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Absxfréct

Haar null sets (or shv sets) play an important role in studyving properties of function
spaces. In this thesis the concepts of transverse measures. left shy sets and right shy
sets are stydied in general Polish, groups. and the basic theory for the left shy sets
and rig}1t~‘s}1y sets is established. In Banach spaces. comparisons of shy sets with
other notions of small sets (e.g.. :\rénszajn null sets and Gaussian null sets in Phelps
sense) are made, and examples of non-implications are given. Their thickness and
preservations of various kinds of null sets under isomorphisms are investigated. A
new description of shy sets is given and is used to study shy sets in finite dimensional
spaces. The theory is applied to a number of specific function spaces. Some known
tvpical properties are shown to be also prevalent.

Finally, the notions of left shy sets and right sh}‘éets are applied to study properties
of the space of homeomorphisms on [0, 1] that lejve 0 and 1 fixed. Several interesting
examples are given of non-shy sets which are null in the sense of some other notions.
Fxamples of left-and-right shy sets are found which can be decomposed into continuum
many disjoint, non-shy sets in H[0.1]. This shows that the o-ideal of shy sets of the
non-Abelian, non-locally compact space H|[0, 1] does not satisfy the countable chain

condition.”

< i



Dedication

To my Parents
and

GGuiria, Tianyu and Jeanne

v



Acknowledgments

‘uy

I wish to express my deepest gratitude and appreciation to my senior supervisor
Dr. Brian S. Thomson for his encouragement. guidance and patience in the preparation
of this thesis. His many constructive suggestions and ideas are very helpful in the
studving of topics in this thesis. Without his help in many wavs it would not be
possible for this thesis to be in its present form.

I would like to thank Dr. Andrew M. Bruckner and Dr. Jonathan M. Borwein for
careful reading of earlier drafts of the thesis. and many suggestions for improvements
of this thesis. Thanks also go to Dr. Dave Renfro for information about the Besicovitch
set and related material.

Finally. I would like to thank Dr. Brian S. Thomson again, Department of Math-
ematics & Statistics and Simon Fraser University for their financial support during

my study in Simon Fraser University.



.
Contents )
Title . L o
Abstract . . . . ..o e PSR E P C 1
Dedication . . . . . . .. ... .. .. C e e v
Acknowledgments . .. .. [ e S v
List of Figures. . . . . ... .. e o . L.vin
Contents . . . . . . . . ... ... e e IX
1 Introduction . . . . ... .. e !
2 Shvsets ... e EP 6
2.1 Introduction . . . . . o e 6
2.2 The transverse notion . . . .. ... .. .. e T
2.3 Null sets in a separable Banach space . . . . . . . . ... . .. 9
2.4 Gaussian nuil sets'. . . . . . .. ... e oo 13
2.5 Sets of Wiener measure in C[0,1] . . . . . . .. ... ... .. 15
2.6 Non-measure-theoretic variants . . . . . e 19
2.7 Basic theory . . . . . e A
2.8 The completeness assumption . . . . . . e L2
2.9 Haar null sets in Polish groups . . . ... S
2.10  Preservations of null sets under isomorphisms . . . . . . 33
2,11 Measurability issues . . .0 o0 0000 oL . 10

vl



212
2.13
2.14

o

A5
2.16
2,17
2.18
2.19
Probes
3.1
3.2
3.3 .
3.4

3.5

Extension to non-separable Abelian groups .

Extension to semigroups . . . . . .. .. ..

Why not measure zero sets of a single measure . . . . . .. ..

Classification of non-shy sets . . . . . . v
Prevalent versus tvpical . . . . ... .. ..
Fubini's theoremn . . . . . o . oo
(ountable chain condition e
Thickness of non-shv sets . . . . . .. .. ..
Introduction . . . . . e
Finite dimensional probes . . . . . . . . ..
FElementary hinear arguments . . . . . . .

Compact sets . . . . .. .. . ... ...

Prevalent properties in some function spaces

1.1

1.2

47

Introduction . . . . . e
Continuous. nowhere differentiable functions
Prevalent properties in Cla,b] . . . . . . ..
Prevalent propt-rties in bA, bDB', bB!

Prevalent properties in D[a.b] . . . . . . ..
Prevalent properties in BSC'la.b] . . . . ..

Multiplicatively shy sets in ([0, 1] . . . .

Space of automorphisms . . . . . . ... ..

5.1

N
| 6N

5.3

Introduction . . . . . e

Space of automorphisms . . . . ... .. ..

Some examples of prevalent properties in H[0.1] . . .

Right transverse does not imply left transverse . . .

)
Vil

it -
(] e

it
e

66

99

104
110



A set to which the measure w is left-and-right transverse . .. 114

5.5
5.6 A compact set argument . . ..o 11T
5.7 Examples of non-left §hy, non-right shy sets . . . . . . DL . 120
5.8 Examples of left-and-right shy sets . . . . ... .. ... .. 124
5.9 Non-shy sets that are.of the first category e 127
5.10  Non-prevalent properties that are typical . . . . .. ... ... 130
5.11  Corresponding resuht =1 .. 132
5.12 A non-shy set that is left-and-right ‘shy ............. 139
5.13 'H[O 1] does not satisfy the countable chain Con‘dition N
5.14  Functions with infinitely many fixed points . ... . ... 143
515 Concluding remarks. . . . . . . .. L cL 150
Bibliography . . .. . . ..o oo T 152

Glossary . . . . . . 158

Vil



List of Figures

o

2.2 The relations of non-shy sets in R™ . . .. . ..

i

4

.1 The relations of non-shy sets in general . . . . .

5.1 The construction of the automorphisms g and &



Chapter 1

Introduction

A glossary is made at the end of this thesis. The words are mainly from Real :\nalysiﬂs.
Measure Theory, Topology and Functional Analysis. Some words Ee.g.. left shy and
probe)’ are either new or in the literature and their definitions are given in the context
of the thesis. Some terms (e.g%. Banach space and first categoryv) without explanations
can be found in the text books {11} and [43]. ‘

Since 1399 when R. Baire [35. pp. 13] introdurod\ho definitions of first category.
second category of sets, and established the Baire category theorem. the Baire cate-
gory theory has been widely used to characterize properties of sets, especially tvpical
properties, and to show the existence of some pathalogical functions that are usually
difficult to construct. Here a typical propertyis a propérty which holds for all points
in a complete metric space except for a set of the first category. There are some re-
strictions in applications of the Baire category theory. For example, when we discuss
a probabilistic result on the likelihood of a given property on a function space. the
Baire category theory just provides us the topological structures; Lebesgue measure

theory is not subsumed by the Baire category theory. Further in a Banach space

it can be shown that there are Lipschitz functions which are not differentiable on a
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dense G« set, thus the topological category theory is not well suited for differentiabil-
ity theory of Lipschitz functions. Frequently we need a notion of measure zero in a
general setting. that can be used much as sets of the first category have been used to
describe propertiesfas tvpical.

In 1972 Christensen {12] first generalized the concept of sets of Haar measure zero
on a locally compact space to an Abelian Polish group Whi(‘h 18 n:)t necessarily localr'l_\'

compact. Such zero sets have been called Haar zero sets. Haar null sets, Christensen

null sets or shy sets [12]. [56]. [3]. [27]. We state it in the following definition.

A universally measurable sét S in an Abelian Polish group (i is said to be a Haar

sero set if there s a Borel probability measure p on G such that u(S + 1) =0 for all
re (s,

Christensen [14] showed that this concept of Haar zero sets is very successful in
Cmanv respects. for example in extending Rademacher's cldssical theorem that a locally
Lipschitz. mapping from R™ to R™ is differentiable almost evervwhere to mappings
between general Banach spaces. In 1930 T. Topsee and J. Hoffrnan-Jorgqnsen [56]
extended the notion of Haar zero by Christensen to general topological semigroups.
[n 1994 Brian R. Hunt. T. Sauer and J. A. Yorke [27} rediscoveredrthe concept of
Haar zero sets in Banach spaces. They called such sets shy sets. (In [27] all subsets
Of‘ a Borel shy set are also termed shy.) In [27] the complement of a shy set is called
prevalent. and a property in a metric space is said to be prevalent if it holds for
all points except for a shy set. or it is said that almost every function satisfies such
property. In [27] the notion of shy sets is used to study properties of certain classes

of functions in function spaces. For example. it is easy to show that almost every

he

sequence {a,}, in €% has the property that = a, diverges. An attractive result
by Hunt [28] is that almost every function in the space of continuous functions is
nowhere differentiable. It has been popular to study tvpical properties of function

spaces since Banach [3] and Mazurkiewicz [10] applied the Baire category theorem to

L
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give existence proofs of nO\;'hére differentiable. continuous functions independently.

The study of prevalent properties of function spaces offers an interesting contrast
to the tvpical properties. Usually, it is more difficult ‘to show a properf}' is prevalent
than to show a property-iét_\'pical. A typical property may not be a prevalent property
and vice versa. This thesis is devoted to systematically studving shy sets. left shy
sets and right shy sets in non-separable Banach spaces and general Polish groups. and
investigating whether a typical property is prevalent. and showing ﬁ}‘lat some known
sets characterized by other notions are shy or non-shy.

In Chapter 2 we introduce various transverse notions. and the concepts of left shy
sets, right shy sets in general Polish groups. The basic theory for the left shy sets and
right shy sets is established. showing that. in a ge{lf;.ral Polish group. the countable
union of left shy sets is again left shy, and open sets are neither left shy nor right shy.‘z:
There are several extensions of the concept of shy sets to non-separable Banach spaces
(see Christensen [14]. Topsoe and Hoffman-Jorgenson [56]. Hunt et al. [27]. Borwein
and Moors [3]). The latter three are equivalent. We compare shy sets. in a Banach
space. with s-null sets (see Section 2.3). Aronszajn null sets [2]. Preiss-Tier null sets
(16] and Gaussian null sets in Phelps sense [13], giving examples of non-implications.
Also we discuss their thickness of various kinds of null sets, and their presorvatiorns
under isomorphisms. In [18§] Doﬁgherty has classified non-shy sets into eight types,
and mentioned some examples of non-implications, while we give examples in details _‘
~‘for}ll non-impli};ations. and exact characterizations for some non-shy sets.

In [27] Hunt. Sauer and Yorke introduced the definition of a probe. A finite dimen-
sional subspace P of a Banach space is called a probe for a set T or its complement if -
Lebesgue measure s_upivorted on P is transverse to a universally measurable set which
contains the complement of T. To show a set is shy we often try to find some probe
of this set. In Chapter 3 we use probeé and elementary linear arguments to study

some simple prevalent properties in function spaces. Also we use the dimensions of
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probes to give a new description of shy sets as follows. A shy set & C X is said to
be m-dimensional if S has a m-dimensional probe but no n-dimensional probe for
n < m.and S is said to be infinite-dimensional if S has no finite dimensional probes.

\i’e find that, in finite dimensional spaces. this new toﬁcept for shy sets is related
to Kakeya problems and Besicovitch sets (see [21] and [22]), and so some results are
obtained. In [12]. [56] and [27] it is shown independently that compast sets are shy.
in Abelian Polish groups. Abelian semigroups and Banach spaces. A method using
results from functional analysis 1s given to show that certain sets including compact
sets are shyv in Banach spaces.

In Chapter 4 several known typical properties are shown to be also pre\'ale‘r:t.

In [10] Bruckner and Petruska showed that. in the spaces F = bA. bDB'. bB' of

bounded approximately continuous functions. bounded Darboux Baire 1 functions

g
and bounded Baire 1 functions equipped with the supremum norm, for any o-fmite

Borel measure g on [0. 1], the typical functions are discontinuous u almost e\'(*r}'\\'her(*
on [0.1]. We show that. in the spaces 7 = bA. bDB'.' bB', for any o-finite Borel
measure g on [0 1]. the prevalent functiops are also discontinuous p almost everywhere
con [0.1]. In [30] it was shown that, in the space BSC[a.b] of bounded sv\'mmetric‘a‘{ly
continuous functions on [’(z.b] equipped with supremum norm, the typical functions

have e-dense sets of points of discontinuity. Here we show that the prevalent functions

of BSC{a.b] also have c-dense sets of points of discontinuity. On the space ('[0.1] of

continuous functions we can also impose the operation of multiplication of functions
so that ("[0. 1] becomes a semigroup. In Chapter 4 we also study the multiplirativel;
shy S@E&&ﬂ t\he space ('[0.1] of continuous functions, and discuss the relations of
plllltipli(‘ati\'el}' sh}" sets and additively shy sets. For example, we show that the set
of continuous functions on [0.1] with at least one zero is not additively shy. but is
multiplicatively shy in ('[0.1].

We use H[0. 1] to denote the space of homeomorphisms on {0, 1] that leave 0 and

’
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I fixed. In Chapter 5 we show that. in H[0.1]. there exists . .

(1) a’Borel probability measure i that is both left transverse and right transverse
to a Borel set .X. but is not transverse to X.

(2) a Borel probability measure i that is left transverse to a Borel set X. but is
not right transverse to .Y, T ~

(3) a Borel probability measure g that is right transverse to a Borel set X', but is
not left transverse to X. =
We also find examples of left-and-right shy sets which can be decompose& into con-
tinuum many disjoint. non-shy sets in H[0.1]. This answers the problem ( Fy) posed
by Jan Mycielskiin {41]: Does the existence of a Borel probability measure left trans-
verse to a set Y imply that the set Y is shy in a non—locallf‘w compact. completely
metrizable group? From this we conclude immediately th:y the o-ideal of shy sets in
H{0. 1] does not satisfy the countable chain condition. In [23] and [26] Gra_&. Mauldin
and Williams defined a Borel probability measure P, on H[0.1] from a prgbabilistiC
point of view. and studied whether some interesting sets are null under this measure
P,. In Chapter 5 we use our notions of shy sets. left shy sets and righ®&hy sets
to study some of the sets discussed by Graf. Mauldin and \\'illiams.b For (’xam‘»p'l(u
Graf. Mauldin and Williams showed that, for any m € (0.1] and | € [l.+x). the
sets {h € H[0.1] : h(r) > mr} and {h € H[0.1] : h(r) < [r} are null under the
nmeasure P, We show that these two sets are neither shy nor prevalent. Comparisons
of prevalence results arc made with some typical results, and some known results n

(23} and [26]. —

S
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2.1 Introduction

Christensen [12]. Topsoe and Hoffman-Jorgensen [36]. and Hunt et al. [27] studied
shy-sets in Abelian Polish groups. topolagical sernigroups and Banach spaces inde-
pendentlv. In this section we study left shy sets and right shy sets in general Polish
groups. estéblishing the basic theory for left shy sets and right shy sets. We com-
pare shy sets with other notions of null sets in Banach spaces. For example. in the
Banach space of continuous functions on [0, 1] that are zero at r = 0. the set of con-
tinuous. nowhere Holder continuous functions with exponent e, 0 < a < 1/2, has
Wiener measure zero. but this set is prevalent (see Hunt [28]). Christensen [12] asked
whether any collection of disjoint universally measurable non-shy sets must be count-
able. (This property of a g-ideal is called the countable chain condition; see page 59.)
Dougherty [18] answered this question in the negative by giving an example. Solecki -
[52] showed that a Polish group admitting an invariant metric satisfies the countable

chain condifiomiff this group is locallv compact.



J
CHAPTER 2. SHY SETS ' T

.

2.2 The transverse notion

In all of our discussions in this section we suppose that X 1s a linear topological space
and we assume we have been given a set S C X that i1s a universally measurable set
in X Some of the terminology applies as well tio an Abelian topological group since.
for some of the terminology. we usewonly the additive group structure fo define the
concepts. Most of our discussion in the sequel, however, will be in the setting of a
Banach space. and. occasionally. in a non-Abelian Polish group.

Our goal is to define a measure-theoretic notion of smallness analogous to the
topological notions of first category and a direct generalization of the notion of a set
~ of Lebesgue measure zero in finite dimensional spaces.

All measures in the sequel are assumed to be defined on the Borel subsets of the

space and can be extended to all universally measurable subsets.
v

Definition 2.2.1 We sayv that a probability measure p on X Is transverse to a set S

if

for all y € X. Thus y assigns zero measure to S and to every translate of 5.

Note that there is no interest in measures here that are not diffuse. If u({rp}) >0
for some point ry € X then i cannot be transverse to any non-empty set. In fact, if u
is transverse to some non-empty set A then u(A+4y) = 0 for all y € X. Choose yp € A
then rg € A — yo + ro. So 0 < p({ro}) < pu(A = yo + ro) = 0. This is impossible.

Some authors (e.g.. [8]) call the measure y a test-measure for S if jo 1s transverse
to &. We could also adapt language from [27] and call p a probe in the sense that it
is used to test or prove or “probe” the measure-theoretic nature of the set S.

In many appl%cations‘athe construction of a transverse measure for a set S (if there

is one) can be done by a simpler device. Often a measure g can be found that



ks

CHAPTER 2. SHY SETS ? '

o g}

[}

1s supported én a finite dimensional subspace or on some simple compact set. For
example if every line in the direction r for some r € X meets S in a set of one
dimensional linear measure zero then a probability measure y transverse to S can be

constructed by writing

p(E) = M({t € [0.1]: tr € E})

4

where A denotes one-dimensiopal Lebesgue measure.
{‘\ i
Lemma 2.2.2 4 set S has fhf\propfrty that every line in the direction r (r € X)

meets S in a set of linear dimensional measure zero if and only if the probability

measure

W(EY=MN({t€0.1]: tre E})
i transverse to S,
Proof. For anv y e X.
(S +y)=M{tel0.1]: tres+yh)=MN({tel0.1]: tr—yeS)).
Thus the result follows. |

The above l(‘mnaoads to the following definition:

Definition 2.2.3 An element r € X is said to be transverse to a set S if
{teR: tr+ye€ S}
1s Lebesgue measure zero for every y € X.

Again we can say that r is a test or a probe for S, using language that other
authors have found convenient.
It 1s convenient also to express this fact in a variety of manners. Thus we say that

the subspace spanned by r is transverse to S or that the interval /

L

0.r] = {tr: t€[0.1]}
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{
1s transverse to S. By extension of this a collection {x,.r,.... r+} of linearly inde-
pendent elements of X 1s also said to be transverse to S if

{(ty by .. t) ER*: tir 4t +y € S)

is of k-dimensional Lebesgue measure zero. Also we have a similar result as in the

one-dimensional case. The proof is simil%r.

Lemma 2.2.4 A set S has the property that every translate of the k-dimensional
. dubspace generated by the independent elements {ry.... 1y} (... .. Iy € X) meets

S a set of k-dimensional Lebesgue measure zero if and only if the measure

'gln. 2.,?(i N r 1k B

- /l(b):/\/c({(fltg ..... tk—)ElO.lJ . f1I1+"'+tkI1.;€£})

15 transverse to S, where Ay denotes the k-dimensional Lebesgue measure.

Occasionally linear arguments fail to produce a transverse nieasure and one needs

to seek other compact sets on which the measure is supported. Let F :[0,1] — X be
a continuous function. Then (' = F([0.1}) is a compact set and we sav (' is transverse
to S if

{te0.1]: F(tye S+y}
Is Lebesgue measure zero for every y € X. In this case a probability measure trans-

verse to S can be defined by
plEy=M{{te[0.1]: F(t)e E}) .

since u(S +y) = 0 for every y € X. We will give some applications in Section 3.1,

Section 4.7 and Section 5.3.

2.3 Null sets in a separable Banach space

The definitions in this section are generalizations of the notion of a set of Lebesgue

measure zero in n-dimensional spaces to subsets of a separable Banach space.
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We assume that S is a universally measurable subset of a separable Banach space
X. The following definition is a version from {12] in a separable Banach space. Its
extensions to non-separable Banach spaces and Polish groups can be found in Sec-

tion 2.12 and Section 2.9 respectively:

Definition 2.3.1 A universally measurable subset S of a separable Banach space X
1s said to be a Christensen null set (shy) if there is a Borel probability measure on X

that is transverse to S.

This concept is our central concern throughout. The article [27] has popularized
the tcrmg shy for Borel sets that are Christensen null and all their subsets and we shall
make use of this term too. The complement of a shyv set is said to be prevalent . In
his original paper Christensen [12] called shy sets Haar zero scts and other authors
have used the term Haar null sets.

The reniaining definitions in this section are narrower than Definition 2.3.1. Each
of the following classes of sets is a proper subset of the shy sets in general. but may

coincide 1n special cases.

Definition 2.3.2 A universally measurable set S in a separable Banach space X is

sald to be an s-null set if there is a partition of S into universally measurable subsets

2

' S = U S,

x
1=

such that for each 7 there exists ar)blement ¢, in X that is transverse to S,.

The following definition is from Aronszajn [2].
Definition 2.3.3 A Borel set S in a separable Banach space X is said to be an
Aronszajn null set (Borel sense) if for every sequence {e).€,.€5....} whose linear
span is dense in X there is a partition of S into Borel subsets

xC
S:US
= =

S =1
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such that for each ¢ the element €, is transverse'to S,.

[t is convenient for contrast to give a similar definition motivated by that of Aron-
szajn [2]. The original paper studies the Borel version of Definition 2.3.3-—we give a

universally measurable version as well for comparison.

Definition 2.3.4 A set S in a separable Banach space X is said to be an Aronszajn
null set (universally measurable sense) if for every sequence {€;.€7.€3....} whose

linear span is dense in X there is a partition of S into universally measurable subsets

e
-Us

=1

such that for each : the element €, 1s transverse to S,.

Perhaps the narrowest version of a null set in this spirit is that from Preiss

Tiser [16].

Definition 2.3.5 A universallv measurable set S in a separable Banach space X is.

said to be a Prews-Tiser null set if every element of the space is transverse to §.

Definition 2.3.1. 2.3.2 and 2.3.5 all have similar forms in the Borel sense. i.e..
replacing the universally measurable condition by the requirement that the sets are
Borel. The above definitions in the universallv measurable sense are parallél to the
definitions in the B?rel sense but they are different. A Christensen null set need not

be Borel. The folldlving simple example can show this.

Example 2.3.6 In R there is a Christensen null set which 1s not Borel. We know
that in R there is an analyvtic set B which is not Borel (see [11, pp. 492]). So there is
a Borel set /7 C B such that B\ F'is Lebesgue measure zero. Thus the set B\ [ 1s
universally measurable and so 1s Christensen null but it is not Borel from the following

statement.
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In the space R™ a universally measurable set is Christensen null iff it has

n-dimensional Lebesque measure zero.

The above result will be given and proved in the next section.

From the above it 1s easv te see that. in the real line R. Preiss-Tiser null sets.
Aronszajn null sets. s-null sets. and Christensen null sets are equivalent to Lebesgue
measure zero sets that are universally measurable. However. in R™ (n > 2) the class
of Preiss- Tiser null sets is much smaller than the class of Lebesgue measure zero sets
that are universally measurable. This is becausé anv proper subspace of R™ (n > 2)
1s Lebesgue measure zero but is not Preiss-Tiser null.

We now compare in general these different sets in the universally measurable sense.

The following inclusions are obvious:

Prewss- Tiser null = Aronszajn null = s-null = Christensen null.

s

The following are two examples to show that, in general. the first two inclusions

are proper.

Example 2.3.7 In the plane R? the set {Ae; : A € R} is obviously Aronszajn null
where €; = (1.0). However it is not Preiss Tier null since the element ¢, itself is not

transverse to it.

Example 2.3.8 There is an s-null set that is not Aronszajn null. In fact. in Exam-
ple 2.~1.4 the set " is compact in the infinite dimensional separable Banach space .
So it is s-null (see Theorem 3.4.2) . Note the set i is not Gaussian null in Phelps
sense (see Gaussian null sets in Section 2.4 and Example 2.4.4). Since an Aronszajn
null set must be a Gaussian null set in Phelps sense [43]. thus the set A" is not Aron-
szajn null. Since an s-null set 1s Christensen null so the set A is also an example of

a Christensen null set that is not Aronszajn null.
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Remark. In the plane R? a Christensen null set is an s-null set (see Theorem 3.2.4).
However we do not know whether there is a Christensen null set that is not s-null in

R" (n > 2). -

PROBI;EAM 1 In a separable Banach ;pacc 15 there a Christensen null set that is

not s-null?

e

2.4 Gaussian null sets

The main purpose of this section is to compare the null sets in Section 2.3 with two
other kinds of small sets, Gaussian null sets in Phelps sense and Gaussian null sets in
the ordinary sense. For convenience we require Gaussian measures defined on Borel

sets. The following three definitions are reproduced from [15].

Definition 2.4.1 A non-degenerate Gaussian measure y on the real line R is one

having the form
w(B) = (2xb)7! / exp[(—2b)7 (¢t — a)*]dt.
B

where B is a Borel subset of R and the constant b is positive. The point @ € R 1s

o~

called the mean of pu.

Definition 2.4.2 A Borel probability measure A on a Banach space X is said to be
a Gaussian measure of mean 1y if for each f € X*. f # 0. the measure g = Ao f~!

is a non-degenerate Gaussian measure on the real line R as above. where a = f(rg).

Definition 2.4.3 (Phelps) A Borel subset B of a separable Banach space X is called
a Guaussian null set in Phelps sense if u(B) = 0 for every 'non—d(‘gcnoratf* Gaussian

measure j on .\.
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Recall that a Borel subset B of a separable Banach space X is an ordinary Gaussian
null set if there is a non—deger&erate (GGaussian measure g such that w(B) = 0. Here
we also say that the set Bis Gaussian null in the ordinary sense.

[t 15 easy to see that a Gaussian null set in Phelps sense is Gaussian null in the
ordinary sense. However the converse is not true. We know that there does not exist
a positive g-finite measure on ¢, (the space of square summable sequences) whose
null sets are translation invariant (see Theorem 2.14.3 or [51. pp. 103]). So for anyv

non-degenerate Gaussian measure g there is a Borel set § C ¢, such that u(S) =0~

but 4 is not transverse to S. Thus the set S is not Gaussian null in Phelps sense.

~

[
-

We compare the two kinds of Gaussian null sets with the null sets Section
A translate-of a non-degenerate Gaussian measure is again such a measure [34]. so
a Gaussian null set in Phelps sense is Christensen null. In [45] it is shown that a

Aronszajn null set is Gaussian null. Thus we have the following implications:
Aronszayn null = CGlaussian null in Phelps-sense = Christensen null.

We know that. in R", Gaussian measures are mutually absotutely continuous with
brospe(tt to the n-dimensional Lebesgue measure and that a Borel set in R™ is Chris-
tensen null iff 1t is Lebosﬁgue measure zero (see Theorem 2.7.5). Thus in R™ Gaussian
null sets in two senses and Christensen null sets in Borel seuse are all equivalent to

the Borel sets of Lebesglte measure zero. The following example from [13] shows that

the second inclusion is proper in an infinite dimensional separable Banach space.

Example 2.4.4 In an infinite dimensional separable Banach space X there is a conm-
pact set which is not Gaussian null in Phelps sense. Let {w,} C X have dense linear
spanu and satisfy {[w,|] — 0. then its symmetric closed convex hull A" is compact but

1s not Gaussian null. In fact, we define L : ¢, — X by setting. for & = {r,} € (5.

Lr = E 2T L w,.
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It i1s clear that L is linear and has dense range. Let " denote the unit ball of ¢,. ThenA
LU C K. Since K is the closed convex hull of the compact set {+w,} U {0}. it is
compact. By the c’ontinuity of L we know that if g i1s any non-degenerate Gaussign
measure on 4, then A = po L™! is a non-degenerate Gaussian measure on X. Note
U CL'Nandso A(KN) = (poL™")(N) = p(L7"K) > p(l7). Itis known [47] that any
non-degenerate Gaussian measure on £, assigns positive measure to any~non-empty

open sef. Thus A(K) > 0 and A is not Gaussian null in Phelps sense. However the

set A" 1s s-null and of course Christensen null (see Theorem 3.4.2).

We now leave the following as an open problem.

PROBLEM 2 [In an infinite dimensional separable Banach space is a Gaussian el

setan Phelps sense necessarily Aronszajn null?

2.5 Sets of Wiener measure in Cy[0. 1]

In this section we summarize some material from Kuo [314] on the Wiener measure
in the space (,[0.1]. We compare the null sets, especially Christensen null sets with
the null sets of zero Wiener measure on the space ('4[0.1] of real-valued continuous
functions r(t) with r(0) =0 C';)[O. 1] is a Banach space with the supremum norm.

-

Let R denote the Borel o-field of Co[0,1]. A subset [ of (40, 1] of the following formn
I ={x€Col0.1]: (z(ty).x(ta). - .1(t,)) € E}.

where 0 < t; < t, < - < t, < 1 and E is a Borel subset of R", will be called a

cylinder set.
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: ¥ .
Definition 2.5.1 Let [ be a cvlinder set. Define

1 ' 1 [u?
w(l) :[(27:)"[1(12 — ) (s — tn_])}—7/ exp {—3 [l Ly
E -

t

oy — 2 - 2
4 M+...+M}}dllx"'dl‘n-

ty — by th —tho)
The unique extension of w to the Borel o-field R is called the Wiener measure on

Col0. 1],

Remark. The measure w does indeed possess a unique extension to the o-field
R (see [31. Theorem 3.2, pp. 13]). When n = 1 this Wiener measure is a Gaussian

measure of mean 0 on (0. 1] (see Kuo [34. pp. 1238]).

Example 2.5.2 If 0 <t < 1. then from the definition of w

R AT
({re (Hl0.1]: a<r(t)<b})= — T ¥ dr.
w({r € Co[0.1]: a < x(t) < b} \/i)_rrt/;t dr
5

Example 2.5.3 Let 0 < s < ¢t < 1 be fixed and consider the random variable

r(t) = r(s). Let £ CR?*betheset £ = {(r.y): a<r—y<b}. Then

w{r: a <o(t)—a(s) <b})=w({r: (r(t).r(s)) € E})

1 _l_{“_z_.‘,““_'_.ﬁ}
= //( L - Jdude
(2m)%s(t — s) £
1 + v4h _L{i+(u—llz}
= . _ / e ‘U 7 Tdude.

C v+

By making a change of variables and_simplifving we have

1 b
L'( Ir: a< (t)— (G)gb ):——————/ T e .
l { ! ! } \/l._ﬂ'\\'(l—S) a ‘

Now we discuss the Wiener measures of the following sets for a > 0,

da = a(r) such that for
(o =qre 0.1}

X

Vi,se [0.1]), {r(t) = r(s)] < alt - s
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For convenience of discussion we use the following notations:

I S = dyadic rational numbers in [0, 1].
2
3s,.8, € S such that
H,la] = { r € (L[0.1]:

Jcx

11‘(51) - I(SQ')’ > 0’51 — S -

Va > 0.3s,.8, € S such that
}10 = I € CO{O 1] .

-

|r(sy) — r(s2)| > als, — S2t(;‘

The following theorem is reproduced from Kuo [34].
Theorem 2.5.4

(a). w(Cy)=1if0<a <1/

(b), w(Cy)=01ifa>1/2
&
Proof. (This is a sketch of a proof from Kuo [31].) (a). For 0 < a < 1/2, 1t is

known that lim, . w(H,[n]) = 0 (see a proof in [31. pp. 42]). It is easy to see that

———

Co=H, =] Hn) = lim H,n]
n=1 n_‘t
where ]7, denotes the complement of f, and so on. Thus

w(Cy) = Iim w (m) =1— hm w(H,[n])

L S @ n—>x

1-0=1.

i

(b). For constants a > 1/2 and a > 0. let

, k kol N
Ja,fz.n = {I € C'Ol()-”: l‘r <—)—n> ~I< I ) S a - <;‘;> f(')[~ all k= 1.2.--- .Bn}.

Clearly for all n. H.la] € J, ... Kuo [34] asserted that the random variables

k . _
I<_)~I(* 1),/{:1.2:....?
o on
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,_.
08}

are independent and each is normally distributed with mean 0 and variance 1/2".

Thus

.
-
3
INA
—_
e
2
TN
V‘_
3
N
o
I
Z

2"{‘.[\ 24 (a-1/2 nln‘)}
= ¢ VAL — 0 as n — x.

®
T —

Hence for cach « > 0 and @ > 1/2. lim,_ U‘(J‘\,vq_nt) = (. and so w <HL,[(1}> =0

Therefore w(C,) = lim, . w (H,ﬁn]) = (. |

Corollary 2.5.5 In the space (o[021] the set of continuous. nowhere Holder contin-

wous functions with erponent a, 0 < a < 1/2, has Wiener measure zcro.

Proof. For every continuous function f which is Holder continuous with exponent
a (0 < a <]/2). there exists a M > 0 such that for any t.s € [0.1]. [f(t) = fis)l <
Mt — &7 and%o f € C',. Using similar methods as for the set of continuous. nowhere
differentiable functions in Section 1.2 it can be shown that the set of continuous.
nowhere Holder continuous functions with exponent a (0 < a < 1/2) is umversally
measurable. By Theorem 2.5.4, the set of continuous functions that are not somewhere
Holder continuous with exponent a (0 < a < 1/2) has Wiener measure zero. Thus

the result follows. [ |
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—

This result contrasts sharply with that the set of continuous, nowhere Holder

continuous functions with exponent 0 < a < 1/2 is prevalent (see Section 4.2). \

2.6 Non-measure-theoretic variants

Our concern will be with the various notions of null sets presented in Section 2.3. in
particular. with the notion of a shy set (Christensen null set). All of these are based
on measure-theoretic concepts. Many require that the intersection of a set with a line
in some-direction have Lebesgue measure zero. One could ask for this intersection to
be smaller.

Following Aronszajn [2. pp. 156-157] let B be a class of Borel sets of ’t he real line
that forms a o-1deal and 1s closed under translation and affine transformation. The
natural choices.for B are the g-1deals of first category sets. or of countable sets. or of
a-porous sets. Manyv more choices are possible. We can sav that a Borel set S in a
separable Banach space X 1s B-null if for every sequence {€,.¢,.¢4....} whose linear

span is dense in X there is a partition of S into Borel subsets

. -
’ S:Ua

v =1

such that for each 7 the set of real numbers
{teR: r+te, €5}

belongs to B for every r € Y.
Let us focus just on the case where B is the collection of all countable subsets of
reals. Then we can define a class of null sets that are sharper than Aronszajn nnll

sets and due to Zarantonello [62]

4

Definition 2.6.1 A Borel set S in a separable Banach space X is said to be a Zaran-

tonello null set if for every sequence {€,.¢,.¢5,...} whose linear span is dense in X

- \
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there i1s a partition of S into Borel subsets

xC
S = U S,
1=1 i

such that for each 1 every line in the direction of the element ¢, meets S, in a countable

set.

Even in finite dimensional spaces the Zarantonello null sets are smaller than our
other classes ofsnull sets. For example take a collection of Cantor sets {(';. (.. ... .}

and consider the product set
. S=C, x(y;x(3x---xC,

in K™ Such a set cannot be 'a Zarantonello null set for anv choice of Cantor sets.
In fact. on each 'y we can construct a positive‘Borel measure ji, without point
mass. i.e.. ge({r}) = 0 for anv r € ("t. Thus on the set & the product measure
JO= iy Xy X X, 1s also positive without point mass. But for any Zarantonello
null set 4 T R™ we have A = [J_, A, and A, N (r + Ae,) is countable for every
r € R" where ¢, = (0..... J 0) with 11n the th position. Thus u, (A, N Ae,) = 0.
By Fubini’s theorem we have p(A,) = 0 and thus p(A) = 0. So the set S is not a
Zarantonello null set.

This narrower notion of null sets plavs a role in the differentiability structure of
Lipschitz mappings on Banach spaces. For example a real-valued Lipschitz function
on a separable Banach space is Gateaux differentiable outside of a Borel set that is
Aronszajn null. If the function is also convex then it is Gateaux differentiable outside

of a Borel set that is Zarantonello null (see Aronszajn [2. pp. 173]).-
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2.7 Basic theory

In this section we present the basic parts of the theory of Christensen null sets (shy
sets) in a separable Banach space X with an indication of proofs. Some of these
extend to more general settings and some of the other notions of null sets share one
or more of these properties. Some of the proofs here use the original methods of

Christensen [12].
Theorem 2.7.1 Christensen null sets have empty interior. v

Proof. Suppose a Christensen null set S C X had non-empty interior. Then there
are a non-empty ball B C S and a Borel probability measure g such that u(S<+r) =0
foranyv r € X So B+rC S+rand p(B4+1) < p(S+r)=0foranvre X,

€
Therefore (B + r) = 0. Note that X is scparable. There is a sequence {r,} € X

which 1s dense in X'. So

™ x

X = U(b’+ r) and u(X) < Z/l(B +r,)=0.
1=1 1=1
This is a contradiction. Hence the result follows. |

Theorem 2.7.2 A countable union of Christensen null sets is itsclf a Christensen

null set.

Proof. (This proof is reproduced from Christensen [12].) Let S, be a sequence of

-

Christensen null sets and let u, be their corresponding transverse Borel probability

Ve

measures. Through translating and normalizing and induction a sequence of Borel
probability measures i, can be found in a neighborhood of zero such that ys, *u, =0

and |jr —r#+p || < 1/2" where z is the convolution of different i, , 1 = 1,2.....n—1.

I

. ' i . . .. !
Lhen o= gy =gy + -+ is well defined. Since u = zn % p, *y, where o, =y x-- vy,

' 7

and yn = p % p, % 50 \ s, xp = 0 and therefore ys+u = 0 where = Uiz, S»

u o
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Theorem 2.7.3 FEvery translate of a Christensen null set s also a Christensen null

set. .

Proof. This conclusion follows directly from the definition of Christensen null sets.

Theorem 2.7.4 In an infinite dimensional separable Banach space every compact set

or a o-compact set is Christensen null.
1

The proof of this theorem will be given as Theorem 3.4.2 where 1t 1s used to

lustrate some of the methods of the subject.

Theorem 2.7.5 In the space R™ a universally measurable set is Christensen null if

N

Proof. Let S C R*be a Christensen null set and g be its transverse Borel probability

and only if it 15 Lebesque measure zero.

measure. Then by Fubim’s theorem we know

/: (S — yrdi(y) = / M{S = rydp(r) = M (S)u(R"). ‘

Then the result follows easily. |

These five properties show that the Christensen null sets can be expected to play
a role in the study of inﬁnite dimensional Banach spaces analogous to the role that
sets of Lebesgue measure zero plav in finite dimensional spaces.

From their definitions and the comparisons in Section 23 and Section 2.4 we see
that Preiss- Tiser null sets. s-null sets, Aronszajn null sets and Gaussian null sets in
Phelps sense all have empty interior. and are translation invariant in a separable Ba-
nach space. From the following theoremn we see that they all also satisfy the countable

union property (that is, the countable union of these sets of same kind is also a set of

this kind) in a separable Banach space.
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Theorem 2.7.6 Let X' be a separable Banach space, S, C X be a sequence of sets
of one of classes of Preiss-Tiser null, s-null. Aronszajn null and Gaussian null in

Phelps sense. Then | ] S, is also in the same class as S,

Proof. (i). Let S, be Preiss-Tiser null sets. Then for everv r € X. r is transverse

to S,. n=1,2,---. Thus {t ¢ R: tr+y € S,} is Lebesgue measure zero for every

y € X. Note that

Ry

™

teR: tr geU = J{teR: tr+ye S}

n=1
Thus {t e R: tr+yeJ_, Sa} is Lebesgue measure zero for every y € X. So
U, Su 1s also Preiss-Tiser null.

(11). Let S, be s-null sets. Then S, = [JZ, S, such that for each ¢ there exists

an element ¢,, € X that Is transverse to S,,. Thus the countable union of S, has a

partition as "

Us-00s

=]1=1

3

T . B J PR SOy o
Thus J,_, S» is also s-null.
¥

(m). Let S, be Aronszajn null sets. Then for every sequence {€).¢,.---} whose
linear span is dense in X. there are partitions of S, into universally measurable sets

¥

such that for each 1, the element €, 1s transverse to S,,. By the same argument as in

(1) we know that e, is transverse to |}, S,.,. Thus the countable union

1s Aronszajn null.
(1v). The result for Gaussian null sets in Phelps sense follows directly from the

definition. L
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2.8 The completeness assumption

Throughout we have taken our space to be a Banach space. One might have thought
the theory does not use the completeness in anyv fundamental way and that the same
definitions would be useful in normed linear spaces.

A simple example shows that this is not the case. Let ¢; denote the subspace
of £ composed of sequences that have only finitelvy many non-zero elements. Then
¢, is an infinite dimensional ingomplete, normed linear space. It is clear that ¢;
is separable since the set of sequences of rational numbers that have finitely many
non-zero elements must be dense in (.

Write S, for the members of ¢, that have zero in all positions after the first n.
Then (; = {J,_, S.. Each S, is a closed proper subspace of £; and so elementary
arguments {cf. Section 3.3) show that each S, is shy in the space ;. In this case a
countable union of shy sets-comprises the whole space £, and our theory loses one of
1ts main features.

This same flaw would be apparent in anv space that could be expressed as a
conntable union of proper. closed subspaces.

Thus. thr(;ughout‘ the theory will be developed in Banach spaces or. more gener-

ally. in completely metrizable topological groups. The same feature applies. of conrse.

to category arguments.

2.9 Haar null sets in Polish groups

The theory of Christensen null sets was originally expressed in Abelian Polish groups

and motivated by an attempt to generalize to non-locally compact groups the notion
N 4

of sets of Haar measure zero. Since a non-locally compact group does not have a Haar

measure some different approach is needed.
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In order that many theorems from Harmonic analyvsis carry over to the case of non-
locally compact Abelian Polish groups and the new concept “Haar zero™ coincides with
the Haar measure on locally compact Abelian Polish groups the following definition

was introduced in [12].

Definition 2.9.1 Let (i be an Abelian Polish group. A universally measurable set
S C Gis a Haar zero set if there is a Borel probability measure g on G such that

plS +r)=0forany re (.

This definition satishes our aim. and has proved useful in the differentiability
theory for Lipschitz mappings between Banach spaces. We know that an infinite
dimensional separable Banach space 1s also an Abelian Polish group. So the theory in
the setting of Abelian Polish groups fits the theory for inﬁnits dimensional separable
Banach spaces. Theorem 2.7.1, Theorem 2.7.2 and Theorem 2.7.3 remain valid in this
new setting. Theorem 2.7.4 also remains valid but the proof needs modification. We

state here and give a brief proof by using the idgas from [12]. !

Theorem 2.9.2 [n a non-locally compact Abelian Polish group (i a compact set or a

a- compact sct s Haar zero.

Proof.  (This proof is sketched from [12].) We will show that for any uuiversally

A

measurable set 1 that is not Haar zero we have -
F(A.A)={geG: (¢g+ A)N Aisnot Haar zero }

1s a neighborhood of zero element. If this is already proved, suppose there was a com-
pact set S which i1s not Haar zero. Then the set S — .5 would be both a neighborhood
of zero elemeut and a compact set. This contradicts that (5 is not locally compact.

Thus the set S is Haar zero.

'A similar result for “total-porosity” in an infinite dimensional Banach space was given in [1].
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Now we show that F(A4.A)is a neighborhood of zero for a non-Haar zero set A.
Suppose this were not the case. Then we may choose a sequence g, in ¢ not belonging
to F(A.A) such that d(r.r + ¢g,) < 1/2" where r = Z:;l g, and#d is an invariant

metric on (; compatible with the topology. Set

A=A (g + )0 A4),

n

e [ . . . .
Ihen A is not Haar zero. Now we define a mapping 8 from the Cantor group ' =

{0.1}" to G by
f(r) = Z.r(n)g,l.

n=1
Since A" is not Haar zero then there exists g € (& such that 0-'(g + A') has non-zero
Haar measure in A. Then O g+A)Y=0"g+A) =T isa neighborhood in A"
Then for large v, ¢, € " where ¢, = (0,--- ,0.1.0.--+ ,0) with [ in the v-th position.
So fle,) = g € A — A and hence (g + A) N A" # o. This is a contradiction.
Therefore F(A.4) is a neighborhood of zero. . [

The theory can also be developed in the setting of a non-Abelian Polish group.
Christensen in {14, pp. 123] indicated the extension of Christensen null concept to such
setting by using the two-sided invariance, and also pointed out that such extension
does not fit any non-separable metric group. Here we will introduce four definitions
in a completely metrizable separable group (. also called Polish groups.

Since we are not assuming that the group operation is commutative we shall write
the operation as a multiplication. In cases where we explicitly assume an Abelian

group we revert to additive notation.

Definition 2.9.3 (Christensen) A universally measurable set X' C (i is called shy
if there exists a Borel probability measure u such that p(g.Xh) = 0 for all g.h € .

We also sav that u1s transverse to X
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o,

Definition 2.9.4 A universally measurableset X C G is call>ed left shyif there exi(s:\\
a Borel probability measure u such that u(g.X) = 0 for all g € G. We also say that p

is left transrerse to X.

Definition 2.9.5 A universally measurable set X' C G is called right shy if there
exists a Borel probability measure i such that p(.Xh) =0 for all h € (7. We also say

that g is right transverse to X.

Definition 2.9.6 X universally measurable set X' C (' is called left-and-right shy if
there exists a Borel probability measure g such that g(Xh) = 0 and p(hX) = 0 for

all h € (. We also say that. u 1s left-and-right transverse to X.
From these definitions we can easily see the following implications:
shy = left-and-right shy = left shy (right shy).

Note that left-and-right shy is formally stronger than left shy and right shy. We
show they are equivalent. This following theorem seems to be not in the current

literature.

Theorem 2.9.7 If X C (7 is left shy and right shy. then X s left-and-right shy.

Proof. Since X C ( is left shy and right shy, then there exist Borel probability

measures u, and g, such that
W (XA) = o (AX) = 0 (Vh € G).
Now we define a new Borel probability measure v by
v(B)=m < 2{(f.g) € GxG: fge B})

for all universally measurable sets B C (. By Fubim’s theorem,

v(B) = x i2({(f.g) e G xG: f€ b’g—l}) = / ;L,(Bg_’)d;zz(g)

G

r
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and
viBY = x ia({(f.9)e GxG: ge fT'B}) = / 12 ST BYd (f).
G
Thus ) '
viXh)= / i (Xhg Hdua(g) =0
. G
and
V(hY) = / pal Y Y () = 0.
G
So v is left-and-right transverse to X. The result follows. |

We will give several examples in Chapter 5 to show that. on the Polish group
H[0. 1] (see Chapter 3). there exists

(1) a probability measure that is both left transverse and right transverse to a
Borel set X' C H[0.1]. but is not transverse to .\X".

j .
(2) a probability measure that is left transverse to a Borel set X' € H[0. 1. but is

not right transverse to .X.

{3) a probability measure that is right transverse to a Borel set X" C H!0. 1]. but
1s not left transverse to X,

Also in the Polish group (7 we will give examples of left-and-right shy sets which
can be decomposed into continuum many non-shy sets.

Jan Mycielski [11] showed that the family S of shy sets is closed under finite union
in an arbitrary completely metrizable group and also closed under countable unions
in any Polish group. In the following theorems we will develop the corresponding

rties for left shy sets and right shy sets and some further properties. The methods

are well known although the details may not be in the literature.

~ Theorem 2.9.8 [fY] and Y, are left shy sets. Then Y, UY, is also a left shy set.
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Proof. Let y and s, be the probability measures on (v left transverse to Y| and
¥, respectively. We define

m(X) =u < wo({(xr.y) € G*: 27y, y7'r € X})

for universally measurable sets X C (G. Then m is a probability measure. For anyv

g e, _
0 < migh) < / i yg ¥yl dy) = 0
G
and ,
0 < mighy) g/uzu-gm/zlwr) -0
G
Thus m(gYy) = mig};) = 0 aud hence m(g(}¥, U }3)) = 0. [ ]

The separability 1s needed in the next two thieorems, but was not used in the

preceding one.

Theorem 2.9.9 Jf G s a Polish group and Yy .Y, ... are left shy. then | J2, Y, @s

1=
-

also left shy.

Proof. et n, be a probability measure left transverse to Y,. Since (i is separable
there exists a compact set (', with diameter < 1/2 and m (C,) > 0. Without loss
of generality we can assume that mn,((',) = | and that the unity of (& belongs to (.
Since diameter of ', < 1/27, the infinite product g,g,---.for g, € (", converges in the
sense of group multiplica‘tion. Let mll be the product measure of the measures m, in

the product space [[C,. We define m(X) =

mn {(glgg) € HC'J : (g1 "‘g:-1g:+lgx+2"')gz € X1 = 1_).}

[t is easy to see that m is a probability measure. We will show that m is left transverse
=

toall Y. Let [['C, = Cy x - x Cooy x Cyyyp x Ciyy x -+ and m! be the product
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then for any h € GG we have

n.l(h}’x):/ 7’”:((91"‘91~19x+1"'
me,

Thus

So the result follows.

By similar arguments we can have the following.

Theorem 2.9.10 If (i7is a Polish group and Y1.Y,. ...

also right shy.

Corollary 2.9.11 If (v is a Polish group and }-1.’};3....

UL, Y. s also left-and-right shy.

=1

30

in [T'C,. Since m, is left transverse to },.

)_lh);)mp(dg) =0.

are right shy, then J2 Y, s

are left-and-right shy. then

Theorem 2.9.12 [f (/ is a Polish group then any non-empty open sct is neuther left

shy nor right shy.

Proof.

[t is known that every metrizable topological group must have a left invariant

metric and a right invariant metric {see [30. pp. 33]). Thus we need only show the

results for a Polish group with a compatible right invariant metric p.

Let S be a non-empty open set in (; and B(f.r) C S is a non-empty ball. Suppose

S is right shy. We need find a contradiction. Since (7 is separable. let {f,} € (7 be a

countable set dense in (. Then
GelBunsty
1=1

where

BUf.r)f~'f. = {hf s he B(f.r)}.
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In fact. 1t is easy to see that the above inclusion holds if

B(f.r)f~'f, = B(fi.r).

Infact.forg € B(f.r)f~'f,. theng = hf~'f and p(h. f) < r. By the right invariance
of p we have

plg. ) = plh S fuf) = plhf 7 e) = plh ) < v .

where ¢ 1s the unit ole*mont.of (;: So g € B(f,.r) and hence B(f.r)f“‘?, C B(f.r).

For g € B(f..r). .

plafT [ f) = plgf €)= plg. fo) <1

Sogf7'feB(firyand g€ B(f.r)f~'fi. Thus B(fi.r) S B(f.r)f7 ..

Since S is right shy. so there existsa Borel probability measure g such that p(Sg) =

0 for all ¢ € . Thus ’
plG) <> pBULT )<Y ST =0
=1 1=1 «

This contradicts u((7) = 1 and so S is not right shy.

By similar arguments we can show that S is not left shy. The'theorcm follows.
- .
In the following we give some basic properties of left shy sets. The right shy sets

have the same properties. Their proofs are similar.

-Theorem 2.9.13 [f (¢ 1s a Polish group. then left shy sets have empty interior.

Proof. From the above theorem we know that every open set 1s not left shy. So any

set with non-empty interior is not left shy. That is, a left shy set has empty interior.
\ .
e

. \

Theorem 2.9.14 [f (7 is a Polish group. then any left translate or right translate of
a left shy set is also left shy.
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Proof. Let S be a left shy set and p be its transverse Borel probability measure.
Then for any r € . p(rS) = 0. For every y € (7. by the associativity, u(r(yS)) =
((ry)S) =0 for all r € . and so yS is left shy. For every h € (5. we define a Borel.
probability sty by y,(A) = p(Ah) for any universally measurable set 4 C (. Then for
any r € (.

H

i (r(Shy) = m((rS)h) =p(rS) =0

by the transversality of i to S. Thus y; is transverse to Sh and Shis left shyv. 1

Theorem 2.9.15 Let (7,be a Polish group. Then
(i) A set S TG is shy if and only of

ST={h e heS)

15 shy.
(i) A set S Q (v s left shy if and only if S7' is right shy.
(1) A set S C G s right shy if and only if S™1 s left shy.

Proof. Itiscasy tosee that a set Sis Borel or universally measurable iff S7!is Borel
or nniversally measurable respectively. Since (877! = S and (/). (771) coincide, we
need only show the necessities of (1) and (:2).

(1). Suppose that S is shy. Then for all f.¢ € (7 there exists a Borel probability

measure g such that g(fS¢) = 0. We define a Borel probability measure & by
X)) =pu({h e he X}
Then for all f.g € (.
pfSThg = a7 T T T = RIS YT = (g S ) =0,

Therefore S7! is shy.
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(11). Suppose that S is left shy. Then for all f € (. there exists a Borol'probabilit}'

measure g such that u(fS) = 0. Use ;1 as in (1) we have - C

u
Examples#). (11) and (1i1) mentioned in this section will show that a measure that
proves a set in a non-Abelia lish group is shy on one side. does not prove that it
is shv on the other side. Indeed even if that measure proves that it 1s shy on both
sides 1t does not prove that it 1s shv since that requires more. Sp(‘(‘iﬁcaliy even if
plgXN) = u(Xh) =0 for all g. hin the group it does not follow that u(g\h) = 0 for
all ¢ and h. But there mayv vet exist some other measure for which this is the case
and that 1s the source of the problem.

In a locally compact Polish group this problem does not arize because of the

following theorem. proved in Mycielski [41. Theorem 1. pp. 31].

Theorem 2.9.16 [n a locally compact Polish group, if there erists a Borel probability
measure that is left (right) transverse to a set S then S s a set of Haar measure zero

(fo* any Haar measure on the group).

In Chapter 5. we will give examples of left-and-right shy sets without being shy in
2

the non-locallv compact Polish group.

2.10 Preservations of null sets under isomorphisms

In this section we will discuss the preservation of our null sets under isomorphisms.
Here a mapping T from a Banach space X to a Banach space Y is an isomorphism if
L]

T 1s one-one. linear and continuous.
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—~
Theorem 2.10.1 Let X be an infinite dimensional separable Banach space and T be

an isomorphism on X'. Let S be one of sets of Gaussian null. Gaussian null in Phelps
sense. Christensen null, s-null, Aronszajn null and Preiss-Tiser null. Then T(S) is

also a null set of the same kind.

»
Proof.  Since T is one-one and continuous. by Theorem 11.16 in [11]. if a set

S C X s Borel or universally measurable then T(S) is Borel or universally measurable
respectively. We now need only show the assertion for each kind of Borel null sets.

(1). Let S be a Gaussian null set in the ordinary sense. Then there is a Gaussian
measure g such that 4(S) = 0. We define a measure on Borel sets by (£ £ p(T7'E).
Since for anv f € X*. jio f~' =(puoT V)o f! =po (fT)""and fT € X", thus g
Is also a non-degenerate (;aussian measure. Since (T(S)) = u(S) = 0. the set T(N)
15 also Gaussian null in the ordinary sense.

(11). Let § be a Gaussian null set in Phelps sense. From the proof of (1) it is easy
to see that g o T is a Gaussian measure ff g is a Gaussian measure. Thus [(q‘) 1S
Gaussian null in Phelps sense.

(m). Let S be a (‘hristens(:n null set. Then there 1s a Borel probability measure
e such that for every 0 € X. y(S+ 1) =0. Asin (i) we define a measure g on Borel
sets. Then for every y € X . there isl some r € X such that y = Tr since T 1s one-one.
Thus o
| FIT(S) + ) = AT(S)+ To) = {T(S + 1)) = u(S + 1) = 0.

wnd hence T(S) is Christensen null.

(1v). Let S be an s-null set. Then there is a sequence {¢,} such that & = [J 5,
and S, N (r + Re,) is Lebesgue measure zero for every v € X. Here Re, 1s the one
dimensional space spanned by ¢,. It is easy to see that sy =7T(8). For any

y € X. there is some r € X such that y = Tr. Note

r's,n(r+Re)=T(S)Hn(Tr+RTe,) =T(S)N (y + RTe,).
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We can define a probability measure on universally measurable sets by g(FE) =

M(T'E). Thus

for any y € X and hence T(S) is s-null.
(v). By using the same method as in (iv) we can get the results for-Preiss-Tiser

<
null sets and Aronszajn null sets.

The statements are true if T 1s an isomorphism from an infinite dimensional sep-
arable Banach space to an infinite dimensional separable Banach space. We can also

extend one of the assertions to Abelian Polish groups in the following.

Theorem 2.10.2 Let Gy and (7, be Abelian Polish groups. Let T be a homeomor-

phism from iy to Gy such that
T(ry+ury)=T(x)+ T(ry)

forall ry.ry € Gy where + and + denote the operations on Gy and (5, respectively.
Then a set S C Gy is shy in Gy if and only if T(S) is shy in (7.

Proof. Since T"1s a homeomorphism. both T and the inverse T-' of " map Borel
sets and unmversally measurable sets into Borel sets and universally measurable sets
¥

respectively. 771 also satisfies

TNy +y)=T""y)+ T ()

for all yy.y, € (G,. This can be seen from the assumption by applving T to its both
sides. So we only need to show the necessity.
If S C () isshvin (7). then there is a Borel probability measure g such that for

all r€ Gy, pu(S + 1) = 0. Now we define a Borel probability measure £ on (¢, by

H(P) = p(T7H(P))
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for all universally measurable sets P C (G;. Then

-

/7((1'2) = /I(Tyl(Gz)) = u(Gy) =1

So i is a Borel probability measure. We now check that g is transverse to T(S). For

anv y € (7, there is some r € (7; such that y = T'(r). Then
fT(S)+y) =TS+ T() = p(T(S+ 1)) =p(S+1)=0.

Thus T(5) 15 shy in (; and the result follows. [

2.11 Measurability issues

Our definition of a shy set (i.e.. Christensen null set) requires that the set be univer-
sally measurable. This requirement is essential in view of the following theorem of

Bogachev [3] cited by Preiss [16].

Theorem 2.11.1 (Bogachev) Let X be an infinite dimensional separable Banach
space and let {e,} be a sequence of elements whose linear span is dense in X Then
there is a decomposition of X into a sequence of sets X, such that the intersection of

X, with any line in the direction ¢, has linear measure zero.

From this theorem. if we do not require the universal measurability in the definition
of shy sets, every separable Banach space would be the countable union of shy sets.
So we are unable to omit the reference to the universal measurability of the sets in
Section 2.3 as regards shy sets or s-null sets. If we remove the requirement of universal
measurability in the definition of a shy set, the same problem arises in Polish groups.
The following argument of Dougherty [18] shows this. Let (7 be an uncountable
Polish group. Let < be a well-ordering of G in minimal order type. Then =< and its

complement are subsets of (G%. Let gy = uy x p; and p' = g, x gy where py 1s an
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L

atomless measure on (¢ and g, is a measure concentrated on a single point of . If
the continuum h._\'pothesis holds then p and p' are Borel measures transverse to =<
and its complement 'respective];'.2 This violates the additivity of shy sets. Thus the
universal measurability cannot be omitted. ‘

There are four possible ways of requiring measurability in defining a shy set S.

L 4

(a) S is Borel.

(b) S is universally measurable.

(a’) S is Borel or a subset of a Borel shy set.

(b’) S is universally measurable or a subset of a universally measurable shy set.

The case (a) 1s too narrow. [t does not include some sets we often meet. The
case (b) 1s our choice. It has been proved veryv useful in manyv respects. The case
(a’) is the choice of Hunt et al. [27]. This choice is not compatible with our choice in
case (b). If we follow Hunt et al. [27] and call a set shyv only if it is contair;ed in a
Borel shy set theﬁ we arrive at a different theory. The following argument, also from
Dougherty [13]. shows this. Let X" be an uncountable Polish group with an invariant
metric which is not locally compact. If the continuum hypothesis holds. then there
1s a subset 5 C X such that 81 A has cardinality less than 2% whenever A is a
o-compact set but S N A4 has cardinality 2% whenever A is a Borel set which is not
included in a o-compact set (see [21]). Since any Borel probability measure on X is
based on og-compact subsets of X and the continuum hypothesis implies that sets of
cardinality less than 2% have measure zero under any atomless measure. then the set
S is universally measurable and shy. However. any Borel set which includes S must be
the complement of a o-compact set and therefore prevalent. Thus this set S cannot
be contained in any Borel shy set.

The case (b") is more general than the cases (a). (b) and (a’). A subset of a

universally measurable shy set need not be universally measurable. For example, on

*This can be shown under weaker hypothesis (e.g., Martin’s axiom).
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the real line, there exist Bernstein sets. sets such that the sets and their complements
intersect every perﬁé’ set. (‘hoose a Bernstein subset of a Cantor set of measure
zero. Then this set 1s Lebesgue measure zero. but is not measurable with respect to
all finite Borel measures on the real line. Such a set would be shy according to the
case (b'). but not shy according to cases (a) and (b). The set S in last paragraph is
shy according to the case (b). but is not shy according to the case {a’).

There are other interesting questions that can be posed and which are related to
this discussion. In [18] Dougherty asked whether an analvtic shy set must alwavs
be included in a Borel shv set and whether anyv analvtic non-shy set must include
a Borel non-shy set. Solecki [52] answered the first question affirmativelyv and the

second question negatively in the following.

Theorem 2.11.2 (Solecki) Let (7 be an Abelian Polish group. then

(1) If AT G s mm/éﬂz’r and Haar null then there exists a Borel set B C (7 which
15 Haar null and A C B.

(11) Assume that (i 15 not locally compact and admits an invariant metric then

there exists an analytic set A such that ANB is Haar null for no co-analytic set B.

2.12 Extension to non-separable Abelian groups

The non-separable case requires some attention to the measure theoretic details. Here

15 a simple example showing what can go wrong.

Example 2.12.1 Consider the non-separable Banach space (| the space of all bounded

sequences with the supremum norm. The cube
Co={(ry.00.05.... ) o] <n, 1=1,2,...}

admits a transverse Borel probability measure.
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Take the measure p defined on £ as follows
HO= fy X gLy X e X iy X

where

1 _r2 /0
e = —F— € F /‘dl'
V2% JB

Then p(C,) = 0 for all n and indeed. pu(C, +r) =0 for all r € £, . Thus each set

(", has a Borel probability measure transverse to it. But

so that the whole space is a union of countably many sets that we might have been

inchined to call “shy™

One of the features of finite Borel measures on Polish spaces that is lacking for
non-separable spaces is the close connection with the compact sets. An analyvsis of the
proofs in Example 2.12.1 shows that this property of Borel measures on Polish spaces
1s what 1s missing in general. We will see in the next section that the measure g we
constructed in the last example is not “tight™ even though it is a Borel probability
measure.

One way around this is to restrict attention to measures that have this property.
The simplest approach. followed in Hunt et al. [27]. is to consider just those Borel
probability measures with compact support. In a Polish space the shy sets would
not change. For if there is a Borel probability measure transverse to a set S then
there must also exist a Borel probability measure with compact support that 1s also

transverse to that set. We will see this from the following theorem.

Theorem 2.12.2 Any probability measure 1 on a Polish space (G is tight.
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Proof. (This proof is a sketch of some of the main ideas from [44. pp. 28-30].) Since

(+ is separable, for each natural number n we can find countably many balls B,, of
P

radius 1/n such that G = UJ B.,. So G = U) B., where B,U is the closure of B,,.

For arbitrary € > 0 there exists an integer k, such that

Let

Then
WG\ KN) = Z;z(({\‘\',{) < Z(/'Z" = .

We r;oiv need only show that A" 1s compact. Let {r,} € I be an infinite sequence
then there 1s ny < k; such that A' N Blnl = K} contains infinite points of {r,}. Note
K, C Ujil By, . There is an integer ny < k; such that Ay N 82n2 contains infinite
points of {z,}. Induction vields a sequence of sets {A,,} such that A} D K, D -+ D
K, 2 --- and each K, contains infinite points of {r,}. Note the diameter of A, is
less than 2/n and (' is complete. So () K, is a singleton. Thus there is a subsequence

of {r,} which converges to that single point. Therefore A is compact and the result
follows. |

Another development is given in Borwein and Moors [38] for shy sets (Haar null
sets) in non-separable Abelian topological groups. Their method overcomes the sl‘lort-
comings that an open set may be shy by. again. restricting the class of measures to
which the definition of shy sets is allowed to apply (see the Glossary for the definition

of Radon measure).

Definition 2.12.3 (Borwein-Moors) Let G be a completely rhetrizable Abelian

topological group. A universallv Radon measurable set A C G is called a Haar null
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set if there exists a Radon probability measure p on (7 such that p(g + 4) = 0 for

each g € .

‘From Theorem 2.12.2 we know that in an infinite dimensional separable Banach
space the definition of Borel Christensen null sets coincides with the definition of Borel
shy sets in [27]. and also coincides with the above definition of Borwein and Moors.
In a non-separable Banach space. by Theorem 2.12.2, the definition of Borel shy sets
defined by Hunt et al. [27] still coincides with the definition of Borel Haar null sets
by Borwein and Moors [3]. but the definitions of Borel shy sets defined in [27] and [3]
are different from Christensen Definition 2.9.3. Example 2.12.1 illustrates this.

In the next section we will discuss a further extension to completely m(‘trizablrv
topological semigroups and give the main properties for the corresponding Haar null

sets,

2.13 Extension to semigroups

Much of the material developed so far can be extended to certain topological semi-
groups. An account appears in Topsoe and Hoffman-Jorgenson [56, pp. 373-373].

We suppose that we are given a topological (usually completely metrizable) semi-
group ( for which the operations + — ar and r — ra are continuous. Topsoe and
Hoffman-Jorgenson call such semigroups “separately continuous semigroups”™. We as-
sume always that (7 has a unit element. denoted as 1. Thus Ir = rl = r for all
re@.

A Radon probability measure g defined on (' is said to be transverse to a univer-

sallv Radon measurable set S in (7 if the set
{:e(G: rzy€ S}

has g-measure zero for every r. y € (G and the element | is in the support of p.
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Here are the details needed to see that this definition extends the notion of sets
of Haar measure zero in locally compact groups. Let (& be a locally compact group
with right Haar measure p. 4 be a Radon probability measure transverse to a Radon

universally measurable set S C (. Then by Fubini's theorem we have

:/w—lswdr):// 15<ry>;z<dy>p<dr>:/pmy—‘m(dy).
G GJG (@4

Since p(Sy~') is continuous with respect to y € (G and 1 € suppy so p(S) = 0. Thus

o

S 1s Haar measure zero.

The original definition of Haar null sets in Topsoe and Hoffman-Jorgenson [36.
pp. 374} just requires the existence of a 7-smooth probability measure. The class of 7-
smooth probability measures is larger than the class of Radon probability measures.
However the -definition of a Haar null set by requiring the existence of a 7-smooth
probability measure transverse to a universally Radon measurable set coincides with
the definition of a Haar null set by requiring the existence of a Radon probability mea-
sure transverse to the set. In fact let g be a 7-smooth probability measure transverse

to a universally Radon measurable set S. Then the support of u:
suppp = {r € G p(U7) > 0, VU a neighborhood of r}

is closed and contained in every closed F with u(G\ F)=0. So G\ F C G\ suppu.
Thus by the definition of r-smoothness of u we have u(G \ suppu) = 0. Note that a
probability measure admits at most countably many disjoint sets of positive measure.

Thus suppp is separable. We define a measure ji by

(A) = (AN suppu)

for a universally Radon measurable set A C (5. It is easy to see that ji is transverse
to the set S. Since suppy is closed and separable, by Theorem 2.12.2. the measure ju
1s tight on suppy. Note p(G \ suppu) = 0. So i1 is a Radon probability measure on

(+ which is transverse to S.
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From the above discussion it is easy to see that in a non-separable Abelian topo-
logical group the definition of Haar null sets by Borwein and Moors [8] is eqﬁi\'alent
to the definition of Haar null sets by Topsee and Hoffman-Jorgenson {56].

The following are the main properties of Haar null sets on Co.mpletely metrizable

semigroups. See Topsoe and Hoffman-Jergenson [56. pp. 373-378] and Borwein and

Moors [3] for proofs.

Theorem 2.13.1 Let GG be a completely metrizable topological semigroup, then

(1) If A is a Haar null set then x Ay s also Haar null for any r.y € G.’

(1t} A Haar null set has no interior.

(1) The union of countably many Haar null sets s also Haar null.

(iv) If G is an Abelian group and A C (G is not Haar null then the unit element 0
1s an interior point of A — A.

(v) If G s an Abelian group. then every compact set of G is Haar null.

PROBLEM 3 In a non-locally compact, non-Abelian Polish group. are compact sets
left shy or right shy?

If we impose the multiplication as an operation on the space ('[a.b] of continuous
functions with supremum norm it will become an Abelian Polish semigroup with
unit element for which the operation f — fg is continuous. We will discuss the
"multiplicatively shy™ sets in the space ("[a,b] and their relations to the “additively

shy™ sets in Chapter 1.
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2.14 thy not measure zero sets of a single mea-

-

sure

Our null sets in all cases were required to have the property of translation invariance.
One might ask whether we could not have achieved this more directly by taking the
measure zero sets for an appropriate measure.

There are many characterizations possible for the sets of Lebesgue Ieasure zero
in a finite dimensional space. The simplest cne to conceive is merely that these are
the null sets for a single measure (Lebesgue measure) that happens to be translation
invariant. This gives immediately a class of sets that is translation invariant.

In a compact group there is a unique translation invariant probability measure
(Haar measure) which plavs the same role. In a non-compact but locally compact.
Abelian topological group agaiﬁ Haar measure can be used. The measure 1s unique up
to multiples and translation invariant and so the sets that are of zero Haar measure

play the role that we require. The following theorem and its proof are sketched from

1), :

Theorem 2.14.1 Let (i be a locally compact, Abelian topological group. Then a set

S C G ois Haar null iff S is of zcro measure for any Haar measure on (5.

Proof. Let h denote a Haar measure on (. Since h is o-finite. we can use Fubini's

theoremn to show that for any Borel probability measure y on (.

/(/\s(ry)h(dr))ﬂ(dy) :/(/\s(ry)ﬂ(dygh(dr)-

/h(ﬁ'y'l)ﬂ(dy) = /;t(S'I"l)h(df) .

where \ s is the characteristic function of the set S. If S is Haar null and p 15 a

That 1s.

test-measure for S. then the right hand and the left hand of this equation are zero.
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Since A is translation invariant. S-is zero for the Haar measure hA. Conversely, if S is
zero for the Haar measure. we can obtain a test-measure u by choosing w4 with density

with respect to the Haar measure. |

In a locally compact non-Abelian group there is a right Haar measure and aﬁﬂ
Haar measure. One might worry that the measure zero sets are only invariant on one
side but that is not the case. The measure zero sets for a right Haar measure again
serve as our class of sets invariant under the group operations (see [41]).

Why have we been unable to pursue the same course in an infinite dimensional
Banach space?” The first problem is that there is no nontrivial translation invariant

finite or o-finite measure on such a space.

-

Theorem 2.14.2 There s no nontrivial translation invariant finite or o-finite mea-

sure on an infinite dirgepsional Banach space.

Proof. The proof of this theorem in detail is very complicated and long (see [61.
pp. 138-143]). For our purpose we only show that there is no translation invariant
Radon probability measure 4 on an infinite dimensional Banach space.

Suppose that there were a translation invariant Radon probability measure u on
an infinite dimensional Banach space X'. Then there are a compact set A" and an open
ball B(r.¢) contained in X such that 0 < u(A') < oc and u(B(r. €)) < . Since the
space X 1s infinite dimensional. we can construct an infinite sequence of disjoint open
balls {B(y.f/»/l)} which are contained in B(r.¢). Since u is translation invariant. so
the y measures of all such balls B(y.¢/4) are zero. Note

K< | Bz,

z€R

By the compactness of A" and the translation invariance of i there are finite many z,

such that

N C U B(z,.e/1) and p(h) < ZN(B(an/‘l)) =0

1=1 r=1
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This 1s a contradiction. Thus the result follows. - B

The above theorem can be generalized to any infinite dimensional topological space
(see a proof in [61]).

In order to describe our class of null sets we need not necessarily require that
the measure be translation invariant. only that the set of measure zero sets for that
measure be translation invariant. Such a measure is said to be quasi-invariant. For
example the Gaussian measures in R™ are quasi-invariant and, indeed. the measure

. 7
zero sets of such a measure are precisely the Lebesgue measure zero sets. But again

this is not possible in an infinite dimensional space. In fact the following theorem

shows that it would never be possible.

Theorem 2.14.3 L¢t X be a locally conver. linear. infinite dz'm(nsiobpologiml
vector space. Then there is no nontrivial o-finite quasi-invariant measure defined on

the Borel subsets of X.

Proof. (This proof is reproduced from [61].) By using the remark following The-
orem 2.114.2 we need only show that if a nontrivial quasi-invariant measure j exists
then a nontrivial translation invariant measure exists.

We use B to denote the class of Borel sets and define a map T on X' x X by
(r.y) — (ry.y). Then T is an automorphism on (. x X.B x B) . By the Radon-

Nikodym theorem there is a function f(r.y) > 0 such that for everv /' € B x B,
(TP = [ ety
Consider the following three maps on X' x X x X as follows:
Iyi(eyoz) = (eyoyoz). Tac(ooy.z) — (royzo2),

Ty (r.y.z)— (rz.y.2).
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We can easilv see that Ty o T, = T30 T,0T). Then from the uniqueness of the densityv

function we get that for everv (r.y.z) € X x X x X,

flroy=)fly.z) = fley. 2) fly.2) f(r.y).

Thus there is some ry € X such that f(re.yz) = f{roy.z)f(T0.y). Set f(ro.15'y) =
g(y). Replacing ryy by y we have that for every (y,z) € X x X, f(y.z) = g(yz)/gly).
Putting dv = ¢~ 'dyi. Then v is translation invariant. In fact, for any F € B x B we

have

*

(v < )(T(F)) =/ g~ (o)dpu(r)duly) = / g ey flr y)du(r)duly)
T(F) 2

:L/gkl(-Ty)g(rg)(lll(f)‘fll(y) =/g“dw>(lm‘y> — (v = ) F).
I3 glr) F

Thusfor = 4 x X € B x B we have

/1/(.4_}/)(1/1(;//) = / v(A)dply) = v(A)p(B).
B B

From the uniqueness of the densitv function we have v(Ay) = v(A) for any y € B.
Sinc & B is arbitrary we have that for anv y € X, v(Ay) = v(A). [ |

In Section 2.4 we saw that on an infinite dimensional separable Banach space a
Gaussian null set in Phelps sense is null for every non-degenerate Gaussian measure.
However. in general a Borel shy set cannot be null for every o-finite Borel measure.

In fact all Borel measures live on shy sets!

Theorem 2.14.4 (Aronszaqjn [2]) Given any o-finite Borel measure y1 on an infinite
dimensional separable Banach space X there 1s a Borel s-null set S so that p is

concentrated on S, ... u(B) = u(SNB) for all Borel sets B.

[mmediately from the above theorem we have the following
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Corollary 2.14.5 Given any o-finite Borel measure p on an infinite dimensional
separable Banach space X, for any Borel set A C X there 15 a Borel s-null set B and
a Borel i null set U such that A = BUU. In particular X can be decomposed into a

i null set and a Borel s-null set.

For a proof of the above theorem see [2. pp. 155-156]. The theorem provides
another proof that the Borel shy sets cannot be described as the null sets for any one

7-finite Borel measure.

2.15 Classification of non-shy sets

Hunt et al. [27] gave a number of variants of non-shy sets. Dougherty [13] gave more
refined characterizationd of non-shy sets. Let S be a universally measurable subset of
a Polish group. In the assertions below e will vary over positive real numbers. y over
probability measures on (7. and ¢ over translation functions g — ¢,9¢,. The following

eight properties from Dougherty [138] define different classes. in general. of non-shy

sets.

(1) 3p¥t p(t(S) =1 [prevalent]

(2) Vedpt p(t(S)) > 1 —¢ [lower density 1]
(3)  Fe3u¥t p(t(S)) > ¢ “[posttive lower density)
(4)  3p¥t p(t(S)) >0 [observable]

(1) Vudt u(t(S)) =1 [ubiquitous)

(27) Vedudt pu(t(S)) > 1 —« (upper density 1]
(37) 3eVudt u(t(S)) >« [positive upper density)
(1) Yu3t p(t(S)) >0 (non-shy.

In [13] Dougherty mentioned the results and examples in the following (1). (i1).
(11) and (1v) but did not give proofs or explanations. Here we take this opportunity

to verify these results and examples. Furthermore. we find non-implications-(3) #
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(27) and (1') # (4). and give examples for them in (v) and (vi). From (i) to (vi) we
will get a clear picture of relations among the eight classes of non-shy sets.

(i). Some implications. From the definitions we see that the implications (j) —
(k) and (j') — (k') for j < k are trivial. We now show that (j) — (j7) for each j. Let

S satisfy (1) then there exists a Borel probability measure pg such that po(t(5)) =1

for each t. By Fubini's theorem for any Borel probability measure p on G\

pxpo(Sg2) = | u(Sgag™ )poldyg)

—

H
—

/ 1s(g199: no(dg)u(dgy)
;

,/10(91_1592)/1((191) = 1.

Il

Thus there must exist g,.g € (i such that p(S¢¢7') = 1. and (17) holds\ Similar
arguments can show that (j) — (37). j= 2.3.4 \j

(11). (4) = (3"). For the interval 5| = [0.1] and the Gaussian measure ;. defined

l)\
([j — € / ll.l

for all Borel sets B C R. the set Sy satisfies (4) but does not satisfv (37). In fact. for

every ¢ > (. we construct a function

—(e/Hr+e/2. 0<r <l
fle) =19 /4. 1 <r<(2-26)/¢
0. > (2= 26)/¢

and extend it evenly to (—2c.0). Then the measure u, detined by

;mm:/ﬂnm
B

is a Borel probability measure, but for any r € R, (0 + 5)) <.
(ii1). (2) & (17). Theset S; = (—2.0)U(l.oc) satisfies (2) since for any ¢ > 0 the

measure ji, in (i1) satisfies (0 + 5,) < ¢ for each r € R. Here S, is the complement
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of §;. Note that R = (r + S;) U (r + §2) and (r+ S)N(r+ §2) = ¢. So for the
Gaussian measure g as in (i1) and anv r € R. u(xr + S2) < 1. Thus S; does not
satisfv (17).

(iv). (27) % (3). The set S3 of positive real numbers satisfles (2) since for any
¢ > 0 and any Borel probability measure u on R we can choose r small enough so that
j(r + S3) > 1 —¢. On the other hand. for any ¢ > 0 and Borel probability measure
i we can choose r large enough so that p(r + S3) < e. Thus §3 does not satisf}"(I}).

(v). (3) % (27). In R. let -

(2n.2n + 1).

(s
P
1l
i
7

n xC

For the Gaussian measure p as,in (i1) and every r € R. 1t is easy to see that

1 , .
(e + 5, > / ¢~ Tdr >V
1/2
and
r ‘
in(r+54) <1 -/ e~ Tdr<1—c¢ <1,
1/
So Sy satisfies {(3) but does not satisfy (27).

L]

(vi). (1) = (4). We will show that the sets S;(A). S;(A%) and S;(A47) n
Theorem 2.15.1 are all examples for this non-implication.

From the above (i) to (vi) we can make the following conclusions. (2) = (1)
implies (2) % (1) and (27) % (17): (27) = (3) implies (27) % (2): (3) #& (27) unplies
(3) = (2)and (37) = (27): (4) = (37) implies (4) = (3): (1") = (1) implies (1) = (1)
and (1) ﬁ;)_ Here we indicate all relations among (1)-(4) and (17) (1) n a table
as follows. We use — to denote = and - to denote #-.

We now study the following sets to justify (vi). Let A be a non-empty set of

natural numbers.

! ~ 3.V >0 such that if n > .V,
SiA)y=<seR™:
s(ny>0forn€ Aand s(n) <0forn¢g A
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(3) 4)

/7

2 3. )

a0
(1) e )

Figure 2.1: The relations of non-shy sets in general

\d

SiAT)={s e RY: 3V > 0such thatif n > \. s(n) > 0 for n € A}

and
SiAT) = {s € RV = 3NV > 0 such that if n > N, s(n) < 0 for n € A}.
Note that |
= Oslm(,»x). O Sim(AT) and S)(A7) = Oslm(‘r)
mel m=1 et
where
Sl A)={s€R™: ifn>m. s(n)>0forne Aand s(n) <0 for n ¢ A}.
Sin( AT ={s € RY: if n > m. s(n) > 0 for n :xi}
and

Sim(AT)y={s e RY: ifn >, s(n) <0 for ndg A}

By using the methods as in Theorem 3.5.4 we can show that S;.(A4). Si.(A%) and
Sim( A7) are Borel sets. So the sets S;(A). S;(A%), S;(A7) and their complements
are Borel sets. In the following theorem we show that all S;(A4). S;(A*%), (A7) and

their complements are ubiquitous but not observable.

Theorem 2.15.1 Let A be a non-empty set of natural numbers.  Then the sets
Si(A) S1(A*Y) and S\(A7) and their complements are all ubiquitous Borel sets but

not observable. (That is. they satisfy (1°) but not ({).)
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Proof. (ase 1. The set A is an infinite set. For a given Borel probability measure

it on RY we can choose a number b, for each n such that

cp({s € RY: Js(n)] > ba}) <2777

Then
p({s € RY: Js(n)) < by foralln > N})>1-27".
Let
S = U {s € R": |s(n)] < b, forall n > NV},
N=1

Then ;(S) = 1. Define elements t. t*. t~ € RY as follows. -

b+ 1. neA
—|ba] = 1. n & Al

tin) =

ttin) = b+ 1forn € Aand t7(n) = —|b) = 1forn € A . Then § +t C
Si(A) S+ttt CS(AY)yand S+t C S(A7). Thus S;(A). S(AY) and S;(A7) are

ubiquitous. That 1s. theyv satisfv (17). Now we consider their complements.

—— . VN >0, 3ng € A ng > N such that s(ny) <0,
S{A)=(seR™: -

/

or 3my & A. mg > .V such that s(my) >0

Si(Ar) = {s € RY: YN >0, 3ng € A, ny > .V such that s(ng) < 0},

———

Si(A7) = {s € RY: VN > 0. 3ny € A. np > .V such that s(ng) > 0}.

Now we define ¢,.{; € R™ to satisfy the following.

—|bn( —1. ne A
b+ 1. ng A

11(71) =

and ¢ (n) = [b,] + 1 for n € A. Then clearly we have

e —— e —— —

4+ SCTS(A) L +SCS(AY)and [ +SC S (A7),
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Thus Si(A). S;(A*) and §(A7) are ubiquitous too. That is, they also satisfy (17).
From the definitions of (4) and (17) it is easy to see that a set satisfies (4) iff the
complement of this set does not satisfy (1°). Therefore the sets S;(A). S;(A*) and
Si(A7) and their complements are ubiquitous but not observable.

(Case 2. The set A is a non-empty finite set. For the set S;(A). by checking every
step of the proof in Case 1. it i1s easy to see the conclusion still remains valid. For the

sets S(A*Y) and S;(A7) we choose an infinite set B C N\ A and define

Cr={s€RY: s(n)>0forne AU B}

and
(,={s€RY: s(n)<0forne AU B}
Then
(L CSAY). O CS(A)and C3C S5(A7).C; € Si(AY).
By Case 1 we know that ('} and ('; are ubiquitous. Thus S;(A*). S;(A7). §;(A*)

e~

and S;(A7) are also ubiquitous. Thus the sets S;(A), S1(A%") and S;(47) and their

complements are ubiquitous but not observable. a

Dougherty [13] showed that the set
S(A)={s€RY: s(n)>0forn € Aand s(n)<0forng A}
15 upper density 1. Here we sketch his proof and show more from Theorem 2.15.1.

Corollary 2.15.2 S(A) is upper density | but not observable.

Proof. For a given Borel probability measure g on R™ and ¢ > 0 we can choose b,
for each n such that

u({s € RY: [s(n)] > b)) < e



CHAPTER 2. SHY SETS 54

Thus u({s € RY: {s(n)] < b.}) > 1 — € and hence S(A) is upper density 1. Note
that S(A) € S1(A). From Theorem 2.15.1 we will see that 5;(A) is not observable

and therefore S(A) is not ohservable. [

For the remainder of this section we will try to describe in R™ (n > 1) the classes of
setsin (1)-(4) and (17)-(4). In R™ the set S in (1) has full Lebesgue measure. This is
proved in Theorem 2.7.5. Now we look at the sets satisfving (17). (17) is equivalent to
that V3t ;z(t(g)) = 0 where S is the complement of S. Thus take i to be a Gaussian
measure and so there is a t such that /1(15(:)) = 0. Since the Lebesgue measure
and anv Gaussian measure are mutually absolutelyv continuous. so ,\n(l(g)) =0 and
\.(S) =0 where A, is the n-dimensional Lebesgue measure. Thus the set 5 also has
full Lebesgue measure and hence all sets in (1) and (17) are equivalent to having full
Lebesgue measure.

If a set S satisfies (147). then. for everv Gaussian measure yu, there exists a t € R
such that p(#(S)) > 0. By the mutually absolute continuity of A, and ;2 we have
An(HS)) = A(S) > 0. Again by the mutually absolute continuity of A, and . for
every GGaussian measure and ¢ € R", we have u(t(S5)) > 0. So the set S satisfies (1).
Since (4) = (17) so all sets in (1) and (1) are equivalent to having positive Lebesgue
measure.

In R™ for every set S satisfying (37) it iseasy tosee A, (S) > 0. Ifnot. A, (S+r) =0
for any r € R". Thus for any Gaussian measure g, u(xr + 5) = 0 which contradicts
(37). Now we can claim A, (S) = oc. If not then 0 < A, (S) < x. For any ¢ > 0 we

can construct a function F(r) by defining

—rimll e 0SS S
[‘(l)~ 2\,:(5) \"(Q)S‘HS%XH(\)
0 2N (S) < o] < EEA(S) .
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Then the probability measure y induced by F(r).

;L(B):/ F(r)dr
B

satisfies that for any r € R™ pu(r + 5) < e. This contradicts (3"). Thus for any
g

set S satisfying (37) we have A\,(S) = . Therefore for any set S satisfving one

of (2). (3). (27) and (3') we have A,(5) = . However we currently havefo exact

characterizations for sets S in (2). (3). (2') and (3").

Based on the above discussions and (1)-(v) we can obtain the relations among

(1)

{(1)-(1) and (17)(147) as follows.
_—> -

/
<—\— (2') <= (3) <—¥—(4’)

Figure 2.2: The relations of non-shy sets in R?

(1)

2.16 Prevalent versus typical

Any finite dimensional space can be decomposed into a set of Lebesgue measure zero
and a first category set. The prool is entirely elementary. One shows that there
15 a dense open set (sav one that contains all points with rational coordinate;) of
arbitrarily small Lebesgue measure. An appropriate intersection of deuse open sets
gives a measure zero, dense set of tyvpe G..

In our more general setting we do not have a notion of measure. just a notion
of measure zero. Thus such an argument does not work, although one expects a

similar decomposition should be available. The following theorem of Preiss and Tiser

{

ko
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is remarkable because the measure zero part of the deconjposition is in the strongest
terms-and the first category part is given to be o-pordus (see [54] for o-porous).
o-porous sets form a smaller class than the sets of the finst category.

\
Theorem 2.16.1 (Preiss—TiSer) An nfinite dimensional separable Banach space

can be decomposed into a Preiss-Tiser null set and a set that is a countable union of

closed porous sets.

This result is of some interest in the study of derivatives on Banach spaces. I'rom

] we know that the set of points of Gateaux non-differentiability of a

Aronszajn [2
real-valued Lipschitz function ¢n an infinite dimensional separable Banach space X
is Aronszajn null. However the Fréchet differentiability of a real-valued Lipschitz
function on an infinite dimensional separable Banach space 1s completely different.
One of the Preiss - Tiser results [16. pp. 222, Proposition 1] says that. on an infinite
dimensional separable Banach space. there is a real-valued Lipschitz function which
is Fréchet non-differentiable on a given countable union of closed porous sets. Thus
from the above theorem there is a real-valued Lipschitz function which is Fréchet
differentiable only on a subset of a Preiss- Tiser null set 1n an infinite dimensional
separable Banach space.

The decomposition in the above theorem is not possible in a finite dimensional
Banach space because both a closed porous set and a Preiss-Tiser null set are Lebesgue
IEeASUre Zero.

A natural question is to ask whether such a decomposition, even a weaker one, is
possible In a non-separable Banach space. We leave it as a problem at the end of this
section. In the following we consider the same problem in a Polish group. Note that,
however, a discrete group could not have such decomposition. Also the discrete group
cannot be decomposed into a shy set and a first category set. Any compact or locally

compact Polish group with a diffuse [laar measure can be decomposed into a shy set
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and a first category set by using the same proof that works for R™ In the following
we give a sufficient condition for a general Polish group to be decomposed into a shy

set and a first category set.

Theorem 2.16.2 Let (& be an Abelian Polish group which permits a Borel probability

measure y such that there is a constant b < 1 so that
p(Blr.r)) < bu(B(r.2r))

for everyr € X and r < 1/2. Then GG can be decomposed into a shy set and a first

category set.

Proof. Since (7 is separable. let {r,} be a sequence of points that is dense in (4. Let

X, = O B (r,. ;) and X = h X,.
t=n - n=1

Then X is a dense G set and so G\ X 1s of the first categoryv. By the assumption for

anv r € (),

A

Thus the set X 1s shy in (& and the decomposition & = X U (' \ X) is our desire.
|

Remark. Such a theorem is true for finite dimensional spaces since Lebesgue
measures can replace g in the proof of the above theorermm. However we do not know
whether an infinite dimensional Banach space permits a Borel probability measure

satisfying the’condition in the above theorem.

PROBLEM 4 Does every Polish group permit a decomposition into a shy set and a

set of the first category?
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2.17 Fubini’s theorem

Fubini's theorem is one of the most imgdrtant theorems in measure theory. [t is
natural to ask whether there is a version of Fubini's theorem that holds for Haar
zero sets. Christensen [12] gave the following example to show that a full version of

Fubini's theorem does not exist.

Example 2.17.1 Let H be a separable infinite dimensional Hilbert space and let T
be the unit circle in the complex plane. There exists in the product group # x T a
Borel nieasurable set A such that‘

(1) For everv h € H. the section A(h) = {t € T : (h.t) € A} has Haar measure
one in 1.

(11) For every t € T the section A(t)1s a Haar zero set in H.

(111) The complement of 4 i1s a Haar zero set in the product group H x 1.

Proof. (This proof is reproduced from [12].) Since an infinite dimensional separable

Hilbert space is isometric to the space L, of square integrable functions. We assume

=1, let

‘

A= {(f.t): the Fourier series of f converges at t}. (
I'hen from the famous result of Carlesan that the Fourier series for any L, function is

almost evervwhere convergent, (i) follows. Note that for every t € T. A(t) 15 a closed
linear proper subspace of f/. So it is Haar zero and (ii) follows. Clearly the product

measure of the one point measure in #/{ with mass | at zero and the Haar measure in

T 1s transverse to the complement of A. [

From the above example we see that if a full version of Fubini's theorem holds, then
(1) and (ii) imply that A is Haar zero. This contradicts (iii). Howevef, as indicated
in {12]. a weaker version of Fubini's theorem does hold. See Borwein and Moors [3.

Theorem 2.3] for details.
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2.18 Countable chain condition

In this section we discuss a property called the Counlablwiam condition of the o-ideal

of shy sets in some spaces.

Definition 2.18.1 Let (& be a Polish group. An ideal F of subsets of  is said to
satisfv the countable chain condition if each disjoint family of universally measurable

sets in (4 that do not belong to F is at most countable.

We also say that the group (7 does not satisfv the countable chain condition if the
ideal F does not satisfv the countable chain condition. A completely metrizable space
is separable if and only if every family of pairwise disjoint non-empty open sets of this
space is countable (see [20]). Thus the above definition is only for Polish groups.

In 1972 Christensen [12] asked whether any family of disjoint universally mea-
surable nor-shy sets in a Polish group must be countable. This 1s obviously true in
finite dimensional spaces. Dougherty [18] answered this problem affirmatively in some
Polish groups.

Theorem 3.5.1 exhibits a collection {S(A) : A C N} that forms a family of
pairwise disjoint non-shy sets in an Abelian Polish group that is uncountable. The

following theorem and its proof are reproduced from Dougherty [13].

Theorem 2.18.2 The Abelian Polish group R™ does not satisfy the countable chain

condition.

Proof. Specifically the collection
{S(A): ACN}

from Theorem 3.5.4 consists of 2% disjoint non-shy elements. So R does not satisfy

the countable chain condition. n
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Mycielski observed that if A4 and B are sets of natural nurﬁhers whose symmetric
difference is infinite. then not only are the sets S(A) and S(B) disjoint. but also anv- .
translate of S(A) intersects S(B)in a shy set (see [18]). Thus we can get 2™ non-shy
sets of R™ which mutually have this strong disjointness property. by taking S(A) for
2% sets A4 C N which have infinite symmetric difference with each other.

In Abehan Polish groups Dougherty [13] obtained the following general result by

unusual methods.

Theorem 2.18.3 (Dougherty) Let (¢ be a Polish group which has an invariant met-
ric and is not locally (‘OTIlp.(l(‘f. Suppose that there erist a neighborhood U of the iden-

tity and a dense subgroup G. of (v such that, for any finitely generated .s‘ubgr()up@f

Cio. 'Yl is compact. Then the ideal of shy sets of (7 does not satisfy the countable

chain condition.

By using a result of Kechris [29] that in a Polish group there i1s a Borel selector
s G/ — G for the cosets of [l where H is a closed subgroup of (. Dougherty [13]

showed the following result.

Theorem 2.18.4 Suppose ((G.+) is an Abelian Polish group and H is a closed sub-
group of (/. If the ideal of sbg subsets of H does not satisfy the countable chain
condition. then the ideal of shy subsets of G does not satisfy the countable chain con-
dition. \

After obtaining Theorem 2.18.3. Dougherty [13] conjectured that a Polish group
(v satisfies the countable chain condition only if (7 is locally compact. Later Solecki

152] answered this problem perfectly in the following.

Theorem 2.18.5 Let (i be a Polish group admitting an invariant metric. Then each
P
famidy of universally measurable or, equivalently, closed. pairwise disjoint sets which

are not Haar null is countable iff G is locally compact.
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In “Chapter 5. we show that the o-ideal of shy sets in the non-Abelian. non-locally
comp({ct space H[0.1] of automorphisms does not satisfy the countable chain condi-
tion. So we conjecture that the above Solecki’s result is true for non-Abelian Polish
groups. We will leave it as an open problem in Chapter 3.

Theorem 2.13.3 implies that an infinite dimensional separable Banach space does

not satisfy the countable chain condition. However, the proof of Theorem 2.18.3 is in

general. We pose the following problem.

PROBLEM 5 Using techniques in Banach space theory, show that any infinite di-

mensional separable space does not satisfy the countable chain condition.

2.19 lhickness of non-shy sets

In this section we will discuss a property known as thickness. The definition 1s from

[36].

Definition 2.19.1 A subset A of a topological semigroup (v is thick if the unit ele-

ment is an interior point of 447"

[n 1929 Ostrowski [42] showed the well-known fact that every subset of the real
line with positive Lebesgue measure is thick. That is, the non-shy sets in the real
line are thick. Of course the converse does not hold. For example, the Cantor set
in the real line 1s shy but it is thick (see [36. pp. 367-363, Theorem 2.1.2]). It was
Christensen who first showed that non-shy sets are thick in any non-locally compact
Abelian Polish group (see our Theorem 2.9.2 for a proof). Hoffiman-Jergensen [56]
extended it to completely metrizable, Abelian tbpologicd] semigroups in the following

form. We have stated this as Theoremn 2.13.1 (iv). For reference we repeat it here,

using our new terminology.
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Theorem 2.19.2 Let G be a completely metrizable, Abelian topological semigroup.
Let A be a universally Radon measurable subset of G. If A is not a Haar null set,
then A s thick.

We discuss now. in a Banach space, the thickness of non-Preiss-Tiser null sets.
non-Aronszajn null sets. non-s-null sets, non-Gaussian null sets in Phelps sense and
non-Gaussian null sets in the ordinary sense.

In R. all these sets are equivalent to the sets of positive Lebesgue measure and
so they are thick. In R™ (n > 1), e:ach straight line is non-Preiss-TiSer null but not
thick. However,in R™ (n > 1), non-Aronszajn null sets, non-s-null sets, non-Gaussian
null sets in Phelps sense are equivalent to the sets of positive Lebesgue measure. So
thev all are thick.

In an infinite dimensional separable Banach space we know that./from Fxam-
ple 2.3.58. there is a compact set A" which is not Gaussian null in Phelps sense. Note
that A — I 1s also a compact set and it cannot be a neighborhood of the zero ele-
ment in an infinite dimensional space. Thus, from the comparison in Section 2.3 and
Section 2.4 non-Aronszajn null sets. non-Preiss-Tiger null sets and non-Gaussian null _
sets in Phelps sense may not be thick in an infinite dimensional separable Banach
space. Non-Gaussian null sets in the ordinary sense are thick (see [56. pp. 372-373]
for a proof).

lRecall (Problem 1) that we do not vet know whether all Christensen null .sets
are s-null. If we cannot answer this problem, perhaps we can answer the followiné

problem.

‘ :
PROBLEM 6 /n an infinite dimensional separable Banach space, are all non-s-null

sets thick?



Chapter 3

Probes

3.1 Introduction

To show that a set S in a Banach space X is shy (i.e.. a Christensen null set) we
need first to establish that S is universally measurable (perhaps by showing that it
is a Borel set or an analvtic set in .X') and then to exhibit an appropriate probability
measure on X that is transverse to S. It is the finding of this testing measure or
probe that requires some techni(itles.

Proving that a set is prevalent amounts merely to showing that the complement
of the set is shy and so this does not introduce any new problems. However, showing
that a set is non-shy will require showing that every possible measure fails to be a
testing measure or probe for the set. We will see that, occasionally, this is not so hard

and requires only a few measure-theoretic observations.

Where possible. rather than constructing a testing measure, we would prefer to

This merely picks a direction in the space so that all lines in that direction intersect

»

S in a set of linear measure zero. It 1s of some intrinsic interest to know if this is

63
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possible. Asserting only that the set S is shyv sayvs much less.

Failing that we might show that there is a decomposition S = [JZ, S, and find
elements r, transverse to S,. In the language of Definition 2.3.2 we would say that
the set S is s-null. Again there is some intrinsic interest in knowing whether this is
possible.

Where these ideas fail we may hope to find a finite dimensional subspace transverse
to S. There would be some intrinsic interest in knowing the least dimension that could
be selected when this technique works.

Where linear arguments fail (as they do in a variety of situations) perhaps we can
construct a curve (a continuous image of ar; interval) that is transverse to S. Again
knowing that the set S admits a curve all of whose translates intersect S in a set of
nieasure zero (1.e.. measure zero along the curve) is of some intrinsic interest.

In this chapter we survey some of the methods that have been used to establish

that a given set is shy or non-shy and provide some concrete examples to illustrate

s

the methods.

3.2 Finite dimensional probes

The language of probes in [27] was introduced to have a convenient way of expressing

the techniques. Often to show that a set A is shy one finds a subspace (usually one

CEy

or two dimensi(‘f)rir"e:,l‘) that proves that the set A is shyv. That subspace was called a
probe for the COIxnp.llement of A (see Hunt et al. [27]). Here we extend this to call the
subspace or the measure supported on it also a probe for the set A.

A subspace P of X that is a n-dimensional probe for a shy set § C X is also

a m-dimensionagpprobe for the shy set S if m > n. In fact we can find m — n
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Thus it is necessary to give a new definition to describe shy sets.

Definition 3.2.1 A shy set S C X is said to be m-dimensionally shy if S has a
m dimensional probe but ne n dimensional probes for n < m. and 5 is said to be
infinite-dimensionally shyif S has no finite dimensional probes. The empty set is said

to be 0-dimnensionally shy.
Theorem 3.2.2 In R? there crist 2-dimensionally shy sets.

Proof. In 1928 Besicovitch [4] constructed a set of £ C R? of Lebesgue measure
zero which includes line segments of length 1 in every orientation (see also Proposition
12.2 in [22. pp. 163]). Thus any Borel set containing the set £ and having Lebesgue

measure zero is a 2-dimensionally shy set. n

Theorem 3.2.3 In R™ (n > 2) any shy set is at most 2-dimensional.

Proof. Let [ be a n-dimensional Lebesgue measure zero set of R™. By Theorem
7.13 [21, pp. 106] there is a 2-dimensional subspace P of R™ such that,every translate
of P intersects F in a set of k-dimensional measure zere. Thus F'is an at most 2-

dimensionally shy set and hence Fis an at most 2-dimensionally shy set. | |

Theorem 3.2.4 Any shy set in R? space can be decomposed into two at most 1-

dimensionally shy sets.

Proof. By Theorem 2.7.5. a set A C R? is shv iff 4 is 2-dimensional Lebesgue
measure zero. Let A4 be Lebesgue measure zero in R% Then A (A) = 0 and by
Fubini's theorem we have a Lebesgue one-dimensional measure zero set N C R such
that for all ry € R\ VD A (AL,) = 0 where Ay, 1s the section of A at r; (the second
variable). Let ¢

B={(r1.1;) € A: 1, &NV}
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and

(‘ = {(Il.Iz) € ‘4':‘I2€ A\}

Then A = BUC. We shall show that B and (" are at most l-dimensional shy sets.

For the set B we choose ¢; = (1.0). Thus for any & (c1.c2) € R,
{ay € R: c+ a6, € B} = A,

1s 1-dimensional Lebesgue measure zero when c; € R\ V. and is emptyv if ¢; € V.
Anyway it is I-dimensional Lebesgue measure zero. Thus the set B is an at most 1-
dimensionally shy set. For the set (" choose ¢ = (0.1). then for anv ¢ = (¢y.¢,) € R?
the set {a € R: ¢+ ac € ('} is one-dimensional Lebesgue measure zero. Thus the

set (7 1s an at most l-dimensionally shy set. Hence the result follows. |

PROBLEM 7 [n R" (n > 2). can any 2-dimensionally shy set be decomposed into

tico at most 1-dimensionally shy sets?

PROBLEM 8 [¢t X bt an infinite dimensional separable Banach space. Does there

crist a Borel shy set S T X that is not an n-dimensionally shy set for any n?

3.3 Elementary linear arguments

In many simple situations a crude linear argument suffices to show a set is shy. We
illustrate with some elementary examples, mostly from the literature.

Certainly a proper subspace of a Banach space X is shy if it is universally measur-
able. In fact if S C X is a proper subspace then every element r of X'\ S isttransverse
to S.

Choose r ¢ 5. Forany y € S.let G ={A e R: y+Ar e S}. Then(iis a

singleton. If not. there exist A\; and A\,. A\| # Ay suchthat y+\r € Sandy+A,r € 5.
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Since S is a linear space, then
2

—y+Nx)—(y+ \\r)j=r € S. . )
Ay — A

This contradicts the choice of r. The result follows.

Example 3.3.1 The set S of differentiable functions is a proper linear subspace of
C'[0.1]. S. Mazurkiewicz in [10] showed that the set S is not Borel. but is co-analytic

(see also [11, pp. 503]). So the set S is universally measurable and therefore is shy.

Note, however. that in general a linear subspace need not be a Borel set nor need

it be universally measurable. ' The following example is from Christensen [12].

Example 3.3.2 Let £ be a separable Fréchet space and let a,. ¢ € . be an algebraic
basis of F and b, the coefficient functionals. Then b7'(0) are proper linear subspaces
of E. If b7'(0) are universally measurable for some i’s, these sets are shy sets. In
fact. however. the subspaces b~'(0) are universally medsurable for at most finitely
many ¢ € I. If not. there is a sequence {i,} of I such that each b:}l(O) 1s universally
measurable. Set [, = szn b,_jl(()). Then L, is a universallv measurable proper linear
subspace. So L, 1s shy. Since a,, ¢ € [ is an‘algebraic basis of E, so F 1s the union

of L,’s and hence E is shy. which is impossible.

For many examples of sets S that have a probe r. the set
’ {teR: tr+yeS)

that we are required to show to be Lebesgue measure zero for every y € X is.1n fact,
. . . , E7 . . S

a singleton or empty set. Thus every line in the«direction r intersects S in at most one

point. In many of the simplest applications this is the case and the measure-theoretic

arguments reduce to simple computations.

"Assuming Martin's axiom, Talagrand in [53] showed every separable infinite-dimensional Banach
space has a hyperplane that is universally of measure zero without being closed.
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- In any example that illustrates a shy set it is of intrinsic interest to know that the
set 1s not merely shy, but has very small intersections with all lines in some particular

direction.

Example 3.3.3 As an example (from [27, pp. 226]) consider the set S of all con:
vergent series in the space ¢, for 1 < p < oc. This 1s a closed. proper subspace
and so, trivially. 1t is shyv. For a specific transverse element we can take the element

r={1,1/2.1/3....}. It belongs to £, but diverges. The set S intersects each line in

the direction r in at most one element.
A

The same argument applies to a hyperplane provided it is universally measurable.
[t 1s not alwayvs the case that hyperplanes are universally measurable except in concrete

-~

examples as shown in Example 3.3.2.

Example 3.3.4 As anotherexample (from [27. pp. 226]) the set S of functions f in
L,[0.1] for which fol f(t)dt = 0. This is evidently a closed hyperplane in L,[0.1] and =

so. trivially, shy. For a specific transverse element take fo = 1. It is easy to see that

the set S intersects each line in the direction fy at most one element.

These same arguments do not need much linearity in the problem. For example if
S is a universally measurable propér subset of a Banach space X that satisfies

(1) 1 ~ € Sify.,y, €8,

(1) ty € S for Lebesgue a.e. t € Rify ¢ S,
then S must be shy in X. Indeed, let y & X'\ S and let

So={teR: r+tyecS}

>
for any r € X. If §is empty there is nothing to prove. If S is not empty, choose
ty € So. Then by (). (r+ty)~(xr+ty) = (t—t1)y € S only for a Lebesgue measure

zero set of numbers of t — t;. Thus A (Sp) = 0 and the set S is shy.
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Example 3.3.5 As a further example to illustrate simple methods of this type con-
: v

sider the Banach space ('[0.1] of continuous functions equipped with the supremum

norm. Let S denote the set of all continuous functions that are morotone on some

closed subinterval of [0.1]. Write, for any closed subinterval I C [0,1]. S(/) for the

continuous functions that are monotone on /. Then

S=Jsn

where the union is taken over the countable collection of all subintervals [ of [0.1]
with rational endpoints.

[t is easy to see that each S(7)1s closed and is shy. To see that it is closed we just
need note that the uniform limit of a Cauchy sequence bf monotonic and continuous
functions is also monotonic and continuous. So S([) is closed.

To see that S(1) 1s shy take any element g € ('{0.1] that is not a.e. differentiable

on I. Then g is transverse to S(/). In fact the.set
{teR: [+1lgeSE)}

can contain at most one point for any f € ('[0.1]. If not. there are distinct ¢,.{; € R
such that f+t,g. f+1t,g € S(I). Then f +tig. [+ 19 € 5(1) are a.e differentiable
on [ and sois (f +t1g) — (f+tag) = ({1 —tz2)g on I. This contradicts the choice of g¢.

Consequently we have shown that S is sh‘y. immdeed that S is an s-null set in the
sense of Definition 2.3.2. In particular. we can express this observation in the following

language:

Theorem 3.3.6 The set of functions in C[0,1] that are monotone in no interval

forms a prevalent set.

For more theorems of this type in the function space ("[a.b] see Sections 4.2 and

4.3
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n
In a Bangch space. a universally measurable convex set that does not contain a
line segment in some direction is easily seen to be shy. If a convex set S does not
contain a line segment in some direction r, then § intersects the line in at most one
point. So the element r is transverse to S and S is shy. ‘:fhus convex sets that do not
span the whole Spa‘ce are. in general. shy. It is of someXnterest to find out whether

closed, convex spanning sets in certain spaces are non-shy. This will be discussed

further in Section 3.3. ]

3.4 Compact sets

A number of arguments can be used to show that a compact {or a ¢-compact) subset of
an infinite dimensional Banach space must be shy. See. for example, the original article
[12] of Christensen where the argument uses the fact that A — A is a neighborhood
of the zero element for any universally measurable pon-shy set AA. If a compact set
A were non-shy then the set A — A is eompact and also a neighborhood of the zero

element. This is impossible in an infinite dimensional Banach space.

Example 3.4.1 For an elementary illustration of a concrete example. here is how to
show that the compact Hilbert cube in ¢, is shy:
We use

[ ={zet,: |r,] <n'}

to denote the compact Hilbert cube in €;. Choose y = {n=%3}. Then y € £, \'[**. It

1s easy to see that yis transverse to [ ™. So I™ is shv in (;.

Hunt et al. gave an interesting proof in {27, pp. 225] that use$ a category argument
to exhibit that every compact set in an infinite dimensional Banach space admits a
transverse element. indeed that the set of transverse elements is residual. This is

of some general interest since it allows us to obtain transverse elements without the
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necessity to construct one in advance. This is al-so of some intrinsic interest since we
see that “most”™ directions in the space are transverse to the set. In the following
we give a similar but simpler proof suggested by J. Borwein to show evér_v compact
set admits a transverse element, an argument which also show that the transverse

elements are residual.

Theorem 3.4.2 4 compact subset of an infinite dimensional Banach space is shy.

Proof. Let 1" be an infinite dimensional Banach space and & C 1" be a compact

set. Then, if the linear span of S is denoted by SpanS., we have
e
SpanS = U S,
n=1

where

Se={ar+3y: a 3 e [—n.n]. r.ye S}

Since S is compact, all sets S, are compact. Thus SpanS is o-compact and first
category. Hence 17\ SpanS # o. Therefore S is transverse to every element r €

V' \ SpanS since the line Ar intersects S in at most one element. Thus S is shy. B

Corollary 3.4.3 4 o-compact set in an infinite dimensional Banach space 1s s-null.

The above method neither holds for Gaussian null sets nor for Aronszajn null
sets since the fact that there is a Borel probability measure is transverse to the one-
dimensional probe of the set 17\ S does not guarantee u(S) = 0 for all non-degenerate
Gaussian measures g, In fact there exist compact sets which are not Gaussian null
sets in Phelps sense (see Example 2.3.3). From the fact that a translate of a non-
degenerate Gaussian measure is also a non-degenerate Gaussian measure we know

that a Gaussian null set in Phelps sense is also a shy set. Thus the class of shy sets is

wider than the class of Gaussian null sets in Phelps sense. Recall that an Aronszajn
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null set is also a Gaussian null set in Phelps sense. Thus the class of shy sets is also
wider than the class of Aronszajn null sets.

In non-locally compact groups with invariant metrics compact sets are shy {see
[13]). However we do not know whether the invariant metrics are needed for this.

statement.
' -

PROBLEM 9 [n a general non-locally compact Polish group without invariant met-

rics, are compact sets shy?

. In the following we will give an interesting method to show that certain sets in an
ifinite dimensional Ban‘ach space are shy. The following théorvm and lemma that
we will display were introduced by Aronszajn [2] for separable Banach spaces. In fact
theyv remain valid for non-separable Banach spaces. We reproduce the theorem from
[16. pp. 219] (see [16] for a proof). and give a simpler proof. suggested by J. Borwein,
of the lemma.

Theorem 3.4.4 (Josefson-Nissenzweig) Let X be an infinite dimensional Banach-

space. Then there is a sequence {u,} © X7, |unl] = 1 such that {u,} converges to 0

in the- weak™-topology.

Lemma 3.4.5 Let X be a Banach space. Suppose u,, arc elements of X* with norm 1
and u, — 0 in weak™-topology. while S is a bounded set such that u,(r) — 0 uniformly

forr € S. Then there is an element a € X transverse to S, indeed

{teR: r+ta€ S}

contains at most onc pownt for every r € X.

Proof. Since u, — 0 uniformlyon S.s0 63(u,) = sup,csua(r) — 0. Thus 675 (u,) —
0 where 4 = acoS 1s the convex hull of S. We claim that SpanS C |J;Z,(nd) # X

where SpanS is the linear span of S. We need only show that |J;_,(nA4) # X. If
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¥ . X .
U._,(n4) = X then by the Baire category theorem. the interior of the set A is not

empty and hence 83(u,) - 0. Thus thefe exists an element @ € X \ Span$ that is

transverse to the set S. [ ]

From Theorem 3.4.4 and Lemma 3.4.5 we can show that certain sets in an infinite

dimensional Banach space are shy. We write this as a theorem as follows.

Theorem 3.4.6 Let X be an infinite dimensional Banach space. and {u,} C X~ be
a sequence as in Theorem 3.4.4. If a set S8 1s universally measurable and bounded
such that u,(r) — 0 uniformly for r € S. Then the set @coS is shy where @coS is the

conver hull of S,

Using the above theoremn we can obtain Theorem 3.4.2 immediately. Let & be

a compact set in an infinite dimensional Banach space X. Then 5 1s bounded and

closed. By Theorem 3.4.4 there is a sequence {u,} € X", ||u,|l = 1 such that w, — 0
weakly. Standard arguments show that the bounded sequence {u,} converges to 0
weakly implies that w,(z) — 0 uniformly for £ € 5. From the above theorem the set

S s shy.

3.5 Measure-theoretic arguments

To show that a set is non-shy “requires™ showing that there are no transverse elements,
indeed that there are no transverse probability measures at all.
The following simple fact from the theory of Borel measures on Polish spaces is

very useful in showing a set to be non-shy. See Theorem 2.12.2 for a proof.
‘ g
Every probability measure defined on the Borel subsets of a Polish space

assiyns positive measure to some compact set.

This then gives an immediate proof of the following:
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Lemma 3.5.1 A set S in a separable Banach space X that contains a translate of

every compact subset is non-shy.

2

Proof. Suppose that the set S were shy then there is a Borel probability measure
i that is transverse to S. That is, (S + r) = 0 for each r € X. According to the
above basic fact and assumption there are a compact set A~ and r € X such that
p(AK)>0and AN+ CS. Then AN CS—rand 0 < u(AN) < pu(S—1r)=0. Thisis a

contradiction. [ |

For example (from [6]). the positive:cone (" of the space ¢y of null sequences is
non-shy. (It is clear that ' is nowhere dense in ¢y.) In fact. every compe\xct set K 1n
co 18 contained in a set {y € ¢g 1 |yn| < 1., n=1.2....} for a_certain T € co. So
KN +r C (. By Lemma 3.5.1. the positive cone C is non-shy. Borwein and Fitzpatrick
[7] use Lemma 3.5.1 along with a characterization of reflexive separable Banach spaces

i

to justify the following.

Theorem 3.5.2 In any non-reflexive separablc Banach space there is a nowhere

dense closed conver subset that is not shy.

Proof. A separable Banach space E is not reflexive if and onlv if there exists a
closed convex subset (" of £ with empty interior that contains some translate of each

compact set in E (see [37]). Thus, the result follows from the last lemma. ]

‘

In contrast to the above theorem Borwein and Moors [3] and Matsouskova in [36]
showed that in any super-reflexive space a nowhere dense closed convex set is shy.

Here is another example. from Dougherty {13]. of an argument that exploits this
same measure-theoretic fact. Let R denote the space of all sequences of real numbers

furnished with the metric

C

! ]Ix_yxl
p(I‘y):ZEI‘{"I‘T;—yx‘

1=1



-1

e

CHAPTER 3. PROBES

This is an Abelian Polish group. complete in this metric but n-on-locally compact. For

any A C N, let
S(A)={s eRY: s(:n) <0fornég Aand s(n)>0forne A},
We reproduce the following lemma from [15™and give a proof.

Lemma 3.5.3 For any A C N, the set S(A) contains a translate of every compact

subset of RY.
\

Proof. For anv compact set (" the set (', = {r(z} € R: r € ("} is a bounded closed
setinRor=1.2..... Let (a,.b,) be intervals such that ¢, C (a,.b,). We define t € R
by '
. b+ 1. ifre Al
t(e) = N

—la,| = 1. if 1 ¢ A.
Then it is easy to see that (' + ¢ C S(A). 7 m
From this lemma we conclude immediately that the set S(A) in the Abelian Polish

group R cannot be shy.

Theorem 3.5.4 For any A C N the set S(A) s a Borel set that is not shy in R™.

Proof. From Lemma 3.5.1 and Lemma 3.5.3 we need only-show that the set 5(A)
is a Borel set. In RY any sequence s, — s implies s(i) — s(i) for each : € N. Thus
for each pair of insegers (i.n). the sets

: 1 . 1
An = {s eRY: s(4) > —} and B,, = {s eRY: s(1) < ——}

n n
are closed sets. Note that

MM:(QUAJQ(HURJ.

teA n €4 n

Thus S(A) is a Borel set. ‘ ]
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1

Theorem 3.5.4 exhibits an interesting feature of shy sets that is not shared by
the Lebesgue measure zero sets in a finite dimensional space. The collection {S(A4) :
A C Nj forms a family of pairwise disjoint non-shy sets that is uncountable. See
Section 2.138 for a further discussion of this. The search for families of uncountably
many pairwise disjoint nou-shy sets in non- Abelian Polish groups is our primary goal

in Chapter 3.
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Chapter 4

Prevalent properties in some.

function spaces

4.1 fntrodtlction

During the middle of nineteen century, many famous mathematicians tried to prove
the differentiability of continuous functions. Frustrated, some of them gave examples
of continuous functions that are not differentiable on a dense set or further on the set
of irrationals. It was'I\'. Weierstrass who first constructed a convincing example of a
continuous function that has no point of diffeMntiability in 1875. After Weierstrass
.
many cxamples of continuous nowhere differentiable functions were discovered by
other mathematicians. In 1931 S. Banach and S. Mazurkiewicz separately gave similar
existence proofs by using the Baire Category theoremn in separate papers [3] and [10]
respectively. Since then Baire category arguments have been widely used to prove thg
existence of functions which are difficult to visualize. It isknow a common practice to
. ]

show that certain classes of functions are “typical” in spaces of functions by showing

that they form residual subsets in those spaces.

-1
—~1
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_ The same program can be carried out using the measur;?-theoretic notian of preva-
]C;II(TC’. rather than the topological notion of category. The earliest such result is prob-
ably that of N. Wiener [60] showing that the nowhere differentiable functions are full
measure in the space ("[0.1] of continuous functions z(¢) with z(0) :‘O in the sense
of the Wiener measure. In 1994 Hunt et al. (27] applied the notion of shy éets (re-
discovering the Haar zero sets of Christensen) to the same kind of pro})lonns. In this

chapter we will show that certain classes of functions in various function spaces are

prevalent. :

*

4.2 Continﬁous, nowhere differentiable functions

In this section we will sketch some of the ideas from the paper of Hunt [23]. Later

>~

sections in this chapter are devoted to similar problems in some specific function
N
spaces.

Let S denote tha Set of all continuous functions on [0.1] that are somewhere
differentiable. i.e., for which there is at least one point of differentiability. It is proved
in [28] that S is sfv in the space €'[0.1]. In fact the author does not address the
measurability issue but shows that S is contained in a shy Borel set. (The dofini‘tion
used in that paper for a shy set is exactly this. that an arbitrary set is shy if it is a
subset of a Borel shy set. Qur definition requires us to prove that the set 1s universally
measurable if not a Borel set.)

Let us show how to ch()gk that Sisuniversally measurable. A continuous function f
has a finite derivative at some point r € {0. 1] if and only if for every }')(;siti\'o iteger n

]

there 1s a positive integer m such that if 0 < [hy]. [hy} < 1 and r+h,. r+h, € [0.1]

then - : /

[ = e f k) )

| hy "~ hy

-1
<

n
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For each pair (n.m). let
E(n.m)={(f.r)€ C[0.1] x [0.1] : (%) holds }.

Then ('[0. 1]\ S is the projection into ('[0. 1] of (.2, UX_, E(n.m). Note that E(n.m)
is closed. So C'[0. 1]\ S is analyvtic {11] and therefore the set S is universally measurable
(see [11] { Furthermore. § is not Borel (see [33] and [39] for details).

We now turn to the method of proof that the set S of ‘somewh‘ere differentiable
functions is shy. As pointed out in [238] there is no element transverse to 5. 'I‘hm

the simplest of the methods is not available here. To see this. let ¢ be a c,(’yltmqous

function. For f(r) = —rg(r) and every A, f + Ag is differefitiable at r = \. Hence

a0 - o

there 1s no elemlent trapsverse to S. The reason here is that a linear combination of

nowhere differ',ontiable functions can be differentiable.

In [23] it is showr that there is a two-dimensional subspace of ('[0.1] that is

®

transverse to S. We sketch parts of the proof here. In 23] Hunt used two continuous

-

nowhere differentiable functions
) o xC
1 ok 1 ‘
= E —cos2"wr ¢ = E —
) B cos 2" mr and 5
k=1 k=1
Through complicated and elegant computations he showed that there exists a constant

¢ > 0 such that for any a. 4 € R and any closed interval I C [0, 1] with length ¢ < 1/2.

s
/0 1 32
max(ag + Jh) — min(ag + Jh) > cvoart 7
I I (loge)?
By using this result he showed that the set
(; = {(a.3) € R*: f+ ag+ 3his Lipschitz at some r € [071]} !

15 two-dimensional Lebesgue measure zero for any f € ('[0.1]. It is easy to show that
the set (7 is of tyvpe F, and that a function differentiable at a point r is Lipschitz at

r. So the set S is contained in (7. In [28] Hunt showed A,((/) = 0 as follows.
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Let N > 2 be an integer and split [0.1]into N closed intervals I of length ¢ = 1/.\.

Split (7 into {J; U;_, S, where
S.={la.J)e G: f+ag+ Jhisn-Lipschitz at some point r€ I}.

For any pair of point$ (ay.4,). (az.3;) € Sa. |fi(z) — filr)] < njr —r,| € ne on

denoting f, = f + a,g + 3,h. One checks that

mla.\'(fl - f3) — mlin(fl — fi) < ne. s

Therefore. by using the result we first mentioned above- we have

\/(01 —a) 4 (- A< ;—5(10% €)’.

Trivially the result follows.

Hunt’s methods show that the somewhere differentiable functions form a shy set
that 1s 2-dimensional in the language that we introduced in Section 3.2. [t would be
interesting to know if more can hesaid about this set. We leave this again as an open

problem.

PROBLEM 10 [s the set of somewhere differentiable functions in the space (10, 1]

s-null?

4.3 Prevalent properties in Cla. ]

To illustrate some of our methods we shall prove some of the simpler prevalence results

in the space ("[a.b] of continuous functions equipped with the supremum norm,
Theorem 4.3.1 Forc € [a.b] and C' € R, let
So={f e Clabl: fle)=C}.

Then S. is closed. nowhere dense and shy.
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N -~ . . v r
Proof. [t is easy to see that S, is closed and nowhere dense in C[a.b]. Take a

non-zero constant function ¢ = d # ('. Then

{Aelo.1]: f+Ag€ S}

K

can contain no more than one element for any f € C'la.b]. If not. there are A;. A, €
0.1]. A # A f4+ Mg e S.and [+ Mg € S Then fley + Md = fle)+ Ad. So
(A — A))d = 0 which contradicts d # 0. Therefore the one-dimensional Lebesgue
me%asu're 1s transverse to S, and S, 1s shy. . n

A continuous function is called nowhere monotonic on an interval [a.b] if it is not
monotonic on any subinterval of {a.b].

A continuous function is called nowhere monotonic fgj')f on an interval [a.b] if for
any ~ € R the function f(r)— ~r is not monotonic®n any subinterval of [a.b].

[t is well known (see, e.g.. [[1. pp. 161-164]) that nowhere monotonicity and being
nowhere monotonic type are typical properties in the space ('[a, b]. In this section we
will show directly that these two properties are also prevalent properties in ('[a.b].

The following theorem follows easily from the result of Hunt sketched in Section 1.2

The proof, here, 1s more elementary.

Theorem 4.3.2 The prevalent function f € C'la.b] s of nowhere monotonic type.

Proof. Given any interval I, let <
GUI)={f € Cla,b]: fisof monotonic type on I},
and let
' ) there —e.\’ists\a v € [=n,n] such that
(In(l): fE({D.l]
f — ~r is monotonic on [
Then

G(I) = UGH(I).

n=1
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We show that (7, (]) is a closed sct and.‘t herefore (7(I) is a Borel set. For any C'auchyv
sequence {f,} C (7,([) there exists a function f € ('[0.1] such that f, — f uniformly.
Then there exist 4, € {—n.n] such that f,(r)— 5,r%re monotonic on [. Then we can
choose a subsequence {+, } of {+,} such that 5,, — v € [=n.n]. It is easy to see that
f — ~x 1s monotonic on [. Thus G/,(I) is closed.

Now we show that (7,(])1s a shy set. Choose a function g € Cla. b that is nowhere

differentiable on /. For any f € Cla.b]. let
Gr,={AeR: f+Age G}

Then (7, is a singleton or empty set. If not there exist Ay A, € (7, ;. Ay # X,. Then

7

there exist % and 3 such that f+ A\jg — o0 and f + \,g — ~,r are monotonic on [.

Therefore
(f+ Mg =)= (f+ X0 —20)=(M = AJg+ (20—

1s differentiable almost everywhere on I. This contradicts our assumption that the
function ¢ 1s nowhere differentiable. Thus (7, is a singleton or empty set and hence
(i, (1) 1s a shy set. It follows that the set (v, (1) is a shy set.

Let {I;} be an enumeration of all intervals whose endpoints are rational numbers.

Then cach (/([;) 1s shy and the union 1s also shy. Hence the result follows. |

Corollary 4.3.3 The prevalent function f € Cla.b] @ nowhere monotonic.

Note that we have proved this earlier. As a corollary our methods actually show

more.

\A\C'orollary 4.3.4 The set of functions which are somewhere monotonic is s-null in

('la. b].
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4.4 Prevalent properties in 4. bDB'. bB!

Follpwing Bruckner [9]. Bruckner and Petruska [10] we use bA. 6DB'. bB' to denote
the spaces of bounded approximatelv continuous functions. bounded Darboux Baire
1 functions and bounded Baire ‘l functions defined on [0, 1] respectively, all of which
are equipped with supremum norms. All these spaces are Banach spaces and form
a strictly increasing system of closed subspaces (see [9]. [10]). In [10] it was shown
that for a given arbitrary Borel measure j on [0.1] the typical function in F =
bA. bDB'. or bB' is discontinuous i almost evervwhere. In this section we will show
that such typical properties in these three spaces are also prevalent properties for any

o-finite Borel measure.

Theorem 4.4.1 let ;i be a o-finite Borel measurc on [0.1]. The prevalent function
in F =bA. bDB'. or bB' is discontinuous ju almost everywhere on [0.1].

Proof. let
={f e F: fiscontinnous on a sct F\. u(£y) > 0}.
We show first that the set S 1s a Borel set. Note <
N = Lj‘iL
n=1 3
where

and (7 1s the set of continuity points of f. Let {f,.} be a Cauchy sequence i ..
then f,, — f € F. Let
p ~
- U
N=lm=VN
Then ¢ C (7. Note
1

N—x m— H

p(Cy = lm g U Cen) > iminfu(Cy, ) 2
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So f € A%. Thus Ai is closed and the set S is a Borel set.
We now show that the set Sis a shy set. It is well known that there 1s a function
g € F which is discontinuous g almost e\.'er'ywhere on [0.1]. See [10. pp. 331. T}g*orem
2.1]. We will use this function g as a probe. For any given function f € F, let
S,={AeR: f+Age S}
We claim that S, is Lebesgue measure zero. For distinct A Ay € S, if u(Fy, 0V Fy,) >
0. then . P
(f+Aig) = (f + Aag) = (M = M)y
would be continuous on Fy, N Fy,. This contradicts the choice of the function g. Thus
for dis’tinct Ay and A, the corresponding sets F\, and F\, satisfv u(F\,OF\,) = 0° Since
pois o-finite on [0.1] then [0.1] = |J .2, X, where p(N)) < > and X\ N X, =0, 1 # ).
Let
S = {,\ €S, WFinX,) > —1—} .

n

Then S, is finite. If not. there exist countably manyv A, € S, such that

x = plF N Xy = (X 0 ([ F)) S p(Xa) <
=1 - 1=1

This is a contradiction. Hence S, is finite and S, = | J,- . _| Sy 15 at most countable.
Thus S, is Lebesgue measure zero and the result follows. = B
»

a ™

In the proof of Theorem 4.4.1 we did not use any special property.of functions in
bA. bDB'. bB' except that in all these classes there are functions that are discontin->
uous g almost everywhere on [0.1]. Thus we £an extend Theorem 1.4.1 in a general

form as follows (see [32] for a typical version). P

Theorem 4.4.2 Let yi be a o-finite Borel measure on [0.1]. Let F be a linear space
of bounded functions f : [0.1] — R with supremum metric. Suppose that there is a
function f € F that is discontinuous p almost everywhere on [0.1]. Then the prevalest

function in F is discontinuous u almost everywhere on [0.1].

§
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4.5 Prevalent properties in Dla.b]

In this section we use D]a.b] to denote the set of differentiable functions f whose

derivatives are bounded and f(a) = 0 and furnished with the metric (for f.g € Dla. b})

p(f.g) = sup |f'(x)—g¢'(z)]
refa.b)

Then Dia.b] is a Banach space. We study prevalent properties in this Banach space.

Theorem 4.5.1 Both the prevalent function and the typicalfunxction f € Dia.b] are

monotonic on some subinterval of [a. b].

Proof. Let
DZ = {f e Dlabl: f{r)=0o0n adenseset of [a.b]}.
Then DZ is a closed l\inear subspace of D[a.b]. In fact. let f.g € DZ. then the sets
{refab]: f(r) =0} and {r€a.b]: ¢'(r)=0}

are of tvpe (Go since f" and ¢’ are Baire 1 functions. But the intersection of two dense

3

sets of type (74 1s also dense. so

{refab: afllr)+a(c) =0} D {relab]: fllz)=0}n{rela.b]: ¢'(r) =0}

is dense for any ay.ay; € R Thus a|f + ayg € DZ. Similarly we can show DZ is
closed. Suppow {f.}is a Cauchy sequence in DZ such that f, — f umforml\ where
fe Dla.b]. A\gam since f,. are all Baire 1 functions. the sets {r € [a.b] : f/ =0}

are dense and of tvpe (< . So the set

Mirelab): fi(r)=0}C {eelab]: fr)=0)

ix dense and of tvpe (s, Thus f € DZ and hence DZ is a closed linear space. It
is easy to sec that DZ is a proper subspace of D[a.b]. Ior example the function

r—a€ Dfa, bl but f¢& DZ. Thus from the results in Section 3.3 DZ is shy.
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For any differentiable. nowhere monotonic function f. the derivative f"1s a Baire

=
I function and so the set {r € [a.b] : f'(r) = 0} is a G5 set. Further since f 1§

nowhere monotonic then {r € [a.b]: f/'(r) =0} is dense in [a.b]. Therefore the set .

G ={f € Dla.b]: f is nowhere monotonic on [a.b]}

is a subset of DZ. In fact the set (i is of tyvpe (/s in Dla.b]. Let [ be an open

subinterval of [a, b]. and
F(I)={f € D[a.b]: f is monotonic on [},

For anv f € F(I). f'(r) > 0 on the entire [ or f'(r) < 0 on the entire [o So due to
the metric defined on D[a.b] it is easy to see that F([)is a closed set. Hence the set
of functions in D[a.b] that are somewhere monotonic is the union of all those F/{[)

over intervals [ with rational endpoints. So it is of tvpe [, and therefore (7 is of type

(vs in D[a.b]. The result follows. - B

2

YWe know that, for anv o-finite Borel measure p. the derivative of the typical
‘ 4 .
function ¥ € D{a.b] is discontinuous j almost everywhere on [a.b] (see¢ [10]). By

applving Theorem 1.4.2 we obtain the following theorem. S
Theorem 4.5.2 Let ji be a o-finite Borel measure on [a.b]. Then the derivative of
the prevalent function f € Dla.b} is discontinuous p almost everyuwhere on [a.b).

If we do not use the fact that for any o-finite Borel measure p there exists a
function g € D[a.b] whose derivative is discontinuous g almost everywhere, we can

easily obtain a simpler result as follows.

Theorem 4.5.3 ;—hf derivative of the prevalent function f € D{a.b] is discontinuous

on a dense set of [a.b].
Proof. Let [ be a subinterval of [a.b] and let

Al = {f € Dla.b): [f'is continuous on 1}
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Then from the definition of the metric on Dla,b] it is easy to see that A([) is closed.
Also for any f,g € A(]) and a.3 € R. af + Jg € A(l). So A(I) is a closed linear

subspace of D{a.b]. We will see that A([) is also proper in D[a.b]. Take ¢ € I. The

function

(r—c)sint ifr#c 1
flz) = _

0 fr=c A
has as its derivative the function
) 2(r—c)sin = —cos = ifr#c
fi(r) = ; -

0 fr=c

which is discontinuous at r = ¢. Thus A(]) is a closed linear proper subspace of D[a.b].
So A(I) is shy. The set S of functions in Dla.b] whose derivatives arc continuous on
some subinterval is the union of the A(7) taken over all subintervals [ with rational

endpoints. Hence the set S is shy (as a countable union) and the theorem follows.

4.6 Prevalent properties in BSCla.b]

The space BS('[a.b] of bounded symmetrically continuous functions equipped with
_the supremum norm is a complete space (see [35]). From [50] we know that the set
of functions f € BSC'[a.b], which have a c-dense sets of points of discontinuity, is
residual. In this section we show that such a set is also prevalent. Here we say that
a set is c-dense in a metric space (X p) il it has continuum many points in C\%}‘}:
non-empty open set. | -

In [33] Pavel Kostyrko showed the following theorem.

Theorem 4.6.1 Let (X, p) be a metric space. Let F be a linear space of bounded
functions f : X — R furnished with the supremum norm || f|| = sup,cx{|f(z)]}. Sup-
pose that in I there erists a function h >s‘uch that its set D(h) of points of discontinuity

g

"
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1s uncountable. Then
G={feF: D(f)is uncountable}
‘1’5 an open residual set in (F.d). d{(f.q) = |If — gl

By modifving the methods in [50] we can get a stronger result in separable metric

spaces.

Theorem 4.6.2 Let (X.p) be a separable metric space. Let F be a complete metrie
lincar space of bounded functioms f: X — %Rfurnz'shfri with supremum norm || fl] =
sup.ex {1f(2)|}. Suppose that there is a fuh&'ion h such that its set D(h) of points of

discontinuity 1s c-dense in (X.p). Then

G={fe€F: D(f)isc-dense}

-

‘W

s a dense residual Gooset in (F.d), where d(f.g) =1f —gli-
Proof. Given a non-empty set O, we can show that
AO)={f € F: D(f)nO is of power ¢}

is a dense open set by using the methods in [50]. In fact. let {fi} C '\ A(O] be'a
convergent sequence. Then there is a function f € F such that f, — f uniformly.
Let ¢, denote the set D( f,)NO. Then €, is at most countable and so the qnion U, €n
is at most countable. We know that f is continuous at each point r € O\ |J,_, €.
so f € F\ A(O). Hence F\ A(O) is closed and A{Q) is open. ‘

Now we show that A(O) is dense in F. For every ball B(f.¢) C F.if f € A{O)
there is nothing to prove. We assume f € F\ A(O). then f has at most \countably
many points of discontinuity in O. From the assumption there is a function A € £
such that h has a c-dense set of points of discontinuity in O. Let M be a constant

-~ such that [A(zr)] < M for all r € X and set



-
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1 % . -
Then g € F is discontinuous in continuum many points of O and

(Hg.f)::(l(f )‘[h f) :<J(377h o)

Thus ¢ € AO)(B(f.¢) and hence A(O) is dense.

iLot {.r,})bo a dense countable subset of X'. then

x

G:ﬂﬂxm(/m>
=1 m=1 .
1s a dense (v set .where B(z,.1/m) is the open ball centered at &, and with radius
1/m. Thus (i 1s a dense residual GG set'in F. ! u

Corollary 4.6.3 Yhf typical fzuzrtmns in Ria.bl. the space of h’z(mmm lllffjlllblf
functions furnished with the supremum norm. have c-dense sets of pom[\ of (lzw()nf/—

nuity.
- 3

Proof. The set of points of discontinuity of anv bounded svmmetrically continuous
function is Lebesgne 11105311r0 zero [55. pp. 27, Theorem 231 Thus=ueh a function
15 Riemann integrable by the well known fact that a bounded L(*b‘(‘sgél10211/1(‘;1511ra})lv
function is Riemann integrable iff its set of points of discontinuity is Lebesgue measure
zero (1] Tran in [57] has constructed a symmetrically continuous function whose set
of points of discontinuity is c-dense. Hence the result follows. |

The following theorem gi\"(‘s a similar form of Theorem 1.6.2 in the sense of preva-

lence.

Theorem 4.6.4 Lei (X.p) be a separable metric space, pr be a o-finite Borel measure
that 15 non-zero on cvery open set in (X, p). Let Fobe a complete metrie linear
space of bounded functions f : X — R furnished with the supremuwm norm || fli =
sup,e v {1f(2)]}. Suppose that in I there erists a function h such that its set of points
of discontinuity s c-dense in (X.p). Then the prevalent function f € F has a c-dense

set of points of discontinuity.
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Proof. Let

G = {f € Fu D(f) is c-dense in X'}
By Theorem 4.6.2 the set (¢ and its corhiplement are Borel sets. We need only show

that for every f € F the following set

. f + Ah is discontinuous at most countably martv
S=¢(ANeER: ,
points in some non-enipty open set Or C (X, p)

1s a Lebesgue measure zero set. For every A € § there exists a non-empty open set
O, C (\X.p) such that [+ Ah is discontinuaus at most countably many points in O,.
If there are two distinct /\1 and A\, such that Oy, NOy,) > 0. then both f + \h
and f+ A\ A have at most countably many points of discontinuity in the non-empty
open set Oy, WO, Therefore (A} — A )k has at most countably many points of
discontinuity on such non-empty open set. This contradicts the property of function
h. Hence for distinct A} and A, their corresponding non-empty open sets Oy, and
Oy, satisfy (O 0O = 0 Since pis o-finite on (X.p) then X' = ;" X .-where

2

(X)) <ocand N\NX, =0, 1 # ). Let ' '

: B
Sim = {/\ €S O X, > —}

2!

Then S, 18 finite. If not. there exist countably many A, in S, such that

~ ™
=) O NN = | X, AU ) i) <=
1=1 =1
This 1s a contradiction. Thus S, 1s finite and S = U”\m:l S 1s at most countable,

So the set S s a Lebesgue measure zero set. The span of h is an one-dimensional

probe for the set (v and the result follows. [ |

Corollary 4.6.5 The prevalent function f € BSC,la.b]. the space of bounded 1i-th

symmetrically continuous functions furnished with the supremum norm. has a c-dense

set of points of discontinuity. ’

»
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‘Proof.  The space BSC,[a.b] is a complete metric space (see [33]). By Tran's
results [57] there exist functions h; and h; in BSC)[a.b] and BSC,{a. b] respectively
such that h, and h; have c-dense sets of points of discontinuity on [a.b]. Also note
that BSCy{a.bl = BSC[a.b] € BSCqk_1[a.b] and BSCyla.b] C BSCyila.b] (see [33]

for details). Thus the result follows from Theorem 4.6.4. [ ]

Applying Theorem 1.6.4 and Tran's results [37] we obtain immediately a prevalent
property in the space R[a.b]. which is also a tvpical property in Ra.b] as shown in

Corollary 4.6.3.

N

Corollary 4.6.6 The prevalent function f € Rla.b] has a c-dense set of points of

discontinuity.

In the following theorem we display another prevalent property in the space
BSCla.bl. ‘

For X € R a function [ : X — R is called countably continuous if there is a
countable cover {X, : n € N} of X (by arbitrary sets) such that Cd("h restriction
fLX 18 continuous.

By constructing an example of a non-countably continuous function Krzysztof
Ciesielski [15] answered a question of Lee Larson: whether every svmmetrically con-
tinuous function is coun‘tabl_\' continuous. We 'will show that non-countable continuity

is both a typical property and a prevalent property in the space BSC'[a.b].

Theorem 4.6.7 [et ['= {f € BSCla.b]: f is countably continuous}. Fhen Fis a

- closed. nowhere dense, linear subspace of BSC'[a.b].

Proof. First we show that F is a linear space. For f,. f; € F..there are countable

covers {X!: n € N} and {X?: n € N} of [a.b] such that the restrictions f|\X] are

~ -
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continuous. It is easy to see that

[a.b] C [ (X n X7,

1]

So {X!N.X?: i j € N} isa countable cover of [a.b]. Also the restrictions fI.X! N X7

. are continuous. Thus for any a.J € R.af, + 3f, € F.

We now show that F is closed. Let {f,} C F be a convergent sequence. Then
thereis a function f € BSC'[a.b]such that f, — f uniformly. For each f, there exists
a countable cover { X'} of {a.b] such that f,|.X is continuous. Since [a.b] C |J, X\

SO . L
ol (YU X0 = U X0
n=l 1=1 n=1
Note that for any m the restriction f,.|(),_, X is continuous. Thus the restriction
fIN.—, X is continuous since f is the uniform limit of f,. Therefore f € F and F
is closed.

We now show that F'is nowhere dense in BSC[a.b]. For any ball B(f.¢).if f & F
there 1s nothing to prove. If f € F then f is countably continuous. Choose a function
g € BSC[a.b] that is not countably continuous (see Ciesielski's construction in [15]).
Then f+(g/M)e/2 € B(f.¢) where M = sup ¢, 4 lg(x)]. Obviously. f + (g/M)e/2
15 also not countably continuous. If not, f + (g/M)e/2 — f = (g/M)e/2 is countably

continuous since £ 1s linear. Since F s closed, it 1s nowhere dense. The result follows.

Corollary 4.6.8 Both the prevalent function f € BSCla bl and the typical function

are not countably continuous.

Proof. In [13] Krzysztof Ciesielski constructed a function f € BS(C'[a. b) that is not
countably continuous. Thus the set F' in Theorem 1.6.7 is a closed. nowhere dense,

proper and linear subspace of BS('[a.b]. Therefore the result follows. |
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4.7  Multiplicatively shy sets in C[O 1]

In the space ("[0. 1] of continubus functions on [0. 1] there is another algebraic opera-
tion of importane¢ — multiplication. ('[0.1} is a Banach algebra with multiplication
fg of elements/fgﬁ € ('[0.1] defined in the pointwise sense. [nder this operation
('[0.1} is a Polish semigroup with unit. (The unit is the function f(r) = 1.) This
allows for two distinct notions of shy sets. ‘

Let S C (’[0.1] be universally measurable. Then S is said to be an additively shy

setaf there 1s a Borel probability measure i so that
S+ f)=0 (VfeC0.1]).

Also S s said to be a multiplicatively shy set if there 1s a Borel probability measure

containing the unit element in its support so that
- oulfSy =20 (vf = C[0.1]).
In this section we propose to mvestigate this definition rather brieflv. The ideas

arise from purely formal considerations and may or may not be useful in applications.

Theorem 4.7.1 Let M denote the functions in Cl0.1] that are somewhere mono-
tonie. Then M s both additively shy and multiplicatively shy.

Proof. We have already showed that M is additively shy (see Example 3.3.5).
We now show that M is multiplicatively shy. For [ C {0.1] we use M([I) to denote
the set of functions 1 €'[0. 1] that are monotonic on I. Take a function g nowhere

differentiable with 0 < g(r) < 1. Write

Define a Borel probability measure p by

w(X) = M({tel0.1]: F(t

m
-
——
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’

Then the support of ;i contains the unit element f(r) = 1. In fact. for every ball
B(l.¢). there exist 0 < & < 1 and 0 < < | such that g{z) > ¢ for all r € [0.1] and
l —e<é"<1forallt>n Thus u(B(l.e)) >1—n>0and hence 1| € supppu. For

any f € ('[0.1]. consider the set
T={tel0.1]: F(t)e fM(I)}.

We claim that T contains at most one element. In fact, if not. there are ty.t, €

(0.1]. ¢, <ty and my.my, € M(I) such that

glr)* = fm, and g(r)* = fimn,.

Thus

¢t m
g{r) " =
1

This is impossible since the left side of the equality is nowhere differentiable on [ but
the right side is almost differentiable on I. Thus A\(T) = 0 and M([]) is shy. Note
M= M
I
where the union is taken over all subintervals of [0, 1] with rational endpoints. There-

fore M is multiplicatively shy. n

Theorem 4.7.2 [et 7 be the set of continuous functions on {0, 1] with at least one

zero. Then Z is not additively shy. but is multiplicatively shy in (']0.1].

Proof. It iseasy tosee that Z is closed. In fact, for anv Cauchy sequence {f,} © 7
there exists a function f € ([0, 1] such that f, — f uniformly. For each n. there exists
Iy € [0.1] such that fu(r,) = 0. Thus there exists a subsequence r, — 1y € [0.1].
Let ) — ocin f, (r, ) = 0 we have f(rg) = 0. Therefore f € Z and Z is closed. Now

we show the assertion in two steps.
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(i). Write F 1 [1.2] — C[0.1] by F(t) = . Then for any f € C[0.1].

{te]l.2]: F(t‘)é fZ} = o.

So we can construct a Borel probability measure p with support contaiuing the unit
b\ 9 “\‘/-
(X)) = MN({te[l.2]: F(t)e X}).
Obviously u 1s transverse to the set Z. Thus Z is multiplicatively shy.
(ii). We show that Z is not additively shyv. Suppose Z were additively shvi® Note

that every translation of Z is also additivelv shy. and

('{@.1]:U(Z+r)

r€l

where @ is the set of rational numbersin R. That is. ({0, 1] is the countable union of
countablv many additively shy sets. This is a contradiction. Thus Z is not additively
shyv. ! |

Both the set Z in the above Theorem and ('[0.1]\ Z are upper density 1 under
the additive operation (see Section 2.15 for the definition of upper density 1), In fact.
v : S
for every ¢ > 0 and every H(f‘rcl probability measure g, there exists a compact set
(N C C[0.1) such that p{A) > 1 — ¢ since pu s tight on ('[0.1]. Choose functions
g.h € ([O I} satisfving

g(0) =1 + max max |f(r)]. ¢(1) = -1 = max Lél[g\\k]\if(r)‘
ref
3

feR refo) fER
']

and

hir) =1 Ax max |
() T max max, | flr)]

on {0, 1}.}'1‘}1011
g+ N CZand h+ N CCl0.1]\ Z.
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Thus

KNCZ—-gand KN CC0.1]\Z - h.

Therefore both Z and ('[0. 1]\ Z are upper density 1.

Corollary 4.7.3 The set S. in Theorem §.35.1 (s also multiplicatively shy.

Proof. For anvfunction f € S.. f—( has at least one zero point. By Theorem 1.7.2
S.— (" is multiplicatively shy, an'd so is S.. | [

As we have seen. the non-invertible elements in the multiplicative semigroup ('[0. 1]
generate some curious results as regards multiplicatively shy sets. One. possibly
better. way to investigate these notions would be to restrict our attention to the set

C'*10. 1] of strictly positive valued functions in ('[0.1]..

Lemma 4.7.4 With the operation of multiplication ("7 0. 1] becomes an Abelian Pol-
tsh group.

Proof. We only need show that ([0, 1] is Pohsh. On it we impose an invariant
metric J so that

! !

l(f.q) = max |f{r) -
dif.q) rﬂgl{g\}”fu) QMHJQ[S.\MJ(I) glr)

Then the space ('*[0.1] is complete under the metric d. In fact, for any Cauchy
sequence {f,} € ("*[0.1] and a fixed point r € [0.1]. {f.(2)} and {1/f.(r)} are

("auchy sequences in the uniform metric. So the set {1/f.(r)} 1s bounded and there

exists a function f{r) > 0 such that

, ]
falr) — f(r) and IREL — el

Therefore a function f is generated such that f, — f aud 1/f, — 1/f pointwise,

Note {f.} 1s a Cauchy sequence under the metric d. So f, — faund 1/f, — 1/f

e
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~uniformly. Thus f is continuous and f € C*[0.1]. The separabili£y of C"*[0.1] is clear

and hence ("*{0.1] is Polish. . . [ |

The shy sets in the space ("*[0.1] céuld be called again multiplicatively shy sets.
Thgorem 4.7.5 A set S CCY0.1] is multiplicatively shy in C*[0. 1) f and onlg_ if
InS={lnf: feS}

is additively shy in C[0.1].

Proof. Note that the function f(r) = Inr is a one-one. continuous mapping from

('*10.1] onto C'[0.1] and satisties

In(g,9:) =1ng +Ing, (Vg1.g. € CF0. 1))

Thus by Theorem 2.10.2 the result follows. n
B

Corollary 4.7.6 The prevalent function f € C*[0.1] s nowhere diffe rentiable.

-

Proof. Let S denote the set of functions in ([0, 1] that are differentiable at some
point of [0.1] and let. ST denote the set of functions in"(’T{0. 1] that are differentiable
at some point of [0.1]. Then S = InS*. Since the set S is universally measurable and
shv in C'J0. 1] (see Section 1.2). by Theorem LTS0S s multiplicatively shy. |

Remark. We can construct a mapping £ :[0.1] x [0.1] = C*[0.1] by
F(ty ty) = [explgla))] explh(a))]™

where g(r) and h(r) are as in Section 1.2, The Borel probability measure g detined
by

() = ({0t e 1001 < [001] 2 Ftty e X,

with support containing the unit, is transverse to S+,

Similarly. we have the following results.
]
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Corollary 4.7.7 The prevalent function f € C'*[0.1] @~ nowhe re of monotonic type.

Corollary 4.7.8 The set exp Z is not multiplicatively shy in C{0.1] where 7 is as

in Theorem J.7.2.



Chapter 5

Space of automorphisms -~

7/

\
5.1 Introduction

The space H[0.1] is defined as the set of all homeomorphisms k@ [0.1] — [0.1] that fix
h(0) =90 and A(1) = 1. Note that these are exactly the strictly inereasing continuous
functions leaving the endpoints fixed. This is a subspace of the complete metric space
('[0.1]. We shall show that H[0.1] adimnits a complete nlwtr‘iv, There are discussions
on the tvpical properties of functions in the complete metric space H[0. 1] in [11]. for

example.

We can impose some algebraic structure on H[0.1] in several ways. The most
natural way is to consider the group operation. defined as composition of functions.
In this chapter we shall study some kinds of prevalence and give some examples of
non-shy sets by using the arguments we developed in Chapter 2 and Chapter 3.

For a different measure-theoretic study in t.h(‘ space H[0.1]. see Graf, Mauldin and
Williams [25] and [26]. We follow ideas of Mauldin and Ulam (see [33]). who have
defined a probability measure £ on H[0. 1] that is "natural” from a probabilistic point

of view. Roughly. to generate a homeomorphism h € H{0. 1] randomly with respect

99
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. =

20 the uniform distribution over (0. 1] one chooses h{l/2] frotm (0.1) at random with
respect to the uniform distribution. then oﬁe chooses h(1/1) from (0,hA(1/2)) and
hi3/4) from;(h(l/'Z). ) at random again with r;*spect to the uniform distribution.
This continues defining h on all dvadic rational numbers. With probabilitv 1. A is
strictlv increasing and uniformly continuous on dvadic rational numbers and so defines
a member h € H[0.1]. A measure P is defined on H[0. 1] to reflect these notions (see

(25] for details). In this chapter that sav the measure P means such a measure. [t

has the property that the expected values for A(t) is ¢. that is.

/ h(t)dP(h) = t.
H{01] '

A number of useful properties are shown in [25] and [26]. For example. P alniost
every b € H{0.1] touches the line y = r on the interval (0.1). Note. however. that
their study is of a different nature than our study here. The group structure plavs no
)

significant role in the notion of “prevalence” relative to the measure P.- The measure [
i~ determined in a probabilistic manner and inside or outside compositﬁn by elements
of H[0.1] changes that determination. Thus that study ean only be usétt8tcontrast
with our studyv here. In this chapter we use P to denote such a measure. We find
that some sets studied in [25] and [26] are very successful as examples to answer the
following open problems.

Jan Mycielski [41] asked whether. in a non-Abelian Pohish group. the existence of a
Borel probability measure left transverse to a set ¥ implies the set Y is shy. We shall
auswer this problem negatively in H[0. 1] by showing that every set {h € H{0.1] =
h'(0) = a} {a > 0) 1s left-and-right shy without bring shy.

Stawomir Solecki showed that a Polish group admitting an invariant metric satisfies
the countable chain condition if and only if this Polish group is locally compact. The
problem is left whether all non-locally compact. non-Abelian Polish groups or some of

them do no\ttsatisf}' the countable chain condition. H[G.1] is a non-locally compact.
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€

non-Abelian Polish group with no invariant mﬁitric that makes 1t Cor.nplete.' We shall
shag that this group does fiot éatiﬁf}' the countable chain Cond'ition. |

The organization of this chapter is as follows. In Section 5.2, we show that the
group H[O..l] Is a non—lokcall_\' compact. non-Abelian Polish group witgout invariant
metrics. In Section 3.3. 3.4, 5.5. 5.8, we use compact curves to construct Borel
probability measures to show that certain sets are shv. or left shv, or right shv. In
particular. we show that, in 7:(% 1]. there exists

. .

(1) a Borel probability measure i that is both left transverse and right transverse
to a Borel set X' but is not transverse to X',

(2) a Borel probabilitv measure p that is left transverse to a Borel set X but is
not right transverse to X

N

In Section 5.6. we give a characterization of compact sets in H{0. 1] and a compact
set argument to show that a set is non-shyv. or non-left shy, or non-right shy. In
Section 5.7. 5.9. 5.10. 5.11. 5.12. we use the compact. set a)rgunn,‘nt of Section 5.6 to
show that certain sets are non-shy. or non-left shv. or non-right shy. Specifically. we
show that some sets of the first category are non-shy. some left-and-right shy sets are
non-shyv. and some tvpical properties ate not prevalent. Finallv, in Section 5.13. using

¥

the results in Section 5.12. we show that the non-Abelian Polish group H{0. 1] does

not satisfy the countable chain condition. Ln Section 5.14. several open problems are
~
given. ‘

~N
5.2\25pace of automdrphisms ~

We s}>\_l first prove that H[0.1] is a Polish group that is neither Abelian nor locally,

compact.

bemma 5.2.1 The space H[0.1] is a non-locally compact. non-Abelian Polish group. -
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Proof. H[0.1] is a (ix set in a complete space (see [11. pp. 163]). Indeed. it is

topologically complete with respect to the metric.

olg.h) = plg.h)+plg”t A7,

which is topologically equivalent to the umform metric p._ (This is mentioned in
Oxtoby [43].) The composition of two functions in H[0. If will usually not commute.

L

For example. f(r) = sin (5r) and g(r) = r* € H[0. 1],

/

[

"

foglr)=sin <;12) but go f(r) = <5in 31)

So H{O.‘l} isv not Abelian.

Now we show that the Polish group H[0.1] is not locally compact. For any
function f € H0.1] and ¢ > 0 there exists a ¢ > 0 such that a(f.g) < ¢ for all
g € H0.11.7p(f.g) < & Thus we can find a closed rectangle contained in Bi f.¢) such
that its sides are parallel to axes and two of its vertices are on the graph of f. Let «
ahid b be r-coordinates of the two vertices with ¢ < b. Choose @ < ¢ < b and define
a sequence of functions {f,} for large n. Precisely. let f.(r) = f(r) when 0 <o < a:
folr)y = f(r) when b < r < I: then f, is the segment function connecting (a. f(a))
and (e, f(b)y = 1/n) when « < ¢ < ¢ and f, is the segment function connecting
(c. f(b) = 1/n) and (h’.f(h)) when ¢ < r <b. Then {f.} and all its subsequences fail
to converge in H[0.1]. and so H[0. 1] is not locally compact. It is clear that H[0.1] is
separable since it is a subspace of the space ('[0.1]. Thus H[0.1] is Polish. |

~ The sequence {f.} € B(f.¢) in the above ‘[.)‘mof also fails to converge in the
uniform metric. So the uniform metric p does not give a complete metric for the set
of all homeomorphisms. Also we can claim tﬂha‘t the mct'ri(: p is not invariant. In
fact. choose functions x. % sin(3r) € H[0. 1] and let f(r) = x* It is easy to see

that the function « — sin (5r) attains maximum at 6, on [0. 1] where 0 < 0, < 1 and
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cos (36y) = 2/7. By computation fy = 0.560664. Note

"

fl(r)y—~f <sin :)I) = <.1‘ — sin :)1) <I 4+ sin :)r) and 8, + sin %()0 ~ 1331512,

i (I.Sil] %I)( p <f(I)f <Sin %I)) :

Therefore the uniform metric p is not (left) invariant. It is. trivially, right invarant

since for any f.g.h € H{0.1]

J

max |f(h(r)) — g(h{r)) = max |fir)— glr].
0<r<t 0<r<l

thatis p(fcech.ogeh)y=plf.q)

One might ask whether a different equivalent metric on ‘H:0. 11 might be found
that is invariant. Our next theorem is cited in Christensen {127 where it 1s attributed
to Diendonné. who mentioned it in [I7] as an example but did not give a detailed.
proof. It follows from this theorem th@i there 1s no invariant metric on this space.

since 1t is known that an invariant metric on a Polish group mnst make 1t complete
. ,

{

[see 31 (2.3)]). :

Theorem 5.2.2 There i~ no left invariant metric on the Polish group H0. 1] that

makes the group. complete. o
Proof.  We know that every metrizable growp must have a left (right) mnvariant

metric (see [30. pp. 53]). For a Polish group. if it has an invariant metric then it is
complete in this metric (see [31.(2.3)]).
Suppose that HI0. 1] is complete in a left invariant metric d. Now consider a

sequence {u, }:

ERES
g
)
IN
[
I
~ |-

+
®
|
.
.
|
2o -
fA
H
IA
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“Then u, € H[0.1] and

T, 0 <.

~1
IN

3

u;l(.r):
Arr-1 4+l L<

*
IN

Since the uniformi metric p is topologically equivalent to the metric o as in Lemma 5.2.1.
by Theorem 9.24 in [11. pp. 388]. for every v € H:0.1] and ¢ > 0 there s a ¢ > 0 such
B p]’ i ~ t J )

that for all'v € H{[0. 1].

-

plu.v) < é&=durv)<eand dluv)<e = p('u.z') < €.

o
£

Stice pois right invariant.

plic, i, ) = pluu, .

Then there exists a N > 0 such that plutoe) < eafnom > N Thus df wou o) <
e if nom > Noand so {w, } is a Cauchy sequencein the d metric but it cannot converge
in the d metric. In fact.if {u,} converges to an element 1w € H{0. 1], then {u; '} would
converge to 1~ in the d metric since the d is left invariant. Thus again by Theorem
9.24 in [11. pp. 3338]. {u7'} would converge to ™" in p metric (uniformly). But {u;'}
converges pointwise to the function
. 0. ~r=20
uy (r) =

%. 0<r <l

~which is discontinuous at r = 0. This is a contradiction. Thus there is no left immvariant

metric on H{0.1] that makes it complete. The result follows. n

5.3 Some examples of prevalent properties in H[(. 1]

In this section we will give some prevalence results by considering the following prob-

ability measure. Define a mapping F' @ [1/2.1] — H{0.1] by F(t) = o' It is easy to
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a

see that [ is continuous. and so F([1/2.1]) is a compact set. As in Section 2,2 we

~define a probability measure u by
(X)) =2X0({t e [1/2.1]: F(t)ye X}). (5.1)

We use this example of a measure to show that a measure mayv be left transverse

- L .
to a set without being right transverse, and that a measure  may be left-and-right
transverse without being transverse.

We begin with a simple-theorem in order to contrast it with the more surprising

results that follow.

Theorem 5.3.1 Fora.be (0.1). let S, denotesthe set of functions h € HO. 1" such

that hia) = b. Then the probability weasure j defined by 5.1 s transverse to S,

z

Proof. It is dasy to sce that the set S, , ix closed and nowhere dense in HO. 1], In
particular S, 15 a Borel set.

Now for any g.h € H[0.1]. consider the set
T ={tell/2.1]: goF(t)oh & S,4}.

It e T thenon . ¢g(h'(a)) = b and hence hf(a) = ¢ '(bh) where g7 s the inverse
=
function of g. So the set T can contain at most one element and hence the probability

neasure jr1s transverse to S, . [ ]

Corollary 5.3.2 The set S, is closed. nowhere dense, and shy.

In particular. from this theorem we see that for a given function f the set of
elements h € ‘H[0.1] such that h(r) = f(r) for all & in some subinterval of [0.1] must
b("th first category and 5}1}'. The reason is that this set can be expressed as the
countable union of the sets &, 5(,) in the theorem taken over all rational numbers «.

_In contrast to this simple result we shall show how a Borel probability measure

may be left transverse or right transverse or left-and-right transverse and vet not
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be transverse to a set. We start with an elementary example that illustrates the

1
!

distinctness of left /right transverse notions in H{0. 1].

{

Theorem 5.3.3 (liven an interval [ with the closure 7‘; (0.1). let G/(T) denote the
set of functions in the space H[0.1] that are linear on . Then the probability measure

po defined by 5.1 is left-and-right transverse to (/(1). but is not transverse to /().
Proof. First we show that (;(I) 1s a Bore! set. It is easy to see that

G(1)={f e H0.1]: [islinear and slopf > 0 on I}
where slop f 1x the slope of fon [. Let

. |
F, = {f € H0.1): fislinear and slopf > — on /}.
n

-

Gil) = O F,.
n=1

We will show that [ 1s closed. For any Cauchy sequence {fi} € F, there exists

Then

f € H0.1] such that fi — [ uniformly. On [ we denote fo(r) = apr + Ji where

i 2 1/ Choose two distinet points ¢y, 0y, € [\ {0}. Then
Selonh = filoy) = (o + i) = (aery + ) = awley — 0y) — firy) = flr.).

So ax — a € R and therefore 3, — 3 € R. Then agr + 3¢ — ar + 3 = f(r) on [.
Since all ax > 1/nsoa > 1/n and f € . Thus each I, is closed and the set ¢/(])
is a Borel set. Further, we can show that F, is nowhere dense and hence (1) is of
the firs,L category. In fact. since the complete metric & on H[0. 1} is equivalent to the
uniform metric p, for any non-empty open ball B(f,¢) € H[0. 1], there exists a & >0
such that for any h € H{0.1]. p(f.h) < & we have o(f.h) < ¢ Tt is easy to construct
a non-hinear function ¢ € H[O 1] such that p(f.g) < ¢ Then g € Bif.¢) but g € Fi,.

So F, 1s nowhere dense and /(1) is of the first category.
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For any g € H[0.1]. we use the Borel probability measure p defined by 5.1 and
consider the set «

Ty ={tel/2.1]: go F(t) € G{1)}.

Ift €T, then on [.

g(r') = a(t)r + J(t)

where a(t) > 0. Let y = ', then g(y) = a(t)y"/t+ 3{t) for y on a subinterval of [0. 11.
Suppose Aj(T7) > 0. Then the functions y = ¢ (+ € T}) map [ into uncountably
many subintervals of [0.1]. Thus there must exist ;. ¢, € Ty, t; < t, such that for y

on some interval .J.

1

altyt + Jt) = alty)y= + It
Then by differentiating both sides of the equality above with respect to y € 7 we have

° AL [10(!3)
yo b o= .

Thisis impossible for all y € J. So A (1)) = 0 and hence pois left transverse to (/).
We now shiow that gois also right transverse to (1), For anv h € H'0, 1], consider
the set

Ty={te[l/2.1]: F(t)oh € (1)},

Itte T, thenon [,

where a{t) > 0. Differentiating both sides with respect to xr on [ we have
f{h(.r)}"'lh'(.r) = aft).

From the above equality we can know that the set 7, has at most two elements.

[f not. there exist t1.t, € T,. t; < t, such thgt on [

ll[h(r)}“_lh'(r) = a(t,) and 12[/1(1)}“_1h/(r) = alt,).
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Then

~

)]
P4

This 1s 1impossible since the function A(r) 1s strictly increasing. Thus Aj(7;) = 0 and
hence yis right transverse to (;( ).

We now show that the probabilitv measure ;0 15 not tragsverse to (/(/). (hoose
g.h € H[0.1] such that g(r) = 1 + alnr and A(r) = ¢*! on [ where a is a positive

constant depending on /. Then on [1/2.1] the function
go F(tyoh(r)=glh'(r)) = alr +1 — al

is linear for any ¢ € [1/2.1]. Thus

plg "Gihh Yy =20 ({t 2 [1/2.1] s gobitiche Gilhyy =1 £0.

Therefore jois not transverse to G/(1). |

Corollary 5.3.4 The set of functions in the space H0. 1} that are somewhere linear
(i dimear an at least one subintercal of [0.1]) w5 a left shy and right shy sct. and s
of the first category in H[0.1]. .

Proof. Foranyv interval [ with endpointsin (0, 1), (7( /) is left <hy, right shy and first
category from the above theorem. The set of functions in H[0. 1] that are somewhere
linear is the union of all (7(/) over all subintervals with rational endpoints in (0. 1).

and so the result follows. [
Corollary 5.3.5 [he sct of piecewise linear functions in HiO, 1] s le ft-and-reght shy,
and first cateqory.

Proof. Let S denote the set of piecewise linear functions in H[0.1]. From Theo-

ren 5.3.3 we know that the set S is contained in a set that is left-and-right shy. So
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)

we need only show that S is Borel. Let

fir) = Z:n (a,r + 73, )\.',1‘.5'1(.1“). 1/ <a, < [
Sty =< fEH.1]: —p < 4, < pfor any partition {] (zl b}, of (0.1
with minjg,cm b —a > 1/n
[t can be checked that :
™ > P ™
= U UUUs
‘m: n=1{=1p=1
We will show that the sets % are closed and nowhere dense. For any Cauchy
sequence {fi} © S, there exists f € H[0.1] such that fo — f uniformly. Then
there exist o, 3% and partitions {{a*. 5]} of [0.1] with N << et >

such that

™m
flo) =) (ale + 3ol
1=1
and 1/l <o < —p< 35 <p =1, 0 Byvstandard arguments we can choose
T — ] — ? -—[ . o)

a subsequence {k} of I such that

k

a’ —a, € (/L. 37 — 3, ¢ —p.p]

£

and
B g, €[01) b9 = b€ [0.1),

[t is casy to see that {[a,.b,]}7%, is a partition of [0. 1] and

m

f(l‘) = Z(()l‘[ + ’jl)\['l,.’),](‘l‘) E ‘\'m,u.[.;\'

=1

Thus S, 18 closed. Similar arguments as for £, in Theorem 5.3.3 show that S, L0,
1> nowhere dense. Thus S 1s Borel and the result follows. |

Remark. For any closed interval 1 C (0.1) and any function f € H[0.1]. choose
glr)=t+alnrand h(r) = e"7") on I where ais a positive constant depending
on I. Then

go floh(r)=g(f'(h(r))) =atr+1—at
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is linear for any + € [1/2.1]. So we cannot expect to choose some function f € H{0. 1]
such that the compact curve F(t) = f* (¢t € [1/2.11) would be transverse to the set of
somewhere linear functions in H{0. 1;.

There still remains the following problem. The measure which proves that the sets
(A1) are left shy and right shy does not prove that they are shy. Some other probe

would be needed. In fact. the existence of a left-and-right transverse measure does

not 1mply the existence of a transverse measure as we shall show in Theorem 5.12.3.

PROBLEM 11 Let S be the sct of functions in the space H[0. 1] that are somewhere

Linear on [0.1]. [~ the set His/zy'./

5.4 Right transverse does not imply left transverse

In this section we will show that a Borel probabilitv measure right transverse to a set
need not be left transverse to the set Y. We will use again the compact curve F(¢)
and the Borel probability imeasure j defined by 5.1 to verifv this in the following two

theorems.,

Theorem 5.4.1 Given an interval [ owith the elosure fg (0. 1), Let Gigly be the set
of functions i the space HIO 1] that are of the form alne + 3 on [ where a (> 0). 3
are constants depending on the corresponding functions. Fhen the probabidity measure

podefined by 5.1 1s right transcerse to (I but ts not left transverse to G,

Proof.  Similar arguments as in the proof of Theorem 5.3.3 show that (/1) is a

Borel set and is of the first category, For any h € H[0. 1] consider the set

Fo=A{te(1/20]: Fheh< G}
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We claim that 75 contains at most one element. If not. there exast £y f, € T4 ¢, <t

é

such that Fity)ch, F(t,yoh € G(I). Then on [

[h(‘r)}t1 =alt))Inr + 3.

P

[}z(fﬂtz = aft)) Inr+ J(t,).

By ditferentiating both sides of the above two equalities with respect to oot follows

that on [.
Lt tialty)
[h(‘r)ll‘ R :
' thalty)
This 15 impossible since h(w) s strictly increasing on /. So A3 = 0 and the

probability measure o defined by 5.1 1s right transverse to (7 ]).
We now show that gis not left transverse to (). Choose a function ¢ < H 0.1

such that on [ glr) = 1+ alnr. Then for any ¢ € [1/2.1].
go F(tyr)=gls'y =1+ atlnr.
Thus go Fitye (/i) and so
plg NG =20 ({t € [1/2.1) s go Bty e G} =140

Hence s not left transverse to (7 F). , [ |

Stmlar arguments as for Corollary 5.3.1 show the following corollary.

' Corollary 5.4.2 The set of functions in the space HIO. 1) that are somewhere of the
form alnr + .3 s right shy and first category where o > 0, 3 are constants depending

on the corresponding functions.

If a Borel probability measure g, 1s right transverse but not left tri&\'t‘rsv to a set
S contained in a Polish group (7. then the measure g, defined by (X)) = (X1,

15 left transverse but not right transverse to the set 7' Thus from Theorem 5.01 we

-
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can obtain a Borel probability measure that Is left transverse to a set but not right
transverse to this set. Here we supply a further concrete instance of a measure that

15 left transverse but not right transverse to a set.

Theorem 5.4.3 (Fiven an interval I with the C[O\lll( | C (0.1) and an o > 0. et
(r(1) denote fh( set of functions in the space H{0. 1] that are of Ih( form (1 + alnry
on [ where 3> 0 is a constant depending on the corresponding functions. Then the
probability measure y defined by 5.1 is left transverse f;) Cr( 1) but not right transverse
to ("(1,)'

Proof. Toshow that (7(7)is a Borel set we modify part of the proof of Theorem 5.3.3.
Note that .

(1) = {fE’H;U.l]: f=(l+alnr) on [}4

¥
[.et .
={f¢ Gl /n< 4, <n}.
’l‘l&n'n
Gl = U I
n=1

We will show that [, is closed and nowhere dense. That £ is nowhere dense in
H{0.1; can be shown in a similar wayv as in Theorem 5.3.3. We now show that each
I 1s closed. For any Cauchy sequence { fi} C I, there exists f € H{0.-1] such that
fi = funiformly, and 1/n < 4, <. So we can find a subsequence {&,} of M such

that 4, — 3 € R. Thus I/n < 4 < n and

f=(l+alnsg)

“on [ and hence f € [, Therefore F, is closed and it follows that the set @(/) is

~ Borel.
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}

Now we show that the probability measure j' defined by 5.1 is left transverse to

¥ .

G:(1). For any g € H[0. 1] consider the set

P .
’ Ty={tel/2.1]: go F(t)e G()}.
‘ ¥
Ift € T,. then on [.
gir')y =11+ alne)
Let y = r' then
()

\

v
gly) = <l +71ny) o
Suppose A (Ty) # 0. Then the functions y = «' (¢ € Ty) map [ into uncountably

many intervals contained in [0.1]. Thus therewexist t.t, € T\, t; < t, such that for y

on some interval J C [0, 1],

, At i)
Y (r

I+ —1Iny =1+ —Iny .
f '

(14 2iw)
|“<1+ilny> F(t)

« By differentiating both sides of the last equality with respect to y. it is easyv to see

Then on J.

that on J,
In <l + %lny> ftalny

In '(l +iln‘1y) hotalny

Irom the last two equalities we have

ty+alny ()
th+alny N F(t)

Again by differentiating both sides with respect to y € J. it is easy to see that on
Joty, =ty = 0. This contradicts that ¢, > ¢,. Thus A (7Ty) = 0 and hence the

probability 4 is left transverse to (:'(/).
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We conclude by showing that the probability measure i is not right transverse to

(1), Choose h € HI0. 1] such that A(r) =1+ alnron [. Then for any t € [1/2.1].

F(tYoh(r)=(1 +alns). i
@‘
So F(tyoh e GG(I) and
plGUDR™Y =20 ({t € [1/2.1): F(tyoh € G(I)}) = 1.
Hence g 1s not right transverse to (7( 1) . : m

Again similar arguments as for Corollary 5.3.1 show the following corollary.

Corollary 5.4.4 [or any a > 0. the set of functions l"_ll the space HIO ] that are
of the formell + alnr)” somewhere is left shy and first category, where 3 > 0 is «a

constant depending the corresponding functions. ‘

5.5 A set to which the measure ;i is left-and-right
transverse
In the following let us look at one more example of left-and-right shyv sets in H{0. 1],
Theorem 5.5.1 Lt 0 < c< M < % and
Sear = {h € HO ) o =y < th(r) = hiy) < Mie -yl Yooy e (0011}

Then the Borel probabiity measure o defined by 5.1 s e ft-and-right transverse to

S

Proof.  For any Cauchy sequence {f,} € S,y there is a function f € H[0.1] ,\‘1&}1

that f, — f uniformly. Note that

e =yl F|fite) = fuly)l < Mir —yl. vy € 001
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Then

Celr =yl <Efla) = fiy)l < M-yl Yooy € [0.1].

Therefore f € S,y and S, 4 is closed. Since the complete metric ¢ on H[0.1] ix

equivalent to the uniform metric. thus for any non-empty open bhall B(f.¢) C H0. 1.

y

there exists a & > 0 such that for anv h € H[0.1]. p(f.h) < & we have a(f.h) < ¢

So we can construct a function g € H[0.1] such that p(f.g) < ¢ and g(r) = ¢/2x for
sufficiently small r € (0.1). Then g € B(f.¢)but ¢ € S, 3. So S, a7 is nowhere dense.

We now show that S, 1y is left shy band richt shyv. For anyv ¢ € H[0. 1], consider the
set

Ty ={te[l/2.1]: goF(t)€ S ar}.
Ift e 7, then

3

er—yl <lg(r')y =gyl < Mr -yl Veoy e (001

Thus
!
t

< glz) = glz)] < Mzf — =S Va2 € (001

1
t
1 J

|z

Since the function ¢ 1s differentiable almost evervwhere, we have

Lo ’(~)<\ll~
t,~ <glz) <. e

-1
" -
F

for almost every = € [0.1]. Suppose that T) contains two or more elements. Then

there exist +.t, € [1/3 1]. ¢, < t, such that

| , |
e—zu < g(z) < M—:zn 1
f] [1
and
| R |
c—zi <y < M
f} [2
for almost every = € {0.1]. Thus
1
etza ety 1_2
l > 2 1 - > P t;
B \ILZ;_I - M,

fig”
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for almost every = € [0.1]. Since 1/t, — 1/t; < 0. the above inequality is impossible.
Thus 7T, contains at most one element and hence A\ (T,) = 0. It follows that the Borel
probability measure p deﬁ;led bv 5.1 1s left transverse to S, ay.

We now show that g is also right transverse to S, 4y, For anyv g € H{0. 1], conxider

the set 5

T,={te1/2.1]: F(t)og € S.ar).

Ift € T, then
elr =yl <|g'(r) = g'(y)] < Mijz - yl.

Since g 1s differentiable almost everyvwhere.
¢ < g Hage) < M

for almost every v € [0.1]. If T, did contain two or more elements, there exist

fl.fz € [0 1] [1 <;f2 Sll(,‘}l that
¢ < g THa)g'(r) < M

and
e <ty (gl < M
for almost every ¢ € [0.1]. Thus

€ [1 ot M
— =g TR < —
A\[ - ‘[29 ( )’ T

for almost every r € [0.1]. This is impossible since g(r) — 0 as 1 — 0. So A\ (15) =0
and the probability measure g 1s right transverse to S, yy. By Theorem 2.9.7 the result
follows. . -
Corollary 5.5.2 The set S

L(_I_)_—_ﬂ_y_)'<x, Vroy e [0.1]. J‘#(J}
I =Yy

1s le ft-and-right shy. and first category in H[0.1].

{fE’H[O.I]: 0<|
v 4
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Proof. Since the set § ={J_, Si/n.. the result follows. ]

n=1

PROBLEM 12 Is the Borel probability measuré p defined by 5.1 transverse to the

set S, vy in Theorem 5.5.17

5.6 A compact set argument

[n this section we will give a characterization of compact sets in H[0.1}. By applving
such a characterization of compact sets we shall find examples of sets in H{0: 1] that
are neither left shy nor right shy. Some of these results contrast sharply with those
in 257 and [26]. The following lemma contains a simple method ¢hat can be used to

show the non-shyness of some sets.

Lemma 5.6.1 If a ~ct 5 in H{0. 1] contains a two-sided translate (left. or right) of

crery compact set, then S is not sh’y (left shy. or right shy).

A

Proof. For any Borel probability measure u there is a compact set A T H[0. 1]
sich that g(K) > 0 (see S(‘('t.ion 3.5). Since there functions g. h € H{0.1] such that
gokoheSforall b e KNothen N C g7 'Sh™ b and so p(g ' SE™1) > u( V) > 0. Thus
S s not shy. The non-left shy result and the non-right shy result can be shown in the
same wav. ]

We first give a characterization of compact sets in ‘H[0. 11 by applyving the Arzela-

Ascoli theorem to the space H[0. 1]

Theorem 5.6.2 A set N C H.0. 1] s compact off
(1) K s closed.

(i) N s equicontinuous, and



)
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(12i) for every non-empty closed set Wy C K,

-

‘in‘f"‘h(‘r) and sup h{r)

keRy RER,
are both in HI0. 1.

Proof. let A’ C H[0.1] be a compact set. ‘Since H{0.1] is Hansdorff. (1) follows.
By Theorem 9.58 in [11] A" is totally bounded. Let ¢ > 0. and let fi.--- . f, be an
¢/3-net in N, For every f € N, there exists J < n such tha\t

TN AR TN SR P

where p s the the uniform metric. Thus for any r.y € [0.1].

ey = finl < ifte)y = fln) 4 [ L) — foyy+ 1 = fiun

<3+ flr)— [yl + /3

Since each f, is uniformly continuous on [0, 1], there exists a & > 0 such that [fi(.) -
fiyy < ¢/3forall 1 <o <nifle -yl <& Therefore [f(o) — fly)] < . and hence
(11) 18 true.

We now show that (iii} is true. For any non-empty closed set Ny € A, let

-

sup f(r)and h(r) = mf f(r).
fo\‘o feho

glr) =

-

[t is easy to see that both gland h leave r = 0. 1 fixed. Since Ay © A 1s closed.
<0 it is compact. For any oy 0, € [0.1]. ¢y < r,. there exist fi. f, € K, such that
filry) = ¢g(ry) and fy(r,) = h(r,). Since fi. f, are strictly increasing.
glry) = filoy) < fi(ry) < sup flr,) = glr,)
fehn
and

flry) < folay) < folry) = hixy).

hiry) = inf
feERY
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>
Thus g(r) and h(r) are strictly increasing functions. Since I 1s equicontinuous from

(11). for every ¢ > 0 there exists a & > 0 such that forall f € N, |fir) — f(y) < ¢/2

iflr =yl <é. Soforall roy € [0.1]. |r —yl < é&and f € Ay,

fto) < fly) +1flr)— fiy)

< sup k(y) + sup [k(r) = k(y)l
keRy kehy

Thus
, I
sup k() = sup k(y) < sup [F{r) = ky)] < 5e
ke R, kER ke Ro 2
That 1s. g(r) — ¢g(y) < ¢. Changing the positions of r and y vields g(y) — gir) < ¢.

Therefore {glr) — glyj| < e and so ¢ is continuous. lor the continuity of A, note that

forall roy € (0.1 |0 —yi < éand f € No.
!
fle) < fly) + sup [klr) = ky)i < flu)+ 5e
keRo =
50
!

Jnf Kr) < fly) + 3¢ .

and hence by the arbitrariness of f € Ny,

: I
. < : ~ ——
kgll\fomr) - klénf\f'oA(y) - 2(.

That is. h(r)—h{y) < %( < ¢. Changing the positions of r and y vields h(y)=h{r) < c.
Thus |h(x) = h{y)| < ¢ and hence h(r) is continuous. Therefore (iii) is true.

To show the sufficiency of the conditions (i). (ii) and (iii). let {f,} be any infi-
nite sequence in K. Since N s equicontinuous and uniformly bounded. {f,} has a
uniformly convergent subsequence { f,, } such that f,, — f by the Arzela-Ascoli The-
orem. We claim f € H[0.1] and the theorem is proved. Suppose f & H[0.1}. Then f
must be constant on some subinterval [a.b] C [0.1]. Fix ¢ € (a.b). and consider the
set

Pr={fu: fale) < flo}
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This set 1s then closed. If it is non-empty and infinite. then for all © € (a.c).

sup fo (r)= flel
fnkepl

which violates the copdition (i), Thus P, is finite. Similarly the set

P’Z = {‘fm: : fmc((‘) 2 f((‘)}

15 also closed. If it 1s non-empty and infinite. then for all © & (¢, b

inf f..(x)= fiel.
jnkep2fk( ’ f

)

which also violates the condition (111). Thus P, is finite. But both [’} and P, cannot

be finite. and so we have a contradiction. Thus f £ H0. 1] and <o A ix compact. B

5.7 Examples of non-left shy, non-right shy sets

[ this section we apply Theorem 5.6.2 to show that some sets discussed in 125 and

[26] are neither left shy nor right shy.
I A A

Theorem 5.7.1 For any function q(r) € H[0.1]. let

}
(/) = {h € H[0.1]: lun ) = 0}.

r—0* ¢(r)

Then Gy ois a Borel set that is neither left shy nor right shy.

Proof. We first show that (7, 1s a Borel set. Note

h(2—"
(i, = {h € H[0.1] : lim I,( ) = U}
n— x q("_),*”)
S~ h(2™" ]
-NUN {heH[O.l}: e ’<»4}.
27"y p

r=1m=1n=m
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Since all h are continuous and the metric on H[0. 1] is equivalent to the uniform

metric. the sets

oo h(27hy
{hEH[O.H: (_ <~}
q(2=m) p
are open. Hence (7] 1s a Borel set.
We now show that 7y 1s neither left shy nor right shv. For anv compact set A, by
Theorem 5.6.2 there exists a function g € H{0. 1] such that k(r) < g(r) for all k € K

and all r € [0.1]. Choose
Then for all £ € A,

Thus

lm sup =—
r—0* (/(I
and so fok & (/). By Lemma 5.6.1. (¢ is not left shy. To show that (/) is not right

shy. choose

Then for all & € IV,

Thus
i
m sup =0,
r—0% qi\r
and so ko f € (. By Lemma 5.6.1. (v, 1s not left shy. |

Corollary 5.7.2 [«¢
Sy ={heH[0.1]: r'(0) =0}

Then Sy s neather left shy nor right shy.

S
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Proof. let q(r) = 1 in Theorem 5.7.1. Then (;; = 5 and the result follows. - W

Theorem 5.7.3 For any function g(x) € H[0. 1}, let

, h{
(,'3:{h€7'(‘0.1]: lim I):Jmﬂc}.

r—0+ (I(I)

Then (7y is a Borel set that s neither left shy nor right shy.

Proof. We first show that (75 1s a Borel set. Note

Since all o HOCL, are continuous and the metric on R0, 1] 1s equivalent to the

uniform metric. so the sets

: / !
{/1 € H[O. 1] : e > p}

are open and hence S, s a Borel set,
We now show that N, is neither left shy nor right shv. For any compact set A
by Theorem 5.6.20 there exists a function & € H 0.1} such that ko) > hie) for all

k€ N and all v e (001 Choose' 4

floy=¢"(h7 ) € H0 1,

Then for all k € I,

Thus
Alr
Iminf JUkir)) him ¢~

r—-0t  qg{r)  r—vut
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and so fok € (5. By Lemma 5.6.1. (v,

Py

is not left shv. To show (7, 1s not right shy,

choose

a

4 flr)y=h g e HO L.

Then for all k & i,

k(f(x)) > h(f(r)) = h(h7 (g i) = ¢" (1),

Thus
k) : 0
limonf > lim ¢ () = +x,
=0+ g(r) r—o*
and so ko f 2 5,0 By Lemima 5.6.1 again 5, 1s not right shy. |

Corollary 5.7.4 Lt

ks

Sy ={he HO0.1]: B0 = +x}.
Then Sy s neither left shy nor right shy.

Proof. let g(r)= 1 in Theorem 5.7.3. Then (v; = 8, and the result follows. B

From Theorem 5.7.1. Theorem 5.7.3. Corollary 5.7.2 and Corollary 5.7 1 immedi-

ately we have the following result.

Corollary 5.7.5 The scts (7. G0 Sy and S, in Theorem 5710 Theorem 5.7.5,

Corollary 5.7.2 and Corollary 5.7.4 are all neither shy nor prevalent.

Proof. Irom Theorem 5.7.1 and Theorem 5.7.3. both (/) and (7, are neither left shy
nor right shyv. So thev all are not shy. Since each one Qf both (7yand (7, 1s contained
in the complement of the other, 5o both (/1 and (7, are not prevalent. Sunilarly, we
can show that both S} and 5, are neither shy nor prevalent. |

In [25; and [26]. Graf. Mauldin and Williams showed that P,{5,) = | where P, s

the right-average of the measure P as in the introduction part of this chapter. that is

P = / P{h e H0.1]: hog ' € B})dP(g)
H{0.1] .
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for Borel sets B € H[0.1]. In the following part of this chapter we alwavs use P, to
denote the right-average. However, we showed in Corollary 5.7.5 that 5} is neither shy

nor prevalent. From this point we know that both P> and P, are neither le{t transverse

-

nor right transverse to the complement of 5.

5.8 Examples of left-and-right shy sets

In order to compare with the results in last section we show here the following theorem.

Theorem 5.8.1 For any function q(x) € HI0. 1], let

, . .. hir . hir
S = {/1 € HI0 1 - 0 < liminf b < T sup ) < +_\’}.

r—u+ () e gl

Then Soasa Borel set that s left-and-right shy i HIOC 1

Proof. We tirst show that S is a Borel set. Note

S = U U h {hé?‘({().l]:

p=l m=1n=m

| o—

h(277) }
< — < pr.
) g2

L e

Since all e H0.1] are continuons and the metric on H0. 11 is equivalent to the

uniform metric, all sets -

are open. and so the set N s a Borel set.

We now consider the set

‘ - hic) hirx
Sot = {/1 € HO I a < lim infil < lim sup b < J}

r—0* qlr) ot gl

for all a3 > 0. a < 3. Once we show that the set &, is left shy and right shy, then

~
8= U Stnn

n=1
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s
4

1s also left shy and right shv. We now show that the Borel probability measure 4
defined by 5.1 is right transverse to N, 5 for any .3 > 0. o < 3. Forany h € H{0. 1.

consider the set

R ()
a < < 3
qir)
This means that, for any ¢, # /.
h(ry  hU(r)
= RO ) — 0or x

gir) qlr)
as . — 0%, Consequently ¢, 2 K. Thus [f contains at most one element and gois right
transverse to N, ..

To prove that N is left shy we choose a mapping Fy 0 [1/2.1] — HU. 1 by Fiit) =

¢'(r) and detine a Borel probability measure gy by

v

M

(N =200 0{t e [1/2.1] Fit)

L={tcl/2.1: hoF(1£5,,).

[f s € L. then for suthciently small r € [0, 1],

’ hig* (o))
G < —— < .
q(r)

That 1s. agle) < hig®(r)) < Jqlr) for sufliciently small r € (0.1). Let v = ¢ (o).
Then

1

ay: < hiy)

IA

1
3yt

for sufficiently small y € (0.1). Suppose that L contains two or more elements. Then

there exist sy.0s) € [1/2.1]0 sy < &, such that

1

ay < h(y) < Jye

o



~
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and o=

)

ays < hly) < Jy=
Sfor sufficiently small y € (0.7). Thus

1
o7y (x L

— = ?U "2 <1

j!/’: b 4

L
‘1

for sufficiently small y € (0.1). This is impossible since 1/5, — 1 /s, < 0. Thus the set
L contains at most one element and hence the probability gy 1s left transverse to S, .
By Theorem 2.9.7 S, , is left-and-right shy, and so the set S is also left-and-right shy.

Let g(r) = . Immediately we have the following.

Corollary 5.8.2 [or anya. 0 < a < . the set

{he H0.1]: K(0) = o}

is e ft-and-right shy i HO.1].

This conclusion contrasts sharply with Corollary 5.7.2 and Corollary 5.7.1. In
\

Section 512 we will see that the set {h € HN\”\:\ A'(0) = a} is not <hy in HI0. 1]
As a contrast to the results in Theorem 5.7.1 and Theorem 5.7.3 we show that the
/ t
sets (7 in Theorem 5.7.1 and (7, in Theorem 5.7.3 are of the first category in H[0.1].

[t follows. too. that thie sets S; in Corollary 5.7.2 and 5, in Corollary 5.7.4 are also

of the first category in H[0. 1].

Theorem 5.8.3 The sets (i in Theorem 5.7.1 and (/y tn Theorcm 5.7.3 are of the

first category in H[0.1].

Proof. Note that

~ ™~ ~

| hi277) 1
G=U N {h e H[0.1] : ;Ez—")) < ;}.

p=3m=1ln=m
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The sets
h(2-T 1 * )
{hEHLO . = )g—}
g(2=") — p

are closed and. hence. so is”

No= [ {heH0.1]:

for any m > 1. We claim that .V is nowhere dense in Hi0. 1], It follows that (7 is
first category. Since the complete metric o on H0. 1] is eqaivalent to the uniform
metric. thus for any non-empty open ball B(f.¢) C H0.'1]. there exists a ¢ > 0 such
that f:r all h € HIOU1L plf.h) < & we have o(f.h) < e If f & N there is nothing to
do. If f € N then we can construct a function ¢ € H{0. 11 such that p(f.g) < ¢ and
glr) = (2/p)qlr) for sufliciently small # € (0.1). Then § € B(f.¢) but g ¢ N, Thus
N is closed. nowhere dense.

For the set (7, we know
(; ﬁ O ﬁ pemo] MR,
1) = ! 0.1 —— A
o R EEETEE

Similar arguments as for (7 show that, for anv m. the set

~ h(2™"
ﬂ {}167{[().1}: 2(_ ! 2[)}
n=—rm q(3.7n’)
ix closed and nowhere dense in H[0. 1], Therefore (7} is of the first category. [

5.9 Non-shy sets that are of the first category

[n the following theorems we will give further sharp contrasts between our measure-
theoretic notion and category, and also between our results and results in [25] and

126]. The geometric pictures of the following sets are clear.
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Theorem 5.9.1 For any function g(xr) € H[0.1]. let
S, ={h e HO.1]: hic) > q(r))

and
Se={heHO0.1]: hir) < qlr)}

Then both Sy and S¢ are closed, nowhere dense sets that are neither left shy nor right

shy.

Proof. [t it casv to see that both Sy and S¢ are closell. Since the complete
metric @ on H{0. 1] i€ equivalent to the uniform metric p. for any non-empty open ball
B(f.¢) € HO. 1l there exists a & > 0 such that-for all h € H{0. 1. pif.h) < N we
ha\\\'c al(f h) <e I f &S, there 'r:s‘ nothing to prove. If f & S50 we can construct
a function ¢ € H0.1

I such that pif.g) < ¢ and gtr) = ¢*(r) for sutticiently small

£ € (0.1). Then g € Bif.¢) but ¢ € Sy, Thus S5 1s closed and nowhere dense in
¢

HI0.1]. Similar arguments show that S is also closed and nowhere dense in H{0.1].
We now show that both are neither left shy nor right shy. For any compact set
K. by Theorem 5.6.2, there exist g.h € H[0.1] such that h{r) < ko) < g(r) for all

ke KNoand all ¢ e U 1. Choose functions

Sile) = qth™ o)) fule) = R gle)) fatx) = qlg " (x))

~
and —

fala) = g7 qlr)) € H[0. 1.
Then. for anv A € A and all r € [0.1].

(frok)(x) = filk(x)) 2 fith(r)) = qlr).

(ko fo)la) = k(fala)) 2 h(falr)) = ¢lr).
(fyo k)(a) = fs(k(r)) < futglr)) = qlr)
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and
(k Of4)(-T) = L'(fﬂf)) < 9(f4(~T)) = q{r).

Thus fiok. ko f; € S, and fy0k, ko fy € S.. Therefore. by Lemma 5.6.1, both S

and S¢ are neither left shy nor right shy. [ |

Theorem 5.9.2 For anym € (0.1]. [ € [l.+x) and q(,ra) € H[0.1]. the sets
S ={heHO.1]: k() > mqlr)}

and
Sie={h e H0.1]: hlx) <lg(r)}

are closed. nowhere dense sets that are neither shy nor prevalent.

Proof. = It is casy to see that all sets 5',,;> and S; . are closed. Since the complete
metric o on ‘H[0. 1] is equivalent to the uniform métric p. for any non-empty open ball
B(f.¢) € H0.1]. there exists a & > 0 such that for all A € H[0.1]. p(f.h) < & we
shaveo(f.h) < e If f & S, 5. there is nothing to prove. If fe€S5, s.wecan construct
a function ¢ € H[0.1] such that p(f.g) < & and m = mgq?(r) for sufficiently small
r & (0.1). Then g € B(f.¢)but ¢ € S,.5. Thus S, 5 15 closed and nowhere dense in
H[0.1]. Similar arguments show that S, . is also closed and nowhere dense in H{0, 1].

We now show that S, 5 and S; . are neither shy nor prevalent. For m =1 = 1,
by Theorem 3.9.1. both S} 5 = Sy and S; . = S¢ are neither left shy nor right shy.
Since

S, NS ={heH0.1]: h(r)=q(o)}

15 a singleton and hence a shy set, so both S| 5 and S| . are neither shy nor prevalent.
For0O<m <land 1 <1< 4o since Sps 255 and S;¢ D Spcos0o S and S ¢

are not shyv. On the other hand,

Sms CH[0]\ Gy and S« CH][01)\ G,
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where (;; and (7, are same as in Theorem 5.7.1 and Theorem 5.7.3 respectively. By
Corollarv 5.7.5. (7, and (7, are not shvin H[0.1]. Thus S, 5 and 5 ¢ are not prevalent
b 1 2 A l i D> <

in H[0.1). m

In [26] it was shown tRat for every m € (0.1] and [ € [1.+x).
P({h € HI0.1]: h(r) > mr})=0
and
Po({h e HO. 1] : hix) <lr}) =0

where P, is the right-average of the measure PP. However, according the above the-
orem. these two sets are neither shy nor prevalent and vet they are closed. nowhere
.

dense sets i HI0. 11

5.10 Non-prevalent properties that are typical

In this section we give several non-prevalent properties that are tvpical. Agamm we
use the sets discussed in [25] and [26] and compare our results with the corresponding

results in [25] and [26]. ‘

Theorem 5.10.1 For any function g(r) €H[0. 1], let

.
T

h
(') = {h € HI0. 1] - liminf ) O}

r—0+ q(I)

and

co+ gla)

()= {h € H[0.1]: limsup
Then both Oy and Cy are neither shy nor prevalent.

Proof. Note ('}, 2 G, and (', 2 (7, where (v, and (5, are as in Theorem 5.7.1 and
i

Theorem 5.7.3. By Corollary 5.7.5 both (7, and (7, are not shy, and so both ('} and

Y

y
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("> are not shy. We now show that their complements ("} and (7, are also not shy. Let

~ <

(0 be the set of rational numbers in (0,1). Then

C) = U{h € H0.1]: h{z) > rqlr)}
re@

=

and Y

B

Cy = J{h e H0.1]: h(r) <d/rq(r)}.
reEQ

¥

(—j: > ¢ > 0. Then there exists a & > 0

In fact. let 2 € H[0.1] such that liminf, _¢+ ;1(
such that for all r € (0.&). A(r) > cq(r). Let r € Q such that r < min(h(¢).c). Then

hir) > rq(r) for all £ € [0.1]. Thus

() C U{/z € H[0.1]: h(z] > rqtr)}.
rEQ
The converse is obvious. and so the first equality of the above two holds. For the

%%) < M < 4+x. Then there

exists a & > 0 such that for all =+ € (0.&8). A(zr) < Mg(r). Let r € Q such that

second equality, let A € H[0.1] snch that limsup,_+

-

“r<min(1/M q(&)). Then h{r) <A/rqlr) for all 2 € [0.1]. Thus
(7, C J{he HI01) 2 hix) < 1/rqlr)).
req
The converse 1s obvious and so the second equality holds. Thus €4 and (7 are Borel

sets. By Theorem 5.9.2. (') and (7 are not shy, and hence the results follow. [

Let qlr) ="r in the above theorem. Then the sets

}
{h € H{0.1]: Iiminf ')

r—0+ I

. . h(r)
=07 and <h € H[0.T]: limsup =+

r—0* £
are neither shy nor prevalent. By way of contrast, note that in [23] and [26] it was
shown that these two sets have P, measures 1 (see [26, Theorem 5.10])., From the

following theorem we see that these two sets are dense G sets in H[0.1].
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Theorem 5.10.2 The sets C'y and C, in Theorem 5.10.1 are d(ns'(e(}'f sets in H{0.1].
Proof. From the proof of Theorem 5.10.1 we know

Cr= b e H0.1): hir) = rglr)
re@
and
Co= [ J{h e H0.1) 2 h(r) < 1/rgle))
7 reQ

where () is the set of rational numbers in (0.1). By Theorem 5.9.2 we know that for

anv'r € Q. the sets
-

{h e H[0.1): hl(r) > rq(r)}

and -
{heHO.1]: h{r) < 1/rqlr)}

are closed. nowhere dense sets. Thus ('} and (7; are dense (7, sets in H[0. 1]. [ ]

N\
Theo ’)em 5.10.3 For any q(r) € H[0.1]. the typical function h € H{0. 1] satisfies

¥ y4q I V- 1]

i } h(.

\_ i inf ') = 0 and himsup ')

r—0* q I) r—0+ q(I)

= 4.

Remark. Although the sets (i) and G, in Theorem 5.7.1 and Theorem 5.7.3 are
also neither shy nor prevalent. that '} and (', in Theorem 5.10.1 are dense (i, sets

contrasts sharply with the fact that () and (7, are of the first category.

5.11 Corresponding results at z = 1

We now carry these results over to the right hand endpoint of the interval [0.1].
. Since the group operation on ‘H[0, 1] is the composition of functions. we do not know
whether the mapping I': h — h by h(r) =1 — h(1 — 1) changes the shyness of sets.
We will leave it as an open problem. Here we will deal with some sets involving the

behavior of functions at r = 1 individually.
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Theorem 5.11.1 For any function g(x) € H{0.1]. It
! 1 —h
: r—1- 1 —"g(r)
'and

I — At
Sy=<¢heH0.1]: 4im 1 hlr) =+x .
r—1- 1 —q(r)

Then both Sy and Sy are Borel scts that are neither left shy nor right shy in H:0.1].
Yy y oo e

Proof. Again we show that both 53 and Sy are Borel sets. Note that

I~ h(1—27")
. ~ r 1. _
HX‘{htH[O SRR T R _O}
SN A : L—h(l=2"") 1
-NU N {remon: = i)
< Il —q(l =2 p

and

n— x 1——(1 — "”)
™ x _hl . 2—71
~ﬂUﬂ h e H[0.1] ( : )>1)
p=1m=1ln=m 1“‘({(1 —ZMI)

Since all b € H[0.1] are continuous and the metric on H[0. 1] is equivalent to the

uniform metric. then

I —h(l =271 1
h € H[0.1 < -
{C 0.1 L —q(1 =2 P}
and
I —h(l =277
h & e
{ M1 L —q(l—27" >p}

are all open sets. Thus both Sy and Sy are Borel sets.
We now show that both Sy and Sy are neither left shy nor right shy. By The-
orem 5.6.2. for any compact set KA. there exist functions g.h € H[0.1] such that

hir) < k(r) < g(r) forall k € K and all r € [0,1].
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For the set S3. choose
file)y=1—(1—qh™"e))% folry= kN1 = (1 = qlr)it).
Then for all & € K.

Silk(z)) 2 fith(z)) =1 = (1 = qlx))"

and
K fa(r)) = h(folr)) =1 = (1 = q(r))
So o >
LAk Ot
I —qlr) L —q(r)
and N
LKA
I —q(r) ,
Hence -
. L — fi(k(r)) L —k(f2lr))
hmsup ——————— = limsup ————— = 0.
r—1- 1 —Q(/(‘l‘) r—1- 1 — (/(I)

Thus fiok, ko f, € 5, By Lemma 5.6.1 Sy is neither left shy nor right shy.
For the set Sy, choose

/0

Nle)y=1=(1—=qlg (o))  and filr) =g {1 = (1 —qlon'?).

Then for all k € IV,

So

and



CHAPTER 5. SPACE OF AUTOMORPHISMS 135

Thus
S B AL E0) BTN el O FE ) R
e T = g(r) - S R '

Hence fio k. ko f, € S;. By Lémma 5.6.1 Sgis neither left shy nor right shy. |

Using similar arguments as in Corollary 5.7.5 we obtain the following.

¢
’

Corollary 5.11.2 The sets Sy and Sy in Theorem 5.11.1 are neither shy nor pre va-

lent.

Similarly as for Theorem 5.83.1 we show the following theorem. Note that the

transverse curves are different.

Theorem 5.11.3 For any function q(r) € H[0.1]. let

L — A 1 - hir
(G=qheRO.1]: 0< li111irlf—~(—r) < 1imsup~—[—ﬂ <4y
r—1- 1—({(I) r—1- 1—4[(F)

Then (0 os a Borel set that is left-and-right shy in 1[0, 1].

Proof. Similarly as for S in Theorem 5.8.1 we can show that the set (715 a Borel

set. We now show that the set

1 — hi. I — hiry
Sa = {h € HIO. 1) a< 1ir]1ir1fr——(r—) < lim sup o < .i}

T—1- —qg(r —1- —qlr)

is left shy and right shy for any a,.3 > 0, a < 3.

Write £, 2 [1/2.1] — H[0.1] by
Falt) =1 = (1 —q())f
and define a Borel probability measure j1, by
jolN) =20 ({t e [1/2.1) 0 Fy(t) € X}
For any A € H{0. 1]. consider the following set:

L={tell/2.1]: hoFyt) e N, .}.
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[fte L. then
1 - Al = (1 — ¢
a < - q(I)))<J
I —gf{r)

for all r < L sufficiently close to 1. Set y =1 — (1 — g¢(r))". Then

all —y)v < 1= h(y) < 31—y

for all y < 1 sufficiently close to 1. We claim that L contains at most one element. If

not. there exist t,.t, € L. t; < t; such that

e
T

all = )T < 1= hiy) < 31— y)s

and
-
1

all = )iz < 1 —hiy) < 31— y)& .

for all y < 1 sufficiently close to 1. Thus

L 4

1 — ) 3 e 4
IS—('L::——(I—U)” £,

all —y)e @
for all y < 1 sufficiently close to 1. which is impossible since 1/t - 1/t, > 0. Thus L
is a singleton or empty set. So the set S, 5 s left shy.”

To prove N, ;is right shy. we choose Fy @ [1/2.1] — H[0.1] by
Fs(ty =1 —(1~x)f
and define a Borel probability measure yy by
s XNy =20 ({t € [1/2.1] 1 Fy(t) € X} .
For anv h € H[0.1]. consider the set
R={te[l/2.1]: Fy(t)oh e S, }.

If t € R, then

I —qlr)
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for all r < 1 sufficiently close to 1. That is.

017(1 —q(r))% <1l —-h(r)< jt?(l —q(r))

o~

for all ¢ < I sufficiently close to 1. We claim that K contains at most one element. If

not. there exist t,.t, € R. t; < t; such that

L
¢

atr (1 —q(r))"

]

<1 —h(r)< 35(1 = glr))®
and

ait(l —q(r))7 <1 —hlr) <3

1
t

{1 —qlr))

e

2

for all r < 1 sufliciently close to 1. Thus

1 1 1

Ja(l —qg(r))n Ja oL
I < — — = — (L —qlr))n
Je(l —qg(r))e te

!
t

for all & < 1 sufficientlyv close to 1. which is impossible since 1/t — 1/¢, > 0. Thus
F1s a singleton or empty set. and hence S, is right shyv. By Theorem 2.9.7. the set

S, s left-and-right shy in H[0. 1]. Thus
= Sumn
n=1
1s left-and-right shy.
Let g(r) = r. Immediately we have the following.
Corollary 5.11.4 Foranya. 0 <a < +x., the sct

{h € HO.1]: K'(1) = a}

1s left-and-right shy.

Theorem 5.11.5 For any function g(r) € H[0.1]. let

1 — h{.
Cy=<q¢heH0.1]: liminf———ﬂ =0
r—1- | —gq{r)
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and

, 2 . 1 — hlr)
('y=<heHO.1]: 1111151,1;)———————7:+x .

r—1- Ll —gqlr

Then both ('y and Cy are neither shy nor prevalent.

Proof. Since ('y O Sy and ('y D Sy where Sy and Sy are as in Theorem 5.11.1. by
Theorem 5.11.1. both ("3 and (4 are not shy. Similarly as for Theorem 5.10.1 we can

show

Cy=|Jth e HO = 1= ki) > r() = qr))
reQ@
and
Co=J{heH0.] 0 1= hle) < 1/r(1 = qlon}.
reEQ

Thus (45 and ('y are Borel sets. Note

Coo{h e MO 1 —hie) 31 —qle)

={h e H[0.1]: hir) <qir)}

and
F‘QQ{h&;H{O.l] I —hlr) <1 —qlr)}
= {h e H[0.1]: h(x)>q(r)}
—_— —_— 1
By Theorem 5.10.1. ("y and ('y are not shy and hence (' and ('y are not prevalent.
|

In contrast. in 23] and [26]. it was shown that both 'y and 'y have P, measures

4
I when g(r) = r. Similar arguments as for Theorem 5.83.3 show that both the sets
S5 and Sy in Theorem 3.11.1 are of the first category. Also similar arguments as for

N

Theorem 5.9.2 show that for anv rational number r € (0.1). the sets U

{he MO 1] 1 —hiz)>r(l —qlr))}

»~
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/

and

{he 0. 1] 1 —hir)<1l/r(l—qlr))}

are closed. nowhere dense sets in H{0. 1]. Thus we can have the following.

i
Theorem 5.11.6 For any q(r) € H[0.1]. the typical function h € HI0O. 1] satisfies

I —h 1 —h
i liminf———g—) =0 and limsup——(I—) = 4.
r—170 1 —q(r) r—1- b =qlr)

PROBLEM 13 Let T : H[0.1] — H[0.1] by Th(r) =1 — h(1 — ). 152t true that

S CHO L s shy or left/right shy off T(S) s shy or left/right shy?

5.12 A non-shy set that is left-and-right shy

Jan Myeielskiin [11] posed a problem. denoted by (£4). whether the existence of a

Borel probability measure left transverse to a set Y implies that ¥ is shy in a non-
locally compact. completely metrizable group. In this section we give examples of
non-shy sets that are left-and-right shy in H[0.1] and so answer the problem (/%)
negatively., These examples also allow us to conclude immediately that the o-ideal of
shy sets in H{0. 1} does not satisfy the countable chain condition.

Corollary 5.8.2 and Corollary 5.11.-1 show that the sets
{h e H[0.1]: A'(0) =a}

and
{h e H[0.1]: A'(1l) = a} : ( :
are left-and-right shy sets. We shall show that these two sets are non-shy sets in

H{0.1]. The first two lemmas are basic facts about monotonic functions.



~
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Lemma 5.12.1 For any0 < a < +x.if f € H[0.1] and satisfies

Slex)

C'l

— (1

for a decreasing sequence {e,} satisfying cofcopr = 1 and ¢y — 0% as n — x. then

f(0) = a.

Proof. For anv r < ¢;. there exists a ¢, such that c,py <o < c. Then fleaa) <

flr) < fley) and so

\

f((‘n+1) f(l) < f((vn\’-

Cn r Crotl

Note that
flensn) _ Slensr) Gt

Cn Cn4i Cn

and

Thus by the conditions we have

That is. f/(0) = a. ) ]

Lemma 5.12.2 Fforany 0 < 4 < +x. if f € H[0.1] and salisfics

I — f(d,)
1 —d,

for an incréasing sequence {dy} satisfying (1 — d, ) /(1 —dypy) = L and dy — 17 as

n— o, then f'(1) = . =

Proof. For any r > dy. there exists a d, such that d, < r < duyr. Then

f(‘ln) S f(T) S f(dn+l) and so

l t f(([,1+1) < 1 - f(r) < 1 ‘"f(([n)

| —d, I B ¢ __l“d,LH'
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}

l_f(dr1+l) _ 1'_f(dn+l) . 1 _dn+l
l-d, 1 =dus 1 —d,

Note that

and
l_f(dn) _ l~f(({n) 1’"([n
]l — dn+l B 1 — dn 1 — dn+1 )

Thus from the conditions we have

L i
lim —M = J.

r—1- — I
That is. f(1) = 3. [ |
Theorem 5.12.3 Let 0 <o, 3 < 4. and ™~

D,y={heHO.1]: A(0)=a and h'il) = 3}
Then D,y 15 not shy.

Proof. To show that ), ; 1s not shy, we shall show that. for anv compact set
N < H[0.1]. there exist functions g.h € H{O.‘{} such that gohohk € D, for
anv b € K. First we choose a decreasing sequence {c,} € (0.1/4) such that all
the intervals [('”.Cn‘-f- I/ne,] are pairwise divsj()int. cp — 07 and ¢, 41 /c, — 1 as
n — . Second we choose an increasing sequence {d,} C (3/4.1) such that all the
intervals [d,. d, + (1 — (l,lg)zd,l] are contained in (3/4,1). pairwise disjoint, d, — | and
(1—dpsr1)/(1=d,) = Las . — x. Forexample.c, = 1/n. d, = 1=1/n (n > H) satisfy
the requirements. This can be verified by simple computations. By Theorem 5.6.2

there exist functions fi. f, € H[0. 1] such that

Silz) < h(e) < folr)

for all h € A and all r € [0.1]. Now we choose a sequence of line segments {/,}
contained (O I/4) x (0.1/2) and a sequence of line segments {J,} C (3/4.1) =

{1/2.1). as in the figure below, such that
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(1) for any n. the lower end of I, is above the upper end of I.,,. and the lower
end of J,4, is above the upper end of J,.

(11} the corresponding point &} of I, tends to 0 from right. and the corresponding
point r? of .J, tends to 1 from left.

(ii1) for any n. the line segment connecting (r!. fi(r])) and (zl. fo(z])) is con-
tained in I,. and the line segment connecting (2. fi(r?)) and (2. fg(l‘i% containe.

in J,.

Obg % % 14 V4% S
Figure 5.1: The construction of the automorphisms ¢ and &
We now construct functions g, k& € H[0. 1] in nine cases. and show that gohok €

D, for anv h € I for each case.

Case 11 0 < . 3 < +2c. We require that 1eja < 1 and 24(1 — d}) < | so that.
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for anv n. )

‘—ﬁ—\ [ac,.al(l + 1/n)e,] C(0.1/2)
and

(1= 301 —dy). 1= 301 = (14 (1 =d)*)da)] € (1/2.1).

From the choice of {c,} and {d,} it is easy to verify that all these intervals are pairwize

disjoint. So we construct a function ¢ € H{0. 1] such that
g(1) = [acs.a(l + 1/n)c,]

and

gldo) =11 = 31 —d ). 1= 31 = (1 + (1 —d,)*)dy)l

We construct a function & € H[0. 1] such that k(c,) = 1,l and A(d,) = rf Then for

ST
Q

anv h € K.

a(l +1/n)e,

< =a(l +1/n)
Cn
and
glhtrl)) _ ac,
> = q.
CY‘l (‘”
Thus
’ glh{k(ca)))
im ——— = q.
n-—x Cn

So by Lemma 5.12.1. (g o h o k) (0) = a. On the other hand. for any h € H{0. 1].
I — g(h(k(d,))) 1 —g(h(r}))
1 —d, N | ~d,
< L= (1= J(1 = dy))
- 1 —d,

=

and

L= gUh(e2)) 1= (1= 31— (14 (1 = du*)dy)]
1 —d, - 1 —d,

= 31— d(1 —dy))
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Thus -
I —glh(k(d,)))

lim : = 3
n—xc —d,

So by Lemima 5.12.2. (go ho k)'(1) = 3. Therefore gohok € D, ;.

(Case 2: a =0. J=0. We claim that. for any n.
[ (1 +1/n)*ca] € (0.1/2)
are pairwise disjoint. and
= (1 =d) 1= (1 =d)* (] —da(l = dn))?] C (3/4.1)

are also pairwise disjoint. Since [c,. (1 + 1/n)c,] are pairwise disjoint. the first part

of the claim is obvions. For the second part of the claim. if there were some m such

that

¥

l_(l _dm)z < 1 _(1 '—(lm+l)~) S 1 —(l “(lm) (l _(lm(l "(lm)):-

then | —d.. <1 —d, and

1 - dm+1 2 (l - dm)(l - (lm(l - dm))

=1 —d, —d, (1 —dn)*

That 1s.

A < doppy <l +do(1 —d0 )",
which contradicts that [d,.d, + (1 — d,)*d,] are pairwise disjoint. Since d,, > 3/1. 50
I = (1 =d,)? > 3/1 and the claim follows. Now we construct a function ¢ € Hi0.1]
such that

g(l) = [c2 (1 + 1/n)*e?]

n

and

R B

g(Ja) =1 = (1 = d)' 1 = (1 —d)} 1 = dul] = dy))"].
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We also construct a function k € H[0.1] such that k{c¢,) = ] and k() = r?. Then

foranv h € K,

Cs Cn
1 2 .2
S( ‘+‘1/ﬂ) C“:(l\+l/71)zc,l
Cr,
and
L= glh(k(d))) 1 —glh(z?))
| —d, | —d,
=11 — (- d V(1 —d. (] — (1,1))3j
- | - d,
= (1 —d (] —d, (1 —d,))
Thus
3
Iim glhlklcn))) =10
X Cyy
and

I —g(h({k(d,)))

lim
o= 1 ~(1n

By Lemma 5.12.1 and Lemma 5.12.2. (go h o k) (0) = 0 and (g c h o k(1) = 0.
Thereforeegoh ok € D, 5 for anv h € K.

("ase 3: a = +x. J = +2x. We require 16¢; < 1. Then we claim that. for any n.
(e300 + 1 /)2 8] C (0.1/2)
are pairwise disjoint. and
=l = d )Y = (L = d) T = d (L = d S (2D

are also disjoint. Since [c,.. (1+1/n)e,] are pairwise disjoint. the first part of the claim

1s true. For the second part of the claim, if there were some m such that

L= (1 —do )2 <l = (1= dme ) <1 = (1 = d) VAL = (1 = d N2
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then 1 —d,.;; <1 —d,, and

1 _dm+1 2 (1 _dm)(l '_dm(l '_U"i))

which. as same as in Case 2. vields a contradiction. Thus the claim is true. Now we

construct a function ¢ € H|[0.1] such that

N

gUL) = [0+ 1 ) el
and
g(v/n) - [1 - (1 - dn)1/2_l _ (1 o dn)l/z(l _ ([W'/l B ([n))l/?.].

We also construct a function & € H[0. 1] such that &(c,) = r} and k(d,,) = £, Then
for anv h € I\, 2
glh(kie ) glh(rl)) et

— > (‘1/"
(‘n (‘n - ("1 '
and
I —g(h(h{d.)) 1 —g(h(z}))
1 —d, - 1 —d,
=1 — (1 —d )V~ d(1 —dy)?
- ~ 1 —d,
L= da (1 = da))?
(1 ’_(111))1/2
Thns
h(k{c,
limn (k(e))) = +2C
T X (‘n
and
I — g(h(k(d,
. glh(k(da))) s

S
By Lemma 5.12.1 and Lemma 5.12.2. (goho k) (0) = +x and (gohok)(l) = +x.
Therefore gohoh € D, ;5 foranv h € i

Case 4t a = 0. 0 < 3 < 43¢, From Case 1 and Case 2 we require 23(1 — dy) < |

and construct a function g € H[0. 1] such that

(L) = [ (1 + 1/n)cl)

n



CHAPTER 5. SPACE OF AUTOMORPHISMS _ 147

and -
g(]n) - “ - 3(1 '—dn)-l - *3(1\— (I + (1 - dn)?)dn)]'

Also we construct a function & € H[0.1] such that k{c,) = r!

and k(d,) = 1.
Then from Case 1 and Case 2 we know that for anv h € K. {go h o k) (0) = 0 and
(gohok)(l)=3 Therefore gohok € D, for any h € 1\

Similarly as Case 4 we can use the corresponding parts of Case 1, Case 2 and Case
3 to construct the corresponding functions ¢ € H[0.1} and k¥ € H[0. 1] so that for any
h € K. gohok belongs to the corresponding D, ; for Case 0 < a < +x. J = 0.

(lase 0 < a<4+x.I=4x.Casea =0, J=4+x.Casea=4x. 0< I < +x

and (Case a = + . J = 0 respectivelyv. The proof i1s finished. [

Corollary 5.12.4 The sets S in Theorem 5.8.1 and™G in Theorem 5.11.3 are not
4
shy.

Proof. Since the set D, ., (0 < a < x) in Theorem 5.12.3 is contained in both S

and (7. Thus the Tesult follows. B

From Corollary 5.8.2 and Corollary 5.11.1 and Theorem 5.12.3 we know that the
set D, is left-and-right shy. but is not shy. This negatively answers the problem

( Fu) posed by Jan Mycielski [11].

5.13 'H|[0.1] does not satisfy the countable chain
condition '

From Theorem 5.12.3 we immediately have the following theorem for the non-locally.

non-Abelian Polish group H{0.1].

Theorem 5.13.1 The o-ideal of shy scts in H[0.1] docs not satisfy the countable

chain condition. Furthermore, there erist sets that are left-and-right shy. and which

t
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can be decomposed into continuum many disjoint. non-shy sets in H[0.1].

Proof. For cach a (0 < a < o). by Theorem 5.12.3. the set D, = {h € H[0.1] :
R'(0) = a} is non-shyv. For distinct a;, a; (0 < ay. ay < x). D,, and D,, are
disjoint. So H[0.1] contains continuum many disjoint. non-shy sets I),. 0 <o < x.

The result follows. [ |

5.14 Functions with infinitely many fixed points

In this section we study the set of functions in H[0. 1] that have infinitely many fixed

polints.

Theorem 5.14.1 The set of functions in HIO. 1) whech cross the line y = 0 in (0.1)

infinitely many times (s neither shy nor prevalent.

Proof.  let
h crosses y = r infinitely many
times 1 (0. 1)

We hrst show that F'is a Borel set. Let

Jrg. Lrynes € (001) such that o,y — &, > 1/p for

) =1 dn+3. f(r)—r>21/git rype <0 < ryge
Fupy = heHn 1] flz) /q 4141 it
and f(r)—r < —1/gif 14449 < IS Ly for: =

0.--- .n

[t is easy to verifv that £, . are closed sets and the functions in [, cross y = 0 in

(0.1) at least 2n + 1 times. Note

AU

n=1p=1g9=1

So F'is a Borel set.
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Since £ C H{0.1]\ {h € H[0.1] : h(r) < r?}. and by Theorem 5.9.1 the set
{h e H[0.1]: h(r) < r?*} is neither left shy nor right shy. so 1s the complement of F.
We now show that F is neither left shy nor right shyv. For any compact set K' C H[0. 1]
we use the ideas in Theorem 3.12.3 to choose [, and . Choose a monotonic sequence
{yn} € (0.1) and functions g. & € H[0.1] such that k(y,) = r} and for any h € K.
glh(rh)) > b glhlrhay)) < ooy Alk(ra)) > yon and A(k(2nsi)) < Yaunr.
Then goh. hok € F. Therefore F is neither left shy nor right shy in ‘H[0.1]. Hence

Fis neither shy nor prevalent. v |

Theorem 5.14.2 For any m € (0.1] and function q(r) € H{O. 1. Iet

J

S={heH0.1]: Fr € (0.1) such that h{x) = myir)}.
Then S is neither shy nor prevalent. -

Proof. {.et A\

Sp=A{he HO. 1 e e l/nl = 1/nlsuch that h{r) = mglry}. .

Then
. ™~
s=J s
n=2

We now show that S, is a Borel set. In fact, for any Cauchy sequence {fr} C S,
there exist v € [1/n.1 —1/n] and f € H[0,1] such that fi(rx) = mq(xy) and fi — f
uniformly. Thus there exists a subsequence {ry } of {re} such that o, — 2y €

(/.1 =1/n] and q(ri) = qlry). So f(ry) = mgley) and hence fe 5.0 5, 10s closed

and hence the set S 1s a Borel set. Since

HO )\ {h € H[O.1]: h(x)> gt i)}

g
In

and by Theorem 5.9.2

{h € H[0.1]: hir)> 7nq1/“)(r()}
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is not shy. then S is not prevalent. Since the set £ in Theorem 5.14.1 is a subset of
S, by Theorem 5.14.1 the set S is not shy. |

In [25] and [26] it is shown that the set S has P measure 1 when ¢q(r) = r in the
above theorem. In the above theorem we have shown that the set of all h € H[0. 1]
such that h(r) = g(r) for some r € {0.1) is not shyv. As we have remarked carlier
(see page 105), however. for any g(r) € H[0.1]. the set of all h € H[U. 1] sueh that

h{x) = q(z) for all r in some subinterval of (0. 1) is shy.

5.15 Concluding remarks

The theory of shy sets in an Abelian Polish group seems to be completely understood

7

(1200 (130 (14, 56 [27]. 18] [52). [8]). Only partial results are available. however.
for non-Abelian (non-locally compact) completely metrizable groups ([18]. [41]. [52].
and some results in this thesis).

It had been an open problem (see XI}’(‘iolski (11]) whether in a non-Abehan Polish
gronp there could exist sets left shy and/or right shy that are not shy. We have
answered this in the Polish group H[0.1] by proving the existence of non-shy Borel
sets that are left-and-right shy. In addition we showed that the Polish group H{0. l}
does not satisfv thé countable chain condition.

Solecki [52] sh(SWGd that the o-1deal of shy sets in an Polish group admitting

an invariant metric satisfies the countable chain condition iff this group is locally

compact. The following problem is still open.

PROBLEM 14 Is it true that the o-ideal of shy sets in a non-Abehan Polish group

satisfies the countable chain condition Uf the group s locally compact?

The results in this chapter suggest the following problems. We conclude the thesis

with these problems.
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PROBLEM 15 Dors there exist a left shy (right shyj set in H[0.1] that is not right
shy (left shy)?

PROBLEM '16 Docs there exist a shy (left/right shy) set in H{0. 1] that is of the

second category.

PROBLEM 17 Dors the o-ideal of left shy (right shy) sets in H[0.1] satisfy the

countable chain condition?

PROBLEM 18 [n every non-Abclian. non-locally compact. complitely metrizable

group. are there sels that are left-and-right shy. but not shy?
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Glossary

additively shy set See page 93.

almost every  See page 10. :

algebraic basis A subset £ is an (i/g(bz‘az'c b'(zsz'a‘ of a Fréchet space [ if every
clement in /' can be expressed as a unique linear combination of finitely many elements
i £

analytic Let X be a complete. separable metric space. A ;(*t E C X s said to be
analytic if E is the projection of a closed subset " of X" x NY to X" where NV is the

product of countably many copies of the space N of natural numbers and equipped

with the usual metric’

( ) = m.—n,|
p(m.n) = E A ~.
R 1 2901 + [y, = )
1=
forallm = (mymymy. ). n=(ny.nyns - ) € NN
approximately continuous A function f is said to'be approrimately continuous

on an interval [a.b] if for every r € [a.b]. there exists a set [ with r as its density
point such that

lim f(y) = f(r).

y—r. yeE "
Aronszajn null See Definition 2.3.3 and Definition 2.3.4.
atomless measure A\ measure pis an atomless measure if for evervr € X. u({r})

0.
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- .
automorphism A homeomorphism 4 of an interval {a. b] that satisfies h{a) =

a. hib) = bis called an automorphism of [a.b].

Baire 1 function A function is said to be a Baire | function if it can be written
as the pointwise limit of a sequence of continuous functions.

Banach algebra A Banach algebra A is a Banach space that 1s also an algebra
and satishies that |lryl] < ||z]l - |lyl] for all z.y € A.

Besicovitch set A Besicovitch set is a plane set which contains a unit segment
in every direction.

Borel measure A measure i on a topological space X is called a Borel measure
if 115 defined on all Borel sets of X'. In this thesis we consider u defined on all
universally measurable sets.

Borel probability measure A Borel measure on a topological space \ i
called a Borel probability measure if u(X') = 1.

Borel selector ‘Let (¢ be a Polish group and H C ( be a closed subgroup.
Then a mapping s : G/H — (7 is a Borel selector for the cosets of H if it is Borel
measurable and s(cH) € £ H.

Borel sets If X is a topological space. the smallest o-algebra containing the
closed sets is called the class of Borel sets.

left-and-right shy See Definition 2.9.6.

Cantor group  The Cantor group is the set of all sequences of 0's and 1's equipped

: . @
with the metric
a0 1
( ) = }: |0 =yl
play) =) 5
=1 =
and the usual group structure ry = (ryy1.- -« Toyn).
c-dense Aset S C Ris c-dense in an interval 1 if the intersection of 5 with every

subinterval of I contains continuum many points. Generally. a set 5 of a metric space

15 c-dense 1n an open set O if the intersection of S with every non-empty open subset

>
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of O contains continuum many points.

Christensen null See Definition 2.3.1. Definition 2.9.1 and Definition 2.12.3.

co-analytic A set 1s co-analytic if‘i_t 1s the complement of an an®'tic set.

compact A snbset A of a metric space is called compact if every. open covering

of A has a finite subcovering.

completely metrizable A topological group is called completely metrizable if

its topology can be derived from a complete metric on it. 2

continuum hypothesis The assumption that ¢ = 8| is called \the continuum

hypothesis. where ¢ 1s the cardinal of the set R and R, is the next cardinal after the
“cardinal of an infinite countable set.

convolution A convolution of two measures i and v on a topological group
1 defined by

pev(A) = poxu({(ay) s oy e A}
)

for every universally measurable set A A convolution of a measure p with a

characteristic function of a set A is defined by

\.4*/1(1):/ \aloy)puldy).
@)

countable chain condition See Definition 2.15.1.
countably continuous See page 91.
Darboux function A real-valued function defined on an interval [a. b] is said to

be a Darbour function on [a.b] if for each r.y € [a.b] with r < y and ¢ between f(r)

and f(y) thereis = € (r.y) with f(z) = c.

discrete group A duserete group is the group with the discrete topology.
Fréchet differentiable A mapping f from a Banach space to a Banach space Y’

1s Fréechet differentiable at r e X if

Ll ) = f()
1m

t—0 t
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exists for every h € X and the limit 1s uniform for [[Al < 1.

Fréchet space A completely metrizable, locally convex space is called a frechet
space
Gateaux differentiable A mapping f from a Banach space X to a Banach space

Y is directionally Gdteaur differentiable at r € X if
flr +th) - f(r)
lim

t—0 t

exists for every h € X. Further, the mapping f is Gateaur differentiable at r € X if

there exists an element ¢ € X'~ such that

flr+th) = fir)

gth) = lim t
for m"ory heX.
Gaussian measure See Definition 2.4.2.
Gaussian null in the ordinary sense A set S ina Banach space is said Gaussian

null in the ordinary sense if there exists a Gaussian ’measurf‘ i such that u(S) =0,
Gaussian null in Phelps sense See Definition 2.4.3. 7

Haar measure An invariant measure on a locally compact group in called a flaar
IMeasure. N

Haar null, Haar zero See Definition 2:3.1, the comments following Defini-
tion 2.3.1, Definition 2.9.1. Definition 2.9.3 and Definition 2.12.3.

Holder continuous A function f. defined on an interval [a. b]. is said to be Holdcr

fmz[z'nuous at r € [a.b] if there exist M. & > 0 such that for all y € [a.b]. |y — r| <
B R

o Uf(y) = flo)l < Ml =y

Holder continuous with exponent o A function f, defined on an mﬁor\'al [a.b].

[y

is said to be Hélder continuous with crponent o at r € [a.b] if there exist Vo >0
such Atﬁﬁ:éit forall y € [a.b]. ly — x| < &1 f(y) = f(o)| < Mz —yl". M

A . N : : : .
homesemorphism A bijection h from a metric space X to a metric space Yoo

1

called a'homeomorphism if both h and A~ are continuous.

>
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\
hyperplane A hypefplane in a Banach space B is a set of the form {r € B :

\\\

flr) =a} where f is a non-zero linear functional on B and a is a real number.
isomorphism A mapping T from a Banach space X onto a Banach space ¥ 1s
an somorphism if T is one-one, linear, continuous. ,

left Haar measure A Haar measure is a left Haar measure 1f 1t is left invariant.
left shy See Definition 2.9.4.

left transverse See Definition 2.9.1.

Lipschitz (continuous) A function f. defined on [0.1]. is Lipschit: at a point
r € [0.1] if there is a constant M > 0 such that for all y € [0.1]. [f(z) = fly)} <
Mir — yl. Once this inequality holds we sav that f1s .‘\[-Lipschi[:.

locally finite A Borel measure is locally finite \f every point © € X has a neigh-

borhood (" with u(l’) < x.

lower density 1 See page 18.
m-dimensionally shy See Definition 3.2.1.
metrizable A topological space (N.7) is metrizable if there 1s a metric d on 1t

so that 7 1s the topology of (\X.d).

multiplicatively shy See page 93.

nowhere monotonic See page S1.
nowhere monotonic type See page 31.
n-th symmetrically continuous A function f is said to be n-th symmetrically

continuous at a point r of an open interval (a.b) C R if

i

M&Z('l)‘(gﬂf + (n—20)h)=0.

1=0
observable See page 48.
Polish group A Polish group is a separable completelyv metrizable group.

Polish space A Polish space is a sepuarab]e completely metrizable space.
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positive cone In an ordered vector space E. the set {r € E: r > 0} is called
the positive cone.

positive lower density See page 18.

positive upper density See page 43.

Preiss—Tiser null See Definition 2.3.5.

prevalent See page 10.

probe See page 64.

Radon measure A Borel measute u on a Hausdorff space is called a Radon
measure if p is locally finite and tight.

Radon probability measure A Radon probability measure ; on a Hausdorff
space X is called a Radon probability measure if it is a Radon measure with p(X) = 1.
right Haar measure A Haar measure i1s a right Haar measure if it 1s right
invariant.

right shy See Definition 2.9.5.

right transverse See Definition 2.9.5.

semigroup A semigroupis simply a set (7 with an associative operation: G x (v —
(;. In this thesis we always assume that our semigroup has a unit element.

shy See Definition 2.3.1, Definition 2.9.3 and Definition 2.12.3.

s-null See Definition 2.3.2.

spanning set In a Banach space X, a set (" is a spanning set if the whole space

X 1s the afhine hull of (". Here the affine hull of a set A is the set

{i(ur,: iﬁx =1, r,eA me€ N},
=1 =1

super-reflexive A Banach space E is said to be super-reflerive if each Banach
space which is finitely representable in it is reflexive. We say a Banach space £ 15
finitely representable in F if for each finite dimensional subspace L C E| and a > 0

there exists an embedding ¢ : L — E such that a7 '||r]] < iz} < allz]| (z € L).
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support of a measure  The support of a measure u on a metric space X is defined

by

supp(u) = {r € X : u(U) >0, VU a neighborhood of r}.

symmetrically continuous A function f is said to be symmetrically continuous
at a point r of an interval (a,b) C R if 1

. A

fim{f(x +h) = flz — )] =0.°
T-smooth A Borel probability measure p is 7-smooth if (") = sup, u({',) for

every family of open sets {{/,} filtering up to the open set [

thick See Definition 2.19.1.

tight A Borel measure p is called tight if u(B) = sup u(A') for all Borel sets B,
where the sup is taken over all compact sets A° C B.

topological group A topological group is a group ((.-) endowed with a topology

I'is continuous from G x G to G.

such that (r.y) — ry~
topological semigroup A topological semigroup is a completely metrizable semi-
group for which the operations r — ar and r — ra are continuous.

topological space A topological space is a pair (X.7T ). where X is'aset and T
is a collection of subsets of X such that & X € T and T is closed under arbitrary
untons and finite intersections.

transverse  See Section 2.2.

typical function If a set of functions with some property is a residual set in a
function space, then evety function in this set is called a typical function

typical property See page 1.

ubiquitous See page 48. .

universally measurable A set of a topological space X is universally measurable

if 1t belongs the u-completion of each finite Borel measure u%n X.
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universally Radon measurable A set of a topological space X is universally
Radon measurable if it belongs to the p-completion of each finite Radon measure p
on X*

upper density 1 See page 18.

well-ordering A strict linear ordering < on a set X is called a well-ordering for
X if every non-empty subset of X contains a first element.

Wiener measure  See Definition 2.5.1.

Zarantonello null See Definition 2.6.1.



