperformed another at the various levels of testing is
important but also rather inconclusive to a potential user trying to decide which model to
apply. The apparent differences in performance among models depend not just on real
differences in the models’ predictive abilities, but also on the selection of events used in
the testing. It is possible that the relative rankings of the models might change if a
different selection of events were used. It is necessary to quantify the difference between
performance results to assess if one model is really any better than another. The next and
final section of this chapter addresses the issue of the statistical significance of the model

COmparisons.

4.6 Model comparison using statistical analysis

The Jackknife procedure was used to generate statistically independent,
identically-distributed “‘pseudo-values™ or estimates of the root-mean-square error
(RMSE), which is essentially a re-scaled representation of the mode! efficiency En(Q;)
values as described in Section 2.7.3(ii). The variability éf the pseudo-values reflects the
sampling variability of RMSE that results from a particular sample of events used for
model testing. Table 4.15 shows the mean and standard deviation of the generated RMSE

values for each catchment.
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Table 4.15 Mean and standard deviation of mean of RMSE pseudo-values.

a) South catchment

dual parallel reservoir triple serial reservoir quasi-distributed
Level mean std dev mean std dev mean std dev
I 16.3 2.6 13.5 25 12.1 24
2+ 17.8 35 19.7 4.0 213 3.4
3 283 5.3 240 42 15.0 2.2
4ee 314 5.8 321 5.5 19.7 2.8
*n=26 **n=23

b) East catchment.

- dual parallel reservoir triple serial reservoir quasi-distributed

Level mean std dev mean std dev mean std dev
I 28.8 6.3 24.0 5.2 21.8 42
2- 30.8 39 33.6 2.6 293 43
3 455 10.0 38.1 7.8 239 3.1
4= 41.0 9.0 30.8 5.2 419 5.5

*n=26 **n=23

Analyses of variance (ANOVAs) were used to determine if the RMSE estimates,
and indirectly the E(Q;) coefficients, of each model’s performance were significantly
different from each other. Table 4.16 presents the results of the two-way ANOV As
applied to each of the four levels of testing. Using a significance level of 0.05, the
statistical analysis showed that at levels 1, 2, and 4 there was no statistical difference in
model performance between the three runoff models. The ANOVA results also showed,
however, that there was a statistical difference (in bold type) between model performance
at level 3, the differential split-sample test, indicating that one of the models performed

statistically significantly better or worse than the other models at that level.
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Table 4.16 Exact probabilities resulting from ANOVA tests for each level.
Probabilities significant at alpha = 0.05 are bold faced.

level 1 level 2 level 3 level 4
model 0.189 0.611 0.003 0.767
basin 0.000 0.000 0000 0.008

model*basin 0.943 0.325: 0.971 0.021

A post-hoc Tukey test was applied to the data for level 3 to ascertain differences
in RMSE distributions between the models (Table 4.17). Using a significance level of
0.05, the Tukey test results showed that there was no significant difference between
model performance between the two lumped models. The results also showed that there
was a significant difference between model performance of the triple reservoir model and
the quasi-distributed model and an even greater significant difference between the quasi-
distributed model and the dual reservoir model. The model efficiency values (Table 4.13)
indicate clearly ;hal the quasi-distributed model was a superior performer, now pr:)ven to

be statistically significantly superior, over the lumped models at the differential split-

sample level of testing. ™

Table 4.17 Summary (gpairwise comparison probabilities for the Tukey test for level 3
(differential split samplé) testing. Comparisons significant at alpha = .05 are bold faced.

dual reservoir triple reservoir quasi-distributed
dual reservoir 1.000
triple reservoir (.585 1.000
quasi-distributed ‘ 0.002 0.042 1.000
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The ANOVA results of Table 4.16 also indicate that there was an interaction
effect occurring between model and basin at level four, the proxy-basin differential split-
sample test. The values of least square means generated by the analysis of variance for
level 4 indicated that the two lumped models were not affected by catchment whereas the
quasi-distributed model was.

In conclusion, these results show that the quasi-distributed model generally
outperforms the spatially lumped models at the various levels of testing and has been
shown to be statistically significantly better than the lumped models when predicting
large events outside of the range for which the model was calibrated. The next chapter

will discuss and expand on these results.

v
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CHAPTER 5

DISCUSSION

This chapter presents a discussion of factors that can influence results of a runoff
modelling study, followed by a discussion of the results themselves in order of the level

of test used.

5.1 Sources of error

Many factors affect the accuracy of runoff simulations: input data, initial
conditions, model assumptions, parameter values, runoff ’dynamics, and model spatial
resolution. Since it is difﬁ‘cult to examine all of these issues properly, Loague and Freeze
(1985) categorized three sources o% error inherent in rainfall-runoff models: mo-del error,
input error, and parameter error. These sources are introduced in this section, with the

- following section providing a discussion more specific to the study and the models used.

5.1.1 Model error

Model error results in the inability of a rainfall-runoff model to predict runoff
accurately, even given the correct estimates and input. Model error will always be a
factor since no model can represent the real system exactly. The purpose of a model

comparison study is to test for the difference in model error between models.
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5.1.2 Input error

Input error in this study could arise from measurement error (errors involving the
precipitation gauge), extrapolation error (extrapolating catchment input from the gauge
location), and throughfall and stemflow estimation error (parameterization of the canopy
storage model). Input error can be significant in some studies. For example, Michaud
and Sorooshian (1994) found that rainfall errors were responsible for roughly half of the
runoff simulation errors. Input error is not as much of a concern in this thesis research for
two reasons. First, significantly smaller catchments were used as compared to those used
by Michaud and Sorooshian such that errors involved in extrapolation of precipitation are
minimized. Extrapolation error may be more of a concern in the larger East catchment
but the results show that input error was compensated for (if compensation were
necessary) since the calibration and validation runs were generally better in East
catchment than South catchment. Secondly, and more importantly, any input errors
would have been the same for all three runoff models being compared since the canopy

i)
storage model was calibrated independently of the runoff models.

Input error could be a factor at level 2 and level 4 testing, in which the models
were validated on a catchment other than that used for calibration. If there is a greater
error due to the storage canopy model estimates in either catchment, level 2 and level 4
results may not provide a valid test of geographic transposability. If the input errors are
associated with the calibration catchment, parameter estimation may be erroneous and

misleading. If the errors are associated with the validation catchment, the validation test

becomes 1napplicable.
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5.1.3 Parameter error

All three runoff models used in this study contain parameters that were calibrated
to a particular set of events. Errors of measurement of the observed streamflow, errors in
digitizing the streamflow (drift), synchronization errors (errors between the precipitation
and streamflow gauge data), and errors in the stage-discharge relation may alter the
obtained observed data from the actual data, resulting in different optimal parameters.

Parameter error may also result from the interdependence of model parameters for
each of the models, which is the main problem with optimization. There may not be a set
of unique parameter estimates that can reproduce the recorded runoff (Gan and Biftu,
1996). However, the model efficiency response surfaces generated for caJib\ration did not
indicate any multiple optimum parameter sets for the calibration data dsed.

In addition, subjective ‘tweaking’ was used after the automatic calibration process
to optimize the parameters. Svensson (1977) compared subjective ana automatic
calibration, and conclgded that subjective calibration was in some ways Superior. Hence,
a combination of the two types of optimization minimizes parameter error.

The differing methods of optimization between the lumped and the quasi-
distributed models may have affected the results. For the lumped models, one parameter
was initially calibrated using recession curves and then the other parameters were
calibrated using entire events. The quasi-distributed model was calibrated by optimizing
all parameters simultaneously using the entire hydrographs. This difference in calibration
may be a contributing factor as to why the lumped models do not simulate the peaks as

well as the quasi-distributed model since their calibration was dependent on the recession.
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It may also explain why the quasi-distributed model is better able to simulate variability
of peak flows. However, this difference in calibration is probably not significant since
the parameter obtained from recession analysis was the one controlling low-frequency
response. The parameters controlling high-frequency response (i.e. stormflow response)

for the two lumped models were calibrated using the entire stormflow hydrographs.

5.2 Discussion of results by testing level

5.2.1 Level I - Split-sample test

The split-sample test, in which models are calibrated and validated on a similar
range of data sets within the same catchment, resulted in all three models performing
similarly, with the quasi-distributed model providing the best overall fit. Although the
three models did not perform statistically significantly different from one another, some
reasons for the better performance of the quasi-distributed model are discussed below.
The following discussion can also be applied at all four levels of testing.

The better performance of the quasi-distributed model is probably due to the more
conceptual representation and the better accountability of the distribution of storage of the
quasi-distributed model than the lumped models. One reason that the quasi-distributed
model performed well could be a result of the routing method TOPMODEL uses. Moore
(1997) showed that streamflow recession at South catchment is consistent with the
exponential storage-outflow relation assumed by TOPMODEL for the first two days after
a rainfall event when the catchment was wetted up. The function of the recession for East

catchment has not been researched but since the models generally do better in East
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catchment than in South, the recession is probably consistent with the TOPMODEL
assumptions in East catchment also.

The triple reservoir model probably provided a better fit than the dual reservoir
model because it has more parameters. Also, the triple reservoir model has a more
realistic representation of the processes, and has a better resolution of storage distribution
since it is comprised of three reservoirs as opposed to two.

The lumped models were better at simulating event volumes than the quasi-
distributed model, but not at simulating the shape of the hydrographs. Since all three
models were calibrated to fit the entire shape of the hydrograph, the better estimates of
volume are probably just a function of the poorer fit of the entire hydrograph. The
lumped models responded too quickly to precipitation input and overestimated the rising
limbs while underestimating the peaks, resulting in a good estimate of volume merely by
céincidence by the averaging of discharge over the event. The percentage of the
underestimation of peak flows by the lumped models is misleading. The peak flows of
most events were adequately simulated while only a few events skewed the estimated
value.

For the split sample test, all models generally exhibited similar performance. Any
of the models could be used as a reliable tool for filling in gaps in streamflow records or
used to extend runoff series. Considering the data requirements and efforts involved in
the setub of the different models, the simplest dual model may be selected for such tasks.
This conclusion is in agreement with results of other studies (e.g., Michaud and

Sorooshian, 1994; Refsgaard and Knudsen, 1996).
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5.2.2 Level 2 - Proxy-basin test

The models, when validated on the catchment for which it was not calibrated,
performed differently in each catchment. The quasi-distributed model performed better
than the lumped models when validated in East catchment and worse than the lumped
models when validated in South catchment. These results are similar to the findings of a
study by Refsgaard and Knudsen (1996), in which a quasi-djstributed model did well in
one catchment but not in another. Although the results for level 2 are not statistically
significant, possible explanations for the differences in model performance are discussed

below.

i) Nonlinearity of TOPMODEL

The exponential reservoir of TOPMODEL produces a non-linear response and
may be an important explanation for the difference in performance of the quasi-
distributed model between catchments. The nonlinearity of TOPMODEL is also
important at level 3 testing (Section 5.2.3). Generally, a non-linear reservoir is mo}e
sensitive than a linear reservoir to rainfall input (Singh and Woolhiser, 1976). This
sensitivity may result in a linear routing model being more accurate than a nonlinear one,
even though the underlying process is actually nonlinear, resulting in the differing
performanceaof the quasi-distributed model in the two catchments..

The sensitivity of the exponential reservoir in TOPMODEL may depend on the

combination of the parameters m and 7,,. The parameter T, represents the transmissivity
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(linked to the hydraulic conductivity) and it affects both the interflow regi;ne and,
together with the parameter m, the flow exchange rate between the unsaturated and
saturated zones. With these parameters being quite different ir; the two catchments, (m
for East catchment is approximately double that of South catchment), it should be >
expected that the quasi-disiributed model would perform differently in the two
catchments. Perhaps the model is less sensitive going from South to East catchment than
it is going from East to South because of the specific combinations of m and T, for the

two catchments.

ii) Model insensitivity to topographic index

An important point demonstrated in level 2 testing is that, in this study, the use of
a topographic index by the quasi-distributed model does not provide superior geographic
transposability. In a further analysis of these results, I ran the split-sample test on each
catchment using the topogr;:zphic index curve of the other catchment. The resulting Nash
coefficients were only slightly different than using the proper catchment index: in East
catchment, the Nash value went from 0.890 to 0.883 and in South catchment the Nash
value went from 0.890 to 0.895. The frequency curves also have similar shapes.

Other researchers have also found that the representation of topography does not
provide a better prediction of observed events when transposed from catchment to

=

catchment. Franchini er al. (1996) found TOPMODEL to be insensitive to the index

curve, replacing the index with various different curves did not significantly alter the
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sequence of ;iischarges. Quinn et al. (1991) conclqded that if the frequency distributions
of thevpographic index have roughly the same shapej then interchangeability is possible
whil}&ia;g;aining good hydrograph prediction. Any change in the predicted hydrographs
resulting from a change in the topographic index curve is minimized by the optimization

of other parameters. lorgulescu and Jordan (1994) determined that model results

combined with field investigations suggest that topography is relevant but not sufficient

to override soil and geological factors in determining saturated areas.

iti) no difference in runoff mechanisms between catchments

Torgulescu and Jordan (1994) found that TOPMODEL performed differen[ly in
two catchments. Iprgulescu and Jordan calculated the amount of subsurface and overland
flow and determinid that t;he runoff mechanisms we;re different in the two catchments
used in their study. In the present study, similar percentages of subsurface (95-97%) and
overland flow (3-5%) were calculated for both East and South catchments. Therefore, the
runoff generating mechanisms computed by the quusi:dislribuled model in this study
were found to be the same in both catchments and is not a factor in the differing model
performance results of level 2. This finding is similar to that of Durand et al.(1992).

The triple reservoir model performed worse than the du# reser:/oir model when

transposed to another catchment. This may be because the triple reservoir model has

more parameters and therefore is more catchment and data specific. The dual reservoit
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model is more generalized so even if it did not calibrate as well, when transposed to

another catchment it is not as sensitive to changes.

5.2.3 Level 3 - Differential split-sample test
The statistical analysis shows that TOPMODEL is statistically superior to the
lumped models when validated on events larger than the calibration set. This result

2

agrees with the finding of Beven et al. (1984) that the quasi-distributed model performed
significantly better on large events than small events. Inwcontrast, the lumped models’
performance worsened as the events increased in size.

The quasi-distributed model may have performed best at simulating high flow
events as a result of being the only model accounting for the saturation overland flow
mechanism. The saturated areas mechanism may provide a better representation of the
dynamics involved when there is an increased water input to the system. Some studies
have concluded that accounting for saturation overland flow is important in determi‘ning
peak flows (Band et al., 1993; lorgulescu and Jordan, 1994). However, in this study, the
tact that TOPMODEL accounts for saturation overland flow and the other models do not,
does not seem to be important or relevant. TOPMODEL was not superior at level 2
testing, the proxy-basin test, despite its accounting for topographic effects on saturated
source area dynamics. Also, TOPMODEL's prediélions indicated that only a few percent

of the stormflow originated as direct precipitation onto saturated areas. These points may

indicate that for East and South catchments, simulating the routing of throughflow to the
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streamn channels is probably more cnitical than trying to model the dynamics of the
saturation overland flow source areas.

The nonlinearity of catchment response by TOPMODEL, discussed in Section
5.1.2, may be the prime reason allowing for the extrapolation to larger events better than
the linear reservoirs of the lumped models. The nonlinear routing of TOPMODEL is
more sensitive to precipitation than the linear reservoirs of the lumped models and
therefore is better able to respond to an increase in rainfall input.

.
5.2.4 Level 4 - Proxy-basin differential split-sample test

For level 4, testing for both geographic and climatic transposability, the quasi-
distributed model performed best in South catchment and worst in East catchment. This
1s the opposite result of level 2 testing and may indicate that although catchment type is
important (as indicated in level 2), it is overridden by other factors, one of which may be
the use of larger events for validation.

The ANOVA results of Table 4.17 indicate that there is an interaction effect
occurring between model and basin at level 4. The values of least square means
generated by the analysis of variance for level 4 indicate that the two lumped models élre
not affected by catchment whereas the quasi-distributed model is. This interaction effect
suggests that the quasi-distributed model responds differently to different catchments and
the lumped models do not (reinforced by the results of level 2). For East catchment, there

1s no statistically significant difference in performance amongst models. However, for
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' South catchment, TOPMODEL provides significantly superior predictions than the other

two lumped models.

5.3 Statistical approach

The combination of the Jackknife method and ANOVA provides an important
tool to determine the significance of model performance stal,istics. However, two points
should be considered. First, there is the issue of significance level. Using a significance
level of 0.05 is conventional but arbitrary. Since this is an exploratory study with a small
sample size, a more stringent significance level would not be appropriate. The provision
of the probability values (Table 4.16) does allow a user to draw inferences using
alternative significance levels.

The second issue is that the ANOVA specifies the ‘error variance’ in the RMSE to
be caused by sampling variation over the entire validation data set. An alternative design »
would be to treat ‘event’ as another effect, creating a 3-way interaction ANOVA.
However, a 3-way ANOVA design would be difficult to interpret statistically. There also
may be problems with the distribution of residuals (as found by Cavadias and Morin,
1985). Finally, most modellers look at model performance statistics which are aggregated
over multiple events. Hence, the design in the present case conforms better to current

practice in assessing model performance.
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5.4 Generality of results

The main emphasis of this thesis was to emphasize the importance of the testing
framework as opposed to the performance of the specific models used. All model
comparison studies are limited in their ability to make generalized statements based on
data and site specifics of the individual study. Generalizations of model performance
regarding the models used in this study can only be made when based on many studies, in
particular those studies which are implementing a similar framework. The results of this
thesis research and the discussion are conclusive only for the specific catchments and
range of conditions represented within the datasets used and cannot be extrapolated to
other situations with confidence. With this caution regarding generality in mind,

conclusions may be derived from the study.

5.5 Conclusions

The results show that the lumped models performed as well as the quasi-
distributed model in similar climatic conditions in the same catchment and also when
geographically transposed to a proxy catchment. However, the quasi-distributed model
performs statistically significantly better than the lumped models when predicting large
events outside of the range for which the model was calibrated. In conditions where
models are geographically transposed and there 1s a significant increase in precipitation
input, the quasi-distributed model performed significantly better in South catchment but

not in East catchment. The conclusion is that TOPMODEL is likely to be no worse than
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the lumped models under various conditions and:may be superior for some catchments,
but is definitively better when predicting large events.

Since these are operational tests, it is not as important to understand why one
model is better than another, just that one model provides superior predictions of the
storm hydrographs. It is up to the user to decide at this point if superior performance
warrants the additional cost of generating and analyzing DEMs.

This chapter has provided some explanations of the results of this study. The next
and final chapter will summarize the objectives and findings of the research and provide

suggestions for further research.
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CHAPTER 6

CONCLUSIONS

This final chapter presents a summary ‘of the findings and discusses the
significance of the results to hydrologic modelling. The chapter concludes with
suggestions for further research with respect to variations of the model testing framework

”~
and model structure. j

6.1 Summary of main findings

The research had tw6 main objectives: (1) to compare a quasi-distributed model
to two lumped models to determine if there is a benefit associated with the increased
demand for catchment data and (2) to detemﬁne if the statistical significance of
differences in model performance can be quantified ggl'hese two objectives were
successfully answered with the understanding that (# primary intent Qf the research was
to focus on the importance of the testing framework and that this is not a definitive test of
the specific models used.

Using a significance level of 0.05, the statistical analysis shows that at levels i
and 2 there are no statistical differences in model performance. This finding is
meaningful in that it confirms there is no significant benefit in applying the more
complex, quasi-distributed model and that the simpler lumped models would provide
acceptably similar simulations under those conditions.

At level 3, however, the quasi-distributed model pertorms statistically
significantly better than both lumped models in both catchments. The statistical analysis
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provides justification for using an advanced type of model to represent flows following a
significant increase of rainfall. The statistical analysis for level 4 indicates that the quasi-
distributed model performed significantly better than the lumped models at South
catchment but not at East ;atchmcnt. The conclusion 1s that the quasi-distributed model
is no worse than the other two models but may perform better in certain catchments.

This research demonstrates that the ANOVA design including the Jackknife
method 1s a workable method and could be a valuable tool for assessing statistical
significance of differences in model performance. The statistical approach provides

power and meaning to results to model comparison studies.

6.2 Significance of results to hydrologic modelling

This thesis research contributes to the state of hydrologic modelling by advocating
the use of a more rigorous and standard testing framework in hydrologic modelling. A
standard method of model testing and comparison will raise the level of credibility of
comparisons studies and discourage exaggerated claims of model performance. The use
of statistical analysis provides more definitive results of model comparison studies,
minimizing any conclusjons of relative model performance that may be misleading. The
standard testing framework in combination with statistical analysis will provide superior
information on model performance, allowing better decisions to be made with respect to
operational modelling.

More specitically, the research provides further information on the relative

pc‘rformunce of a quasi-distributed model to lumped models in forested catchments. The
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study also provides information on the response of the three types of models to the
various levels of testing. The results, indicating which model types perform better under

different conditions, give important preliminary information for further model studies.

6.3 Suggestions for future research

61.3.1 Extension of the model testing framework

Futureustudies should include the evaluation of models at all four levels of testing,
as opposed to just the first or second level where many researchers stop, especially when
evaluating new models against existing models. Future research should extend the
hierarchical testing approach with statistical testing to more than just two models,
providing a better relative comparison. These models should be of varying complexity
and type so that more information is collected regarding where future model development
efforts could be concentrated.

In addition'to increasing the number of models tested and the number of tests
used; an increase in the number of catchments used in the testing would provide an
improvement to model comparisonﬂ studies. -Testing the models on more than two
catchments, if possible, would be beneficial. With regard to operational modelling, more
rigorous analysis should be done on larger watersheds since most engineering hydrology
decisions are on larger catchments.

The manner in which catchments are dealt W"ﬂh in future comparison studies can
also be altered. A limitation of this study was the treatment of catchments as a fixed
cffect in the analysis of variance, resulting in the inability to make inferences beyond the
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two catchments used. More general inferences could be made regarding model
performance that extend beyond the catchments used in the study if catchment was

A

treated as a random factor in the analysis of variance.

6.3.2 Modifications to model structure
This research has shown that only the quasi-distributed model, TOPMODEL, has
provided statistically significantly better performance for certain conditions of the study.

There has been much optimism for the potential of distributed models (Beven, 1992;

2 Refsgaard, 1997). The approachﬁwhich led to TOPMODEL is one of the m;)st promising
directions in modelling research and it deserves special consideration and effort
(lorgulescu and Jordan, 1994).

One improvement that may be made to TOPMODEL that might provide better
predictions in future research is the modification of the topographic index. A different
topographic index, other than that presently used in TOPMODEL, may be more suitable
to a particular catchment and provide improved performance. For example, lorgulescu
and Jordan (1994) and Ambroise et al. (1996) found that different runoff mechanisms in
two catchments required a different approach where a different tdpographic index
function may be preferred. Woods et al. (1997) are starting research into a tdpographic
index that also models the spatial variability of jsub.surfuce runoff. With increased
computing power and advancements in remote sensing, digital elevation models may
become easier to obtain and of better accuracy, resulting in improved topographic index

distribution functions.



An increase in the quality and the quantity of calibration data will allow better
predictions for all rainfall-runoff models. These would include improved streamflow and
precipitation data collection. Runoff simulations are unlikely to improve until rainfall

input estimations improve (Michaud and Sorooshian, 1994).
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Calibration and validation events for testing levels 1 and 2.

calibration events

start

end

even yr mn day hr
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validation events

start

end

event yr mn day hr
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Calibration and validation events for testing levels 3 and 4, rgﬂk/ed by volume.

Calibration events (small volume events)

South catchment East catchment

ranking event volume event  volume
/ 35 823.2 14 22769
2 14 842.0 SI 2369.7
3 41 969.0 35 24840
4 16 1060.7 36 24889
S 57 1064.9 41 2550.0
6 Sl 1176.5 S8 2807.2
7 18 1229.9 I8 3048.6
8 63 1273.8 31 30498
9 36 1306.4 16 3077.5
10 31 1456.0 63 31829
11 S8 1501.7 57 3388.7
12 19 1537.4 47 34555
13 49 1607.6 19 3763.6
14 47 1751.0 2 41102
15 2 1825.2 49 43488
16 10 1879.0 45 44170
17 3 1969.3 34 48179
18 44 2099.2 44 49254
19 23 2270.5 3 51478
20 6 2275.2 7 10 5336.7
21 45 23139 23 55855
22 59 23224 59 55912
23 13 2466.2 20 56379

* middle 6 events deleted  *

12 25323 I 58352

1 25942 6 58799

22 27261 42 60704

25 2737.8 25 60834

34 2786.5 13 62579

20 2871.8 60  6363.6
* kK Kok ok
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Validation events (large volume events)

South catchment East catchment
ranking event volume event  volume
/ 15 3004.9 12 64405
2 24 31044 24 66290
3 56 3116.2 11 67726
4 60 32729 22 71917
5 42 33326 56  7326.5
6 1 “ 33518 39 7349
7 39 34004 - 30 74540
8 21 34437 33 75498
9 48 3736.6 21 7906.7
10 54 3768.7 15 8071.0
11 61 3841.3 38 8285.1
12 30 3844.6 61 8370.7
13 46 39992 32 86404
14 52 4035.3 26 8658.1
15 33 4064.2 43 91554
16 26 41190 48 9201.7
17 4 4577.6 54 94189
18 43 4607.0 4 94230
19 38 4615.1 52 94738
20 32 4903.8° 46  9616.1
21 9 5208.2 S 107364
22 5 5736.9 9 12206.1
23 37 14620.7 37 276877
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Canopy storage model code

PROGRAM THRUFALL;
{ Candpy Storage Model South catchment - Pascal code}
{ ------ constants ------ }
CONST
gap =0.159; {free throughfall coefficient}
Pt =0.02; {stemflow coefficient)
Sc =3.30; {maximum canopy storage capacity mm})
Ebar =0.228; {mean evaporation rate mm/h)
mult =094, {mult x Pg to extrapolate to East)
{ - variables ------ }
VAR
Pg . Real,; {rainfall input mnvh)
Pgstep : Real: {rainfall per step)
SF - Real; {stemflow O.] mm/h)
TF - Real; {throughfall 0.] mm/h)
E . Real; {evaporation from canopy mm/10 min}
Si - Real; {initial canopy storage mm)
S - Real; {actual canopy storage mm)
event - Array [0..2000] of Integer;
hr, 1 . Integer; {event number and hour of storm, counter)
Infile, Outftle  : Text; linput, output files)
[ - start program ------ }
Begin

Assign (Infile, 'C:\ Ithesis\\ppt2tt.in’);  Reset (Infile):
Assign (Outfile, 'C:\ IthesisMf\ppt2tt.out’). Append (Outfile);

event[0] .= 0;
hr:=1;

While not cof(infile) Do
begin
ReadlIn(intile, event{hr], Pg):
Pg := Pg*mult{/10.0},

If (eventlhr] > eventfhr-1]) then
S1:=0.0;
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end;

{ --- solve canopy water balance in 10-min time steps --- }

Pgstep := Pg/6.0,

TF := 0.0; {throughfall}
SF:=0.0; [ stemflow}
Fori:=1t06 Do {start 10 min step loop)
begin ’ )
E = (Ebar/6.0)*S1/Sc: {evap a function of amt of saturation)
4

S :=Si + Pgstep - E:
If (S <0)then S :=0:

If (S > Sc) then
begin {TF and SF occurs when S > Sc}

SF .= SF + Pt*i’gstep;
TF :=TF + S - Sc:
S := Sc;
end;
Si1:=8S;
end; lend 10 min step loop}
TF .= TF*(1.0 - gap) + Pg*gap {+ SF};  {TF = drip. SF and thru gaps)
Writeln(outfile, eventfhr], Pg:5:3, TF:5:3);
hr :=hr+1;
End;

Writeln('program is done.');

close (infile);
close (outfile);

End. {end of program}
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Black-box lumped model code

PROGRAM DUALPAR;

{ Dual Reservoir Lumped Model East catchment - Pascal code |}
USES CRT;
CONST K1 = .0098/3600; Area = 3830(X);
VAR Infile, outfile, objfile, eventstats s text;
event, hr, Qalln ;integer;
Qobs, Qsim, TF, Qobssum s real;
fl, k1,K2, Q1, Q2 - real;

TYPE glarray = array[1..2] of real;

VAR Store, dS . glarray;

Qobstot,Qobsave Qsimsum. diff,nash,percent,rmse : real;  {objective function
variables)

hriast, eventlast, n, tpko, tpks, tpkstrt, Qobsn  : integer;

Qpko, Qpks, Qlasto, Qlasts, Qdiff, alldiff, Qave : real:

tobstot, tobsave, tdiff, Nashqg, Nasht, allsum - real;

Qpkssum, tpkssum, vsum, rmseq, rmset, rmsev, percentq, percentt : real;

Qvolo, Qvols, vobstot, vdift, vobsave, nashv, percentv : real;

fimin, flmax, k2min, k2max  : real; {optimisation loop variables)

1,J,iIMax,jmax : integer; {counters for loops )

PROCEDURE PARALLEL (VAR f1, K2 : real):
BEGIN

{1. initialize storages) ~

{2. for each time interval (1 hr), read in throughfall and stepthrough to generate
predicted Q at 6 min time steps, then compare predicted and observed Q)

Qobssum:=0.00; Qalln :=();

WHILE NOT Eof(intile) DO
begin
Readln (infile, event. hr, Qobs, TF);
Qobssum:=Qobssum + Qobs;
Qalln ;= Qalln + 1;

If (hr=0) then
begin
Store[ 1] := Qobs/K1:
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Storef2] :=0.0;
end;

If (f1=0) then Store[1] := 0.0;

Qsim :=0.0;
Fori:=1to 10do [{integrate over | hr at 6 min intervals)
begin

Ql := Ki*Store[ 1];

Q2 := K2*Store|[2];

dS[I] :=tf*f1*Area - Ql;

dS[2] :=tf*(1 - fl1)*Area - Q2;

Store[ 1] := Store[ 1] + dS|1]*360;

Store[2] := Store[2] + dS[2]*360;

Qsim := Qsim + Store[ 1 [*K 1 + Store|2]*K2;

end; ®
Qsim = Qsim/ 10); o s
Writeln (outfile, event:4, hr:4, Qobs:10:4, Qsim: 10:4, TF); . -
end; . “ 5 - .
Writein(outfile," 99, " 0" ); )

{3. Replace array of initial storages with predicted
storages at end of time interval)

{4. Repear (2) and (3) until end of storm event)

{5. Repeat (1) through (4) for each storm event)

end;

BEGIN
ClirScr;

assign (infile,'c:\2paraleN\east\e_lgver.in'); {input event, hr, Qobs, TF}  reset (infile);
assign (outfile,'c:\2paralel\east\s2edver.out'); {sim outpur}  rewrite (outfile);

assign (objfile,'c:\2paraleNeast\s2edobj.out'y; {obj funct output}  rewrite (objfile);
assign (eventstats,'c:\2paralel\east\s2edevnt.out');{evens stats}  rewrite (eventstats);

{-- loop through fl and k2 ranges for optimisation --

flmin := 0.0;
fimax = 0.6;
k2min := 0.01;
k2max ;= 0.11;
imax = 30;
jmax := 50;
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f1:=-0.02;

FOR 1 := ] to imax+1 DO

BEGIN
fl :=fl +(flmax - fImin)/(imax); 8
k2 :=0.008;
FOR j:=1tojmax+1 DO
BEGIN
k2 :=k2 +(k2max - k2min)/(ymax); ;

Reset (infile);
Rewrite (outfile);
writeIn(‘'working...");

k2 :=k2/3600; k1 = k1/3600:;
PARALLEL (fI,k2); {call procedure Parallel}
k2 1= k2*3600;

------------- Calculate objective functions ~---------====sonmeee--|

n:=1; event:=1I;
Qpko :=0.0; Qpks :=0.0; Qvolo :=0.0; Qvols := 0.0,
nash :=0.0; alldiff :=0.0; Qsimsum := (.0; eventiast:=0;

reset(outfile);

while not eof(outfile) do
begin
ReadlIn (outfile, event, hr. Qobs, Qsim, tf);
Qsimsum:=Qsimsum + Qsim;

[ -- calc peaks, tpk, and volumes for each evenr -- }

If (hr = 0) then
Begin
If (eventlast<>0) then
begin
Writeln (eventstats.eventlast:3,Qvolo: 15:2,Qvols:15:2,Qpko: 15:5.
Qpks:15:5.tpko:4,tpks:4); .
Writeln ( eventlast:3, Qvolo:15:2, Qvols:15:2.Qpko: 15:5, Qpks:15:5, tpko:4, tpks:4);

tpkstrt 1= 0);
end;
Qvolo :=0.0; Qvols :=0.0; 2
Qpko := Qobs:
Qpks 1= Qsim;

End;

If (hr <> ) then
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Begin
Qlasto := Qobs:
Qlasts := Qsim;
eventlast := event;
hrlast := hr;
If (tf<>0) and (tpkstrt=0) then tpkstrt := hr;
If (Qobs > Qpko) then
begin
Qpko = Qobs;
tpko := hr - tpkstrt;
end,
If (Qsim > Qpks) then
begin
Qpks = Qsim;
tpks := hr - tpkstrt:
end,
End;
Qvolo := Qvolo + Qobs:
Qvols := Qvols + Qsim;

{ -- calc overall Nash for entire calibration period -- '}

If (event<99) then
begin
alldiff .= alldiff + «gr(Qs1m-Qobs);
nash := nash + sqr(Qobs-(Qobssum/Qalln));
end;

end;
Writeln(eventstats,” 99);
rmse := sqri( 1/Qalln*alldiff);
nash =1 - (alldiff/nash):
percent := (Qsimsum - Qobssum)/Qobssum* [(X):

{ -- calc Nash and % deviations for pks. ipk, and volumes --

Reset (eventstats);
Qobstot .= 0.0; Qobsn = 0;
tobstot = (.0; vobstot ;= 0.0,

while not eof(eventstats) do
begin
Readlnteventstats, event, Qvolo..Qvols, Qpko, Qpks. tpko, tpks);
If (event<99) then
begin
writeln{event:4.Qvolo:9: 1y
Qobstot 1= Qobstot + Qpko:
Qobsn ;= Qobsn + 1:
tobstot = tobstot + tpko:
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vobstot := vobstot + Qvolo;
end;
end;

Qobsave = Qobstot/Qobsn;
tobsave := tobstot/Qobsn;
vobsave := vobstot/Qobsn;

Qdiff:=0.0, tdiff:= 0.0; vdiff:=0.0;
Nashq := 0.0; Nasht :=0.0; Nashv :=0.0:
Qpkssum :=0.0; tpkssum :=0.0; vsum :=0.0;

Reset (eventstats);

while not eof(eventstats) do
begin
Readln(eventstats. event. Qvolo, Qvols, Qpko. Qpks, tpko, tpks);
If (event<99) then
begin
Qdiff := Qdiff+ SQR(Qpks - Qpko);
Nashq := Nashg + SQR(Qpko - Qobsave);
Qpkssum = Qpkssum + Qpks;
tdiff .= tdiff+ SQR(tpks - tpko);
Nasht ;= Nasht + SQR(tpko - tobsave);
tpkssum := tpkssum + tpks:
vdiff ;= vdiff+ SQR(Qvols - Qvolo):
Nashv := Nashv + SQR(Qvolo - vobsave);
vsum = vsum + Qvols;
end;
end;

percentq := (Qpkssum - Qobstot)/Qabstot* 1(X):
rmseq = sqrtt 1/Qobsn*(qdiff));
Nashq := I - (qdiff/Nashq):

percentt := (tpkssum - tobstot)/tobstot* [ (X):
rmset ;= sqrt(1/Qobsn*(tdiff));
Nasht := | - (tdiff/Nasht):

percentv '= (vsum - vobstot)/vobstot* 100): -
rmsev = sqrtt 1/Qobsn*(vditf) )
Nashv ;= | - (vditt/Nashvy:

append (objfile);}

writeln;

writeln('fl =" f1:&83. 7 K2 ="Kk2:10:6);

writelnCoverall Nash = " nash:8:5." ¢ ="percent:4:1);
writeln;
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writeln (‘Nash vol = "nashv:6:3," Nash pks =" Nashq:6:3," Nash tpk = ' Nasht:6:3);

writeln ("%dev vol = "percentv:6:1," %dev pks = "percentq:6:1,” %dev tpk = ",percentt:6:1);

writeln (objfile f1:8:4.k2:15:6.nash:11:5, percent:10:2, nashv:11:5,percentv:10:2,
nashq:11:5,percentq:10:2.nasht: 11:5, percentt:10:2),

{rewrite(eventstats);

END;
END;

close (infile);
close (outfile);

close (objfile);

END. {END OF PROGRAM |



Conceptual lumped model code

PROGRAM SERIAL,;

{ Triple Reservoir Lumped Model East catchment - Pascal code }

USES CRT; ., .

VAR fl,phi,fImin,flmax.phimin.phimax s real;
1,J,imax,jmax integer; {counters for fl,phi loops)
infile, outfilel,out2. eventstats s text; -
event, hr, timestep, nok, nbad, Qobsn  : integer;

Qobs, Qsim, TF, Qobstot, Qobsave. Qsimsum.diff,nash,percent,rmse: real;
hrlast, eventlast, n, tpko, tpks, tpkstrt  : integer;

Qpko, Qpks, Qlasto, Qlasts, Qdiff - real;

tobstot, tobsave, tdiff, Nashq, Nasht : real;

Qpkssum, tpkssum, vsum, rmseq, rmset, rmsev, percentq, percentt : real;
Qvolo, Qvols, vobstot, vdiff, vobsave, nashv, percentv : real;

alldiff, Qave, allsum, Qobssum, Qalln s real;

PROCEDURE ODE_APP (var f1.phi: real); {start of ordinary diff eqn integration]

CONST { K3=0.0932/3600: KZ:().(;5]3/36()0; K1=0.0071/3600; {lev 3}

K3=0.1256/3600; K2=0.0541/3600; K1=0.0074/3600; {lev 1}
A=383000; nvar=3: nstepp = 200; eps=0.000001;

TYPE glarray = array{l..nvar} of real;

VAR

{fl,pht  :real;}

y, ystart : glarray:

x1,x2,hl, hmin sreal;

Kmax, kount s integer;

dxsav s real;

Xp carray [ 1.nsteppl of real:

Yp carray [1..nvar, |.nstepp| of real:

PROCEDURE derivs (x:real.: VAR y.dy:glarray). {derivatives evaluated at each time step )

{ tf = throughfall input rate in time intenval
v = array of reservoir storages
dv = array of time derivatives (to be evaluated))

VAR Q1.Q2 :real:

BEGIN
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Q1 :=Kl1*y[1];

Q2 := K2*y[2];

dy[]] :=tf*f1*A - Ql:

dy[2] ;= tf*(1 - f1 - phi*y[Z])*A + Q] - Q2:
dy[3] := tf*phi*y[2]*A + Q2 - K3*y[3];

END;
{*** THE NUMERICAL RECIPES CODE BEGINS HERE ***)

PROCEDURE rkd4 (y.dydx: glarray; n: integer; x,h: real; VAR yout: glarray);
{Runge-Kurtta routine )

VAR
i: integer; xh,hh.h6: real; dym.dyt.yt: glarray:

BEGIN e
hh := h*0.5; h6 := h/6.0; xh := x + hh;
FOR i := 1 TO n DO yt[i} := y[i] + hh*dydx[i];
derivs(xh,yt.dyt);
FOR i:=1TO n DO yt[1] := y[1] + hh*dyt[1];
denvs(xh,yt,dym);
FOR i:=1TO n DO BEGIN
yt[i] := y[i] + h*dymii];
dymli] := dyt[1] + dymli]:
END;
derivs(x+h,yt.dyt);
FORi:= 1 TOn DO
yout[i] := y[i} + h6*(dydx[1] + dvt[i] + 2.0*dym[1]):
END:;

PROCEDURE rkqc (VAR y.dydx: glarray: n: integer; VAR x: real;
{Runge-Kutta quality control)
shtry.eps: real; yscal: glarray = VAR hdid.hnext: real);
LABEL I;
CONST pgrow=-0.20; pshmk=-0.25;
fcor=0.06666666;
one=1.0; safety=0.9: errcon=6.0¢-4,

-

VAR  1:integer; xsav,hh.htemp.errmax: real; -
dysav,ysav.ytemp: glarray:

BEGIN
XSav = X.
s FOR 1:= 1 to n DO BEGIN
ysav[i] == y[1];
dysav{i} :=dvdx[1]:
END,
h = htry;
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1: hh := 0.5%h;
rkd(ysav,dysav,n,xsav,hh.ytemp); x := xsav + hh; derivs(x,ytemp,dydx);
rk4(ytemp,dydx,n,x,hh,y); x := xsav + h;

IF (x = xsav) THEN BEGIN
writeln('pause in routine RKQC");
writeln('stepsize too small’);
END;
rk4(ysav,dysav,n,xsav,h,ytemp); errmax := (.0;
FOR1:=1TO n DO BEGIN
ytemp(i] := y[1] - ytemp[1];
temp := abs(ytemp[1])/yscal[1]);
IF (errmax < temp) THEN errmax := temp,
END;
errmax := errmax/eps;
IF (errmax > one) THEN BEGIN
h := safety*h*exp(pshmk*In(errmax));

GOTO I; END:
If (errmax <= one) then BEGIN
hdid := h;

IF (errmax > errcon) THEN hnext := safety*h*exp(pgrow*In{errmax))
ELSE hnext := 4.0*h;
END;
FOR i := 1 TO n DO yli] := y[1] + ytempli]*fcor;
END;

PROCEDURE ODEint (VAR ystart: glarray; nvar: integer; x1.x2,eps,h1,hmin: real;
VAR nok.nbad: integer);
{ordinary diff egn integration

LABEL 99;
CONST  maxstp=10000; two=2.0; zero=0.0; iny=1.0e-30;
VAR  nstp,i: integer: xsav.x hnext.hdid,h: real; yscal.y.dydx: glarray;

BEGIN
x:=xl;
IF (x2 >=x1) THEN
h := abs(hl)
ELSE
h := -abs(hly;
nok ;= 0; nbad := 0: kount :=();
FOR 1:= 1 TO nvar DO y[1] := vstart[1];
IF kmax > 0 THEN xsav := x - dxsav*two;
FOR nstp := 1 TO maxstp DO BEGIN
derivs(x,y.dydx);
FOR 1 := 1 to nvar DO vscalfi} := absy[i]) + abscdvdx[i]*h) + uny;
IF (kmax > 0) THEN BEGIN
IF (abs(x - xsav) > abs(dxsav)) THEN BEGIN
IF (kount < kmax - 1) THEN BEGIN
kount := kount + |;
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xplkount] := x:
FOR i := 1 TO nvar DO yp[i.kount] := y[i};
Xsav = X,
END;
END;

END;

IF(((x + h - x2)*(X + h - x1)) > zero) THEN h := x2 - x;

rkqc(y,dydx.nvar x.h.eps.yscal.hdid hnext);

IF (hdid = h) THEN
nok := nok + 1

ELSE
nbad ;= nbad + I;

IF (((x-x2)*(x2-x1)) >= zero) THEN BEGIN
FOR i := | TO nvar DO ystart{i} := y(i};

IF (kmax <> 0) THEN BEGIN

kount := kount + 1;

xp[kount] := x;

'FOR i := | TO nvar DO yplikount] := y[il;
END; |
GOTO 99;

END: :

IF (abs(hnext) < hmin) THEN BEGIN
write]n('pause in routine ODEInt);
writeln('stepsize tco small');

END:
h = hnext;
END;
writeln('pause in routine ODEint - too many steps’),
99: END;

(*%* THENUMERICAL RECIPES CODE ENDS HERE ~ ***)
BEGIN {ODE_APP)

{0. specify parameter values K1, K2, K3.f1,phi}

[ 1. initialize storages)

(2. for each time interval (1 hr), reuad in throughfall and step
through ODEint to generate predicted Q at desired
time steps (10 min), then compare predicted and observed Q)

Qobssum:=0.0; Qalln =0,

WHILE NOT Eof(infile) DO
begin
Readln (infile, event, hr, Qobs. TF);
Qobssum:=Qobssum + Qobs;
Qalln := Qalln + 1;

If (hr=0) then {initializing storages)
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begin

If (f1=0) then
ystart[1] ;= 0.0;

If (f1<>0) then
ystart[1] ;= Qobs/K1;
ystart[2] := Qobs/K2.
ystart[3] := Qobs/K3;

end;

Qsim :=0.0;

X1 :=0;

X2 =360 = }
dxsav := 0.0; kmax :=0);

hl :=200.0; hmin = 0.01;

For timestep := 1 to 10 do {integrate over | hr at 6 min intervals)
begin
ODEint(ystart,nvar,x 1,x2.eps,h1,hmin.nok,nbad);
Qsim = Qsim + ystart] 3]*K3:
end;

Qsim = Qsim/10);

Writeln (outfile ], event:2, hr:4, Qobs:15:4, Qsim:15:4, TF:18:10);
end;
Writeln(outfilel, 99', " () );

{3. Replace array of initial storages with predicted
storages at end of time intervall}

{4. Repear (2) and (3) until end of storm event)

{5. Repear (1) through (4) for each storm event)

end;
BEGIN{begin main}

ClirScr;

Assign (Infile, 'C:\3serial\east\e_cal.in'y,

Reset (Infile);

Assign (Outfile ], 'C:\3sertal\east\e_cal.out');
Rewrite (Outfile1):

Assign (Out2, 'C:\3senalleast\e_opt.out');
Rewrite (Out2);

Assign (eventstats, 'C:\3serial\east\e_evnt.out');
{append}Rewrite (eventstats);

flmun := 0.6, literative loops jor calibration)
flmax := 1.0;
phimin := 1.0e-9;
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phimax := 1.0e-4;

imax :=§;
jmax = §;
f1 :=-0.20;

FOR 1:= 1 to imax+1 DO
BEGIN
fl :=fl + (flmax - fImin)/imax;
pht := (phimax - phimin)/(jmax);

FOR j := | to jmax+1 DO
BEGIN
phi := phi +(phimax - phimin)/(jmax);}

Reset (infite);
Rewnte (outfilel);

ODE_APP (f1, phi); {call ordinary di_ff;qn solver routine)

{ e Calculate objective functions -—--}

n:=1; event:=1:

Qpko :=0.0; Qpks :=0.0; Qvolo :=0.0; Qvols := (1.0,
nash ;= 0.0; alldiff := 0.0; Qsimsum := 0.0; eventlast:=0;
reset(outfilel);

while not eof(outfilel) do
begin
Readln (outfile1, event, hr, Qobs, Qsim, tf):
Qsimsum:=Qsimsum + Qsim;

{ -- calc peaks, tpk, und volumes for each event -- }

{If (hr = 0) then
Begin
If (eventlast<>()) then
begin
Writeln (eventstats, eventlast:3, Qvolo:15:2, Qvols:15:2, Qpko:15:5, Qpks:15:5,
tpko:4. tpks:4);
Writeln ( eventlast:3, Qvolo:15:2, Qvols:15:2, Qpko:15:5, Qpks:15:5, tpko:4, tpks:4);

tpkstrt ;= ();
end;
Qvolo :=0.0; Qvols :=0.0;
Qpko := Qobs;
Qpks = Qsim:
End;

If (hr <> ()) then
Begin
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Qlasto := Qobs;

Qlasts := Qsim;

eventlast ;= event;

hrlast := hr;
If (tf<>0) and (tpkstrt=0) then tpkstrt := hr;
If (Qobs > Qpko) then

begin
Qpko = Qobs:
tpko := hr - tpkstrt;.
end;
If (Qsim > Qpks) then
begin
Qpks 1= Qsim:
tpks := hr - tpkstrt;
end;
End;

Qvolo := Qvolo + Qobs;
Qvols := Qvols + Qsim;

{ -- calc overall Nash for entire calibration period -- }

If (event<99) then

begin

alldiff := alldiff + sqr(Qsim-Qobs);

nash := nash + sqr{Qobs-(Qobssum/Qalln));
end;

end;
Writeln(eventstats,” 99');
rmse := sqrt( 1/Qatln*alldiff);
nash := 1 - (alldift/nash);
percent := (Qsimsum - Qobssum)/Qobssum* 1(X);

{ -- calc Nash and 9 deviations for pks, tpk, and volumes -- '}

Reset (eventstats);
Qobstot := 0.0; Qobsn :=0:
tobstot := (0.0; vobstot = ().0;

while not eof(eventstats) do
begin

Readln(eventstats, event. Qvolo, Qvols. Qpko, Qpks, tpko, tpks);
If (event<99) then

begin
writeln(event:4,Qvolo:9:1);
Qobstot := Qobstot + Qpko.
Qobsn := Qobsn + 1
tobstot := tobstot + tpko:



vobstot := vobstot + Qvolo:
end;
end;

Qobsave := Qobstot/Qobsn;
tobsave := tobstot/Qobsn;
vobsave := vobstot/Qobsn;

Qdiff:=0.0; tdiff:=0.0; vdiff:=0.0;
Nashq := 0.0; Nasht :=0.0; Nashv :=0.0;
Qpkssum :=0.0; tpkssum :=0.0; vsum = 0.0;

Reset (eventstats);

while not eof(eventstats) do
begin

ReadIn(eventstats, event. Qvolo, Qvols, Qpko. Qpks. tpko, tpks);
If (event<99) then

b&gin

Qdiff := Qdiff+ SQR(Qpks - Qpko):
Nashq := Nashq + SQR(Qpko - Qobsave):
Qpkssum = Qpkssum + Qpks;

tdiff := tdiff+ SQR(tpks - tpko);
Nasht := Nasht + SQR(tpko - tobsave);
tpkssum := tpkssum + tpks;

vdiff ;= vdiff+ SQR(Qvols - Qvolo); -
Nashv := Nashv + SQR(Qvolo - vobsave):
vsum ;= vsum + Qvols;
end;
end;

percentq = (Qpkssum - Qobstot)/Qobstot* 100);
rmseq := sqrt{ 1/Qobsn*(qdiff));
Nashq := | - (qdiff/Nashq):

percentt ;= (tpkssum - tobstot)/tobstot* 1 (});
rmset = sqrt( 1/Qobsn*(1diff));
Nasht := 1 - (tdiff/Nasht):

percentv := (vsum - vobstot)/vobstot* 100);
rmsev = sqrt( 1/Qobsn*(vdith)):
Nashv := 1 - (vdiff/Nashv):

append (objfile); }



wrteln('fl =".f1:5:3," phi="phi);

wnteln('overall Nash = ', nash:6:3);

writeln ('Nash vol = "nashv:6:3," Nash pks =" Nashq:6:3," Nash tpk = ',Nasht:6:3);
writeln (‘%edev vol =" percentv:6:1," %dev pks = 'percentq:6:1," %dev tpk =

"percentt:6:1);

writeln (out2,f1:5:3,phi." "In(ph1):8:4.nash:8:5. percent:6:2);{, nashv:8:5, percentv:6:2,
nashq:8:5,percentq:6:2,nasht:8:5 percentt:6:2);

writeln;
rewrite(eventstats);
end;
end;

close (infile);
close (outfilet);
close (out2):

Sound(220); { Beep Hz }
Delay(200); { For 200 ms }
NoSound; { stops beep }

END.

{end of objective function calculations )

{END OF PROGRAM}

154



'Qhasi-distributed model code

PROGRAM TOP_OPT;

{ TOPMODEL (quasi-distributed) Model - East catchment - Pascal code }
USES CRT;

TYPE rarray = array[]..50] of real;

VAR infile, outfile, topofile, objfile, eventstats : text:

{TOPMODEL variables}

NAc, mi, ti, nm, nt, event, hr, Qalln :integer: -
Qobs, Qsim, TF, Qobssum, Actf - real; "
Ac, topo : rarray; .
lambda - real;

m, TO, td, dt,Qoftot,Qbtot s real;

{objective function variables)

Qobstot, Qobsave, Qsimsum diff,nash,percent.rmse s real;

hrlast, eventlast, n, tpko, tpks, tpkstrt, Qobsn ;integer; .
Qpko, Qpks, Qlasto, Qlasts, Qdiff : real;

tobstot, tobsave, tdiff, Nashq. Nasht : real;
Qpkssum, tpkssum, vsum, rmseq, rmset, rmsev, percentq, percentt : real;
Qvolo, Qvols, vobstot, vdiff, vobsave, nashv, percentv : real;

alldiff, Qave, allsum " real;

{optimisation loop variables |

mmin, mmax, TOmin, TOmax. tdmin, tdmax . real;
1.k, imax,jmax, kmax Cinteger;  {counters for loops)

PROCEDURE Read_Topo (var NAc:integer; var Ac.topo-rarray; var lambda: real);
VAR 1 . integer:

BEGIN
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Readln (topofile, NAc); {read in # of index increments}

Fori = I to NAc do
begin {read in area % and a/tanb index upper limit}

‘Readln (topofile, Ac[i], topo[il]};
writeln(Nac:5," ', Ac[1]:8:7," ', topol1]:5:2);
end;
| -- calculate areal integral of Inta/tanb) -- )
lambda := 0.0;
For1:=2to NAc do
lambda := lambda + Ac[i}*(topofi] + topo[i-1])/2;

writeln('lambda = ' lambda:5:2);
readln; p

close (topofile);

END;

PROCEDURE TOPMODEL (var m, TO, td : real);
VAR QO0, Qof, Quz, uz, Qb. Qum : real: {program variables )
Sbar, szq, olf, Acf., Acsat : real;
ex, sd, suz : rarray;
1, inc, 1nc2 ’ anteger:
CONST Area = 383000: dt=1.0; {program constants)
BEGIN {begin TOPMODEL procedure)
Qalln := 0; Qobssum := 0.0

While not eofinfile) do

begin
Readln (infile, event. hr. Qobs, TF):
Qobs = Qobs/Area*36(0): {L/s to mm/hr}
TF = TF*36(0: {mm/s to mmvhr}

Qof :=0.0; Quz =00, Acsat :=0.0;

If (hr=0) then {initiulise variables for new event}
begin
Q0 = Qobs:
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szq := exp((TO+in(dt)) - lambda);
Sbar := - m * In(Q()/szq);

Forinc := 1 to NAc do
begin
suzfinc] := 0.0;
end; -
end;

Forinc := | to NAc do
begin

{ -- calc local storage deficit -- ')

sd{inc] := Sbar + m*(lambda - topolinc]);
If (sd[inc}<0) then sd[inc] :=0.0;

{ -- calc unsat storage -- )

ex[inc] = 0.0;
suzfinc] := suzfinc] +{ (1-Actf)y*|TF:

If (suz[inc]>sd[inc]) then
begin
- ex[inc] := suz[inc] - sd|inc];
suz[inc] ;= sd[inc);
end;

{ -- cale drainage from unsat zone -- '}
uz :=0.0;

If (sd{inc]>0) then

begin
uz := suz[inc}/(sd[inc]*td*dt);
If (uz>suz|inc]) then uz = suzfinc}:
suzfinc] ;= suzlin¢] - uz;
If (suzfinc]<le-7) then suzfinc]:=0.0;
Quz := Quz + uz*Aclincj;

end;

| -- cale overland flow -- |
olf :=0.0;
If (inc>1) then

begin

inc2 :=inc- I,
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{ sat zone outflow parameter)
{mean catchment deficit] ~

{{oop for In(a/tanb) increments)

{if sd<O0 then soil sat}

{throughfall input}

{excess of unsat zone)
{update unsat zone store}

{vertical drainage)

{can't drain more than store)
{new storage after drainage)
{suz neglible)

{sum Quz over catchment)

{inc2 is sat if inc is)



If (ex[inc}>(0) then
begin
Acsat ;= Acsat + Acfinc|;
olf := Aclinc] * (ex[inc2]+ex|inc])/2;
end

Else if (ex[inc2]>0) then
begin
Acf := Ac[inc]*ex]inc2}/(ex[inc2]-ex[inc]);
of := Acf*ex[inc2)/2;
Acsat ;= Acsat + Acf;
end;
end;

Actf := Acsat;
Qof := Qof + olf;
end;

{ -- calc saturated zone drainage -- )

Qb := szq*exp(-Sbar/m):
Sbar := Sbar - Quz + Qb:

Qbtot := Qbtot + Qb;

Qoftot := Qoftot + Qof:

Qsim = Qb + Qof;

Qsim := Qsim*Area/36(0),
Qobs = Qobs*Area/3600;
Qobssum:= Qobssum + Qobs:
Qalln :=Qalln + 1;

TF := TF/3600;

{mm/hrto L/s)

{bhoth limits saturated)

{sum area saturated)

{inc not sat, inc2 is)

{area fraction sat)

{sum Qof over catchment)
{end of In(a/tanb) increment loop )

writeln(outfile, event:3. hr:4, Qobs:12:4, Qsim:12:4, TF);

end;
writeln(outfile,99.0);

END; {end of proc TOPMODEL}

{ -

BEGIN
ClrScr;

A needed for results read)

assign (infile,'c:\dtopmdi\east\e_ver.in'); {input event, hr, Qobs, TF}

reset (infile);

assign (topofile,'c:\dtopmdl\east\grids\e_10top.dat’);{ In(a/tanb) index}
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—

reset (topofile);

assign (outfile,'c:\dtopmdl\east\e_ver.out'); {sim output}
rewrite (outfile);

assign (objfile,'c:\dtopmdl\east\e_obj.out'); {obj funct output}
rewrite (objfile); V

assign (eventstats,'c:\dtopmdi\east\e_evnt.out');{event stats)
rewrite (eventstats);

Read_Topo (NAc, Ac, topo. lambda); {read in topo index data)
{-- write headers for obj funct file -- )
{writeln(objfile,m InTo nash nashv nashpk nashtpk %vol %pks %tpk");

{-- loop through m and InfTo) ranges for optimisation -- )

mmin := 0.0;
mmax = 20.0;
tdmin := 0.04;
tdmax := 0.14;
1imax := 14;
jmax := 20;
kmax := 20;
TO :=1.1e3; ,
TO := In(TO); y
/
FOR1:= 1 to imax+1 DO
BEGIN
TO := TO + (14)/tmax;
m:=1;

FOR j := I to jmax+1 DO

BEGIN
m:=m +(mmax - mmin)/(jmax);
td :=0.035;

FOR k := 1 to kmax+1 DO
BEGIN
td :=td +(tdmax - tdmin)/(kmax);

Reset {infile);
Rewrite (outhile);

m:=13.8; td:=0.036; TO:=13.1;
TO := In(TO);

TOPMODEL (m, TO. td) {call procedure TOPMODEL)
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[ ommmeee- Calculate objective functions }

n:=1; event :=1;
Qpko = 0.0; Qpks :=0.0; Qvolo :=0.0; Qvols :=0.0;
nash := 0.0; alldiff := 0.0; Qsimsum :=0.0; eventlast:=0;

reset(outfile);

while not eof(outfile) do
begin
Readln (outfile, event, hr, Qobs, Qsim, tf);
Qsimsum:=Qsimsum + Qsim;

{ -- calc peaks. tpk, and volumes for each event - |

If (hr = 0) then
Begin
If (eventlast<>0) then
begin

Writeln(eventstats,eventlast:3.Qvolo: 15:2,Qvols: 15:2,Qpko: 15:5,Qpks:15:5,tpko:4,tpks:4);
Writeln ( eventlast:3, Qvolo:15:2, Qvols:15:2, Qpko:15:5, Qpks:15:5, tpko:4, tpks:4);
tpkstrt == 0;
end;

Qvolo :=0.0; Qvols :=0.0;

Qpko = Qobs;
Qpks = Qsim;
End;

If (hr <> () then
Begin
Qlasto := Qobs;
Qlasts = Qsim;
eventlast ;= event;

hrlast := hr;
If (tf<>0) and (tpkstrt=0) then tpkstrt ;= hr:
If (Qobs > Qpko) then
begin
Qpko := Qobs;
tpko = hr - tpkstrt;
end;
If (Qsim > Qpks) then
begin
_ Qpks = Qsim:
tpks :="hr - tpkstrt;
end;
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End;

Qvolo := Qvolo + Qobs;
Qvols := Qvols + Qsim:

{ -- calc overall Nash for entire calibration period -- }

If (event<99) then
begin
alldiff := alldiff + sqr(Qs1m-Qobs);
nash := nash + sqr(Qobs-(Qobssum/Qalln));
end;

end;

Writeln(eventstats,' 99'};
rmse := sqrt( 1/Qalln*alldiff);
nash := 1 - (alidiff/nash);
percent ;= (Qsimsum - Qobssum)/Qobssum* 100);

{ -- calc Nash and % deviations for pks. tpk. and volumes -- )
Reset (eventstats);
Qobstot :=0.0; Qobsn =0

tobstot := 0.0, vobstot ;= 0.0;

while not eof(eventstats) do
begin

Readln(eventstats, event, Qvolo, Qvols, Qpko, Qpks, tpko, tpks);

If (event<99) then
begin
writeln(event:3,Qvolo:9:1);
Qobstot := Qobstot + Qpko:
Qobsn := Qobsn + 1;
tobstot = tobstot + tpko;
vobstot := vobstot + Qvolo;
end;
end;

Qobsave := Qobstot/Qobsn;

tobsave := tobstot/Qobsn;

vobsave ‘= vobstot/Qobsn;

Qdift:=0.0; tditt:=0.0; vdift:=0.0;

Nashq := 0.0; Nasht :=0.0; Nashv :=0.0;
Qpkssum :=0.0; tpkssum = 0.0;  vsum :=0.0;

Reset (eventstats);
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while not eof(eventstats) do
begin
Readln(eventstats, event, Qvolo, Qvols, Qpko, Qpks, tpko, tpks);
If (event<99) then
begin

Qdiff := Qdiff+ SQR(Qpks - Qpko);
Nashqg := Nashq + SQR(Qpko - Qobsave):
Qpkssum := Qpkssum + Qpks;

tdiff := tdiff+ SQR(tpks - tpko);
Nasht := Nasht + SQR(tpko - tobsave);
tpkssum := tpkssum + tpks:

vdiff := vdiff+ SQR(Qvols - Qvolo);
Nashv := Nashv + SQR(Qvolo - vobsave);
vsum ;= vsum + Qvols;
end;
end;

percentq := (Qpkssum - Qobstot)/Qobstot* 100,
rmseq := sqrt( 1/Qobsn*(qdiff)):
Nashq =1 - (qdiff/Nuqu);

percentt ;= (tpkssum - tobstot)/tobstot* 100);
rimset ;= sqrt( 1/Qobsn*(tdiff)); ’
Nasht = | - (tdiff/Nasht); Vi

percentv (= (vsum - vobstot)/vobstot* 100):
rmsev = sqrt( 1/Qobsn*(vdift));
Nashv := | - (vdiff/Nashv);

L
3

{ append (objfile);}

writeln('TO =" TO:6:2," m="m:4:1 td = 'td:5:3);

writeIn('overall Nash =", nash:8:5," % =" percent:4:1);

writeln;

writeln (‘Nash vol = ".nashv:6:3," Nash pks = '\Nashq:6:3," Nash tpk = ,Nasht:6:3);

writeln (‘%dev vol =" percentv:6:1." %dev pks = ",percentq:6:1," %dev tpk = '
percentt:6:1);

writeln (objfile, TO:8:3,m:8:3td:8:3,nash: 1 115, percent: 10:2, nashv:11:5,percentv:10:2,

nashq:11:5,percentq: 10:2 nasht:11:5,percentt: 10:2);

rewrite(eventstats);
{end of procedure results)
END:;

END; ¥
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END;

close (infile);

close (outfile);
close (objfile);

Sound(220y;
Delay(200);
NoSound;
readln;

END.

{ Beep Hz }
{ For 200 ms } -
{ stops beep |}

{END OF PROGRAM}
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APPENDIX 3

SCATTERPLOTS

L}
OF VERIFICATION DATA SETS
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SCATTERPLOTS

OF VERIFICATION DATA SETS

Level 1 Split-sample test
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Level 1 Dual parallel reservoir lumped model
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Level 1 Triple serial reservoir lumped model
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Level I Quasi-distnbuted model
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Level I Dual parallel reservoir lumped model

event wlume totals,
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Level 1 Triple serial reservoir lumped model
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Level I Quasi-distributed model
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Level 2

Dual parallel reservoir lumped model
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Level 2 Triple serial reservoir lumped model
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Level 2 Quasi-distributed model
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Level 2 Dual paralle! reservoir lumped model
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Level 2 Triple serial reservoir lumped model
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Level 2

Quasi-distributed model
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Level 3 Dual parallel reservoir lumped model
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Level 3 Triple serial reservoir lumped model
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Level 3 Quasi-distributed model
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Level 3 Dual parallel reservoir lumped model
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Level 3 Triple serial reservoir lumped model
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Level 3 Quasi-distfibuted model
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Level 4 Dual parallel reservoir lumped model
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Level 4 Triple serial reservoir lumped model
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Level 4 Quasi-distributed model
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Level 4 Dual parallel reservoir lumped model

event volume totals

South (¢) East(v)

30000 e
O .
el
2 ‘
2 ‘
g 10000 -+
= y=087x + 1156
S R =0 94
0~~~ - = —— s
0 10000 20000 30000
- observed Q [Ls™']
) event peak rates
South (c) East(v)
800 ~——— - - e i
_: 600 y =0.36x + 76 35
3 RP=077
< a0 °
2
3
= o
E 20 - 2 °
o
0 S
0 200 400 600 800
observed Qy [Ls "
event times-to-peak
South (c) East(v)
80
o 9
= 60
T W0
3.
2
E
720 V=102 0021
R = 09§
O .
0 20 E1) &) 80
observed ty, [h]
] 190



2 ‘

Level 4 Triple serial £esérvoir lumped model
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Level 4 Quasi-distributed model
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