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Abstract 

For many applications such as accounting, banking, business transaction processing 

systems, geographical information systems, medical record book keeping, etc., the 

changes made on their databases over time are a valuable source of information which 

can direct the future operation of the enterprise. In this thesis, we will focus on rela- 

tional databases with historical data or, in other words, time-related data, and try to 

extract from them some useful knowledge about their periodic behavior. The discov- 

ered knowledge could provide user some future guidance, to  which end techniques in 

knowledge discovery and data warehousing become important. 

Knowledge discovery and data warehousing have been increasingly important in 

handling and analyzing large databases efficiently and effectively. We can take ad- 

vantage of existing on-line analytical processing techniques widely used in knowledge 

discovery and data warehousing, and apply them on time-related data to solve peri- 

odic pattern search problems. 

The problems discussed in this presentation include two types. One is to  find 

periodic patterns of a time series with a given period, while the other is to find a 

pattern with arbitrary length of period. The algorithms will be presented, along with 

their experimental results. 
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Chapter 1 

Introduction 

Time is an important aspect of all real-world phenomena. Conventional databases 

model an enterprise as it changes dynamically by a snapshot at a particular point 

in time. As information is updated in a conventional database, its old, out-of-date 

data is discarded forever, its changes over time are thus lost. But in many situations, 

this snapshot-type of database is inadequate. They cannot handle queries related to 

any historical data. For many applications such as accounting, banking, econometrics, 

geographical information systems, medical record bookkeeping, etc., the changes made 

on their databases over time are a valuable source of information which can direct their 

future operation. Due to the importance of the time-varying data, efforts have been 

made to design temporal databases which support some aspect of time. While lots 

of theories have been published, temporal database design still remains in its infancy, 

hindered by the plethora of temporal data models and the absence of real-time data 

models [35] .  

In this thesis, we mainly focus on relational databases with historical data or, in 

other words, time-related data. We refer to such databases as time-related databases. 

1.1 Time-Related Databases 

There are numerous time concepts proposed to date for information preservation in 

temporal databases. Some, such as valid t i m e  [36] and logical t i m e  [ll], denote the 
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time a fact was true in reality [35]; opposed to them is the transaction time [36], 

representing the time the information was entered into the database. Besides these 

two concepts which are of general interest, there are also user-defined time, which 

indicates the semantics of the time values which are known only to the user, and 

decision time [ll], which is the time a decision occurred, etc. We can also describe a 

time as absolute or relative. Moreover, the semantics of each of these time concepts 

also depends on whether a relation models events or intervals. 

A temporal database model may support one or more of the time concepts we men- 

tioned. Our interest here lies on databases which model events. In these databases, 

each tuple in a relation corresponds to an event at one point of time. For example, ev- 

ery record in a sales registration relation refers to a transaction made by a customer 

at this particular time. The event represented by this tuple is only valid in time 

recorded in the tuple. Such a relation models events instead of intervals in which case 

an event represented by a tuple remains valid until next time the tuple is updated. 

To simplify the problem further, we also restrict our time-related databases to 

support only one time concept of the time domain. We assume that this time concept 

serves the purposes of both transaction time and valid time. Therefore, each event 

denoted by a tuple in a relation is associated with one time-stamp. 

To summarize, the time-related databases we focus on are, in fact, relational 

databases with time-related data which model events. The time domain in our sim- 

plified time-related database model has one time concept set on top of the assumption 

that transaction time and valid time coincide. 

We try to extract from time-related databases some useful knowledge that could 

provide user some future guidance, to which end techniques in knowledge discovery 

and data warehousing become important. 
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1.2 The Role of OLAP in Databases and Data Ware- 

housing 

Knowledge discovery and data warehousing have been increasingly important in han- 

dling and analyzing large databases efficiently and effectively. Among all the tech- 

niques applied in knowledge discovery and data warehousing, the most popularly used 

tools are on-line analytical processing (OLAP) tools. 

OLAP is a terminology for data generalization or abstraction. It is a technol- 

ogy that uses a multidimensional view of aggregate data to provide quick access to 

strategic information for further analysis [27]. The raw data in a database usually 

represents information in its most primitive concept level. If knowledge is extracted 

from and expressed using the raw data, it is often not meaningful enough for user 

to comprehend. Therefore, using OLAP techniques, raw data from large databases 

is generalized to higher levels in order to attain more meaningful and more useful 

knowledge. The data generalization can be achieved through approaches such as data 

cube [20, 25, 38, 411 and attribute-oriented induction [21, 231. 

In this thesis, we will take advantage of the existing on-line analytical processing 

techniques widely used in knowledge discovery and data warehousing, and apply them 

on time-related data for useful knowledge which can lead towards solutions to some 

interesting problems such as job dispatch, pattern discovering, similarity search, etc. 

Time-Related OLAP : Area of Applications 

Many enterprises such as bank, telephone company, hospital, stock market, etc. keep 

the historical data as their essential source of information. Time-related OLAP is 

undoubtedly a favorable solution to analyze such a large pool of data. There is much 

valuable knowledge that we can discover from this rich source of data which can 

sometimes be used to  solve some very complicated problems. 

Time-Related Job Dispatch 

Job dispatch is one such complicated problem. Enterprises, such as bank, have 
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collected tremendous amount of data on service, customer, department, and em- 

ployee information. A common problem that every manager of a bank branch 

may face is job dispatch - how to allocate the resources available at a time for 

high efficiency and high quality in serving the customers. We need a way to dig 

from a large set of data the critical time periods for a particular branch, the 

different types of services required at individual departments within these peri- 

ods, the available resources and personnel with certain expertise to be allocated, 

etc. Time-related OLAP can provide an effective way to locate the critical time 

periods and summarize them in a generalized format that can reveal periodi- 

cal patterns as well. The allocation of resources based on these critical periods 

needs some scheduling techniques, but time-related OLAP can also provide some 

guidance. 

Regularities of Time-Related Data Change 

Certain data need to  be updated either because time has changed and it has 

dominating influence over the data, or because some other data has changed due 

to the change in time. For example, the increasing in number of tourists in a city 

will result in an increase in revenue, while the number of tourists changes over 

seasons. Such regularities of time-related data change can easily be detected by 

finding the association among time and all time-related fields. 

Trend Pattern Directed Search 

Many time-related databases can also be characterized as time-series databases. 

For such a database, associated with each time-related field is a set of sequences 

of real values. These sequences constitute a set of curves over the time. The 

patterns discovered from some of these databases mainly serve for the purpose of 

indicating the trend or performance of objects contained in them, such as sales 

databases. The patterns thus found are called trend patterns. Time-related 

OLAP techniques can be used here to generalize the curves consisting of real 

values to higher level concepts. From the generalized description of each curve, 

we can further categorize and classify the curves into different patterns. For 

example, we may find a pattern discribing the sales trend of certain product 
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during a period of time to be up-down-up. The patterns discovered will be used 

for future reference on other curves to recognize their trend, performance, and 

SO on. 

Periodic Pattern Directed Search 

Another type of time-series database contains data hidden in which are periodic 

patterns. One example is the data collected in an electrocardiogram. We can 

again apply OLAP techniques to find the periodic patterns for future reference. 

As for the electrocardiogram application, a mismatch in the periodic pattern 

discovered can mean a heart failure. The difference between this and the pre- 

vious problem is that,  in the periodic pattern directed search, the emphasis is 

on repeating behaviors of a time series, while this periodicity concern is not an 

element in the previous trend pattern directed search. 

Similarity Analysis 

Last, but not least, is the similarity analysis among sequences in time-series 

databases. The purpose of this research topic is to find time sequences that are 

similar to a given sequence or to be able to find all pairs of similar sequences 

12, 3, 41. 

Despite the great variety of problems related to the above-mentioned research 

area, our interest in this thesis, however, is specifically devoted to the periodic pattern 

discovery from time-related databases. 

Periodic Pat tern Discovery 

Problems related to periodicity search is stated as problems of finding patterns oc- 

curring at regular intervals. Literally, the concept emphasizes on two aspects of the 

problem, namely, pattern and interval. Thus, given a sequence of events, we would 

like to find the patterns which repeat over time and their recurring intervals (period). 

For instance, given a sales database which records sales information of a company over 

a period of ten years, we may be asked to  find out if there is a yearly sales pattern in 
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these ten years, based on the monthly summarized data. After some analysis, we may 

find that the revenue of certain products reaches their yearly maximum each July. 

This is a periodic pattern. However, sometimes patterns do not repeat in a naturally 

segmented time interval such as hourly, daily, monthly, etc. The electrocardiogram 

is one such example. A person's heart does not often beat in a period describable 

by intervals in minute, hour, or so. Therefore, another type of question one may ask 

given the sales database is to find out the repeating patterns of a sequence as well as 

the interval which corresponds to the pattern period. 

Organization of Thesis 

The rest of the thesis is organized as follows. Chapter 2 outlines some existing work 

related to the thesis. The problem definition will be given in Chapter 3 along with 

some properties associated with periodic time series. We will try to solve two peri- 

odicity search problems. One is finding periodic behaviors with fixed period length, 

and the other with arbitrary period length. The approaches towards solving these 

two problems will be presented in Chapters 4 and 5 .  The algorithms will be presented 

and the experimental results will be analyzed in the two chapters. Some discussion 

will conclude the thesis in Chapter 6. 
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Related Work 

The problem of finding periodic patterns in a time-related large database involves 

two major concerns. In real-world applications, data mining tasks are applied to  

data consisting of thousands or millions of tuples. When temporal components are 

involved in a mining task, the size of the interested data could increase to an even 

larger size. Consequently, efficiency in handling large databases is our first concern 

to substantially reduce the computational complexity of this data intensive process. 

Furthermore, we need a fast and effective algorithm to find periodic patterns in a 

given time sequence. In this chapter, we will introduce some works related to these 

two aspects. 

2.1 Data Warehousing and OLAP Techniques 

A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile col- 

lection of data in support of management's decision-making process [28]. Since data 

warehouses contain large volumes of consolidated data over long periods of time, its 

content is more important than detailed, individual records as in conventional oper- 

ational databases, and is hence targeted for decision support. 

The construction of data warehouses [30], with data cleaning and data integra- 

tion, can be viewed as an important preprocessing step for knowledge discovery tasks. 
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Moreover, data warehouse provides OLAP(on-line analytical processing) tools for in- 

teractive analysis of data from multiple dimensions with varied granularity, which 

facilitates effective knowledge discovery as well. Thus, data warehousing and OLAP 

techniques form a foundation for effective data mining. In [12], a detailed introduction 

of data warehousing and OLAP technology is presented. 

The data in a data warehouse are typically organized in a multidimensional model 

which influences the query engines for OLAP. Such a multidimensional data model is 

referred to as a data cube 1191. 

In a data cube, there is a set of numeric measures that are the objects of analysis. 

Each of these measures is uniquely determined by a set of dimensions that provide the 

context of the measure. Each dimension is, in turn, described by a set of attributes 

[la]. 

Example 2.1 A data cube for application for admission of a certain university is 

depicted in Figure 2.1. It indicates the data summarized according to the applied de- 

partment, location where the applicant is from, and time of tentative enrollment. The 

measure stored in each cell of the cube is number-of-applicants. For instance, the cell 

marked by (Archaeology, North America, 97-3) indicates that there are 10 applicants 

from North America applying for admission to the Department of Archaeology in the 

97-3 semester. The value All on each dimension represents the aggregate sum of the 

entire dimension. 

Data embedded in a data cube can be at a primitive concept level or, sometimes more 

desirable, it can be summarized to a higher concept level. This important functionality 

is called data generalization [13]. The process abstracts a large set of relevant data 

from a low concept level to relatively high ones. 

OLAP (on-line analytical processing) [27] is one approach for data generalization 

or abstraction. The basic OLAP operations include rollup (increasing the level of 

aggregation) and drill-down (decreasing the level of aggregation or increasing detail) 

along one or more dimension hierarchies, slice-and-dice (selection and projection), 

and pivot (re-orienting the multidimensional view of data) [12]. For example, a rollup 

operation on department dimension will aggregate the number of applicants from by 
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drcheolog): North America 97-3> <Archeology, Asto, All> 
\ / 

Department Slice on Department = "CS" 

hemrsn) AIL All> 

Archeology 

Chemrsny 

cs 

Engmeenng 

All 

N o  

Time 

A11 

97-3 

Location 
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Time 

Engineering 

All 

97-1 97-2 97-3 AN 

Time 

Figure 2.1: Example 2.1. Slicing and dicing on a data cube. 
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department to by school. On the other hand, a drill-down on location dimension, 

which specializes the aggregations on the number of applicants from by area to by 

country, will give more detailed information on where the applications are from. The 

difference between slicing and dicing is that slicing is selection on one dimension, while 

dicing is on more than one dimension. Examples of slicing and dicing are shown in 

Figure 2.1. 

OLAP engines demand a fast processing on the large volume of data contained in 

data warehouse, this requires highly efficient cube computation and query processing 

techniques. Many methods have been proposed for efficient data warehouse implemen- 

tation. Some powerful query optimization techniques are introduced to materialize 

certain expensive computations frequently inquired and store the materialized sum- 

mary data in the data warehouse. The selection of views to materialize must take 

into account workload characteristics, the costs of incremental update, and upper 

bounds on storage requirement [12]. [25] presents a greedy algorithm for selection of 

the materialized views that was shown to have good performance. Several efficient 

algorithms for both relational and multidimensional OLAP have also been developed 

to compute the materialized views [l, 19, 421. 

Another approach for data generalization is attribute-oriented induction. This 

approach takes a data mining query expressed in an SQL-like data mining querying 

language and collects the set of relevant data in a data set. Data generalization is 

then performed on the set of relevant data by applying a set of data generalization 

techniques [21, 23, 311 including attribute-removal, concept-tree climbing, attribute- 

threshold control, propagation of counts and other aggregate function values, etc. 

[21, 23, 131. The generalized data is expressed in the form of a generalized relation 

on which many other operations or transformations can be performed to transform 

generalized data in different kinds of knowledge or map them into different forms [23]. 

The essential background knowledge applied in data generalization is concept hi- 

erarchy associated with each dimension [21]. A concept hierarchy is a tree or lattice 

structure that organizes concepts in a database into a partial order such that those 

in levels closer to the root are more general than those closer to the leaf nodes. A 

concept hierarchy for attribute location in Example 2.1 is demonstrated in Figure 2.2 
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location Any Location 

I 
area , A A A  

country Russia France. . . Germany Sweden China . . . Singapore Japan Canada Mexico USA 

Figure 2.2: A concept hierarchy for location and one of its instances. 

along with its instance from the example. 

A concept hierarchy can be directly derived from the database schema or defined 

by user or domain experts through knowledge of an attribute. The former is referred 

to as the schema-based specification and the latter the instance-based specification 1181. 

On the other hand, it is sometimes desirable to  automatically generate some concept 

hierarchies or adjust some existing hierarchies for certain tasks. The methods for 

automatic generation of concept hierarchies for numerical attributes based on data 

distributions and for dynamic refinement of a given or generated concept hierarchy 

based on a learning request are introduced in [22, 181. Other interesting studies on 

automatic generation of hierarchies for categorical data can be found in [15, 17, 29, 

32, 331. 

Pattern Discovery 

There are lots of works done in the area of Artificial Intelligence related to  pattern 

discovery in sequences of events. The problem considered in this body of work is to  

discover a rule characterizing a sequence of events (or objects), each characterized by 

a set of attributes, in order to predict a plausible sequence continuation [14]. The rule, 

called a sequence-generating rule, is nondeterministic which defines a set of possible 

events that may follow the given event sequence. Three general models for the rule 

are disjunctive normal form model (DNF), decomposition model, and periodic model. 
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It apparently appears to be a more complex problem than the one we are handling. 

For our work, the focus is solely on the periodic model. There is only one attribute 

characterizing a given time sequence, the value or the shape of the sequence. 

Another active research area is finding text subsequences that match a given reg- 

ular expression, or finding text subsequences that approximately match a given string 

[39, 41. This problem, however, does not take into account the periodic behavior of 

a sequence, rather, the techniques used in this problem are oriented towards finding 

matches for one pattern. In our problem, on the other hand, there is no given pat- 

tern, instead, we have to find a way to search for the periodic pattern embedded in a 

sequence. 

In another type of pattern matching problem called similarity search [2, 4, 8, 161, 

we try to compare two sequences to see if they are entirely [2, 41 or locally similar 

[16]. The problem deals with comparing two sequences in parallel to discover the 

commonalities within, while in the problem of periodicity search, we deal with finding 

commonalities within all equal-period, consecutive, exclusive intervals with respect to 

one sequence. A more detailed survey on the similarity search problem can be found 

in [13]. 

Our problem is related to  the problem of finding sequential patterns [6, 71. Given 

a database of customer transactions, the problem of mining sequential patterns is to 

find the maximal sequences among all sequences that have a certain user-specified 

minimum support. Equivalently, we can consider this problem for more general cases. 

For example, a sequence relation is shown in Table 2.1. If the minimum support 

is set to 25%) i.e., a minimum support of 2 sequences in this case, the sequences 

1234 and 15 are among those satisfying the support constraint since they occur in 

that order in at  least two of the customer sequences in Table 2.1. The two are 

thus desired sequential patterns. We call a sequence satisfying the minimum support 

constraint a large sequence. So besides the two sequential patterns, 1, 2, 34, etc. 

are all large sequences even though they are not maximal. Moreover, a sequence is 

called n-sequence if its length is n. While this problem takes into account neither the 

periodic behavior of a sequence nor the pattern within one single sequence, some of 

the techniques proposed in [7] are used in our research to deal with the OLAP-based 
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Sequence ID Sequence 

Table 2.1: A sequence relation. 

periodicity search. 

The algorithm is called AprioriAll. It starts by finding all the large 1-sequences. 

In our example, the large 1-sequences are 1, 2, 3, 4, and 5. The algorithm will then go 

through a series of iterations to first generate a set of candidate large (n+  1)-sequences 

from the set of large n-sequences which will be checked against the original sequences 

to see if they are large. The candidate generation process contains a join phase and 

a prune phase. The AprioriAEl algorithm and the procedures for the two phases of 

candidate generation are outlined in appendix A. 

Example 2.2 Consider again the relation shown in Table 2.1. After going through 

one iteration of sequence phase in the AprioriAll algorithm, the large 2-sequence set is 

L2 = {12,13,14,15,23,24,34). In the next iteration, the set of candidate 3-sequences, 

C3, generated from L2 is (123, 124, 125, 132, 134, 135, 142, 143, 145, 152, 153, 154, 

234, 243). Then, as we go through the pruning phase of the candidate generation 

process, candidate 3-sequences 125 is deleted from C3 since one of its subsequence 

25 is not a large 2-sequence in L2.  Similarly, 132, 135, 142, 143, 145, 152, 153, 154, 

and 243 are pruned out as well. C3 is then checked against the original sequences. 

The large 3-sequence set turns out to be L3 = (123,124,134,234). Continue in this 

fashion, we end up with a set L of all large sequences. The maximal phase of the 

algorithm then prunes out those that are not maximal. The outcome of each iteration 

of the example is shown in Table 2.2. 0 

The AprioriAll algorithm has been shown effective for fast association rule mining 

[6] and sequential pattern discovery [7]. Its idea can be used in OLAP-based periodic 
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Sequence 
Phase 

Table 2.2: Example outcome of the AprioriAll algorithm. 

I L5 

Maximal Phase 

pattern search introduced in Chapter 4 in which the fixed-length periodicity search 

problem can be reduced to a problem similar to  that of the sequential pattern mining. 

L1 
C2 
L2 
C3 
L3 
C4 
L4 
Cs 

1234 15 

2.3 Trend and Cyclicity Analysis 

1 2 3 4 5  
12 13 14 15 21 23 24 25 31 32 34 35 41 42 43 45 51 52 53 54 
12 13 14 15 23 24 34 
123 124 125 132 134 135 142 143 145 152 153 154 234 243 
123124134234 
1234 1243 
1234 
1234 

Works have been done on trend analysis on time-series movements. It is also called 

long-term movement, which refers to the general direction in which the graph of a 

time series appears to be going over a long interval of time. Several methods for trend 

estimation are introduced in [37]. These include the least-squares method, the freehand 

method, the moving-average method, the method of semi-averages, etc. Among them, 

the least-squares method is the most commonly used technique. Using this method, 

we can try to find the equation of an appropriate trend line or trend curve whose 

square distance from the original data points is minimized. 

The closest to our research is the problem of cyclic rule discovery [34]. The rules 

discovered in [34] are cyclic association rules. Each sequence formed is with respect 

to one association rule, which limits the alphabets in the sequence to  binary integers 

each representing either the occurrence of an association rule or none. For example, a 

sequence 0011 associated with an association rule A infers that A holds in t2  and t3, 

where ti refers to the time interval [i . t ,  (i + 1) - t ) .  If an association rule holds every 1 



CHAPTER 2. RELATED WORK 15 

time units starting from ti, we say that the association rule has some cyclic behavior. 

The cycle of this association rule is denoted by (I,  i) .  

In their study, Ozden et. al. revealed some properties of cyclic sequences, and 

used these properties to discover rules that display regular cyclic variation over time 

with respect to a given sequence. Some very useful properties are shown as follows. 

Property 1. If an itemset X has a cycle (l,i), then any subset of X has the cycle 

(17 i). 

In this rule, an itemset refers to a set of items which are contained in a given sequence. 

Suppose there are two items xl,  x2, in X. If X has a cycle (4, O),  i.e. if it repeats 

every fourth time units starting from to, then this implies that xl and x2 will have 

this cycle as well. 

Property 2. For any cycle (1, i), its multiple (It, it), where 1 11'(11 is divisible by 1) and 

i = i' mod 1, is also a cycle. Thus, only those cycles that are not multiples of other 

cycles are interesting to us. 

These rules are used as foundations of some techniques employed in cyclic as- 

sociation rule mining. These techniques include cycle-pruning, cycle-skipping, and 

cycle-elimination. The general idea of these optimization techniques is that we do 

not have to check for cyclicity for each itemset, rather, we can use some rules (or 

properties) of the cyclic sequences to reduce the search space. Some of these and the 

other properties will be introduced later in more detail. They will be employed as 

essential parts of our algorithms (see Chapter 5 ) .  The periodicity search problem can 

thus be considered as a superset of cyclic rule discovery problems. 



Chapter 3 

Problem Statement 

Periodicity search is a problem of finding repeating patterns in some given sequences 

of time-related data. Based on different interest, user may prefer to ask the question 

concerning periodicity differently. Some are interested at the periodicity with respect 

to a fixed period length, while others may simply want to know if a sequence has 

any periodicity at  all. These problems will be discussed further in the following 

two chapters. But first, we give some definitions so that a clear description of the 

periodicity search problem can be outlined. 

3.1 Time 

We introduced earlier some time concepts such as transaction time, valid time, deci- 

sion time, etc. These are the time concepts in a macro view. Here, we narrow our 

interest down to a much smaller time domain - one which regards the time in real 

world and the database world as one concept. So the time attributes used in all the 

examples of this thesis can be considered as representing both the valid time for the 

records and the transaction time when these events are recorded. 

The idea of a time hierarchy is to classify the time domain into different concepts 

and organize them into hierarchical structures so that OLAP operations can be oper- 

ated on time efficiently. Just like most other concept hierarchies, the representation 

of time hierarchy may vary in different context. For example, time can be represented 
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month 

Year - quarter d a y  h o u r  m i n u t e  second 

wee, 

Figure 3.1: A lattice-structured time hierarchy for calendar years. 

as calendar years, academic years, fiscal years, etc., which all have different seman- 

tics. The definition of these concepts themselves may differ. For example, academic 

year, which refers to the period of time each year when school is open and students 

are studying, is one concept that is not agreeable by all. First of all, each country 

may have its own definition of this period of time. In North America, an academic 

year usually starts in September, while in some countries like Japan, it starts every 

year in April which coincides with their new fiscal year. Even in the same country, 

the definition is different for elementary school, high school and college, and can also 

differ from place to place, even school to school. Some school runs in semester basis, 

some tri-semester, and others quarter. Because of this diversity of concept definition, 

we have often more than one hierarchy associated with time. Which hierarchy should 

be used solely depends on the type of an application and is controlled by user. 

Time cannot always be nicely categorized into a tree-structured hierarchy. This is 

because the overlapping feature of some of the time concepts. We know that a year 

can be properly divided into twelve months, but a month, although usually consists of 

four weeks, cannot be decomposed into each week in a general way. This is not only 

because the days forming each week differ from month to month, it is also because the 

number of days in each month varies as well. Therefore, instead of a tree structure, the 

time hierarchy is typically represented by a lattice which reveals a partial order among 

the time concepts. Meanwhile, it is also desirable to facilitate built-in knowledge of 

calendars in a system. Time in the concept of calendar year has a partial order of 

second 4 minute 4 day 4 week 4 month 4 quarter 4 year. Its lattice structure is 

shown in Figure 3.1. 
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Time Dimension 

Year 

Concept Hierarchies 

year -+ quarter -+ month 

month 

I 1 week -+ day I 

year -+ week 
month -+ half-month 

week 

I 

day I day -+ {morning, afternoon) -+ hour 

month + week 
week -+ {weekdays, weekend) -+ day 

I day -+ {before-work, work hours, after-work) -+ hour 

Table 3.1: Concept hierarchies for some time dimensions in calendar year. 

Since time is a composition of a group of smaller time concepts, it can be decom- 

posed into year, mon th ,  week, day,  hour ,  etc. Again, because each of these concepts 

can be categorized in different ways, we can pre-define some time categories to reflect 

these different semantics of time. Table 3.1 shows the concept hierarchies for some 

time concepts in calendar year. These concepts can of course be integrated into the 

larger time hierarchy shown in Figure 3.1. 

Because of the diversity of the time concept semantics, pre-defined time categories 

may not cover the situation of any certain applications. In this case, user-defined time 

categories can be added. 

Time-Related Attribute 

A time-related database also contains some time-related attributes whose values change 

with time. The data of these time-related attributes are taken and recorded at  specific 

time, usually at equal time intervals. A set of values of one time-related attribute, 

recorded for one object, constitutes a t i m e  series. Mathematically, a time series is 

defined by values v; of a variable Y(which corresponds to our time-related attribute) 

at time ti. Thus, Y is a function of t, i.e., a time-related attribute is a function of 

time. 
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When we plot the time series onto a graph with time vs. the time-related attribute, 

we obtain a curve that indicates the trend of the time-related attribute with respect to  

the selected object. We call such a time-series value-based. When we analyze value- 

based time series, we usually emphasize on the absolute value of the time-related 

attribute at different time or at the same time with different objects. Examples such 

as "more revenue is generated in January than in February" and "more profit was 

produced on product A than on product B in January" are answers to some questions 

directed to  value-based time series. 

Sometimes, value-based time series do not necessarily give us clear information on 

the performance or the trend of an object. Instead of analyzing time-related data at  

a given time, we are more interested at the data over a range of time. In other words, 

we would like to see the relative changes of data for a period of time interval, which 

is indicated by the slope of the curve between two time unit. The time series thus 

obtained is referred to as trend-based. Sample facts attained from such time series 

include "the production increases faster in the first quarter than in the second quarter" 

and "the daily temperature changes more dramatically in B.C than in Ontario during 

summer". 

Both value-based and trend-based time series mentioned above deal with actual 

values(raw data) of the interested time-related attribute. This is necessary if we 

want to  use signal processing techniques to analyze very low level data for relatively 

accurate result [9]. However, it is not always essential to achieve such high accuracy. 

Users are often interested at only the rough shape of a time series. For example, the 

salary difference between $80,000 and $90,000, though large, may mean little to some 

people, who usually consider the two to be at the same salary level. Therefore, concept 

hierarchy can be used to generalize the original data to correspond more closely to  

user's interpretation of the data. Moreover, generalizing data to higher level concepts 

also provides more meaningful versions to the data. When high accuracy is not an 

indispensable requirement, or when a more expressive notion is desired for the values 

of a time-related attribute, concept hierarchies can be used to significantly reduce the 

processing time. 
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Concept hierarchies, as mentioned in Chapter 2, can either be generated automat- 

ically or defined by user. Once a concept hierarchy has been chosen for a time-related 

attribute, the values in a time series can be mapped to their corresponding concept 

indices in the hierarchy. The mapping produces a new index string which we refer to  

as time sequence. The sequence is used in actual searching process. 

Periodic Patterns 

We talked about time and time-related attribute, two concepts most related to  our 

periodic pattern searching problem. The algorithms outlined in this thesis are all 

based on the following assumptions. 

Assumption 3.3.1 The input time series are all the same length with equal time 

intervals. 

Assumption 3.3.2 The time series are smoothed before periodicity analysis. 

Assumption 3.3.3 Only rough periodicity matching is required. 

Under these assumptions, no preprocessing is necessary to smooth the curves ob- 

tained by plotting a time series, and we can use OLAP techniques on the time series, 

with the help of concept hierarchies, to discover periodicities. 

Given a time series, we denote the ith time as t i ,  i 20.  The value of ti is ti = i . t ,  
where t is the time unit referrring to the time granularity. We use Ti to  denote the 

i th time unit. That is, Ti is mapped to the time interval [ti, where i 20.  For 

any time series, the i th and the j th  time units are called similar with respect to a 

time-related attribute if the time-related attribute values at these two time units fall 

into the same category according to the chosen concept hierarchy. A cycle is formed 

if, thoughout the whole time series, there exist equally-spaced similar time units with 

respect to some time-related attribute. Here is a formal definition for cycle. 

Definition 3.3.1 For any given time series whose length is n, i f  31, o E Z,  0 5 1 < n 

and 0 5 o < 1 where V s  E Z,O 5 s 5 rill, the (I - s + o)th time units are all similar 
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with respect to the time series, we call this a cycle, denoted by C = (1, o, V ) ,  where 

1 is the length of the cycle, o the oflset indicating the first time at which the cycle 

occurs, and V the concept category of the values that form the cycle. 

When the length of the cycle is known, the cycle can be denoted in a shorter term as 

c = (0, V ) .  

Example 3.1 Suppose we have a time series whose sequence, after mapping the 

values into their corresponding categories, is 132113412341. We find that, starting 

from time t l ,  every fourth bit in the sequence repeats the value at t l ,  which is 3. Thus 

we have found a cycle with length 4 and offset l(corresponding to t l )  whose value 

belongs to category 3, denoted by (4, 1, 3). The cycle sequence is represented as *3**. 

Similarly, we also find cycles (4, 3, 1) and (6, 2, 2). 

A periodic pattern is the union of a set of cycles. For example, the sequence given 

in the previous example has pattern sequences *3*1 and **2***, where pattern *3*1 

is the union of cycles (4, 1, 3) and (4, 3, 1). 

Definition 3.3.2 For any given time series whose length is n, if for some l , m  E 2, 

0 5 1 < n and m > 0 ,  3 m cycles C; of length I,  0 5 i < m, then what these m cycles 

formed is a periodic pattern with length 1. The pattern is denoted by 

P = (1, m, C), where C = { (o ; ,  x)IC; = ( I ,  o;, x) V 0 5 i < rn) 
If the number of cycles i n  a pattern equals to the pattern length, we refer to such a 

pattern as a complete periodic pattern which can be represented by the pattern 

sequence itself. The general type of periodic pattern is consequently referred to as 

partial periodic pattern. 

The patterns *3*1 and **2*** in the previous example can thus be denoted by (4, 

2, ((1, 3), (3, 1)))  and (6, 1, ((2, 2))) respectively. Since not all time units in these 

patterns have a cycle, they are partial periodic patterns. If, presumably, we find a 

pattern (3, 3, ((0, I ) ,  (1, 2), (2, 3))), whose corresponding sequence string is 123, 

then we call such a pattern a complete pattern. 
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Note that, if we have a cycle (2, 0, l), this implies (4, 0, I ) ,  (6, 0, 1)) etc. are all 

cycles as well. In other words, if there is a cycle C1 = ( 1 ,  o, V ) ,  then C2 = ( I  S ,  0,  V )  
is also a cycle for any s > 0. We refer to C2 as a multiple of C1, which can be 

derived from Cl without any searching through a time sequence. The discovery of 

these cycles does not give us any further information about the time series. Similarly, 

several periodic patterns merging together or one periodic pattern repeating multiple 

times can produce new periodic patterns as well. All these derived patterns and cycles 

are not of our concern. 

Definition 3.3.3 Given a cycle C = ( 1 ,  o, V ) ,  and periodic patterns P = ( I ,  m, C), 

Pl = (11 ,  ml ,  C1) and P2 = (12 ,  m2, C 2 )  their derivatives are the following. 

1) A multiple of C is a cycle whose length is a multiple of that of C and whose oflset 

and category are the same as in C ,  denoted by C t  = C s = ( I  - s ,  o, V ) .  

2) A multiple of P is a periodic pattern whose corresponding pattern sequence can 

be represented as the pattern sequence of P repeating multiple times. The multiple 

pattern is denoted by P' = P . s  = ( l . s , m - s , C f ) ,  where C' = { ( o ; + l . t ,  V,)l(o;,  V , )  E C,  

VO < i < m and 0 5 t < s ) .  

3) The product of Pl and P2 is P' = Pl.P2 = ( lcm( l l ,  1 2 ) ,  mt,C'), whereCf= {(oi+ll .  

t ,V , ) I (o; ,K)  E C I ,  VO < i < m and 0 < t < l ~ m ( 1 ~ , 1 ~ ) / 1 ~ ) U { ( o ; + l ~ ~ t , V , ) ~ ( o ; , V , )  E C2, 

VO 5 i < m and 0 < t <lcm(ll ,  12)/11), and m' is the cardinality of C'. CI 

Example 3.2 Suppose the input time sequence is 121 113131 112. Obviously, there 

exists cycles l *  and I**. This implies that I*** and I***** are also cycles. The 

latter two cycles are the multiples of the former. 1* and I** can also be regarded 

as patterns with one cycle, whose multiples include 1*1*, 1**1**, 1*1*1*, etc. The 

product of 1* and I**, in this case, is 1*111* which can be confirmed to  be a pattern 

as well. 

Since the derived patterns are not of our concern, our searching effort will be focused 

on cycles or periodic patterns that are large. 

Definition 3.3.4 A large cycle is a cycle that is not a multiple of any other cycles. 

A large periodic pattern is a pattern that is neither a multiple nor a product of 

other periodic patterns. 0 
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The periodic pattern searching problems we concentrate on in this thesis consist 

of two types. The first deals with the situation when user is interested at only the 

periodicity of a fixed period based on some natural segmentation of time such as 

hourly, daily, monthly patterns. The other is a more general case, which is to detect 

periodicity of arbitrary period length. The first problem will be discussed in Chapter 

4, and the second one in Chapter 5 .  In either case, we will consider approaches for 

discovery of both partial periodic patterns and complete periodic patterns. Although 

complete periodic pattern search is a special case of partial periodic pattern search, 

it is very likely that users are often more interested at complete patterns, especially 

since periodicity usually implies complete recurrence of a pattern. Thus, it is necessary 

to single out this special case so that some optimization can be done on the general 

approaches to ensure efficient processing in such situation. 



Chapter 4 

OLAP-Based Periodicity Search 

The problem of periodicity search on natural time segmentation can be viewed as 

a static periodicity search problem. What we try to find out is simply whether, 

with respect to  a given period, there exist periodic behaviors in the interested time 

series, and, if so, what the patterns are like. Since we only care about rough periodic 

patterns, and period is set as a natural time segmentation, we can easily use OLAP 

techniques to approach such a problem. 

The problem can be decomposed into some sub-categories. The most significant 

difference among these subproblems lies on the pattern interpretation. The subprob- 

lems we focus on in this thesis emphasize on the kind of interested patterns that 

usually involve value-based and trend-based time series. These subproblems are con- 

sequently referred to as value-based and trend-based periodicity searches for some 

fixed period length, which deal with value-based and trend-based time series respec- 

tively. The difference between the two problems is illustrated in Figure 4.1. On these 

two curves, each point corresponds to one time unit on the time line. Thus the points 

on each graph establish a time series. The given period length is 6. As can be seen 

in Figure 4.l(a),  the time series has a cycle occurring every six time units at value 

2. The value-based pattern discovered in this time series is (6,1, {(0,2))) despite the 

fact that there is no pattern matching at all with respect to  the trend of the curve 

presented in the figure. On the other hand, Figure 4.1 has an obvious trend-based 

periodic pattern comprised of an up trend and a down trend every six time units. But 
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Figure 4.1: A time series with (a)value-based ~er iod ic  pattern; (b)trend-based peri- 
odic pattern. 

this time series shows no value-based pattern of the given period. 

Both of the subproblems are solvable using some OLAP techniques. The keys to  

such problem solving are concept hierarchies that are to allow concept abstraction, 

and data cubes that provide an effective tool for data summarization. 

In this chapter, we will lay out the general algorithms of OLAP-based partial 

periodicity search for both value-based and trend-based time series. A special case of 

the general approaches, OLAP-based complete periodicity search, will be following. 

4.1 OLAP-Based Partial Periodicity Search 

The essentials to the fixed-length periodicity search problem solving are concept hier- 

archies. Here, they are mainly the concept hierarchies for the time-related attribute 

and the time. Once the concept hierarchies are determined by user, they can be used 

as foundation for constructing data cubes to discover periodic behavior in interested 

time series. 
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4.1.1 Algorithm for Value-Based Approach 

The purpose of this algorithm is to find periodic patterns of each task-relevant time 

series based on their values. The algorithm is mainly composed of three steps. The 

first two steps deal with data manipulation, and the third handles the actual pattern 

search process. In the reference cube construction step, we collect the task-relevant 

data into a minimally generalized data cube for fast indexing. The data are then 

transferred into a generalized working cube in the next step in which each dimension 

in the reference cube is rolled up to the interested concept level. In the next step, 

we search the working cube for periodic patterns on these generalized levels using an 

algorithm similar to that of sequential pattern mining by Agrawal et. al. [7]. The 

main outline of the algorithm is as follows. 

Algorithm 4.1.1 FindJatural-Segment Period(va1ue- based) 

Input: 1) Non-time-related attributes A1, ..., A,; 2) time-related attribute AT; 3) 

time attribute, T, bounded by a time interval; 4)time granularity, g, and a naturally 

segmented period, p, where glp (P is a multiple of g); 5)a time hierarchy and concept 

hierarchies associated with all task-relevant attributes; 6)confidence threshold, y. 

Output: A set of periodic patterns associated with all periodic time series. 

BEGIN 

0 Step 1 : reference cube manipulation. 

Select task-relevant data into a reference cube with dimensions for time, T, and 

all other non-time-related attributes, All ..., A,. The average for the time- 

related attribute, AT, is the measurement. 

0 Step 2 : working cube manipulation. 

Summarize data from the reference cube into a working cube with dimensions of 

Al, . .., A, in the reference cube plus AT and two other dimensions referring to T, 

one with respect to the period p, and the other with respect to the period indices. 

The values on each dimension are generalized to a desired level according to their 

corresponding concept hierarchies. The measurements are count, and average 

of AT. 
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Step 3 : periodic pattern discovery. 

For each time series, represented by a T-slice, do the following. 

P1 = FindOneCyclePatterns() 

FOR i := 2 TO p DO 

CPi := FormCandidatePatternSet(i) 

Pi := Check~attern~xistence(CP~) 

IF Pi NOT empty THEN 

FOR each i-cycle pattern P; in Pi DO 

Delete the (i - 1)-cycle patterns that form P; in Pi-' 
END /* FOR */  

END /* IF */ 
ELSE STOP /* Jump out of the loop */ 

END /*  FOR */ 
RETURN Periodic pattern set P := UrZ1 Pi. 

END 

Each of the three steps in Algorithm 4.1.1 will be discussed in more detail in the 

following sections. The confidence threshold introduced in the algorithm as an input 

parameter is a control for the confidence of a periodic pattern found. So a periodic 

pattern is confirmed only if it occurs in a portion of periods involved in the input 

time series no less than the predefined confidence threshold, y. An example is used 

to illustrate each step of the algorithm. This sample problem is stated as follows. 

Example 4.1 Suppose we have a sales database which includes sales information of 

a company from January 1993 to December 1993. Part of the database is shown in 

Table 4.1. In this data set, location and product are the non-time-related attributes 

and profit the time-related. The time granularity in this case is month since the profit 

value associated with each tuple represents the monthly profit of the corresponding 

product sold at  the corresponding location, though the time recorded is specified to 

minute. We would like to see if there exists some quarterly periodicity with respect 

to the profit during this period of time. The confidence threshold is set as 75%. 
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Location 

Paris 
Paris 

I Paris I Alert Devices I Dec 1 1993 12:OOAM 1 1311 

Paris 
Paris 
Paris 
Paris 

Product 

Alert Devices 
Alert Devices 
Alert Devices 
Alert Devices 
Alert Devices 
Alert Devices 

Paris 
Paris 
Paris 
Paris 
Paris 
Paris 

Table 4.1: Example. A sales relation with monthly sales information from January 
to December 1993. 

Date 

Jan 1 1993 12:OOAM 
Feb 1 1993 12:OOAM 

Tokyo 
Tokyo 

This given information is summarized in Table 4.2, and the time series correspond- 

ing to the original data are plotted in Figure 4.2. The time hierarchy is chosen as 

year -+ semi-year -, quarter --+ month. Besides, concept hierarchies selected for 

other attributes in this particular task are shown in Figure 4.3. 

Profit 

752 
501 

Mar 1 1993 12:OOAM 
Apr 1 1993 12:OOAM 
May 1 1993 12:OOAM 
Jun 1 1993 12:OOAM 

Carry-Bags 
Carry-Bags 
Carry-Bags 
Carry-Bags 
Carry-Bags 
Carry-Bags 

Step 1 : Reference Cube Manipulation 

1245 
775 
511 
1311 

Tents 
Tents 

Given a time-related database, we collect a set of data with some objects, associated 

with each is a time series of one time-related attribute. Each value in a time series 

corresponds to one time. The first step is to build a reference cube with time and 

all selected attributes, except the time-related attribute, as its dimensions. In most 
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Database : Sales 
Time span : January 1993 to December 1993 

Time-related Attribute : Profit 
Non-time-related Attribute : Location & Product 

Time granularity : Month 
Period : Quarter 

Confidence threshold : 75% 

Table 4.2: Example. Summarized given information of the example. 
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Figure 4.2: Example. Time series from Table 4.1. 
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Any Location 

A A  A 
Belgium France . . . Germany U.K Australia . . . Hong Kong Japan Canada Mexico USA 

Anv Product 

A A A  
Alert Devices Sunblock . . . Water Purifiers Cany-Bags Sport Wear Back Packs . . . Tents Cooking Equipment 

Profit 

Figure 4.3: Example. Concept hierarchies selected for the non- time-related at tributes, 
location and product, and the time-related attribute, profit. 
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cases, the reference cube can be considered as a minimally generalized cube. The 

classified categories on the time dimension are at a generalized level which is either 

the lowest level of the selected time hierarchy, or the maximum of the original time 

granularity and the user-preferred time granularity. The time hierarchy employed in 

this case is the lattice-structured type that we introduced earlier. All other dimen- 

sions in the reference cube are also generalized to the minimal concept level in their 

corresponding concept hierarchies. The measurement of the cube is some aggregate of 

the time-related attribute. Figure 4.4 shows an instance of a reference cube referring 

to Example 4.1. 

Jan-93 Feb-93 * . . * ' Ocr-% Now-% Dec-96 

Time 

Figure 4.4: Example. A reference cube. 

Rationale. The reference cube serves as an interface between the raw data and 

the working cube. Each tuple in the original relation can be mapped to  exactly one 

cell in the reference cube. Therefore, once the reference cube is constructed, the 

complete information of the original relation is preserved in their corresponding cells 

in the reference cube so that we do not have to refer to the original relation any more. 

Instead, the cube provides us an efficient means to access and index either the original 

or the minimally generalized data. Besides, each one-dimensional slice featuring the 

time dimension contains information of one time series, which makes the retrieval of 
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one time series simple (e.g. the shaded slice shown in Figure 4.4 featuring the time 

series with respect to (Chicago, Carry-Bags)). 

Because each tuple in the task-relevant data set can be mapped to exactly one cell 

in the reference cube, by the end of one complete scan through the original relation, 

all task-relevant data are transferred into the reference cube. Thus, the complexity 

of filling up the reference cube is linear in terms of number of tuples in the original 

relation. 

Step 2 : Working Cube Manipulation 

A working cube is constructed on top of the reference cube and is a generalized version 

of the original relation. The generalized version of the relation in Example 4.1 is shown 

in Table 4.3. The numbers in brackets are the indices of each value corresponding to  

the categories in the concept hierarchy of profit. 

A working cube consists of dimensions of all non-time-related attributes in the ref- 

erence cube (location, product) plus the time-related attribute (profit) and two other 

dimensions referring to time. All non-time-related attribute and the time-related 

attribute dimensions are generalized to their desired levels according to their corre- 

sponding concept hierarchies. The levels are chosen based on the time granularity at  

which level user would like to discover and view the periodic patterns. The measure- 

ments in the working cube include count and average for the time-related attribute. 

In Example 4.1, a slice of the working cube generalized from the reference cube in 

Figure 4.4 is shown in Figure 4.5. The slice is taken on the location and the product 

dimensions with values (North America, GO Sport Line). 

As can be seen in Figure 4.5, the one-dimensional time dimension in the reference 

cube is reshaped into a time plane with two time reference dimensions. One refers to 

the given period which is usually set as a natural segmentation of time (e.g. hour, 

day, month). The dimension domain is bounded by this natural segmentation. The 

other serves as a dimension for period indices. Each category on this dimension refers 

to a time period in the problem-related time domain, which is composed of all the 

time units on the period dimension. In other words, the two dimensions establish 
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Table 4.3: Example. The generalized relation of table 4.1. 
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Location = North America 

Product = GO Sport t i n e  

Time ( period = quarter ) 

Figure 4.5: Example. A working cube generalized from reference cube in Figure 4.4. 

a time plane that has a one-to-one mapping to the time dimension in the reference 

cube. 

Example 4.1 (cont.). We know that the values on the time dimension in the 

reference cube are from January 1993 to December 1993 at  the concept level of month 

and the given period is quarter. Then the categories on the time period dimension in 

the working cube will be the three months that constitute a quarter, and the period 

index dimension will contain categories 1st quarter, 2nd quarter, 3rd quarter, and 

4th quarter (Figure 4.6). Each month in the task-relevant time domain is represented 

by a cross-tab cell on this time plane featuring both months in a period and all the 

periods. For example, the cross-tab cell (Monthl ,  Q1) corresponds to the first month 

of the first quarter, or January 1993. 

We now summarize the information contained in the working cube. The working 

cube includes five dimensions, location, product, profit, and time with respect to a 

single period and the period indices. The non-time-related attributes, location and 

product are generalized to region and product-line respectively. The profit dimension 
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Time (period = quarter) 

Figure 4.6: A time plane featuring time from January to December 1993. 

is generalized to level 1 of the selected hierarchy. The time dimension with respect 

to one period is folded into the given period length quarter so that each category 

on the dimension is a month in a quarter with a total of three months. Finally, the 

periodic index dimension contains four indices reflecting four consecutive quarters in 

the selected data set. The measurements in each cell are count and average of profit. 

0 

To transfer data from the reference cube to  the working cube, we need to traverse 

through each non-empty cell in the reference cube. Each cell of the reference cube is 

associated with the category indices of all non-time-related attributes, a time that can 

be decomposed into a unit in a period and a period index, and an actual value for the 

time-related attribute. Each of these components can be matched to one generalized 

category on their corresponding dimension in the working cube. Therefore, each 

cell in the reference cube is mapped to  exactly one cell in the working cube. For 

example, the cell shown on the upper-left corner of the reference cube in Figure 4.4, 

(Chicago, Carry-Bags, January 93) with measurement profit equal to  638, is mapped 

to cell (North America, GO Sport Line, Monthl, Q l ,  480.-805) in the working cube. 

When a cell in the reference cube is mapped to the working cube, the count in the 
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new working cell is incremented, and its average is recalculated for the time-related 

attribute. By traversing through the reference cube, all information of the involved 

time series is eventually transferred into the working cube. 

A complete working cube contains dimensions for time (of one single period), 

time period indices, one time-related attribute, and one or more non-time-related 

attributes. A sliceldice from the cube including the complete time plane and the 

entire domain of the time-related attribute dimension has a one-to-one mapping to 

a time series. Let us refer to such a slice as a T-slice. It represents the time series 

information of one object embedded in the working cube. The slice shown in Figure 

4.5 is a T-slice. 

Rationale. Generalizing a reference cube to a working cube can summarize the 

information in the reference cube to a more abstract, meaningful level, and at  the 

same time reduce the amount of information to  be processed. The actual values of 

the time-related attribute originally stored in the reference cube as measurements are 

now generalized to partitioned intervals of the time-related dimension in the working 

cube. This way, we can discover, during each partitioned time period, which time- 

related intervals are more crowded. These crowded intervals are likely to be parts of a 

repeating periodic pattern. The representation of time is also altered from a dimension 

in the reference cube to a plane in the working cube. The transformation enables us 

to fold the entire task-relevant time line into a time segment that is corresponding 

to the interested period. Therefore, we can find the behavior of each time series by 

looking across the period index dimension. For example, by checking the time-related 

attribute values across the period index dimension of Month1 in Figure 4.5, we are 

actually examining the common behavior of the time series during the first month of 

each quarter. 

As mentioned earlier, every cell in the reference cube is mapped to exactly one cell 

in the working cube. Hence, to transfer data from a reference cube to a working cube 

requires exactly one scan through the entire reference cube. The complexity of this 

data transformation is therefore linear as well, with respect to the number of cells in 

the reference cube. 
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Step 3 : Periodic Pattern Discovery 

Find 1 -Cycle Periodic Patterns 

The periodic pattern discovery procedure is similar to that of sequential pattern 

discovery [7 ] .  The aggregation slice taken from a T-slice, which contains the entire 

time and time-related attribute dimensions, and corresponds to the aggregation value 

of the period index dimension (All), can be treated as one transaction from which 

we want to find out if there exists a large cycle. The aggregation slice at the back 

of the T-slice in Figure 4.5 is such a slice. If a certain portion of data points in this 

slice (determined by a confidence threshold), or items as in a transaction, fall into one 

concept category on the time-related attribute dimension, it means the time series at 

this time unit forms a cycle whose length is the same as that of the chosen natural 

time segmentation. The set of periodic patterns thus discovered containing one cycle 

each is denoted by P1. An example can be seen from the aggregation slice shown 

in Figure 4.7(a), which will be explained in more detail after the presentation of the 

procedure FindOneCyclePatterns. The procedure is presented in pseudo-code as 

follows. 

PROCEDURE FindOneCyclePatterns() 

BEGIN 

num-cycles := 0 

FOR t i m e i d  := 0 TO (p/g - 1) DO 

IF 3valueid < NumOfTimeRelatedValues such that the number of values 

of current object at ttimeid fall into Vvalue-;d is no less than y THEN 

Cnum-cycles := ( ~ 7  time-id, x a l u e - i d )  is a cycle 

num-cycles := num-cycles + 1 

END /* IF */ 
END /* FOR */ 
RETURN 1-cycle periodic pattern set P= {P;IP; = (p, 1, {(t;, x)l(p,  ti, K) is a 

cycle VO i < num-cycles) 

END 
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Figure 4.7: Example. A T-slice of the working cube and slices from the T-slice. 
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Example 4.1 (cont.). Once the working cube is constructed, we start going through 

each T-slice of the cube for periodic patterns. The cycles related to the object as- 

sociated with T-slice in Figure 4.7 can be detected from the aggregation slice taken 

from this T-slice by examining the nonempty cells of each month in the slice. This 

aggregation slice is shown in Figure 4.7(a). 

We examine each month sequentially according to the FOR loop in the procedure 

layout. We first look at month 1 of each quarter. The second cell from bottom of 

month 1 has a count 3 which, when compared with the number of periods (quarters), 

4, contains exactly 75% of the total counts in this slice featuring month 1. It means 

75% profit values of the first month each quarter belong to the same profit category 

"480-805" and therefore forms a cycle. As we go through each month of the aggre- 

gation slice, we conclude that cycles exist at all three months of each quarter for this 

object. The profit categories these cycles fall into are "480--805" for months 1 and 

2, and "805.-1130" for month 3. We denote these cycles as Co = (3, 0, l ) ,  C1 = (3, 

1, I),  and C2 = (3, 2, 2). The output from the procedure FindOneCyclePatterns() is 

thus p1 = {P,f = (371, {(0,1))), P,2 = (371, { ( L l ) ) ) ,  Po3 = (371, {(2,2)))1. 0 

Rationale. We look for all the 1-cycle patterns first instead of a whole periodic 

pattern due to the accuracy concern with the employment of the confidence threshold. 

For example, suppose we want to find periodic patterns of period length 3 in a time 

series whose corresponding time sequence is 123123423144. The confidence threshold 

is set as 75%. By going through each slice in a T-slice, we will discover sequentially 

the 1-cycle patterns 1, 2, and 3. But this does not imply that 123 is a periodic 

pattern, and, in fact, it is not. Therefore, this first procedure in the step forms a basis 

for the later searching process. It prunes out those that do not meet the confidence 

requirement and forms a set of patterns of a single cycle for further processing. 0 

In the worst case scenario, for each time series, we need to go through each cell in 

the aggregation slice of a T-slice to determine if cycles exists for each time interval 

in a period. The maximum size of such a slice is that of the T-slice itself. Therefore, 

the complexity of procedure FindOneCyclePatterns in each iteration is linear with 

respect to  the number of cells in a T-slice. 
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Form Candidate Patterns 

We now combine every two 1-cycle patterns in P1 to form a set of candidate 

periodic patterns containing two cycles, denoted by CP2,  each of which will be tested 

against the corresponding cells in the T-slice to see if it actually exists. The procedure 

for the formation of candidate i-cycle patterns from (i - 1)-cycle patterns is shown in 

procedure FormCandidatePatternSet. 

PROCEDURE FormCandidatePatternSet (i) 

BEGIN 

/* Join Pi-' and Pi-' */ 
num-candidates := 0 

FOR every pair of patterns P;-' = (p, i - l , C f l )  and pi-l = (p, i - 1 , ~ - l )  in 

Pi-' DO 

IF CF1[h] = c;-' [h]Vl < h 5 i - 2 AND c";' [i - 11 has a time index before 

C?[i - 11 THEN 
i CPnum-candidates := (p, i7Ci) where Ci[h] = c;-'[h]Vl < h 5 i - 1 and 

Ci [i] = Ci-' [i - 11 

Insert CP~um-candidates into C P i  
num-candidates := num-candidates + 1 

END /* IF */ 
END /* FOR */ 
/* Prune patterns that cannot exist */ 
FOR every candidate i-cycle pattern CPi DO 

IF 3 some pattern Pi-' whose cycle set Ci-' is a subset of Ci of CPi such 

that Ci-I is not in any pattern of Pi-' THEN 

Delete CPi from C P  

END /*  IF */ 
END /* FOR */ 
RETURN i-cycle periodic pattern set CP" 

END 

The procedure contains two phases : a join phase and a prune phase [7]. The join 
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is done on the (i - 1)-cycle pattern set Pi-' to form a candidate i-cycle pattern set 

CPi .  For every pair of (i - 1)-cycle patterns, pi-' and pi-', in Pi-' , we only join 

them if the first (i  - 2) cycles of both patterns are identical except the (i - 1)th cycle. 

pi-' and P;-' are then joined to form a new candidate i-cycle pattern. Suppose the 

(i - 1)th cycle of pi-' occurs in an earlier time interval than that of pi-'. Then, 

the first (i - 2) cycles in the new candidate pattern are the same as that in pi-' and 

pi-', the (i - 1) th cycle the same as the (i - 1)th cycle in pi-', and the ith cycle the 

same as the (i - 1)th cycle in pi-'. 
The prune phase following the join phase discards those candidate patterns in C P "  

that have some (i - 1)-cycle subpatterns which are not in Pi-'. 

Example 4.1 (cont.). After P', the set of 1-cycle periodic patterns, is generated, we 

combine the 1-cycle periodic patterns in P1 to form a set of candidate periodic patterns 

containing two cycles. If we extract only the time indices embedded in cycles of each 

1-cycle pattern, we get 0, 1, 2 from patterns P,', P,' , and Pi. Then joining P' and P1 

will result in candidate patterns each of whose time indices are 01, 02, and 12 respec- 

tively. This join process yields 2-cycle candidate patterns C Po2 = (3,2, ((0,  l), (1, I))) ,  

CP," = (3,2, ((0,  I ) ,  (2,2))) ,  and CP; = (3,2, ((1, l), (2,2))).  None of these candi- 

date patterns can be pruned out since all of their 1-cycle subpatterns are actual 

patterns. So CP;, CP?, and CP; are the resulting candidate patterns obtained from 

procedure FormCandidatePatternSet(2). Then, by going inside the T-slice of Figure 

4.7, we can test each of these candidate patterns against the relevant cell counts to  

see if it is a real pattern. 

We will show later how a candidate periodic pattern is verified against a T-slice 

of a working cube. Here we jump forward to see how candidate 3-cycle pattern 

set is generated. Suppose we know that the 2-cycle periodic patterns found after 

verification are P,2=CP,2 and P,"=CPi whose time indices in the cycles are combined 

into 01 and 02. The only candidate 3-cycle periodic pattern formed from Pi  and P," 

is then CP,3=(3, 3, {(0,1),(1,1),(2,2))) whose time index string 012 is formed from 01 

and 02. But after the pruning step in procedure FormCandidatePatternSet(3), this 

candidate is eliminated because a subpattern of CP:, (3, 2, {(0,1), (1,1))), does not 
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belong to the set of 2-cycle patterns. 

Rationale. We sequentially construct sets of candidate patterns with increasing cycle 

number because a pattern is periodic only if all its subpatterns are periodic. Therefore, 

if some periodic patterns of length i are found, we only need to construct the candidate 

(i  + 1)-cycle patterns from these patterns. Any candidate formed otherwise will not be 

periodic. The join phase ensures that we form sufficiently many candidate periodic 

patterns with as little repetition as possible. We allow only one cycle mismatch 

when joining two i-cycle periodic patterns. This is the only way we can generate 

a candidate pattern of length (i + 1). For example, suppose there are two 2-cycle 

periodic patterns represented by time sequences 12"" and **34. We can of course 

form candidate patterns 123*, 12*4, etc. But these formations are meaningless if 

there is no evidence of the existence of patterns 1*3*, 1**4, etc. Without these 2- 

cycle patterns, 123* and 12*4 cannot exist. The choice of the indexing location of the 

differed cycles in two patterns should not matter but it is necessary to be consistent 

with this location for fewer repeating candidates. The prune phase, on the other 

hand, is the supplementary of the join phase. The reason is the same. If a subpattern 

of a candidate pattern is not periodic, then this candidate pattern will not be valid. 

For each given number of cycles i ,  the number of candidate i-cycle patterns gen- 

erated is at most ( z )  where n is the number of (i  - 1)-cycle patterns found in the 

previous call to the procedure. As a result, if the periodicity of a given time sequence 

is very strong, it is possible that the total number of candidates generated during 

the entire searching process is 2", where m is the length of the given period, leading 

to a complexity of exponential. However, the actual performance of the algorithm 

largely depends on the confidence threshold control and the nature of the input time 

series. In [7], several alternatives to the AprioriAll algorithm have been discussed, 

and results show that, in average, AprioriAll still outperforms the other proposals. 

The worst case scenario is when an input time series has a complete periodicity. This 

case will be handled separately in a later section. 



CHAPTER 4. OLAP-BASED PERIODICITY SEARCH 

Verify Candidate Patterns 

The candidate pattern verification process is demonstrated in procedure Check- 

PatternExistence. 

PROCEDURE CheckPat ternExistence(CP.) 

BEGIN 

FOR every candidate i-cycle C P i  in CPi DO 

count := 0 

FOR every period-id on period index dimension DO 

IF all cells (period-id, oj, V,) are nonempty V 1 5 j 5 i ,  (oj, V,)E Ci 

in C P i  THEN 

count := count + 1 

END /*  IF */ 
END /* FOR */ 
IF (count / NumOfPeriods)> y THEN 

Insert C P i  into Pi 

END /*  IF */ 
END /*  FOR */ 
RETURN i-cycle periodic pattern set PZ 

END 

The procedure is run by checking the number of simultaneous occurrence of all 

the cycles in a candidate pattern against a T-slice. If this number exceeds the pre- 

defined confidence threshold, the candidate pattern is verified to  be a real pattern, 

otherwise, it is pruned out from the final pattern list. When a pattern is confirmed 

, all subpatterns contained in it are eliminated from the pattern lists of fewer cycles. 

We illustrate the procedure again with our example. 

Example 4.1 (cont.). Recall the three 2-cycle candidate patterns are CP; = 

(372, ( ( 0 ,  1 1 7  (1,1)))7 CP,2 = (372, {(0,1)7 (2 ,2)H,  and CP,2 = (3,2, {(1,1)7 (2,2))) .  
The three slices of the T-slice corresponding to the three months of a quarter are 

shown in Figure 4.7(b), (c), and (d). 
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We first check candidate pattern CP;. We check for the number of concurrent 

appearances of patterns (3, 1, ((0, 1))) and (3, 1, ((1, 1))) .  Recall that the cycles 

(0, I ) ,  (1, 1) in the two cycles are index pairs corresponding to (time, time-related 

attribute value). Thus, if we convert them back to original values, they corresponds 

to (Monthl, 480-805) and (Month2, 480-805) respectively. In the first quarter, as 

shown in Figure 4.7(b), it is shown that both cells (Monthl, 480-805) and (Month2, 

4 8 0 ~ 8 0 5 )  are occupied. This indicates one simultaneous occurrence of both cycles. 

When we operate another checking on the slice corresponding to the second quarter 

(figure 4.7(c)), since the cell corresponding to  (Monthl, 480~805)  in this slice is 

empty, the count for simultaneous occurrence of two cycles is not incremented. After 

the remaining two checks (figure 4.7(d)(e)), we conclude that there are 2 matches of 

the pattern among all 4 quarters, which results in a confidence of 50% - less than 

the confidence threshold. Therefore, CP; is not a pattern. 

In a similar process, candidate patterns CP,2 and CP; are checked and confirmed 

to be real patterns. The 1-cycle patterns contained in these 2-cycle patterns, P;, Pt, 

and Pi, are then eliminated from the pattern list, left in the pattern list P,2=CP,2 

and P,2=CP,2. 

It was shown that candidate 3-cycle patterns do not exist. Hence, P; and Pf are 

the only patterns that exist for time series featuring (North America, GO Sport Line). 

The iteration process of the algorithm is terminated. The periodic behavior for all 

the remaining objects can be found in the same way. 

Rationale. The idea of this procedure is similar to that of finding 1-cycle patterns. 

We bound together the cycles in a candidate pattern and search through each period 

index slice to find how often these cycles occur together. By checking for number of 

simultaneous appearance of cycles in a candidate periodic pattern, we can find out 

the probability of the occurrence of this candidate pattern. Then if this probability 

is confirmed to be overwhelming (over the confidence threshold), it is apparently a 

periodic pattern. 

Once the i-cycle periodic patterns are found, we know not only the time intervals 

the cycles occur, but also the time-related categories they fall into. Therefore, when 
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a candidate (i  + 1) pattern is constructed, all its cycles are specific. When we verify 

this candidate pattern against the corresponding T-slice, we don't have to traverse 

through each cell in the slice, but only those cells corresponding to the cycle values. 

As a result, for each candidate i-cycle pattern, we need to verify it in m slices of a 

T-slice, where m is the cardinality of the period index dimension; each verification 

through a slice requires a check of i cells across the time dimension, . The verification 

of each candidate pattern involves at most m . i checks. The maximum of m . i is 

[TI, the cardinality of the entire task-relevant domain in the chosen time granularity. 

Therefore, the complexity of this procedure is linear with respect to ITI. 

Let us summarize the periodic pattern discovery process. Starting from 1-cycle 

periodic pattern discovered by procedure FindOneCyclePat terns() ,  we construct 

a candidate 2-cycle pattern set through a call to  FormCandidatePatternSet(1). 

After verifying these candidate patterns calling CheckPatternExistence(CP2), if 

we find some 2-cycle pattern does exist, the 1-cycle patterns contained in this pattern 

are eliminated from the pattern list. When all 2-cycle periodic patterns are found, 

the same process will be applied to find periodic patterns containing three cycles. 

The process will continue until the number of cycles in a discovered periodic pattern 

reaches the length of the given period p, or until no more candidate periodic pattern 

is available. The periodic patterns for this object in the resulting pattern list, F = 

u:="=,', can be characterized by the non-time-related attribute values this T-slice 

infers. In our example, the quarterly periodic patterns we found are those of time 

series featuring the profit values of products in GO Sport Line sold in North America 

from January 1993 to December 1993. 

S u m m a r y  of Algor i thm 4.1.1 

Algorithm 4.1.1 is an approach of using concept hierarchies to solve problems with 

value-based time series. Since our assumption is rough periodicity search, it processes 

the time-related data as ranged categories. Then, once the original numerical values 

are generalized into higher-level ranges, the algorithm requires a match of the time 

series towards the discovered pattern with an accuracy no less than a predefined 
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confidence threshold, y. That is, if we claim a periodic pattern to exist with period p, 

then what we are inferring is that the time series matches this pattern every p length 

of the time for a percentage of the time series no less than y. 

4.1.2 Generalization of the Working Cube 

The key techniques in OLAP operations include roll-up and drill-down. As introduced 

in Chapter 2, roll-up is an operation that increases the level of aggregation along some 

dimension hierarchy, while drill-down is to decrease this level of aggregation along 

some dimension hierarchy. How then can we accommodate these features into our 

cube structure to allow pattern discovery across different abstraction levels of each 

attribute? 

For every non-time-related attribute, the roll-up and drill-down operations are 

performed on the working cube the same as in usual practice. Taking the current 

cube, the roll-up is done by merging the cells according to a group-by operation on 

one or more of the dimensions. The drill-down is the converse operation of roll- 

up. In the case of drill-down, because the working cube does not contain aggregate 

information of lower-level concepts, the inner implementation of the operation is the 

same as executing another roll-up operation on the attribute in the reference cube. 

When the roll-up is done by a group-by on the time-related attribute dimension, 

the operation undergoes the same procedure as for non-time-related attributes. But 

if a drill-down operation is desired, the reconstruction of the working cube from the 

reference cube is necessary to obtain the aggregation information of the time-related 

attribute at the new specialized level. 

The roll-up and drill-down on time in the working cube is more complicated. 

It takes into account two situations, one on the time with respect to the naturally 

segmented period, and the other with respect to the time granularity. Since time 

in our working cube is actually a time plane featuring two time concepts, time of a 

period and period indices, roll-up and drill-down operations executed on time require 

reconciliation of both the time dimension and the period index dimension. 

In some cases, user may like to do the roll-up or drill-down operations on the 
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naturally segmented period to discover periodic patterns of different period lengths 

with natural time segmentation. Contrary to the situations discussed for other di- 

mensions, both the roll-up and the drill-down operations on time with respect to 

period can be executed exclusively from the working cube. Since each cell on the time 

plane maps to exactly one time unit in the time line with the same time granular- 

ity, the roll-up/drill-down operation executed on time is like a process of reshaping 

the time plane. They are done by expanding or folding the time dimension further 

into the generalized or specialized period, while adjusting the period index dimension 

accordingly to reflect the change on the period. For example, suppose the original 

time granularity is month, period is semi-year, and the time in the selected data set 

spans through 4 consecutive semi-years (or two years). Then in the original working 

cube, the time dimension with respect to period has six months as its categories, and 

there are four indices on the period index dimension to index the four consecutive 

semi-years. To roll-up the period to year, the time dimension is actually expanded 

to include the twelve months in the first and the second halves of a year, and the 

period index dimension is thus shrunk to two indices as pointers to the two years. On 

the other hand, if we are to drill-down the period to quarter, the time dimension is 

folded into quarter with three months and the period index dimension is expanded to 

include 8 indices. 

Example 4.1 (cont.). Suppose we want to drill-down on the time period. Accord- 

ing to the time hierarchy we chose, the new specialized period is month. Although 

the time granularity in our example is month which makes this drill-down operation 

unnecessary, we do it anyway to show how it works. 

Since a quarter is composed of three months, we can fold the time dimension 

with respect to period into a narrower range (i.e. all three months of a quarter 

can be folded into one single month), while the period index dimension is expanded 

accordingly. Figure 4.8(b) illustrates the specialized version of the slice in (a) of the 

same figure taken from the T-slice in Figure 4.7. The periodic patterns are then 

searched in the same way as demonstrated before. Suppose we want to  rollup the 

time period to semi-year, then the process of reshaping the time plane in the working 
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cube is reverted from the previous case, resulted in a generalized slice shown in Figure 

4.8(c). 

Under another circumstance, user may like to roll-up or drill-down on the time 

dimension with respect to the time granularity. In other words, user may like to 

see the periodic patterns of the original period represented by a time unit that is 

either a generalized or a specialized version from before. This calls for a method to  

summarize a set of data points by one. We first consider a simple case for roll-up. 

From the working cube, we slice out a time series (a T-slice). Since the average 

aggregation values for the time-related attribute are stored as measurements, we can 

group together the average and count of the time units which are to be generalized 

into one new category and calculate a new average value which will be stored, along 

with the total counts, in the cell corresponding to the generalized category in the new 

working cube. Because drill-down is actually implemented as an operation of roll-up, 

the basic operation is the same except that it has to be carried out from the reference 

cube. 

Example 4.1 (cont.). Suppose we would like to rollup the time dimension with 

respect to time granularity so as to find semi-yearly periodic patterns based on the 

average profit of each quarter. To do this, it is obviously not appropriate to merge 

the cells of every three months in the working cube into one to represent data in a 

quarter. If we then search for the periodic patterns in the same way as before, what 

is found for each object in each quarter is the most frequent monthly profit range 

of the quarter. This is apparently a different type of problem. In order to find the 

semi-yearly periodic pattern based on the average profit of each quarter, we need to  

summarize the monthly profit data retrieved from the reference cube into quarterly 

information. This process before the construction of a new working cube can be 

carried out on the fly. Figure 4.9 shows the same slice of the working cube in Figure 

4.8(c) after roll-up on the time granularity from month to quarter. Once this is done, 

the periodic pattern search process is executed as before. 
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Figure 4.8: Example. Roll-up and drill-down on time with respect to period. (a) A 
slice from the T-slice in Figure 4.7; (b) same slice after drill-down on the period; (c) 
same slice after roll-up on the period. 
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Location = "North America" 

Product = "GO Sport Line" 

Profit = "480-805" 

All 

Semi-year2 

Semi-yearl 

Time ( period = semi-year ) 

Figure 4.9: Example. Roll-up on time with respect to time granularity on the slice 
shown in Figure 4.8(c). 

4.1.3 mend-Based Problem Solving 

By varying Algorithm 4.1.1 slightly, we are able to use a similar approach for the 

trend-based problem. If user chooses to examine the periodicity regarding the trend 

of the time series instead of the values, some preprocessing is required to convert the 

value-based time series to  trend-based. There are ways of estimating the trend of a 

curve interval, a few of which are introduced in [ 3 7 ] .  The method we adopt in our 

approach is the linear least squares method [lo]. The basic idea of this method is to  

find a best-fitting curve among all curves approximating the set of data points within 

some interval of a time series. We call it the best-fitting curve in the sense that the 

sum of the squares of the distances between the data points and the approximating 

line is a minimum. The method is the most convenient procedure for determining 

best linear approximations. Suppose the least-squares line approximating a set of n 

points (x;, y;) has the equation y = ax + b, then the constants a and b are determined 

by solving simultaneously the equations 
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~ y :  y; = an  + b ~ y i :  x; 
n-1 2 ~y:: x;y; = a ~15: x; + b Ci=, xi 

The solution for a and b are thus 

Value a obtained from equation 1.1 is the slope for the resulting least-squares 

line. A concept hierarchy for trend is then chosen or generated based on these slope 

values. The partitioning of the time-related attribute dimension in the working cube 

is now in relevance to the concept level chosen in the new trend concept hierarchy. 

Similarly, the time dimension is handled differently if user's interest lies on the trend 

of the time series. In this case, we need to convert the times on the time dimension 

from point to interval. The periodic pattern discovery process is the same as in value- 

based situation. For example, instead of rules such as "the average sales sums up to 

$12,000-$15,000 in January and $20,000-$25,000 in February", we have "the average 

sales increases by $5,000-$13,000 from January to February". 

Let us take a look at the same example demonstrated in previous sections. In- 

stead of finding value-based periodic patterns, we now try to search for semi-yearly 

periodic patterns based on the trend of profit every quarter of a year. The only extra 

information we need is a concept hierarchy for the trend definition. 

Based on the original profit values stored in the reference cube, we can use least 

squares method to find an approximating line for data points in each quarter of an 

object. For example, the approximation of the curve representing location as "North 

America" and product as "GO Sport Line" is as follows. Here a and b are the constants 

in the line equation y = ax  + b. The slope, a ,  of each approximating line represents 

the trend of profit in each quarter. We can then again use the automatic generation 

mechanism to find a hierarchy based on the slope value distribution of attribute 

profit. But to reach a wider range of the problem, let us in this case use a user-defined 

hierarchy. 
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time index (x)  : 1 2  3 4 5 6 
original data (y) : 638 588 1055 221 795 1042 - - 
approximation : a = 208.5 a = 410.5 

b = 343.3 b = -1366.5 

Suppose we use five primitive trend labels D (Down), d (down), s (stable), u (up), 

U (Up) [5], which are aliases for slope ranges -oo--600, -600--100, -100-100, 

100-600, and 600-oo, respectively. These five labels can be treated as the first level 

of the trend concept hierarchy. Their ranges can be further partitioned into lower-level 

concepts. The profit dimension in the working cube thus corresponds to the concept 

level chosen in the user-defined trend concept hierarchy. The categories on the time 

dimension are time intervals instead of time units, still bounded by the interested 

period, semi- year. 

Once the working cube is constructed, the periodic patterns can be searched fol- 

lowing the same pattern discovery procedure as in Algorithm 4.1 . l .  A T-slice of the 

working cube featuring "North America" and "GO Sport Line" is shown in Figure 

4.10. 

4.2 OLAP-Based Complete Periodicity Search 

The algorithm discussed so far deals with partial periodic pattern discovery. The 

search process follows the idea of Agrawal's ApriorAll sequential pattern discovery 

procedure [7]. We start the process by searching for periodic patterns containing one 

cycle (denoted by P1). Based on the patterns found in P1, CP2 ,  a set of candidate 

periodic patterns containing tw6 cycles, is established through combination of the 

patterns in P1. These candidates are checked against the working cube to  see if they 

are indeed periodic patterns. Those that are indeed periodic patterns form the set 

P 2 .  The process continues until no more candidate periodic pattern containing cycles 

less than the preset period length is available. 
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Location = North America 

Product = GO Sport Line 

Index 
Time Interval ( period = semi-year ) 

Figure 4.10: Example. A T-slice of the working cube in trend-based periodicity search. 

There is one special case of this algorithm, which is to find the complete periodic 

patterns with a given period. When periodicity is concerned, the term is often con- 

sidered as the recurrence of a complete pattern at regular intervals. It is very likely 

that user may treat complete and partial periodicity search as two different problems, 

preferring the former to.&be periodicity search problem while the latter as a localized 

similarity match problem. Thus the isolation of this case is necessary. We can of 

course use the same algorithm to solve this problem. But the approach is obviously 

not efficient if user's interest lies solely on the complete periodic patterns. 

Since in a complete periodicity search problem, we only concern about patterns 

that containing the number of cycles exactly the same as the period length, we don't 

have to search for patterns containing fewer cycles in a sequential order. For a pe- 

riodicity search problem with period length n, we start at each T-slice by checking 

if there exist n cycles associated with the current object. If not, the search can be 

terminated for this T-slice. Otherwise, the indices of categories forming these cycles 

constitute a candidate periodic pattern CP. This candidate pattern will be checked 
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against the T-slice by calling the procedure CheckPatternExistence({CP)), as illus- 

trated in partial periodicity search Algorithm 4.1.1, to see if it is indeed a complete 

pattern. Apparently, skipping all the initial searching and checking procedures, and 

jumping directly to  the longest possible pattern saves much of the processing time. It 

can potentially reduce the periodicity searching time to a magnitude of order n. 

The periodic pattern discovery step in this problem involves one pass through 

the aggregate slice of each T-slice for all candidate complete patterns, and another 

through slices of the T-slice along the period index dimension for verification of these 

candidate complete patterns. As analyzed in Section 4.1.1, the maximum number 

of checks needed for each time series is 2 . ITI, where IT1 is the cardinality of the 

task-relevant time domain of the chosen time granularity. The complexity for finding 

complete periodic patterns of each time series in this approach is thus linear in terms 

of the cardinality of the task-relevant time domain. 

4.3 Discussion and Summary 

In this chapter, we have presented some OL AP-based periodicity search algorithms for 

fixed-length periodic pattern discovery problem. Some basic variations of the fixed- 

length periodic pattern discovery problem are value-based, trend-based, partial pattern 

search, and complete pattern search problems. The differences of these approaches 

are listed in Table 4.3. The algorithms given are all OLAP-based, their performance 

greatly relies on the manipulation of the data cube structure. In Chapter 5, the second 

type of problem will be discussed in detail. 

Note that,  we can use the same reference cube for all these four subproblems. Thus, 

when implemented into a system, we can easily give the option of choosing among the 

four approaches, in which case all we need to reconstruct is the working cube, while 

the reference cube can be left intact. This way, the execution effort required to switch 

from one approach to another can be reduced considerably. 

The algorithms presented handle time series of exactly one time-related attribute, 

and the periodic patterns discovered are of only one fixed period length. This can be 

easily extended to deal with multiple time-related attributes and periods. When more 
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0 time-related categories based on original data 
0 sequential search I non-sequential search 

Subproblems 

value- based 

partial periodicity search I complete periodicity search 

point time representation 

0 time-related categories based on slopes derived from original data 
sequential search 1 non-sequential search 

trend-based 

I/ complete trend-based patterns I i-cycle trend-based patterns 

0 complete value-based patterns I i-cycle value-based pat terns 
interval time represent ation 

Table 4.4: Differences among the four subproblems related to periodic pattern search 
problem with fixed period on some natural time segmentation 

than one time-related attributes are selected in a periodicity search task, it implies 

extra measurements in the reference cube and extra dimensions in the working cube. 

Except that, the cube manipulation and periodic pattern discovery processes follow 

exactly the same routine as that in the presented algorithms. In another scenario, 

instead of having only one time plane in the working cube corresponding to the given 

naturally-segmented period, we can build in more than one time dimension each of 

which represents a time concept as in the tree-structured time hierarchy category. 

Then, by viewing the working cube from different time dimensions, periodic patterns 

of different naturally segmented period can be discovered. However, this case will 

inevitably produce more overhead than the current approaches. 

The examples introduced in this chapter all deal with time-related numerical data. 

Nevertheless, the algorithms can well be applied to time-related categorical data since 

both numerical and categorical data are characterized by generalized concepts accord- 

ing to some concept hierarchies. Therefore, the handling of both types of data should 

be more or less the same. 



Chapter 5 

Arbitrary Periodicity Search 

The problems discussed in the previous chapter deal with periodicity search with fixed 

period. However, not all patterns have such nicely segmented period. Very often, we 

recognize patterns with periods that cannot be described in a naturally segmented 

time unit. For example, the algorithms from Chapter 4 cannot detect periodic patterns 

that hold every 10 days, unless we explicitly specify this time segmentation. In this 

chapter, we will discuss how to detect periodic patterns of arbitrary length. 

5.1 Arbitrary Partial Periodicity Search 

In this section, the three algorithms presented focus on general partial periodicity 

detection, followed by some experimental results of these algorithms. The complete 

periodicity search problem will be discussed in the next section. 

The three algorithms presented here are sequential algorithm, forward optimization 

algorithm, and backward optimization algorithm. The last two are the optimization 

of the sequential algorithm. The difference among the three exists in the periodic 

pattern discovery process, while all of the three algorithms share a common data 

structure in data storage and retrieval. 

The first step is data collection, which is the same as in Algorithm 4.1.1. We 

collect all relevant time-related data and store them in a reference cube where we 

can reference the data efficiently and effectively. The reference cube has the same 
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Location = North America 

Product = GO Sport Line 

Profit 

All 

1260-6005 (4) 

1130-1260 (3) 

805-1130 (2)  

480-805 (1) 

-365-480 (0) 

Time 

Figure 5.1: Example. A T-slice of the working cube in arbitrary periodicity search. 

structure as described earlier. The data contained in the reference cube will then 

be transferred into a working cube. The basic structure of the working cube in this 

case will be similar to that of the working cube described in Algorithm 4.1.1 except 

that, since the period in arbitrary periodicity search problem is no longer a fixed 

domain, it is not feasible to  partition the time into time in a period and period indices. 

Therefore, the time in the working cube of arbitrary periodicity search problem solving 

is represented as a dimension instead of a plane. T-slices are taken from the working 

cube in correspondence to individual time series. A T-slice taken from the working 

cube representing the same set of data as depicted in Figure 4.5 is shown in Figure 

5.1. 

With each time series retrieved from the working cube, we need to find a way to 

extract periodicities from it if there is any. The general algorithm outline is shown 

in Algorithm 5.1.1. The major difference of each approach discussed in this chapter 

mainly lies in the procedure PeriodicitySearch(). 
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Algorithm 5.1.1 Findl2andomPeriod 

Input: 1) Non-time-related attributes Al, ..., A,; 2) time-related attribute AT; 3) 

time attribute, T ,  bounded by a time interval; 4)Time granularity, g; 5)maximum 

period length of interest, p,,,; 6)concept hierarchies associated with all attributes. 

Output: A set of periodic patterns associated with all periodic time series. 

BEGIN 

1. Select task-relevant data into a reference cube with all non-time-related at- 

tributes, All ..., A,, and time, T, as its dimensions. The values for the time- 

related attribute, AT, is the measurement. 

2. Transfer data from reference cube to working cube. The working cube contains 

all dimensions in the reference cube plus a dimension for AT. The measurements 

include count, and the average of AT. 

3. Find periodic time series and their patterns. 

FOR every T-slice; in the working cube DO 

(a) RETRIEVE the time series embedded in T-slice;. 

(b) CONVERT each data in the time series to its corresponding cate- 

gory index according to concept hierarchy C. The resulting sequence 

is S. 

(c) P; = PeriodicitySearch(i, S )  

END /* FOR */ 
RETURN P= {P;lP; is a periodic pattern set of object i ,  0 5 i < 
NumO f Objects) 

END 

The detailed procedure for the periodicity search will be outlined in each individual 

approach in the following sections. 
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5.1.1 Sequential Approach 

Our first attempt is the sequential approach. In this approach, exhaustive search is 

done on all time series for periodic patterns of every possible period length. Here, 

we will introduce another parameter, p,,,, which denotes the maximum period or 

pattern length of interest. The default value for this parameter is set as half the 

length of a time series. For each period length from 1 to p,,,, we sequentially go 

through a time series either to the end of the time series or until there is no possible 

cycle left in the candidate pattern. The result of each search through a time series 

is a pattern with the corresponding length. The complexity of this algorithm is of 

order m . n . p,,,, where m is the total number of time series, n the length of each 

time series, and p,,, the maximum period length of interest. The periodicity search 

procedure of this approach is presented in Algorithm 5.1.2. 

Algorithm 5.1.2 SequentialApproach 

PROCEDURE PeriodicitySearch(i, S) 

BEGIN 

/* Periodic pattern discovery phase */ 
FOR freq := 1 TO p,,, DO 

num-cycle := freq 

Pfreq-1 := (freq, num-cycle, Cfre,-l={(o,V,)lo = 0 ,..., freq - l ,Vo = 

S[oI > > 
FOR j := 0 TO freq-1 DO 

CONVERT Pfr,q-l to pattern string S, 

IF 3t > 0 such that S,[j] # S[j + freq . t ]  THEN 

DELETE (j, V,) € Cfreq-l 

num-cycle := num-cycle - 1 

END /* IF */ 
END /* FOR */ 
IF num-cycle > 0 

INSERT Pf,,q-l into pattern set Pi 
END /*  IF */ 
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END /*  FOR * /  
/* Non-large periodic pattern pruning phase */  
COPY Pi to temp? 

FOR freq := 1 TO p,,, DO 

IF (Cfreq-1 E Pfreq-1 E tempP)= 0 THEN 

DELETE Pfreq-1 E P; 
END /* IF */ 
ELSE 

FOR j := 0 TO freq-1 DO 

IF ( j ,  V,) E Cfre,-I THEN 

FOR all Ph E temp? where freql(h + 1) DO 

DELETE every ( j  + f eq . t ,  V,+ feq.t) E P h  

END /* FOR */ 
END /* IF */ 

END /* FOR */ 
END /* ELSE */ 

END /* FOR */ 
RETURN P; 

END 

We look at again Example 4.1 given in the previous chapter 

Example 5.1 After the first step of the algorithm, we obtain the same reference 

cube as shown in Figure 4.4, whose associated working cube in this case is depicted 

in Figure 5.1. We will use the same concept hierarchies for attributes profit, location, 

and product as described in the previous chapter. The time hierarchy adopted will 

be the same as well. The T-slice shown in Figure 5.1 corresponds to the time series 

of object (North America, GO Sport Line). It is already known from last chapter 

that the concept hierarchy for profit has only one level which contains five concept 

categories. By indexing these five categories, we can convert the time series into a 

sequence, which is "112012122112". 
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Suppose our maximum periodic pattern length is set to 6. Our first candidate 

pattern of length 1 is (1, 1, {(0,1))) corresponding to  the pattern string "1". This 

pattern string is compared to each sequential subsequence of length 1 starting from 

the second symbol in the sequence. In this case, the searching process is ceased a t  the 

third symbol "2", which indicates a mismatch with the candidate pattern string. In a 

similar process, candidate 2-cycle pattern corresponding to pattern string "11" is also 

eliminated. Then the candidate 3-cycle periodic pattern (3, 3, {(0,1),(1,1),(2,2)}) is 

being searched. This time, upon comparing the pattern with the first subsequence 

"012", the first symbol in the candidate pattern is found to be a mismatch, thus the 

first cycle in the candidate pattern is rejected. The candidate periodic pattern is now 

updated to (3,2, {(1,1),(2,2)}), or "*12". The next comparison of the remaining cycles 

in the candidate pattern with string "122" further wipes out the second candidate 

cycle in the pattern, left the candidate periodic pattern to be "**2" which is confirmed 

to be a pattern after the next round of comparison with the time sequence. Eventually, 

the 3-cycle periodic pattern turns out to be (3, 1, {(2,2))). Carrying out the rest of 

the execution in the same way, the final set of periodic patterns include patterns (3, 1, 

{(212)>)1 (57 27 {(2,2),(4,1)>), and (67 47 {(0,1),(2,2),(4,1),(5,2))), standing for pattern 

strings "**2" ,  "**2*1", and "1*2*12" respectively. 

Although this approach is very straightforward, its drawback is obvious. From 

the accuracy point of view, the periodic patterns obtained from this approach may 

not all be large. In other words, some periodic patterns may be the multiple or the 

product of other patterns. Then, efficiency-wise, for each time series in the selected 

data set, we have to  go through the entire sequence for each possible candidate period 

length. When the given time series have regular periodic behavior, the execution of 

the algorithm can be very costly. We find that,  under certain circumstances, some 

properties of the periodic sequences can be used to optimize the algorithm. 

5.1.2 Optimizations of the Sequential Approach 

We present two other algorithms which try to optimize the performance of the se- 

quential approach to  some extent. Before we present the algorithms, let us first look 
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at two properties of periodic sequences which serve as the basis for our optimization 

procedure. 

Proposition 5.1.1 The multiple of a periodic pattern is also periodic. The product 

of two periodic patterns is also a periodic pattern. 

This proposition is mentioned already in Chapter 3. The next proposition provides 

the method for updating the multiples of a periodic pattern. 

Proposition 5.1.2 If 3 a pattern P = (1, m,C= ((0, V)I(l, o, V) is a cycle)), then V 

pattern P' = (I1, m', C' = {(or, V'))), if I' = 1. s for some s > 0, then rn' = me s + t ,  t 2 
0, andV(o,V) inC, ( o + 1 -  j , V )  is inCIVO 5 j < s .  

Proposition 5.1.2 simply says that if (I, i ,  V) is a cycle in a pattern with length 1, then 

for a pattern with length 1 . s (any multiple of I),  every lth time units starting from ti 

must have a cycle with value V. Note that Proposition 5.1.1 is actually a special case 

of Proposition 5.1.2. By applying these propositions, we can reduce the number of 

comparisons needed to be carried out in search for periodic patterns of a time series. 

The improvement can be significant under some circumstances, as will be shown in 

experimental results in Section 5.1.3. 

In one optimization method, we jump forward to  longer periodic patterns to elim- 

inate some candidate cycle checking as sequentially searching through each candidate 

periodic pattern. This approach is referred to as forward optimization method. The 

other approach, backward optimization method, is, as its name infers, an optimiza- 

tion process of eliminating candidate cycle checking backward from longer to shorter 

periodic patterns. Both methods are based on Proposition 5.1.2. 

Forward Optimization Met hod 

Since we are only concerned about large periodic patterns, a periodic pattern which 

is a multiple of another periodic pattern should be rejected from the resulting large 

pattern set. Therefore, whenever we find a periodic pattern with length 1, we make 

sure that any pattern whose length is a multiple of 1 is not a multiple of the pattern. 
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Since the method jumps forward to eliminate cycle checking when a cycle of shorter 

period is found, it is referred to as forward optimization method. Accordingly, the step 

of periodicity search on one time series is sketched in procedure Forward-Op-Search() 

shown in Algorithm 5.1.3. 

Algorithm 5.1.3 Forward-Optimization Approach 

PROCEDURE PeriodicitySearch(i, S )  

BEGIN 

/*  Initialize pattern set */ 
FOR j := 1 TO p,,, DO 

pattern-lengthj-l := j 

n u m - ~ y c l e ~ - ~  := 0 

Pj-1 := (pattern-lengthj-l, n u m - ~ y c l e ~ - ~ ,  C=0) 

END /*  FOR */ 
/* Periodic pattern discovery phase */ 
FOR k := 0 TO (p,,, - 1) DO 

is-complete-pattern := TRUE 

new-cycle-exists := FALSE 

FOR j := 0 TO (pattern-lengthk - 1) DO 

IF  ( j ,  S[ j ] )  4 Ck THEN 
IF S[j] = S[j + k.t]Vt > 0, and j + k . t  < IS1 THEN 

/* New cycle is found */ 
new-cycle-exist := TRUE 

num-cyclek := num-cyclek + 1 

INSERT ( j ,  S[ j ] )  into Ck of Pk 

END /*  IF */ 
ELSE 

is-complete-pattern := FALSE 

END /* ELSE */ 
END /* IF */ 

END /* FOR */ 
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IF is-complete-pattern 

FOR every P, where pattern-lengthkIpattern-length, 

DELETE P, 

END /*  FOR */ 
INSERT Pk into Pi 

END /* IF */ 
ELSE IF new-cycle-exist 

FOR every P, where pattern-lengthklpat temlength,  DO 

FOR h := 0 TO (num-cyclek - 1) DO 

IF (oh, K,) E Ck THEN 

INSERT (oh + pattern-lengthk - t ,  V,,) into C, V t  > 0 and 

oh + pattern-lengthk . t < pattern-length, 

END /* IF */ 
END /* FOR */  

END /* FOR */ 
INSERT Pk into Pi 

END /* ELSE IF  */ 
ELSE 

DELETE the current pattern Pk 

END /* FOR */ 
RETURN P; 

END 

Let us go through the algorithm using a different example. 

Example 5.2 Suppose an input time series is converted into a string "121 11 11 1131 1". 

The maximum pattern length is set at 6. Starting from the initial pattern strings, 

each iteration of the algorithm is listed as follows. 

1. Initialization : 6 empty patterns with period lengths 1 to 6 are initialized. 

2. Iteration 0 : There is no pattern found with length 1. The length-1 pattern is 

thus eliminated. 
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I iterations I Initial 0 1 2 3 4 5 

patterns 

Table 5.1: Periodicity search result of sequence 121 111 11 131 1 after each iteration in 
Forward Optimization Approach. 

3. Iteration 1 : A pattern with length 2 is found, whose pattern string is "l*". 

Patterns with length 4 and 6 are updated to "1*1*" and "1*1*1*". 

4. Iteration 2 : The resulting pattern with length 3 has the pattern string "**l". 

The length-six pattern is again updated to "1*1*11" to reflect this new pattern. 

5. Iteration 3 : Since some of the periodic cycles have already been assigned to 

pattern of length 4, we don't need to check the symbols in the sequence corre- 

sponding to cycles (0, 1) and (2, 1). This reduces the number of symbols to  be 

checked in the string by a half. When a new cycle is discovered for length 4, it 

is added to  the final pattern, which is " l* l ln .  

6. Iteration 4 : The periodic pattern of length 5 is found to be "1*11*". 

7. Iteration 5 : The unknown cycles in pattern 6 are being checked. Since no new 

cycle is discovered, we know we can derive pattern 6 from the product of pattern 

2 and pattern 3. Thus, periodic pattern with length 6 is eliminated as well. 

The resulting pattern strings of each period length from each searching process are 

listed in Table 5.1.2. The boldfaced symbols are the newly discovered or confirmed 

cycles of the corresponding iteration. 
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Because we update the candidate patterns with longer lengths every time a shorter 

pattern is found, not only do we reduce the time for string comparison, but we also 

eliminate the patterns which are derivatives of the previous patterns found. As a 

result, all the patterns in the resulting pattern set are large periodic patterns. 

Backward Optimization Met hod 

In forward optimization method, every time a cycle is confirmed in a candidate pattern 

CP, the candidate patterns whose lengths are the multiples of that of CP are updated 

by the multiples of this cycle. Conversely, if a cycle does not exist in a candidate 

pattern CP, this nonexistence of cycle can also be reflected in shorter candidate 

periodic patterns whose period length divides that of CP. For instance, if the first 

symbol in candidate pattern of period 8 is not a cycle, it consequently implies that the 

first symbol in candidate pattern of period 1, 2, or 4 is not a cycle either. Otherwise, 

every eighth symbol in a time sequence will also be repeating starting from the first 

symbol, resulted in a cycle of length 8 - a contradiction. Therefore, if we detect a non- 

existing cycle in a candidate periodic pattern, we can search backwards to eliminate 

the corresponding cycles in candidate patterns whose length divides the length of the 

current pattern. 

Furthermore, for any candidate pattern with a relatively short period length (at 

least one half of the maximum pattern length), it is not necessary t o  check through 

the entire sequence. Instead, we only need to check the candidate pattern against 

the periodic pattern previously found with twice the length of the current candidate 

pattern. For example, we may have already found out the periodic pattern of length 8 

for a given time sequence that can possibly be a long sequence. Then, when it comes 

to the candidate pattern of length 4, we do not have to check it against the original 

long sequence but only the periodic pattern found for length 8. This optimization 

feature again shows the usefulness of Proposition 5.1.2. A periodic pattern exist in a 

shorter periodic pattern will definitely be reflected in its multiples. 

The optimization method is referred to as backward optimization method, whose 

idea also stems from Proposition 5.1.2. 
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iterations 

pat terns 

Initial 0 1 2 3 4 Pruning 

Table 5.2: Periodicity search result of sequence 121 11 11 1131 1 after each iteration in 
Backward Opt imiza t ion  Approach. 

Example 5.3 We still use the same time sequence from the example in previous 

section, "121111111311". The maximum pattern length is still 6. Starting from 

the initial pattern strings, each iteration of the algorithm is listed as follows. Note 

that, this time, the initial pattern strings, instead of empty strings, are the candidate 

patterns taken from the head of the time sequence. 

1. Initialization : 6 candidate periodic patterns with period lengths from 1 to 6 

are initialized. 

2. Iteration 0 : Periodic pattern of length 6 is found to be "1*1*11". Since cycles 

(6 ,1 ,2)  and (6 ,3 ,1)  do not exist, we reject the corresponding cycles in candidate 

periodic patterns of lengths 1, 2, and 3 accordingly. The eliminated cycles are 

(1, 1 mod 1, 2), (2, 1 mod 2, 2), (3, 1 mod 3, 2), and (1, 3 mod 1, l), (2, 3 mod 

2, I ) ,  (3, 3 mod 3, 1). As a result, the candidate length-1 periodic pattern is 

eliminated from the pattern list. The updated candidate periodic patterns for 

lengths 2 and 3 are then "1"" and "**ln. 

3. Iteration 1 : Periodic pattern of length 5 is found to be "1*11*". No cycle 

reduction is available since length 5 is a prime number. 

4. Iteration 2 : Periodic pattern of length 4 is ''l*llV. The elimination of cycle (4, 

1, 2) implies that of cycle (2, 1 mod 2, 2). 
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5 .  Iteration 3 : The candidate length-3 periodic pattern is "**lV, thus only the 

substrings in the time sequence corresponding to the third symbol in the can- 

didate pattern are checked; and it is checked against its double multiple 1*1*11 

instead of the original time sequence. The length-3 periodic pattern turns out 

to be """1". 

6. Iteration 4 : The first symbol in the candidate 2-cycle periodic pattern "1"" is 

checked against the length-4 pattern 1*11 and turns out to be an actual cycle. 

7. Pruning : There is no pattern with length 1. The whole pattern list is checked 

again to eliminate possible non-large patterns. In this case, the length-6 pattern 

is pruned out since it is a product of the length-2 and the length-3 periodic 

patterns. 

The resulting pattern strings of each period length from each searching process 

are listed in Table 5.3. The boldfaced asterisks are the newly eliminated cycles of the 

corresponding it eration. 

Contrary to the forward optimization approach, we update some patterns with 

shorter lengths every time some cycles are eliminated from a longer length pattern. 

Ideally, this approach will considerably reduce the number of string comparisons when 

there is little regularity in the tested time sequence. However, the performance of the 

backward optimization approach is not as satisfactory as one would expect. This is 

mainly due to the large amount of overhead introduced in cycle elimination process. 

Moreover, the approach relies on a complete check through the entire pattern list in 

order to filter out the non-large patterns. This, too, is a tedious process. 

One problem of the cycle elimination process is that it involves finding divisors 

of an interger. The algorithm for finding divisors is very time consuming. Thus the 

advantage of prepruning the cycles diminishes as the maximum period length gets 

long. An obvious way to bypass the divisor finding is to leave the cycle elimination 

step out of the opimization process. It may seem like a less efficient approach, but 

because the overhead created by divisor finding no longer exists, the experimental 
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performance result turned out to be improved. Therefore, our final algorithm for the 

backward optimization approach contains only one optimization feature, which checks 

the correctness of a pattern versus its nearest multiple instead of the entire sequence. 

The final algorithm layout for the backward optimization approach is as follows. 

Algorithm 5.1.4 Backward~OptimizationApproach 

PROCEDURE PeriodicitySearch(i, S )  

BEGIN 

/*  Initialize pattern set */ 
FOR j := 1 TO pmax DO 

p a t t e ~ n - l e n g t h ~ _ ~  := j 

n u m - ~ y c l e ~ - ~  := j 

Pj-l := (pattern-lengthj-l, n ~ m - c y c l e ~ - ~ ,  C={(k, &)lk = 0, 1, ..., j - 1 

and Vk = S[k])) 

END /* FOR */ 
/* Periodic pattern discovery phase */ 
FOR k := (pma, - 1) DOWNTO 0 DO 

IF  k < pmax/2 AND P 2 . k + 1  @ Pi THEN 

DELETE Pk 

END /* IF */ 
ELSE 

St := S 

IF k < pmax/2 THEN 

st := p2 .k+1  

END /* IF */ 
FOR j := 0 TO (pattern-lengthk - 1) DO 

IF ( j ,  V,) E Ck THEN 

CONVERT Pk to pattern string Sp 

IF 3t > 0 such that Sp[j] # S1[j + k t ]  THEN 

DELETE ( j ,  V,) E Ck 

num-cycle := num-cycle - 1 
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END /* IF */ 
END /* ELSE */ 

END /*  FOR */ 
IF  num-cycle > 0 

INSERT Pk into pattern set Pi 
END /* IF */ 

END /* FOR */  
END /* ELSE */ 

END /* FOR */ 
/*  Non-large periodic pattern pruning phase same as that in algorithm 5.1.2. 

Omitted. */ 
RETURN 7'; 

END 

5.1.3 Experiment a1 Results 

In this section, we will present the results of some experiments conducted to analyze 

the performance of the three algorithms presented in this chapter with respect to  

various factors such as data size, degree of pattern regularity, etc. 

The experiments were conducted on a Pentium Pro 200 with 64 MB of memory 

running Windows NT. Since the periodicity search of the time series is independent 

of each other, we will run each experiment on only one time series but for 500 times. 

Thus, the execution time shown on all the graphs in this chapter are the running time 

of 500 repetitions. 

Time Series Size Scale-up 

First, the effects of varying size of time series on the two algorithms are examined. 

Intuition tells us that,  when a time series is irregular, i.e., does not have obvious 

periodic behavior, both algorithms should be terminated quite soon. This is because 

each iteration of searching process is stopped as soon as a mismatch is encountered. 

Figure 5.2 shows the performance result of executing the three algorithms with 
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Sequential Algorithm - 
Forward Algorithm - - - - -  

Backword Algorithm - 
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(b) 
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Sequential Algorithm - 
Forward Algorithm - - - - -  

Backword Algorithm 

20000 40000 60000 80000 100000 
Sequence Length 

Figure 5.2: Performance comparison with changing length of (a)highly regular time 
series; and (b)highly irregular time series. 
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varying sequence length. The simulation is done with various maximum pattern 

lengths from 5 to 40, and the average execution time of these experiments is shown 

in Figure 5.2. 

As indicated in graph (b),  when a time series is highly irregular, the execution 

time for all three algorithms is pretty stable. In this case, the performance of the 

sequential algorithm is better than the other two. The reason is quite obvious. When 

a time series is highly irregular, each iteration for validating a candidate periodic 

pattern can be terminated at  a relatively early stage of the sequential checking pro- 

cess. Thus all the cycle confirmation steps employed in the optimization approaches 

become undesirable, which can only create more overhead for indexing, checking, and 

searching. It is also indicated in the graph that the forward and the backward opti- 

mization approaches show much similar performances in presence of highly irregular 

time series. 

On the other hand, when the time series is highly regular, both optimization 

approaches demonstrate a much better performance than the sequential approach, as 

shown in graph of Figure 5.2(a). The exhaustive search through patterns of every 

possible length proves to be highly undesirable when there are regular patterns in a 

time series. This is because that, for each pattern length, the sequential approach 

has to compare the candidate pattern of this length with each substring of the same 

length in the time sequence. When the time series is highly regular, each of these 

string comparisons is likely to  be carried on till the end of the time sequence. The 

advantage of the optimization approaches is evident. The advantage is especially 

outstanding when the sequence length is long. For both optimization approaches, 

longer sequence length means that more cycles can be confirmed or eliminated, thus 

as a result, fewer cycles need to be verified. The forward optimization approach 

performs slightly better than the backward optimization approach in our simulation 

because of the simple nature of the two approaches. The design of the two approaches 

is based on the idea that the forward approach is ideal for hightly regular series while 

the backward approach is for less regular series. Besides, the lower performance of the 

backward approach is also due to the additional pruning phase of non-large patterns. 
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Experimental results show that with highly irregular time series, the simple se- 

quential algorithm performs slightly better than the other two algorithms. But when 

a time series is highly regular, the increasing rate of execution time for the sequential 

approach is much faster, while the optimization approaches are not significantly af- 

fected by the varying sequence length. Between the two optimization approaches, the 

forward approach outperforms the backward approach in both cases. This is mainly 

because of the supplementary pruning phase introduced at the end of the backward 

approach. 

Varying Irregularity Locat ion 

We inserted into a highly regular time series some irregular sequence, and ran the 

three algorithms on this time series to see how the varying irregularity locations in a 

highly regular time series can affect the performance of the algorithms. The length 

of the time series varies from 156 up to 1452. Each time sequence is partitioned into 

equal-length intervals. The irregular sequence is inserted into each interval during 

different execution. The resulting execution time of each algorithm running on time 

series with various lengths is averaged to get the results shown in Figure 5.3.  

The result indicates that the performance of the two optimization algorithms is 

not affected much by the varying irregularity locations in a highly regular time series. 

On the contrary, the influence can be seen clearly on the sequential approach. The 

justification behind this is similar to that of the changing sequence length. When 

the irregularity occurs in earlier intervals of the time sequence, each iteration on a 

candidate pattern with certain length can be terminated faster. Thus the sequential 

approach, with the simplest type of pruning mechanism, has a performance similar 

to that of the two optimization algorithms. But as the irregularity is inserted into 

later part of the time series, the sequential approach takes much longer to prune out 

or confirm a pattern than the optimization algorithms, because it takes much longer 

to get to the irregularity. 

Hence, the conclusion is that the only approach which shows a great influence 

by the varying irregularity locations in a highly regular time series is the sequential 
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Sequential Algrithm - 
Forward Algorithm - - - -  - 

Backward Algorithm - 

0 0.2 0.4 0.6 0.8 1 
Occurance of Irregularity 

Figure 5.3:  Performance comparison with changing positions of irregularity. 
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algorithm. The optimization algorithms are quite stable under similar changes. 

Varying Maximum Period Length 

Figure 5.4 shows the performance comparisons among the three algorithms when the 

maximum pattern length is varied from 5 to 40. The experiments are again run on 

both regular and irregular time series. 

As could be seen from the trend of the curves on Figure 5.4(a), in average, the 

varying maximum period lengths have approximately the same amount of influence 

on all three approaches, with that on the sequential approach slightly higher than 

the other two. Similar observation is shown in Figure 5.4(b), with a more dramatical 

change in the curve trend occurred for the two optimization approaches. These are all 

in relevance to the fact that the experiments in (a) are carried out on highly regular 

time series, while that in (b) are on highly irregular time series. 

Experimental Conclusion 

Through a series of experiments, we have shown that in general, the sequential algo- 

rithm performs slightly better than the optimization algorithms when a time series has 

no obvious periodic behavior. On the other hand, the optimization algorithms per- 

form significantly better than the sequential algorithm on highly regular time series. 

The faster execution of the optimization algorithms results from the cycle pruning 

and cycle confirmation carried out along the sequential checking through each candi- 

date pattern length. Between the two optimization algorithms, the forward approach 

shows a slightly better performance than the backward approach. This is because, 

in backward algorithm, a prune phase has to be executed to ensure that all patterns 

found are large. This last point raises also the accuracy aspect of the three algorithms. 

For both sequential and backward optimization algorithms, the patterns discovered 

after the pattern searching process are not necessarily large. Thus some additional 

checking has to  be done on these patterns to prune out those that are not large. 

Meanwhile, the forward optimization process searches for large patterns with a nat- 

ural pruning-on-the-fly fashion. Therefore, we can conclusively say that the forward 
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Figure 5.4: Performance comparison with changing maximum pattern length on 
(a)highly regular time series; and (b)highly irregular time series. 
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optimization algorithm provides a more efficient way of finding arbitrary patterns in 

a time series. 

5.1.4 Discussion 

All three algorithms presented in previous sections deal with partial periodicity search 

problem, in the sense that the number of cycles in a discovered periodic pattern may 

be less than the length of the pattern. Since the worst case scenario for all three 

algorithms occurs when a search has to go through the entire time sequence for each 

candidate pattern length, the complexity for all three algorithms is O(m . n) where m 

is the maximum pattern length and n the length of the input time sequence. 

In the previous chapter when we discussed the fixed-length periodicity search 

problem, we use a confidence threshold as a means of controlling the level of accuracy 

of a pattern. This concept of confidence threshold is not employed in the arbitrary 

periodicity search problem, because it is not trivial to verify the patterns when the 

period length is arbitrary. We can of course apply the sequential algorithm with an 

additional confidence threshold as a control parameter. So we can again use the same 

strategy, for each period length, first find the 1-cycle patterns of each period length 

inside a time series, then combine the 1-cycle patterns of the same period length to 

form 2-cycle candidate patterns, etc. The drawback is obvious. This process has to be 

executed for each time series at each period length. The processing will be extremely 

expensive. Then shall we use optimization approaches similar to those presented 

in previous sections to reduce the processing cost? Unfortunately this may not be 

feasible either. 

Consider the time sequence "11212111". If we set the confidence threshold to be 

75% and the maximum pattern length to be 4, then, after the first iteration, we can 

conclude that "1" is a periodic pattern with exactly 75% confidence. Then by our 

forward optimization mechanism derived from properties 5.1.1 and 5.1.2, we should 

be able to derive patterns "ll", "lll", and "llll", all of which are verified to be 

false periodic patterns that do not meet the confidence threshold. Now if we try 

the backward optimization approach, what we find is that the first pattern we find, 
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LL* * 71 1 1 , will mean a mis-prune of the pattern "1" in a backward cycle pruning process. 

So basically, no forward or backward optimization can be done to pre-prune or pre- 

confirm any cycles that are not in the current pattern being checked. Every pattern 

is detected sequentially through individual checking of an entire time sequence. 

Accuracy relaxation is a missing piece in this arbitrary periodicity search approach. 

It may be possible that OLAP techniques can be employed to overcome this weakness. 

Further study is needed in this area. 

Arbitrary Complete Periodicity Search 

As mentioned in Chapter 4, users are sometimes specifically interested at periodic 

patterns which show a complete match. In other words, every value in a discovered 

pattern corresponds to a category which is repeated at the same time within every 

period. This problem, again as mentioned, can be considered as a special case of the 

partial periodicity search problem and is thus solvable by the previous approaches. 

The major concern is still the efficiency and the possibility of optimization with a 

narrowed search target. 

5.2.1 Modification to the Previous Approaches 

In this section, we will talk about ways of optimizing the previous three approaches to 

handle explicitly the complete periodicity search problem. The optimized approaches 

are referred to as "modified approaches" to avoid any possible confusion with the 

forward and the backward optimization approaches discussed in the previous section. 

Modified Sequential Approach 

When complete periodic pattern matching is required, the search effort is consequently 

reduced. In the general approach, when a mismatch occurs between a candidate 

pattern and a substring of the time sequence, we prune out the corresponding cycle 

in the candidate pattern and go on to verify the other cycles. But since in a complete 

periodicity search, one mismatch of cycle already declares an incomplete periodic 
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pattern, the current search iteration can thus be terminated. The search goes on 

for each possible period length, until either no more candidate periodic patterns are 

available or a complete periodic pattern is found. The reason of the latter condition 

will be shown in the following theorem. 

Theorem 5.2.1 There exists at most one large complete periodic pattern in a given 

sequence. 

Proof. 

Suppose there are more than one large, complete periodic patterns found in a given 

sequence S. Among all these large, complete patterns, PI is one with the shortest 

period length 11, and P2 is another with a period length 12. 

Let 12= l I . s + t  for somes 2 0  a n d 0  s t  < 11. 

If t = 0, then 11 112, which implies that P2 is a multiple of PI, a contradiction to 

our assumption that P2 is a large periodic pattern. 

Otherwise, if 0 < t < 11, then since PI and P2 are complete periodic patterns, for 

all 0 5 j < t and n > 0, we have the following: 

which suggests that there exists another complete pattern Pi whose period length is 

t ,  0 < t < 11. This again contradicts our assumption that PI is the periodic pattern 

with the shortest period length. 

Therefore, we conclude that there can be at most one large complete periodic 

pattern in a given sequence. 0 

Due to this theorem, the periodicity search on one given sequence can be termi- 

nated upon the discovery of a large complete periodic pattern. 

The faster termination of each sequential search proves to be very significant in 

complete periodicity search. This will be shown later in experimental results. 
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Modified Forward Opt imizat ion Approach 

In the simplified version of the forward optimization approach for complete periodicity 

search problem, we mainly keep the original routine except that the search process 

will be ended once a large complete periodic pattern is found. Because the forward 

approach is carried out from shorter period length to longer, the first complete pattern 

we discover will definitely be a large pattern. 

In forward optimization approach, in order to confirm the cycles exist in longer 

periodic patterns, we have to first confirm the cycles in patterns with shorter period. 

This requires all the unconfirmed substrings in the sequence to be searched even if the 

pattern of the current period has already been identified as incomplete. Although this 

approach does not take into account too much of the characteristics of the complete 

periodicity search, its reduction of the searching space is a merit that could still be 

significant in some cases. 

Modified Backward Opt imizat ion Approach 

There are more dramatic changes in the modified backward optimization approach 

than the previous approach. In a backward approach, we discard cycles instead of 

confirming cycles. Once a cycle is discarded from a candidate periodic pattern, the 

pattern becomes incomplete, and can thus also be discarded. Therefore, for each 

period length, we check through the time sequence to  see if the candidate periodic 

pattern of this length is complete, as soon as a mismatch is confirmed, this pattern, 

along with all candidate patterns of lengths that divide the current period length, are 

pruned out from the candidate list. Then if a complete periodic pattern is found, by 

Theorem 5.2.1, all candidate patterns of lengths that divide the current period length 

will be checked against the discovered pattern to  see if any other complete periodic 

pattern exists; if so, the one with the shortest period length will be the final large 

complete pattern, otherwise, the current complete periodic pattern is proved to be 

large and is the final solution. 

Example  5.4 Suppose the input time sequence is 12121212121212121212, and the 

maximum pattern length is set as 9. We start the searching process backwards from 
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the maximum pattern length. In this case, the candidate length-9 periodic pattern 

is 121212121. Upon checking with the first symbol in the next consecutive substring 

of length 9, which is 2 (of "212121212"), the candidate pattern is pruned out from 

the candidate list since it has been proved to be at least incomplete. Along with this 

candidate pattern, we also prune out the candidate length-1 and length-3 patterns 

whose length divides that of the length-9 pattern. Next, we check the candidate 

length-8 periodic pattern 12121212 and finds it to be a complete periodic pattern. To 

determine whether this is a large pattern or not, we search through the discovered 

complete pattern 12121212 to see if there exist another complete pattern of length 2 

or 4 (not length-1 since it is pruned out in the last iteration). As a result, the length-2 

pattern 12 is the only large complete periodic pattern in this time sequence. [11 

Although the original overhead problem persists in searching for divisors, the ap- 

proach provides a more efficient means of pruning out incomplete periodic patterns. 

Moreover, once a complete periodic pattern is discovered, though the process cannot 

be terminated right away and we still have to go on to check if the pattern discovered 

is large, it restricts the candidate patterns to be checked to only those that are po- 

tentially the original large pattern from which the current pattern derives from. The 

later experimental result proves the modified backward optimization approach to be 

a more efficient version. Its performance is close to, if not better than, the modified 

forward optimization approach. 

5.2.2 Experimental Result 

The experimental results of the three modified approaches are shown in Figure 5.5 .  

The experiments are again conducted on a time series 1,000 times with respect to vary- 

ing sequence lengths, varying maximum pat tern lengths, and the changing location 

of irregularity occurrences within a highly regular sequence. 

Graph (a) shows the average execution time of the three modified algorithms 

running on a time series of various lengths with some irregularity inserted into different 

locations in the time series. It is obvious from the graph that both the modified 

sequential algorithm and the modified forward optimization algorithm are affected by 
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Figure 5.5: The experimental result of the three modified approaches with respect to 
(a) location of irregularity occurrences in regular time series; (b) varying lengths of 
regular time series; (c) varying lengths of irregular time series; (d) varying maximum 
pattern lengths on regular time series; and (e) varying maximum pattern lengths on 
irregular time series. 
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the changing irregularity location. The closer the irregularity is to the end of the 

time sequence, the longer the execution takes for the two algorithms. This is due 

to the longer duration time for the discovery of a periodic pattern mismatch when 

the irregularity occurs at later part of a time sequence. Meanwhile, this influence 

is not obvious with the modified backward algorithm. It could because that the 

cycle pruning process in the backward approach is carried out regardless of when the 

irregularity actually occurs. The discovery of one mismatch takes longer when the 

irregularity occurs late in a sequence, but then once it is realized, a whole set of other 

incomplete periodic patterns will be pruned out from the candidate periodic pattern 

set. 

The results shown in graphs (b) and (c) with respect to the varying length of 

a time sequence are quite the contrary to what we saw in partial periodicity search 

approaches. In the complete periodicity approaches, none of the three algorithms seem 

to be affected by the sequence length except a little for the sequential algorithm. This 

is because we hide the same complete periodic pattern inside all the time sequences 

in this experiment, with varying lengths for all the sequences. Therefore, regardless 

of the length of a time sequence, whenever the search process hits the actual pattern, 

the algorithm is terminated by Theorem 5.2.1. 

The last two graphs indicate a smooth change of execution time with the sequen- 

tial algorithm and much more dramatic changes with the other two algorithms. The 

influence of the varying maximum pattern length is overwhelming on the two opti- 

mization algorithms because they insist on either examining the entire time sequence 

even though a mismatch at earlier part of the sequence has already been confirmed, 

or checking through the entire set of candidate patterns for those that are divisors 

of the current pattern. The once tedious sequential pattern checking becomes more 

favorable in this case when a early mismatch can declare the end of one candidate 

pattern checking process and when the discovery of one complete periodic pattern 

terminates the entire searching process. 

From this series of experiments, it can be concluded that the relatively faster 

termination of a checking through both a sequence and the entire set of candidate 

periodic patterns favors the simple sequential algorithm more than the other two 
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optimization algorithms. The overhead introduced in the two optimization algorithms 

are more outstanding than in the general partial periodicity search process. Thus, 

when a complete periodicity match is required, the sequential algorithm is a more 

appropriate approach. 

5.3 Summary 

The problem of finding periodic patterns with arbitrary period lengths is discussed in 

this chapter. The problem is discussed in two subproblems as was in the fixed-length 

periodicity search. Three algorithms are introduced in partial periodicity search, 

which are later on modified to apply in the complete periodicity search problem. 

The three algorithms introduced in partial arbitrary periodicity search are sequen- 

tial, forward optimization, and backward optimization approaches. Algorithm 5.1.2 is 

the sequential approach. While the approach provides a straight-forward solution to 

the problem, its efficiency may not be satisfactory when a candidate pattern cannot 

be pruned out right away. According to some properties of periodic patterns, some 

optimizations can be practiced on the first approach to improve both the efficiency 

and accuracy. These optimizations are reflected in the forward and the backward 

optimization approaches, illustrated in algorithms 5.1.3 and 5.1.4. The optimization 

employed in the forward optimization approach emphasizes on the pre-confirmation 

of cycles exist in longer periodic patterns, while that in the backward optimization 

approach focus on the pre-pruning of the candidate cycles in shorter periodic patterns. 

Both are based on the propositions 5.1.1 and 5.1.2. According to  our simulation, we 

have shown that the performance of two optimization approaches are not affected 

by varying sequence length or irregularity location in a highly regular time series. 

However, the varying maximum pattern length does have affect over the two meth- 

ods. Besides, the forward optimization approach shows a better performance than the 

backward optimization approach. The accuracy problem is also automatically elimi- 

nated in the forward approach, while a post-pruning phase has to be executed after 

pattern searching process in both sequential and backward optimization approaches. 

In complete arbitrary periodicity search, the three algorithms are modified to 
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reflect the complete restriction on the discovered periodic patterns. Each of them are 

so modified that either a search through the sequence is terminated once the current 

candidate pattern is proved to be incomplete, or the entire search process is terminated 

once a complete periodic pattern is located (by Theorem 5.2.1). The improvement 

of the performance is significant for all three modified algorithms, especially for the 

sequential approach. Simulation results show that varying sequence length has little 

influence on all three algorithms, while all are affected by the varying maximum 

pattern length with a relatively small affect on the sequential approach. The backward 

optimization approach stands out in experiments with respect to the varying locations 

of irregularity occurrence with virtually no affect. 

The accuracy relaxation is a missing piece in this study of arbitrary periodicity 

search, which requires further study. The reasoning of this is already discussed in 

Section 5.1.4. OLAP-based approaches such as illustrated in chapter 4 may be a pos- 

sible solution for this problem, although it is not trivial concerning how to manipulate 

different time planes to serve as the foundation for the discovery of periodic pattern 

of varied lengths. 



Chapter 6 

Conclusion and Future Research 

In this thesis, we have presented some algorithms for periodicity search problem. 

There are two major subproblems of our concern: fixed-length periodicity search 

and arbitrary periodicity search. In each of these subproblems, we discussed some 

approaches for both partial and complete periodic pattern search. Some experimental 

results were also given. In this chapter, we will conclude with a summary of this study 

and propose some future research directions in the area. 

6.1 Summary of Research 

The goal of this study is to  propose some possible solution to the problem of finding 

periodic behaviors in large data sets. The research comprising this thesis has a number 

of impacts including applying OLAP technology to discover periodicity across different 

concept levels, finding patterns of partial periodicity, and using properties of periodic 

time sequence to optimize the search process. 

In fixed-length periodic pattern discovery problem, we proposed an OLAP-based 

search algorithm which combined techniques of data cube and OLAP operations with 

some sequential pattern search strategies to discover large periodic patterns of each 

time series. The efficiency of this algorithm largely relies on the manipulation of data 

cube that has been an active research topic for the past several years. The accuracy 

of the algorithm has been shown in [7]. The use of OLAP techniques allows us to 
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explore periodicity across various concept levels and to find periodic patterns of our 

interest as well. 

In a mathematical context, periodicity usually refers to a complete pattern match 

recurring in a regular interval. In this study, we extend this idea of periodicity to  

allow partial pattern match. This is partly in correspondence to the seasonal variation 

introduced in [37]. Thus, any regular behavior within a time series will be detected. 

Periodic time series have certain properties as introduced in Chapter 5 .  These 

properties, when employed in arbitrary periodicity search, can substantially reduce 

the search effort via cycle pre-confirming or cycle pre-pruning. The optimization 

is implemented into the forward and the backward optimization algorithms, and is 

tested to  dramatically improve the performance in partial arbitrary periodicity search 

problem. 

Some simulation has been done on the arbitrary periodicity search problem with 

respect to varying sequence length, varying maximum pattern length, and varying lo- 

cation of irregularity occurrence. The results show that, in partial periodicity search 

problem, the two optimization algorithms are far more efficient than the sequential 

algorithm in most cases when a time series has even a slight indication of regular- 

ity. The performance of the two optimization algorithms are very similar. On the 

other hand, the simple, straight-forward sequential algorithm outperforms the two 

optimization algorithms in complete periodicity search problem. This is due to  the 

fact that the restriction on a complete pattern match allows a faster termination in 

each search through a time sequence and a complete termination of the entire search 

process once a complete pattern is encountered(The0rem 5.2.1). However, there is 

an indication showing a more dramatical increase of execution time of the sequen- 

tial algorithm than that of the backward optimization algorithm with the change of 

irregularity occurrence. 

Hence we conclude that there is no single algorithm proposed that stands out in 

all cases. Generally, the optimization approaches are suitable for detecting arbitrary 

partial periodic behaviors among time sequences that have a strong indication of 

periodicity, while the sequential approach has a faster response time in arbitrary 

complete periodicity search, and in arbitrary paritial periodicity search when a time 
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sequence is not so regular. 

6.2 Future Research Direction 

We have proposed the algorithms for periodicity search in time-related data sets based 

on Assumptions 3.3.1, 3.3.2 and 3.3.3. Among these three assumptions, the first two 

can be relaxed to extend the scope of this research. 

In real applications, very likely, time series of interest are not always input with 

same time intervals. There may be pieces of information missing in some time series 

or even different time granularity for different time series. This adds extra complexity 

to the analysis of the time series. Some signal processing methods may be used to fill 

in these gaps so that the time series can be normalized for periodicity detection. On 

the other hand, periodicity detection may in turn provide some hint to these missing 

data. 

In most cases, such as stock data, time series obtained are rarely noise-free. Special 

signal smoothing techniques need be applied to preprocessing these time series so that 

the resulting time series we work on are relatively simple and smooth. A method 

using wavelet transform technique to generalize an input signal is being studied in 

[40], which may provide us with an efficient tool to handle this problem. 

Another issue of concern is the accuracy relaxation aspect missing in the arbitrary 

periodicity search problem. As stated in Section 5.1.4, accuracy relaxation problem 

requires special handling of the input sequence that will with no doubt add extra 

complexity into the problem of finding periodic patterns of arbitrary period length. 

OLAP technology may be employed to overcome this weakness. 

Furthermore, the approaches proposed in this thesis can also be extended to  handle 

a more complex situation such that certain conditions can be discovered under which 

the periodic patterns occur. One obvious way to do this is to explicitly express the 

interested conditions in the selective query to find periodic patterns associated with 

these conditions. Another way is by using classication rule discovery techniques [26] 

to describe the discovered patterns by other non-time-related attributes. 



Appendix: A 

AprioriAll Algorithm 

Agrawal et. al. proposed an A~rioriAll algorithm for mining sequential patterns in 

transaction databases[7]. The algorithm consists of two phases, a sequence phase for 

discovery of all large sequences and a maximal phase for pruning out those patterns 

that are not maximal. In the sequence phase, we need to go through iterations 

of candidate large i-sequences generation and verification. The two procedures for 

candidate generation are also outlined following the ApriorAll algorithm. 
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ALGORITHM. ApriorAll 

BEGIN 

/*  Sequence Phase */ 
FIND the set of all large 1-sequences, L1 

INSERT L1 into L 

FOR i := 1 TO MaxSeqLength DO 

C;+l := CandidateGeneration-Join(i) 

C;+l := CandidateGeneration-Prune(i + 1) 

JUMP out of loop if C;+l is empty 

FOR each (i + 1)-sequence p in Ci+l DO 

IF p is large THEN 

INSERT p into L;+l 

END /* IF */ 
END /* FOR */ 
INSERT L;+l into L 

JUMP out of loop if L;+l is empty 

END /*  FOR */ 

/*  Maximal Phase */ 
FOR each sequence p in L DO 

DELETE from L all subsequences of p 

END /*  FOR */ 
RETURN L 

END 

PROCEDURE: CandidateGeneration-Join(i) 

BEGIN 

FOR any pair of i-sequences, p and q ,  in L; DO 

IF (p[j] = q[j]  for O 5 j < (i - 1)) AND (p[i - 11 = q[i - 11) 'THEN 

s[k] := p[k] for all 0 5 k 5 (i - 1) 

s[i] := q[i - 11 

INSERT s into candidate (i + 1)-seqeuence set C;+l 
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END /*  IF */ 
END /* FOR */ 
RETURN Ci+l 

END 

PROCEDURE: CandidateGeneration-Prune(i) 

BEGIN 

FOR each i-sequence, p, in C; DO 

FOR each (i - 1)-subsequence q of p DO 

IF ( q  @ L;-l) THEN 

DELETE p from C; 

END /* IF */ 
END /*  FOR */ 

END /* FOR */ 
RETURN C; 

END 
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