Measure-theoretic notions of prevalence

by

Hongjian Shi -
B. Sc., Henan Normal University, China, 1984
M. Sc., Simon Fraser University, Canada, 1995
A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
Doctor of Philosophy
in the Department
of
r Mathematics and Statistics

(c) Hongjian Shi 1997

SIMON FRASER UNIVERSITY
October 1997

All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author.

National Library of Canada

Acquisitions and Bibliographic Services

395 Wellington Street Ottawa ON K1A ON4 Canada

Bibliot èque nationale du Canada

Acquisitions et services bibliographiques

395, rue Wellington Ottawa ON K1A ON4 \&anada

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats. L'auteur a accordé une licence non - exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may bé printed or otherwise reproduced without the author's permission.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

APPROVAL*

\square
Name:

Degree:
Title of thesis:
Hongjian Si
Doctor of Philosophy
Measure-theoretic notions of prevalence

Examining Commit ${ }^{\dagger}$ tee: Dr. A. H. Lachlan

Chair

Dr. B. S. Thomson, Senior Supervisor

Dr. A. R. Freedman

Dr. P. Borwein

Dr. J. Borwein

Dr. A. M. Bruckner, External Examiner
Department of Mathematics
University of California, Santa Barbara

Date Approved:
October 30, 1997

Abstract

Haar null sets (or shy sets) play an important role in studying properties of function spaces. In this thesis the concepts of transverse measures, left shy sets and right shy sets are studied in general Polish,groups, and the basic theory for the left shy sets and right shy sets is established. In Banach spaces, comparisons of shy sets with other notions of small sets (e.g.. Aronszajn null sets and Gaussian null sets in Phelps sense) are made, and examples of non-implications are given. Their thickness and preservations of various kinds of null sets under isomorphisms are investigated. A new description of shy sets is given and is used to study shy sets in finite dimensional spaces. The theory is applied to a number of specific function spaces. Some known typical properties are shown to be also prevalent.

Finally, the notions of left shy sets and right shy sets are applied to study properties of the space of homeomorphisms on $[0,1]$ that leate 0 and 1 fixed. Several interesting examples are given of non-shy sets which are null in the sense of some other notions. Exanples of left-and-right shy sets are found which can be decomposed into continumm many disjoint, non-shy sets in $\mathcal{H}[0,1]$. This shows that the σ-ideal of shy sets of the non-Abelian, non-locally compact space $\mathcal{H}[0,1]$ does not satisfy the countable chain condition.

Dedication

To my Parents and

Guixia, Tianyu and Jeanne

Acknowledgments

I wish to express my deepest gratitude and appreciation to my senior supervisor Dr. Brian S. Thomson for his encouragement, guidance and patience in the preparation of this thesis. His many constructive suggestions and ideas are very helpful in the studying of topics in this thesis. Without his help in many wass it would not be possible for this thesis to be in its present form.

I would like to thank Dr. Andrew M. Bruckner and Dr. Jonathan M. Borwein for careful reading of earlier drafts of the thesis, and many suggestions for improvements of this thesis. Thanks also go to Dr. Dave Renfro for information about the Besicovitch set and related material.

Finally, I would like to thank Dr. Brian S. Thomson again. Department of Mathematics \& Statistics and Simon Fraser Cniversity for their financial support during my study in Simon Fraser Cniversity.

Contents

Title i
Abstract iii
Dedication iv
Acknowledgments -
List of Figures viii
Contents ix
1 Introduction 1
2 Shy sets 6
2.1 Introduction 6
2.2 The transverse notion i
2.3 Null sets in a separable Banach space 9
2.4 Gaussian nuil sets ${ }^{\prime}$ 13
2.5 Sets of Wiener measure in $C_{0}[0,1]$ 1.5
2.6 Von-measure-theoretic variants 19
2.7 Basic theory 21
2.8 The completeness assumption 2.4
2.9 Haar null sets in Polish groups 24
2.10 Preservations of null sets under isomorphisms $3: 3$
2.11 Measurability issues 36
2.12 Extension to non-separable Abelian groups 38
2.13 Extension to semigroups 41
2.14 Why not measure zero sets of a single measure 4
2.15 Classification of non-shy sets 48
2.16 Prevalent versus typical 5.5
2.17 Fubinis theorem 58
2.18 Countable chain condition 59
2.19 Thickness of non-shy sets 61
3 Probes 6.3
3.1 Introduction 63
3.2 Finite dimensional probes 6.4
3.3, Elementary linear arguments 66
3.4 Compact sets 70
3.5 Measure-theoretic arguments 73
4 Prevalent properties in some function spaces $i 7$
4.1 Introduction 77
4.2 ('ontinuous, nowhere differentiable functions 78
4.3 Prevalent properties in $C[a, b]$ $s 0$
4.4 Prevalent properties in $b \mathcal{A}, b \mathcal{D B}^{1}, b \mathcal{B}^{1}$ $8: 3$
4.5 Prevalent properties in $D[a, b]$ 8.)
4.6 Prevalent properties in $B . S C[a, b]$ 87
4.7 Multiplicatively shy sets in C'[0.1] 93
5 Space of automorphisms 99
5.1 Introduction 99
5.2 Space of automorphisms 101
5.3 Some examples of prevalent properties in $\mathcal{H}[0.1]$ 104
5.4 Right transverse does not imply left transverse 110
5.5 A set to which the measure μ is left-and-right transverse 114
5.6 A compact set argument 117
5.7 Examples of non-left shy, non-right shy sets 120
5.8 Examples of left-and-right shy sets 124
5.9 Non-shy sets that are of the first category 127
5. 10 Non-prevalent properties that are typical 130
5.11 Corresponding resulthat $x=1$ 132
5.12 A non-shy set that is left-and-right shy 139
5.1. $\mathcal{H}[0,1]$ does not satisfy the countable chain condition 147
$5.1+$ Functions with infinitely many fixed points 145
5.15 Concluding remarks 1.50
Bibliography 159
Glossary 1.58

List of Figures

2.1 The relations of non-shy sets in general 51
2.2 The relations of non-shy sets in \mathbb{R}^{n} 35
5.1 The construction of the automorphisms g and k 142

Chapter 1

Introduction

A glossary is made at the end of this thesis. The words are mainly from Real Analysis. Measure Theory, Topology and Functional Analysis. Some words (e.g., left shy and probe) are either new or in the literature and their definitions are given in the context of the thesis. Some terms (e.g.. Banach space and first category) without explanations can be found in the text books [11] and [48].

Since 1899 when R. Baire [35, pp. 48] introduced he definitions of first category. serond category of sets, and established the Baire category theorem, the Baire category theory has been widely used to characterize properties of sets. especially typical properties, and to show the existence of some pathological functions that are usually difficult to construct. Here a typical property is a property which holds for all points in a complete metric space except for a set of the first category. There are some restrictions in applications of the Baire category theory. For example, when we discuss a probabilistic result on the likelihood of a given property on a function space. the Baire category theory just provides us the topological structures; Lebesgue measure theory is not subsumed by the Baire category theory. Further in a Banach space it can be shown that there are Lipschitz functions which are not differentiable on a
dense G_{i} set, thus the topological category theory is not well suited for differentiability theory of Lipschitz functions. Frequently we need a notion of measure zero in a general setting, that can be used much as sets of the first category have been used to describe properties as typical.

In 1972 Christensen [12] first generalized the concept of sets of Haar measure zero on a locally compact space to an Abelian Polish group which is not necessarily locally compact. Such zero sets have been called Haar zero sets. Haar null set.s. Christensen null sets or shy stts [12]. [56]. [8]. [27]. We state it in the following definition.

A uniwersally measurable set. S in an Abelian Polish group $(\underset{r}{ }$ is said to be a Haar zero st if there is a Borel probability measure μ on G such that $\mu(S+x)=0$ for all $x \in(i$.

Christensen [14] showed that this concept of Haar zero sets is very successful in many respects. for example in extending Rademacher`s classical theorem that a locally Lipschitz mapping from \mathbb{R}^{n} to \mathbb{R}^{m} is differentiable almost everywhere to mappings between general Banach spaces. In 1980 T. Topsoe and J. Hoffman-Jorgensen [56] extended the notion of Haar zero by Christensen to general topological semigroups. In 1994 Brian R. Hunt. T. Sauer and J. A. Yorke [27] rediscovered the concept of Haar zero sets in Banach spaces. They called such sets shy sets. ([n [27] all subsets of a Borel shy set are also termed shy.) In [27] the complement of a shy set is called precalent, and a property in a metric space is said to be prevalent if it holds for all points except for a shy set. or it is said that almost effry function satisfies such property: In [27] the notion of shy sets is used to study properties of certain classes of functions in function spaces. For example, it is easy to show that almost every sequence $\left\{a_{i}\right\}_{t=1}^{\infty}$ in ℓ^{2} has the property that $\sum_{i=1}^{x} a_{i}$ diverges. An attractive result by Hunt [28] is that almost every function in the space of continuous functions is nowhere differentiable. It has been popular to study typical properties of function spaces since Banach [3] and Mazurkiewicz [40] applied the Baire category theorem to
give existence proofs of nowhere differentiable. continuous functions independently:
The study of prevalent properties of function spaces offers an interesting contrast to the typical properties. Usually, it is more difficult to show a property is prevalent than to show a property is typical. A typical property may not be a prevalent property and vice versa. This thesis is devoted to systematically studying shy sets, left shy sets and right shy sets in non-separable Banach spaces and general Polish groups. and investigating whether a typical property is prevalent, and showing hat some known sets characterized by other notions are shy or non-shy:

In Chapter 2 we introduce various transcerse notions, and the concepts of left shy sets. right shy sets in general Polish groups. The basic theory for the left shy sets and right shy sets is established, showing that, in a general Polish group, the countable union of left shy sets is again left shy, and open sets are neither left shy nor right shy? There are several extemsions of the concept of shy sets to non-separable Banach spaces (see C'hristensen [14]. Topsoe and Hoffman-Jorgenson [56]. Hunt et al. [27]. Borwein and Moors [8]). The latter three are equivalent. We compare shy sets. in a Banach space. with s-null sets (see Section 2.3). Aronszajn null sets [2]. Preiss-Tiser null sets [46] and Gaussian null sets in Phelps sense [45], giving examples of non-implications. Also we discuss their thickness of Farious kinds of null sets, and their preservations under isomorphisms. In [18] Dougherty has classified non-shy sets into eight types. and mentioned some examples of non-implications, while we give examples in details for all non-impligations, and exact characterizations for some non-shy sets.

In [27] Hunt. Sauer and Yorke introduced the definition of a probe. A finite dimensional subspace P of a Banach space is called a probe for a set T or its complement if Lebesgue measure supported on P is transverse to a universally measurable set which contains the complement of T. To show a set is shy we often try to find some probe of this set. In Chapter 3 we use probes and elementary linear arguments to study some simple prevalent properties in function spaces. Also we use the dimensions of

- probes to give a new description of shy sets as follows. A shy set $S \subseteq X$ is said to be m-dimensional if S has a m-dimensional probe but no n-dimensional probe for $n<m$, and S is said to be infinite-dimensional if S, has no finite dimensional probes. We find that, in finite dimensional spaces, this new concept for shy sets is related to Kakeya problems and Besicovitch sets (see [21] and [22]), and so some results are obtained. In [12]. [56] and [27] it is shown independently that compact sets are shy: in Abelian Polish groups. Abelian semigroups and Banach spaces. A method using results from functional analysis is given to show that certain sets including compact sets are shy in Banach spaces.

In Chapter 4 several known typical properties are shown to be also prevalént. In [10] Bruckner and Petruska showed that, in the spaces $\mathcal{F}=b \mathcal{A}, b \mathcal{D B} \mathcal{B}^{1} . b \mathcal{B}^{1}$ of bounded approximately continuous functions. bounded Darboux Baire l functions and bounded Baire 1 functions equipped with the supremum norm, for any σ-fmite Borel measure μ on [0, 1], the typical functions are discontinuous μ almost everywhere on [0, 1]. We show that, in the spaces $\mathcal{F}=b \mathcal{A}, b \mathcal{D} \mathcal{B}^{1}$, $b \mathcal{B}^{1}$. For any σ finite Borel measure μ on $[\dot{0}, 1]$. the prevalent functions are also discontinuous μ almost everywhere on [0, 1]. In [50] it was shown that, in the space $B S C[a, b]$ of bounded symmetrically continuous functions on $[a, b]$ equipped with supremum norm, the typical functions have c-dense sets of points of discontinuity. Here we show that the prevalent functions of $B . S C[a, b]$ also have c-dense sets of points of discontinuity. On the space $C[0.1]$ of continuous functions we can also impose the operation of multiplication of functions so that $C[0,1]$ becomes a semigroup. In Chapter 4 we also study the multiplicatively: shy sets in the space $C[0,1]$ of continuous functions, and discuss the relations of multiplicatively shy sets and additively shy sets. For example, we show that the set of continuous functions on $[0,1]$ with at least one zero is not additively shy, but is multiplicatively shy in $C[0,1]$.

We use $\mathcal{H}[0,1]$ to denote the space of homeomorphisms on $[0,1]$ that leave 0 and

1 fixed. In Chapter 5 we show that, in $\mathcal{H}[0,1]$, there exists
(1) a*Borel probability measure μ that is both left transverse and right transverse to a Borel set X. but is not transverse to X.
(2) a Borel protability measure μ that is left transverse to a Borel set X. but is not right transverse to X.
(3) a Borel probability measure μ that is right transverse to a Borel set X. but is not left transverse to X.
We also find examples of left-and-right shy sets which can be decomposed into continuum many disjoint, non-shy sets in $\mathcal{H}[0.1]$. This answers the problem $\left(P_{0}\right)$ posed by Jan Mycielski in [41]: Does the existence of a Borel probability measure left transSerse to a set Y imply that the set Y is shy in a non-locally compact. completely metrizable group? From this we conclude immediately that the σ-ideal of shy sets in $\mathcal{H}_{i}[0.1]$ does not satisfy the countable chain condition. In [25] and [26] Graf, Mauldin and Williams defined a Borel probability measure P_{a} on $\mathcal{H}[0,1]$ from a probbabilistic point of view, and studied whether some interesting sets are null under this measure P_{2}. In Chapter 5 we use our notions of shy sets. left shy sets and righ hy sets to study some of the sets discussed by Graf. Mauldin and Williams. For exanitple. Graf. Mauldin and Williams showed that, for any $m \in(0,1]$ and $l \in[1,+\infty)$, the sets $\{h \in \mathcal{H}[0,1]: h(x) \geq m x\}$ and $\{h \in \mathcal{H}[0,1]: h(x) \leq l x\}$ are null under the measure P_{a}. We show that these two sets are neither shy nor prevalent. Comparisons of prevalence results are made with some typical results, and some known results in [25] and [26].

Chapter 2

Shy sets

2.1 Introduction

('hristensen [12]. Topsve and Hoffman-Jorgensen [56], and Hunt et al. [27] studied shy-sets in Abelian Polish groups. topolagical semigroups and Banach spaces independently. In this section we study left shy sets and right shy sets in general Polish groups. establishing the basic theory for left shy sets and right shy sets. We compare shy sets with other notions of null sets in Banach spaces. For example, in the Banach space of continuous functions on $[0,1]$ that are zero at $x=0$, the set of continuous, nowhere Hölder continuous functions with exponent $\alpha, 0<\alpha<1 / 2$, has Wiener measure zero, but this set is prevalent (see Hunt [28]). (hristensen [12] asked whether any collection of disjoint universally measurable non-shy sets must be countable. (This property of a σ-ideal is called the countable chain condition; see page 59.) Dougherty [18] answered this question in the negative by giving an example. Solecki [52] showed that a Polish group admitting an invariant metric satisfies the countable chain condifioniff this group is locally compact.

2.2 The transverse notion

In all of our discussions in this section we suppose that X is a linear topological space and we assume we have been given a set $S \subseteq X$ that is a universally measurable set in X. Some of the terminology applies as well to an Abelian topological group since. for some of the terminology, we usemly the additive group structure to define the concepts. Most of our discussion in the sequel, however, will be in the setting of a Banach space, and, occasionally, in a non-Abelian Polish group.

Our goal is to define a measure-theoretic notion of smallness analogous to the topological notions of first category and a direct generalization of the notion of a set of Lebesgue measure zero in finite dimensional spaces.

All measures in the sequel are assumed to be defined on the Borel subsets of the space and can be extended to all universally measurable subsets.

Definition 2.2.1 We say that a probability measure μ on X is transeerse to a set S if

$$
\mu(S+y)=0
$$

for all $y \in X$. Thus μ assigns zero measure to S and to every translate of S.
Note that there is no interest in measures here that are not diffuse. If $\mu\left(\left\{x_{0}\right\}\right)>0$ for some point $x_{0} \in X$ then μ cannot be transverse to any non-empty set. In fact, if μ is transverse to some non-empty set A then $\mu(A+y)=0$ for all $y \in X$. Choose $y_{0} \in A$ then $x_{0} \in A-y_{0}+x_{0}$. So $0<\mu\left(\left\{x_{0}\right\}\right) \leq \mu\left(A-y_{0}+x_{0}\right)=0$. This is impossible.

Some authors (e.g., [8]) call the measure μ a test-measure for S if μ is transverse to \leq. We could also adapt language from $[27]$ and call μ a probe in the sense that it is used to test or prove or "probe" the measure-theoretic nature of the set S.

In many applicationst the construction of a transverse measure for a set S (if there is one) can be done by a simpler device. Often a measure μ can be found that
is supported on a finite dimensional subspace or on some simple compact set. For example if every line in the direction x for some $x \in X$ meets S in a set of one dimensional linear measure zero then a probability measure μ transverse to S can be constructed by writing

$$
\mu(E)=\lambda_{1}(\{t \in[0.1]: \cdot t, x \in E\})
$$

where λ_{1} denotes one-dimensioprat Lebesgue measure.

Lemma 2.2.2 A set S has the property that every line in the direction $x(x \in X)$ mects. S in a set of linear dimensional measure zfro if and only if the probability measurt

$$
\mu(E)=\lambda_{1}(\{t \in[0 . \mathrm{l}]: t x \in E\})
$$

i.s transerse to:

Proof. For any $y \in X$.

$$
\mu(S+y)=\lambda_{1}(\{t \in[0.1]: t x \in S+y\})=\lambda_{1}(\{t \in[0.1]: t x-y \in S\})
$$

Thus the result follows.
The above lemmaneads to the following definition:
Definition 2.2.3 An element $x \in X$ is said to be transectse to a set S if

$$
\{t \in \mathbb{R}: t x+y \in S\}
$$

is Lebesgue measure zero for every $y \in \mathcal{X}$.
Again we can say that x is a test or a probefor S, using language that other authors have found convenient.

It is convenient also to express this fact in a variety of manners. Thus we say that the subspace spanned by r is transeerse to S or that the interval

$$
[0, x]=\{t x: t \in[0,1]\}
$$

1
is transverse to S. By extension of this a collection $\left\{x_{1}, x_{2} \ldots, x_{k}\right\}$ of linearly independent elements of X is also said to be transierse to S if

$$
\left\{\left(t_{1}, t_{2} \ldots, t_{k}\right) \in \mathbb{R}^{k}: t_{1} x_{1}+\cdots+t_{k} x_{k}+y \in S\right\}
$$

is of k-dimensional Lebesgue measure zero. Also we have a similar result as in the one-dimensional case. The proof is similar.

Lemma 2.2.4 A set S has the property that every translate of the k-dimensional . siubspace generated by the independent elements $\left\{x_{1} \ldots, x_{k}\right\}\left(x_{1} \ldots \ldots x_{k} \in\right.$ X) mets ; Ginn a set of k-dimensional Lebesigue measure zero if and only if the meavure

$$
\mu(E)=\lambda_{k}\left(\left\{\left(t_{1}, t_{2} \ldots, t_{k}\right) \in[0.1]^{k}: t_{1} x_{1}+\cdots+t_{k} x_{k} \in E\right\}\right)
$$

is transuerse to $S_{\text {, where }} \lambda_{k}$ denotes the k-dimensional Lebesgue measure.
Occasionally linear arguments fail to produce a transverse neasure and one needs to seek other compact sets on which the measure is supported. Let $F:[0,1] \rightarrow X$ be a continuous function. Then $C^{\prime}=F([0.1])$ is a compact set and we say C^{\prime} is transeerse to S if

$$
\{t \in[0.1]: F(t) \in S+y\}
$$

is Lebesgue measure zero for every $y \in X$. In this case a probability measure transverse to S can be defined by

$$
\mu(E)=\lambda_{1}(\{t \in[0,1]: F(t) \in E\})
$$

since $\mu(S+y)=0$ for every $y \in X$. We will give some applications in Section 3.4. Section 4.7 and Section 5.3.

2.3 Null sets in a separable Banach space

The definitions in this section are generalizations of the notion of a set of Lebesgue measure zero in n-dimensional spaces to subsets of a separable Banach space.

We assume that S is a universally measurable subset of a separable Banach space X. The following definition is a version from [12] in a separable Banach space. Its extensions to non-separable Banach spaces and Polish groups can be found in Section 2.12 and Section 2.9 respectively:

Definition 2.3.1 A universally measurable subset S of a separable Banach space.λ is said to be a Christensen null set (shy) if there is a Borel probability measure on X that is transverse to S.

This concept is our central concern throughout. The article [27] has popularized the term shy for Borel sets that are Christensen null and all their subsets and we shall make use of this term too. The complement of a shy set is said to be precalent. In his original paper ('hristensen [12] called shy sets Haar zero sets and other authors have used the term Haar null sets.

The remaining definitions in this section are narrower than Definition 2.3.1. Each of the following classes of sets is a proper subset of the shy sets in general. but may coincide in special cases.

Definition 2.3.2 A universally measurable set S in a separable Barach space X is said to be an s-null set if there is a partition of S into universally measurable subsets

$$
S=\bigcup_{i=1}^{\infty} S_{i}
$$

such that for each i there exists an element ϵ_{1} in X that is transverse to. S_{2}.
The following definition is from Aronszajn [2].
Definition 2.3.3 A Borel set S in a separable Banach space X is said to be an Aronszajn null set (Bortl senst) if for every sequence $\left\{\epsilon_{1}, \epsilon_{2}, \epsilon_{3} \ldots\right\}$ whose linear span is dense in X there is a partition of S into Borel subsets

$$
S=\bigcup_{i=1}^{\infty} S_{i}
$$

such that for each i the element ϵ_{1} is transverse to S_{1}.
It is convenient for contrast to give a similar definition motivated by that of Aron$\operatorname{szajn}[2]$. The original paper studies the Borel version of Definition 2.3.3-we give a universally measurable version as well for comparison.

Definition 2.3.4 A set S in a separable Banach space X is said to be an Aronszajn null set (universally measurable senst) if for every sequence $\left\{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \ldots\right\}$ whose linear span is dense in X there is a partition of S into universally measurable subsets

$$
S=\bigcup_{i=1}^{x} S_{i}
$$

such that for each i the element ϵ_{1} is transverse to S_{1}.

Perhaps the narrowest version of a null set in this spirit is that from Preiss Tišer [46].

Definition 2.3.5 A universally measurable set S in a separable Banach space X is said to be a Preiss-Tiser null set if every element of the space is transverse to S.

Definition 2.3.1, 2.3.2 and 2.3.5 all have similar forms in the Borel sense. i.e. replacing the universally measurable condition by the requirement that the sets are Borel. The above definitions in the universally measurable sense are parallel to the definitions in the Bgrel sense but they are different. A Christensen null set need not be Borel. The following simple example can show this.

Example 2.3.6 In \mathbb{R} there is a Christensen null set which is not Borel. We know that in \mathbb{R} there is an analytic set B which is not Borel (see [11, pp. 492]). So there is a Borel set $F \subseteq B$ such that $B \backslash F$ is Lebesgue measure zero. Thus the set $B \backslash F$ is universally measurable and so is Christensen mull but it is not Borel from the following statement.

> In the space \mathbb{R}^{n} a univerasally measurable set is (hristensen null iff it has n-dimensional Lebesgue measure zero.

The above result will be given and proved in the next section.
From the above it is easy to see that, in the real line \mathbb{R}. Preiss-Tiser null sets. Aronszajn null sets, s-null sets, and Christensen null sets are equivalent to Lebesgue measure zero sets that are universally measurable. However. in $\mathbb{R}^{n}(n \geq 2)$ the class of Preiss-Tiser null sets is much smaller than the class of Lebesgue measure zero sets that are universally measurable. This is because any proper subspace of $\mathbb{R}^{n}(n \geq 2)$ is Lebesgue measure zero but is not Preiss--Tiser null.

We now compare in general these different sets in the universally measurable sense. The following inclusions are obvious:

$$
\text { Preiss Tister null } \Rightarrow \text { Aronszajn null } \Rightarrow \text { s-null } \Rightarrow \text { (hristt nisen null. }
$$

I he following are two examples to show that, in general. the first two inclusions are proper.

Example 2.3.7 In the plane \mathbb{R}^{2} the set $\left\{\lambda \epsilon_{1}: \lambda \in \mathbb{R}\right\}$ is obviously Aronszajn null where $\epsilon_{1}=(1.0)$. However it is not Preiss Tišer mull since the element ϵ_{1} itself is not transverse to it.

Example 2.3.8 There is an s-mull set that is not Aronszajn null. In fact, in Fxample 2.4 .4 the set K is compact in the infinite dimensional separable Banach space \mathcal{X}. So it is s-null (see Theorem 3.4.2) . Note the set K is not Gaussian mull in Phelps sense (see Gaussian mull sets in Section 2.4 and Example 2.4.4). Since an Aronszajn null set must be a Gaussian null set in Phelps sense [45], thus the set K is not Aronszajn null. Since an s-null set is Christensen null so the set k is also an example of a Christensen null set that is not Aronszajn null.

Remark. In the plane \mathbb{R}^{2} a Christensen null set is an s-null set (see Theorem 3.2.4). However we do not know whether there is a Christensen null set that is not s-null in $\mathbb{R}^{\dot{n}}(n>2)$.

PROBLEM 1 In a separable Banach space is there a Christensen null set that is not s-null?

2.4 Gaussian null sets

The main purpose of this section is to compare the null sets in Section 2.3 with two other kinds of small sets, Gaussian null sets in Phelps sense and Gaussian null sets in the ordinary sense. For convenience we require Ciaussian measures defined on Borel sets. The following three definitions are reproduced from [45].

Definition 2.4.1 A non-degenerate Gaussian measure μ on the real line \mathbb{R} is one having the form

$$
\mu(B)=(2 \pi b)^{-1} \int_{B} \exp \left[(-2 b)^{-1}(t-a)^{2}\right] d t
$$

where B is a Borel subset of \mathbb{R} and the constant b is positive. The point $a \in \mathbb{R}$ is called the mean of μ.

Definition 2.4.2 A Borel probability measure λ on a Banach space \bar{X} is said to be a Gaussian measure of mean x_{0} if for each $f \in X^{*}, f \neq 0$. the measure $\mu=\lambda \circ f^{-1}$ is a non-degenerate Gaussian measure on the real line \mathbb{R} as above, where $a=f\left(x_{0}\right)$.

Definition 2.4.3 (Phelps) A Borel subset B of a separable Banach space A is called a Goussian null set in Phelps sense if $\mu(B)=0$ for every non-degenerate Gaussian measure μ on X.

Recall that a Borel subset B of a separable Banach space X is an ordinary Gaussian null set if there is a non-degenerate Gaussian measure μ such that $\mu(B)=0$. Here we also say that the set B is Gaussian null in the ordinary sense.

It is easy to see that a Gaussian null set in Phelps sense is Gaussian null in the ordinary sense. However the converse is not true. We know that there does not exist a positive σ-finite measure on ℓ_{2} (the space of square summable sequences) whose null sets are translation invariant (see Theorem 2.14.3 or [51. pp. 1081). So for any non-degenerate Gaussian measure μ there is a Borel set $S \subseteq \ell_{2}$ such that $\mu(S)=0$ but μ is not transerse to S. Thus the set S is not Gaussian null in Phelps sense.

We compare the two kinds of Gaussian null sets with the null sets Section 2.3. A translate of a non-degenerate Gaussian measure is again such a measure [34]. so a Ciaussian null set in Phelps sense is Christensen null. In [f5] it is shown that a Aromszajn null set is Gaussian null. Thus we have the following implications:

$$
\text { Arons:ajn null } \Rightarrow \text { (iaussian null in Phelpssense } \Rightarrow \text { (hristensen null. }
$$

We know that, in \mathbb{R}^{n}. Gaussian measures are mutually absolutely continuous with respect to the n-dimensional Lebesgue measure and that a Borel set in \mathbb{R}^{n} is Christensen null iff it is Lebesgue measure zero (see Theorem 2.7.5). Thus in \mathbb{R}^{n} (iaussian null sets in two senses and Christensen null sets in Borel sense are all equivalent to the Borel sets of Lebesgle measure zero. The following example from [1.5] shows that the second inclusion is proper in an infinite dimensional separable Banach space.

Example 2.4.4 In an infinite dimensional separable Banach space X there is a compact set which is not Gaussian null in Phelps sense. Let $\left\{u_{n}\right\} \subseteq X$ have dense linear span and satisfy $\left\|u_{n}\right\| \rightarrow 0$, then its symmetric closed convex hull K is compart but is not Caussian null. In fact, we define $L: \ell_{2} \rightarrow X$ by setting, for $x=\left\{x_{n}\right\} \in \ell_{2}$.

$$
L x=\sum 2^{-n} x_{n} u_{n}^{\prime}
$$

It is clear that L is linear and has dense range. Let l denote the unit ball of ℓ_{2}. Then $L l^{\prime} \subseteq K^{\prime}$. Since K^{\prime} is the closed convex hull of the compact set $\left\{ \pm u_{n}\right\} \cup\{0\}$. it is compact. By the continuity of L we know that if μ is any non-degenerate Gaussi冓 measure on ϵ_{2} then $\lambda=\mu \circ L^{-1}$ is a non-degenerate Gaussian measure on λ. Note $L^{\prime} \subseteq L^{-1} K^{\prime}$ and so $\lambda\left(K^{\prime}\right)=\left(\mu \circ L^{-1}\right)\left(K^{\prime}\right)=\mu\left(L^{-1} K\right) \geq \mu\left(l^{\prime}\right)$. It is known [47] that any non-degenerate Gaussian measure on ℓ_{2} assigns positive measure to any non-empty open set. Thus $\lambda\left(K^{\prime}\right)>0$ and K^{\prime} is not Gaussian null in Phelps sense. However the set K is s-null and of course Christensen null (see Theorem 3.4.2).
. We now leave the following as an open problem.

PROBLEM 2 In an infinite dimensional stparable Banach spact is a (iausisian mitl set in Phelp.s sense necessarily Aronszajn null?

2.5 Sets of Wiener measure in $C_{0}[0,1]$

In this section we summarize some material from Kuo [34] on the Wiener measure in the space (o 0 [0.1]. We compare the null sets, especially Christensen null sets with the null sets of zero Wiener measure on the space $\mathcal{C}_{0}[0,1]$ of real-valued continuous functions $x(t)$ with $x(0)=0 . C_{0}[0.1]$ is a Banach space with the supremum norm. Let \mathcal{R} denote the Borel σ - field of $C_{0}[0,1]$. A subset I of $C_{0}[0,1]$ of the following form

$$
I=\left\{x \in C_{0}[0,1]:\left(x\left(t_{1}\right), x\left(t_{2}\right), \cdots, x\left(t_{n}\right)\right) \in E\right\} .
$$

where $0<t_{1}<t_{2}<\cdots<t_{n} \leq 1$ and E is a Borel subset of \mathbb{R}^{n}. will be called a cylinder set.

Definition 2.5.1 Let I be a cylinder set. Define

$$
\begin{aligned}
u(I)= & {\left[(2 \pi)^{n} t_{1}\left(t_{2}-t_{1}\right) \cdots\left(t_{n}-t_{n-1}\right)\right]^{-\frac{1}{2}} \int_{E} \exp \left\{-\frac{1}{2}\left[\frac{u_{1}^{2}}{t_{1}}+\right.\right.} \\
& \left.\left.+\frac{\left(u_{2}-u_{1}\right)^{2}}{t_{2}-t_{1}}+\cdots+\frac{\left(u_{n}-u_{n-1}\right)^{2}}{t_{n}-t_{n-1}}\right]\right\} d u_{1} \cdots d u_{n}
\end{aligned}
$$

The unique extension of w to the Borel σ-field \mathcal{R} is called the Wiener measure on Col0.1].

Remark. The measure u does indeed possess a unique extension to the σ-field \mathcal{R} (see [34. Theorem 3.2, pp. 43]). When $n=1$ this Wiener measure is a (iaussian measure of mean 0 on ($0[0,1]$ (see Kuo [34, pp. 128]).

Example 2.5.2 If $0<t \leq 1$, then from the definition of u

$$
u\left(\left\{x \in C_{0}[0.1]: a \leq x(t) \leq b\right\}\right)=\frac{1}{\sqrt{2 \pi t}} \int_{a}^{b} t^{-\frac{r^{2}}{2 t}} d x .
$$

Example 2.5.3 Let $0<s<t \leq 1$ be fixed and consider the random variable $x(t)-x(s)$. Let $E \subseteq \mathbb{R}^{2}$ be the set $E=\{(x, y): a \leq x-y \leq b\}$. Then

$$
\begin{aligned}
& u(\{x: a \leq x(t)-x(s) \leq b\})=u(\{x:(x(t), x(s)) \in E\}) \\
& =\frac{1}{\sqrt{(2 \pi)^{2} s(t-s)}} \iint_{E} \epsilon^{-\frac{1}{2}\left\{\frac{v^{2}}{9}+\frac{t u-t^{2}}{1-\frac{2}{2}}\right\}} d u d u \\
& =\frac{1}{\sqrt{(2 \pi)^{2} s(t-s)}} \int_{-x}^{+x} \int_{i+1}^{t+b} \epsilon^{-\frac{1}{2}\left\{\frac{\left.2^{2}+\frac{1 u-t^{2}}{t-}\right\}}{1-)^{2}}\right.} d u d u .
\end{aligned}
$$

By making a change of variables and simplifying we have

$$
u(\{x: a \leq x(t)-x(s) \leq b\})=\frac{1}{\sqrt{2 \pi s(t-s)}} \int_{a}^{b} \epsilon^{-\frac{\tau^{2}}{2:-a)}} d \tau
$$

Now we discuss the Wiener measures of the following sets for $\alpha>0$.

$$
C_{a}=\left\{x \in C_{0}[0,1]: \begin{array}{l}
\exists a=a(x) \text { such that for } \\
\\
\forall t, s \in[0,1] .|r(t)-x(s)| \leq a|t-s|^{\infty}
\end{array}\right\}
$$

For convenience of discussion we use the following notations:
$1 S=$ dyadic rational numbers in $[0,1]$.
2

$$
H_{\alpha}[a]=\left\{\begin{array}{ll}
x \in C_{0}[0.1]: & \exists s_{1}, s_{2} \in S \text { such that } \\
\left|x\left(s_{1}\right)-x\left(s_{2}\right)\right|>a\left|s_{1}-s_{2}\right|^{\alpha}
\end{array}\right\}
$$

3

$$
H_{\alpha}=\left\{x \in C_{0}[0,1]: \begin{array}{l}
\forall a>0 . \exists s_{1}, s_{2} \in S \text { such that } \\
\left|x\left(s_{1}\right)-x\left(s_{2}\right)\right|>a\left|s_{1}-s_{2}\right|^{\alpha}
\end{array}\right\}
$$

The following theorem is reproduced from Kuo [34].

Theorem 2.5.4

$$
\begin{aligned}
& (a) . u\left(C_{a}\right)=1 \text { if } 0<\alpha<1 / 2 . \\
& (b) . u\left(C_{a}\right)=0 \text { if } \alpha>1 / 2 .
\end{aligned}
$$

Proof. (This is a sketch of a proof from Kuo [34].) (a). For $0<\alpha<1 / 2$, it is known that $\lim _{n \rightarrow x} u\left(H_{a}[n]\right)=0$ (see a proof in $[34, p p .42]$). It is easy to see that

$$
C_{\alpha}=\widetilde{H_{\alpha x}}=\bigcup_{n=1}^{\infty} \widetilde{H_{\alpha}[n]}=\lim _{n \rightarrow \infty} \widetilde{H_{\alpha}[n]}
$$

where \widetilde{H}_{α} denotes the complement of H_{α} and so on. Thus

$$
\begin{aligned}
u\left(C_{\alpha}\right) & =\lim _{n \rightarrow \infty} u\left(\widehat{H_{\alpha}[n]}\right)=1-\lim _{n \rightarrow x} u\left(H_{\alpha}[n]\right) \\
& =1-0=1
\end{aligned}
$$

(b). For constants $a>1 / 2$ and $a>0$. let

$$
J_{a, a, n}=\left\{x \in C_{0}[0,1]:\left|x\left(\frac{k}{2^{n}}\right)-x\left(\frac{k-1}{2^{n}}\right)\right| \leq a \cdot\left(\frac{1}{2^{n}}\right)^{\alpha} \text { for all } k=1,2, \ldots .2^{n}\right\}
$$

Clearly for all $n, \widehat{H_{\alpha}[a]} \subseteq J_{a, a, n}$. Kuo [34] asserted that the random variables

$$
x\left(\frac{k}{2^{n}}\right)-x\left(\frac{k-1}{2^{n}}\right), k=1,2, \cdots, 2^{n}
$$

are independent and each is normally distributed with mean 0 and variance $1 / 2^{n}$. Thus

$$
\begin{aligned}
u\left(J_{\alpha, 2, n}\right) & =\prod_{k=1}^{2^{n}} u \cdot\left(\left\{x:-\frac{B}{0}[0,1]:\left|x\left(\frac{k}{2^{n}}\right)-r\left(\frac{k-1}{2^{n}}\right)\right| \leq a \cdot\left(\frac{1}{2^{n}}\right)^{\alpha}\right\}\right) \\
& =\prod_{k=1}^{2^{n}} \int_{-a \cdot\left(\frac{1}{2^{n}}\right)^{n}}^{n \cdot\left(\frac{1}{2 n}\right)^{n}} \frac{1}{\sqrt{2 \pi-2^{-n}}} e^{-\frac{r^{2}}{2^{\frac{1}{2} n}}} d \tau \\
& =\prod_{k=1}^{2^{n}} \sqrt{\frac{2}{\pi}} \int_{0}^{2 \cdot\left(\frac{1}{2^{n}}\right)^{n-1 / 2}} \epsilon^{-\frac{2^{2}}{2}} d s .
\end{aligned}
$$

Since $e^{-s^{2} / 2} \leq 1$. so

$$
\begin{aligned}
u\left(J_{\alpha, n, n}\right) & \leq \prod_{k=1}^{2^{n}}\left\{\sqrt{\frac{2}{\pi}} a \cdot\left(\frac{1}{2^{n}}\right)^{n-1 / 2}\right\} \\
& =\left\{\sqrt{\frac{2}{\pi}} a \cdot\left(\frac{1}{2}\right)^{\alpha-1 / 2}\right\}^{2^{n}} \\
& =\epsilon^{2^{n}\left\{\ln \sqrt{\frac{2}{\pi}} a-(n-1 / 2) n \ln 2\right\}} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Hence for each $a>0$ and $\alpha>1 / 2 . \lim _{n-x} u\left(J_{\alpha, n, n}\right)=0$. and so $u\left(\widetilde{H_{a}[a]}\right)=0$. Therefore uf($\left.C_{0}^{\prime}\right)=\lim _{n-x} u\left(\widehat{H_{a}[n]}\right)=0$.

Corollary 2.5.5 In the space $\left({ }_{0}[0,51]\right.$ the set of continuous. nouhtere Hölder continuous functions with esponent $a, 0<\alpha<1 / 2$, has Wientr measure zero

Proof. For every continuous function f which is Hölder continuous with exponent $a(0<a<-1 / 2)$, there exists a $M>0$ such that for any $t ., \in[0.1] \cdot|f(t)-f(s)| \leq$ $M i t-\|^{\prime \prime}$ and ${ }^{2} f \in C_{a}$. I'sing similar methods as for the set of continuous, nowhere differentiable functions in Section 4.2 it can be shown that the set of continuons. nowhere Hölder continuous functions with exponent $\alpha(0<\alpha<1 / 2)$ is universally measurable. By Theorem 2.5.4, the set of continuous functions that are not somewhere Hölder continuous with exponent $\alpha(0<\alpha<1 / 2)$ has Wiener measure zero. Thus the result follows.

This result contrasts sharply with that the set of continuous, nowhere Hölder continuous functions with exponent $0<\alpha<1 / 2$ is prevalent (see Section 4.2).

2.6 Non-measure-theoretic variants

Our concern will be with the various notions of null sets presented in Section 2.3. in particular. with the notion of a shy set (Christensen mull set). All of these are based on measure-theoretic concepts. Many require that the intersection of a set with a line in some direction have Lebesgue measure zero. One could ask for this intersection to be smaller.

Following Aronszajn [2. pp. 156-157] let \mathcal{B} be a class of Borel sets of the real line that forms a σ-ideal and is closed under translation and affine transformation. The natural choices for \mathcal{B} are the σ-ideals of first category sets. or of countable sets. or of σ-porous sets. Many more choices are possible. We can say that a Borel set S in a separable Banach space \bar{X} is \mathcal{B}-null if for every sequence $\left\{\epsilon_{1}, \epsilon_{2}, \epsilon_{3} \ldots \ldots\right\}$ whose linear span is denee in X there is a partition of S into Borel subsets

$$
S=\bigcup_{i=1}^{x} S_{i}
$$

such that for each i the set of real numbers

$$
\left\{t \in \mathbb{R}: x+t \epsilon_{1} \in S\right\}
$$

belongs to \mathcal{B} for ever! $x \in \mathcal{X}$.
Let us focus just on the case where \mathcal{B} is the collection of all countable subsets of reals. Then we can define a class of null sets that are sharper than Aronszajn mull sets and due to Zarantonello [62].

Definition 2.6.1 A Borel set S in a separable Banach space X is said to be a Zarantontllo null set if for every sequence $\left\{\epsilon_{1}, \epsilon_{2}, \epsilon_{3} \ldots\right\}$ whose linear span is dense in X

there is a partition of S into Borel subsets

$$
S=\bigcup_{i=1}^{\infty} S
$$

such that for each i every line in the direction of the element ϵ_{1} meets S_{1} in a countable set.

Even in finite dimensional spaces the Zarantonello null sets are smaller than our other classes ofnull sets. For example take a collection of Cantor sets $\left\{C_{1}, C_{2} \ldots \ldots C_{n}\right\}$ and consider the product set

$$
S=C_{1} \times C_{2} \times C_{3} \times \cdots \times C_{n}
$$

in \mathbb{R}^{n}. Such a set cannot be a Zarantonello null set for any choice of Cantor sets. In fact, on each C_{k} we can construct a positive Borel measure μ_{k} without point mass. i.e.. $\mu_{k}(\{x\})=0$ for any $x \in\left(C_{k}\right.$. Thus on the set S the product measure $\mu=\mu_{1} \times \mu_{2} \times \cdots \times \mu_{n}$ is also positive without point mass. But for any Zarantonello null set $A \subseteq \mathbb{R}^{n}$ we have $A=\bigcup_{i=1}^{n} A_{1}$ and $A_{1} \cap\left(x+\lambda \epsilon_{1}\right)$ is countable for every $x \in \mathbb{R}^{n}$ where $\epsilon_{1}=(0 \ldots \ldots 1 \ldots \ldots)$ with l in the i th position. Thus $\mu_{i}\left(A_{1} \cap \lambda_{1}\right)=0$. By Fubini's theorem we have $\mu\left(A_{2}\right)=0$ and thus $\mu(A)=0$. So the set S is not a Zarantonello null set.

This narrower notion of null sets plays a role in the differentiability structure of Lipschitz mappings on Banach spaces. For example a real-valued Lipschitz function on a separable Banach space is Gatteaux differentiable outside of a Borel.set that is Aronszajn null. If the function is also convex then it is Ciateaux differentiable outside of a Borel set that is Zarantonello null (see Aronszajn [2, pp. 173]).

2.7 Basic theory

In this section we present the basic parts of the theory of Christensen mull sets (shy sets) in a separable Banach space X with an indication of proofs. Some of these extend to more general settings and some of the ot her notions of mull sets share one or more of these properties. Some of the proofs here use the original methods of Christensen [12].

Theorem 2.7.1 Christensen null sets have empty interior.
Proof. Suppose a Christensen null set $S \subseteq \lambda^{\text {h }}$ had non-empty interior. Then there are a non-empt y ball $B \subseteq S$ and a Borel probability measure μ such that $\mu(S+x)=0$ for any $x \in \mathbb{X}$. So $B+x \subseteq S+x$ and $\mu(B+x) \leq \mu(S+x)=0$ for any $x \in X$. Therefore $\mu(B+x)=0$. Note that X is separable. There is a sequence $\left\{x_{1}\right\} \subseteq \bar{X}$ which is dense in X. So

$$
X=\bigcup_{i=1}^{X}\left(B+x_{i}\right) \text { and } \mu(\mathbf{X}) \leq \sum_{i=1}^{x} \mu\left(B+r_{i}\right)=0 .
$$

This is a contradiction. Hence the result follows.

Theorem 2.7.2 A countable union of Christensen mull set.s is itself a Christensen null sot .

Proof. (This proof is reproduced from (hristensen [12].) Let S_{n} be a sequence of Christensen mull sets and let μ_{n} be their corresponding transverse Borel probability measures. Through translating and normalizing and induction a sequence of Borel probability measures μ_{n}^{\prime} can be found in a neighborhood of zero such that $\chi s_{n} * \mu_{n}^{\prime}=0$ and $\left\|x-x * \mu_{n}^{\prime}\right\| \leq 1 / 2^{n}$ where x is the convolution of different $\mu_{n}^{\prime}, i=1,2, \ldots, n-1$. Then $\mu=\mu_{1}^{\prime} * \mu_{2}^{\prime} * \cdots$ is well defined. Since $\mu=x_{n} * \mu_{n}^{\prime} * y_{n}$ where $x_{n}=\mu_{1}^{\prime} * \cdots * \mu_{n-1}^{\prime}$ and $y_{n}=\mu_{n+1}^{\prime} * \mu_{n+2}^{\prime} * \cdots$, so $\lambda_{s_{n}} * \mu=0$ and therefore $\chi_{s} * \mu=0$ where $S^{*}=\bigcup_{n=1}^{\infty} S_{n}$.

Theorem 2.7.3 Every translate of a Christensen mull set is also a Christensen null set.

Proof. This conclusion follows directly from the definition of Christensen mull sets.

Theorem 2.7.4 In an infinite dimensional separable Banach space every compact set or a σ-compact set is Christensen mull.

The proof of this theorem will be given as Theorem 3.4.2 where it is med to illustrate some of the methods of the subject.

Theorem 2.7.5 In the space \mathbb{R}^{n} a universally measurable set is (hristensen mull if and only if it is Lebesgue measure zero.

Proof. Let $S \subseteq \mathbb{R}^{n}$ be a Christensen mull set and μ beitstranserse Borel probability measure. Then by Fubini"s theorem we know

$$
\int_{\mathbb{B}^{n}} \mu(S-y) d \lambda_{1}(y)=\int_{z^{n}} \lambda_{1}(S-x) d \mu(x)=\lambda_{1}(S) \mu\left(\mathbb{R}^{n}\right) .
$$

Then the result follows easily.
These five properties show that the ('hristensen mull sets can be expected to play a role in the study of infinite dimensional Banach spaces analogous to the role that sets of Lebesgue measure zero play in finite dimensional spaces.

From their defmitions and the comparisons in Section 2.3 and Section 2.4 we see that Preiss Tiser mull sets. s-null sets, Aronszajn mull sets and Gaussian null sets in Phelps sense all have empty interior, and are translation invariant in a separable Banach space. From the following theorem we see that they all also satisfy the countable union property (that is, the countable union of these sets of same kind is also a set of this kind) in a separable Banach space.

Theorem 2.7.6 Let X be a separable Banach space. $S_{n} \subseteq X$ be a sequence of sets of one of classes of Preiss-Tisér null, s-null. Aronszajn null and Gaussian null in Phelps sense. Then $\bigcup S_{n}$ is also in the same class as S_{n}.

Proof. (i). Let S_{n} be Preiss-Tiser null sets. Then for every $x \in X, x$ is transverse to $S_{n} . n=1,2, \cdots$. Thus $\left\{t \in \mathbb{R}: t x+y \in S_{n}\right\}$ is Lebesgue measure zero for evers $y \in X$. Note that

$$
\left\{t \in \mathbb{R}: t x+y \in \bigcup_{n=1}^{\infty} S_{n}\right\}=\bigcup_{n=1}^{\infty}\left\{t \in \mathbb{R}: t x+y \in S_{n}\right\}
$$

Thus $\left\{t \in \mathbb{R}: t x+y \in \bigcup_{n=1}^{\infty} S_{n}\right\}$ is Lebesgue measure zero for every $y \in X$. So $\bigcup_{n=1}^{\infty} S_{n}$ is also Preiss Tišer null.
(ii). Let S_{n} be s-null sets. Then $S_{n}=\bigcup_{i=1}^{x} S_{n}$ such that for each i there exists an element $\epsilon_{n} \in X$ that is transverse to $S_{n 2}$. Thus the conntable union of S_{n} has a partition as

$$
\bigcup_{n=1}^{x} S_{n}=\bigcup_{n=1}^{x} \bigcup_{t=1}^{x} S_{n}
$$

Thus $\bigcup_{n=1}^{x} S_{n}$ is also s-null.
(iii). Let S_{n} be Aronszajn null sets. Then for every sequence $\left\{\epsilon_{1}, \epsilon_{2}, \cdots\right\}$ whose linear span is dense in X, there are partitions of S_{n} into universally measurable sets

$$
S_{n}=\bigcup_{i=1}^{\infty} S_{n i}
$$

such that for each i, the element ϵ_{1} is transverse to $S_{n 1}$. By the same argument as in (i) we know that ϵ_{1} is transverse to $\bigcup_{n=1}^{x} S_{n}$. Thus the countable union

$$
S=\bigcup_{n=1}^{\infty} S_{n}=\bigcup_{i=1}^{\times}\left(\bigcup_{n=1}^{\infty} S_{n i}\right)
$$

is Aronszajn null.
(iv). The result for Gaussian null sets in Phelps sense follows directly from the definition.

2.8 The completeness assumption

Throughout we have taken our space to be a Banach space. One might have thought the theory does not use the completeness in any fundamental way and that the same definitions would be useful in normed linear spaces.

A simple example shows that this is not the case. Let ℓ_{f} denote the subspace of ℓ_{x} composed of sequences that have only finitely many non-zero elements. Then f_{f} is an infinite dimensional inçomplete, normed linear space. It is clear that ℓ_{f} is separable since the set of sequences of rational numbers that have finitely many non-zero elements must be dense in ζ_{f}.

Write S_{n} for the members of ℓ_{f} that have zero in all positions after the first n. Then $f_{f}=\bigcup_{n=1}^{x} S_{n}$. Each S_{n} is a closed proper subspace of f_{f} and so clementary arguments (cf. Section 3.3) show that each S_{n} is shy in the space f_{f}. In this case a countable union of shy sets comprises the whole space f_{f} and our theory loses one of its main features.

This same flaw would be apparent in any space that could be expressed as a countable union of proper. closed subspaces.

Thus, throughout, the theory will be developed in Banach spaces or, more generally: in completely metrizable topological groups. The same feature applies, of course. to category arguments.

2.9 Haar null sets in Polish groups

The theory of Christensen null sets was originally expressed in Abelian Polish groups and motivated by an attempt to generalize to non-locally compact groups the notion of sets of Haar measure zero. Since a non-locally compact group does not have a Haar measure some different approach is needed.

In order that many theorems from Harmonic analysis carry over to the case of nonlocally compact Abelian Polish groups and the new concept "Haar zero" coincides with the Haar measure on locally compact Abelian Polish groups the following definition was introduced in [12].

Definition 2.9.1 Let (r be an Abelian Polish group. A universally measurable set $S \subseteq G$ is a Maar zero stt if there is a Borel probability measure μ on G such that $\mu(S+x)=0$ for any $x \in G$.

This definition satisfies our aim. and has proved usefnl in the differentiability theory for Lipschitz mappings between Banach spaces. We know that an infinite dimensional separable Banach space is also an Abelian Polish group. So the theory in the setting of Abelian Polish groups fits the theory for infinite dimensional separable Banach spaces. Theorem 2.7.1. Theorem 2.7.2 and Theorem 2.7.3 remain valid in this new setting. Theorem 2.7.4 also remains valid but the proof needs modification. We state here and give a brief proof by using the idesas from [12]. ${ }^{1}$

Theorem 2.9.2 In a non-locally compact Abelian Polish group (i a compact set or a σ - compart set is Haar zero.

Proof. (This proof is sketched from [12].) We will show that for any universally measurable set A that is not Haar zero we have

$$
F(A, A)=\{g \in G:(g+A) \cap A \text { is not Haar zero }\}
$$

is a neighborhood of zero element. If this is already proved, suppose there was a compact set S which is not Haar zero. Then the set $S-S$ would be both a neighborhood of zero element and a compact set. This contradicts that is not locally compact. Thus the set S is Haar zero.

[^0]Now we show that $F(A, A)$ is a neighborhood of zero for a non-Haar zero set A. Suppose this were not the case. Then we may choose a sequence g_{n} in G not belonging to $F(A, A)$ such that $d\left(x, x+g_{n}\right) \leq 1 / 2^{n}$ where $x=\sum_{i=1}^{n-1} g_{\mathrm{a}}$ and $d^{n} d$ is an invariant metric on G compatible with the topology. Set

$$
A^{\prime}=A \backslash\left(\bigcup_{n}\left(g_{n}+A\right) \cap A\right) .
$$

Then A^{\prime} is not Haar zero. Now we define a mapping θ from the ('antor group $k=$ $\{0.1\}^{*}$ to G by

$$
\theta(x)=\sum_{n=1}^{x} r(n) g_{n} .
$$

Since A^{\prime} is not Haar zero then there exists $g \in\left(;\right.$ such that $\theta^{-1}\left(g+A^{\prime}\right)$ has non-zero Haar measure in K. Then $\theta^{-1}\left(g+A^{\prime}\right)-\theta^{-1}\left(g+A^{\prime}\right)=l^{\prime}$ is a neighborhood in K^{\prime}. Then for large $c, \epsilon_{r} \in l^{\prime}$ where $\epsilon_{r}=(0, \cdots, 0,1,0, \cdots, 0)$ with 1 in the r-th position. So $\theta\left(\epsilon_{v}\right)=g_{v} \in A^{\prime}-A^{\prime}$ and hence $\left(g_{v}+A^{\prime}\right) \cap A^{\prime} \neq 0$. This is a contradiction. Therefore $F(A, A)$ is a neighborhood of zero.

The theory can also be developed in the setting of a nom-Abelian Polish group. ('hristensen in [14. pp. 12.3] indicated the extension of Christensen null concept to such setting by using the two-sided invariance, and also pointed out that such extension does not fit any non-separable metric group. Here we will introduce four definitions in a completely metrizable separable group G, also called Polish groups.

Since we are not assuming that the group operation is commutative we shall write the operation as a multiplication. In cases where we explicitly assume an Abelian group we revert to additive notation.

Definition 2.9.3 (Christensen) A universally measurable set $X \subseteq(;$ is called shy if there exists a Borel probability measure μ such that $\mu(g . X h)=0$ for all $g . h \in($ i. We also say that μ is transerese to X.

Definition 2.9.4 A universally measurable set $X \subseteq G$ is called left shy if there exists a Borel probability measure μ such that $\mu(g . X)=0$ for all $g \in G$. We also say that μ is left transcerse to X.

Definition 2.9.5 A universally measurable set $X \subseteq G$ is called right shy if there exists a Borel probability measure μ such that $\mu(X h)=0$ for all $h \in G$. We also say that μ is right transerest to X.

Definition 2.9.6 A universally measurable set $X \subseteq G$ is called left-and-right shy if there exists a Borel probability measure μ such that $\mu(X h)=0$ and $\mu(h X)=0$ for all $h \in($. We also say that μ is left-and-right transeersf to X.

From these definitions we can easily see the following implications:

$$
\text { shy } \Rightarrow \text { lfft-and-right shy } \Rightarrow \text { left shy (right shy). }
$$

Vote that left-and-right shy is formally stronger than left shy and right shy. We show they are equivalent. This following theorem seems to be not in the current literature.

Theorem 2.9.7 If $\mathrm{X} \subseteq($ is is lft shy and right shy. then X is left-and-right shy.
Proof. Since $X \subseteq G$ is left shy and right shy, then there exist Borel probability measures μ_{1} and μ_{2} such that

$$
\mu_{1}(X h)=\mu_{2}(h X)=0 \quad(\forall h \in(i) .
$$

Now we define a new Borel probability measure ν by

$$
\nu(B)=\mu_{1} \times \mu_{2}(\{(f, g) \in G \times G: f g \in B\})
$$

for all universally measurable sets $B \subseteq G$. By Fubini's theorem.

$$
\nu(B)=\mu_{1} \times \mu_{2}\left(\left\{(f, g) \in G \times G: f \in B g^{-1}\right\}\right)=\int_{G} \mu_{1}\left(B g^{-1}\right) d \mu_{2}(g)
$$

and

$$
\left.\nu(B)=\mu_{1} \times \mu_{2}!\left\{(f, g) \in G \times G: g \in f^{-1} B\right\}\right\}=\int_{G} \mu_{2}\left(f^{-1} B\right) d \mu_{1}(f)
$$

Thus

$$
\nu(X h)=\int_{G} \mu_{1}\left(X h g^{-1}\right) d \mu_{2}(g)=0
$$

and

$$
\nu(h, \mathrm{X})=\int_{G} \mu_{2}\left(f^{-1} h \mathrm{X}\right) d \mu_{\mathrm{I}}(f)=0
$$

So ν is left-and-right transverse to X. The result follows.
We will give several examples in Chapter 5 to show that, on the Polish group $\mathcal{H}[0.1]$ (see ('hapter 5). there exists
(1) a probability measure that is both left transverse and right transverse to a Borel set $X \subseteq \mathcal{H}[0,1]$. but is not transverse to X.
(2) a probability measure that is left transverse to a Borel set $X \subseteq \mathcal{H}[0.1]$, but is not right transverse to X.
(3) a probability measure that is right transverse to a Borel set $X \subseteq \mathcal{H}_{i}[0,1]$, but is not left transverse to X.

Also in the Polish group (i we will give examples of left-and-right shy sets which can be decomposed into continuum many non-shy sets.

Jan Mycielski [11] showed that the family \mathcal{S} of shy sets is closed under finite union in an arbitrary completely metrizable group and also closed under countable unions in any Polish group. In the following theorems we will develop the corresponding proterties for left shy sets and right shy sets and some further properties. The methods are well known although the details may not be in the literature.

- Theorem 2.9.8 If Y_{1} and Y_{2} are left shy sets. Then $Y_{1} \cup Y_{2}$ is also a left shy set.

6 Proof. Let μ_{1}^{*} and μ_{2} be the probability measures on G left transverse to Y_{1} and ξ_{2} respectively: We define

$$
m(X)=\mu_{1} \times \mu_{2}\left(\left\{(x, y) \in G^{2}: x^{-1} y, y^{-1} x \in X\right\}\right)
$$

for universally measurable sets $X \subseteq G$. Then m is a probability measure. For any $g \in G$.

$$
0 \leq m\left(g Y_{1}\right) \leq \int_{G} \mu_{1}\left(y g Y_{1}\right) \mu_{2}(d y)=0
$$

and

$$
0 \leq m\left(g Y_{2}\right) \leq \int_{G} \mu_{2}\left(x g Y_{2}\right) \mu_{1}(d x)=0
$$

Thus $m\left(g Y_{1}\right)=m\left(g Y_{2}\right)=0$ and hence $m\left(g\left(Y_{1} \cup Y_{2}\right)\right)=0$.
The separability is needed in the next two theorems, but was not used in the preceding one.

Theorem 2.9.9, If (i) is a Polish group and $Y_{1}, Y_{2} \ldots$ are left shy. then $\bigcup_{i=1}^{x} Y_{i}$ is also left shy.

Proof. Let m, be a probability measure left transverse to Y_{j}. Since (' is separable there exists a compact set $\left({ }_{j}\right.$, with diameter $\leq 1 / 2^{\prime}$ and $m_{j}\left(C_{j}\right)>0$. Without loss of gemerality we can assume that $m_{j}\left(C_{J}\right)=1$ and that the unity of G belongs to C_{j}. Since diameter of $C, \leq 1 / 2^{\mu}$, the infinite product $g_{1} g_{2} \cdots$ for $g_{J} \in C_{,}$converges in the sense of group multiplication. Let m 號 the product measure of the measures m, in the product space ΠC_{0}^{\prime}. We define $m(X)=$

$$
m \Pi\left\{\left(g_{1}, g_{2}, \cdots\right) \in \prod\left(, j \vdots\left(g_{1} \cdots g_{1-1} g_{t+1} g_{1+2} \cdots\right) g_{i} \in X . i=1,2 \ldots\right\}\right.
$$

It is easy to see that m is a probability measure. We will show that m is left transverse to all Y_{i}. Let $\prod^{i} C_{j}=C_{1} \times \cdots \times C_{i-1} \times C_{i+1} \times C_{i+2} \times \cdots$ and m_{i}^{Π} be the product
 then for any $h \in G$ we have

$$
\dot{m}\left(h Y_{i}\right)=\int_{\Pi^{2} C_{1}} m_{2}\left(\left(g_{1} \cdots g_{i-1} g_{i+1} \cdots\right)^{-1} h Y_{i}\right) m_{i}^{\Pi}(d g)=0
$$

Thus

$$
m\left(h\left(\bigcup_{i=1}^{\infty} Y_{i}\right)\right) \leq \sum_{i=1}^{\infty} m\left(h Y_{i}\right)=0
$$

So the result follows.
By similar arguments we can have the following.

Theorem 2.9.10 If (is is a Polish group and $Y_{1}, Y_{2} \ldots$ are right shy, then $\bigcup_{i=1}^{2} Y_{i}$ i. also right shy.

Corollary 2.9.11 If (i is a Polish group and Y_{1} : Y $\mathrm{Y}_{2} . .$. are left-and-right shy. then $\bigcup_{i=1}^{x} Y_{i}$ is also left-and-right shy.

Theorem 2.9.12 If (; is a Polish group then any non-tmpty open set is neither left shy nor right shy.

Proof. It is known that every metrizable topological group must have a left invariant metric and a right invariant metric (see [30, pp. 58]). Thus we need only show the results for a Polish group with a compatible right invariant metric ρ.

Let S be a non-empty open set in G and $B(f, r) \subseteq S$ is a non-empty ball. Suppose G is right shy. We need find a contradiction. Since $\left(i\right.$ is separable, let $\left\{f_{1}\right\} \subseteq(i$ be a countable set dense in G 6 . Then

$$
\left(i \subseteq \bigcup_{i=1}^{x} B(f, r) f^{-1} f_{i}\right.
$$

where

$$
B(f, r) f^{-1} f_{1}=\left\{h f^{-1} f_{1}: h \in B(f, r)\right\}
$$

In fact, it is easy to see that the above inclusion holds if

$$
B(f, r) f^{-1} f_{i}=B\left(f_{i}, r\right)
$$

In fact, for $g \in B(f . r) f^{-1} f_{1}$, then $g=\hbar f^{-1} f_{1}$ and $\rho(h . f)<r$. By the right invariance of ρ we have

$$
\rho\left(g, f_{1}\right)=\rho\left(h f^{-1} f_{1}, f_{1}\right)=\rho\left(h f^{-1}, \epsilon\right)=\rho(h, f)<r
$$

where ϵ is the unit element of G : So $g \in B\left(f_{1}, r\right)$ and hence $B(f, r) f^{-1} f_{1} \subseteq B\left(f_{1}, r\right)$. For $g \in B\left(f_{i}, r\right)$.

$$
\rho\left(g f_{2}^{-1} f, f\right)=\rho\left(g f_{i}^{-1}, \epsilon\right) \stackrel{i}{\varrho} \rho\left(g . f_{1}\right)<r .
$$

So $g f_{1}^{-1} f \in B(f, r)$ and $g \in B(f, r) f^{-1} f_{1}$. Thus $B\left(f_{i}, r\right) \subseteq B(f, r) f^{-1} f_{1}$.
Since S is right shy, so there existsa Borel probability measure μ such that $\mu(\stackrel{g}{g})=$ 0 for all $g \in(:$. Thus

$$
\mu\left(C^{\prime}\right) \leq \sum_{i=1}^{x} \mu\left(B(f, r) f^{-1} f_{i}\right) \leq \sum_{i=1}^{x} \mu\left(\check{S} f^{-1} f_{i}\right)=0
$$

This contradicts $\mu(G)=1$ and so S is not right shy:
By similar arguments we can show that S is not left shy. The theorem follows.

In the following we give some basic properties of left shy sets. The right shy sets have the same properties. Their proofs are similar.

Theorem 2.9.13 If G is a Polish group, then left shy stts have empty interior.
Proof. From the above theorem we know that every open set is not left shy. So any set with non-empty interior is not left shy: That is, a left shy set has empty interior.

Theorem 2.9.14 If (${ }^{\prime}$ is a Polish group, then any left translate or right translate of a left shy set is also left shy.
-
Proof. Let S be a left shy set and μ be its transverse Borel probability measure. Then for any $x \in G . \mu(x S)=0$. For every $y \in G$, by the associativity, $\mu(x(y S))=$ $\mu((x y) S)=0$ for all $x \in G$. and so $y S$ is left shy: For every $h \in G$. we define a Borel probability μ_{1} by $\mu_{1}(A)=\mu(A h)$ for any universally measurable set $A \subseteq G$. Then for any $x \in G$.

$$
\mu_{1}(x(S h))=\mu_{1}((x S) h)=\mu(x S)=0
$$

by the transversality of μ to S. Thus μ_{1} is transverse to $S h$ and $S h$ is left shy:

Theorem 2.9.15 Let (i.be a Polish group. Then
(i) A set $S \subseteq$ G in shy if and only if

$$
S^{-1}=\left\{h^{-1} \in\{: h \in S\}\right.
$$

is shy.
(ii) A set $S \subseteq\left(\dot{C}\right.$ is left shy if and only if S^{-1} is right shy.
(iii) A set $S \subseteq$ (i is right shy if and only if S^{-1} is left shy.

Proof. It is easy to see that a set S is Borel or universally measurable iff S^{-1} is Borel or miversally measurable respectively. Since $\left(S^{-1}\right)^{-1}=S$ and (ii). (iii) coincide. we need only show the necessities of (i) and (ii).
(i). Suppose that S is shy: Then for all $f, g \in(G$ there exists a Borel probability measure μ such that $\mu(f S g)=0$. We define a Borel probability measure $\tilde{\mu}$ by

$$
\tilde{\mu}(X)=\mu\left(\left\{h^{-1} \in(i: h \in X\}\right) .\right.
$$

Then for all $f, g \in\left(G_{\text {. }}\right.$

$$
\tilde{\mu}\left(f S^{-1} g\right)=\tilde{\mu}\left(\left(f^{-1}\right)^{-1} S^{-1}\left(g^{-1}\right)^{-1}\right)=\tilde{\mu}\left(\left(g^{-1} S f^{-1}\right)^{-1}\right)=\mu\left(g^{-1} S f^{-1}\right)=0 .
$$

Therefore S^{-1} is shy.
(ii). Suppose that S is left shy: Then for all $f \in(\dot{G}$. there exists a Borel probability measure μ such that $\mu(f S)=0$. Use $\tilde{\mu}$ as in (i) we have

$$
\widetilde{\mu}\left(S^{-1} f\right)=\widetilde{\mu}\left(S^{-1}\left(f^{-1}\right)^{-1}\right)=\widetilde{\mu}\left(\left(f^{-1} S\right)^{-1}\right)=\mu\left(f^{-1} S\right)=0 .
$$

Examples), (ii) and (iii) montioned in this section will show that a measure that proves a set in a non-Abelia lish group is shy on one side. does not prove that it is shy on the other side. Indeed even if that measure proves that it is shy on both sides it does not prove that it is shy since that requires more. Specifically even if $\mu(g X)=\mu(X h)=0$ for all $g . h$ in the group it does not follow that $\mu(g . X h)=0$ for all g and h. But there may yet exist some other measure for which this is the case and that is the source of the problem.

In a locally compart Polish group this problem does not arise because of the following theorem, proved in Mycielski [41. Theorem 1, pp. 31].

Theorem 2.9.16 In a locally compact Polish group, if thert eristis a Borel probability measure that is left (right) transiterst to a set S then S is a st of llaar meanure zero (fot any Haar measure on the group).

In Chapter 5, we will give examples of left-and-right shy sets without being shy in the non-locally compact Polish group.

2.10 Preservations of null sets under isomorphisms

In this section we will discuss the preservation of our null sets under isomorphisms. Here a mapping T from a Banach space . I to a Banach space γ^{\prime} is an isomorphism if T is one-one. linear and continuous.

Theorem 2.10.1 Let X be an infinite dimensional stparable Banach space and T be an isomorphism on X . Let S be one of sets of Gaussian null. Gaussian null in Phelps sense. Christensen null, s-null. Aronszajn null and Preiss--Tiséer null. Then $T(S)$ is also a null set of the same kind.

Proof. Since T is one-one and continuous, by Theorem 11.16 in [11], if a set $S \subseteq X$ is Borel or universally measurable then $T(S)$ is Borel or universally measurable respectively. He now need only show the assertion for each kind of Borel null sets.
(i). Let S be a Gaussian null set in the ordinary sense. Then there is a Gaussian measure μ such that $\mu(S)=0$. We define a measure on Borel sets by $\tilde{\mu}(E) \not \neq \mu\left(T^{-1} E\right)$. Since for any $f \in X^{*}: \tilde{\mu} \circ f^{-1}=\left(\mu \circ T^{-1}\right) \circ f^{-1}=\mu \circ(f T)^{-1}$ and $f T \in X^{*}$, thus $\tilde{\mu}$ is also a non-degenerate Gaussian measure. Since $\tilde{\mu}(T(S))=\mu(S)=0$, the set $T(S)$ is also Gaussian null in the ordinary sense.
(ii). Let S be a Canssian null set in Phelps sense. From the proof of (i) it is easy to see that $\mu \circ T$ is a Caussian measure iff μ is a Ciaussian measure. Thus $T\left(S_{5}\right)$ is Gaussian null in Phelps sense.
(iii). Let S be a Christensen null set. Then there is a Borel probability measure μ such that for every $x \in X . \mu(S+x)=0$. As in (i) we define a meaşure $\tilde{\mu}$ on Borel sets. Then for every $y \in X$. there is some $x \in X$ such that $y=T x$ since T is one-one. Thus

$$
\tilde{\mu}(T(S)+y)=\tilde{\mu}(T(S)+T x)=\tilde{\mu}(T(S+x))=\mu(S+x)=0
$$

and hence $T(S)$ is Christensen null.
(iv). Let S be an s-null set. Then there is a sequence $\left\{\epsilon_{1}\right\}$ such that $S=U S$, and $S_{1} \cap\left(x+\mathbb{R} \epsilon_{1}\right)$ is Lebesgue measure zero for every $x \in X$. Here $\mathbb{R} \epsilon_{;}$is the one dimensional space spanned by ϵ_{1}. It is easy to see that $T(S)=\bigcup T\left(S_{1}\right)$. For any $y \in X$, there is some $x \in X$ such that $y=T r$. Note

$$
T\left[S_{1} \cap\left(x+\mathbb{R} \epsilon_{1}\right)\right]=T\left(S_{1}\right) \cap\left(T r+\mathbb{R} T \epsilon_{2}\right)=T\left(S_{1}\right) \cap\left(y+\mathbb{R} T \epsilon_{1}\right) .
$$

We can define a probability measure on universally measurable sets by $\tilde{\mu}(E)=$ $\lambda_{1}\left(T^{-1} E\right)$. Thus

$$
\widetilde{\mu}\left(T\left(S_{1}\right) \cap\left(y+\mathbb{R} T e_{2}\right)\right)=0
$$

for any $y \in X$ and hence $T(S)$ is s-null.
(v). By using the same method as in (iv) we can get the results for-Preiss-Tiser null sets and Aronszajn null sets.

The statements are true if T is an isomorphism from an infinite dimensional separable Banach space to an infinite dimensional separable Banach space. We can also extend one of the assertions to Abelian Polish groups in the following.

Theorem 2.10.2 Let G_{1} and G_{2} be Abelian Polish groups. Let T bf a homeomorphism from G_{1} to G_{2} such that

$$
T\left(x_{1}+x_{2}\right)=T\left(x_{1}\right)+T\left(x_{2}\right)
$$

for all $x_{1}, x_{2} \in G_{1}$. where + and $\dot{+}$ denote the operations on C_{1} and i_{2} respectively. Then a set $S \subseteq G_{1}$ is shy in G_{1} if and only if $T(S)$ is shy in G_{2}.

Proof. Since T is a homeomorphism. both T and the inverse T^{-1} of T map Borel sets and universally measurable sets into Borel sets and universally measurable sets respectively. T^{-1} also satisfies

$$
T^{-1}\left(y_{1}+y_{2}\right)=T^{-1}\left(y_{1}\right)+T^{-1}\left(y_{2}\right)
$$

for all $y_{1}, y_{2} \in G_{2}$. This can be seen from the assumption by applying T to its boont sides. So we only need to show the necessity.

If $S \subseteq G_{1}$ is shy in (i_{1}. then there is a Borel probability measure μ such that for all $x \in G_{1}, \mu(S+x)=0$. Now we define a Borel probability measure $\tilde{\mu}$ on G_{2} by

$$
\tilde{\mu}(P)=\mu\left(T^{-1}(P)\right)
$$

for all universally measurable sets $P \subseteq G_{2}$. Then

$$
\tilde{\mu}\left(G_{2}\right)=\mu\left(T^{-1}\left(C_{2}\right)\right)=\mu\left(C_{1}\right)=1
$$

So $\tilde{\mu}$ is a Borel probability measure. We now check that $\tilde{\mu}$ is transverse to $T(S)$. For any $y \in C_{2}$ there is some $x \in G_{1}$ such that $y=T(x)$. Then

$$
\tilde{\mu}(T(S)+y)=\tilde{\mu}(T(S)+T(x))=\tilde{\mu}(T(S+x))=\mu(S+x)=0
$$

Thus $T(S)$ is shy in G_{2} and the result follows.

2.11 Measurability issues

Our definition of a shy set (i.e.. ('hristensen mull set) requires that the set be universally measurable. This requirement is essential in view of the following theorem of Bogachev [5] cited by Preiss [46].

Theorem 2.11.1 (Bogachev) Let X be an infinite dimensional st parable Banach space and let $\left\{\epsilon_{\imath}\right\}$ be a sequence of elements whose linear span is densif in X . Then there is a decomposition of X into a sequence of sets X_{1} such that the intersection of X_{1} with any line in the direction $t_{\text {, }}$ has linear measure zero.

From this theorem, if we do not require the universal measurability in the definition of shy sets, every separable Banach space would be the countable union of shy sets. So we are unable to omit the reference to the universal measurability of the sets in Section 2.3 as regards shy sets or s-null sets. If we remove the requirement of universal measurability in the definition of a shy set, the same problem arises in Polish groups. The following argument of Dougherty [18] shows this. Let G be an uncountable Polish group. Let \preceq be a well-ordering of G in minimal order type. Then $\underline{\alpha}$ and its complement are subsets of G^{2}. Let $\mu=\mu_{1} \times \mu_{2}$ and $\mu^{\prime}=\mu_{2} \times \mu_{1}$ where μ_{1} is an
atomless measure on G and μ_{2} is a measure concentrated on a single point of G. If the continuum hypothesis holds then μ and μ^{\prime} are Borel measures transverse to \preceq and its complement respectively: ${ }^{2}$ This volates the additivity of shy sets. Thus the universal measurability cannot be omitted.

There are four possible ways of requiring measurability in defining a shy set S. (a) S is Borel.
(b) S is universally measurable.
(a°) S is Borel or a subset of a Borel shy set.
(b) S is universally measurable or a subset of a universally measurable shy set.

The case (a) is too narrow. It does not include some sets we often meet. The case (b) is our choice. It has been proved very useful in many respects. The case (a') is the choice of Hunt et al. $[27]$. This choice is not compatible with our choice in case (b). If we follow Hunt et al. [27] and call a set shy only if it is contained in a Borel shy set then we arrive at a different theory: The following argument, also from Dougherty [18]. shows this. Let X be an uncountable Polish group with an invariant metric which is not locally compact. If the continum hypothesis holds, then there is a subset $S \subseteq A$ such that $S \cap A$ has cardinality less than $2^{K_{0}}$ whenever A is a σ-compact set but $S \cap A$ has cardinality $2^{N_{0}}$ whenever A is a Borel set which is not included in a σ-compact set (see [24]). Since any Borel probability measure on . X is based on σ-compact subsets of X and the continuum hypothesis implies that sets of cardinality less than $2^{K_{0}}$ have measure zero under any atomless measure, then the set S is universally measurable and shy: However, any Borel set which includes S must be the complement of a σ-compact set and therefore prevalent. Thus this set S cannot be contained in any Borel shy set.

The case (b°) is more general than the cases (a). (b) and (a°). A subset of a universally measurable shy set need not be universally measurable. For example, on

[^1]the real line, there exist Bernstein sets. sets such that the sets and their complements intersect every perct set. Choose a Bernstein subset of a Cantor set of measure zero. Then this set is Lebesgue measure zero, but is not measurable with respect to all finite Borel measures on the real line. Such a set would be shy according to the case (b)) but not shy according to cases (a) and (b). The set S in last paragraph is shy according to the case $\left(b^{\circ}\right)$. but is not shy according to the case (a°).

There are other interesting questions that can be posed and which are related to this discussion. In [18] Dougherty asked whether an analytic shy set must always be included in a Borel shy set and whether any analytic non-shy set must include a Borel non-shy set. Solecki [52] answered the first question affirmatively and the second question negatively in the following.

Theorem 2.11.2 (Solecki) Let Gibe an Abelian Polish group. then
(i) If $A \subseteq$ (; is analytio and Haar null then there exists a Borel set $B \subseteq$ (i which is Haar null and $A \subseteq B$.
(ii) Assume that (i is not locally compact and admits an invariant metric then there fists an analytic set A wuch that $A \perp B$ is Haar null for no co-analytic set B.

2.12 Extension to non-separable Abelian groups

The non-separable case requires some attention to the measure theoretic details. Here is a simple example showing what can go wrong.

Example 2.12.1 Consider the non-separable Banach space ℓ_{x}, the space of all bounded sequences with the supremum norm. The cube

$$
C_{n}=\left\{\left(x_{1}, x_{2}, x_{3}, \ldots\right):\left|x_{2}\right|<n, i=1,2, \ldots\right\}
$$

admits a transverse Borel probability measure.

Take the measure μ defined on ℓ_{x} as follows

$$
\mu=\mu_{1} \times \mu_{2} \times \cdots \times \mu_{n} \times \cdots
$$

where

$$
\mu_{\mathrm{t}}=\frac{1}{\sqrt{2 \pi}} \int_{B} \epsilon^{-x^{2} / 2} d x
$$

for Borel sets $B \subseteq \mathbb{R}, i=1,2 \ldots$.
Then $\mu\left(C_{n}\right)=0$ for all n and indeed. $\mu\left(C_{n}+x\right)=0$ for all $x \in \ell_{x}$. Thus each set C_{n} has a Borel probability measure transverse to it. But

$$
\ell_{x}=\bigcup_{n=1}^{x} C_{n} .
$$

so that the whole space is a union of countably many sets that we might have been inclined to call "shy".

One of the features of finite Borel measures on Polish spaces that is lacking for non-separable spaces is the close connection with the compact sets. An analysis of the proofs in Example 2.12.1 shows that this property of Borel measures on Polish spaces is what is missing in general. We will see in the next section that the measure μ we constructed in the last example is not "tight" even though it is a Borel probability measure.

One way around this is to restrict attention to measures that have this property. The simplest approach, followed in Hunt et al. [27], is to consider just those Borel probability measures with compact support. In a Polish space the shy sets would not change. For if there is a Borel probability measure transverse to a set s then there must also exist a Borel probability measure with compact support that is also transverse to that set. We will see this from the following theorem.

Theorem 2.12.2 Any probability measurt μ on a Polish spacf (is is tight.

Proof. (This proof is a sketch of some of the main ideas from [44. pp. 28-30].) Since G is separable, for each natural number n we can find countably many balls B_{n}, of radius $1 / n$ such that $G=\bigcup, B_{n \jmath}$. So $G=\bigcup, \vec{B}_{n j}$, where $\bar{B}_{n \jmath}$ is the closure of $B_{n j}$. For arbitrary $\epsilon>0$ there exists an integer k_{n} such that

$$
\mu\left(\bigcup_{J=1}^{k_{n}} \bar{B}_{n J}\right)>1-\frac{t}{2^{n}} .
$$

Let

$$
\boldsymbol{X}_{n}=\bigcup_{j=1}^{k_{n}} \bar{B}_{n j} \text { and } K=\bigcap_{n=1}^{\infty} \boldsymbol{X}_{n}
$$

Then

$$
\mu\left(G \backslash h^{\prime}\right)=\sum_{n} \mu\left(G_{I}^{\prime} \backslash X_{n}\right)<\sum_{n} \epsilon / 2^{n}=\epsilon .
$$

We now need only show that K is compact. Let $\left\{x_{n}\right\} \subseteq K$ be an infinite sequence then there is $n_{1} \leq k_{1}$ such that $K \cap B_{1 n_{1}}=K_{1}$ contains infinite points of $\left\{x_{n}\right\}$. Note $K_{1} \subseteq \bigcup_{j=1}^{k_{2}} B_{2 j}$. There is an integer $n_{2} \leq k_{2}$ such that $K_{1} \cap \dot{B}_{2 n_{2}}$ contains infinite points of $\left\{x_{n}\right\}$. Induction yields a sequence of sets $\left\{K_{n}\right\}$ such that $K_{1} \supseteq K_{2} \supseteq \cdots \supseteq$ $K_{n} \supseteq \cdots$ and each K_{n} contains infinite points of $\left\{x_{n}\right\}$. Note the diameter of K_{n} is less than $2 / n$ and G is complete. $S_{0} \bigcap_{n} K_{n}^{\prime}$ is a singleton. Thus there is a subsequence of $\left\{x_{n}\right\}$ which converges to that single point. Therefore K is compact and the result follows.

Another development is given in Borwein and Moors [δ] for shy sets (Haar null sets) in non-separable Abelian topological groups. Their method overcomes the shortcomings that an open set may be shy by, again, restricting the class of measures to which the definition of shy sets is allowed to apply (see the Glossary for the definition of Radon measure).

Definition 2.12.3 (Borwein-Moors) Let G be a completely thetrizable Abelian topological group. A universally Radon measurable set $A \subseteq G$ is called a Haar null
set if there exists a Radon probability measure p on G such that $p(g+A)=0$ for each $g \in G$.

From Theorem 2.12.2 we know that in an infinite dimensional separable Banach space the definition of Borel Christensen null sets coincides with the definition of Borel shy sets in [27]. and also coincides with the above definition of Borwein and Moors. In a non-separable Banach space. by Theorem 2.12.2, the definition of Borel shy sets defined by Hunt et al. [27] still coincides with the definition of Borel Haar null sets by Borwein and Moors [8]. but the definitions of Borel shy sets defined in [27] and [8] are different from Christensen Definition 2.9.3. Example 2.12.1 illustrates this.

In the next section we will discuss a further extension to completely metrizable topological semigroups and give the main properties, for the corresponding Haar null sets.

2.13 Extension to semigroups

Much of the material developed so far can be extended to certain topological semigroups. An account appears in Topsoe and Hoffman-Jorgenson [56. pp. 373-378].

We suppose that we are given a topological (usually completely metrizable) semigroup G for which the operations $x \rightarrow a x$ and $x \rightarrow x a$ are continuous. Topsoe and Hoffman-Jorgenson call such semigroups "separately continuous semigroups". We assume always that G has a unit element. denoted as 1 . Thus $1 . x=x 1=x$ for all $x \in G$.

A Radon probability measure μ defined on G is said to be transectrsf to a univer. sally Radon measurable set S in G if the set

$$
\{z \in(;: x z y \in S\}
$$

has μ-measure zero for every $x, y \in G$ and the element 1 is in the support of μ.

Here are the details needed to see that this definition extends the notion of sets of Haar measure zero in locally compact groups. Let G be a locally compact group with right Har measure ρ, μ be a Radon probability measure transverse to a Radon universally measurable set $S \subseteq G$. Then by Fubini"s theorem we have

$$
0=\int_{G} \mu\left(x^{-1} S\right) \rho(d x)=\int_{G} \int_{G} 1_{S}(x y) \mu(d y) \rho(d x)=\int_{G} \rho\left(S y^{-1}\right) \mu(d y)
$$

Since $\rho\left(S y^{-1}\right)$ is continuous with respect to $y \in(G$ and $l \in \operatorname{supp} \mu$ so $\rho(S)=0$. Thus S is Haar measure zero.

The original definition of Haar null sets in Topsoe and Hoffman-Jorgenson [56 . pp. 374] just requires the existence of a τ-smooth probability measure. The class of τ smooth probability measures is larger than the class of Radon probability measures. However the definition of a Har null set by requiring the existence of a τ-smooth probability measure transverse to a universally Radon measurable set coincides with the definition of a Har null set by requiring the existence of a Radon probability measure transierse to the set. In fact let μ be a τ-smooth probability measure transverse to a universally Radon measurable set S. Then the support of μ :

$$
\text { supp } \mu=\left\{x \in C^{\prime}: \mu\left(C^{\prime}\right)>0, \forall C^{\prime} \text { a neighborhood of } x\right\}
$$

is closed and contained in every closed F with $\mu(G \backslash F)=0$. So $G \backslash F \subseteq(i \backslash$ supp μ. Thus by the definition of τ-smoothness of μ we have $\mu(G \backslash \operatorname{supp} \mu)=0$. Note that a probability measure admits at most countably many disjoint sets of positive measure. Thus supp μ is separable. We define a measure μ by

$$
\bar{\mu}(A)=\mu(A \cap \operatorname{supp} \mu)
$$

for a universally Radon measurable set $A \subseteq G$. It is easy to see that $\bar{\mu}$ is transverse to the set S. Since $\operatorname{supp} \mu$ is closed and separable, by Theorem 2.12.2, the measure μ is tight on supp μ. . .ote $\mu(G \backslash \operatorname{supp} \mu)=0$. So μ is a Radon probability measure on G which is transverse to S.

From the above discussion it is easy to see that in a non-separable Abelian topological group the definition of Haar null sets by Borwein and Moors [8] is equivalent to the definition of Haar null sets by Topsge and Hoffman-Jorgenson [56].

The following are the main properties of Haar null sets on completely metrizable semigroups. See Topsøe and Hoffman-Jørgenson [56, pp. 373-378] and Borwein and Moors [8] for proofs.

Theorem 2.13.1 Let G be a completely metrizable topological semigroup, then
(i) If A is a Haar null set then $x A y$ is also Haar null for any $x, y \in G$.
(ii) A Haar null set has no interior.
(iii) The union of countably many Haar null sets is atso Haar null.
(ii) If (is is an Abelian group and $A \subseteq G$ is not Haar null then the unit element 0 is an interior point of $A-A$.
(c) If G is an Abelian group. then every compact set of G is Haar null.

PROBLEM 3 In a non-locally compact, non-Abelian Polish group. are compact sets left shy or right shy?

If we impose the multiplication as an operation on the space $C[a, b]$ of continuous 1 functions with supremum norm it will become an Abelian Polish semigroup with unit element for which the operation $f \rightarrow f g$ is continuous. We will discuss the "multiplicatively shy" sets in the space C' $[a, b]$ and their relations to the "additively shy" sets in Chapter 4.

- 1

2.14 Why not measure zero sets of a single measure

Our null sets in all cases were required to have the property of translation invariance. One might ask whether we could not have achieved this more directly by taking the measure zero sets for an appropriate measure.

There are many characterizations possible for the sets of Lebesgue irmeasure zero in a finite dimensional space. The simplest one to conceive is merely that these are the null sets for a single measure (Lebesgue measure) that happens to be translation invariant. This gives immediately a class of sets that is translation invariant.

In a compact group there is a unique translation invariant probability measure (Haar measure) which plays the same role. In a non-compact but locally compact. Abelian topological group again Haar measure can be used. The measure is unique up to multiples and translation invariant and so the sets that are of zero Haar measure play the role that we require. The following theorem and its proof are sketched from [14].

Theorem 2.14.1 Let (i be a locally compact, Abelian topological group. Then a stt $S \subseteq C_{i}$ is Haar null iff S is of zero measure for any Haar measure on (r.

Proof. Let h denote a Haar measure on G. Since h is σ-finite, we can use Fubinis theorem to show that for any Borel probability measure μ on (i.

$$
\int\left(\int \operatorname{ls}(x y) h(d x)\right) \mu(d y)=\int\left(\int \operatorname{rs}(x y) \mu(d y)\right) h(d x) .
$$

That is.

$$
\int h\left(S y^{-1}\right) \mu(d y)=\int \mu\left(S x^{-1}\right) h(d x)
$$

where ℓs is the characteristic function of the set S. If S is Haar null and μ is a test-measure for S. then the rightfand and the left hand of this equation are zero.

Since h is translation invariant. S is zero for the Hat measure h. Conversely, if S is zero for the Haar measure, we can obtain a test-measure μ by choosing $/ \hbar$ with density with respect to the Haar measure.

In a locally compact non- Abelian group there is a right Haar measure and aft Haar measure. One might worry that the measure zero sets are only invariant on one side but that is not the case. The measure zero sets for a right Haar measure again serve as our class of sets invariant under the group operations (see [41]).

Why have we been unable to pursue the same course in an infinite dimensional Banach space? The first problem is that there is no nontrivial translation invariant finite or σ-finite measure on such a space.

Theorem 2.14.2 There is no nontrivial translation invariant finite or σ-finite measure on an infinite dixensional Banach spact.

Proof. The proof of this theorem in detail is very complicated and long (see [61. pp. 138-143j). For our purpose we only show that there is no translation invariant Radon probability measure μ on an infinite dimensional Banach space.

Suppose that there were a translation invariant Radon probability measure μ on an infinite dimensional Banach space \mathbb{X}. Then there are a compact set k and an open ball $B(x, \epsilon)$ contained in X such that $0<\mu(K)<x$ and $\mu(B(x, \epsilon))<x$. Since the space X is infinite dimensional, we can construct an infinite sequence of disjoint open balls $\{B(y, \epsilon / 4)\}$ which are contained in $B(x, \epsilon)$. Since μ is translation invariant, so the μ measures of all such balls $B(y, t / 4)$ are zero. Note

$$
K \subseteq \bigcup_{z \in K} B(z, \epsilon / 4)
$$

By the compactness of K and the translation invariance of μ there are finite many z_{1} such that

$$
K \subseteq \bigcup_{i=1}^{m} B\left(z_{1}, \epsilon / 4\right) \text { and } \mu\left(K^{\prime}\right) \leq \sum_{i=1}^{m} \mu\left(B\left(z_{i}, \epsilon / 4\right)\right)=0 .
$$

This is a contradiction. Thus the result follows.
The above theorem can be generalized to any infinite dimensional topological space (see a proof in [61]).

In order to describe our class of null sets we need not necessarily require that the measure be translation invariant. only that the set of measure zero sets for that measure be translation invariant. Such a measure is said to be quasi-invariant. For example the Gaussian measures in \mathbb{R}^{n} are quasi-invariant and, indeed, the measure zero sets of such a measure are precisely the Lebesgue measure zero sets. But again this is not possible in an infinite dimensional space. In fact the following theorem shows that it would never be possible.

Theorem 2.14.3 Let X be a locally concex. linear. infinitt dimensiora mpological rector space. Then there is no nontrivial σ-finite quasi-incariant measure defined on the Borel subsets of X .

Proof. (This proof is reproduced from [61].) By using the remark following Theorem 2.14 .2 we need only show that if a nontrivial quasi-invariant measure μ exists then a nontrivial translation invariant measure exists.

We use \mathcal{B} to denote the class of Borel sets and define a map T on $X \times X$ by $(x, y) \rightarrow(x y, y)$. Then T is an automorphism on $(X \times X, \mathcal{B} \times \mathcal{B})$. By the RadonNikodym theorem there is a function $f(x, y)>0$ such that for every $F \in \mathcal{B} \times \mathcal{B}$.

$$
(\mu \times \mu)(T(F))=\int_{F} f(x, y) d \mu(y)
$$

Consider the following three maps on $\mathrm{X} \times \mathrm{X} \times \mathrm{X}$ as follows:

$$
\begin{gathered}
T_{1}:(x, y, z) \rightarrow(x y, y, z), \quad T_{2}:(x, y, z) \rightarrow(x, y z, z), \\
T_{3}:(x, y, z) \rightarrow(x z, y, z) .
\end{gathered}
$$

We can easily see that $T_{1} \circ T_{2}=T_{3} \circ T_{2} \circ T_{1}$. Then from the uniqueness of the density function we get that for every $(x, y, z) \in X \times X \times X$.

$$
f(x, y z) f(y, z)=f(x y, z) f(y, z) f(x, y)
$$

Thus there is some $x_{0} \in X$ such that $f\left(x_{0}, y z\right)=f\left(x_{0} y, z\right) f\left(x_{0}, y\right)$. Set $f\left(x_{0}, x_{0}^{-1} y\right)=$ $g(y)$. Replacing $x_{0} y$ by y we have that for every $(y, z) \in \mathcal{X} \times X, f(y, z)=g(y z) / g(y)$. Putting $d \nu=g^{-1} d \mu$. Then ν is translation invariant. In fact, for any $F \in \mathcal{B} \times \mathcal{B}$ we have

$$
\begin{gathered}
(\nu \times \mu)(T(F))=\int_{T(F)} g^{-1}(x) d \mu(x) d \mu(y)=\int_{F} g^{-1}(x y) f(x, y) d \mu(x) d \mu(y) \\
\quad=\int_{F} g^{-1}(x y) \frac{g(x y)}{g(x)} d \mu(x) d \mu(y)=\int_{F} g^{-1} d \mu(x) d \mu(y)=(\nu \times \mu)(F) .
\end{gathered}
$$

Thus for $F=A \times X \in B \times B$ we have

$$
\int_{B} \nu(A y) d \mu(y)=\int_{B} \nu(A) d \mu(y)=\nu(A) \mu(B)
$$

From the uniqueness of the density function we have $\nu(A y)=\nu(A)$ for any $y \in B$. Sincol $\in \mathcal{B}$ is arbitrary we have that for any $y \in A, \nu(A y)=\nu(A)$.

In Section 2.4 we saw that on an infinite dimensional separable Banach space a Gaussian null set in Phelps sense is mull for every non-degenerate Gaussian measure. However, in general a Borel shy set cannot be null for every σ-finite Borel measure. In fact all Borel measures live on shy sets!

Theorem 2.14.4 (Aronszajn [2]) Given any σ-finite Bortl measure μ on an infinitt dimensional stparable Banach space X there is a Borel s-null set S so that μ is concentrated on S. i.t.. $\mu(B)=\mu(S \cap B)$ for all Borel sets B.

Immediately from the above theorem we have the following

Corollary 2.14.5 Given any σ-finite Borel measure μ on an infinite dimensional separable Banach space X. for any Borel set $A \subseteq X$ there is a Borel s-null set B and a Borel μ null set C^{\prime} such that $A=B \cup C^{\circ}$. In particular X can be decomposed into a μ null set and a Borel s-null set.

For a proof of the above theorem see [2, pp. 155-156]. The theorem provides another proof that the Borel shy sets cannot be described as the null sets for any one σ-finite Borel measure.

2.15 Classification of non-shy sets

Hunt et al. [27] gave a number of variants of non-shy sets. Dougherty [18] gave more refined characterizations' of non-shy sets. Let S be a universally measurable subset of a Polish group. In the assertions below t will vary over positive real numbers, μ over probability measures on (i, and t over translation functions $g \rightarrow g_{1} g g_{2}$. The following eight properties from Dougherty [18] define different classes, in general, of non-shy sets.

$$
\begin{aligned}
& \text { (1) } \exists \mu \forall t \mu(t(S))=1 \quad \text { [prevalent] } \\
& \text { (2) } \forall \epsilon \exists \mu \forall t \mu(t(S))>1-\epsilon \quad \text { [lou } \quad r d \epsilon \text { nsity } I \text {] } \\
& \text { (3) } \exists \epsilon \exists \mu \forall t \mu(t(5))>\epsilon \quad \therefore \text { [positict loutt } d \in n s i t y \text {] } \\
& \text { (1) } \exists \mu \forall t \mu(t(S))>0 \quad \text { [obsercable] } \\
& \text { (1) } \forall \mu \exists t \mu(t(S))=1 \quad \text { [ubiquitous.] } \\
& \text { (2`) } \forall \epsilon \forall \mu \exists t \mu(t(S))>1-\epsilon \quad[u p p e r d \epsilon n s i t y 1] \\
& \text { (3) } \exists \epsilon \forall \mu \exists t \mu(t(S))>\epsilon \quad \text { [positict upper density] } \\
& \text { (!) } \forall \mu \exists t \mu(t(S))>0 \quad \text { [non-shy]. }
\end{aligned}
$$

In [18] Dougherty mentioned the results and examples in the following (i). (ii). (iii) and (iv) but did not give proofs or explanations. Here we take this upportunity to verify these results and examples. Furthermore, we find non-implications $-(3) \nRightarrow$
$\left(2^{\circ}\right)$ and $\left(1^{\circ}\right) \nRightarrow(4)$. and give examples for them in (v) and (vi). From (i) to (vi) we will get a clear picture of relations among the eight classes of non-shy sets.
(i). Some implications. From the definitions we see that the implications (j) \rightarrow (k) and $\left(j^{\prime}\right) \rightarrow\left(k^{\bullet}\right)$ for $j<k$ are trivial. We now show that $(j) \rightarrow\left(j^{\circ}\right)$ for each j. Let S satisfy (1) then there exists a Borel probability measure μ_{0} such that $\mu_{0}(t(S))=1$ for each t. By Fubini’s theorem for any Borel probability measure μ on G.

$$
\begin{aligned}
\mu * \mu_{0}\left(\mathscr{S} g_{2}\right) & =\int_{G} \mu\left(S g_{2} g^{-1}\right) \mu_{0}(d g) \\
& =\int_{G} \int_{G} 1_{S}\left(g_{1} g g_{2}^{-1}\right) \mu_{0}(d g) \mu\left(d g_{1}\right) \\
& =\int_{G} \mu_{0}\left(g_{1}^{-1} S g_{2}\right) \mu\left(d g_{1}\right)=1
\end{aligned}
$$

Thus there must exist $g_{2} \cdot g \in\left(G\right.$ such that $\mu\left(S_{9_{2}} g^{-1}\right)=1$. and (1) holds. Similar arguments can show that $(\mathrm{j}) \rightarrow(\mathrm{j}) . \quad j=2.3 .4$.
(ii). (4) $\Rightarrow\left(3^{\circ}\right)$. For the interval $S_{1}=[0,1]$ and the Caussian measure μ_{1}, defined by

$$
\mu_{1}(B)=\frac{1}{\sqrt{2 \pi}} \int_{B} \epsilon^{-x^{2} / 2} d x
$$

for all Borel sets $B \subseteq \mathbb{R}$, the set S_{1} satisfies (1) but does not satisfy (3^{\prime}). In fact, for evers $t>0$. we construct a function

$$
f(x)= \begin{cases}-(\epsilon / 4) x+\epsilon / 2, & 0 \leq x \leq 1 \\ \epsilon / 4 . & 1 \leq x \leq(2-2 \epsilon) / \epsilon \\ 0, & x \geq(2-2 \epsilon) / \epsilon\end{cases}
$$

and extend it evenly to $(-x, 0)$. Then the measure μ_{2} defined by

$$
\mu_{2}(B)=\int_{B} f(x) d x
$$

is a Borel probability measure, but for any $x \in \mathbb{R}, \mu_{2}\left(x+s_{1}\right)<\epsilon$.
(iii). (2) $\Rightarrow\left(1^{\prime}\right)$. The set $S_{2}=(-x, 0) \cup(1, x)$ satisfies (2) since for any $\in>0$ the measure μ_{2} in (ii) satisfies $\mu_{2}\left(x+\widetilde{S}_{2}\right)<\epsilon$ for each $x \in \mathbb{R}$. Here \widetilde{S}_{2} is the complement
of S_{2}. Note that $\mathbb{R}=\left(x+S_{2}\right) \cup\left(x+\widetilde{S}_{2}\right)$ and $\left(x+S_{2}\right) \cap\left(x+\widetilde{S}_{2}\right)=0$. So for the Gaussian measure μ_{1} as in (ii) and any $x \in \mathbb{R} . \mu_{1}\left(x+S_{2}\right)<1$. Thus S_{2} does not satisfy (1^{\prime}).
(iv). $\left(2^{\circ}\right) \nRightarrow(3)$. The set S_{3} of positive real numbers satisfies (2*) since for any $\epsilon>\theta$ and any Borel probability measure μ on \mathbb{R} we can choose x small enough so that $\mu\left(x+S_{3}\right)>1-\epsilon$. On the ot her hand. for any $\epsilon>0$ and Borel probability measure μ we can choose x large enough so that $\mu\left(x+S_{3}\right)<\epsilon$. Thus S_{3} does not satisf $4(3)$.
$(\stackrel{*}{ }) .(3) \nRightarrow\left(2^{\circ}\right)$. In \mathbb{R}. let

$$
S_{4}=\bigcup_{n=-x}^{x}(2 n \cdot 2 n+1)
$$

For the (iaussian measure μ_{1} as in (ii) and every $x \in \mathbb{R}$. it is easy to see that

$$
\mu_{1}\left(x+S_{4}\right) \geq \int_{1 / 2}^{1} \epsilon^{-\frac{x^{2}}{2}} d x \geq \epsilon^{-1 / 2}
$$

and

$$
\mu_{1}\left(x+S_{4}\right) \leq 1-\int_{1 / 2}^{1} \epsilon^{-\frac{x^{2}}{2}} d x \leq 1-\epsilon^{-1 / 2}<1
$$

So S_{4} satisfies (3) but does not satisfy (2°).
(vi). ($\left.1^{\circ}\right) \nRightarrow(4)$. We will show that the sets $S_{1}(A), S_{1}\left(A^{+}\right)$and $S_{1}\left(A^{-}\right)$in Theorem 2.15 .1 are all examples for this non-implication.

From the above (i) to (vi) we can make the following conclusions. (2) \nRightarrow (1^{\prime}) implies $\left(2^{2}\right) \nRightarrow(1)$ and $\left(2^{\prime}\right) \nRightarrow\left(1^{\prime}\right):\left(2^{\prime}\right) \nRightarrow(3)$ implies $\left(2^{\prime}\right) \nRightarrow(2) ;(3) \nRightarrow\left(2^{\prime}\right)$ implies $(3) \nRightarrow(2)$ and $\left(3^{\circ}\right) \nRightarrow\left(2^{\circ}\right):(4) \nRightarrow\left(3^{\circ}\right)$ implies $(4) \nRightarrow(3) ;\left(1^{\prime}\right) \nRightarrow(4)$ implies $\left(1^{\circ}\right) \nRightarrow(1)$ and $\left(4^{\circ}\right) \nRightarrow(t)$. Here we indicate all relations among $(1)-(4)$ and (1) (1) in a table as follows. We use \rightarrow to denote \Rightarrow and \rightarrow to denote \nRightarrow.

We now study the following sets to justify (vi). Let A be a non-empty set of natural numbers.

$$
S_{1}(A)= \begin{cases}s \in \mathbb{R}^{V}: & \left.\begin{array}{l}
\exists V>0 \text { such that if } n \geq N \\
\\
s(n)>0 \text { for } n \in A \text { and } s(n)<0 \text { for } n \notin A
\end{array}\right\} .\end{cases}
$$

Figure 2.1: The relations of non-shy sets in general

$$
S_{1}\left(A^{+}\right)=\left\{s \in \mathbb{R}^{N}: \exists V>0 \text { such that if } n \geq N . s(n)>0 \text { for } n \in A\right\}
$$

and

$$
S_{1}(A)=\left\{n \in \mathbb{R}^{Y}: \exists M>0 \text { such that if } n \geq N, s(n)<0 \text { for } n \in A\right\} .
$$

Note that

$$
S_{1}(A)=\bigcup_{m=1}^{x} S_{1 m}(A), \quad S_{1}\left(A^{+}\right)=\bigcup_{m=1}^{x} S_{1 m}\left(A^{+}\right) \text {and } S_{1}\left(A^{-}\right)=\bigcup_{m=1}^{\infty} S_{1 m}\left(A^{-}\right)
$$

where

$$
\begin{gathered}
S_{1 m}(A)=\left\{s \in \mathbb{R}^{\vee}: \text { if } n \geq m . s(n)>0 \text { for } n \in A \text { and } s(n)<0 \text { for } n \notin A\right\}, \\
S_{1 m}\left(A^{+}\right)=\left\{s \in \mathbb{R}^{`}: \text { if } n \geq m . s(n)>0 \text { for } n \in A\right\}
\end{gathered}
$$

and

$$
S_{1 m}\left(A^{-}\right)=\left\{s \in \mathbb{R}^{\gamma}: \text { if } n \geq m, s(n)<0 \text { for } n \notin A\right\} .
$$

By using the methods as in Theorem 3.5.4 we can show that $S_{1 m}(A), S_{1 m}\left(A^{+}\right)$and $S_{1 m}\left(A^{-}\right)$are Borel sets. So the sets $S_{1}(A), S_{1}\left(A^{+}\right), S_{1}\left(A^{-}\right)$and their complements are Borel sets. In the following theorem we show that all $S_{1}(A), S_{1}\left(A^{+}\right), S_{1}\left(A^{-}\right)$and their complements are ubiquitous but not observable.

Theorem 2.15.1 Let A be a non-empty set of natural numbers. Then the set.s $S_{1}(A), S_{1}\left(A^{+}\right)$and $S_{1}\left(A^{-}\right)$and their complements are all ubiquitous Borel sets but not observable. (That is. they satisfy (1') but not (4).)

Proof. Case 1. The set A is an infinite set. For a given Borel probability measure μ on \mathbb{R}^{v} we can choose a number b_{n} for each n such that

$$
\mu\left(\left\{s \in \mathbb{R}^{\sqrt{x}}:|s(n)|>b_{n}\right\}\right)<2^{-n-1}
$$

Then

$$
\mu\left(\left\{s \in \mathbb{R}^{\gamma}:|s(n)| \leq b_{n} \text { for all } n \geq, N\right\}\right)>1-2^{-, i} .
$$

Let

$$
S=\bigcup_{V=1}^{x}\left\{s \in \mathbb{R}^{\gamma}:|s(n)| \leq b_{n} \text { for all } n \geq \gamma\right\}
$$

Then $\mu(S)=1$. Define elements $t . t^{+}, t^{-} \in \mathbb{R}^{v}$ as follows.

$$
t(n)= \begin{cases}\left|b_{n}\right|+1 . & n \in A \\ -\left|b_{n}\right|-1 . & n \notin A .\end{cases}
$$

$t^{+}(n)=\left|b_{n}\right|+1$ for $n \in A$ and $t^{-}(n)=-\left|b_{n}\right|-1$ for $n \in A$. Thern $s+t \subseteq$ $S_{1}(A), S+t^{+} \subseteq S_{1}\left(A^{+}\right)$and $S+t^{-} \subseteq S_{1}\left(A^{-}\right)$. Thus $S_{1}(A), S_{1}\left(A^{+}\right)$and $S_{1}\left(A^{-}\right)$are ubiquitous. That is. they satisfy (1°). Now we consider their complements.

$$
\begin{aligned}
& \widetilde{S_{1}(A)}=\left\{s \in \mathbb{R}^{V}: \begin{array}{l}
\forall V>0, \exists n_{0} \in A, n_{0} \geq V \text { such that } s\left(n_{0}\right) \leq 0 . \\
\text { or } \exists m_{0} \notin A, m_{0} \geq V \text { such that } s\left(m_{0}\right) \geq 0
\end{array}\right\} . \\
& \widetilde{S_{1}\left(A^{+}\right)}=\left\{s \in \mathbb{R}^{v}: \forall V>0, \exists n_{0} \in A, n_{0} \geq V \text { such that } s\left(n_{0}\right) \leq 0\right\} . \\
& \widetilde{S_{1}\left(A^{-}\right)}=\left\{s \in \mathbb{R}^{v}: \forall V>0, \exists n_{0} \in A, n_{0} \geq V_{\text {such that } \left.s\left(n_{0}\right) \geq 0\right\} .} .\right.
\end{aligned}
$$

Now we define $t_{1}, t_{1}^{-} \in \mathbb{R}^{.}$to satisfy the following.

$$
t_{1}(n)= \begin{cases}-\left|b_{n}\right|-1, & n \in A \\ \left|b_{n}\right|+1, & n \notin A .\end{cases}
$$

and $t_{1}^{-}(n)=\left|b_{n}\right|+1$ for $n \in A$. Then clearly we have

$$
t_{1}+S \subseteq \widetilde{S_{1}(A)} \cdot t_{1}+S \subseteq \widetilde{S_{1}\left(A^{+}\right)} \text {and } t_{1}^{-}+S \subseteq \widetilde{S_{1}\left(A^{-}\right)}
$$

Thus $\widehat{S_{1}(A)}, \widehat{S_{1}\left(A^{+}\right)}$and $\widehat{S_{1}\left(A^{-}\right)}$are ubiquitous too. That is, they also satisfy (1) . From the definitions of (4) and (1°) it is easy to see that a set satisfies (4) iff the complement of this set does not satisfy $\left(1^{\circ}\right)$. Therefore the sets $S_{1}(A), S_{1}\left(A^{+}\right)$and $S_{1}\left(A^{-}\right)$and their complements are ubiquitous but not observable.

Case 2. The set A is a non-empty finite set. For the set $S_{1}(A)$. by checking every step of the proof in Case 1, it is easy to see the conclusion still remains valid. For the sets $S_{1}\left(A^{+}\right)$and $S_{1}\left(A^{-}\right)$we choose an infinite set $B \subseteq \mathbb{N} \backslash A$ and define

$$
C_{1}=\left\{s \in \mathbb{R}^{\forall}: s(n)>0 \text { for } n \in A \cup B\right\}
$$

and

$$
C_{2}=\left\{n \in \mathbb{R}^{\top}: s(n)<0 \text { for } n \in A \cup B\right\} .
$$

Then

$$
C_{1} \subseteq S_{1}\left(A^{+}\right), C_{1} \subseteq \widehat{S_{1}\left(A^{-}\right)} \text {and } C_{2} \subseteq S_{1}\left(A^{-}\right), C_{2} \subseteq \widehat{S_{1}\left(A^{+}\right)}
$$

By C Case 1 we know that C_{1} and C_{2} are ubiquitous. Thus $S_{1}\left(A^{+}\right), S_{1}\left(A^{-}\right), \widehat{S_{1}\left(A^{+}\right)}$ and $\widehat{S_{1}\left(A^{-}\right)}$are also ubiquitous. Thus the sets $S_{1}(A), S_{1}\left(A^{+}\right)$and $S_{1}\left(A^{-}\right)$and their complements are ubiquitous but not observable.

Dougherty [18] showed that the set

$$
S(A)=\left\{s \in \mathbb{R}^{\top}: s(n)>0 \text { for } n \in A \text { and } s(n)<0 \text { for } n \notin A\right\}
$$

is upper density 1 . Here we sketch his proof and show more from Theorem 2.15.1.

Corollary 2.15.2 $S(A)$ is upper density I but not observable.

Proof. For a given Borel probability measure μ on \mathbb{R}^{*} and $\epsilon>0$ we can choose b_{n} for each n such that

$$
\mu\left(\left\{s \in \mathbb{R}^{\cdots}:|s(n)|>b_{n}\right\}\right)<\epsilon
$$

Thus $\mu\left(\left\{s \in \mathbb{R}^{V}:|s(n)| \leq b_{n}\right\}\right)>1-\epsilon$ and hence $S(A)$ is upper density 1 . Note that $S(A) \subseteq S_{1}(A)$. From Theorem 2.15.1 we will see that $S_{1}(A)$ is not observable and therefore $S(A)$ is not observable.

For the remainder of this section we will try to describe in $\mathbb{R}^{n}(n \geq 1)$ the classes of sets in (1)-(4) and ($\left.1^{`}\right)-\left(4^{\circ}\right) . \operatorname{In} \mathbb{R}^{n}$ the set S in (1) has full Lebesgue measure. This is proved in Theorem 2.7.5. . .ow we look at the sets satisfying $\left(1^{\circ}\right)$. (1°) is equivalent to that $\forall \mu \exists t \mu(t(\tilde{S}))=0$ where \tilde{S} is the complement of S. Thus take μ to be a Gaussian measure and so there is a t such that $\mu(t(\widetilde{S}))=0$. Since the Lebesgue measure and any Gaussian measure are mutually absolutely continuous, so $\lambda_{n}(t(\tilde{S}))=0$ and $\lambda_{n}(\bar{S})=0$ where λ_{n} is the n-dimensional Lebesgue measure. Thus the set \breve{S} also has full Lebesgue measure and hence all sets in (1) and (1) are equivalent to having full I.ebesgue measure.

If a set S satisfies (4°), then. for every (ianssian measure μ, there exists a $t \in \mathbb{R}^{n}$ such that $\mu(t(S))>0$. By the mutually absolute continuity of λ_{n} and μ we have $\lambda_{n}(t(S))=\lambda_{n}(S)>0$. Again by the mutually absolute continuity of λ_{n} and μ, for every (ianssian measure and $t \in \mathbb{R}^{n}$, we have $\mu(t(S))>0$. So the set S satisfies (4). Since $(\not)) \Rightarrow\left(4^{\circ}\right)$ so all sets in (4) and (4) are equivalent to having positive Lebesgue measure.

In \mathbb{R}^{n}. for every set S satisfying (3°) it is easy to see $\lambda_{n}(S)>0$. If not. $\lambda_{n}(S+x)=0$ for any $x \in \mathbb{R}^{n}$. Thus for any Gaussian measure $\mu, \mu(x+S)=0$ which contradicts (3). Now we can claim $\lambda_{n}(S)=x$. If not then $0<\lambda_{n}(S)<x$. For any $\epsilon>0$ we can construct a function $F(x)$ by defining

$$
F(x)= \begin{cases}-\frac{1}{2 \ln (S)}|x|+\frac{1}{\lambda_{n}(S)} \cdot & 0 \leq|x| \leq \lambda_{n}(S) \\ \frac{1}{2 S_{n}(S)} \cdot & \lambda_{n}(S) \leq|x| \leq \frac{3}{2} \lambda_{n}(S) \\ 0 . & \frac{3}{2} \lambda_{n}(S) \leq|x| \leq \frac{2-2 \epsilon}{6} \lambda_{n}(S)\end{cases}
$$

Then the probability measure μ induced by $F(x)$.

$$
\mu(B)=\int_{B} F(x) d x
$$

satisfies that for any $x \in \mathbb{R}^{n} . \mu(x+S)<\epsilon$. This contradicts (3). Thus for any set S satisfying (3) we have $\lambda_{n}(S)=x$. Therefore for any set S satisfying one of (2). (3). (2) and (3) we have $\lambda_{n}(S)=\infty$. However we currently have po exact characterizations for sets S in (2). (3). (2) and (3).

Based on the above discussions and (i)-(v) we can obtain the relations among (1)-(4) and (1°) (4°) as follows.

Figure 2.2: The relations of non-shy sets in \mathbb{R}^{n}

2.16 Prevalent versus typical

Any finite dimensional space can be decomposed into a set of Lebesgue measure zero and a first category set. The proof is entirely elementary. Orie shows that there is a dense open set (say one that contains all points with rational coordinates) of arbitrarily small Lebesgue measure. An appropriate intersection of dense open sets gives a measure zero, dense set of type G_{ξ}.

In our more general setting we do not have a notion of measure, just a notion of measure zero. Thus such an argument does not work, although one expects a similar decomposition should be available. The following theorem of Preiss and Tišer
is remarkable because the measure zero part of the decomposition is in the strongest. terms and the first category part is given to be σ-pordus (see [54] for σ-porous). σ-porous sets form a smaller class than the sets of the first category:

Theorem 2.16.1 (Preiss-Tišer) An infinite dimensional separable Banach spact can be decomposed into a Preiss-Tiser null set and a sft that is a countable union of closed porous sets.

This result is of some interest in the study of derivatives on Banach spaces. From Aronszajn [2] we know that the set of points of Gâteaux non-differentiability of a real-valued Lipschitz function on an infinite dimensional separable Banach space I is Aronszajn mull. However the Frechet differentiability of a real-valued Lipschitz function on an infinite dimensional separable Banach space is completely different. One of the Preiss Tiser results [46, pp. 22.2, Proposition 1] says that, on an infinite dimensional separable Banach space. there is a real-valued Lipschitz function which is Frechet non-differentiable on a given countable union of closed porous sets. Thus from the above theorem there is a real-valued Lipschitz function which is Frechet differentiable only on a subset of a Preiss Tiser mull set in an infinite dimensional separable Banach space.

The decomposition in the above theorem is not possible in a finite dimensional Banach space because both a closed porous set and a Preiss-Tiser mull set are Lebesgue measure zero.

A natural question is to ask whether such a decomposition, even a weaker one, is possible in a non-separable Banach space. We leave it as a problem at the end of this section. In the following we consider the same problem in a Polish group. Note that, however, a discrete group could not have such decomposition. Also the discrete group cannot be decomposed into a shy set and a first category set. Any compact or locally compact Polish group with a diffuse Haar measure can be decomposed into a shy set
and a first category set by using the same proof that works for \mathbb{R}^{n}. In the following we give a sufficient condition for a general Polish group to be decomposed into a shy set and a first category set.

Theorem 2.16.2 Let Gibe an Abelian Polish group which permits a Borel probability measure μ such that there is a constant $b<1$ so that

$$
\mu(B(x, r)) \leq b \mu(B(x, 2 r))
$$

for erery $x \in X$ and $r \leq 1 / 2$. Then G can be decomposed into a shy set and a first category set.

Proof. Since G is separable. let $\left\{x_{\imath}\right\}$ be a sequence of points that is dense in $(f$. Let

$$
X_{n}=\bigcup_{i=n}^{\infty} B\left(x_{i}, \frac{1}{2^{i}}\right) \text { and } X=\bigcap_{n=1}^{\infty} X_{n}
$$

Then X is a dense G set and so $G \backslash X$ is of the first category: By the assumption for any $x \in G$.

$$
\begin{aligned}
\mu(X+x) & \leq \mu\left(X_{n}+x\right) \leq \sum_{i=n}^{x} \mu\left(B\left(x_{i}+x, \frac{1}{2^{2}}\right)\right) \\
& \leq \sum_{i=n}^{x} b^{2} \mu\left(B\left(x_{i}+x .1\right)\right) \leq \sum_{i=n}^{x} b^{i} \rightarrow 0 \text { as } n \rightarrow x .
\end{aligned}
$$

Thus the set X is shy in G and the decomposition $G=X \cup(G \backslash X)$ is our desire.

Remark. Such a theorem is true for finite dimensional spaces since Lebesgue measures can replace μ in the proof of the above theorem. However we do not know whether an infinite dimensional Banach space permits a Borel probability measure satisfying the condition in the above theorem.

PROBLEM 4 Does every Polish group permit a decomposition into a shy set and a set of the first category?

2.17 Fubini's theorem

Fubini's theorem is one of the most impgrtant theorems in measure theory. It is natural to ask whether there is a version of Fubini's theorem that holds for Haar zero sets. (hristensen [12] gave the following example to show that a full version of Fubiniis theorem does not exist.

Example 2.17.1 Let H be a separable infinite dimensional Hilbert space and let T be the unit circle in the complex plane. There exists in the product group $H \times T$ a Borel measurable set A such that
(i) For every $h \in H$, the section $A(h)=\{t \in T:(h, t) \in A\}$ has Haar measure one in T.
(ii) For every $t \in T$. the section $A(t)$ is a Haar zero set in H.
(iii) The complement of A is a Haar zero set in the product group $H \times T$.

Proof. (This proof is reproduced from [12].) Since an infinite dimensional separable Hilbert space is isometric to the space L_{2} of square integrable functions. We assume $H=L_{2}$. let

$$
A=\{(f, t): \text { the Fourier series of } f \text { converges at } t\} \text {. }
$$

Then from the famous result of Carleson that the Fourier series for any L_{2} function is almost everywhere convergent, (i) follows. Note that for every $t \in T . A(t)$ is a closed linear proper subspace of H. So it is Haar zero and (ii) follows. Clearly the product measure of the one point measure in H with mass 1 at zero and the Haar measure in T is transverse to the complement of A.

From the above example we see that if a full version of Fubini's theorem holds, then (i) and (ii) imply that A is Haar zero. This contradicts (iii). However?, as indicated in [12]. a weaker version of Fubini's theorem does hold. See Borwein and Moors [8 . Theorem 2.3] for details.

2.18 Countable chain condition

In this section we discuss a property called the countablechain condition of the σ-ideal of shy sets in some spaces.

Definition 2.18.1 Let G be a Polish group. An ideal \mathcal{F} of subsets of G is said to satisfy the countable chain condition if each disjoint family of universally measurable sets in G that do not belong to \mathcal{F} is at most countable.

We also say that the group (i does not satisfy the countable chain condition if the ideal \mathcal{F} does not satisfy the countable chain condition. A completely metrizable space is separable if and only if every family of pairwise disjoint non-empty open sets of this space is countable (see [20]). Thus the above definition is only for Polish groups.

In 1972 Christensen [12] asked whether any family of disjoint universally measurable now-shy sets in a Polish group must be countable. This is obviously true in finite dimensional spaces. Dougherty [18] answered this problem affirmatively in some Polish groups.

Theorem 3.5.t exhibits a collection $\{S(A): A \subseteq \mathbb{N}\}$ that forms a family of pairwise disjoint non-shy sets in an Abelian Polish group that is uncountable. The following theorem and its proof are reproduced from Dougherty [18].

Theorem 2.18.2 The Abelian Polish groü: \mathbb{R}^{Y} dofs not satisfy the countable chain condition.

Proof. Specifically the collection

$$
\{S(A): A \subseteq \mathbb{N}\}
$$

from Theorem 3.5 .4 consists of $2^{K_{0}}$ disjoint non-shy elements. So \mathbb{R}^{V} does not satisfy the countable chain condition.

Mycielski observed that if A and B are sets of natural numbers whose symmetric difference is infinite, then not only are the sets $S(A)$ and $S(B)$ disjoint, but also any translate of $S(A)$ intersects $S(B)$ in a shy set (see [18]). Thus we can get $2^{N_{0}}$ non-shy sets of \mathbb{R}^{V} which mutually have this strong disjoint ness property, by taking $S(A)$ for $2^{K_{0}}$ sets $A \subseteq \mathbb{N}$ which have infinite symmetric difference with each other.

In Abelian Polish groups Dougherty [18] obtained the following general result by unusual methods.

Theorem 2.18.3 (Dougherty) Let $(i$ be a Polish group which has an incariant metric and is not locally compact. Suppose that there exist a neighborhood l' of the identity and a de nse subgroup G. of (isuch that, for any finitely gentrated subgroup eq (i.. $\overline{F \cap T}$ is compact. Then the ideal of shy sets of (ir does not suti.fy the rountable chain condition.

By using a result of Kechris [29] that in a Polish group there is a Borel selector $\therefore:(i / I I \rightarrow G$ for the cosets of $I I$ where H is a closed subgroup of G. Dougherty [18] showed the following result.

Theorem 2.18.4 Suppose $\left(C_{i}+1\right)$ is an Abelian Polish group and H is a clost subgroup of $(i$. If the ideal of shy subsets of H dots not satisfy the countable chain condition. then the ideal of shy subsets of G does not satisfy the countable chain condition.

After obtaining Theorem 2.18.3. Dougherty [18] conjectured that a Polish group (i satisfies the countable chain condition only if $;$ is locally compact. Later Solecki [52] answered this problem perfectly in the following.

Theorem 2.18.5 Let (i be a Polish group admitting an invariant metric. Then each family of unict rally measurable or. equivalently. closed. pairuise disjoint sets which are not Haar null is countable iff G is locally compact.

In Chapter 5 , we show that the σ-ideal of shy sets in the non-Abelian, non-locally compact space $\mathcal{H}[0,1]$ of automorphisms does not satisfy the countable chain condition. So we conjecture that the above Solecki's result is true for non-Abelian Polish groups. We will leave it as an open problem in Chapter 5.

Theorem 2.18.3 implies that an infinite dimensional separable Banach space does not satisfy the countable chain condition. However, the proof of Theorem 2.18.3 is in general. We pose the following problem.

PROBLEM 5 lising techniques in Banach space theory, show that any infinite dimensional separable space does not satisfy the countable chain condition.

2.19 Thickness of non-shy sets

In this section we will discuss a property known as thicknts.s. The definition is from [56].

Definition 2.19.1 A subset A of a topological semigroup (B is thick if the unit element is an interior point of $A A^{-1}$.

In 1929 Ostrowski [4:2] showed the well-known fact that every subset of the real line with positive Lebesgue, measure is thick. That is, the non-shy sets in the real line are thick. Of course the converse does not hold. For example, the Cantor set in the real line is shy but it is thick (see [56. pp. 367-368, Theorem 2.4.2]). It was Christensen who first showed that non-shy sets are thick in any non-locally compact Abelian Polish group (see our Theorem 2.9.2 for a proof). Hoffman-Jorgensen [56] extended it to completely metrizable. Abelian topological semigroups in the following form. We have stated this as Theorem 2.13.1 (iv). For reference we repeat it here, using our new terminology.

Theorem 2.19.2 Let G be a completely metrizable, Abelian topological stmigroup. Let A be a universally Radon measurable subset of G. If A is not a Haar null set. then A is thick.

We discuss now. in a Banach space, the thickness of non-Preiss-Tišer null sets. non-Aronszajn null sets, non-s-null sets, non-Gaussian null sets in Phelps sense and non-Gaussian null sets in the ordinary sense.

In \mathbb{R}. all these sets are equivalent to the sets of positive Lebesgue measure and so they are thick. In $\mathbb{R}^{n}(n>1)$, each straight line is non-Preiss-Tiser null but not thick. However, in $\mathbb{R}^{n}(n>1)$, non-Aronszajn null sets, non- s-null sets, non-Gaussian null sets in Phelps sense are equivalent to the sets of positive Lebesgue measure. So they all are thick.

In an infinite dimensional separable Banach space we know that. from Example 2.3.8. there is a compact set K which is not Gaussian null in Phelps sense. Note that $K^{\prime}-K$ is also a compact set and it cannot be a neighborhood of the zero element in an infinite dimensional space. Thus, from the comparison in Section 2.3 and Section 2.4 non-Aronszajn null sets, non-Preiss-Tišer null sets and non-Gáussian null sets in Phelps sense may not be thick in an infinite dimensional separable Banach space. Non-Caussian null sets in the ordinary sense are thick (see [56. pp. 372-373] for a proof).

Recall (Problem 1) that we do not yet know whether all Christensen null sets are s-null. If we cannot answer this problem, perhaps we can answer the following problem.

PROBLEM 6 In an infinite dimensional st parable Banach spact, are all non-s-null stts thick?

Chapter 3

Probes

3.1 Introduction

To show that a set S in a Banach space X is shy (i.e., a Christensen null set) we need first to establish that S is universally measurable (perhaps by showing that it is a Borel set or an analytic set in X) and then to exhibit an appropriate probability measure on X that is transverse to S. It is the finding of this testing measure or probe that requires some techniques.

Proving that a set is prevalent amounts merely to showing that the complement of the set is shy and so this does not introduce any new problems. However, showing that a set is non-shy will require showing that ecery possible measure fails to be a testing measure or probe for the set. We will see that, occasionally, this is not so hard and requires only a few measure-theoretic observations.

Where possible, rather than constructing a testing measure, we would prefer to use Lemma 2.2 .2 and Definition 2.2 .1 and exhibit an element $x \in X$ transverse to S. This merely pichs a direction in the space so that all lines in that direction intersect S in a set of linear measure zero. It is of some intrinsic interest to know if this is
possible. Asserting only that the set S is shy says much less.
Failing that we might show that there is a decomposition $S=\bigcup_{i=1}^{\infty} S_{1}$ and find elements x_{1} transverse to S_{1}. In the language of Definition 2.3.2 we would say that the set S is s-null. Again there is some intrinsic interest in knowing whether this is possible.

Where these ideas fail we may hope to find a finite dimensional subspace transverse to S. There would be some intrinsic interest in knowing the least dimension that could be selected when this technique works.

Where linear arguments fail (as they do in a variety of situations) perhaps we can construct a curve (a continuous image of an interval) that is transverse to S. Again knowing that the set S admits a curve all of whose translates intersect S in a set of measure zero (i.e.. measure zero along the curve) is of some int rinsic interest.

In this chapter we survey some of the methods that have been used to establish that a given set is shy or non-shy and provide some concrete examples to illustrate the methods.

3.2 Finite dimensional probes

The language of probes in [2i] was introduced to have a convenient way of expressing the techniques. Often to show that a set A is shy one finds a subspace (usually one or two dimensiofial) that proves that the set A is shy. That subspace was called a probe for the complement of A (see Hunt et al. [27]). Here we extend this to call the subspace or the measure supported on it also a probe for the set A.

A subspace P of X that is a n-dimensional probe for a shy set $S \subseteq X$ is also a m-dimension probe for the shy set S if $m>n$. In fact we can find $m-n$ linear independent elements $\left\{x_{1} \ldots \ldots x_{m-n}\right\}$ such that the dimension of the span of $\left(\left\{x_{1} \ldots, x_{m-n}\right\} \cup P\right)$ is m provided X has at least m linear independent elements.

Thus it is necessary to give a new definition to describe shy sets.
Definition 3.2.1 A shy set $S \subseteq X$ is said to be m-dimensionally shy if S has a m dimensional probe but ne n dimensional probes for $n<m$. and S is said to be infinit t-dimensionally shy if S has no finite dimensional probes. The empty set is said to be 0 -dimensionally shy.

Theorem 3.2.2 In \mathbb{R}^{2} there exist 2-dimensionally shy sets.
Proof. In 1928 Besicovitch [4] constructed a set of $E \subseteq \mathbb{R}^{2}$ of Lebesgue measure zero which includes line segments of length 1 in every orientation (see also Proposition 12.2 in [2.2 , pp. 16:3]). Thus any Borel set containing the set E and having Lebesgue measure zero is a 2 -dimensionally shy set.

Theorem 3.2.3 In $\mathbb{R}^{n}(n>2)$ any shy set is at most 2 -dimensional.
Proof. Let F be a n-dimensional Lebesgue measure zero set of \mathbb{R}^{n}. By Theorem 7.1.3 [21, pp. 106] there is a 2 -dimensional subspace P of \mathbb{R}^{n} such that, every translate of P intersects F in a set of k-dimensional measure zerc. Thus F is an at most 2 dimensionally shy set and hence F is an at most 2 -dimensionally shy set.

Theorem 3.2.4 Any shy set in \mathbb{R}^{2} space can be decomposed into turo at most 1 dimensionally shy sets.

Proof. By Theorem 2.7.5. a set $A \subseteq \mathbb{R}^{2}$ is shy iff A is 2 -dimensional Lebesgue measure zero. Let A be Lebesgue measure zero in \mathbb{R}^{2}. Then $\lambda_{2}(A)=0$ and by Fubini's theorem we have a Lebesgue one-dimensional measure zero set $\lambda \subseteq \mathbb{R}$ such that for all $x_{2} \in \mathbb{R} \backslash \therefore, ~ \lambda_{1}\left(A_{x_{2}}\right)=0$ where $A_{x_{2}}$ is the section of A at x_{2} (the second variable). Let

$$
B=\left\{\left(x_{1}, x_{2}\right) \in A: x_{2} \notin N\right\}
$$

and

$$
C=\left\{\left(x_{1}, x_{2}\right) \in A: x_{2} \in N\right\}
$$

Then $A=B \cup C$. We shall show that B and C are at most 1 -dimensional shy sets. For the set B we choose $\epsilon_{1}=(1,0)$. Thus for any $c=\left(c_{1}, c_{2}\right) \in \mathbb{R}^{2}$.

$$
\left\{\alpha_{1} \in \mathbb{R}: c+\alpha_{1} \epsilon_{1} \in B\right\}=A_{c_{2}}
$$

is 1-dimensional Lebesgue measure zero when $c_{2} \in \mathbb{R} \backslash V$, and is empty if $c_{2} \in N$. Anyway it is 1 -dimensional Lebesgue measure zero. Thus the set B is an at most 1 dimensionally shy set. For the set C choose $\epsilon=(0,1)$, then for any $c=\left(c_{1} \cdot c_{2}\right) \in \mathbb{R}^{2}$ the set $\{\alpha \in \mathbb{R}: c+\alpha \epsilon \in C\}$ is one-dimensional Lebesgue measure zero. Thus the set C^{\prime} is an at most 1 -dimensionally shy set. Hence the result follows.

PROBLEM 7 In $\mathbb{R}^{n}(n>2)$, can any 2 -dimensiọnally shy set be decomposed into two at most 1-dimensionally shy sfts?

PROBLEM 8 Ift X be an infinite dimensional separable Banach space. Dofs there frist a Borel shy set $S \subseteq X$ that is not an n-dimensionally shy sft for any n :

3.3 Elementary linear arguments

In many simple situations a crude linear argument suffices to show a set is shy. We illustrate with some elementary examples. mostly from the literature.

Certainly a proper subspace of a Banach space X is shy if it is universally measurable. In fact if $S \subseteq X$ is a proper subspace then every element x of $X \backslash S$ istransverse to S.

Choose $x \notin S$. For any $y \in S$, let $G=\{\lambda \in \mathbb{R}: y+\lambda x \in S\}$. Then G is a singleton. If not. there exist λ_{1} and λ_{2}, $\lambda_{1} \neq \lambda_{2}$, such that $y+\lambda_{1} x \in S$ and $y+\lambda_{2} x \in S$.

Since S is a linear space, then

$$
\frac{1}{\lambda_{2}-\lambda_{1}}\left[\left(y+\lambda_{2} x\right)-\left(y+\lambda_{1} x\right)\right]=x \in S
$$

This contradicts the choice of x. The result follows.

Example 3.3.1 The set S of differentiable functions is a proper linear subspace of $C[0.1]$. S. Mazurkiewicz in [40] showed that the set S is not Borel, but is co-analytic (see also [11, pp. 503]). So the set S is universally measurable and therefore is shy:

Note, however, that in general a linear subspace need not be a Borel set nor need it be universally measurable. ${ }^{1}$ The following example is from Christemsen [12].

Example 3.3.2 Let E be a separable Fréchet space and let $a_{1}, i \in I$. be an algebraic basis of E and b_{1} the coefficient functionals. Then $b_{1}^{-1}(0)$ are proper linear subspaces of E. If $b_{1}^{-1}(0)$ are universally measurable for some i s, these sets are shy sets. In fact. however, the subspaces $b_{1}^{-1}(0)$ are universally measurable for at most finitely many $i \in I$. If not. there is a sequence $\left\{i_{j}\right\}$ of I such that each $b_{i,}^{-1}(0)$ is universally measurable. Set $L_{n}=\bigcup_{J \geq n} b_{i}^{-1}(0)$. Then L_{n} is a universally measurable proper linear subspace. So L_{n} is shy. Since $a_{1}, i \in I$ is an algebraic basis of E, so E is the union of L_{n} 's and hence E is shy, which is impossible.

For many examples of sets S that have a probe x, the set

$$
, \quad\left\{t \in \mathbb{R}: t x+y \in S^{\prime}\right\}
$$

that we are required to show to be Lebesgue measure zero for every $y \in \mathcal{X}$ is. in fact. a singleton or empty set. Thus every line in the direction x intersects S in at most one point. In many of the simplest applications this is the case and the measure-theoretic arguments reduce to simple computations.

[^2]In any example that illustrates a shy set it is of intrinsic interest to know that the set is not merely shy, but has very small intersections with all lines in some particular direction.

Example 3.3.3 As an example (from [27, pp. 226]) consider the set S of all convergent series in the space ℓ_{p} for $l<p \leq x$. This is a closed. proper subspace and so, trivially, it is shy: For a specific transverse element we can take the element $x=\{1,1 / 2.1 / 3 \ldots\}$. It belongs to ℓ_{p} but diverges. The set S intersects each line in the direction x in at most one element.

The same argument applies to a hyperplane provided it is universally measurable. It is not always the case that hyperplanes are universally measurable except in concrete examples as shown in Example 3.3.2.

Example 3.3.4 As another example (from [27. pp. 226]) the set S of functions f in $L_{1}[0.1]$ for which $\int_{0}^{1} f(t) d t=0$. This is evidently a closed hyperplane in $L_{1}[0,1]$ and so, trivially, shy: For a specific transverse element take $f_{0}=1$. It is easy to see that the set S intersects each line in the direction f_{0} at most one element.

These same arguments do not need much linearity in the problem. For example if \checkmark is a universally measurable proper subset of a Banach space \mathbb{X} that satisfies
(i) $y_{1}-y_{2} \in S$ if $y_{1}, y_{2} \in S$.
(ii) $t y \notin S$ for Lebesgue a.e. $t \in \mathbb{R}$ if $y \notin S$, then S must be shy in X. Indeed, let $y \notin X \backslash S$ and let

$$
\underset{\mathbb{S}}{S_{0}}=\{t \in \mathbb{R}: x+t y \in S\}
$$

for any $x \in X$. If S is empty there is nothing to prove. If S is not empty, choose $t_{1} \in S_{0}$. Then by (ii). $(x+t y)-\left(x+t_{1} y\right)=\left(t-t_{1}\right) y \in S$ only for a Lebesgue measure zero set of numbers of $t-t_{1}$. Thus $\lambda_{1}\left(S_{0}\right)=0$ and the set S is shy.

Example 3.3.5 As a further example to illustrate simple methods of this type consider the Banach space $C[0,1]$ of continuous functions equiped with the supremum norm. Let S denote the set of all continuous functions that are monotone on some closed subinterval of $[0.1]$. Write, for any closed subinterval $I \subseteq[0,1] . S(I)$ for the continuous functions that are monotone on I. Then

$$
S=\bigcup S(I)
$$

where the union is taken over the countable collection of all subintervals I of $[0.1]$ with rational endpoints.

It is easy to see that each: $S(I)$ is closed and is shy. To see that it is closed we just need note that the uniform limit of a Cauchy sequence of monotonic and continuous functions is also monotonic and continuous. So $S(I)$ is closed.

To see that $S(I)$ is shy take any element $g \in C[0,1]$ that is not a.e. differentiable on I. Then g is transverse to $S(I)$. In fact the set

$$
\{t \in \mathbb{R}: f+t g \in S()\}
$$

can contain at most one point for any $f \in C[0,1]$. If not, there are distinct $t_{1}, t_{2} \in \mathbb{R}$ such that $f+t_{1} g, f+t_{2} g \in S(I)$. Then $f+t_{1} g, f+t_{2} g \in S(I)$ are a.e differentiable on I and so is $\left(f+t_{1} g\right)-\left(f+t_{2} g\right)=\left(t_{1}-t_{2}\right) g$ on I. This contradicts the choice of g.

Consequently we have shown that S is shy. indeed that S is an s-null set in the sense of Definition 2.3.2. In particular, we can express this observation in the following language:

Theorem 3.3.6 The set of functions in $C[0,1]$ that are monotone in no interval forms a precialent set.

For more theorems of this type in the function space (' $[a, b]$ see Sections 4.2 and 4.3 .

In a Banach space, a universally measurable convex set that does not contain a line segment in some direction is easily seen to be shy. If a convex set S does not contain a line segment in some direction x, then S intersects the line in at most one point. So the element x is transverse to S and S is shy. Thus convex sets that do not span the whole space are, in general. shy. It is of someinterest to find out whether closed, convex sparning sets in certain spaces are non-shy. This will be discussed further in Section 3.5.

3.4 Compact sets

A mumber of arguments can be used to show that a compact (or a σ-compact) subset of an infinite dimensional Banach space must be shy. See. for example, the original article [12] of Christensen where the argument uses the fact that $A-A$ is a neighborhood of the zero element for any universally measurable non-shy set A. If a compact set A were non-shy then the set $A-A$ is compact and also a neighborhood of the zero element. This is impossible in an infinite dimensional Banach space.

Example 3.4.1 For an elementary illustration of a concrete example, here is how to show that the compact Hilbert cube in ℓ_{2} is shy:

We use

$$
I^{\infty}=\left\{x \in \ell_{2}:\left|x_{n}\right| \leq n^{-1}\right\}
$$

to denote the compact Hilbert cube in ℓ_{2}. Choose $y=\left\{n^{-2 / 3}\right\}$. Then $y \in \ell_{2} \backslash I^{x}$. It is easy to see that y is transverse to I^{x}. So I^{x} is shy in ℓ_{2}.

Hunt et al. gave an interesting proof in [27, pp. 225] that uses a category argument to exhibit that every compact set in an infinite dimensional Banach space admits a transverse element. indeed that the set of transverse elements is residual. This is of some general interest since it allows us to obtain transverse elements without the
mecessity to construct one in adrance. This is also of some int rinsic interest since we see that "most" directions in the space are transverse to the set. In the following we give a similar but simpler proof suggested hy J. Borwein to show every compact set admits a transverse element, an argument which also show that the transverse elements are residual.

Theorem 3.4.2 A compact subset of an infinite dimensional Banach space is shy.

Proof. Let I' be an infinite dimensional Banach space and $S \subseteq I$ be a compact set. Then, if the linear span of S is denoted by Span S, we have

$$
\operatorname{Span} S=\bigcup_{n=1}^{x} S_{n}
$$

where

$$
S_{n}=\{\alpha x+3 y: \alpha, \beta \in[-n, n], x, y \in S\}
$$

Since S is compact, all sets S_{n} are compact. Thus Span S is σ-compact and first category. Hence $I \backslash S p a n S \neq 0$. Therefore S is transverse to every element $x \in$ $1 \backslash S p a n S$ since the line λx intersects S in at most one element. Thus S is shy:

Corollary 3.4.3 A σ-compact set in an infinite dimeñional Banach space is s-mull.

The above method neither holds for Gaussian null sets nor for Aronszajn rull sets since the fact that there is a Borel probability measure is transverse to the one dimensional probe of the set $\ \backslash S$ does not guarantee $\mu(S)=0$ for all non-degenerate Gaussian measures μ. In fact there exist compact sets which are not Gaussian null sets in Phelps sense (see Example 2.3.8). From the fact that a translate of a nondegenerate Gaussian measure is also a non-degenerate Gaussian measure we know that a Gaussian null set in Phelps sense is also a shy set. Thus the ciass of shy sets is wider than the class of Gaussian null sets in Phelps sense. Recall that an Aronszajn
null set is also a Gaussian null set in Phelps sense. Thus the class of shy sets is also wider than the class of Aronszajn null sets.

In non-locally compact groups with invariant metrics compact sets are shy (see [18]). However we do not know whether the invariant metrics are needed for this statement.

PROBLEM 9 In a general non-loeally compact Polish group without invariant metrics, are compact sets shy?

- In the following we will give an interesting method to show that certain sets in an infinite dimensional Banach space are shy: The following theorem and lemma that we will display were introduced by Aronszajn [2] for separable Banach spaces. In fact they remain valid for non-separable Banach spaces. We reproduce the theorem from [16. pp. 219] (see [16] for a proof), and give a simpler proof, suggested by J. Borwein. of the lemma.

Theorem 3.4.4 (Josefson-Nissenzweig) Let X be an infinite dimensional Banach. space. Then there is a sequence $\left\{u_{n}\right\} \subseteq X^{*},\left\|u_{n}\right\|=1$ such that $\left\{u_{n}\right\}$ concerges to 0 in the weak - topology.

Lemma 3.4.5 Let X be a Banach spact. Suppose u_{n} are elements of X^{*} with norm 1 and $u_{n} \rightarrow 0$ in uєak*-topology, while S is a bounded sєt such that $u_{n}(x) \rightarrow 0$ uniformly for $x \in S$. Then there is an element a X transverse to S, indeed

$$
\{t \in \mathbb{R}: x+t a \in S\}
$$

contains at most one point for every $x \in X$.

Proof. Since $u_{n} \rightarrow 0$ uniformly on S. so $\delta_{S}^{*}\left(u_{n}\right) \equiv \sup _{x \in S} u_{n}(x) \rightarrow 0$. Thus $\delta_{A}^{*}\left(u_{n}\right) \rightarrow$ 0 where $A \equiv \overline{\operatorname{aco}} S$ is the convex hull of S. We claim that $\operatorname{Span} S \subseteq \bigcup_{n=1}^{\sim}(n A) \neq X$ where $\operatorname{Span} S$ is the linear span of S. We need only show that $\bigcup_{n=1}^{\infty}(n A) \neq X$. If
$\bigcup_{n=1}^{x}(n A)=X, t^{v}$ then by the Baire category theorem. the interior of the set A is not empty and hence $\delta_{A}\left(u_{n}\right) \leftrightarrow 0$. Thus there exists an element $a \in X \backslash \operatorname{Span} S$ that is transverse to the set S.

From Theorem 3.4.4 and Lemma 3.4.5 we can show that certain sets in an infinite dimensional Banach space are shy: We write this as a theorem as follows.

Theorem 3.4.6 Let X be an infinite dimensional Banach space, and $\left\{u_{n}\right\} \subseteq X^{*}$ be a sequence as in Theorem 3.4.4. If a set S is universally measurable and bounded such that $u_{n}(x) \rightarrow 0$ uniformly for $x \in S$. Then the set $\overline{a c o S}$ is shy where $\overline{\text { aco }} S$ is the con'ts hull of S.

Using the above theorem we can obtain Theorem 3.4.2 immediately: Let S be a compact set in an infinite dimensional Banach space X. Then s is bounded and closed. By Theorem 3.4.t there is a sequence $\left\{u_{n}\right\} \subseteq X^{*}$. $\left\|u_{n}\right\|=1$ such that $u_{n} \rightarrow 0$ weakly. Standard arguments show that the bounded sequence $\left\{u_{n}\right\}$ converges to 0 weakly implies that $u_{n}(x) \rightarrow 0$ uniformly for $x \in S$. From the above theorem the set S is shy:

3.5 Measure-theoretic arguments

To show that a set is non-shy "requires" showing that there are no transverse elements. indeed that, there are no transverse probability measures at all.

The following. simple fact from the theory of Borel measures on Polish spaces is very useful in showing a set to be non-shy. See Theorem 2.12.2 for a proof.

Erery probability measure defined on the Borel subsets of a Polish spact assigns positive measure to some compact set.

This then gives an immediate proof of the following:

Lemma 3.5.1 A stt S in a separable Banach space X that contains a translate of every compact subset is non-shy.

Proof. Suppose that the set S were shy then there is a Borel probability measure μ that is transverse to S. That is, $\mu(S+x)=0$ for each $x \in X$. According to the above basic fact and assumption there are a compact set K and $x \in X$ such that $\mu\left(K^{\prime}\right)>0$ and $K+x \subseteq S$. Then $K \subseteq S-x$ and $0<\mu\left(K^{\prime}\right) \leq \mu(S-x)=0$. This is a contradiction.

For example (from [6]), the positive:cone C of the space c_{0} of null sequences is non-shy. (It is clear that C is nowhere dense in c_{0}.) In fact. every compact set K in c_{0} is contained in a set $\left\{y \in c_{0}:\left|y_{n}\right| \leq x_{n}, n=1,2 \ldots\right\}$ for a certain $x \in c_{0}$. So $K+x \subseteq C$. By Lemma 3.5.1, the positive cone C is non-sky: Borwein and Fitzpatrick [i] use Lemma 3.5. 1 along with a characterization of reflexive separable Banach spaces to justify the following.

Theorem 3.5.2 In any non-reflexive separable Banach spact there is a nouhert dense closed concex subset that is not shy.

Proof. A separable Banach space E is not reflexive if and only if there exists a closed convex subset C of E with empty interior that contains some translate of each compact set in E (see [37$]$). Thus, the result follows from the last lemma.

In contrast to the above theorem Borwein and Moors [8] and Matsouškovà in [36] showed that in any super-reflexive space a nowhere dense closed convex set is shy.

Here is another example, from Dougherty [18]. of an argument that exploits this samie measure-theoretic fact. Let \mathbb{R}^{v} denote the space of all sequences of real numbers furnished with the metric

$$
\rho(x, y)=\sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|} .
$$

This is an Abelian Polish group. complete in this metric but non-locally compact. For any $A \subseteq \mathbb{N}$. let

$$
S(A) \equiv\left\{s \in \mathbb{R}^{V}: s(n)<0 \text { for } n \notin A \text { and } s(n)>0 \text { for } n \in A\right\} .
$$

We reproduce the following lemma from [18 give a proof.

Lemma 3.5.3 For any $A \subseteq \mathbb{N}$, the set $S(A)$ contains a translate of every compact subset of $\mathbb{R}^{\text {Y }}$.
$!$
Proof. For any compact set C the set $C_{1}=\{x(i) \in \mathbb{R}: x \in C\}$ is a bounded closed set in $\mathbb{R}, i=1.2 \ldots \ldots$ Let $\left(a_{1}, b_{t}\right)$ be intervals such that $C_{i} \subseteq\left(a_{1}, b_{1}\right)$. We define $t \in \mathbb{R}^{, ~ N}$ by

$$
t(i)= \begin{cases}\left|b_{i}\right|+1 . & \text { if } i \in A . \\ -\left|a_{i}\right|-1 . & \text { if } i \notin A .\end{cases}
$$

Then it is easy to see that $C+t \subseteq S(A)$.
From this lemma we conclude immediately that the set $S(A)$ in the Abelian Polish group $\mathbb{R}^{\text {v }}$ cannot be shy.

Theorem 3.5.4 For any $A \subseteq \mathbb{N}$ the set $S(A)$ is a Borel set that is not shy in \mathbb{R}^{Y}.
Proof. From Lemma 3.5.1 and Lemma 3.5. 3 we need only show that the set $S(A)$ is a Borel set. In \mathbb{R}^{V} any sequence $s_{n} \rightarrow s$ implies $s(i) \rightarrow s(i)$ for each $i \in \mathbb{N}$. Thus for each pair of integers (i, n), the sets

$$
A_{i n}=\left\{s \in \mathbb{R}^{v}: s(i) \geq \frac{1}{n}\right\} \text { and } B_{1 n}=\left\{s \in \mathbb{R}^{v i}: s(i) \leq-\frac{1}{n}\right\}
$$

are closed sets. Note that

$$
S(A)=\left(\bigcap \bigcup_{a \in A} A_{i n}\right) \bigcap\left(\bigcap \bigcup_{a \notin A} B_{n}\right) .
$$

Thus $S(A)$ is a Borel set.

Theorem 3.5.t exhibits an interesting feature of shy sets that is not shared by the Lebesgue measure zero sets in a finite dimensionat space. The collection $\{S(A)$: $A \subseteq \mathbb{N}\}$ forms a family of pairwise disjoint non-shy sets that is uncountable. See Section 2.18 for a further discussion of this. The search for families of uncountably nany pairwise disjoint non-shy sets in non- Abelian Polish groups is our primary goal' in Chapter 5.

Chapter 4

Prevalent properties in some function spaces

4.1 Introduction

During the middle of nineteen century many famons mathematicians tried to prove the differentiability of continuous functions. Frustrated, some of then gave examples of continuous functions that are not differentiable on a dense set or furt her on the set of irrationals. It was K . Weierstrass who first constructed a convincing example of a continuous function that has no point of differentiability in 1875. After Weierstrass many examples of contimous nowhere differentiable functions were discovered by other mathematicians. In 1931 S. Banach and S. Mazurkiewicz sepàrately gave similar existence proofs by using the Baire ('ategory theorem in separate papers [3] and [40] respectively. Since then Baire category arguments have been widely used to prove the existence of functions which are difficult to visualize. It is now a common practice to show that' certain classes of functions are "typical" in spaces of functions by showing that they form residual subsets in those spaces.

The same program can be carried out using the measure-theoretic notion of prevalence. rather than the topological notion of category. The earliest such result is probably that of X . Wiener [60] showing that the nowhere differentiable functions are full measure in the space $C^{\prime}[0.1]$ of continuous functions $x(t)$ with $x(0)=0$ in the sense of the Wiener measure. In 1994 Hunt et al. [27] applied the notion of shy sets (rediscovering the Haar zero sets of Christensen) to the same kind of problems. In this chapter we will show that certain classes of functions in various function spaces are prevalent.

4.2 Continuous, nowhere differentiable functions

In this section we will sketch some of the ideas from the paper of Hunt [28]. Later sections in this chapter are devoted to similar problems in some specific function spaces.

Let S denote the set of all continuous functions on [0,1] that are somewhere differentiable. i.e., for which there is at least one point of differentiability: It is proved in [20] that S is she in the space (' $[0.1]$. In fact the author does not address the measurability issue but shows that S is contained in a shy Borel set. (The definition used in that paper for a shy set is exactly this, that an arbitrary set is shy if it is a subset of a Borel shy set. Our definition requires us to prove that the set is universally measurable if not a Borel set.)

Let us show how to check that S is universally measurable. A continuous function f has a finite derivative at some point $x \in[0,1]$ if and only if for every positive integer n there is a positive integer m such that if $0<\left|h_{1}\right| .\left|h_{2}\right|<1 /$ and $x+h_{1}, x+h_{2} \in[0,1]$ then

$$
\text { (*) }\left|\frac{f\left(x+h_{1}\right)-f(x)}{h_{1}}=\frac{f\left(x+h_{2}\right)-f(x)}{h_{2}}\right| \leq \frac{1}{\dot{n}} .
$$

For each pair (n, m) let

$$
E(n, m)=\{(f . x) \in C[0,1] \times[0.1]:(*) \text { holds }\} .
$$

Then (' $[0.1] \backslash S$ is the projection into $C[0.1]$ of $\bigcap_{n=1}^{x} \bigcup_{m=1}^{x} E(n, m)$. Note that $E(\hat{n}, m)$ is closed. So $C[0,1] \backslash S$ is analytic [11] and therefore the set S is universally measurable (see [11] X. Furthermore. Sis not Borel (see [38] and [39] for details).

We now turn to the method of proof that the set S of somewhere differentiable functions is shy. As pointed out in [28] there is no element transverse to S. Thus the simplest of the methods is not available here. To see this, let g be a continqüus function. For $f(x)=-x g(x)$ and every $\lambda, f+\lambda g$ is differeńtiable at $x=\lambda$. Hence there is no element transerse to S. The reason here is that a linear combination of nowhere differentiable functions can be differentiable.

In [28] it is showfthat there is a two-dimensional subspace of $C[0.1]$ that is transverse to S. We sketch parts of the proof here. In [28] Hunt used two continuous nowhere differentiable functions

$$
g(x)=\sum_{k=1}^{\infty} \frac{1}{k^{2}} \cos 2^{k} \pi x \text { and } h(x)=\sum_{k=1}^{\infty} \frac{1}{k^{2}} \sin 2^{k} \pi x .
$$

Through complicated and elegant computations he showed that there exists a constant $c>0$ such that for any $\alpha.\} \in \mathbb{R}$ and any closed interval $I \subseteq[0,1]$, with length $\epsilon \leq 1 / 2$.

$$
\max _{I}(\alpha g+3 h)-\min _{I}(\alpha g+3 h) \geq \frac{c \sqrt{\alpha^{2}+3^{2}}}{(\log \epsilon)^{2}}
$$

By using this result he showed that the set

$$
G=\left\{(a, 3) \in \mathbb{R}^{2}: f+\alpha g+3 h \text { is Lipschitz at some } x \in\{0,1]\right\}
$$

is two-dimensional Lebesgue measure zero for any $f \in C[0.1]$. It is easy to show that the set G is of type F_{σ} and that a function differentiable at a point x is Lipschitz at r. So the set S is contained in G. In $[28]$ Hunt showed $\lambda_{2}(G)=0$ as follows.

Let $N \geq 2$ be an integer and split $[0.1]$ into.V closed intervals I of length $\epsilon=1 / N$. Split G into $\bigcup_{I} \bigcup_{n=1}^{\infty} S_{n}$ where

$$
S_{n}=\{(\alpha, \beta) \in G: f+a g+3 h \text { is } n \text {-Lipschitz at some point } x \in I\} .
$$

For any pair of points ${ }^{\text {s }}\left(\alpha_{1}, J_{1}\right),\left(\alpha_{2}, \beta_{2}\right) \in S_{n},\left|f_{2}(x)-f_{1}\left(x_{1}\right)\right| \leq n\left|x-x_{2}\right| \leq n \in$ on denoting $f_{1}=f+\alpha_{2} g+3_{1} h$. One checks that

$$
\max _{I}\left(f_{1}-f_{2}\right)-\min _{I}\left(f_{1}-f_{2}\right) \leq 4 n \epsilon
$$

Therefore by using the result we first mentioned above we have

$$
\sqrt{\left(a_{1}-a_{2}\right)^{2}+\left(3_{2}-\beta_{1}\right)^{2}} \leq \frac{t n}{c} \epsilon(\log \epsilon)^{2}
$$

Trivially the result follows.
Hunt's methods show that the somewhere differentiable functions form a shy set that is 2 -dimensional in the language that we introduced in Section 3.2. It would be interesting to know if more can besaid about this set. We leave this again as an open problem.

PROBLEM 10 Is the st of some where differentiable functions in the space ($[0,1]$ s-null?

4.3 Prevalent properties in $C[a, b]$

To illustrate some of our methods we shall proversome of the simpler prevalence results in the space $C[a, b]$ of continuous functions equipped with the supremum norm,

Theorem 4.3.1 For $c \in[a . b]$ and $C \in \mathbb{R}$. let

$$
S_{c}=\{f \in C[a, b]: f(c)=C\}
$$

Then S_{c} is closed. nouhere dense and shy.

Proof. It is easy to see that S_{c} is closed and nowhere dense in $C[a, b]$. Take a non-zero constant function $g=d \neq C$. Then

$$
\left\{\lambda \in[0.1]: f+\lambda g \in S_{c}\right\}
$$

can contain no more than one element for any $f \in C[a, b]$. If not, there are $\lambda_{1}, \lambda_{2} \in$ $[0.1] . \lambda_{1} \neq \lambda_{2} . f+\lambda_{1} g \in S_{c}$ and $f+\lambda_{2} g \in S_{c}$. Then $f(c)+\lambda_{1} d=f(c)+\lambda_{2} d$. So $\left(\lambda_{2}-\lambda_{1}\right) d=0$ which contradicts $d \neq 0$. Therefore the one-dimensional Lebesgue measure is transverse to S_{c} and S_{c} is shy.

A continuous function is called nouhere monotonic on an interval $[a, b]$ if it is not monotonic on any subinterval of $[a, b]$.

A continuous function is called nowhert monotonic type on an interval [a,b] if for any $\rangle \in \mathbb{R}$ the function $f(x)-\gamma_{x}$ is not monotoricion any subinterval of $[a, b]$.

It is well known (see, e.g. [11, pp. 461-464]) that nowhere monotonicity and being nowhere monotonic type are typical properties in the space $C[a, b]$. In this section we will show directly that these two properties are also prevalent properties in $C[a, b]$. The following theorem follows easily from the result of Hunt sketched in Section 4.2 . The proof, here, is more elementary:

Theorem 4.3.2 The precalent function $f \in C \cdot[a, b]$ is of nouhere monotonic type.
Proof. Given any interval 1 . let

$$
G(I)=\{f \in C[a, b]: f \text { is of monotonic type on } I\} .
$$

and let

$$
G_{n}(I)=\left\{\begin{array}{ll}
f \in C[0,1]: & \begin{array}{l}
\text { there exists a } \gamma \in[-n, n] \text { such that } \\
f-\gamma x \text { is monotonic on } I
\end{array}
\end{array}\right\} .
$$

Then

$$
G(I)=\bigcup_{n=1}^{\infty} G_{n}(I)
$$

We show that $G_{n}(I)$ is a closed set and therefore $G(I)$ is a Borel set. For any Cauchy sequence $\left\{f_{i}\right\} \subseteq G_{n}(I)$ there exists a function $f \in C[0,1]$ such that $f_{1} \rightarrow f$ uniformly: Then there exist $\xi_{1} \in[-n, n]$ such that $f_{1}(x)-\gamma_{2} x$ are monotonic on I. Then we can choose a subsequence $\left\{\gamma_{1}\right\}$ of $\left\{\gamma_{n}\right\}$ such that $\gamma_{1} \rightarrow \gamma \in[-n, n]$. It is easy to see that $f-\hat{f}$ is monotonic on I. Thus $G_{n}(I)$ is closed.

Now we show that $G_{n}(I)$ is a shy set. Choose a function $g \in C[a, b]$ that is nowhere differentiable on I. For any $f \in C[a, b]$. let

$$
G_{i_{n \cdot g}}=\left\{\lambda \in \mathbb{R}: f+\lambda g \in G_{n}\right\} .
$$

Then $G_{n, g}^{\prime \prime}$ is a singleton or emptyse se If not there exist $\lambda_{1}, \lambda_{2} \in G_{n, g}, \lambda_{1} \neq \lambda_{2}$. Then there exist i_{1} and \dot{i}_{2} such that $f+\lambda_{1} g-\hat{\gamma}_{1} x$ and $f+\lambda_{2} g-\gamma_{2} x$ are monotonic on I. Therefore

$$
\left(f+\lambda_{1} g-\gamma_{1} x\right)-\left(f+\lambda_{2} g-\gamma_{2} x\right)=\left(\lambda_{1}-\lambda_{2}\right) g+\left(\gamma_{2}-f_{1}\right) x
$$

is differentiable almost everywhere on I. This contradicts our assumption that the function g is nowhere differentiable. Thus (in.g is a singleton or empty set and hence $G_{n}(I)$ is a shy set. It follows that the set $C_{n}(I)$ is a shy set.

Let $\left\{I_{k}\right\}$ be an enumeration of all intervals whose endpoints are rational numbers. Then each $G\left(I_{k}\right)$ is shy and the union is also shy: Hence the result follows.

Corollary 4.3.3 The precalent function $f \in C[a, b]$ nouhtere monotonir.
Note that we have proved this earlier. As a corollary our met hods actually show more.

Corollary 4.3.4 The set of functions which are somewhert monotonic is s-null in $C[a, b]$.

4.4 Prevalent properties in $b \mathcal{A} . b \mathcal{D} \mathcal{B}^{1} . b \mathcal{B}^{1}$

Follqwing Bruckner [9], Bruckner and Petruska [10] we use $b \mathcal{A}$, $b \mathcal{D} \mathcal{B}^{1}$. bB ${ }^{1}$ to denote the spaces of bounded approximately continuous functions. bounded Darboux Baire 1 functions and bounded Baire 1 functions defined on $[0,1]$ respectively, all of which are equipped with supremum norms. All these spaces are Banach spaces and form a strictly increasing system of closed subspaces (see [9]. [10]). In [10] it was shown that for a given arbitrary Borel measure μ on $[0.1]$ the typical function in $\mathcal{F}=$ $b \mathcal{A}, b \mathcal{D} \mathcal{B}^{1}$. or $b \mathcal{B}^{1}$ is discontinuous μ almost everywhere. In this section we will show that such typical properties in these three spaces are also prevalent properties for any σ-finite Borel measure.

Theorem 4.4.1 Let μ be a σ-finite Bortl measure on [0.1]. The prevalent function in $\mathcal{F}=b \mathcal{A}, b \mathcal{D B}^{1}$, or $b \mathcal{B}^{1}$ is discontinuous μ almost eceryuthere on $[0,1]$:

Proof. Let

$$
s=\left\{f \in \mathcal{F}: f \text { is continuous on a set } F_{\lambda}, \mu\left(F_{\lambda}\right)>0\right\}
$$

We show first that the set. s is a Borel set. Note

$$
S=\bigcup_{n=1}^{x} A_{\frac{1}{n}}
$$

where

$$
A_{\frac{1}{n}}=\left\{f \in \mathcal{F}: \mu\left(C_{f}^{\prime}\right) \geq \frac{1}{n}\right\}
$$

and $C^{\prime} f$ is the set of continuity points of f. Let $\left\{f_{m}\right\}$ be a ('auchy sequence in $A_{\frac{1}{n}}$. then $f_{m} \rightarrow f \in \mathcal{F}$. Let

$$
C^{\prime}=\bigcap_{\lambda=1}^{x} \bigcup_{m=\lambda}^{x} C_{f m} .
$$

Then C' $\subseteq C^{\prime}$. Note

$$
\mu(C)=\lim _{x \rightarrow x} \mu\left(\bigcup_{m=1}^{x}\left(f_{m}\right) \geq \liminf _{m \rightarrow x} \mu\left(C_{f_{m}}\right) \geq \frac{1}{n}\right.
$$

So $f \in A_{\frac{1}{n}}$. Thus $A_{\frac{1}{n}}$ is closed and the set S is a Borel set.
We now show that the set S is a shy set. It is well known that there is a function $g \in \mathcal{F}$ which is discontinuous μ almost everywhere on [0.1]. See [10. pp. 331. Theorem 2.1]. We will use this function g as a probe. For any given function $f \in \mathcal{F}$, let

$$
S_{3}=\{\lambda \in \mathbb{R}: f+\lambda g \in S\} .
$$

We claim that S_{3} is Lebesgue measure zero. For distinct $\lambda_{1}, \lambda_{2} \in S_{3}$. if $\mu\left(F_{\lambda_{1}} \cap F_{\lambda_{2}}\right)>$ 0. then

$$
\left(f+\lambda_{1} g\right)-\left(f+\lambda_{2} g\right)=\left(\lambda_{1}-\lambda_{2}\right) g
$$

would be continuous on $F_{\lambda_{1}} \cap F_{\lambda_{2}}$. This contradicts the choice of the function g. Thus for distinct λ_{1} and λ_{2} the corresponding sets $F_{\lambda_{1}}$ and $F_{\lambda_{2}}$ satisfy $\mu\left(F_{\lambda_{1}} \cap F_{\lambda_{2}}\right)=0^{\circ}$. Since μ is σ-finite on $[0.1]$ then $[0,1]=\bigcup_{i=1}^{x} X_{1}$ where $\mu\left(X_{i}\right)<x$ and $X_{i} \cap X_{j}=0 . i \neq j$. Let

$$
S_{m n}=\left\{\lambda \in S_{3}: \mu\left(F_{\lambda} \cap X_{m}\right) \geq \frac{1}{n}\right\}
$$

Then $S_{m n}$ is finite. If not, there exist countably many $\lambda_{2} \in S_{m n}$ such that

$$
x=\sum_{i=1}^{x} \mu\left(F_{i_{2}} \cap X_{m}\right)=\mu\left(X_{m} \cap\left(\bigcup_{:=1}^{\infty} F_{X_{1}}\right)\right) \leq \mu\left(X_{m}\right)<x
$$

This is a contradiction. Hence $S_{m n}$ is finite and $S_{g}=\bigcup_{m, n=1}^{x} S_{m n}$ is at most countable. Thus S_{3} is Lebesgue measure zero and the result follows.

In the proof of Theorem 4.4.1 we did not use any special property of functions in $b \mathcal{A} . b \mathcal{D} \mathcal{B}^{1}, b \mathcal{B}^{1}$ except that in all these classes there are functions that are discontin- ${ }^{-}$ uous μ almost everywhere on [0.1]. Thus we ean extend Theorem 4.4.1 in a general form as follows (see [32] for a typical version).

Theorem 4.4.2 Let μ be a σ-finite Borel measure on $[0,1]$. Let \mathcal{F} be a lintar spact of bounded functions $f:[0.1] \rightarrow \mathbb{R}$ with supremum metric. Suppose that there is a function $f \in \mathcal{F}$ that is discontinuous μ almost everyuhere on $[0,1]$. Then the prevalent function in \mathcal{F} is discontinuous μ almost everyuhere on [0.1].

4.5 Prevalent properties in $D[a, b]$

In this section we use $D[a, b]$ to denote the set of differentiable functions f whose derivatives are bounded and $f(a)=0$ and furnished with the metric (for $f, g \in D[a, b]$)

$$
\rho(f, g)=\sup _{x \in[a, b]}\left|f^{\prime}(x)-g^{\prime}(x)\right| .
$$

Then $D[a, b]$ is a Banach space. We study prevalent properties in this Banach space.
Theorem 4.5.1 Both the prevalent function and the typical function $f \in D[a, b]$ are monotonic on some subinterval of $[a, b]$.

Proof. Let

$$
D Z=\left\{f \in D[a, b]: f^{\prime}(x)=0 \text { on a dense set of }[a, b]\right\} .
$$

Then $D Z$ is a closed linear subspace of $D[a, b]$. In fact. let $f . g \in D Z$, then the sets

$$
\left\{x \in[a, b]: f^{\prime}(x)=0\right\} \text { and }\left\{x \in[a, b]: g^{\prime}(x)=0\right\}
$$

are of type (is since f^{\prime} and g^{\prime} are Bare 1 functions. But the intersection of two dense sets of type (is is also dense. so
$\left\{x \in[a, b]: \alpha_{1} f^{\prime}(x)+\alpha_{2} g^{\prime}(x)=0\right\} \supseteq\left\{x \in[a, b]: f^{\prime}(x)=0\right\} \cap\left\{x \in[a, b]: g^{\prime}(x)=0\right\}$
is dense for any $\alpha_{1}, \alpha_{2} \in \mathbb{R}$. Thus $\alpha_{1} f+\alpha_{2} g \in D Z$. Similarly we can show $D Z$ is closed. Suppose $\left\{f_{n}\right\}$ is a Cauchy sequence in $D Z$ such that $f_{n}^{\prime} \rightarrow f^{\prime}$ uniformly where $f^{\prime} \in D[a, b]$. Again since f_{n} are all Bare 1 functions, the sets $\left\{x \in[a, b]: f_{n}^{\prime}(x)=0\right\}$ are dense and of type G_{8}. So the set

$$
\bigcap_{n=1}^{x}\left\{x \in[a, b]: f_{n}^{\prime}(x)=0\right\} \subseteq\left\{x \in[a, b]: f^{\prime}(x)=0\right\}
$$

is dense and of type G_{i}. Thus $f \in D Z$ and hence $D Z$ is a closed linear space. It is easy to see that $D Z$ is a proper subspace of $D[a, b]$. For example the function $x-a \in D[a, b]$ but $f \notin D Z$. Thus from the results in Section $3.3 D Z$ is shy.

For any differentiable, nowhere monotonic. Function f. the derivative f^{\prime} is a Baire 1 function and so the set $\left\{x \in[a, b]: f^{\prime}(x)=0\right\}$ is a (is set. Further since f: is nowhere monotonic then $\left\{x \in[a, b]: f^{\prime}(x)=0\right\}$ is dense in $[a, b]$. Therefore the set. .

$$
G=\{f \in D[a, b]: f \text { is nowhere monotonic on }[a, b]\}
$$

is a subset of $D Z$. In fact the set G is of type G in in $D[a . b]$. Let I be an open subinterval of $[a, b]$. and

$$
F(I)=\{f \in D[a, b]: f \text { is monotonic on } I\}
$$

For any $f \in F(I), f^{\prime}(x) \geq 0$ on the entire I or $f^{\prime}(x) \leq 0$ en the entire I. So due to the metric defined on $D[a . b]$ it is easy to see that $F(I)$ is a closed set. Hence the set of functions in $D[a, b]$ that are somewhere monotonic is the union of all those $F(I)$ over intervals I with rational ent points. So it is of type F_{\sim} and therefore G is of type G_{i} in $D[a, b]$. The result follows.

We know that, for any σ-fnite Borel measure μ. the derivative of the typical function ${ }^{\prime} \in D[a, b]$ is discontinuous μ almost everywhere on $[a, b]$ (see [10]). By applying Theorem 4.4.2 we obtain the following theorem.

Theorem 4.5.2 Let μ be a σ-finite Borel measure on $[a, b]$. Then the derivative of the prevalent function $f \in D[a, b]$ is discontinuous μ almost tereryuhere on $[a, b]$.

If we do not use the fact that for any σ-finite Borel measure μ there exists a function $g \in D[a, b]$ whose derivative is discontinuous μ almost everywhere, we can easily obtain a simpler result as follows.

Theorem 4.5.3 The derivative of the prevalent function $f \in D[a, b]$ is discontinuous: on a dense set of $[a, b]$.

Proof. Let I be a subinterval of $[a, b]$ and let

$$
A(I)=\left\{f \in D[a, b]: f^{\prime} \text { is continuous on } I\right\}
$$

Then from the definition of the metric on $D[a, b]$ it is easy to see that $A(I)$ is closed. Also for any $f, g \in A(I)$ and $\alpha . \beta \in \mathbb{R} . \alpha f+3 g \in A(I)$. So $A(I)$ is a closed linear subspace of $D[a, b]$. We will see that $A(I)$ is also proper in $D[a, b]$. Take $c \in I$. The function

$$
f(x)= \begin{cases}(x-c)^{2} \sin \frac{1}{x-c} & \text { if } x \neq c \\ 0 & \text { if } x=c\end{cases}
$$

has as its derivative the function

$$
f^{\prime}(x)= \begin{cases}2(x-c) \sin \frac{1}{x-c}-\cos \frac{1}{x-c} & \text { if } x \neq c \\ 0 & \text { if } x=c\end{cases}
$$

which is discontinuous at $x=c$. Thus $A(I)$ is a closed linear proper subspace of $D[a, b]$. So $A(I)$ is shy. The set S of functions in $D[a, b]$ whose derivatives are continuous on some subinterval is the union of the $A(I)$ taken over all subintervals I with rational endpoints. Hence the set S is shy (as a countable union) and the theorem follows.

4.6 Prevalent properties in $B S C[a, b]$

The space $B S C[a, b]$ of bounded symmetrically continuous functions equipped with the supremum norm is a complete space (see [55]). From [50] we know that the set of functions $f \in B S C[a, b]$, which have a c-dense sets of points of discontinuity, is residual. In this section we show that such a set is also prevalent. Here we say that a set is c-dense in a metric space (X, ρ) if it has continuum many points in e efy non-empty open set.

In [33] Pavel Kostyrko showed the following theorem.
Theorem 4.6.1 Let (X, ρ) be a metric space. Let F be a linear space of bounded functions $f: X \rightarrow \mathbb{R}$ furnished uith the supremum norm $\|f\|=\sup _{r \in X}\{|f(x)|\}$. Suppose that in F there exists a function h such that its set $D(h)$ of points of discontinuity
is uncountable. Then

$$
G=\{f \in F: D(f) \text { is uncountable }\}
$$

is an open residual set in $(F, d), d(f, g)=\|f-g\|$.
By modifying the methods in $[50]$ we can get a stronger result in separable metric spaces.

Theorem 4.6.2 Let (X. ρ) be a separable metric space. Let F be a complete metrir linear space of bounded functions $f: X \rightarrow \mathbb{R}$ furnished with supremum norm $\|f\|=$ $\sup _{r \in X}\{|f(x)|\}$. Suppose that there is a function h such that its sft $D(h)$ of points of discontinuity is c-dense in (X, ρ). Then.

$$
G=\{f \in F: D(f) \text { isc-dtnst }\}
$$

is a dense residual r_{i} set in (F, d), where $d(f, g)=\|f-g\|$.
Proof. Given a non-empty set O, we can show that

$$
A(O)=\{f \in F: D(f) \cap O \text { is of power } c\}
$$

is a dense open set by using the methods in [50]. In fact. let $\left\{f_{n}\right\} \subseteq F \backslash A(O)$ bea convergent sequence. Then there is a function $f \in F$ such that $f_{n} \longrightarrow f$ uniformly Let ϵ_{n} denote the set $D\left(f_{n}\right) \cap O$. Then ϵ_{n} is at most countable and so the union $\bigcup_{n=1}^{x} \epsilon_{n}$ is at most countable. We know that f is continuous at each point $x \in O \backslash \bigcup_{n=1}^{x} \epsilon_{n}$, so $f \in F \backslash A(O)$. Hence $F \backslash A(O)$ is closed and $A(O)$ is open.

Now we show that $A(O)$ is dense in F. For every ball $B(f, \epsilon) \subseteq F$. if $f \in A(O)$ there is nothing to prove. We assume $f \in F \backslash A(O)$. then f has at most countably many points of discontinuity in O. From the assumption there is a function $h \in F$ such that h has a c-dense set of points of discontinuity in O. Let M be a constant such that $|h(x)| \leq M$ for all $x \in X$ and set

$$
g=f+\frac{\epsilon}{2 . M} h
$$

CHAPTER 4. PREVALENT PROPERTIES IN SOME FLNCTIO.NSPACES , 89

Then $g \in F$ is discontinuous in continuum many points of O and

$$
d(g . f)=d\left(f+\frac{\epsilon}{2 . M} h . f\right)=d\left(\frac{\epsilon}{2 . M} h .0\right)<\epsilon .
$$

- Thus $g \in A(O) \cap B(f . \epsilon)$ and hence $A(O)$ is dense.

Wet $\{x$,$\} be a dense countable subset of X$. then

$$
G_{i}=\bigcap_{i=1}^{\infty} \bigcap_{m=1}^{\infty} A\left(B\left(x_{i}, 1 / m\right)\right) .
$$

is a dense ($;$ set where $B\left(x_{2} .1 / m\right.$) is the open ball centered at x_{1} and with radius $1 / m$. Thus (; is a dense residual (is set in F.
 functions furmished with the supremum norm, have c-dense ste of pointis of discontinuity.

Proof. The set of points of discontinuity of any bounded symmetrically continuous function is Lebergue measure zero [55. Pp. 27. Theorem 2. 3]. Thus surh a function is Riemann integrable by the well known fact that a bounded Lebesgue oneasurable function is Riemann integrable iff its set of points of discontinuity is Leberigue measure zero [11]. Tran in [57] has constructed a symmetrically continuous function whose set of points of discontimuty is c-dense. Hence the result follows.

The following theorem gives a similar form of Theorem 4.6 .2 in the sense of prevabence.

Theorem 4.6.4 Let (X. ρ) be a separable metric spact, μ be a σ-fimate Borelmeasure that is non-zero on every open set in (.X, p). Let F be a complete metric lintar space of bounded functions $f: X \rightarrow \mathbb{R}$ furnished with the supremum norm $\|f\|=$ $\sup _{x \in X}\{|f(x)|\}$. Suppose that in F there erists a function h such that its set of point. of discontinuity is c-dense in (\mathbb{X}, ρ). Then the prevalent function $f \in F$ has a c-densis set of pointis of discontinuity.

Proof. Le't

$$
G=\{f \in F \nless D(\tilde{f}) \text { is } c \text {-dense in } X\} .
$$

By Theorem 4.6.2 the set G and its complement are Borel sets. We need only show that for every $f \in F$ the following set

$$
S=\left\{\begin{array}{ll}
\lambda \in \mathbb{R}: & f+\lambda h \text { is discontinuous at most countably marty } \\
& \text { points in some non-empty open set } O_{\lambda} \subseteq(\lambda, \rho)
\end{array}\right\}
$$

is a Lebesgue measure zero set. For every $\lambda \in S$ there exists a non-empty open set $O_{,} \subseteq(X . \rho)$ such that $f+\lambda h$ is discontimuas at most countably many points in O_{1}. If there are two distinct λ_{1} and λ_{2} such that $\mu\left(O_{\lambda_{1}} \cap O_{\lambda_{2}}\right)>0$. then both $f+\lambda_{1} h$ and $f+\lambda_{2} h$ have at most countably many points of discontinuity in the non-empty opern set $\left.O)^{\circ}\right)_{i_{2}}$. Therefore $\left(\lambda_{1}-\lambda_{2}\right) h$ has at most countably many points of discontimuity on such nonempty open set. This contradicts the property of function h. Hence for distinct λ_{1} and λ_{2} their corresponding non-empty open sets $O_{y_{1}}$ and $O_{\lambda_{2}}$ satisfy $\left.\mu()_{\lambda_{1}} \cap O_{i_{2}}\right)=0$. Since μ is σ-finite on (\mathbb{X}, ρ) then $X=U_{1}^{\sim} \cdot X_{1} \cdot$ where $\mu\left(X_{i}\right)<x$ and $X_{i} \cap X_{j}=0 . i \neq j$. Let

$$
\zeta_{n m}=\left\{\lambda \in \breve{S}: \mu\left(O, \cap X_{m}\right) \geq \frac{1}{n}\right\}
$$

Then $\mathscr{S}_{\text {nm }}$ is finite. If not. there exist countably many λ_{1} in $S_{n m}$ such that

$$
x=\sum_{t=1}^{x} \mu\left(O_{\lambda_{1}} \cap X_{m}\right)=\mu\left(X_{m} \cap\left(\bigcup_{i=1}^{x}\left(O_{\lambda_{1}}\right)\right) \leq \mu\left(X_{m}\right)<x\right.
$$

This is a contradiction. Thus $S_{n m}$ is finite and $S=\bigcup_{n, m=1}^{x} S_{n m}$ is at most countable. So the set s is a Lebesgue measure zero set. The span of h is an one dimensional probe for the set (i and the result follows.

Corollary 4.6.5 The prevalent function $f \in B . C^{\prime}{ }_{n}[a, b]$. the space of bounded w-th symmetrically continuous functions furnished with the supremum norm. has a c-dt hast set of points of discontinuity.

CHAPTER 4. PREVALENT PROPERTIES IN SOME FLWCTION SPACES

Proof. The space $B S C_{n}[a, b]$ is a complete metric space (see [33]). By Tran’s results [5]] there exist functions h_{1} and h_{2} in $B S C_{1}[a, b]$ and $B S C_{2}[a, b]$ respectively such that h_{1} and h_{2} have c-dense sets of points of discontinuity on $[a, b]$. Also note that $B S C_{1}[a, b]=B S C[a, b] \subseteq B S C_{2 k-1}[a, b]$ and $B S C_{2}[a, b] \subseteq B S C_{2 k}[a, b]$ (see [33] for details). Thus the result follows from Theorem 4.6.4.

Applying Theorem 4.6.4 and Tran's results [57] we obtain immediately a prevalent property in the space $R[a, b]$, which is also a typical property in $R[a, b]$ as shown in Corollary 4.6.3.

Corollary 4.6.6 The precalent function $f \in R[a, b]$, has a $c-d e n, s \in t$ of points of discontinuity.

In the following theoren we display another prevalent property in the space $B S C[a, b]$.

For $\mathrm{A} \subseteq \mathbb{R}$ a function $f: \mathbb{X} \rightarrow \mathbb{R}$ is called countably continuous if there is a countable cover $\left\{\mathrm{X}_{n}: n \in \mathbb{N}\right\}$ of X (by arbitrary sets) such that each restriction $f \mid X_{n}$ is contimuons.

By constructing an example of a non-countably continuous function hravsztof ('iesielski [1:] answered a question of Lee Larson: whether every symmetrically continuous function is countably continuous. We will show that non-countable continuity is both a typical property and a prevalent property in the space $B C C[a, b]$.

Theorem 4.6.7 Let $F=\{f \in B S C[a, b]: f$ is countably continuous $\}$. Then F is a closed, nouthere den.f. linear subspact of $B S C[a, b]$.

Proof. First we show that F is a linear space. For $f_{1}, f_{2} \in F$. there are countable covers $\left\{X_{n}^{1}: n \in \mathbb{N}\right\}$ and $\left\{X_{n}^{2}: n \in \mathbb{N}\right\}$ of $[a, b]$ such that the restrictions $f_{1} \mid X_{n}^{2}$ are
continuous. It is easy to see that

$$
[a, b] \subseteq \bigcup_{i, j}\left(X_{i}^{1} \cap X_{j}^{2}\right)
$$

So $\left\{X_{1}^{1} \cap X_{j}^{2}: i, j \in \mathbb{N}\right\}$ is a countable cover of $[a, b]$. Also the restrictions $f \mid X_{1}^{1} \cap X_{j}^{2}$ are continuous. Thus for any $\alpha, \beta \in \mathbb{R} . \alpha f_{1}+3 f_{2} \in F$.

We now show that F is closed. Let $\left\{f_{n}\right\} \subseteq F$ be a convergent sequence. Then there is a function $f \in B S C[a, b]$ such that $f_{n} \rightarrow f$ uniformly: For each f_{n} there exists a countable cover $\left\{\mathbb{X}_{i}^{n}\right\}$ of $[a, b]$ such that $f_{n} \mid X_{i}^{n}$ is continuous. Since $[a, b] \subseteq \bigcup_{i=1}^{X} X_{i}^{n}$. so

$$
[a, b] \subseteq \bigcap_{n=1}^{x}\left(\bigcup_{i=1}^{\infty} \mathbf{X}_{i}^{n}\right)=\bigcup_{i=1}^{\infty}\left(\bigcap_{n=1}^{\infty} \mathbf{X}_{t}^{n}\right)
$$

Note that for any m the restriction $f_{m} \mid \cap_{n=1}^{x} X_{i}^{n}$ is continuous. Thus the restriction $f \mid \bigcap_{n=1}^{x} X_{i}^{n}$ is continuous since f is the uniform limit of f_{n}. Therefore $f \in F$ and F is closed.

We now show that F is nowhere dense in $B S C[a, b]$. For any ball $B(f, \epsilon)$, if $f \notin F$ there is nothing to prove. If $f \in F$, then f is countably continuous. Choose a function $g \in B S([a, b]$ that is not countably continuous (see Ciesielski's construction in [15]). Then $f+(g / M) \epsilon / 2 \in B(f, \epsilon)$ where $M=\sup _{s \in[a, b]}|g(x)|$. Obviousl $v f+(g / M) \epsilon / 2$ is also not countably continuous. If not. $f+(g / M) \epsilon / 2-f=(g / M) \epsilon / 2$ is countably continuous since F is linear. Since F is closed, it is nowhere dense. The result follows.

Corollary 4.6.8 Both the prevalent function $f \in B S C[a, b]$ and the typical function are not countably continuous.

Proof. In [15] Krzysztof (iesielski constructed a function $f \in B S C^{\prime}[a, b]$ that is not countably continuous. Thus the set F in Theorem 4.6 .7 is a closed, nowhere dense, proper and linear subspace of $B, C \subset[a, b]$. Therefore the result follows.

4.7 Multiplicatively shy sets in $C[0.1]$

In the space $C \cdot[0.1]$ of continuous functions on $[0,1]$ there is another algebraic operation of importange - multiplication. $C[0.1]$ is a Banach algebra with multiplication $f g$ of elements $f . g \in C[0.1]$ defined in the pointwise sense. Inder this operation $C[0.1]$ is a Polish semigroup with unit. (The unit is the function $f(x) \equiv 1$.) This allows for two distinct notions of shy sets.

Let $S \subseteq([0,1]$ be universally measurable. Then S is said to be an additicely shy sot if there is a Borel probability measure μ so that

$$
\mu(S+f)=0 \quad(\forall f \in(\cdot[0.1])
$$

Now is said to be a multiplicatively shy set if there is a Borel probability measure containing the unit element in its support so that

$$
\quad \mu(f \zeta)=0 \quad(\forall f E([0,1])
$$

In this section we propose to investigate this definition rather briefly. The ideas arise from purely formal considerations and may or may not be useful in applications.

Theorem 4.7.1 Ift M denote the functions in C'[0.1] that art some where monotonic. Then M is both additicely shy and multiplicatively shy.

Proof. We have already showed that M is additively shy (see Example 3.3.5). We now show that M is multiplicatively shy. For $I \subseteq[0,1]$ we use $M(I)$ to demote the set of functions in (0.1) that are monotonic on I. Take a function g nowhere differentiable with $0<g(x) \leq 1$. Write

$$
F(t)=g(x)^{t} \quad(0 \leq t \leq 1) .
$$

Define a Borel probability measure μ by

$$
\mu(X)=\lambda_{1}(\{t \in[0,1]: F(t) \in X\})
$$

Then the support of μ contains the unit element $f(x) \equiv 1$. In fact. for every ball $B(1, \epsilon)$. there exist $0<\delta<1$ and $0<\eta<1$ such that $g(x) \geq \delta$ for all $x \in[0,1]$ and $1-\epsilon<\delta^{t} \leq 1$ for all $t>\eta$. Thus $\mu(B(1, \epsilon)) \geq 1-\eta>0$ and hence $1 \in$ supp μ. For any $f \in C(0,1]$. consider the set

$$
T=\{t \in[0.1]: F(t) \in f M(I)\} .
$$

We claim that T contains at most one element. In fact, if not, there are $t_{1}, t_{2} \in$ $[0.1] . t_{1}<t_{2}$ and $m_{1}, m_{2} \in M(I)$ such that

$$
g(x)^{t_{1}}=f m_{1} \text { and } g(x)^{t_{2}}=f m_{2} .
$$

Thus

$$
g(x)^{t_{2}-t_{1}}=\frac{m_{2}}{m_{1}}
$$

This is impossible since the left side of the equality is nowhere differentiable on I but the right side is almost differentiable on I. Thus $\lambda_{1}(T)=0$ and $M(I)$ is shy. .iote

$$
M=\bigcup_{I} M(I)
$$

where the union is taken over all subintervals of $[0,1]$ with rational endpoints. Therefore M is multiplicatively shy:

Theorem 4.7.2 Let Z be the set of continuous functions on $[0,1]$ with at lecist one atro. Then Z is not additively shy, but is multiplicatively shy in ('[0.1].

Proof. It is easy to see that Z is closed. In fact, for any ('auchys sequence $\left\{f_{n}\right\} \subseteq Z$ there exists a function $f \in C[0,1]$ such that $f_{n} \rightarrow f$ uniformly. For each n, there exists $x_{n} \in[0.1]$ such that $f_{n}\left(x_{n}\right)=0$. Thus there exists a subsequence $x_{n}, x_{0} \in[0.1]$. Let $j \rightarrow x$ in $f_{n},\left(x_{n}\right)=0$ we have $f\left(x_{0}\right)=0$. Therefore $f \in Z$ and Z is closed. . .os we show the assertion in two steps.
(i). Write $F:[1,2] \rightarrow C[0,1]$ by $F(t)=t$. Then for any $f \in C[0,1]$.

$$
\{t \in[1,2]: F(t) \in f Z\}=0
$$

So we can construct a Borel probability measure μ with support containing the unit bs

$$
\mu(X)=\lambda_{1}(\{t \in[1,2]: F(t) \in X\})
$$

Obviously μ is transverse to the set Z. Thus Z is multiplicatively shy.
(ii). We show that Z is not additively shy Suppose Z were additively shy Note that every translation of Z is also additively shy, and

$$
C[0.1]=\bigcup_{r \in \hat{z}}(Z+r)
$$

where \mathbb{Q} is the set of rational numbers in \mathbb{R}. That is. C' $[0,1]$ is the countable union of countably many additively shy sets. This is a contradiction. Thus Z is not additively shy.

Both the set Z in the above theorem and (' $[0,1] \backslash Z$ are upper density 1 under the additise operation (see Section 2.15 for the definition of upper density 1). In fact. for every $t>0$ and every Borel probability measure μ, there exists a compact set ${ }_{i} K \subseteq(C[0.1]$ such that $\mu(K)>1-\epsilon$ since μ is tight. on C $[0,1]$. ('hoose functions $g . h \in C^{\prime}[0.1]$ tatisf

$$
g(0)=1+\max _{f \in K} \max _{x \in[0,1]}|f(x)| \cdot g(1)=-1-\max _{f \in K} \max _{r \in[0, h}|f(x)|
$$

and

$$
h(x) \equiv 1+\max _{j \in K} \max _{x \in[0,1]}|f(x)|
$$

on $[0,1]$. Ihen

$$
g+K \subseteq Z \text { and } h+K \subseteq([0.1] \backslash Z .
$$

Thus

$$
K \subseteq Z-g \text { and } k \subseteq c[0.1] \backslash Z-h .
$$

Therefore both Z and $C[0.1] \backslash Z$ are upper density 1 .

Corollary 4.7.3 The set $S_{\text {s }}$ in Theorem 4.3.1 is also multiplicaticely shy.
Proof. For any function $f \in S_{i}, f-C$ has at least one zero point. By Theorem t.i.2 $s-\left(C\right.$ is multiplicatively shy, and so is S_{c}.

As we have seen, the non-invertible elements in the multiplicative semigroup (' 0.1$]$ generate some curious results as regards multiplicatively shy sets. Oue. possibly better. way to investigate these notions would be to restrict our attention to the set ${ }^{(}+[0.1\}$ of strictly positive valued functions in $C[0.1]$.

Lemma 4.7.4 With the operation of multiplication ('+ 0.1$]$ becomt.: an Abelian Polinh group.

Proof. We only need show that ($+[0.1]$ is Polish. On it we impose an invariant metric d so that

$$
d(f, g)=\max _{x \in[0,1]}|f(x)-g(x)|+\max _{x \in[0,1]}\left|\frac{1}{f(x)}-\frac{1}{g(x)}\right| .
$$

Then the space ($\left.{ }^{+}+0,1\right]$ is complete under the metric d. In fact, for any ('auchy sequence $\left\{f_{n}\right\} \subseteq\left(C^{+}[0.1]\right.$ and a fixed point $x \in[0.1] .\left\{f_{n}(x)\right\}$ and $\left\{1 / f_{n}(x)\right\}$ are ('auchy sequences in the uniform metric. So the set $\left\{1 / f_{n}(x)\right\}$ is bounded and there exists a function $f(x)>0$ such that

$$
f_{n}(x) \rightarrow f(x) \text { and } \frac{1}{f_{n}(x)} \rightarrow \frac{1}{f(x)} .
$$

Therefore a function f is generated such that $f_{n} \rightarrow f$ and $1 / f_{n} \rightarrow 1 / f$ pointwise. Note $\left\{f_{n}\right\}$ is a Canchy sequence under the metric d. So $f_{n} \rightarrow f$ and $1 / f_{n} \rightarrow 1 / f$

CHAPTER 4. PKELALEMT PROPERTIES IN SOME FLYCTION SPACES

uniformly. Thus f is continuous and $f \in C^{+}[0,1]$. The separability of $C^{+}[0.1]$ is clear and hence $C^{+}[0.1]$ is Polish.

The shy sets in the space $C^{+}[0,1]$ could be called again multiplicatively shy set.
Theorem 4.7.5 A sft $S \subseteq C^{+}[0.1\}$ is multiplicatiofly shy in $C^{+}[0.1]$ if and only if

$$
\ln S=\{\ln f: f \in S\}
$$

i.s additively shy in $C \cdot[0,1]$.

Proof. Note that the function $f(x)=\ln x$ is a one-one, continuous mapping from ${ }^{\circ}+[0.1]$ onto $C^{\prime}[0,1]$ and satisfies

$$
\ln \left(g_{1} g_{2}\right)=\ln g_{1}+\ln g_{2} \quad\left(\forall g_{1} \cdot g_{2} \in C^{+}[0,1]\right) .
$$

Thus by Theorem 2.10.2 the result follows.

Corollary 4.7.6 The precalent function $f \in C^{+}[0.1]$ is nouthere defferentiable.
 point of $[0.1\}$ and let S^{+}denote the set of functions in' ('+ $[0,1]$ that are differentiable at some point of $[0.1]$. Then $S=\ln S^{+}$. Since the set S is universally measurable and shy in ($C[0.1]$ (see Section 4.2). by Theorem 4.7.5). it is multiplicatively shy.

Remark. We can construct a mapping $F:[0.1] \times[0.1] \rightarrow\left(^{+}[0.1]\right.$ by

$$
F\left(t_{1}, t_{2}\right)=\{\exp (g(x))]^{t_{1}}[\exp (h(x))]^{t_{2}}
$$

where $g(x)$ and $h(x)$ are as in Section 4.2 . The Borel probability measure μ defined by

$$
\mu(X)=\lambda_{2}\left(\left\{\left(t_{1}, t_{2}\right) \in[0.1] \times[0.1]: F\left(t_{1}, t_{2}\right) \in X\right\}\right) .
$$

with support containing the unit, is transverse to s^{+}.
Similarly, we have the following results.

```
    ` .
(HAPTER 4. PRELHLENT PROPERTIES IN SOME FINCTION SPACES 9*
```

Corollary 4.7.7 The precalent function $f \in C^{+}+[0.1]$ w nouhtre of monotonic type
\cdot
Corollary 4.7.8 The set exp Z is not multiplicaticely shy in ($+0,1$] where Z is as in Theorem 4.7.2.

Chapter 5

Space of automorphisms
 \backslash
 5.1 Introduction

The space $\mathcal{H}[0,1]$ is defined as the set of all homeomorphisms $h:[0,1] \rightarrow[0,1]$ hat fix $h(0)=0$ and $h(1)=1$. Note that these are exactly the strictly increasing continuous functions leaving the endpoints fixed. This is a subspace of the complete metric space ('[0.1]. We shall show that $\mathcal{H}[0.1]$ admits a complete metric. There are discussions on the typical properties of functions in the complete metric space $\mathcal{H}[0,1]$ in [11]. for example.

We can impose some algebraic structure on $\mathcal{H}[0.1]$ in several ways. The nost natural way is to consider the group operation, defined as composition of functions. In this chapter we shall study some kinds of prevalence and give some examples of non-shy sets by using the arguments we developed in (hapter 2 and ('hapter 3 .

For a different measure-theoretic study in the space $\mathcal{H}[0,1]$, see (iraf, Mauldin and Willians [25] and [26]. We follow ideas of Mauldin and Ilam (see [58), who have defined a probability measure P ' on $\mathcal{H}[0.1]$ that is "natural" from a probabilistic point of view. Roughly to generate a homeomorphism $h \in \mathcal{H}[0.1]$ randomly with respect
to the uniform distribution over [0.1] one chooses $h(1 / 2)$ from (0.1) at random with respect to the uniform distribution. then one chooses $h(1 / 4)$ from $(0, h(1 / 2))$ and $h(3 / 4)$ from ($h(1 / 2) .1$) at random again with respect to the uniform distribution. This continues defming h on all dyadic rational numbers. With probability $1 . h$ is strictly increasing ąnd uniformly continuous on dyadic rational numbers and so defines a member $h \in \mathcal{H}[0,1]$. A measure P is defined on $\mathcal{H}[0.1]$ to reflect these notions (set [25] for details). In this chapter that say the measure P means such a measure. It has the property that the expected values for $h(t)$ is t. that is.

$$
\int_{\mathcal{H}\{0,1]} h(t) d P(h)=t
$$

A number of usefnl properties are shown in [25] and [26]. For example. P' almost every $h \in \mathcal{H} 0.1]$ touches the line $y=x$ on the interval (0.1). Sute. however, that their study is of a different nature than our study here. The group st ructure plays no significant role in the notion of "prevalence" relative to the measure P '. The measure I^{\prime} is determined in a probabilistic manner and inside or outside composit fon bye elements of $\mathcal{H}[0,1]$ changes that determination. Thus that stuly ean only be uset fontrast with our study here. In this chapter we use P to denote such a measure. We find that some sets studied in [25] and [26] are very surcessful as examples to answer the following open problems.

Jan Mycielski [4l] asked whether. in a nom Abelian Polish group, the existence of a Borel probability measure left transverse to a set Y implies the set Y is shy We shall answer this problem negatively in $\mathcal{H}[0,1]$ by showing that every set $\left\{h \in \mathcal{H}^{\prime}(0,1]:\right.$ $\left.h^{\prime}(0)=\alpha\right\} \quad(\alpha>0)$ is left-and-right shy without being shy:

Slawomir Solecki showed that a Polish group admitting an invariant metric sat isfies the countable chain condition if and only if this Polish group is locally compact. The problem is left whether all non-locally compact, non-Abelian Polish groups or some of them do mot satisfy the countable chain condition. $\mathcal{H}[0.1]$ is a non-locally compact.
non-Abelian Polish group with no invariant metric that makes it complete. We shall show that this group does not satisfy the countable chain condition.

The organization of this chapter is as follows. In Section 5.2. we show that the group $\mathcal{H}[0.1]$ is a non-locally compact. non-Abelian Polish group without invariant metrics. In Section 5.3. 5.4. 5.5. 5.8. we use compact curves to construct Borel probability measures to show that certain sets are shy, or left shy, or right shy: In particular, we show that in $\mathcal{H}_{[0.1] .}$. there exists
(1) a Borel probability measure μ that is both left transverse and right transverse to a Borel set X, but is not transverse to X.
(2) a Borel probability measure μ that is left transverse to a Borel set X. but is not right transverse to X .

In. Section 5.6. we give a characterization of compact sets in $\mathcal{H}_{i}^{(0.1]}$ and a compact set argument to show that a set is non-shy, or non-left shy, or non-right shy. In Section 5.7. 5.9.5.10. 5.11, 5.12, we use the compact set argument of Section 5.6 to show that certain set, are non-shy. or non-left shy. or non-right shy. Specifically. we show that some sets of the first category are non-shy. some left-and-right shy sets are non shy. and some typical properties are not prevalent. Finally, in Section 5. 13 , using the results in Section 5.12. We show that the non-Abelian Polish group $\mathcal{H}[0.1]$ doew not satisfy the countable chain condition. Ln Section 5.14, several opern problems are given.
Space of automorphisms
We shal! first prove that $\mathcal{H}[0,1]$ is a Polish group that is neither Abelian nor locally. compact.
bemma 5.2.1 The spact $\mathcal{H}[0.1]$ is a non-locally compart, non-Abelian Polish group.

$\%$

Proof. $\mathcal{H}[0.1]$ is a (i_{s} set in a complete space (see [11. pp. 468]). Indeed, it is topologically complete with respect to the metric

$$
\sigma(g, h)=\rho(g, h)+\rho\left(g^{-1} \cdot h^{-1}\right) .
$$

which is topologically equivalent to the uniform metric ρ. (This is mentioned in Oxtoby [43].) The composition of two functions in $\mathcal{H}[0,1 /$ will usually not commute. For example. $f(x)=\sin \left(\frac{\overline{2}}{2} x\right)$ and $g(x)=x^{2} \in \mathcal{H}[0.1]$.

$$
f \circ g(x)=\sin \left(\frac{\pi}{2} x^{2}\right) \text { but } g \circ f(x)=\left(\sin \frac{\pi}{2} x\right)^{2} \text {. }
$$

So $\mathcal{H}^{\prime}(0.1]$ is not Abelian.
Now we show that the Polish group $\mathcal{H}[0.1]$ is not locally compact. For any function $f \in \mathcal{H}\{0,1]$ and $\epsilon>0$ there exists a $\delta>0$ such that $\sigma(f, g)<t$ for all $g \in \mathcal{H}[0,1] ., ~ \rho(f . g)<\delta$. Thus we can find a closed rectangle contained in $B(f . c)$ such thatt its sides are parallel to axes and two of its vertices are on the graph of f. Let a aidid b be x-coordinates of the two vertices with $a<b$. (hoose $a<c<b$ and define a sequence of functions $\left\{f_{n}\right\}$ for large n. Precisely, let $f_{n}(x)=f(x)$ when $0 \leq x \leq a$: $f_{r}(x)=f(x)$ when $b \leq x \leq 1$: then f_{n} is the segment function connecting ($\left.a . f(a)\right)$ and $(c . f(b)-1 / n)$ when $a \leq x \leq c$; and f_{n} is the segment function connecting (c. $f(b)-1 / n)$ and $(b, f(b))$ when $c \leq x \leq b$. Then $\left\{f_{n}\right\}$ and all its subsequences fail to converge in $\mathcal{H}[0,1]$. and so $\mathcal{H}[0$, If is not locally compact. It is clear that $\mathcal{H}[0,1]$ is separable since it is a subspace of the space $(\cdot[0,1]$. Thus $\mathcal{H}[0,1]$ is Polish.

The sequence $\left\{f_{n}\right\} \subseteq B(f, \epsilon)$ in the above proof also fails to converge in the uniform metric. So the uniform metric ρ does not give a complete metric for the set of all homeomorphisms. Also we can claim that the metric ρ is not invariant. In fact, choose functions $x, x^{2}, \sin \left(\frac{\overline{2}}{2} x\right) \in \mathcal{H}[0.1]$ and let $f(x)=x^{2}$. It is easy to see that the function $x-\sin \left(\frac{\Gamma}{2} x\right)$ attaims maximum at θ_{0} on $[0.1]$ where $0<\theta_{0}<1$ and
$\cos \left(\frac{\div}{2} \theta_{0}\right)=2 / \pi$. By computation $\theta_{0} \approx 0.560664$. . . 2 ete

$$
f(x)-f\left(\sin \frac{\pi}{2} x\right)=\left(x-\sin \frac{\pi}{2} x\right)\left(x+\sin \frac{\pi}{2} x\right) \text { and } \theta_{0}+\sin \frac{\pi}{2} \theta_{0} \approx 1.331542
$$

Thus

$$
\rho\left(x \cdot \sin \frac{\pi}{2} x\right),<\rho\left(f(x), f\left(\sin \frac{\pi}{2} x\right)\right) .
$$

Therefore the uniform metric ρ is not (left) invariant. It is, trivially, right invariant since for any $f . g . h \in \mathcal{H}[0,1]$.

$$
\max _{0 \leq x \leq 1}|f(h(x))-g(h(x))|=\max _{0 \leq x \leq 1}|f(x)-g(x)| .
$$

that is $\rho(f \circ h . g \circ h)=\rho(f . g)$.
()ne might ask whether a different equivalent metric on $\mathcal{H} 0$. li might be found that is invariant. Our next theorem is cited in Christemen $\{1=]$ where it is attributed to Diendonne. who mentioned it in [17] as an example but did not give a detailed. proof. It follows from this theorem that there is no invariant metric on this space. since it is known that an invariant metric on a Polish group must make it complete (wee $[31,(2.3)]$).

Theorem 5.2.2 There in no left inrariant metrie on the Polish group $\mathcal{H}_{i}(0$. 1] that makts the group. compltit.

Proof. We know that every metrizable group) must have a left (right) imvariant metric (see [30. pp, 5al). For a Polish group, if it has an imariant metric then it is complete in this metric (see $[31 .(2.3)]$).

Suppose that $\mathcal{H}[0.1]$ is complete in a left intariant metric d. Now consider a sequence $\left\{u_{n}\right\}$:

$$
u_{n}(x)= \begin{cases}\frac{2}{n} x, & 0 \leq x \leq \frac{1}{2} \\ 1+\left(2-\frac{2}{n}\right)(x-1), & \frac{1}{2} \leq x \leq 1\end{cases}
$$

-Then $u_{n} \in \mathcal{H}[0.1]$ and

$$
u_{n}^{-1}(x)= \begin{cases}\frac{n}{2} x, & 0 \leq x \leq \frac{1}{n} \\ \frac{1}{2-\frac{2}{n}}(x-1)+1 . & \frac{1}{n} \leq x \leq 1\end{cases}
$$

Since the uniform metric ρ is topologically equivalent to the metric σ as in Lemmaj.2.1. by Theorem 9.2t in [11. pp. 3sd]. for every $\left.u \in \mathcal{H}_{i}^{r} 0.1\right]$ and $\epsilon>0$ there is a $\bar{\delta}>0$ unch that for all $v \in \mathcal{H}[0,1]$.

$$
\rho(u, r)<\delta \Rightarrow d(u, r)<\epsilon \text { and } d(u, r)<\delta \Rightarrow \rho(u, r)<t
$$

0

Since ρ is right invariant.

$$
\rho\left(u_{n}, u_{v_{i}}\right)=\rho\left(u_{n_{2}} u_{m_{2}}^{-1} \cdot x\right)=\left|\frac{1}{n}-\frac{1}{m}\right| .
$$

Then there exists a $V>0$ such that $\rho\left(u_{n} u_{m}^{-1}, x\right)<c$ if $n, m>N$. Thus $d\left(u_{n} u_{n, m}^{-1}, r\right)<$ t if $n, m>N$, and so $\left\{u_{n}\right\}$ is a ('anchy sequence in the dmetric but it cannot converge in the d metric. In fact. if $\left\{u_{n}\right\}$ converges to an element $u \in \mathcal{H}[0.1]$. then $\left\{u_{n}^{-1}\right\}$ would converge to u^{-1} in the d metric since the d is left invariant. Thus again by Theorem 9.24 in [11, pp. 38s), $\left\{u_{n}^{-1}\right\}$ would converge to u^{-1} in ρ metric (uniformly). But $\left\{u_{n}^{-1}\right\}$ converges pointwise to the function

$$
u_{0}^{-1}(x)= \begin{cases}0, & x=0 \\ \frac{x+1}{2}, & 0<x \leq 1\end{cases}
$$

which is discontinuous at $x=0$. This is a contradiction. Thus there is no left invariant metric on $\left.\mathcal{H}_{i} 0.1\right]$ that makes it complete. The result follows.

5.3 Some examples of prevalent properties in $\mathcal{H}[0.1]$

In this section we will give some prevalence results by considering the following probability measure. Define a mapping $F^{\prime}:[1 / 2,1] \rightarrow \mathcal{H}[0,1] b \underset{y}{ } F(t)=x^{t}$. It is easy to
see that F is continuous, and so $F([1 / 2,1])$ is a compact set. As in Section 2.2 we define a probability measure μ by

$$
\begin{equation*}
\mu(X)=2 \lambda_{1}(\{t \in[1 / 2,1]: F(t) \in \mathbb{X}\}) . \tag{.5.1}
\end{equation*}
$$

We use this example of a measure to show that a measure may be left transwerse to a set without being right transverse, and that a measure may be left-and-right transverse without being transverse.

We begin with a simple theorem in order to contrast it with the more surprising results that follow.

Theorem 5.3.1 for $a . b \in(0.1)$. let $S_{1} b$ denote \boldsymbol{t} the set of functions $h \in \mathcal{H}_{i} 0.1$, wurh that $h(a)=b$. Then the probability measure μ defined by 5 . I is transererse to $\dot{H}_{\text {a h }}$. .

Proof. It is dasy to see that the set $\mathscr{S}_{2, b}$ is closed and nowhere dense in $\mathcal{H}_{i}^{\prime} 0$. 1). In particular $\zeta_{2, b}$ is a Borel set.

Now for any $g . h \in \mathcal{H}[0,1]$, consider the set

$$
T=\left\{t \in[1 / 2,1]: g \circ F(t) \circ h \in \breve{S}_{2, h}\right\} .
$$

If $t \in T$, then on $l . g\left(h_{s}^{t}(a)\right)=b$ and hence $h^{t}(a)=g^{-1}(b)$ where g^{-1} is the inverse function of g. So the set T can contain at most one element and hence the probability measure μ is transverse to $S_{1, b}$.

Corollary 5.3.2 The set $S_{\text {an }}$ is closed, nouhere dense, and shy.
In particular. from this theorem we see that for a given function f the set of \sim elements $h \in \mathcal{H}[0.1]$ such that $h(x)=f(x)$ for all x in some subinterval of $[0,1]$ must be forst category and shy. The reason is that this set can be expressed as the countable union of the sets $S_{a, f(2)}$ in the theorem taken over all rational numbers a.

In contrast to this simple result we shall show how a Borel probability measure may be left transverse or right transverse or left-and-right transverse and yet not
be transserse to a set. We start with an elementary example that illustrates the distinctness of left/right transverse notions in $\mathcal{H}_{\{0.1]}$.
,
Theorem 5.3.3 Given an interval I with the closure $\widetilde{I} \subseteq(0.1)$, let (ill) denote the set of functions in the space $\mathcal{H}[0,1]$ that are linear on I. Then the probability measure μ defintd by 5.1 is left-and-right transierse to (i(I) , but is not tranise rise to (; (I).

Proof. First we show that $G(I)$ is a Borel set. It is easy to see that

$$
G(I)=\{f \in \mathcal{H}[0.1]: f \text { is linear and } \operatorname{slop} f>0 \text { on } I\}
$$

Where slop f is the slope of f on I. Let

$$
\left.F_{n}=\left\{f \in \mathcal{H}_{\mathrm{i}} 0.1\right]: f \text { is limear and slop } f \geq \frac{1}{n} \text { on } I\right\} .
$$

Then

$$
C(I)=\bigcup_{n=1}^{x} F_{n} .
$$

We will show that F_{n} is closed. For any ('auchy sequence $\left\{f_{k}\right\} \subseteq F_{n}$ there exists $f \in \mathcal{H}[0.1]$ such that $f_{k} \rightarrow f$ uniformly. On I we denote $f_{k}(x)=\alpha_{k} r+h_{k}$ where $\alpha_{k} \geq 1 / n$. (hoose two distinct points $x_{1}, r_{2} \in I \backslash\{0\}$. Then

$$
f_{k}\left(x_{1}\right)-f_{k}\left(x_{2}\right)=\left(\alpha_{k} x_{1}+\beta_{k}\right)-\left(\alpha_{k} x_{2}+\beta_{k}\right)=\alpha_{k}\left(r_{1}-x_{2}\right) \rightarrow f\left(x_{1}\right)-f\left(x_{2}\right)
$$

So $\alpha_{k} \rightarrow \alpha \in \mathbb{R}$ and therefore $\beta_{k} \rightarrow \xi \in \mathbb{R}$. Then $\alpha_{k} r+\beta_{k} \rightarrow \alpha, r+\beta=f(x)$ on I. Since all $\alpha_{k} \geq 1 / n$ so $\alpha \geq 1 / n$ and $f \in F_{n}$. Thus each F_{n} is closed and the set ($\quad(I)$ is a Borel set. Further. We can show that F_{n} is nowhere dense and hence $(i(I)$ is of the first, category. In fact, since the complete metric on $\mathcal{H}[0.1]$ is equicalent to the uniform metric ρ, for any non-empty open ball $B(f, t) \subseteq \mathcal{H}[0,1]$, there exists a $\hat{c}>0$ such that for any $h \in \mathcal{H}\{0,1], \rho(f, h)<\delta$ we have $\sigma(f, h)<t$. It is easy to construct a non-linear function $g \in \mathcal{H}[0.1]$ such that $\rho(f . g)<\delta$. Then $g \in B(f . c)$ but $g \notin F_{n}$. So F_{n} is nowhere dense and $(r(I)$ is of the first category

For any $g \in \mathcal{H}[0,1]$. we use the Borel probability measure μ defined by 5.1 and consider the set

$$
T_{1}=\{t \in[1 / 2.1]: g \circ F(t) \in(i(I)\}
$$

If $t \in T_{1}$ then on I.

$$
g\left(x^{t}\right)=\alpha(t) x+. j(t)
$$

where $a(t)>0$. Let $y=x^{t}$, then $g(y)=\alpha(t) y^{1 / t}+3(t)$ for y on a subinterval of $[0,1]$. Suppose $\lambda_{1}\left(T_{1}\right)>0$. Then the functions $y=x^{t}\left(t \in T_{1}\right)$ map I into uncountably many subintervals of $[0.1]$. Thus there must exist $t_{1}, t_{2} \in T_{1}, t_{1}<t_{2}$ surh that for y on some interval. $/$.

$$
\alpha\left(t_{1}\right) y^{\frac{1}{4}}+.3\left(t_{1}\right)=\alpha\left(t_{2}\right) y^{\frac{1}{t_{2}}}+.3\left(t_{2}\right)
$$

Then by differentiating both sides of the equality above with respect to ! $E . I$ we have
!

$$
y^{\frac{1}{t_{1}}-\frac{1}{t_{2}}}=\frac{t_{1} \alpha\left(t_{2}\right)}{t_{2} \alpha\left(t_{1}\right)}
$$

This is impossithe for all $y \in J . S_{0} \lambda_{1}\left(T_{1}\right)=0$ and hence μ is left transwerse to ($\boldsymbol{i}(I)$.
We now show that μ is also right transuerse to $(B(I)$. For any $h \in \mathcal{H} ?(1]$, consider the set

$$
T_{2}=\{t \in[1 / 2,1]: I(t) \circ h \in(;(I)\} .
$$

If $t \in T_{2}$ then on l.

$$
[h(x)]^{t}=a(t) \cdot r+.3(t)
$$

where a $(t)>0$. Differentiating both sides with respect to x on l we have

$$
t h(x)]^{t-1} h^{\prime}(x)=a(t)
$$

From the above equality we can know that the set T_{2} has at most wo elements. If not there exist $t_{1}, t_{2} \in T_{2}, t_{1}<t_{2}$ such that on I

$$
t_{1}[h(x)]^{t_{1}-1} h^{\prime}(x)=\alpha\left(t_{1}\right) \text { and } t_{2}[h(x)]^{t_{2}-1} h^{\prime}(x)=\alpha\left(t_{2}\right)
$$

Then

$$
h(x)^{t_{2}-t_{1}}=\frac{t_{1} \alpha\left(t_{2}\right)}{t_{2} \alpha\left(t_{1}\right)} .
$$

This is impossible since the function $h(x)$ is strictly increasing. Thus $\lambda_{1}\left(T_{2}\right)=0$ and hence μ is right transterse to (r) I).

We now show that the probability measure μ is not traberse to (i(I). ('hoose $g . h \in \mathcal{H}[0,1]$ such that $g(x)=1+\alpha \ln x$ and $h(x)=t^{x-1}$ on I where α is a positise constant depending on I. Then on $[1 / 2,1]$ the function

$$
g \circ f(t) \circ h(x)=g\left(h^{t}(x)\right)=\alpha t x+1-\alpha t
$$

is linear for ans $t \in[1 / 2,1]$. Thus

$$
\mu\left(g^{-1}\left(i(I) h^{-1}\right)=2 \lambda_{1}(\{t E[1,2,1]: g \circ F(f) c h \in(i(I)\})=1 \neq 0 .\right.
$$

Therefore μ is not transierse to (i($/$).

Corollary 5.3.4 The set of functions in the space $\mathcal{H}^{0} 0$. 1 - (i.f.. linear in at least one subintertal of [0.1]) is a left shy and right shy set. and is of the first category in $\mathcal{H}[0,1]$.
 category from the above theorem. The set of functions in $\mathcal{H}[0.1]$ that are somewhere linear is the mion of all $(\boldsymbol{r}(I)$ over all subintervals with rational endpoints in (0,1). - and so the result follows.

Corollary 5.3.5 The st of piestuist lintar funstoons in $\mathcal{H}[0,1]$ is lift-and-right why. and first category.

Proof. Let S denote the set of piecewise linear functions in $\mathcal{H}[0.1]$. From Theorem 5. 3.3 we know that the set s is contained in a set that is left-and-right shys. So
we need only show that S is Borel. Let

It can be checked that

$$
S=\bigcup_{m=1}^{x} \bigcup_{n=1}^{x} \bigcup_{l=1}^{x} \bigcup_{p=1}^{x} s_{m, n, l, p}
$$

We will show that the sets are closed and nowhere dense. For any ('auchy sequence $\left\{f_{k}\right\} \subseteq \zeta_{m, n, l, p}$ there exists $f \in \mathcal{H}[0,1]$ such that $f_{k} \rightarrow f$ uniformly. Then there exist α_{1}^{k}. 3_{2}^{k} and partitions $\left\{\left[a_{1}^{k}, b_{1}^{k}\right\}\right\}_{i=1}^{m}$ of $\{0,1\}$ with $\min _{1 \leq 1 \leq m}\left\{b_{i}^{k}-a_{2}^{k}: \geq 1 / n\right.$ such that

$$
f_{k}(x)=\sum_{i=1}^{m}\left(\gamma_{i}^{k} x+3_{t}^{k}\right)_{\left\{2_{1}^{k}, h_{1}^{k} j\right.}(x)
$$

and $1 / l \leq a_{i}^{k} \leq l .-p \leq j_{i}^{k} \leq p . i=1, \cdots, m$. By standard argmments we can choost a subsequence $\left\{k_{j}\right\}$ of if such that

$$
\alpha_{t}^{k_{1}} \rightarrow \alpha_{1} \in[1 / l . l] . S_{1}^{k_{1}} \rightarrow \delta_{1} \in[-p . p]
$$

and

$$
a_{i}^{k_{1}} \rightarrow a_{1} \in[0.1] . \quad b_{i}^{k_{j}} \rightarrow b_{1} \in[0.1] .
$$

It is easy to sere that $\left\{\left[a_{1}, b_{1}\right]\right\}_{=1}^{m}$ is a partition of $\{0.1\}$ and

$$
f(x)=\sum_{i=1}^{m}\left(\alpha_{1} x+\beta_{1}\right) \sum_{\left[2, b_{1}\right]}(x) \in \zeta_{m, x, l, p}
$$

 is nowhere dense. Thus is Borel and the result follows.

Remark. For any closed interval $I \subseteq(0,1)$ and any function $f \in \mathcal{H}[0,1]$, choose $g(x)=1+c \ln x$ and $h(x)=f^{-1}\left(\epsilon^{x-1}\right)$ on I where or is a positive constant depending on I. Then

$$
g \circ f^{t} \circ h(x)=g\left(f^{t}(h(x))\right)=\alpha t x+1-\alpha t
$$

is linear for any $t \in[1 / 2,1]$. So we camot expect to choose some function $f \in \mathcal{H}[0,1]$ such that the compact curve $F(t)=f^{t}(t \in[1 / 2.1])$ would be transverse to the set of somewhere linear functions in $\mathcal{H}[0,1]$.

There still remains the following problem. The measure which proven that the sets f'(l) are left shy and right shy doe's not prove that they are shy. Some other probe wonld be needed. In fact, the existence of a leftand right transierse measure dues not imply the existence of a transverse measure as we shall show in Theorem 5.12.3.

PROBLEM 11 Let s be the set of functions in the space $\mathcal{H}[0.1]$ that are some whent limear on $[0,1]$. F the st thes sh?

5.4 Right transverse does not imply left transverse

In this section we will show that a Borel probability measure right transerne to a set need not be left transwerse to the set Y. We will use again the compact curve $f(t)$ and the Borel probability measure μ defined by 5 a to verify this in the following t wo theorems.

Theorem 5.4.1 (iait"l an intrerall with the clonart $I \subseteq(0.11$. It (itl) be the sit of functions in the space $\mathcal{H}[0,1]$ that are of the form onln $x+5$ on I whert $a(>0)$. 3 are constants depending on the corresponding functeons. Then the probability measure μ defined by 5.1 is right transeterse to (i) I) but is not left transertine to (ill).

Proof. Similar arguments as in the proof of Theorem 5.3.3 show that (ill) in a Burel set and is of the first category. For ang $h \in \mathcal{H}[0,1]$ consider the set

$$
T_{3}=\{t \in\{1 / 2,1\}: F(t) \circ h \in(i(I)\} .
$$

We claim that T_{3} contains at most one element. If not, there exist $t_{1}, t_{2} \in T_{3} . t_{1}<t_{2}$ such that $F\left(t_{1}\right) \circ h . F\left(t_{2}\right) \circ h \in(I(I)$. Then on I

$$
\begin{aligned}
& {[h(x)]^{t_{1}}=\alpha\left(t_{1}\right) \ln x+3\left(t_{1}\right)} \\
& {[h(x)]^{t_{2}}=\alpha\left(t_{2}\right) \ln x+3\left(t_{2}\right)}
\end{aligned}
$$

By differentiating both sides of the above two equalities with respect to x, it follown that on I.

$$
[h(x)]^{t_{2}-t_{i}}=\frac{t_{1} \alpha\left(t_{2}\right)}{t_{2} \alpha\left(t_{1}\right)} .
$$

Ihis is impossible since $h(x)$ is strictly increasing on l. So $\lambda_{1}\left(I_{3}\right)=0$ and the probability measure μ defined by 5.1 is right transuerse to (i I).

We now show that μ is not left transwerse to (it I). (hoowe a fanction g E Hill. L^{\prime}, such that on $I, g(x)=1+o \ln x$. Then for any $t \in[1 / 2,1]$.

$$
g \circ F(t)(x)=g\left(r^{t}\right)=1+\alpha t \ln r .
$$

Thun $g \circ P(t) \in(i(l)$ and so

$$
\mu\left(g^{-1}(;(I))=2 \lambda_{1}(\{t \in[1 / 2,1]: g \circ F(t) \in(;(I)\})=1 \neq 0\right.
$$

Hence μ is not left transverse to $(i(I)$.
Similar arguments as for (orollars j. 3.t show the following corollar:

- Corollary 5.4.2 The set of functions in the spact HiO. 1\} that are some where of the form $a \ln x+3$ i.s right shy and first category whert $a>0.3$ are constants dependeng on the corresponding functions.
 \therefore contained in a Polish group (i . then the measure μ_{2}. defined be $\mu_{2}(\mathrm{X}) \equiv \mu_{1}\left(\mathrm{X}^{-1}\right)$. is left transverse but not right transerse to the set s^{-1}. Thus from Theorem 5.4 .1 we

(HAPTER 5. SPACE OF ATTOMORPHISMS

can obtain a Borel probability measure that is left transwerse to a set but not right transerse to this set. Here we supply a further concrete instance of a measure that is left transverse but not right transverse to a set.

Theorem 5.4.3 (ititn an interal I with the closure $\tilde{I} \subseteq(0.1)$ and an $a>0$. It t ((1) de note the set of functions in the spact $\mathcal{H}[0.1]$ that are of the form $(1+a \ln x)^{\text {. }}$ on I where. $3>0$ is a constant depending on the corresponding functions. Then the probubility measure μ defined by 5.1 is left transuefse to (${ }^{\prime}(I)$ but not right transuet rist to ($\quad(I)$.

Proof. To show that ($i(I)$ is a Borel set we modify part of the proof of Theorem 5.3.3. Vote that

$$
\left(;(I)=\left\{f \in \mathcal{H}_{[}^{[} 0,1\right]: f=\left(1+(\ln x)^{h} \text { on } I\right\}\right.
$$

Let

$$
H_{n}=\left\{f \in \dot{C}(I): 1 / n \leq 3_{j} \leq n\right\}
$$

Ihen

$$
\left(;(I)=\bigcup_{n=1} F_{n}\right.
$$

We will show that I_{n} is closed and nowhere dense. That F_{n} is nowhere derne in $\mathcal{H}\{0,1\}$ can be shown in a similar way as in Theorem 5.3.3. We now show that each I_{n} is closed. For any ('auchy sequence $\left\{f_{k}\right\} \subseteq F_{n}^{\prime}$, there exists $f \in \mathcal{H}[0.1]$ such that $f_{k} \rightarrow f$ uniformly, and $1 / n \leq 3_{f_{k}} \leq n$. So we can find a subsequence $\left\{k_{j}\right\}$ of \mathbb{N} such that $\beta_{f_{k},} \rightarrow 3 \in \mathbb{R}$. Thus $1 / n \leq 3 \leq n$ and

$$
f=\left(1+(r \ln x)^{x}\right.
$$

on I and hence $f \in I_{n}$. Therefore F_{n} is closed and it follows that the set (I) in Borel.

Now we show that the probability measure μ defined by 5.1 is left transverse to $G(I)$ For any $g \in \mathcal{H}[0.1]$ consider the set \quad.
i

$$
T_{4}=\{t \in[1 / 2,1]: g \circ F(t) \in(i(I)\}
$$

If $t \in T_{4}$. then on I.

$$
g\left(x^{t}\right)=(1+\alpha \ln x)^{\cdot x}(t)
$$

Let $y=x^{t}$ then

$$
g(y)=\left(1+\frac{\alpha}{t} \ln y\right)^{\cdot i(t)}
$$

Suppose $\lambda_{1}\left(T_{4}\right) \neq 0$. Then the functions $y=x^{t}\left(t \in T_{4}\right)$ map I into uncountably many intervals contained in [0.1]. Thus there exist $t_{1} . t_{2} \in T_{1} . t_{1}<t_{2}$ such that for y on some interval $J \subseteq[0,1]$.

$$
\left(1+\frac{a}{t_{1}} \ln y\right)^{y\left(t_{1}\right)}=\left(1+\frac{a}{t_{2}} \ln y\right)^{\left.i, t_{1}\right)} .
$$

Then on J.

$$
\frac{\ln \left(1+\frac{a}{t_{1}} \ln y\right)}{\ln \left(1+\frac{a}{t_{2}} \ln y\right)}=\frac{3\left(t_{2}\right)}{3\left(t_{1}\right)}
$$

* By differentiating both sides of the last equality with respect to $\frac{y}{}$. it is easy to see that on d.

$$
\frac{\ln \left(1+\frac{i z}{t_{1}} \ln y\right)}{\ln \left(1+\frac{a r}{t_{2}} \ln y\right)}=\frac{t_{2}+\alpha \ln y}{t_{1}+\alpha \ln y}
$$

From the last two equalities we have

$$
\frac{t_{2}+\alpha \ln y}{t_{1}+\alpha \ln y}=\frac{3\left(t_{2}\right)}{3\left(t_{1}\right)}
$$

Again by differentiating both sides with respect to $y \in J$. it is easy to see that on I. $t_{2}-t_{1}=0$. This contradicts that $t_{2}>t_{1}$. Thus $\lambda_{1}\left(T_{4}\right)=0$ and hernce the probability μ is teft tramsuerse to $(i(I)$.

We conclude by showing that the probability measure μ is not right transverse to $G(I)$. (hoose $h \in \mathcal{H}[0.1]$ such that $h(x)=1+\alpha \ln x$ on I. Then for any $t \in[1 / 2,1]$.

$$
F(t) \circ h(x)=(1+a \ln x)^{t}
$$

So $F(t) \circ h \in G(I)$ and

$$
\mu\left(G(I) h^{-1}\right)=2 \lambda_{1}(\{t \in[1 / 2,1]: F(t) \circ h \in(i(I)\})=1 .
$$

Hence μ is not right transverse to $(i(I)$.
Again similar arguments as for Corollary 5.3. A show the following corollary.

Corollary 5.4.4 for any $a>0$, the sft of functions in the spact H $\mathcal{H}[0,1]$ that art of the for $(1+a \ln x)^{3}$ some uhere is left shy and first category, whert $3>0$ is a comatant depending the corresponding functions:

5.5 A set to which the méasure μ is left-and-right transverse

In the following let us look at one more example of left-and-right shy sets in HiO. 1$]$.
Theorem 5.5.1 Let $0<\epsilon<M<$, and

$$
S_{C, M}=\{h \in \mathcal{H}[0,1]: \epsilon|x-y| \leq|h(x)-h(y)| \leq M|x-y|, \forall x, y \in[0,1]\} .
$$

Then the Borel probability measure μ defined by 5.1 in left-and-right tranactere to $\therefore M$.

Proof. For any ('auchysequence $\left\{f_{n}\right\} \subseteq \therefore$, w there is a function $f \in \mathcal{H}[0.1]$ sith that $f_{n} \rightarrow f$ uniformly Note that

$$
\epsilon|x-y| \leq\left|f_{n}(x)-f_{n}(y)\right| \leq M|x-y| . \quad \forall x, y \in[0,1]
$$

(HAPTER 5. SPACE OF AITOMORPHISMS

Then

$$
\epsilon|x-y| \leq|f(x)-f(y)| \leq M|x-y| . \quad \forall x, y \in[0,1] .
$$

Therefore $f \in S_{C, M}$ and $S_{C, M}$ is closed. Since the complete metric σ on $\mathcal{H}[0.1]$ is equivalent to the uniform metric, thus for any non-empty open ball $\left.B(f, t) \subseteq \mathcal{H}_{i}^{\prime} 0.1\right]$.
 So we can construct a function $g \in \mathcal{H}[0,1]$ such that $\rho(f . g)<\delta$ and $g(x)=\tau / 2 x$ for sufficiently small $x \in(0,1)$. Then $g \in B(f, \epsilon)$ but $g \notin S_{\ldots}, \ldots$. So S_{\ldots}, is nowhere dense.

We now show that S_{\ldots}, M is left shy and right shy. For any $g \in \mathcal{H}_{i} 0$. Il. consider the set

$$
T_{1}=\{t \in[1 / 2,1]: g \circ F(t) \in S, n\} .
$$

If $t \in T_{1}$ then

$$
\epsilon \cdot r-y\left|\leq\left|y\left(x^{t}\right)-g\left(y^{t}\right)\right| \leq M\right| \cdot r-y \mid . \quad \forall x . y \in[0.1] .
$$

Thu:

$$
\left.\left|\left|z_{1}^{\frac{1}{2}}-z_{2}^{\frac{1}{2}}\right| \leq\left|g\left(z_{1}\right)-g\left(z_{2}\right)\right| \leq M\right| z_{1}^{\frac{1}{2}}-z_{2}^{\frac{1}{2}} \right\rvert\, . \quad \forall z_{1}, z_{2} \in[0,1] .
$$

Since the function g is differentiable almost everywhere, we have
for almost every $=\in[0,1]$. Suppose that T_{1} contains two or more elements. Then there exist $t_{1}, t_{2} \in[1 / 2,1], t_{1}<t_{2}$ such that

$$
\epsilon \frac{1}{t_{1}} z^{\frac{1}{t_{1}}-1} \leq g^{\prime}(z) \leq M \frac{1}{t_{1}} z^{\frac{1}{t_{1}}-1}
$$

and

$$
\epsilon \frac{1}{t_{2}} z^{\frac{1}{2}-1} \leq g^{\prime}(z) \leq M \frac{1}{t_{2}} z^{\frac{1}{t_{2}}-1}
$$

for almost every $: \in[0.1]$. Thus

$$
1 \geq \frac{t \frac{1}{t_{2}} z^{\frac{1}{t_{2}}-1}}{M \frac{1}{t_{1}} z^{\frac{1}{t_{1}}-1}}=\geq \frac{t_{1}}{M t_{2}} z^{\frac{1}{t_{2}}-\frac{1}{t_{1}}}
$$

for almost every $z \in[0.1]$. Since $1 / t_{2}-1 / t_{1}<0$. the above inequality is impossible. Thus T_{1} contains at most one element and hence $\lambda_{1}\left(T_{1}\right)=0$. It follows that the Borel probability measure μ defined by 5.1 is left transverse to $S_{\epsilon}, \underline{M}$.

We now show that μ is also right transverse to S, M. For any $g \in \mathcal{H}[0.1]$. consider the set

$$
T_{2}=\{t \in[1 / 2,1]: F(t) \circ g \in S, \ldots\} .
$$

If $t \in T_{2}$, then

$$
t|x-y| \leq\left|g^{t}(x)-g^{t}(y)\right| \leq M|x-y| .
$$

Since g is differentiable almost everywhere.

$$
c \leq\left|t g^{t-1}(x) g^{\prime}(x)\right| \leq M
$$

for almost every $x \in[0.1]$. If T_{2} did contain two or more elements, there exist $t_{1}, t_{2} \in[0.1] . t_{1}<t_{2}$ such that

$$
t \leq\left|t_{1} \cdot g^{t_{1}-1}(x) g^{\prime}(x)\right| \leq M
$$

and

$$
t \leq\left|t_{2} g^{t_{2}-1}(x) g^{\prime}(x)\right| \leq M
$$

for almost every $x \in[0.1]$. Thus

$$
\frac{t}{M} \leq\left|\frac{t_{1}}{t_{2}} g^{t_{1}-t_{2}}(x)\right| \leq \frac{M}{t}
$$

for almost every $x \in[0,1]$. This is impossible since $g(x) \rightarrow 0$ as $x \rightarrow 0$. So $\lambda_{1}\left(T_{2}\right)=0$ and the probability measure μ is right transterse to $S_{6, ~ M}$. By Theorem 2.9.7 the result follows.

Corollary 5.5.2 The set S

$$
\left\{f \in \mathcal{H}[0.1]: 0<\left|\frac{f(x)-f(y)}{x-y}\right|<x, \forall r, y \in[0.1] . x \neq y\right\}
$$

is left-and-right shy. and first category in $\mathcal{H}[0.1]$.

Proof. Since the set $S=\bigcup_{n=1}^{x} S_{1 / n, n}$, the result follows.

PROBLEM 12 İs the Borel probability measure μ defined by 5.1 transeres to the set S_{6}... in Theorem 5.5.1?

5.6 A compact set argument

In this section we will give a characterization of compact sets in $\mathcal{H}[0.1]$. By applying such a characterization of compact sets we shall find examples of sets in $\mathcal{H}[0: 1]$ that are neither left shy nor right shy. Some of these results contrast sharply with those in [25) and [2fi]. The following lemma contains a simple method that can be wed to show the mon shyness of some sets.

Lemma 5.6.1 If a aft \leftrightarrows in $\mathcal{H}[0.1]$ contains a two-sided translate (left, or right) of trery compact set, then S is not shy (left shy. or right shy).

Proof. For any Borel probability measure μ there is a compact set $K \subseteq \cdot \mathcal{H}[0.1]$ such that $\mu(K)>0($ see Section 3.5). Since there functions $g . h \in \mathcal{H}(0,1]$ such that $g \circ k o h \in S$ for all $k \in K$, then $k \subseteq g^{-1} S h^{-1}$ and so $\mu\left(g^{-1} S^{-} h^{-1}\right) \geq \mu(K)>0$. Thus \leftrightarrow is mot shy. The nom-left shy result and the non-right shy result can be shown in the same way.

We first give a characterization of compact sets in $\mathcal{H}(0,1]$ by applying the Arzela Ascoli theorem to the space $\mathcal{H}[0.1]$.

Theorem 5.6.2 Ast $K \subseteq \mathcal{H}_{i} 0$.1] w compact iff
(i) K is clowed.
(ii) K is equicontinuous. and
(iii) for fiery non-ampty closed set $K_{0} \subseteq K$.

$$
\inf _{h \in K_{0}}^{\boldsymbol{n}} h(x) \text { and } \sup _{h \in K_{0}} h(x)
$$

are both in $\mathcal{H}[0.1]$.
Proof. Let $K \subseteq \mathcal{H}[0,1]$ be a compact set: Since $\mathcal{H}[0,1]$ is Hausdorff. (i) follows. By Theorem 9.58 in [11] K is totally bounded. Let $t>0$, and let $f_{1} \ldots$. f_{n} be ant t/3-net in K. For every $f \in K$. there exists $j \leq n$ such that

$$
\sigma\left(f . f_{j}\right)=\rho\left(f . f_{j}\right)+\rho\left(f^{-1} \cdot f_{j}^{-1}\right) \leqslant \frac{1}{3} t
$$

Where ρ is the the uniform metric. Thus for any $x . y \in[0.1]$.

$$
\begin{aligned}
|f(x)-f(y)| & \leq\left|f(x)-f_{j}(x)\right|+\left|f_{2}(x)-f_{j}(y)+\right| f_{j}(y)-f(y) \\
& <t / 3+\left|f_{j}(x)-f_{j}(y)\right|+\epsilon / 3
\end{aligned}
$$

Since each f_{j} is uniformly contimuous on [0.1]. there exists a $\lambda>0$ such that $\mid f_{i}(x)--$ $f_{i}(y) \mid<c / 3$ for all $1 \leq i \leq n$ if $|x-y|<\delta$. Therefore $|f(x)-f(y)|<c$. and hence (ii) is true.

We now show that (iii) is true. For any non-empty closed set $K_{0} \subseteq K$, let

$$
g(x)=\sup _{f \in K_{0}} f(x) \text { and } h(x)=\inf _{f \in K_{0}} f(x) .
$$

It is easy to see that both of $y^{f \in K_{0}} \begin{aligned} & f \in h_{0} \\ & \text { and leave } r=0 \text {. } 1 \text { fixed. Since } K_{0} \subseteq K \text { is closed. } . ~\end{aligned}$ so it is compact. For any $x_{1}, x_{2} \in[0.1] . x_{1}<x_{2}$, there exist $f_{1}, f_{2} \in h_{0}$ such that $f_{1}\left(x_{1}\right)=g\left(x_{1}\right)$ and $f_{2}\left(x_{2}\right)=h\left(x_{2}\right)$. Since f_{1}, f_{2} are strictly increasing.

$$
g\left(x_{1}\right)=f_{1}\left(x_{1}\right)<f_{1}\left(x_{2}\right) \leq \sup _{j \in K_{0}} f\left(x_{2}\right)=g\left(x_{2}\right)
$$

atid

$$
h\left(x_{1}\right)=\inf _{f \in h_{0}^{\prime}} f\left(x_{1}\right) \leq f_{2}\left(x_{1}\right)<f_{2}\left(x_{2}\right)=h\left(x_{2}\right)
$$

Thus $g(x)$ and $h(x)$ are strictly increasing functions. Since K is equicontinuous from (ii). for every,>0 there exists a $\lambda>0$ such that for all $f \in K$. $|f(x)-f(y)|<6 / 2$ if $|x-y|<\delta$. So for all $x, y \in[0.1] .|x-y|<\delta$ and $f \in K_{0}$.

$$
\begin{aligned}
f(x) & \leq f(y)+|f(x)-f(y)| \\
& \leq \sup _{k \in K_{0}} k(y)+\sup _{k \in K_{0}} \mid k(x)-k(y)!.
\end{aligned}
$$

Thus

$$
\sup _{k \in K_{y}} k(x)-\sup _{k \in K_{0}} k(y) \leq \sup _{k \in K_{0}}|k(x)-k(y)| \leq \frac{1}{2} t .
$$

That is. $g(x)-g(y)<\epsilon$. Changing the positions of x and y fields $g(y)-g(x)<t$. Therefore $|g(x)-g(y)|<c$ and so g is continuous. For the contimuty of h. note that for all $x . y \in[0 .]_{j}^{\prime} .|x-y|<\delta$ and $f \in K_{0}$.

$$
f(x) \leq f(y)+\sup _{k \in K_{0}}|k(x)-k(y)| \leq f(y)+\frac{1}{2} t
$$

So

$$
\inf _{k \in H_{0}} k(x) \leq f(y)+\frac{1}{2} t
$$

and hence by the arbitrariness of $f \in h_{0}$.

$$
\operatorname{mif}_{k \in K_{0}} A(x) \leq \inf _{k \in K_{0}} k(y)+\frac{1}{2} t
$$

That is, $h(x)-h(y) \leq \frac{1}{2}<c$. Changing the positions of x and y yields $h(y)-h(x)<\epsilon$. Thus $|h(x)-h(y)|<\epsilon$ and hence $h(x)$ is continuous. Therefore (iii) is true.

To show the sufficiency of the conditions (i). (ii) and (iii). let $\left\{f_{n}\right\}$ be any infinite sequence in K. Since K is equicontinuous and uniformly bounded. $\left\{f_{n}\right\}$ has a uniformly convergent subsequence $\left\{f_{n_{k}}\right\}$ such that $f_{n_{k}} \rightarrow f$ by the Arzela Ascoli The orem. We claim $f \in \mathcal{H}[0.1]$ and the theorem is proved. Suppose $f \notin \mathcal{H}[0.1]$. Then f must be constant on some subinterval $[a, b] \subseteq[0,1]$. Fix $c \in(a, b)$, and consider the set

$$
P_{1}=\left\{f_{n_{k}}: f_{n_{k}}(c) \leq f(c)\right\}
$$

This set is then closed. If it is non-empty and infinite, then for all $x \in(a, c)$.

$$
\sup _{f_{n_{k}} \in P_{1}} f_{n_{k}}(x)=f(c) .
$$

which violates the condition (iii). Thus P_{1} is finite. Similarly the set

$$
P_{2}=\left\{f_{n_{k}}: f_{n_{k}}(c) \geq f(c)\right\}
$$

is also closed. If it is non-empty and infinite, then for all $x \in(c, b)$.

$$
\inf _{f_{n_{k}} \in P_{2}} f_{n_{k}}(x)=f(c) .
$$

which also violates the condition (iii). Thus P_{2} is finite. But both l_{1} and l_{2} cannot be finite, and so we have a contradiction. Thus $f \in \mathcal{H} 0.1$ and so K^{\prime} is compact.

5.7 Examples of non-left shy, non-right shy sets

In this section we apply Theorem 5.6 .2 to show that some sets discussed in $[2-5]$ and [26] are neither left shy nor right shy:

Theorem 5.7.1 For any function $q(x) \in \mathcal{H}[0.1]$. If 1

$$
C_{i_{1}}=\left\{h \in \mathcal{H}[0,1]: \lim _{x \rightarrow 0^{+}} \frac{h(x)}{q(x)}=0\right\} .
$$

Then G_{1} is a Borel wet that is nether left shy nor right shy.
Proof. We first show that (B_{1} is a Borel set. Note

$$
\begin{aligned}
G_{1} & =\left\{h \in \mathcal{H}[0.1]: \lim _{n \rightarrow \infty} \frac{h\left(2^{-n}\right)}{q\left(2^{-n}\right)}=0\right\} \\
& =\bigcap_{p=1}^{\infty} \bigcup_{m=1}^{x} \bigcap_{n=m}^{\times}\left\{h \in \mathcal{H}[0.1]: \frac{h\left(2^{-n}\right)}{q\left(2^{-n}\right)}<\frac{1}{p}\right\} .
\end{aligned}
$$

Since all h are continuous and the metric on $\mathcal{H}[0,1]$ is equivalent to the uniform metric, the sets

$$
\left\{h \in \mathcal{H}[0,1]: \frac{h\left(2^{-n}\right)}{q\left(2^{-n}\right)}<\frac{1}{p}\right\}
$$

are open. Hence (r_{1} is a Borel set.
We now show that (i is neither left shy nor right shy. For any compact set K. by Theorem 5.6.2 there exists a function $g \in \mathcal{H}[0,1]$ such that $k(x) \leq g(x)$ for all $k \in K$ and all $x \in[0.1]$. (hoose

$$
f(x)=q^{2}\left(g^{-1}(x)\right) \in \mathcal{H}_{i}^{\prime}(0.1] .
$$

Then for all $k \in K$.

$$
f(k(x)) \leq f(g(x))=q^{2}\left(g^{-1}(g(x))\right)=q^{2}(x) .
$$

Thus

$$
\limsup _{x \rightarrow u^{+}} \frac{f(k(x))}{q(x)}=0 .
$$

and so $f \circ k \in\left(i_{1}\right.$. By Lemma $5.6 .1, C_{1}$ is not left shy: To show that (in is mot right shy, choose

$$
f(x)=y^{-1}\left(q^{2}(x)\right) \in \mathcal{H}^{[0,1]}
$$

Then for all $k \in K$.

$$
k(f(x)) \leq g(f(x))=g\left(g^{-1}\left(q^{2}(x)\right)\right)=q^{2}(x) .
$$

Thus

$$
\limsup _{x \rightarrow 0^{+}} \frac{k(f(x))}{q(x)}=0
$$

Corollary 5.7.2 Let

$$
S_{1}=\left\{h \in \mathcal{H}[0,1]: h^{\prime}(0)=0\right\} .
$$

Then sis is ne ither left shy nor right shy.

Proof. Let $q(x)=x$ in Theorem 5.i.1. Then $C_{i_{1}}=i_{1}$ and the result follows.

Theorem 5.7.3 For any function $q(x) \in \mathcal{H}[0.1]$. It t

$$
r_{i_{2}}=\left\{h \in \mathcal{H}(0.1]: \lim _{r \rightarrow 0^{+}} \frac{h(x)}{q(x)}=+\infty\right\}
$$

Then (iz is a Borel set that is neither left why nor raght why.

Proof. We first show that (iz is a Borel set. Note

$$
\begin{aligned}
r_{2} & =\left\{h \in \mathcal{H}[0.1]: \lim _{n \rightarrow x} \frac{h\left(2^{-n}\right)}{q\left(2^{-n}\right)}=+\infty\right\} \\
& =\bigcap_{p=1}^{x} \bigcup_{n=1}^{x} \bigcap_{n=m}^{x}\left\{h \in \mathcal{H}[0,1]: \frac{h\left(\underline{2}^{-n}\right)}{q\left(2^{-n}\right)}>p\right\} .
\end{aligned}
$$

Since all h in $\mathcal{H}^{\prime} 0$. 1 are contimuns and the metric on $\mathcal{H}_{i}(1)$ l is equivalent to the uniform metric. su the sets

$$
\left\{h \in \mathcal{H}[0,1]: \frac{h\left(2^{-n}\right)}{\pi\left(2^{-n}\right)}>p\right\}
$$

are opern and hence g_{2} is a Borel set.
We now show that i_{2} is neither left shy nor right shy: For any compact set K .以 Theorem 5. G.2. there exists a function $h \in \mathcal{H}_{0} 0.1$ such that $k(x) \geq h(x)$ for all $k \in h$ and all $x \in[0,1]$. Choose .

$$
f(x)=q^{1 / 2}\left(h^{-1}(x)\right) \in \mathcal{H}[0,1] .
$$

Then for all $k \in h$.

$$
f(k(x)) \geq f(h(x))=q^{1 / 2}\left(h^{-1}(h(x ;))=q^{1 / 2}(x)\right.
$$

Thus

$$
\liminf _{x \rightarrow 0^{+}} \frac{f(k \cdot(x))}{q(x)} \geq \lim _{x \rightarrow 0^{+}} q^{-1 / 2}(x)=+x
$$

and so $f \circ k \in C_{r_{2}}$ By Lemma 5.6.1. (is is not left shy. To show (iz is not right shy choose

$$
\text { a } \quad f(x)=h^{-1}\left(q^{1 / 2}(x)\right) \in \mathcal{H}_{(}(0) 1!.
$$

Then for all $k \in k$.

$$
k(f(x)) \geq h(f(x))=h\left(h^{-1}\left(q^{1 / 2}(x)\right)\right)=q^{1 / 2}(x) .
$$

Thus

$$
\liminf _{x \rightarrow 0^{+}} \frac{k(f(x))}{q(x)} \geq \lim _{x \rightarrow 0^{+}} q^{-1 / 2}(x)=+\infty
$$

and so $k=f \in \dot{r}_{2}$ By Lemma $\overline{5} \cdot 6.1$ again S_{2} is not right shy.

Corollary 5.7.4 Let

$$
\therefore_{2}=\left\{h \in \mathcal{H}[0.1]: h^{\prime}(0)=+\infty\right\} .
$$

Then S_{2} is neither left shy nor right why.
Proof. Let $q(x)=x$ in Theorem 5.7.3. Then $\left(i_{2}=i_{2}\right.$ and the result follows
From Theorem 5.7.1. Theorem 5.7.3. ('orollary 5.7:2 and Corollary j.i.t immediately we have the following result.

Corollary 5.7.5 The st t. C_{1}. (i2. S_{1} and B_{2} in Theortm 5.7.1. Theorem 5.7.3. ('orollary 5.7.2 and Corollary 5. 7.4 are all neither shy nor pre caltent.

Proof. From Theorem 5.i.1 and Theorem 5.7.3, both C_{1} and (izare neither left shy nor right shy: So they all are not shy: Since each one of both C_{1} and (iz is contamed in the complement of the other, so both G_{1} and G_{2} are not prevalent Similarly, we can show that both \dot{S}_{1} and S_{2} are neither shy nor prevalent.

In [25] and [26]. Graf. Mauldin and Williams showed that $P_{3}\left(s_{1}\right)=1$ where P_{2} is the right-average of the measure P as in the introduction part of this chapter. that is

$$
P_{1}(B)=\int_{\mathcal{H}[0,1]} P\left(\left\{h \in \mathcal{H}[0,1]: h \circ g^{-1} \in B\right\}\right) d F^{\prime}(g)
$$

for Borel sets $B \in \mathcal{H}[0.1]$. In the following part of this chapter we always use $P_{\text {a }}$ to denote the right-average. Howeser, we showed in Corollary 5.7.5 that . \dot{H}_{1} is neither shy nor prevalent. From this point we know that both P and P_{2} are neither lest transerse nor right transberse to the complement of S_{1}.

5.8 Examples of left-and-right shy sets

In order to compare with the results in last section we show here the following theurem.

Theorem 5.8.1 For any function $q(x) \in \mathcal{H}\{0.1\}$. It t
$\cdot \quad \zeta=\left\{h \in \mathcal{H}_{[0,1]:}^{-} 0<\liminf _{x \rightarrow 0^{+}} \frac{h(x)}{q(x)} \leq \lim _{x \rightarrow-)^{+}} \frac{h(x)}{q(x)}<+x\right\}$.
Then . is a Borel at that is left-and-right shy on $\mathcal{H}(0) .1$
Proof. We first show that is is a Burel set. Note

$$
\therefore=\bigcup_{p=1}^{\bigcup} \bigcup_{m=1}^{X} \bigcap_{n=m}^{n}\left\{h \in \mathcal{H}(0,1]: \frac{1}{p}<\frac{h\left(2^{-n}\right)}{q\left(2^{-n}\right)}<p\right\} .
$$

Since all $h \in \mathcal{H} 0,1]$ are continums and the metric on $\mathcal{H}[0$. 1 ; is equivalent to the uniform metric, all sets

$$
\left\{h \in \mathcal{H}[0,1]: \frac{1}{p}<\frac{h\left(2^{-n}\right)}{q\left(2^{-n}\right)}<p\right\}
$$

are open, and so the set it is a Borel set.
We now consider the set

$$
\therefore x .{ }^{\prime}=\left\{h \in^{-} \mathcal{H}[0.1]: a<\liminf _{x \rightarrow 0^{+}} \frac{h(x)}{q(x)} \leq \limsup _{x \rightarrow 0^{+}} \frac{h(x)}{q(x)}<3\right\}
$$

$$
\grave{S}=\bigcup_{n=1}^{V} S_{1 / n, n}
$$

is also left shy and right shy We now show that the Borel probability measure μ
 consider the set

$$
R=\{t \in[1 / 2,1]: F(t) 0 h \in \therefore \ldots\}
$$

If $t_{1} \in R$, then for sufficiently small $x \in[0,1]$.

$$
a<\frac{h^{t}(x)}{q(x)}<3
$$

This means that. for any $t_{2} \neq t_{1}$.
at $r \rightarrow 0^{+}$. Consequently $t_{2} \notin R$. Thus R contains at most one element and μ is right tramberse to S....

Toprose that is is left shy we choose a mapping $\left.F_{1}:[1 / 2,1] \rightarrow \mathcal{H}(0.1\} b F_{1} \mid f\right)=$ $y^{\prime}(x)$ and define a Borel probability meature μ_{1} by

$$
\mu_{1}(X)=2 \lambda_{1}\left(\left\{t \in[1 / 2.1]: F_{1}(t) \in X\right\}\right) \quad \therefore
$$

For any $h \in \mathcal{H}[0,1]$. consider the set

$$
I=\left\{t \in[1 / 2,1]: h \circ F(t) \in i_{n, n}\right\} .
$$

If $x \in I$. then for sufficiently small $x \in[0,1]$.

$$
a<\frac{h\left(q^{s}(x)\right)}{q(r)}<3
$$

That is, $\operatorname{aq}(x)<h\left(q^{5}(x)\right)<3 y(x)$ for sufficiently small $x \in(0.1)$. Let $y=q^{9}(x)$. Then

$$
\alpha y^{\frac{1}{4}} \leq h(y) \leq 3 y^{\frac{1}{4}}
$$

for sufficiently small $y \in(0.1)$. Suppose that L contains two or more elements. Then there exist $s_{1}, s_{2} \in[1 / 2,1] . s_{1}<n_{2}$ such that

$$
a y^{\frac{1}{\rho_{1}}} \leq h(y) \leq 3 y^{\frac{1}{x_{1}}}
$$

and

$$
\alpha y^{\frac{1}{2}} \leq h(y) \leq 3 y^{\frac{1}{2}}
$$

for sufficiently small $!\in(0,1)$. Thus

$$
\frac{\alpha y^{\frac{1}{2}}}{3 y^{\frac{1}{4}}}=\frac{\alpha}{3} y^{\frac{1}{a_{2}}-\frac{1}{9}}<1
$$

for sufficiently small $y \in(0.1)$. This is impossible since $1 / ッ_{2}-1 / ッ_{1}<0$. Thus the set I. contains at most one element and hence the probability μ_{1} is left transuerse to. ${ }^{2}$. ${ }^{2}$. By Theorem 2.9.7 San is left-and-right shy, and so the set is also left-and-right shy:

Let $q(x)=x$. Immediately we have the following.

- Corollary 5.8.2 For any a. $0<\alpha<x$. the sit.

$$
\left\{h \in \mathcal{H}[0.1]: h^{\prime}(0)=a\right\}
$$

is It ft-1nd-right shy in $\mathcal{H}_{i}^{[0.1]}$.
This conclusion contrasts sharply with ('orollary is.i.2 and Corollary 5.i. In In Section 5: I2 we will see that the set $\left\{h \in \mathcal{H}[\mathcal{Q}, 1]: h^{\prime}(0)=a\right\}$ is not shy in $\mathcal{H}[0,1]$. As a contrast to the results in Theorem 5. T. I d d Theorem 5. 7.3 we show that the sets (i_{1} in I heorem 5.7. 1 and (i_{2} in Theorem 5. 7.3 are of the first category in $\mathcal{H}[0.1]$.
 of the first category in $\mathcal{H}[0,1]$.

Theorem 5.8.3 The set. (it in Theorem 5. 7.1 and (iz in Theorem 5.7.3 are of the first category in $\mathcal{H}[0,1]$.

Proof. Note that

$$
C_{i_{1}}=\bigcap_{p=3}^{x} \bigcup_{n=1}^{x} \bigcap_{n=m}^{x}\left\{h \in \mathcal{H}[0,1]: \frac{h\left(2^{-n}\right)}{q\left(2^{-n}\right)} \leq \frac{1}{p}\right\} .
$$

.
The sets

$$
\left\{h \in \mathcal{H}[0.1]: \frac{h\left(2^{-n}\right)}{q\left(\underline{2}^{-n}\right)} \leq \frac{1}{p}\right\}
$$

are closed and, hence. so is ${ }^{\circ}$

$$
\therefore=\bigcap_{n=m}^{x}\left\{h \in \mathcal{H}[0,1]: \frac{h\left(2^{-n}\right)}{q\left(2^{-n}\right)} \leq \frac{1}{p}\right\}
$$

for any $m \geq 1$. We claim that.V is nowhere dense in $\mathcal{H} 0.1]$. It follows that (i_{1} is first category: Since the complete metric σ on $\mathcal{H}[0.1]$ is equivalent to the uniform metric. thus for any nonempty open ball $B(f, \epsilon) \subseteq \mathcal{H}_{i}^{\prime} 0$. I_{j}^{\prime}. there exists a $\delta>0$ such that for all $h \in \mathcal{H}(0,1] \cdot \rho(f, h)<\lambda$ we have $\sigma(f, h)<t$. If $f \notin$. l there is nothing to do. If $f \in \mathcal{V}$. then we can construct a function $\left.g \in \mathcal{H}_{i} 0.1\right]$ such that $\rho(f . g)<\gamma$ and $g(x)=(\underline{2} / p) q(x)$ for sufficiently small $x \in(0$. 1$)$. Then $g \in B(f .0)$ but $g \in . V$. Thus \therefore is closed, nowhere dense.

For the set (iz. We know

$$
\left.G_{i}=\bigcap_{p=1}^{x} \bigcup_{m=1}^{n} \bigcap_{n=m}^{x}\left\{h \in \mathcal{H}_{i}^{[0}, 1\right]: \frac{h\left(2^{-n}\right)}{q\left(2^{-n}\right)} \geq p\right\} .
$$

Similar arguments as for (ishow that, for any m, the set

$$
\bigcap_{n=m}^{\chi}\left\{h \in \mathcal{H}[0.1]: \frac{h\left(2^{-n}\right)}{q\left(2^{-n}\right)} \geq p\right\}
$$

is closed and mowhere dense in $\mathcal{H}[0,1]$. Therefore (i2 in of the first category

5.9 Non-shy sets that are of the first category

In the following theorems we wall give further sharp contrasts between onr measure theoretic notion and category, and also between our results and results in [25] and $[26]$. The geometric pietures of the following sets are clear.

Theorem 5.9.1 For any function $q(x) \in \mathcal{H}[0.1]$. Ift

$$
S_{>}=\left\{h \in \mathcal{H}_{[}[0,1]: h(x) \geq q(x)\right\}
$$

and

$$
\left.\Omega_{<}=\left\{h \in \mathcal{H}_{i}^{\prime} 0,1\right]: h(x) \leq q(x)\right\}
$$

Then both $S_{>}$and $S_{<}$are closed. nouhere den.et st ts that are nether left why nor ruht shy.

Proof. It is easy to see that both $S_{>}$and $\mathrm{l}_{\mathrm{c}}<$ are closed. Since the complete metric σ on $\mathcal{H}_{i}^{[0.1]}$ is equivalent to the uniform metric ρ. for any non-empty open ball $\left.B(f, \epsilon) \subseteq \mathcal{H}_{i}^{\prime} 0.1\right]$, there exists a $\delta>0$ such that for all $h \in \mathcal{H}\{0.1]$. $\rho(f . h)<\hat{c}$ we have $\sigma(f, h)<t$. If $f \notin \dot{S}_{>}$, there rishothing to prove. If $f \in i_{>}$. we can construct a function $g \in \mathcal{H}(0,1]$ such that $\rho(f, g)<c$ and $g(x)=q^{2}(r)$ for sufficiently small $x \in(0.1)$. Then $g \in B(f . t)$ but $g \notin S_{>}$. Thus $S_{>}$is closed and nowhere dense in $\left.\mathcal{H}_{[}^{[0,}, 1\right]$. Similar arguments show that $S_{<}$is also closed and nowhere dense in $\mathcal{H}[0,1]$.

We now show that both are neither left shy nor right shy. For any compact set K by Theorem $5.6: 2$. there exist $g . h \in \mathcal{H}[0.1]$ such that $h(r) \leq k(x) \leq g(x)$ for all $k \in K$ and all $x \in[0,1]$. (hoose functions

$$
f_{1}(x)=q\left(h^{-1}(x)\right), f_{2}(x)=h^{-1}(q(x)), f_{3}(x)=q\left(y^{-1}(x)\right)
$$

and

$$
f_{4}(x)=g^{-1}(q(x)) \in \mathcal{H}[0,1]
$$

Then. for any $k \in K$ and all $x \in[0.1]$.

$$
\begin{aligned}
& \left(f_{1} \circ k\right)(x)=f_{1}(k(x)) \geq f_{1}(h(x))=q(x) . \\
& \left(k \circ f_{2}\right)(x)=k\left(f_{2}(x)\right) \geq h\left(f_{2}(x)\right)=q(x) . \\
& \left(f_{3} \circ k\right)(x)=f_{3}(k(x)) \leq f_{3}(g(x))=q(x)
\end{aligned}
$$

and

$$
\left(k \circ f_{4}\right)(x)=k\left(f_{4}(x)\right) \leq g\left(f_{4}(x)\right)=q(x)
$$

Thus $f_{1} \circ k$, $k \circ f_{2} \in S_{>}$and $f_{3} \circ k$, $k \circ f_{4} \in S_{<}$. Therefore by Lemma 5.6.1, both $S_{>}$ and $S_{<}$are neither left shy nor right shy:

Theorem 5.9.2 For any $m \in(0.1] . l \in[1,+\infty)$ and $q(\dot{x}) \in \mathcal{H}[0.1]$, the set.

1

$$
S_{m,>}=\{h \in \mathcal{H}[0,1]: h(x) \geq m q(x)\}
$$

and

$$
s_{l .<}=\{h \in \mathcal{H}[0,1]: h(x) \leq l q(x)\}
$$

are cloned. noucherf dense sets that are nether shy nor precalent.
Proof. ${ }^{-}$It is easy to see that all sets $\dot{S}_{m,>}$ and $S_{i,<}$ are closed. Since the complete metric σ on $\mathcal{H}[0,1]$ is equivalent to the uniform metric ρ, for any non-empty open ball $B(f . e) \subseteq \mathcal{H}[0.1]$. there exists a $\delta>0$ such that for all $h \in \mathcal{H}[0,1] \cdot \rho(f, h)<\delta$ we - have $\sigma(f, h)<$. If $f \notin S_{m,>}$. there is nothing to prove. If $f \in S_{m,>}$. we can construct a function $g \in \mathcal{H}[0,1]$ such that $\rho(f, g)<\delta$ and $\widehat{g(x)}=m q^{2}(x)$ for sufficiently small $x \in(0.1)$. Then $g \in B(f, \epsilon)$ but $g \notin S_{m,>}$. Thus $S_{m,>}$ is closed and nowhere dense in $\mathcal{H}[0.1]$. Similar arguments show that $S_{1,<}$ is also closed and nowhere dense in $\mathcal{H}[0,1]$.

We now show that $S_{m,>}$ and $S_{l<}$ are neither shy nor prevalent. For $m=t=1$, by Theorem 5.9.1. both $S_{1,>}=S_{>}$and $S_{i \ll}=S_{<}$are neither left shy nor right why Since

$$
S_{>} \cap S_{<}=\{h \in \mathcal{H}[0.1]: h(x)=q(x)\}
$$

is a singleton and hence a shy set, so both $S_{1,>}$ and $S_{1,<}$ are neither shy nor prevalent. For $0<m \leq 1$ and $1 \leq l<+\infty$. since $S_{m,>} \supseteq S_{1,>}$ and $S_{1,<} \supseteq S_{1,<,}$ so $S_{m,>}$ and $S_{1,<}$ are not shy: On the other hand.

$$
S_{m,>} \subseteq \mathcal{H}[0,1] \backslash\left(i_{1} \text { and } S_{1<} \subseteq \mathcal{H}[0,1] \backslash C_{r_{2}}\right.
$$

where (i_{1} and \boldsymbol{C}_{2} are same as in Theorem 5.7.1 and Theorem 5.i.3 respectively. By Corollary 5. $\overline{\mathrm{T}} .5 .5 \mathrm{r}_{1}$ and G_{2} are not shy in $\mathcal{H}[0.1]$. Thus $\boldsymbol{S}_{m,>}$ and S_{6}, are not prevalent in $\mathcal{H}[0.1]$.

In [26] it was shown that for every $m \in(0.1]$ and $l \in[1 .+\infty)$.

$$
\left.P_{\mathrm{a}}\left(\left\{h \in \mathcal{H}_{[}^{[} 0,1\right]: h(x) \geq m x\right\}\right)=0
$$

and

$$
I_{s}(\{h \in \mathcal{H}[0.1]: h(x) \leq l x\})=0
$$

where P_{a} is the right-average of the measure P. However, according the above the orem, these two sets are neither shy nor prevalent and yet they are closed, nowhere dense sets in $\mathcal{H}[0,1]$.

5.10 Non-prevalent properties that are typical

In this section we give several non-prevalent properties that are tepical. Again we use the sets discussed in [25] and [26] and compare our results with the corresponding results in [25] and [26].

Theorem 5.10.1 For any function $q(x) \in \cdot \mathcal{H}[0,1]_{\dot{q}}$ let

$$
C_{i}=\left\{h \in \mathcal{H}[0.1]: \liminf _{x \rightarrow 0^{+}} \frac{h(x)}{q(x)}=0\right\}
$$

and

$$
C_{2}=\left\{h \in \mathcal{H}[0.1]: \limsup _{x \rightarrow 0^{+}} \frac{h(x)}{q(x)}=+x\right\}
$$

Then both C_{1} and C_{2} are neither shy nor precelent.
Proof. Note $C_{1} \supseteq G_{1}$ and $C_{2} \supseteq G_{2}$ where $C_{i_{1}}$ and G_{2} are as in Theorem 5.7 .1 and Theorem 5.7.3. By Corollary 5.7.5 both C_{1} and G_{2} are not shy, and so both C_{1} and
C_{2} are not shy: We now show that their complements \widetilde{C}_{1} and $\widetilde{C_{2}}$ are also not shy. Let Q be the set of rational numbers in $(0,1)$. Then

$$
\widetilde{C_{1}}=\bigcup_{r \in Q}\{h \in \mathcal{H}[0,1]: h(x) \geq r q(\cdot r)\}
$$

and

$$
\widetilde{C_{2}}=\bigcup_{r \in Q}\left\{h \in \mathcal{H}[0.1]: h(x) \leq \frac{x_{i}}{\sim} / r q(x)\right\} \cdot r
$$

In fact. let $h \in \mathcal{H}[0.1]$ such that $\liminf _{r \rightarrow u}+\frac{h(x)}{q(x)}>c>0$. "Then there exists a $\delta>0$ such that for all $x \in(0, \delta) . h(x)>c q(x)$. Let $r \in Q$ such that $r<\min (h(\delta)$.c). Then $h(x) \geq r q(x)$ for all $x \in[0,1]$. Thus

$$
\widetilde{C_{1}} \subseteq \bigcup_{r \in Q}\left\{h \in \mathcal{H}[0.1]: h\left(x_{2} \geq r q(x)\right\}\right.
$$

The converse is obvious. and so the first equality of the above two holds. For the second equality, let $h \in \mathcal{H}[0.1]$ such that $\lim _{\text {sup }} \rightarrow 0+\frac{h(r)}{\eta(r)}<M<+x$. Then there exists a $\delta>0$ such that for all $x \in(0, \delta) . h(x)<M_{q}(x)$. Let $r \in Q$ such that $r<\min (1 / M . q(\delta))$. Then $h(x) \leq 1 / r q(x)$ for all $x \in[0,1]$. Thus

$$
\widetilde{r}_{2} \subseteq \bigcup_{r \in Q}\{h \in \mathcal{H}[0.1]: h(x) \leq 1 / r q(x)\} .
$$

The conserse is obvious and so the second equality holds. Thus C_{1}^{\prime} and C_{2} are Borel sets. By Theorem 5.9.2. \widetilde{C}_{1} and \widetilde{C}_{2} are not shy, and hence the results follow.
L.et $q(x)=x$ in the above theorem. Then the sets

$$
\left\{h \in \mathcal{H}[0.1]: \liminf _{x \rightarrow 0^{+}} \frac{h(x)}{x}=0\right\} \text { and }\left\{h \in \mathcal{H}[0.1]: \limsup _{r \rightarrow 0^{+}} \frac{h(x)}{x}=+\infty\right\}
$$

are neither shy nor prevalent. By way of contrast, note that in [25] and [26] it was shown that these two sets have P_{a} measures 1 (see [26, Theorem 5.10])., From the following theorem we see that these two sets are dense (is sets in $\mathcal{H}[0,1]$.

Theorem 5.10.2 The sets C_{1} and C_{2} in Theorem.5.10.1 are dense (is sets in $\mathcal{H}[0.1]$. Proof. From the proof of Theorem 5. 10.1 we know

$$
\widetilde{C_{1}}=\bigcup_{r \in Q}\{h \in \mathcal{H}[0.1]: h(x) \geq r q(x)\}
$$

and

$$
\widetilde{C_{2}}=\bigcup_{r \in Q}\{h \in \mathcal{H}[0.1]: h(x) \leq 1 / r q(x)\}
$$

where Q is the set of rational numbers in (0.1). By Theorem 5.9.2 we know that for any ${ }^{*} r \in Q$, the sets

$$
\{h \in \mathcal{H}[0.1]: h(x) \geq r q(x)\}
$$

and

$$
\{h \in \mathcal{H}[0,1]: h(x) \leq 1 / r q(x)\}
$$

are closed, nowhere dense sets. Thus C_{1} and C_{2} are dense C_{i} sets in $\mathcal{H}[0,1]$.

Theorem 5.10.3 For any $q(x) \in \mathcal{H}[0,1]$, the typical function $h \in \mathcal{H}[0,1]$ satisfic:

$$
\quad \liminf _{x \rightarrow 0^{+}} \frac{h(x)}{q(x)}=0 \text { and } \limsup _{x \rightarrow 0^{+}} \frac{h(x)}{q(x)}=+\infty \text {. }
$$

Remark. Although the sets G_{1} and G_{2} in Theorem 5.7.1 and Theorem 5.7.3 are also neither shy nor prevalent, that C_{1} and C_{2} in Theorem 5.10 .1 are dense C_{i}, sets contrasts sharply with the fact that G_{1} and G_{2} are of the first category:

5.11 Corresponding results at $x=1$

We now carry these results over to the right hand endpoint of the interval [0, 1]. Since the group operation on $\mathcal{H}[0,1]$ is the composition of functions, we do not know whether the mapping $T: h \rightarrow \bar{h}$ by $h(x)=1-h(1-x)$ changes the shyness of sets. We will leave it as an open problem. Here we will deal with some sets involving the behavior of functions at $x=1$ individually:

Theorem 5.11.1 For any function $q(x) \in \mathcal{H}[0.1]$. It t

$$
s_{3}=\left\{h \in \mathcal{H}[0,1]: \lim _{x \rightarrow 1^{-}} \frac{1-h(x)}{1-q(x)}=0\right\}
$$

and

$$
S_{1}=\left\{h \in \mathcal{H}[0.1]: \lim _{x \rightarrow 1^{-}} \frac{1-h(x)}{1-q(x)}=+x\right\} .
$$

Then both S_{3} and S_{4} are Borel sets that are neither left shy nor right shy in $\mathcal{H}[0,1]$.
Proof. Again we show that both S_{3} and S_{4} are Borel sets. Note that

$$
\begin{aligned}
S_{3} & =\left\{h \in \mathcal{H}[0.1]: \lim _{n \rightarrow \infty} \frac{1-h\left(1-2^{-n}\right)}{1-q\left(1-2^{-n}\right)}=0\right\} \\
& =\bigcap_{n=1}^{x} \bigcup_{m=1}^{x} \bigcap_{n=n}^{x}\left\{h \in \mathcal{H}[0.1]: \frac{1-h\left(1-2^{-n}\right)}{1-q\left(1-2^{-n}\right)}<\frac{1}{p}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
s_{4} & =\left\{h \in \mathcal{H}[0.1]: \lim _{n \rightarrow x} \frac{1-h\left(1-2^{-n}\right)}{1-q\left(1-2^{-n}\right)}=+\infty\right\} \\
& =\bigcap_{p=1}^{x} \bigcup_{m=1}^{x} \bigcap_{n=m}^{x}\left\{h \in \mathcal{H}[0.1]: \frac{1-h\left(1-2^{-n}\right)}{1-q\left(1-2^{-n}\right)}>p\right\}
\end{aligned}
$$

Since all $h \in \mathcal{H}[0.1]$ are continuous and the metric on $\mathcal{H}[0.1]$ is equivalent to the uniform metric, then

$$
\left\{h \in \mathcal{H}[0.1]: \frac{1-h\left(1-2^{-n}\right)}{1-q\left(1-2^{-n}\right)}<\frac{1}{p}\right\}
$$

and

$$
\left\{h \in \mathcal{H}[0.1]: \frac{1-h\left(1-2^{-n}\right)}{1-q\left(1-2^{-n}\right)}>p\right\}
$$

are all open sets. Thus both S_{3} and S_{4} are Borel sets.
We now show that both S_{3} and S_{4} are neither left shy nor right shy. By Theorem 5.6.2. for any compact set k. there exist functions $g . h \in \mathcal{H}[0.1]$ such that $h(x) \leq k(x) \leq g(x)$ for all $k \in K^{\prime}$ and all $x \in[0,1]$.

For the set S_{3}. choose

$$
f_{1}(x)=1-\left(1-q\left(h^{-1}(x)!\right)^{2} . \quad f_{2}(x)=h^{-1}\left(1-(1-q(x))^{2}\right) .\right.
$$

Then for all $k \in K$.

$$
f_{1}(k(x)) \geq f_{1}(h(x))=1-(1-q(x))^{2}
$$

and

$$
k\left(f_{2}(x)\right) \geq h\left(f_{2}(x)\right)=1-(1-q(x))^{2}
$$

So ,

$$
\frac{1-f_{1}(k(x))}{1-q(x)} \leq \frac{(1-q(x))^{2}}{1-q(x)}=1-q(x)
$$

and

$$
\frac{1-k\left(f_{2}(x)\right)}{1-q(x)} \leq 1-q(x)
$$

Hence

$$
\limsup _{x \rightarrow 1^{-}} \frac{1-f_{1}(k(x))}{1-q(x)}=\limsup _{x \rightarrow 1^{-}} \frac{1-k\left(f_{2}(x)\right)}{1-q(x)}=0 .
$$

Thus $f_{1} \circ k, k \circ f_{2} \in S_{3}$. By Lemma $5.6 .1 \operatorname{Si}_{3}$ is neither left shy nor right shy:
For the set . ${ }^{4}$. choose

$$
f_{1}(x)=1-\left(1-q\left(g^{-1}(x)\right)\right)^{1 / 2} \text { and } f_{2}(x)=g^{-1}\left(1-(1-q(x))^{1 / 2}\right)
$$

Then for all $k \in K$,

$$
\begin{aligned}
& f_{1}(h \cdot(x)) \leq f_{1}(g(x))=1-(1-q(x))^{1 / 2} . \\
& k\left(f_{2}(x)\right) \leq g\left(f_{2}(x)\right)=1-(1-q(x))^{1 / 2} .
\end{aligned}
$$

So

$$
\frac{1-f_{1}(k(x))}{1-q(x)} \geq \frac{1-\left[1-(1-q(x))^{1 / 2}\right]}{1-q(x)}=(1-q(x))^{-\frac{1}{2}}
$$

and

$$
\frac{1-k\left(f_{2}(x)\right)}{1-q(x)} \geq(1-g(x))^{-\frac{1}{2}}
$$

Thus

$$
\liminf _{x \rightarrow 1^{-}} \frac{1-f_{1}(k(x))}{1-q(x)}=\liminf _{x \rightarrow 1^{-}} \frac{1-k\left(f_{2}(x)\right)}{1-q(x)}=+x .
$$

Hence $f_{1} \circ k, k \circ f_{2} \in S_{4}$. By Lèmma 5.6.1 S_{f} is neither left shy nor right shy.
I sing similar arguments as in Corollary 5.7.5 we obtain the following.

Corollary 5.11.2 The set.s S_{3} and S_{4} in Theortm 5.11 .1 are nether shy nor pereraIf $n t$.

Similarly as for Theorem 5.S.1 we show the following theorem. Note that the transverse curves are different.

Theorem 5.11.3 For any function $q(x) \in \mathcal{H}[0,1]$, It t

$$
C_{i}=\left\{h \in \mathcal{H}[0,1]: 0<\liminf _{x \rightarrow 1^{-}} \frac{1-h(x)}{1-q(x)} \leq \limsup _{x \rightarrow 1^{-}} \frac{1-h(x)}{1-q(x)}<+\infty\right\}
$$

Then (i is a Bortlat that i.s left-and-right shy in $\mathcal{H}[0.1]$.
Proof. Similarly as for S in Theorem 5. A.l we can show that the set (i is a Burel set. We now show that the set

$$
S_{a, 3}=\left\{h \in \mathcal{H}[0,1]: a<\liminf _{x \rightarrow 1^{-}} \frac{1-h(x)}{1-q(x)} \leq \lim _{r \rightarrow 1^{-}} \frac{1-h(x)}{1-q(x)}<3\right\}
$$

is left shy and right shy for any $\alpha, \beta>0, \alpha<3$.
Write $F_{2}:[1 / 2,1] \rightarrow \mathcal{H}[0,1]$ by

$$
F_{2}(t)=1-(1-q(x))^{t}
$$

and define a Borel probability measure μ_{2} by

$$
\mu_{2}(X)=2 \lambda_{1}\left(\left\{t \in[1 / 2,1]: F_{2}(t) \in X\right\}\right)
$$

For any $h \in \mathcal{H}[0,1]$. consider the following set:

$$
L=\left\{t \in[1 / 2,1]: h \circ F_{2}(t) \in \grave{S}_{a, n}\right\}
$$

If $t \in L$. then

$$
\alpha<\frac{1-h\left(1-(1-q(x))^{5}\right)}{1-q(x)}<3
$$

for all $x<1$ sufficiently close to 1 . Set $y=1-(1-q(x))^{t}$. Then

$$
a(1-y)^{\frac{1}{2}}<1-h(y)<3(1-y)^{\frac{1}{t}}
$$

for all $y<1$ sufficiently close to 1 . We claim that L contains at most one element. If not. there exist $t_{1}, t_{2} \in I . t_{1}<t_{2}$ such that

$$
a(1-y)^{\frac{1}{t_{1}}}<1-h(y)<3(1-y)^{\frac{1}{a_{1}}}
$$

and.

$$
\alpha(1-y)^{\frac{1}{2}}<1-h(y)<3(1-y)^{\frac{1}{x}}
$$

for all $y<1$ sufficiently close to 1 . Thus

$$
1 \leq \frac{3(1-y)^{\frac{1}{12}}}{\alpha(1-y)^{\frac{1}{L_{2}}}}=\frac{3}{\alpha}(1-y)^{\frac{1}{1_{1}}-\frac{1}{c_{2}}}
$$

for all $y<1$ sufficiently close to 1 . which is impossible since $1 / t_{1}-1 / t_{2}>0$. This L is a singleton or empty set. So the set $S_{a, 3}$ is left shy.

To prowe $S_{0}, .3$ is right shy: we choose $F_{3}:[1 / 2.1] \rightarrow \mathcal{H}(0,1]$ by

$$
F_{3}(t)=1-(1-x)^{t}
$$

and define a Borel probability measure μ_{3} by

$$
\mu_{3}(X)=2 \lambda_{1}\left(\left\{t \in[1 / 2,1]: F_{3}(t) \in X\right\}\right)
$$

For any $h \in \mathcal{H}[0,1]$, consider the set

$$
R=\left\{t \in[1 / 2,1]: F_{3}(t) \circ h \in S_{x, 3}\right\} .
$$

If $t \in \in^{*} R$, then

$$
a<\frac{1-\left[1-(1-h(x))^{\prime}\right]}{1-q(x)}<3
$$

for all $x<1$ sufficiently close to 1 . That is,

$$
\alpha^{\frac{1}{1}}(1-q(x))^{\frac{1}{t}}<1-h(x)<3^{\frac{2}{4}}(1-q(x))^{\frac{1}{t}}
$$

for all $x<1$ sufficiently close to 1 . We claim that R contains at most one element. If not. there exist $t_{1}, t_{2} \in R, t_{1}<t_{2}$ such that

$$
a^{\frac{1}{h_{1}}}(1-q(x))^{\frac{1}{1_{1}}}<1-h(x)<3^{\frac{1}{t_{1}}}(1-q(x))^{\frac{1}{t_{1}}}
$$

and

$$
a^{\frac{1}{2}}(1-q(x))^{\frac{1}{r_{2}}}<1-h(x)<3^{\frac{1}{1_{2}}}(1-q(x))^{\frac{1}{t_{2}}}
$$

for all $x<1$ sufficiently close to 1 . Thus

$$
1 \leq \frac{3^{\frac{1}{t_{1}}}(1-q(x))^{\frac{1}{t_{1}}}}{3^{\frac{1}{t_{2}}}(1-q(x))^{\frac{1}{t_{2}}}}=\frac{3^{\frac{1}{t_{1}}}}{0^{\frac{1}{x_{2}}}}(1-q(x))^{\frac{1}{t_{1}}-\frac{1}{t_{2}}}
$$

for all $r<1$ sufficiently close to 1 . Which is impossible since $1 / t_{1}-1 / t_{2}>0$. Thus R is a singleton or empty set, and hence 5 ar,3 is right shy. By Theorem 2.9.7. the set $S_{\text {a., }}$ is left-and-right shy in $\mathcal{H}[0.1]$. Thus

$$
C_{i}=\bigcup_{n=1}^{x} S_{1 / n, n}
$$

is left-and-right shy:
Let $g(x)=x$. Immediately we have the following.

Corollary 5.11.4 For any $\alpha, 0<\alpha<+\infty$, the set

$$
\left\{h \in \mathcal{H}[0.1]: h^{\prime}(1)=a\right\}
$$

is left-and-right shy.

Theorem 5.11.5 For any function $q(x) \in \mathcal{H}[0.1]$. let

$$
C_{3}=\left\{h \in \mathcal{H}[0,1]: \liminf _{x \rightarrow 1^{-}} \frac{1-h(x)}{1-q(x)}=0\right\}
$$

and

$$
C_{t}=\left\{h \in \mathcal{H}[0.1]: \limsup _{x \rightarrow 1^{-}} \frac{1-h(x)}{1-q(x)}=+\infty\right\}
$$

Then both C'3 and C_{4} are neither shy nor pre calent.
Proof. Since $C_{3} \supseteq S_{3}$ and $C_{4} \supseteq S_{4}$ where S_{3} and S_{4} are as in Theorem 5.11.1. by Theorem 5.11.1. both C_{3} and C_{4} are not shy. Similarly as for Theorem 5.10.1 we can show

$$
\widetilde{C}_{3}=\bigcup_{r \in Q}\left\{h \in \mathcal{H}_{i}(0.1]: 1-h(r) \geq r(1-q(x))\right\}
$$

and

$$
\bar{C}_{t}=\bigcup_{r \in Q}\{h \in \mathcal{H}[0.1]: 1-h(x) \leq 1 / r(1-q(. r))\}
$$

Thus ('3 and C'i are Borel sets. Note

$$
\begin{aligned}
\bar{r}_{3} & \supseteq\{h \in \mathcal{H}[0.1]: 1-h(x) \geq 1-q(x)\} \\
& =\{h \in \mathcal{H}[0.1]: h(x) \leq q(x)\}
\end{aligned}
$$

and

$$
\begin{aligned}
\widetilde{C_{4}} & \supseteq\{h \in \mathcal{H}[0,1]: 1-h(x) \leq 1-q(x)\} \\
& =\{h \in \mathcal{H}[0,1\}: h(x) \geq q(x)\} .
\end{aligned}
$$

By Theorem 5.10.1, \bar{C}_{3} and \vec{C}_{4} are not shy and hence C_{3} and C_{4} are mot prevalent.

In contrast, in [25] and [26]. it was shown that both C_{3} and C_{4} have F_{2} measures 1 when $q(x)=x$. Similar arguments as for Theorem 5.s.3 show that both the sets S_{3} and S_{4} in Theorem 5.11 .1 are of the first categor: Also similar arguments as for Theorem 5.9.2 show that for any rational number $r \dot{\in}(0.1)$. the sets

$$
\{h \in \mathcal{H}[0.1]: 1-h(x) \geq r(1-q(x))\}
$$

and

$$
\{h \in \mathcal{H}[0.1]: 1-h(x) \leq 1 / r(1-q(x))\}
$$

are closed. nowhere dense sets in $\mathcal{H}[0,1]$. Thus we can have the following.

1

Theorem 5.11.6 for $a n y q(r) \in \mathcal{H}[0.1]$, the typical function $h \in \mathcal{H}[0.1]$ satisfies

$$
\therefore \quad \liminf _{x \rightarrow 1^{-1}} \frac{1-h(x)}{1-q(x)}=0 \text { and } \limsup _{x \rightarrow 1^{-}} \frac{1-h(x)}{1-q(x)}=+\infty .
$$

PROBLEM 13 Let $T: \mathcal{H}[0,1] \rightarrow \mathcal{H}(0.1]$ by $T h(x)=1-h(1-x)$ is it true that $S \subseteq \mathcal{H}(0.1]$ is shy or left/right shy if $T(S)$ is shy or left/right shy:

5.12 A non-shy set that is left-and-right shy

Jan Mycielski in [41] posed a problem. denoted by (P_{0}). whether the existence of a Bore probability measure left transverse to a set Y implies that Y is shy in a nonlocally compact. completely metrizable group. In this section we give examples of non-hy sets that are left-and-right shy in $\mathcal{H}[0.1]$ and so answer the problem (P_{0}) negatively. These example's also allow us to conclude immediately that the σ-ideal of shy sets in $\mathcal{H}(0$. 1] does not satisfy the countable chain condition.

Corollary 5.s.2 and Corollary 5.11.4 show that the sets

$$
\left\{h \in \mathcal{H}[0,1]: h^{\prime}(0)=\alpha\right\}
$$

and

$$
\left\{h \in \mathcal{H}[0,1]: h^{\prime}(1)=a\right\}
$$

are left-and-right shy sets. We shall show that these two sets are non shy sets in - $\mathcal{H}[0.1]$. The first two lemmas are basic facts about monotonic functions.

Lemma 5.12.1 For any $0 \leq \alpha \leq+x$. if $f \in \mathcal{H}[0$. 1] and satisfifs

$$
\frac{f\left(c_{n}\right)}{c_{n}} \rightarrow \alpha
$$

for a decreasing stquenct $\left\{c_{n}\right\}$ satisfying $c_{n} / c_{n+1} \rightarrow 1$ and $c_{n} \rightarrow 0^{+}$as $n \rightarrow x$. then $f^{\prime}(0)=a$.

Proof. For any $x<c_{1}$, there exists a c_{n} such that $c_{n+1} \leq x \leq c_{n}$. Then $f\left(c_{n+1}\right) \leq$ $f(x) \leq f\left(c_{n}\right)$ and so

$$
\frac{f\left(c_{n+1}\right)}{c_{n}} \leq \frac{f(x)}{x} \leq \frac{f\left(c_{n}\right)}{c_{n+1}}
$$

Note that

$$
\frac{f\left(c_{n+1}\right)}{c_{n}}=\frac{f\left(c_{n+1}\right)}{c_{n+1}} \cdot \frac{c_{n+1}}{c_{n}}
$$

and

$$
\frac{f\left(c_{n}\right)}{c_{n+1}}=\frac{f\left(c_{n}\right)}{c_{n}} \cdot \frac{c_{n}}{c_{n+1}}
$$

Thus be the conditions we have

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}=\alpha
$$

That is. $f^{\prime}(0)=\alpha$.

Lemma 5.12.2 For any $0 \leq j \leq+x$, if $f \in \mathcal{H}[0.1]$ and satisfies.

$$
\frac{1-f\left(d_{n}\right)}{1-d_{n}} \rightarrow 3
$$

for an increasing sequetuct $\left\{d_{n}\right\}$ satiofying $\left(1-d_{n}\right) /\left(1-d_{n+1}\right) \rightarrow 1$ and $d_{n} \rightarrow 1^{-}$as $n \rightarrow x$. then $f^{\prime}(1)=3$.

Proof. For any $x>d_{1}$, there exists a d_{n} such that $d_{n} \leq x \leq d_{n+1}$. Then $f\left(d_{n}\right) \leq f(x) \leq f\left(d_{n+1}\right)$ and so

$$
\frac{1-f\left(d_{n+1}\right)}{1-d_{n}} \leq \frac{1-f(x)}{1-x} \leq \frac{1-f\left(d_{n}\right)}{1-d_{n+1}}
$$

Kote that

$$
\frac{1-f\left(d_{n+1}\right)}{1-d_{n}}=\frac{1-f\left(d_{n+1}\right)}{1-d_{n+1}} \cdot \frac{1-d_{n+1}}{1-d_{n}}
$$

and

$$
\frac{1-f\left(d_{n}\right)}{1-d_{n+1}}=\frac{1-f\left(d_{n}\right)}{1-d_{n}} \cdot \frac{1-d_{n}}{1-d_{n+1}}
$$

Thus from the conditions we have

$$
\lim _{x \rightarrow 1^{-}} \frac{1-f(x)}{1-x}=3
$$

That is. $f^{\prime}(1)=3$.

Tḥeorem 5.12.3 Let $0 \leq \alpha, 3 \leq+\infty$. and

$$
D_{\ldots, 3}=\left\{h \in \mathcal{H}[0,1]: h^{\prime}(0)=\alpha \text { and } h^{\prime}(1)=. J\right\} .
$$

Then $D_{\text {.,. }}$ is not shy.
Proof. To show that $I_{2,3}$ is not shy, we shall show that, for any compast set $K \subseteq \mathcal{H}[0.1]$. there exist functions $g . h \in \mathcal{H}[0.4]$ such that $g \circ h \circ k \in D$... for any $h \in K$. First we choose a decreasing sequence $\left\{c_{n}\right\} \subseteq(0.1 / 4)$ such that all the intervals $\left[c_{n}, c_{n}+1 / n c_{n}\right]$ are pairwise disjoint, $c_{n} \rightarrow 0^{+}$and $c_{n+1} / c_{n} \rightarrow 1$ as $n \rightarrow \infty$. Second we choose an increasing sequence $\left\{d_{n}\right\} \subseteq(3 / 4.1)$ such that all the intervals $\left[d_{n}, d_{n}+\left(1-d_{n}\right)^{2} d_{n}\right]$ are contained in (3/4, 1). pairwise disjoint. $d_{n} \rightarrow 1$. and $\left(1-d_{n+1}\right) /\left(1-d_{n}\right) \rightarrow 1$ as $n \rightarrow x$. For example. $c_{n}=1 / n . d_{n}=1-1 / n(n>n)$ satisfy the requirements. This can be verified by simple computations. By Theorem 5.6.2 there exist functions $f_{1}, f_{2} \in \mathcal{H}[0,1]$ such that

$$
f_{1}(x) \leq h(x) \leq f_{2}(x)
$$

for all $h \in K$ and all $x \in[0.1]$. Now we choose a sequence of line segments $\left\{I_{n}\right\}$ contained in $(0.1 / 4) \times(0.1 / 2)$ and a sequence of line segments $\left\{J_{n}\right\} \subseteq(3 / 4.1) \times$ (1/2.1) as in the figure below, such that
(i) for any n. the lower end of I_{n} is above the upper end of I_{n+1}, and the lower end of J_{n+1} is above the upper end of J_{n}.
(ii) the corresponding point r_{n}^{1} of I_{n} tends to 0 from right, and the corresponding point x_{n}^{2} of J_{n} tends to 1 from left.
(iii) for any n, the line segment connecting $\left(x_{n}^{1}, f_{1}\left(x_{n}^{1}\right)\right)$ and $\left(x_{n}^{1}, f_{2}\left(x_{n}^{1}\right)\right)$ is contained in I_{n}, and the line segment connecting $\left(x_{n}^{2}, f_{1}\left(x_{n}^{2}\right)\right)$ and $\left(x_{n}^{2}, f_{2}\left(x_{n}^{2}\right)\right.$ contained in J_{n}.

Figure 5.1: The construction of the automorphisms y and k

We now construct functions $g, k \in \mathcal{H}[0.1]$ in nine cases, and show that $g \circ h \circ k \in$ $D_{x . .}$ for any $h \in K$ for each case .
('ase $1: 0<\alpha, 3<+\infty$. We require that $4 c_{1} \alpha<1$ and $2.3\left(1-d_{1}\right)<1$ so that.
for any n.

From the choice of $\left\{c_{n}\right\}$ and $\left\{d_{n}\right\}$ it is easy to verify that all these intervals are pairwise disjoint. So we construct a function $g \in \mathcal{H}[0.1]$ such that

$$
g\left(I_{n}\right)=\left[\alpha c_{n}, \alpha(1+1 / n) c_{n}\right]
$$

and

$$
g\left(J_{n}\right)=\left[1-3\left(1-d_{n}\right) .1-.3\left(1-\left(1+\left(1-d_{n}\right)^{2}\right) d_{n}\right)\right] .
$$

We construct a function $k \in \mathcal{H}[0.1]$ such that $k\left(c_{n}\right)=x_{n}^{1}$ and $k\left(d_{n}\right)=x_{n}^{2}$. Then for any $h \in K$.

$$
\begin{aligned}
& \frac{g\left(h\left(k \cdot\left(c_{n}\right)\right)\right)}{c_{n}}=\frac{g\left(h\left(s_{n}^{1}\right)\right)}{c_{n}} \\
& \leq \frac{\alpha(1+1 / n) c_{n}}{c_{n}}=\alpha(1+1 / n) .
\end{aligned}
$$

and

$$
\frac{g\left(h\left(-x_{n}^{1}\right)\right)}{c_{n}} \geq \frac{\alpha c_{n}}{c_{n}}=\alpha .
$$

Thus

$$
\lim _{n \rightarrow \infty} \frac{g\left(h\left(k\left(c_{n}\right)\right)\right)}{c_{n}}=\alpha .
$$

So by Lemma. $5.12 .1 .(g \circ h \circ k)^{\prime}(0)=a$. On the other hand. for any $h \in \mathcal{H}_{[}^{[0.1]}$.

$$
\begin{aligned}
\frac{1-g\left(h\left(k\left(d_{n}\right)\right)\right)}{1-d_{n}} & =\frac{1-g\left(h\left(x_{n}^{2}\right)\right)}{1-d_{n}} \\
& \leq \frac{1-\left(1-3\left(1-d_{n}\right)\right)}{1-d_{n}}=3
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1-g\left(h\left(x_{n}^{2}\right)\right)}{1-d_{n}} & \geq \frac{1-\left[1-3\left(1-\left(1+\left(1-d_{n}\right)^{2}\right) d_{n}\right)\right]}{1-d_{n}} \\
& =3\left(1-d_{n}\left(1-d_{n}\right)\right) .
\end{aligned}
$$

Thus

$$
\lim _{n \rightarrow \infty} \frac{1-g\left(h\left(k\left(d_{n}\right)\right)\right)}{1-d_{n}}=3
$$

So by Lemma 5.12.2. $(g \circ h \circ k)^{\prime}(1)=3$. Therefore $g \circ h \circ k \in D_{a, 3}$.
Case 2: $\alpha=0.3=0$. We claim that. for any n.

$$
\left[c_{n \cdot}^{2} \cdot(1+1 / n)^{2} c_{n}^{2}\right] \subseteq(0.1 / 2)
$$

are pairwise disjoint, and

$$
\left[1-\left(1-d_{n}\right)^{2}, 1-\left(1-d_{n}\right)^{2}\left(1-d_{n}\left(1-d_{n}\right)\right)^{2}\right] \subseteq(3 / 4.1)
$$

are also pairwise disjoint. Since $\left[c_{n} \cdot(1+l / n) c_{n}\right]$ are pairwise disjoint, the first part of the claim is obrions. For the second part of the claim. if there were some m such that

$$
1-\left(1-d_{m}\right)^{2}<1-\left(1-d_{m+1}\right)^{2} \leq 1-\left(1-d_{m 2}\right)^{2}\left(1-d_{m}\left(1-d_{m}\right)\right)^{2}
$$

then $1-d_{m+1}<1-d_{m}$ and

$$
\begin{aligned}
1-d_{m+1} & \geq\left(1-d_{m}\right)\left(1-d_{m}\left(1-d_{m}\right)\right) \\
& =1-d_{m}-d_{m}\left(1-d_{m}\right)^{2}
\end{aligned}
$$

That is.

$$
d_{m}<d_{n+1} \leq d_{m}+d_{n}\left(1-d_{m}\right)^{2}
$$

which contradicts that $\left[d_{n} . d_{n}+\left(1-d_{n}\right)^{2} d_{n}\right]$ are pairwise disjoint. Since $d_{n}>3 / 4$, so $1-\left(1-d_{n}\right)^{2}>3 / 4$ and the claim follows. Now we construct a function $g \in \mathcal{H}[0.1]$ such that

$$
g\left(I_{n}\right)=\left[c_{n}^{2} \cdot(1+1 / n)^{2} c_{n}^{2}\right]
$$

and

$$
g\left(J_{n}\right)=\left[1-\left(1-d_{n}\right)^{2} \cdot 1-\left(1-d_{n}\right)^{2}\left(1-d_{n}\left(1-d_{n}\right)\right)^{2}\right] .
$$

We also construct a function $k \in \mathcal{H}[0.1]$ such that $k\left(c_{n}\right)=x_{n}^{1}$ and $k\left(\vec{a}_{n}\right)=x_{n}^{2}$. Then for any $h \in K$.

$$
\begin{aligned}
\frac{g\left(h\left(k\left(c_{n}\right)\right)\right)}{c_{n}} & =\frac{g\left(h\left(x_{n}^{1}\right)\right)}{c_{n}} \\
& \leq \frac{(1+1 / n)^{2} c_{n}^{2}}{c_{n}}=(1+1 / n)^{2} c_{n}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1-g\left(h\left(h \cdot\left(d_{n}\right)\right)\right)}{1-d_{n}} & =\frac{1-g\left(h\left(x_{n}^{2}\right)\right)}{1-d_{n}} \\
& \leq \frac{1-\left[1-\left(1-d_{n}\right)^{2}\left(1-d_{n}\left(1-d_{n}\right)^{2}\right]\right.}{1-d_{n}} \\
& =\left(1-d_{n}\right)\left(1-d_{n}\left(1-d_{n}\right)\right)^{2}
\end{aligned}
$$

Thus

$$
\lim _{n \rightarrow x} \frac{g\left(h\left(k\left(c_{n}\right)\right)\right)}{c_{n}}=0
$$

and

$$
\lim _{n \rightarrow x} \frac{1-g\left(h\left(k\left(d_{n}\right)\right)\right)}{1-d_{n}}=0
$$

By Lemma $5.1^{2} .1$ and Lemma $5.12 .2 .(g \circ h \circ k)^{\prime}(0)=0$ and $(g \circ h \circ h)^{\prime}(1)=0$. Therefore $g \circ h \circ k \in D_{a, 3}$ for any $h \in K$.
('ase 3: $a=+x .3=+x$. We require $16 c_{1}<1$. Then we claim that. for any n.

$$
\left[c_{n}^{1 / 2} \cdot(1+1 / n)^{1 / 2} c_{n}^{1 / 2}\right] \subseteq(0.1 / 2)
$$

are pairwise disjoint. and

$$
\left[1-\left(1-d_{n}\right)^{1 / 2} .1-\left(1-d_{n}\right)^{1 / 2}\left(1-d_{n i}\left(1-d_{n}\right)\right)^{1 / 2}\right] \subseteq(1 / 2.1)
$$

are also disjoint. Since $\left[c_{n} \cdot(1+1 / n) c_{n}\right]$ are pairwise disjoint. the first part of the claim is true. For the second part of the claim, if there were some m such that

$$
1-\left(1-d_{m}\right)^{1 / 2}<1-\left(1-d_{m+1}\right)^{1 / 2} \leq 1-\left(1-d_{m}\right)^{1 / 2}\left(1-d_{m}\left(1-d_{m}\right)\right)^{1 / 2}
$$

then $1-d_{m+1}<1-d_{m}$ and

$$
1-d_{m+1} \geq\left(1-d_{m}\right)\left(1-d_{m}\left(1-\dot{d}_{m}\right)\right) .
$$

which. as same as in ('ase 2. yields a contradiction. Thus the claim is true. Now we construct a function $g \in \mathcal{H}\{0.1]$ such that

$$
g\left(I_{n}\right)=\left[c_{n}^{1 / 2} \cdot(1+1 / n)^{1 / 2} c_{n}^{1 / 2}\right]
$$

and

$$
g\left(J_{n}\right)=\left[1-\left(1-d_{n}\right)^{1 / 2} \cdot 1-\left(1-d_{n}\right)^{1 / 2}\left(1-d_{n}\left(1-d_{n}\right)\right)^{1 / 2}\right] .
$$

We also construct a function $k \in \mathcal{H}[0,1]$ such that $k\left(c_{n}\right)=r_{n}^{1}$ and $k\left(d_{n}\right)=r_{n}^{2}$. Then for any $h \in K$.

$$
\frac{g\left(h\left(k\left(c_{n}\right)\right)\right)}{c_{n}}=\frac{g\left(h\left(x_{n}^{1}\right)\right)}{c_{n}} \geq \frac{c_{n}^{1 / 2}}{c_{n}}=c_{n}^{-1 / 2}
$$

and

$$
\begin{aligned}
\frac{1-g\left(h\left(k\left(d_{n i}\right)\right)\right)}{1-d_{n}} & =\frac{1-g\left(h\left(x_{n}^{2}\right)\right)}{1-d_{n}} \\
& \geq \frac{1-\left[1-\left(1-d_{n}\right)^{1 / 2}\left(1-d_{n}\left(1-d_{n}\right)\right)^{1 / 2}\right]}{1-d_{n}} \\
& =\frac{\left(1-d_{n}\left(1-d_{n}\right)\right)^{1 / 2}}{\left.\left(1-d_{n}\right)\right)^{1 / 2}} .
\end{aligned}
$$

Thus:

$$
\lim _{n \rightarrow \infty} \frac{g\left(h\left(k\left(c_{n}\right)\right)\right)}{c_{n}}=+\infty
$$

and

$$
\lim _{n \rightarrow x} \frac{1-g\left(h\left(h \cdot\left(d_{n}\right)\right)\right)}{1-d_{n}}=+x .
$$

By Lemma 5.12. 1 and Lemma 5.12.2. $(g \circ h \circ h)^{\prime}(0)=+x$ and $(g \circ h \circ h)^{\prime}(1)=+x$. Therefore $g \circ h \circ k \in D_{a, 3}$ for any $h \in K$.
(ase 4: $a=0,0<3<+\infty$. From ('ase 1 and (ase ? we require 2. $3\left(1-d_{1}\right.$) <1 and construct a function $g \in \mathcal{H}[0,1]$ such that

$$
g\left(I_{n}\right)=\left[c_{n}^{2} \cdot(1+1 / n)^{2} c_{n}^{2}\right]
$$

and

$$
g\left(J_{n}\right)=\left[1-3\left(1-d_{n}\right) \cdot 1-3\left(1-\left(1+\left(1-d_{n}\right)^{2}\right) d_{n}\right)\right] .
$$

Also we construct a function $k \in \mathcal{H}[0,1]$ such that $k\left(c_{n}\right)_{0}=x_{n}^{1}$ and $k\left(d_{n}\right)=x_{n}^{2}$. Then from Case 1 and Case 2 we know that for any $h \in K .(g \circ h \circ k)^{\prime}(0)=0$ and $(g \circ h \circ k)^{\prime}(1)=3$. Therefore $g \circ h \circ k \in D_{\alpha, 3}$ for any $h \in K$.

Similarly as Case 4 we can use the corresponding parts of Case 1, Case 2 and C'ase 3 to construct the corresponding functions $g \in \mathcal{H}[0,1]$ and $k \in \mathcal{H}[0.1]$ so that for any $h \in K . g \circ h \circ k$ belongs to the corresponding $D_{a .3}$ for Case $0<\alpha<+x .3=0$. Case $0<a<+x, 3=+x$. Case $a=0.3=+x$. Case $a=+\infty .0<3<+\infty$ and Case $\alpha=+\infty \cdot 3=0$ respectively. The proof is finished.

Corollary 5.12.4 The set. 5 in Theorem 5.8 .1 and (\% in Theorem 5.11 .3 are not shy.

Proof. Since the set $D_{a . a}(0<\alpha<x)$ in Theorem 5.12.3 is contained in both s and (i. Thus the 'result follows.

From Corollary 5.8.2 and Corollary 5.11.t and Theorem 5.12.3 we know that the set $D_{x, 3}$ is left-and-right shy, but is not shy: This negatively answers the problem $\left(P_{0}\right)$ posed by Jan Mỵielski [11].

$5.13 \mathcal{H}[0.1]$ does not satisfy the countable chain condition

From Theorem 5.12.3 we immediately have the following theorem for the non-lorall: non-Abelian Polish group $\mathcal{H}[0,1]$.

Theorem 5.13.1 The σ-ideal of shy scts in $\mathcal{H}[0.1]$ docs not satisfy the countable chain condition. Furthermore, there erist sets that are left-and-right shy. and which
can be decomposed into continuum many disjoint, non-shy set.s in $\mathcal{H}[0,1]$.
Proof. For each $\alpha(0<\alpha<x)$. by Theorem 5.12.3. the set $D_{\alpha} \equiv\{h \in \mathcal{H}[0.1]$: $\left.h^{\prime}(0)=\alpha\right\}$ is non-shy. For distinct $\alpha_{1}, \alpha_{2}\left(0<\alpha_{1}, \alpha_{2}<x\right), D_{x_{1}}$ and $D_{a_{2}}$ art disjoint. So $\mathcal{H}[0,1]$ contains continuunı many disjoint, non-shy sets $D, 0<\alpha<x$. The result follows.

5.14 Functions with infinitely many fixed points

In this section we study the set of functions in $\mathcal{H}[0.1]$ that have infinitely many fixed points.

Theorem 5.14.1 The set of functions in $\mathcal{H}[0,1]$ which rross the lint $y=x$ in (0.1) infinitely many times is neither shy nor preralent.

Proof. Let

$$
F=\left\{\begin{array}{ll}
h \in \mathcal{H}[0.1]: & h \text { crosses } y=x \text { infinitely many } \\
\text { times in }(0,1)
\end{array}\right\}
$$

We first show that F is a Borel set. Let

It is easy to verify that $F_{n, p, 7}$ are closed sets and the functions in $F_{n, p, 7}$ cross $y=r$ in (0.1) at least $2 n+1$ times. Note

$$
I=\bigcap_{n=1}^{x} \bigcup_{p=1}^{x} \bigcup_{q=1}^{x} F_{n, p \cdot q}
$$

So F is a Borel set.

Since $F \subseteq \mathcal{H}[0,1] \backslash\left\{h \in \mathcal{H}[0,1]: h(x) \leq x^{2}\right\}$. and by Theorem 5.9.1 the set $\left\{h \in \mathcal{H}[0.1]: h(x) \leq x^{2}\right\}$ is neither left shy nor right shys so is the complement of F. We now show that F is neither left shy nor right shy: For any compact set $K \subseteq \mathcal{H}[0,1]$ we use the ideas in Theorem 5. 12.3 to choose I_{n} and x_{n}^{1}. Choose a monotonic sequence $\left\{y_{n}\right\} \subseteq(0.1)$ and functions $g . k \in \mathcal{H}[0,1]$ such that $k\left(y_{n}\right)=x_{n}^{1}$ and for any $h \in h$. $g\left(h\left(x_{2 n}^{1}\right)\right)>x_{2 n}^{1} . g\left(h\left(x_{2 n+1}^{1}\right)\right)<x_{2 n+1}^{1} . \quad h\left(k\left(y_{2 n}\right)\right)>y_{2 n}$ and $h\left(k\left(y_{2 n+1}\right)\right)<y_{2 n+1}$. Then $g \circ h$. $h \circ k \in F$. Therefore F is neither left shy nor right shy in $\mathcal{H}[0,1]$. Hence F is neither shy nor prevalent.

Theorem 5.14.2 for any $m \in(0,1]$ and function $q(x) \in \mathcal{H}[0,1]$. If

$$
\hookrightarrow=\{h \in \mathcal{H}[0.1]: \exists x \in(0.1) \text { such that } h(x)=m q(x)\} .
$$

Then is is ne ither shy nor perecaleite.
Proof. Let

$$
\breve{C}_{n}=\{h \in \mathcal{H}[0.1]: \exists x \in[1 / n .1-1 / n\} \text { such that } h(x)=m q(x)\} .
$$

Thern

$$
\zeta=\bigcup_{n=2}^{x} S_{n}
$$

We now show that S_{n} is a Borel set. In fact, for any ('auchy sequence $\left\{f_{k}\right\} \subseteq S_{n}$. there exist $x_{k} \in[1 / n, 1-1 / n]$ and $f \in \mathcal{H}[0,1]$ such that $f_{k}\left(x_{k}\right)=m q\left(x_{k}\right)$ and $f_{k} \rightarrow f$ uniformaly. Thus there exists a subsequence $\left\{x_{k j}\right\}$ of $\left\{x_{k}\right\}$ such that $x_{k}, \rightarrow x_{U} \in$ $[1 / m .1-1 / n]$ and $q\left(x_{k_{j}}\right) \rightarrow q\left(x_{0}\right)$. So $f\left(x_{0}\right)=m q\left(x_{0}\right)$ and hence $f \in \dot{S}_{n}$. . \dot{h}_{n} is closed and hence the set S is a Borel set. Since

$$
\check{\subseteq} \subseteq \mathcal{H}[0,1] \backslash\left\{h \in \mathcal{H}[0,1]: h(x) \geq m q^{1 / 2}(x)\right\}
$$

and by Theorem 5.9.2

$$
\left\{h \in \mathcal{H}[0.1]: h(x) \geq m q^{1 / 2}(x)\right\}
$$

is not shy , then S is not prevalent. Since the set F in Theorem 5.14.1 is a subset of S. by Theorem 5.14.1 the set S is not shy:

In $[25]$ and $[26]$ it is shown that the set S has P measure 1 when $q(x)=x$ in the above theorem. In the above theorem we have shown that the set of all $h \in \mathcal{H}[0,1]$ such that $h(x)=q(x)$ for some $x \in(0.1)$ is not shy. As we have remarked carlier (see page 105), however. for any $q(x) \in \mathcal{H}[0,1]$, the set of all $h \in \mathcal{H}[0.1]$ such that $h(x)=q(x)$ for all x in some subinterval of (0.1) is shy:

5.15 Concluding remarks

The theory of shy sets in an Abelian Polish group seems to be completely understood $([12],[13] \cdot[14],[56],[27] \cdot[18] \cdot[52] \cdot[8])$. Only partial results are available. however. for non-Abelian (non-locally compact) completely metrizable groups ([18], [4], [5) $]_{\text {, }}$. and some results in this thesis).

It had been an open problem (see Mycielski [11]) whether in a non-Abelian Polish group there could exist sets left shy and/or right shy that are not shy. We have answered this in the Polish group $\mathcal{H}[0,1]$ by proving the existence of non-shy Borel setis that are left-and-right shy. In addition we showed that the Polish group $\mathcal{H}[0,1]$ does not satisfy the countable chain condition.

Solecki $[52]$ showed that the σ-ideal of shy sets in an Polish group admitting an invariant metric satisfies the countable chain condition iff this group is locally compact. The following problem is still open.

PROBLEM 14 Is it true that the σ-ideal of shy sets in a non-Abehan Polish group satisfies the countable chain condition iff the group is locally compact?

The results in this chapter suggest the following problems. We conclude the thesis with these problems.

PROBLEM 15 Dof. there esist a left shy (right shy) set in $\mathcal{H}[0.1]$ that is not right shy (lfft shy)?

PROBLEM 16 Dofs there exist a shy (left/right shy) set in $\mathcal{H}[0.1]$ that is of the second category.

PROBLEM 17 Dofs the σ-ideal of left shy (right shy) sfts in $\mathcal{H}[0,1]$ sativfy the countable chain condition?

PROBLEM 18 In ciery non-Abelian, non-locally compact, complettly metrizable group. are there sets that are Ifft-and-right shy. but not shy?

Bibliography

[1] J. J. Agronshy and A. M. Bruckner. Local compactness and porosity in metric spaces. Real Analysis Exchange Vol. 11 (1985-86). 365-379.
[2. … Aronszajn. Differentiability of Lipuchitz functions m-Hanach "paces. Studia Math.. 57 (1976). 147-160
[3] S. Banach, Ïber die Bairèsche Kategorie gewisser Funktionemmengen. Studia Math. 3 (1931). 17. 179.
[4] A. S. Besicovitch. On the fundamental geometrical properties of linearly measurable plane sets of points. Math. Annalen, 92 (1929). P2-464.
[5] 1. I. Bugacher. Three problems of Aronszajn in measure theory. Funct Anal. Appl. 18 (1)854). 242-24.
[6] J. M. Borwein and D. Noll. Second order differentiability of convex functions in Banach spaces. Trans. Amer. Math Soc. Vol. 342. no. 1 (1994). 43-81.
[i] J. M. Borwein and S. Fitzpatrick. Closed convex Haar mull sets, (EECM Report. 1995.
[א] J. M. Borwein and IV. B. Moors, Null sets and essentially smooth Lipschitz functions, SIAM Journal on Optimization, in press.
[9] Andrew M. Bruckner. Differentiation of Real Functions, C.R.M Monograph Series Vol. 5. Amer Math. Soc. 1994.
[10] A. M. Bruckner and G. Petruska. Some t $\}$ pical results on bounded Baire 1 functions. Acta Math. Hung., 43(3-4), (1984). $3.325-333$.
[11] Andrew M. Bruckner, Judith B. Brucknet and Brian S. Thomson. Real Analysis. Prentice-Hall 1997.
[12] J. P. R. (hristensen. On sets of Haar measure zero in Abelian Polish groups. Israel J. Math. 13(1972). 255-260.
[13] applications to differentiability of mappings. Publ. Dep. Math(Lyon) 10(1973) no 2. 29.39.
[15] Krzysztof ('iesielski and Marcin Szyskowski. Symmetrically continuous function which is not countably contimous. Vol. 22, no 1 (1996-97), 428-4.3.2.
[16] Joseph Diestel, Stquences and Strits in Bunach Spacts, Springer-Verlag. . New York Inc., 1954.
[17] Jean Dieudonné, Sur la complétion des groupes topologiues. ('. R. Acad. Sci. Paris. Vol. 218(1944), 774-776
[18] Randall Dougherty. Examples of non-shy sets. Fund. Math. 141 (1994), 73.48.
[19] Randall Dougherty and Jan Mycielski. The prevalence of permutations with infinite cycles. 144 (1994). 89-94.
[20] Ryszard Engelking, Ceneral Topology, Warszawa, 1977.
[21] K. J. Falconer. The geometry of fractal set.s. Cambridge ['niversity Press. 198.5.
[22] Kenneth Falconer. Fractal Geometry, John Wily \& Sons Ltd.. England, 1990.
[2:3] P. Fisher and Z. Slodkowski, Christenson zero sets and measurable convex func tions.s. Pror. Amer. Math. Soc. $79(1980)$. $449-453$.
[24] D. H. Fremlin. Consequences of Martin's axiom. Cambridge C'niversity Press. New York. 1984.
[25] S. Graf. R. D. Mauldin, and S. Williams. Random homeomorphisms. Lecture Notes in Math. 1089 (1983). pp. 23-46.
[26] S. Ciraf. R. D. Manldin, and S. Williams, Random homeomorphisms, Adrances in Mathematics 60 (1986). pp. 239-359.
[27] Brian R. Hunt. T. Sauer and J. A. Yorke. Prevalence: a translation invariant "almost every" on infinite dimensional spaces, Bull. Amer. Math. Soc. (N.S.) 2 (1992), 217-238.
[28] Brian R. Hunt. The prevalence of continuous nowhere differentiable functions. Proc. Amer. Math. Soc. Vol' 122 no 3 (1994) 711-717.
[29] A S. Kechris, Topology and descriptive set theory, Topology and its Applications $58(1994) 195-222$.
[30] A.S. Kechris. (lassical descriptixe set theory. Springer-Verlag. New York. 1995.
[31] L. L. Klee. Invariant metrics in groups (Solution of a problem of Banach). Proc. Amer. Math. Soc. 3 (1952) pp. 484-487
[32] P. Kostyrko and T. Salat. On the structure of some function space. Real Analysis Exchange. Vol. 10 (1984-1985). 188-193.
[33] Pavel Kostyrko. On a typical property of some function spaces. Acta Mathematica Cniversitat is Comenianae, LIV-LV (1988), 211-215.
[34] Hui-Hsiung Kuo, Caussian Measures in Banach Spacts. Springer-Verlag. BerlinHeidelberg . . ew York. 1975.
[35] C. Kuratowski, Topologie, Vol. 1. th ed. Monografie Matematyczne. Vol. 20. Warszawa. Panstwowe Wydawnctwo Naukowe, 1958.
[36] Eva Matsoušková. Convexity and Haar null sets, to appear in Proc. Amer. Math. Sor.
[37] Eva Matsouškova and C. Stegall. A characterization of reflexive Banach space. Proc. Amer. Math. Soc. Vol. 12t(1996) no 4. 1083-1090.
[3N K R Daniel Mauldin. The set of contimuous nowhere differentiable functions, Pacific Journal of Mathematics, Vol. s.3. No. 1 (1979), 199-205.
[39; R. Daniel Mauldin. The set of continuous nowhere differentiable functions: a correction. Parific Journal of Wathematics, Vol. 121. No. 1 (1986), 119-120.
[10] S. Mazurkiewicz, (̈ber die Menge der differenzierbaren Funktionen. Fund. Math. 27 (1936). 24+249.
[41] Jan Mycielski. Some unsolved problems on the prevalence of ergoticity, instability and algebraic independence, (lam Quart. 1(1992) no 3. 30-37.
[42] A. Ostrowshi, "̈ber die Funktionalgleichung der Exponentialfunktion and verwande Funktionalgleichungen, Jber. Deutsch. Math.-Verein. 3s (1929), 54.62.
[43] Johu ('. Oxtoby, Mtasure and C'ategory, Springer-Verlag. New York, 1971.
[44] K. R. Parthasarathy: Probability Measures on Metric Spaces. Academic Press Inc. LTD, New York, 1967.
[45] R. R. Phelps, Gaussian null sets and differentiability of Lipschitz maps on Banach spaces. Pacific J. Math.. 77 (1978), 523-531.
[46] D. Preiss and J. Tiser. Two unexpected examples concerning differentiability of Lipschitz functions on Banach spaces. Operator Theory, Advances and Applications. Vol.iT (1995). 219-238.

7

[47] B. S. Rajput. The support of Gaussian measures on Banach spaces. Theory Prob. and Appl., 17(1972). T28-733.
:
[4x] H. I. Royden, Real Analysis, Macmillan Publishing (ompany. New York. 19ss.
[19] T. Sauer. J. A. Yorke and M. ('asdagli, Embedology, J. Statist. Phys. 65(1991), 579-616.

- [50] Hongjian Shi. Some typical properties of contimous functions. symmetric functions and contimuous functions, Real Analysis Exchange. Vol. 21 no 2 (1995-96). 700-714.
[51] A. V. Skorohod. Integration in Helbert spact. Springer 1974.
[52] Slawomir Solecki. On Haar null sets. Fund. Math. 149 (1996) no 3. 205-210.
[53] Michel Talagrand. Hyperplans universellement mesurables. (.. R. Acad. Sci. Paris Ser. A-B 291 (1980), no. 8. A.501-A502.
[54] Brian S. Thomson. Real Functions, Lecture Notes in Math., 1170. SpringerVerlag. 1985.
- [50] Brian S. Thomson, Symmetrie Properties of Real Functions. Marcel Dekker Inc.. New York. 1994.
[56] F. Topsoe and J. Hoffman-Jorgenson, Analytic spaces and their application. in ('A.Rogers et. al.. Analytic Sets. Academic Press. London (1980) . . 317 t 401.
[it] T. ('. Tran Symmetric functions whose set of points of discontinuity is uncomnt able. Real Analysis Exchange 12 (1986-87). 196-5099.
[ss] S. M. Vlam, Transforms, iterations, and mixing flows. in: Dynamical System II. edited by A. R. Bedenarek and L. ('esari. Arademic Press. New York 19sie.
[59] ('. E. Weil. On nowhere monotonic functions. Proc. Amer. Math. Soc.. Vid. jef (1976), 358-389.
[60] \therefore. Wiener, Differential pace. J. Math. Phys. is (190:3), 130
[61] Y. Yamasaki, Measures on infinte dimensional apares. World Scientific. Singapore. 198.5.
[62] Fduardo II. Zarantonollo. Dense single-valuedness of monotone operators. Fratel J. Math.. Vol. 15 (1973). 158-166.

Glossary

$($

additively shy set See page 93.
almost every See page 10 .
algebraic basis A subset E is an algebraic basis of a Fréchet space F if every element in F can be expresed as a unique linear combination of finitely many elements in E.
analytic Let X be a complete, separable metric space. A set $E \subseteq X$ is said to be analytic if E is the projection of a closed subset C of $X \times \mathbb{N}^{\top}$ to I where \mathbb{N}^{\top} is the product of comntably many copies of the space \mathbb{N} of natural numbers and equipped with the usual metric.

$$
\rho(\mathbf{m}, \mathbf{n})=\sum_{i=1}^{x} \frac{\left|m_{1}-n_{i}\right|}{2^{2}\left(1+\left|m_{i}-n_{i}\right|\right)}
$$

for all $\mathrm{m}=\left(m_{1}, m_{2}, m_{3}, \cdots\right), \mathrm{n}=\left(n_{1}, n_{2}, n_{3}, \cdots\right) \in \mathbb{N}^{\vee}$.
approximately continuous A function f is said to be approximately continuous: on an interval $[a, b]$ if for every $x \in[a, b]$. there exists a set E with x as its density peint such that

$$
\lim _{y \rightarrow r, y \in E} f(y)=f(x) .
$$

Aronszajn null See Definition 2.3.3 and Definition 2.3.4.
atomless measure \quad Ameasure μ is an atomlessmeasure if for every $x \in X, \mu(\{x\})=$ 0 .
automorphism A homeomorphism h of an interval $[a, b]$ that satisfies $h(a)=$ a. $h(b)=b$ is called an automorphism of $[a, b]$.

Baire 1 function A function is said to be a Baire 1 function if it can be written as the pointwise limit of a sequence of continuous functions.
Banach algebra A Banach algebra A is a Banach space that is also an algebra and satisfies that $\|x y\| \leq\|x\| \cdot\|y\|$ for all $x, y \in A$.
Besicovitch set A Besicoritch set is a plane set which contains a unit segment in every direction.

Borel measure A measure μ on a topological space X is called a Bortl measurt if μ is defined on all Borel sets of X. In this thesis we consider μ defined on all universally measurable sets.
Borel probability measure A Borel measure on a topological space.λ is called a Bortl probability measure if $\mu(X)=1$.
Borel selector left (i be a Polish group and $H \subseteq C_{i}$ be a closed subgroup. Then a mapping s: $G / H \rightarrow G$ is a Borel selector for the cosets of H if it is Borel measurable and $s(x H) \in x H$.

Borel sets If X is a topological space, the smallest σ-algebra containing the closed sets is called the class of Borel set.s.
left-and-right shy See Definition 2.9.6.
Cantor group The Cantor group is the set of all sequences of 0 s and 1 s equipped with the metric

$$
\rho(x, y)=\sum_{i=1}^{x} \frac{\left|x_{i}-y_{i}\right|}{2^{i}}
$$

and the usual group structure $x y=\left(x_{1} y_{1}, \cdots, x_{n} y_{n}\right)$.
c-dense $\quad A$ set $S \subseteq \mathbb{R}$ is c - $d e n s e$ in an interval I if the intersection of S with every subinterval of I contains continuum many points. Generally. a set S of a metric space is c-denst in an open set O if the intersection of S with every non-empty open subset

2

of O contains continuum many points.
Christensen null See Definition 2.3.1. Definition 2.9.1 and Definition 2.12.3. co-analytic A set is co-analytic if it is the complement of an an tic set. compact A subset K of a metric space is called compact if every: open covering of K has a finite subcovering.
completely metrizable A topological group is called completely metrizable if its topology can be derived from a complete metric on it.

continuum hypothesis The assumption that $c=\aleph_{1}$ is called the continumm hypothesis. where c is the cardinal of the set \mathbb{R} and \aleph_{1} is the next cardinal after the cardinal of an infinite countable set.
convolution A concolution of two measures μ and v on a topological group $(i$ is defined bs

$$
\mu * \nu(A)=\mu \times \nu\left(\left\{(x, y): x y^{-1} \in A\right\}\right)
$$

for every universally measurable set A. A concolution of a measure μ with a characteristic function of a set A is defined by

$$
\backslash A * \mu(x)=\int_{G} \backslash A(x y) \mu(d y)
$$

countable chain condition See Definition 2.18.1.
countably continuous See page 91.
Darboux function A real-valued function defined on an interval [a, $b]$ is said to be a Darbour function on $[a, b]$ if for each $x, y \in[a, b]$ with $x<y$ and c between $f(x)$ and $f(y)$ there is $z \in(x, y)$ with $f(z)=c$.
discrete group A discrete group is the group with the discrete topology.
Fréchet differentiable Amapping from a Banach space to a Banach space Y is Fréchet differentiable at $x \in X$ if

$$
\lim _{t \rightarrow 0} \frac{f(x+t h)-f(x)}{t}
$$

exists for every $h \in X$ and the limit is uniform for $\|h\| \leq 1$.
Fréchet space A completely metrizable locally convex space is called a Fréchet space
Gâteaux differentiable A mapping from a Banach space X to a Banach space Y is directionally Gidteaur differentiable at $x \in X$ if

$$
\lim _{t \rightarrow 0} \frac{f(x+t h)-f(x)}{t}
$$

exists for every $h \in X$. Further, the mapping f is Gäteaur differentiable at $x \in X$ if there exists an element $g \in X^{*}$ such that

$$
g(h)=\lim _{t \rightarrow 0} \frac{f(x+t h)-f(x)}{t}
$$

for every $h \in X$.
Gaussian measure See Definition 2.4.2.
Gaussian null in the ordinary sense A set sin a Banach space is said Giausion null in the ordinary sen.se if there exists a Gaussian measure μ such that $\mu\left(h^{\prime}\right)=0$.

Gaussian null in Phelps sense Sce Definition 2.4.3. "
Haar measure An invariant measure on a locally compact group in called a Haar mfasure.

Haar null, Haar zero See Definition $2: 3.1$, the comments following Definition 2.3.1, Definition 2.9.1. Definition 2.9.3 and Definition 2.12.3.
Hölder continuous A function f. defined on an interval $[a, b]$, is said to be Hölder continuous at $x \in[a, b]$ if there exist M. $\delta>0$ such that for all $y \in[a, b],|y, x|<$ c. $|f(y)-f(x)| \leq M|x-y|$.

Hölder continuous with exponent α A function f. defined on an inferval $[a, b]$. is said to be Holder continuous with erponent a at $x \in[a, b]$ if there exist $\bar{M} . \mathrm{C}>0$ such that for all $y \in[a, b],|y-x|<\delta,|f(y)-f(x)| \leq M|x-y|^{\prime}$.
homéomorphism A bijection h from a metric space X to a metric space Y is. called a homeomorphism if both h and h^{-1} are continuous.
hyperplane A hypefrlane in a Banach space B is a set of the form $\{x \in B$: $f(x)=\alpha\}$ where f is a non-zero linear functional on B and α is a real number. isomorphism A mapping T from a Banach space \mathcal{X} onto a Banach space \hat{y} is an isomorphism if T is one-one, linear, continuous.
left Haar measure A Haar measure is a left Haar measure if it is left invariant. left shy See Definition 2.9.4.
left transverse See Definition 2.9.4.
Lipschitz (continuous) A function f. defined on [0.1]. is Lipschitz at a point $x \in[0.1]$ if there is a constant $M>0$ such that for all $y \in[0.1] .|f(x)-f(y)| \leq$ $M|x-y|$. Once this inequality holds we say that f is M-Lipschit:
locally finite A Borel measure is locally finitt if every point $x \in X$ has a neighborhood l^{\prime} with $\mu\left(l^{\circ}\right)<x$.
lower density 1 See page 48.
m-dimensionally shy See Definition 3.2.1.
metrizable A topological space (X, \mathcal{T}) is metrizable if there is a metric d on it so that \mathcal{T} is the topology of ($X . d$).
multiplicatively shy See page 93.
nowhere monotonic See page 81.
nowhere monotonic type See page 81.
n-th symmetrically continuous A function f is said to be n-th symmetrically continuous at a point x of an open interval $(a, b) \subseteq \mathbb{R}$ if

$$
\lim _{h \rightarrow 0} \sum_{i=0}^{n}(-1)^{2}\binom{n}{i} f(x+(n-2 i) h)=0 .
$$

observable See page 48.
Polish group A Polish group is a separable completely metrizable group.
Polish space A Polish spact is a separable completely metrizable space.
positive cone In an ordered vector space E, the set $\{x \in E: x \geq 0\}$ is called the positive cone.
positive lower density Sce page 48.
positive upper density See page 48.
Preiss-Tišer null See Definition 2.3.5.
prevalent See page 10.
probe See page 64.
Radon measure A Borel measure μ on a Hausdorff space is called a Radon measure if μ is locally finite and tight.

Radon probability measure A Radon probability measure μ on a Hausdorff space X is called a Radon probability measure if it is a Radon measure with $\mu(X)=1$. right Haar measure A Haar measure is a right Haar measure if it is right invariant.
right shy See Definition 2.9.5.
right transverse See Definition 2.9.5.
semigroup A semigroup is simply a set G with an associative operation: $G \times(i \rightarrow$ G. In this thesis we always assume that our semigroup has a unit element.
shy See Definition 2.3.1. Definition 2.9.3 and Definition 2.12.3.
s-null See Definition 2.3.2.

- spanning set In a Banach space X, a set C is a spanning set if the whole space X is the affine hull of C. Here the affine hull of a set A is the set

$$
\left\{\sum_{i=1}^{m} \alpha_{i} x_{i}: \sum_{i=1}^{m} \alpha_{i}=1, x_{i} \in A, m \in \mathbb{N}\right\} .
$$

super-reflexive A Banach space E is said to be super-reflexive if each Banach space which is finitely representable in it is reflexive. We say a Banach space E_{1} is finitely representable in E if for each finite dimensional subspace $L \subseteq E_{1}$ and $\alpha>0$ there exists an embedding $i: L \rightarrow E$ such that $\alpha^{-1}\|x\| \leq\|i x\| \leq \alpha\|x\| \quad(x \in L)$.
support of a measure The support of a measure μ on a metric space X is defined by

$$
\operatorname{supp}(\mu)=\left\{x \in X: \mu\left(l^{\prime}\right)>0, \forall l^{\prime} \text { a neighborhood of } x\right\} .
$$

symmetrically continuous A function f is said to be symmetrically continuous at a point x of an interval $(a, b) \subseteq \mathbb{R}$ if

$$
\lim _{h \rightarrow 0}[f(x+h)-f(x-h)]=0 .
$$

τ-smooth A Borel probability measure μ is τ-smooth if $\mu\left(U^{\circ}\right)=\sup _{\alpha} \mu\left(l_{\alpha}^{\circ}\right)$ for every family of open sets $\left\{U_{\alpha}\right\}$ filtering up to the open set l^{\cdot}.
thick See Definition 2.19.1.
tight A Borel measure μ is called tight if $\mu(B)=\sup ^{\prime} \mu\left(K^{\prime}\right)$ for all Borel sets B. where the sup is taken over all compact sets $K \subseteq B$.
topological group A topological group is a gróup ($G \cdot \cdot$) endowed with a topology such that $(x, y) \rightarrow x y^{-1}$ is continuous from $G \times G$ to G.
topological semigroup A topological semigroup is a completely metrizable semigroup for which the operations $x \rightarrow a x$ and $x \rightarrow x a$ are continuous.
topological space A topological space is a pair (X. \mathcal{T}), where X is a set and \mathcal{T} is a collection of subsets of X such that $\delta^{d} . X \in \mathcal{T}$ and \mathcal{T} is closed under arbitrary unions and finite intersections.
transverse . See Section 2.2.
typical function lf a set of functions with some property is a residual set in a function space, then every function in this set is called a typical function typical property See page 1.
ubiquitous See page 48 .
universally measurable A set of a topological space X is universally measurable if it belongs the μ-completion of each finite Borel measure $\mu{ }^{\circ} \mathrm{O} X$.
universally Radon measurable A set of a topological space X is universally Radon measurable if it belongs to the μ-completion of each finite Radon measure μ on X.
upper density 1 See page 48 .
well-ordering A strict linear ordering <on a set X is called a well-ordering for X if every non-empty subset of X contains a first element.

Wiener measure See Definition 2.5.1.
Zarantonello null See Definition 2.6.1.

[^0]: 'A similar result for "total-porosity" in an infinite dimensional Banach space was given in [1].

[^1]: ${ }^{2}$ This can be shown under weaker hypothesis (e.g., Martin's axiom).

[^2]: ${ }^{1}$ Assuming Martin`s axiom, Talagrand in [53] showed every separable infinite-dimensional Banach space has a hyperplane that is universally of measure zero without being closed.

