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Abstract 

Inference for point processes is most efficient if the event times for each individual are 

available. Sometimes, the study design is such that  only count data are collected, consisting 

of the number of events or recurrences for each individual over the entire follow-up period or 

between multiple follow-up times. This thesis discusses the loss in efficiency of an  analysis 

of such count data  versus an  analysis of the actual event-times. One particular case is 

exemplified, that in which the purpose of the experiment or trial is to  compare the effects of 

treatments, and the loss in efficiency in the estimator of the treatment effect is computed. 

The specific point process considered here is the non-homogeneous Poisson process, with 

a proportional intensity model for the treatment effects. Random effects models are also 

considered, with estimation via a quasi-likelihood approach. The quasi-likelihood analysis 

proposed here is an  extension of such techniques for the homogeneous Poisson process. 

The resulting estimating equations for the parameters in the random effects models are 

simple and intuitive. The results show that  for many usual situations, treatment effects are 

efficiently estimated using aggregated data; however, when only end-of-follow-up counts are 

collected, the underlying intensity function is not. Multiple follow-up count data  is shown 

to recover much of the information lost by end-of-follow-up counts. 

The efficiency of the quasi-likelihood estimators is shown to  be high relative t o  specific 

likelihood alternatives. Tests and diagnostic procedures for checking model assumptions are 

presented. 

The quasi-likelihood estimators developed here require the assumption of a parametric 

form for the intensity function. This thesis also develops a nonparametric approach t o  

the estimation of the intensity function. Combined with quasi-likelihood estimators for 

covariates, this provides a simple method for the analysis of recurrent event data,  requiring 

less stringent assumptions than traditional methods. 



We examine the small sample behaviour of these procedures with simulation studies. 

The studies show that for the situations we consider, the methods work well and display 

adequate small sample characteristics. Analyses of illustrative examples demonstrate the 

application of the procedures. 
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Chapter 1 

Introduction 

Many statistical experiments are designed to  study the recurrence rate of non-fatal events. 

The data  from these experiments, which we will refer to  as recurrent event data, can be 

viewed as a more general form of survival data. In a classical survival study, the event of 

interest is fatal; that is, each subject can experience at most a single event. However, in 

studies of recurrent events, the event is non-fatal and each subject can experience multiple 

events. Whereas models for survival data depend on the specification of a hazard function, 

i.e., the instantaneous probability of death, models for recurrent events depend on the 

intensity function, the instantaneous probability of a recurrence. However, while there are 

several well developed methods for the analysis of survival data, methods for recurrent event 

da ta  are still under development. This thesis examines some models and methods for the 

analysis of recurrent event data. 

Like survival data, recurrent event data can arise in many contexts: medical, social, 

mechanical, etc. (Abu-Libdeh, Turnbull, and Clark 1990; Bacchetti 1990; Lawless 1995). 

However, for simplicity, the terminology of the biological context has been adopted here. 

For example, the word subject is used here in a general sense, and could refer as easily to  

automobile brakes or computer operating systems as to  patients in a clinical trial. 

Recurrent event data can be collected to investigate a variety of questions, such as: 

Does the recurrence rate appear t o  change over time? Are there characteristics associated 

with the subjects which affect the frequency of recurrence? Is there more variability than 

expected among the subjects? 

This thesis proposes new methodology for the analysis of recurrent event data. The 

methodology is quite general in that  it can handle many of the complications which can 
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arise in this type of analysis. For example, the methods are specifically designed to  handle 

overdispersion, as well as unequal follow-up periods due to non-informative left or right 

censoring. The methods can be adapted to cope with discontinuous follow-up and time- 

dependent covariates that  are independent of the event-history. 

One of these potential complications, overdispersion, receives particular attention in 

the thesis. Overdispersion is commonly observed in the analysis of count data (c.f. Cox 

1983)., and it is natural to  anticipate its appearance in recurrent event data as well. In 

recurrent event data, overdispersion results in more subject-to-subject variability than would 

be reasonable under the proposed model. The inclusion of a subject-specific random effect is 

a natural method to  model this excess variation. However, likelihood-based inference would 

then require the specification of a distribution for the random effects. An alternative is 

the use of quasi-likelihood estimation, which requires only low order moment assumptions. 

The efficiency of quasi-likelihood inference is examined for the models developed in later 

chapters. We also compare robust and model-based variance estimators. 

In Chapter 2 we attempt to  locate the work in this thesis within the broad context of 

the analysis of longitudinal data. We begin by examining the general structure of recurrent 

event data and describing three illustrative studies of recurrent events. Next, we survey 

some of the models and estimation methods currently used for the analysis of this type of 

data. 

In some studies of recurrent events, it is possible to  record the exact event-times for 

each recurrence. In other studies, the event-times are not available, perhaps because the 

examination process is too expensive or invasive, or because the events occur too rapidly 

to  record the exact times. In these circumstances, we could record event counts instead, 

choosing either one count per subject, recorded a t  the end of the follow-up period, or a series 

of counts for each subject, collected a t  intermediate follow-up times. The relative efficiency 

these two forms of count data  is examined in detail in Chapters 3 and 4. 

Chapter 3 describes a nonhomogeneous Poisson process model for recurrent event data. 

A proportional intensity function is adopted for incorporating the effects of covariates, and 

a random subject-specific effect is introduced to  account for overdispersion. We examine 

the relative efficiency of studies utilizing event-time data versus end-of-follow-up count data, 

and establish that  count data is highly efficient for the estimation of covariate effects under 

very reasonable design constraints. However, count data  is shown to have low efficiency for 

parameters associated with the underlying intensity function. Quasi-likelihood estimators, 
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which require only low order moment assumptions, are proposed as a more robust alternative 

t o  likelihood estimators. The efficiency and robustness qualities of the quasi-likelihood 

estimators for the analysis of "simple" count data  (e.g., McCullagh and Nelder 1989; Breslow 

1990) make them a reasonable choice for these models. Asymptotic results are illustrated 

with a numerical study, and a bladder cancer recurrence data  set is used to illustrate the 

techniques. 

Chapter 4 develops methods for the analysis of recurrent event data in the form of 

counts collected a t  multiple follow-up times per subject. This is sometimes referred to  as 

panel data. Panel data are examined as a means of recovering much of the information 

that  was lost by the use of end-of-follow-up count data  in Chapter 3. Like end-of-follow- 

up count data, panel data is shown to  be highly efficient for the estimation of covariate 

effects. However, where end-of-follow-up count data  was not efficient for the estimation of 

the overall intensity, panel data is shown to  be reasonably efficient with as few as two or 

three follow-up-times in the numerical studies we conducted. This chapter also describes a 

quasi-score test for overdispersion and diagnostics for the appropriateness of the intensity 

and variance models used. A small numerical study examines the asymptotic characteristics 

of the procedures and a simulation study examines their small-sample behaviour, including 

the performance of the model-based and robust variance estimators. The bladder cancer 

data  set examined in Chapter 3 is revisited and a panel data analysis is compared to  analyses 

based on event-times and end-of-follow-up counts. 

In Chapter 5, a nonparametric approach to  the modeling of the intensity is described. 

This is a particularly exciting development as it permits removal of the parametric assump- 

tions associated with the intensity function. Combined with the quasi-likelihood methods 

of Chapter 4, which eliminate the parametric assumptions for the subject-specific random 

effect, the result is a reasonably robust semiparametric model for recurrent events collected 

as panel data. Score-type tests for the fit of parametric intensity models are developed. The 

asymptotic and small-sample behaviour of the estimators and tests are examined through 

numerical and simulation studies, and the techniques are illustrated by a reanalysis of the 

bladder cancer data. The analysis of a second data  set, from an experiment examining a 

new method for the control of the Cherry Bark Tortrix moth, highlights the usefulness of 

the semiparametric approach. 

The thesis concludes with a brief summary and discussion of several areas which will 

be pursued in later work. For example, one topic for future research is the extension of 
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semiparametric methods of Chapter 5, including development of smoothing techniques for 

the nonparametric intensity estimator. Another area of interest is the prediction of future 

events based on current event history. For some applications, there is less interest in testing 

of covariate effects and more in the prediction of final event-counts based on intermediate 

information. Generalizations of the variance structures used in this thesis also provide an 

opportunity for future work, and perhaps connect with generalized linear mixed models and 

generalized estimating equations methods. Another direction t o  pursue is the development 

of methods for recurrent events which are not point events - i.e., for events which have 

positive duration. Applications of such techniques may include many disease processes, such 

as Multiple Sclerosis. Here the event of interest is a prolonged period of exacerbation of 

symptoms. For example, with M.S., an exacerbation can last for more than six weeks. It 

should be possible to  modify the methods in this thesis t o  address a two-state model for 

such processes. 



Chapter 2 

Background 

2.1 The Structure of Recurrent Event Data 

We shall consider recurrent event data  arising where a reasonably large number of subjects 

is monitored for the recurrence of a non-fatal event over a reasonably short period of time. 

Let (Tio, Tie) denote the follow-up period for subject i, i = 1 ,2 , .  . . , M. Then recurrent event 

data  can be recorded in several ways. Event-time data records the exact event times for each 

subject. Panel data records the number of recurrences between the intermediate follow-up 

times T;l < Tiz < . . . < Ti,, where all Tij E (Tio,T;,]. End-of-follow-up count data, referred 

t o  here as count data or where ambiguous, end-of-follow-up count data, records the total 

number of events occurring during the follow-up period. 

In many studies, each subject has a unique start-of-follow-up time Tio. However, in this 

thesis we will assume that  the time index can be redefined so that  Tjo = 0 for all subjects, 

i = 1,. . ., M .  We also assume that  the intermediate follow-up times are the same for all 

subjects, i.e., T,j = Tj for all i = 1,. . . M ,  and j = 1,. . .,s. These assumptions reflect 

the reality of many recurrent event studies. For example, many clinical trials consider the 

application of the treatment to  occur a t  time t = 0 and each subject is then examined 

according to the same schedule. However, we do not assume common end-of-follow-up 

times, and in this way accommodate unequal follow-up periods due t o  subjects being lost 

to  follow-up. 

Many studies of recurrent events focus on determining the effects of covariates. Covari- 

ates can be either fixed or time-dependent; however, only fixed covariates are considered in 

this thesis. While it is possible to  include time-dependent covariates, care must be taken 
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when covariate changes are associated with the history of the process (cf. Kalbfleisch and 

Prentice 1980). 

A typical event-time recurrent event dataset is displayed in Figure 2.1. Here we show the 

follow-up period for each subject and the event-times and the subjects are grouped according 

to  treatment. The data  are described in Section 2.2.2, but a t  present it is sufficient to  note 

the characteristics described above: multiple events per subject, common start-of-follow-up 

times, unequal follow-up periods and the presence of a covariate (treatment). 

2.2 Illustrations 

In this section we describe three illustrations which demonstrate the broad applicability of 

the techniques developed in the thesis. 

2.2.1 Air Conditioner Data 

Proschan (1963) provides data  consisting of inter-event times, measured in hours of operation 

between successive failures of the air conditioning equipment aboard a fleet of 13 Boeing 720 

aircraft. The data  have been discussed by a number of authors. As there are no recorded 

covariates, the focus of analyses for this data is on describing the pattern of recurrent 

failures, detecting time trends, and determining if there is variability between the aircraft. 

An important question for this data set is whether there is evidence of a decreasing failure 

rate (i.e., a decreasing intensity function). 

2.2.2 Bladder Cancer Data 

In the early 1970s, the Veterans' Administration Co-Operative Urological Research Group 

conducted a randomized clinical trial investigating the effectiveness of three treatments on 

the frequency of bladder cancer recurrence. Each of the 118 subjects had superficial bladder 

tumours when they entered the trial. The tumours were removed and the subjects were 

assigned to  one of three treatment arms: placebo pills, pyridoxine (Vitamin B6) pills, or 

periodic instillation of thiotepa into the bladder. Each patient was examined at  frequently 

repeated follow-up visits; any tumours found were removed and the treatment was continued. 

The data  record the times of each recurrence and the number and size of any tumours found. 

These data were originally examined in Byar et al. (1977). They have been analyzed in 
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Figure 2.1: An Example of Recurrent Event Data - Bladder Cancer Data. The horizontal 
lines represent the follow-up period for each subject and the points mark recurrence times. 
Figure adapted from Byar et al. (1977, Figure 1). 

a number of other articles, including Byar (1980) and Davis and Wei (1988). A simple 

graphical summary of the event-times is given in Figure 2.1. 

2.2.3 Cherry Bark Tortrix Data 

The Cherry Bark Tortrix moth (Enarmonia formosana) infests ornamental cherry trees 

on boulevards throughout the Lower Mainland. Because the trees are located in residen- 

tial neighbourhoods, insecticide controls were deemed inappropriate. An experiment was 

designed t o  test an alternative pest-control strategy which would disrupt mating by dis- 

orienting mate-seeking males and preventing them from finding females. This scent-based 

mating disruption strategy used pheromone dispensers to emit a cloud of artificial female 

pheromone sufficiently dense to  disorient any mate-seeking male. The artificial pheromone 

chosen for the experiment was known to be competitive with virgin female moths at at- 

tracting males to  the traps. For the experiment, twenty cherry trees were chosen along a 

residential street in New Westminster, and a chemical dispenser was installed on each tree. 

Half of the dispensers, randomly chosen, were filled with the pheromone; the remaining ten 

trees were used as a control group. Traps were placed in similar locations in each tree and 
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the bait in each trap was impregnated with the pheromone. Over the course of the summer 

of 1995, the trees were visited 19 times, approximately once per week, and the number of 

male moths per trap was recorded. Once every three weeks, the baits were refreshed. 

These data were originally examined in McNair, Gries, and Gries (1997) where the strong 

treatment effect was described. The data are re-analyzed in Chapter 5 as an example of an 

experiment where the semiparametric models we present are particularly suitable. 

2.3 Models for Recurrent Event Data 

Methodology for recurrent event data  has been examined in many references, including Cox 

and Isham (1980) and Ross (1983). In this section, we review the models which are used 

in later chapters. We begin with the the nonhomogeneous Poisson process (NHPP) model 

as a basic framework for the analysis of recurrent events and then incorporate covariates 

through the use of the proportional intensity model. Subject-to-subject heterogeneity is 

accommodated through frailty models. 

The models are described below for the event-time data. End-of-follow-up count and 

panel data models are described in Chapters 3, 4, and 5. 

2.4 Poisson Process Models 

A Poisson process is a stochastic process associated with events occurring randomly in time. 

Let N(a ,  b) be the number of events occurring during the interval (a,  b), let N( t )  correspond 

to  N(0,  t )  and let X(t) be a left continuous function such that 

1; X(u) du = A(t) < oo for all t > 0. 

Then, {N(t)}& is a Poisson process with intensity function X(t) and cumulative intensity 

A(t) if and only if 

2. Pr{N(t) - N ( t  - h) = l ( N ( t  - h)) = X(t)h + o(h) 

3. Pr{N(t) - N(t  - h) > l / N ( t  - h)) = o(h) 
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for small h and all t > 0. The history of the process, N( t ) ,  is the record of all events to 

time t ,  N ( t )  = {N(u)  : 0 < u < t),  and o(h) represents a quantity that decreases to 0 more 

rapidly than h as h tends to  0, i.e., limh,o h-'o(h) = 0. If the intensity function is constant 

with respect to  time, X(t) = A, then the Poisson process is a homogeneous Poisson process. 

Otherwise, the process is nonhomogeneous in time. In other words, a nonhomogeneous 

Poisson process (NHPP) has an intensity function that  is time dependent; a homogeneous 

Poisson process (HPP) has constant intensity. 

The Poisson process has a number of useful characteristics: 

The process is memoryless. Events in non-overlapping time intervals are completely 

independent. 

If ( a ,  b) and (c, d) are non-overlapping intervals, then N(a,  b) and N ( c ,  d) are indepen- 

dent Poisson random variables with means J: X(u) du and ~ , d  X(u) du. 

If the process is homogeneous, then the inter-event times are independent exponential 

random variables with rate A ,  or mean 1 / X .  

For t > 0, N(t )  is a Poisson random variable with mean A ( t ) .  The cumulative intensity 

function A(t) is sometimes referred to  as the cumulative mean function for this reason. 

Two distributional results that will be useful later are stated here. First, we observe that 

conditional on the number of events during the period (0, TE], the distribution of event times 

within that  period is that of order statistics. Tha t  is, given N(TE) = n, the probability 

density function (p.d.f.) of the event-times TI, T2,. . . , T, is given by 

A(t3' for 0 < tl < t2 < . . . < t. < TE, f ( t l , t2 ,  ..., tn ln )=  n!n--- 
j=1 W E ) ,  

which is the distribution of the order statistics from a sample of size n from a distribution 

with density X(t)/A(TE), 0 < t < TE. Second, the likelihood based on the n event times 

0 5 tl < t2 < . . . < t, < TE occurring during the fixed interval [O,TE] is 
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References for the Poisson Process are numerous. See for example, Cox and Isham 

(1980),Karr (1986),Lewis (1972),and Snyder (1975). Cox and Lewis (1966, Chapter 2) 

discuss methods based on counts of the number of events in fixed time intervals. Ross 

(1983, Chapter 2) and Lawless (1982, Chapter 10) provide general overviews of the Poisson 

process. 

2.5 , Proportional Intensity Models 

In a study of recurrent events with covariates, the assumption of a proportional intensity 

model means that any two subjects with covariate values X I  and 2 2  have intensity functions 

that  are proportional to one another. That is, the ratio X(tlxl)/X(tlx2) does not depend 

on time. This implies that the intensity function can be written X(tlx) = Xo(t)g(x), where 

Xo(x) is called the baseline intensity and corresponds to a subject with g(x)  = 1. One very 

common and useful version of this model has g(x) = exp(x1P). In this model the covariates 

have a multiplicative effect on the intensity function. This is the same method for the 

inclusion of covariate effects as used in proportional hazards survival analysis models. The 

proportional intensity model is discussed in many standard references, including Kalbfleisch 

and Prentice (1980) and Lawless (1982). 

2.6 Frailty Models for Heterogeneity 

Heterogeneity, a phenomenon frequently encountered in the analysis of count data, occurs 

when the variance exhibited by the observations is larger than that predicted by the model; 

for example, when the data are modeled as Poisson with mean ~ ( t )  and the sample vari- 

ance of the data is found t o  be much larger than ~ ( t ) .  Cox (1982) describes the general 

phenomenon and points out that  analyses conducted which ignore overdispersion will un- 

derestimate the standard errors of parameters and result in tests with inflated type I error 

rates. 

In an analysis of recurrent events, one method to  account for overdispersion is to allow 

each subject to have a unique Poisson intensity, i.e., X;(t) = v,X(t). However, this intro- 

duces a new parameter V, for each subject. An alternative is to  treat these parameters 

as unobservable realizations from a mixing distribution p(v). In this case, the conditional 

distribution of the events is given by the intensity function X,(t); that is, given the value v; 
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the events follow a Poisson process. 

Based on the event-times for subject i ,  whose ni observations occured a t  times tij, where 

0 < ti1 < ti2 < . . . < tin, 5 Tie, the likelihood is 

For example, if the conditional distribution of yi given v, is Poisson with mean pi, and the 

subject-specific effects v; are i.i.d. gamma random variables with mean 1 and variance r ,  

the marginal distribution of y; is negative binomial with mean p; and variance p;(1 t rp;). 

This scenario is described fully in Lawless (1987a). 

2.7 Other Stochastic Process Models 

There are many other models for stochastic processes, but two a t  least deserve mention 

here because of their potential for describing the behaviour of recurrent events. The first 

is the renewal process, of which the Poisson process is a special case. The renewal process 

is a natural candidate model for processes where the inter-event times are thought to  be 

i.i.d. The second is the discrete state Markov Process. Also known as a Markov chain in 

continuous time, these models may be appropriate for processes 'which pass from state-to- 

state and where interest centers on the sojourn times (i.e., the times spent between shifts 

from state-to-state). This is a rich class of models with broad applicability, but is described 

only briefly here as part of the overall context of the models adopted in the thesis. 

2.7.1 Renewal Process Models 

A homogeneous Poisson process is a counting process with independent exponentially dis- 

tributed inter-event times. A generalization of this is the renewal process, a counting process 

with independent and identically distributed inter-event times from an arbitrary distribu- 

tion. In renewal models, interest naturally centers on the inter-event times, denoted {Z;)gl ,  

all Z, > 0. An example which could be modeled as a renewal process would be the lifetimes 

of light bulbs replaced immediately upon failure, assuming that the light bulb lifetimes are 
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2.i.d. A delayed renewal process is a counting process where the first event time has a differ- 

ent distribution than the remaining events. For example, computer components may have a 

different lifetime distribution when first installed and after being replaced for the first time. 

One useful characteristic of the renewal process is that the intensity function for the 

event process depends only on the time since the most recent event. That  is, 

1 
A(t; N( t ) )  = lim - Pr[N(t) - N ( t  - h) = l IN(t  - h)] 

h-PO h 
= - T N ( ~ ) )  

where TN(t)  is the time of the latest event and Xo(z) = f (z) / [ l -  F(z)] is the hazard function 

for the inter-event distribution with p.d.f. f(z). 

2.7.2 Discrete State Markov Process Models 

One form of the Markov process which is useful for modeling recurrent events is the continuous- 

time Markov chain, a discrete state process in continuous time. Let Y(t) represent the 

state a process is in a t  time t. The states are labeled 0, 1, 2, . . . ; the probability that  

the process will go from state i to  state j during the interval (s, s + t) is represented as 

Pjj(s ,s  + t) = Pr[Y(t + s)  = j JY(s)  = i], where s 2 0 and t > 0. If the P;j do not depend 

on s,  then the process is homogeneous in time. The transition probabilities must satisfy the 

Markov assumption (Feller 1968, Section 17.9). A Markov process has the property that the 

conditional distribution of Y(t), given the event history of Y ( t ) ,  depends only on the most 

recent value of Y ( t ) .  Markov processes display what could be called first-order dependence. 

Markov processes have been used to  model changes in a subject's behaviour or disease state 

(e.g., Kalbfleisch and Lawless 1985; Bartholomew 1983). 

A semi-Markov process is one that passes among states 1,2,. . . according t o  a Markov 

chain with transition probability matrix P = (p;j); p;j is the probability that the system 

will enter state j next from state i. Also, the sojourn time, the time spent in state i before 

passing to  state j ,  is a random variable with a p.d.f. fij(t). 

2.8 Estimation 

This section reviews estimation methods used in later chapters. First is likelihood estima- 

tion, where by specifying a full distributional model, estimates are found that  maximize 
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the likelihood for that  model given the observed data. Quasi-likelihood and other moment 

methods find estimates as the roots of estimating equations. 

2.8.1 Likelihood Estimation 

Adopting the NHPP model with proportional intensity function for incorporating covariates 

and the frailty model for accommodating overdispersion, the likelihood function for the 

event-time da ta  is 

The likelihoods for the end-of-follow-up count data and panel data are given in Chapters 3 

and 4. Likelihood inference for event-time data is explored extensively in Lawless (198713) 

and Thall (1988), with additional resuIts given by Lawless (1987a) for the mixed-Poisson 

model with subject-specific effects distributed as gamma random variables. 

Strategies for finding the maximum likelihood estimates include the usual iterative pro- 

cedures (quasi-Newton or Fisher Scoring algorithms). Models which include a random 

subject-specific effect are most easily handled by maximizing the profile likelihood for the 

overdispersion parameter r, defined as in Section 2.6. Negative values of .i are possible, but 

for the random-effects model proposed have no sensible interpretation and are thus set to 

zero. 

2.8.2 Quasi-Likelihood Estimation and Other Moment Methods 

Recently, moment-based estimation methods have become popular for the analysis of "sim- 

ple" count data,  (e.g., McCullagh and Nelder 1989, Chapter 9). The use of only first and 

second moment assumptions to construct estimating functions in the context of generalized 

linear models for count data is attributed to  Wedderburn (1974). We describe the use of 

these techniques for the analysis of event-time, panel, and count data in later chapters. 

The usual quasi-likelihood estimating functions can be used for the intensity function 

parameters (McCullagh and Nelder 1989). Several estimating functions have been suggested 

for r, including 
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where n; is the count of the number of events for subject i and has expectation p; = p;(B), 

M is the number of subjects and p is the dimension of the intensity function parameter 

vector (Breslow 1984). The resulting equation sets the Pearson statistic equal to  its degrees 

of freedom. Using the deviance statistic as the first term of this function yields a similar 

estimator (McCullagh and Nelder 1989). Davidian and Carroll (1987) suggest a similar 

estimating function for T, 

The function compares the observed sample variance and the model-based (in this case, 

negative binomial) variance and effectively corresponds to the likelihood estimating func- 

tion were the subject-specific random-effects to be from a normal distribution. We adopt 

this estimating equation for the quasi-likelihood approach for reasons discussed later, and 

consider the efficiency and bias of the resulting estimators in Chapter 3. Lawless (1987a) 

also discusses efficiency and robustness of the estimators based on (2.1). 

2.8.3 Robust Variance Estimation 

For inference based on quasi-likelihood, let g be an unbiased estimating function for the 

parameter 0. That is, assume that  E (g) = 0. Then, the quasi-likelihood estimates, 8, are 

obtained as the roots of g(0). The results of Huber (1967), Inagaki (1973), and White (1982) 

provide that under suitable regularity conditions, similar to  those for maximum likelihood 

asymptotic theory, m ( 8  - 0 )  is asymptotically normal, with mean 0 and asymptotic 

variance given by 

E - lim -- E lim -ggT E - lim -- ( M-co M a e T  ag ( M-co M ) ( M + m M a O  agT)-l (2.2) 

evaluated at 8. For the quasi-likelihood results, the regularity conditions require the matrix 

given by (2.2) to be positive definite. A robust estimator of the variance of 8 is, 

This is the so-called "sandwich" variance estimator (e.g., Liang and Zeger 1986; Zeger et al. 

1988). The robust variance estimator has been used extensively, for example in the papers 

Lawless (1987b), Lawless and Nadeau (1995), Moore and Tsiatis (1991). 
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In the following chapters, we will examine the likelihood and proposed quasi-likelihood 

estimators for a nonhomogeneous Poisson process model. Covariate effects will be incor- 

porated via a proportional intensity model, and overdispersion will be accounted for via 

a subject-specific random effect. Chapter 3 compares the efficiency of analyses based on 

end-of-follow-up count data  to  those based on event-time data  and Chapter 4 examines the 

efficiency of analyses of panel data. Chapter 5 describes a nonparametric intensity model 

and examines the efficiency of analyses based on this model for panel data. 



Chapter 3 

Analysis of Event-Time Data vs. 

End-of-Follow-up Counts 

3.1 Introduction 

Inference for point processes is most efficient when the exact times of occurrence of events 

are available. Sometimes, however, the event-times are unavailable and only the number of 

events that  have occurred in a fixed interval of time is recorded. For example, this type of 

data  arises in medical studies where an event is recognized only when a subject is examined, 

or when events occur too frequently for exact times of occurrence to  be noticed (cf. Stukel 

1993). 

In this chapter, we consider a study where every subject in the study gives rise to  

a non-homogeneous Poisson process. The aim of the study is to  compare processes for 

individuals with different covariate values, e.g., undergoing different treatments. We use 

the proportional intensity function for the inclusion of covariate effects. The proportional 

intensity model has been discussed by many authors, and surveys of related articles are 

provided in Andersen and Gill (1982) and Lawless (1987b). Its usage is common in part 

because it is a tractable and flexible model. Subject-to-subject heterogeneity not explained 

by the regression model is incorporated via random effects models and estimators are found 

using quasi-likelihood estimating functions. 

There is some loss of efficiency in the estimation of treatment effects when analyzing 

only the end-of-follow-up counts instead of the event-times. This chapter derives this loss for 
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non-homogeneous Poisson processes in Section 3.2, and for Poisson processes with random 

effects (cf. Lawless 1987b) in Section 3.4. The random effects models allow for extra-Poisson 

variation in the distributions of the counts. Quasi-likelihood inference for these models is 

also discussed in Section 3.4. The quasi-likelihood analysis proposed here is an extension 

of such techniques for the homogeneous Poisson process. The methods result in estimating 

equations for the parameters in the random effects model that are simple and intuitive. 

Section 3.6 considers an example concerning the recurrences of tumors in patients with 

bladder cancer. Our results show that  for many usual situations, covariate effects can be 

estimated with high efficiency based on end-of-follow-up counts, though this is not the case 

for the parameters of the underlying intensity function of the process. The chapter closes 

with a brief discussion of the results. 

3.2 Efficiency comparisons for the non-homogeneous Poisson 

process 

Consider a comparison of k treatments, where m, individuals are given treatment r ,  and 

let M = ~ , k = ~  m, denote the total sample size of the study. Each individual is monitored 

for events, and observations on the i-th of the M individuals consists of Y,(t), the number 

of events observed up to  time t ,  t E (0, Tie], so individual i is followed for a time Tie. We 

assume that Tie is independent of the counting process X(t). Inference is possible in the 

absence of such independence, but would require further assumptions regarding the joint 

distribution of the end-of-follow-up times, T,,, and the counting process. Note that this 

would permit more general withdrawal schemes such as censoring at  the r-th failure, as is 

common in reliability studies (cf. Lawless and Nadeau 1995). 

Define the end-of-follow-up counts t o  be n; = Yi(Tie), and let {wil, l = 1 , .  . . , n;) be the 

event-times for the i-th individual. Let xi be a k x 1 covariate vector for the i-th individual 

with xi1 = 1, and 

1 if individual i received treatment r ,  
xi, = 

0 otherwise - 
r = 2, .  . . , k. The counting process Y,(t) is modeled as a Poisson process with rate function 
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where Xo is a twice differentiable baseline intensity function, depending on a, and /3 is a 

vector of regression parameters. We have parameterized the treatment effects such that  

treatment 1 is the "reference treatment." That  is, PI determines the level of the intensity 

function X;(t) for treatment group 1 and P, measures the effect of treatment T relative 

t o  treatment 1 (T = 2, .  . . , k). The parameter a determines the overall "shape" of the 

intensity function Xo(t; a ) .  If a constant intensity function were assumed, Xo(t; a )  would be 

identically one and a would not be required. Writing Ao(T;,; a )  = J? Xo(u; a )  du for the 

cumulative baseline intensity function, then p, = E (ni) = e x : @ ~ o ( ~ i e ) .  

The likelihood function for 7' = (PI, a ' ) ,  based on the event-time data, is 

Based on the count data, consisting only of the n;, i = 1 , .  . . M, the likelihood is the simple 

Poisson kernel: 

M 

= exp (5 rz;x:p) { fi Ao(Tie; exp (- 5 pi) . 
i=l i=l i= 1 

(3.2) 

As pointed out by Lawless (1987b), there is a factorization of the event-time data likelihood 

(3.1) of the form 

L t ( 4  = L&)LC(7), (3.3) 

where 

The factorization of X;(t) into two components, one a function of a ,  the other a function of 
- 

p, is the key t o  the factorization of the likelihood in (3.2) above. This factorization of the 

likelihood will be exploited in computing the asymptotic efficiency of PC, the estimator of 

/3 derived from LC, with respect to Bt,  the estimator of p derived from L t .  The asymptotic 

efficiency of the corresponding estimator of a ,  &, from LC with respect to  & from Lt,  will 

also be computed. Note that if a were known, the likelihood kernel from (3.1) would equal 

that  from (3.2), and analysis of the counts would be fully efficient for inference concerning 

P. 
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The maximum likelihood estimate of 0 ,  based on either LC or Lt, satisfies 

where Do = ap/apl, V = diag(p;; i = 1 , .  . . , M), and N and p are vectors of counts and 

their expected values, respectively. This simplifies to  

where X is the covariate matrix having ir-th entry xi,. 

Let G, index the set of individuals who received treatment r ,  G, = { all i 3 individual 

i received treatment T), T = 1, .  . . , k. To simplify notation, let [a],+ denote CiEGr a;, so 

[rill+ = CiEGI n,, the total number of events observed for all individuals receiving treatment 
M 1; let [ab],+ denote CiEGr aibi, etc., and for grand totals, let [a]+ denote CiZl a;, [ab]+ 

denote CE1 a$;, etc. Then, 

and 
ePrt = [nlT+ - - CG, n; 

ebl t [Ao(~;  &)I,+ eblt CiEGr ~ o ( ~ i ;  &) ' 
(3.8) 

T = 2 . .  , k. Similarly, eBlc = [n]l+/[Ao(T; &)jl+, and eBrc = [n],+/(e8lc [A,(T; &)],+). 

An important result holds when the follow-up times for individuals on treatment 1 are the 

same as for those on treatment r 2 2, {T;,, i E G I )  = {T;,, i E G,); Here, {Tie, i E G,) 

has length m,, so replicate times are retained in the set; e.g., while {1,1,2) = {1,2) in 

traditional set notation, here {1,1,2) is not so reduced. When this condition is true, the 

estimates of ,Or from the analyses of event-time and panel da ta  are identical, 

so analysis of the counts is fully efficient for estimation of the treatment effects ,Or, T = 

2) . . . )  k.  

Based on LC, the information matrix is 



CHAPTER 3. EVENT-TIMES VS .  END-OF-FOLLO W- UP COUNTS 20 

where V is defined as previously in (3.5), and conceptually here is playing the role of 

the inverse of the generalized linear model iterated weight matrix for log-linear Poisson 

regression (McCullagh and Nelder 1989, Sec. 2.5); the matrix Z has ir-th entry 

The information matrix based on the event-time data  is 

X'VX X'VZ 
It($ = 

Z'VX Z'VZ + H 

where 

The following results provide the asymptotic relative efficiencies of the estimators derived 

from the end-of-follow-up count data, relative to those derived from the event-time data. 

For simplicity, results are presented for scalar a. The derivation of these results is provided 

in the following section, including a proof of the corresponding results for vector a. 

Result 1 The asymptotic relative efficiency of &, relative to iit is 

is a corrected sum of squares. 

Result 2 The asymptotic relative efficiency of plC relative to ,bit is 

where 
2 P A o / ~ ~ I , +  

i.=( P o l  1 + ) .  
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Result 3 The asymptotic relative eficiency of b,, relative to ,&, T = 2,. . . , k, is 

where 

The! first observation is that ARE(&,) > ARE(&,), r = 2,.  . . , k. That is, an analysis of 

counts rather than event-time data  loses more information about the shape of the baseline 

intensity function than about the differences between the treatments. As many experiments 

are conducted more to  examine treatment differences than the baseline intensity, loss of 

information about the 

about the treatments. 

Next, we point out 

baseline intensity poses less of a drawback than loss of information 

that if H in (3.10) can be written as 

where f(Tie; a )  is a function of the end-of-follow-up times, Tie, and cr only, then further 

observations regarding the ARES can be made. This form for H is possible when Xo(t; a )  

takes common parametric forms, including the Weibull (atff-') and exponential (exp(ot)). 

The Weibull is commonly used as the intensity function of count processes. Bain (1978), 

Seeber (1989), Lawless (1987b), for example, illustrate and discuss its use. 

When (3.16) holds, eP1 can be factored out of both E and A leaving remainders which 

are not functions of pl. Using (3.11) and (3.13) we then obtain that ARE(&,) and ARE(,&,) 

do not depend on PI. If, in addition, {T,,, i E GI) = . . . = {Tie, i E Gk) then the ps enter 

E and H through a factor, (eP1 + t3!=, eP1+Or ); in this situation, from (3.1 1) we have that 

ARE(&,) does not depend on P,  and the representation in (3.13) shows that ARE(&) 

increases with increasing values of ~ 5 = ,  ePr . 
If the follow-up times for all the individuals in the study are the same, T;, = Te, Vi, then 

E = 0, and ARE(&,) = ARE(,&,) = 0. That is, when the Ties are all equal, the parameters 

cr and pl cannot be simultaneously estimated. We need information on the total number 

of events observed over a t  least two distinct follow-up times in order to  estimate these two 

parameters. However, the larger the  range of the Ts, (i.e. the larger the variability of 

d log Ao/da),  the larger E (3.12), and hence the larger the ARES of &, blc, . . . , pkC will be. 
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The most important results relate to  the ARE(/?,,), r = 2,.  . . , k, and these, indeed, are 

the quantities of greatest interest. If (3.16) holds, then  ARE(^,,) does not depend on PI. 
More importantly, if {T;,, i E G,) = {T;,, i E GI),  then 1, = 0, so ARE(/?,,) = 1, and 

Section 3.3.1 shows that  the asymptotic covariance of the estimators of P, and a equals 0, 

r = 2, . . . , k. Recall, from (3.2), that  in this situation the estimators from the full analysis 

are identical to  those from the aggregated analysis. 

There are other conditions which lead to ARE(/?,,) being unity. The most inclusive, 

of course, is that  I ,  be 0. This results when {T;,, i E G,) = {T;,, i E GI);  however, 

the cardinality of G, need not equal that of G1 in order that  1, = 0. When we refer 

t o  a balance in the follow-up times over the treatment groups we mean conditions leading 

t o  1, = 0, r = 2, .  . . , k. For example, if the end-of-follow-up times for individuals under 

treatment 1 were {TI,, . . . ,T,,,), and there were (p x ml )  individuals receiving treatment 

r whose observation times were {TI,, . . . , T,,,}, replicated p times, then 1, would equal 0, 

and ARE(/?,,) would equal 1. Hence, while the variability of dlogAo/da,  as measured by 

E, is important for high efficiencies, we also need the weighted means of dlog Ao/aa for 

treatment groups 1 and r to  be similar; b,, (3.15), measures the squared difference of these 

weighted means 

[A, yp] 
1, = 

Pol  1 + I + ) ; .  

When I, # 0 and if (3.16) holds, then the ARE(/?,,) becomes large as P, increases in 

absolute magnitude. To see this notice that when (3.16) holds, H / ( E  + H) is bounded as 

lPrl increases, with all other parameters fixed. Since 

where the c,s are functions of the T;,s and a, then as lPrl i co,([p];: + [p];:)~ -+ and 

from (3.14) we have that  ARE(^,,) increases as IP,I increases. In the case of imbalanced 

follow-up times, the larger the treatment effect, the more efficiently we can estimate it. 

If a is a vector parameter, similar observations to  those given in the paragraphs above 

can be made, and this is discussed further in the next section. 

Table 3.1 and Figure 3.1 display asymptotic relative efficiencies for the situation where 

there are two groups to  be compared (i.e., k = 2), and with ml = m 2  individuals per group; 

the follow-up times for members of each group are 10 - 17s and 10 - 2's intended to mimic 
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Table 3.1: Asymptotic Relative Efficiencies of the Estimators ,&, and 6,. The study was 
conducted with p2 = 0, k = 2 groups, ml  = ma = 20 individuals per groups; the follow-up 
times are identical for the two groups. 

a 2-year study where 112 of the members of each of the control and treatment groups are 

recruited only half-way through the study. The intensity function is modeled as Weibull, 

Xo(t; a )  = ata-'. The  ARE(^^) = 1 here since the follow-up times for the members of the 

first group are the same as for the second. Because (3.16) holds and the follow-up times 

are the same in the two groups ARE(&,) does not depend on P in Table 3.1. The table 

gives ARE@&) and ARE(&), for selected a values, 0.5 5 a 5 3 and with P2 = 0. These 

efficiency values are all low, especially for ti. 

Figure 3.1 displays  ARE(^^,), with the treatment effect P2 varying between -3 and +3 

for three cases: (a) a = 0.5, (b) a = 1, and (c) a = 2. The efficiency of PIC increases as a 

decreases and P2 increases. Recall that  it does not depend on P1 here. 

Table 3.2 displays asymptotic relative efficiencies corresponding to designs with k = 3, 

ml  = m2 = ms = 20 with the follow-up times for each group being 10 - l's and 10 - 

2's) and for three values of p. The relative efficiencies of 6 are identical to those obtained 

in Table 3.1. Recall here that   ARE(,^^,) = ARE(,&,) = 1. In Table 3.2, the value of 

(1 + eD2 + eP3) increases from column 1, Case (a), to  column 3, Case (c), as do the ARE()s. 

To examine the effect of lack of balance in follow-up times on the asymptotic relative 

efficiency of the treatment estimator, we considered several imbalanced designs. We present 

results for one fairly extreme situation below, as an example, and a summary statement 

follows. In the example, there are two groups of 20 subjects, with the end-of-follow-up 

times for the individuals in group 1 being fifteen 1's and five 2's; in group 2, 5 of the 

subjects were followed up t o  time 1 and 15 to  time 2. The Weibull intensity function is 

used, Xo(t; a) = ata-'. The study used the same values for a and p2 as in Table 3.1. For 
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Figure 3.1: Asymptotic Relative Efficiency of ,&,. The study was conducted with -3 < 
P2 5 3, and for a = 0.5,1,2; k = 2 groups, ml = m2 = 20 subjects per group; the follow-up 
times are identical for the two groups. 

Case (a) Case (b) Case (c) 
a p 2 = - 1 , p 3 = - 2  , & = - 1 , p 3 = 1  p 2 = - 2 , P 3 = 2  

0.5 0.529 0.750 0.862 
1 .O 0.484 0.703 0.828 
1.5 0.460 0.662 0.794 
2.0 0.444 0.622 0.756 
2.5 0.429 0.580 0.712 
3.0 0.410 0.536 0.661 

Table 3.2: Asymptotic Relative Efficiencies of pl, for Three Cases with Increasing Values 
of (1  + eP2 + eP3).  For each case, k = 3 groups, m l  = m2 = m3 = 20 individuals per group; 
follow-up times identical for the three groups. 
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a = 0.5, the ARE(,&,) ranges from 0.76 for p2 = 0 to  about 0.95 for p2 = -3 or 3. For 

a = 3, the ARE(,&,) ranges from 0.92 for P2 = 0 to  about 0.98 for P2 = -3  or 3. Using this 

set of follow-up times, the minimum value of  ARE(,^^,) occurs when a = P2 = 0, and is 0.75. 

In summary, it requires quite extreme imbalance for the  ARE(^^,) to drop to approximately 

75%. 

We also considered complete separation in the follow-up times between the groups. This 

is not a scenario often encountered in practice, and inference concerning treatment effects 

and other parameters using data arising from such a design would be quite suspect. However, 

we suppose group 1 has 10 subjects with Ti, = 0.5 and 10 with T;, = 1 while group 2 has 

10 subjects with Tie = 1.5 and 10 with Tie = 2. For P2 set to  zero, the  ARE@^,) ranges 

from 0.265 for cr = 0.5 to 0.443 for a = 3. Thus, it is possible to see quite poor efficiency 

for the  estimation of treatment effects, but it requires complete separation of the sets of 

follow-up times among the treatment groups - a scenario which might cast doubt on the 

assumption that  the follow-up times are independent of the counting process. We will return 

t o  a discussion of censoring in the context of the illustration in Section 3.6. 

3.3 Derivation of Efficiency Results in Poisson Process Model 

3.3.1 Case 1: Scalar a 

The inverse of the information matrix 1, (3.9) is 

where 

Here, 
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where 1 is a (k - 1) x 1 vector of ones. For a a scalar quantity, 

where 

and 

lr = (I"'+ [A&+ - '"I [ h l l +  ' , = 2 ,  ., 

as in Section 3.2. Also, 

a log 2 

d log A, 
E = [.( a,, )I -6'' I T +  

+ r = l  [PIT+ 

Hence the asymptotic variances of the estimators fir, and &, are 

Note that throughout the thesis, the notation Asvar(6) is used to  indicate that 

a(@ - 0) 

has asymptotic variance given by 
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The inverse of Zt, the information matrix based on the event-time data, can be similarly 

computed to  obtain the asymptotic variance of ,&, r = 1 , .  . . , k,  and (&). These are 

calculated using identical formulae as above, except E is replaced with 

Et =: Z'VZ + H - Z ' V Z ( X ' V X ) - 1 ~ ' ~ ~  = E + H. 

Thus 

and 

 ARE(^,,), r = 2, .  . . , k is simplified in a similar manner as above. 

When 1, = 0, from (3.17) and (3.18) we have that  the asymptotic covariance of ( p j ,  a) 

equals 0, r = 2,.  . ., k. This would occur if, for example, {T,,,i E GI)  = {Ti,, i E GT), 

3.3.2 Case 2: Vector a 

If a is vector valued, with dim(a) = a, then 

i : 

[P w] ,+ 
x'vz = 

[P w] ,+ 

and 
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The elements of (XtVX)-'X'VZ do not depend on the P,s; they are functions of the Ties 

and a. 

For vector a ,  the quantity H (3.10) is a matrix of dimension a x a.  The asymptotic 

relative efficiency of the r-th element of dr, is ARE(&,,)) = (E;')(,,,)/(E-')(,.) = ((I + 
E - ' H ) E - ' ) ( , , , ~ / ( E - ' ) ~ , , ~ ~ .  How different this is from 1 is determined by E-'H, and we 

shall look a t  this quantity more closely. 

First note that E has the same structure as in (3.12), and its (c, d)  element can be shown 

t o  equal 

If T;, = Te, Vi, then E will be a matrix of zeros and only one of a,, r = 1 , .  . . , a,Pl can be 

estimated. If H has (c, d) element which can be written as 

as in (3.16), then the only term involving P1 in H and E is eP1, and occurs as a factor in 

each element of both of these matrices, so ARE(&,,) does not depend on PI. If, in addition, 

{Tie, i E GI)  = . . - = {Ti,, i E Gk),  then the only term involving PI, P2,. . . , ,Bk in E and IJ 
is (eD1 + c:=~ e41fPr) which also occurs as a factor in each element of these matrices, so 

ARE(&,,) does not depend on P,  r = 1,. . ., k. From (3.17) we recall that  

and 

~ s v a r ( b , )  = (x'vx)-' + (x'vx)-'X'VZ(E + H)-'Z'VX(X'VX)-'a 

Recall also that  (XIVX)-'X'VZ, (3.18)) does not depend on the ps, and 

where f l ( - )  is a matrix function, so the representation above signifies that  e-01 factors out 

of ( x t v X ) - '  leaving a remainder term which is not a function of PI. The matrix E-' has 

a similar factorization as (3.23) and ( H  + E)-' also does when (3.24) holds, so ARE&) 
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does not depend on P1 in this situation, r = 1, .  . . , k. Finally, since ( 2 )  (x'vx)-'X'VZ 

does not depend on the ps; and ( i i )  because when {T;,, i E GI)  = . . . = {Ti, i E Gk) 

and 
k 

f3(T;,, i = 1 , .  . . , M , a ) ,  

where f2(.) and f3(e) are matrix functions; then, in this scenario, ARE@,) increases with 
k increasing values of CTz2 ear. 

When the r-th row in the matrix (XfVX)-'X'VZ (3.18) is a vector of zeros, r = 

2 , .  . . , k then, from (3.17), the asymptotic covariances of both (fir,, h,) and (fiTt,ht) will be 

zero vectors and (ql)(,,,) = ( p ) c r , , )  = ((X1VX)-')(,,,); hence, the estimator of the r-th 

treatment effect, fir,, will be fully efficient, r = 2, .  . . , k. This would occur, for example, 

when {Tie, i E G,) = {Ti, i E GI}. 

3.4 Models with random effects 

Since it is common for counts t o  display extra-Poisson variation (Breslow 1984), it is natural 

to  also consider models which deal with this phenomenon, commonly termed overdispersion. 

To incorporate overdispersion, we suppose a model with an individual-specific random effect 

v;, so that the intensity function corresponding to  the i-th individual is 

where the v,s have some specified distribution. This is a mixture model, and if P includes 

an intercept, we may take the mean of the v;s to  be 1, without loss of generality; we set the 

variance of the v,s t o  be T. Then the mean of the counts is the same as previously, pi ,  but 

their variance is inflated to  p ; ( l +  rp;). 

For a likelihood analysis, the distribution of the random effects, p(v; r ) ,  must be specified. 

A flexible choice is the gamma distribution. In this case, the distribution of the counts 

is negative binomial. Other forms for the distribution of the counts are also tractable, 

for example, the Poisson-log-normal (Hinde 1982) or, the Poisson-inverse Gaussian (Dean, 

Lawless, and Willmot 1989). Because the gamma is often a reasonable choice (Lawless 
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1987a), we will outline analysis under this assumption. Simple modifications are required 

for likelihood analyses under the inverse Gaussian or log-normal mixtures. 

The likelihood based on the event-time data factorizes as before (Lawless 1987b): 

where L,(a) is given in (3.4), and 

is the likelihood for a mixed Poisson model. If v, is gamma distributed, L(P,  a, r) is the 

negative binomial likelihood: 

Because of the factorization in (3.25), the likelihood equations for /3 and r arise as derivatives 

of the logarithm of L equated to  zero. The likelihood equation for a based on the event-time 

For inference using the gamma mixture, note that Lawless (1987a) gives first and second 

derivatives of the logarithm of LNB with respect to  the parameters. 

Likelihood inference based on the end-of-follow-up counts uses derivatives of the loga- 

rithm of L with respect to  the parameters; the equations for /3 and T are the same, but that 

for a consists of only the second term in (3.26) above, equated to zero. 

Lately, increasing importance has been given to  quasi-likelihood or moment methods of 

estimation, and it is this approach that will be pursued here. The procedure suggested is 

simply t o  replace the contribution from L in the estimating equations for the parameters 

by suitable estimating functions. We use quasi-likelihood (Wedderburn 1974) for estimation 

of p ,  and for estimation of a when only the counts are available. The quasi-likelihood 

estimating equation for 7' = (P', a') is 

where D, = 8pI8-y' and Vo = diag(p,(l + rp;); i = 1 , .  . . , M ) .  
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This reduces to  a set of equations 

for estimating p ,  and 

for estimating a. Note that (3.27) reduces to  (3.5) when r = 0. 

There are many important reasons for the widespread use of the quasi-likelihood ap- 

proach. For generalized linear models with a full likelihood, these are the maximum like- 

lihood equations. Hence (3.28) is the maximum likelihood equation for P using either 

event-time or count data when the random effects are assumed to be gamma distributed. 

However, (3.5) is also applicable more generally. The asymptotic variance of the estimate 

of p,p, is independent of the choice of the estimating function for r, and depends only on 

the first two moments of the distribution of the counts. The estimator of the asymptotic 

variance is consistent as long as the estimator of T is consistent. Usual estimating equations 

for r require first and second moment assumptions to  hold for consistency of the estimator. 

This imparts a robust quality to the quasi-likelihood estimator. In contrast, for consistency 

of the maximum likelihood estimate of r we require further distributional assumptions to 

be correct. 

The quasi-likelihood estimates of P and a are fully efficient with respect to  maximum 

likelihood analysis of the counts under a negative binomial distribution (Lawless 1987a)) 

and have high efficiency, for example, under a Poisson-inverse Gaussian distribution (Dean, 

Lawless, and Willmot 1989). Simulation studies have been conducted to  investigate the 

performance of $ in small samples; they support the unbiasedness and efficiency of this 

estimator (Nelder and Lee 1992). 

Usual choices for the estimating equation for r are as follows: equating the Pearson 

statistic t o  its degrees of freedom (Breslow 1984; Williams 1982)) optimal quadratic estima- 

tion (Crowder 1987; Godambe and Thompson 1989), pseudo-likelihood estimation (David- 

ian and Carroll 1987) and extended quasi-likelihood (Nelder and Pregibon 1987). Davidian 

and Carroll (1987) derived the pseudo-likelihood equation as the maximum likelihood equa- 

tion when residuals are normally distributed. Extended quasi-likelihood can be obtained 

as the non-normalized saddle-point approximation for exponential families a s  discussed by 
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Barndorff-Nielsen and Cox (1979). Davidian and Carroll (1987) have pointed out prob- 

lems with the extended quasi-likelihood approach, including inconsistency of the estimates. 

Despite this drawback, extended quasi-likelihood performs as well as pseudo-likelihood in 

simulation studies, for the analysis of count data (Nelder and Lee 1992). Optimal quadratic 

estimation is optimal in the sense that  the resulting estimator has minimal variance among 

estimators derived from quadratic estimating equations. It gives rise to  equations for /? and 

T which require the specification of third and fourth moments of the distribution, which is 

an obvious disadvantage. However, if we presume these are as for the normal distribution, 

the equations reduce to  quasi-likelihood for /?, and the pseudo-likelihood estimating equa- 

tion for r. Because of these unbiasedness and optimality properties, the pseudo-likelihood 

estimator is used here. The pseudo-likelihood estimating equation for r is 

where hi is the i-th element of the diagonal of the "hat matrix", w'/~x'(x'wx)-'x'w'/~ 

and represents a small sample correction, and W = diag(p;; i = 1 , .  . . , M ) .  

With the event-time data a suitable estimating equation for a is obtained by combining 

d log L, / d a  with quasi-likelihood estimation, yielding 

Hence, we solve g, = (g,, T = 1 , .  . ., k, g;,,g,)' = 0' when only count data  are available, 

and gt = (g,, T = 1 , .  . . , k, g;,,g,)' = 0' with the event-time data. The quasi-likelihood 

estimator of 8 = (/?',at, r)' obtained by solving g, = 0 is denoted &. Under standard 

conditions for the application of asymptotic results for estimating equations (Inagaki 1973; 

White 1982), a(& - 8) is asymptotically normal with asymptotic covariance 

It turns out that because of three sets of identities: (a) E (-dg,/dr) = 0, T = 1 , .  . . , k,  (cf. 

Moore 1986; Lawless 1987b), (b) E (-dg,,/dr) = 0; and, (c) the {k+dim(a)) x {k+dim(a)} 

upper left submatrix of E (g,g[) is the same as the corresponding submatrix of E (-dgt/d8), 

the asymptotic variance of a ( + ,  - y), 7' = (@,at) ,  from the overdispersed analysis is 
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x'wv; 'wX XfWV,-'WZ 
Tot = (3.31) 

Z'WV;lWX Z1WV,-I W Z  + H 

W = diag(p;; i = 1,. . . , M), and H (3.10) is as defined in Section 3.2. 

In a similar manner, the asymptotic variance of a(+, - y), where y, is the estimator 

from the overdispersed count data analysis, is found t o  be (limM,, $Io,)-', where To, is 

the same as Tot except for the dim(a)  xdim(a)  lower right submatrix, which is Z'WVL~ WZ. 

The following results give the asymptotic relative efficiency of y, relative t o  yt, for scalar 

a. These results are derived for scalar a! in Section 3.5, beginning with the expressions for 

the asymptotic variance of T, and +,. Comments on extensions for a vector-valued a are 

also provided. 

Result 4 The asymptotic relative efficiency of 5, relative to Gt from the overdispersed 

Poisson analysis is 

where - 

Result 5 The asymptotic relative efficiency of &, relative to Plt from the overdispersed 

analusis is 

where 

Result 6 The asymptotic relative efficiency of p,, relative to ,&, r = 2, .  . ., k ,  from the 

overdispersed analysis is 
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where 

With the overdispersed analysis, some important observations concerning the asymptotic 

relative efficiency of the estimator of the treatment effects can still be made. 

First, we note that ARE(/?,,) > ARE(&), for r = 1 , .  . . , k. As in Section 3.2, if T,, = Te, 

Vi, then 'Eo = 0, and ARE(&,) =  ARE($^,) = 0; the parameters cw and PI cannot be 

simultaneously estimated. 

The important result carried over from Section 3.2 to  the present scenario of handling 

overdispersed data, defines full efficiency for the treatment estimators. When (a) there is 

balance in the follow-up times for the subjects under treatments 1 and r ,  as described in 

Section 3.2; and, (b) TP, = 0, then ARE(/?,,) = 1, r = 2, .  . ., k. We demonstrate below and 

in Section 3.6 that even when (b) above does not hold, as long as the follow-up times are not 

extremely imbalanced over the treatment groups, the treatment estimators from the count 

da ta  analysis retain very high efficiency. 

To examine the effect of overdispersion on the asymptotic relative efficiency of the treat- 

ment estimator, we will again consider the experiments described a t  the end of Section 3.2 

for the simple Poisson model. Recall that the balanced experiment compared two treatment 

groups made up of 10 subjects with Tie = 1 and 10 a t  Tie = 2; the experiment showing fairly 

extreme imbalance has the two groups made up as follows: the first group with 15 subjects 

a t  Ti, = 1 and 5 a t  Tie = 2, and the second group with 5 subjects a t  T,, = 1 and 15 at 

Tie = 2. As before, the Weibull baseline intensity was used. The numerical studies allowed 

P2 t o  range from -3  to +3, cw from 0.5 to 3, and r from 0.1 t o  2. 

In the balanced experiment, the effect of overdispersion is minimal. The lowest ARE(&) 

observed is over 95%, and this occurs only for the largest values of T and a and the smallest 

P 2  

In the imbalanced experiment, the comments made for the Poisson model still hold 

with reasonable accuracy, provided the amount of overdispersion is small. For example, 

for r = 0.1, the  ARE(/?^,) is always greater than 70% and greater than 85% for much of 

the region examined. However, as the overdispersion increases, the size of the region over 

which the  ARE(/?^,) > 0.85 decreases. In general, the relationship between the  ARE(^^^) 
and the other parameters is not as easily described as in Section 3.2. However, the effect 
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of overdispersion is to lower the efficiency of ,& from that observed for the Poisson model, 

though it takes quite extreme combinations of parameters to  see efficiencies as low as 70%. 

3.5 Derivations of Asymptotic Variances and Asymptotic Rel- 

ative Efficiencies of Quasi-Likelihood Estimators 

3.5.1 Asymptotic Variance of & and (i, 

The asymptotic covariance of JM(et - 8) ,  where et is the solution to g,  = 0,  is obtained 

from (3.30). Finite sample variance estimates are obtained by substituting et for 8 and 

omitting the expressions limM,, $. Note that 

and 

Here lot is given in (3.31), 0,  b, and c are (k  + a)  x 1 vectors, a = dim(a),  0 is a vector of 

zeros, and b and c have elements 

M 

bk+s = 
1 + 2 ~ p i  ( 8  log A0(T,,)) , s = 1 , . . . , a ,  

i= l  8% 

and 
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The asymptotic variance of et is then estimated as 

replacing 0 by &. 

The asymptotic variance of 8, is estimated as above, replacing Tot with Zoc and 8 with 

8,. 
If we assume 7 3 ;  = p i ( l  + r p ; ) ( l  + 2 r p i )  and 7 4 .  - 6 r p i  ( 2 

8 -  1 t ~ p i )  + p i ( 1 + r p i ) ( l t 3 p i +  
3 r p ; )  as for the negative binomial distribution, then c = b. In this case, the estimators of 

y' = (@,a1) and r from either the event-time data  or the end-of-follow-up count data are 

asymptotically independent. For a longer-tailed alternative we may use third and fourth 

moments as for the Poisson-inverse Gaussian mixture, 7 3 ;  = p i ( l  + r p , ) ( l +  2 r p i )  + T ~ ~ B  and 

74, = 7 r p ; ( l t  r ~ i ) ~  t p ; ( l +  4 T ~ ~ :  + 8r3p?) .  Note that  only mean and variance assumptions 

are required for consistency of the asymptotic variance of q, or qc. 

3.5.2 Asymptotic Relative EfFiciency of 8, 

The inverse of the information matrix ZOc is 

where 

Let v, = [ p / ( l +  T ~ ) ] ~ + , T  = 1 , .  . ., k ,  and note 

where 1 is a ( k  - 1)  x 1 vector of ones. For tr a scalar quantity, and letting 
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we have 

and 

Here, as in Section 3.4, el = (ql/v1)2, and !, = {(q,/v,) 

k 
d log AO (Tie) - 

r=l  i€G, 1 + 7-p; aa 

- 1:12}2, 1 = 2, .  . . , k. Then, 

Hence, following from Section 3.3, A s ~ a r ( j ~ , ) ,  ~ s ~ a r ( g , , ) ,  and AsVar(6,) are the same as 

in (3.20), except [PI,+ is replaced with [p/(1 + rp)],+, r = 1 , .  . . , k ,  E is replaced with Eo, 

and I ,  becomes l , .  The inverse of ZOt, the information matrix based on the analysis using 

the event-time da ta  with overdispersion incorporated, is similarly computed. We obtain 

identical formulae for the asymptotic variances of the parameter estimators as in (3.20), 

except [PI,+ is replaced with [ p / ( l +  rp)],+, I, becomes !, and E is replaced with Eo + A. 
The asymptotic relative efficiencies are computed as in Section 3.3. 

With overdispersion incorporated into the analysis, we need e, = 0 in order that 

ARE(@,,) = 1. This occurs when (a) 1, = 0, i.e., there is a balance in the follow-up 

times for individuals under treatments 1 and r ;  and, (b) P, = 0. Condition (a) will hold, 

for example, when {T;,, i E G,) = {Tie, i E GI).  For a a vector-valued quantity, similar 

algebraic manipulations as in Section 3.3 will lead t o  the requirement of the same conditions 

(a)  and (b) above, in order that the treatment estimator based on the count data be fully 

efficient. 

3.6 Illustration 

The trial conducted by the Veterans Administrative Co-operative Urological Research Group 

(Byar et al. 1977) on the recurrence of bladder cancer provides a scenario for illustrating 

these comparisons. This randomized clinical trial studied the effect of three treatments on 

the frequency of recurrence of bladder cancer. The treatments were placebo pills, pyridoxine 

pills and periodic instillation of thiotepa into the bladder. The data appears in Andrews 
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No. of Recurrences Total No. of 
Treatment 0 1 2 3 4 5 6 7 8 9 Patients 
1. Placebo 1 8 1 0 4 6 2 4 1 0 1 1  4 7 
2. Pyridoxine 16 5 4 0 0 2 0 0 2 2 3 1 
3. Thiotepa 20 8 3 2 2 2 0 1 0 0 38 

Table 3.3: Distribution of the Number of Recurrences Observed for the Subjects in each of 
the Three Treatment Groups in the Bladder Cancer Study. 

Follow-up Times in Months 
Treatment Min. 1st Quartile Median Mean 3rd Quartile Max. 
1. Placebo 1 23.00 30.0 32.51 43.0 64 
2. Pyridoxine 2 12.50 37.0 32.03 45.5 60 
3. Thiotepa 1 18.25 32.5 31.13 44.0 59 

Table 3.4: Some Summary Statistics Relating to  the Follow-up Times of Subjects in the 
Three Treatment Groups for the Bladder Cancer Study. 

and Herzberg (1985). All 116 patients had superficial bladder cancer when they entered the 

study. The tumors were removed and the patients were randomly assigned to  one of the 

three treatments. 

Table 3.3 shows the distribution of the number of recurrences observed for the patients 

in each of the three groups. There were 47 patients in the first group (Placebo), 31 in the 

second (Pyridoxine Treatment) and 38 in the third group (Thiotepa Treatment). The plot 

of the Cumulative Mean Functions (CMFs) is given in Figure 3.2. It would appear that the 

placebo and pyridoxine treatments have similar recurrence patterns and CMFs, while the 

thiotepa treatment appears to  have been effective at reducing the number of recurrences. 

However, the variability associated with the CMFs (not shown) is substantial and makes it 

clear that it will be difficult to  distinguish among the treatment groups. A likelihood ratio 

test for group specific a's had a pvalue of 0.95. So, it seems that the proportional intensity 

assumption is reasonable for these data, but we cannot expect to  detect a difference between 

the Placebo and Pyridoxine groups. 

Because the distribution of the follow-up times over the three groups plays an impor- 

tant  role in determining the asymptotic relative efficiencies of the estimators based on the 

aggregated data, summary statistics for the follow-up time distributions are presented here. 
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1. Placebo 
. . . . . . . . . . . . . . . 2. Pyridoxine 
- - - - - -  3. Thiotepa 

r----------  

Follow-Up Time in Months 

Figure 3.2: Cumulative Mean Functions for the Three Treatment Groups in the 
Cancer Study. 

Bladder 
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Figure 3.3: Boxplot of End-of-Follow-up Times By Treatment Group. The end-of-follow-up 
times T,, are shown for the three treatment groups of the bladder cancer recurrence study. 
The groups appear to be reasonably balanced with respect to  follow-up times. 

The follow-up times for the patients ranged from about one month to five years for each of 

the three groups. Table 3.4 gives summary statistics for the follow-up times in three groups 

and Figure 3.3 shows a boxplot of the follow-up times by group. In general, the follow-up- 

time distributions appear to be similar for the three groups. For example, the overall mean 

follow-up time was 32 months, and the means of the three groups are 32.5, 32.0, and 31.1 

months. Because the distributions are similar, though not identical, the efficiencies of the 

estimators of treatment effects should be close to 100%. 

The distribution of follow-up times is important for reasons beyond efficiency concerns. 

The methods proposed have assumed complete independence of follow-up times and recur- 

rence times. When this assumption is not reasonable, these methods may not be appropri- 

ate. Consider, for example, a study in which subjects on the placebo experienced higher 

recurrence rates, and subjects who experienced higher recurrence rates were more likely to 

withdraw early. Under these conditions, parameter estimates based on these methods could 

be seriously biased. 

Estimates of the parameters obtained by fitting the model using the Poisson process 

likelihood are given in Table 3.5. Table 3.6 shows results from fitting the overdispersed 
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Event-Time Data Count Data 
Parameter Estimate Std. Error Estimate Std. Error 

PI -2.852 0.2615 -2.025 0.5238 
P 2  0.008 0.1704 0.020 0.1705 
P3 -0.403 0.1836 -0.407 0.1837 
a 0.996 0.0662 0.765 0.1440 

Table 3.5: Parameters Estimates from the Poisson Point Process Likelihood Analysis of 
the Bladder Cancer Data. Estimates have been calculated using both the event-time data 
and the end-of-follow-up count data. Standard errors have been calculated from the model- 
based variance estimators. Note that  likelihood and quasi-likelihood methods yield the same 
estimators for the Poisson model. 

Poisson process using both likelihood and quasi-likelihood methods. A Weibull baseline 

intensity function Xo(t) = crtff-' was used for all analyses. The standard errors obtained 

from the simple Poisson model appear to  be underestimated, as expected in the presence 

of overdispersion. Examining the estimates and their standard errors, there appears to  be 

little evidence against the hypotheses that p2 = 0 or PJ = 0; there is strong evidence that 

r # 0, and a = 1 would appear t o  be a reasonable hypothesis. 

It is perhaps surprising that  the standard errors for the quasi-likelihood estimates in 

Table 3.6 are smaller than those for the likelihood estimates. However, for this data set, 

the likelihood estimate of the overdispersion parameter r is larger than the quasi-likelihood 

estimate. The effect of this apparent increase in overdispersion is to  inflate the standard 

errors for the likelihood estimates. With identical parameter estimates, the true variances 

of the likelihood estimates would, of course, be smaller than those of the quasi-likelihood 

estimates, though the standard errors may not be. 

Relative efficiencies can be computed for this study by comparing the variances of the 

estimates from the aggregated and full analyses. In addition, we compute asymptotic relative 

efficiencies for several combinations of p, a and T around their quasi-likelihood estimates 

and using the follow-up times from the study. Some asymptotic relative efficiencies are 

displayed in Table 3.7. Looking a t  efficiency values for all combinations of the parameters 

shows that they do not vary sharply; the efficiencies of ,&, and ,&, are close t o  1, while that 

of bl, and &, are quite low. 

To reiterate, recording and analyzing only the end-of-follow-up counts would lead to  

an imprecise estimate of the Weibull baseline intensity parameter and the mean recurrence 



C H A P T E R  3. EVENT-TIMES VS.  END-OF-FOLLOW- UP COUNTS 

Likelihood Analysis 

Event-Time Data Count Data 
Parameter Estimate Std. Error Estimate Std. Error 

PI -2.955 0.3179 -2.004 0.7457 
P 2  0.132 0.3318 0.095 0.3258 
P3 -0.282 0.3228 -0.317 0.3183 
a 1.019 0.0693 0.746 0.2088 
T 1.351 0.3181 1.319 0.3148 

Quasi-Likelihood Analysis 

Event-Time Data Count Data 
Parameter Estimate Std. Error Estimate Std. Error 

PI -2.935 0.3016 -1.993 0.6929 
P 2  0.104 0.2908 0.083 0.2905 
P3  -0.301 0.2857 -0.328 0.2863 
Q 1.014 0.0688 0.745 0.1937 
T 0.909 0.2858 0.934 0.2923 

Table 3.6: Parameters Estimates from the Poisson-Gamma Mixture Likelihood and the 
Quasi-Likelihood Analysis of the Bladder Cancer Data. Estimates have been calculated 
using both the event-time data and the end-of-follow-up count data. Standard errors have 
been calculated from the model-based variance estimators. 
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Table 3.7: Asymptotic Relative Efficiencies of the Analysis of Count Data. The combinations 
of parameter values chosen are similar to  those observed in the quasi-likelihood analysis of 
the bladder cancer study. 
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rate, but gives estimates of the treatment effects which are almost as precise as those based 

on the event-times. 

3.7 Discussion 

This chapter has used quasi-likelihood based estimating functions for the analysis of random 

effects Poisson process models, a natural extension of quasi-likelihood methodology, in view 

of the factorization of the likelihood in (3.25). By using these quasi-likelihood equations to  

obtain parameter estimates and standard errors, instead of a maximum likelihood approach, 

we need not make full distributional assumptions concerning the random effects, but only 

first and second moment assumptions. To provide increased robustness against misspecifi- 

cation of the variance form, we could also employ the so-called "sandwich" or covariance 

estimator (e.g., Liang and Zeger 1986; Liang, Zeger, and Qaqish 1992). This replaces the 

model-based middle term, E{gg'}(8, by a robust estimator, gg', in the finite sample esti- 

mate of the variance in (3.30). However, there is a corresponding loss of efficiency through 

the use of the sandwich estimator, and it seems that fairly large samples are required, else 

the asymptotic variance tends t o  be underestimated Breslow (1990). 

The focus of the chapter has been a consideration of the efficiency loss in the analysis 

of end-of-follow-up counts of the number of events instead of actual event-times for random 

effects Poisson processes during a specified observation period. We have shown that such 

loss can be substantial for estimation of the baseline intensity function, which is not surpris- 

ing. There are situations, however, where the estimators of treatment effects based on the 

aggregated da ta  analysis will have high efficiency. Precise conditions for such high efficiency 

have been detailed. Loosely speaking, the follow-up times for subject in the treatment 

groups must be reasonably similar over the groups. For example, no one treatment group 

should contain only the smallest or largest follow-up times. We have noted, in addition, 

that  the treatment estimates obtained from the event-time and count da ta  analyses will be 

identical when the follow-up times are the same for the treatment groups, and if there is no 

overdispersion. 

A straightforward extension t o  this work would study the gains in asymptotic relative 

efficiency of the baseline intensity function in the analysis of panel data, i.e. when counts 

are recorded a t  multiple follow-up times. We present these results in Chapter 4. 



Chapter 4 

The Analysis of Recurrent Event 

Panel Data 

4.1 Introduction 

In the previous chapter we examined a simple variation of the standard quasi-likelihood 

methods, adapted for inference for nonhomogeneous Poisson processes. We focussed on ex- 

amining the efficiency of analyses based on end-of-follow-up counts relative to analyses based 

on event-time data  and showed that under reasonable conditions, which will be reviewed in 

this chapter, covariate effects can be estimated efficiently based on end-of-follow-up counts; 

however, end-of-follow-up counts are not efficient for the estimation of other model param- 

eters. 

In this chapter, we consider a natural way to  recover information that  is lost when 

only end-of-follow-up counts are recorded, without resorting to  collecting event-time data. 

We compare the efficiency of the analysis of panel dafa to  the efficiency of the analysis of 

end-of-follow-up count data. Assuming M subjects, 

Panel Data consists of the set {ni j  : i = 1,. . ., M ,  j = 1 , .  . .,si); n;j is the number of 

events occurring for subject i ,  in period j .  Subjects are examined periodically, at  

times TI, T 2 , .  . . , T,. Period j is the interval Tj]. Drop-outs are considered t o  

happen immediately following the subject's last observed follow-up-time, T,, . Estima- 

tors based on panel data are subscripted p. 

End-of-follow-up Count Data consists of the set of end-of-follow-up counts, {n;+ : i = 
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1 , .  . ., M); n;+ is the total number of events to  have occurred for subject i between 

times 0 and T,,; n;+ = C:;l nij. Estimators based on count data  are subscripted c. 

Event-Time Data consists of the set of event times, {wijl : i = 1 , .  . . , M, j = 1 , .  . . , s;, 1 = 

1, .  . . , nij); w;jl is the time elapsed from t = 0 for the I-th event occurring for subject 

i ,  in period j (i.e., occurring in (Tj-l,T,]). Subjects are examined continuously from 

time To until time T,. Estimators based on event-time data  are subscripted t .  

In Section 4.2 we first review the quasi-likelihood estimator and consider its perfor- 

mance relative to  the likelihood estimator. The efficiency of the quasi-likelihood analysis 

of panel data  versus end-of-follow-up count data is discussed in Section 4.3. We consider 

both asymptotic comparisons and small sample investigations through a simulation study. 

Score-type tests for overdispersion and nonhomogeneity are discussed in Section 4.4 along 

with diagnostic checks for the baseline intensity function. In Section 4.5 we illustrate our 

methods by analyzing data from a clinical trial examining bladder cancer recurrence rates. 

4.2 Likelihood and Quasi-Likelihood Est irnators 

Let Y,(t) represent the counting process for the i-th individual. For example, Yi(t) could be 

a count of the number of failures of a computer system, or the number of recurrences of a 

medical condition (e.g., migraine headaches or seizures). In these examples, t represents the 

time since the i-th subject was enrolled in the study. This could represent the time from 

some common starting point - e.g., t = 0 could correspond to  9:00 a.m. on the day that  

the reliability study was started - or it could represent a subject-specific starting time - 

e.g., t = 0 corresponds to  the time the subject was first treated for migraines. We assume 

that  Y,(t) has an intensity function of the proportional intensity form: 

where Xo(.) is a twice differentiable baseline intensity function o f t ,  depending on a; xi is the 

covariate vector for the i-th individual; ,B is the vector of associated regression parameters; 

and v; represents the random effect associated with subject i. By including v;, we explicitly 

permit the overdispersion that is often evident in the analysis of count data,. As discussed 

in the previous chapter, we assume the random effects are i.i.d. with probability density 

function p(v; T); here Var(v) = T reflects the extent of the overdispersion. If P contains a 
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general mean term, for example when xi1 = 1 for all i ,  then we may set E (u) = 1 without 

loss of generality. Thus, given u;, Yi(t) is modeled as a Poisson process with intensity Ai(t), 

independently for each subject. 

In the first subsection below, likelihood and quasi-likelihood analyses based on the event- 

time data  are compared. The second subsection gives corresponding analyses for the panel 

data. 

4.2.1 Estimation Based on the Event-times 

We briefly review likelihood estimation for the event-time data. The notation here is the 

same as in Chapter 3, except that  the presence of the intermediate follow-up times TI, T2, T,, 

necessitates the addition of a subscript j to indicate events occurring during interval j ,  

(Tj-1, Tj]. 
Conditionally on the random effects v = (y : . . . , UM)', the likelihood based on the 

event-time data  is 

To handle missing data,  for example data from the interval (Tj-1, Tj] for subject i, we simply 

omit the contributions from that  interval in the product term above. However, as in the 

previous chapter, any censoring or other incidence of missing data is hereafter assumed to  

be independent of t,he counting process. The likelihood (4.2) simplifies to 

L t ( P , a l v )  = exp 

where Ao(Tj) = Ao(Tj; a )  

After integrating over 

= J? Ao(u; a )  du is the cumulative baseline intensity function. 

the density p(u), the (unconditional) likelihood becomes 

C 
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Let pi j  = E(nij) ,  pij = { A O ( T ~ ) - A O ( T ~ - ~ ) } ~ " ~ ,  and pi+ = x;&l p;j, SO pi+ = A ~ ( T ~ , ) ~ " : P ;  

pi+ = E(n;+). Then, we can write the likelihood (4.4) as a product of two factors, 

where 

and 

The first term is the probability kernel from the conditional density of the event times, given 

ni+ events occurred, i = 1,. . . , A!; the second term is the mixed Poisson likelihood kernel 

for the probability that  n;+ events occur in (0, T,,], i = 1 , .  . .,A!. This factorization is key 

to the construction of estimating functions which follows. 

A commonly used parametric form for the intensity of counting processes is the Weibull 

(Lawless 1987b; Bain 1978). In this case Xo(w) = owa-' and (4.6) becomes 

where the subscript W denotes Weibull. If we assume a gamma distribution for the random 

effects, vi, then the probability function for ni+ is negative binomial and L M p  becomes 

where the subscript NB replaces MP to signify that  this particular mixed Poisson model is 

the negative binomial. In the development which follows, we derive results for the special 

case of the Weibull baseline intensity and negative binomial mixture. These forms have 

a history of common usage in counting processes (Crow 1974; Lee and Lee 1978; Lawless 

1987a.). Likelihood estimates using other parametric forms can be obtained using simple 

modifications to the procedures discussed below. 

First and expected second derivatives of the logarithm of the likelihood Lt (4.5) with 

respect to  the parameters ,Ll and r equal the corresponding derivatives of L M p .  These deriva- 

tives are given in Lawless (1987a) when L M p  equals the negative binomial likelihood (4.9) 

and in Dean, Lawless, and Willmot (1989) when L M p  equals the Poisson-inverse Gaussian 
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mixture. For the special case of a Weibull baseline and negative binomial mixture, the first 

derivative of the logarithm of Lt with respect to  cr is 

The second term in this expression is the derivative of the logarithm of the negative binomial 

likelihood 

where n+ = (nl+,  . . . , nM+)' is the vector of end-of-follow-up counts; p+ = (p l+,  . . . , pM+)' 

is the corresponding vector of expected end-of-follow-up counts; V, = diag(pi+( l+rpi+) ;  i = 

1,. . . , M )  is the diagonal matrix of variances of the n;+s; and, D ,  = d p + / d a .  The expected 

second derivative of the log-likelihood with respect to  o is 

d2  log Lt M d 2  log LNB 

i=l  

where 
d2  log LKB M 

(- d a 2  ) = $ pi+ (log Ts, )2 
1 + rp i+ ' 

As described in Sec 3.4, quasi-likelihood and other moment methods have become pop- 

ular for inference concerning count data. Unlike likelihood methods, which require a full 

distributional specification, quasi-likelihood requires only first and second moment assump- 

tions for ni+ in order to specify consistent estimating functions. As was the case in t,he 

previous chapter, the quasi-likelihood estimating function for /? is the same as the max- 

imum likelihood estimating function under a negative binomial likelihood. However, the 

quasi-likelihood estimating function is more robust because only first and second moment 

assumptions are sufficient to  ensure that  p and its variance can be consistently estimated; 

using the likelihood estimating functions requires the specification of full distributional as- 

sumptions. This is described in greater detail in Section 3.5, as well as later in this section 

when we examine the variance of the quasi-likelihood estimators. 

The quasi-likelihood equations for the event-time data  were detailed in Chapter 3, and 

w_e briefly review them here. Continuing to work under the assumption of a Weibull baseline 

intensity function, the estimating functions are 
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where Dp = dpi+/dpr  and V, = diag(pi+(l + rp;+); i = 1, . . . , M ) .  We obtain the quasi- 

likelihood estimator of 6 = ( p f , a , r ) '  by solving g, = 0, where g: = (gb,g,,g,). The 

estimator will be written g t ,  with components ,ht,iit, and 6; the subscript t indicates an 

estimator based on the event-time data. The estimating function for T (4.16) is a bias 

corrected form of the pseudo-likelihood estimating equation suggested by Davidian and 

Carroll (1987). Note that  it has been recommended that  a small sample correction be used 

(e.g., Breslow 1984; Dean 1994). The estimating equation (4.16) used in practice is then 

M 

g, 
c (ni+ - pi+)' - ( 1  - hi) /%+(I + ~ l l i + )  

(1 +  pi+)^ 
, 

i=l  

where hi is the i-th diagonal element of the leverage matrix, I ' I ~ ' ~ ~ X ' ( X ' I Y X ) - ~ X W ~ ~ ~ ,  with 

I/t7 = diag(pi; i = 1 , .  . . , M). This correction has no effect on the asymptotic properties of 

the estimator, which will be developed directly from (4.16). 

The estimating functions retain the structure suggested by the factored likelihood, (4.5) .  

However, we replace any contributions from LMp by the quasi-likelihood estimating func- 

tions for p and a. 

Results of Inagaki (1973) and White (1982) show that  under suitable regularity condi- 

tions, m ( e t  - 6 )  is asymptotically normal as M -+ m, with asymptotic variance given 

The regularity conditions are similar to  those for maximum likelihood asymptotics and 

require that  the matrix (4.17) tend to  a positive definite limit. 

Let 

A = E  -- = All a12 

( ( a Z l  a22)  

where A  has been partitioned according to the dimensions of y = (pl,cu)' and T .  The 

subscript t has been suppressed for ease of exposition. Denote t,he inverse of A as 

All a12 

= ( a22 ) - 
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Let 

where the matrices A-' and B have been partitioned in the same way as A. Assuming that 

the mean has been correctly specified (i.e., assuming that  E (n;+) = pi+) then a12 = 0 and 

All = Bll.  Then the inverse of A can be shown to be 

As a result, when the mean and variance of the marginal counts, n;+, have been correctly 

specified, the asymptotic variance, (4.17), simplifies to 

Assuming that  the third moments of the distribution of the counts, n;+, match those of a 

negative binomial, then a 2 1  = b21 = bi2 and this leads to  further simplification of (4.17), 

Assuming, finally, that  fourth moments of the counts, n;+, match those of a negative bino- 

mial random variable, then a22 = b22, and the lower-right element of the matrix becomes 
- 2 -1 I 

a22 (a22 - a21A11 So, using the estimating equations gp,  gat, and g7 and assuming that  

the first through fourth moments of the distribution of counts matches that  of a negative bi- 

nomial distribution, the asymptotic variance of a(& - 8) is given by EmM,, ~ A s ~ a r ( & )  

where 

with 
- 2 -1 I 

v7 = (a22 - a 2 1 4 1  a21). 

The expression All has been written here as At to  indicate that-this term is calculated 

based on the event-time data. Note that At is also the Fisher information for the likelihood 

estimator of y6 = (&,at) ,  and also note, from the derivation above, that  only first and 
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second moment assumptions are required for determining the asymptotic variance of -S.t. 

Here. 

where 14' = diag(pi+; i = 1 , .  . . M ) ,  V, = diag(pi+(l + rp i+) ;  i = 1 , .  . . , M), and the matrix 

Z has i j - th  entry 

In the lower right corner of this matrix At is the expression for the Fisher information for a 

from the end-of-follow-up count data, (4.13) plus the additional information available from 

the event-time data, 

For the Weibull intensity function, Ht = - xEl p,+/a2.  (For further details regarding the 

derivation of these asymptotic variances, refer to  Section 3 . 5 . )  

A finite sample variance estimate for et is obtained removing the limit arguments and 

M - I ,  substituting et for 8 in ~ s V a r ( B ~ ) ,  (4.18): this would be a model-based estimator of 

variance. Replacing the middle term in (4.17), E(gtgi ) ,  by g,g: evaluated at  8t results in 

the so-called "sandwich" variance estimate (Liang and Zeger 1986). The sandwich estimator 

provides an  empirical estimate of the variance, and hence it is robust t o  misspecification 

of the assumed variance of the n,+'s for purposes of estimating the variance of 7,. The 

sandwich estimator may underestimate the asymptotic variance in small samples (Breslow 

1990); however, because we consider scenarios involving fairly large numbers of individuals 

followed for relatively short periods of time, the use of this variance estimator is likely to be 

appropriate here. We evaluate its performance in Section 4.2.4 for situations which typify 

this type of study. 

4.2.2 Estimation Based on Panel Data 

Based on panel data, consisting of nijls, the likelihood contribution from individual i is 

the product of the probability of observing n;+ events and the probkbility tha.t nil events 

occurred in the first follow-up period, n;? in the second, etc. The likelihood is therefore 
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where the subscript p signifies panel data and LMP(P, a , r )  is given in (4.7). 

First and second derivatives of Lp with respect to /3 and T are the same as for L t ,  (4.5). 

Assuming a Weibull baseline intensity and gamma distributed random effects, the derivative 

and expected information with respect to  cr are 

d log LP M st T; log Tj - T F l  log Tj-l 

do TP - TP 
(4.21) 

i=l j=1 3 3-1 

and 

d2  log LP M s, 

T" T P  
3 3-1 

where d log LNB/dO and E (-d2 log LNB/dcr2) are given in (4.11) and (4.13). 

Quasi-likelihood estimation follows in a straightforward manner from Section 4.2.1. We 

replace the contribution from L M p  in the estimating functions by quasi-likelihood and 

pseudo-likelihood estimating functions. The estimating equation becomes gp = 0, g; = 

(gb, g a p ,  g,), where gp  and g, are given in (4.14) and (4.16); and, we use for g,, the likelihood 

estimating function dlog Lp/dcr given in (4.21). The resulting estimator is denoted ep ,  

and m ( e p  - 8) is asymptotically normally distributed with asymptotic variance (4.17), 

replacing g t  with gp. Conditions for this asymptotic property are given in Inagaki (1973) 

and White (1982). Finite sample variance estimates are obtained in the same manner as for 

e t ,  again using the sandwich variance estimator if desired. 

The asymptotic variance of a ( e p  - 8) based on a Weibull intensity and gamma dis- 

tributed random effects has the same form as for m ( e t  - 8) with At replaced by AP; AP 

is identical t o  At except that  H t  is replaced with 

~ j "  log T~ - ~ j i _ ~  log T ~ - ~  T ~ " ( ~ o ~ T , ) ~  - T ~ ~ ( ~ O ~ T ~ - ~ ) ~  
TP - T? Tff - T f f  

(4.22) 
i=l j=1 3 3-1 3 3-1 

- 
This term characterizes the information available in the panel data  which was not available in 

the end-of-follow-up count data, in the same way that  Ht  characterizes the extra information 

available in the event-time da,ta. 
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4.2.3 The Efficiency of Quasi-Likelihood Relative to Likelihood Estima- 
tion 

In the previous section, we observed that the quasi-likelihood estimating functions go and 

g, are the same as the likelihood estimating functions for the negative binomial model. Only 

the functions for r differ. Also, the asymptotic variance matrices are the same, except for 

the asymptotic variances for the estimators of T .  As a result, we conclude that  when the data  

are generated by the negative binomial model, the quasi-likelihood estimators of P and a 

are fully efficient relative to  the likelihood estimators. However, because the quasi-likelihood 

estimating function for r is not the negative binomial likelihood estimating function, the 

quasi-likelihood estimator ? has a larger asymptotic variance than the likelihood estimator 

.i. 

be the asymptotic relative efficiency of the quasi-likelihood estimator of r. To explore 

conditions when ARE(?) will be high we have conducted a small numerical study. Several 

scenarios were examined, each with two treatment groups of equal size, but with a variety of 

parameter settings. Note that  the asymptotic variance of the likelihood estimator, .i, does 

not depend on whether we examine event-time, panel, or count data; the same is true for 

the quasi-likelihood estimator, ?. Thus, these results apply to  all three follow-up structures. 

Parameter values used in this study were chosen to be similar to  the estimates obtained in 

Section 4.5 in the analysis of the Bladder Cancer data. 

Table 4.1 and Figure 4.1 summarize the study. Comparing scenarios (a.1) and (a.21, we 

see the small influence of the treatment effect p2 on the relative efficiency of ?. Comparing 

scenario (a.1) with (b) and (c) reveals the more substantial effect of large changes in the 

cumulative nleans due to  varying values of a.  However, it is clear that  the general pattern 

is for the ARE(?) to  decrease as the cumulative nleans and/or the level of overdispersion 

increase. In other words, the quasi-likelihood estimate of r is more efficient when rp;+ is 

small. 
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Group Means ARE(?) 
Scenario P2 a p1 T = 0.2 r = 0.8 r = 1.5 

a .  1 -2 0.1 0.7 2.701 2.985 0.9282 0.6773 0.5228 

Table 4.1: Asymptotic Relative Efficiency of Quasi-Likelihood Estimator jL. The efficiency 
of the quasi-likelihood estimator ? is calculated relative to  the likelihood estimator .i for 
three values of r and for different values of P and a ,  with equal sized treatment groups. 
Also refer to Figure 4.1. 

Figure 4.1: Asymptotic Relative Efficiency of Quasi-Likelihood Estimator 7 .  See Table 4.1 
for details. 
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4.2.4 Small Sample Characteristics of Likelihood and Quasi-Likelihood 

Estimators 

A simulation study was undertaken to  compare the performance of the likelihood and quasi- 

likelihood estimators, and how sample sizes and the type of recurrent event data  affect this 

comparison. 

The simulation was designed to  mimic a two-group clinical trial, similar to the bladder 

cancer 'trial examined in Section 4.5. Event-time data  were generated according t o  the 

NHPP model with intensity function Xi@) = uiAo(t;a)ex:P, as described in Section 4.2. 

Parameters were chosen to be similar to  the estimates observed for the end-of-follow-up 

count data  analysis of the bladder cancer data, namely PI = -2,P2 = 0.1, a: = 0.7 and 

T = 1.5. The total follow-up time was 72 months, but to  simulate the presence of dropouts, 

25% of the subjects were eliminated after months 18, 36, and 54. The effect of sample 

size was examined by repeating the study twice with sample sizes of 48 and 96 subjects in 

each group. A total of 5000 replications of the simulation were conducted for each of the 

sample sizes. Panel data  were obtained as if the counts were recorded a t  four follow-up 

times, months 18, 36, 54, and 72. End-of-follow-up counts were obtained as if the counts 

were recorded only once, a t  the end of their follow-up period. 

Both likelihood and quasi-likelihood estimates were obtained from each dataset in all 

three forms: event-time, panel, and end-of-follow-up count data. That  is, a total of six anal- 

yses was conducted for every simulated dataset. Model-based and robust variance estimates 

were calculated for the quasi-likelihood estimators. The usual inverses of the expected and 

observed information matrices were used in the analagous roles for the likelihood estimators. 

As a robust (or "empirical") variance estimator of the maximum likelihood estimator, 

the usual inverse of the observed information matrix was used. 

We summarize the following small sample characteristics: 

(a) The accuracy of the normal approximation for the standardized estimators; where 

noteworthy, we also comment on the coverage properties of the approximate 95% 

confidence intervals (i.e., 6 f 1.96 x s.e.(8)), the relative bias of the estimators, and 

the accuracy of the two variance estimators. The standard errors based on the robust 

variances are used for standardization, but the results were found t o  be very similar 

if model-based variances were used. 
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Estimation Group Type of Data 
Method Size Event-time Panel Count 
Likelihood 48 0 0 0.0046 

Table 4.2: Proportion of Simulated Datasets Yielding Estimates which Failed t o  Converge. 
A total of 5000 datasets were simulated for each sample size. 

(b) The observed ratio of model-based variance estimates for the likelihood versus quasi- 

likelihood estimators - that is, the "observed" relative efficiency of the quasi-likelihood 

estimators. 

The simulation study described above was intended to  compare the behaviour of the 

likelihood and quasi-likelihood estimators at  various sample sizes for a single combination 

of model parameters. Because the small sample behaviour of quasi-likelihood estimators has 

been studied less thoroughly than likelihood estimators, a more general simulation study 

of the quasi-likelihood estimator was also undertaken. This broader study considered all 

combinations of the parameters ai = {0.7,1,1.3) and r = {0.8,1.5) for the same experi- 

mental design used in the comparative study. The parameter values were chosen to  cover 

the range of estimates obtained in the various analyses of the bladder cancer data. For all 

combinations of ai and r in this more general study, the quasi-likelihood estimator performs 

in the same way as it does in the more restrictive study. Therefore only the comparative 

study is summarized below. 

Table 4.2 summarizes the convergence rates of the iterative root-finding routine used for 

both likelihood and quasi-likelihood estimation. The rates are broken down by method of 

analysis and type of recurrent event data. Overall, convergence rates were high, with fewer 

than 0.8% failing to converge. With the random effects following a gamma distribution, it 

is necessary t o  approximate an infinite series in the calculation of the expected information 

for the likelihood estimate of r (Lawless 1987a, eqn. (2.8)). Because of this, the likelihood 

method was more time consuming during this simulation. Determining when the series had 

converged to  a reasonable approximation required careful consideration of the relative size 

of the contribution of each term in the series. However, the time required for this calculation 
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End-of- Follow-up Count Data 
Estimation Method 

Parameter Group Likelihood Quasi-likelihood 
(true value) Size Mean (Std. Err.) Mean (Std. Err.) 

PI 48 -2.0993 (1.1146) -2.1012 (1.1127) 
(-2) 96 -2.0365 (0.7771) -2.0365 (0.7772) 

Table 4.3: Simulation Results for Estimation of 8 Based on End-of-Follow-up Count Data. 
The standard errors (Std. Err.) have been calculated as the square roots of the simulated 
variances of the estimators. 

should not be a factor for routine use. 

The comparison of the likelihood and quasi-likelihood estimators did not appear to 

depend on whether the event-time, panel, and end-of-follow-up count data were examined, 

so unless otherwise noted, summaries are provided here for the analyses of the end-of- 

follow-up count data only. Also, since Section 4.3 focuses on the efficiency of the panel and 

end-of-follow-up count data analyses, we will postpone a direct comparison of the panel and 

count data  estimators until then. 

Figures 4.2 through 4.5 show normal probability plots for the standardized likelihood and 

quasi-likelihood estimators. It is clear that  the normal approximation is adequate for both 

likelihood and quasi-likelihood estimators of PI, P 2 ,  and cr, but inadequate for estimators 

of T whose distributions are negatively skewed. The normal approximation appears to  be 

, slightly better for the likelihood estimators than for the quasi-likelihood estimators, though 

less so for larger samples (mi = 96). 

Tables 4.3 through 4.5 show the means and standard errors of the estimators of 8. The 

standard errors used are the square roots of the sampling variances of the estimators in the 

simulation. In general, the relative bias for the estimators is quite low, less than 3% for all -. 
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Likelihood Quasi-Likeli hood 

6 - 4 - 2 0 2 4 6  6 - 4 - 2 0 2 4 6  

Quantiles of Standard Normal 

Figure 4.2: Simulated Distributions of Likelihood and Quasi-Likelihood Estimators of PI. 
A total of 5000 datasets were simulated according to  the negative-binomial mixture with 
a Weibull intensity function with parameters PI = -2 ,P2 = 0 . 1 , ~ ~  = 0 . 7 , ~  = 1.5. The 
standardized estimates are the estimates divided by their robust standard errors. The 
reference line corresponds to  the standard normal distribution. 



CHAPTER 4. THE ANALYSIS OF RECURRENT EVENT PANEL DATA 

Likelihood Quasi-Li keli hood 

Quantiles of Standard Normal 

Figure 4.3: Simulated Distributions of Likelihood and Quasi-Likelihood Estimators of pp .  
A total of 5000 datasets were simulated according to  the negative-binomial mixture with 
a Weibull intensity function with parameters PI = - 2 , P 2  = 0 . 1 , ~  = 0 . 7 , ~  = 1.5. The 
standardized estimates are the estimates divided by their robust standard errors. The 
reference line corresponds to the standard normal distribution. 
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Likelihood Quasi-Likeli hood 

Quantiles of Standard Normal 

, Figure 4.4: Simulated Distributions of Likelihood and Quasi-Likelihood Estimators of a. 
The estimators were calculated from the end-of-follow-up counts. A total of 5000 datasets 
were simulated according to the negative-binomial mixture with a Weibull intensity function 
with parameters ,& = -2, P2 = 0.1, a = 0.7, r = 1.5. The standardized estimates are the 
estimates divided by their robust standard errors. The reference line corresponds to  the 
standard normal distribution. 
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Likelihood Quasi-Likeli hood 

Quantiles of Standard Normal 

Figure 4.5: Simulated Distributions of Likelihood and Quasi-Likelihood Estimators of r . 
A total of 5000 datasets were simulated according to  the negative-binomial mixture with 
a Weibull intensity function with parameters PI = -2,P2 = 0 . 1 , ~  = 0 . 7 , ~  = 1.5. The 
standardized estimates are the estimates divided by their robust standard errors. The 
reference line corresponds to the standard normal distribution. 
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Panel Data 
Estimation Method 

Parameter Group Likelihood Quasi-likelihood 
(true value) Size Mean (Std. Err.) Mean (Std. Err.) 

PI 48 -2.0271 (0.3419) -2.0266 (0.3419) 
(-2) 96 -2.0103 (0.2391) -2.0101 (0.2391) 

Table 4.4: Simula.tion Results for Estimation of 8 Based on Panel Data. The standard 
errors (Std. Err.) have been calculated as the square roots of the simulated variances of the 
estimators. 

Event-Time Data 
Estimation Method 

Parameter Group Likelihood Quasi-likelihood 
(true value) Size Mean (Std. Err.) Mean (Std. Err.) 

PI 48 -2.0344 (0.2832) -2.0340 (0.2831) 
(-2) 96 -2.0160 (0.1966) -2.0160 (0.1967) 

Table 4.5: Simulation Results for Estimation of 8 Based on Event-Time Data. The standard 
errors (Std. Err.) have been calculated as the square roots of the simulated variances of the 
estimators. 
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estimators except those for T .  Both the likelihood .i and quasi-likelihood f underestimated 

r by up to  10%. The bias of all estimators decreases with increased sample sizes. 

Table 4.6 summarizes the accuracy and precision of the various variance estimators. The 

standard deviations shown on this table are the square roots of the sampling variance of the 

model-based and robust variance estimates. The simulated variance is simply the sampling 

variance of the estimators of 6 in the simulation study. The standard deviations reported 

in the table are the square roots of the sampling variances of the model-based and robust 

variance estimates. The standard deviations of the robust variance estimates are generally 

larger than the standard deviations of the model-based variance estimates. This is the cost 

of making less stringent modeling assumptions. Only for the quasi-likelihood estimator of 

T is this reversed, but this can be explained by the tendency o f f  t o  underestimate the true 

value of T .  For larger samples, the bias in i: has been overcome, and the robust variance is 

again more variable than the model-based variance. 

Asymptotic normal confidence interval coverage probabilities are presented in Table 4.7. 

The confidence intervals were calculated as the estimate plus or minus 1.96 times the stan- 

dard error of the estimate. The standard errors were based on the robust variance esti- 

mates. In general, both likelihood and quasi-likelihood yielded estimators with good cov- 

erage probabilities for the larger samples (m,  = 96), ranging between 94% and 96% for all 

estimators except .i and f .  The likelihood estimator, .i, performed much better than the 

quasi-likelihood, i:; for the larger sample size (m,  = 96)) the likelihood interval achieved 

coverage of 93% compared to  only 88% for the quasi-likelihood interval. With the smaller 

sample size (m,  = 48), the intervals based on the quasi-likelihood estimators appeared to  

have poorer coverage, approximately 93% for parameters other than T .  The corresponding 

likelihood intervals were more reliable here, with coverage approximately 95%. 

Table 4.8 compares the accuracy of the estimators of the variance-covariance matrices. 

Overall, the likelihood variance estimators were more accurate than the quasi-likelihood 

estimators. This is not surprising given that  the data  were simulated according to  the likeli- 

hood model. Also, the model-based variance estimators were more accurate than the robust 

variance estimators, though for the likelihood estimators there was very little advantage to  

the model-based estimators for large samples. The variance estimators for f were the least 

accurate. Even for the larger sample size, the model-based variance of the quasi-likelihood 

estimator .T. overestimated the sampling variance by about 14% and the robust variance esti- 

mator underestimated by about 16%. In contrast, for the same sample size, the model-based 
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Group 
Parameter Size 

PI 48 

Estimation Method 
Variance Likelihood Quasi-likelihood 
Type Mean (Std. Dev.) Mean (Std. Dev.) 
Simulated 1.2424 1.2381 
Model-based 1.2098 (0.2258) 1.2128 (0.2583) 
Robust 1.2358 (0.2625) 1.1284 (0.4066) 
Simulated 0.6039 0.6040 
Model-based 0.6077 (0.0766) 0.6061 (0.0927) 
Robust 0.6140 (0.0867) 0.5865 (0.1563) 

Simulated 0.0881 0.0881 
Model-based 0.0838 (0.0157) 0.0841 (0.0183) 
Robust 0.0848 (0.0161) 0.0806 (0.0176) 
Simulated 0.0437 0.0437 
Model-based 0.0424 (0.0054) 0.0423 (0.0067) 
Robust 0.0427 (0.0055) 0.0415 (0.0066) 

Simulated 0.0852 0.0850 
Model-based 0.0832 (0.0154) 0.0834 (0.0178) 
Robust 0.0850 (0.0179) 0.0780 (0.0270) 
Simulated 0.0420 0.0420 
Model-based 0.0419 (0.0053) 0.0418 (0.0064) 
Robust 0.0423 (0.0060) 0.0404 (0.0103) 

Simulated 0.1269 0.1791 
Model-based 0.1221 (0.0547) 0.2293 (0.1665) 
Robust 0.1233 (0.0556) 0.1322 (0.1384) 
Simulated 0.0622 0.0981 
Model-based 0.0615 (0.0184) 0.1116 (0.0561) 
Robust 0.0619 (0.0187) 0.0820 (0.0824) 

Table 4.6: Accuracy and Precision of Variance Estimators. These results are based on the 
analysis of end-of-follow-up count data.  Similar results were observed for the analysis of 
panel and event-time data.  Simulated variance is the sampling variance of the estimator; 
standard deviations (Std. Dev.) are the square roots of the sampling variances of the 
model-based and robust variance estimates. 
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Data Estimation Group Parameter 

Type Method Size Pl P 2  a! T 

Count Quasi-likelihood 48 0.927 0.936 0.928 0.833 
96 0.938 0.941 0.937 0.875 

Likelihood 48 0.953 0.942 0.954 0.903 
96 0.953 0.946 0.949 0.930 

Panel Quasi-likelihood 48 0.938 0.938 0.937 0.852 
96 0.948 0.943 0.944 0.884 

Likelihood 48 0.956 0.941 0.955 0.913 
96 0.954 0.947 0.950 0.936 

Event-time Quasi-likelihood 48 0.936 0.937 0.934 0.852 
96 0.945 0.943 0.946 0.884 

Likelihood 48 0.949 0.941 0.951 0.915 
96 0.953 0.947 0.955 0.936 

Table 4.7: Observed Coverage of Nominal 95% Large-Sample Confidence Intervals. The con- 
fidence intervals have been calculated only for the estimates which converged using standard 
errors based on the robust variance estimates. 

Ratio of Robust Variance to  Sampling Variance 
Quasi-Likelihood Estimators Likelihood Estimators 

Ratio of Model-Based Variance to  Sampling Variance 
Quasi-Likelihood Estimators Likelihood Estimators 

Group Size ,& ,& - - 
a! T 

48 0.911 0.915 0.918 0.738 
P1 b 2  ti 7- 

0.995 0.962 0.998 0.972 

Table 4.8: Ratio of Estimated Variances to  Sampling Variance for End-of-Follow-up Count 
Data. Similar results were observed for the analysis of panel and event-time data. Empirical 
Variance and Model-Based Variance are the means of the variance estimates calculated in 
the simulation study. Sampling Variance is the observed sampling variance of the parameter 
estimates. Similar results were observed for the panel and event-time data. 

Group Size ,& p2 - - 
a! T 

48 0.980 0.954 0.982 1.281 
9 6 1.003 0.969 0.994 1.137 

P1 6 2  ti .i 
0.974 0.952 0.976 0.962 
1.006 0.972 0.997 0.990 
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Observed ARE($) from End-of-Follow-up Count Data 

$2 Group Size pl 6 7- 

End-of-Follow-up Count Data 

48 1.0035 0.9998 1.0032 0.7086 
96 0.9998 1.0001 0.9997 0.6334 

Theoretical 1 1 1 0.5654 

Panel Data 

48 0.9996 1.0004 0.9981 0.6609 
9 6 0.9997 1.0001 0.9994 0.6154 

Theoretical 1 1 1 0.5654 

Event-Time Data 

48 1.0002 1.0005 0.9990 0.6652 
9 6 0.9997 1.0001 0.9996 0.6157 

Theoretical 1 1 1 0.5654 

Table 4.9: Estimated ARE($) from Simulation Study. The efficiency of the quasi-likelihood 
estimator relative to the likelihood estimator is calculated as the ratio of the simulated 
variance of e to the simulated variance of 8. 

and robust variance of the likelihood estimator .i were within 1% of the sampling variance. 

Table 4.9 displays the estimated relative efficiencies for the quasi-likelihood estimators. 

By estimated relative efficiency, we mean the ratio of the sampling variances of the likelihood 

estimator t o  the sampling variance of the quasi-likelihood estimator. The table shows that  

the estimated ARE($) closely approximates the theoretical ARE($). 

In summary, the findings of our simulation study of the small sample behaviour of the 

estimators suggest that the quasi-likelihood estimators have no serious small-sample draw- 

backs compared to the likelihood estimators for inference regarding parameters other than T .  

However, since the quasi-likelihood methods require fewer distributional assumptions than 

the likelihood estimators, we will restrict our attention to the quasi-likelihood estimators in 

later sections where we investigate the efficiency of panel data  relative to event-time data. 
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4.3 Efficiency of Panel Data vs. Count Data 

One of the key findings of the previous chapter was that even though end-of-follow-up count 

data  can be very efficient for the estimation of covariate effects, the same is not true for 

the other parameters. Unfortunately, the intensity parameters cu and PI (from the Weibull 

intensity model described earlier) will be poorly estimated, with relative efficiencies of 10% 

and below for some scenarios. We now examine how well panel data  recovers this lost 

information. We find that  the panel data estimates of the intensity parameters become 

much more efficient for even a small number of follow-up times. 

We first conduct a large-sample comparison by computing the ARE@,,), the asymptotic 

efficiency of the estimators of PT based on panel data, P,,, relative to  the estimators based 

on event-time data, pTt. We then compare the ARE@,,) to  the ARE@,,). We also consider 

the effect of dropouts on the efficiency of the estimators, i.e., subjects or systems that  are 

lost to  follow-up before the final follow-up time T,. Dropouts are an almost inevitable 

complication of clinical trials and other recurrent event studies, and we show that  the 

efficiency improvements due to  panel data are relatively unaffected by dropouts. 

We then consider the small-sample results by returning to the simulation study described 

in Section 4.2.4. and comparing the observed sampling variances of the count and panel 

data  estimators. 

Note that  since the quasi-likelihood estimators of the covariate effects P are asymptot- 

ically 100% efficient relative to their likelihood counterparts (cf. Section 4.2.3), we will 

examine only the quasi-likelihood estimators in this section. 

4.3.1 Asymptotic Comparison of Panel Data vs. Count Data 

As might be expected given the similarity in the estimating equations for count and panel 

data  analyses, our findings here for panel data are similar to those for count data  in the 

previous chapter in that  under certain conditions covarkte effects representing treatments 

can be estimated with 100% efficiency. To examine these conditions, we restrict ourselves 
' 

to  the same situation as in Chapter 3, where the covariates are indicator variables for the 

treatments. That  is, x ; l  = 1 for all subjects, and 

1 if individual i received treatment r, 
XiT = 

0 otherwise 
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for r = 2, . . . , k. As in the previous chapter, we adopt the following notation. Let G, index 

the set of individuals who received treatment r ,  G, = { all i 3 individual i received treatment 

r ) ,  r = 1 , .  . . , k. To simplify notation, let [a],+ denote CiEG, ai, SO [ n ] ~ +  = CiEGl ni, the 

total number of events observed for all individuals receiving treatment 1; let [ab],+ denote 

CiEc, aibi, etc., and for grand totals, let [a]+ denote xMI ai, [ab]+ denote zEl aibi, etc. 

Also, all occurrences of p in this notation represent marginal means, pi+ = C;!-l pij.  

Using this notation, the following result gives the asymptotic relative efficiency of j,,. 

Result 7 The asymptotic relative eficiency of PTp relative to j , t ,  r = 2 , .  . . , k ,  is 

where 

and 

The term Hp was defined in (4.22). 

This is obtained from the asymptotic variance (4.18) following algebraic manipulations 

similar to those in Section 3.5.2. The same manipulations yield the asymptotic relative 

efficiencies of 6, and blP. These results are of the same form as those for the count data  

(Results 5 and 6), with Hp replacing the count data term H .  Hence we have omitted the 

results for these estimators. 

Using equation (4.23), we deduce certain observations regarding the efficiency of analyses 

based on panel data,  paralleling those in Section 3.4 for the analysis of end-of-follow-up 

counts. For the analysis of panel data in the situation where (a) there is balance in the 

follow-up times for the subjects in treatments 1 and r ,  and (b) rp, = 0, then the estimates 

of the treatment effect, p,, based on the end-of-follow-up counts and the panel data  are 

100% efficient. As with end-of-follow-up count data, treatment groups 1 and r are balanced 

in the follow-up times when the distributions of final follow-up times, T,,, is the same in 

the two groups. More precisely, group 1 and group r are balanced with respect to  follow-up 
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times if f,, = 0. Note that this condition applies equally to  the event-time, panel, and 

count data;  we also note that  the estimators of r based on both the end-of-follow-up counts 

and panel data  are fully efficient with respect to  the estimator based on the event-time 

data.  However, the use of the information in the term corresponding to the multinomial 

distribution of the nzJ conditionally on n,+ results in a substantial improvement in efficiency 

for inference about the intensity parameters cr and PI. 
Information from the intermediate follow-up times TI,. . . , T,,-l enters tp, only through 

the marginal means, p,+. SO, if a subject misses a follow-up time, say TJ in a clinical trial for 

instance, then provided that  any events occurring during that  follow-up time will be recorded 

as having occurred during the interval (TJ-l, TJ+l], the estimators of the treatment effects, 

p,, r = 2 , .  . . , k will be fully efficient. The end-of-follow-up count data  could be viewed as 

an extreme case of this type of missing data, with every subject missing all the intermediate 

follow-up times and reporting only a single count at  the end-of-follow-up. 

To illustrate these findings, we present the results of a small numerical study. The study 

had two goals: first. t o  quantify the gains in relative efficiency due to  the collection of 

panel data  vs. end-of-follow-up counts; and, second, to  assess the impact of dropouts on 

the efficiency of the estimators of cr and ,dl obtained from analyses of the panel data. The 

designs we examined were for two treatment groups of 60 subjects each. We considered 

designs with one, two, or four follow-up times. Follow-ups occurred a t  T4 = 8 (one follow- 

up),  or {T2 = 4,T4 = 8) (two follow-ups). or {TI = 2,T2 = 4,T3 = 6,T4 = 8) (four 

follow-ups). 

To investigate the effects of dropout, four different dropout rates were considered: no 

dropout, lo%,  30%, and 60% dropout. The dropout rates describe the total proportion 

of subjects who did not complete the full follow-up period. The levels of dropout rate 

were chosen to  reflect a reasonably broad range, from very little dropout to more than half 

the subjects dropping out before the final follow-up time. Table 4.10 shows the number 

of subjects examined at  each follow-up time, for each combination of follow-up times and 

dropout rates. The parameter values chosen for the intensity function were cr = 0.7, Dl = 0, 

and P2 = 0.3. These values were chosen to  give give marginal means p,+ ranging from 4 to  

20. The overdispersion parameter, r ,  varies from O to  0.5. We first examine the balanced 

designs, where the two groups have the same dropout patterns and the same number of 

follow-up times. We consider the imbalanced designs separately, below. Table 4.11 shows 

the balanced and imbalanced designs examined. Note that  we do not consider designs that  
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I Number of Subjects Examined 
Two Follow-ups Dropout 

Rate 
none 
10% 
30% 
60% 

Four Follow-ups One Follow-up 
TI T2 T3 T4 
- - - G O  
2 2 2 54 
6 6 6 42 
12 12 12 24 

Table 4.10: Design Combinations Examined in Numerical Study. Dropout rate refers to  the 
proportion of subjects who do not complete the follow-up period. The entries represent the 
number of subjects examined a t  each follow-up t.ime. 

involved different numbers of follow-up times in groups 1 and 2. The single follow-up designs 

investigate the effect of changes in the lengths of the follow-up periods; this more closely 

mimics a single follow-up study designed with staggered enrollment dates and a common 

end-of-follow-up date. 

For the balanced designs, Figure 4.6 displays the changes in asymptotic relative efficiency 

as the number of follow-up times increases. The plots also show the effect of T and dropout 

rates on the efficiencies. The efficiency of both li and ,& increases dramatically with as few 

as two follow-ups, and the gains continue as the number of follow-ups increases from two t o  

four. That  is, panel data  with as few as two follow-up times has much higher efficiency than 

the end-of-follow-up count data. Overdispersion appears to have little effect on efficiency, 

especially for &. Dropouts reduce efficiency slightly for the panel data estimators, but 

increased dropout rates of course will actually improve the efficiency of the end-of-follow-up 

estimators. With no dropouts and only one follow-up, all counts are collected a t  exactly the 

same time Ts, and the parameters cu and pl are totally confounded. Plots are not provided 

for P2 and r because the efficiency of p2 does not drop below 99.9% for this numerical study, 

and both the count data and panel data estimators of r are fully efficient relative to  the 

event-time estimator. 

Figure 4.7 shows the same efficiency calculations for the imbalanced designs examined 

in the study. In comparison with the balanced designs summarized in Figure 4.6, the 

imbalanced designs show a very similar pattern of change. The efficiency of the panel data 

estimators with more follow-up times are much higher than the end-of-follow-up count data,  

especially for the parameters a and PI. The most notable difference from the results for the 
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Group 1 Group 2 
Follow-up Dropout Follow-Up Dropout 

Times Rate Times Rate 

Balanced Combinations Examined 

none 
10% 
30% 
60% 
none 
10% 
30% 
60% 
none 
10% 
30% 
60% 

none 
10% 
30% 
60% 
none 
10% 
30% 
60% 
none 
10% 
30% 
60% 

Imbalanced Combinations Examined 

Table 4.11: Balanced and Imbalanced Designs Considered in the Numerical Study. The 
dropout rate refers to  the percentage of subjects who leave the study before the final follow- 
up time. 
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Figure 4.6: Efficiency Gains for Increased Number of Follow-up Times, Balanced Dropout. 
The rows show the changes in the ARE as the number of follow-up times increases from s = 1 
(end-of-follow-up count data) to s = 2 and s = 4 (panel data). Dropout rates considered 
were: no dropout(so1id line), 10% dropouts (dotted line), 30% dropouts (dashed line), and 
60% dropouts (long dashed line). The dropout rates are the same in both groups, occurring 
uniformly after each follow-up time. 
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Figure 4.7: Efficiency Gains for Increased Number of Follow-up Times, Imbalanced Dropout. 
The rows show the changes in the ARE as the number of follow-up times increases from 
s = 1 (end-of-follow-up count data) to  s = 2 and s = 4 (panel data). The effect of the 
imbalanced dropout rates is minimal, though the overall dropout rate has much the same 
effect as in the balanced case (solid line: 10% dropout in group 1 and 60% dropout in group 
2; dashed line: 60% dropout in group 1 and 10% dropout in group 2. 
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balanced designs is that  the efficiency of the treatment effect estimator, p 2 ,  can be as low as 

80-85% for the end-of-follow-up counts, whereas for the balanced designs in the study, the 

efficiency of ,& was never less than 99%. Given that  the degree of imbalance considered here 

was quite extreme, with 10% dropout in one group and 60% dropout in the other, these 

results suggest that  for a very broad range of practical situations, inference based on panel 

data  will be highly efficient for a treatment effect and will be much more efficient for inference 

regarding0 and PI than inference based on end-of-follow-up counts. While efficiencies will 

be even lower when there is greater imbalance, here we refrain from calculating efficiency 

for designs which would bring into question the assumption of independent censoring. 

4.3.2 Small Sample Comparison of Panel Data vs. Count Data 

Returning to  the simulation study described in Section 4.2.4, we now examine the small 

sample efficiency of the estimators based on the end-of-follow-up counts and the panel data. 

Recall that  the simulation study was conducted to examine the small sample properties of 

the estimators and their variances for a clinical trial similar to  that seen in the bladder 

cancer data. The design was for two equal-sized groups of subjects, each studied for a 

total follow-up period of 72 months. Twenty-five percent of the subjects in each group 

dropped out after months 18, 36, and 54. The data  were simulated as event-time data from 

a NHPP with Weibull intensity function, and subject-specific random effects were generated 

as independent gamma random variables with mean 1 and variance T. Parameter values 

(PI = -2, ,02 = 0.1, CY = 0.7, and r = 1.5) were chosen to  be similar to the estimates obtained 

from the bladder cancer data. End-of-follow-up counts and panel data were constructed 

from the event-time data in the usual way, by counting the number of events occurring for 

each subject during the total length of follow-up (for end-of-follow-up counts) or during the 

follow-up periods between 0, 18, 36, 54, and 72 months (for panel data). 

In Table 4.12, we summarize the observed relative efficiency of the count and panel data 

estimators. We compute the observed relative efficiency here as the ratio of the observed 

sampling variance of the estimator based on the count or panel data to  the sampling variance 

of the corresponding estimator based on the event-times. We note that  sample size does 

not significantly affect the efficiency values - they are very similar to the theoretical values 

for groups of size 48. The efficiency of the estimators for PI and (I. behave as predicted 

by the asymptotic results in the previous section; that  is, though still low, they show a 

large improvement in the efficiency of PI and a when based on the panel data with four 
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End-of-Follow-up Counts Panel Data 
Group Size P C  Pzc CYc fc 61, P 2 p  Gp 

- 
r p  

48 0.065 0.990 0.028 1.093 0.686 1.000 0.490 1.094 

Table 4.12: Small Sample Efficiency of the Analysis of End-of-Follow-up Counts and Panel 
Data. Efficiency is measured as the ratio of the observed sample variance of the estimator 
to  the observed sample variance of the event-time estimator. 

follow-up times rather than on the end-of-follow-up count data. The estimators of p2 and r 

also behave as predicted, achieving very high efficiencies regardless of the type of recurrent 

event data  analyzed. 

4.4 Tests and Diagnostics for Model-Checking 

4.4.1 Testing for Overdispersion 

Since the Poisson process model offers simplicity for inference concerning the model parame- 

ters relative t o  the random effects model, we develop here a score-type test for overdispersion. 

The test is based on the estimating function g,, (4.16), and is akin to  likelihood score testing 

procedures (Breslow 1990). 

Let y' = (,@,a1), and let g, denote the set of estimating functions for y; i.e., gk = 

(gb,ga), where the components gp  and g, are the quasi-likelihood estimating functions 

based on the event-time data  assuming a Weibull intensity, (4.14) and (4.15). Note that  

the Weibull intensity is used here for consistency with earlier sections, but we later point 

out that  the results are more generally applicable. We first obtain an estimator of y under 

HOT : r = 0 by solving g, = 0, and denote the solution y*, the superscript "*" indicating 

that  the quantity has been calculated under HOT : r = 0. The test statistic is then g:, 

where fir+ = T$* exp(@*), and CY* and p* arc the components of -5.'. 
The asymptotic variance of g: is estimated by 
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where the A's are expectations of the negative of the derivatives of the estimating functions 

and the B's are the variances and covariances of the estimating functions: let g' = (gk,g,), 

then, as before, A = E(-dg/dO), B = E(gg'),  partitioned as 

A = ( 1:: ) and B = ( ::: i:: ) , 
All and.Bll being square matrices with row dimension equal t o  that  of y. If the components 

of g are (4.15) - (4.16), and assuming third and fourth moments of the mixing distribution 

to  be the same as for the gamma distribution, then (4.24) simplifies considerably under 

HOT : T = 0. We have 

X'V Z 

A* = Z'VX Z'VZ + 3 0 (1:: 1'VZ 1'V2 O 1 1 ,  
and 

X'VX X 'VZ X'V 1 

B* = Z'VX Z'VZ + 9 Z'Vl  ) ; [ 1'VZ l ' V 1  + 21'v21 

here, as before, V = diag(pi+; i = 1 , .  . . , M ) ,  Z = diag(d/dculog Ao(T,,); i = 1 , .  . . , A4) = 

diag(1og T,,), for the Weibull baseline intensity, and 1 is the M x 1 unit vector. Hence, 

AsVar(g:) under HOT simplifies to  

which simplifies to  2 ~ 2 ,  ji$. Thus, the standardized version of the test statistic is 

Under the usual regularity conditions (Inagaki 1973; White 1932) and assuming that  the 

mean and variance have been correctly modeled, the statistic S1 is asymptotically standard 

normal. 

There are some points worth highlighting regarding the construction of $1. First, it 

is possible to  repla,ce B in (4.24) by an empirical variance estimator, say the sandwich 

estimator, so that  third and fourth moment assumptions need not be made. However, the 
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simplification gained by using these third and fourth order moment assumptions make S1 

rather easy to  compute. Second, a key requirement for the simplification is that  X contain 

a column of 1's. In this case, the first column of ATl is BT2. Thus A;,'BT~ is a vector 

with 1 in the first entry and zeros elsewhere, and A&A;I~  B;, becomes l 'V1 under No,. 

Hence (4.25) becomes 2 xE1 fir: under No,. Third, recall that  (4.26) was constructed using 

an estimating function for a based on the event-time data (4.15); if, instead, we were to 

use the estimating function for a based on the panel data, g,,, then similar comput,ations 

as performed above would show that the form of the test statistic obtained is identical to 

(4.26); the only difference would be that the estimate of p:+ would be based on solving 

(g$,g,&)' = 0 under No,. The form of the test statistic is the same for intensities other 

than the Weibull or for a vector-valued. We would, of course, be required to  modify the 

estimating function for a to account for a different baseline intensity. Similar test statistics 

have been evaluated in previous studies and were shown t o  benefit from a small sample 

correction (Breslow 1990; Dean 1992; Dean and Lawless 1989). Applying a small sa.mple 

correction to  the numerator of S1 yields an adjusted statistic with numerator 

where h: is the leverage estimated under HOT. Other types of test statistics for overdispersion 

could be considered, e.g., adaptations of the results from Spinelli (1994). This test is also 

very similar to  those derived by Dean (1992) using likelihood methods. 

4.4.2 Testing for Non-Homogeneity in the Poisson Process 

To test whether the data  may be adequately modeled by a homogeneous Poisson process 

we test that  Xo(t) is constant. With a Weibull baseline intensity function, this is equivalent 

to  testing No,: a = 1. A test for No, is derived below, but similar tests can be constructed 

when other parametric forms for the baseline intensity Xo are used. The procedure discussed 

in Section 4.4.1 yields a score-type test for No,. Based on the event-time data, the test 

statistic is 

Here ji!+ = Ts, exp(z:pt) and ( p t , i t )  are estimates of /? and r obtained under Ho, by 

solving go = 0 and g, = 0, (4.14) and (4.16), with cu = 1. We standardize the test statistic 
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in a similar manner as in Section 4.4.1. Under Ho,, 

where, as usual, W = diag(p;+; i = 1 , .  . . , M )  and V, = diag(pi+(l + rp;+);  i = 1 , .  . . , M). 

Under certain regularity conditions (Inagaki 1973; White 1982), and assuming correct speci- 

fication of the mean, the standardized test statistic is asymptotically distributed as standard 

normal.' 

4.4.3 Diagnostic Plot for Checking the Baseline Intensity 

The factorizations of the likelihood given in (4.5) and (4.20) suggest that  diagnostics for 

the model may be considered in two stages: first, based on the end-of-follow-up counts 

n;+; second, based on either the conditional distribution of the event-times given ni+, i = 

1, . . . , M ,  or the multinomial conditional distribution of the panel counts, n;j, j = 1, . . . , s;,  

given n;+, i = 1 , .  . . , M. The choice in the second stage reflects whether we have observed 

the event times or the panel data. 

Residuals based on n;+ are the standard residuals for generalized linear modeling of 

count data (McCullagh and Nelder 1989, Sec. 12.5). The residuals based on the second stage 

convey the essential information concerning the parametric form of the baseline intensity 

function (cf. Section 4.2). For the construction of these residuals we note that conditional 

on n;+, r;jr = Ao(~ij l) /Ao(Ts,)  are distributed as order statistics from U(0, l )  (see, for 

example, Ross 1983, Chapter 2). For the Weibull model r;jl = (wijl/TS,)@ and in practice, 

we substitute an estimate of a ;  the estimates of r;jl would then be approximately distributed 

as uniform order statistics. In Section 4.5 we illustrate the use of these r;jls for preparing 

Q-Q plots to assess how well the Weibull intensity fits the bladder cancer recurrence data. 

We will also test the fit of the random effects non-homogeneous Poisson process model using 

the tests developed in Sections 4.4.1 and 4.4.2. 

4.5 Illustration 

In Chapter 3 we examined the bladder cancer data collected during a clinical trial conducted 

by the Veterans Administrative Co-operative Urological Research Group. Recall that  the 

trial compares the efficacy of three treatments for recurring bla,dder cancer: placebo pills, 

pyridoxine pills, and periodic instillations of thiotepa into the bladder. The data  were 
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originally presented in Byar et al. (1977) and also appear in Andrews and Herzberg (1985). 

We return to  this dataset to  illustrate the analysis of panel data and the use of the diagnostic 

measures presented in Section 4.4. 

A total of 116 subjects diagnosed with bladder cancer were enrolled in the study. The 

tumors were surgically removed and the subjects were then randomly assigned t o  one of the 

three treatment groups: (1) Placebo; (2) Pyridoxine; and, (3) Thiotepa. The data  consist 

of the bladder cancer recurrence times for each of the subjects. 

As conducted, the study resulted in event-time data rather than panel data. The subjects 

were monitored continuously and could drop out at  arbitrary times. In Chapter 3 these data  

were used to  compare the efficiency of the end-of-follow-up counts and the event-time data. 

In this chapter, we impose an artificial panel data structure to  allow comparison of the event- 

time, panel and count data efficiencies. The dataset is modified to simulate a five year panel 

study with yearly follow-up exams. We treat as lost to  dropout any observation which would 

not have been available based on yearly follow-ups. The subjects' drop-out times have been 

truncated to  the next lowest multiple of 12 months, and any information following the last 

observed follow-up time has been omitted. For example, suppose a subject had a recurrence 

a t  27 months before dropping out of the trial at  month 30. His final observed follow-up would 

be a t  24 months and the recurrence at  27 months would not be observed in the modified 

dataset. As a result of these modifications, 22 subjects were eliminated because they did not 

complete a full year. End-of-follow-up count data was created from this modified dataset by 

aggregating over the observed yearly follow-ups for each subject. We shall refer to  this as 

the modified bladder cancer dataset and, except where noted, all analyses have been based 

on this modified dataset. Note that  this means the analyses of this end-of-follow-up and 

event-time data in this chapter will not match those in Chapter 3. 

Table 4.13 displays the number of subjects at  risk at  each follow-up time. The treatment 

groups appear to  have similar dropout rates. In Chapter 3, we observed that  the same was 

true of the unmodified drop-out times. This provides informal reassurance that  the censoring 

process (i.e., end-of-follow-up time, T,,) is likely independent of the event process. 

Table 4.14 presents the results from the analyses of the modified data and Figure 4.8 

displays quasi-likelihood estimates of the cumulative intensity functions based on the three 

quasi-likelihood analyses of the modified data  (the likelihood analyses of the panel data  

results in a plots that are visually indistinguishable from the quasi-likelihood versions and are 

not presented in the plots). The Weibull intensity model is used for all analyses. Comparing 
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Follow-up Times in Months 
Treatment Group To = 0 TI = 12 T2 = 24 T3 = 36 T4 = 48 T5 = 60 
1. Placebo 4 7 42 34 19 9 3 

(dropout rate) (0.106) (0.277) (0.596) (0.809) (0.936) 
2. Pyridoxine 3 1 23 22 16 6 1 

(dropout rate) (0.258) (0.290) (0.484) (0.806) (0.968) 
3. Thiotepa 38 33 25 19 6 0 

(dropout rate) (0.132) (0.342) (0.500) (0.842) (1) 

Table 4.13: Number of Subjects a t  Risk in the Modified Bladder Cancer Dataset. The table 
gives the number of subjects at  risk a t  time Tj .  The dropout rate is cumulative from time 
To - 

Likelihood Analyses: Estimate (Std. Err.) 

End-of-Follow-Up 
Count Data Panel Data Event-Time Data 

Quasi-likelihood Analyses: Estimate (Std. Err.) 

End-of-Follow-up 
Count Data Panel Data Event-Time Data 

Table 4.14: Results of Likelihood and Quasi-Likelihood Analyses of the Bladder Cancer 
Recurrent Event Data. Standard errors (Std. Err.) are based on the robust variances. The 
data  have been modified to  fit the panel data structure. 
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1. Placebo 

2. Pyridoxine 

3. Thiotepa 

Months 

Figure 4.8: Estimated Cumulative Mean Functions for the Bladder Cancer Data. For each 
group, the smooth curves show the estimates of the cumulative mean function t' exp(cc@) 
based on the three types of recurrent event data (count: solid line; panel: dotted line; event- 
time: dashed line). The observed cumulative mean function for the modified event-time data 
is shown as a step function. 
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0.0 0.2 0.4 0.6 0.8 1 .O 

Quantiles of Uniform(0,l) 

Figure 4.9: A Diagnostic Plot for Checking the Baseline Intensity Function. The observed 
values of rijl = (W,~~/T,,) '~ are plotted against the quantiles of the Uniform(0,l) distribution. 

the estimates based on the count, panel, and event-time data  in Table 4.14 reveals that  the 

estimates of the intensity parameters pl and cr show considerable variation depending on 

the type of data  analyzed. As expected, the data-type appears to  have less effect on the 

estimators of treatment effects, P2,  P3, and the overdispersion parameter, r. Also, Figure 4.8 

reveals that  the estimated cumulative mean functions based on the three data  structures 

are quite similar, especially for the period before 48 months. After this time, the cumulative 

dropout rate is approximately 809'0, and estimabes would be less reliable in any case. 

Figure 4.9 demonstrates the use of t,he residual rijr for checking the goodness-of-fit of 

the baseline intensity function. The figure was created by plotting values of the residuals 

r . .  231 = ( w i j l / ~ s , ) C u t  against the quantiles of a uniform distribution. The plot shows little 

evidence of serious lack-of-fit, though the "ledges" induced by the imposition of the panel 
' 

data  structure make the plot slightly more difficult to  interpret. The overall impression is 

that  the Weibull intensity model is very reasonable. 

Testing for overdispersion (see Section 4.4.1) using the panel data results in a value of 

S1 = 14.45. Based on the event-time and count data, the statistic takes on the values 12.71 

and 14.53. There is strong evidence that these data  demonstrate overdispersion relative to 
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the Poisson model. 

Testing for non-homogeneity of the Poisson process based on the Weibull intensity model 

corresponds to  testing the hypothesis Ho : a! = 1 (see Section 4.4.2). Using the event-time 

data, the standardized test statistic is equal t o  -0.01 (p-value = 0.504 based on the normal 

approximation). In other words, the data suggest that a homogeneous Poisson process 

would be a reasonable model for this data. In the next chapter, we describe a nonparametric 

intensity' model for recurrent event data recorded as panel data. 



Chapter 5 

Semiparametric Analysis of Panel 

Recurrent Event Data 

5.1 Introduction 

In a study of recurrent events, panel data  is a record of the number of events occurring for 

each subject between periodic follow-up times. This is in contrast with event-time data, 

where the exact recurrence times are recorded, and end-of-follow-up count data, where a 

count is recorded only at  the end of the follow-up period. In Chapter 4, we examined the 

efficiency of panel data versus event-time data and concluded that panel data  can be highly 

efficient for inference regarding covariate effects under reasonable conditions; we also showed 

that panel data can be quite efficient for inference regarding changes in the Poisson process 

intensity function over time, unlike end-of-follow-up count data. When event-time data  is 

too invasive or expensive to  collect, or when it is not otherwise feasible to  record the event 

times accurately, panel data is thus an attractive alternative. 

In Chapter 4, we explored the use of quasi-likelihood estimators for the analysis of 

panel recurrent event data. Quasi-likelihood methods were adopted specifically to  reduce 

dependence on assumptions regarding the distribution of the subject-specific random effect. 

In this chapter, we develop a nonparametric estimator for the baseline intensity function, 

making the methods even robust to  misspecification of the baseline intensity model. 

The flexibility of the Weibull intensity function, relative to  the constant intensity expo- 

nential model, has made it a popular choice in reliability and survival studies. However, it 
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will not be appropriate in all cases. Other parametric intensity functions are possible, but 

t o  avoid requiring a parametric specification of the baseline intensity function, we propose a 

nonparametric estimator of the baseline intensity function. Our estimator is related to the 

Nelson-Aalen estimator used by Lawless and Nadeau (1995); however, where Lawless and 

Nadeau use likelihood methods based on Poisson models and account for overdispersion only 

through the use of robust variance estimates, we have explicitly accounted for subject-to- 

subject variation in the estimating functions. Used in combination with the quasi-likelihood 

estimators developed in the previous chapter, the techniques provide a robust semiparamet- 

ric method for the analysis of recurrent event data. 

In Section 5.2 we review the quasi-likelihood estimator for overdispersed Poisson pro- 

cesses recorded as panel data and present the nonparametric intensity function estimator. 

Section 5.3 proposes quasi-score tests for the fit of specific parametric intensity models. Sec- 

tion 5.4 calculates the relative efficiency of the semiparametric estimator of the treatment 

effect, including a small numerical study. Section 5.5 illustrates the use of these techniques 

with analyses of two illustrative examples: the bladder cancer data and the Cherry Bark 

Tortrix data. The bladder cancer data have been examined in Chapters 3 and 4 under 

the assumption of a Weibull intensity model. We find that the semiparametric analysis 

conducted in this chapter yields very similar results. The Cherry Bark Tortrix data, on 

the other hand, yield very different estimates of the cumulative mean functions under the 

Weibull and semiparametric analyses, highlighting the usefulness of the nonparametric in- 

tensity function. The chapter concludes in Section 5.6 with an examination of the small 

sample characteristics of the estimators and our proposed test statistics via simulation. 

5.2 A Semiparamet ric Model for Overdispersed Panel Data 

In Section 4.2.2 of the previous chapter we presented quasi-likelihood estimating functions 

for inference with overdispersed panel data under the assumption of a model for 

the baseline intensity function, Xo. In this section we will adopt a nonparametric baseline 

intensity model to  replace this parametric baseline function. Other than this substitution, 

the same intensity model still applies, i.e., covariate effects enter the model via proportional 

intensity assumptions and subject heterogeneity is accommodated via a random subject- 

specific frailty. Quasi-likelihood estimates are found using a new estimating equation for 

the nonparametric intensity and the same quasi-likelihood estimating functions for P and 
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T as in the previous chapter. We begin by briefly reviewing the panel data structure and 

intensity model to  motivate construction of the nonparametric baseline function. 

A panel data  experiment involves M subjects with covariate vectors xi .  Without loss 

of generality, we can assume that  the subjects are enrolled in the study at  time To = 0. At 

follow-up-times T I ,  T2, . . . , T,, each subject is examined and the number of events occurring 

since the previous follow-up is recorded as n;j, i = 1,. . ., M and j = I , .  . . , s. The counts 

nij are teahations of the counting process Ni(t) which has an intensity function of the 

proportional intensity form 

xi(t) = v ; ~ ~ ( t )  exp(zT@) 

where v; is a subject specific random effect, Xo(t) is a baseline intensity function, and /3 
is a k dimensional vector of covariate effects. The subject-specific effect v; is included to  

explicitly model overdispersion of the counts. We will assume that  the mixing distribution 

associated with u has mean one and variance T .  Conditionally on the subject-specific effects 

v;, the counting processes Ni(t) are independent, nonhomogeneous Poisson processes with 

intensity functions X;(t). 

Because observations are collected only at  the follow-up times, {Tl,T2,. . .,T,), the 

analysis of panel data  requires estimates of the intensity function only a t  the follow-up 

times. This suggests that  we consider the intensity as step function; this leads to a convenient 

parameterization, 

where A,(t) = Jot Xo(u) du is the cumulative baseline intensity function, and so A(To) = 0. 

Thus e41 represents the mean intensity during the interval (Tj-l,Tj]. In the parametric 

model. 

Under (5.1), this becomes 

Pij = E (nij) = e 4 3 ( ~ j  - Tj-l) exp(x:/3). (5.2) 

Using this parameterization, the baseline cumulative intensity function Ao(Tj) is also the 

cumulative mean function for those subjects with xi = 0; the common intensity parameter 

pl used in the parametric model has been absorbed in the parameter q5. Thus, for a k group 

design only k - 1  indicator variables are required in the covariate vector xi . For consistency 
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of notation, we henceforth assume that xil = 0, effectively eliminating the parameter PI 
from the semiparametric formulation. As before, we concentrate on the k-group problem, 

where 
1 if individual i received treatment r ,  

xi, = 
0 otherwise 

for r = 2, . . . , k. Treatment group 1 still serves as the reference group, but now the mean 

function'for group 1 is given directly by the cumulative intensity function. 

Using this semiparametric intensity model, the likelihood is 

where the subscript S signifies the semiparametric intensity model for panel data and 

LMP(/3, 4, r )  is the mixed-Poisson likelihood as given in (4.7) where the parameter tr is 

replaced by 4 .  

Assuming a gamma distribution for the subject-specific effects v;, the first and second 

derivatives of Ls with respect t o  p and T equal the corresponding derivatives of Lt ,  equation 

(4.5), and are given in Lawless (1987a). The derivatives and expected information with 

respect to  4 are 

d log Ls M s, d P i  dlog LNB 
a 4 h  = C C n i j - l O g - +  ;=I j=1 d$h Pt+ a 4 h  

with second derivatives 

d2 log Ls M ( aYhddh,) = 5 {Pih lnd(h = hl)  - 1 + rPi+ 

d 2  log Ls M 
Pih ( 4 ) ' 1 + T,LL~+ 

Xir 
i=l  

where Ind(A) is the indicator function for the event A.  

As was described in earlier chapters, quasi-likelihood methods are becoming popular for 

the analysis of count data  displaying overdispersion. Quasi-likelihood methods require only 
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low order moment assumptions rather than the full distributional assumptions of likelihood 

methods, and, in Chapter 4, were shown to be highly efficient for the analysis of panel data. 

Consequently, we concentrate our attention on quasi-likelihood estimators from this point 

onwards. 

As the structure of the intensity function has not changed with respect to  ,B, and neither 

has our overdispersion model, we will continue to use the same estimating functions for ,f? 

and T that  were developed in earlier chapters, 

For q5 = (&, . . . ,$,)I we adopt the likelihood estimating functions, without adopting the 

full likelihood model; 

The second form of this function makes clear that  the estimator is found by comparing 

the observed and expected counts a t  each follow-up time, and that  the comparison takes 

into account the amount of overdispersion in the data. The estimating functions, g4,, j = 

1 , 2 , .  . . , s are unbiased provided that the final follow-up times Ts, are independent of the 

event process. Let gd be the vector of estimating functions for the parameter &, and let 

9s = ( g j ,  g;,gr)' be the semiparametric estimating function for 6s = ('I, $', T)'. Then the 

semiparametric estimator, &, is obtained as the solution to  the estimating equation gs  = 0. 

In the simple case when there is no dropout, i.e., all subjects have the same final follow- 

up-time, T,, the estimators of /3, and 4j are 

M where n+j = nij and [ni+],+ = En;+ for the subjects 

and j = 1 , 2 , .  . . , s. Note that  these estimators do not depend 

in Group r ,  for r = 2 , .  . ., k 

upon T. 
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Subject to  the standard regularity assumptions for asymptotic results in estima.ting 

functions (Inagaki 1973; White 1982), the asymptotic distribution of a ( &  - 8 s )  will be 

normal with variance 

A-I B(A-~) ' ,  (5.3) 

where 

and 
1 

B = lim -E (gsg&) 
M-+m hf 

The regularity conditions essentially specify that  the matrix (5.3) is positive definite. Note 

that  these results require the number of follow-up times to  be fixed as M increases. 

The asymptotic variance of 6s has the same form as the variance matrix for & under the 

parametric intensity in Section 4.2.1, with the parameter 4 entering in place of the parameter 
- I  - I  

a. Thus the assumptions required for consistent estimation of the variance of ys = (,L? , 4  ) 
are only that  the mean and variance of the counts have been correctly specified. If the third 

and fourth moments of the distribution of subject-specific effects v; are the same as those of 

a gamma random variable, the estimates of (PI, 4')' are asymptotically independent of the 

estimator of T .  That is, assuming that  the first to  fourth order moments of v; are the same 

as a gamma random variable with mean 1 and variance T ,  then the asymptotic variance of 

where As is E (-agTs/ars), writing gTs = (gp,g;j1, and u,, (4.19), is the asymptotic 

variance of T ,  unchanged from earlier chapters. Note that  the asymptotic variance of the 

quasi-likelihood estimator of the treatment effect P, is the same as for the semiparametric, 

likelihood estimator. Thus, the quasi-likelihood estimator is fully efficient relative to the 

likelihood estimator, as was demonstrated for the parametric intensity models of the previous 

two chapters. 

A finite sample estimator of this variance can be obtained in the usual ways by finding 

consistent estimators for the matrices A and B. Writing A = E (-dgs/dOs) I 8  and B = 

E (gS&) l i  where the tilde indicates a finite sample estimator of A or B, evaluated a t  6. 
Using these estimators leads to  the model-based variance estimator 
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using the observed gsg& as an empirical estimate of B results in the robust variance estimator 

5.3 Test for a Specific Parametric Baseline Intensity Model 

It will often be of interest to  test whether the data  can be accurately modeled by a specific 

parametkc intensity function. We will construct a quasi-score test using the same basic 

principles as used in Section 4.4.1. The test is based on the estimating function g4,  (5.3), 

and is similar to  likelihood score testing procedures (Breslow 1990). For consistency with 

earlier sections, the test will be constructed for the Weibull intensity function, but we later 

point out that  the technique is more generally applicable. 

The null hypothesis to  be tested is that the baseline intensity function is VC7eibull, How : 

Ao(t) = t o .  Using the nonparametric baseline for Ao(t), this can be rewritten 

where s is the number of follow-up periods and To = 0. We first obtain estimates 8 = 

(p', t i t ,  i )  under the null hypothesis, as described in Section 4.2.2. The event counts are 

estimated under How as ji; = e B l ( q  - TF-~) where the superscript "*" indicates estimates 

under How. The fit of bhe parametric model is then evaluated by calculating the value of 

the estimating function for 6, 

for j = 1,2 , .  . . , s. The asymptotic variance for the estimating function g; is 

where the matrices A = E (-dgs/dBs) and B = E (g/sgs) have been partitioned appropri- 

ately into submatrices corresponding to the vectors (PI, r)' and 4. An estimator of V6 is 

available via either of the usual methods: a model based estimator is found by evaluating 

A and B a t  the estimates found under How; a robust estimator is found by substituting 

(g/sgs), the empirical estimator of B. The test statistic for How is then 
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which we will compare to a X 2  random variable with s - 2 d.f. 

To further illustrate the construction of this type of test, consider a test of the fit of the 

exponential intensity model (i.e., that the Poisson processes are homogeneous). This test 

would be conducted by finding estimates of P and r for the Weibull model with a fixed a t  

1. Then the fit is evaluated by calculating g;  a t  these estimates. The resulting test statistic 

will then have s - 1 d.f. Other intensity functions would require similar modifications to 

the test procedure. 

These tests will be demonstrated in Section 5.5, and their small sample performance will 

be examined in Section 5.6. 

5.4 Efficiency of Semiparametric vs. Parametric Estimators 

By replacing the parametric baseline intensity model, which uses the parameters PI and a, 

with the nonparametric model, which uses s parameters, 41,. . . ,4,, the analysis has been 

made less model dependent. However, this freedom may come a t  the expense of information 

otherwise available for the estimation of the covariate effects. Since the primary goal of 

many experiments is to  estimate treatment effects, we will now examine the efficiency of the 

semiparametric estimator of the treatment effect pj. For this purpose, we define 

where Asvar(P,w) is the variance of the quasi-likelihood estimator of the treatment effect 

based on a Weibull intensity model as described in Section 4.2.2. 

As described in Section 5.2, if the final follow-up-times, T,, are the same for all subjects, 

then the parametric and semiparametric estimates of P, are the same, and the semiparamet- 

ric estimators have 100% efficiency. Also, when there are only two follow-up times, requiring 

and 42,  the semiparametric specification of the intensity function is a simple reparame- 

terization of the parametric intensity function in terms of pl and a ,  so the semiparametric 

estimators of p, will have 100% efficiency. Finally, since we showed in Section 3.3 that  the 

variance of 8 has the same form for a baseline intensity function parameterized by a scalar 

cu as for an arbitrary vector a, we note that the asymptotic variance results of Section 3.3 

can be applied for the nonparametric baseline intensity. 

We calculated this efficiency for a variety of two group designs, for which the true baseline 

intensity function was Weibull. The study considered combinations of the following factors: 
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Factor Levels 
Group Size 30 or 60 

Follow-up Times 2 follow-up times: (4, 8); 
4 follow-up times: (2, 4, 6, 8); or 
8 follow-up times: {1,2,3,4,5,6,7,8} 

Dropouts no dropouts, or 50% dropout a t  time 4 
P1 -2, 0 
P2 -1.5, 0.5, 0, 0.5, 1.5 
cr 0.7, 1.0, 1.3 
T 0, 0.8, 1.5 

Table 5.1: Factors Considered in ARE Calculations for Semiparametric Estimator Pzs. 

group size, number of follow-up times, dropouts, and values of the parameters P and T. 

Table 5.1 shows the factors levels used in the construction of the designs studied. The study 

did not consider designs with unequal numbers of follow-up times in the two groups, but 

did allow certain imbalanced designs, i.e., designs with different dropout rates and sample 

sizes. 

Tables 5.2 and 5.3 present the asymptotic relative efficiency values for designs con- 

structed with parameter values: PI = 0, a = 1, and T = 0 and 0.8. The effect of changes 

in the parameters PI and a were small, and the following comments apply across values of 

these two parameters, except as noted below. 

In summary, the efficiency of the semiparametric estimator, PzS, is greater than 75% for 

the two-group panel designs we examined. When the groups were balanced with respect 

to  follow-up times (i.e., when the groups were the same size with the same dropouts, or 

when the groups were of different sizes with no dropouts), the semiparametric estimator 

of the treatment effect was 100% efficient. The lowest efficiency observed was 0.7526 when 

group 1 was large with no dropouts and group 2 was small with 50% dropouts, and the 

treatment effect was pa = 1.5. In general, efficiencies were lower when the group associated 

. with P2 (i.e., the group designated as the "treatment" group) was the smaller of the two 

groups. The absolute sample sizes do not affect the efficiency figures, only relative sample 

sizes mattered; e.g., the efficiencies for group sizes (30, 30) are the same as for the situation 

with group sizes (60,60). Increasing the number of follow-ups had only very small effect on 

efficiency for inference regarding the treatment effect, P2. 
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Asymptotic Relative Efficiency of bzs 
# of Follow- 

Up Times Group Size Dropout Treatment Effect pz 

any 
none 
none 
50% 
50% 
none 
none 
50% 
50% 
none 
none 
50% 
50% 
none 
none 
50% 
50% 
none 
none 
50% 
50% 
none 
none 
50% 
50% 
none 
none 
50% 
50% 
none 
none 
50% 
50% 

any 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 

s ml mz Group 1 Group 2 -1.5 -0.5 0 0.5 1.5 
1.0000 1.0000 1.0000 1.0000 1.0000 

Table 5.2: Relative Efficiency of the Semiparametric Estimator BzS for T = 0. Efficiency is 
measured relative t o  the quasi-likelihood estimator based on the Weibull intensity, under the 
Weibull intensity model. The panel studies considered here have s = 2, 4, or 8 follow-ups 
during the same period of time, with either no dropouts or 50% dropouts a t  the middle 
follow-up time. Parameter values chosen are PI = 0, a = 1, r = 0. The A R E ( ~ Z S )  is 100% 
for any study with s = 2 follow-up times. 
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any 
none 
none 
50% 
50% 
none 
none 
50% 
50% 
none 
none 
50% 
50% 
none 
none 
50% 
50% 
none 
none 
50% 
50% 
none 
none 
50% 
50% 
none 
none 
50% 
50% 
none 
none 
50% 
50% 

any 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 
none 
50% 

Asymptotic Relative Efficiency of /?&s 
# of Follow 
Up Times Group Size Dropout Treatment Effect P2 

s ml m2 Group 1 Group 2 -1.5 -0.5 0 0.5 1.5 
1.0000 1.0000 1.0000 1.0000 1.0000 

Table 5.3: Asymptotic Relative Efficiency of the Semiparametric Estimator ,82s for r = 0.8. 
Asymptotic Efficiency is measured relative to the quasi-likelihood estimator based on the 
Weibull intensity, under the Weibull intensity model. The panel studies considered here have 
s = 2, 4, or 8 follow-ups during the same period of time, with either no dropouts or 50% 
dropouts a t  the middle follow-up time. Parameter values chosen are PI = 0, cr = 1, r = 0.8. 
The ARE(,&) is 100% for any study with s = 2 follow-up times. 
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Other than the treatment effect, P2, the parameters PI, cr, and r had little effect on the 

results in this study. More specifically, the value of PI had no effect on the relative efficiency 

of the treatment effect estimator. Allowing for overdispersion, i.e., r > 0, increased efficien- 

cies somewhat for imbalanced designs, but had no effect when the designs were balanced. 

When cr < 1 the effect of imbalance is similarly reduced; conversely, setting cr > 1 increased 

the effect of imbalance. The effect of P2 on the efficiency is most clearly seen by comparing 

the results for two designs with the same number of follow-ups and group sizes, but with 

opposite dropout patterns, e.g., the third and fourth lines of Table 5.2. Here we can see that 

when the group with 50% dropouts is the group with the higher intensity, the efficiency of 

&S will be lower than when subjects drop out from the lower intensity treatment group. 

Overall, 6 2 s  is more efficient when the expected numbers of recurrences observed for the 

treatment group increases. So, factors reducing the relative size of the expected number 

of recurrences to  be observed, such as dropouts, designation of treatment group, size of 

treatment effect, and the relative sizes of the groups, can all reduce the efficiency of the 

semiparametric estimator of the treatment effect in this study. 

An alternative wa,y to  assess the efficiency of the semiparametric estimator is to com- 

pare the standard errors of the predicted cumulative means for the follow-up times in the 

design. For example, in the bladder cancer data, the standard error of the estimated cumu- 

lative mean for the phcebo group (i.e., the cumulative baseline intensity) at 36 months is 

0.342 based on the semiparametric analysis, only slightly wider than the standard error of 

0.332 for the parametric (Weibull) estimate. These comparisons will be examined again in 

Section 5.5.1. 

5.5 Illustrations 

5.5.1 Analysis of the Bladder Cancer Data 

To demonstrate the use of the nonparametric baseline intensity model, we return again to 

the bladder cancer data  esamined in Chapters 3 and 4. Recall that  the data were collected 

as event-time data  from a clinical trial designed to compare the efficacy of three treatments 

for recurring bladder cancer. The subjects, all of whom had been trea,ted for bladder cancer, 

were randomly assigned t o  one of three treatment groups: (1) Placebo, (2) Pyridoxine, and 

(3) Thiotepa. In total, 116 subjects were followed for just over five years, recording the times 

of recurrence of bladder cancer tumours. The data have been modified to fit a pa,nel data 
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structure corresponding to  yearly follow-up times. The nonparametric intensity model will 

be fit t o  this modified data, and contrasted with the analysis based on the Weibull intensity 

model obtained in Chapter 4. These two analyses will be referred to  as the Nonparametric 

Intensity Analysis (or "Semiparametric Analysis") and the Weibull Intensity Analysis (or 

"Parametric Analysis"). Summary statistics for the modified data  have been presented in 

Sections 3.6 and 4.5. 

The parametric and semiparametric analyses conducted as described in Sections 4.2.2 

and 5.2 result in the estimates displayed in Table 5.4. There is little difference between the 

Intensity Model-Based Robust 
Model Estimate Std. Err. Std. Err. 

Wei bull P2 -0.073 (0.330) (0.332) 
P3 -0.293 (0.315) (0.310) 
PI -2.596 (0.376) (0.342) 
cr 0.923 (0.093) (0.089) 
T -0.989 (0.338) (0.245) 

Nonparametric p2 
P3 

41 
42 
43 

4 4  

4 5  

r 

Table 5.4: Parameter Estimates for the Bladder Cancer Data. Both parametric (Weibull) 
and nonparametric intensity models have been fit. The standard errors were calculated from 
both the model-based and robust variance estimates. The data  have been modified to  fit 
the yearly follow-up panel data  structure. 

two analyses with respect to  the estimate of the treatment effects, P2 and Pg, as well as for 

. the overdispersion parameter, r. This suggests that the two intensity models fit the data 

equally well. 

The high efficiency of the semiparametric analysis when compared to the parametric 

can be seen in Figure 5.1 and Table 5.5. These display the parametric and semiparametric 

approximate 95% pointwise confidence intervals for the cumulative baseline mean function. 
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Months 

Figure 5.1: Estimated Baseline Cumulative Mean Functions For the Bladder Cancer Re- 
current Event Data. Confidence limits shown are & 2 standard errors for the estimated 
cumulative mean at  time Tj. See also Table 5.5. The smooth curve and the dotted lines 
give the estimated cumulative mean function and approximate 95% pointwise confidence 
interval for the Weibull baseline intensity. The vertical lines and their crossbars show the 
approximate 95% pointwise confidence intervals and the point estimate for the cumulative 
mean number of events a t  the yearly follow-up times. Standard errors are based on robust 
variances. 
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The high efficiency of the semiparametric estimator is evident in the similarity of the widths 

of the confidence intervals a t  the first few follow-up times. The semiparametric intervals 

become wider for the last few follow-up times, but this is due t o  decreased information 

available because of dropouts. The mean at  time TI has been estimated by Ty for the 

Weibull analysis and by CiXl e4.1 for the semiparametric analysis. The usual asymptotic 

normal theory intervals were used, with variances found by delta-method approximations 

based on the robust covariance estimates of the original parameter vectors. Similar results 

are found when the model-based covariance estimates are used. 

Further evidence that  the Weibull model is reasonable can be seen in the similarity of the 

fitted means from the analyses based on the Weibull and nonparametric intensity models 

shown in Figure 5.2 and Table 5.5. Used in this manner, the semiparametric estimates of 

Estimated Cumulative Means (Standard Errors) 

Month Wei bull Semiparametric 
12 0.738 (0.134) 0.737 (0.132) 
24 1.400 (0.229) 1.415 (0.242) 
36 2.035 (0.332) 2.054 (0.342) 
48 2.654 (0.445) 2.678 (0.444) 
60 3.262 (0.566) 3.161 (0.653) 

Table 5.5: Estimates of the Baseline Cumulative Mean Functions for the Bladder Cancer 
Data. Standard errors (in parentheses) are calculated from the robust variances. 

the cumulative means provide a useful dia.gnostic tool, which in this case supports the use 

of the proposed parametric intensity model. In contrast, the analysis of the Cherry Bark 

Tortrix data  in the next subsection will emphasize the flexibility of the semiparametric 

approach for data which do not fit any of the usual parametric intensity models. 

5.5.2 Analysis of the Cherry Bark Tortrix Data 

This experiment was conducted to  test the effectiveness of pheromone-based mating disrup- 

tion of the Cherry Bark Tortrix moth (Enarmonia  fomosana).  The pheromone used was 

known t o  be competitive with caged virgin females in a.ttracting males into traps. It was 

expected that  males would become disoriented by the release of female scent, and would 

t,hen be unable to  locate and mate with any female moth in the tree. 
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Follow-Up Time in Months 

Figure 5.2: Estimates of the Cumulative Mean Functions of the Bladder Cancer Data. The 
smooth curves represent estimates based on the Weibull intensity model. The symbols repre- 
sent the semiparametric estimates (solid line and o: placebo; dotted line and A: pyridoxine; 
dashed line and +: thiotepa). 
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Twenty cherry trees were fitted with pheromone dispensers. Ten of the trees were selected 

a t  random and their dispensers were loaded with the pheromone; the remaining ten trees 

were used as a control. One trap was placed in a similar location in each of the twenty 

trees and baited with the female pheromone. Approximately once per week the traps were 

emptied of males, for a total of 19 follow-ups in 18 weeks. Once every three weeks, the baits 

were refreshed. It was hoped that the number of males caught in traps on the treatment 

trees would be lower than caught in traps on the control trees, suggesting that  the treatment 

was effective a t  confusing the mate-seeking males. 

Figure 5.3 displays the observed and estimated cumulative mean functions for this ex- 

periment. The treatment has substantially reduced the number of males caught, from a 

mean catch per tree of 141.2 in the control trees t o  5.1 in the treatment trees. 

While it is interesting to  observe the effectiveness of the treatment, our primary interest 

is in comparing the semiparametric and fully parametric analyses. The biology of the 

species suggests that the number of males will vary over time, suggesting the use of a 

nonhomogeneous Poisson model rather than a homogeneous process. We consider the use 

of the Weibull intensity model for our parametric approach. 

The parametric and semiparametric estimates of the treatment effect are shown in Ta- 

ble 5.6. Quasi-likelihood estimating functions were used for both analyses. Estimates of the 

parameters that  appear in both of the models, p2 and r, are very similar; of course, the 

estimates of ,D2 must be identical when there are no dropouts (see Section 5.4). Standard 

errors are also similar. 

It is possible to apply the test procedures for the fits of specific intensity models to  these 

data  (Section 5.3). The test statistics for both the null hypothesis that  the data  follow a 

Weibull intensity model and the null hypothesis that the data follow an exponential intensity 

model result are strongly rejected, with observed significance p < 0.0001. The test statistics 

had 17 and 18 d.f., respectively. Testing for overdispersion, as described in Section 4.4.1, 

yields a test statistic with observed significance p < 0.0001. 

Figures 5.4 and 5.5 display the estimated baseline and cumulative baseline intensity 

functions from the parametric and semiparametric analyses. The Weibull parameter a 

is estimated to  be approximately 1, suggesting nearly constant intensity. However, it is 

clear that the intensity is changing over time. It is also clear that  the Weibull model is 

not sufficiently flexible to adequately describe the changes observed in the means. The 

results from the semiparametric model suggests that  the male moths present themselves in 
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Follow-up Time in Days 

Figure 5.3: Estimated Cumulative Intensities for Cherry Bark Tortrix Data. The smooth 
curves represent the estimated cumulative intensity functions based on the Weibull baseline 
intensity function; the step functions represent the semiparametric estimates. The treatment 
group (solid lines) has a dramatically lower cumulative intensity function than the control 
group (dotted lines). 
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Intensity Model-Based Robust 
Model Estimate Std. Err. Std. Err. 

Weibull PI (0.315) (0.260) 

Nonparametric P2 
41 

4 2  

43 

4 4  

4 5  

46 
47 
48 
49 
410 

41 1 

41 2 

413 

414 

41 5 

416 

41 7 

418 

419 

7 

Table 5.6: Parameter Estimates for Cherry Bark Tortrix Data. Both parametric (Weibull) 
and nonparametric intensity models have been fit. The standard errors were calculated from 
the model-based or robust variance estimates. 
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Follow-up Time in Days 

Figure 5.4: Estimated Baseline Intensity Function for Cherry Bark Tortrix Data. The 
semiparametric estimates (e )  are e43 ( T ~  - and the parametric estimates (dotted line) 

are e P l ( ~ ?  - Tf-,). The estimates have been standardized by dividing by the time between 
follow-ups to  give daily figures. The semiparametric estimates have been connected to 
enhance visibility. 
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Follow-up Time in Days 

Figure 5.5: Estimated Cumulative Baseline Intensity Function for the Cherry Bark Tortrix 
Data. The Weibull intensity model estimate (solid line) is plotted with approximate 95% 
pointwise confidence intervals (dotted lines). The nonparametric intensity model estimates 
are shown (horizontal marks) a t  the center of their approximate 95% pointwise confidence 
intervals (vertical lines). Standard errors are based on robust variances. 
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two waves; this information was an unexpected bonus for the entomologist involved, and 

apparently corresponds with the biology of this species. While we did not test this notion 

in any formal sense, the information was not available from the Weibull intensity model 

analysis and demonstrates the extra flexibility of the semiparametric approach. 

Figure 5.6 displays the residuals, calculated from the end-of-follow-up counts, 

as suggested in McCullagh and Nelder (1989, Section 12.5). The residuals appear t o  have 

a reasonably normal distribution with little difference in the behaviour of the two groups. 

This suggests that  the variance model p i+( l  + rp ;+)  provides an adequate fit t o  the data. 

5.6 Small Sample Characteristics of the Semiparametric Es- 

t imat ors 

To examine the small sample behaviour of the semiparametric estimators and the test statis- 

tics developed in the previous sections, we have conduct,ed a small simulation study. Data 

were generated according to  a Weibull intensity model, with paramet,er values chosen t o  be 

similar t o  those observed in the Bladder Cancer data analysis in Section 5.5 and those used 

in the previous simulation study in Section 4.2.4. Subject-specific random effects vi were 

generated from a gamma distribution with mean 1 and variance T = 0.8. For each subject, 

event times were generated according to  the intensity function 

where /3 = (-2,0.l)', Xo(t; a )  = atff-' is the Weibull baseline intensity function, and xi = 1 

for subjects in group 2, 0 otherwise. Three values of a used were: a = 0.7 (decreasing 

intensity), cu = 1 (constant intensity), and a = 1.3 (increasing intensity). The event times 

were modified by the imposition of a panel data structure (as described in the previous 

chapter) with follow-ups at  12, 24, 36, 48, 60, and 72 months. A total of 2000 replications 

were conducted for each combination of a ( a  = 0.7,1.0,1.3) and group size (mi = 24,48,96). 

The quasi-likelihood estimating equations from Section 4.2.2 were used to  find estimates 

for the Weibull intensity model analysis and the equations from Section 5.2 for the semi- 

parametric model. For both sets of estimates, model-based and robust variance estimates 
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Figure 5.6: Normal Probability Plot for the Standardized End-of-Follow-up Residuals from 
the Cherry Bark Tortrix Data. The treatment group is represented by o and the control 
group by x. The reference line has a slope of 1 and intercept of 0. 



CHAPTER 5.  SEMIPARAMETRIC ANALYSIS O F  P'4NEL DATA 108 

were calculated. Similarly, both the model-based and robust forms of the test statistics for 

the Weibull and constant intensity models were calculated. 

The basic Newton-Raphson algorithm used to find the roots of the estimating functions 

had little difficulty converging on estimates, averaging between 5 and 15 iterations for the 

Weibull and semiparametric models. However, the constant intensity exponential model 

(with cu set equal to  1 )  was more difficult to  fit when the data were generated using cu = 1.3; 

approximately 3% of these analyses failed to  converge. Decreasing the step size of the 

Newton-Raphson algorithm allowed convergence for many of the problematic datasets. 

Figures 5.7 through 5.10 show normal probability plots comparing the distributions of 

the standardized estimators for the Weibull and semiparametric models to the standard 

normal for the small group size simulation (i.e., m; = 24). The estimators have been 

standardized by subtracting the true parameter value and dividing by either the model- 

based or the robust standard error. By standardizing the estimators in this way, the QQ- 

plot becomes a diagnostic for the accuracy of the mean and variance of the estimators, as 

well as the shape of the distribution. Because all 4 parameter estimators behaved similarly, 

the distributions of only 42 and &, are shown here. Our focus here is to compare the 

parametric and semiparametric estimators. However, there appears t o  be little difference in 

small sample behaviour between the two types of estimators. Overall, both the parametric 

and semiparametric estimators appear to  have near-normal distributions for group sizes 

as small as 24, except for the overdispersion parameter T. Because the distributions of 

the estimators of T appear to be seriously non-normal for groups of size 24, we have also 

presented how the sampling distribution of the estimator of T changes as the group size 

becomes larger. Figures 5.11, 5.12, 5.13, and 5.14 show normal probability plots of the 

quasi-likelihood estimator, 7,  for group sizes 24,48, and 96 subjects per group. Two points 

are apparent. First, the parametric and semiparametric estimators of T behave similarly 

- neither estimator appears to approach normality quickly. Second, the distribution of 

7 approaches normality more quickly when standardized by dividing by the model-based 

standard errors than when standardized using the robust standard errors, at  least in this 

situation where the assumed variance model is the correct one. This may be due in part 

to  the extra variability observed in the robust variance estimates, which we describe below 

(see Tables 5.8 and 5.9). 

Table 5.7 summarizes the means and standard errors of the estimators of Os. The 

standard errors used are the square roots of the sampling variances of the estimators in 
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Figure 5.7: Sampling 

Quantiles of Standard Normal 

Distribution of the Weibull Intensity Function Model Estimators. 
Model-Based s t  andaidization. Each panel plots standardized parameter estimates from 
2000 simulated data sets against quantiles of the standard normal distribution. Note dif- 
ferent scale for T .  The data sets consisted of two groups of 24 subjects and six follow-up 
times. Each column corresponds to  a different parameter; each row shows the results of 
simulations using a different value of a. 
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Figure 5.8: Sampling Distribution of the Weibull Intensity Function Model Estimators, 
Robust Standardization. Each panel plots standardized parameter estimates from 2000 
simulated data sets against quantiles of the standard normal distribution. Note different 
scale for T. The data sets consisted of two groups of 24 subjects and six follow-up times. 

. Each column corresponds to a different parameter; each row shows the results of simulations 
using a different value of 0. 
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Quantiles of Standard Normal 

Figure 5.9: Sampling Distribution of the Semiparametric Model Estimators, Model-Based 
Standardization. Each panel plots standardized parameter estimates from 2000 simulated 
data  sets against quantiles of the standard normal distribution. Note different scale for T. 
The data  sets consisted of two groups of 24 subjects and six follow-up times. Each column 
corresponds to  a different parameter; each row shows the results of simulations using a 
different value of a. 
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Quantiles of Standard Normal 

Figure 5.10: Sampling Distribution of the Semiparametric Model Estimators, Robust Stan- 
dardization. Each panel plots standardized parameter estimates from 2000 simulated data 
sets against quantiles of the standard normal distribution. Note different scale for r. The 
data  sets consisted of two groups of 24 subjects and six follow-up times. Each column corre- 

. sponds t o  a different parameter; each row shows the results of simulations using a different 
value of a. 
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Quantiles of Standard Normal 

Figure 5.11: Effect of Group Size on Sampling Distribution of .7- from Weibull Intensity 
Model, Model-Based Standardization. Each panel plots standardized values of 7 against 
quantiles of the standard normal distribution. The group size (mi) appears above each 
column. 
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6 . 4 - 2 0 2 4 6  

Quantiles of Standard Normal 

Figure 5.12: Effect of Group Size on Sampling Distribution of T from Weibull Intensity 
Model, Robust Standardization. Each panel plots standardized values of T against quantiles 
of the standard normal distribution. The group size (mi) appears above each column. 
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Quantiles of Standard Normal 

Figure 5.13: Effect of Group Size on Sampling Distribution of 7 from Semiparametric Model, 
Model-Based Standardization. Each panel plots standardized values of 7 against quantiles 
of the standard normal distribution. The group size (mi) appears above each column. 
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6 4 . 2 0 2 4 6  

Quantiles of Standard Normal 

Figure 5.14: Effect of Group Size on Sampling Distribution of 7 from Semiparametric Model, 
Robust Standardization. Each panel plots standardized values of ? against quantiles of the 
standard normal distribution. The group size (mi) a,ppears above each column. 
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Group a = 0.7 a = 1.0 a = 1.3 
Size Mean (Std .Err . )  Mean (Std .Err . )  Mean (Std.Err .)  

(62 true -3.2163 - 2 -0.8745 

4.5 true -3.5526 -2 -0.5414 
24 -3.6145 (0.3274) -2.0278 (0.2189) -0.5495 (0.1934) 
48 -3.5766 (0.2255) -2.0100 (0.1519) -0.5513 (0.1373) 
96 -3.5663 (0.1633) -2.0036 (0.1067) -0.5454 (0.0979) 

,& true 0.1 0.1 0.1 
24 0.1048 (0.3094) 0.1159 (0.2782) 0.0896 (0.2666) 
48 0.1034 (0.2246) 0.1000 (0.1924) 0.1022 (0.1831) 
96 0.1002 (0.1599) 0.0980 (0.1356) 0.1017 (0.1296) 

r true 0.8 0.8 0.8 
24 0.7122 (0.2786) 0.7315 (0.2087) 0.7381 (0.1957) 
48 0.7560 (0.3562) 0.7658 (0.1561) 0.7692 (0.1510) 
96 0.7759 (0.1512) 0.7818 (0.1168) 0.7852 (0.1119) 

Table 5.7: Simulation Results for Semiparametric Estimation of 8. The standard errors 
(Std. Err.) have been calculated as the square roots of the simulated variances of the 
estimators. Parameters (6*, 49, 44 and (66 have been omitted as they show results similar to 
4~ and &. The simulation involved 2000 replications of each combination of group size and 
a. Data were generated using the Weibull baseline intensity function, Xo(t) = at"-', with 
p = (-2,O.l) and T = 0.8. 
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Group Variance a = 0.7 a = 1.0 a = 1.3 
Size Type Mean (Std. Dev.) Mean (Std. Dev.) Mean (Std. Dev) 

42 24 Simulated 0.0905 0.0475 0.0382 
Model-based 0.0824 (0.0176) 0.0453 (0.0091) 0.0354 (0.0082) 
Robust 0.0804 (0.0274) 0.0451 (0.0151) 0.0350 (0.0122) 

48 Simulated 0.0435 0.0239 0.0195 
Model-based 0.0412 (0.0061) 0.0233 (0.0033) 0.0183 (0.0032) 
Robust 0.0409 (0.0104) 0.0233 (0.0055) 0.0184 (0.0049) 

96 Simulated 0.0201 0.0116 0.0951 
Model-based 0.0206 (0.0021) 0.0118 (0.0013) 0.0093 (0.0012) 
Robust 0.0205 (0.0037) 0.0118 (0.0021) 0.0093 (0.0017) 

45 24 Simulated 
Model-based 
Robust 

48 Simulated 
Model-based 
Robust 

96 Simulated 
Model-based 
Robust 

Table 5.8: Accuracy and Precision of Variance Estimators for 42 and &,. The simulated 
variance is the sample variance of the estimator during the simulation. The standard de- 
viations (Std. Dev.) are the square roots of the sample variance of the model-based and 
robust variance estimates. The simulation summarized in this table was conducted 2000 
times with p = (-2,O.l)') r = 0.8 and cu as indicated. 

the simulation. Other than r ,  all parameters are well estimated, even for small samples. 

Defining relative bias = (Mean(J) - 8)/8, the parameters $z and 45 have a relative bias of 

less than 2% even for the smallest group size (mi = 24) and less than than 0.5% for the 

largest group size (mi = 96). The relative bias in the treatment effect was between -10% and 

5% for the smallest group size and -2% and 2% for the largest group size (mi = 96). The 

overdispersion parameter exhibits relative bias ranging from -11% to  -8% for the smallest 

groups and from -3% t o  -2% for the large groups. The bias decreases for the larger values 

of cr and larger samples. 

Tables 5.8 and 5.9 summarize the accuracy and precision of the various variance es- 

timators. The simulated variance is the sampling variance of the estimators of 8 in the 
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Gmup Variance cr = 0.7 cr = 1.0 cr = 1.3 
Size Type Mean (Std. Dev.) Mean (Std. Dev.) Mean (Std. Dev.) 

Simulated 0.0957 0.0711 
Model-based 
Robust 
Simulated 
Model-based 
Robust 
Simulated 
Model-based 
Robust 

Simulated 
Model-based 
Robust 
Simulated 
Model-based 
Robust 
Simulated 
Model- based 
Robust 

Table 5.9: Accuracy and Precision of Variance Estimators for P2 and r.  The simulated 
variance is the sample variance of the estima,tor during the simulation. The standard de- 
viations (Std. Dev.) are the square roots of the sample variance of the model-based and 
robust variance estimates. The simulation summarized in this table was conducted 2000 
times with ,f3 = (-2,O.l) ' ,r  = 0.8 and a as indicated. 
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simulation study. The standard deviations shown on this table are the square roots of the 

sampling variance of the model-based and robust variance estimates and thus summarize 

the dispersion of the variance estimators themselves. In general, the robust variances tend 

to  underestimate the sampling variance, though less so for larger group sizes, and are more 

mriable than the model-based estimates for the scenarios examined here. This is particu- 

larly noticeable for variance estimation for the overdispersion parameter T,  where the large 

group size robust-variance estimates have standard deviations two to  three times as large 

as the model-based estimates. This extra variability may explain the slower convergence to 

its asymptotic distribution observed in the behaviour of the estimator f described earlier. 

Table 5.10 summarizes the observed coverage properties of the asymptotic normal con- 

fidence intervals for the parameters. The coverage probabilities for ,& are very reasonable 

even for mi = 24, ranging from 93% to 95%. Similar rates hold for the other parameters 

except for T ,  where the model-based intervals covered r as little as 90% of the time for the 

Weibull model and 87% for the semiparametric. The robust intervals performed even worse, 

with coverages of T as low as 79% and 83%, respectively. 

The a~bove results point out the need for special care in the use of asymptotic methods 

for inference in the relatively rare occasion when r is of greatest interest. 

The test statistics examined in the simulation were the model-based and robust versions 

of the tests for constant baseline intensity and for Weibull baseline intensity. Under the null 

hypotheses, the test statistics should have had approximately X 2  distributions. In general, 

the approximations were reasonable, improving for larger group sizes. For example, the 

observed rejection rates were between 4% and 6% for the test of the Weibull fit based on 

the model-based test statistic at  a nominal type I error rate of 596, though the robust test 

statistic appears to have an inflated type I error rate. Table 5.11 summarizes the observed 

rejection rate of the tests for various nominal levels. illso, as a very preliminary investigation 

of the power of these tests, Table 5.12 displays the observed rejection rates for the test of 

the fit of the homogeneous intensity function when the true baseline intensity function was 

X(t) = ta, for a = 0.7 and 1.3. The rejection rates are modest for groups of size 24 and for 

a = 0.7. For larger group sizes or for a = 1.3, the test shows reasonable power. 

Figure 5.15 displays QQ-plots of the sampling distributions of the test statistic for 

Weibull fit vs. the quantiles of the X 2  distribution with 4 d.f. The model-based and robust 

versions of the test statistic are both examined a t  the three levels of a. These plots show 

the distributions for the small group size (mi = 24) and 2000 simulated data sets. The right 
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Group Weibull Model Semiparametric Model 
a Size LY PI P 2  7 1 $42 4 5  Q2 r 

Model- Based Variance Estimator 

Robust Variance Estimator 

Table 5.10: Observed Coverage Probabilities for Asymptotic Normal Confidence Intervals. 
Results are based on the analyses of 2000 simulated datasets and so are accurate to  within 
0.01, 19 times in 20. Confidence intervals were calculated using either the model-based or 
robust variance estimates. The simulations were conducted with P = (-2,O. I) ,  r = 0.8 and 
o as indicated in the table. 
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Nominal Size of Test 
Group 0.01 0.05 0.10 

a Size model-based robust I model-based robust I model-based robust 

Testing Ho: Weibull Intensity Function 

Testing Ho: Constant Intensity Function 

Table 5.11: Observed Rejection Rates for Testing Specific Intensity Models When the Null 
Hypothesis is True. The rejection rates are based on 2000 simulated data sets. The estimates 
for the nominal 5% level are accurate to within approximately one percentage point, 19 times 
in 20. 
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Robust 

Quantiles of X2 with 4 d.f. 

Figure 5.15: Effect of Baseline Intensity Parameter cw on the Sampling Distribution of Test 
Statistics for the Weibull Intensity Model for Groups of Size 24. Each panel plots the 
observed values of the test statistic from 2000 simulated data sets against quantiles of the 
x2 distribution with 4 d.f. The data  sets were simulated according to  a Weibull intensity 
function; a different value of cw were used in each row. The left column displays values of 
the model-based test statistic and the right shows the robust test statistic. The dashed line 
shows the 95th percentile of the X j  distribution. 
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Group 0.01 
a Size model-based robust 

0.7 24 0.647 0.347 

Nominal Size of Test 
0.05 

model-based robust 
0.822 0.668 
0.991 0.969 
1 .ooo 1 .ooo 

0.10 
model-based robust 

Table 5.12: Observed Rejection Rate for Testing Ho : a = 1 When the Null Hypothesis is 
False. The data  were generated with a baseline intensity function Xo(t) = to.  Observed 
rates are based on 2000 simulated analyses and are accurate to  within approximately 0.022, 
19 times in 20. 

hand panels suggest that  the robust test statistic has slightly greater variance than the x2 
distribution with 4 d.f.; this effect is most noticeable for a = 0.7. The effect of group size 

on this tendency is examined in Figure 5.16. These plots show the distribution for group 

sizes m; = 24,48, and 96 and suggest that the tendency to underestimate the variance of 

the test statistic decreases with increasing group size. 
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Model-based Robust 

Quantiles of X2 with 4 d.f. 

Figure 5.16: Effect of Group Size on the Sampling Distribution of Test Statistics for the 
Weibull Intensity Model for cr = 0.7. Each panel plots the observed values of the test 
statistic from 2000 simulated data sets against quantiles of the X2 distribution with 4 d.f. 
The data sets were simulated according to a Weibull intensity function; a different group 
size was used in each row. The left column displays values of the model-based test statistic 
and the right shows the robust test statistic. The dashed line shows the 95th percentile of 
the Xi distribution. 



Chapter 6 

Conclusion 

6.1 Summary 

In broad terms, this thesis has concentrated on two themes: evaluation of the efficiency of 

analyses based on count and panel data relative to the analysis of event-time data,  and the 

development of quasi-likelihood and semiparametric methods for the analysis of recurrent 

event data.  The first has practical implications for the design and analysis of studies of 

recurrent events, and some basic guidelines were given suggesting when each type of data 

structure would be appropriate. The second has the general effect of making analyses 

less model dependent, requiring fewer restrictive distributional assumptions and less rigid 

assumptions regarding the baseline intensity function. 

In Chapter 3, methods were developed for the quasi-likelihood analysis of end-of-follow- 

up counts and event-times in studies of recurrent events. The model proposed was a non- 

homogeneous Poisson process with subject-specific random effects to  account for overdis- 

persion. Covariate effects were incorporated through a multiplicative intensity function. 

Quasi-likelihood estimators for the effects of covariates and for the parameters of the base- 

line intensity function were developed and shown t o  be consistent under first moment as- 

sumptions; second order moment assumptions were suflicient to  obtain consistent variance 

estimates as well. Analyses of the count data were shown t o  achieve high efficiency relative 

t o  analyses based on the event-times for inference regarding covariate effects under very 

reasonable conditions, but had poor efficiency for estimation of parameters describing the 

baseline intensity. 

Chapter 4 generalized the methods and results of Chapter 3 to  cover the analysis of 
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panel data,  where observations are taken a t  multiple follow-up times. Under conditions 

similar to  those for end-of-follow-up count data, the panel data  analyses were shown to  have 

high efficiency for the estimation of covariate effects with respect to  analyses of event-times. 

Estimation regarding the intensity parameters based on panel data was demonstrated to  

recover quite a bit of the information lost by the analysis of end-of-follow-up count data 

with a few follow-up times. However, we note that efficiencies of the estimator of the baseline 

intensity function parameters may still not be sufficiently high. Overall, however, panel data 

thus present an effective and possibly lower cost alternative to  the analysis of event-time 

data. 

Also Chapter 4, quasi-score test procedures were developed based on likelihood score 

procedures (Breslow 1990); the tests for overdispersion and homogeneity of the Poisson 

process were found to have reasonable small sample properties. 

In a comparison of the estimation methods, the quasi-likelihood estimators of the inten- 

sity parameters and covariate effects were found to  be 100% efficient relative to  the likelihood 

estimators, regardless of the data structure considered. However, the pseudo-likelihood es- 

timator used for the overdispersion parameter was shown to have reduced efficiency when 

the amount of overdispersion is high, again, regardless of the data  structure. 

Chapter 5 presented a semiparametric method for the analysis of panel count data, 

making use of a nonparametric baseline intensity estimator. Test statistics for specific 

parametric models were also developed, both for inference and as a diagnostic tool. In a 

small numerical study, the semiparametric estimators of covariate effects achieved very high 

efficiency relative to estimators from a parametric model. The semiparametric estimators 

and tests appear to  show reasonable small-sample behaviour. However, the estimators of T 

appear t o  approach asymptotic behaviour very slowly, and care must be used for inference 

regarding this parameter. 

Taken together, the techniques developed in this thesis present a coherent framework 

for the analysis of recurrent event data. Analyses based on count or panel data will possess 

high efficiency for the estimation of treatment effects for reasonably balanced multi-group 
' 

experiments. Further work is planned to investigate the efficiency of panel and count data 

estimators for more general covariate effects. Also, the performance of the semiparametric 

estimators will be examined under more general parametric intensity models. However, we 

expect that  the results will prove similar to  those observed here under the Weibull baseline 

model because the Weibull model is often a reasonable approximation. This approximation 
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probably will be especially good when follow-up times are relatively short, as they are in 

many clinical trials. The methods developed in the thesis are robust to misspecification of 

the baseline intensity function and require only low-order moment assumptions. Diagnostic 

procedures have been demonstrated that  enable the appropriateness of the model to  be 

assessed. The utility of less expensive and/or less invasive end-of-follow-up counts and 

panel data  have been evaluated, showing that  for many of the most common inferential 

purposes these aggregated counts are very efficient alternatives to event-time data. 

In the following section, the thesis concludes with a brief description of questions t o  be 

addressed in future work. 

6.2 Future Work 

6.2.1 Further Investigation of Nonparametric Baseline Intensity Models 

The nonparametric baseline intensity function developed in this thesis was proposed as a 

means of removing the need for specification of a parametric intensity function. The resulting 

baseline intensity estimates are completely flexible, but it is clear that  it should be possible 

to  develop a method of smoothing these estimates in some reasonably nonparametric way. 

Several possibilities suggest themselves: simple nonparametric smoothers such as moving 

averages; low order polynomial models; smoothing splines. These smoothing techniques 

could be applied either to  the the baseline intensity estimates or to  the cumulative baseline 

estimates. 

Two technical issues also deserve to  be addressed. First, alternative specifications of the 

nonparametric intensity could be examined. In particular, the model could be written with 

the (bj terms constrained so that C:,l cbj = 0. This would require a new parameter 40, 
corresponding to  the Weibull parameter ,Dl. This would mean that the parameters $1, . . . , (b, 
would parameterize only the "shape" of the intensity model, making their interpretation the 

same regardless of the overall intensity level of the process. Second, the power of the quasi- 

score test for specific parametric intensity model alternatives should be examined in more 

detail, specifically its power to  detect departures from the constant intensity and other low 

dimensional null hypotheses. 
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6.2.2 Prediction and Generalizations of the Variance Structure 

This thesis has concentrated on the problem of parameter estimation and testing. It would 

be worthwhile to  consider the problem of prediction for a.n individual subject. Thall (1988) 

adopted an empirical Bayes methodology, with much the same likelihood aa discussed in 

Chapter 4, except generalized for arbitrary follow-up patterns. Thall obtained a shrinkage 

estimator of the subject specific effect, v;. The use of this type of estimator may present a 

method'for predicting time to next recurrence or total number of recurrences given a partial 

event history. 

The variance structure examined in this thesis is largely a consequence of the use of a 

subject-specific effect, v; with a mean of 1 and variance r. Two variants on this simple 

model include: unequal variances for v; according to  some function of covariates, z ; ;  and 

possible hierarchical modeling of subject-to-subject variability, perhaps along the lines of 

Lee and Neider (1996). 

6.2.3 Relationship to Generalized Estimating Equations Methods 

In a series of articles (e.g. Liang and Zeger 1986; Zeger and Liang 1986; Zeger, Liang, 

and Albert 1988; Liang, Zeger, and Qaqish 1992), Liang and Zeger have demonstrated 

the use of a general method for the analysis of clustered and longitudinal data, known as 

Generalized Estimating Equations (GEE). The method develops estimators as the solution 

t o  a set of quasi-likelihood estimating equations. However, the method does not require 

specification of an explicit model for the within-sub ject correlation structure. Instead, 

a "working correlation matrix" is proposed and used for obtaining parameter estimates. 

Then the robust variance estimator described above (Section 2.8.3) is used to ensure that 

estimated variances are reasonable. 

The methods were developed for the analysis of clustered and longitudinal data for which 

generalized linear models would otherwise be appropriate. However, there does not appear 

to  be a corresponding GEE model for the event-time data, only for the panel and end-of- 

follow-up count data  structures. It would be interesting to  develop the relationship between 

the semiparametric methods from Chapter 5 and the GEE methods. 

Stukel (1993) compares the GEE and full parametric likelihood estimators (Thall and 

Vail 1990) for the homogeneous and nonhomogeneous Poisson process for data  structures 

similar to  the bladder cancer data  examined in this thesis. Stukel concludes that  the two 
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methods produce similar results except when the intensity function model is misspecified. In 

this case the GEE variance estimates were more reliable. This suggests that the semipara- 

metric estimators developed here may be a desirable complement to  the GEE methodology. 

An examination of the relationship beween the GEE and semiparametric models presented 

in this thesis would characterize the advantages and disadvantages of both methods, pro- 

viding guidance regarding when each method should be preferred. 

6.2.4 Two-State Model for Recurrent Events 

When the event of interest is not accurately modeled as a point event, the methods developed 

in this thesis will not be appropriate. Consider, for example, a disease process in which the 

subject is in one of two states, State 0 ("remission") and State 1 ("exacerbation"). The 

phenomenon of interest in such an experiment might be the total time spent in State 1, 

or the average time between exacerbations (i.e., average time between transitions from 

State 0 to  State 1). If the average sojourn time in State 1 is short relative t o  the overall 

follow-up period, and the total number of exacerbations is small, then the process would 

be approximately Poisson. Under these conditions, the methods developed in this thesis 

may be approximately correct. However, as the proportion of time spent in remission 

(State 0) decreases, the accuracy of this approximation will decrease. It would be useful to  

develop a diagnostic tool that would enable this type of behaviour to  be detected when the 

nonhomogeneous Poisson process (NHPP) model is used. As well, guidelines outlining the 

point where the NHPP model is no longer appropriate should be developed. 

As an alternative, a two state model could be specified with a baseline intensity function 

describing the instantaneous rate of transition from State 0 to  State 1, Xgl(t), and a second 

intensity function describing the instantaneous rate of transition from State 1 to  State 0, 

Xho(t). The NHPP model used in this thesis would be a special case of this model with 

Xgl(t) = Xo(t) and XiO(0) defined as infinite. Building from the models used in this thesis, 

the intensity function for each subject could then be specified for the subjects in State 0 as 

and for the subjects in State 1 
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where the covariate vectors xi and z; may or may not contain the same covariates and v; 

and 7; are subject-specific random effects. The distributions of v; and 7; would be specified 

to  have means of 1 ,  with variances ro and 7 1 ,  and covariance p. A natural restriction to  

consider in this model formulation would be that the set of covariates are the same for 

both transitions from State 0 to 1 and from State 1 to 0, i.e., xi = r;. It would likely be 

of interest to examine the relationship between the parameter estimates ,bj and yj. Also, 

specifying that  the subject specific effects were the same for both functions, v; = v;, would 

simplify the analyses, and would correspond to a model in which each subject has a natural 

tendency to  switch from one state to another (cf. Goniil and Srinivasan (1993) who examine 

diaper purchasing behaviour). Alternatively, the sojourn times in State 1 could be assumed 

to  follow an exponential distribution, unaffected by any covariates or subject-specific effects. 

This would be a much simpler model, but triggers the following question: How reasonable 

is it t o  ignore the duration of the sojourn in State 1 and model the data  according to the 

methods presented in this thesis? Many of the same strategies followed in this thesis could 

be used to  investigate these questions, starting with the development of quasi-likelihood 

estimating functions for the various model parameters. 
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