
INTERACTIVE DATA-DRIVEN WEB APPLICATIONS

Wai Man Raymond Chiu

B. Sc., Mathematics and Computing Science

Simon Fraser University. 1995

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE R E ~ U I R E M E ~ S FOR THE DEGREE OF

_IMASTER OF SCIENCE

in the School

0 f . .=

Computing Science

O Wai Man Raymond Chiu

SIMON FRASER UNIVERSITY

September 1997

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the perrnissiori of the author

National Library 1*1 of Canada
Bibliothbque nationale
du Canada

D

Acquisitions and Acquisitions et
Bibwgraphic Services services bibliographiques

395 Wellington Street 395. rue Well~ngton
OttawaON KlAON4 OttawaON K l A O N 4
Canada Canada

' Your file v m m(e-

001 & NMre reference

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in thls thesis. Neither the
thesis nor substantial extracts from it
may be p ~ t e d or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exc1usi;e permettant a la
~ ib l io thk~ue 'nationale du Canada de
reproduire, prster, distrib er ou

&these sous ven&e des copies de
la forme de microfiche/filrn, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent &e imprimes
ou autrement reproduits sans son
autorisation:

Name:

1 .

APPROVAL -
4

Wai M.an Raymond Chiu y

Title of Thesis: Interactive Data-driven Web Applications

Examining Committee: Dr. Stella Atkins
Chair

Date Approved:

Dr. Wo-Shun Luk
Senior Supervisor

D$Ze-Nian Li
Supervisor

Dr. Jiawei H)n
External Examiner

Degree: ~ & t e r of Science

Abstract

Great efforts have been made to develop mechanisms for delivering sophisticated

applications over the Web in the past. Numerous technologies have recently been

developed which not only make the Web an effective means for hypermedia information

retrieval, but also give it a capability of executing interactive and high-impact Internet

applications in a powerful and efficient manner. This is 'partkularly true for Web

database access technology. Traditional approaches basically drop the d a t a b ~ e

connection once an operation has finished - hence operations are independent from each

other. The newer on-line approaches either keep the database connection open

throughout the whole session or effectively store the states of current users and possibly

other information in the client-cache, thereby yielding better performance; higher

capability, and a lower level of programmatic complexity.

Three basic issues are associated with Web database access technologies: (i) the

efficiency of remote database access from a Web browser, (ii) the effectiveness of the

graphical user interface (e.g. the level of user-friendliness and interactivity), and (i i i) the

effectiveness and flexibility of application development tools. This thesis investigates

these three issues by comparing various architectures in order to evaluate the feasibility

of using the newer technologies for developing sophisticated data-driven Web

applications. To compare the newer techniques with traditional approaches, a series of

quantitative and qualitative analyses will be presented. by means of experiments and

sample applicat5ons.

/
f'

Acknowledgments

Getting enough and adequate

thesis of this size is definitely not an

accomplished solely

valuable advice and

information, knowledge, and experience to write a

easy task. The completion of this thesis cannot be -
by the effort of one person. Many individuals have

contributions. Although it is not possible to name all

would like to-take this opportunity to give them my thanks and express my appreciation

to some who merit special recoinition.

First, I especially would like to thank my senior supervisor, Dr. Wo-Shun Luk,
0

who provided the guidance and substantial support for both hardware and software.

Without his care and advice, I am quite sure this thesis would never have come to

completion. His tireless support and direction has also made this learning process a very

rewarding experience. I genuinely feel that I amvery fortunQe to have been his siudent.

I would also l k e to thank my supervisor, Dr. Ze-Nian Li for giving valuable

comments on my thesis. Thanks also to Osmar Zaiane for helping me identify and
\

understand certain relevant concepts from his insights and rich sxperience in the field of

Web database access.

I am also thankful to the network support group ef ow School of Computing

Science for their patient t~chnical input. Finally. I would like to thank Dr. ~ a i Toth and

Amy Wong, the proofreaders who corrected any mistakes and revised the structure of my

final thesis.

Contents

Approval

Abstract,

Acknowledgments

List of Tables ,

List of Figures

1 Introduction
3 1 . 1 The HyperText Markup Language . ,

3 1.2 The HyperText Transfer Protocol. ,

1.3 Web-Based Applications . 3

1.3.1 Data-driven Web Applications . 4

. 1.4 Java 5

1.5 ActiveX . 6

1.6 Objectives of the Thesis . 6

1.7 Overview of the Thesis. 7

2 Traditional Web Database Access 9

2.1 Web Browsers . - 1 1

. 2.1.1 Client-Side Scripting : 1 1

. 2.1.2 Executable Content Approaches 12

2.2 Webservers . 13

. 2.2.1 Performance 13

. 2.2.2 Administration 14

. 2.2.3 Security @14

. 2.2.4 Application Development Environment 1 5

. 2.3 Interface between Web Server and Applications 15

. 2.3.1 Common Gateway Interface 15

. 2.3.2 ~ ~ ~ f i c a t i o n Programming Interface 17

2.3.2.1 NSAPI

. 2.3.2.2 ISAPI '.,. 18

. 2.3.2.3 ASP : 19
0

. 2.4 Interface between Web Server and DBMS 20

. 2.4.1 Microsoft Internet Database Connector 21

. 2.4.2 Netscape LiveWire 22

. 2.5 Stateless versus State-based Approaches 23

. 2.6 Off-line versus On-line Approaches 25

3 On-line Web Database Access 26

3.1 TheJavaLanguage . 27

. 3.1.1 Java Applets 28
,-

. 3.2 ODBC 30

3.3 JDBC . 31

. 3.3.1 JDBC-ODBC Bridge 32

3.3.2 Native- API Partly-Java Drivers . 34

. 3.3.3 Native-protocol All-Java Drivers .-. ! 35

. 3.3.4 Net-protocol Ail-Java Drivers 36

. 3 . 4 COM and ActiveX Technologies : !a 38

/ '
P . 3.4.1 Remote Data Object 39

1
. 3.4.2 Advanced Data Connector : . . : 41

4 Performance Comparison 44

. 4.1 Experimental Setup .' 45

. 4.1.1 JDBC with Symantec dbANYWHERE 48

. 4.1.2 JDBC with Intersolv JDBCIODBC Bridge 48

. 4.1.4 Microsoft Advanced Data Connector 50

. 4.2 Summary of Experimental Results 50

. 4.3 Interpretation of Experimental Results 52

. 4.3.1 Performance Difference in First and Subsequent Queries 54

4.3.2 Intersolv JDBCIODBC Bridge VS . Microsoft RDO 5 v

. 4.3.3 Symantec dbANYWHERE VS . Microsoft ADC 56

5 ~ r o t o t ~ p e Web Database Application I 58
5.1 Evolution . 58

. 5.2 Design Issues 59

. 5.2.1 User Interface and Interactivity 59

.
s 5.3 Implementation 65

. 5.4 Performance Issues 66

. 5.4. I Session-oriented Experiment 67

. 5.1.2 Result and Interpretation 67

6 Summary. Conclusion. arid Future Work 72

vii

6.1 Summary . 72

6.2 Conclusion . 74

. 6.3 Future Work 75

Appendix 77

. A Complete Listing of Experimental Results: Chapter 4 . 77

. B Complete Listing of Experimental Results: Chapter 5 . 86

Bibliography

List of Tables

Table 4.1 :

Table 4.2:

Table 4.3:

Table 4.4:

Table 4.5:

Table 4.6:

Table 4.7:

Table 4.8:

Table 4.9:

Configuration of Web server and Web Client for the Experiment 46

Querying MS Access 7.0 using Symantec dbANYWHERE 51

Querying MS SQL Server 6.5 using Symantec dbANYWHERE 51

Querying MS Access 7.0 using Intersolv JDBCIODBC Bridge 51

. Querying MS SQL Server 6.5 using Intersolv JDBCIODBC Bridge 51

Querying MS ~ c c e i ~ psing MS RDO 2.0 9 52

Querying MS SQL ~erver'6.5 using MS RDO 2.0. 52
J

Querying MS Access 7.0 using MS ADC 1.0 . 52

. Querying MS'"SQL Server 6.5 using MS ADC 1 0. 52
-Y

Table 5.1 : Querying MS Access 7.0 using MS IDC . 68

Table 5.2. Querying MS Access 7.0 using MS ADC 1.0 . 68

Table 5.3. Querying MS Access 7.0 using Symantec dbANYWHERE 68

. Table A 1 : Query 1 on MS Access 7.0 usinfi Symantec dbANYWHERE 77

Table A.2. Query 2 on MS Access 7.0 using Symantec dbANYWHERE 78

Table A.3. Query 1 on MS SQL Server 6.5 using Symantec dbANYWHERE 78

Table A.4. Query 2 on MS SQL Server 6.5 using Symantec dbANYWHERE 79
w

Table A.5. Query 1 on MS Access 7.0 using Intersolv JDBC/ODBC-Bridge 79

Table A.6. Query 2 on MS Access 7.0 using Intersolv JDBC/ODBC Bridge 80

. . . Table A.7. Query 1 on MS SQL Server 6.5 using Intersolv JDBCIODBC Bridge 80

Table A.8: Query 2 on MS 6QL Server 6.5 using Intersolv JDBCIODBC Bridge . . . 8 1

Table A.9: Query I on MS Access 7.0 using MS RDO 2.0 . 8 1

Table A.lO: Query 2 on MS Access 7.0 using MS RDO 2 . 0 82

Table A. 1 1 : Query 1 on MS SQL Server 6.5 using MS RDO 2.0 82 *
C

Table -4.12: Query 2 on MS SQL Server 6.5 using MS RDO 2.0 83

Table A.13: Query 1 on MS Access 7.0 using MS ADC 1 . 0 83

Table A.14: Query 2 on MS Access 7.0 using MS ADC 1 .0 84

Table A.15: Query 1 on MS SQL Server6.5 using MS ADC 1 .0 84

Table A.16: Query 2 on MS SQL Server 6.5 using MS ADC 1 . 0 85
P'

4

Table B. 1 : Querying MS Access 7.0 using MS IDC . 86 ~

Table B.2: Querying MS Access 7.0 using MS ADC 1.0 . 86

Table B.3: Querying MS Access 7.0 using Symantec dbANYWHERE 86

List of Figwres

Figure 2.1 : Traditional Web database access model . 10
*

Figure 2 5 : Interaction between CGI executables and the Web server,. K
k

Figure 2.3. Interaction between ISAPI Application DLLs and the Web server 19

Figure 2.4. Interaction between the Web Server and Databases via IDC 22 -
I

Figure 2.5. Stateless nature of HTTP client-server architecture 24

Figure 2.6. Maintaining user status during an HTTP session . 24

Figure 3.1 : Execution of Java program in a Java-enabled machine 28

Figure 3.2. Execution of Java applet in a Java-enabled Web browser 29

Figure 3.3. ODBC architecture . 30

Figure 3.4. Database-enabled Java applet connection model . 31

Figure 3.5. JDBCIODBC Bridge model . 33

. Figure 3.6. Native-API Partly-Java Driver model 34

Figure 3.7. Native-Protocol All-Java Driver model . 35

Figure 3.8. Net-Protocol All-Java Driver model . 37
.

Figure 3.9. RDO model . 40

Figure 3.10. ADC clientlserver model . 42

Figure 4.1 : Experiment ClientIServer Test-Bed . 46

Figure 4.2. Average access. time to MS Access 7.0 . 53

Figure 3.3. Average access time to MS SQL Server 6.5. 53

Figure 5.1 : Top level screen . 60

Figure 5.2. Activity Logger window . 61

Figure 5.3. Expanded menu bar . 62

Figure 5.4. Edit activity window . 62

Figure 5.5. Dialog window displaying error messages . 63

Figure 5.6. Dialog window confirming activity update . 63

Figure 5.7. View Preferences window . 64

Figure 5.8. View Preferences window with.corresponding Sort tab 64

4' Figure 5.9. Activity Logger window after filtering . 65

Figure 5.10. Average individual qugry access time . 68

Figure 5.1 1 : Average cumulative query access time . 69

U

xii

Chapter 1

Introduction

The Internet is undoubtedly the most influential medium in our lives today.

providing powerful and universal connectjvity for information access; and its growth has

been phenomenal during the past few .years. As accessibility to the Internet has

continued to grow and develop, the Web's capabilities have also moved ahead, no longer +

restricted it to simple document viewing. The Web is also ready for accessing interactive

and dynamic contents. Additional Web-based applications are expected to evolve as

currently available capabilities are ever being expanded. Recently, a lot of research has

been carried out on designing better ways of developing and running Web applications.

With the advances of computer and communication technologies, previously infeasible

means of delivering interactive content through the Web have become reality. Innovative

Web-based systems, including data-driven applications capable of linking live data as

well as providing users interactive features have resulted. These refined systems not only

provide an application environment with powerful new functions and features, but also

dramatically decrease the client-server communications overheads consumed by

traditional Web-based applications.

CHAPTER 1. Introduction

1.1 The HyperText Markup Language
The H~perTex t Markup Lcrngunge [DH96. W3C97b], or HTML, provides a set of

well-defined symbols specifying a single universal standard format for Web documents.

Essentially, all data formats are supported including text, graphics images, and even

streaming videg. The most remarkable feature of HTML. perhaps, is its support for

navigation enabling users to easily move among related documents. Although the

specification of HTML is being constantly revised to extend its functionality, the

interactivity of the Web supported by HTML is limited to selecting which material to

view from the choices presented. The introduction of gateway programs that use files of

hypertext on the Web for interface purposes allows some degree of interactivity.

However, any computation must be performed on the server and true interaction is not

possible through gateway programming alone. To bring the Web alive with a higher

degree of interaction. more advanced technologies are needed

1.2 The-HyperText Transfer Protocol
The World Wide Web is built on a client-server model. Clients and servers

communicate with each other using a common protocol. The H~perTuxr Trtrn.Ffer

Protocol /DH96, W3C97a1, or .HTTP. is a protocol for computers to speak as they

exchange information through the Web. This protocol provides the necessary

connectivity and interface for the Web. The HTTP was designed to efficiently access

information across the Internet to handle a wide variety of data types. In Fact, a file's

data is only useful if its underlying type of data is known. With HTTP, the Web

understands the corresponding data types of Web documents and passes that information

along. Moreover, the H l T P offers the lightness and speed necessary for distributed and

hypermedia information systems. The HTTP is based on a requestlresponse paradigm.

Tjpically. a client establishes a connection with a server and sends a request to the server

in the form of request method. URL, and possibly other information. The server then

responds with information including certain server information, body content, etc.
L

CHAPTER 1. lntroductibn

Although a connection is established between a client and a server, the HTTP

protocol is known as connectionless or stateless because the connection is dropped. and

forgotten once the request has been responded. Each individual request is treated as

discrete and brand-new, unrelated to any previous ones. Some other protocols, in

contra5t. are state-based and the connection is kept open. For instance, an FTP server

keeps track of a client's information in an R P session when 7 client is moving around in

remote directories. An advantage of stateless systems is that they are relatively easy to

write. However, it is exactly the stateless nature of HTTP that makes traditional Web
I

applications incapable and inefficient, which leads to tremendous research into more

advanced Web technologies.

Web-Based Applications
The popularity, simplicity, and performance of the Internet make it an excellent

medium for conducting many applications. By combining versatile and sophisticated

techniques for information retrieval and hypermedia, the World Wide Web has become

the most popular service to access Internet information. Web documents can include

numerous data formats such as text, graphics, sound, or video with little effort which

makes the document highly multimedia. Hence, resources can be stored in different

formats and existing resources can be easily made available with slight modifications.

Another strength of the Web is that it provides a common user interface for Internet

utilities such as Q P and Gopher. As a consequence, users can use their familiar Web
- .

browsers to rhd everything offered by the Internet [Woo951 Moreover. the ability to
&

include active ~i&s and references to other Web pages also implies several benefits for a

wide range of applications. It allows easy references traceable by following the links to
1

various kinds of information in a consistent manner [Pim96]. Moreover, it provides great

opportunities for structuring information and simplifying grasp of overall content by

actively linking related docudents. Therefore, it seems there are needs' to build

sophisticated Web applications that fit well with the Internet based environment.

CHAPTER 1. Introduction 4

On the other hand, Web documents today are largely static - they simply present

information or a friendly interface for retrieving information from the user. Recent

developments ih Web technology, Web servers, and Web browsers further enhance the

formatting of w e b documents and encourage the creation of more "active" or "smarter"

Web pages. As a result, highly interactive Web-based applications have become'

possible. Researchers then start designing even more advanced techniques to develop

Web-based systems which allow information to be published in any favorite format

within the context of Web browsers. Applications developed by these advanced and

emerging technologies are even qualified to be conipared with desktop applications to

some extent. The successful introduction of these new techniques also provides

promising resources to bring important changes in Web-based application systems.

1.3.1 Data-driven Web Applications

Central to the development of many applications would be data connectivity.

The Internet phenomenon has propagated to the database community as Web data access

opens up a number of options for interactive Web sites such as transaction processing and

search engines. Moreover. database-enabled Web sites have the capability of providing

valuable information in an organized, searchable, and easily modified format. However,

there were very few, although inefficient, approaches for data connectivity through the

Web in the past. Traditionally, the Contmon Gatewuy In ter jke , or CGI, is the only

popular approach to generate dynamic Web documents. Although writing CGI programs

to enable simple interactive features is not complicated, it is very inefficient since any

interactivity means a communication with the Web server is requued. For database

applications. using CGI is even less efficient and not trivial at all. As a result, efficient

ahd effective means for Web database access has become an imminent research issue.

The introduction of light-weight client-side scripting languages does improve the

efficiency of interactive applications to a certain extent. Nevertheless, delivering data-

centric Web contents using these languages is not feasible at all due to their limited
h..

functionality. Being a hot new field, Web database development has attracted the focus

CHAPTER 1 , introduction

of many researchers recently. The use and acceptance of executable contents in the Web

allow highly interactive and data-centric Web-based applications to be created. Two of

the representatives of Web executable content approaches are Java applets and ActiveX

.controls. Basically, they are light-weight reusable programming components which can

be embedded in a Web page to increase the limited functionality of Web documents and

can be used for data connectivity as well. More details of these two different kinds of

components will be introduced in later chapters.

1.4 Java
Nothing has recently captured the attention of the Internet community as much as

Java. As part 04 an advanced consumer electronics project at Sun Microsystems at the

beginning, Java was designed to be a reliable and portable object-oriented programming

language. Due to its tremendous capability, Java possesses all the essentials for

extending the 'Web in ways that were previously inconceivable. Java brings true

interactivity to the Web. Highly interactive applications such as games and database
7 \

applications can now be e n c o h e r e d through the Web at remote network sites. ,

Fundamentally, software implemented in Java can be safely distributed across the

Internet and run on many different kinds of computers. Moreover, the resulting

executable content shifts the site of activity from the Web server to the Web client.

Class libraries are continuously developed to extend the functionality of Java for

creating advanced applications. One of such useful libraries, the J a ~ v r Dut(rhirse

Connt.cri\ih, or JDBC, API is developed to intimately tie connectivity to databases with

the Java language. The JDBC defines every aspect of developing database-enabled Java

applications while the low-level database-translations are performed by JDBC drivers.

The implementation of the actual connection to the data source, whether it is local o r
I

remote. is left entirely to the JDBC driver. A whole bunch of vendors have endorsed the

JDBC and sophisticated JDBC drivers are already available. However, early JDBC

drivers are less capable and mature than recent ones. In essence, some early JDBC

-1

CHAPTER 1. Introduction

drivers are LAN-based instead of Internet-based. More details of Java and JDBC will be

covered in later chapters. d

1.5 ActiveX
ActiveX is a specification developed by Microsoft for building reusable software

components that can be integrated into a complete software solution. While the use of

ActiveX is diversified, its use in the Web attracts the most attention. In fact. ActiveX can

be used to develop virtually anything that can be achieved in traditional desktop

applications. Moreover, any programming languages can be used in the implementation

and the resulting native code will efficiently execute on appropriate platforms. Similar to

the Java approach, ActiveX software components can be distributed across network and

/
executed solely on the client side, which brings true real-time interactivity to the Web.

ActiveX is tightly integrated into the Microsoft's COM specification. While

COM objects are suitable to be used in desktop applications, ActiveX addresses its focuh

to Web's usage. Due to the tremendous capability and efficiency of ActiveX, many

different ActiveX components were developed to solve complicated problems that

existed in applications implemented in other approaches. One of the most useful

components recently developed is the Advcrnced D L ~ Connector, or ADC, which

provides a flexible yet efficient database connectivity model to Internet and lntranet

applications. Details of ActiveX and specific components will be given in later chapters.

1.6 Objectives of the Thesis
In order to develop a highly sophisticated Web-based system which links to live

data, various powerful technologies and software components will be employed in the

development process. In almost all situations, the primary concerns of building Web

applications will be user-friendliness, cost, and performance efficiency. The recently

introduced Web technologies are increasingly adopted due to thelr tremendous capability

and proven efficiency. This thesis evaluates the functionality and feasibility of different

CHAPTER 1. Introduction

a
technologies, tools, and components to be used in building Web-based data-driven

applications. The benefits and tradeoffs of using them will also be discussed.

The objective of this thesis is a "proof of concept" attempt to develop a user-

friendly yet effective Web database application, by using different technologies. As this

is a "proof of concept" attempt, the intention of this thesis is not to develop a complete

system. In order to demonstrate the concept, appropriate experiments will be performed

and a simple Wkb database application will be implemented such that evaluations can be

given from both a quantitative and qualitative viewpoint. Accordingly, experiments will

be performed in order to compare the efficiency of traditional and newer approaches.

The implementation of a prototypical data-driven Web application further demonstrates

the vast flexibility of the user interface options available for building similar applications

using the latest Web technologies.

1.7 Overview of the hesis T.
In chapter 2, an introduction to traditional technologies for developing dynamic

Web applications will be reviewed. First, descriptions of various components involved in

a traditional Web database application will be given. An overview of a few

, representative techniques of early Web technologies for building generic and database

specific Web applications will then be presented, together with a discussion of various

issues regarding the mentioned approaches.

In chapter 3, more recent and advanced techniques .for building Web applications

will be introduced while concentration will be given to database specific development.

Both the advantages and limitations of each approach will be presented together with a

brief comparison to traditional approaches in a high-level sense.

In chapter 4, the set-ups, results, and interpretations of a series of experiments will

be presented in order to give a quantitative analysis of the efficiency of the newer and

more advanced Web technologies. The information presented in this chapter basically

serves as a guideline for evaluating the feasibility of deploying these new approaches in

building efficient Web databa..e applications in different situations.

CHAPTER 1. Introduction

In chapter 5, an evaluation of the newer technologies will be given in a qualitative

point of view. In essence, the capability and characteristics of a prototypical Web

database application that deploys a new Web technology will be described. In particular,

several screen shots showing the user-friendly interface of the underlying application will

be presented to demonstrate the superiority of the newer technologies in comparison with

traditional ones. The result and interpretation of a simple experiment will also* be -.
presented in order to compare the efficiency of traditional and the newer architectures.

In chapter 6, a summary and conclusion of the thesis will be given. It also

describes any possible future advancement in Web technologies and outlines some ideas

for possible future work.

e r

Chapter 2

Traditional Web Database Access

The search to enhance interactive Web browsing techniques has been the

enthkiastic, _ . _ --. development of powerful computer, communication, and programming

-/ technologies. However, the power of early Web applications is rather limited in terms of

both the systems' functionality and communication ability. Early attempts in Web
*&, applications generally emphasized the use of the Internet with hypermedia to deliirer

static mult imedia content rather than the delivery of dynamic informat ion. Today,

advances in computer and communication technologies provide powerful environment to
,. C

develop sophisticated Web-based systems that can effectively support dynamic and live-

data delivery and interaction. These experiences also serve as a foundation and

informative_guide for future developments in the area of Web 2nd database applications.

Traditional ap6roaches such as the CGI and proprietary APIs are all capable of accessing

remote Database Management Systems (DBMS), though quite vary in programming

complexity and performance. The following diagram simply demonstrates such generic -
database acce,ss modelcthrough the Internet or Intrdnet.

CHAPTER 2. Traditional Web Database Access

\
Figdrc 2.1: Traditional Web database access model

A Web browser serves as a classic thin client and provides a common interface,

HTML, across many platforms. When the Web browser generates a request, the data-

driven Web application communicates with the Web server through CGI or proprietary

APIs using HTTP. The query processing application, which often resides on the same

machine as the Web server, then handles the desired queries and manages state based on

the request passed from the Web server. Resulting HTML page will be generated and

passed on to the Web server according to the results retrieved from the back-end

database. The Web server then passes the dynamically generated document to the Web

browser for display.

In fact, a successful Web-based application cannot be built without the use of a

good Web server and advanced programming technologies. Moreover. Web browsers

have to support the more advanced technologies in order for any advanced technique to .
. .

take effect. However, choosing the right Web server with appropriate programming .

models is not an easy task. In general, speed and extensibility are two of the important

features of Web Servers. A good Web server platform should be capable of delivering

high speed and secure information publishing as well as providing ._ opportunities for

developers to extend the Internet's standard commun tion capabilities. Apart from the I"
4

Web server, certain technologies and component5 also play important roles in the

development process. This section briefly introduces Web browser and Web server in

general and various programming models that have been commonly employed in the

development of Web-based application systems.

CHAPTER 2. Traditional Web Database Access

2.1 Web Browsers

A Web browser is a program that allows viewing of contents on rhe Web. The

advantage is that a common interface can be used across various platforms. On the other

hand. Web applications need to present its interface in terms of the relatively simple

HTML format. In fact. the Internet is just another platform for client/server computing.

However, it is a fundamentally different field that demands entirely new solutions.

Traditional Web browsers are only capable of viewing plain HTML documents.

Moreover, any execution must be performed in the server and client processing power is

completely ignored in the picture. Recent technologies in Web browsing allow viewing

of additional multimedia contents and even local execution of small applications. This

section briefly introduces two of such advancements including client-side scripting and

executable content approach.

Client-Side Scripting -

The introduction of scripting languages, which were designed to help the non-

programmer in creating simple interactive Web applications, brings Web application to a

milestone. Scripting languages can actually be used for developing both client-sided and

server-sided Internet applications. However, their use in the client side for Web-based

scripting is more influential. Traditionally, no interaction can be performed in a Web

client. Even simple task has to be performed in the server, for instance. by CGI script. In

a client's application for Web navigation, scripting statzments embedded in an HTML

page can recognize and respond to user events such as mouse clicks, form input, and

mouse movement over a link. Co-mon usage of client-side scripting includes input

validation and performing appropriate activity with respect to the user's action such as.

entering or exiting a page. Better still, all these tasks can be performed solely on the

client side without any network transmission. In other words, client-side scripting offers

the benefits of reducing network traffic and response times by keeping simple interactive

tasks local.

CHAPTER 2.

Scriptin

1

Traditional Web Database Access

g languages are interpreted languages. It rnea ~ n s that the scri ~ptin

application code is do.wnloaded as text into the Web browser along with the HTML text \ and executed directly within the browser and requires no compilation. Therefore. I

dynamk binding is being used and all object references are checked at runtime. Unlike

most languages. scripting languages usually do not require any special

declarations for their methods. Moreover, they support a run-time system based on a

small number of data types. Most scripting languages have a simple instance-based

object model that provides significant capabilities. That is, scripting languages are

object-based that rely on their built-in and extensible objects, but they have no classes or

inheritance, which existed in most object-oriented programming languages. Popular

scripting languages include JavaScript and VBScript, which are very similar to Java and

Visual Basic in their syntax respectively.

2.1.2 Executable Content Approach
i

Today Web surfers are connected to heavy-loaded Web servers via relatively low

bandwidth lines across the Internet. With today's powerful client computers, it makes

sense to shift the workload of Web servers to Web clients, and to bypass as much as

possible the growing traffic of the Internet. Although the introduction of client-side

scripting languages does enhance the performance of Web browsing to a certain extent,

scripting languages are designed to be lightweight and not intended to perform

complicated and CPU-intensive tasks. Therefore, it is desirable to allow the local

execution of certain program so that they can take advantage of a host computer's

processing power without increasing the load on remote Web servers. The missing link

is a technology for safely distributing trustworthy executable content across the Internet.

With the advances in Web browsing technique, three different solutions tailored

to these problems were recently developed. Plug-ins are software programs that add new

capabilities to Netscape Navigator including cool audio, video, and other special formats

on the Web. However, only Netscape Navigator natively supports plug-ins and users

have to manually download and install the specific plug-in before using it. Sun

CHAPTER 2. Traditional Web Database Access 13

Microsystem's Java is perhaps the most influential recent Wcb technology. Java applets,
/

which range from simple animations to full-featured Web applications, can be

dynamically downloaded across the Internet and virtually support all platforms and

browsers. Details of Java and Java applets will be given in the next chapter. Microsoft's

ActiveX controls are program building blocks that can be assembled into Web

applications. Moreover. ActiveX controls can be developed in virtually any

programming languages and run a~ native code and hence better performance will be

expected. However. only Microsoft Internet ~ x ~ l b r e r natively supports ActiveX

controls. Browsers that support these new technologies are expected to give innovative

changes to the Web by enriching its communication, information, and interaction.

2.2 Web Servers
A Web server communicates with a Web browser using HTTP, which is a simple

protocol for delivering distributed and collaborative hyper media information. A Web

server receives request from a client that has established a connection to it. The Web
=.

server then processes the request, returns a response to the browser, and then closes the

connection. Web servers can store and serve out any kind of file. HTML files and

graphics are two typical examples. A Web server also runs applications such as search

engines or database connectivity processes. While performance is undoubtedly an

important feature of Web servers. issues such as setup, configuration, server management,

administration, content management, security, access control, transaction management, and

application development features are also important in- evaluating Web servers. The

following sub-sections give an overview of some of the most important ones.
i=

-

B
2.2.1 . Performance

The question of how important the performance of a Web server is depends on

what sort of Web site is being set up. Early phase of most Web servers did not focus on

performance as an inherent part of their design. However, performance becomes a more

CHAPTER 2. Traditional Web Database Access

important issue for today's Web servers, which are expected to handle hundreds of

requests received simultaneously. Moreover. Web servers are now frequently used to

access other server-based applications such as database publishing and collaboration.

Furthermore, Web pages with more dynamic contents such as 3-D, video, and audio have

been moved to the Internet. Hence, the amount of required computing power possessed

by Web servers have to be increased dramatically that leads to the increasing focus on the

performance of Web servers. s

2.2.2 Administration

Tools and services that ease administration are also important features of Web
t'

servers. Popular administrative features of today's Web servers include the following:

Virtrtcil s ener srtpport is the ability to allow a single server to be configured to support as

many TCPAP addresses as desired. This feature is especially useful if the Web server

serves as an Internet Service Provider hosting several Web sites or hosts multiple -
department's site in an Intranet. Remote administrution is the activity of managing the

Web server over the Internet in a secure and simple manner such that Web administrators

will feel comfortable t<-do so. Virrrrul director?: rncinugernent is the option for Web

administrators to distribute the physical sto;age of their published information while

providing a different structure to external clients. This action is done by mapping logical

URLs to physical directories. Although most Web servers have the features mentioned

above. the evaluation of these features is usually based on efficiency, simplicity, and

whether an intuitive interface is provided.

Security

Security, in the context of the Internet. includes protecting a Web site. restricting

access to a Web site, and the degree of safety of data transfer between the server and the

client, etc. Needless to say. security issues are crucial as Internet becomes more

prevalent. Basic urrrhenricurion is the most common way to provide security. For

example, access restrictions can be achieved by the use of user names and passwords.

CHAPTERZ. Traditional Web Database Access
\

Secure Sockets Layer. or SSC. is a standard for encrypting data which provides a higher

level of security than basic authentication does between the server and its clients when

private communication is required. Other secujity features might be presented in a Web

server's security model that suits other sorts of secure connections.

2.2.4 Application Development Environment

Server-based applications and database connectivity are in the forefront of the

extension of Web servers' capabilities. More and more technologies for application

development are emerging recently with intent to.increase the appearance and possibility

of dynamic and interactive Web documents. Among these approaches, the Common

Gateway Interface. or CGI, is supported by almost all Web servers. Some Web servers
~--7

also support other applicati& programming interfaces, which allow developers to access

specific functions on the Web server directly. Internet Database Gateway is another

achievement in Web server technology, which is a powerful gateway for easy interfacing

HTML documents with database information. Evaluation of these features is usually

based on their capabilities.

2.3 Interface
In order to deliver

have to move beyond the

efficiency. and '[he degree of ease of use.

between Web Sewer and Applications
*+-

high-impact and live data conte-nt%aoke Internet. Web sites
.

delivery of static HTML files. The ability to generate page5

with information targeted at an individual client is also needed. Hence, Web servers must

offer a comprehensive and efficient yet simple programming model for developers to

deliver this enhanced functionality. Various techniques capable of generating dynamic

and data-aware documents are available in Web servers nowadays. Descriptions of a

number of representative programming models will be given in the following sections.

2.3.1 Common Gateway Interface

CHAPTER 2. Traditional Web Database Access

The Common Gateway Interface (CGI) [MC96. Ncs941 is a standard of interface

for running external gateway program under information servers such as HTTP or Web

servers in traditional systems. I t ir also the most popular approach for developing dynamic

Web applications and is supported by almost all Web server implementations. The Web

server responds to a CGI execution for every request from a client browser Harking a

new process. The data received from the client browser will then be passed to the CGI

program through the environment variables and the script's standard input (s tdin) . In the

case of using environment variables, the variables are set when the server executes the CGI

program. Results generated by the CGI program will be sent to the script's standard output

(.stdour) of the newly created process. The output can be either documents generated by the

CGI program, or instructions to the server for retrieving the desired output.

The following illustration shows the interaction of CGI executable files with a

Web server.

W e b S e r ~ e r C G I P r o c e f f
f t d o u t

.e----- 4

-~ J

Figure 2 .2: Interaction between CGI execu!ables and the Web server

With the employment of CGI approach. Web servers create a separate process for

each request received. However. this approach is time-consuming and executing a

program frequently by the server is an expensive operation in terms of the server's main

memory and other resources. Other consequences include slowing down performance

and increasing client-waiting times on the Web. As services available through the Web

are elrpected to increase continuously, more and more server-based applications will be

developed. Advanced interfaces need to be designed to increase the performance of the

existing server-executed CGI applications. As a result, more powerful and efficient

approaches were designed to overcome the mentioned disadvantages. Nevertheless. CGI

will continue to be used for quite some time due to their wide support by all major Web

servers and Web browsen.

- ..

CHAPTER 2. Traditional Web Database Access

2.3.2 Application Programming Interface

Apart from the CGI, other proprietary APIs are supported by more advanced Web
-.

servers in order to ease the programming complexity and increase the performance of

dynamic Web applications. Although APIs usuaIly outperform CGI, several drawbacks

are shared by all APIs. For example, most APIs only work on a limited number of

servers and operating systems. Moreover, applications developed by API are easier to

crash the server if code is poorly written. Furthermore; API code has to be sometimes

written more carefully in order to deal with multi-threading, clean up, etc. Anyhow. most

Issues C ~ J I be worked around by experienced programmers. The Nerscccpe Server

Applic.trrion Progrccnrmin,q Inrerfhc-e. or NSAPI. is a proprietary method used by a hmited

number of Netscape's Web server implementations. The Internet Senqer Applicntion

Progrctnlnlin~ lnterjfuce, or ISAPI, is another proprietary approach used by Microsoft's

and some other vendors' Web server. Finally. the A c r i ~ ~ Senver Pce,qe, or ASP. is an even

more recent and advanced approach developed by Microsoft for delivering dynamic Web

pages. The following sub-sections briefly introduce each of the three APIs approaches.

2.3.2.1 NSAPI im

The Netscape Server Application Programming Interface (NSAPI) [NCC96] is an

extension developed by Netscape Communications to extend the functionality of the

S e t s a p e server in order to solve performance and efficiency limitations of CGI
Q

functionality. The subtle design of NSAPI is mainly based on a logical breakdown of the

HTTP request-response process. The definition of these logical steps is taken from

experience with the feature sets of common Web servers. The steps should be chosen in

a way such that the result of one step affecting the next while the methods employed in

carrying out each step should not affect the next one.

After the logical steps have been identified, a set of sen)er ceppli~.ccrion firnctiorrs

detrrmmed by the inputs must be applied to accomplish each of the identified steps. The

CHAPTER2. Traditional Web Database Access

inputs of these functions consist of the request itself and the server configuration database

while a response will be returned to the client as output.

Seven classes of server applications existed while each of which corresponds to the

request-response step it helps implement. 1nitiali:ution is a special class of application

function used to initialize static data such as logging and file typing for various server

modules. Aicthori;ution trunslation is the class of functions for authentication. Narne

trunslation class functions translate a logical URL given by the client into a physical path

as used by the server. Purh checks class consists of those functions to verify whether or

not a given path is safe to return to a given client by performing actions such as system-

specific URL filtering and access control, etc. Object hpe class functions take the path

resulting from the previous directives and try to locate a file system object for the path or

reurn an error to the client if none exists. Senice is the class of functions that sends the

server's reply to the client. Trunscrction log functions simply log a4, transactions

established by a client. Whenever any of these functions fail, the error must be handled

by another function. The client must be informed by responses which can be customized

.by the administrator with sire-specific information about the error. .

2.3.2.2 ISAPI

The Internet Server Application Programming Interfxe (ISAPI) [MC97g] is a

technique developed bv Microsoft Corporation that serves as a powerful and high-

performance alternative to CGI for delivering dynamic interaction and value-add

extensions. The core of the differences between CGI and ISAPI is that CGI scripts are

executable files while ISAPI applications are dynamic-link libraries, or DLL, containing

functions that are compiled, Imked. and stored separately from the processes which use

them. As mentioned before. a server responds to a CGI execution request by creating as

many processes as the number of requests received. However, this approach is inefficient

in terms of both server time and resources. On the other hand, ISAPI application DLLs
a

can be loaded and made resident in memory once a request is received such that it is

ready to serve other requests until the server decides to respond to the requests.

CHAPTERZ. Traditional Web DatabaseAccess 19

Moreover. unlike CGI script-executable files. the ISAPI application DLLs are loaded in

the same address space as the Web server which results in minimal overhead since all the

sever available resources are also available to the ISAPI application DLLs.

In the case of CGI, Web servers communicate with the created process through

environment variables and stdinlstdout. In contrast, interaction between Web ,*ers and

the ISAPI application DLLs is accomplished through e.urcnsion control block, or ECB,

which is a data structure containing all necessary client and server information for

invoking ISAPI applications. The following illustration shows the interaction of ISAPI

DLLs with a Web server.

W e b S e r v e r
I

E C B E C B E C B , E C B E C B ' E C B

1SAl .d l1 ISA7.dll ISA3.dll
L ~ _p.-p-_---_p.

Figure 2.3: Interaction between ISAPI Application DLLs and the Web server

.43 mentioned earlier. less overhead and faster clientlserver interaction are

expected in ISAPI application DLLs thrtn CGI executableb, especially under heavy load.

On the other hand, more programming expertise is usually involved in developing ISAPI

applications. For instance. multithreaded-safe ISAPI applications DLL must be

developed since multiple requests will be received simultaneously.

2.3.2.3 ASP

The Active S e r ~ t r Page (ASP) [MC97a] is another application environment

developed by Microsoft Corporation that allows the combination of HTML, scripts, and

reusable components to create powerful interactive Web documents. Currently, ASP is

only supported by Microsoft Internet Information Server [MC97fI, which enables server-

side scripting with vutually any scripting language while bulk-in support is provided for

CHAPTER 2. Traditional Web Database Access

VBScript [MC97j] and Javascript compatible JScript [MC97h]. In fact, ASP is very

similar to server side includes in some aspects. The Web server parses ASP files and ,
replaces the HTML-like tags with theu value or output in the ASP file.

ActiveX components are objects which can be accessed from a Web page or other

application to r se packaged functionality someone else programmed. With proper rj-
server-side scri#ing, ASP can use ActiveX server components for a variety of tasks. For

example. to retrieve records from a database, or access all Web server variables such as

browser properties and referring page. Perhaps. this is the main difference and

superiority of ASP over server side includes. A set of key ActiveX server components

are shipped with IIS 3.0 while customized components can also be written to access

v~rtually any kind of information accessible from the network. Mbreover, since the

scripts are processed by an engine on the Web server with standard HTML as the output,

ASP works with any Web browser in any platform.

An advantage of ASP is that it is compile-free. That means a changed script is

automatically compiled the next time it is requested. Moreover, ASP and CGI differ in

their performance since ASP runs in-process with the server, and is optimized to handle

large number of users. In general. ASP provides the flexibility of CGI programs and

-- 'rcripts without the significant performance tradeoff and development difficulties.

However. one disadvantage of ASP is that it requires a fair amount of server CPU and

memory overhead since the Web server has to scan through an entue active server page

to find scripts and trike the appropriate action.

Interface between Web Server and DBMS
All programming models described in the previous section are capable of

database access by periodical extraction of databases' data and generating dynamic Web

pages based on the retrieved data. Database queries are built from user-input parameters,

hidden variables. or cookies. However, the programming model involved is fairly

complicated. For example. CGI requires more than 10 lines of script code for each

individual field to be extracted from the databa\e. Therefore, several proprietary tools for

\.

CHAPTERZ. Traditional Web Database Access

Internet databaqe gateway have been developed to ease the development of Web database

applications. Most tools closely adhere to the SQL standard such that the programming

model is both familiar to database developers and relatively easy to implement. This

section introduces two of such approaches - the Microsoft Internet Database Connector

and Netscape Livewire, which were built into two popular Web servers. \ .&

2.4.1 Microsoft Internet Database Connector
ti

The Internet Dutuhuw Connector [MC97d]; or IDC, is a component of Microsoft

Internet Information Server that allows the Web server to efficiently gain access to

databases. In fact, the IDC runs as a very thin server-based application (ISAPI DLL) that *
communicates with databases via Open Dcrrtrhctse Connecri\.gih, or ODBC. The lnternet

Database Connector controls the access of databases and construction of resulting Web

pages using two types of files one for each. The first m e (descriptor) contains the query

information ,necessary to connect to the appropriate data source and execute the SQL

command. It also contains the name and location of the corresponding second type of

file. The second one (template) is the template for the resulting Web page to be returned.

which is a htandard HTML file with special syntax for referencing the query. The

following diagram briefly illustrates the components involved in connecting the, Web

server to databases.

CHAPTER 2. Traditional Web Database Access

Web ~ r o w h e r
L

I

R e f e r e n c e S Q L
C

/ R e s u l t i n g H T M L
C! -

Web Ser\er
I

Internet Database Connector --
0 1

de5crlptor f ~ l e template flle

5 Q L C o m m a n d D B l n f o r r n d t ~ o n

ODBC Dr~ver Manager I

2 ,

A -7

ODBC Drlber ODBC Dr71\er ;
__r___

DBMS E3 DBMS e3
Figure 2.4: Interaction between the Web Server and Databases via IDC

The URL received by the Web server is parsed by IDC and the IDC process then

loads a stored script (descriptor) that defines and invokes communications with the

appropriate ODBC driver. The ODBC driver then communicates with a database and the

retrieved results are converted into HTML pages using templates for delivery back to the

client browser. The IDC is a very simple approach that requires virtually no special

programming knowledge. Instead. developers using IDC are limited to templates and

descriptor files to accomplish database access. This solution is well suited primarily to

simple database queries that requues relat i~~ely little expertise. However, IDC opens and

closes a connection with each incoming request. which can possibly slow down -

performance in many cases [Lin96].

2.4.2 Netscape LiveWire

The Netscape LirveWire [NCC97] is a proprietary Internet database gateway tool

comes with Netscape Enterprise server for integrating database content into an HTML

page. As a widely supported Internet scripting language that adds functionality to Web

pages, JavaScript is being used with LiveWire to provide a complete development

CHAPTER 2. Traditional Web Database Access 2 3

environment that can work with data in relational databases. The database connectivity

library of LiveWire supports native SQL client-server connectivity to ~ D B C compliant

databases. Similar to the IDC approach. the Web server finds the request for LiveWire

by parsing the incoming URL and the interaction with the database occurs from within

the JavaScript code. Unlike IDC, JavaScript retrieves database results ubing the i

conventional database cursor model. A cursor is a pointer to rows in an answer set

returned from the database of the requested query. The server-side JavaScript application
.b

simply reads each row from the cursor and converts i t to the resulting HTML file [Lin96].

In comparison with the IDC approach, LiveWire requires relatively more
ar

programming expertise. However. LiveWire is capable of more feature-rich development

than IDC. Moreover. LiveWire maintains a connection with the database throughout

each session rather than opens and closes a connection with individual request, which

might speed up performance. Anyhow, the choice of solution highly depends on the

particular application being developed and the level of programming knowledge of

developers [Lin96].

2.5 Stateless versus State-based Approaches
Perhaps the most significant challenge facing early Web database development is

the "stateless" nature of the Web. This characteristic makes every server interaction

independent of all other interactions, so there is no notion of persistence. A Web server

responds to page requests either by returning an HTML page or by triggering an external

application via CGI or server API. Once the single request has been satisfied, the

transaction is complete and the connection closes. The Web server makes no provision

for s!oring vital information about the applicr"tion and the user within the application.

Although this approach is fine for delivering most Web documents, it creates huge

problems for designing a highly interactive data-driven Web application. A database

application. for instance, usually issues many queries based on user's request, incurring

the overhead of repeated connections. The following diagram briefly illustrates the

stateles,~ nature of HTTP arch~tecture.

*

CHAPTER 2. Traditional Web Database Access

c lo se connsc l l on
C l i en t Server

Figure 2.5: Stateless nature of HTTP client-server architecture

Regardless of the programming complexity involved, both the CGI and

proprietary APIs are capable of accessing remote databases by maintaining session

information or passing state information back and forth to the client. In general. a unique

session identifier has to be generated on the server end by encoding the state or a state

identifier in hidden fields. the path information, or URLs in the HTML form being

returned. The specific information a Web database application maintains and how

smoothly it is available to the application greatly affects the effectiveness of the system.

'4 simple illustration is given in the following diagram.

Cl ient S e r v e r

1

"' Figure 2.6: Maintaining user status during an HTTP session

I n fact, it makes sense to employ a stateless rather than a state-based approach in

certain situations. For example, it might not be appropriate for a heavy-loaded server to

keep the states for thousands of users who may never complete the operations they start.

Xevertheless, the stateless limitation makes these approaches not capable of developing

highly interactive yet efficient database applications. One obvious disadvantage of

stateless approaches is that connection needs to be re-established for every single

database operation. which implies degrade of performance. Another drawback of such

approaches is that considerable programming complexity is involved in order to simulate

CHAPTER 2. Traditional Web Database Access

a state-based connection using a stateless approach. Developers thus look into more

advanced techniques for effectively accessing Web database. The newer state-based

approaches typically keep the connection open within the whole session. One of such

new technologies will be discussed in the next chapter.

2.6 Off-line versus On-line Approaches

Although the use of gateway programming mentioned in this chapter allows a

Web server to intelligently interact with data and build HTML documents- for the client

dynamically, the data is static and is not really live. Users can work on the data and then

later send it back to the server for update, but it is not interactive like traditional

clientlserver applications. In order for actual on-line database access to take place, data

can be transparently cached locally on the client side by deploying sophisticated

mechanihms. which minimizes round-trips to the server. In essence. an advanced model

must be present that provides the client with the capability to manipulate and update data.

Therefore, sophisticated means must' be designed to bring the meta-data and the data to

the client so that a user can work on it on the client side. When the client application

finished updating the data, the data will then be delivered to the server.

Database access via traditional off-line approaches is quite limited since it

provides low flexibility of access paths by navigating pages via static links generated in

the HTML pages. Hence, available operations are much more restricted than on-line

accessible approaches. Moreover, highly dynamic and inttkactive services are not

possible based on the use of CGI or server APIs since all active tasks must be performed

at the server and no in!eraction is allowed in the client machine at all. As a result, the

client remains completely passive in this case. Furthermore, a huge number of network

transfers will be resulted since even simple input validation has to be done in the server

[Kra97]. Several executable content approaches have already been developed to achieve

on-line database access through the Internet. A few representative models of such

configurations will be presented in the next chapter.

Chapter 3

On-line Web Database Access

As mentioned in the previous chapter, traditional approaches fail to develop

highly interactive yet efficient database applications due to the low degree of interactivity

of HTML and stateless nature of HTTP. Executable content approaches are recently

being used for developing sophisticated Web applications. High level of intera tivity

becomes possible through executable content that has the ability to engage Web sur ers in 1
continuous, real-time. and complex interaction. Executable content approaches can also

be used to access Web database on-line so that data can be manipulated and updated on

the client side. Among various executable content approaches, component technologies

and compiled languages are two of such useful techniques while the use of Java being the

more important and widely adopted one. In essence, Java applications interface with data

sources through JDBC, which is a specification of database specific programming model

similar to the ODBC industry standard. This chapter will discuss various issues

regarding on-line Web database access using Java Applets with JDBC, COM components

and ActiveX controls while focus will t>e given to the Java approach.

CHAPTER 3. On-line Web Database Access .
1

The Java Language

The Java programming language [SM97] is used to create executable content that

can be distributed through networks and was developed by Sun Microsystems and

released in public alpha and beta versions in 1995. The development of Java began at

Sun Microsystems in 1991 with the goal to create a programming language for a new set

of consumer-electronics products. The focus of the language design is such that it can

create processor-independent code to support a distributed network" of communicating -
heterogeneous devices. While C++ was used as the starting point to implement this

platform-independence, the team eventually abandoned C++ since C++ was not capable

to do everything they wanted. The team then started developing Java as a small-footprint

object-oriented programming language loosely based on C++. As an object-oriented

programming language, Java possesses object-oriented properties such as inheritance and

polymorphism, but has rather simple syntax by discarding the overwhelming

complexities of similar object-oriented programming languages.

Java source code is compiled into byte-code, which is a high-level. machine

independent and architecture-neutral intermediate format designed to transport code

efficiently to multiple hardware and software platforms instead of platform-specific code

native to any particular processor and operating system. The native architecture of Java

is the Java Virrulil Machitw (V M) , a specification of an abstract machine such that

executable code can be generated by Java compilers, which exists only in software today

but will soon exist in hardware as well. The Java VM of a computer will be invoked to

interpret and execute the Java byte code. Java byte-code is interpreted, which means that

each byte-code instruction has to be parsed and interpreted by an interpreter and the

process is fdirly slow. Recent implementation of the virtual machine includes a jlrst-in-

time (JIT) compiler capable of compiling Java byte-code into native machine code on the

fly which greatly improves the performance of Java byte-code.

As a result. Java applications are portable ro any software and hardware platform

that has a Java run-time environment. The environment consists of the Java VM,

standard Java class libraries, a byte-code verifier for security purpose, and a byte-code

CHAPTE~ 3. On-line Web Database Access

interpreter or JIT compiler that executes Java applications without-requiring programmers

to rewrite or even recompile their source code. Due to its cross-platform compatibility,

Java transcends from being a programming language to being a software platform. Java

developers, whether they realize it or not, are supporting a new platform that exists

independently of the underlying operating system and hardware. The following diagram

simply illustrates the execution process of Java programs.

-+ J a v a byte-code v e r ~ f i e r
I--- -. I

J a v a C l a s $ Loader + 4

1 J a v a J a v a JlT I

Interpreter Compller

J a v a C l a s s
L ib ra r i e s ~

Figure 3.1 : Execution of Java program in a Java-enabled machine

In fact, the per ance of executing byte-code with JIT compiler is almost 9
indistinguishable from direct execution of native C or C++ programs according to Sun

Microsystems's testing. Moreover, it is exactly this level of "indirection" that gives the

power. flexibility, and portability of Java code and makes Java so successful.

3.1.1 Java Applets

Applets are Java programs that run on top of a Java-enabled Web browser. When

a page with an embedded applet is accessed by a user, either over the Internet or

corporate Intranet, the applet will be automatically download from the server and run on

the client machine. Applets are downloaded, hence they tend to be designed small or

modular, to avoid large download times. Since Java applets may be loaded into systems

CHAPTER3. On-line Web Database Access

from random "uncontrolled" parts of the Internet, potential danger may enter a user's

computer and an organization's Intranet. The Java language was designed to protect

against both unintentional and malicious attacks against the integrity of the client's

system. The underlying security restriction is the so-called "sandbox" approach. All

conforming Java-enabled browsers provide a protected space known as the sandbox that

restricts the range of things an applet can do on the client machine. For example. applets

are not allowed to write to local file systems, access to memory, and spawn or exit a local

process. The sandbox confines executable code to a run-time environment, seeking to

neutralize any problem by limiting the reach of the code. The following diagram simply

illustrates the execution process of Java applets within a Java-enabled Web browser

7 -- W e b b r o w s e r
W e b p a g e

- - - ---

Figure 3.2: Execution of Java applet in a Java-enabled-Web browser

Java security for downloaded applets relies on three components: the byte-code

verifier, the applet class loader, and the security manager. These three components,

together, perform load and run-time checks to restrict proper access. The byte-code

verifier first performs format checks and static type checking for the untrusted code. The

tests performed by the byte-code verifier range from simple verification of correct format

for code fragment to p w i n g each code fragment through a simple theorem prover to

establish that it plays by certain ruieb. The class loader then attempts to load and

instantiate all applets and the corresponding referenced classes. The security manager,

the last defense of the Java security model, performs run-time checks based on the calling

class's origin before a method is executed. The security manager thus has a chance to

CHAPTER 3. On-line Web Database Access

forbid any dangerous operation if any is attempted. These three pieces of the Java

security model enforce a program to perform particular operations only on particular

kinds of objects so that untrusted Java applet can be safely executed on a client's system.

3.2 ODBC
The Open Dur~ihuse Connecrivih (ODBC) [MC97k] specification defines a

\tandard, database-independent interface for accessing data stored in heterogeneous SQL

databases and is currently the most widely used programming interface for accessing

relational DBMSs. T ODBC standard is based on work done by Microsoft and

WOpen's SQL Access Group (SAG) with the aim of providing maximum interoperability

so that a single application can access different SQL Database Management Systems

(DBMS) through a common set of code. This characteristic enables a developer to build

and distribute a clientlserver application without targeting a specific DBMS. Any ODBC

API cd!s use the ODBC Driver Manager which manages interactions with ODBC drivers

to link the application to the user's choice of DBMS. Each driver handles transactions

with an actual database. using the corresponding DBMS client software and API. The

following diagram simply illustrates the architecture of ODBC-based applications.

O D B C Dr11t . r !vl~nager

O D B C D r ~ \ , e r O D B C D r i v e r

Figure 3.3: ODBC architecture

ODBC drivers are usually written in C or C++ and implemented as DLLs or

hared libraries. The f&t that ODBC drivers are not native Java components means that

they cannot be downloaded from the Internet and interpreted at runtime in a Web

CHAPTER 3. On-line Web Database Access

browser. Any ODBC drivers must be pre-installed on all client machines that use them.

Moreover, since ODBC drivers are coded in C or C++ but not Java, they are not

platform-independent and individual implementations must be developed for each

operating system on which they will run. Furthermore, the native nature of ODBC

drivers rmght pose security problems in Java's security model. As a result. the ODBC

API is not suitable for database connectivity with Java and more sophisticated solutions

must be developed to cope with the security. robustness, and platform-interoperability

characteristics ol' the Java language.

3.3 JDBC
I n order to extend the functionality of Java as a serious platform for creating

powerful and scalable clientlserver applications, a complete yet simple database

connectivity model must be carefully de~~eloped. Jc~rv l Dtitnhtrse Conuecti\~i~ (JDBC)

[SM96a] is a specification developed by JavaSoft in 1996 that provides a uniform

interface to tie connectivity to DBMS with the Java language. An important

characteristic of Java applet is that Java connection can have an application session and

store state information. The state-based connection of Java network programming is

pro~,ided by socket objects that use TCPIIP as their transport mechanism, which is well

suited for interactive applicahons. Moreover, Java applets run on the client side and can

totally bypass Web browser/Web server connection. As a result. Java applets that

communicate u,ith databases using JDBC can efficiently access databases on-line through

out the whole database session. The following figure simply illustrates the connection

model of database-enabled Java applets

Figure 3.4: Database-enabled Java amlet connection model

CHAPTER3. On-line Web Database Access. 32

\

The JDBC API defines Java classes representing database connections. SQL

statements, query result sets. database meta-data, etc. Moreover, the JDBC API is

implemented via a driver manager that can support multiple drivers connecting to

different databases. Experienced programmers can also use the JDBC to create and use

low-level drivers to communicate with data sources. In the JDBC model. Java

applications or applets use the JDBC API to load JDBC drivers which manage

interactions with databases. Similar to ODBC, JDBC drivers are central to the

architecture of JDBC. JDBC drivers can either be entirely written in Java so that they

can be downloaded as part of an applet, or they can be implemented using native methods

to bridge to existing database access libraries. JDBC drivers are generally segmented

into four categories - JDBCIODBC Bridge, Native-API Partly-Java drivers. Native-

Protocol All-Java drivers. and Net-Protocol All-Java drivers. Descriptions and

characteristics of each category will be given in the following subsections.

3.3.1 JDBCIODBC Bridge

The JDBCIODBC Bridge [II97, SM96bI ib a joint development of JavaSoft and

Intersolv as a thin tramlation component that does low-level conversion frorn JDBC

function calls into ODBC function calls. As JDBC is designed to be efficiently

implementable on ODBC, the bridge is the best way to utilize ODBC frorn Java

applications. The JDBCIODBC Bridge allows Java developers to code JDBC-compliant
Q

applications and applets, then deploy them with any existing ODBC driven readily

available in the market today. As the JDBC specification is still very new, the

JDBCIODBC is an early attempt to allow database access for Java programs. The

following diagram simply ~llustrates the place of JDBCIODBC Bridge in the overall

architecture of the JDBC model.

CHAPTER 3. On-line Web Database Access

- Java Appl~cat~on I Applet

J D B C c a l l i

JDBC Dr~ver Manager

L
JDBCIODBC Bridge --

~ O D B C c r i l ,

ODBC Driver M a n a g e r

ODBC Dri\,er

F i ~ u r e 3.5: JDBCIODBC Bridge model

The query process for a general database-enabled Java applet using the

JDBCIODBC Bridge can be described by the following steps:

The user launches a Web browser and starts the database applet.
The applet verifies and connects to the appropriate data source.

The user suhuits the required information specifying the query.
The applet passes the JDBC query to the JDBC Driver Manager.
The JDBC driver manager loads the JDBC/ODBC Bridge and passes
the JDBC query to the bridge.
The bridge translates any JDBC calls to ODBC calls and passes
the results to the ODBC driver manager.
The ODBC driver manager passes the ODBC query to the appropriate
ODBC driver.
The ODBC driver translates any ODBC calls to DBMS native calls
and submits the results to the remote DBMS.

10. The DBMS processes the query.
11. The DBMS pasees the query result back to the invoking applet.
12. The applet displays the result.
13. The applet closes the database connection.

With limited availability of sophisticated JDBC drivers, the JDBCIODBC Bridge

;llIous developers to begin coding data-centric Java applications and leverage existing

ODBC technology already deployed in organizations today. However. pre-installation of

the bridge and any ODBC drivers in all client machines is necessary since b t h the bridge

and ODBC drivers are urltten in native code. Its native nature also means that the bridge

CHAPTER 3. On-line Web Database Access

approach is not platform-independent. Moreover, the JDBCIODBC Bridge can only be

used with trusted applets which must be pre-installed on the client's machine. Due to its

limitations, the JDBCIODBC Bridge should only be used with LAN-based Java

applications or applets and not suitable for use with downloaded applets across the

Internet or Intranet.

3.3.2 Native-API Partly- Java Drivers

A native-API partly-Java driver [II97. SM96bl translates JDBC calls into client

API calls of the specific targeted DBMS. Since Java classes cannot directly access the

native client libraries of network transport software without going through a special Java

bridge DLL or shared library, some binary code must be l o a d e d m each client machine.

The following diagram illustrates the architecture of native-APf partly-Java drivers.

.- -- t
J u v a Application I Applet

-- -

J D B C D r i v e r M a n a g e r
IT--+

Figure - 3.6: Native-API Partly-Java Driver model

The query process for a general database-enabled Java applet using a native-API

partly-Java driver can be described by the following steps:

1. The user launchee a Web browser and starts the database applet.
2. The applet verifies and connects to the appropriate data source.
3. Loop
4. The user subnits the required information specifying the query.
5. The applet passes the JDBC query to the JDBC driver manager.
6 . The JDBC driver manager passes the JDBC query to the appropriate

JDBC driver.

CHAPTER 3. On-line Web Database Access

7. The JDBC driver loads the required Bridge DLL and passes the
JDBC query to the Bridge DLL.

8. The Bridge DLL translates any JDBC calls to DBMS native calls
and submits the results to the remote DBMS.

9. The DBMS processes the query.
10. The DBMS passes the query result back to the invoking applet.
11. The applet displays the result.

- 12. The applet closes the database connection

Native-API partly-Java drivers share lots of similarities with the JDBCIODBC

Bridge. A difference between them is that the'resulting calls from a native-API partly-

Java driver are native to a specific DBMS while those from the JDBCIODBC Bridge are

ODBC calls. One benefit over the bridge approach is that no ODBC layer is required and

hence better performance will be expected. However, similar to the JDBCIODBC

Bridge, the native architecture of these drivers makes them only suitable to be used in

corporate networks since tremendous client pre-installation is required.

Native-Protocol All- Java Drivers

A native-protocol all-Java driver [II97. SM96bl translates JDBC calls into the

network protocol used by DBMSs directly, which allows clients to make duect calls to

database servers. Basically, specific pure Java JDBC driver is used instead of the

network transport software of the particular DBMS. The following diagram illustrates

the architecture of native-protocol all-Java drivers.

. Figure - 3.7: Native-Protocol All-Java Driver model

CHAPTER 3. On-line Web Database Access 3 6

The query process for a general database-enabled Java applet using a native-

protocol all-Java driver can be described by the following steps:

The user launches a Web browser and starts the database applet.
The applet verifies and connects to the appropriate data source.

The user submits the required information specifying the query.
The applet passes the JDBC query to the JDBC driver manager.
The JDBC driver manager passes the JDBC query to the appropriate
JDBC driver.
The JDBC driver translates any JDBC calls to DBMS native calls
and subits the results to the remote DBMS.
The DBMS processes the query.
The DBMS passes the query result back to the invoking applet.
The applet displays the result.

The applet closes the database connection.

The use of native-protocol all-Java drivers eliminates the need of server-sided

applications for APIs translation, which might in turn improve performance. This kind of

drivers can be used with Java applications, downloaded applets in any Java-enabled

platforms across both the Internet and Intranet environments. On the down side, DBMS

client network transport software is typically proprietary, hence the database vendors

themselves will be the primary source for this style of driver. Moreover. a Native-

Protocol All-Java driver is for a specific database. as opposed to being a universal driver

that can connect to a variety of databases. Therefore. an applet that requires connections

to multiple databases will need to download multiple versions of this style of JDBC

driver, which can be inefficient.

3.3.4 Net-Protocol All- Java Drivers

A net-protocol all-Java driver [II97, SM96bl translates JDBC calls into a DBMS-

independent net protocol, which is then translated to a DBMS specific protocol by a

server middleware. This net server middleware consists of a single universal all-Java

driver that is able to connect its all Java clients to many different databases. Depending

on the design of the server middleware, the middleware communicates with DBMS either

duectly or through the use of ODBC drivers. The ability to connect to DBMS through

ODBC allows data access to a large number of ODBC data sources. but perhaps. with a

CHAPTER 3. On-line Web Database Access

little tradeoff of performance. In general. this approach is the most flexible alternative

that is suitable for Intranet use. In order for these drivers to also support Internet access

, they must handle the additional requirements such as security, access through firewalls

that the Web imposes. Several vendors are adding JDBC drivers to their existhg

database middleware products. The following diagram simply illustrates the architecture

of net-protocol all-Java JDBC drivers.

I - -
J d ~ a A p p l l c a t l o n I A p p l e t ,

-.

-- ~ J D B C . a l l ~

J D B C D r l k e r M a n d e e r

-
L ' n 1 k e r 5 a l J D B C D r ~ i e r - - - - P --
1-- ---

Figure 3.8: Net-Protocol All-Java Driver model

The query process for a general database-er,;*'ed Java applet using a net-API all-

Java driver can be described by the following steps:

The user launches a Web browser and starts the database applet.
The applet verifies and connects to the appropriate data source.

The user submits the required information specifying query.
The applet passes the JDBC query to the JDBC driver manager.
The JDBC driver manager passes the JDBC query to the universal
JDBC driver.
The JDBC driver passes the JDBC query to the server
If (ODBC layer is used)

The middleware translates any JDBC calls to ODBC
passes the results to the ODBC driver manager.
The ODBC Driver Manager passes the ODBC query to
appropriate ODBC driver.

middleware.

calls and

the

CHAPTER 3. On-line Web Database Access

L A 11. The ODBC driver translates any ODBC calls to DBMS native
calls and subits the results to the DBMS.

12. ELSE
13. The middleware translates any JDBC calls to DBMS native calls

and subits the results to the DBMS.
14. The DBMS proceasss the query.
15. The DBMS passes the query result back to the invoking applet.
16. The applet displays the result.
17. The applet closes the database connection.

In general, net-protocol all-Java drivers are the most flexible JDBC connectivity

solution. As the driver is completely implemented in Java, no client pre-installation is

required. In addition, a net-protocol all-Java driver runs on any Java-enabled platform.

The major benefit of all-Java drivers is that they can be fully downloaded and do not need

to be pre-installed on the clients. Similar to native-protocol all-Java drivers, this kind of

drivers can be used with Java applications, downloaded applets across both the Internet

and Intranet environments. One limitation of this approach is that downloaded applets

can connect back only to the host from which the applet was downloaded. However, the

uhe o f herver-based middleware allows a true three-tier network database architecture.

3.4 COM and ActiveX Technologies

COM and ActiveX are Microsoft's component models that cover a broad range of

network and multimedia technologies. COM, which stands for Component Object

Model. is the underlying object architecture of the 32-bit Windows interfxe. The

primary responsibility of COM is to allow software components to behave consistently

without imposing design and implementation restrictions. Software components need

only to adhere to a binary external standard, but their internal implementation is

completely unconstrained. Objects conforming to COM can communicate with each

other without being programmed with specific information about each other's

implementations. Therefore, software components can be easily designed to cooperate

with one another, even though they were written in different programming languages by

different developers at different times [MDE95].

CHAPTER3. On-line Web Database Access 39

Being an industry standard for implementing reusable PC Windows components

adhering to the COM specification. Microsoft's OLE architecture is being used as the

underlying infrastructure of the ActiveX technology. Simply speaking, ActiveX can be

vdsualized as OLE on the Web, which w& developed by Microsoft to pri,marily enhance

the Internet and multimedia products. With the goals of extending Internet standards, the

key part of ActiveX strategy is building a Windows interface for working on both the PC

and the Web. Being largely based on the COM specification, ActiveX is an unalterable

set of rules introduced for interoperability between software components. Basically,

ActiveX absorbed the OLE technologies and extended them to facilitate the development

of Web applications. As a result, ActiveX controls can both be deployed in desktop and

Web applications. In fact, ActiveX controls can virtually do anything that can be done by

desktop applications. Therefore, ActiveX technology brings a new level of interactivity

to Web browsing. The following subsections introduce two data-aware components,

which were deployed in the experimental application.

3.4.1 Remote Data Object

The Remote Dcirll Object, or RDO, 1s a COM object providing interfaces to

ODBC data sources. Basically, RDO is a thin object layer interface to the ODBC API

with some special features like server-side cursors for efficient access to database server

in traditional clientlherver applications. RDO is especially designed for building and

executing queries against stored procedures and handling all types of result sets. A

remxkable feature of RDO is that RDO is fully asynchronous and event-driven. so there

is no need to poll for task completion as an event is fired. Moreover. RDO is threadsafe.

Therefore, the ability of 32-bit Windows environment to run multiple threads of

execution can be fully utilized.

Access to remote ODBC data through RDO is achieved by an interface for using

code to create and manipulate components of an ODBC compliant database system.

Objects within the RDO framework have properties that describe the characteristics o f

database components and methods used to manipulate them. Using the containment

CHAPTER 3. On-line Web Database Access 40

framework, relationships can be created among objects, and these relationships represent

the logical structure of the database system. Connections to databa5es are established via

the thin code layer over the ODBC layer and the driver manager. The following diagram

simply illustrates the interface model of applications that use the RDO.

D a t a b a s e A p p l ~ c a t ~ o n

RDO c a l l +
- --

R D O

O D B C D r ~ v c r M a n a g e r

Figure 3.9: RDO model

Although RDO is primarily designed to be used in traditional clientlserver

applications, it can also be integrated with Java for developing Web database

applications. As RDO is based on ODBC, RDO is a state-based approach such that a

database connection is kept open. The query process for a general database-enabled Java

applet using the RDO can be described by the following steps.

1. The user launches a Web browser and st=&$ the RDO-based applet.
2. The applet verifies and connects to the appropriate data source.
3. Loop
4. The user submits the required information specifying the query.
5. The applet passes the RDO-based query to the RDO.
6. The RDO translates any RDO calls to ODBC calls and passes the

results to the ODBC driver manager.
7. The ODBC driver manager passes the ODBC query to the appropriate

ODBC driver.
8. The ODBC driver translates any ODBC calls to DBMS native calls

and subrnits the results to the remote DBMS.
9. The DBMS processes the query.
10. The DBMS passes the query result back to the invoking applet.
11. The applet displays the result.
12. The applet closes the database connection.

CHAPTER 3. On-line Web Database Access 4 1

Although a thin code layer is present on top of the ODBC layer. RDO's

performance is, in most cases. virtually identical to the ODBC API but with radically

reduced coding time. However, the architecture of RDO is based on persistent

socketslpipes connections to databases, so it is suitable to be used in a LAN-based

environment rather than in an Internet environment.

3.4.2 Advanced Data Connector

The Advanced Data Connector [MC97b, MC97e. Rau971, or ADC, is a

technology (ActiveX control) developed by Microsoft that tightly integrated with

Microsoft Internet Information Server (11s) and ActiveX Data Objects (ADO) to provide

flexible database connectivity to Internet and Intranet applications. ADO is a high-level

database programming model for developers to write database applications on top of

OLE DB. While OLE DB defines a set of low-level C/C++ interfaces designed to

efficiently build database components, ADO provides a programming model that is

suitable to be called directly from high-level programming languages such as Visual

Bahic and Java, or scripting languages such as VBScript and JavaScript. With universal

data access as the primary goal. an OLE DB layer is used instead of ODBC so that a

variety of data sources can be accessed from the same programming model instead of
5

only data from relational databases. OLE DB achieves this by identifying common

characteristics between different data providers and services, including ODBC, by

.defining common interfxeh to expose those characteristics. The followmg diagram

simply illustrates how ADC and other components work together for remote data access.

CHAPTER3. On-line Web Database Access

I I O L E D B I

Fipure 3.10: ADC client/server model

As illustrated in the above figure, two key components are present in the client

space. The first one is the ADC Proxy object, which basically packages up the method

requests from the ADC and sends them to the Web server over HTTP. Another one is .
known as the Virtual Table Manager. or VTM. which is a key component in ADC's

client-caching model. The VTM is an in-memory relational data cache exposing OLE

DB interfaces for data access and manipulation. The VTM supports state marshaling of

its contents through special interfixes among multiple server tiers while providing client-

hide disconnected cursor models over its cache elements. I t also maintains relational

data. client updates, and records status information. The query process for a general Web

database application using the ADC can tk described by the following steps:

The user launches a Web browserpd starts the application.
LOOP

The user submits the required information specifying the query.
The ADC verifies and connects to the appropriate data source.
The ADC passes the query to the Web server (11s) via the ADC
Proxy object .
The Web server passes the query to the ADO.
The ADO translates the query into appropriate API and passes it
to the OLE DB layer.
The OLE DB layer translates the query into ODBC A P I and passes
it to the ODBC layer.
The ODBC layer translates the query into DBMS native calls and
passes it to the DBMS.
The DBMS processes the query.
The DBMS passes the query result to the cqlling application.
The application displays the result.
The application closes the database connection.

CHAPTER 3. On-line Web Database Access

As noted in the above algorithm, connection needs to be reopened and closed for

individual database operation. In other words. ADC is basically a stateless database

access approach. However, ADC deploys a sophisticated client-side caching mechanism

that minimizes connections to DBMS. As a compromise between state-based and

stateless database access technologies, ADC achieves a performance comparable to most

state-based approaches while avoiding the server to remember the states of its

tremendous number of clients. Such improvements are especially noticeable when

accessing data across the Internet. Moreover, similar to Java, the ADC can be used in

conjunction with other ActiveX controls for developing Windows-style user interface.

This feature will be discovered in more details in chapter 5.

Chapter 4

Performance Comparison

The performance of on-line Web database applications varies according to the

underlying database access technologies being used. I n fact, some approaches can be

uhed to develop Internet-based applications while others are suitable only for applications

to be used within a corporate network. Although the performance of any technology

should bt. sufficient for simple databahe access within a particular environment, large

variations may be experienced in complex applications. In order to get an idea of how

\,arious technologies perform. a single operation experiment was carried out to cornpate

the response times of a few databut. queries using these technologies with different

databahe management sy\tems. Four approaches (or products) were tehted including:

JDBC using Symantec dbANYWHERE Workgroup Server 1.0

JDBC using Intersolv JDBCIODBC Bridge 1.01

hlicrosoft Remote Data Object (RDO) 3.0

4licrosoft Advanced Data Connector (ADC) 1 .O.

A data-centric Web application accesses a remote database server according to the

user'\ query and display5 the extracted information. Although the exact steps incol\.ed

\ . ~ r) , . the query process for a general Web database application can be described by the

following s t e p .

CHAPTER 4. Performance Comparison

1. The user launches a Web browser and starts the application.
2. The application verifies and connects to the appropriate data source.
3. The user submits the required information specifying the query.
4. The application subits the query to the remote data source.
5. The DBMS processes the query.
6. The DBMS paas.es the query result to the invoking application.
7. The application displays the result.

The objective of the experiment is to determine the overall efficiency of v d o u s

approaches. Hence fairly simple database applications were implemented for each.

Although there are slight differences in the implementation of these applications,

measurements were only made on database specific aspects of the execution of these

functionally equivalent applications. Two quantities were recorded for all tests. Firstly.

the average connection time indicates the time required to complete a client's request for

jetting up a database connection - this corresponds to the time required for step 2 of the

above process. Secondly. the average query time indicates the time required to complete

and respond to a database query - this corresponds to the time required for steps 4 to 6.

These two quantit~es are expected to consume considerable processing time and are

considered to be wificient to reflect the overall efficiency of each approach. Note that

step 5 is a common element of all approaches and should be dropped out. However, steps

4. 5. and 6 usually comprise a single indivisible operation. Nevertheless, the same

proce\bing time by step 5 can be expected by all approaches since this step is performed

by the database management \y\tem, not the underlying technology being uwd. Details

and interpretations of the experiment rue discussed in the following sections

4.1 Experimental Setup
An internal network with an Internet connection wa\ established to perform the

experiment because some of the approaches are not Internet-ready and only work in a

LAN-based configuration. Microsoft Internet Explorer 3.02 was used as the Web

browser for a11 except one approach - a Netscape plug-in was requued for that particular

approach. In that case, Setscape Navigator 3.01 was used. In both cases, the JIT

compiler for Ja\.a wab u\ed to speed up the performance of Java-based applications. The

CHAPTER 4. Performance Comparison

performance tests were only carried out on a single test suit given our primary interest

was the performance difference among various database access approaches rather than

different operating systems, Web servers, or server hardware. The configuration of the

Web server and Web client are profiled by the following table.

Table 4.1: Configuration of Web server and Web Client for the Experiment

Hardware Platform H
Operating System I
I Web Server 1
[RA hl Memory 1 1

The server and workstations were connected to a 10Base-T Hub over an internal

network using their internal 10Base-T adapters to fx tor out connection limitations such

a.4 modems or communications links. The internal network was connected to the Internet

wing its local LAN T1 communication link. Among the workstations. one of them was

conhistently used as the Web client for all experiments. The test-bed of the Web server is

illu\trated in the following figure.

Web Server

Single Intel P5- 166 CPU
5 12KB cache
3.1 Gigabyte Hard Disk

Windows NT Server 4.0 with
Service Pack 3

Microsoft IIS 3.0

64MB

Figure 1 . 1 : Experiment ClientIServer Test-Bed

Web Client

Intel 486DX2 66MHz CPU
256KB cache
540 Megabyte Hard Disk

Windows 95

NIA

16MB

CHAPTER 4. Performance Comparison 47

All tests were executed against two database management systems - Microsoft

Access 7.0 and Microsoft SQL Server 6.5. An ODBC layer is present in all approaches

and hence the use of ODBC drivers is necessary. The Microsoft Access ODBC driver

3.50 was used for Microsoft Access while the Intersolv SQL Server ODBC driver 3.00

wah used for SQL Server. The Intersolv SQL Server ODBC driver was used instead of

the Microsoft equivalent which could not handle multiple queries within the same

database session.

TWQ queries, with fdirly distinct levels of complexity were consistently used

throughout the experiment. Both queries perform a selection from some relations (or

tables) in the database. The database consists of fi~re relations with appropriate

information for assigning grades to students. Detailed design issues relating to the

database itself are not directly relevant and are therefore not presented.

The five relations managed by the database may be specified as follows (note that

a * symbol is associated with attribute(s) that represent the primary key):

The first query (Q l) . a F~irly simple one. selects all records from a particular

table. The second query (Q2). relatively specking a much more complex and t id

consuming one. selects all records from the result of the natural join of the five tables.

These queries are specified a\ follows:

Q1: select from account-info

Q2: select from account-info, courses, activity, marks, grade-range
where account-info.login-id = courses.login-id
and account-info.login-id = marke.login-id
and courees.course-id = grade-range.course-id
and activity.activity-id = marke.activity-id

Referring to the tabular results (Tables 4.2 to 4 .9) in the next section, five

attributes were measured. The column "connection" refers to the time required for

CHAPTER 4. Performance Comparison 48

establishing a connection before the query is processed. Only one connection is required

for multiple queries within the same database session. This attribute represents all

preprocessing time required for querying the database. However, the amount of
I

processing the approaches perform might vary according to the architecture of the

underlying technologies. The columns " 1 " Q1" and "1" Q2" refer to the execution of

query 1 and query 2 for the first time respectively, while "Sub. Q1" and "Sub. QZ" refer

to subsequent executions of the corresponding queries. The times for the first and

subsequent executions o f the same query are separated out since significant differences in

their values were observed in all cases. Although a general description of the

experimental setup has been given, specifics of experimental issues regarding the

individual approaches will be described in the following subsections.

4.1.1 JDBC with Symantec dbANYWHERE

The Symantec dbANYWHERE is a net-protocol all-Java JDBC driver, which has

been described in Section 3.3.4. To test the performance of this type of driver. a fairly

simple Java applet that malies JDBC calls for database connectivity was implemented and

its database specific execution time was measured. In essence. the connection time and

query time correspond to step 2 and steps 5 to 15 respectively of the corresponding

algorithm described in Section 3.3.4. As mentioned earlier. Java applets using this type'

of JDBC driver can be dynamically downloaded from the Web server to the Web client. .&.

Therefore. no specific client installation is required and only rt Java-enabled Web browser

i \ needed to execute the implemented applets. This characteristic also implies that this

type of JDBC dri~rer is capable of implementing database-enabled Web applications

across the Internet.

4.1.2 JDBC with Intersolv JDBCIODBC Bridge

The Intersolv JDBCIODBC Bridge is a joint development of JavaSoft and

Intersolv which translates JDBC calls into ODBC calls as described in Section 3.3.1.

CHAPTER 4. Performance Comparison

1 Again. a simple database-enabled Java applet was implemented in order to measure the

performance of the bridge. In essence, the connection time and query time correspond to

step 2 and steps 5 to 1 1 respectively of the corresponding algorithm described in Section

3.3.1. However. some ODBC binary code and database client code must be loaded on

each client that uses the bridge and hence client pre-installation is inevitable. In >

particular. a special Netscape Navigator 3.0 plug-in that allows the bridge to be used

within a locally loaded applet is required. Dynamically downloaded applets are not

supported by the bridge. Therefore, the plug-in has to be pre-installed on the client

machine and the applet must be loaded from the client's Java home directory. Due to the

necessary client configuration required, the JDBCIODBC Bridge is only appropriate to be

used within corporate network but not over the Internet environment.

Microsoft Remote Data Object

As described in Section 3.4.1. Microsoft's Remote Data Object (RDO) is a COM

object model providing access to remote data sources through ODBC. In fact. RDO is

not primarily designed for Web database access and can be integrated with many desktop

applications. In order to measure the performance of RDO based applications, a simple

data-aware Java applet, which integrates with RDO, was implemented for the experiment.

Again. the connection time and query time corresponding to step 2 and steps 5 to 10

respectively of the corresponding algorithm described in Section 3.4.1 were measured.

However. since COM objects can access local system resources, which violates the Java

security model, applets that use any COM libraries must be digitally signed for security

purposes. Nevertheless. such applets are currently only supported by Microsoft Internet

Explorer 3.0 or later. Similar to the bridge approach. an appropriate ODBC driver has to

be present on the client machine. Lising the cabinet [MC97c] technology, the ODBC

driver can be dynamically downloaded from the Web server to the Web client together

with any requued RDO related classes. However, applets integrated with RDO only work

within corporate networks due to the architecture of RDO as described in Sect ion 3.4.1. I

CHAPTER 4. Performance Comparison

4.1.4 Microsoft Advanced Data Connector

As described in Section 3.4.2, the Advanced Data Connector (ADC) is an

efficient Web-based technology developed by Microsoft that brings database connectivity

to the Internet environment. A simple HTML document with an embedded ADC

ActiveX control was written in order to measure the performance of ADC. It turns out

that the connection time and query time corresponding to steps 4 to 1 1 of the

corresponding algorithm described in Section 3.4.2 cannot be separated as ADC is a

stateless approach and its API only provides a single. indivisible method for those steps.

Although the ADC's API has a "connect" method. this method only updates the server's

IP address and data source name attributes rather than actually establishing a database

connection. Similar to COM integrated applets, ActiveX controls have to be digitally

signed for security purposes and are currently only natively supported by Microsoft

Internet Explorer. ActiveX controls can be dynamically downloaded across the Internet.

Therefore, no special client installation is required for Web database access using ADC.

Moreover. unlike Java applets, ActiveX controls will reside on the client machine

permanently thereafter and hence no download is needed for subsequent browsing of the

wme Web page unless a newer version of the same control has been updated.

4.2 Summary of Experimental Results
The following tables summarize the results for Web access and qucrph+i of the

databases by the various approaches. Base statistics including the number of

measurements, minimums. maximums, and average measurements represent the

wmmxized results. Refer to Appendix A for a complete listing of the experimental data.

CHAPTER 4. Perfoimance Comparison

Table 4.2: Querving - MS Access 7.0 using - . Symantec dbANYWHERE

Table 4.3: Ouerving MS SOL Server 6.5 using Symantec dbANYWHERE

Table 3.3: Ouewing - MS Access 7.0 us in^ inter so!^ JDBCIODBC Bridge

Table 3.5: Querving MS SOL Server 6:s using Intersolv JDBCIODBC Bridge

I Iconnectionl 1'' Ql I Sub. Ql I I " Q? I Sub. Q?

Sub. Q2

5 o
870

1540

Count
Min. (ms)

Max. (ms)

Sub. Q 1

5 o
440

lalo

count
L

Min. (ms)

Max. (ms)

Avg. (ms)
I

1" Q2

5

1870

2690

connection

10

12310

15110

1 Q 1

5

1050

1710

10

13120

14510

13841.0

5

880

9 9 0

918.0

5 o
390

9 9 0

660.2

5

1260

1520

1378.0

5 o
870

1090

1151.4

CHAPTER 4. Performance Comparison

Table 4.6: Querving MS Access 7.0 using MS RDO 2.0

Table 4.7: Quervinp MS SOL Server 6.5 using MS RDO 2.0

Count

Min. (ms)

Max. (ms)

Avg. (In-")

Table 4.8: Querying MS Access 7.0 using MS ADC 1 .O

lconnectionl 1 1 I Sub. Q1 I 1" 4 2 1 Sub. Q2

connection

10

5820

7250

6406.0

Count
Min. (mi

Max. (ms)

Avg.

- - - -

Max. (ms) 17 0 2370 3 3 o 6090 4180

Avg. (m) 110.0 1366.0 263.2 5236.0 3211.0

Sub. Q1

5 o
5 o

17 0

70.0

1 1

5

94 o
1160

1030.0

Sub. Q 1

5 o
5 0

11 o

66.2

. Table 3.9: Ouerving MS SOL Server 6.5 using MS ADC 1 .O

connection

10

5220

6090

5548.0

1" Q2

5

1420

1590

1080.0

1" 4 2

5

760

900

828.0

1 1
5

3 8 0

550

482.0

Sub. 42

5 o
210

330

253.4

Sub. 4 2

5 o
380

440

405.8

Count

Interpretation of Experimental Results

Min. (m4)

~Max. (ms)

A v ~ . (m ~)

Based upon the entire set of experimental data given in the previous section and

other ohm-vations, a comparihon of the four configurations is now presented. The

connection

10

5 0

220

127.0

1

5

1040

1750

1352.0

S u b . Q l

5 o
210

440

274.4

l " Q 2

5

S u b . 4 2

5 o
4610

6480

5052.0

3570

4780

3780.8

CHAPTER 4. Performance Comparison

significance of the experiment is to discover how the performance of Web database

applications can be affected by the underlying technologies. Moreover, it is highly

desirable to determine the reasons for performance discrepancies. if any. Therefore.

explanations of any unusual experimental behavior have been attempted by performing

other smaller and, perhaps, informal tests. A graphical representation of the experimental

data helps illustrate the experimental data in a more meaningful way. The following two

charts provide a comprehensive summary of the experimental results in a graphical manner.

Average Access Time (MS Access 7.0)

.
I M~crosoft RDO 2.0

OM~cmsoft ADC 1.0

Connecr~on 151 01 w b QI Is1 QZ sub 02

Figure - 4.2: Average access time to MS Access 7.0

Average Access Time (MS SQL Server 6.5)

dbANYWHERE

.

0 Mtcrowft ADC 1.0

Connm~on Is! QI sub QI 1st QZ sub QZ

Figure 4.3: Average access time to MS SOL Server 6.5

CHAPTER 4. Performance Comparison

I t can be observed from the above charts that there is no significant performance

difference among the four approaches operated with the two database management

systems. Therefore, the following discussion will be neutral to the underlying DBMSs

(keeping in mind that two of the approaches in the experime-nt only operate in internal

networked environments while the other two approaches work across the Internet as

well). Needless to say. the processing required for an Internet-based application is much

more than that of an internal network based one. For example, a certain amount of

processing time will be spent in resolving the server's. IP address in an Internet-based

application. Moreover, the data transmission and communication time is also much

longer in an Internet-based application than an internal networked based application.

Hence. a comparison would be fair only between approaches working under similar

situations. In order words, comparing the two LAN-based approaches: JDBC using

Intersolv JDBCIODBC Bridge and Microsoft Remote Data Object, and comparing the

two Internet-ready approaches: JDBC using Symantec dbANYWHERE and Microsoft

Advanced Data Connector. The following subsections describe a few interesting

observations of the experiment and comparisons between similar approaches.

4.3.1 Performance Difference in First and Subsequent Queries

One of the most obvious observation5 is the significant difference in the average

response time of the same query executing for the first time as opposed to subsequent

times in a11 approaches. Perhaps this observation seems to be very unusual at the

beginning since these querie5 perform exactly the same operation and thus sho.uld yield

similar response times. However, on a second glance, this behavior is reasonable since a

fair amount of time is spent retrieving the meta-data of the targeted database (tables

names, columns names, and fields types). Moreover, certain amounts of processing time

are possibly spent in other initialization processes such as resolving the IP address and

verifying the targeted data source. For the ADC, it is reasonable that certain amounts of

overhead in the first query will be expended in client caching as well. Undoubtedly,

CHAPTER 4. Performance Comparison

these initialization processes are only required when the application accesses the database

for the first time within the same session but not in any subsequent operations.

In order to examine this behavior hrther, a completely different and more

complex query (one that retrieves data from different tables) was executed 'during the

same session after the simpler query had been executed. The response time for the

complex query was indeed simila to the response time of the same complex query

executed multiple times in a different database session and surprisingly, even shorter than

that of the simpler query executed for the first time. Another small test is to execute the

same simple query for subsequent times with changed data in the database. The response

time was also as fist as was usuaIIy experienced and updated data could also be

successfully retrieved. These simple tests verify that subsequent queries do access the

database more efficiently and extra processing needs to be done by any query executing

for the first time in a session. Unfortunately, the detailed internal architectures and

implementations of architecture components are not known and hence there is no simple

way of further investigating the facts.

4.3.2 Intersolv JDBCIODBC Bridge VS. Microsoft RDO

Although both the Intersolv JDBCJODBC Bridge approach and the Microsoft

RDO approach only work in LAN-based envuonments, they' are appropriate in certain

situations. According to the experimental results. the JDBCIODBC Bridge approach

typically took a very long time to make a database connection. Moreover, it took about

twice the time for RDO to finish ~1 given query operation. Although the RDO based

application was written in Java. many database-related function calls are based on the

RDO engine which has been compiled into native code instead of Java byte code.

Therefore, the RDO based applications can be expected to run faster than the ones that

use the JDBCJODBC Bridge. Moreover, all JDBC calls in the

JDBCJODBC Bridge needed to be translated intb ODBC calls.

does consume considerable amounts of processing time.

3

CHAPTER 4. Performance Comparison

Apart from its inefficient; performance for database operations, the JDBCIODBC

Bridge requires a lot of installatibn work on each client. Certain software. including the
I

ODBC driver, a small library for the bridge. and the compiled Java byte code, must be

installed and configured on each system that will be using the bridge and it cannot be

accomplished automatically. Thjs task is quite undesirable not only from the standpoint

of having the required components installed and configured properly, but the appropriate

ODBC drivers and b r i d g ~ libraries may not be readily available or may be very

\. expensive. Considering the implied additional work and the slow performance, other

alternatives should be considered- rather than the JDBCIODBC Bridge approach for

developing Web database applicatibns.

Symantec dbANYWHERE VS. Microsoft ADC

Both the ADC and &ANYWHERE configurations are Internet-based. Although

the ADC is a stateless approach,whereas dbANYWHERE is a state-based one, the

advanced client-caching mechanism of ADC makes its performance comparable to state-

based approaches. It is observed that the processing time for the Microsoft ADC

approach is much less than that of the Symantec dbANYWHERE approach in most

measurements. One exception is the average response time for executing Q Z for both the

first and subsequent times. Note that the efficiency of the stateless ADC architecture

depends highly on the Advanced Data Virtual Table Manager (VTM) which contains

buffers for metadata such as tables, rows. columns, and keys, as well as the actual table

data itself. Since 4 2 is a fairly complicated query and a fair amount of actual data will be

retrieved. it is not feasible to cache the entire set of data. As a result, extra overhead is

required in subsequent database operations and hence relatively large amount of timeis

required in this particular case. However, the difference is so small (< 10%) that it

doesn't deserve special attention.

The average response time of the ADC approach is much shorter than that of the

dbANYWHERE approach in all other measures. In particular, the average response time

for subsequent execution of Q1 of the ADC approach is about one-sixth of that of the

CHAPTER 4. Perhrmance Comparison

dbANYWHERE approach. An obvious explanation is that the ADC approach runs in

native code whereas the d b A N Y W E R E approach runs in byte code that must be

interpreted. -Moreover, ADC's sophisticated client-caching mechanism tremendously

speeds up its execution regardless of its stateless nature. Furthermore. the

dbANYWHERE uses the middleware approach for any database-related communication,

which possibly slows down the communication process. Unfortunately, none of the log

entries of the middleware is timestamped and hence there is no way to further determine

the degree of performance distortion.

On the other hand, the average connection time of the ADC approach is much

shorter than all other approaches, including the LAN-based ones. In most situations, it is

common that a database application will resolve the server's IP address and verify the

data source when establishing a connection. However, the connection time of the ADC

based application is so small that it seems that nothing has been done at all. I n order to

further examine the work done for making connections by the vxious approaches. invalid

HTTP DNS entries and data source names were intentionally supplied to the applications

to observe the effect. All except the ADC approaches resulted in an error and could not

continue to run. In contrast, the ADC based application continued to execute until a

database query was submitted. The work associated with making the connection is

delayed in the ADC approach until a query is executed at which time the error is finally

experienced. In spite of the extra work to be done, the response time of a query executed

for the first time in a database session was also comparable or much faster than that of the

middleware approach according to the test results. Therefore, the ADC approach is

indeed much more efficient than the JDBC middleware approach. Unless cross-platform

cornpatability is a primary issue, the ADC approach should be the way to go.

Chapter 5

Prototype Web Database Application

To further demonstrate the superiority of the newer Web database access

approaches over traditional ones. a prototypical Web database application was developed

using one of the emerging technologies. Three main areas were investigated: (i) the

\,ariety of user interface options available. (i i) the degree of interactivity between the user

and the application, and (i i i) the performance of remote database access. In this chapter.

w\.eral interesting screen shots are presented to illustrate the user-friendliness and

interactivity of the application while the results of a simple experiment will be used to

e\.aluate its performance.

5.1 Evolution
The prototjpe was given the name Per.romr1 SoJt\\urcp ,Mtint i ,~rr . or PSIM. which is

a wfrware engineering lab tool for managing the Personal Software ~ rocess ' (PSP). The

development of the application is initiated bf Dr: Kal ~ 0 t h ' . who developed a PC

Lt'indows version of the tool. The intention of de\.eloping an equivalent Web-based

CHAPTER 5. Prototype Web Database Application

version is to allow students engaged in an advanced software engineering course at

Simon Fraser University (SFU) to be able to access the tool through the World Wide

Web. in conjunction with distantly delivery of courses using tools such as SFU's Virtual-

u'. For students to be able to access the application on various platforms with a

universal user interface, it was decided to use Java as the underlying technology. Since

the objective of the PSM tool is to analyze and manage software engineering processes

based on data gathered at different points in the software engineering process, a

completely data-driven application had to be developed. Moreover, a highly interactive

application is desired with an intuitive and easy-to-use user interface. These and several

lesser considerations led to a product with not only the look and feel, but also the

capability that is comparable to its Windows counterpart.

5.2 Design Issues

Simply speaking. the PSM supports the entry, updating, deletion, and printing of

data related to time. software defects, estimating, and planning of software development

procesh. The PSM captures software engineering concepts that are outside the scope of

this thesis. With this in mind. this section discusses general design issues regarding the

quality of the user interface and the degree of interactivity of the application will be

given. Our purpose is to evaluate the quality of applications might use Java with JDBC

as the underlying programming model. from an end user point of view.

5.2.1 User Interface and Interactivity

The user interface is undoubtedly a critical part of any application, including a

Web-based one. In fact, user interface design for Web applications is even more

challenging ah it is constrained by the limited capability of HTML. Executable content

approaches bring a variety of new user interface options to Web applications. Instead of

adhering to the constraints imposed by the HTTP protocol with HTML form\, a graphical

' An o\er\lt.* and gcncral ~niormation about V~itual-U can hc found at http://virtual-u.cs.sfu.ca

CHAPTER5. Prototype Web DatabaseApplication

user werface emulating traditional Windows applications was created. After "logging

in". each user gets a customized view of the application based on the profile of the user.

The interface is organized into a number of windows and the user is free to navigate

among different windows within the same screen of the Web browser. The figure below

is the top level screen of the application that displays all available operations linked

together by arrows representing data flow within the application

IC'L Personal Software Manager Start Page

@ ?hls page 1s currently under development

a 3 5

Figure 5.1 : TOR level screen

CHAPTER 5. Prototype Web Database Application

Although the prototypical application is not a complete implementation. sufficient

functionality of the PSM was used to demonstrate the capability of the underlying

technology. One such function is the activity logger. which logs all activities of the user .
throughout the software development process. The information kept by the activity

logger can be used to derive useful statistics and analyses of software development

activity. The figure below is the activity logger window being displayed after the "Time"

button in the top level screen (Figure 5.1) was pressed. It displays a list of logged

activities for the user

15'97-07-1 1 2C HL D e s p Rev 18 30 22 45 00 30 03 45 m e d tk user lnterfse -1
1997-07-31 2C Code R m w 11 55 23 00 03 00 08 05 Found 3 defects and recommeradcd modulg sort

1997-07-19 1A Pknnnrn 10 10 1705 06 55

1 1 1 1 1
~ -

I I ~ 7

15'97-07-30 2C Code 0930 1 1 9 0 0 0100 0830 1

1W?-08-05 I 1 A 1 Test 1 1 0 1 5 12000 1 0 0 4 5 10900 I
1997-08-06 1 1 A I Complk 1 1300 1 1315 1 I 0 0 1 5 1

Figure 5.2: Activity Logger - - window

As the height of the Windows-style component containing the records might not

be long enough to hold all the'logged activities. the records' container was implemented

to feature automatic vertical scrolling. A vertical scroll bar appears automatically when

needed, which provide5 a mean for the user to scroll through the whole list of activities.

A number of operations such as editing. filtering, and sorting can be performed against

the activities. While all the available operations are listed in the menu bar, a number of

more popular operations appear in the tool bar irs well for quick access. These operations

CHAPTER 5. Prototype Web Database Appl~cation

i I

can either be triggered by selecting the appropriate menu item or clicking the

corresponding image button in the tool bar. When the mouse pointer is over a particular

button, a short description about the use of the button is displayed in the status bar at the
Y

bottom of the window to help the user. The following figure shows the expanded views

of the menu bar, one for each corresponding menu.

Figure 5.3: Expanded menu bar

Users can opt to show or hide the tool bar orland

corresponding menu item on and off such that components

status bar by toggling the

within the window will be

positioned and the window will be resized accordingly. Typical operations of the activity

logger include creating a new record. editing an existing record, and deleting an existing

record. As an illustration. a tour of editing an existing record is presented. A user can

either select the "Edit Current Activity" item from the "Records" e menu or click the

corresponding button to edit the currently highlighted activity. or double click a record in

the activity listing to edit the desired activity. An edit activity window filled with the

information of the corresponding activity will then be displayed as follows.

C- I F O ~ 3 defects md mmommcr~ mmjm sort function OK I c-~I

Figure 5.3: Edit activitv window

Suppose the user has finished editing the activity and presses the "Ok" button to

submit the information. A verification process will then be invoked to validate all the

CHAPTER 5. Prototype Web Database Application 63

inputs. In case of e r roneys input, a modal dialog window with one or more appropriate

error messages similar to the following one will be displayed. The user must close the

dialog window first before proceeding to any other activity.

Figure 5.5: Dialog window displaying - error messages

Otherwise. a modal dialog window similar to the one below will be displayed to

confirm that all the inputs have been entered correctly.

: Unrmsd Java APdst Wndovc I

Figure 5.6: Dialog window confirming activity uudate

Note that. in contrast to traditional Web technologies where most of the

interaction occurs across the client-server connection, all interactivity described above

took place solely on the client side. As mentioned earlier, this kind of true client

interaction has the advantage of reducing the heavy traffic of the Internet, by utilizing the

computing power of the host computer. Suppose now the user really decides to update

the activity by pressing the "Yes" button in the dialog window. The application will then

send the appropriate query and possibly other information to the server. The remote

database in the server end together with the listing of the activity logger window will then

be updated to reflect the change.

In fact, several other operations apart from query operations can be performed

against the records. Typical examples include filtering and sorting of the activities based

on certain predefined preferences. The following description shows the interactivity

CHAPTERS. Prototype Web DatabaseApplication 64

involved in record filtering. The user starts the operation by entering the preferences of

the operation - selecting the "Preferences" menu item in the "View" menu. A window

like the following one then appears.

Figure - 5.7: View Preferences window

As shown in the above figure, two tabs, each associated with its independent set

of visual components. appear. This form of component layout has the advantage of

conserving window space and arranging related components and information in a

structured and organized manner. The appearance of the corresponding "Sort" tab is

shown in the following figure.

Fioure - 5.8: View Preferences window with correspondin~ Sort tab

The user supplies the preference information by checking the corresponding

check box and choosing or entering the relevant information. Suppose the information

such as that shown in Figure 5.7 was supplied and the "Ok" button was pressed for any

Q

I

CHAPTER 5. Prototype Web Database Application 65

changes to take effect. Whenever the user selects the "Filter" item from the "Records"

menu or clicks the corresponding button from the tool bar, the records are filtered based

on the predefined preferences and the result is reflected in the activity listing. The

following figure shows the result of applying the filter operation. Note the difference

between this listing and that of Figure 5.2.

Figure 5.9: Activitv Logger - - window after filtering

Note that the scroll bar originally appeared in Figure 5.2 now disappears, since all

records can be displayed in the window and there is no need to scroll through them.

Although the operation of filtering seems non-trivial, it is solely performed at the client

machine and there is no need for any client-server interaction. The illustration given .in

this section shows some of the available graphical user interface options together with the

degree of interactivity between the user and this prototypical application. In fact. it is

exactly these advantages make executable content ap'proaches so powerful and widely

adopted in the Web community.

5.3 Implementation

C H A P ~ E R ~ . Prototype Web Database Applicatjon

The PSM uses Java with the JDBC API instead of other executable content
d

approaches and works with most clients and servers. The entire application is written

using JDK 1.02 API for Java making it work well with most popular Web browsers.

Moreover. a net-protocol all-Java JDBC driver in the form of middleware for database

connectivity is being used. This implementation makes dynamically downloadable

applets possible and allows a true three-tier network database architecture to be

configured with little modification required on any server system.

5.4 Performance Issues
I t should be obvious from previous sections that a much more flexible user

interface design is made possible by using executable content approaches rather than

traditional Web publishing technologies. Moreover. the degree of interactivity between

users and the newer technology-based applications is much higher than traditional CGI or

API-based Web applications because of the real-time client-side interaction achieved by

executing operations locally as much as possible.

As mentioned in earlier chapters. traditional and the emerging on-line approaches

not only differ in their capability, but also in their efficiency in handling multiple

operations within the same session. In order to investigate this performance issue, an.

experiment was performed among three approaches. They include: 1) the Microsoft

Internet Database Connector (IDC, section 2.4. l) , w h i c b s an easy-to-use traditional

Internet database gateway built into the -~ ic rosof t Internet Information Server. 2) the

Microsoft Advanced Data Connector (ADC, section 3.4.2). which is an executable

content approach based on the ActiveX technology. and 3) Java applet with the Symantec

dbANYWHERE (section 3.3.4), which is also an executable content approach adhering

to the JDBC standard for Java. The'JDBCIODBC Bridge and RDO approaches are not

being tested as they only operate on LAN-based rather than in Internet environments.

The following subsections briefly describe the experiment and its findings.

CHAPTER 5. Prototype Web Database Application

5.4.1 Session-oriented Experiment
d

Several single-operation experiments were performed.(described in Chapter 3) to

compare the performance of a few on-line Web database access technologies. In this

chapter. the result of an experiment for executing multiple database operations within the

same application session is presented. As each of the three approaches under our test

handles multiple operations very differently, significant performance differences are

expected. The objective of the experiment :Is thus to compare the efficiency of three

different approaches under a session-oriented environment.

The hardware setup of the experiment was exactly the same as that described in

Section 4.1 and the tests were performed against the Microsofi Access 7.0 database

management system. A typical)Veb database application was implemented for each of

the three approaches. The application allows a user to search for student information

based on the first letter of the student's last name. Multiple operations can be performed

sequentially during the same application session. For each operation, the user starts by

entering the first letter of the students' last name. A query based on the user's input is

generated and submitted to the server for execution when the "submit" button is pressed.
b

Assume i n p r is the first l'etter of the last name being entered for the search. A query like:

select from account-info where last-name like 'input%'

would extract the desired information from an appropriate table in the database. Refer to

Section 3.2 for more details of the underlying database and associated tables. When the

ser\.er 'finishes executing the query, the results are returned to the application for display.

Individual time spent in executing the query and displaying the results for each operation

were measured. The results and interpretation of the experiment are described in the

following section.

5.4.2 Result and Interpretation

The following tables summarize the results of the experiment. Five query operations

were performed sequentially within the same application session. Since the objective of the

CHAPTER 5. Prototype Web Database Application 6 8

experiment was to find out whether there is any significant difference performing multiple

query operations in applications implemented in various Web database approaches. both the

average individual a$ well as average cumulative execution times for the five tests were

recorded. Refer to Appendix B for a complete listing of the experimental data.

Table 5.1 :.,Querying MS Access 7.0 using MS IDC

I Avg. Cumulative Time (ms) 1 1642.1 2796 1 3826 1 5168 1 6264 I
Query #

Avg. Individual Time (ms)

Table 5.2: Querying MS Access 7.0 using MS ADC 1 .O

1

1642

I A V ~ . Individual Time (ms) I 1728 1 540 1 '506 1 560 1 496 1
Query # I 1

Table 5.3: Ouewing - MS Access 7.0 us in^ - Symantec . dbANYWHERE

2

1154

a

The following column and line charts provide additional appreciation for the

3

1030

Query #

Avg. Individual Time (ms)

experimental data.

3

Individual Query Time
7000 1

4

1342

4 5

1

5754

Query 1 Query 2 Query 3 Query4 Query 5

5

1096

Microsoft ADC 1.01
I

I I

2

682

Symantec
dbANYWHERE

Figure 5.10: Average individual auerv access time

3

836

4

1066

5

844

CHAPTER5. Prototype Web Database Application

4

Cumulative Query Time
I 1 I

-e Microsoft IDC

-e Microsoft ADC
1 .o

-t Symantec
dbANYWHERE

4 I

Query 1 Query 2 Query 3 Query 3 Query 5

Figure - 5.1 1: Averape cumulative auerv access time

I t can be observed from the summary of the experimental data and the column

chart that there is no significant difference between the average individual time of Query

1 and subsequent queries in the results for MS IDC. On the other hand, very large

differences can be observed in the results of the MS ADC and the JDBC queries using

Symantec dbANYWHERE, especially in the JDBC approach. This is, in fact, a

reasonable observation since the MS IDC is a completely stateless approach. As a result,

subsequent query operations in applications developed under MS IDC do not take

advantage of previous ones. The MS ADC approach saves some processing time in

subsequent query operations since information retrieved from the first query operation

will be cached using a sophisticated client caching mechanism in order to keep the time

of any subsequent query operations to a minimum. As mentioned earlier, JDBC using

Symantec dbANYWHERE is a completely state-based approach with the connection kept

open once the connection has been established for the first query operation. Hence.

tremendous performance gains result for subsequent query operations.

Perhaps more informtion can be concluded from the line& regression models of

different sets of the experimental data. Therefore, a simple linear regression analysis for I

the cumulative query execution time against the number of executed queries was carried

out to further ~nalyze the experimental data. However, similar execution times for each

query need to be assumed in order to come up with a meaningful analytical result.

CHAPTER 5. Prototype Web Database Application

Although this restriction is not very realistic in most database applications, the data

gathered m our experiment indeed satisfies this requirement and is useful in determining

certain characteristics of the various approaches. Results of the three regressions are given

below. Note that the dependent variable ?. represents the cumulative query execution time

while the independent variable .r represents the number of queries to be performed.

Microsoft IDC: y = 454.4 + 1161.6~

Microsoft ADC: y = 1205.8 + 527x

JDBC (Symantec dbAJJYWHERE): y = 4769 + 875.8~
B

I n each of the regression equations, the y-irltercept represents the overhead (e.g.

for initialization or establishing the connection) required in the first query operation while

the slope represents the actual time required for each query operation, including the first

one. The y-intercept in the regression equation of the MS IDC is the smallest, and that of

the MS ADC is the next, while that of the JDBC approach is the largest. This result

agrees with the nature of each approach and the observations made in the previous

discussion. The overhead (judging from the y-intercept of the corresponding regression

equation) of the JDBC approach is surprisingly large probably due to the immaturity of

the TCPIIP protocol used for JDBC connection. Another possible explanation is that

much more processing is involved in a \tate-based protocol than a stateless one for

storing vital information of the connection and this form of processing has to be

performed in the slower Java byte-code format.

On the other hand, the slope in the regression equation of the MS IDC is the

largest since nearly the same processing time is requued in all query operations due to the

stateless nature of the MS IDC and not much benefit can be gained from previous

operations. Although the actual time spent in each query in the JDBC approach is less

than that of the MS IDC (judging from the slope of the regression equations). it is in fact

more than that of the MS ADC. A possible reason is that the time spent in

communicating with the remote server and displaying the query results executed as Java

intermediate byte-code is longer than that executed as native code in the MS ADC.

CHAPTER 5. Prototype Web Database Application

Moreover, it is possible that the client caching mechanism employed by the MS ADC is

as efficient as a state-based database access technology.

It is clear from the above discussion that very large performance gains can result

from on-line Web database access technologies through the use of either a persistent

database connection or sophisticated client caching mechanism. Although considerable

overhead is unavoidable in the first query operation, the performance of on-line

approaches do outperform traditional ones and are recommended for Web database

access in most situations. This observation is particularly true in applications that are

expected to have long database sessions with a huge number of query requests.

Chapter 6

Summary, Conclusion, and Future
Work

Advanced features and associated technologies for global information retrieval

are being continuously developed to provide better ways of implementing sophisticated

Web-based applications that link to live data. This thesis has presented the characteristics

of both traditional (e.g. CGI. proprietary APIs) and emergmg Web database access

technologies (e.g. Java applets with JDBC and Microsoft ADC). While the challenges

and ambitions of developing Web database applications have been identified throughout

the thesis, it is clear that there is still much work to be done before Web-based data-

dri\.en applications become comparable to traditional clientlserver database applications

in terms of quality, robustness. and scalability. It is hoped that this thesis will serve as a

basis for further investigation or study into the development of better Web database

4ystems. This chapter will summarize the important points that have been addressed

throughout the thesis and suggest some ideas for possible future work.

6.1 Summary

CHAPTER 6. Summary, Conclusion, and Future Work

Different from traditional ones, the newer Web database access technologies

feature a wide range of effective and efficient capabilities. The major strength of the

newer approaches is that they promote a high degree of interaction between the user and

the underlying applications through the use of local executable content and persistence

database service. This leads to the employment of more flexible design mechanisms in

various aspects of the application. This design flexibility has been fully demonstrated by

a prototypical application. The approach also has a performance advantage achieved by

the use of either a state-oriented database protocol in the case of Java with JDBC, or

client-side caching in the case of the Microsoft ADC. With the ever-growing resources

available in global information systems, the use of powerful Web publishing techniques

and efficient database access technologies becomes an essential part in the development

of sophisticated Web database application. The following advantages for Web datahase

accesh are generally characterized by the recent approach.
Id

1 . High-level and intuitive user interfaces: The technologies provide a wide range of

graphical user interface possibilities that are not possible using only HTML and

gateway programming. The availability of these . interface options also gives

developers an opportunity to construct intuitive user interfaces, for Web applications

which are similar to those of the familiar Windows environment.

2. High degree of interactivity: Highly interactive Web applications can now be

developed since local execution,in the Web client is made possible. Moreover, the fact

that most activities can be confined to local sites implies reductions of network

bandwidth c~nsumption. better resource utilization; and quick response to user's requests.

3 . Performance enhancement: State or session information no longer needs to be

managed by programmers. Instead, the newer on-.line app.roaches have the ability to

handle these situations through the use of either a sophisticated built-in client caching

mechanism or a state-based database connection. These kinds of handlers can reduce

or even eliminate the startup cost for multiple requests by the same client - hence,

long database sessions can be processed efficiently.

CHAPTER 6. Summary, Conclusion, and Future Work

-
1-4

4. High capability: The new advanced Web programming technologies are designed

specifically to extend the Web in many ways. Although it is sometimes possible to

use certain traditional approaches to achieve similar effects, the functionality of

traditional approaches will not be as powerful and flexible as that of the newer ones,

especially for complex tasks.

On the other hand, it is important to note that certain effects and tradeoffs result

from the use of these newer technologies:

Additional computing resources: As some of the tasks will be shifted from the

server to the client sites, extra resources such as disk space, memory, and CPU speed

are required in the client machines. However, this seems not to be such a great issue

with the low cost of today's computer hardware.

Interoperability: Since the technologies under discussion are still emerging, they

might not be well supported in certain Web browsers, Web servers, and operating

environments. The maturity and popularity of these technologies will, however.

ensure their acceptance in the Internet community.

Security: Some users might disable executable content due to the possibility of

security holes .and the potential risk o f harming the user's file system. Moreover,

some such approaches might not be able to pass through certain corporate firewalls.

However. the specificatiori of most techniques will be continuously improved,

standardized. and adapted to the construction of Web-based systems and such

restrictions may not need to be employed as rigorously in the future.

Long download time: Considerably long download time is necessary for distributing

fairly complicated executable content. The improvement in compression and

versioning techniques. as well as the popularity of higher bandwidth access lines

through ISDN and cable modems, will help in mitigating this issue to a certain extent.

6.2 Conclusion

CHAPTER 6. Summary, Conclusion, and Future Work

The architecture of various Web database access techniques has been briefly

described and relevant experiments have also been performed to compare their

performance. However, the adoption of a particular technology is not only based on the

capability and efficiency of that technology. but also highly depends on the particular

situation of usage. Issues such as the target users, server setup, and the nature of

information also play important roles in coming up with an appropriate conclusion.

Being the focus of the thesis, the effectiveness of user interface and interactivity. as well

as the performance of remote database access are the three main issues in evaluating Web

database access technologies. With the use of our prototypical Web application, the

flexibility and effectiveness of two of the emerging techniques, Java and ActiveX

approaches. have already been demonstrated. It is clear that these emerging approaches

are capable of developing Web applications with sophisticated graphical user interface

and effective client-side interaction. As a result, these technologies are very suitable in

developing applications for which effective user interface and interactivity are desired.

Regarding performance issues, the performance of any Web database access

technology indeed varies greatly depending on the combination of the Web server. the

operating system, and the server hardware being used. According to our experiments, the

Microsoft Advanced Data Connector (ADC) running on Microsoft-based operating

environment and Intel-based hardware turned in best performance. This observation is

true in most performance scores of both the single-operation and multiple-operations
-

experiment. I t means that the ADC approach is very efficient in both regular and long

database sessions. However, it is also important to note that when reviewing our

experimental results, keep in mind that they reflect our specific experimental conditions

and are not comparable to the results of other tests with different

6.3 Future Work

experimental settings.

This thesis presents the general consideration for developing interactive Web

databa5e applications and shows that huge differences can be observed by deploying

various techniques. In fact, many of the technologies discussed are very new. For

CHAPTER 6. Summary, Conclusion, a i d Future Work

example, the JDBC specification was only released to the public within the last year.

Microsoft ADC is an even more recently available technology which was made available

to system developers only in the first half of this year. It will be possible to perform

additional studies when these technologies become more mature. For example, it would

be very useful to discover exactly which components in the overall architecture consume

extra overhead. Such investigation and experimentation can help developers deploy the

most effective technology among various alternatives and help researchers improve the

performance of technologies by making appropriate revisions to reduce overheads. The

following is a list of suggestions for possible future work in this area.

Multiple-user experiments: Several single-user experiments were performed arid their

results have been presented. However, it is possible that the performance of certain
. .

technologies depends on the load of the server since the communication protocol and

supporting components of a particular technology might be optimized for light or heavy

loads, or a compromise between the two. Therefore, it will be useful to test the

effectiventss of different approaches with varying numbers of clients.

Other performance measures: In fact, issues such as optimization, availability, and

resource allocation are important in evaluating database-related tools. However, our

experiments were only limited to the evaluation of transaction response time. In

order to further investigate the efficiency of various technologies, research can be

carried out to study the effect of Web database access using different technologies on

other performance measures including transaction availability and system cost.

Custom-built technology: Once the benefits and tradeoffs of various technology

approaches have been identified. there is no reas04 why a completely new Web

database access configuration cannot be developed.' Such a new approach should

possess the advantages of various techniques and be well suited for general use.

Moreover. the newly developed approach should adhere to existing de facto and open

standards such as Java with JDBC, the ActiveX component model, or other workable

specifications in order to increase usability.

Appendix

Listing of Experimental Results: Chapter 4
This appendix contains a complete listing of all experimental data obtained from

the experiments described in chapter 4.

Table A. 1: Query 1 on MS Access 7.0 using Symantec dbANYWHERE

Test # 1 2 3 4
Connection (ms) 3460 3180 2700 2800

Execution 1 (ms) 3860 4280 3130 3630

Execution 4 (ms) I 1430 I 1430 I 1480 I 1480

Execution 6 (ms) 1 1370 1420 1 1480 1 1590
I

Execution 7 (ms) 1420 1480 1540 1480

Execution 8 (ms) 1490 1370 1420 1650

Execution I0 (ms) I 1430 I 1430 I 1540 1 1640

Execution 1 1 (ms) I 1540 1 1650 1 1540 1 1590

Table A.2: Query 2 on M S Access 7.0 using Symantec dbANYWHERE

I Execution 2 (rns)

I Execution 3 (ms) I 3020 1 3020 1 3070 1 2850 1 3020

I Execution 10 (ms) 1 3070 1 3080 1 2970 1 2910 1 3070

Table A.3: Ouery 1 on MS SOL Server 6.5 using ~ i m a n t e c dbANYWHERE

Table A.4: Ouerv 2 on MS SOL Server 6.5 using synantec ANYWHERE

Table A.5: Ouerv 1 on MS Access 7.0 using Intersolv JDBCIODBC Bridge

1 Test # I 1 2 3 1 4 5
Connection (ms) is110 12910 13900 12410 12310

Execution 1 (ms) lo50 1370 1430 1260 1710

Execution 2 (ms) 550 490 550 550 6 0 0

I I I I

Execution 6 (ms) I 770 720 770 660 610
L

Execution 7 (ms) 710 770 940 6 6 0 660

Execution 8 (ms) 5 o o 4 9 0 4 9 o 440 500

Execution 9 (ms) 6 0 0 4 9 0 550 4 9 0 500

I Execution 10 (ms) 1 550 1 550 1 500 1 500 1 500

Execution 1 1 (ms) 1 6 6 0 550 550 550 6 0 0

Table A.6: Ouerv 2 on MS Access 7.0 using Intersolv JDBCIODBC Bridge

I Execution 1 (ms) 1 2690 1 1870 1 2230 1 2030 1 2080 1

Test #

Connection (ms)

/ Execution 7 (ms) I 1040 I loso 1 1040 1 1050 1 1050

2
13780

1

12360

Execution 2 (ms)

Execution 3 (ms)

Execution 4 (ms)

Execution 5 (ms) ,

Execution 8 (ms)

Execution 9 (ms)

Execution 10 (ms)

Table A.7: Ouerv 1 on MS SOL Server 6.5 using Intersolv JDBCIODBC Bridge

1040

1490

880

1040

Test #

5
12530

3
12530

Connection (ms)

4
12800

8 8 0

1040

870

1050

Execution 1 (ms)

Execution 2 (ms)

930

1540

94 0

990

Execution 3 (ms)

Execution 4 (ms)

Execution 5 (ms)

940

1430

880

930

Execution 6 (ms)

8 8 0

1480

8 8 0

940

Execution 7 (ms)

Execution 8 (ms)

Execution 9 (ms)

Execution 10 (ms)

Execution 1 1 (ms)

Table A.8: Ouery 2 on MS SOL Server 6.5 using Intersolv JDBCIODBC Bridge

(Execution 4 (ms) 1 930 1 1040 1 930 (990 1 880

~- - - - -

Test #

Connection (ms)

I Execution 6 (ms) I 1040 I loso 1 1200 1 1480 1 1150

2

13120

-~

1

13840

~ x e c u t i o n 1 (m s)

Execution 2 (ms)

Execution 3 (ms)

- 1380

940

940

I Execution 10 (ms) 1 1320 1 1260 1 1420 1 1480 1 1210

3

13240

1520

990

1050

Execution 7 (ms)

Execution 8 (ms)

Execution 9 (ms)

Execution I 1 (ms) 1 1480 1 1260 1 1370 1 1490 1 1260

1460

990

1210

1260

930

940

4
14060

1430

870

8 8 0

1160

1150

1210

5

13730

Table A.9: Ouery 1 on MS Access 7.0 using MS RDO 2.0

Execution 4 (ms)

Execution 5 (ms)

Execution 6 (ms) 110

Execution 7 (ms) 5 0 6 0 6 0

1210

1100

1210

Execution 2 (ms)

Execution 3 (ms)

Execution 8 (ms) 1 60 1 50 1 60 1 60 1 50

5

6100

1040

. 1210

1160

1270

Test #

Connection (ms)

Execution 1 (ms)

110

6 0

2
6310

990

1

7040

940

1270

1260

1480

5 0

6 0

Execution

Execution 1 1 (ms)

1270

1260

1370

3
6260

1160

6 0

5 0

4

7250

1020

160

110

5 0

6 0

110

5 0

11 0

110

6 0

110

5 0

5 0

110

5 0

APPENDIX

Table A. 10: Ouerv 2 on MS Access 7.0 using MS RDO 2.0

Execution 5 (ms) 1 220 1 210 1 280 1 220 1 270

Test #

Connection (ms)

Execution 1 (ms)

Execution 2 (ms)

Execution 3 (ms)

Execution 4 (ms)

1
6060

1430

3 3 0

270

2 8 0

Execution 6 (ms)

Execution 7 (rns)

Execution 8 (ms)

Execution 9 (ms)

Execution 10 (ms)

Table A. 1 1 : Ouerv 1 on MS SOL Server 6.5 using MS RDO 2.0

Execution 1 1 (ms) I 220

2
5820

1540

220

280

280

270

220

220

220

270

Execution 2 (ms) I 110 1 60 1 SO 1 50 1 60

280

Test #

Connection (ms)

Execution 1 (ms)

Execution 3 (ms) I 50 1 60 1 50 1 SO 1 60

3
6200

1590

220

22 0

220

280

270

280

270

220

220

1

6090

4 9 o

Execution 8 (ms) 1 SO 1 60 1 60 1 50 1 60

4
6480

1420

270

270

270

220

220

280

270

220

Execution 4 (ms)

Execution 5 (ms) .

Execution 6 (ms)

Execution 7 (ms)

Execution 9 (ms) 1 50 1 60 1 60 1 SO 1 50

5
6540

1420

2 8 0

220

270

270

2
5220

380

2 8 0

220

2 8 0

270

270

'220

6 0

6 0

6 0

6 0

22 0

270

220

320

2 8 0

3
5270

490

Execution 10 (ms)

Execution 1 1 (ms)

6 0

6 0

110

110

4

5220

5 0 0

6 0

6 0

5

5660

550

110

6 0

6 0

6 0

110

6 0

5 0

6 0

110

5 0

5 0

6 0

110

6 0

6 0

5 0

6 0

110

110

6 0

Table A. 12: Querv 2 on MS SOL Server 6.5 using MS RDO 2.0

I Test # I

I Execution 3 (rns) I
I Execution 4 (ms) I
I Execution 5 (ms) I .

Execution 6 (ms) I

(Execution 8 (ms) I
I Execution 9 (ms) I
I Execution~l4 (ms) I

Execution 1 1 (ms) I

Table A. 13: Querv 1 on MS Access 7.0 using MS ADC 1 .O

Test # 1 1 1 2 1 3 1 4

Execution 1 (ms) 2370 1210 1100 1100

~xkcu t ion 2 (ms) 270" 2 8 o 270 330

Execution 3 (ms) 220 2 8 0 27 0 27 0

Execution 4 (rns) 220 220 . 280 270

Execution 5 (ms) 2 2 0 2 8 0 2 8 0 220

Execution 6 (ms) 2 8 0 220 270 220

Execution 7 (ms) 220 270 -270 2 8 0

Execution 8 (ms) 1 270 1 220 1 ,280] 270

Execution 9 (ms) 1 270 1 280 1 220 1 270
r- - - - -

i Execution 10 (rns) T a80 r a80 1 a80 I 270
I I I I I

i Execution 1 1 (rns) I 270 1 220 1 2 8 o 220

APPENDIX

Table A. 14: Query 2 on MS Access 7.0 using MS ADC 1 .O

Test #

Connection (ms)
Execution 1 (ms)

Execution 2 (ms)

Execution 3 (ms)

Execution 4 (ms)

Execution 5 (ms)

Execution 6 (ms)

Execution 7 (ms)

Execution 8 (ms)

Execution 9 (ms)

Execution 10 (ms)

Execution 1 1 (ms)

Table A. 15: Ouery 1 on MS SOL Server 6.5 using MS ADC 1 .O

Test #

Connection (m)
Execution 1 (ms)

Execution 2 (ms)

Execution 3 (ms)

Execution 4 (ms)

Execution 5 (ms)

Execution 6 (ms)

Execution 7 (mc)

Execution 8 (ms)

Execution 9 (rns)

Execution 10 (ms)

Execution 1 1 (ms)

APPENDIX

Table A. 16: Ouerv 2 on MS SOL Server 6.5 using MS ADC 1 .O

I Execution 6 (ms) 1 3680 1 3680 1 3630 1 3620 1 3850

Execution I (m.)

Execution 2 (ms)

Execution 3 (ms)

Execution 4 (ms)

Execution 5 (ms)

3
110

2

220

Test #

Connection (ms)

4670

4780

3680

3620

3630

Execution 7 (ms)

Execution 8 (ms) -
Execution 9 (ms)

Execution 10 (ms)

Execution 1 1 (ms)
J

1
17 o

4 .
110

4720

3730

3680

3680

3740

3680

4770

3620

3630

3620

5
5 o

4780

4060

3680

3680

3680

3680

3680

4170

3680

3630

4610

3740

3950

3680

3630

3680

3570

3620

3730

3630

6480

3900

3840

3840

3840

3620

3730

3680

3630

3570

3850

4510

3850

3850

3840

APPENDIX

Listing of Experimental Results: Chapter 5
This appendix contains a complete listing of all experimental data obained from

the experiments described in chapter 5 .

Table B. 1 : Querving MS Access 7.0 using - MS IDC

1 Query 2 (ms) 1 1320 1 1040 1 1040 1 1320 1 1050

Query 3 (rns) 930 990 1100 930 1200

Query4 (ms) 1210 1370 1650 1210 1270

1 Query 5 (ms) I 1150 1 1260 1 930 1 1040 (1100

Table B.2: Ouewing MS Access 7.0 using MS ADC 1.0

I Test # I 1 I 2 3 4 5

Query 5 ims) I 500 500 550 44 0 4 9 0

Table B.3: Quening MS Access 7.0 using Svmantec dbANYWHERE

Query 2 (ms)

Query 3 (ms)

Bibliography

David Belson. The. Network Nation Revisited, 1994. Available from
htrp:IPIn~r.tt.. srer~ens-tech. edd-dbelson/rhesis/thesis. htm I .

Edward V. Berard. Essqs on Object-Oriented Softnure Engineering (Vol. I) .
New Jersey: Prentice-Hall, Inc.. 1993.

Ken Bergmann, Microsoft Developer Network Technology Group. A High-
Level Look at Microsoft Internet Information Server. 1995. Available from
hrrp://n~.rt-. microsoft. codworkshop/cldmidiis/iisovw. hmt.

Peter Coffee and Mike Moeller. Special Report: Java and Active Platform. In
ZD Internet Mnga3ne. 8(2): 122-33. August 1997.

John Deep and Peter Holfelder. Der!eloping CGI Appliccirions rrirh Perl, pp.
9-43, 89- 100. John Wiley & Sons. Inc., 1996.

William Dutcher. PC WEEK: Interactivating your Web site, 1996. Available
from Itrtp://\c.rc.rr~.pc'\t~eek. c o d @ n e t r t ~ o r W 0 9 3 0 / ~ i . html.

Deva Hazarka. Vice President. Product Development, Mosi Technologies.
Inc. Developing and Deploying Interactive Applications on the Internet,
March 1 996. Available from http://rrwnl. microsoft. c o d \t.orkshop/pro,q/prq-
gerdmspuper. hml.

Greg Holdrn. Pithlishing 0 1 1 the World Wide Web. Hayden Books, 1995.

White Paper: Deploying Java and JDBC - Four Types of Java JDBC
Solutions, Intersolv Incorporation, 1997. Available from
http://rt.rsx,. inrersolr~.corrdproducts/dd- \cp-jdbc-solution. hrm.

BIBLIOGRAPHY

Ralf k a m e r . Databases on the Web: Technologies for Federation
Architectures and Case Studies. In ACM SIGMOD, 1997.

David S. Linthicum. Linking Web Servers with Live Data. In PC Magazine,
15(15): 178-79, September 1996.

Robert . P. Lipschutz. Web Servers. In PC M~gazine, 15(15): 167-2011.
September 1996.

Michael McGee. Web Pages: A Programmer's Perspective. June 1996.
Available from hrrp:/h~t~t~.microsoft.conJltnrkslzop/pro~/pr~~~-ge~ebp~ige. hml.

The Component Object Model Specification, Microsoft Corporation and
Digital Equipment Corporation, October 1995. Available from
htrp:/ /~~tw' . nlicroscft. com/oledev/olecom/tirle. hml.

Publishing Information and applications, Microsoft Corporation. 1996.
Available fiom hnp://\t~t~t-. rn icrosofi. codidi~.s ingi idresources/ i is2d~ii .s . h m .

About Active Server Pages, Microsoft Corporation, 1997. Available from
lzrtp://~t~t~w~.nzicrost$t. condiis/lramaboi~tiis/acti~~esen~er/cbout.I~ml.

ADC Web Page. Microsoft Corporation, 1997. Available from
l~rrp://bt~t~~t*.r~~icr~sofr. conddccrcJudc/def~iclr.l~r~n.

Cabinets (CAB), Microsoft Corporation, March 1997. Available from
I~ttp://n-n*n'. nzicrosoft. cond~t~orkshop/pro~/cob/de~~iuIt. h m .

Internet Database Connector, Microsoft Corporation, 1997. Available from
l~ttp://~t~t~~~.microsofr.cot~dsyl/inet/inetde~~.rtrat2. htm.

InternetDatabase Technology Roadmap: Advanced Database Connector,
Microsoft Corporation, 1997. Available from
hrrp://~~~t~~t~.rnicro.~ofr.conds~l/inet/inerde~~rmr5. hrrn.

Internet Information Server 3.0, Microsoft Corporation, 1997. Available from
http://nw.\t'. microsoft. cotrdiis/drjiudt. asp.

Internet Server API Overview, Microsoft Corporation, 1997. Available from
http://n~t.w'. microsoft. conl/rt~in32derhpiext/isupirnrg. htrn.

JScript Web Page, Microsoft Corporation, 1997. Available from
lzrrp://~t~t~fi~.microsoft. conL/jscripr.

BlBL IOG RAPH Y

Using Remote Data Objects and the Remote Data Control. Microsoft
Corporation. 1997. Available from
hnp://premilun micros@. c o ~ i b r i i ~ / d e ~ p r & ~ b ~ b 5 ~ (~ 1 ~ r / F l / D 7 / S 0 8 7 4 . h ~ n .

VBScript Web Page, Microsoft Corporation, 1997. Available from
hrtp://~~c\t.. nz icrosoft. cond~h-ript .

Welcome to Open Database Connectivity, Microsoft Corporation. 1997.
Available from http://~~t*,v.microsofr. conl/odbc/defuuIt. htnz.

The Common Gateway Interface. NCSA HTTPD Development Team. 1994.
Available from http:/fizoohoo. ncsa ui~rc. eddcgi/.

The Semer-Application Function and Netscape Server API, Netscape
Cornrnunicat ions Corporation, ,. 4 9 9 6 : ~ . Available from
http://\r?r~9. net.rctipe. c-ordne\t!.rref~rt~~renn&-ii>i. htnzl.

-*

Netscape LiveWire and Netscape LiveWire Pro, Netscape Communications
Corporation. 1997. Available' from
Iz t tp: / / \ t~~' . ncrsccipe. conJcornpro&~itzno~rnce/dst-lirqe. hrml.

Ken North. PC Week Labs July 3, 1996: ODBC extends reach to servers and
Web. 1996. Available from hrrp://~tnu.p~~~t~uek.condr~\~ie~t:r/0701/OIo~lbc. hmzl.

Pratdi Patel and Karl Moss. Jcr\-o Dutcrbtise Pro,qrmrnzin,q \t.ith JDBC.
Coriolis Group Books, 1996.

Ashish Pimplapure. Virritcrl Gro~tps: A Web B~rsvd Electronic Corlfrrenc~ing
Systemfor Online Education. M.Sc. Thesis, Simon Fraser University, 1996.

Stephen Rauch. Manage Data frorn Myraid Sources with the Universal Data
Access Interfxes - Microsoft Systems Journal, Sept 1997. Available from
http://\r?rx.. nt icrosoft. conl/rns~/O997/~rni~~erstiId~itu. hrm, Se pt 1 997.

JI IL 'LI Unlet~sIzed. Sams.net Publishing, 1996.

Virtual-U Research Project. Simon Fraser University, 1997. Available frorn
Izttp://i'irtucrl-~4.c~. s f i ~ c u .

Performance Benchmark Tests. Shiloh Consulting and Haynes & Company,
1 996. Available frorn http://\r.\cw'. microsoft. com/ ln foSen~f ic~~nes l . htnt.

The JDBC database access API, Sun Microsystem\, 1996. Available frorn
http://splnsh. ju rusnft. cont//dbc/irzde.r. html.

BlBLIOG RA PHY

JDBC Drivers, Sun Microsysterns, 1996. Available from
http://-splash.ju~~asoft. com/jdbc/jdbc.drivers. html.

Java Universe Overview, March, Sun Microsystems. 1997. Available from
http://ir?r.1r3. s~tn.com/recWaccess/Java UniverseOvemiew. html.

Gary C. Sullo. Object Engineering - Designing Lcirge-Scale Objecr-Oriented
Systems. New York: John Wiley & Sons, Inc., 1994.

TeleLearning Research Network. TL-RN. 1996. Available from
htfp://vtw\r,. releleanl.ccJteleleurn/p-access/ov~mierr.. htnll.

Shannon R. Turlington. E.xplorin~ Ac t i~vX . Ventnna Communications
Group, Inc.. 1996.

] HTTP - Hypertext Transfer Protocol Overview, World Wide Web
Consortium. 1997. Available from
http://rr~r.v~f. rr.3. org/Prorocols/Ovemierc~. htntl.

[W3C97b] W3C Activity: Hypenext Markup Language (HTML). World Wide Web
Consortium. 1997. Available from http://\rlrw,. rr.3.0r,~/MccrkUp/Actir~ih.

[Woo951 D. R. M'oolley. Conference on the Web, 1995. Available from
Izttp:/free~lur.rrz.~p.nlrl. lcs/-dnr,ool/vrvbco112. hrntl. .

[Zai97] Osmar R. Zaiane. Where Web Appliccltiom Met.? Dtrtcrhtrses. Theme 3
Workshop on Web Technology, TeleLearning NCE - Montreal, May 25 1997.

