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Abstract 

Haar null sets (or shy sets) play an important rolt in  studying propcrtics of function 

spaces. In this thesis the concepts of transverse measures. left shy sets and right shy 

scts arc stydied in general Polish,groups. and thc basic theory for the lrft shy sets 

anif right s h y  scts is established. In Banach spaces. comparisons of shy scts i v i t h  

othcr r~otions of srrlall sets (e.g..  Aronszajn null sets and Galmian null sets in  F'hclps 

sense) arc made, and examples of non-implications are given. Their thickness arid 

prcscrvations of various kinds of null sets under isorriorphisms art1 investigated. :I 

11civ description of sh\. sets is given and is used to study shy sets in finittl dirricrlsio~lal 

space\. Thc .  thcory is applied to a nuniher of specific function spaces. Sornt. ~ I I O \ V I I  

,-- 
t~.pical  proper tic,^ are shoivn to bc also p r e t d r n t .  

' 

, 
Finally, thc notions of Ivft shj. sets and right shy scts are applied to stud! propvr'tic.~ 

f 
of t h t ~  space of honicomorphisrns on [0, I ]  that le$ve 0 and 1 fixed. Se\.eral interesting 

r-sarnp1t.s are gi\.cn of nor]-shy sets which are null in the sense of some othcr notio~ls. 

E:sairiplcs of left-arid-right shv scts are fourid which can be decomposed into corltiriuurrl 

many disjoint, 11on-sh~. sets in R[O. 11. This shobvs that the. cr-ideal of shy wts  of thc 

non-.Abvlian, non-loca!l\. compact spacc %[O,  11 does not satisfy the c11ai11 

condition. ' 
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Chapter 1 

Introduction 

..I glossarj. is rnadr. at t hc  m c i  of this t hcsis. Thr. word.; arc r~lainly frorti Fit,al .-\rlalj.sis. 

\leasure Thcorj.. ?iipolog- and Functional Analysis. Some ivords (e .g. .  lcft shy and 

prohe) are cither new or in the literature and their definitions arc  givcn in tht. corlt>.ut 

of t hc t hcsis. Sorrlt tt,rrris ( e . 8 .  Bariach spacc and first catcgor).) i v i t  hout csplarlations 
# 

can he found in thr. text books [ l l ]  and [45]. 

Sirlcr. lS9!1 ir:ht.n R .  Haire [35. pp. -Is] introduced ic dt,finiti\)r~s of first catt,gor>.. 

wcorld catt>gory of sets, arld established thc  Hair? categorj. thtvrerri. tht. Hairc catc- 

gorj. thrwrv has hcen  ividel~.  uscd to characterizt. pr0pt.rtit.s of sets, r.spcciallj tj.pical 

propr~rtics. anti to show the  esisterice of some path~logical  functions tha t  are usually 

difficult to  construct. Here a typical p r o p f r t y  is a property brhich holds for all points 

i l l  a cornpletc nletric spacc except for a sc:t of the first catcgor~. .  Thcre ar? sorilc. rt,- 

strictions in applications of the E3aire. ca tegor~ .  thcory. For cxaniple, irht.n ~ r t >  tiiscuss 

a probabilistic rvsult on the likelihood of a givt,n prdperty on a furlction span1. thcl 

Hairc catt:gory thcory just provides us the topological structures; Ixbesguc rilr~asurt 

thtory is not subs1111~cd bj. the Baircl category theory. I.'urthcr in a Ranach space v 
it can b r  shoirn that there are Lipsrhitz functions ivhich are not differentiable 011 a 



dtrise C;* set. thus t h t  topological category theory is not ivell suited for differentiabil- 

it!. theor). of Lipschitz functions. Frequentl!. \ve need a notion of measure zero in a 

ger~eral setting. that can be.used much as sets of the first category have been used to 
i 3 

describe p r~per t i e s  as typical. 

In 1972 Christensen [l'] first generalized the conccpt of sets of Haar measure zero 
i* 

on a locally compact space to an Abelian Polish group ivhich is not rieccssaril\. localiy 

compact. S~lch  zero sets have been called Hnnr : f ro  sets .  I I m r  null set.<, C'hri.$trn.q~n 

111111 .set.$ o r  . ~ h y  set.< [ I ? ] .  [.56]. [S] .  [.)TI. \lye state i t  in the folloiving definition. 
' 

i 
.-I nniur..;nlly nlcn.sumblf s f  t 5' i n  nn  4 bdinn Poli.,h group 6' i s  said to 'bc  a Ilnnr 

: f r o  s f t  if thcrc is n Bowl probability nlrasurc p on G' such that p ( S  + x )  = 0 for (111 

s f (;. 

('hristeriwn [ 1 4 ]  showcd that this concept of [Iaar ztro scts is vcrj. s~~cccssful in, 
. J .  

rriarly rcspccts. for esarnple in extending Itadenlacher s classical thcore~n that a locally 

I,iphchitz rnappir~g froni R n  to R m  is differentiable alrrlost c\.er>.~vhcrc to mappings 

htivctw gc:ni.ral Banach spaccs. I r i  l9SO T. Topsac and , J .  Hoffman-Ji~rgtnscn [36] 

c.stt.ridrd thv notion of IIaar zero h ~ .  Christensen to general topological seniigrorips. 

In 1991 Brian H .  Hunt. 'I'. Sauer and J .  .A. J'orke ['TI rtdiscovcrecPth7. concept of + :  
Haar w r o  scSts i r ~  Ranach spacvs. Thty called such scts s h ~ .  sets. (In [?TI all subsrts 

of a Rorcl s h  set are also ternled shy.) In [27] the complement of a ski!. svt is ca1lc.d 

prr ~.ulcnt .  and a p r o p e r t  in a rric.tric space is said to he prcz-c~lfrlt i f  i t  holds for 

all points exctpt for a shy set. or i t  is said that alri~o,,-t e r f r y  function satisfies such 

propvrty. I n  [27]  the notion of shy scts is ustd to study pr0pcrtit.s of certain c1;tssc.s 

of fu~lctions in function spaces. I'or cxaniple. i t  is easy to show that almost ei.ery 

scqlicrice { a , ) , ~ ,  in f Z  has the property that C:, a ,  divcrgcs. A n  att ract i~.c rtsult 

by Hunt [2S] is that almost ever! function in thc space of continuous functions is 

noivhcre differentiable. I t  has been popular to study t~.pical  properties of function 

spaces since F3anach is] and 1Iazurkieivicz [10] applied the Bairtx category theorem to 



give existence proofs of nowhere differentiable. continuous functions independently 

T.he study of prevalent properties of function spaces offers an interesting contrast 

to the typical properties. Usually, i t  is more difficult'to show a property is prevalent 

than to show a property is typical. .A typical property may not be a prevalent property 

arid \.ice versa. Thii thesis is devoted to  sj.stematically studying shy sets. left shy 

sets and right shy sets in non-separable Banach spaces and general Polish groups. and 

ini.estigating \i;hetber a typical property is prevalent. and showing at some known 

sets characterized by other notions are shy or non-shy. 

Iri ('haptcr 2 ive introduce various f m n s r e r s ~  notions. and the concepts of l e f t  s h y  
t 

.set..;, right s h y  s c f s  in general Polish groups. The basic theory for the left sh- sets and 

- right sh?. sets is es tabl i~hed.  showing that.  in a general Polish group, the countable , 

* uniori of left s h ~ .  sets is again left shy. and open sets are neither left s h ~ .  nor, right shy. 

Tlicrcl arc. seicral estc.risions of the concept of shy sets to  nori-scparable Hanach spaces 
2 

(scc ('hriste~iscri [I t ] .  'Topsoc arid Hoffman-Jorgenson 1.561. I Iur i t  ct al. ['TI. Horivein 
. 

arid 1Ioors [ d l ) .  Thc latter three are equivalent. \Ve corripare s h .  sets. in  a I h i a c h  

spact.. w i t h  +null svts (scc Scction 2 . : 3 ) .  .-Ironszajn null sets [L'].  Prciss T i t e r  null scts 

[ - I 6 1  arid (:aussian null sets i n  I'hclps scrlse [-151, giving examples of non-irnplicatiorls. 

c Also \r.e discuss their thickness of farioris kinds of null sets. and their preservations 

under isomorphisms. In [ IS ]  Dougherty has classified non-shy sets into eight types, 

and merit ioned some esamples of non-implicat ions. ~vhile l y e  gi\.c csarnples in details 

.for,pIl non-impli ations. and exact characterizatioris for some rion-shy scts. b 
In [.)TI IIunt. Saucr and l'orke introduced the definition of a p ~ o b c .  :I finitt, di1nr.11- 

sional subspace P of a J3anach spacc is called n probe for a set T or its cornplcmcnt i f  

Lebcsgue nicasurt supported on P is t r ans~~crse  to a universally rr1t:asurable sct ivhich 

contains the coniplcrnent of T. To show a set is shy we often try to find somt3 probe 

of this set. In L'hapter 13 we use probes arid elementary linear arguments to s t ~ d y  

some siniple pre\.alcnt properties in function spaces. Also \ve use the dirricnsions of 



- probes to gi\.e a new description of shy sets as follows. .4 shy set S 5 .Y is said to 

be rn-dirncnsionnl if 5 has a m-dimensional .probe but no n-dimensional probe for 

n < 171. and 5' is said to be infinite-4imen.sional i f  ,Cahas no finite dimensional probes. 

\\ find that .  in finite dimensional spaces. this new concept for shy sets is related 

to Kakeya problems and Hesicovitch sets (see [ ' l ]  and [2'2]) ,  and so s o h e  results are 

obtained. In [1 ' 2 ] .  [56] and [27]  it is stio~vn independent1 that conipaet sets arc shy 

in Abelian Polish groups. Abelian semigroups and Banach spaces. :\ method  sing 

rcsults from functional analysis is givcn to  s h o ~  that certain sets including compact 

srlts a r t  shy i n  Banach spaces. 
I 

I n  ('hapter 4 sevcral known typical properties arc shoivn to  be also prevalent 
* 

111 [I01 Hr~irkrier and Pt.truska shoived that .  in thr spaces 3 = b.4. bDO1. bO1 of 

ho~lndcd approsimatcly coritiriuous functions. boundccl Darbous 13air-c 1 func.tions 
I 

a11d hounded Baire 1 functions equipped Lvith the supremum norm, for any a - f i i t c  

Horril rneasurv 11 on [O.  11. the t!.pical functions are discontinuous 11 almost e\..cr~.whert. 
. , 

ori [O .  l j .  i l c  show that .  in thc spaces F = bA. blDO1.' b B ' ,  %r any a-finite Hore.1 

riieariire 11 on 10. 11. the prcvalent functiogs are also discorlt inuous IL alrnost ercryivherc 

on [O.  11. 111 [5O] it ivas sho\%.n that ,  in the spacc BSC'[a. b]  of bounded syninic.trica41~. 

cant in~ious furictions on [(L. b] equipped with suprcrrillrri riorrri, t ht. tj,pical functioris 

have. c-dcrisc sets of points of discontinuity. Here we show that the p'rt.valent functions 

of E?.cC[(i. b] also ha\.? c-dcnse sets of points of discontinuit>.. 0 1 1  the space C' [O.  l j  of 
-- . 

continuous functions ivc can also impose the operation of nil~ltiplicatiori of fu~ictiorls 
1 

so that . C'[O, , I ]  becomes a semigroup. I n  C'haptcr -1 wc also s t u d .  the niultiplicativel~. 
1 

shy sets--in the space C'[O. 11 of continuous functions. and discuss the* relations of 

nrultiplicatii-el! shx bets and additi\.ely shy sets. For crample. ivc shun that the srt  

of cor~tiniioiis furictions or1 [O.  11 ~ v i t t i  at least orir zero is not additivel~. s11y. but is 

n iu l t ip l i ca t i~~e l~~  shy i n  C[O. I ] .  

i \ 'e use X[O, 11 to dc~iote  the  spacc of homeomorphisms on [O, 11 that  leave 0 and 



1 fixed. In Chapter 5 we show that .  in X[O. 11. thew exists 4 

( 1 ) a'Horel probability measure p that is hot h left transverse and right t ransvcrse 

to  a Borel set .Y. but is not transverse to .Y. 

( 2 )  a Bore1 prohahilit) measure p that is left (ransverse to a Borel set Y. i t  is 

a I 

not right transverse to .Y. \ 
( 3 )  a Horel probabi l i t  rncasure 11 that is right transverse to  a Borel set .Y. but is 

not left transverse to  .Y. ,' 
/ 

\\.e also find examples of Icft-and-right shy sets which can bc decornposecl into con- 

'tinuuni many disjoint. rion-shy scts in X[O. 11. This answers the problcrii ( P o )  p o s d  
st 

by .Jar1 lI~.ciclski in [ l l ] :  Does t hc cxistcnce of a Borcl probability rncasure left trans- 
*:., 

i.c.rsc to a set 1 -  i r r ip l  that thc set 1 .  is s k  in a non-locall? conlpact. conipletcl~. 
I' --. 

rrietriza'hle group'? From this ir.c concludc immediately tha thc a-ideal of shy scts in . _ i .  
X[O. I ]  docs riot satisfy the countable chain condition. In [25] and [26] Grq 1Iaulciin i 
and \\.illinmi rlcfincd a Borcl prohahilit) rncasure Pa on X[O. 1] from a prhtjahilistic 

poirlt of i.icw. and stiidic~l ~vht.thcr sornt interesting sets arc null under this rncasurc 

0 .  1 , .  111 ('haptcr 5 1r.c iisc our notions of shy sets. left shy stlts and r i g h e h y  sets 

to st u d j .  sortlc of t hc sets discussed by Graf. l lauldin and \\.iIliarr~s. For esarr+p'lc.. 

(;raf.  lIaulclin arid \.\'illianls sho\ved tha t ,  for any m E (0, 11 and 1 E [ I ,  +x). the 

sets {h E X[0. 11 : h ( x )  > rnx) and { h  E X[O, 11 : h(x) 5 lx} are riull riniivr thc 

rrleasurc Pa.. \\.e show that t hew two sets are neither shy rior pre~alcnt .  C'ornparisons 

of prt~i.alcnce rc3sults arc made ~ v i t h  sorrlc typical results. arid son~t. kno~vn rcsults i l l  

[ 2 5 ] a n d [ 2 6 ] .  . 



Chapter 2 

Shy sets 

2.1 Introduction 

('hristenseri j 121. Topsoe anti IIoffrnan-Jorgensen [56j. and Hunt et al. [XI st udicd 

.sh.- wts  i n  :\t)clian Polish groups. topo14gical sernigroups and Hanach spaccs indc- 

pvridt'nt ly. 111 this section we study left s h ~ .  sets arid right s h ~ .  sets in gcricral Polish 

grollps. establishing thc basic thcory for left s h ~ .  sets and right shy sets. \l'c coni- .? 

par(. shy scts with other notions of null sets in Ranach spaces. Fo;esarnplc~. iri  thc 

Banach space of continuous functions on [0, 11 that are zero at x = 0. ttic set of c-ori- 

tinuous. no~vhere Holder continuot:s functions Lvith exponent a ,  0 < fi < 112, has 

\l'ienc.r measure zero. but this set is prevalent (see IIunt [ ? $ I ) .  ('hristerlsen [I?]  a s k d  

\vht.ther any collection of disjoint uni~.ersally n~casurable n o n - s h  sets must bt. coririt- 

ahlc. (This  property of a a-ideal is c'alled t h f  courztablt chain condit ion; set. pagt. 5 9 . )  

Dorigherty [ IS ]  ans\vered this question i n  the negative by giving a n  example. Solecki - 
[52] sholvcd that a Polish group admitting an in~gr iant  nictric satisfies the. couritahlc 

chair1 condE%nff this group is locally compact. 



i 

CH.4 PTER 2. S H l -  SETS 

2.2 The transverse notion 

I n  all of our discussions in this section we suppose that -Y is a linear topological space 

and Lie assume we have been given a set 5' & .Y that is a universally meastirable set 

in *Y. Some of thc terminology appl~cs  as w l l  to an Abelian topological group since. -. 
for some of the terminolog., we use-cl~lril~. the additive group structure to define the 

concepts. \lost of our discussion in the sequel, however, will be in the setting of a 

Banach space. and, occasionally. in a non-Abelian Polish group. 

Our goal is to  define a measure-theoretic notion of smallness analogous to  t h r  

topological notions of first category and a direct generalization of thc notion of a set 

of Lcbesgue rncasrire zero in finite dimensional spaces. 

:Ill measures in the sequel arc assumed to be defined on thc Rorel sribsct.; of the 

space and can be tstenrled to all universally ~ncasurable subsets. 
e 

Definition 2.2 .1  \\.e say that a probability measure /L on .Y is t r a n . ~ ~ ~ t r s ~  to a set 5' 

for all !/ E .Y. T11us p assigns zcro rncasure to .i' and to ever!. trarislatc of .i' 

Sote  that t h c w  is no intcrtst in rneasures here that art. not diffuse. I f  p ({ . ro ) )  > 0 

for some point so E .Y then / L  cannot bc transverse to any non-enipty set. In fact, i f  

is transverse to some norrcmpty sct A then p ( - l + y )  = 0 for all y 6 S. C'hkse y, t .-I 

then s o  E .+I - yo + .ro. So 0 < p({.ro}) < p( .4  - go + . ro )  = 0. This is irnpossiblc. 

Sornc authors (e .g. ,  [S])  call the measure p a t f a t - r r l c c l s u r , c  for ,i' i f  p is transversc 

to  5. \\*e could also adapt language from (271 and call p  a probe in the sense that it 

is used to test or prove or "probe" the measure-theoretic nature of the set 5'. 

In many applicationsathe construction of a transverse measure for a srt S ( i f  thcrc 
! 

is one) can be done by a simpler dcvice. Often a measure 11 can be found that 
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.d is supported 6n a finite dimensional subspace or on some simple compact set. For . 

example if  ever:; line in the direction x  for some x  E .Y nltets ,$ in a set of one 

r dimensional linear measure zero then a probability measure 11 transverse to 5' can be 

constructed by writing 

p ( E )  = X 1 ( { t  E [O. 11 : ,  t,x E E ) )  
B 

M here XI dcnotes one-dimensioqd Lcbesgue measurt. 

', 
~ e m r n a  2 .2 .2  :1 set 5' h a $  thr yroprrty that t r r r y  irnc In the dirrctrorl x  ( x  E -Y) 

p ( E )  = X 1 ( { t  E [O .  11 : ts E E ) )  

1.. trclnslvfr.qc to  +'. 

Proof. For an?. y E .Y. 

The abo\.e lcrrirrl cads to the follo\ving clcfinition: & 
Definition 2 .2 .3  A n  t.lcment s E .Y is said to bc tmn.srcr.+c to a svt .5' i f  

{ t E R :  t x + y E 5 )  

is Ixbesgue measure zero for c\.cry y  E .Y 

Again Lve can say that x is a t f s t  or a probf for S, usir~g lariguagt. that othcr 

authors have found convenient. 

I t  is corlvenient a150 to express this fact in a varit.t>. of ~r lar~n&-s .  T h u s  ive sa>. that 

the subspac< spnrlrlrd bg x  1s t r x~1s~ 'cr s t .  t o  5' or that thr tn t r  r m l  

* 
[O .  x ]  = { tx  : t E [O.  11) 



i.s tran.qrerse to 5'. By extension of this a collection { x l . x ~ .  . . . ; x k )  of linearly inde- 

pendent elernmts of .Y is also said to be tran.~z.crse to 5 i f  

k { ( t l . t  2 . . . . . t k )  E bt : t l x l  + . . . + t k ~ k + y  E 5) 

is of k-dimensional Lehesgue I-r~easure zcro. Also ive have a similar result as in  t h c  

one-dimensional case. The proof is sirnil r 

* a 
J ' 

% .  

I ,  Lemma 2.2 .4  ,-I sft  S hn.9 t h c  propcrty that e r ~ r y  tramulate of t h e  k-dzrnfnslonal 

Occasionall lincar arguments fail to produce a transvcrsc nieasurc and onc needs 

to scck other compact sets on ivhich the measurc is supported. Let F' : [O .  11 - -  .Y be 

a corit inuous function. Thcn C '  = F([O. 11) is a compact set and ivc sa! (' is tmn,\ryf rst- 

p [ E )  = X l ( { t  E [O,  11 : F(t) E E ) )  

2.3 Null sets in a separable Banach space 

The definitions in this section arc generalizations of the notion of a set of Lcbcsgrie 

measure zero in it-dimerisional spaces to subscts of a separable Banach space. 
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l\-e assume that .C is a uni\.ersally measurable subset of a separable Banach space 

.Y. ?'he following definition is a version frorn [ I ? ]  i n  a separable Banach space. Its 

extensions to non-separable Banach spaces and Polish groups can bc found in Sec- 

tion '2.12 and Section '2.9 respectively: 

Definition 2.3.1 .A universall\. measurable subset S of a separable Banach space .Y 

is said to  be a C'hrist tnsen null set (shy) i f  there is a Bore1 prot~ability rncasurc or1 .Y 

that is trari.sversc to  5'. 

This concept is our central concern throughout. The article [27j has popularized 

the tcrrn .shy for Horel sets that are Christensen null and all their subsets and i v ~  shall 

rriakr. usc of this term too. The complement of a shh. set is said to bc yr-r r n l f r ~ t  . 111 

h is  original papc,r (.'tiristerisen [12] called shr- scts flanr- x7.o sc t.5 and ot hcr arlthors 

Thr. rc.rrlaining dvfiriitions in this section arc narroivcr than Ikfinition 2.3.1.  k:ach 

of t-tic following classc.s of sets i.s a proper subsct of the shy scts i n  gcr~cral. but may 

coincide i n  special cases. 

Definition 2.3.2 :\ u~li\.crsally rncas~irablc set 5' i n  a separable I3ariac-h space. .Y is 

\ 1 = 1  

such that for cacti i thcrc exists a1 clt-nient c ,  i n  .Y that is t ransiwsc to  .<, \ 
i d 

'I'llc folloiving definition is frorn Aronszajn ['I. 

Definition 2.3 .3  :I Bore1 set .\' in a separable Hartach spact) .Y is said to bc an 

span is dense i n  .y thcrc is a partition of S into Borcl subsets 
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, 
such that for each i the element r ,  is transverseeto S,. 

I t  is convenient for contrast to give a similar definition rnoti\.ated by that of Xron- 

szajn [2]. The original paper studies the Bore1 version of Dcfinition 2 .3 .3  -ire give a 

uni\.ersally measurable version as \yell for comparison. 

Definition 2.3.4  .A set 5 in a separable Banach space .Y is said to bc an .4r-onsznjn 

nu l l  sc t  (unir .crsal ly  mcnsurnblc  scnsc)  i f  for every sequence { c l ,  € 2 .  € 7 . .  . . ) whose 

linear span is dcnse in .Y there is a partition of 5 into universally measurable subsets 

s11c.11 that for each z thc clt.mcnt F ,  is transverse to 5, 

I't.rt~aps thc narroir.r.st \.ersiori of a null sct in this spirit is that frorri l'reiss 

I'iicr [-161. 

Definition 2 .3 .5  :I uni\.ersall~. ~neas l~rablc  sct 5' i n  a scparablc Harlach spac-tb -1- is 

Dc.firiiti6n 2.3.1.  2.3 .2  and 2.3.5 all ha\.e sirnilar forms i r i  t h v  Horcl wrlse. i.e.. 

rr>plac.ing t hc uriivvrsall~. measurable condition by the requiremerit that the. sets arc 

Dorel. The abo1.e definitioris in the univtmally measurable st,nse arc parallel to t tic 

definitions in t hc el sense but they are diffcrcnt. :\ Christt.rlsc>n riull set rlccci not 

be Horel. The foll ng sirriple example car1 show this. 
8 : 

Example 2.3.6 In W there is a ('hristcnscn nu11 st,t ~vhich is riot Hort.1. \.\..c krlow 

that in W there is an analytic set f? ~rhich  is not Bore1 (see [ I  1 ,  pp. 4921). So therc is 

a Horel set F 2 I1 such that H \ I.' is 1,ctwsguc nieasure zero. Thus the svt fj \ I;' is 

uni\.crsally measurable and so is ('hristcnscn null but i t  is not h r e l  frorn thc folloiring 

a statement. 
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The abo\.e result will be given and proved in the nest section. 

From the above it is easy ta  see tha t ,  in the real line R .  I'reiss--Tiger null sets. 
0 

:\ronszajn null sets. .s-null sets. and Christensen null scts are equivalent to Lebcsgue 

measure zero sets that are uni~.ersally measurable. Ho~vever. in R" ( n  2 2 )  the class 

of Pre iss  TiSer null sets is much srnaller than the class of Lcbesgue measure zcro scts 

that arc unii-crsall~. measiirablc. This is bccausk any proper subspace of R" ( n  2 2 )  

is 1,ebesguc nicasurc zcro but is not Preiss--Tiger null. 

\\.c now compare in general these different sets in the universally nieasurablc scrist.. 

Thc follo\ving inclusions are ob\.ious: 

arc proper. 

Example 2.3 .7  I n  the plane W 2  t h ~  set { A t l  : X E W) is ob\.iousl\. :\ror~szajn r i u l l  

n.hcrc. c 1 = ( 1 . 0 ) .  lIo~vr>\.cr i t  is not Prciss 'I'igcr null sincc thc t.lt.r~icnt e itself is not 

t rans\.ersc to it  . 

Example 2.3.8 Thcrc is ari .+null sct that is not :\ronszajn ~ i r i l l .  I n  fact. i n  I.:sar~i- 

pit. 2 . 4 . 4  the sct Ii is cornpact in the infinite dirricr~sional scparablc Rariach spaccb .Y. 

So i t  is ,+null (sec 'rhtlorcm 3.4 .2)  . S o t e  thc sct li is not Gaussiari null iri Pllclps 

scnw   st^ Gaussian r i i i l l  sets in Sect ion 2.4 and Example 2.-1.4). Since arl :\ronszajri 

null sct must be a Gaussian null set in Phelps sense [15], thus the set A' is riot :Iron- 

szajri null. Since an .+null set is C'hristensen null so the sclt /< is also an csanlplc of 

a ('hristcnsen null set that is not Aroriszajn null. 
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R t m a r k .  In the plane IR2 a Christensen n u l l  set is an s-null set (see Theorem 3.2 .4) .  

Hoivcver ive do not knoiv whether there is a Christensen null set that is not s-1lul1 in 

- Wn ( n  > 2 ) .  .. 
-" 

PROBLEM 1 In a  s ~ p n r n b l ~  R a n n c h  s p r c  2s t h ~ r c  n  C'hrt<<fcn..~rc null sct t ha t  1.5 
Pt 

no t  s-null? 

2.4 Gaussian null sets 

The rr~ain purpose of this section is to compare the null sets in Section 2 . 3  i v i t h  tivo 

other kinds of small sets. Gaussian null sets in Phelps sense and Gaussian null scts in 

the ordinary st.nsc. For convenience ive require Gaussian measures dcfincd on E3ort.l 

scts. Thc  folloiving thrcc definitions arc reproduced froni [-I51 

Definition 2.4.1 A n o n - d t g c n t r c r t ~  C;nus..;lnn rnc(1sur.f p on the real linc !R is onc 

having thc  form 

ivhcrt, fl is a Rorcl subset of IR and the constant b is positii-c. The point (1 E R is 

c a l l d  the rrlfn-rl of p .  ,- 

Definition 2.4.2  :I Bore1 probability measure A on a Hanach space .Y is said to be 

a G a u s s i a n  rntasurc of m c a n  su i f  for each f E .Y', f # 0. the measure p = X o f-' 

is a norl-degericratr. Gaussian measure on the real line R as aboi.t.. ivtir.rcb n  = f(xo) 

Definition 2.4.3 ( P h e l p s )  .4 Bore1 subset B of a separable Har~ach space A- is called 

ldllsslall a C;a~~ .~ . , i an  null  s t t  in I'hclps sense i f  p ( D )  = 0 for evtry no11-dtcgc.ncratc C' -  



I 
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Recall that a B o r ~ l  substt  B of a separable Hanach spacc .Y is an ordinary Gaussian 

n~lll  wt  i f  t h r e  is a non-degenerate Gaussian measure p such that p ( B )  = 0. IIerc 

ivc also sa). that t h t  set B is Gnnssinn n u l l  i n  t h f  o r d i n a r y  s c n s r .  

I t  is pas!. to see that a Garissian null set in Phelps sense is Gaussian null in t h v  

ordi r iar  sense. IIou-cve'r the coriverse is not triue. \\'e know that there does not exist 

a p0sitii.e a-firiite measure on 1 2 .  ( thc  space of square summable sequences) ivhose 

null sets are translation i n ~ x i a n t  (see Thcorcm 2.1-1.3 or [51, pp. 10s;). So for an! 

non-degcncrate Ga~issian nicasurc 11 there is a Borc.1 sct 5 2 E L  such that p ( .O  = O ' 

but 11 is riot transvcrsc to S.  I'hlis the sct 5' is not Gaussian r l ~ i l l  i i i  Phclps wrtrv. 

\\'c cornpare thc tivo kinds of Gaussian null sets iv i th  the ntill scts Scctiori 2.3.  
3 

.-I trarihlate.of a non-degenerate Gaussian measure is again such a nlcasurc [:1.1]. so 

a (;aliwian n~ill  sct i n  Phelps scnse is ('hristenscn null. Iri  [ - l5j  i t  i.,; sho~vri that a 

.-Iroriszajn n u l l  sct is Gaussian null. Thus ive hat.c the follo\ving iriiplicatior~s: 

rcspt,ct to thr. 11-dirnt~risional Lcbcsguc measure and that a norel set i n  R" is ( 'hr i+ 

tr.nscrl null i f f  i t  is 1,cbcsgue measure zero (see Theorern 2.7.5). 'Thus in Rn (;a~i.;sian 

nlill scts in  tivo scnses and ('hristcnstn null sets in Ehrel scrtsc arc all cqui\.alr,nt to  

thc sccond inclusion is proper in ari infinite dirrierisional separable Banach spacc. 

Example 2.4.4 In an infinite dirnc~nsio~ial separablc Banach spacc .Y there is a coni- 

pact set which is riot Gaussian null i n  Phelps sense. Let { u ~ , )  c .Y ha\.c dertsc ]incar 

span and sat isf~.  j/u',j/ -+ 0. then its sj.rnmetric closed convex h\ill  1; is cor~ipact but 

is not Gaussian null. In fact. lve define I, : i 2  -+ .Y by setting. for s = {I,) E f L .  



I t  is clear that I, is linear and has dense range. Let I '  denote the unit ball of E 2 .  Then 

LI '  C I i .  Since I< is the closed con\.ex hull of the compact set { + z r , )  - u (0). i t  is 

compact. By the cbntinuity of L h e  know that i f  p is any non-degenerate ~auss i f fn  

measure on *C2 t hcn A = p o L-' is a lion-degenerate Gaussian g~kasrlre on .Y. Note 

I *  C L - ' I <  and so X( I<)  = ( p o  L - ' ) ( I < )  = p ( L - ' I i )  2 p(17) .  It is knoivn [A:] that an). 

non-dcgtnerate Gaussian measure on E2  assigns positi\,e measure to  a n q o n - e m p t y  

open set. Thus X( I<)  > 0 and I i  is not Gaussian null in  Phelps sense. IIowcvcr thc 

set I< is 3-null and of course C'hristensen n!ill (see Theorem 3 .4 .2 ) .  -r 

\\.Y now 1cai.e the folloivirig as an open probltm 

2.5 Sets of Wiener measure in Co[O. 11 

I r i  this sectiori ~ v t  summarize sorrle material from Iiuo [:I41 on thc \\..iener Incasurc 

in tfic spacc ( I o [ O .  11. 1i.r. soniparc t l i r .  null sets, cspc3cially ('hristcnsc,ri null sets ic i th  

t hc null scts of zero \\.'icncr measure on the spacc ('"[O. 1 ]  of real-valucd continuous 

functions x ( t )  w i t h  x ( 0 )  = 0. Co[O. 11 is a Ranach spa& with the suprtrnurri norrii. 
w 

Let Tt denot+e thc Bore1 g-field of C'"[O, 11. A subsct I  of C'"[O, 11 of the following for111 

I = {.I E Co[O. 11 : ( x ( t l ) .  ~ ( t z ) .  . . ~ ( t , ) )  E E ) .  

ivherc 0 < t  < t 2  < . . . < t ,  < 1 and E is a h r c l  sst?sct of R n .  i v i l l  h ( 3  callcti a 

c y l l n d t r  sct.  



B 
Definition 2.5.1 Let I be a cylinder set.  Define 

1 u ;  
1l . i  I )  = [ ( 2 r ) " t 1 ( t ,  - t , )  . . . ( t ,  - t , - ,  , ] '  / exp { - ?  [-+ 

E - 11 

Thc uniq i~e  extension of u ,  t o  the Borcl a-field 72 is called the I171cncr  nlcnsurc on 

('oiO. 11. 

R f  m a r k .  Thc nicasure u docs indeed possess a uniqiic~ exttnsion to the 0 - f i t l t l  

R (see [3 1. Thcorcrn 3.2, pp.  .1:3]). \\.hen r2 = 1 this \tYicncr rncasurc is a G a r ~ s ~ i a r i  

Example 2.5.2 I f  O < t 5 1 .  then from thc  dcfinitio11 of 11, 

Example 2.5.3 L r > t  0 < s < t  < 1 bc fixed and consider t h c  raridonl \.ariat)lt. 

Sow we discuss the  \\.icner measrircs of the following scts for tr > 0. 



For convenience of discussion we use the follmving notations: 

1 ,s' = dyadic rational numbers in  [0, 11. . 

The following theorem is reproduced from Kuo [:I I ]  

Theorem 2.'5.4 

( b ) .  u j C ' , )  = 0 if (1 > 1 /2 .  
a@ 

Proof. (This is a skctch  of a proof from l i u o  [ :34 ] . )  ( a ) .  For 0 < 0 < 112. i t  is 

knoiv~l that lirn,,,, l ~ * ( I I , , [ r l ] )  2 0 ( s ~ e  a proof i n  [Ti. pp.  421). I t  is easy t o  sce that 

( = lim L [ I ]  = 1 - lini u ~ ( H , [ n ] )  
n- x n - x  

( h ) .  For constarlts 0 > 112 allti n > 0:let 

- 
C' lcar l  for all n .  I l , !a]  J,,,,,. Kuo [3.1] asserted that the randorri variables 



are indcpcndcnt and t ach  is normall>. rlistributcd ivith ni tan 0 and Lariance 112". 

Thus 

Proof.  For c\.cr>. continr~ous function f ~vhich is Holder continriotis L v i t h  csporir.rit 

n (0 < ct c- 1 2 ) .  t,kirxrt. exists a .\I > 0 such that for an! 1 .  .i E [O. 11. 1 fit) - f (..;)j 5 \ 
1111 - ' arl(~%o J E (-vL,. ~ ~ s i r i g  similar n ~ c t i ~ m ~ s  as  for t i l t  svt of  continuous. rio\vi~c~rt- 

difft,rc.nt iablcx fuiictions in Sect ion -1.2 it cart bc sho~vn that t hr. set of c-or~t irit~citis. 

rloivherrx 116ldc;. corltiriiious function:: ~ i t h  ciporierlt cr ( 0  < (1  < 112) is uriit.c~rsally 

rneasurablc. B. 'I'hcorcrn 2.5.4. t h e  sct of contiriuous functions that arc riot sonic~vhcrc 

II6ldr.r cor~tiyuous Lvith csponcnt ck ( 0  < o < 112) ha3 \\'icrirlr rricasurc zero. Thus 

t h t  rcsult follon.~. 
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i 

This re,clilt contrasts sharply tvith that  the set of continuous, nowhere Holder 

continlious functions with cxponcnt 0 < ce < l / 2  is prevalent (see Scction 4 . 2 ) .  

2.6 Non-measure-theoretic variants 

Our concern tv i l l  be \vi?h the \.ario~is notions of null sets presentecl in Section 2.3. i r i  

particular. tsith the notion of a shy set (C'hristensen rlull set) .  Al l  of thcsc are hascd 

o n  measure-theorct ic concepts. l l a n y  rcquircrthat the intersection of a sr.t tvith a linc. 

in sc)rilt>.dirf'ction ha\.? I,chcsg~ic> rrieasure zero. One colild ask for this intr~rwctior~ to 

rlat ural choic-i.s.for .E arc. tht .  cr-itlcals of first catcgory scts. or of countable. scts. or of 

p a i l  i \  d v r i ~  in .!- tl~tbrrl is a part ition of 5 into Ihrfll subscts 

X C_- 

{ t  E R : s + t c ,  E ci'} 

Definition 2.6.1  .-I Horel sct .' i t 1  a separable Banact1 spac-r. .Y is said to bv a Znrnr1- 
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thcrc is a partition of S into Borel subsets 

X 

such that for each I ei.ery line in  the direction of the elernent F ,  meets 5, in a coriritahle 

set. 

Lvcn in finite dimensional spaces the Zarantonello null scts are sniallcr than our 

other classes o h u l l  sets. For esamplr  take a collection of Cantor scts ('>. . . . . (-',,I 
arid consider ttic product set 

l 

i n  R". Such a sct cannot bc a Zarar~tonello null set for a n .  choicc of Cantor svts. 

I n  fact. 011 each ( 'k  ~ . e  can construct a positi~.e Borel rncasure p k  ~vithout point 

mars. i . ~ , . .  pk ({ . r ) )  = 0 for an\.. x E ( I k .  Thus on the sct 5' t t i ~  prodr~ct rnvaslit-c 

ji = p 1  x p 2  x . . . x / i n  is also positive without point mass. H u t  for an!. Zarantoncllo 

n u l l  sr.t .4 R n  ~ V C  11a\.c .-I = U:=l A ,  and .4, n (s + X c , )  is countable for t>\.er>. 

r . 
s E R" ivhcrcx c ,  = ( 0  , . . . .  1 . . . . .  0 )  Ivi th  1 i n  the ith position. lhris / i t ( . - t , n X f , )  = 0. 

I3y I-ubini's theorern wt. have p(:I,) = 0 arid thus p(:t) = 0. So t h ~  sct .q is riot a 

Zarantonrllo null sct. 

This rlarroiver notion of null sets plays a role in the diffcrentiabilit structure of 

1.ipsctiitz mappings on Bariach spaces. For csarriplc a wal-i-alucd Lipschitz f~inction 

or) a st.parable Banach spaw is G k t c a u ~  differeritiablc outsidc of a Borel .sct that is 

.-lronszaj~i~ null. I f  the function is also convex then it is Gateaux ditfcreritiat,lt~ outsidc. 

of a Rorel set that is Zarantoncllo null (see Aronszajn [2. pp .  17:3]).-  



2.7 Basic theory 
J 

In this section \re present the basic parts of thc theor). of Christensen null sets' (sh. 

s ~ t s )  in a separable Banach "space -Y irit h a n  indication of proofs. Some of these 

extend to more general settings and some of the. other notions of null sets share one 

or nitfie of thcse properties. Sonle of the proofs here u b e  thrx original rnt>thods of 

('hristerisen [12]. 
t 

Theorem 2.7 .1  C h r i s f r  n..;cn nu l l  .sft,s harc  f r n p t y  l n t r r l o r .  
J 

Proof. Supposc a ('hristcriscrl n u l l  svt 5 -Y had non-empty interior. ? ' h r . r ~  t h c v  

11 u l l  .\f t 

Proof. (This proof is reproduced from C'hristcrlscr~ [ I ? ] . )  I,t,t 5"; be a sc~luc~icc  of 

('hristcnseri riull sets and 1t.t p ,  t ~ c .  thcir corresponding transvcrsc Borel prot,ahilit), 

rncasures. Through translating and norrnalizirlg arid iritfuction a scqrienct. of Horcl 

pro\)ability rnrasurcs p: can be found in a rlcigtibortiooti of zcro sr~ch that I,,.,, * I L L  = 0 

and 1.r - r * < l i 2 "  irhrre s is thc corii-olution of diffcrcrit p: , .  1 = 1, 2.. . . . T I  - 1 



Theorem 2 .7 .3  E r f r y  trnn,\latf of a ('hrl,s.ttn,s.tn n u l l  . s f t  1.s. a1.s.o (I  C'hrl,.;tcrl,s.cn n u l l  

sf!. 

Proof. This concl~ision follows d i r c c t l  from the definition of C'hristcnscn 111111 w t s  

T h r v  fi\.c propr.rtic.; show that tlic (.'hristcnwrl r i r ~ l l  scts car1 bf. cxpcc,tccl t o  p l a ~ .  

a roli. in t h ~  study of infinitc din-icnsional Ijanach spaces analogous to thc rolt. that 

5r.t:; of Lcbcspc  rnc,aslirc. zero play in finite diniensional spaccs. 

Fror~i t l i v i r  d~firiitioris ar~ci the co~~~par isor is  in  Section ?.':I arid Stx-tion 2..1 ~ v c   st^> 

that I'rcliss I'iGcr null sets. .+null st,ts, :Iror~szajri 111111 sets and Gaussiar~ ntill scts i r i  

P h ~ l p s  scnsc all have cnlpty interior. and arc trarlslatiori invariarlt in a scparablc Ra- 

nach spact3. Fro111 t h t l  follotving t hcorc.111 ive si.c t hat they all also satisfy t hc corintablc 

union propert>. ( that  is. the countablf. uriiori of thcsc sets of same kind is also a st:t of 

this kind) in a scparahlv I3arlach space. 



Theorem 2.7.6 L e t  .Y bc a s ~ p n r a b l c  Bnnnch space. 5, C .Y bc a s tqucnc f  of sets 

of one of classts  of Prciss-- TzStr null,  s-null .  ..lronszajn null a n d  C;nus.$inrz null in. 
.2 

Phclp..; s e n s f .  Then  U 5, is also in thc s a m e  class a.s- S,. 

Proof. ( i ) .  Let ,', be Preiss-Tiicr null sets. Then for every .r E .Y. x is transverse 

to S,. n = 1. '2.. . . . Thus { t  E R : ts + y E 5,) is 1,cbesgue measure zcro for c\.cr>. 

y E .Y. S o t e  that 
"1 

Thus { t  E R : tx + y E U:=l 5,) is Lebesgue measure zcro for ci-er). y E .Y. So 

x U,=, 5, is also Preiss- TiScr null. 

part ition as H 

IC X X 

'I'hus U" ,I 1 ,Sn is also L q - r ~ u l l .  

* 
( i i i ) .  1.et. .5', bc :\ronszajn 111111 scts. 'l'heri for ei.cry scqrir>nce { e  l .  ( 1 .  . . . }  hose 

linear span is dcrisc i n  .Y. t h f v  arc partitior~s of S,; into urlii.ersally nit~;tsurat)lt~ stlts 

buch that for cach 2 ,  t h t  eltrncnt t ,  is transt.ersc to F,,. By thc sarnc argurncnt as i n  

( i )  ivc krioir that t ,  is tranbi.erse to UI;;_l S,,,. l 'hus the coiir~tahlc unior~ 

is :lrorlszajn n u l l .  

( i ~ . ) .  The rcsult for Gaussian null scts i u  Phelps sense follo\vs dircctly fro111 the 

dcfinit ion. I 
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2.8 The completeness assumption 

Throughout ive have taken our space to be a Banach space. One might have thought 

the theor>- does not use the completeness in any funclamtntal isah- and that the same 

definitions would be useful in normed linear spaces. 

X simple example shows that this is not the case. Let E r  denote thc subspact. 

of C, composcd of sequcnces that have only finitely many non-zero clcrncnts. Thr.11 

i j  is arl infinite dimensional inprnplcte. rlorrnctl' lirlcar space. I t  i.; cka r  that i ,  

is svparablc sincc thc sct of sequcnccs of rational nunlbcrs that have finitcl!. rrian. 

non-zcro clcrncnts niust he dcnse i n  f j .  

\\.rite .Cn for the members of /j that h_a\.e zcro in all positions after the first  7 , .  

? ' h m  i j  = U,T=, Sn. Each 5, is a closed propcr subspact. of f ,  H I ~ C ~  so clcriicritar>. 

argunimts (cf. Section 3.31 show that  tach .5', is s h  in thc span3  i f .  I n  this cast. a 

countablr. ~lnion of s h ~ .  sets:corrlprist~s t t i ~  Lvholc. t;pacc. f j  and orlr t heor? 1os.s one of 

its ~rlairl ft.at~lrcs. 

T h i s  same flaw \voulcl bt, apparent in  ally spact, that c o ~ ~ l ( l  tw t ~ s p r t ~ s s d  as a 

co~lntablc union of propcr. closed subspaces. 
a 

Thus. throughout. the theorv isill be dt~veloped i n  Rarlactl spact>s or. rrlore gcnor- 

r . 
all).. in completely rnctrizablt topological groups. I he snrnc fcature applies. of collrsc. 

to  catcgory argurnents. 

2.9 Haar null sets in Polish groups 

Tlie theory of Christcnstm null sets ivas originall>. cxpresscd in :lbeliari Polish groups 

and niotivated b>. an attempt to generalize to nor]-locally corripact groups the notion 

of sets of Haar measure zero. Since a rlon-locally coriipact group dor.s'nc,t ha\.c a ilaar 

rncasure some different approach is n tdecf .  
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In order that man>. theorems from Harmonic analysis carry over to  the case of non- 

locall\ compact Abelian Polish groups and the nclv concept "Haar zero" coincides with 

the IIaar measure on lo call^. compact Abclian Polish groups the follo~ving dcfinit,ion 

tvas introduced in [ I  21. 

I Definition 2.9 .1  1,ct C; bc an :\bclian Polish group. :I ~ i n i i ~ r s a l l ~ .  rncaslirablt~ set 
* 

+ 5 C; is a I Iaar  z t r o  st !  i f  there is a Borel probabil i t~ rncasurcl p on G' such that 

This definition satisfies our aim. and has p r o ~ x d  uscfiil i n  t h v  clifff'rt>r~tiahilit~. 

thcory for Lipschitz mappings bc tu t~ .n  Ranach spaces. \\.c. know that ari irifinitc 

dirrlr~rlsional separable Ranach space is also an Abclia11 I'oliih group. So t h r .  theor>. i n  

t-hc svttirig of Ahelian Polish groups fits the theow for infinite dir~it~risional scparahlt- 
'? 

f3ariac.h s p a c n .  Thrwrc.rri 2.7.1. Thi.orcrn 2 .7 .2  arid Theorcni 2.7.3 rrmain i.alid i n  this 

rltw sctting. rI'hrwrtwi 2.7.-l also remains valid but thr'  proof ricwls niodificatio~~. \\'c 

.tat? hcrv ariii g i ic  a brief proof b>- using the i d p s  from [ l ? ] .  ' 

Theorem 2.9.2 In a  non-locallg cornprzct : l b c l ~ n n  I ' o l~ sh  group  (; n corrlpricf ..rt or. n ' 

U -  corr~part  a c t  z,, I i nnr  :t 1-0. 

Proof. (This proof is skctchtd fro111 [ I " ] . )  \\c i v i l l  sho\v that for ~ I I J .  ur~i~:vssally 

rncasurahle sct :I that is not Haar zero we  hai.c - 

is a neighborhood of zcro element. I f  this is alreadj. p r o i d ,  suppose tht'rc was a corn 

pact set .C ivhich is not Haar zero. Then the set ,< - 5' ~vo~i ld  be both a ncighbort~ood 

of zcro element arid a cornpact set. This contradicts that (;' is not locally cornpact. 

I ' h l ~ s  the sct 5' is 1Iaar zero. 

A s~rnilar result for "total-poros~ty" In a n  lrlfinite dimensional Ranach spacc w a s  givrn in [ I ]  
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S o ~ v  ive show that F(.-t. :I) is a neighborhood of zero for a non-Haar zero set :I. 

Suppose this were not the case. Thcn we may choose a sequence g, in G not belonging 

to F(.-I. .-I) such that d ( 1 . r  + y,) 5 1/2" ivhcre I = 1:; g, andfid is an invariant 

metric on C; compatible with the topology. Set 

Thcn :I' i b  not llaar zcro. Sow rve drfinc a niappirlg 0 frorn thc ('aritor group li = 

Sir~cc .-I' is riot IIaar zcro then thcrt. csists g E (; such that O-'(g + :IJ) has r~or~-j . t~rn 

IIaar Ilit.asurv in  Ii. T h c n  Q - ' ( y  + . - I t )  - B-yg + :If) = I -  is a nr.ighborhood i r i  I<. 

I'i1c.n for largc r . .  c ,  E I -  ivhcre c,. = ( 0 , .  . . . 0. 1.0.. . . , 0 )  i v i t h  1 i r i  thc' ~ . - t h  position. 

So @,) = g, E :I' - :I' and hcncc ( 9 ,  + :I1) n .-I' # 0.  'l-his i h  a contratlictiorl. 

I'hc~rvfvrv E ' (  :I. :I ) is a ncighborhood of zero. 

Thv thcor). can also be tic\.cloped in the scttirig of a no11-:\bclian Polish group. 

('hri\ttmwn in [14.  pp.  12:1] i n d i c a t d  the extension of Ctiristcnwn r i u l l  corictpt to such 

sttt-ing b using tht .  tuwsiclcd in\.ariance, ant1 also pointed out that s~ic-h vstt:nsiorl 

docs not fit any non-separable metric group. Hert ivy ~ v i l l  i r i t  roduce four ticfini t ions 

in a cornplrtel~. rnctrizabk separable group G', also called Polish groups. 

Sirice ive arc not assuming that the group operation is co r~ i r i lu ta t i~~r~  IVC shall i v r i t t .  

the opcrat ion as a niultiplication. In cascls ivhcrt) ivc explici t1 absurrit. ari :\ bclia~i 

group ive rt>vc1rt to additi\.e notation. 

Def in i t ion  2.9.3 ( C h r i s t e n s e n )  :\ u~li\,crsally measurable sct .Y C (; is callcd .shy 

i f  there exists a I3orel probability nieasurc 11 such that p(g .Yh)  = 0 for all g.  h E G. 



Definition 2.9.4 :I universally rnrasnmble set .v G is called lr f l  s h y  i f  there r x q  

a Bore1 probability rneastirc / L  such that p ( g , Y )  = 0 for all g E C;. \.iP also say that p 

is left tran.sr*tr.se to .Y. 

Definition 2.9.5 .A universally rncasurablc set .Y S C; is callcd r ~ g h f  s h y  i f  thcrc 

cxists a Bore1 probabi l i t  nica\ure such that p ( . Y h )  = 0 for all h E C;. also say 

Definition 2.9.6 :t uriivcrsally measurable set .Y C; is called l f f t - a n d - r i g h t  .shy i f  

t hcrf. exists a Borvl probabilit~. measure p such that p ( . Y  h )  = 0 and p (  h . Y )  = 0 for 

all h  E G. \l'c also sa>. that.  jr is l e f t -and-r igh t  t ransrcrsc  to .Y. 

.sh!/ 3 l r f t -and-r igh t  s h y  =+ lr f t  .shy ( r igh t  s h y ) .  

Xotc tklat l(,ft-arltl-rigllt s l l  is forr~lally strongcr t h a n  left shy  and right shy. 
\ 

s h o ~  t h ~ .  arc cquivalvrit. This folloiving theorerri sccrns to bc not in thr' current 

Iitcrat rire. 

Proof.  Since .Y C C; is l c b f t  shy and right sh~ . .  thcri thcrcl csist Ihrcl  prohahilit>. 

mvasurcs p1  and p 2  suck1 that 

Sow ivc dvfinc a rlcw Bore1 probability measure v bq 

for all ~ i r~i~ ,ersa l ly  nltasuratlc scts 13 C_ C;. By Fubini's theorem. 
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and . 

Thus , 

and 

.. v(h.Y) = f - 'h .Y jdpr( f )  = 0. 
J G  

So u is left-andbright t r a n s ~ w s e  to  .Y. The result follows. 

\\.P xi11 gi\.c sc\.cral esaniplcs i r i  Chapter .5 to shoiv that .  on the Polish group 

X[O. 1 1  i s w  ( ' I~apter  5 ) .  there csists 

( 1 )  a prohabil i t  rneasurc that is both left transverse arid right transvvrsr3 to a 

I3orc.l s ~ t  .Y C X[O. 11. but is rlot transverse to .Y. 
Bs 

( 2 )  a probability measure that  is left transverse to a Horcl sct .X C X[0. 11. but is 

not right trarisvcrst. to -4.. 

( 3 )  a probability rticasurc that is right tyans\.erse to a Horcl sct .I' C R[O. 11. t ) u t  

is not l ~ f t  t r a r i s \ - ~ r s ~  to .X. 

.-llso in thc. Polish group C; Ive ~ v i l l  give. esarriples of Icft-and-right s h ~ .  scts ~vhich 

can be dccornposcd irito corlt inuum many nor]-shy sets. 

Jan llxcielski [.I11 shoived that the family S of shy sets is closed under finite union 

in an arbitrary completely nictrizablc group and also closed under countable uriioris 

in any Polish group. I J I  thc folloiving theorenis ivc ~ v i l l  dcr.elop thc,  corresponding 

rties for left shy sets and right shy sets and some further properties. Tht. rncthods 

are ~vell knoirn although the dctails ma! not be in  the literature. 

Theorem 2.9.8 If 1 ;  a n d  1 ;  are  left s h y  s ~ t s .  7'hcn 1; u 1; zs also a l r f t  shy sf!. 
t 
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L Proof. Let p i  and p 2  be thc probability measures on G left transverse to  I; and 

I; respectively. LVe define 
.r 

for uni\.ersally nieasurable sets .Y G'. Then rrr is a probability measure. For an\- 

Proof. 1,ct 7nJ bc a p rohab i l i t  measure left transvcrse to I , .  Sirlcc C; is separablt~ 
i 

t hew csists a co~ripact sct (', k v i t h  diarricter 5 1/21 and rnJ(C',)  > 0.  \\.ithout loss 

of g r ~ n ~ r a l i t y  ivt. can assume that r n J ( C ; )  = 1 and that the unity of C; belongs to  (', 

Since diameter of C', 5 1/21, the infinite ~ r o d u c t  9192 . .  . .for gJ E C; corivergcs in the 

scnsc of group multiplication. Let 7 7 1 n  be the  product rncLsurc> of the measures r i l l  in 

the product space n C',. \\'c dtfine rrz(<Y) = 

I t  is easy to s e t  that rn is a probability rneasure. \\'e will show that  r n  is lcft traris\ .c~sc 
a \./ 

to all I ; .  Let C J  = CI x x C I  x + x + x and rn? hc the product 
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of m l . .  . . . m1-1 .  n t , + l .  r n , + 2 .  . . . in nt c,. Since rn, is left transverse to  1 ; .  

then for an). h E C; ive h a ~ e  

T h u s  

So the  result fol1on.s. 

1 3 ~ .  sirnilar arguments ~ v c  can ha\.c t h c  foIJo\ving. 

Corollary 2.9.11 If (; 1.. u F1oli.ih g r o u p  o e d  1;: 1;. . . . a r ~  l t  f t - ( ~ r ~ d - r i g h t  . J t y ,  t h f  11 

U z l  1 ;  1 . i  cll.io l c  f t - a n d - r i g h t  ,shy. 

r r i~ t r ic  and a right invariant metric (scc [:'dl. pp.  5 s ; ) .  T h u s  i v r  need on\! show thr, 

r t~sults for a Polish grorip ivith a compatible right invariant metric p. 

1,ct 5' bf. a non-crnpt) open sct in C and b'( f .  r )  C 5 is a rio~i-~111pty tmll. SIII)I)C)W 

count able set dense in C;. -1'ht.n 



In fact. i t  is easy to  sct  that thc above inclusion holds i f  

B( f . r )  f - ' f ,  = B ( f , . r ) .  

I n  fact. for g E B( f .  r )  f - I f , .  then g  = h f - ' f ,  and p ( h .  f )  < r .  By the right in\.ariance 

of p ive have 

p ( g .  f , )  = p ( h  f - '  f , . f , )  = p ( h  f - ' . c )  = p ( f 1 . f )  < r. 

' % 
\i.hcrc t is the u n i t  clement of G: So g  E U (  f , . r )  anti henct. B( f .  r )  f - - I f ,  B( 1,. r ) .  

For g  E H( f , .  r ) .  
? 

~ ( ~ f ? f . f )  = p ( g f ; - ' .  t )  P ( Y ~  < r .  

S o y f , - ' f  t W ( 1 . r )  a n d 9  t H ( f . r ) f - I f , .  Thus H ( f , . r )  L B ( f . r ) f - ' j , .  

Since 3 is right shy. so thcrc e s i s t s ~  Rorel probability nicasurc / i  such that p( .q ! / )  = 
0 

0 for all g E (;. Thus 

This co~trat i icts  /L((;) = 1 and so 5 is not right shh 

R y  similar argunients ~ v c  can show that 5' is not ltft shy. The theorem follo\vs. 

rn 

have the same propcrtics. Their proofs arc similar. 
* 

Theorem 2.9.13 If C; i,. a f!oli.;h g roup ,  t h c n  l e f t  .shy s t t s  ha1.t crrlyty i n t t r i o r  

Proof. From the above thcorcrn tvc know that every open set i <  not left shy. So an?. 

set ivith non-empty intcrior is not Icft s h ~ . .  'That is, a left shy sct has crnptx interior. 
I 

rn \ '  - 
\ 

Theorem 2.9.14 If C; is a P o l ~ s h  g roup ,  t h e n  a n y  lcft tran.slatc o r  right translulc  o f  

n  1 ; f f  s h y  set is also lcff s h y  



I 

Proof. Let 5' be a left shy set and p br its trans\-erse Dorcl probabi l i t~  measure. 

Then for any x E G. p ( x 5 )  = 0. For e v e r  y E G. bj. thc associativitj.. ~ ( X ( ~ S ) )  = 

p((xy) .5 ' ; ' !  = 0 for all s E C;. and so y,!? is left sh~ . .  For e\.er>. h  E G. we define a Horel 

probability 1 1 ,  by p l ( . 4 )  = p(.-lh) for any univtmally rricasurable set .4 2 C;. Then for 

any x  E G. 

p l ( x ( . 5 h ) )  = p l ( ( x 6 i ' ) h )  = f / l ( x 5 )  = 0 

1)). t hc trans\.ersality of 11 to .C. Thus p 1  is transverse to 5 h  and .5'h is left shj.. H 

Theorem 2.9.15 Lc t  (;,bc n Poli.<h g r o u p .  Then 

( i )  .4 scf .< C - C; i..; .shy if a n d  only if 
4 

Thcn for all f. g E G. 



i i i  1 .  Suppose that .S is left shy. Then for all f  E G. thcrc csists a Bowl prohabilitj. 

measure p such that p (  f . 5 )  = 0. I:se c as in ( i )  we ha\-c . r 
p(,<-l f )  j q . s - l ( f - l ) - * )  = p ( ( f - ' , i y )  p ( f - l L < )  Y 0. 

.- 

Example.+). ( i i )  and ( i i i )  r ~ ~ ~ r ~ t i o n r d  i n  this section k v i l l  sho~v that a n1easurt3 that 

proiw a svt in a nor)-:\t)txlia Jlish group is sh\. on one sidc. docs not pr0L.e that i t  ' 

is st]! on t h r .  ot ht,r sicit.. In(lccd cvr3r1 i f  that measure proves that i t  is s h ~ .  or1 hot h 

sidr.5 i t  does not pro\.e that i t  is 5hy sirlcv that rcquirvs more. Specificall! vven i f  

/ l i g . l - )  = p [ . Y h )  = 0 for all g .  h in the group i t  docs not follow that p ( y . Y h )  = 0 for 

a11 !i and h .  I3ut there ma?. . e t  cxsist sornc other rncasurcx for \vh ic . t~  this is the case 

a n ( ]  that is t h r .  sorlrc-rx c ~ f  the prot~l tm.  

111 a Ioca!l!. compact Polish group this prot)lt.nl docs not ar iw hccar~w of thc 
> 

follo\\.ing thcwrcrn. pro\.cd in \lyciclski [-11. 'I'hcorcrn 1 .  pp. : j l ] .  

2.10 Preservations of null sets under isomorphisms 

7' is on(.-one. linear and continuous. 
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r -  
Theorem 2.10.1 L e t  .Y bt an infinite dirrlcnsional separable Banach space and T be * 

a n  iaornorphisnz on 1 ,~ t  5' be one of sets of C;ausslan null. Gaussian null in Phelp,~ 

s t  n , < f .  C'hrzsten.~cn null, s - n  ull. .-l ron.~zaln null a n d  Pwlss TlSer null. Then T ( S )  1,s 

also a nul/ s c t  of t h t  snrnc kind. 

8 
Proof. Since 7' is one-one and continuous. by Theorem 11.16 in [ l l ] .  i f  a set 

S ,L is Borel or uni\.ersally measurable then T ( S )  is Borel or universallj. mcssurable 

respcctivel~.. if? noiv need only show the assertion for each kind of Bowl null scts. 

( i ) .  Let ,q b t  a Gaussian null set in the ordinary sensc. Then th&e is a Gaussian 
' 

rncasiirt p such that p ( S )  = 0. \\.e define a rricasureon Borel scts b ~ .  p(I;:)# p(T- 'E, ' ) .  

Sincc for an!. 1 E .Y'. ji o f - '  = , ( p  o T- ' )  o f - '  = p o ( f  7')-' and f T E *Y'. t h ~ s  

i5 also a non-dcgcncratt Gaussian rnc>asurc3. Since p(?'(,<)) = p ( . C )  = 0. the sct T ( . < )  

i5 also (;aut;sian nu l l  i n  thc ordinary sensc. 

( i i ) .  Let ,i; be a ( i a~~ss ian  null set in Phelps scnsv. From the proof of ( i )  i t  is e a s .  

to see that ji o 7 is a Gaussian measure r fF 11 is a Gaussiarl rncasiirc Thus T ( $ )  is 

( ;a l~ss ia~i  null i n  Phtlps sense. 

( i i i ) .  I.ct 5' be a ('hristcnscn null set. Thcri thc.rc. is a Bore1 probability nleastirt. 

e n d  hence T(S) is C'hrister~sen null. 

( iv ) .  Lct 5 be ari s-null set. The11 therc is a scquerice { t , )  such that ,i' = U 5, 

anti .<, ri ( x  + R E , )  is 1,ebesgue measure zcro for e v e r  x E .Y. Herc Rc, is the ant, 

din~crisional spacc spanned by c , .  I t  is easy to sce that T ( S )  = U 7'(,5',). For an). 

y E .Y. there is some x E .Y such that y = Ts. Sotc 



\\k can define a prohabi l i t  measure on universally rneasurable scts b~ j i (E )  = 

X l ( T - ' E ) .  Thus 

j i ( T ( S t )  n ( y  + R7'e,)) = 0 
;" 

for an\.. y  'E .Y and hence T ( S )  is s-null. 

( v ) .  By using the same method as in ( iv)  we can get the results fob-Preiss-TiSer 
I 

null scts and .-lronszajn n u l l  scts. 

The statements are true i f  T  is an isomorphism from an infinite dimensional sep- 

a r a b l ~  Hanach space to an infinite dimensional separable Bariach space. \\'c car1 also 

cstencl one of the assertions to Abelian Polish groups in the follo~ving. 

f o r  (111 X I .  xL E u'hcrc  + a n d  + dcno t t -  thc o p r r a t l o n s  orz Ci l  rznd G 2  r t . \pcc t~rc ly .  

7 'htrl  n sr  t ' & 1%. \ h y  z r ~  G1 lf a n d  o n l y  lf T ( S )  I S  shy  111 (;2. 

Proof. Since 7' is a horneomorphjsrn. both T and the inr.ersc I '- '  of 7' nlap Hort.1 

sets and unirx~rsall~. rneasurable sets into Horel sets and univc.rsallj. rncasurablt~ scts 

rcspcct ivelj.. T-' also satisfies 

for all y l .  y l  E G2. This can be seen from the assumption hj. applj.irig 7' to its t ~ o f l ~  

sides. So we only need to show the necessity. 

I f  5' C: Cil is shy in (il. then there is a Bore1 ~rohabi l i ty  rneasure p such that for 

all s E G1. p(5 + s) = 0. Sow ive define a Rorel probability measure ii on G2 b\.. 
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for all uni~w-sally measurable sets P 2 G2.  Then 

So is a Bore1 probabi l i t  nleasure. l\-e now check that ji is t rans~.crse to T( .q) .  I:or 

an\.. y E C;? there is some x E such that y = ? ' ( I ) .  Then 

Thus T ( S )  is shy in  C T q 2  and the result follows 

2.11 Measurability issues 

0 1 1 r  tlefinit ion of a shj. st,t ( i .c . .  ('hristcriscri r ~ u l l  sct ) rcyuires that thr. wt t)t' ur l i t . r )r-  

>ally nit~asurable. This requirement is essential in view of the fol lowing tht0rt.m of 

HogachcL- [5] citccl b. Pwiss [46j. 

From this tt~corcnl. i f  ~ v c  do not require thc uni1,ersal rncasurabilit  in the tl(.firiitior~ 

of shy scts, every separable Banach space would be the countablt. union of s h  scti .  

So ivc are uriablc to ornit the rvfcrence to the urii\.ersal measurability of the scts i n  

Section 2 .3  as regards shx sets or .;-null scts. I f  we rcniove the requirerncnt of uni~. tmal  

rncasurabilit  in the definition of a s h ~ .  set. the same problem arist,s i r i  Polish groups. 

The following argument of D o u g h e r t  [ I S ]  sho\vs this. Let G' bc ari uncour~tablc 

Polish group. Let 5 be ;: \$.ell-ordering of G in minimal order typc. ' I 'hm 5 and its 

complernent are subsets of C 2 .  Let p = p ,  x p2  and 11' = p 2  x p 1  \vtiere p1  is an 
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atornless measure on Cl' and 112 is a measure concentrated on a single point of C;. I f  

the continuum hypothesis holds then 11 and p' are Borel measures transverse to 5 

and its complement ' r e ~ ~ e c t i v e l y . ~  This violates the additivity of shy sets. Thus the 

uni\.crsal measurability cannot be omitted. 

Thcrc are four possible ways of requiring measurability in defining a shy set S 

( a )  5 is Borel. 

( b )  S is universally measurable. 

( a ' )  $ is Borel or a subset of a Bore1 shy set. 

( h ' )  5' is uriiversally measurat,le or a subset of a universally r~lr~asurable  st^>. set. 

Thc casc ( a )  is too narroiv. I t  does not include some sets ~ v c  0ftt.n meet. Thc 

caw ( b )  is our choice. I t  has been pro\-ed \-ery useful in  man? rcspvcts. Thc case 

( a ' )  is the choicc of EIunt et al. [',);I. This choicc is riot compatiblf. i v i t t i  our choicc i r i  

caw ( 1 1 ) .  I f  we follo\v Hunt et al. ['TI and call a set shy o n l .  i f  it is contained in a 

13orr.l .sh>. sct t h t ~ r i  Lve arri\.c at a different theor).. The follo\ving argunicnt, also from 
/ 

Ilorigherty [IS].  shoivs this. Let .I- he an uncountable Polish group ~ v i t h  an invariant 

rnctric ivtiich is not locally compact. I f  the continuurn hypothesis holds. then there 

is a s~ibsct .5' .I- such that 5' ri .-I has cardinality less than 2'0 ~vhcncver A is a 

a-co~iipact  set but 3 n '4 has cardinalit\. ' L H 0  whenever :I is a Horel set which is riot 

includccl i n  a a-compact set (scc [',)-I]). Since an>: Borcl probabilit~. measure on .Y is 

based or1 a-cornpact subsets of .Y and the continuum hypothesis implies that wts  of 

ca rd ina l i t  less than 2'0 have measure zero under a n .  atomless measure. thcn thc set 

the cornple~~icnt of a a-compact set and therefore prcvalcnt. Thus this set 5' cannot 

he c o n t a i ~ i ~ d  in any norel shy set 

The case ( b ' )  is more general than the cases ( a ) ,  ( b )  and ( a ' ) .  .A subset of a 

uni\ .ersal l  mcasurabie shy set need not be universally measurable. For example, on 

' T h ~ s  can  be shown under  weaker hypothesis (e .g  , \!artin's axiom) 



the real line, there exist Bcmstcin sets. st.ts such that the sets and their complements 

intersect every per J ct set.  C'hoosc a Bernstein subset of a Cantor set of measure 

zero. Then this set is Lctxxgue measure zero. but is not measurable with respcct to 

all finite Borel measures on t h t  real line. Such  a set would be shy according to thc 

casc ( b ' ) ,  but not shy according to cases ( a )  and ( b ) .  The set S in last paragraph is 

s t i~ .  according to the case ( b ' ) .  but is not s k  according to the case ( a ' ) .  

There are other interesting questions that can be posed and which arc relattd to 

this discussion. I n  [ I S ]  Doughcrty asked whether an analxtic shy set must al\va>.s 

be included in a Bore1 shy sct and whether any analytic non-shy set must incl~idc 

a Rorcl non-sh~.  sct. Solccki [52j ar1swcrc.d the first question affirmati~.cl\ and t h ~  

scmnd question rlcgati\.cly in thc follo\ving. 

i..; H n n r  n u l l  a n d  :I B 

2.12 Extension to non-separable Abelian groups 

Thc norl-separable casc r e q ~ ~ i r c s  sonic. attention to thc measure thcoret ic details. I I f w  

is a simple example sho~ving ~vhat  can go ivrong. 

Example 2 .12 .1  C'onsidcr the non-scparahlt. 13anach spacc C,, thc spac-c of all b o u ~ ~ d t ~ l  

sequences ~ v i t h  the suprvnlurn norm. The cuhc 
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Take t hc rrleasure 11 defined on C, as folloivs 

for Borel sets B C R ,  i = 1 . 2 . .  . 

Then p ( C ' ,  j = 0 for all n and indwd. p(C' ,  + S )  = 0 for all s E f,. T h u \  each st7t 

C',: has a Borcl prohahility rnt.asurc transverse to it. Rut 
3 

5 0 

ir ic  

that the ivholc space is a unio~i of countahl~.  m a n  sets that wt? might hai.c. hcen 

. l i r i r d  to call "sh~." .  

One of t t i t .  ft.atrircs of finite Borcl nleasures OII  Polish spacvs that is lacking for 

nori-sthparablc spacr,s is t hc close connection i v i t h  t tie conipact srts.  .An anal>.sis of thrl  

proofs in I.:xa~nple 2.12. 1 shoivr that this propcrt. of Rorel measures on Polish spaces 

i~ ivhat is niissing in gcritiral. \\'c Lvill see in the next section that the measure 11 ivc 

constructed i n  the last esamplc is not "tight" even though i t  is a h r c l  probabilit~. 

One ivay arour~d this is to restrict attention to nicasures that ha\.e this propvrth.. 

The siniplc~t  a p p r o < ~ h ,  folloived in IIunt ct ai. ["TI. is t o  consider just those Borcl 

probability rl1r.asurt.s i v i t h  cornpact support. In a Polish space thc s h  sc.ts ~vot~lcl 

not change. For i f  thcrc. is a norel probability rneasure transi.erse to  a sct 5' tttc11 

thcrc niust also exist a Borel probability measufe with compact support that is also 

trans\.erse to that set. \\.c xi11 see this from thc following theorenl. 

Theorem 2.12.2 .Any probability rrlcn.surf p o n  a Polish spac f  C; 1,; t igh t .  
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Proof. (This proof is a sketch of some of the main ideas from [44. pp. 25-30].) Since 

C; is separable, for each natural number n bve can find c o ~ ~ n t a b l y  many balls El,, of 
4 

radius i / n  such that G = U, B,,. So C; = U, 8,, ~vhere B,, is the  closure of El,,. 

For arbitrary c > 0 there exists an integer k, such that 

Let 

.Y, = U n,, and 11' = n .Yn 

p(G' \ I i )  = p(G' \ .Y,,) < = c 

- 
no\\ rlcctf only phox that 11' is sonipact. Lct {s,) 5 I i  be an infinitc scqr~r~nc-t. 

then thcre is 1 2 1  5 k l  such that 11' 17 Ell,, = lil contains infinite points of { s , ) .  Note 

h', c u::, LIZ, . T h ~ r c  ir an integer n i  5 k 2  such that I i I  f~ B2,, coritains infinite 

points of {s,). Induction yields a scquence of sets {I<,,)  such that 11'1 _> l i ~  2 . . . 2 
- I<,, 2 . . . and each I i , ,  contains infinite points of { .r , ) .  S o t e  the diameter of I<, is 

less than 2/71 arid G is cornplete. So n, li, is a singlt.to11. Thus thcre is a subscqucncc 

of {s , , )  ivhich con\.t.rgcs to that singlt. point. Ttierr~forc~ I i  is cornpact and the rvsult 

follo\vs. H 
k 

:'\nother developnlerit is given in Borbvein ancl lfoors [S] for shj. sets (IIaar null 

sets) in non-scparablt .-lbelian topological groups. Their method overcomes the stiort- 

comings that an open set ma). be shy by. again. restricting the class of rneasurcs to  

~vhich the definition of s h  sets is a l lowd to apply (see the Glossary for tht .  definition 

of Radon measure). 

Definition 2.12.3  (Borwein-Moors) Let C; be a completely ~ ie t r i zab lc  Abclian , 

topological group. A unii.ersally Radon measurable set A C C; is called a Haar  n u l l  
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. < f f  i f  there exists a Radon probability measure p on (; such that p(g + :I) = 0 for 

each g E C;. 

.From Theorem 2.12.2 we know that in an infinite din~ensional separable Banach 

space the definition of Rorel C'hristcnsen null sets coincides with t h e  definition of Borel 

s h  sets in  ['?I. and also coincides with the above definition of Borbvein and lloors. 

111 a norl-separable Banach space. b\. Theorem 2.12.2, the definition of Borel shy sets 

defined by Hunt et al. [2?] still coincides ~ v i t h  t h c  definition of Borel IIaar null sets 

by Bornein and 1Ioors [S]. but the definitions of Bore1 shy sets defined in [27]  and [S] 

arc different fro111 Christenses~ Definition 2.9.3. Example 2.12.1 illlist ratcs t hi.;. 

111 thc n t x t  section ~ v t  \v i l l  discuss a further extension to c o ~ r i p l c t r l ~ ~  ~nctrizablc. 

topological scniigroups arid gi\.c t11c 1nai11 propcrtics for the corresponding Ilaar null 

svt  .5. 

2.13 Extension to semigroups 

\Iuch of the r~iatcrial dc~vclopr~l so far can bc cxtcr~dcd to ccrtair~ topological serni- 

groups. :In account appears in I'opsoc and Hoffman-Jorgcnson [.X, pp. 3;:J KS]. 

\\.c suppose that I ~ P  are ,g,i\.cn a topological ( u s u a l 1  completely rnetriza1)lc) s c n ~ i  

group G for ivhich the opcrations .r - ax arid x 4 sn are continuous. Topsoe and 

Hoffman-Jorgc~ison call such sernigroups " s t p a r a t e l  cont iriuous sPrnigroups". \i7e as- 

sur~ic a l ~ v a ~ . s  that C; has a unit elenlent. denote~l  as 1 .  Thus 1.r *= s l  = x for all 

x E G. 

ball!. Radon rncasurablc set 5' i n  G i f  the set 

has /L-measure zero for e\.erJ. s. y E C; and the element 1 is i n  the support of p .  
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Here are the details needed to  see that this definition extends the  notion of sets 

of Haar measure zero in l o c a l l  compact groups. Let C; be a local[? compact group 

i v i t h  right Haar measure p. p be a Radon probabilit?. measure transverse to a Radon 

~ini~.ersall?.  nieasurab!e set .C C C;. Then by Fubini's theorem we have 

Since p ( S y - ' )  is continuous k v i t h  respect to  I/ E Cr' arid 1 E suppp so p(,qj = 0. Thus 

5' is Haar measure zero. 

The original definition of IIaar null sets i n  Topsoe and lIoffman-Jorgenson [36. 

pp.  :3'T-l]  just requires the cxistcnce of a T-smooth probahilit~. nleasure. ?'hc class of T -  

srriooth probability measures is larger than the class of Radon probability nicasl1rt.s. 

I Ionc~.cr  the -definition of a fiaar null set by requiring the ~x i s t cnce  of a T-sniooth 

probabi1it.y measure transi.crst to a universally Radon measurable set cuincidcs nit  t~ 

the definition of a Haar null set by requiring the existence of a Radon probability riiea- 

surc tra11si.erse to the set. 111 fact let p be a T-srnooth probability measure transverse 

to a univt.rsally Radon measurable set 5'. Then the support of p :  

s l~ppp  = {s E'C; : p ( l . )  > 0,  V17 a neighborhood of s) 

is closed and contained i r l  every closcd F ~ v i t  h p(G \ E. ' )  = 0. So C; \ I.' (; ' suppp. 

Thus b ~ .  the definition of T-smoothness of p we have p(G\  suppp)  = 0. Sote  that a 

probability measure admits a: most countably many disjoint sets of positi\.e measure. 

Thus suppp is separable. \fye define a measure LL by 

for a universally Radon measurable set .-1 6'. I t  is easy to see that is transverse 

to the set 5. Since suppp is closed and separable, by Theoren1 2.12.2, the rneasure j~ 

is tight on suppp. Sote  p(C; \ suppp)  = 0. So is a Radon probability measure 011 

G ivhich is t rans iww to 5. 
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From the above discussion it is eas!. to see that in a non-separable Abelian topo- - 
logical group the definition of Iiaar null sets by Borwein and lloors [Sj is equivalent 

to the definition of Haar null sets bj. Topsse and Hoffman-Jorgenson [56]. 
I 4 

The following are the  main properties of Haar null sets on completely metrizablc 

semigroups. See Topsse and Hoffman-Jorgenson [56, ~ p .  373-37S] and Borwein and 
% 

l loors [S] for proofs. 

~ h e o k e r n  2.13.1 Lr t  C br a  conzplrtely r n t t r i x b l i  topological n f rn ig roup ,  t f r c  11 

( i )  If :I is a  I i a a r  nu l l  set  t hcn  x,4y is a l so  I i a a r  null  for  a n i  x. y E C;. , 

( i i ]  '-1 H n a r  nul l  s r t  h a s  n o  interior. 

(11i) T h r  u n i o n  of c o u n f a b l y  m a n y  H a a r  null  s e t s  is a A o  H a n r  null .  

(11.) I f ( ;  i.c cln A b c l ~ a n  group  a n d  .-1 C - C; i s  no t  Manr nul l  t hcn  thr  un i t  f l r rncn t  0 

1.5 a n  i n t f r i o r  point of .+I - : I .  

( 1 . )  If C; i . ~  a n  .-lbclicz~? g roup ,  t hcn  t r t r y  cornpact s t t  of C; i,.; I Iaar  nul l .  

PROBLEM 3 In a  non-locnl ly  c o m p a c t ,  non-Abel ian  P o l i , ~ h  g roup ,  arc corrzpact ,.;ft,s 

B 1c ft s h y  o r  r ~ g h t  .shy? 

I f  \re irnposc thc multiplication as an operation on the space ( ' [ a .  b] of continuous 
i 

functions with supremum norm i t  ~ v i l l  become an Abelian Polish sernigroup t v i t h  

unit element for which thi. operation f -r fy is continuous. l\.e \rill discuss the 

"multiplicatively s h ~ . "  sets in the space ( ' [ a ,  b] and their relations to the .'additi\.cl\.. 

shy" sets in C'haptcr -1. 
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2.14 w~hy not rnehsure zero sets of a single mea- 

sure 

Our null sets in all cases ~vere required to have the propert.. of translation in~ariancc.  

Onc might ask tvhether ~ v e  could not have achiet.ed this more dircctly h. taking thc 

measurt. zero sets for an appropriate measure. 

There are many characterizations possible for t hc sets of Lebcsgue rrrrasurc zero 

in a finite dimensional spacc. The simplest cne to conceive is merely that these are 

the null sets for a single measure (Lehcsgue measure) that happens to bc translation 

i n ~ ~ r i a n t .  This gives immediately a class of sets that is translation in~xr ian t .  

111 a compact group therc is a unique translatiori in~ar iant  prot)af)ilit~- nicasurr. 

(I laar  rncas~irc.) ~vhictl pla>.s thc samc role. In a non-cornpact but locally compnc-t. 

.-\t)elia~i topological group agairi IIaar rncasure can be uscd. The rxeasurc is u~iiquc up 

to nitiltiplcs and  translation invariant and so thc sets that are of zero Haar mcasurc 

p l a  the role that Lve rcquire. The follon.ing theorern anti its proof are sketched from 

( 1  -11. B 

Proof. Lct h drxnote a IIaar m(.asure on G. Sincc h is a-finite. ive can use Flibini's 

thcore~n to show that for any Bore1 probabilit~. rnt.asurc 11 on (;. 

That is. 

\vhcrc. . is the characteristic fu~ict ion of the svt 5'. I f  .\' is IIaar r i r i l l  and 11 is a 

test-measure for 5. t h e n  the r i g u a r i d  and t h p  left hand of this equation are zcro. 
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Since h is translation invariant. 5' is zcro for the IIaar measure h .  C'on\.ersely, i f  S is 

zero for the Haar measure. 1r.e can obtain a test-measure p  bj. chks-ing 14 ~ v i t  h density 

\v i th  respect to the Haar measure. H 

In a lo call^ compact non-Abelian group there is a right Haar measure and ht 

IIaar measure. One might worry that the measure zero sets are only invariant on one 

side but that is not the  case. The measure zero sets for a right Haar nleasurr again 

scri.e as our class of sets invariant under the group operations (see [ - I l l )  

\\.h\.- hai.e we been unable to pursue thc same course in an infinitc diniensiorial 

Hanach space? The first problcni is that there is no nontri\.ial translation invariant 

finite or a-finite measure on such a spacc. 

Theorem 2.14.2  7'herr i.< no nontriricll t r ( zn~ln t io i1  inrnri(zr1t f i r l i f f  01. a-finitf r r l c a -  

Proof. The proof of this theorcnl in  detail is very complicated and long (see [61. 

pp. 13s- 1.131). For our purpose lye o n 1  show t,hat there is, no translation invariant 

Radon probabi1it~- rnc3asrlre p on an infinite <!irnmsional Banach space. 

Srippow that there Ivcre a translation in\.ariant Radon probpbility rncasur~ p on 

r 7 

an infinite di~rit~nsional Ijanach space .Y. I hcn there are a cornpact set I i  and an open 

hall B(s. c )  contained in .Y such that 0 < p ( 1 i )  < x and p ( B ( s .  e ) )  < x.  Since the 

space .Y is infinite dimensional. we can construct an infinite sequence of disjoint opcn 

balls { D ( y .  f /  I ) )  which are contained in B ( s .  c ) .  Siricc 11 is translation iniariant. so 

the measures of all such balls R(y .  c l . 1 )  arc zcro. Note 

BY the compactness of I i  and the translation invariance of 11 there are finite man>. 2 ,  
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This is a contradiction. Thus the result follows. I 

Thc above theorem can be generalized to  any infinite dimensional topological space 

(see a proof in [61]). 

I n  order to describe our class of null sets Ive need not necessarily require that 

tht.  measure be translation invariant. onll. that the set of measure zero sets for that 

rrlcasure be translation invariant. Such a measure is said to be qunsl- inrxr- lnnt .  For 

csanlple the Gaussian measures in R n  are quasi-invariant and, indeed. the nieasrirc 
f 

zcro sets of such a measure arc precisely the Lebesgue measure zcro sets. But again 

this is riot possible in an infinite dinlensional spacta. In fact the follo\vir~g theorc.111 

shows that i t  ~vould nc\.cr be possible. 

Proof. (This proof is reproduced from [61].)  By using the rcmark follo~virig Thc- 

ore111 2.1-1.2 Lve nccd only stlow that i f  a riontrivial quasi-in\.ariant rncasurc p csists 

thcrl a nontrivial translation invariant rncasurc exists. 

\\'c us(, B to denotv thc class of Borcl sets and define a rnap T on .Y .u .I- 1)).  

(x. y ) -+ (sy. y ) .  Thcn '7' is an automorphisni on (.Y x .Y, B x B )  . I3y t hc Ration- 

Sikodym thcorvni there is a function f(z, y )  > 0 such that for ci.cry I*' E B x 6. 

C'o11sidr.r thc follmving thrcc maps on .Y x .Y x .Y as follo~vs: 

7; : (x, y. z )  -, ( s z .  y .  z )  



b 
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I1.c can casily see that G T2 = T3 o T2 o T1. Then from the uniquentss of t h e  density 

fliriction wc get that for e\.erF (s. y .  z )  E .Y x .Y x AY. 

- 1 Thlis thcrc is some so E .Y such that f (so. yz) = f (soy. z )  f (xo. y )  Set f ( ~ ( 1 .  s,, y )  = 

g iy ) .  Rtplacing soy by y we have that for c\.er>. ( y ,  z )  E -1- x .Y. f j y ,  z )  = g ( y z ) / g ( y ) .  

Pu t t i~ ig  du = g-'dp. Thcn u  is translation invariant. In fact., for an). E' E L; x 13 ~ v c '  

ha\.? = 

E'ror11 thr. u r i i c l ~ l t ~ ~ l c w  of thc cic~isit~. function ive hat.? u( . - I ! / )  = ui .4 )  for ail>. y E H .  

S i r l F ~  disar t , i t sary  ai.  ha^;^ that for an>.y  E .Y. u ( ; l y )  = v j . 4 ) .  

111 Section 2.1 u c  saiv that 011 an infinite dinicnsional wparahlt. Hanacli sllace a 

(;aussian null sct in F'hclps: sense is null for e\.ery non-dcgcnerate (;alissian nit.asurc. 

IIo~vcvcr. in  gc~ir.ral a 13ore1 sh>. sct cannot be null for e\.cr). a-finite I3ort)l rnt.asurtL. 

I n  fact all Horcl riicasurts 1iI.t 011 st]!. wts! 

14 .4  (.-lrou.;:cljn [,'i') C;tt-rn any c r - f i n l t f  Borcl rrtca.\urc j~ or1 an irtfirllfr 

5fpar-nblr Ijclr~nch ,.pace .Y t h i r - t  1s n Borfl .s-null ..;ft i' .so t h a t  p 1. 

Irnrnediatelx from thc abo\.c. thcorern \ve have tht. follo~ving 
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Corollary 2.14.5 C1'zr.cn a n y  a - f in i t f  Borvl mfclsur-6 p  on an infir;'l'te dinlenslorla1 

scpnrablc B n n n c h  spncc .Y, for a n y  Ror t l  ,set A C ,Y t h ~ r t  is a  B o w l  s - n u / /  s c t  B and 

a  Borcl p  null sct I .  such that '-1 = B u I . .  In particular .IF can bc dfcon1po.ccd lnto n  

p nu11 s t t  and a  B o r t l  s -nul l  .set. 

I*'or a proof of thc abo\.e theorem sce [ L ' ,  pp. 155-1561. The theorem pro~.itfct; 

ar~othcr proof that the Bore1 shy scts cannot be described as thc null scts for an!- onc 

o-finitc Bore1 measure. 

2.15 Classification of non-shy sets 

a Polish grolip. I r i  t hc assertions below c will vary 0vf.r posit ive real numbers. p o\.er 

probat)ilit\. rncasure.: or1 (;. and t  o \ w  translatiorl functions g -t g l g g ~ .  1 he following 

cight propcrtit.5 from Ilolighcrty [ l S ]  dcfine differcr~t classes. in general. of non-shy 

( 3 )  3c3pVt  p ( t ( . q ) )  > [pos i t~c . f  lou-t 1 .  (it nsi ty]  

( - 1 )  ? p t  p ( t ( 5 ' ) )  > 0 [obst  rrabl f]  

( 1 ' )  V p 3  p ( t (5) )  = 1 [ubiqui tou,~]  

( 2 . )  V f k ' p 3  p ( t ( 5 ) )  > 1 - c [ u p p t r  dfn.qity 11 

( 3 )  3cY}13t p ( t j . 5 ' ) )  > c [posi t i r t  uppf  1- dcilsitg] 

I )  V p 3 t  p ( t ( 5 ) )  > 0 [ r ~ o n - ~ s h ~ ] .  

I n  [ IS ]  D o u g h e r t  rncntioned the results arid esaniples in the followirig ( i ) .  ( i i ) .  

( i i i )  and ( i ~ . )  but did not gii.c proofs or csplanatioris. Iicrc 1i.c takt, this opport~inity 

to vcrify these results and csarnplcs. Furthermore. we f ind non-irriplicatioris-(13) 
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( 2 ' )  and (1 ' )  -14 (4 ) .  and give examples for thcm in ( v )  and (v i ) .  From ( i j  to  (v i )  we 

~ v i l l  g t t  a cltar picture of relations among the eight classes of non-shy sets. 

( i ) .  Some implications. From the definitions we see that the implications 

( k )  and ( j ' )  --+ ( k ' )  for j < X. are trivial. i1.e noiv show that ( j )  -+ (5') for each 

S satisfy ( 1 )  then there exists a Howl probability measure 110 such that p,,(t(,s 

for each t .  By Fubini's theorem for any Borcl probability measurc /L on C;. 

arguments can show that ( j )  -+ ( j ' ) .  j =  2.3. t .  I 

for all Bore1 wts  Lj  C R .  tlic sct 5, s;ltisfics (-4) hut does not satisf!. ( : 3 ' ) .  1r1 fact. for 

c\.cry f > 0. n.c construct a function 

and extend it cvenlj. to (-x. 0 j .  I ' h r ~ r i  t hc rrieasurrl p1 dcfir~ed b. 

( i i i ) .  ( 2 )  ( 1 ' ) .  The set 52 = (-x, 0 )  u ( 1 .  x )  satisfies ( 2 )  since for any c > 0 the. 
- - 

measure / 1 2  i n  ( i i )  satisfies p2(x + S I )  < c for each x E R .  Here S2 is thv cornplernen: 
a 
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- 
of 5 .  S a t e  that R = ( r  + 5,) u ( r  + ?,) and ( r  + 5,) n ( x  + 5 ' 2 )  = o. So for t h r  

Gaussian measure p1 as in ( i i )  and any .r E R.  p l ( x  + S2) < 1. Thus LC;! does not 

satisfy ( 1 ' ) .  

( i v ) .  ( 2 ' )  + (3 ) .  The set S3 of positive real numbers satisfies (2 ' )  sincc for any 

6 > 0 and any Borel probability measure p on R we can choose x small enough so that 

p(.r + S3) > 1 - C .  On the other hand. for an>. c > 0 and Borel probability measure 

p we can rhooic r largr enough so that p ( r  + S 3 )  < f .  T h ~ i s  li; does not satisf>.d:I). 

( v ) .  ( 3 )  ( 2 ' ) .  In  R .  Ict a 

For t t ~ t .  Gaussian rntasurc 111 as,in ( i i )  and ei.er>. x E W. i t  is c a s ~ .  to s w  that 

So .q4 satisfies ( 3 )  but docs not satisfy (2 ' ) .  

( i ) .  1 + ( 1 ) .  \\.e i v i l l  shox that thr.  sets .cl( ,4) .  .';,(:\+) and 5'1(:1-) i 1 1  

7'titwrertl 2.15.1 arc. all c~sa~tlplcs for this rion-i~riplication. 

E'rorn thc ab0i.c ( i )  to ( \ . i )  ivc can make the folloiving conclllsions. ( 2 )  + ( 1 % )  

i~tiplirs ( 2 )  + ( 1 )  and ( 2 ' )  (1 ' ) ;  ( 2 ' )  + ( 3 )  implies (2 ' )  + (2) :  (3)  + ( 2 ' )  ir~iplivs 

( 3 )  a ( 2 )  and (3 ' )  + ( 2 ' ) :  ( - 4 )  + ( 3 ' )  implies ( 4 )  + ( 3 ) :  ( 1 ' )  + (-1) implies ( 1 ' )  + ( 1  ) 
f i  

arid ( -1 ' )  * (-1).  IIcrc ive indicate all rclatiorls arriorig ( 1 ) - - ( l )  and ( 1 ' )  ( 1 ' )  i r i  a tahlc 

as folloivs. \\'e usc -+ to clenott~ =+ arid -++ to  dcnote +. 
\\'c noiv stucl~. t hc folloicirig sets to justify (v i ) .  Let :1 b e  a :ion-cnipty set of 

natural numbers. 
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Figure 2.1: The relations of non-shy scts in general 

' I ( . - I - )  = { , +  E RZ:= 3.\ > O such that i f  T I  > .\-. sirr) < 0 for ri t :I} 

and 

( 4 )  = { R : i f  1 r ,  s ( n )  < O for n $ ..I) 

I3! using tlic met hods as i ~ i  Theorem 3.5.4 ivy can show that .5'l,(.4). . c l m ( . 4 + )  and 

(:I-) arc I3orel scts. So t hc sets ,Y1 (:I). (:I+), 5, ( .4-)  and thvir complerricnts 

are Bore1 scts. In the folloivirig t heorcrn ive s h o ~  that all 5 1  (:I). 5'1 [:I+), Sl (:I-') arid 

k, their coniplenlents are ubiquitous but not ohservablc 

Theorem 2.15.1 Lct :I bc a  non-crriyty  s f t  o f  na tura l  nurrzbcr-,$. Tht-n thc sc t .5  

S 1 ( . 4 ) ,  S 1 ( . 4 + )  a n d  S 1 ( , 4 - )  and  t h t i r  c o r r ~ p l t m t r ~ t s  are all ubiqui tous H o r f l  s e t s  b u t  

no t  ohserrahle .  ( T h a t  is, t h t y  sati,sfy ( I  '/ but no t  (4).) 
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Proof. C'av 1 .  The set .4 is an infinite set. For a given Bore1 prohab'ilit>- mcasure 

11 on R" \r-e can choose a number 6, for each n such  t h a t  

X 

$ = U {i E R' : l . s ( n ) /  5 b, for all 7, > .\} 
.A' = 1 

T h c n  pj.5') = 1 .  Ilefinc. elcrnrwts t .  t + ,  t -  E W' as folloivs. 

- 
I )  = { s  E R' : v.1- > 0. 311" E .4, n o  2 -1. srich ttiat .s(n0)  2 0 ) .  

Sow i r . ~  define t t ;  E !Rs to satisfy t h c  follo~ving 
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- - - 
Thus .s1(.4).  S, ( . A + )  and ,cl(,4-) are ubiquitous too. That is. they also satisfy (1 ' ) .  

From the definitions of (1) and ( 1 ' )  i t  is easy to see that a set satisfies ( 4 )  iff the 

complerncnt of this sct dots  not satisfy (1 ' ) .  Therefore the sets ,q1(,4). S1(.4+) and 

.ql(,.I-) arid their complements arc ubiquitous but not observable. 

C'ase 2. The set A is a non-empty finite set. For the set s 1 ( , 4 ) .  b ~ .  checking e v e q  

step of the proof in C'ase 1 .  i t  is easy to see the conclusion still remains ~ .a l id .  For the 

sets ,i'l(.4+) and S l ( . 4 - )  ~ v e  choose an infinite set B C N \ :I and define 

C1 = {..; E Rs: .s(n)  > 0 for rl E ;I u R )  

and 

i ' , = { ,  E R' : $0)) < 0 for I I  E .-I u H )  

- 
I3y (~'asc 1 Ive know that and (I2 arc ubiquitous. Thus .I;'l(,-l+). S1 (.-I-). S1 (.+I+) - 
and 5, (.-I-) are. also ubiquitous. T h u s  thr> s t ts  .Sl ( ,+I ) ,  Si',(:I+) and .ql(:l-) and their 

cornpl~~nir~nts  arc. ubiquitous but not observable. a 

I>orlghcrt\- [IS] sho~vcd that thc set ' 

5 )  = { Rs : s ( n )  > 0 for n E .+I and s ( n )  < 0 for ri @ A). 

is uppcr densit! 1 .  IIcrc ivc sketch his proof and s h o ~  rilort. frorrl Ihcorcrri 2.1.5.1 

Corollary 2 .15 .2  S ( . 4 )  is upprr d c ~ . s t t y  1 b u t  not obscr.rnblr . 

Proof.  k'or a given I3orc.l probability nicasure p on !RN and c > 0 \ve car1 choosc. b,, 

for cach r1 such that 

p ( { s ~ ~ ' :  l s (n) l  > b n ) ) < c .  
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Thus p ( { s  C R" : j.s(n)l 5 h, ) )  > 1 - c and hence ,5'(.4) is upper density 1.  Note 

that .5'(:1) s 1 ( , 4 ) .  From 'Theorem 2.13.1 wc'ivill see that >'1(.4) is not observable 

and therefore . C ( . 4 )  is not observable. I 

For the remainder of this section wc will try to dtscribc in R" ( n  > 1 )  the classes of 

sets in ( 1 ) - ( 1 )  and (1 ')-{ l ' ) .  In R" the sct 5' in ( 1 )  has full Lehesgue rneasurv. This is 

provcd in Theorem 2.7..5. Sow we look at the sets satisfying ( 1 ' ) .  ( 1 ' )  is equivalent to 
- - 

that V p 3 t  p ( t ( S ) )  = 0 where .5' is the complement of 5'. Thus take p to  bc a Gaussian 

measure and so thcrc is a t such that /I(tf.s)) = 0. Since thc Lebcsgut rncaslirc3 

and a n  Ga\issian measure are mutually ahsollitely continuous. so X n ( f ( . 5 ' ) )  = 0 and 
- 

X, ( .< )  = 0 ~vhcrc A ,  is t he rz-dimensional 1,cbesgue niwsure. Thus the wt  .\' also has 

full  I.c~hcsgiir~ nlcasurc. arid hf>nce all w t s  i n  ( 1  ) anti ( 1 ' )  arc cqui\.alcnt to having full  

1.cbc~g11t. measurc. 

I f  a sct 5' ~atisfics ( -1 ' ) .  then. for evcry Galissiari measure 11. t h t w  exists a t E W" 

>uch that p ( f ( . s ) )  > 0.  Hy t h t  rrii~tually at~solute continuity of A n  and p wt I~a\.e 

X, i f ( .< j )  = ,A,(.\') > 0. .-\gain by tlic rriutually al~solutc> coritinuit~. of A,, arid p ,  for 

Sirlc.6. ( 4 )  3 ( 1 ' )  so all sets in ( -1)  a r ~ d  ( 1 ' )  arc equivalr~rit to having positivc Lr~bcsgur~ 

for an>. x E 03". Thus for an). Gaussian mea>ure p .  p ( x  + .s) = 0 ivhich contradicts 

(:3 ') .  Soiv ive can claim ,A,(.?) = x. I f  not t h m  0 < A n ( , $ )  < x. For any c > 0 LVP -, 
can construct a function E'(s) by tivfi~lirig - 
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Then the probability measure p induced by F ( x ) .  

satisfies that for anv x E W". p ( x  + ,5) < 6 .  This contradicts ( 3 ' ) .  Thus for any 
6+ 

set 5 satisfying ( 3 ' )  we have A,(.'.') = x. Therefore for any set 5 satisfxing onc 

of ( 2 ) .  ( 3 ) .  ( 2 ' )  and ( 3 ' )  we have A,($) = x. However we currently h w o  exact 

, characterizations for sets S in ( 2 ) .  ( 3 ) .  ( '2') and ( 3 ' ) .  

I3ai;cd on the above discussions and ( i ) - - (v )  \vc can obtain the rclations among 

( I ) - ( . ! )  and (1 ' )  (-1 ')  as follows. 

2.16 Prevalent versus typical 

.-In. fi ni tc dinicrisional space can be dcco~nposed into a set of I x h ~ ~ s g u e  rrlcasurc3 zcro 

and a first c a t e g o r  set. The proof is entircly elcmentary. One shoivs that thcrc, 

is a dcnst, opt11 sct (sa). one that contains all points with rational coorciinatt>s) of 

arbitrarily s~liall Lebesguc mi>asure. .An appropriate intersection of derisc opcn s t x t s  

givm a measlire zero, dc~ise  set of t 1 . p  G:. 

In our rnore gtneral setting kve do not have a notion of measure. just a riotion 

of measure zero. Thus such an argument docs not work, although one expects a 

similar decomposition should be available. The following theorem of Preiss and TiScr 



is rtrnarkable bccausc the  rneasurc zero part of the position is in t h e  st ror~gcst 

tcr~ris- and thc first category part is given to be (SCC [54] for a-porous) .  ' 

rr-porous sets form a smaller class than the sets of 

Theorem 2.16.1  ( Preiss-TiSer) .-I 11 ~ r l f i n  l t f  d l r n ~  n . ~ ~ o r ~ n l  s c p n r a b l f  Bnr~czrh . ~ p n c f  

*[his result is of some interest in the study of derivati\.cs on Uanach spaws. P'r.ortl 

:\ror~szajn ['L] u-c. know that the set of points of G i t c a ~ i s  non-tliffcrtntiaf)ilit>. of a 

rc~al-\-al~ltd Lipschitz flrr~ction ~ r i  an infinite dirriensional sr.parat)lc Ijanac-h space .I- 

is :\rorlszajn 111111. 1Ioivcvt.r t h c  Fr4cht.t diffcrcrltiabilit>. of a rcal-\-aI~it~cl I,iI)schitz 

h l c - t  ion or1 a11 infinitv d i ~ ~ ~ c n s i o n a l  sclparablc Banach spacc is c.c~lr~plt,tt'l>. c l i f f t ~ r t ~ r i t .  

O I I P  of the. 1 ' r c . i ~ ~  .I'i<cr results [.46. pp.  222. Proposition 11 sa1.s that .  on an infinitc 

clirr~c~nsional scparahlc I3anac-h spact.. t h t v  is a rcal-\.aluc:tf Lipschitz function ivtlictl 
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and a first category set by using the same proof that ivorks for Rn .  in the folloiving 

we give a sufficient condition for a general Polish group to be decomposed into a shy 

set and a first category set. 

Theorem 2.16.2 Let  C; bt a n  : lb f l ian  Poli.sh group  v h i c h  per-rr1it.s u B o r t l  probabili ty 

rrlfn.curc / I  s u ch  tha t  t h c r f  is n cons tan t  b < 1 s o  tha t  

Proof. Sir1c.c G is separable. let {x,) t ~ e  a sequence of points that is densc i n  (;. Let 

Then .Y is a clcnsc C;> set and so G\ .Y is of the first category. B. the assu~nption for 

t = n  
rl 

t=n 

Thus thc set .Y is shy in G' and the decomposition C; = .Y U ( C  \ .Y) is our dcsire. 

Rfrnar-k .  Such a theorem is true for finite dimensional spact.s sincc LeGcsgue 

measures can replace p in the proof of the above theorcrn. Ho~vever ~ v c  do not know 

~vtiethcr an infinite dimcnsiorial Hanach space permits a Bore1 probability rncasurc 

satisfying theacondition in the above theorem. 

PROBLEM 4 Docs  ~ r ' f r - y  Polish group  ptrrrllt a d c c o n z p o s ~ t ~ o r l  ~ n t o  a  shy  .,ti a n d  a  

.qct of the  Jir-st c a t t g o r y !  



Fubini's theorem 

Fubini's theorem is one of the most irnujrtant t htorer11.s in measure theory. I t  is 

natural to  ask ivhcthtr there is a vc.rsion of Fubirii's theoreni that holds for IIaar 

zero ~ t s .  C'hristensen [12] gai.e the folloiving cs;\nlple to shon. that a f111l i.t>r.iorl of 

Fubini's theorcrn docs not exist. 

Example 2.17.1  Let H be a separable infinite dimensional Hilbcrt space and let 7' 

he the unit circle in the complex plane. There exists in thc product group H u 7' a 

Bore1 measurahlc set '-1 such that 

( i )  For ei.er>. h E !I. the scctiorl . ? ( h )  = { t  E 1' : ( h .  t i  E :I} has IIaar nit,asurc 

orie i n  T .  

( i i )  For c\-r,r>. t E T. the scction : \ ( t )  is a IIaar zero st.t in fl. 

i i i i )  'l'hr. coniplcrricnt of .4 is a Haar zcro set in the product group fi x 7'. 

Proof. ('I'his proof is rt,produced fro111 [ I? ] . )  Since an infinite dinicnsional separable 

I I i 1 I ) t ~ r t  spacr. is isornc>tric to  thc spacc I , 2  of square intcgrablc functiorls. \.\'tx asslilrie 

11 = L 2 .  It3t  

:1 = { (  f .  t ) : t hc. 1:ourit.r scries of f convcrgcs at t ) .  < hs 

'I'hcri from tht.  farrious rcsult of ('arles6n that the E'ouricr series for any I,2 function is 

alniost ei.cryivhcrc convergent, ( i )  folloivs. Note that for e\.ery t E T. . 4 ( t )  is a closed 

linear proper sr~hspace of fl. So i t  is Ilaar zero and ( i i )  folloivs. C'learly thc product 
m 

rnca.iurc of thr. one point mcasure i n  !l ivith mass 1 at zcro arid thc. IIaar rrieasurc i11 
C 

?' is trans\.erse to the con~plement of ;I. rn 

I.'roni the abo1.e example ive see that i f  a f l i l l  vt,rsiorl of I'uhirii's t hcorerri holds, then 

( i )  and ( i i j  i r n p l  that :I is IIaar zero. This co~itradicts ( i i i ) .  Hoivevd. as indicated 
# 

in 1121. a ~veaker version of Fubirli's theoreni dots hold. Sce Borivcin and lloors [S. 

Theorern 2.31 for details. P 



2.18 Countable chain condition 

3 In this section we discuss a property called t h t  countab lc /c  ain condition of the n-ideal 

of shy sets in some spaces. 

Definition 2.18.1 Let C; be a Polish group. A n  ideal 3 of subsets of G is said to  

satisfj. t h ~  c o u n t o b 6 ~  cha in  cond i t i on  i f  each disjoint farnily of ur~iversally rncasurablt. 

sets in C that do not belong to 3 is at most countable. t 

\i.e also sa>. that the group (; docs not satisfj- the countable chain condition i f  thc 

ideal 3 docs not satisfj. ttic countable chain condition. :\ cornplttely rrietrizablc spac-c 

is scparahlc i f  and only i f  cl.ery farnily of pairwisc disjoint non-empty ope11 scts of this 

~ s p a w  is coantahle ( s w  [ZO]). T h ~ i s  thc abovc definition is only for Polish groups. 

I n  1972 C'hristenscn [12] askcd ~vhether a n  family of disjoint universally rrit3a- 

surable non-shj. svts in a Polish group must be countable. 'This is obviously true in 

firiitc dimr~nsiorial spacts.  Dougherty [ I S ]  ans~veretf this problem affirmatively i n  sorric 

I'olish groups. 

Thcorenl 3.5.-1 eshibits a collt.ction {.i'(:l) : .4 C N )  that for~rls a fanlily of 

pair~visc disjoint rion-shy scts in an :\br.lian I'olish group that is uncountable. 'I'hc 

follu~ving t h w r c m  arid its proof arc. rcprodriced from Doughcrty [ IS] .  

Proof. Specifically the collcction 

from l'heorem 3 .5 .4  corisists of ZN0 disjoint non-shy clcments. So IRS docs not satisfy 

t h e  countable chain coriditiori. H 



lI?.ciclski observed that i f  :I and B are sets of natural nurnbers whose s>.rnrnetric 

ciiffcrcnct. is infinite. then not only are the sets .5(.4) arid S ( R )  disjoint. but also any-  - 

translatr. of S(.-l) intersects ,5'( B) in a shy sct (see [ I S ] ) .  Thus we car1 get ~2N"ori-stiy 

sets of R' ivhich rnr~trially have this strong disjointness propert?., b ~ .  taking .'.'(:I) for 

S C ~ S  :l & W which  ha\.? infinite s>-rnmetric difference i v i t h  each othcr. 

I r i  Ahelian Polish groups Dotigherty [ I S ]  obtained the following gtwt.ral r c s ~ ~ l t  t ) ~ .  

unusual nlcthods. 

:\ftc.r obtaining Theorem 2.1s.:). Dougtierty [ IS ]  conjclct urcti that a I'olish group 

(; 5atisfit.s the countablc chair1 contiitiori o n 1  i f  C; is locall>. cornpact. 1.att.r Soltacki 

[52] arls~vt.rccl this problml perfcctl~. in the follo\virig. 



111 Chapter 5. we show that the a-ideal of shy sets in the non-.4belian. non-lo call^ 

compact space %[O. 11 of automorphisms does not satisfy the countable chain condi- 

tion. So we conjecture that the abo\.e Solecki's result is true for non-.Abelian Polish 

groups. \\.e ~ v i l l  leave it as an open problem in Chapter 5. 

Theorem 2.18.3 implies that an infinite dirnmsidna~ separable Banach space does 

riot satisfj. the countable chain condition. Ho\ve\.er, the proof of Theorem 2.18.3 is in 

general. \\'e posc the following problern. 

P R O B L E M  5 I s i n g  t c chn iqucs  i n  B a n a c h  spacc t h t o r y ,  s h o w  tha t  a n y  i n f i n i t t  d i -  

rrlfn..;ional s tpurabl t  spac t  docs  no t  sa t i s f y  t h t  courztnblr cha in  coridltion. 

2.19 ghickness of non-shy sets 

I n  thi.; scctisri wc \ r . i l l  discuss a p r o p e r t  kr~otvn as t h i c k n t . ~ , ~ .  The definition is from 

[X] . 

.. 
~ e f i n i t i o n  2.19.1  :\ suhsct A of a topological wniigroup C; is th ick  i f  the unit ele- 

nicnt is a n  interior point of .-\.-I-'. 

I n  1029 05tro1r.ski [12] showed the n~.ll-krio~vn fact that e\.ery 5ubset of t h t .  real 

l i r l v  iv i th  p0sitii.c L c b c s g u ~  rneasurc is thick. That is. the non-shy sets in the real 

I .  
l int arc thlck. (Xf course thc converse docs not hold. For exaniplc. the Carltor s t t  

i11 thc rt.al lint :  is s h ~ .  but it is thick (see [56. pp. 367-368, Theorern 2.4.21). I t  Lvas 

('hristc~~iscri ~ v h o  first showed that non-shy sets are thick in any non-locally compact 

.-Ibeliarl I'olish group (see our Theorem 2.9.2 for a proof). 1Ioff1rian-Jorgenscn [56] 

estcrided i t  to cornplctelj. rnetrizable. Xbelian topological sernigroups i r i  the folloiring 
P 

form. 1i.c havc stated this as Theorem 2.13.1 ( i v ) .  For reference ~ v c  repvat i t  herc, 
4 

using our new terrniiiology. 
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Theorem 2..19.2 L e t  C; be a  c o m p l e t e l y  m e t r i z a b l e ,  .-lbclian topological  s e m i g r o u p .  

L e t  '4 bc a  u n i t - e r s a l l y  R a d o n  rnea.l;urable subse t  o f  G .  If  .-I is n o t  a  H a a r  n u l l  s e t ,  

t h e n  A is t h i c k .  

I\-e discuss nokv. in a Banach space. the thickness of non-Pr~iss-Tiger null sets. 

nori--4ronszajn null sets. non-s-null sets, non-Gaussian null sets in  Phelps sense and 

non-Gaussian null sets in the ordinary sense. 

I n  R.  all these sets are equivalent to the sets of positive Lebcsgue measure and 

so they are thick. In R" ( 7 1  > 1 ) .  each straight line is non-Preiss-Tiger null but not 

thick. However, in R" ( n  > l ) ,  non-:lronszajn null sets, non-s-null sets, non-Garlssian 

null sets in Phelps sense are equivalent to the sets of positive Lebesgue nieaslirc. So 

t h e  all are thick. 

I n  ari i r i f i r i i t r  diniensiorial separable tlariach space v n o  that! from Exam- 

ple 2 .3 .S .  there is a compact set A' ~vhich is not Gaussian null in Phelps sense. Note 

that I< - Ii is also a compact set and i t  cannot be a neighborhood of t h ~  zero ele- 

ment in a11 infinite din~ensional space. Thus, from the comparison in Section 2.3 and 
\"3, 

S w t  ion 2.4 nor-.-Irori\zajn nu11 wts.  non-Prciss Tiger riull sets and nun-Ga'usiiari riull 

wtl; in Plielps sensc. ma). not be thick i n  an infinite diri~crisional separable Banach 

space. Non-Gaussian null s ~ t s  in the ordinary senst. a r t  thick (see [56. pp. 37")-373] 

for a proof). 

klccall (Problem 1 )  that i v r  do not yet know irhether all Christensen null sets 

are s-null. I f  ive cannot ansiver this proble~ii, perhaps ivc can ansivcr the follo~virig 

problem. 

0 

PROBLEM 6 I n  a n  i n f i n i t t  dirrlc n.$ionnl .$cparclblc B u n n c h  s p n c f ,  c l r ~  nl! rlorl-s-rrull 

sc ta  t h i c k ?  



Chapter 3 

Probes 

3.1 Introductipn 

1'0 shoiv that a sct ,5' i n  a Banach space .Y is s h y  (i .e. .  a C'hristc~isen null set) Lve 

nctd first to establish that 5 is uni\.ersally rncasurable (perhaps b\.- sho~ving that i t  

is a I3orcl set or an anal~. t ic  set in .Y) and then to exhibit an appropriate probability 

rricasure on .Y that is transverse to 5. It is the finding of this testing rrieasurc or 

psohc that rcquircs sorile techniques. 

Pro~.ing that a sct is preialcnt amounts merely to shokving that the cortiplcnle~~t 

of the set is s h  and so this docs not introduce an). new problems. Ho~vever, sho~sing 

that a set is non-shy k v i l l  require shoising that evcry  possibltl rncasurc fails to be a 

testing measure or probe for t h t  set. \iye will see that ,  occasionally, this is not so ha?& 

and rcquircs only a few measure-theoretic observations. 

\\.here possible. rather than constructing a testing nleasllre, n.v \vould prefcr to 

usc 1,c~ninia 2.2.2 and Definitio~i 2.2.1 and exhibit an element s E .Y transverse to 5'. 

This merely picks a direction in the space so that all lines in that direction iritcrscct. 
3 

5 in a set of linear rneasurc3 zero. I t  is of some intrinsic interest to  know i f  this is 
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possible. Asserting only that the set S is shy savs much less. 

Failing that ive might show that  there is a decomposition S = Uzl 5, and find 

elements x ,  transverse to  5, .  In the language of Definition 2.:3.2 we would sav that 

the set 5 is s-null. Again there is some intrinsic interest in knoiving whether this is 

possible. 

Ii 'herc these ideas fail we may hope to  find a finite dimensional subspace t r ans insc  

to 5'. Therc would be some intrinsic interest in knowing the least dimension that could 

be selected when this technique works. 

\\-here linear arguments fail (as t h e  do in a variety of situations) pcrhaps Lve can . 
. construct a curve ( a  continuous image of an interval) that is trans\.crse to 5. Again 

knowing that thc set 5 adrriits a curi.e all of ~vhose translates intersect 5 in a sct of 
DI 

rricasure zero ( i . ~ . .  measure zero along the curve) is of sonic intrinsic iritcrest. 

In this chapter ~ v e  sur\.ey some of the methods that ha\.e been used to establish .> 

that a givcn sct is shj. or non-shy and provide some concrett csamplcs to illustrate 

t hc met hods. 1' 

Finite dimensional probes 

The language of probes in ["i] ivas introduced to have a convenimt Iva). of expressing 

the techniques. OFen to  show that a set A is shy one finds a subspace (usually one e 

; * 
or t ~ v o  that p r o i ~ s  that the set :I is shy. That  subspacc Ivas called a 

probc for the complement of '4 (see H u n t  et al. ['LT]). Hcre 1r.e extend this to call thc 

subspace or the measure supported on it also a probc for thc set :I. 

:I subspacc P of .Y that is a n-dimensional probe for a shy set S C .Y is also 

a rrz-diniension&proI~e for the shy set $ i f  777 > n .  In fact we can find nz - n 

linear independent elements { x l . .  . . . s,-,) such that the dimension of the span of 

({s l . .  . . , x,-,) U Y )  is 771 provided .Y has at least rn linear independent elements. 
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Thus it is necessary to give a new definition to  describe shy sets. 

Definition 3.2.1 A shy set 5' 5 ,Y is said to be m - d ~ r n c n s i n n a l l y  shg if S has a 

nl dimensional probe but ns  n dimensional probes for n < rn. and 5' is said to bc 

1n f in l t t -d !mcn~ion( l l l y  shy  i f  5' has no finitt  dirriensional probes. The empty set is said 

to be 0-dirncnsionally shy. 

Theorem 3.2.2 In R 2  th tre  cri,qt 2-dimensionally shy  sets 

Proof. In 1928 Besicovitch [ A ]  constructed a set of E C R 2  of Lebesguc rneasurc 

zcro ~vhich includes line scgrncnts of length 1 in ever!. orientation (scc also Proposition 

12.2 in [22.  pp .  1 6 3 1 ) .  T h u s  any Bore1 set containing the set E and having I.ebc~gur~ 

rrivasure zcro i \  a 2-dinlcnsiorially shy set. I 

Theorem 3.2.3 In R" ( r ~  > 2 )  a n y  s h y  set i,q a t  most  2-dirr,~rzsional. 

Proof. Lct F be a TI-dirnensional Lebesgue measure zero set of Rn.  BJ. Tticore~ri 

- 
i . l 3  121. pp. 1061 there is a 2-diniensional subspace P of R" such thdt,e\.ery translate 

of I' intcrsccts F in a sct of k-dinlcnsiorial measure zcro. Thus F is an at most 2- 

ciin~cnsiorially shy sc.t anti hcnc-c I;' is an at rriost 2-dirriensionall stiy set. I 

Theorem 3.2.4 A n y  shy sct i n  R2 spacc can bt d~cornposcd in to  two at most  1- 

d i m ~ n s i o n a l l ~  shy  s t t s .  

Proof. B. Theorem 2.7.5. a sct .-I C R2 i \  shy i f f  .-1 is 2-dimensional L c h g u c  

rricasurc zero. Let :I be Lebcsguc rnvasure zcro i l l  RL. Then X1(.4) = 0 and by  

Fubini's theorern we h a ~ . e  a Lebesguc one-dimensional measure zero set .V C: W such 

that for all .r2 E R \ A\-. A1(.4,2) = O ivhere A,, is thc section of A at x 2  ( the  second 

variable). Let 4 

B = { ( X I .  . r l )  E '4 : ~2 4 .V)  
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and 

c = { ( x l ,  x 2 )  E ,4. : x2 E S } .  

Then .-I = B L, C' .  \Ve shall shoiv that B and C' are at most 1-dirnensional shy wts.  

For these t  B \vechoosc t l  = (1 .0) .  Thus for any c =  ( c l . c2 )  E R2,  
\ 

$3 

is 1-climcrisional 1.ehesguc measure zero ~vheri c2 E R ' .\.. and is empty i f  c ;  E .\.. 

r\ny\vaj. it is 1-dirncnsional Ixhcsgur measure zero. Thus the set H is an at rriost 1- 

dirncnsionall s h  set. For the set C '  choose c = (0. 1 ) .  thcn for any c  = ( c l . c2 )  E R L  

the set { o  E R : c + ut E (') is one-dinimsional Lchcsgue r r l ~ a ~ l i r t ~  zcro. Thr15 t h t .  

svt C '  is an at most I-ciirnt:nsionalIy s h ~ .  set. Htnce the rcsult follo\vs. 

PROBLEM 8 L f t  .Y bc a n  i n j i n i t t  d i m  t n.s iona1 ,sfpclr.ablc Wnnc lch  s p n c c .  I)ors t h c r ~  

rsr..t n f jorr l  .shy , ~ t t  4' .Y t h n t  i s  n o t  a n  n - d i r n e r z , ~ i o r ~ a l l ~  .shy s r t  for nr l y  n !  

3.3 Elementary linear arguments 

In many sirriple situations a crude linear argument suffices to show a set is s h - .  \\.v 

illustratv k v i t h  some elerritntary exaniplcs. mostly from the literaturc. 

C'crtainly a proper subspace of a E3anach spacc .Y is shy i f  it is uriivcrsall ntvasnr- 

able. 111 fact i f  5 C .Y is a proper suhspace then every clcmcnt x of .Y \ 5' is'tra~isi.erse 

to 5'. 

('hoosc x  @ 5. For an!. y  E 5'. let G = { A  E R : y + .is E 5";. 'I'heri G is a 

singleton. I f  not. thcrc~vsist X I  and A,. A ,  # , I 2 .  such that y + . i l x  E S a n d  y+X2 . r  E 5'. 
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Since S is a linear space. then 
I 

This contradicts the choice of s. 'The result follows. 

Example 3.3.1 The set 5 of differentiable functions is a proper linear subspace of 

CY[O. 11. S. \Iazurkiewicz in [do] showed that  the set 5' is not Borel. but is co-analytic 

(see also [ l  1 , pp. 5031). So the set 5' is universally nieasurable and -t tiereforc is shy. 

Sotc.  however. that in general a linear subspace need not bc a Bore1 sct nor need 

it bc universall~. measurable. ' 'I'he follo~ving example is frcjrn C'hristvnsen [l']. 

Example 3.3.2 Let I.: bc a separable Frkchct space arid let a , .  1 E I. be an a lg~bra ic  

tmis  of k: and b, thr. coefficient functionals. Then b ~ ' ( 0 )  arc propvr linear subspaces 

of I:. I f  b~'(0) are universally measurable for some i's. these sets arc shy sets. I r i  

I fact . ho~vcver. the subspacps b y 1  ( 0 )  arc universally nieasurable for at most fini tel.. 

n i a n  r t I. I f  not, there is a sequence {i,} of I such that each h~'(0) is universal l~ 

r~icas~irahlr .  Sr>t  L., = U,,,,, b y l ( 0 ) .  The11 L, is a nn i i c r sa l l~  nicasurahlr propcr linear 
- 1 

s~lbspacr.. So I., is s h ~ . .  Since a , .  i E I is an algtbraic basis of E .  so I,. is thrl unior~ 

of Ian's and ticncc E is s h ~ . .  which is iiiipossible. 

For many examples of sets S that have a probe x, the set 

that ive are required to s h o ~  to be Lebesgue rrltasure zero for e\.tlry y E .Y is. in fact. 
a .  

a singleton or empty set. Thus every line in thedircction x intcrsccts 5' in at rr~ost onc. 

point. In m a r l  of the simplest applications this is t h c  case and the measure-theoretic 

arguments reduce to simple co~riputations. 

'Assuming 5Iart in.s  axiom,  Talagrand in [53] showed e v e r  separable infinite-dimensional Banach 
space has a hyperplane tha t  is un ive r sa l l~  of measure zero without being closed 



I n  any example that illustratcs a shy set it is of intrinsic interest to  know that the 

set is not merely shy. but has very small intersections with all lines in some particular 
4 

direction. 

'P 

Example 3.3.3 As an example (from ["i, pp. 2261) consider tht' set 5' of all con, 

vcrgcnt series in the space F, for 1 < p 5 x. This is a closed. p.roper subspacc 

and so, trivially. i t  is sh?.. For a specific transverse element ~ v c  can take thc eltrnent 

x = (1, 112. 1/:3. .  . . ) .  It bclorigs to C, but diverges. The set 5 iritcrsects each liric in 

t tip direction x in at most orie element. 

7'hc same argument applies to a ti>.perplane providtd i t  is universally ~rlcasurable. 

I t  is not a1Lvaj.s thc case that hyperplanes are universally measurable cscc.pt in con(-rvtc - 
csanlplcs as sholvn in Esarnplc 3. :3 .2 .  

Example 3.3.4 A S  ariother-txarnple (from ["i. pp. "261) thc sct 5' of functions f in 

L I  10. I ]  for which [i f ( t )  dt = 0. This is evidently a closed hyperplane in L l  [O.  I ]  an( 

so. tri\.iallj.. shy. P'or a specific transverse element take fo  = 1 .  I t  is easy to st.e that 

the set .5' intvrsect s each linc in t hc direction fo at most one element. 

7 ' 1 1 r ~  sariir. argumcnts do not nctd much l incar i t  in thc problenl. 1:or csarnplc i f  

5 is a urii~.ersally nit~asurablc~ propcr subset of a Ranach spacc .Y that satisfitas 

( i )  yl - y2 E S i f  91 ,  y2 E 5. 
-:, .- 

( i i )  t y  @ 5 for Lebesguc a.e. t E !R i f  y @ $, 

then .5' must hc shy in A7i. Indeed, let y I$ .Y \ 5' and let 

for any x E .Y. I f  5' is crnptx there is nothing to pr0L.e. I f  ,5' is not e rnpt~ . ,  choosc~ 

t l  E So. Then by ( i i ) .  ( x  + t y )  - (s + t l y )  = ( t  - t l ) y  E 5' only for a 1,ehcsguc. nlcasurc 

zcro set of numbers of t  - t l .  Thus A l  ( & )  = 0 and the set 5' is shj,. 
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Example 3.3.5 As a further example to  illustrate simple methods of this type con- 
s' 

sider the Banach space C ' [ O .  11 of continuous functions e q ~ ~ ~ p p e d  with the suprernum 

norm. Let S denote the set of all continuous functions that are monotone on some 

closed subinterval of [O.  I ] .  \!.rite, for any closed subinterval I C [ O ,  11. S(1) for the 

contirluous functions that are monotone on I. Then 

ivherc the union is taken o \ w  the countable collection of all subintervals 1 of [O.  11 

i v i t  h rational cndpoints. 

I t  is easy to see that each S(1) is closed and is s h ~ .  To set that it is closed ivc just 

nerd notc that the uniform limit of a Cauchy sequence of  non no tonic and continuous 

f~lnctions is a150 monotonic and continuous. So F ( I )  is closcd. 

To sce that S(1) is s h  take any element g E C'[O, 11 that is not a.p. ctiffcrentiable 

on I. Then y  is trans\.erse to S( I ) .  In fact the.sct 

can contain at most one point for arv f E C[O. 11. I f  not. t.hcre are distinct t l .  t 2  E W 

such that f + t l g .  f + t 2 g  E S ( l ) .  Then f + t l g ,  f + t L g  E S(1) a r t  a . t  differeritiablc 

on I and so is (f + f , g )  - (f + t 2 y )  = ( t ,  - t Z ) g  on I. This contradicts the choice of g. 
8 

Consequently we ha\.e sho~vn that 5' is shy. indeed that S is an s-null sct in the 

sense of Definition 2.3.2. In particular. ivc can express this obseriation in the follo~ving 

Theorem 3.3.6 T h e  sc t  of functions zn C[0 ,  11 t h a t  art- rnorlotonc 1 1 2  no z n t ~ r r d  

f o r r n s  a  p w c a l e n t  set .  

For more theorems of this type in the function space ('[a. b] see Scctions 4.2 and 

4 . 3 .  
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I n  a Ban+ch space, a universally measurable con\-ex set that does not contain a 

line segment in some direction is easily seen to be sh~. .  I f  a convex set 5 does not 

contain a line segment in some direction I. then 5 intersects the line in at most one 
& 

point. So the element x is transverse to  5' and 5' is shy. Thus convex sets that do not 

span the lvhole space are. in general. shx. I t  is of sorne.'interest to find- out whet her 

closed. convex spanning sets in certain spaces arc non-shy. This will be discusscd 

further in Section :3.5. $ 

3.4 Compact sets 

.-I n;irrlhcr of argunlcnts can be uscd to show that a cornpact (or a a-compact ) su twt  of 

an infinite dimcr1t;iorlal Ra~iach space rriust bc s h ~ . .  Sce. for example. thc original article 

[ I ? ]  of Christerisrm ~ h r v  t h t -  argunlcnt uses the fact that .4 - A is a ncighborhood 

of the zero ele~nent  for a n ?  rinii.ersally measu;ablc pon-shy set '4. I f  a conlpact set 

.4 ivrbrc non-sh~.  thcn the set .4 - :I is'crompact and also a ncighborhood of t h r ,  zero 

clcr~ic.nt. This is impossible in  an infinite diniensiorial Hanach space. 

Example 3.4.1 For an clcrncntary illristratiori of a concretc example. hew is ho\v to 

show that thc compact Hilbert cutw in r 2  is shy: 

\\.e use 

I" = {s E E 2  : lxn1 5 r ~ - ' }  

to dcnote the compact IIiltxrt cube in E 2 .  Choosc y = { r ~ - ' ~ ~ } .  Then y t E 2  \ ' I x .  I t  

is casy t o  se t  that y is transverse to I". So I" is sh? in C 2 .  

Hlint et al. gavc an int ercsting proof i n  127, pp. 22.51 that uses a category argument 

to exhibit that  e t w y  compact set in an  infinite dimensional Banach space atfrnits a 

transverse element. indeed that thc set of transverse elements is residual. This is 

of some general interest since i t  allo\vs us to obtain transverse elements without the 
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& - 
necessity to  construct on? in advance. This is also of some intrinsic interest since we 

sce that "most" directions in the space are transverse to the set. In the following 

we gi\.e a similar but simpler proof suggested bJ ,I. Rorivein to show every cornpact 

set admits a transverse element, an argument which also sho& that the trar~sverse 

elements are residual. 

Theorem 3.4.2 '-1 conlpnct sub..;tt of a n  infinite dirncnsional Bnrznch spncc is s h y .  

Proof. Let 1' be an infinite dimensional Banach space and 5' C I' be a compact 

set. 1 hen. i f  the linear span of .C is denoted by Spans ,  wc ha\.(. 

Sirlcc. S is cornpact. all sets 5, are compact. Thus Span.< is a-compact and first 

catvgor~.. Htmcc I .  \ Span5 # o. Tliereforc 5' is trans\x,rstx to cvcr). clorr~cnt x E 

I '  \ Spa11.5' s inw t he linc Ax intcrsccts 5' in at most ont  elvnlcnt. I ' h ~ i s  5' is sh~ . .  . 
Corollary 3.4.3 ,'I a-cornpact sct i n  an  irzfinitf ? l r r l~n-~ iona l  Bannch spacc i.s ..;-null. 

The ab0i.e method neither holds for Gaussian riull sets nor for Aronszajn r i r i l l  

sets sir~cc the fact that there is a Borel probability rnrasurc is trarlsvrrsc to the onc- 

dinlcrisional probe of the sct I .  \ 5' does not guarantee p ( S )  = O for all non-dcgcmr.ratc - 
Gaussiar~ rncasures p .  I n  fact there exist compact scts ivhich arc not Gaussian riull 

sets in Phelps sense (see Exarnplc 2.3,s) .  Frorn the fact that a translate of a non- 

dt.gcncrate Gaussian measure is also a non-degenerate Gaussiar~ measure ~ v c .  know 

that a Gaussian null set in Phelps sense is also a shy set. Thus the class of shy scts is 

ivider than the class of Gaussian null scts in Phelps scrisc. Rccall that an Aroriszajn t 



null sct is also a Gaussian nall set in Phelps sense. Thus thc class of shy scts is also 

~vider than the class of Aronszajn null sets. 

I n  non-locallt compact groups with invariant metrics cort~pact sets are shy (see 

i l S ] ) .  IIoivcvtr ive do not know \vht.ther thc in\.ariant metrics arc needed for this 

statcrnent 

P R O B L E M  9 In a general non-loi.'ally corr~pact Pollsh group u'ithout inrar;nnt  n ~ e t -  

r1c.s, arc cornpact sets  shy'? 

. In the follotving we ~ v i l l  give an interesting method to show that certain scts i n  an 

infirlitc dirncnsional Ranach space are sti~..  The folloiving ttieorrrrl and lcrrlnia that 
\ 

i i ~  i v i l l  displaj. ivtre introduced b? ;lronszajrl ['I for st1parat)lf. I h a c h  spaces. 111 fact 

t hfy. rcrriain i-alid for nor]-separable Banach spaces. \\.Y rvproclucr t t iv  thtorvrn frorti 

i16. pp.  2191 (see [16] for a proof): and give a simpler proof. suggcstcd J .  Horlvcin. 

of t hc lernrna. 

T h e o r e m  3.4.4 (Josefson-Nissenzweig) L e t  .Y b f  an irlfirlitc dirr~crz..;ior~al Bnnnch-  

.syclcf. Thcrj f h c r ~  is< n scyucncc ( 1 1 , )  C .Y', IIu,// = 1 such that { u , , )  c o n r f t g f s  to 0 

I 11 f h c -  u.fclk'-topology. 

aizd 11,  -+ 0 in u*cak*-topology, uvhilc 5' is a boundcd set such that u , ( s )  --+ 0 ur~i forrr l l~  

contatna ut rnosf onc polnt for c u r y  s E .Y 

Proof .  Since u ,  + 0 uniforrrily on 5'. so 65(u,) r S U ~ , ~ S  11,(s) --+ 0. Thus 6 i ( u . )  + 

0 ivhcr+ .-\ E . 5  is the convex hul l  of 5'. \\'e claim that S p a n s  C U r = , ( n , 4 )  # -Y 

ivhere S p a n s  is the linear span of 5'. \f:e need only show that U:=, (11.4) # .Y. I f  
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Y .  

U r = , ( n , - l )  = .Y, then by . . the Baire category theorem. the interior of the set ,.I is not 

e rnp t~ .  arid hrnce E;(u,) - 0. Thus theie exists an elenlent a E -1- \ S p a n s  that is 

transverse to the set 5'. 

From Theorem 3 .4 .4  and Lernrna 3.4.5 ive can show that certain sets in an infinite 

dimensional Banach space are shy. \\'e write this as a theorem as follo\vs. 

Theorem 3.4.6 L e t  .Y b t  an infinitc d imensional  Banach spact ,  and (11,) C *I-' bt 

I~'sing t h v  abo\.t theorem lve can obtain 'Theorem 3.4.2 irnniediatel~.: Lct ,5' bc 

a cornpact set i n  an infinite diniensiofial Banach space .Y. Thcri ,\' is borlridrd and 

closc~l. I3y Thcort~rtl 3 . 4 . 4  there is a sequence {u ,}  C .Y*,  / / u n l l  = 1 S I I C ~  that 11, -+ 0 

ivcakl>.. Standard argu~t~eri ts  s h o ~  that the bounded sequence { u , )  converges to 0 

~ v e a k l ~ .  iniI)lics that u,(.r) -+ 0 uniformly for s E 5'. From the abo1.e thcorerr-1 tht .  set 

3.5 Measure-t heoretic arguments 

To show that a set is non-shy "requirr>s" sho~ving that there arc no trans~.ersc elcnicrits. 

irldectl that, there arc  no trans\.c1-3;e probability measures at all. 

Ttlc folloiving. sirriple fact frorrl t tic theory of Borel measures on Polish spacw is 

t.c,ry ~iscful i n  showing a 5t.t to be non-shy. See Thcorcm 2.12.2 for a proof. 

3 

Et*cry  probabzlzty rnta,;ure drfincd on the "Rortl subscts of a P o l ~ 5 h  spacr 

u.ssiyns positire rncasuu t o  sornt compact s t !  

This t he11 gives an irnrndiatc. proof of the folloiving: 
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Leinma 3.5.1 A se t  5 in  n  scparablc B a n a c h  space .i- tha t  c o n t a i n s  a  t r a n s l a t ~  o f  

c r ~ r y  c o n ~ p a c t  subse t  i s  n o n - s h y .  
* 

Proof. Suppose that the $et 5 ivere shy then there is a Bore1 probability nleasurc 

11 that is transverse to 5. That is. p ( S  t x )  = 0 for each x E .Y. According to the 

abox-e basic fact and assumption there are a compact set I i  and x E .Y such that 

p ( 1 i )  > 0 and I i  + x  C 5. Then I i  C S - x and 0 < p ( I i )  < p ( S  - x )  = 0. This is a 

contradict ion. 

For example (from [6]). the positii.etconi. C of the space co of null sequences is 

non-shy. ( I t  is clear that C' is nowhere derise i r i  co.) 111 fact. c\.er\. corripact set li' ~ I I  

c~ is contained i n  a set { y  E co : lynl 5 x n ,  n = l . ? . . . . )  for a ccrtairi .r E co. So  

1i + s C C .  13). Lemma 3.5.1. the positive cone C' is lion-shy. Borircin and Fitzpatrick 

171 list Ltrnma 3.5.1 along with a characterization of reflexive separahlc Rariach spaccs 

t.o justify the follon.ing. 

Theorem 3.5.2 I n  a n y  non-rc j lcs i rc  scpnrablr Bnnach  spacc them i.< a nowher(  

( f f 1 l . i ~  c l o s ~ d  ~ o n r t . r  s u b s ~ t  tha t  i* no t  s h y .  

Proof. :I scparablc Hanach spacc t;' is r~ot reflesi~.c i f  and only i f  there exists a 

closcd coriL.ex subset C' of E ivith empty interior that contains some trarislatt of each 

cornpact set in E (see [ij ' i]).  Thus, the result follows frorn the last lemrria. 

111 contrast to the above theorem Horwein and lloors [$I and lIatsouskovA in [X] 

shoivcc! that in an!. supc3r-reflexive space a rioivhere densc closed convex set is sh?.. 

IIcre is ariotticr example. frorri Doughcrty [ I S ] .  of an argument that explo~ts  t h i \  

sanlt> measurt-thvoretic fact. Let Rs denote the space of all sequences of real riunlbcrs 

furnished i v i t  h the metric 
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1 *3 

- 
This is an Xbelian Polish group. complete in this metric but non-locally compact. For 

any A 2 N. let 

S ( . 4 )  E ( s  E R' : s ( n )  < 0 for n g .-I and s i n )  > 0 for n E :I}. 

\\.e reproduce the followir~g lemma from [18%nd give a proof. 

Lemma 3.5.3 For a n y  A N, th t  set , ! ( . 4 )  contains a translate of c r e r y  cornpact 

proof For an! compact set C' the set C'. = { r ( z )  E R : r E C'} is a hounded closed 

set in R.  i = 1 . 2 . .  . . . Let ( a , .  6 , )  be intervals such that C', E ( 0 , .  b , ) .  \\.e definc t E W' 

Then it is e a s  to see that C' t t C S(,4). P H 

Froin this 1ernrr1an.e conclude immediately that t h e  set 5 ( . 4 )  in the Abelian Polish 

group R" cannot be shy. 

Theorem 3.5.4 For. a n y  ':I 2 N thc set 5';'i.q) 1.$ (1 Bort l  s f t  t h a t  1s rrot shy  In R'. 

Proof. From 1,ernrna 3.3.1 arid Lemma 3 .5 .3  we need only.a;how that  the set >(,.I) 

is a Borel set. In R' any sequence s,, -4 s implies . s ( i )  --+ s(i) for cach i E N. Thus 

for each pair of inhqprs (1. ri ) .  the sets 
P ? - 

are closed sets. Sote  that 

T h u s  .C(.4) is a Borel set. 
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?'hc.orern :3.5.-1 exhibits an intcrestirig feature of s h ~ .  sets that is not shared by 

the Lchcsgue measure zcro sets in a finite diniensional space. The collection {S(.-t,! : 

'-1 C_ Nf forrns a famil>. of pairivisc disjoint non-shy sets that is uncountablt.. Set, 
d 

Stctiori 2.1s for a further discussion of this. The search for families of uncouritabl>. 

nlanj. pairivise disjoint nor*-sh~. sets in non-:.\hclian Polish groups is o u r  prinlnp goal' 

in  Chapter 5 .  



Chapter 4 

Prevalent properties in some 

function spaces 

4.1 Introduction 

During t tie niiddle of n i ~ ~ c t e c n  century. many farno~ir mat ticniat icians tried to prove 

the tiiffu-cntiabilit! of co~itinuous functions. Frustrated. sorlie of thc~r l  gavt esanip1t.s 

of cant ir~uous f11r1c. t  ions t ti& arc not diffcrc.ntiahlc on a dtwse sct or furt tier on t h e  sct 

of irrationals. I t  Lvas I i .  \\*cicrst rass ivho first corist ructed a con~. i~ ic ing  csarnplc of a - 

coritinuous function tliat has no point of diffcMritiability in 187.5. After \\.eierstrass 
0 

many vsarnplcs of continuous noivhere differentiable functions tvc.rt3 disco\.ered bj. 

othcr niatheniaticians. In 19:31 S. Banach and S. \Iazurkiewicz scpkate l j .  gave similar 

csistcncc proofs bb- using thc  Bairt. ('ategory tticorem in scparatc: papers [ : I ]  and [.lo] 

respect ivel!.. Since t hcn Baire category arguments have been nidcly used to  prove t hp 

csisterlce of furictions ~vhich are  difficult to  visualize. I t  is now a colnrnon practicc to 
, 

show that' certain classes of functions are '.t~.pical" in spaces of  functions I)). shoivirig 

that the). form residual subsets in those spaces. 



'I'hc same program can be carried out using the nicasurc-theoretic notion of preva- 
J Y 

Ienc-c. rathcr than the topological notion of categorx. The earliest such result is prob- 

ably that of S .  Ii'ierier [6Oj shon-ing that the nowhcre differentiablc functions ars  full 
Q 

Irieasurc in the spacc C1[O. 11 of continuous functions x(t j with x(O) = O in  the sense 

of the \I7ientr measure. In 190-1 Hunt .et al. [','TI applied the notion of shy sets (rc- 

discovering the Haar zero sets of ('hristensen) to the same kind of prot>lerns. In this 

chapter Lve iv i l l  show that certain classes of functions in various function spaces are 

* - 
4.2 Continuous, nowhere differentiable functions 

111 t h i 5  section i v ~  iv i l l  skctch sornf. of thc ideas from thc paper of f1111it  [?$I. Later 
& 

sect ions in this chapter art, de\.otcd to s in~ilar  problems in sotile specific. function 
,% 

spaces. 

Lct 5' cicnote th* &t of all continuous functions on [O.  11 that arc sornwhrre  

diffr~rcntiahlc. i.c.. for v,.hich thert; is at least one point of differentiability. I t  is proiwl 

i , l  that 5' is sf?>- in t t ~ c  spacc ('10. 11. 111 fact the author does not aclcircss the 

~ ~ i v a s u r a b i l i t ~  issue but sho~vs that 5' is contained in a s h  Bore1 w t .  ( T h e  ticfinition 
Q 

used in that paper for a s h  sct is csactly this. that an arbitrar?. set is shy i f  it is a 
I 

subset of a norel shj. set.  Our definition requires 115 to prove that the set is lini\.ersall\. 

measurable i f  not a Bore1 set . )  

Let us s h o ~  hoiv to check that 5 is universall\ rreasurablt. .\ coritinnous function f 
P 

has a finite derivative at sonle point s E [O. 11 i f  and only i f  for ever! p s i t i \ . c  integer 12 

t f i e r i~ i i apos i t i i~c i r i t egc r r r~  such that if0 < h l ! .  lh21 < annd i+h l .  r + h 2  E (0. I ]  

then 



For each pair ( n .  m ) .  let 

Ejr1.m) = {(f.s) E C'[O.l] x [O.  I ]  : ( * )  holds ) .  

I . h r r i  ('10. l ] \ 9  is thr projection into ('10. l ]  of nz, U-=, E ( n .  rn) S o t e  that E(;; .  , , I )  

is closed. So C'iO. l j \ S  is anal>-tic i l l ]  arid therefore the set .5 is uni~.crsall>- rneasurablc 

( i r e  [1  i j J  Furthemmore. $' is riot Bowl (see [RS] anti [39j for details). 

\\.-e now turn to  the method of proof that the set 5' of somewhere differentiable 

functions is sh>-. As pointed out in  [%I there is no element transverse to 5. Thus 
L * .. 

the simplest of t h r  nirthods is not a~a i i ab le  hr r r .  l o  see this. Ict y bv a c3rltiri+dus 
I . 

f~~nctiori .  For f(x) = - x y ( x )  and every A.  f + Xg is diffcren"tiab1e at s = X .  IIciicc 
I '  

J 9- 
%- 

th t rc  is ~ l o  c>lcrr';c'r~t trans\.erse to 5. The reason her(~  is- that a 1inc .x  corrit)ir~atiorl of 
. . 

n,oivhrw d iff&nt iahlc f~tnct ions: can bc different iahle. 

I n  2 it i~ shoir&.that there is a tivo-dimensional sohspare of ('10. I ]  that is 
thi . -" 

trans\.r;rw to i'. \\-e skvtch parts of t h t .  proof here. In ['s] Hunt ustd tn-o conti~iuous 
, 

r~oiyherr. diffrvnt iablc functions 

I I .  
g ( r  1 = C cos .'ki7r and h ( i )  = C - sln "7.r 

X' 2 

Thruugh coniplicattd and elegant cor~lputatior~s hc shoivcd that t11cl.r. rsists a coristarlt 

c > O such that for a n .  (1 .  .j E R and any closed in tcnal  I C (0, 11.1rith Icngttl c 5 112. 
f 

c v ' d  + J i  
nias(oy + 3 h )  - rnin(og + 3h) > 

I I (log 6 ) l  

I 
I3y using this result he showed that the set 

C' = { ( r i .  .j) 5 IR2 : j + oy + . j h  is Lipschitz at some s E {k 1 ] }  k 

is t~ro-dimensional Lcbesgue nicasurc zero for any f E ('[O. 11. I t  is easy to shoiv that 

the set G' is of type F, and that a function differentiable at a point s is Lipschitz at 

s .  So the set 5' is contained in  C;. I11 [L'S] Hunt sho~ved Xi(<;) = 0 as follon.s. 
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. 

Let .\* > 2 be an integer an(! split [O. i j ' in to .Y closcd intervals I of length = 1J.V. 

Thcrcfore. bx using t h t  rcsult Lve first rncntioncd a b o \ . ~ n . t  ha\.? 

IIunt 's methods show that t ht. so~nclvhcre different iablc furlctior~s form a SIC. sct , 

that is 2-dirncnsional in the larlguagt. that we iritroduccd in Scction 3.2.  I t  ~vould bt. 

intcr-csting to krio\v i f  rnorc can bceaid about this set. \\-v Icavtr this again as an opcn 

iJ' prot,lr>nl. 

4.3 Prevalent properties in C[tr. h] 8- 

To illustrate xome of our rr~cthocis \vc shall provc sorrle of the sirnpler prt.i.alrwcc~ results 

in t hc  space ( '[a.  b] of co~itinuous functions tqu ipptd  ivith the  suprcrnurn norm. 

Theorem 4.3.1 Fbr c E [ a .  h] a n d  C' E R .  l c t  

5, = {f E C [ a , b ] :  f ( c )  =!'). 

T h e n  1s closed. nou-hcrc d t i l s ~  a n d  s h y .  



b 
Proof. It is easy to  see that .5', is closed and nouhcrc dcnse in ( ' ( a .  b].  Take a 

non-zero constant function y = ci # C'. Then 

{ A  E [O.  11 : f + Xg E s';} 
3 

car1 contain no 111orc than one elcrncnt for arq. f E ( ' [ a .  b]. I f  no t .  there artb X I .  X 2  E 

[O.  11. X I  # X 2 .  f + Xly E 5,- and f + X2y E Sc. Thcn f ( c )  +- , j ld  = f ( c )  + . j 2 d .  So 

( X z  - Xl)d = 0 ivhich contradicts d # 0. Therefore the one-dimensional Lebcsg~lc 

rncaslire is transi.c.rse to  S, and 5, is shy. 
% 

rn 

.-\ continuo~is function is called nouyhcr-f nzonotonic on an  intend [a .  b] i f  i t  is not 

monotonic on any subin tena l  of [a .  b]. 
6' 

.-I continuous fur~ction is callrct nowhc IY rnonotontc typc on an iritcrval [ ( I .  h] i f  for 

all). -; E R the function f ( I )  - -;.r is not rnonotorricb11 any suhintcrixl of [ a .  b ] .  

I t  is well kno~rn ( r w .  c .g . .  [ I  1 ,  pp. 46 1-46-41) that noivt~c.rc  non no tonic it^. anti being 

rioi~.hcrc monotonic t ~ . p t '  arc tj.pical propertics i n  the spacc [ ' [ a ,  b]. In this scction \v(. 

ivill  show dirr~ctly that ttiesc two properties arc also prevalent properties in ( ' [ a .  bj. 

T h c  folloiving- t hwrcm follows easil! from thc  rcsult of flunt sketched in Sect ion 4 .2 .  

Thr. proof. 1lf.r~. is rtiorc clcmcrlt arj.. 

Theorem 4.3.2  'I'h 

Proof. C;i\.erl an?. 

G ( l  

p r ~  v n l f  7 , t  f u n c t ~ o n  f E C ' [ c i .  b] 1,s of I Z O U ~ C I . ~  71~0110to1~ic t y p .  

r~tcr\.al I .  let s 

= { f E ( ' [ a ,  b] : f is of monotonic type on I ) .  

a n d  Ict 

Thcn 



.I \ 

h 

\\'e s h o ~  that G , ( l )  is a closed set and thcvforc G( I )  is a Bore1 set. For an!. C'auchy 

styuence { f,) G',(l) there exists a flunction f E C' iO .  I ]  such that f, + f uniformly. 

Thcr~ thcre exist 7, E .[-n. n ]  such that f , (s)  - 7,s"are n iono t~n ic  on I .  Then we can 

choose a suhscqucnce {-;,,) of {-,,I such that 2 , )  i:r E [ - T I .  r z ] .  I t  is casx to see that 

f - 7.r is monotonic on I .  Thus ( ; , ( I )  is closed. 

S o x  Lve show that ( ; , ( I )  is a sh!- set. Choose a function g E C' [a .  b] that is noivhcre 

differentiable on I.  For any f E C' [a .  b]. let 

is diffcrcntiahlc a l ~ ~ i o s t  t.i.tlryivhcrt. on I. This contradicts our assumption that the 

furiction g is rioivhtv differentiablt.. Thus G,,,, is a singleton or enlpt?. scxt arid hr.ricc 

( ; , , ( I )  is a ~ h > -  sct. I t  follo~vs that thc sct ( ; , , ( I )  is a shy w t .  

Let {I;) 1 , ~  an crlu~ncratior~ of all intclr\.als ivhost, c~ldpoints are rational n l ~ n ~ l ~ c r s .  

Th tn  tach <;( Ik )  is shy and the union is also shy. Hence the result follo~vs. 



4.4 Prevalent properties in bd. b ~ B 1 .  bB1 

F'ollgu.ing Bruckncr [!I]. Bruckncr and Petruska [ l o ]  ~ v c  usc b i l .  bDB1. hB' to denotc 

t he spacrhs of bourldtd approsi~natr~ly continnous functions. t~ouniled Dart~oux Haire 

1 functions and boiirided Bairc 1 functions clcfincd or] [0, 11 rtspectii-el., all of which 

are equipped i v i t h  supremum norm?. :I11 thcsc spaces arc Banach spaces and for111 

a strictl! increasing s>.stem of c los~d  subspaces (see [9]. [ l o ] ) .  In [ l o ]  i t  was sho~vn 

that for a givcn arbitrar? Bore1 measure p on [O.  l ]  thc tj-pica1 function i n  3 = 

bA. bZ?B1. or bB' is discontinuous p almost cverxivhcre. In this scction LVP i v i l l  sho~v 

that s11ch typical propertics in thcsc threc spaces arc also prr,valcrit propc1rtit.s for any 

0-firlitc Borcl nicasurr,. 

Proof.  I x t  

.\' = I rn = .\' 

Then C '  C Y ' / .  Sotc  



So f E ,-IL. Thus .ql is closed and the set $ is a Rorcl set 
n n 

\\.e now show that the set 5' is a s h  set. I t  is \veil kno~vn that there is a function 

g E 3 ivhich is discontiniior~s / r  alrnost everywhere on 10. 11. See [ l o .  pp. 331. Ttgorcm 

'.-I]. \\-e ~ v i l l  use this function g as a probe. For any g i ~ m  function f E 3, let 

\\'c claim that .I;', is Lcbesgue rrieasurc zero. For distir~ct X I ,  X 2  E Yg. i f  p(F3,\, n k7,\,) > 

~ v o u l d  be continuous on F7,\, n F7,\,. This contradicts thc ehoicc of the function g.  Thus 

for dlitinct , i I  and X 2  thc  corresponding sets F\, and I-',, satisfy /I(F'\,~E'~,) = O* Since> 

p:ir; a-finite or1 [O. 1 1  t h c n  [O.  l ]  = UIzl  .Y, ivherc p ( . Y , )  < x and .Y, (7 .Y, = o. i # j 

1.t.t 

T k i r . 1 1  .5,,,, is finite>. I f  not. there csist countabl! man). A, E S,,,,, such that 

Y 

T h ~ l s  Y;', is 1,ebcsgue measure zero and the  result folloivs. 

4 -+ 

In the  proof of Theorem -1.1.1 ~ v e  did not use n ~ .  special property%of functions i r l  
? 

bA.  b D B 1 .  hB1 except that in all t  htse classes t h t w  are furict ions that  are  discontiri-' 

uous 11 almost e\er~.ivhere on [O.  11 .  T h u s  Lve far1 cxterid Theorcni 4 .4 .1  i n  a gc,neral 

form as follo\vs (see [32] for a tj,pical ~ .e rs ion) .  / 
4 

Theorem 4.4.2 L t t  11 b t  a  u - f i n ~ t t  !?ore/ r n t a s u r f  or1 [ O .  1 1 .  L f t  3 bc a lirrcar spacr 

of b o u ~ l d c d  f u r zc t~ons  f : [O.  11 -+ R with s u p r ~ r n u r 1 ~  inttr-ic.  S I I ~ ~ O S E  tha t  t h ~ l - 6  i . ~  (1 

functiorl f E 3 that  is d i s cor i t i i ruou .~p  alrrrost cr t ryu .hcrc  o n  [O. 11. T h t n  t h f  p r x r a l t ~ t  

f unc t i on  i n  3 i,< d i s c o ~ t i n u o u s  11 alrrrost e r c ~ ~ w h t r c  o n  [O .  11 



4.5 Prevalent properties in D[a. h] 

I n  this section ivt. uac D [ a .  b] to  dcnote the set of difftrentiablt. f t~nct ions f  ivhosc 

dt>rivati~.cs arc  boti:~rltd and f  ( 0 )  = O and furnishrvl with t ht. ~ n c t r i c  (for f .  y E D [ u .  b ] )  

Thtw D [ n .  b] i:, a J3anach space. \.\.-e stud? prevalent properties in  this Danach spacc. 

Theorem 4.5.1 Bo th  t h t  pr-craltn! filnctiorz arrd t h f  typical  Jr~rzctlon f  E D [ u .  b] art  

r r~onotonzc  o n  .con,c s u b i n t ~ r r u l  o f  [ n .  b ] .  

Proof. I.ct . 

L)% = i f  E J ) [ c l ,  h] : f l ( . r )  = 0 or1 a densr s v t  o f  j,l. h ] ) .  

I ' h t ~ n  11% is a closed 1ir:car subspact of D [ u .  b ] .  111 fact. lvt f .  g E I IZ .  t ht>n t h c .  st,t s 

{ x  E [ a .  b] : f ' ( s )  = 0 )  and {s E [a. hj : ! 7 ' ( x )  = 0 )  

arc of  t ~ . p c  (;: sincc f '  and g' arc Bairc 1 fu~lctions.  H11t the. ir~tt,rsectior~ of t ~ v o  dt,nsr. 
~ 1 

w t s  of t ~ ' p v  (;* is also (itwit.. so 

is dt.rlsc for any n 1 . 0 ~  E R .  Thus o l  f + 0 2 g  E LIZ. Sirnilarl~. ivc can show U %  is 
a 

c l o d .  Supp& { f , )  is a Cauctiy scquc~ncc in LIZ such that f :  -t f '  u ~ ~ i f o r r n l ~ .  i v h t w  

f  'E 1)[(1. b ] .  Again since f ,  arc all Hairc 1 fu~ictions.  the sets { s  E [(i. b] : fA(.r) = 0) 

arc clt.rise and  of t ~ , p c  G': . So t hc set 

x - n i U [ a .  b] hut f $! DZ. Thlis from t h r  re&lts in Srrtion 1.3 DZ is s l i ~  



For x i > -  difftrentiablc. no\vtiere rnonotonic furictior~ f. thc dcriixtivc f '  is a Baire 
% 

1 function arid so the set { s  E [ a .  b] : f l ( s )  = 0 )  i5 a G, set.  Further siricr J r? - 
noxhcre rnonotonic then {s E [ n .  b] : f f ( . r )  = 0 )  is clcnse in [a.  b ] .  Therefore the sct., 

G' = { f  E U [ a .  b] : f  i.; nowhere nionotonic on (a .  b ] )  

is a subset of DZ. In  fact t h e  set G is of t ~ - p c  G, in D [ a .  b ] .  Lct I bc an opcri 

s~ihinter\.al of [ a ,  b ] .  and 

For a n  f E k ' j l ) .  f l ( x )  > 0  on the entirc I or f ' j ~ )  < O or) thc eritirt. I, So ~ I A I C  to 

tht.  rrictric defined on I ) [ ( l .  b] i t  is easy to see that F( I )  is a rloscd set. Henct t h~ set 
Q 

of' f~inctioris in D [ u ,  h] that arc sorncivherc rnonotonic is t l i t .   ini ion of all t tiow f ' ( 1 )  

o\.tlr intcr\.als I i v i t  h rational entlpoints. So i t  is of t~.pr ,  F:, a11;l t hc~refort~ G i5 of t ~ . p c  

G, in U [ n ,  61. Thc rerult follows. b 

f\e krio~v that.  for any a-finite Howl rncasurc 1 1 .  thc tit,ri\.atii.t. of t i l t ,  t~.pical 
* 

fur~ctior~ E U [ a .  b] is disco~itir~uous p almost rvcr~ivhere  on [ ( I ,  b] (set '  [ l o ] ) .  Ily 

I f  ive do not use t h e  fact that for a n  a-finittx Bore1 rncaslirt. p there exists a ' 

function g E L)[cc. b] ivhose clesi\.ati\.e is d iscont i~~uo~is  p alrliost e\.eryivhc~rc~. ivc Carl 

casily obtain a simpler result as follo~vs. 

Theorem 4.5.3 fhf r i r  r i r o t i r r  o f  t h r  p1.r i~n1ci:t f unc t io r i  j t D [ o .  b] is d i s c o l 1 t i r ~ i i o i i ~ ~  

o n  a d e n s e  s ~ t  of [ a .  b ] .  

Proof. Let I be a suhinter\.al of [ a .  b] and let 

. - l ( I )  = {f E D [ ( l . b ]  : f '  is continuous on I ) .  
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Then from the definition of the metric on D [ a ,  b] it is casy to see that A(  I )  is closed. 

Also for any f , g  E .4(1) and 0.3 E R.  of + 39 E : I ( I ) .  So A ( I )  is a closed linear 

subspace of b [ , a .  b]. il'e \rill see that . A ( / )  is also proper in D [ u .  b].  Take c E I .  The 

function - 
2 ( x - C )  s in& i f r # c  3 

f ( X I  = 
i f x = c  1 

has as its derivative the  function 

ivhich is discontinuous at x = c. Thus , + l ( I )  is a closed lincar proper subspact of 11[(1. 61. 

So : I (  I )  is sh).. The sct 5' of functions in D [ u .  b] irhosc tlcriixt i ~ c s  arc continuous a n  

sonic subinterval is thc 1inio11 of the , 4 ( 1 )  takcn ovcr all subiritcri.als I  i v i t h  ratiorid 

t r i d p o ~ ~ i t s .  IIcnce the set S is shy (as a countable union) arid the tlicorcm follows. 

4.6 Prevalent properties in BSC[o,. b] 

, ,  7 h c  space B S I ' [ n .  bj of houndcrl syrn~netrically continuous fiinctioris eiioippcd irith 

, t h i .  suprcniuni norm is a complete space (see [55]). Frorrl 1501 \re know that the sct 

of functions f E B,CC'[n. h ] .  which have a c-dense sets of points of discontinuity. is 
9 

A residua!. 111 this section we show that such a set is also prevalent. IIcrc ire say that 
s, 

a s(>t is c - d f n s t  in a metric space (-Y.p) l f  i t  has continuum many points in c 

d  ion-empty open set. 

r 
111 [X3]  Pai.cl Kostyrko sho~ved t he folloivi~ig t heor~rn .  

Thsorern 4.6.1  1 ,  ( p )  5c a n i t t r lc  spncr. Let F be n l inrnr space of bouirdrd - 

functions f  : .Y --+ R furnished with the  s u p r e m u m  n o r m  1 1  f 1 1  = supIEs{I f ( x ) l } .  Sup- 

p o x  tha f  in F there t z i s t s  a function h such that  i t s  set D ( h )  of points of discontinuity 
E? 



1s uucount(lb1c. T h ~ n  

G' = { f E F : D( f  j i.5 uncountablc) 

By rnodif>.ing t h ~  rritthods in [5O] ive can get a stronger result in separable. rnctric 

spaces. 

Theorem 4.6.2  L f t  ( .Y .p )  bc n  stparable rnf t r lc  space. L t t  F bc n complrtc r n ~ t r l c  

lincar spacf  of b o u n & d f u r ~ c t i i m s  f : .Y -+ R furnished with ,<uprrnlum norrn 1 1  fll = 
i 

- b 

s 1 1 p ~ ~ , ~ { /  f ( x ) / } .  Suppo" !hat thcr f  is n  funcyion h  such that it<$ S F !  D ( h )  of point.; of 

is a drmsi. open stlt b ~ .  using the methods in [5O]. In fact. let { f, ) E J.' \ .4(O j ht..;i 

corii.vrgrrit seqnencr. Then tlicre is a function f  E F such that f, - f ' un i f~ rn i l~ . .  

1,ct c ,  denote t h e  set 11( f , ) n O .  I'heri c n  is at most countable and so thc union U,:zl f , ,  

is at most countable. \\*e knoiv that  f is continuous at each point x  E 0 \ U:=, E , , ,  

so f  E I.' \ A(0). Hence F \ .-1(0) is closed and .4(0) is open 

Sow ive show that . 4 ( 0 )  is dense in I.'. For every ball B( f, c )  C 1.'. i f  f  E . 4 ( 0 )  

there is nothing to prove. \\'e assume f  E F \ A ( 0 ) .  then f  has at ~ i o s t  countat)l>. 

rrlany points of disconti~iui t~.  i n  0. Frorn the assuniption there is a fu~iction h E F' 
C" 

such t t ~ a t  h  has a c-dense set of points of disco~~tinuity i n  0. Let .\I hc a corlsta~it 

such that l h ( x ) l  < .\I for all s E *Y and set 
5 

c 
g = f + --h. k9 

2L\1 



kt. 

Then g E F' is d iscont inuous  in  c o n t i n u u m  Inan?. points of. 0 a n d  

-4 -1 hrls y E :1(0) !I (  f. c )  a n d  hence  . 4 ( 0 )  is denw. 

Proof.  . I - h t ,  s v t  of 1 ) o i r i t  5 of cliscont inui ty  of a r l  bouncltd s~.rllnlr.t ricall?. c o r ~ t  i r ~ ~ ~ o u i ;  

of d l . s c o ~ i t ~ n u i t y  1.5 c - d t  n,s f  i l l  (.I-. p ) .  T h c r ~  t h ~  p r t 1 , n l f n t  f u n c t l o r ~  f C t.' h(l.s n c-dt  r ~ , - r  

s f t  of p0111t.s oj  dl . . ;contir lul ty .  



Proof. I x t  

BJ. Thcorcrn 4.6.2 thc  sct G and its corhplerncnt arc Horcl sets. \\*n nnced oril~. ,hen 

that  for evcr! f E E' t he follolving set 

is a I,r.besgue measure zero sct .  For c\.er>. X E 5' there exists a ~lon-c.rnpty ope11 5c.t 

O,, C (.Y. p )  such that f + Ah is discon.tinuaus a t  most countab1~- ninny points in 0,. 

I f  tht~rr. arc t w o  distir~c-t X I  and X 2  suc6 that  /!(Oil n 0\,) > 0. tt1c.n h o t h  -f + ,\,h 
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, %  

Proof. The  space BSC,[n. b] is a complete nictric space (see [ :3 :3 ] ) .  By Tran's 

results [ S i ]  there exist functions h l  and h 2  in BSC,[n. b] and BSC'2[i1. b] respcctivcly 

such that  h ,  and h 2  have c-drnse sets of points of discontinuit>- on [a. b ] .  -\lro note 

that  B.SCl[a. b] = B.I;'C7[a. h] C BSCZk- ,  [ a ,  b] and B.5'C2[n. b] 2 f3.$C'2k[a.  b] (see [:K3] 

for details). Thus the result follows from Thtorem 1 . 6 . 4 .  H 

Applying Thcor tm 4 . 6 . 4  and Tran's results [57] we obtain immediately a prevalent 

propcrty in the space R[a. b]. which is also a typical property in R[n ,  h] as shown in 

C'orol lar  4 .6 .3 .  

1 L V Y [ n .  h ] .  

I:c;r .Y 5 R a funct ion f : .Y -+ R is c-allttf countnbly  contin uons  i f  tlit,rt> is a 

co1lntat)lt. coi.t,r {.Y,, : r r  E N) of .Y (b a rb i t r a r~ .  sr3tc;) such that each rc~strictior~ 
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continuous. I t  is easj- to  see that 

So { I  n Y : i. j E N} is a courrtahlr coyer of [a ,  b] .  Also the restrictions f 1.Y: n .Y: 

_ are continuous. Thus for any a.  .? E R .  a f l  + 3 j 2  E F .  
T 

\\'e now show that F is closed. Let { f n }  C F be a convergent sequence. Then 

thcre is a function j E B$C'[a. b] such that f, -+ f uniformly. For each f, therc exists 

a countable cos.er {.Y:} of [a. b] such that fdY," is continuuus. Since. [ a .  b] 2 lJI';=l .Y:. 

So te  t11at for a n .  ! I I  the restriction j,,,] nz=, .Y," is continuous. Thrls thr. rc~tsict'iorl 

f 1 r),Y=l *Y: is continuo~is sincc f is the uriifornl limit of f,,. Therefort- f E I;' and I.' 

is closed 

\Iv? noiv show that E' is no\vherc dense in BS;'Cv[cl, b]. For an>. ball fI(f.  t ). i f  f $! F 

g E II.<;'C1[u. hj that is not couritabl!. conti~iuous (se t  C'icsitlski's constrlic-tiori in  [ l . i ] )  

continuous sincc F is lincar. Since F is closcd, i t  is noivhcrc cltnsc. The resillt follo~vs. 

t 

Proof. In  [15] Iirz>.sztof ('ivsiclski constructccl a functior~ f E f l , ' ; ( ' [ (~ .  h] that is not 

count ably cont inuoris. 'I 'hus the set I.' in the or err^ 4 .6 .7  is a closed, noiviir.re densc. 

propt1r and lincar. subspace of U.\'C'[a. b ] .  'I'herc3forc t h c  rcsult follo~vs. 



4.7 Multiplicatively shy sets in C[O. 11 

In the spare C'[O. I ]  of corrtinubur furiction>on [O. I ]  thcrp is anothrr algebraic opera- 

tion of importan - multiplication. C ' [O.  11 is a Banach algebra ivith ni~iltipliratior~ 

f g  of clernents '7 f . .  E I'[O. l ]  defincd in the pointivise stmsc. I-nder this operation 

C ' [ O .  11 is a Polish scniigroup ivi th  unit. (Thc unit is thc function f ( x )  r 1 ) Thi5 

alloivs for two distinct notions of shy sets. 

1-vt i' C C ' [ O ,  11 bt, uni~.ersalIy nleas~lrable. Then .\' is said to be> an n d d r t i r c l y  .shg 

.if t i f  t hrxrt. is a Ehrcl probabili t measure 11 so that 

Proof. \\'P 11ni.t. a l rcad~.  shouwi that .\/ is atl(liti~.t,l\. s h ~ .   st^ I.:sarr~plc~ :l.:I.51. 

\\.r I I U L V  show that .\I is rl~liltiplic.ati\~cl shj.. f:or I [(I. I ]  uscL . \ / ( I )  to clt:r~ott' 
F=- 

t h t .  set of f~inc.tior~s i r ~  ('i0. I ]  that arcx ~ ~ ~ o n o t o r ~ i c .  011 I .  l ' a k t .  a f~ i r~c t io r~  .!I ~ ~ o \ r . l ~ c ~ r t ~  

diff(wrttia1~)lt. \ \ . i t11  0 < y ( . r )  5 1 .  \\.ritt, 



Then the  support of 11 contains the  unit elerr~crit f i s )  r 1 .  In  fact,  for every ball 

B(1.  c ) .  there esist 0 < E < 1 and 0 < rl < 1 such  that gjx)  2 6 for all x E [O.  11 arid 

1 - c  < 6' < 1 for all t > 71.  T h u s  p ( B ( 1 . c ) )  > 1 - rl > O a n d  hence 1 E s u p p p .  For 

a n y  f E ( ' [O.  11. consider the set 

T = { t  € [o. 11 : F ( t )  E j . \ l ( l ) )  

I\-e claim that T contains at  most one element. In fact.  i f  not.  t hcre are t 1. t 1 f 

[O. 11. t l  < t 2  arid r i l l .  r r 1 2  E . \!(I) such that 

ivc show t hr. assert ion i n  tivo stt%ps 



( i ) .  \\.rite F : [I. ' ;  t C'[O. 11 h>. F ( t )  = t .  Thcn for any  f E C[O. 11. 

So nc, c a n  cons t ruc t  a I3orc.l p r o b a b i l i t  rnvasure 11 \ v i t  h s u p p o r t  contai l t ing t  h c .  1111i t  

011 i0, 1) .  I ' h  

! I +  Ii % and h + 1i ( ' [ 0 . 1 ]  \ %. 



-1' h u s 

I..' 2 % - y and 1i C' [O.  11 \ % - h 

Tht.rcforc both 2' and ('[O. 11 \ 2' arc uppcr cicnsity 1 .  

Proof. For any function f E >'c. f - (' has at least' orie zcro point. By I 'h roreni  4.7.2 



S . . .  . . 

uniforrril>.. Thus f ,  is continuous and f E Cf[O. 11. Thc separability of C ' + [ O .  11 is clear 

and hence CT+[O. 11 is Polish. rn 

Proof. X o t ~  that the function f j x )  = 111 .r is a orit.-orit.. coritinuolls 11lappi11~ fro111 

(''[(I. 11 o r ~ t o  C'i i ) .  I ]  and sitistics 





Chapter 5 

Space of automorphisms 

\ 

5.1 Introduction 

'1 1 1 ~  s p a w  X[O. 11 is d c f i n d  as t11c set of all l ~ o ~ ~ i c o ~ i i o r ~ ) l ~ i ~ r ~ ~ ~  I!  : [(I .  11 + [(I. I ]  f11at fix 

f~ i : l c ; t  ion.; leaving thr, r . n d p o i ~ ~ t s  f i scd .  I 'h is  is a subspace of tht. co~liplc'tr> nit>t ric space, 

~ i a t u r a l  \\.a>. is t o  cor~sidf.r t h c  grolip operation, dcfinrd as w r r ~ p o s i t i o ~ ~  of f~ inc t ions .  

11on-st~y sets t,!. usirlg th f ,  a r g \ ~ ~ i i r ~ ~ ~ t s  I\.(. dc \ . c lopc~ i  ip ('11apti.r 2 aricl ('ha1)tt.r : I .  

L'or a diffcrcnt nicasrirt~-t11cor(.ttc s t r l ( f ~ .  i r l  t t i t ,  spa(-tx X[U. 11. scXt1 (iraf ,  .\.Iaul(lir~ a11t1 

I \- i l l iar~is [L'.5] a114 1261. \\'c follow iclc~a,~ of  \ I a ~ ~ l t l i r ~  arid I'la111 (sct. [XI). ivho ha\-t, 



% 
!Lo t t ~ c  uniform clistril~iltion oi.cr [0. 11 one choose.; h(,!/L'J frorn (0. 1 ) at random with 

f rcxpcct to  the unifonri d i s t r i b ~ ~ t i o n .  then one chooscs h ( l / l )  frorn (0, h ( l l 2 ) )  and 
I 

h i : l / l j  from ( h ( l / L ' ) .  1 )  at rar~dorn again with rcspcct to thc  uniforrri distribution. 

This continues dcfinirig h on all dxadic rational nurnhers. \\.ith p rohah i l i t  1 .  h is 

strict 1). ir~creasing and uniformly continuous on dxatfic rational nilrnbers and so  (Ir~fir~vs 

a rncn~bc>r h E R[O. 11. .4 nicasure P is dtfincd on R[O. 11 to  rt:flcct thew notior~s (st.(. 

[25j for dc)iailsj. In this chaptcr that  say thc  rncasurc P rrlcarls . ; I I ( . ~ I  a rrli'asurtx. I t  

ha5 t hr. proptrty that thr. c s p t ~ t t d  \.alucxs for h ( f  ) is t .  that is. 



< 

non-\iwlian Polish group irith no iniariant metric that makes i t  complete. i\.c shall 

sh%v that this group docs n"ot satisf,. the countable chain condition. 

Thc organizatiqn of this chapter is as folloivs. In Scctio~l. 5.2. \ve show that t h ~  

group 'H[0. 11 is a non-locall?. ronlimct. non-.-\belian Polish group ~vithout inxxriant 

mctrics. In Section 5.3. 5.4 .  5.5. 5.S. we use cornpact curves to Construct Ijorcl 

probahilit>. measures to shotv that ceitain scts are sh~ . .  or lrft s h ~ . ,  or ri_=tlt st!.. 111 - , 

partic~llar. ire show that .  in 'H '? 0. 11. thcrc exists 
B 

i 1 ) a Eorcl probability measure / I  that is both lcft transvcrsc and right t ran~i .erse 

to a h r c l  set .\-. hut is not transverse to .\-. 

t;ct argurncr~t to stioiv that a st.t is non-sh~..  or nun-left sh>-. or [ion-right shy. 111 

t 
Section 5.:. 5.9. 5.10. 5.1 1 .  5.12. ivr. usc the cornpact set argurrit,nt of St,ctiorl .).ti to 

5 . 2 < ~ ~ a c e  of autornorphisrns 



' 4  P E R  5 .  SP.4C'E O F  :\ 17T0.\IOR.PI11S.\IS ' . 102 

?- 
r' 

Proof. X[0. 11 is a (;, w t  in a cornpletc space j s e ~  [ l l .  pp. .16S]). Inclccd, it is 

topologically cornpletc with respect to  t h c  rnttric.  

a(g .  h )  = p ( g .  h )  + h - I ) .  

ivhich is topological l  eq~iivalent to  t he ~~niforrr l  rntt sic p.  ('I'his is rricnt iorlrd i r l  

r" 
O x t o h -  [1 :3 ] . )  T h e  cornposition of tivo functions in 'H[O. 41 \ v i l l  u s u a l l  not cotnrnutv. 

For rxaniple.  f ( x )  = sir1 ( I x )  and g ( . r )  = x 2  t H[O. 11. 

So!v n.r. show that th t .  Polish group X [ 0 .  11 is 11oi Ioc-all). corrlpac-t. k.os all?. 

f11r lc . t  ion f E X[O. 11 ancl c > O t ht,rt* csists a (3 > O 511ch that c ~ (  f .  g )  < t for- all 

F 'H[O.  ll.'pi f .  ,q)  < 6.  Thus  ivr. can fincl a closcd st,(-tarlglt. corlt airltd in fli f .  ( ) . ; r ~ c . h  





that for all-'t. E R[O. 11. 

1'0 .-- 
Sir~(-c  p is right in\-ariant. 

5.3 Some examples of prevalent properties in X[O. 11 

1 1 1  this srct ior~ ~ v t ,  i v i l l  g i i .~ ,  ~ O I I I ~ .  p r t ~ \ . : i I r ~ ~ ( ~ t ~  rtbs~~lts 1 ) ) .  co~~s i ( l t b r i~~g  ttlc folloivir~g p r o b  

attilit>- rlicasurt.. Ilefinc a rrlal,l)ing E '  : [ l / 2 .  11 - 'Ft(0. 11 1) ) .  L ' ( 1 )  = st .  I t  is t,as>. to  
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set. that F is continuous. and so E'([1/2.  11) is a cornpact set .  :Is in Section 2.2 iv(> 

dcfint. a probability measure p  b! 

to  a set i v i t  hot] t being right t rartsx ersc. and that a measurea ma!. t)c left -anti-ri~ht 
. , t ransvcrsc ~ v i t  hout being t rans\.-erse. 

t h n t  h ( a )  = b .  7 ' h c n  t h f  p r ~ , b n b / l t f y  ,it-n.<ur.r 1, t i r f i n ~ d ' b ! l  5 . 1  2.2 f r ~ , n . s l - r r . i f  10 .\';,i. - 
i 

Proof.  I t  is &I?. to  s w  that thr ,  sct .\',,,t, is closccl an(l rlo\vttt~rv (lc.r~sr. i n  R:O. I ] .  111 

+ c'lt'~~lcnts h E X[O. 11 such that h ( . r l  = f(s) for all .r i r l  some sut)ir~tt.rval of [O, 11 r l l ~ i b t  

d r t h first category and shy. 'I'he rcasorl is that this set can  btx csprcwc~(l as' t h c ,  

I n  contrast to t h i s  sir~tplc result \vc shall show how a Hort.1 prohabi l i t~.  nlcasrlrt. 



bc trans\.ersc to a sct.  \\.c start  with an cltmlcritar\. csarrlplt. that illustrates t h t  

rlist inct ness of left /right trans\.erse notions in %;O. 11 

..ft of fr4nctlon.i 111  t hr  .spncf X [ 0 .  11 / h u t  arc llirrclr on I .  7'trt n t h f  probabllrty rr,rniur.f 

Proof. First tvc sho\v that C ; ( l  j is a Bore! set.  I t  is easy to scc that 

G ( 1 )  = { f E ?-I[O. I ]  : f is linear and slop f > O on 1 )  

So ( i i ;  -+ ci E R and thtrefort. .Ii; -+ .$ E W. 'I 'l~tw ni.r + . j k  -+ 0 . r  + .-I = f(s) 011 1. 
a Siricr. all ( l k  > 1 / I ,  so 0 > 1 / n  and f E I<,. 'I'hus each I.: is c los t~ l  ancl t h c x  svt (;( I  I 

is a Rorc.1 sct . E'urt hcr. u.t. car1 show that I.;,  is n o ~ r h t ~ r v  clt811sc an(l htwc.t> (;( 1 j i i  of 

the  first catrgory. In fact. sine(. thc.  c-o~ilplvtr' r~lc,trir n 011 % [ O .  11 i i  t y t l i \ . ; ~ l v r ~ t  to t l ~ t >  

~iniforrri n1c.t ric p,  for an>. 11011-f~r11ptj. o p ~ n  hall I ] (  f ,  t ) C ' H [ O .  11. t 1 1 t ~ 1 . t ~  t ' ~ i h t  s a 6 > 0 

silcll that for an!. h E %[0. 11. p( f. h )  < 6 ivc. ha\.(. o( f. h )  < r .  I t  i.; t.as\ to cor~str~rct  

a rlorl-lint.ar frlr~ctiorl y E %[0. 11 such that p( f.5~) < 6. l ' l l c ~ r l  g E I)( f .  f )  L r l t  g $ I.',. 

So I,',: is no~vhcrc dt.11st3 ar~cl ( ; ( I )  is of thc first catcgor).. 







I t  car1 hc chi,ckrd tha t  ' 
x X X X  

f g(s) = 1 + tr I r l  .r a11d h ( s )  = - ' ( f 1 . - ' )  or1 1 ~ v h t , r c .  r k  is a p o s i t  i \ . t l  cullst ant c l t~pc~~~tf i r lg  

0 1 1  I .  ~ I ~ h t ~ 1 1  



5.4 Right transverse does not imply left transverse 
1 



tha t  or1 I .  



-. 

r a n  ohtail1 a Bore1 prohahilit! a r c  tha t  k 1t.f~ t;ailsi.rrw t o  a rct h r ~ t  not right . 

trarl\\.crsr> t o  this  sc t .  I1t.1.c \vcl srrppl! a fur thvr  con(-rt>tt> i r~s ta r~c t '  of a rncas1lry that  

is Ivft t rarlsi.crrc hut  not right transvcrhc t o  a sc t .  

Theorem 5.4  
1 

- 
. 3  ( ; r r ' t  11 nn  rntr r.r .01 I u-lth t h f  C / O . \ ~ L ~ Y  I ( 0 .  1 )  (11111 ( 1 1 )  (1 > 0 .  I f  t 

Q 
r , i f t  o,f funct~or1.i  i n  thr .spncf %[I). 11 f h n f  c l r ~  of t h r  for-rr, ( 1  + o 111 s)" 

sot c ,  t h ; t t  

I.;, is c.lowcl. k'or any  ( ' a r ~ c h y  w c l l ~ t ~ r ~ c c ~  { f k )  C F;i. t ht.rr. t.sists f  E U[O.- 11 su(-h tha t  



.-lgain 1,. difft ,r t>~~tiating both sidcs ivith rc'spvc.t to y E , I .  i t  iq  cash. to  S ( Y  ttiat o r 1  



1Iwc-c 11 is not  right t rans\ ,crs tx t o  G ( 1 ) .  C 

Corollary 5.4.4 l o r  nrly (1 > 0 ,  thc . i f !  of f n n c t ~ o ! ~ . \  1 1 ,  fhc .\purr R[O. 11 tho!  01 . t  

O/ t h t  /O i a In .r ," .so 111 T 11'h c 1.1 i.s lryt .shy n 11 ci fir,.+/ c~n t  r go r y ,  r1.h r 1.r .j > 0 1.. ( I  

c.ori.-tn r ~ t  dr pc u d l n g  t h f  c o r r ~  .\pondlng functlo11~,.  1 

5.5 A set to whic-h the mAasure p is left-and-right 

transverse 

= 1 

t h a t  /,, -+ f  ur l i for r r l l~ . .  Sotc tha t  



Therefore J E .5',,lf arid >",,I, is closcd. Sincc thc cornplcte metric cr on R;0. 11 1. 



'I'hl15 7'1 cor~tains at most oric clcrncrit arid hcncc A,  (7 ' ,  1 = 0.  I t  follotvs that the h r t l  
! 

probability measure defincd b>. 5.1 is lcft transvcrsc to .5';',,,11. 

the. sct a 

for alr~iost cvc? .r E [O, 11. 'I'his i~ irnpossit,lc sirict. y ( s )  - O as .r - O .  So .\,(I:!) = O 

and thc pro1)abilit~. rrlt.aslirv / i  is riglit traris\.trst' to  .s',,Il. ! 3 ! .  ' I ' h c~ ) rc r~~  2 . 0 . ;  t h t ,  rt\sult 
?f 

fol lotvs. 

Corollary 5 . 5 . 2  7'hr . s f /  .s' 



5.6 A compact set argument 

s~ ich  a charactcrizatiori of compact scts ivr. shall find csarnplcs of sets in X [ O  11 t l ~ a t  

t 
r 1.r r y  c,orrlpclct . \ f t ,  ttl f n .< i., not .ihg (lcft  .shy,  o r  right . ih! / ) .  

3. 

Proof. I.'or arly Horvl probability rllcaslirc p thcrv i h  a  c.orrlpact st,t 11' C J f [ O .  I ]  



I t  i \  ( ,as> to 51.c that 1,0111 ~ a 1 1 ~ 1  h /t,a\.f, .I. = 0 .  1 f i x f d .  S i ~ i c ( ,  I<() I< i h  (~lostvl. 

nrr both in X [ 0 .  11 



' I 'hr~s g(.r) a n d  h(x) art3 s t r ic t l J -  increasing function..  Sinc-t, I< is t q u i c o n t i n u o ~ ~ s  f rom 

( i i  J .  for c\-cr>. i > 0 t h c v  c s i s t s  a b > 0 such  t h a t  for all f' E li. 1 f [ . r !  - f (91;  < c," 

i f  /x - y < 6. SO for all s. y E [O. 11. 1s - y l  < 6 a n d  f E IiO 

T h a t  is. g(x) - g( !g )  < c .  ( ' hanging  t h e  position.: of .r arid 9 >.ivl(i!- !I(!/) - $,,r < t .  

T h r ~ s  l h ( s )  - h ( y ) l  < c ant i  hcncc  h(x) is con t inuous .  l ' t ~ r . r t ~ f o r v  ( i i i )  is t rue .  

'1'0 show thc  s u f t i c i t ~ r ~ c ~ .  of t h c  condi t  i o r ~ s  ( i ) .  ( i i )  a n d  ( i i i  ). 1t.t { f',, ) bc arl). i r ~ f i  



T h i s  w t  i . i  tllcn clo.;rd. If i t  is nor~-crnpt>. and in f in i t ? .  t l i t ~ r i  for all .r E ( ( 1 .  c ) .  

inf f,,(si = f i c . 1 .  
f n ,  EP2 

5.7 Examples of non-left shy, non-right shy sets 

Proof. \\'v first stio\v that is a Hort.1 sct.  sot^ 



' I ' l i t ~ r r  f o r  all k E 11 

Corollary 5.7.2 1,t t 

5'1 = (11 E R[O, 11 : h l ( 0 )  = 0 ) .  



Proof.  \\.c fir.;t s h o ~  tha t  G-, i.; a F3orc.l w t .  Scitt 



I 'hcr~  for all k E 1;. 

Corollary 5..7.4 I,( t 

t h r .  right-ai.cragc, of ttlc r11t.asurc. I' as in  thc introcl~~ct ior~ part of this  c11aptt.r. t ha t  is 



('!I:\ P T E R  3. SP.4 r F ;  OF 

f o r  Rort.1 sct s W E X / 0 .  11. I 

5.8 Examples of left-and-right shy sets 





- Corollary 5.8.2 I , i , r ~  urr 'p t r .  0 < tr < x. thr . > ( I  

Proof.  Sotc  that  



a r c  closcci a r ~ d .  hence .  s o  is 

fo r  any 

first ca 

r i l  2 1 .  \\..tl c l a i m  t h a t  .\- is nowhcrc. t lensc i n  R[U. 11. I t  folloivs that  is 

i. c - los t~ i  m ~ d  r l o ~ v h t ~ r c ~  cit.r~st. i l l  RI0. I j. ~ I ~ t ~ t ~ r . t ~ f o r t ~  (;: is of t 1 1 t .  fir51 cat c,soc.. I 

5.9 Non-shy sets that  are of the first category 



Proof. I t  i:: c1a.<>. t o   st^ that  hot h .5, aritl arc, c l o ~ t 4 .  Sir~c-c, t ht. c'o~npit'tc' 

T h c r l .  for a n  k E I< and  all s E [ O .  11. 



T h u s  f, G k .  k a f2 E 5, and f 3  o k. k o f 4  E 5,. Thcrcfore. by Lcnima 5.6.1. both .<, 

and .<< are ncithcr lcft sh\- nor right shy. 

Theorem 5.9 .2  For ring rn E (0 .  11. 1 E [ l .  +s) c ~ r ~ t i  qj.rj  E R[O. 11, t h r  ,.ft.; 

Proof. I t  is (,ah>. t o  scc that a11 svts .<,,;,, ant1 .\';,< artx closc>cl. Siric-t. t h t .  c.onlpIctt~ 

- hai,r. r r (  f .  h )  < ( .  I f  f @ .< ,,,,,. thvrc. is rlothil~g to  pro\.t,. I f f  E 5 ,,,, >. tvc car1 construct 

a flirlrtion g i H[O. l ]  sricli thnt p ( f . 9 ) ~  < h and 6' = , n q 2 ( . r j  for s~ilfiricritl> small 



C'lI.4 P T E H  .5. SP",-\ ('E OF' :\ 1 .TO.\! 0 H P I Z I S . ~ l ; S  

\vl~r,s(x I:, is the  riglit-a\.c,ragc of t h c  rncaslirf. 1'. IIo\vvi.c.r. ;tc-corcliii$ ttic ;\l)oi.c, tht , -  

orc'rl1. t 1 1 r w .  t ~ v o  set.; ar t ,  ncit  hcr  shj .  no r  prvi.alcrit ;i11(1 . t . t  t ~ I P J .  art ,  (.10.(,(1. ~io\\ .ht,rts 

( I Y I I ~ ( ~  scts  in 31[0. 11. 

5.10 Non-prevalent properties that are typical 

Theorem 5.10.1 f o r  (zvy ~ U I : C ! ~ O I ~  y ( x )  E%X[O. 11, l t t  
T 



- - 
( ' 2  art. r~ot sh.. I\-e now st lo iv  that thcir cornplcrricnts ancl ('2 arc also not sh.. 1,r.t 

C, bt. t h r .  set of rational nurrlbers i n  (0. 1 ).  T h c ~  

s ~ ~ c . t l  t hat for all s E ( 0 . 6  ) .  h ( s )  > cq 

h ( . r )  i r y i x )  for all s E [O. 11. Thus 



Proof. From the proof of Theorcni 5.10.1 nc. knoiv 

ivtlf.rc Q is t h e  S C ' ~  of rational numbers in (0 .  1 ) .  13). Thwrtwl 5.9.2 ~ v t  krloiv that for 

an.'r E Q .  thc sets 
4 

Ktrr1ar.k. :\It hough thr .  sets and G ,  

alho n c l i t  her shy nor prc~alcnt .  that C1 and 

contrasts sharplj. ~ v i t h  the fact that and 

(', i n  Ttlcorcrrl 5.10.1 art. dcrlsc G,. s v t  s 

5.1 1 Corresponding results at 3: = 1 

i \ c  noiv carry thcst rvsults o\.er to the right h a n d  cntlpoint of t t i t ,  irltcri.al [O.  I ] .  

, Sirlcv t h e  group optration on R[0 ,  11 is the coniposition of fu~lctiorls. ivc' do not lir~ow 

ivhet her the mapping T : h -+ h t~ j .  h(s) = 1 - h (  I  - s)  c1ia1lgt.s the sh,nc.ss of stlts. 
-'\ 

i\ 'c  i v i l l  1cai.c i t  as an open problcrn. Hcrc ive iv i l l  deal i v i t  h some scts i~iiwl\.ir~g t h e  

Gcliavior of functions at s = 1 indi\.idually 



Theorem 5 .11 .1  For n n y  funcftorl q ( s )  E X[O. 1).  l t t  

a n t i  

Proof.  :Igai11 u.c stlow tha t  110th Y3 and S4 are l3orcl sets. Sote that  

x x x  
1 - h i  1 - 2 - " )  

= n u n { h  - x ;O .  11 
1 - q ( 1  - ? - ' I )  

-. I ) }  
~ = l  m = l  n = m  



For t h e  set .S3. choose 

'1'hc.n for all k E Ii ,  



lim inf 1 - f l ( k ( x ) )  
= lirwnf 

1 - k ( f 2 L r ) i  
= tx. 

i - - 1 -  1 - q ( x )  1 - 1 -  1 - q ( x )  

[ -s ing sirtiilar arg11rr1t.n:~ as i n  ('ornl1ar~- .5.7.5 i v ~  ob ta i r~  t!lc folloiving. 
C 

Corollary 5 .11 .2  TFrf .set..; .q3 n n d  i', in 7 'h forv  111 5. 1 1 .  1 nrt nc ~ f h t r  .shy rror prt 1.u- 

Theorem 5 . 1 1 . 3  k h r  a n y  f u n c t i o n  y(x) E 'Ft[O, 11. 1 t t  



for all .r < 1 sufficicnt1~- closc to 1 .  Set y =dl - ( I - q ( s ) i t .  Then 

for all y < 1 sufficicnt 1 closc to  1 .  I\$ clairn that  L contains at mo5t ont' clcmt,nt. I f  

for a11 < 1 silfficicxrlt I J .  closc to 1 .  '1'1111s 
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for all s < 1 sufficicntl~. close t o  1 .  Tha t  is. 

for all J- < 1 sufiicicntl. closrl to I .  \\'c clairli that 11' contains at most o n ( ,  clr~rnr~rlt. It '  

not. thcrc exist t l . t 2  E H. t l  < t 2  such tha t  

I< is a sir~zleton or cil~pt!. sct .  a~lrl  11r .1 lc . t~  ,5';,,,1 is right s h ~ . .  13). Thtwrtsrr~ 2.9.;. t h t '  st't 

.5',,,i is left-and-right s t 1 ~  in X[O. 11. Thus  

Corollary 5.11.4 Ehr c l n y  n .  0 < 0 < +x, t h t  s t t  



Proof. Sincc  ('? _> .':{ ancl ( ' 4  _> \vhcrc 5:: ancl .C4 art. as i n  Thtwrvrrl 5.1 1 . 1 .  1)). 

Thcorcrn 5.11.1. hot h (':{ anif C ' 4  art1 not shy. Sinlilarl>. as for I'lrcorc~rrr .?.10.1 \ i . t ,  car1 



A non-shy set that is left-and-right shy 





Sot c that 

f 

and 

T t l l ~ i  from thc conditions ii.~ havc 

That is. f'( 1 )  = .j. 

intori.nIs [rl,. d,, + ( 1  - (fr,12d,,] arc contained in  (31-1, 1 j .  pair~visc tiisjoint. (in -+ 1 arid 



crld of J ,+,  i~ above the upper cr:d of .I,. 

( i i )  the correspandirlg point .r!, of I,, tcmds to 0 fro111 right. and t hc corrcsporiclirl? 

point s: of .I, tcncis to 1 from Icft. 

( i i i )  for any r l .  t h e  l i n t  segnltnt connf.ctirlg is:, f l ( . r ! , ) )  and (.r:. f 2 ( s ; ) )  is COII -  

taincd in I,. and  thc linc scgrncrit corinccting ( . r i .  f l ( . r i ) )  and (xi. f 2 ( . r ;  cont  airlt>\l 

i r l  J,, . 



Fro111 the  choice of {c,) and { d , )  i t  is cay .  to vcrif~. that all thcsc in tc r~a l s  arc pairtviw 

dizjoint. So tvc coriqtruct a function g E 'FI[O. 11 such that 

So 1,. I,crii~ria 5.12.1. ( g  o h o k ) ' ( O )  = 0. 011 the ott1r.r hand. for an). h f %[(I. 11 



So by Lcnirna 5.12.2. ( g  o h o k ) ' ( l )  = J. Thcrcfore y o h o k E D ,,,. j .  . 
, 

('ase 2: o = 0. .3 = 0. \ \ e  clairn tha t .  for an>- n .  

arc pairwisc disjoint. ant1 

arc  a l m  pairivisc disjoint. Siricc [c,. ( 1  + l / n ) c , ]  arc pairivisc. disjoint. t h t  first part 

r i f  t h c  clairn is ohviolis. For tlir. sccond part of thc clairri. i f  thr3rv \vcrc surrlc. r r i  ht i ( -11  

that 

That is, 

iv11ic.h contradicts that [ti,,. (1, + ( 1 - tl, ,  )"1,] arc, pairivisc clibjoir~t. Siric-c t i , ,  > : $ / - I ,  s o  

1 - ( 1  - (i,,)' > :J/-1 and the claim follo~vs. Sou. construct a function g E Ri0. I ]  

such that 



arid 



then 1 - d,;+, < 1 - (1, ancl 

ivhich. as sarnc as in ( 'asc  2. ~ . i t l d s  a contradictiori. l ' h ~ ~ s  t h r .  c l a i n ~  is tr~~c..  Son.  \v t t  

construct a function y E R[O. 11 such that 

\\(, also constrlict a f~irlctiorl k  E R[O. 11 slich that k ( c , )  = sh arid k i d , : )  = . r i .  T ~ I ~ > I I  

for ail). h E I<. ,'-' 

ancl 

13). I.r.~ri~na 5.12.1 a n d  I,c,r~inia 5.12.2. ( q  o 11 o k) ' (O)  = +x ant1 ( g  o h o k ) ' (  1 )  = i s .  

?'hc.rcforc y o h o k E for a n  h E Ii 

a n d  cons t ruc t  a function _q E R[0. 11 s11c-h that  



and - 
g ( , J n )  = [ l  - 3 ( 1  - dn). 1 - . j ( l L -  ( 1  -f i 1 - ( l n ) 2 ) d n ) ] .  

Also wc  construct a functiori k E %[0. 11 such that Xic,)- = s: and k ( t l , , )  = . r i .  

Thtn  from Case 1 and C'ase 2 LVP know that for an). h  E I<. (g o h o k) ' (O)  = 0 and  

(yo h  o k ) ' ( l )  = ,). Therefore y o h  o k E D,,.j for any h  E Ii. 

Similarly as Case 4 ive can use the corresponding parts of Case 1 .  C'ase 2 and Case 

3 to coristruct the corresporiding functions g E 32[0. I ]  and  k E %[O. 11 so that for a n  

h E I<. y o h  o k belongs to the corresponding D,,.j for C'ase 0 < 0 < SX. .j = 0. 

( ' a w  0 < 0 < i x .  .j = +x. Case a = 0. .j = +x. C'ast. o = + x .  0 < .j < +x 

arid Case n = -t x. 3 = 0 respect it-?I>.. The proof is finishrd. I 

Proof. Sincr. t h c  set LI.,,,, ( 0  < ct < x )  i r i  Theorem 5.11'.:3 is contair~rd i r i  hot h 5' 

arlrl C'. Thus t ht. 'result folloivs. 

5.13 H[O. 1] does not satisfy the countable chain 

condition + 

non-.-Ihelian Pol~sh group ' H [ O ,  11. 

Theorem 5.13.1 7'ht a - l d f a l  of ,,hy *ct,s ln  %[0. 11 doc., no t  satl,,fy t h f  courltablr 

c h n l n  condition. Fur th~rrnor-c ,  t h f r t  fzi,<t sct.4 that  a n  le- f f -and-right  s h y ,  and  u-hich 



Proof. For each 0 (0 < n < x).  bj. Theorc,rrl .'i.ll'.:j. t11e sct 0, r {h E %[O.  I ]  : 

' = 0 )  is r o ~ s  For distinct 0 1 .  n 2  ( 0  < nl. n? < x). D,, and 11, artx 

disjoint. So % [ O .  11 c-or~tair~s corltinuurr~ man\. rlisjoir~t. n u n - s h y  sets I ) , , .  O < n < x. 

5.14 Functiori& with infinitely many fixed points 

Proof. I,ct 

I t  is easy to  \.r.rif>. tha t  I;',,,,, arch c l o s d  s ~ t s  and t11e fur~ctions in f,;,,,,, (.rush !/ = .r irl 

( 0 ,  1 ) at least 211 + 1 t ir~lcs.  Sot( '  

So F' is a Rorcl set. 





is not shy. thtri .5' is not prcvalcnt. Since thc sct I.' in 7'hcortm 5.1-1.1 i.; a subset of 

.c. b\- Theorem 3.14.1 the  set 5' is not sh!.. 

I n  [?.',I a r ~ d  [XI i t  is shoivn that thc set .i' has f' rncasure 1 ivhcri q( . r )  = x  in the 

abo~.r. t hrwrcni. In t hc abo~- t .  t hc~ort~rn ~ v c  ha\.? sho~vn that thr. sct of all h E X[O. 11 

s u c h  t h n t  h j x )  = q ( x )  for sorrlc. x  E (0.  1 )  is not s h ~ .  .-'is LYC ha\.? re'niarked car1ir.r 

( s w  page 10.5). ho~ve\.cr. for an!. q ( x )  E X[O. 11. tlic sct of all h E X[W. I ]  suGh , ~ that 

h ( . r )  = q j x )  for all s in some subintcr,~.al of (0 .  1 )  is sh.. 

5.15 Co~icluding remarks 

.l'hc thrwr!. of : , t ~ \ -  sets i l l  an ;'it)t,lian Polish gro~lp  si>vnis to he. co r i~~) l t , t~ l j .  ur~dt~r.stoocl 

i! i , 1.)'' - I .  [ I  :lj. [1.1]. [.XI. [L'r]. [IS]. [3.)]. [s] ) .  Orll~.  partial reirilts arc, a\.ailahlv. tioivt,\.t'r-. 

for no~~-..'ibt.li;trl (riorl-locally corrlpact) corriplctcl\. nictrizablv groups ([IS]. [ - I l l .  [.j.)j. 

ant1 o r n c  rcs~rlts i r ~  this thesis) 

groiip t h r w  col~ld exist sr7ts l ~ f t  s h ~ .  antI/or right shy that arc. rrot shy. \\.c ha\.<. 

ans~vr~r t~1  tliis i n  t h v  I'olish group 'H[O.  11 t)i. provirlg t t ~ t .  t.xistcrlc.c of r~or~-sll>. I h r t > l  

5r.t .; that art3 Ivft  -ar~d-right s h ~ . .  I r i  addit ion i v v  s h o ~ v t ~ i  that t h~ I'olisll g r o ~ ~ p  X[O. I ]  

doc:, not sat isfj. t hc countable chain cor~tlitiori 

Solccki [52] s h o ~ e d  that t h t  a-ideal of shy svts i r ~  an Polish group aclr~~it tirlg 

an irl\.ariar~t rrletric sat isfics the cour~tahlr. chain condition itT t Iris group is loc.all>. 

c.orr~pac.t. The. folloiving probltm is st i l l  opcrl. 



PROBLEiLl 15 Doc.< t h r n  f r ~ . ~ t  a lcft shy  (right s h y )  . s f /  1 1 1  X[O. I] that  i . ~  not r ~ g h t  

.shy f l f  f t  s h y ) ?  

PROBLEM 17 Doc,s thc ( I - id fc l l  of lcft .shy (right ,shy! .sft.< i n  N[O. 11 satl.qfy t t : c  

c o u n t a b l f  chain  corrdction'? 
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Glossary 

additively shy set Scc page 93. , .  

almostevery  S w p a g r ~ 1 0 .  

algebraic basis :I subsct E is a11 alyr 6 1 x 1 ~  bn,ii,q of a Fr6chet space f.' i f  tx\ . t . r>.  

nrlolytlc i f  I:' is tht. projection of a closcd suhsct' (' of .Y x Pi' ,to .Y ~ v h r w  Ks is t h r .  

approximately continuous :I fu~lction f is said to.tw approrirrzntr ly  corltlrrnorl.i 

point slit-h that 

Aronszajn null 

atomless measure 

0. 



/ 

automorphism .-I homeornorphisn~ h of an intcrval [a .  h] that satisfies h ( , n )  = 

a. hi b )  = b is called an  nutornorphi.sm of [a. b ] .  

Baire 1 function .A function is said to hc a R a i n  I function i f  i t  can bv ~ v r i t t c r ~  

as the pointwise limit of a sequence of continuous functions. 

Banach algebra .A B a r ~ a c h  cr1gfbr.n :I is a Banach spacc that  is also an algvbra 

and satisfies that Ilxyll < Iixli . llyll for all x ,  y E .-I. 

Besicovitch set :I Bfs icor i t ch  .s r t  is a planc sct which contains a tinit scgnlcnt 

Borel measure :I measure p on a topological space .Y is called a Borcl irzf(~.*urc 

i f  11 is defined on all Borel sets of .Y. In this thesis we c-onsidvr 11 clcfncd on all 

universally measurable sets.  

Borel p-robability measure .A B o r ~ l  rlieasurc on a topological space .Y i~ 

called a Ror-cl pr-obability rricnsuvf i f  p ( . Y )  = 1.  

Borel selector aT,ct (; be a Polish group and M C (; bt. a closcd subgroup. 

.I'hcn a niappirig ..; : ( ; / l I  --t (; is a B o w l  sc l f c tor  for tht, coscts of I1 i f  i t  is Horel 

n ~ e a ~ i r a b l e  arid , .;(.rIl) E . r l i .  

Borel sets if .Y is a topological space. tht' smallcst a-algt.t)sa co r~ ta i~~ i r lg  thr. 

c los t~ l  sct s is c a l l d  t ht. class of Hor f l  sc t .s .  

left-and-right shy Sce Ilcfinit ion 2.9.6. 

Cantor group T h c  C'nr,for-group is the sct of all scqucnces of 0 ' 7  arid 1's c q u i p p v d  * 
Is: - y:l 

I 

i v i t h  thc  nictric 
x 

and t h t .  usual group s t r~ i c tu re  x y  = ( s l y l . .  . . , s, ,y,) .  

(--dense :I sct .< C_ R is c - d f n . . ~  in an iriter\.al I i f  the  intersection of .< ~ v i t h  r.\.vr>. 

srlGir~tenal of I contains continuum r n a n  poir~ts.  C;cnerall>.. a set 5 of a nictric s p a w  

is c -dens f  in arl opcn set 0 i f  the  intersection of 5 ~ v i t h  c\.crj. nun-c i r lp t  opcn subset 

4 



of 0 contains continuum Inan>- points. 

Christensen null Scc Dcfinition 2.3.1. Dcfinit ion 2.9.1 and Dcfinition 2. l2.:3. 

co-analytic .-I set is co-nnnlg f ic  i f  i t  is t h t  cornplc~ncnt of an ari 
s 

compact :I siibset A' of a rnetric spact  is called c o r r ~ p c t  i f  c\.cr>.. opcn co\.t,ring 

of 11' has a finite subcovering. 

completely metrizable :I topological group is c-allcd corr~plr ! f l y  ~r~ftri:clblr i f  

its t o p o l o g  can be dcri\.ed from a complete metric on i t .  m 

continuum hypothesis T h e  assurnptiori that c = K ,  is calltd the cont lnunrr~  

ical group C 

countable chain condition Scc Ikfinit ion 2 .1s .  1 .  

countably continuous Scc page $11. 

Darboux function :I real-valued function dvfined O I I  an intt,r\al [ u .  61 is saicl to 

t)t. a Uarbour  frlrlctlorl on [ ( I .  h]  i f  for each s. y E [ ( I .  bl i v i t  h x < y and c I ) t ~ t \ v t ~ t ~ r ~  j ( s )  

and f(!j) thcre is z E (s. y )  i v i t h  f(z) = c. 

discrete group :\ cil.scr.r t r  g r o u p  is t h t ,  group with t hr cliscrcxtt' top log>. .  

F r k h e t  differentiable :\ mapping f fronl n Ihrlach spac-c, to a I3;mach spnct' 1. 

is F'rr'chct drflcr.cntlablf at s E .Y i f  



vsists for every h E .i- and ttit limit is uniform for / j h ! /  < 1.  

E'r6chet space  :I completely metrizablc. locall>. convcs spacc is called a !.rf'c.hft 

GAteaux differentiable :I mapping f from a Hariach spacc .I' t o  a Hanach spare 

esi5ts for ever? h E ,Y. Further. thc  mapping f is G a t c a u r  d l f l c r f n t l n b l f  at .r E .Y i f  

thcrc csis ts  an tlernent y E .Y' such that  

Gaussian measu re  S w  I l c f i~~ i t i o r~  2A.2 

Gaussian null in t,he ord inary  sense :I set 5' i n  a 13anach spacc is saicl G'au.~..;lclr~ 

b 

Gaussian null in Phe lps  sense Sce h f i n i t  ion 2 .4  .:{. 

t iori 2.3.1,  Ikfinitiorl 2.9.1. Dcfinit ion 2.9.3 and Ikfinit iori 2.12.3. %-= 

Holder  cont inuous .A function f .  dcfincd or1 an i r~ t c r~ . a l  [ a .  h ] .  is saicl to tw 1li;lric I .  

c o n f i r ~ u o u s  at s E [ a .  b] i f  there csist .\I. 6 > 0 such that for all y E [ a .  h ] .  ly - .r( < 
I .': ; 



hyperplane :I h y p c & l n n ~  in a Ranach spacc 1) i.; a  x t  of tht' forrri {s E I) 

fix) = a )  where f is a non-zcro linear functional 011 H and 0 is a rcal number 

isomorphism :I mapping T from a 13anach spacc .I' onto a Banach spacc 1 .  i5 
I 

an zsonzorphlsrn i f  T is one-one. linear. continuous. 

left Haar  measure X Haar measure is a. left Hnnr  rr1fn.cur.r i f  i t  is Icft irl~.ariar~t 

left shy See Definition 2.9.1. 

left transverse See Definition 2.9.4 

Lipschitz (con$inuous) .A function f. defined on [O. 11. is L ~ p ~ c h i f z  at a poirlt . 
.r E [O.  11 i f  thew is a constant .\I > O such that for all y E [O .  11. j f ( . r )  - f 5 

. I l jx  - yj .  Oncc this  i nequa l i t  holds Lve sax that f is .\I-Lipqchit:. 

locally finite :I Horcl nicasurc is locnlly f i n i f f  i f  ci.crJ. point x E .Y has a nt.ig1i- 

horhood I *  iv i th  p j f ' )  < x.  

lower density 1 Sce page 4s. 

r~l-dimensionally shy Scc Dcfi nit ion 3.2.1. 

metrizable ;I topological space (,Y. 7 j is rnc  tvi:ciblc i f  t hcrc is a 111c.t ric t i  or1 i t  

50 that 7 is thc topolog~. of (.Y. 0 ) .  

multiplicatively shy Sccl page 9 3 .  

nowhere monotonic See page S1. 

nowhere monotonic type  Scc page $ 1 .  

11-th symmetrically continuous :I fllilcti011 f ib  said to  tw rr - t h  syrr~~rrr trrccllly 

contlnuou..  at a point s of an open intcrval ( ( 1 .  h )  R i f  

observable Sce pagr. 48. 

Polish group :I Poll..h group is a separable cornplctel~ nletrizablc group. 

Polish space :I Polish s p c f  is a separahlc. cornplc'tel~. r-rictrizablc space. 
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positive cone In an ordered vector space E. thc set ( x  E E : s > 0)  is called 

the posit i~le cone. 

positive lower density See page 18. 

positive upper density See page 4s. 

Preiss-Tiger null See Definition '2 .3 .5 .  

prevalent See page 10. 

probe See page 64. 

Radon measure .A Borcl measule p on a Hausdorff space is called a Kadon 

rncnsure i f  p is locally finite and tight 

Radon probability measure .4 Radon probability m ~ a s u r e  11 on a Hausdorff 

space .Y is called a Rudon probability rrieasurc i f  i t  is a Radon mcasure ivi th  p(.Y) = 1 .  

right Haar measure :I Ilaar rnvasure is a right f ianr  n l ~ n s u r t  i f  i t  is right 

invariant. 

right shy See Definition 2.9.5. 

right transverse See Definition 2.9.5. 

semigroup .A sfrrilgroup is sirnplj. a set C; with an associative operation: C; x C; -+ 

G. In this thesis x e  always assume that our scrnigroup has a unit elerncnt. 

shy See Definition 2.3.1. Definition 2.9.3 a n d  Dcfinition 2.12.:3. 

s-null See 1)efinitiori '2.3.2. 

:. spanning set In a Banach space .Y, a set C' is a spanning set i f  the whole space 

.Y is the affine hull of C'. Here the affine hull of a set A is the set 

super-reflexive :I Banach space E is said to bc .super-rcflerir i f  each Banach 

space ~vhich is finitel! rcpresentable in it is reflexivv. \\'e say a Hanach spacc El is 

finitelj. representable in E i f  for each finite dimensional suhspace L C El and 0 > 0 

there exists an embedding z : L --+ E such that a-'/lx/l 5 Ilixll < 0lI.rl1 ( x  E L )  
IP 



support of a measure The support of a mcasure p on a metric space .Y is defined 

by 

supp(p)  = {x E ,Y : p ( 1 7 )  > 0, V l .  a neighborhood of x ) .  

symmetrically continuous A function f is said to  be symmetr ical ly  contlnuou..; 

at a point x of an interval ( a ,  b) 2 IR i f  T 

lim[f ( X  + h )  - f ( X  - h ) ]  = 0. 
h-0 

T-smooth A Borel probabilit~r measure 11 is T - s m o o t h  i f  p (1 . )  = sup, p ( r . , )  for 

every family of open sets {I;,) filtering up to the open set 1.. 

thick See Definition 2.19.1. 

tight .4 Borel measure p is called tight i f  p ( R )  = sup'p(A') for all Borel scts B. 

\vhere the sup is taker1 over all compact sets K 5 B. 

topological group :\ topological group is a group (G. . )  endowed with a topo log~  

such that ( s ,  y )  -+ x y - '  is continuous from C; x C; to C;. 

topological semigroup A topological scmigroup is a completely nietrizable scmi- 

group for which the operations s + a s  and x --+ xu are continuous. 

topological space A topological space is a. pair ( . Y , 7 ) ,  wherc.Y is 'a set and 7 

is a collection of subsets of .Y such that O'. .Y E 7 and 7 is clowd under arbitrary 

unions and finite intersections. 

transverse . See Section 2.2. 

typical function If a set of functions with some property is a residual set in a 

function space, then every function in this set is called a typical function 

typical property See page 1. 

ubiquitous See page 38. v 

universally measurable X set of a topological space S is un iwrsa l l y  ntcasurable 

i f  i t  belongs the /L-completion of each finite Borel measurc p%n .Y. 
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universally Radon measurable A set of a topological space X is universal/y 

Radon measurable i f  i t  belongs to the p-completion of each finite Radon measure p 

on ,i? 

upper density 1 See page -13. 

well-ordering A strict linear ordering < on a set .Y is called a w l l - o r d ~ r i n g  for 

.Y if every non-empty subset of .Y contains a first element. 

Wiener measure See Definition 2.5.1 .  

Zarantonello null See Definition 2.6.1 .  


