
Handling Motion Processing Constraints for
Articulated Figure Animation

Yongping Luo

B.Sc. (Comp. Sci.) University of Science and Technology of China 1994

A THESIS S U B M I T T E D IN PARTIAL FULFILLMENT

O F T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

MASTER OF SCIENCE

in the School

of

Computing Science

@ Yongping Luo 1997

SIMON FRASER UNIVERSITY

November 1997

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

National Library 1+1 of Canada
BiMiotR&que nationale
du Canada

Acquisitions and Acquisitions et
Bibliographic Services servces bibliographiques

395 Wellington Street 395, rue Wellington
OnawaON KlAON4 Ottawa ON k1 A ON4
Canada Canada

Your bb Volre relerboce

Our rih? Ncfre rel&ence

The author has granted a non-
exclusive licence allowing the
National Library of Canada to -
reprdduce, loan, distribute or sell
copies of th~s thesis in microform,
paper or electronic formats.

5

The author retams ownership of the
copyright in t h~s thesis. Neither the
thesis nor substantial extracts horn it
may be printed or otherwise

4

reproduced without the author's
permission.

L'auteur a accordeee licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels ,

de celle-ci ne doiven: itre imprimes
ou autrement reproduits sans son
autorisation.

APPROVAL

Name: L'ongping Luo

Degree:
, .

Xiaster of Science

Title of Thesis: Handling l lot iof~ Processing Constraints for Articula.ted

Figure Animation

Examining Committee: Dr. .James J . \.\..einkharn

('hair

Dr . Thomas b'. C'alvert

Senior Supervisor

Date Approved:

Abstract

The animation of articulated models such as human figures remains a major challenge

because of the many degrees of freedom involved and the complex structure of the

models. A particular challenge is to find ways to generate new movement from existing

movement sequences produced by animating or motion capture. Techniques from the

image and signal processing domain can be applied to motion sequences. We have

successfully applied motion multiresolution filtering, multitarget motion interpolation

and waveshaping simultaneously to many or all degrees of freedom of an articulated

figure. Thus we can edit, modify and blend existing motions in ways that would be

difficult or impossible to accomplish otherwise.

These motion transforms result in interesting new movement sequences but may

introduce constraint violations. The constraint violation problem is inherent to the

motion transform techniques and cannot be avoided. In this thesis, we first show

how to generally reduce the chance and degree of constraint violations by offsetting

motion data and applying consistent dynamic timewarping before motion transforms.

One way is provided to let the animator specify constraints, and the system checks

the constraints and adjusts the constraint violations in a smooth manner before the

new motion is presented to the animator. Most geometric constraint violations can

be handled successfully at interactive speeds with our system. We also provide some

tools for the animator to modify the new motion at a relatively low level, thus giving

the animator more control over constraint violation adjustment; therefore these tools

can be used to handle constraints which are hard to specify in the above system.

------ Dedicated to My Parents

Acknowledgements

I wish to thank all those who have helped me at various times during my research

and writing of this thesis. I would like to convey my greatest applitude to my senior

supervisor, Dr. Tom Calvert, for his guidance and support during my graduate study,

and for his patient help during the writing of this thesis. Thank to Dr. John Dill

and Dr. Dave Fracchia for their careful reading and detailed comments on my thesis.

Thanks also to Armin Bruderlin for his kind help in the implementation of motion

signal processing. Finally, my special thanks to my wife, Hui Zhang, for pushing me

when I needed it most.

Contents

...
Abstract . 111

Acknowledgements . iv
...

List of Figures . viii

1 Introduction . 1

2 Background and Motivation . 4

2.1 Hierarchical control of figure motion 4

2.2 Why use motion signal transformations 7

2.3 Constraints in human figure animation 10

2.4 Constraints introduced by motion signal processing 12

3 Relatedwork . 15

3.1 Skeleton modeling . 15

3.2 Inverse kinematics . 16

3.2.1 Matrix inversion based methods 18

3.2.2 Optimization based methods 19

3.2.3 Jacobian transpose method 19

3.2.4 Heuristic method . 20

3.3 Interpolation and quaternions 20

3.3.1 Interpolation with continuity, tension and bias 20

3.3.2 Quaternion and quaternion interpolation 21

3.4 Signal processing techniques 22

3.4.1 Fourier, multiresolution, and wavelet analysis 23

3.4.2 Displacement mapping 24

4 Motion Signal Processing . 26

. 4.1 Motion Multiresolution Filtering 27

. 4.1.1 Algorithm 27

4.1.2 Joint angle vs . joint position 28

4.1.3 Body part mask and band mask 30

. 4.1.4 Examples 31

. 4.2 Multitarget Interpolation 31

4.2.1 Multitarget motion interpolation 33

4.2.2 Normalization . 34

4.3 Motion Waveshaping . 35

5 Handling Motion Processing Constraints 38

. 5.1 Prevention of constraint violation 39

. 5.1.1 Processing offset data 39

5.1.2 Consistent dynamic timewarping 41

. 5.2 Handling linear constraints 46

5.2.1 Linear constraint specification 47

5.2.2 Bound mapping . 49

. 5.2.3 Motion signal compression 51

. 5.3 Handling non-linear constraints 54

5.3.1 Non-linear constraint specification 55

5.3.2 Constraint violation detection 63

5.3.3 Constraint violation adjustment with inverse kinematics 65

5.3.4 Motion smoothing with quaternion interpolation . . 69

. 5.3.5 Examples 71

5.3.6 Discussion . 73

5.4 Constraint handling with more control from animators 74

. 5.4.1 Signal curve editor 74

5.4.2 Constraint handling with displacement mapping . . . 76

6 Experiments and analyses . 77

. 6.1 Frequency analysis 77

6.2 Experimental evaluation of the constraint handling 79

. 7 Conclusion and future work 87

7.1 Future work . 88

Bibliography . 90

vii

List of Figures

. 3.1 The procedure of displacement mapping 25

. 4.1 Scaling effect of processing position data 29

. . . 4.2 Change of skeleton configuration when processing position data 29

. 4.3 Examples of motion signal filtering 32

. 4.4 Multitarget interpolation without multiresolutuion filtering 33

. 4.5 Multitarget interpolation with multiresolution filtering 36

. 4.6 Filters used in motion blending 37

. 4.7 blending without normalizaiton 37

. 5.1 Definition of joint angles 40

. 5.2 The effect of offsetting data 42

. 5.3 Dynamic time warping algorithm 43

. 5.4 Result of consitstent dynamic time warping 45

. 5.5 Bound Mapping 50

. 5.6 The result of bound mapping 51

. 5.7 Capping function 52

. 5.8 The result of motion signal squashing 53

. 5.9 Interface for constraint specification 61

. 5.10 Form for constraint unit specification 62

. 5.11 Problem of local minimum and maximum 65

5.12 Detecting, adjusting and smoothing violations of unconditional constraint 66

5.13 Detecting, adjusting and smoothing violations of conditional constraint 67

. 5.14 Goal for distance data 68

...
V l l l

. 5.15 More than two interpolation segments needed 70

. 5.16 Impose lock constraint 71

. 5.17 Result of non-linear constraint handling 72

. 5.18 Signal editor 75

. 6.1 Example: impose linear constraint on jump 79

. 6.2 Example: the "hit-the-floor" constraint for walking 80

. . . . 6.3 Example: the no-intersection-with-floor constraint for walking 82

. 6.4 Example: the result of imposing lock constraint 83

. 6.5 Example: lift right foot for shotput 85

. 6.6 Example: lift right foot for shotput 86

. 6.7 Example: mask the orientation of the body 86

Chapter 1

Introduction

In recent years, three-dimensional computer animation has played a ,n important role

in areas such as advertising, entertainment, education, scientific visualization and

simulation. Although computer animation raises technical challenges in several areas

such as modeling and rendering, motion control remains a particularly difficult task,

especially for the animation of complicated articulated structures such as the human

figure.

Several facts make the animation of the human figure difficult and time-consuming.

First, even a simple model of a human figure possesses many degrees of freedom and

is capable of very complex movement. Secondly, since humans are very sensitive of

each other's motion, erroneous movement can be detected easily, but the factor that

causes the movement to look incorrect can be very hard to isolate. Thirdly, humans

have personality and emotion that is hard to animate.

Much of the research in motion control for articulated bodies has been devoted to

reducing the amount of motion specification; that is, to develop higher level controls

to relieve the animator from the specificaton of tedious detail. The high level control

approach suffers from lack of interactivity; i.e. it does not always produce the motion

that the animator had in mind, and the predefined motion sequence may not be useful.

An alternative method to generate movements of articulated figures is rotoscoping

where the motion is captured from live subjects. However motion capture takes much

time since a recorded movement that is not quite "right" requires the whole data

C H A P T E R 1. INTRODUCTION

capture process to be repeated.

Because of the complexity of articulated movements and the limitations of current

motion control systems, it is desirable to develop tools to reuse and adapt existing

motion data. For this purpose, techniques from the field of image and signal processing

are adopted by A. Bruderlin[l3] to provide simple and useful ways to edit, modify,

blend and align motion signals of articulated figures. These techniques can also be

used to produce specific motion from predefined motion data; for example, to produce

motion with personality and emotion from a neutral motion. These techniques provide

analytic solutions at interactive speeds and high level control over several or all degrees

of freedom of an articulated figure.

There is a major problem with the use of motion signal processing: after applying

these techniquess, physically impossible motion, or some motion which is not what

the animator wanted, may be produced. To solve this problem, the system should be

able to let the animator specify the constraints on the figure movement at a high level,

and be able to detect all constraint violations and adjust the motion in a smooth way

without changing the motion characteristics. In this work, we present a solution to

this problem which provides the animator with a way of specifying constraints. By

offsetting signal data and applying consistent dynamic time warping, some constraint

violations can be prevented. Joint angle constraints can be detected and adjusted

globally, non-linear constraints can be adjusted locally using inverse kinematics, and

the motion can be smoothed around the violation frame by quaternion interpolation.

Most geometric constraint violations resulting from the signal processing method can

be prevented or adjusted successfully.

The following is the outline of the rest of this thesis:

In chapter 2, animation of articulated figures such as the human figure is discussed

to provide the background of this work, and the problem of constraint violation in-

troduced by motion signal transformation is presented as the motivation of this work.

In Chapter 3, signal processing techniques are introduced, and some other tech-

niques used in this work such as inverse kinematics and quaternion interpolation are

discussed.

C H A P T E R 1. INTRODUCTION

In Chapter 4, several signal processing techniques applied to motion parameters are

described in detail; those techniques include motion multiresolution filtering, motion

multitarget interpolation, and motion waveshaping.

In Chapter 5 , we first describe two ways to prevent some constraint violations:

offsetting motion data and synchronizing the motion signals to be blended. Then

we give two methods, bound mapping and motion signal compression, to handle lin-

ear joint angle constraints such as joint angle limits. The major part of the chapter

presents a system for specifying non-linear constraints, detecting and adjusting con-

straint violations, and smoothing the adjusted motion. The last part of this chapter

describes signal editor and displacement mapping as complementary approaches for

constraint handling.

In Chapter 6, experiments carried out on various motions are described, the results

are presented, and the constraint hanling system is evualated.

In Chapter 7, the work is summarized and potential directions for future research

are discussed.

Chapter 2

Background and Motivation

2.1 Hierarchical control of figure motion

Approaches to motion control in computer animation systems are moving from low-

level to high-level techniques as computers become more powerful. High-level motion

controls usually result in less manual work for animators; on the other hand, they

also give animators less low-level control over the motion.

In traditional animation, the animator has full control over the motion by drawing

the animated objects frame by frame. Computer animation tools relieve the animator

of much of the tedious work by keyframing: the animator draws only the crucial

frames, or key frames, and the computer animation tool builds up the in-betweens by

spline interpolation or other techniques. Keyframe interpolation is well established

[23, 27, 51, 531 and is used in all commercial animation systems. Here the animator

loses some control over the interpolated frames, and this has led to intensive research

on control of the interpolation [4, 5, 9, 26, 34, 36, 50, 571. For movements involving a

small number of degrees of freedom, this keyframing technique can produce believable

motion, but when animating complex movements of complex objects (e.g. human

movements), the work is still tedious since a large number of degrees of freedom,

mostly joint angles, are involved and need to be specified. Even with keyframing

techniques, thousands of values need to be specified to simulate a human walking with

a simple human skeleton of about 20 body segments. For each frame, the animator

C H A P T E R 2. BACKGROUND AND MOTIVATION

may need to try several joint angle settings to get the body part to the desired place.

Inverse kinematics has been introduced to minimize part of the tedious work but

also results in loss of some control for the animator[2, 17, 46, 581. Animators now

just give the desired place of the end effector, e.g. the finger or foot of human figure,

and the rotations of the related joints will be calculated using inverse kinematics.

LifeForms[31] is such an animation system for animating complicated human figure

movements such as dances and sports. Inverse kinematics takes much manual work

from animators, but animators still need to specify many parameters, and high skills

of the animators still are in demand.

C. B. Phillips and N. I. Badler control bipedal articulated figures through kine-

matics constraints[45]. The system takes the kinematic constraints as input, and uses

inverse kinematics to get the output joint angles; the animator controls the system by

command, and is free from editing the key frames. While this approach is attractive,

it is not so useful practically because general movements can not be generated since

specific movements are programmed into the system. Moreover, since the control is at

frame level, there is no obvious relationship between a particular high-level parameter

such as step length and low-level parameters such as joint angles of a frame, and the

system has no understanding of what motion is concerned. Therefore, to get the same

kind of movements with different styles, (e.g. walking with different step length,) the

animator has to work from the beginning, and the predefined motion cannot be fully

used.

Dynamic simulation has been introduced to computer animation because it pro-

vides the animator with quite high-level control so that the animator just needs to

specify a few high-level parameters. It is attractive also because the generated mo-

tion adheres to the laws of physics, and provides a level of realism that is extremely

difficult to achieve with kinematic met hods[3]. Forward dynamic animation can be

used to simulate simple passive systems successfully[25], but it fails to simulate active

and complex systems with "intention", such as human figures. Several reasons lead

to this failure. First, the complexity of the human figure leads to a large system of

equations, which takes considerable time to solve. The complexity also makes the

C H A P T E R 2. BACKGROUND A N D MOTIVATION

force and torque propagation in the skeleton very complicated. Secondly, the move-

ment of a human figure is activated by internal force and torque, but the internal

working mechanism of biological control systems is not fully understood, and there-

fore hard to simulate. Thirdly, the equations of motion for articulated skeletons are

inherently ill-conditioned, independent of their formulation[40, 581, and this leads to

the numerical instability of the system.

Much work on procedural animation has attacked this problem. A. Witkin and

M.Kass combined physical simulation and keyframing technique to produce some re-

alistic animations[59]. The animator can use spacetime constraints to specify several

key points for selected variables at specific times, and they are combined with La-

grangian equations to produce animation. C. Heer and B. Wyvill presented a dynamic

system that allows easy user control through a simulation language and several high-

level control primitives[29]. A. Bruderlin and T. Calvert used procedural techniques to

animate human locomotion[l0, 121. This system uses three parameters: step length,

step frequency, and velocity to specify a desired motion, and the motion is produced

by a programmed control system. Furthermore, 15 locomotion attributes can be set to

individualize the locomotion, and thus the animator can make the motion reflect the

personal characteristics of the animated figure. H. KO and N. I. Badler[33] presented

an inverse dynamic method, in which strength data is defined to make the motion

more natural.

Procedural animation systems relieve animators from tedious keyframe editing,

and specification of motions at a high-level is very convenient. However, because

the motion control is programmed into the systems, procedural animation systems

cannot generate general motions, and because the control for different motion is very

different, the control programs cannot be easily reused. The ideas of state machines

are applied in several approaches to make the control programs reusable to some

extent. J.K. Hodgins et al. use a state-machine-like technique to aid the design of

control programs[30]. The system presented in [56] specifies a motion by defining a

goal with a set of states of destination only, and therefore a state-space controller

can be built to provide control torques that achieve desired goal from arbitrary initial

states so that the controller can be concatenated easily to create complex sequence

CHAPTER 2. BACKGROUND AND MOTIVATION 7

of motion. The system presented in [52] can select a controller automatically by

monitoring world states. The animator can write an algorithm (an abstract control

language) to control the object and run this algorithm on a physical simulator to

produce the animation. This approach is very attractive in that it provides a general

way to organize and reuse the controllers, but the animator has to learn to write the

algorithms, which may be challenging to many animators.

Another effort for dynamic figure animation is in the context of optimization

problem and optimal control theory[l, 42, 43, 55, 59, 561. Those methods allow the

specification of relatively high-level goals and constraints, and the forces and torques

necessary for meeting the goals can then be calculated. The potential generality of

these approaches makes them very promising, but the growth of the search space and

poor convergence when applied to complex systems are still unsolved problems.

Even higher motion control level focuses on the interaction between figures, or

between figures and the world[l6, 35, 411. At these levels, individual articulated

motion is less important than issues such as path planning and task achievement.

The behavior articulated figures is controlled by some rules in an intelligent way.

The reality today is that general high-level control is far from mature in theory

and practice, and most commercially available animation systems still rely on low-

level keyframing. Thus, an integrated multi-layered approach to motion control is

desirable so that animators can specify and modify the animated movements at any

level. A successful figure animation system is likely to incorporate all the techniques

discussed above to some degree. A. Bruderlin and T. Calvert give an illustration

hierarchy of the levels of human motion control[l2]: in a joint, within a limb, between

limbs, between figures, and within the world. In this thesis, we just focus on the

lower levels- in a joint, within a limb and between limbs; no attention is paid to the

between figures and within the world levels.

2.2 Why use motion signal transformations

The complexity of articulated movements and the limitations of current motion control

systems lead to the need for tools that make reusing existing motion data possible

C H A P T E R 2. BACKGROUND A N D MOTIVATION

and easy. One advantage of the use of computers in animation is that animation can

be saved and reused on different occasions. A whole library of motion can be built

and saved, and then new movements can be more readily created by modifying the

existing ones. Most animation systems support motion modification at low-evels only,

one painful degree of freedom a time.

Another reason for the need for efficient motion modification tools stems from the

use of motion capture techniques. Since making a believable human movement at

a low level demands lots of time for a highly skilled animator, and since efforts to

develop high-level control tools are still less than completely successful, rotoscoping

methods such as motion capture become an attractive choice for obtaining convincing

life-like motion. Motion capture gets real-life data by attaching some sort of sensors

to a performer's body so that position can be tracked by computer and stored for

later playback. Although yielding fairly realistic human animation, several facts limit

the use of motion capture. First, sophisticated software is required to reconstruct the

original motion from sensor data. Secondly, the motion is represented by densely-

spaced data, for which spline editing tools are not suitable, therefore a motion often

needs to be recaptured even if a slight modification is desired. Thirdly, a figure

animated in this way is limited to those movements which can be actually performed

by a live subject, but in many cases such as special effects, a motion that cannot

be performed by a live subject is needed. For example, motion capture techniques

cannot record a jump longer than the subject can actually make. Finally, but most

importantly, since the motion is captured on a finite number of subjects, without a

generic process method, the animated motion will be limited to simple imitation. Due

to these limitations, some kind of tools that can make it easy to reuse the precaptured

motion are desired.

There has been some attempts to make use of existing motion data. Zeltzer [60,61]

presented a kinematic method for simulating human walking based on kinematic joint

values obtained from a rotoscoped human walk. High-level walking instructions are

decomposed into a set of motor control programs, which drive the motions of individ-

ual joints. There are several attempts to obtain generic properties of one particular

motion, e.g. human walking. H. KO and N. I. Badler proposed a generalization

C H A P T E R 2. BACKGROUND AND MOTIVATION

method to generate a step of an arbitrary subject with arbitrary step length based

on the rotoscoped data with constraint satisfaction enforced within the generalization

process[32]. The generalization is designed to preserve the original motion character-

istics, anthropometry generalization is used to handle subjects with different "size",

and step length generalization is used to change the steps to different step length for

the same subject. While this type of method is good at preserving the characteristics

of human walking, it is limited to one particular motion and particular parameter

generalization; also in some cases, characteristics-preservation is not desired, since

motions with different characteristics are needed.

A. Bruderlin and L. Williams presented a novel approach to modify or create

motion using some techniques from the image and signal processing domain[l3]. This

approach provides analytic solutions at interactive speeds, and lends it to high-level

control by acting on several or all degrees of freedom of an articulated figure at the

same time. In this approach, a motion parameter like the degree of freedom of joint

or the location of the whole body is taken as a sampled signal. A signal consists of

the values of a motion parameter at each frame. The processed motion data could be

derived from captured motion data, or come from the evaluation of a spline curve in a

keyframing system, or even from motion data produced by procedural animation. This

approach cannot only modify motion slightly and locally, but also change the motion

dramatically and globally; it can not only generate similar motions with different

style (e.g., excited and sleepy motion can be obtained from neutral motion), but also

quite new motions (e.g., knocking on a horizontal table can be created from knocking

on a vertical door, and walking-and-waving can be created from a walking and a

waving). It is not guaranteed that the animator will get the motion he/she wanted

at the first try, but since modifications are made at interactive speeds, it is affordable

to try several times, and still saves much of animator's time. The image and signal

processing techniques used in this work will be discussed in detail in Chapter 4.

CHAPTER 2. BACKGROUND AND MOTIVATION

2.3 Constraints in human figure animation

Constraints are everywhere in computer animation; there are constraints at all levels

of the motion control and for animation techniques. For some approaches, constraints

drive or guide the movement. Constraints can prevent the production of physically

impossible motion, enable the production of comfortable-looking movement, or be

used to specify the movement to be animated. The constraints may come from the

understanding of the biological nature of body movement, the physical law of motion

and the animator's requirements.

The constraints of articulated figure animation also fit into the movement hierar-

chy described in [12]. At the lowest level, it is the constraints of joint angles, usually

the joint rotation limits or relations between joint angles due to the physical pos-

sibility or the animator's specification. Constraints of joint rotation limit are well

handled in all animation systems since most animation system models use joint angle

as the motion parameter. At highest level, constraints for avoiding collisions between

figures or between figures and obstacles usually require that the articulated figure has

the intelligence for its behavior control and path planning[l6][41], and this kind of

constraint will not be considered in this work.

Constraints can be imposed during inverse kinematics. Linear constraints like

joint angle limits or other constraints may be considered. Inverse kinematics systems

handle constraints either by maintaining constraints which are already satisfied, or

trying to satisfying constraints after they are violated. The constraints are modeled

either to reduce the number of coordinates needed to describe the system's state, or to

introduce additional penalty forces into the system to maintain the constraints. The

first approach, termed generalized coordinate approach, is used in S. Bawa's work

[7], and the second approach, termed penalty force approach, is used in C.Welman's

work [58].

Interpolation could produce intermediate values that violate the constraints al-

though the key frames do not violate the constraints, or produce some unnatural

movement since the physics is not considered during interpolation. For example, even

if both feet are positioned correctly in a series of key frames, there is no guarantee

CHAPTER 2. BACKGROUND AND MOTIVATION

that simply interpolating joint rotations will maintain the correct foot position in the

interpolated frames, especially when the inbetween segments get long. This can be

remedied by specifying additional key frames, carefully selecting interpolating spline,

and providing interactive or parameterized control over interpolation. D. Kochanek

proposed an interpolation technique based on a generalized form of piecewise cubic

Hermite spline[34]. Three parameters - continuity, tension and bias - are provided

to control the interpolation. S. N. Steletee and N. I. Badler[50] proposed a double-

interpolant method which separates timing control from trajectory itself, G. Hano-

taux and Bernard Peroche advocated interactive control of interpolations[26], and L.

S. Brotman and A. N. Nelravali presented optimal control over motion interpolation

to produce natural-looking motions in [9].

As we have mentioned before, sometimes constraints guide or drive the the pro-

duction of movements, and this occurs often in dynamic animation. In [6], constraints

are used not only to introduce forces and torques into a dynamic simulation of the

movement, but also to model the articulated figure. D. R. Forsey and J. Welhelms

accomplished position constraints by changing the mass of constrained body parts[20].

As are used in the constraints handling for inverse kinematics, the penalty-force ap-

proach and generalized coordinates approach are also used for constraints handling in

dynamic simulation. Those techniques handle geometric constraints quite well.

Besides geometric constraints, non-geometric constraints such as minimum energy

expenditure and minimum jerk of the end of limbs are used to improve the quality

of the animated motion. Most approaches for handling non-geometric constraints in

dynamic simulation are based on well-established techniques for optimizing functions

subject to a set of constraints[9, 221. The establishment of correspondences between

optimization criteria and expressive qualities of movements remains an open area for

research.

Optimization methods assume that the complete or partial motion paths for limbs

are known in advance; this side-steps the fundamental problem of synthesizing the

limb trajectories for coordinated movements, and leads to the intensive research on

spacetime constraints[l8, 39, 43, 591. Spacetime constraints are first proposed in [59]

to help define trajectories. The constraints are specified by the positions of body

CHAPTER 2. BACKGROUND AND MOTIVATION

parts at given times, and termed spacetime constraints since they span both time and

space domain. An objective function has to be provided too. Since the spacetime

constraint formulation leads to a non-linear constrained variation problem, which has

no closed form solution in general, M. F. Cohen developed an interactive spacetime

control system using hybrid symbolic and numeric processing techniques, so that the

user can interactively guide the optimization process to converge to an acceptable

solution[l8]. Z. Liu et al. represented the trajectories of the degrees of freedom in a

wavelet basis to achieve hierarchical control[39].

2.4 Constraints introduced by motion signal pro-

cessing

Motion signal processing may introduce constraint violations into the resulting mo-

tion. Constraint violations may come from the amplitude adjustment of frequency

bands, or from the poor timing between the motion signals to be blended. The con-

straint violation might be some physically impossible motion such as walking through

the floor or walking above the floor, or motion simply failing to achieve the animator's

goal, such as not putting the cup to the mouth for a drinking motion. Usually, con-

straints here are at a joint-angle level, within-limb level or between-limbs level defined

in [12].

Since motion transformation does not use key-framing, inverse kinematics, dy-

namic or optimization approaches to produce new motion, none of the constraint

handling methods discussed in the preceeding section can solve the problem here.

Although some techniques could be used to prevent some constraint violations, in

general, the constraint violations must be adjusted after the transformation. It is

impossible to detect and adjust constraint violations or avoid constraint violations by

modifying the transformation method during the transformation for several reasons.

First, in most cases, more than one degree of freedom might be involved in a con-

straint, and the constraint is usually a function of the involved degrees of freedom, but

since all degrees of freedom of the figure are processed individually and sequentially,

CHAPTER 2. BACKGROUND AND MOTIVATION

it is impossible to evaluate those functions. Secondly, more than one frame might be

involved in a constraint, which makes it impossible to evaluate the constraints at the

current frame. Finally, the transformation is global in the sense that each frame of the

resulting motion is related to all frames of the transformed motion or motions, and

this makes the detection and adjustment of constraint violation even harder. Another

reason for adjusting the motion after the transformation lies in the fact that many

animators ignore the laws of physics, or even try to make some movements that vio-

late physical laws to get some effects of traditional animation, in this case, decoupling

motion transformation from constraints satisfaction is desirable.

While it is possible that non-geometric constraint violations might be introduced

into movements produced by motion transformation, this kind of constraint violations

can not be adjusted without great change of the characteristics of the motion. The

work in this thesis will be devoted to geometric constraints.

In this thesis, linear constraints refer to constraints that are unconditional and

involve only joint angles; they could be joint angle limits, or relations between joint

angles. Non-linear constraints refer to all conditional constraints and constraints that

involve data other than joint angles, such as position and orientation of body parts,

distance between body parts. Unconditional constraints must be satisfied through-

out the entire duration of the motion sequence, and conditional constraints must be

satisfied at those frames where the condition is valid.

While it is relatively easy to handle linear constraints, non-linear constraint han-

dling is non-trivial. It is even hard to find a way by which an animator can specify

a constraint conveniently and the system can understand it and use it to detect and

adjust the constraint violation easily. A constraint that could be stated simply in

natural language might be quite hard to state in a formal way. Taking walking as

an example, how can the animator specify the constraint "walking with feet on the

floor"? Procedural animation does not have this problem since constraints are pro-

grammed into the system, and the animator does not need to specify them. Some

animation techniques surveyed in this chapter are used for handling constraints in

this work, although they are not used to produce new motions. Inverse kinematics

and interpolation are used to adjust the constraint violations and get smooth motion,

CHAPTER 2. BACKGROUND AND MOTIVATION

and constraint violations can be introduced by them. Therefore, constraint issues in

inverse kinematics and interpolation must be considered, although they are not the

research topic of this work.

An alternative way to adjust constraint violations is to give the animator full con-

trol: the animator can look at the result of the motion signal processing, find the

constraint violations, and decide how to adjust the violations. To take this approach,

the system must provide a way to let the animator modify the motion signal conve-

niently, not frame by frame; or edit several frames with constraint violations with a

keyframe editing tool, and the system will be responsible for producing a smooth and

violation-free motion. This approach gives animators more control, however, since

animators are involved in the frame-level editing, which is what motion signal pro-

cessing intends to avoid, this approach is provided as an complementary appoach for

those constraints which are hard to be specified formally and adjusted in a desired

way.

Before presenting the work of this thesis, other related ideas and techniques used

in this work will be discussed in the next chapter.

Chapter 3

Related work

In Chapter 2, we have given the background and motivation of this thesis; in this

chapter, related ideas and techniques will be discussed.

3.1 Skeleton modeling

Since articulated figures are the objects of animation in this work, the model of

articulated figures needs to be derived first. Although the ideal computer-generated

character would have muscle and tissue which deforms during movement, skin and

clothing which wrinkles and stretches, hair that flows, and a face that has expression,

modeling, animation, and rendering of these attributes are research topics in their own

right, and much research is going on in each of those topics. Our attention is restricted

to the skeletal structure of the articulated body in this thesis. Because muscle and

tissue, skin and clothing, hair and face are not considered here, the animation of an

articulated body is reduced to that of a skeleton.

A skeleton is represented by a collection of simple rigid objects connected by joints.

A joint may allow rotation in 1, 2, or 3 orthogonal directions, and thus the degrees

of freedom of a joint can be 1, 2, or 3. A detailed human body skeleton will have

more than 200 degrees of freedom, although often fewer are enough to approximate

the human body. By limiting the rotation angle in each degree of freedom of each

joint, constraints on the allowable range of movement for a joint can be imposed.

CHAPTER 3. RELATED WORK

The individual objects comprising the skeleton are all defined in their own local

coordinate systems, and are assembled into a recognizable figure in a global world

coordinate system by a nested series of rotation and translation transformations.

A human skeleton can be built up by arranging the segments in a tree-structured

hierarchy. Each node in the tree maintains the current rotations of the corresponding

joint in each degree of freedom; these rotations are with regard to the orientation of

the parent segment in the tree, and the nested transformations in the skeleton tree

ensure that segment will inherit the rotations applied to its ancestors in the tree. For

example, a rotation applied at the shoulder joint will affect the entire arm, not just the

upper arm segment. One joint is specified as the root of the tree, and transformations

applied to the root will move the whole body in the world coordinate system. The

transformation of a particular part in the skeleton can be computed by traversing the

hierarchy from the root to that part and concatenating the local transformation at

each joint visited by the traversal.

Most animation systems provide a way to build up a skeleton, and it is easy to

define a grammar for specifying skeletons. No matter how a skeleton is created, it

must specify the individual body segment lengths, the joint degrees of freedom and

the overall hierarchy of the structure. In LifeForms[31], the skeleton is built up from a

skeleton description file. After the skeleton is built up, it can be animated by varying

the local rotations applied at each joint over time, and the global translation at the

root joint as well.

3.2 Inverse kinematics

In this thesis, inverse kinematics techniques will be applied to pull a body part from a

constraint-violating pose to a constraint-satisfied pose. The inverse kinematics prob-

lem has been studied extensively in the robotics literature, and in this section, we

formally state the problem and review some common approaches to solving it, and

one approach will be selected to meet our need.

In the inverse kinematics literature, a manipulator refers to a kinematic chain

within a skeleton; one end of the manipulator, the base, is fixed and cannot move,

CHAPTER 3. RELATED WORK 17

and the end-egector is embedded in the coordinate frame of the most distal joint in the

chain. The transformation Mi at a rotation joint i is a concatenation of a translation

and a rotation, both are related to the coordinate frame of this joint's parent. That

is:

where T(xi , yi, 2;) is the matrix that translates by the offset of joint i from its parent

joint i - 1, and R(0;) is the matrix that rotates by 8; about joint i's rotation axis.

The relation between any two coordinate systems i and j in the chain is found by

concatenating the transformations at the joints encountered during a traversal from

joint i to joint j :

So the position and orientation of the end-effector with respect to the base frame is

just a matrix concatenation.

Given a vector q of known joint variables, the forward kinematic problem of com-

puting the position and orientation is straight forward:

If the goal is to place the end-effector at a specified position and orientation x , deter-

mining the appropriate joint variable vector q to achieve the goal requires a solution

to the inverse of Equation 3.3,

q = f-'(x) (3.4)

Solving this inverse kinematic problem is not simple. The function f is nonlinear, and

in most cases, closed-form solutions cannot be found. A general analytic solution for

arbitrary manipulators does not exist, and the problem must be solved with numerical

methods for solving systems of non-linear equations.

CHAPTER 3. RELATED WORK

3.2.1 Matrix inversion based met hods

Since the non-linear nature of Equation 3.4 makes it difficult to solve, an alternative

approach is to linearize the problem. The relation between joint velocities and the

end-effector velocity is:

and the linear relation is given by

which maps changes in the joint variables q to changes in the end-effector position

and orientation x. Inverting the relationship of Equation 3.5 provides the basis for a

matrix inversion based method:

A simple iteration scheme for solving inverse kinematics problem can be based

on Equation 3.7. At each iteration, a desired A can be computed from the current

and desired end-effector positions and orientations. The joint velocities q can then be

computed using the Jacobian inverse, and integrated once to find a new joint state

vector q, and this will be repeated until reach the desired goal. Note that the Jacobian

J (q) and its inversion must be recomputed at each iteration.

Besides the high time-expenditure for matrix inversion, this approach suffers from

redundancy and singularity problems. A manipulator is kinematically redundant if

it possesses more degrees of freedom than are required to specify a goal for the end-

effector. In general, any manipulator possessing more than six degrees of freedom

is redundant for general 3-D positioning task, the Jacobian matrix is not invertable,

and there is no unique set of joint values solving the inverse kinematic problem. A

manipulator is in a singular configuration if its Jacobian matrix is singular; that is,

two or more rows of the matrix are linear dependent. As a manipulator is in singular

configuration, the Jacobian is invertible, and no combination of joint velocities will

produce an end-effector velocity in the singular direction.

CHAPTER 3. RELATED W O R K

3.2.2 Optimization based methods

Another approach to the inverse kinematics problem is to cast the problem of Equation

3.4 as a minimization problem. For example, to position the end-effector x at a goal

position p , the distance from the current position x (q) to the goal position p serves

as an error measurement:

E(q) = (P - ~ (4) ~ (3.8)

The problem now is to minimize E(q) subject to some constraints. A typical solver

will converge from an initial state toward a solution state. At each step the state

variables are perturbed slightly, and the objective function to evaluate its progress is

reevaluated.

While conceptually simple, there are some practical difficulties in this approach.

Constrained optimization of arbitrary non-linear functions is still an open research

area, there is no guarantee that a solver will find a global minimum for a constrained

optimization problem, and the convergence speed is another important issue. S. Bawa

[7] gave an optimization based method for the inverse kinematics problem subject to

non-linear constraints.

3.2.3 Jacobian transpose met hod

To avoid the expensive matrix inversion, C. Welman[58] proposed a Jacobian trans-

pose method based on simplified dynamic model. In this approach, the error mea-

surement:

is taken as a force pulling the end-effector from current pose x, toward desired pose

xd, and the force can be propagated to internal joints by:

= J ~ F (3.10)

Then by simply using f=mv instead of f=ma, the velocities of the internal joints can

be computed with:

= J ~ F (3.11)

CHAPTER 3. RELATED WORK 20

Once q is computed, a single iteration yields a new vector q which move the end-

effector toward the goal, and this procedure repeats until the end-effector reaches the

desired position. In this approach, constraints are handled with penalty force method.

This approach avoids matrix inversion, which makes the method good for interac-

tive applications, but since this method is based on Jacobian, it still suffers from the

singularity problem.

3.2.4 Heuristic method

To avoid the singularity problem, C. Welman[58] proposed a heuristic approach called

cyclic-coordinate descent the (CCD) method. This method attempts to minimize

position and orientation errors by varying one joint variable at a time, and each

iteration involves a single traversal of the manipulator from the distal link toward the

base. Each joint variable q; is modified in turn to minimize an objective function.

The minimization problem at each joint is simple enough to be solved analytically,

and therefore the method can be performed quickly. This method does not suffer

from the singularity problem.

3.3 Interpolat ion and quaternions

Interpolation is used to get the intermediate frames in keyframing animation systems.

In this work, interpolation will be used to smooth the motion around the frames or

segments with constraint violations. The interpolated data could be the location of

the body or the rotation of the joints.

3.3.1 Interpolat ion with continuity, tension and bias

Interpolation with continuity, tension and bias was presented by Kochenek and Bartels

in [34]. Kochenek interpolating splines give the user more control over the shape of the

curve than cardinal splines. Three control parameters, tension, continuity and bias

can be specified between -1 and $1. Continuity controls the continuity of the first

derivative at input points. Tension controls how sharply the curve bends at an input

CHAPTER 3. RELATED W O R K

point; a value of -1 produces more slack in the curve and a value of 1 tightens the

curve. Bias controls the direction of the curve when it passes through an input point;

a value of -1 undershoots the point while a value of 1 overshoots the point. These

three parameters give the user broad control over the shape of the interpolating spline.

Readers are referred to [34] for a detailed description.

In this thesis, interpolation with continuity, tension and bias will be used to pro-

duce shape function for motion waveshaping , to control quaternion interpolation for

motion smoothing, to edit motion signals and to interpolate the displacement points

to get a displacement mapping spline.

3.3.2 Quaternion and quaternion interpolation

Euler's angle coordinates specify orientation as a series of three independent rotations

about pre-chosen axes; the three rotations must be used in exactly the given order

since rotations do not commute, and the ordering of the axes is just a matter of

convention. The geometry of orientation in Euler's angle coordinates is twisted, and

varies with the choice of initial coordinate axes. There is no reasonable way to multiply

or otherwise combine two rotations. Orientation and rotations can also be represented

as a 3x3 matrix, but storing the matrix needs much more space and a conversion

between angle coordinates and the matrix is required.

Quaternions were introduced into the computer animation field in 1985 by Shoemake[48]

to represent rotations or the orientation of objects. A quaternion describes a rotation

with four values in a natural way: three of them give the coordinates for the axis of

the rotation, while the fourth is determined by the angle rotated through. Quater-

nions provide an easy way for specifying an arbitrary rotation about an arbitrary

axis. To understand how quaternion works, readers are referred to [28], which gives

a way to visualize quaternion rotations. Quaternions represent orientation as a single

rotation, and rotations could be combined by quaternion multiplication. Quaternions

preserve the interdependence between rotations naturally while Euler's angle coordi-

nates ignore it. To represent a rotation or orientation, quaternions need less values

than matrices, and therefore operations such as rotation multiplication will be more

CHAPTER 3. RELATED WORK

effecient .
The most attractive aspect of quaternions is that they are much better for in-

terpolation than Euler angle coordinates or matrix. Angle interpolation treats the

three angles of rotation at each key orientation as a three-dimensional vector whose

components are interpolated from key to key independently, which ignores the depen-

dence between rotation axes, and may lead to "gimbal lock": the loss of one degree of

rotational freedom because two rotation axes collapse into one. Quaternion interpola-

tion offers much smoother interpolation between orientations than three independent

angle interpolations do.

Interpolating quaternions in a planar surface ignores some of the natural geome-

try of rotation space, and the animated rotation will speed up in the middle of the

inbetweens[48]. For that reason, quaternions are usually interpolated on a spherical

surface, and the problem is to construct smooth curves on spheres. Spherical Bizier

curves are used by Shoemake[48,49], and Spherical Biarcs are proposed by Wang and

Joe[57]. In [4], spherical derivatives are used to impose angular velocity constraints

on quaternion interpolation. The interpolation method used in this thesis is a combi-

nation of [49] and [34], more accurately, it is the algorithm of Shoemake[49] with bias

control of Kochanek[34].

Conversion from rotation matrices to quaternions, and vice versa, are straightfor-

ward. Since most animators are familiar with Euler angle coordinates system, the user

interface will still use a Euler angle system, and the conversion will be done before

interpolation.

3.4 Signal processing techniques

In this section, we introduce some signal processing techniques which will be applied to

the animation of articulated figures. Our interest lies in digital signal processing rather

than continuous-time analog technology. A digital signal is defined by a sequence of

numbers, and for our purpose, a signal contains the values of a motion parameter

such as a joint angle for an articulated figure over time.

CHAPTER 3. RELATED WORK

3.4.1 Fourier, mult iresolut ion, and wavelet analysis

Several well-established techniques in image and signal processing such as Fourier

analysis, multiresolution analysis and wavelet analysis are adapted to computer ani-

mation of articulated figures. Unuma et al. [54] applied Fourier transforms to joint

angle data of human walking to extract a basic "walking" factor and a "qualitative"

factor like "brisk" or "fast" from a walking sequence, and then those factors were

used to generate new movements by interpolation and exterpolation in the frequency

domain, such that a walk can be changed continuously from normal walk to brisk

walk. Litwinowicz [38] used recursive filters to produce "lag, drag, and wiggle" effects

to keyframed two-dimensional animated motion. While Fourier analysis could extract

some characteristics from motion data, the power of frequency analysis is not fully

exploited since the resolutions at each level are the same.

In multiresolution analysis, a signal is presented with different resolutions at each

level, and the analysis can be carried out from coarse to fine. Generally, a signal could

be stored as Gaussian (low-pass) or Laplacian (band-pass) pyramids of filter bands,

where each level represents a different octave band of frequency, then some operations

can be performed band by band before the signal is reconstructed by adding up the

resulting bands. In this way, the fine features of a motion corresponding to the higher

frequencies are treated separately from the course features corresponding to the lower

frequencies.

Wavelet transforms have recently been proposed as a new multiresolution decom-

position tool. The kernel of the wavelet transform is obtained by dilating and trans-

lating a prototype bandpass function. Wavelet transforms permit the decomposition

of a signal into the sum of a lower resolution signal plus a detail signal, and each

coarse approximation in turn can be decomposed further into yet a coarser signal

and detail signal in finer resolution. Eventually, the signal can be represented by a

low-pass at certain scale, plus a sum of detail signals at different resolutions. Liu

et al. [39] used wavelet decomposition to speed up interpolation of physically-based

keyframe animation.

In our system, Burt's multiresolution analysis[l4, 151 is used. In this method, a

CHAPTER 3. RELATED WORK

Gaussian pyramid is obtained by successively convolving the signal with a Gaussian

filter kernel, and the signal is subsampled by a factor of 2 at each iteration until the

signal become constant, or the "DC" value, and then the Laplacian pyramid is calcu-

lated by repeatedly subtracting 2 successive Gaussian signals in the Gaussian pyramid

(the subtracted signal is expanded beforehand). Now operations can be performed on

Laplacian bands and the DC value before they are added up to reconstruct the signal.

Burt's multiresolution filtering is related to wavelet analysis: the Gaussian pyramid

is the counterpart to a wavelet decomposition based on a cubic B-spline scaling func-

tion, while the Laplacian bands correspond to the high frequency wavelet component.

We believe Burt's decomposition is more computationally efficient since convolution

is applied only to obtain the low-pass Gaussian decomposition and the high frequency

Laplacian are simple differences between successive Gaussian levels, and there is no

need for two sets of filter coefficients.

3.4.2 Displacement mapping

Displacement mapping can be used to change the shape of a signal locally through

a displacement map while maintaining continuity and preserving the global shape

of the signal[l3]. To alter a signal, only a few samples need to be modified, the

changes made are called displacements. A spline curve is then fitted through these

displacements, and then the spline is added to original signal to obtain a new smoothly

modified signal. Figure 3.1 illustrated the procedure. Note that the first and last data

point are always taken as displacement points. Displacement mapping will be used

to handle constraints in this work, which will be presented in Section 5.4.2, and the

idea of displacement mapping will also used for linear constraint handling, which will

be presented in Section 5.2.2.

The techniques presented in this chapter will be used to handle constraints for

motion signal processing. In next chapter, we will discuss motion signal processing

techniques in detail.

CHAPTER 3. RELATED W O R K

Figure 3.1: The procedure of displacement mapping.(l): define displacements; (2):
generate a spline through the displacements; (3): add the interpolate spine to original
signal

Chapter 4

Motion Signal Processing

As analyzed in Section 2.2, because of the complexity of articulated figure movements,

the availability of motion libraries and the increasing use of motion-capture technol-

ogy, it is desirable to provide tools that make it easy to adapt existing motion data

for reuse. Techniques from the image and signal processing domain are well suited

for this purpose. With signal processing techniques, existing motions can be modified

and combined in such a way and at such a level that would be hard or impossible

to accomplish otherwise. This is because the motion signal processing acts above the

"in a joint" level by affecting several or all degrees of freedom of an articulated figure

at the same time and over the entire duration of the motion.

For the discussion below, we treat a series of values for a motion parameter such

as a degree of freedom of a joint as a sampled signal, and the signal contains the

values for a particular degree of freedom at each frame instead of just at key frames.

The values for a parameter must be sampled at the same fixed interval during the

whole motion. These values could come from evaluating a spline curve in a keyframing

system, or from captured motion. In this chapter, we will explain how several signal

processing techniques can be adapted to produce new motion sequences for computer

animation. These techniques have been implemented in a system where the user

can interactively set certain parameters and then view their effects on the motion

sequence. Original work on the techniques presented in this chapter has been done

by Armin Bruderlin[lS] [l 11 .

CHAPTER 4. MOTION SIGNAL PROCESSING

4.1 Motion Mult iresolution Filtering

The multiresolution filtering technique used by Burt et al. [14][15] for certain kinds

of operations on images can be modified to a one-dimensional version to be used

for motion signal processing. Intuitively, low frequencies of the motion signal contain

general and gross motion pat terns, whereas high frequencies contain details, subtleties,

and noise.

4.1.1 Algorithm

The length m of each signal determines how many frequency bands f b can be com-

puted:

let 2 n 5 m < 2 n + 1 , then f b = n (4.1)

In our implementation, we set an upper limit for the number of frequency bands.

The following is the motion multiresolution filtering algorithm in detail, as de-

scribed by Armin Bruderlin [13].

1. Calculate Gaussian sequences Gk for all f b low pass signals by successively

convolving the signal with the expanded kernel w, where Go is the original

motion signal and Gjb is the zero frequency (DC) value (0 5 k < fb):

This can be calculated efficiently by keeping the kernel constant and skipping

signal data points:

where i ranges over all data points of a signal. Several strategies are implemented

to handle the edge of the signal, i.e., when i + 2km lies outside the range of a

signal. The two most promising approaches have proven to be reflecting the

signal and keeping the signal values constant (i.e., equal to the firstllast data

point) outside its boundaries.

CHAPTER 4. MOTION SIGNAL PROCESSING

2. Obtain the Laplacian filter bands Lk(O 5 Ic < fb):

3. Let the user adjust gains for each Laplacian band and multiply Lk7s by their

current gain values.

4. If the filtering is for multitarget interpolation (see section 4.2), blend bands of

different motion signals at the each level.

5. Reconstruct the motion signal:

4.1.2 Joint angle vs. joint position

In articulated figure animation, either joint angles or joint positions can be used

to define the motion of a figure. While the motion signal processing techniques we

implemented can process both joint angle data and joint position data, the use of

joint angle data is advised for the most desirable results. Several facts make joint

angle data a better choice than joint position data, although motion-captured data

are usually expressed as positions.

First, processing joint position data leads to a scaling effect on the animated

figures. For example, if the low frequency bands of the motion signal are emphesized,

the figure will get much larger than the original one. Although this scaling effect is

desirable on certain occasion (e.g., in traditional animation), it should be avoided in

most cases. Figure 4.1 shows the scaling effect; the original figure is shown beside the

resulting figure for comparison.

Secondly, in most models for articulated figures, the segments are rigid and their

lengths are fixed. Even if scaling is permitted, the ratio of length between any two

segments should be fixed, but after joint position data is processed, the resulting

position of each joint might not be achievable at the same time if the segments in the

skeleton must be scaled at the same ratio. For the links shown in Figure 4.2, suppose

C H A P T E R 4. MOTION SIGNAL PROCESSING

Figure 4.1: Scaling effect of processing position data. When low frequency bands are
emphasized, the human figure is enlarged.

Figure 4.2: Change of skeleton configuration when processing position data

most of the movement of joint C (in position) falls in the low frequency bands and

most of the movement of joint B (in position) falls in the high frequency bands. If we

emphasize the low frequency bands of the movement, joint C extands too far from joint

B. To allow joint B and joint C to be in the resulting positions, segment BC must

be lengthened with a higher scaling factor than segment AB, thus the ratio between

the lengths of segment AB and BC is changed (again this might be desirable in some

occasion in traditional animation). Applying motion signal processing techniques on

some parts of the figure also results in such problems. Processing joint angle data will

not have these effects since the model itself guarantees that the articulated skeleton

is maintained.

The third reason for working with joint angle data is that the motion produced

CHAPTER 4. MOTION SIGNAL PROCESSING

by processing joint position data does not reflect modifications of the gains for the

frequency bands. If we set the gains of all frequency bands to 2.0, the motion produced

is exactly the same as the original one except that there is a scaling effect by factor

2.0.

4.1.3 Body part mask and band mask

Since there usually are many degrees of freedom (DOF) in articulated figures, it will

likely be too much work for the animator to control the motion transformation if the

filtering control is applied separately to each DOF. In this thesis, the same filter is

applied to all DOFs, and the animator controls the figure motion at a level above

joint angles.

While this high level control saves work for animators, it also limits the flexibility

available to the animators. Animators may wish to use different filters on specific

body parts or joint angles on some occasions. The reasons for this include the follow-

ing. First, each DOF has different frequency property - for some DOFs, the major

movement pattern is in low frequency bands, while for some other DOFs, it is in

middle frequency bands, and an animator might want to process those DOFs sepa-

rately. Secondly, animators might just want to transform the motion of selected parts

of the figure, as you will see in an example in Section 4.2, where we just need upper

body movement of one figure, and lower body movement of another figure. Finally, to

achieve a specific movement of the figure, some constraints will be violated for certain

parts of the figure, and the constraint violations can be avoided by using different

filters on those parts of the figure.

To let the animator control the movement at a high level and still have some

flexibility, body part masking and band masking functionality should be provided.

Motion transformation can then be applied to all the DOFs of the articulated figure

except the masked body parts or joints, and thus different filters can be applied to

different body parts or joints.

CHAPTER 4. MOTIONSIGNAL PROCESSING

4.1.4 Examples

Here we give some examples to illustrate the effects and applications of mu

filtering, and more examples will be presented in Chapter 6 to explore how to make

full use of this technique. With a display like an equalizer in an audio amplifier,

Figure 4.3 shows a kind of graphic equalizer for motion, where the amplitude (also

called gain in this thesis) of each frequency band can be individually adjusted via

a slider before summing all the bands together again to obtain the new motion. In

these examples, the multiresolution technique is applied to a skeleton with more than

70 DOFs built with the skeleton modeling method presented in Chapter 3. The same

frequency band gains are used for all DOFs. In Figure 4.3 (a), increasing the gains

of the middle frequencies of a walk sequence resulted in a smoothed but exaggerated

walk, and in Figure 4.3 (b), increasing the gains of the low frequencies generated an

attenuated, constrained walk at a high speed. Note that the gains do not have to be

positive, and this is shown in Figure 4.3 (c), where the gain for one band is negative

for a motion captured sequence of a figure knocking at the door, resulting in a motion

like knocking at a table.

From the examples, you can see that some constraints such as joint limits or

walking on the floor can be violated in the resulting movements. As has been presented

in Chapter 2, our motion-editing philosophy is to employ constraints after the general

character of the motion has been defined. Techniques for preventing and adjusting

constraint violations are presented in Chapter 5.

4.2 Multitarget Interpolation

Multitarget interpolation is a process widely used in computer animation to blend

between different models. The technique was originally applied in facial animation

[8, 441, We might have detailed models of happy faces, sad faces, quizical faces,

angry face, etc., and those models are similar but with their own particular control

parameters. The control parameters can be at a high level (like "raise left eyebrow

by 0.7"), or a very high level (like "be happy"). The expression of the face can be

C H A P T E R 4. MOTION SIGNAL PROCESSING

Figure 4.3: Examples of motion signal filtering. (a) middle frequency of walking
emphasized; (b) low frequency of walking emphasized, (c) negative gains used

CHAPTER 4. MOTION SIGNAL PROCESSING

Figure 4.4: Blending waving and walking without filtering

controlled by blending the corresponding parameters of different models to varying

degrees.

4.2.1 Multitarget motion interpolation

The same technique can be applied to the motion of articulated figures. If we have

a happy walk, a sad walk, an angry walk, etc., we can blend those walks freely to

provide a new result. Figure 4.4 shows an example of blending two different motions

of a human figure: a waving sequence and a walking sequence. In this case, the blend

is linear: add 0.6 of the waving and 0.4 of the walking. Guo et al. [24] gave a good

discussion of this approach which they termed parametric frame space interpolation.

In our approach, the motion parameters to be blended, such as joint angles, are

completely decoupled from one another, and have no implicit range limits, which may

CHAPTER 4. MOTION SIGNAL PROCESSING

lead to constraint violations in the blended motion.

As indicated in step (4) of the multiresolution algorithm in 4.1.1, we can mix mul-

tit arget interpolation and multiresolution filtering to separately blend the frequency

bands of two or more motions. Figure 4.5 illustrates this technique for two walking

sequences: regular walking and tired walking. By treating different frequency compo-

nents in a different way, this technique can produce more meaningful new movements.

For example, after exploring the effect of each frequency band on the movement, the

frequency bands contributing to the tiredness of a tired walking can be extracted, and

the animator can obtain new walking sequences with different degree of tiredness by

adjusting the gains of those bands.

4.2.2 Normalization

There is a normalization issue in multitarget motion interpolation. When the anima-

tor sets the gains of certain frequency bands of the tired walk to l, and sets those of

a regular walk to 1 also, what the animator wants might be "not-so-tired" walking. If

there is no normalization, the resulting walk will not be what the animator expected;

in fact, the resulting walk violates many constraints.

There are also some reasons for not using normalization. Look back at the exam-

ple of blending a waving and a walking movement; with normalization, the waving

movement in the blended motion can never be as big as the original waving, and the

walking movement in the blended motion can never be as big as the original walking,

because:

x < a x + by
< y with x < y and a , b > O ;

a + b

Another reason for no normalization is that the gains might be negative numbers,

which makes the normalization nonsense (a + b might be 0 !).

In our system, it is the animator who decides whether normalization is necessary.

For example, in Figure 4.7, by setting the gains for waving to 0 as applied to the

lower body, and setting the gains for walking to 0 as applied to upper body, we can

get a walking and waving motion with the waving the same as in the original waving

CHAPTER 4. MOTION SIGNAL PROCESSING 35

and the walking the same as in the original walking. You may be confused by the

settings of the gains at this point: since there is no movement in the lower body for

the original waving sequence, why bother setting the gains to 0 and applying them

only to the lower body? We will explain this at the beginning of Chapter 5 .

4.3 Motion Waveshaping

LeBrun [37] introduced waveshaping for the generation of musical sound by synthesiz-

ing steady-state or time varying harmonic sound spectra. Waveshaping changes the

amplitude of a signal in a non-uniform manner. The basic idea involves a non-linear

shaping function f of an arbitrary shape which operates as a special filter on a signal

x. The shaping function f is normalized, i.e., it accepts and outputs values in the

range [-I, +I]. For example, if we define f (x) = x , the signal will pass through un-

changed; if f is slightly changed, for example, to have a small bump near 0, signal x

will be changed in that it will have positive values around where it was 0 before; i f f is

defined as a cosine function in the [-I, +1] range, the values of x will be exaggerated

in the middle and attenuated at the extremes.

The waveshaping technique can be adapted to generate new animations[l3], and

it is also useful to efficiently edit densely-spaced motion signals such as live motion

capture data where each frame is a keyframe. One application is to map the shape

of the input motion to a "characteristic" function. In this way, we can build up a

library of shaping functions which will permit rapid experimentation with different

styles of movement. Another application of waveshaping is to limit the joint angles

to a specific range - this will be presented in detail in Chapter 5 .

CHAPTER 4. MOTION SIGNAL PROCESSING

Snapshots of a normal walk

Snapshots of a tired walk

Snapshots of the blending result

Figure 4.5: Blending two walks with filtering

CHAPTER 4. MOTION SIGNAL PROCESSING

filter used for the normal walk filter used for the tired walk

Figure 4.6: Filters used for blending in Figure 4.5

Figure 4.7: Blending waving and walking without normalization

Chapter 5

Handling Motion Processing

Constraints

As we have seen in Chapter 4, all of these motion signal processing techniques we

have used may produce some motions which violate constraints. The constraints may

involve the definition of the skeleton, such as joint angle limits. Those constraints

may define the behavior of the animated body; for example, the constraints imposed

on the skeleton of a human being make the skeleton behave in a way natural to human

beings. Violation of those constraints leads to motions physically impossible for the

animated skeleton. Other constraints are not imposed by the skeleton, but are defined

by animators to achieve particular goals, and the violation of those constraints results

in motions that fail to meet those goals.

Constraint violations resulting from motion transformations may come from the

adjustment of the amplitude of frequency bands, or from the poor time synchroniza-

tion between signals to be blended if multitarget interpolation is used. While we

can apply time warping techniques to prevent the constraint violations due to poor

timing, it is impossible to prevent constraint violations due to amplitude adjustment.

As analyzed in Section 2.4, it is impossible to detect constraint violations during the

transformation, therefore, although we can apply some techniques to generally reduce

constraint violations, we do not make an effort to prevent all constraint violations

C H A P T E R 5. HANDLING MOTION PROCESSING C O N S T R A I N T S

for a motion transformation. Instead, we try to adjust motions with constraint vio-

lations after the motion transformation and before providing the resulting motion to

the animator.

In the first section of this Chapter, processing offset data and applying consistent

dynamic time warping are presented as two general methods to avoid some constraint

violations. In the second section, bound mapping and motion signal compression

are used to handle linear constraints. Non-linear constraint handling is discussed in

Section 5.3, and some tools for editing motion signals at a low level are provided as

alternative approaches for constraint violation adjustment.

5 . I Prevention of constraint violation

In general, constraint violations cannot be prevented during the motion signal trans-

formation and there is no filter that can avoid constraint violations. However, it is

possible to reduce the chance of violations or the degree of violations by processing

appropriate data and by pre-processing the signals to be processed. As presented

in Chapter 4, we can reduce the chance of constraint violations by processing joint

angle data instead of joint position data, and by applying motion signal transforms

selectively to different parts of the body. In this section, we will give methods to

prevent some of the constraint violations by pre-processing the signal data.

5.1.1 Processing offset data

The first technique used to prevent constraint violations is to process offset data. We

do not treat the joint angle values of a parameter sampled over a period of time as a

signal; instead, we treat the differences between the initial status and each frame of

the motion as the signal to be transformed. For example, if the values of a parameter

are: 50.5, 52.5, 55, 60, 64.5, . . ., the signal to be transformed will be: 0, 2.0, 4.5, 9.5,

14, - .. In the following discussion, we will call the latter offset data, and the former

absolute data.

The first reason for processing offset data lies in the fact that it is the changes of

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS

Figure 5.1: different definition of joint angles

the joint angles that represent the motion, not the values of the joint angles. When

the animator says "increase the low frequency band by 50 percent", she/he means

to emphasize the low frequency of the movement, not including that of the initial

status. Recall that in Chapter 4 we had a question about the blending of a waving

motion and a walking motion. Although there is no movement in the lower body of

the waving figure, the initial angle value for the ankle is about 90 degrees. If there

is no normalization and if we do not process offset data, the angle value for ankles

will be about 180 degrees after blending even if the gain for each frequency band is

not changed, and the feet will be upward instead of forward. This will not happen if

offset data are processed.

Processing offset data also makes the motion transformations independent of the

definition of the joint angles. For example, for a link in Figure 5.1, the joint angle

might be defined as 45 degree in one model, and 135 degree in another model. If the

angle is changed due to motion transformation, those two models will get two totally

different movements. There is no such problem if offset data are processed.

Transforming absolute data may lead to constraint violations, as explained above.

Thus some constraint violations can be prevented by processing offset data instead.

We have seen the example of walking and waving; Figure 5.2 shows two other ex-

amples. We emphasize the low frequency bands of a human walking and a human

drinking; (a) and (c) are the results of processing absolute data. You can see that

there are constraint violations in ankles in walking (a), and the hand goes beyond the

mouth in drinking (c) . Figure 5.2 (b) and (d) are the results of processing offset data

with the same filters, and there is no constraint violation, or the violation is reduced

C H A P T E R 5. HANDLING MOTION PROCESSING CONSTRAINTS

to an acceptable limit.

5.1.2 Consistent dynamic timewarping

When multitarget interpolation is applied, constraint violations may result from poor

timing between the signals to be blended. For example, if we want to blend two walk

cycles, the steps of the walks must coincide so that the feet strike the ground at the

same time. If one walk is at a slower pace than the other, and we simply blend them

without establishing a correspondence between the steps beforehand, the resulting

motion may be an uncoordinated movement, and the feet may no longer strike the

ground at regular intervals, or not strike the ground at all. This problem can be solved

by timewarping, a technique involving remapping a signal in time to make it coincide

with a template signal. A dynamic timewarping technique is used in this work.

Dynamic timewarping is a nonlinear signal matching procedure which was first

used in the field of speech recognition to compare templates with input utterances

[19]. Since the speeches can be made at variable speeds, each acoustic input signal

also shows variations in speed with respect to the template signal, and the timewarp-

ing procedure identifies a combination of expansion and compression which can best

warp the input signal to match the template most closely. In our case, timewarp-

ing is applied in a discrete time domain to make one motion coincide with another.

The problem can be decomposed and solved in two steps: find the optimal sample

correspondences between the two signals first, and then apply the warp.

The sample correspondence problem is defined as finding the globally optimal

correspondence between the samples of the two signals [ll]: to each sample of one

signal, assign at least a vertex in the other signal such that a global cost function

measuring the "difference" of the two signals is minimized. This problem is related to

contour triangulation [21] and shape blending [47], which can be solved by dynamic

programming optimization techniques. The solution space can be represented as a

two-dimensional grid, where each node corresponds to one possible vertex assignment.

Figure 5.3 is an example for two signals with length 10, and the optimal vertex

correspondence solution is illustrated in the grid by a path from (0, 0) to (9, 9). In

C H A P T E R 5. HANDLING MOTION PROCESSING CONSTRAINTS 42

Figure 5.2: 'I
(b) and (d) o

effect of processing offset
t data processed.

(4
lata; (a) and (c) absolute data proces

CHAPTER. ,5. HA N D L l N G MOTION PROCESSING C O N S T R A I N T S 43

warped B

substitution: 1:l correspondence of successive samples.
deletion: multiple samples of B map to a sample of A.
insertion: a sample of B maps to multiple samples of A.

Figure 5.3: Dynamic time warping algorith

general there are O(nn/n!) possible paths. Sederberg presents a method which gives

a globally optimal in 0 (n 2) time[47]. The length of the two signals can be different,

in general. For more detail of the algorithm, readers are referred to [47] and [13].

The second part of the problem is to actually apply the warp given the optimal

sample correspondences. As in speech recognition [19], three cases are distinguished:

substitution, deletion and insertion, which are indicated in the optimal path by a

diagonal, horizontal and vertical line, respectively, between two nodes. Suppose we

want to warp signal B to A as show in Figure 5.3, and the warped signal is denoted by

B,. If Bj and Ai are related by a substitution, it follows that BwI = Bj. In the case

of a deletion, where multiple samples of B, (Bj, Bj+1, - , B j + k) correspond to one

A;, we let B,, to be the mean of B, (Bj, Bj+1, - . , Bj+k). Finally, an insertion implies

that one sample of B, Bj, maps to multiple samples of A, (A;, A;+1, - . , A;+k). In this

case, the values for B,, , B,,,, , - - , BWI+, are determined by calculating a Gaussian

distribution around the original value Bj.

C H A P T E R 5. HANDLING MOTION PROCESSING CONSTRAINTS 44

The complexity of an articulated skeleton may cause some problems here. First,

the dynamic timewarping algorithm is 0 (n 2) in time complexity, where n is the num-

ber of frames of the warped signal. If dynamic time warping is applied to each DOF of

the skeleton (remember even a simple skeleton model for a human figure has around

80 DOFs), the animator must wait for quite a long time, which is not acceptable in

an interactive work environment. Furthermore, the optimal sample correspondences

will be different for each DOF. For example, in the signal for left knee, the ith frame

is mapped to the jlth frame of the template, but in signal for left ankle, the ith frame

might be mapped to the j2th frame of the template. This inconsistent timing between

DOFs may lead to some strange movements, and some constraints may be violated.

To solve these problems, we use consistent dynamic timewarping. We just need

to calculate the optimal sample correspondences once on a key DOF which can best

represent the timing of the motion. This DOF is selected by the animator according

to the property of the concerned motion; for example, one of the knees can be selected

as such a DOF for a walk, and the elbow can be selected for a drink. The optimal

sample correspondences for this DOF are then used to warp the signals for all DOFs.

Since the time complexity for finding the optimal correspondences is 0 (n2) , and the

actual warping is linear, therefore the time is now not a problem due to the number

of DOF, and since we warp all the DOFs with the same correspondences, the skeleton

has consistent timing for all DOFs. The result of this technique may depend on which

DOF is selected by the animator as the key DOF. Sometimes it is hard to find a DOF

that can serve as such a key DOF. In those case, different body part may need to be

processed separately, and then a key DOF is selected for each part of the body.

The 0 (n 2) complexity of the algorithm makes the method non-interactive for

very long motion sequences, but since the motion transformation system we built is

intended to let animators interactively edit motion sequences, the sequences would

not be too long (usually no more than 3,000 frames).

Figure 5.4 shows the improvement of the result by using consistent dynamic time-

warping. Two walk sequences with different timing and length are blended to make a

new walk. The results with and without time warping are both shown in Figure 5.4 for

comparison. In each snapshot, the left human figure shows the result of the blending

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS 45

Figure 5.4: Example of consistent dynamic time warping algorithm

without time warping, and the right human figure shows the result of blending with

consistent time warping. The movement of the left figure is not a walk any more.

We can avoid some and only some of the constraint violations introduced by motion

signal processing by offsetting the signal to be processed and synchronizing the signals

to be blended; in the following sections we will present some techniques to adjust those

constraint violations which cannot be avoided.

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS 46

5.2 Handling linear constraints

As we have stated in Chapter 2, we will focus only on geometrical constraints in this

thesis. We will handle linear constraints in this section and non-linear constraints in

next section. If there are linear constraints and non-linear constraints at the same

time, linear constraints will be checked and adjusted first, then the non-linear con-

straint handler will work on the adjusted data, and the linear constraint will still be

considered in the adjustment of non-linear constraint violations.

When we say a constraint is linear or non-linear, what we mean is whether the

relation between joint angles is linear or non-linear. Formally, a linear constraint is:

where 81, and O2 are joint angles of the skeleton, k and a are given constants, and

the comparison relation operator R could be: =, >, <, 2, and 5. (Since float values

are concerned, we do not need to distinguish between '>' and '>', '<' and '5 ') . A

nonlinear constraint is:

where 0 is the vector of the joint angles, fl and f2 are non-linear functions such as the

position or orientation of certain point of the body, or distance between two points. As

in linear constraints, the comparison relation operator R could be: =, >, <. Another

type of nonlinear constraint is a conditional constraint:

Condition ---+ Constraint (5.3)

where Constraint can be a linear or non-linear constraint as defined before; the

Constraint part must be satisfied when the Condition is valid.

For example, "the angle of knees must be greater than 0 degree and less than

180 degree" is a linear constraint; "the hand can not go beyond the mouth during

drinking" is a non-linear constraint. The statement "during the drink, when the

distance between the hand and the mouth reaches a minimum value, this value must

be zero" is a conditional nonlinear constraint.

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS 4 7

5.2.1 Linear constraint specificat ion

In Equation 5.1, k could be any value, but it is usually 0 or 1. If k = 0, the constraint

becomes a joint angle limit, and this is commonest linear constraint; if k = 1, the

constraint becomes the comparison between two joint angles. If k is not 0 or 1, the

user must be careful about the definition of the joint angle, as analysed in Section

5.1.1.

The default joint limits can be specified in the skeleton description file. The user

may want to ignore all of the default joint limits, change the default limit setup for

some joint angles, or set up a relation between two joint angles. We should provide a

convenient way for users to describe their requirements easily, and for the constraint

handler to understand the requirements. It is quite easy to achieve this for linear

constraints compared to nonlinear constraints. The only problem is how to let the

user specify a joint angle. The following is the simple grammar for linear constraints:

LINEAR-CONSTR: : JOINT-ANGLE COMPARE [COEF ' * ' 1 JOINT-ANGLE I
JOINT-ANGLE COMPARE [[COEFf*']JOINT-ANGLE '+'I CONSTANT;

JOINT-ANGLE : : (('JOINT, AXISO';

JOINT : : JOINT-NAMEIJOINT-INDEX;

COMPARE : : f>'l(<'lf=';

COEF : : float ;

CONSTANT : : float ;

JOINT-NAME : : string;

JOINT-INDEX : : integer;

AXIS : : fx'lfX'~(y'~(Y'~(z'~fZ';

For example, ("le ftknee", x) > -2.0, (30, x) > -2.0, (30, x) < (31, y) t 20.0,

(30, x) < (2 * (31, y) are all linear constraints with correct grammar. JOINT-NAME

must be one of the joint names given in the skeleton description file; JOINT-INDEX is

indexed from 0 to the total number of joints in the skeleton according to the order in

which they appear in the skeleton description file; if the index is equal to the number

C H A P T E R 5. HANDLING MOTION PROCESSING C O N S T R A I N T S 48

of joints in the skeleton, it refers to the location of the whole body, which is taken as

a phantom joint. Since a joint may have more than one degree of freedom, therefore,

AXIS is used to specify which degree of freedom is concerned; the AXIS must be a

valid degree of freedom for the joint.

It is easy to understand these constraints. Only one point needs to be noted: if

there are two joint angles concerned in the constraint and the constraint is violated, we

will adjust the joint angle on the left side. For example, if constraint (30, x) > (31, x)

is violated, the value of joint angle (30, x) will be modified.

When the comparison operator is '=', the constraint is a "joint angle lock" which

keeps the joint angle unchanged. This might be a very important constraint in other

contexts of computer animation, but it is not useful in our context. If the joint angle

is unchanged in the original motion, it would not change in the transformed motion

if offset data is processed; if the joint angle changed in the original motion, it would

change in the transformed motion unless the gains are set to zero. Therefore, we will

not consider "joint angle locks" in the following discussion. If the user does want to

impose a joint angle lock, we will simply set the value of the locked joint angle to the

lock value at each frame of the whole signal.

We have built a very simple interface to let the user specify linear constraints using

the grammar given above. The list of joint names and their index can be accessed

by a button click so that the user does not need to remember the index of each joint

or the spelling of its name. The user can also make the default joint limits valid or

invalid, and select one of the two constraint violation adjustment methods provided:

bound mapping or motion signal compression.

In the following discussion, we will convert a linear constraint to the following

form if k is not 0:

and then we will take the left part of Eaqution 5.4 as a signal. Before applying bound

mapping or motion signal compression, the value of O1 - k * O2 is calculated at each

frame, and it is treated the same as a joint angle signal. a will be taken as the bound.

After the constraint is checked, if there are constraint violations, O1 will be modified

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS

according to the modification made to dl - k * d 2 .

5.2.2 Bound mapping

The idea of bound mapping stems from displacement mapping. If the signal for a

joint angle goes beyond its range, the overshoots and undershoots from the range are

taken as displacements, and a spline through the displacement points is calculated

and added to the signal under consideration. The algorithm is as follows:

1. Take the first and last point as displacement points; if their values are greater

than the upper bound or less than the lower bound, set their displacement

value to be the difference between the value and the bound; otherwise, set the

displacement value to be 0;

2. Check the signal at each frame, if the frame has a local maximum or minimum

value, and this value is greater than upper bound or less than lower bound, the

frame is taken as a displacement point, and the difference between the value

and the bound is the displacement value.

3. If there are no displacement points other than the first and last frame, there are

no violations, return; otherwise, calculate a cubic interpolation spline through

the displacement points. A cubic spline instead of a Kochanek spline is used here

because the displacement points are all maximum or minimum points, therefore

at those points, the slope must be 0;

4. Add the spline to the signal.

Figure 5.5 illustrates the first two steps of the algorithm, and the rest of the

algorithm is similar to displacement mapping presented in Section 3.4.2. Looking at

the point A and point B, we find a problem. The violations at point A and point

B cause the whole segment between A and B to be "pulled" down by almost the

same value, and this is not desired. What is even worse is that, this may lead to new

constraint violations: suppose point C is close enough to the lower bound, it may

be less than the lower bound after the "pull". To avoid this problem, if there are

C H A P T E R 5. HANDLING MOTION PROCESSING CONSTRAINTS

Figure 5.5: Bound Mapping

two adjacent displacement points both have positive values (or negative) values, we

will find the maximum (or minimum) point between them, and this point will be an

extra displacement point with the displacement value of 0. This extra displacement

can always be found because there is a maximum (or minimum) point between two

minimum (or maximum) points. In Figure 5.5, point C will be selected as the extra

displacement point.

Bound mapping guarantees that the signal will be set to the bound values at the

maximum or minimum violation points; theoretically, this does not guarantee that

the interpolated spline will "pull" the whole violation segment into the range between

the lower bound and upper bound, but practically, this rarely happens, and if it does

happen, motion signal compression which will be discussed in next section can be

used.

Figure 5.6 illustrates the effect of bound mapping. The back figure shows the orig-

inal walk, the middle figure shows the result after transformation without constraint

checking, and the front figure is the walk after bound mapping. You can see that the

joint angle of the knee in the middle figure is obviously out of the limit range and it

is adjusted in the front figure.

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS

Figure 5.6: The result of bound mapping; the middle figure shows the result without
constraint check, the front figure shows the result with bound mapping

5.2.3 Motion signal compression

To get a smooth motion, bound mapping needs to modify almost every frame of the

motion, no matter what the value of the signal is at that frame. Motion compression

is intended to modify the frame with violations and those frames with a signal value

near the bounds. Motion signal compression is actually a type of waveshaping, where

the shape function is a capping function. The idea is to "squash" the signal if it goes

out of the range of the joint angle limits. The algorithm is very simple:

1. Check whether there are any violations of bound limit, if there are not, return;

2. Normalize the signal under consideration to range [-I, 11, and get the normalized

value of the bounds;

3. Calculate the capping function;

4. Apply the capping function to the normalized signal;

5. Denormalize the capped signal.

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS

Som .e explan

Figure 5.7: Capping function

.ations are needed on how to calculate the cappin g function. Th

capping function can simply map all the values greater than upper bound to the

upper bound, and those less than lower bound to the lower bound, but this may lead

to pauses for certain part of the skeleton during the motion. In our implementation,

as the values exceed the bounds, they are mapped to values that gradually approach

the bounds. As show in Figure 5.7, our capping function is a cubic interpolation

spline between (p,p) and (1, nu), where nu is the normalized upper-bound. The slope

is 1 at (p, p), and 0 at (1, nu). The figure shows only the capping of the upper bound;

a similar capping function can be calculated for lower bound, and the upper bound

capping and lower bound capping can be imposed at the same time.

Motion signal compression is local in the value dimension of the joint angle under

consideration because only the values near or beyond the bounds are modified; but

it is not local in the time dimension. First, the capping function is not calculated

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS

Figure 5.8: The result of motion signal squashing; the middle figure shows the re-
sult without constraint check, the front figure shows the result with motion signal
squashing

at each violation segment, only the global maximum and minimum value contribute

to the calculation of the capping function and the capping function is then applied

to the whole signal; second, from Figure 5.7, we know p must be less than nu, those

frames whose normalized value fit in range (p, nu) will be modified, even if they are

not near to any violation segments.

Figure 5.8 illustrates the effect of signal compression. The back figure shows the

original walk, the middle figure shows the result after tranform without constraint

checking, and the front figure is the walk after bound mapping. You can see the joint

angle of the knee in the middle figure is obviously out of the limit range and it is

adjusted in the front figure. We cannot see significant differences between the result

of bound mapping and that of signal compression in this example.

C H A P T E R 5. HANDLING MOTION PROCESSING C O N S T R A I N T S

5.3 Handling non-linear constraints

While it is easy to specify and check linear constraints, it is very hard to handle non-

linear constraints. Because the motivation of motion signal processing is to provide

animators with high level control and release them from tedious editing work at the

frame level, the ideal constraint handler for motion signal processing should also pro-

vide animators with high level control over the detection and adjustment of constraint

violations. In this section, we will present a constraint handling method in which the

animator just specifies constraints, and the system will detect and adjust constraint

violations without any more instructions from the animator. The constraint handler

has the following four steps:

1. Let the animator specify constraints;

2. Check the constraints on motion data produced by motion transformation, and

get a list of constraint violations;

3. Adjust the constraint violations using inverse kinematics, and get a violation-

free skeleton pose at each adjusted frame;

4. Smooth the motion locally by interpolating quaternions around the adjusted

frames;

We choose to smooth the motion locally to preserve the characteristics of the

checked motion as much as possible. In our system, interpolation for smooth motions

is applied on joint angle data in the form of quaternions after the desired pose at the

adjusted frame is calculated using inverse kinematics. An alternative approach might

be to first interpolate the checked data (position, orientation or distance), and then

applying inverse kinematics on each interpolated frame. We do not use this approach

because inverse kinematics must be applied many times. Moreover, because two goal

positions with a small difference may result in two poses with quite big difference after

applying inverse kinematics, the motion adjusted by this approach may not be smooth

even if the ckecked data have been smoothed before applying inverse kinematics.

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS

Although there are all kinds of constraint violations resulting from motion trans-

formations, most of the violations are geometric, i.e., related to joint angles, positions,

orientations or distances. In general, violations of non-geometric constraints such as

the balance of the body occur only when the gains of frequency bands are adjusted

dramatically, providing the original motion does not violate the constraints. When

this does occur, it is usually impossible to adjust these constraint violations without

great change to the characteristics of the motion. Therefore, instead of trying to

adjust these violations, we would like to take them as a failure of the motion trans-

formation. Because motion transformation is at interactive speeds, it is acceptable to

try several times before getting a satisfactory result. In this thesis, we will focus on

geometric constraints.

5.3.1 Non- linear constraint specification

Dynamic simulation and procedural animation concentrate on particular motions of

particular skeletons, and constraints can be built into the system; therefore, there are

no constraint specification problems. Constraint specification in our context is not

as easy as it appears to be; in fact, it is the most challenging part in the constraint

handler. The difficulty of specifying constraints results from the generality of our

motion transformation system. The motion transformation system we have built is

intended to process any motion of any articulated skeleton as long as the skeleton

description file is given. This makes it very difficult to specify the objective part of

constraints at a high level; for example, you cannot use only the "right hand" to

specify a human body point accurately. The diversity of motion makes it impossible

to specify a constraint with high-level language such as "the feet strike the floor during

a walk" because the system could not understand it. The diversity of skeletons and

motions leads to the diversity of constraints, and it is impossible to build a constraint

base containing all kinds of motions for all kinds of skeletons. It is very hard to

find a way for animators to specify constraints conveniently and for the system to

underst and the specification easily.

We notice that geometric constraints usually involve some restrictions imposed on

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS 56

certain geometric elements, or some relations maintained between geometric elements.

For example, "feet must not intersect with the floor" is a restriction on the position of

feet, and "the hand cannot go beyond the mouth" for a drink movement is a relation

between the position of the hand and that of the mouth. More complicated constraints

might be such restrictions and relations that must be satisfied only when a specific

condition is valid. One example is "the feet must touch the floor on each strike during

walking".

Based on the observation above, we designed a way that animators can conve-

niently specify constraints on any skeleton and the system can easily understand the

specified constraints. Animators can specify most of the geometric constraints they

want to impose on a skeleton during motion transformation, although we cannot

guarantee that all geometric constraints can be specified and checked this way.

We have formally defined non-linear constraints in Equation 5.2 and Equation

5.3. In this section we will discuss non-linear constraint definition in detail and give

some restrictions on the definition. In the following discussion, we call Equation 5.2

a constraint unit, and Equation 5.3 a non-linear constraint. A constraint unit itself

can be used alone as a non-linear constraint without condition.

In the definition of non-linear constraints in Equation 5.2, we term f l (0) goal

data, f2(O) reference data, and a given value. f l (0) is termed goal data be-

cause f l (0) will be modified if the constraint is violated, while f 2 (0) will remain

unchanged.

Although there is no big difference in the implementation, k in Eqution 5.2 is

not really useful in practice, therefore, we will consider only the cases of k = 1

and k = 0. For different comparison operators and different values of k, we have

the following uni t types:

- ABOVE GIVEN : k = 0, ' > I , the goal data is greater than given value;

- BELOW GIVEN : k = 0, ' < I , the goal data is less than given value;

- EQUAL GIVEN : k = 0, ' = I , the goal data is equal to given value;

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS 5 7

- ABOVE ANOTHER : k = 1, ' > I ,

the goal data is greater than the sum of reference data and given value;

- BELOW ANOTHER : k = 1, ' <I,

the goal data is less than the sum of reference data and given value;

- EQUAL ANOTHER : k = 1, ' =I,

the goal data is equal to the sum of reference data and given value;

In Equation 5.2, fi and fi are functions of the joint angle vector 8. In this

thesis, we support four types of functions: joint angle, position, orientation and

distance. In practice, fi and f 2 are different but with the same type, therefore,

the concerned da ta t y p e of a constraint unit can be:

- JOINT ANGLE : a joint angle of the skeleton;

- POSITION : X, Y, or Z coordinate of a point;

- ORIENTATION : rotation around X, Y, or Z axis of a segment in the world

coordinate system.

- DISTANCE : distance between two points;

Constraint units with JOINT ANGLE data type are recommended for condi-

tional constraints only; otherwise, it becomes a linear constraint.

Constraint conditions can also be represented with constraint units because a

condition is also usually a restriction on certain data or a relation between two

data. Another kind of condition frequently used is the maximum or minimum

frames; i.e., the condition is valid only at the frames where the concerned data

reaches a maximum or minimum value. We introduce four more unit types

which can be used only in the condition of constraints:

- GLOBAL MAXIMUM : valid at the frame with global maximum value of

concerned data;

- GLOBAL MINIMUM : valid at the frame with global minimum value of

concerned data;

C H A P T E R 5. HANDLING MOTION PROCESSING CONSTRAINTS 58

- LOCAL MAXIMUM : valid at the frames with local maximum value of

concerned data;

- LOCAL MINIMUM : valid at the frames with local minimum value of

concerned data;

A constraint condition is a list of constraint units linked with logical 'AND'.

We do not use the logical 'OR' because its effect can be achieved by multiple

constraints.

Skeleton modeling presented in Section 3.1 is used in our system. Joint angle

data is specified by a joint and a valid rotation axis; orientation data is specified

by a joint and an axis of the world coordinates. A point is specified by a joint

and an offset to the joint, and the point does not have to be in the figure body;

if a point is specified without a joint, the offset is taken as the coordinates of

the point in the world coordinate system. Position data is specified by a point

and an axis, and distance data are specified by two points. To specify data in

constraints, animators have to be familiar with the coordinate system of the

skeleton, which is determined by the skeleton description file.

0 The animator can let the constraint handler check a constraint only on a part

of the motion by specifying the beginning and end frame. Usually the animator

has a rough idea of which segment of the motion sequence may violate the

constraint. Checking only the necessary part of the motion can save much time.

Furthermore, it may turn a local maximum or minimum condition to a global

maximum or minimum condition, which is much easier to check.

Based on the definition of non-linear constraint given above, we have the grammar

for nonlinear constraint specification as follows:

c o n s t r a i n t : : condition-->body

body : : u n i t

c o n d i t i o n : : u n i t l i s t I n i l

u n i t l i s t : : u n i t and u n i t l i s t

C H A P T E R 5. HANDLING MOTION PROCESSING CONSTRAINTS 5 9

u n i t : : ' (' un i t - type , da ta- type , d a t a 1 [, data21 [, data31 [, data41 ,
ignored-er ror [, given-value] [, noise-width] ') '

un i t - type : : 'ABOVE-GIVEN' I 'BELOW-GIVEN' 1 'EQUAL-GIVEN'

I'ABOVEANOTHER' I 'BELOWANOTHER' 1 'EQUALANOTHER'

I'GLOBALMIN' I 'GLOBALMAX' 1 'LOCALMIN' I 'LOCALMAX'

da ta- type : : 'CMPANGLE' 1 'CMPPOS' I 'CMPDISTANCE' I 'CMP-ORNT'

d a t a : : ' (' j o i n t [, o f f s e t] [, ax i s] ') '

j o i n t : : s t r i n g I i n t e g e r

o f f s e t : : ' (' f l o a t , f l o a t , f l o a t ') '

a x i s : : ' x ' I ' y ' I '2' I ' X ' I 'Y' I ' Z '

ignored-er ror : : f l o a t

given-value : : f l o a t

noise-width : : i n t e g e r

n i l : : 'NULL' I ' n u l l '

and : : ' and ' I 'AND'

ignored-error is the greatest error that can be ignored for comparison when the con-

straint is checked. The following are the rules for the usage of the optional fields in

the constraint specification grammar:

0 data1 and data2 represent the distance between those two points, and so do

data3 and data4, therefore, data2 and data4 are used only in the constraint unit

with distance data;

0 data3 and data4 are related to reference data, therefore, they are used only in

ABOVE-ANOTHER, BELO W-ANOTHER and EQUAL-ANOTHER constraint

units;

0 oflset cannot be used in constraint units with joint angle data or orientation

data;

a axis cannot be used in constraint units with distance data;

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS

given-value cannot be used in LOCAL-MIN, LOCAL-MAX, GLOBAL-MIN or

GLOBAL-MAX constraint units;

0 noise-width is used only in LOCAL-MIN or LOCAL-MAX constraint units, and

will be explained later;

0 joint can be the name or index of a joint; -1 (or 'non') means no joint is selected,

and the system will use the offset as the point, and this can not be used in datal;

'phantom' refers to the location of the skeleton;

For example, if we want to specify the constraint: "put cup to the mouth but do not

go beyond the mouth" for a drink movement, we can decompose it into two constraints

for specification: (1). the position of the cup in the X direction is greater than that of

the mouth; and (2). at the frame where the distance between the cup and the mouth

gets a global minimum value, the distance must be 0. The specification for these two

constraints is:

null--> (ABOVEANOTHER, CMPJOS , (28 , (0 , -0.19, 0) , x) ,
(" c e r v i c a l l " , (0 , -0.03, - 0 . 1) ~ x) , 0 . 0 1) ~ 0)

and

(GLOBALMIN, CMPDISTANCE, (" r igh t wrist", (0 , -0.19, O)) ,

("cervica l - I" , (0,-0.03, - 0 . 1)) ~ 0 .01, 6)

--> (EQUAL-GIVEN, CMPDISTANCE, (" r igh t wrist", (0 , -0.19, 0)))

("cervical-1", (0,-0.03, - 0 . 1)) ~ 0 .01, 0)

The point for the cup is specified by an offset to right wrist joint, and the mouth is

specified by an offset to cervical segment #l. As we have said, the animator has to

be familiar with the skeleton.

Figure 5.9 is the interface through which animators can specify constraints by

entering the constraints in the constraint editor field using the grammar and the

rules for the usage of optional fields in the grammar, or by filling in the form for

constraint units. A constraint browser is provided for editing multiple constraints.

The form for editing the constraint condition and the constraint body is available

C H A P T E R 5. HANDLING MOTION PROCESSING CONSTRAINTS 6 1

Figure 5.9: Interface for constraint specification

C H A P T E R 5. HANDLING MOTION PROCESSING C O N S T R A I N T S 62

Figure 5.10: Form for constraint unit specification

C H A P T E R 5. HANDLING MOTION PROCESSING C O N S T R A I N T S

to the animator by clicking on the corresponding buttons. Figure 5.10 shows the

form for editing a constraint unit (the field for setting noise-width is not shown in

the figure). A constraint or constraint unit can be loaded for modification at any

time. The contents in the constraint editing field and in the forms are consistent, i.e.

editing constraints in one way will be reflected in the other, and the animator can

choose whatever s/he prefers and .switch between them. It may seem that the form

for specifying a constraint unit is very crowded and many fields need to be filled in.

However, because many of those fields will be deactivated for each particular data type

and unit type according to the rules for the usage of the optional fields in constraint

specifications, and some of the fields have default value which are seldom modified,

not too many fields need to be filled by the animator. The name and index of all the

joints in the concerned skeleton are available to the animator at any point so that the

animator does not need to memorize the spelling or the index of each joint.

If a constraint is specified by entering it in the editing field, the text typed in will

be parsed, and the grammar and rules for the usage of the options in the specification

will be checked by the parser; if a constraint is specified by filling in the forms, there

will be no errors in the specification since the grammar and the rules are built into

the forms.

5.3.2 Constraint violation detection

The second step for non-linear constraint handling is to detect violations of the con-

straints. First, the relevant data for each constraint unit are collected, then the

condition of the constraints is checked, finally, the constraint body is checked at the

frames where the condition is valid, and information about the violations is recorded

for later adjustment. If a constraint has no condition, the constraint is checked at

every frame.

A constraint unit may need both goal data and reference data, or only goal data.

The relevant data are collected at each frame. No calculation is needed for joint angle

data; the positions of points need to be calculated for position data and distance

data, and the orientation of points need to be calculated for orientation data. The

C H A P T E R 5. HANDLING MOTION PROCESSING CONSTRAINTS 64

time required for calculating the required data at all frames is not a problem if the

skeleton is not too complicated. For example, for the human figure skeleton used in

our experiments, time is not a problem (no more time than the motion transformation

itself).

Since the constraint units in a constraint condition are linked with logical 'AND'

only, it is very easy to check the condition: for each condition unit, only the frames

that have "passed" the check of all previous condition units need to be checked. The

only challenge lies in how to find the real local minimum and maximum frames of

relevant data. Figure 5.11 illustrates the problem: most likely, point A and B are

not the local maximum points the animator wanted. Point A might just be noise,

and one possible way to get rid of it is to smooth the concerned data first, but a

simple smoothing algorithm may shift the real minimum or maximum point slightly.

We take a simpler approach: intuitively a noise perturbation is very narrow, and

motion transformation techniques are applied to densely-sampled data, therefore, if

the width of a local minimum or maximum point (defined as the w shown in figure

5.11) is less than a threshold specified by the animator, we can consider it as noise

instead of a minimum or maximum frame. To handle the circumstances of point B ,

we first get the list of all local minimum and maximum points, calculate all the slopes

between two adjacent points, and get the average of the absolute value of the slopes,

say slope-average. For each local minimum and maximum point, if the slopes on both

sides are less than p*slope-average, where p is a threshold value, then the point will

not be taken as a local minimum or maximum point.

Although in most cases we can get only the local minimum and maximum frames

the animator really wants if the threshold values are carefully selected, we have not

essentially solved the problem; animators are advised to check constraints on a seg-

ment of the movements and thus turn a local minimum or maximum condition to a

global minimum or maximum condition whenever it is possible.

After the condition is checked, the constraint body is checked at the frames where

the condition is satisfied. If there is no constraint condition, or the condition is valid

at all the frames that the constraint body is violated, then, as shown in Figure 5.12,

the violation segment (the segment between violation-begin frame and violation-end

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS 65

Figure 5.11: Problem of local minimum and maximum

frame) will be the segment where the constraint body is violated, and the frame with

greatest violation will be the frame for later adjustment (called adjustment frame in

the following discussion). Note that the curve in the figure represents the difference

between goal data to reference data if there are reference data in the constraint unit,

otherwise, it is the goal data. If the constraint has a condition, some of the frames

where the constraint body is violated may not satisfy the condition, and therefore

those frames does not violate the constraint, as shown in Figure 5.13. When only

a part of the motion sequence is specified to be checked, this situation may also

occur. In these cases, the constraint is satisfied does not mean the constraint body is

satisfied. The most common special case of Figure 5.13 (b) is when the violation-begin

and violation-end frame are the same, as shown in Figure 5.13 (c). This special case is

common because whenever there is a maximum or minimum condition. After all the

constraints are checked, all the violations are listed in the order of their adjustment

frame.

5.3.3 Constraint violat ion adjustment with inverse

kinematics

After the violations are detected, inverse kinematics is used to adjust the violations

at their adjustment frame if the relevant data is not a joint angle. Inverse kinematics

is applied only to the adjustment frame in the case of Figure 5.12, and used to the

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS

/
adjustment frame

violation-begin fra
\

violation-end frame

I

given value

goal-data - reference-data

smoothing frame

Figure 5.12: Detecting, adjusting and smoothing violations of uncoditional constraint

adjustment frame, violation-begin frame and violation-end frame in the cases of Figure

5.13.

If more than one violation needs to be adjusted at the same frame, multiple goals

are set up for the inverse kinematics; if the goals are in conflict and the constraints

cannot be satisfied at the same time, we assume that the animator made a mistake

in constraint specification. For example, when two points in the same link of the

skeleton need to be set to their desired positions, it is possible those two goals can

not be reached at the same time. Therefore, animators should avoid specifying two

potentially conflictive goals in the same link.

As presented in Section 3.2, there are many approaches to the inverse kinematics

problem, and three implementations are available: the optimization based method

implemented by S. Bawa [7], the Jacobian transpose method and the CCD method

implemented by C. Welman 1581. In our problem, the manipulator is often in a singu-

lar configuration, for example, for a walking movement, a possible constraint violation

is the intersection of a foot into the floor, and the foot should be adjusted to be on the

floor. In most cases, the leg is fully stretched at the frame to be adjusted, and this is

a singular configuration. Also our system is intended to work at interactive speeds,

therefore, in this work, the CCD method is chosen to pull the end-effector from a

constraint violation position to its desired position because the Jacobian transpose

method suffers from singularity problems and the optimization based method is too

slow to be used in an interactive environment. The CCD method implemented by C.

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS

adjustment frame

smoothing frame /
smoothing frame

given value

violation begin frame
goaldata - reference data

violation end frame

f
goal-data - reference data

smoothing frame \,
: : : , '

/ 2 2
violation begin frame violation end frame given

('4

goal-data - reference-data

smoothing frame

/
adjustment frame

\
given value

(4
Figure 5.13: Detecting, adjusting and smoothing violations of conditional constraint

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS

Figure 5.14: Goal for distance data

Welman can handle linear geometric constraints during the inverse kinematics proce-

dure, and this enables us to impose the linear constraints on the skeleton, and thus

consider linear constraints during the adjustment of non-linear constraint violations.

The goal for the inverse kinematics problem can be to achieve a position, an

orientation, or a weighted combination of both of them. As shown in Figure 5.12 and

5.13, if reference data is available, the difference between goal data and reference data

is checked against the given value; if there are violations which need to be adjusted,

goal data will be adjusted, i.e., inverse kinematics will be applied only to the goal

point (d a t a l in the constraint specification). We need more explanation on the goal

setup for inverse kinematics when distance data is concerned. In this case, the goal

data is a distance between two points, say AB, and the position of A (d a t a l in the

constraint specification) will be modified to make the distance between A and B equal

to r , while B (d a t a 2 in the constraint specification) will be fixed. As shown in Figure

5.14, A can be "pulled" to any point on the circle centered at B with radius r to make

1 ABl = r . We choose A' to make the change minimal.

Two choices for the initial state for the inverse kinematics problem are provided

to animators: the current state of the adjustment frame, or the state of one of the

smoothing frames. The initial location is always the location of the adjustment frame.

Generally, the former choice makes the resulting posture of the skeleton closer to the

original posture at the adjusted frame and thus makes the change to the original

motion smaller; the latter choice makes the resulting posture closer to that of the

smoothing frame and thus makes the motion smoother. In most cases, there is no

obvious difference.

To make the change to the original motion as small as possible, if the point to

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS

be adjusted is specified by joint J, we choose the nearest ancestor of J with multiple

children to be the anchor for the inverse kinematics. Only the state of joints between

J and the anchor will be changed during the inverse kinematics procedure. We have

assumed that the reference point is fixed during the inverse kinematics procedure,

therefore, one restriction of the constraint body is that the reference point should not

be in the same link with the goal point and below the goal point's anchor.

If the goal is outside the space that can be reached by the point to be adjusted, for

example, the foot can not reach the floor even if the leg is fully stretched, the location

of the skeleton has to be changed, and this change will also be smoothed locally.

5.3.4 Motion smoothing with quaternion interpolation

After the violations are adjusted at adjustment frames, we need to providing local

smoothing around the violations. Only the joint angles that have been modified

for adjustment are interpolated. If the relevant data are joint angles, interpolation is

applied directly to those frames between the adjustment frame and smoothing frames,

as shown in Figure 5.12, or between the smoothing frame and the violation-begin or

violation-end frame in Figure 5.13; otherwise, the dashed curve in Figure 5.12 and

5.13 is not interpolated directly from the relevant data; instead, the joint angles are

interpolated in the form of quaternions.

In the cases of Figure 5.13 (a) (b), we have to get the pose of the skeleton at

violation-begin frame and violation-end frame, then interpolate between the those five

key frames: the smoothing frames, the beginning and end frames, and the adjustment

frame. We cannot just interpolate between the adjustment frame and the smoothing

frames as in the case of Figure 5.12, because that interpolation would not adjust the

entire violation segment to valid state, as shown in Figure 5.15.

The smoothing width is the number of frames between the smoothing frame and

the violation-begin or violation-end frame, and it is specified by the animator. When

a smoothing frame lies out of the range of the motion signal being checked because

the adjustment frame is near to the beginning or end of the signal, the motion signal

is extended to that range with the value of the violation-begin frame or violation-end

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS 70

adjustment frame

smoothing frame /
smoothing frame

. . , - /
'/ \L

violation begin frame violation end frame

Figure 5.15: More than two interpolation segments needed

frame.

As discussed in Section 3.3.2, quaternion interpolation offers much smoother in-

terpolation than with three independent angles and it is often used in keyframing

animation. In this work, joint angles at each joint are converted into quaternions and

after the quaternions are interpolated, they are converted back to joint angles.

We used the quaternion interpolation algorithm implemented in LifeForms[31],

which was intended to interpolate quaternions between key frames. It is an implemen-

tation of Shoemake's algorithm [49], but modified to add the automatic bias control

discussed by Kochanek [34]. This algorithm can handle an irregular keyframing space

and the "undershoot" and "overshoot" problems, which is very important in our sit-

uation. The number of frames between the control points may be different; because

the adjustment frame is the minimum or maximum point in Figure 5.12 and Figure

5.13 (c), it is very important to ensure that the interpolated curve does not have any

minimum or maximum points between the adjusted frame and the smoothing frames,

i.e. no undershoot or overshoot problem.

Constraint body with EQUAL unit types are usually used along with minimum

or maximum condition. This is very useful when the animator wants to impose a

constraint like "reach some place". Although "lock" constraint is not useful for linear

constraint as we have discussed before, it is a useful type of nonlinear constraint.

C H A P T E R 5. HANDLING MOTION PROCESSING C O N S T R A I N T S

smoothing frame adjustment frame smoothing frame

given value (lock value)

Figure 5.16: impose lock constraint

We do not separately define "lock" constraint as a constraint type, but it can be

imposed using EQUAL constraint type. One problem is obvious if we look at Figure

5.12: after the adjustment, the relevant data is locked to the lock value only at the

adjustment frame. This is because the smoothing frames are not in the lock state,

therefore the frames in the interpolated segment are not in the lock state. Imposing

nonlinear lock constraint in this way can get desirable result only when the frames on

both sides of the violation segment are in the lock state, as shown in the Figure 5.16.

The violation segment cannot be too long, otherwise there may be an undershoot or

overshoot problem. If it is not the case in Figure 5.16 and the animator has to impose

a lock constraint, the corresponding body part should be masked during the motion

transformation.

5.3.5 Examples

As an example, Figure 5.17 shows the result of handling the non-linear constraints

specified for a drink in section 5.3.1. In Figure 5.17 (a), the hand goes beyond the

mouth due to the emphasis on low frequency bands of a captured normal drink move-

ment. In (b), the cup does not reach the mouth because the gains of low frequency

bands are set to low values; the picture is the snapshot when the hand comes nearest

to the mouth. After the adjustment, the cup reaches the mouth exactly in both (a)

and (b), and the characteristics are preserved in the modified movement. The cup is

not displayed in the figure, therefore there is a distance between the hand and the

mouth after the adjustment.

C H A P T E R 5. HANDLING MOTION PROCESSING CONSTRAINTS 72

(b)

Figure 5.17: Result of non-linear constraint handling

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS

5.3.6 Discussion

In the system which has been developed, the animator can specify a constraint by

filling in forms or by entering the constraints following a simple grammar. Text-

typing takes less steps, but all the elements of a constraint must be in a certain

format and order, and might only be prefered by animators who are very familiar

with the constraint grammar. Form-filling takes more steps, but the elements of a

constraint do not need to be filled in with a particular order, and the system will

ensure the form is filled correctly; furthermore, many of the fields in the forms are

provided with default values which are seldom changed, therefore, new users may

prefer form-filling.

Multiple constraints can be specified at the same time, and then checked sepa-

rately, and the violations will be modified in the order of their adjustment frames

without knowing which constraint a particular adjustment results from. In this way,

all constraints are checked before any modification is made, and the modification of

one constraint has no influence on the checking of another constraint. If animators

want to check the constraints on the result of handling previous constraints, they can

specify , check, and adjust one single constraint each time, and the process is repeated

once for each constraint.

Obviously, after constraint checking, the interpolated segment of the motion does

not preserve the characteristics of the original motion, and it is impossible to adjust

the constraint violations without losing some characteristics of the motion. Because

we only use the information of the frame with greatest violation for adjustment, all

other information contained in the violation segment is lost. A possible solution to

this problem is to record all minimum and maximum frames in a violation segment,

set their goals for adjustment correspondingly, and those minimum and maximum

frames can be used as key frames for interpolation. The challenge is how to set

up their goals. We assume that constraint violation segments are short, and the

interpolated segments of motion do not affect the overall characteristics of the whole

motion.

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS 74

5.4 Constraint handling with more control from

animators

In the constraint handling methods presented in Section 5.2 and 5.3, constraints are

handled totally by the system after they are specified by the animator. This makes it

possible for the animator to control the constraint handling at a high level. We believe

that most, but not all geometric constraints can be handled this way by our system.

Furthermore, some animators want to play a bigger part in the procedure of constraint

handling for full control over the animated motion; therefore, we provide some tools

through which animators can control the constraint handling by manipulating relevant

data in an interactive way or by editing the posture of the skeleton at a few key frames.

These tools are provided as complementary approaches to those we have discussed in

Section 5.2 and 5.3. The tools presented in this section can also be used for more

general purpose, e.g., editing movements.

5.4.1 Signal curve editor

In the previous discussion, we assumed that the animator had a rough idea about

the nature of the motion under consideration, and that the constraint specification is

based on this rough information. In most cases, this rough information is enough, but

sometimes more accurate information may be desirable. To provide more accurate

and detailed information about a motion, we provide the specific information the

animator requires at all frames with a curve, which we call a signal curve , as shown

in Figure 5.18. We can provide information about joint angles, positions, orientations,

and distances. Animators can specify the information they want in the same way that

they specify the relevant data in non-linear constraints.

In Section 4.3, we edited a wave function, then applied it to a motion signal to

get a new motion; here we can edit the motion signal directly, therefore, aside from

providing accurate information which animators require, the signal curve also enables

animators to detect and adjust constraint violations at a frame level, and if it is

the information about joint angles, animators can also control the smoothing of the

CHAPTER 5. HANDLING MOTION PROCESSING CONSTRAINTS 75

Figure 5.18: Signal editor

motion. For example, with the displayed signal curve, it is not difficult for animators

to determine at which frame a local minimum or maximum frame occurs. Animator

can also select the control frames on the displayed signal for constraint adjustment and

motion smoothing as shown in Figure 5.18, where the dark point are the adjustment

frame, and the grey points are constrol points for smoothing. Animators can edit the

curve by pulling control points, and in this way they can decide how to adjust the

constraint violations.

After the animator has detected the violations, decided how to adjust them, and

selected the control frames for smoothing of the adjustment, the violations will be

adjusted in a smooth way. If the signal curve is for joint angle data, the animator

can control the interpolation curve between the control points by setting the control

parameters of interpolation, thus having control over the smoothing of the adjustment.

If the signal curve is for position, orientation, or distance, the procedure is the same

as that for handling non-linear constraints. First, get the posture of the skeleton at

the frame which is to be adjusted using inverse kinematics, and then interpolate the

posture of the skeleton between that frame and its control frames using quaternions.

C H A P T E R 5. HANDLING MOTION PROCESSING C O N S T R A I N T S

The signal curve editor provides animators with more control over constraint han-

dling but still avoid tedious editing work on the skeleton.

5.4.2 Constraint handling with displacement mapping

Editing a motion directly on a skeleton at many or all frames is painful work for an

animator, and it is unacceptable for handling constraints in our problem. However,

direct editing can be acceptable if the animator just needs to edit one or a few frames

on the skeleton and a skeleton editing tool at a relatively high level is available which

enables the animator to "pull" an end-effector to a desired position without setting

up each joint angle along the link, e.g., by using inverse kinematics. The displacement

mapping technique we have discussed in Section 3.4.2 can be used for this purpose

[131.
To handle constraint violations resulting from motion transformations, the motion

produced is displayed, the animator finds the violations, and then changes the pose

of the skeleton at one or a few frames where the constraints are violated. After this,

the changes made to these frames are realized as displacements, a spline curve is

fitted through the displacements for each degree of freedom involved, and added to

the original movement.

Handling constraints in this way gives the animator full control. The animator

can adjust the skeleton to the desired posture at the adjustment frames, and con-

trol the adjustment of the whole movement by adjusting parameters for displacement

mapping. Since displacement mapping works at interactive speeds, and setting the pa-

rameters is also convenient, it is possible to edit the skeleton at the adjustment frames

once and apply the displacement mapping several times until getting a satisfactory

result.

In this chapter, we have presented the constraint handling techniques we developed

in this work, and in next chapter, more experiments will be carried out to evaluate

their performance.

Chapter 6

Experiments and analyses

We have discussed the motion transformation system and its constraint handling in

previous chapters, and some examples are given to illustrate its performance. In this

chapter, we first briefly discuss how to analyze the frequency properties of a movement,

and then present the results of more complex constraint handling experiments to

illustrate the problems that this system handles successfully and identify those where

this approach cannot do very well. The movements used in many of these experiments

are generated using a keyframe animation system called LifeForms[31], and the results

are displayed also using this animation system.

6.1 Frequency analysis

To generate a useful new movement from an existing movement using our motion

transformation system, the animator usually has to know the frequency content of

the movement, i.e., to know which frequency bands reflect which patterns of the

movement. In Chapter 4, we have briefly discussed this using a walk movement

as an example. Generally, the high frequency bands contain details and noise in

the movement and low frequency bands determine the basis of the movement. This

general knowledge is not enough to understand the details of the movement since the

frequency property is different from movement to movement. For example, from the

knock movement generated by motion capture, we have seen in Chapter 4 that the

CHAPTER 6. EXPERIMENTS AND ANALYSES

"knock " pattern is contained in the high frequency bands. The frequency property

can be used to guide the generation of new movements and avoid some constraint

violations.

To identify the movement patterns contained in a particular frequency band or

a group of frequency bands, animators can set the gains of those frequency bands

to zero and keep the gains of other bands unchanged, and thus we know that these

particular frequency bands contain the movement patterns which are in the original

movement but missing in the resulting movement. We can also keep the gains of

the frequency bands we are interested in unchanged, and set the gains of all other

frequency bands to zero, thus we know that the frequency bands we are interested in

contain the remaining movement pattern in the result.

The frequency properties for different motion sequences can be very different. For

some motion sequences, specific frequency bands contain different parts or phases

of the movement; for example, for a running and then spiking-valley-ball sequence

generated using LifeForms, we find that most of the running movement is in the low

frequency bands while most of the spiking-valley-ball movement is in the middle fre-

quency bands. This is because the spiking-vallay-ball movement is much faster than

the running movement. For some other mot ion sequences, different frequency bands

may contain the movement of different body parts, for example, in a swimming move-

ment with which we have experimented, low frequency bands contain the movements

of hands, and middle frequency bands contains the movements of the legs. If the

animator is interested in only one movement in the motion sequence, then she/he

can apply the motion transformation technique to only one segment of the motion

sequence, or to only selected parts of the body.

We analyzed the frequency property of various movements, and found that the

motion transformation technique works better for periodic movements such as walks

than aperiodic movements, and this is to be expected since frequency analysis works

better on periodic signals.

CHAPTER 6. EXPERIMENTS AND ANALYSES

original jump transformed jump checked transformed jump

Figure 6.1: Impose linear constraint on jump

6.2 Experimental evaluation of the constraint han-

dling

In this section, we will present some experiments we have carried out to evaluate

the constraint handling in motion transformations, and we will provide analysis and

discussion of the results of the experiments.

The linear constraint handler is simple, and it works very well in all experiments

we have carried out. In the example of Figure 6.1, we emphasize the middle frequency

bands of a jump movement and get an exagger'ated jump with large movements in

both the hands and the legs. In the resulting jump, the right leg gets into an unusual

position, and we adjust this physically impossible result by imposing a linear con-

straint on the joint angle of the knee: it must be less than 150 degrees. Snapshots of

the original jump, the jump after transformation without a constraint check and the

jump with a constraint check are displayed in Figure 6.1 (a), (b) and (c) respectively.

The figures in Figure 6.2 illustrate the handling of the hit-the-floor constraint for

C H A P T E R 6. EXPERIMENT! 4 N D ANALYSES

walking above floor

(4

check with toes

('4

check with ankle

(4

orientation constraint

(4

joint angle limit

(4

check two legs

(f)

Figure 6.2: The "hit-the-floor" constraint for walking

CHAPTER 6. EXPERIMENTS AND ANALYSES

walking.

(a) is the result of dramatically emphasizing the middle frequency bands of a

normal walk; the feet do not hit the floor during the walk, and also, the joint

angle of knees are out of normal limits. In this experiment, we specify the

constraint in this way: when one foot is off the floor, the other must be on the

floor. In (b),(c),(d) and (e), we just put the hit-the-floor constraint on right

foot.

(b) is the result when we specify the constraint based on right toes: when the

position of left ankle is 7cm higher than the floor, the position of right toes must

not be 2cm higher than the floor. The position of right toes will not be lower

than 2cm above the floor after the adjustment because the position of right toes

at the smoothing frames are no lower than 2cm above the floor.

0 (c) is the result when we specify the constraint in a similar way, but the con-

straint body is based on right ankle: the position of right ankle must not be 7cm

higher than the floor. In the resulting animation, the constraint on right ankle

is satisfied, but the toes intersect the floor. From the results of (b) and (c), we

can see it is important to choose an appropriate goal point for a constraint.

(d) is the result of imposing an orientation constraint on the resulting movement

of (c); now the right foot is directed forward instead of into the floor.

0 (e) is the result of imposing the non-linear constraint of (b) and a linear con-

straint on the knees at the same time. Both of the constraints are satisfied in

the resulting animation.

0 When we specify the "hit-the-floor" constraint on one leg, we use the state of

the other. The check and adjustment of the constraint on one leg will change the

movement of that leg, but this change is unknown to the check and adjustment

of the constraints on the other leg, which may lead to undesirable results. When

we try to impose the "hit-the-floor" constraint on both legs at the same time, we

get an awkward walk as shown in (f). To get a reasonable result, the constraint

C H A P T E R 6. EXPERIMENTS AND ANALYSES

Figure 6.3: The no-intersection-with-floor constraint for walking

must be imposed on the legs sequentially, i.e., imposing the constraint on one

leg first, then imposing the constraint on the other leg and checking it on the

resulting movement of checking the constraint on the first leg.

Another constraint we imposed on a walk is that the feet cannot intersect the

floor. In Figure 6.3, (a) is the result of setting the low frequency gains to a low value;

we can see that the feet intersect the floor. This constraint is easy to specify: just

keep the feet above the floor at all times; (b) is the resulting walk after applying the

constraint.

As we have discussed before, locking a body part to a position during the entire

motion sequence is not well supported in our constraint handling system in the case

of Figure 5.12, but usually, the lock constraint is not continuously violated from the

beginning to end of the motion sequence, and the violation is the case of Figure 5.16.

In that case, we can use the EQUAL, ABOVE or BELOW unit types to impose lock

constraints. In the "hit-the-floor" example we have given above, the feet are required

to be locked to the floor under certain conditions, and this constraint is specified using

a BELO W-GIVEN unit type.

CHAPTER 6. EXPERIMENTS AND ANALYSES

Figure 6.4: The result of imposing lock constraint

"Lock" is an important type of nonlinear constraint; for example, in one dance

sequence which we experimented, the feet never get off the floor, after motion trans-

formation, both feet get off the floor, and thus an unnatural result is produced. The

figures in Figure 6.4 show the result of imposing lock on the feet. The first three

figures are the snapshots of the uncorrected movement at different frames, and the

second three are the snapshot of the corrected movement at those frames. During the

whole movement, the toes are locked to the floor.

Whether a generated movement violates some constraints might need to be deter-

mined by the animators. For example, for a shot-put movement, the original shot-put

figure never lifts either foot off the ground, and we get a more powerful shot-put by

CHAPTER 6. EXPERIMENTS AND ANALYSES

emphasizing the gains of low and middle frequency bands. In the resulting move-

ment, the right foot lifts up. Figure 6.5 (a) and (c) are two snapshots of the original

shot-put, (b) and (d) are two snapshots of the resulting shot-put. Lifting the foot is

desirable for pushing out the ball in those frames. However, when teh body moves to

the right side, the right foot should not be lifted to keep the body in balance, but in

the resulting shot-put, when the body moves to the right side, the right foot is lifted,

as shown in Figure 6.6(a), and this is not desirable. We specify the constraint like

this: when the ball is on the right side of the body, the right foot must be locked

onto the floor. The result of handling this constraint is shown in Figure 6.6 (b). The

animator can also just let the constraint handler check one selected segment of the

movement, and no constraint condition is required; the result is shown in Figure 6.6

(c), which has no big difference from Figure 6.6 (b). With an animation tools which

can display the key frames of a motion sequence, such as LifeForms, it is easy for

animators to determine which part of the motion sequence needs to be checked for a

particular constraint. This example also shows that some non-geometric constraints

like the balance of body can be achieved using geometric constraints.

Applying motion transformation to only a part of the skeleton can avoid some

constraint violations. When a lock constraint needs to be imposed, masking related

body parts might be the best way in many cases. In our motion signal processing

system, data for position and orientation of the whole body are processed in the

same way as joint angles, but sometimes, transformation of those data can lead to

undesirable results; for example, when the motion transformation technique is applied

to a gymnastic routine, if the orientation of the whole body is also transformed, we get

a mess, and one snapshot is shown in Figure 6.7 (a); when it is masked and therefore

not transformed, we get a reasonable result, and the snapshot of the same frame is

shown in Figure 6.7 (b).

CHAPTER 6. EXPERIMENTS AND ANALYSES

(a): original (b): low/middle frequency emphasized

(d): low/middle frequency emphasized

Figure 6.5: Lift right foot for shotput

CHAPTER 6. EXPERIMENTS AND ANALYSES

(4
Figure 6.6: Lift right foot for shotput

Figure 6.7: Mask the orientation of the body

Chapter 7

Conclusion and future work

In this thesis, we provide animators with several convenient ways to handle the con-

straints for motion signal processing. The constraint violation problem is inherent to

motion signal processing techniques and cannot be avoided. The constraint handling

system described in this work can successfully handle most of the geometric constraint

violations resulting from motion signal processing at interactive speeds, and animators

do not have to do tedious editing work at each key frame, thus retaining the major

advantage of motion signal processing. These constraint handling methods work for

all kinds of motions on all kinds of articulated figures.

We first generally reduce the chance and degree of constraint violations by off-

setting motion data and applying consistent dynamic timewarping (when applicable)

before any motion transformation is applied. Linear constraint violations are suc-

cessfully adjusted with bound mapping and motion signal compression techniques.

The major contribution of this thesis is the design of a novel way for animators to

specify non-linear geometric constraints, and for the constraint handling system to

check the constraints, to adjust their violations with inverse kinematics technique,

and to smooth the adjusted motion using quaternion interpolation. We also provide

two complementary constraint handling methods, using a signal curve editor and dis-

placement mapping techniques, to give animators relatively low level control over the

constraint handling.

Although the constraint handling techniques presented in this thesis are intended

CHAPTER 7. CONCLUSION AND FUTURE WORK

to be used with motion signal processing and handle the constraint violations resulting

from motion transformations, they can also be used for more general purposes. For

example, they can be used to impose constraints on existing movements which are

not necessarily the result of motion transformations.

The constraint handling system is intended to be used for all kinds of movements

of all kinds of articulated figures, therefore, every constraint must be specified by

the animator. When it is used for a particular skeleton and for a par t iculs type

of movement, some constraints should always be satisfied by default. For example,

if it is used for human walking, walking "above floor" and walking "on the floor"

should be default constraints. Since constraints can be specified in text, this is not

a problem; those default constraints can be attached in the skeleton description file,

and can be read to the constraint handling system and applied. The animator just

needs to specify those constraints once. A constraint base may be built in this way

for any particular skeleton.

Future work

This work provides a novel way to specify non-linear geometric constraints. The sys-

tem should be used, examinated, and evaluated by animators, and a more friendly user

interface and more convenient constraint specification methods can then be designed

based on their feedback.

Editing motion sequences with the constraint handling system described here is

much easier than the painful editing at each key frame which otherwise would be

necessary. However, the animator still needs to be familiar with the skeleton, and

has use quantities to specify a point. An alternative approach would be to let the

animator specify the points on a display of a skeleton. The challenge lies in the fact

that the specification must be 3 dimensional, and after specifying the points, it is still

very hard to specify the constraints. This should be investigated.

In our constraint handling system, if a constraint is violated too much, or the

violation segment is too long, the motion in the segment which is adjusted might be

too fast or too slow. In Figure 5.13 (c), if the current state is too far away from

CHAPTER 7. CONCLUSION AND FUTURE WORK

its goal at the adjustment frame, the movement in the adjustment segment may be

fast. The animator may want to lengthen the smoothing segments; this works but a

longer smoothing segment means losing more characteristics of the movement being

processed. On the other hand, in Figure 5.12 and 5.13 (a) (b), when the violation

segment is too long, the movement in the adjustment segment will be slow, and it may

even look like as if the figure is not moving. It seems that one solution is to change

the length of the checked motion sequence, e.g., by adding or cutting some frames.

The problem with this solution is to find a way to process the motion sequence of

other body parts.

Although quaternion interpolation guarantees that there is no overshoot or under-

shoot problem for quaternions, it does not guarantee that there is no overshoot or un-

dershoot for positions or orientations because position and orientation are non-linear

functions of the interpolated quaternions. Therefore, when the violation segment is

very long, there may be an overshoot or undershoot problem; we encountered this

problem in one experiment, where the feet touch the floor at the smoothing frames

and the adjustment frame, but do not touch the floor at some frames between them.

Adding more control frames in the violation segment might be a solution to this

problem.

In summary, the constraint handling system described here is complete and pro-

vides extensive functionality. It could be improved by including user friendly tools to

handle a number of difficult situations.

Bibliography

[I] Joel Auslander, Alex Fukunaga, Hadi Partovi, Jon Christensen, et al. Further ex-

perience with controller-based automatic motion systhesis for articulated figures.

ACM Transaction on Graphics, 14(4):311-336, October 1995.

[2] Norman I. Badler, Kamran H. Manoochehri, and Graham Walters. Articulated

figure positioning by multiple constraints. IEEE Computer Graphics and Appli-

cations, 7(6):28-38, June 1987.

[3] David Baraff. Linear-time dynamics using Lagrange multipliers. In Computer

Graphics (SIGGRAPH '96 proceedings), pages 137-146, August 1996.

[4] Alan H. Barr, Bana Currin, Steven Gabriel, and John F. Hughes. Smooth inter-

polation of orient ations with angular velocity constraints using quaternions. In

Computer Graphics (SIGGRAPH '92 proceedings), pages 313-320, 1992.

[5] Richard H. Bartels and Ines Hardtke. Speed adjustement for key-frame interpo-

lation. In Proceedings of Graphics Interface '89, pages 14-19, June 1989.

[6] R. Barzel and A. Barr. A modelling system based on dynamic constraints. Com-

puter Graphics, 22(4):179-188, 1988.

[7] Sumeet Bawa. Interactive Creation of Animations: An Optimization Approach

to Real-Time Inverse Kinematics. M.Sc. Thesis, School of Computing Science,

Simon Fraser University, 1995.

[8] P. Bergeron and P. Lanhapelle. Controlling facial expressions and body move-

ments in the computer-generated animation short: Tony de Peltrie. In Computer

BIBLIOGRAPHY 9 1

Graphics (SIGGRAPH '85), Course Notes: Techniques for Animating Charac-

ters, 1985.

[9] Lynne Shapiro Brotman and Arun N. Nelravali. Motion interpolation by optimal

control. In Computer Graphics (SIGGRAPH '88 proceedings), pages 309-315,

August 1988.

[lo] A. Bruderlin and T . Calvert. Goal directed dynamic animation of human walking.

Computer Graphics, 23(3):233-242, 1989.

[I l l Armin Bruderlin. Procedural Motion Control Techniques for Interactive Anima-

tion of Human Figures. Ph.D Thesis, School of Computing Science, Simon Fraser

University, 1995.

[12] Armin Bruderlin and Tom Calvert. Interactive animation of personalized human

locomotion. In Proceedings of Graphics Interface '93, pages 17-23, 1993.

[13] Armin Bruderlin and Lance Williams. Motion signal processing. In Computer

Graphics (SIGGRAPH '95 proceedings), pages 97-104, August 1995.

[14] P. Burt. A multiresolution spline with application to image merging. ACM

Transaction on Graphics, 2(4):217-236, October 1983.

[15] P. Burt. Multiresolution method for image merging. In Computer Graphics

(SIGGRAPH '86 proceedings), Course Notes: Advanced Image Processing, Au-

gust 1986.

[16] Tom Calvert, Armin Bruderlin, John Dill, Thecla Schiphorst, and Chris Welman.

Desktop animation of multiple human figures. IEEE Computer Graphics and

Applications, 13(3):18-26, May 1993.

[17] John E. Chadwick, David R. Haumann, and Richard E. Parent. Layered construc-

tion for deformable animated characters. In Computer Graphics (SIGGRAPH

'89 Proceedings), volume 23, pages 243-252, July 1989.

BIBLIOGRAPHY 92

[18] Michael F. Cohen. Interactive spacet ime control for animation. In Computer

Graphics (SIGGRAPH '92 proceedings), pages 293-302, 1992.

[19] R. Demori and D. Probst. Handbook of Pattern Recognition and Image Process-

ing. Academic Press, 1986.

[20] David R. Forsey and Jane Wilhelms. Techniques for interactive manipulation of

articulated bodies using dynamic analysis. In Proceedings of Graphics Interface

'88, pages 8-15, June 1988.

[21] H. Fuchs, Z. Kedem, and S. Uselton. Optimal surface reconstruction from planar

contours. Communication of the ACM, 10(10):693-702, 1977.

[22] Michael Girard. Constrained optimization of articulated animal movement in

computer animation. In Norman I. Badler, Brian A. Barsky, and David Zeltzer,

editors, Making them move: mechanics, control, and animation of articulated

figures, pages 209-232. Morgan Kaufmann, 1991.

[23] J . E. Gomex. Twixt: a 3D animation system. Computers and Graphics, 9(3):291-

298, 1985.

[24] S. Guo, J. Roberge, and T. Grace. Controlling movement using parametric frame

space interpolation. In Computer Animation '93, proceedings, pages 216-227,

1993.

[25] James K. Hahn. Realistic animation of rigid bodies. In Computer Graphics

(SIGGRAPH '88 Proceedings), volume 22, pages 299-308, August 1988.

[26] Gabriel Hanotaux and Bernard Peroche. Interactive control of interpolation for

animation and modeling. In Proceedings of Graphics Interface '93, pages 201-208,

1993.

[27] Pat Hanrahan and David Sturman. Interactive animation of parametric models.

The Visual Computer, 1(4):260-266, December 1985.

BIBLIOGRAPHY 93

[28] John C. Hart, George K. Grancis, and Louis H. Kauffman. Visualizing quaternion

rotation. ACM Transaction on Graphics, 13(3):256-276, 1994.

[29] C. Herr and B. Wyvill. Towards generalised motion dynamics for animation. In

Proceedings of Graphics Interface '90, pages 49-59, 1990.

[30] Jessica K. Hodgins, Paula K. Sweeney, and David G. Lawrence. Generating

natural-looking motion for computer animation. In Proceedings of Graphics In-

terface '92, pages 265-272, May 1992.

[31] Kinetic Effects Inc. LifeForms (1.3). Burnaby, BC, 1993.

[32] Hyeongseok KO and Norman I. Badler. Straight line walking animation based on

kinematic generalization that preserves the original characteristics. In Proceedings

of Graphics Interface '93, pages 9-14, 1993.

[33] Hyeongseok KO and Norman I. Badler. Animating human locomotion with inverse

dynamics. IEEE Computer Graphics and Applications, 16(2):50-59, 1996.

[34] D. Kochanek and R. Bartels. Interpolating splines with local tension, continuity

and bias control. In Computer Graphics (SIGGRAPH '84 proceedings), pages

33-41, 1984.

[35] Yoshihito Koga, Koichi Kondo, James Kuffner , and Jean-Claude Latombe. Plan-

ning motion with intentions. In Computer Graphics (SIGGRAPH '94 proceed-

ings), pages 395-407, 1994.

[36] J . Lasseter. Principles of traditional animation applied to 3-D computer anima-

tion. Computer Graphics, 21(4):35-44, 1987.

[37] Marc Lebrun. Digital waveshaping synthesis. Journal of the Audio Engineering

Society, 27(4):250-266, 1979.

[38] P. Inkwell Litwinowicz. A 2 112-D animation system. In Computer Graphics

(SIGGRAPH '91 proceedings), pages 113-122, 1991.

BIBLIOGRAPHY 94

1391 Zicheng Liu, Steven J . Gortler, and Michael F. Cohen. Hierarchical spacetime

control. In Computer Graphics (SIGGRAPH '94 proceedings), pages 35-43, 1994.

[40] Anthony A. Maciejewski. Dealing with the ill-conditioned equations of motion

for articulated figures. IEEE Computer Graphics and Applications, 10(3):63-71,

May 1990.

[41] Sang Mah, Thomas W. Calvert, and W. Havens. Nsail plan: An experience with

constraint-based reasoning in planning and animation. In Computer Animation

'94, pages 83-92, May 1994.

[42] J . Thomas. Ngo and Joe Marks. Physically realistic motion synthesis in anima-

tion. Evolutional Computation, 1(3):235-268, 1993.

[43] J . Thomas Ngo and Joe Marks. Spacetime constraints revisted. In Computer

Graphics (SIGGRAPH '93 proceedings), pages 343-350, August 1993.

[44] F . Parke et al. State of the art in facial animation. In Computer Graphics

(SIGGRAPH '90 proceedings), Course Notes, August 1990.

[45] Cary B. Phillips and Norman I. Badler. Interactive behaviors for bipedal ar-

ticulated figures. In Computer Graphics (SIGGRAPH '91 proceedings), pages

359-363, 1991.

[46] Cary B. Phillips, Jianmin Zhao, and Norman I. Badler. Interactive real-time ar-

ticulated figure manipulation using multiple kinematic constraints. In Computer

Graphics (1990 Symposium on Interactive 3 0 Graphics), pages 245-250, March

1990.

[47] T Sederberg and E Greenwood. A physically-based approach to 2-D shape blend-

ing. In Computer Graphics (SIGGRAPH '92 proceedings), pages 26-34, 1992.

[48] Ken Shoemake. Animating rotation with quaternion curves. In Computer Graph-

ics (SIGGRAPH '85 proceedings), pages 245-254, 1985.

BIBLIOGRAPHY

[49] Ken Shoemake. Quaternion calculus and fast animation, computer animation: 3-

D motion specification and control. In SIGGRAPH 1987 Tutorial, pages 101-121,

1987.

[50] Scott N. Steketee and Norman I. Badler. Parametric keyframe interpolation

incorporating kinetic adjustment and phasing control. In Computer Graphics

(SIGGRAPH '85 Proceedings), volume 19, pages 255-262, 1985.

[51] G. Stern. Bbop - A program for 3-dimensional animation. In Nicograph Proceed-

ings, pages 403-404, 1983.

[52] A. James Stewart and James F. Cremer. Beyond keyframing: An algorithmic

approach to animation. In Proceedings of Graphics Interface '92, pages 273-281,

1992.

[53] D. Sturman. Interactive key frame animation of 3-D articulated models. In

Graphics Interface, pages 35-40, 1984.

[54] M. Unuma and R. Takeuchi. Generation of human motion with emotion. In

Computer Animation '93, proceedings, pages 77-88, 1993.

[55] Michiel van de Panne. Parameterized gait systhesis. IEEE Computer Graphics

and Applications, l6(2) :40-49, 1996.

[56] Michiel van de Panne, Eugene Fiume, and Zvonko Vranesic. Reusable motion

synthesis using state-space controllers. In Computer Graphics (SIGGRAPH '90

Proceedings), volume 24, pages 225-234, August 1990.

[57] Wenping Wang and Barry Joe. Orientation interpolation in quaternion space

using spherical biarcs. In Proceedings of Graphics Interface '93, pages 24-31,

1993.

[58] Chris Welman. Inverse Kinematics and Geometric Constraints for Articulated

Figure Manipulation. M.Sc. Thesis, School of Computing Science, Simon Fraser

University, 1993.

BIBLIOGRAPHY 9 6

[59] A. Witkin and M. Kass. Spacetime constraints. Computer Graphics, 22(4):159-

168, 1988.

[60] D. Zeltzer. Motor control techniques for figure animation. I E E E Compu ter

Graphics and Applications, 2(9):53-59, November 1982.

[61] D. Zeltzer. Representation of complex animated figures. In Proceedings of Graph-

ics Interface '82, pages 205-21 1 , 1982.

