INTERACTIVE DATA-DRIVEN WEB APPLICATIONS
by

Wai Man Raymond Chiu
B. Sc., Mathematics and Computing Science

Simon Fraser University, 1995

A THESIS SUBMiTTED IN PARTIAL FULFILLMENT
OF THE REQUIREMEszS FOR THE DEGREE OF
- _MASTER OF SCIENCE
. in the School
of

Computing Science

© Wai Man Raymond Chiu
SIMON FRASER UNIVERSITY
September 1997

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy
or other means, without the permission of the author.

™

i~l

National Library

of Canada du Canada -

Acquisitions and Acquisitions et

Bibjjographic Services

395 Wellington Street
Ontawa ON K1AON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

*Your hle Vorre reférence

Our e Notre rétérence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de’ thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propnété du
droit d’auteur qui protége cette theése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autonisation:

0-612-24107-6

Canadi

Name:
Degree:

Title of Thesis:

Examining Committee:

Date Approved:

_ APPROVAL -

'Wai Man Raymond Chiu

Master of Science

Interactive Data-driven Web Applications

Dr. Stella Atkins
Chair

Dr. Wo-Shun Luk
Senior Supervisor

Dr-Ze-Nian Li
Supervisor

Dr. Jiawei Hin
External Examiner

§£P%¢N\bbr 3¢ “i.]

Abstract

Great efforts have been made to develop mechanisms for delivering sophisticated
applications over the Web in the past. Numerous technologies have recently been
developed which not only make the Web an effective means for hypermedia information
retrieval, but also give it a capability of executing interactive and high-impact Internet
applications in a powerful and efficient manner. This is particularly true for Web
database access technology. Traditional approaches basically drop the database
connection once an operation has finished — hence operations are independent from eb\ch
other. The newer on-line approaches either keep the database connection opé‘n
throughout the whole session or effectively store the states of current users and possibly
other information in the client-cache, thereby yielding better performance: higher
capability, and a lower level of programmatic complexity. '

Three basic issues are associated with Web database access technologies: (1) the
efficiency of remote database access from a Web browser, (ii) the effectiveness of the
graphical user interface (e.g. the level of user-friendliness and interactivity), and (i) the
effectiveness and flexibility of application development tools. This thesis investigates
these three i1ssues by comparing various architectures in order to evaluate the feasibility
of using the newer technologies for developing sophisticated data-driven Web
applications. To compare the newer techniques with traditional approaches, a series of
quantitative and qualitative analyses will be presented, by means of experiments and
sample applications.

e

7

1

Acknowledgments

Getting enough and adequate information, knowledge, and experience to write a
thesis of this size 1s deﬁnitely not an easy task. The completion of this thesis cannet be
accomplished solely by the effort of one personi Many individuals have provided
valuable advice and contributions. Although it is not possible to name all o:\hem, {
would like to take this opportunity to give‘ them my thanks and express my appreciation
to some who merit special recognition. |

First, I especially would like to thank my senior supervisor, Dr. Wo-Shun Luk.
who provided the guidance and substantial support for both hardware and software.
Without his care and advice, I am quite sure this thesis would never have come to
completion. His tireless support and direction has also made this learning process a very
rewarding experience. I genuinely feel that I am:very fortundte to have been his student.

I would also like to thank my supervisor, Dr. Ze-Nian Li’ for giving valuable
comments on my thesis. Thanks alse to Osmar Zaiane for helping me identify and
understand certain relevant concepts from his insights and rich experience in the field of
Web database access.

I am also thankful to the network support group ef our School of Computing
Science for their patient technical input. Finally, I would like to thank Dr.‘ Kal Toth and

Amy Wong, the proofreaders who corrected any mistakes and revised the structure of my

final thesis.

v

Contents

Approval
Abstract.
Acknowledgments
List of Tables

List of Figures

1 Introduction

1.1 The HyperText Markup Language
1.2 The HyperText Transfer Protocol.
1.3 Web-Based Applications

1.3.1 Data-driven Web Applications
1.4 Java PR
LS ActiveX . oo
1.6 Objectivesofthe Thesis K
1.7 Overviewofthe Thesis............. B .

2 Traditional Web Database Access

iv

6
7

Web Browsers. oo 11

2.1
2.1.1 Client-Side Scripting. S 11
2.1.2 Executable Content Approaches. [R 12
20 Web SErVers oo R L 3
22,1 Performance o e 13
222 AdmIniStrationt 14
223 SECUTILYottt “14
2.2.4 Application Development Environment. 15
2.3 Interface between Web Server and Applications 15
2.3.1 Common Gateway Interface............ 15
2.3.2 Application Programming Interface 17
2321 NSAPI................... g 17
2322 ISAPL............ N 18
2323 ASP...... e e 19
2.4 Interface between Web Serverand DBMS. 20
2.4.1 Microsoft Internet Database Connector e 21
242 Netscape LiveWire S e 22
2.5 Stateless versus State-based Approaches 23
2.6 Off-line versus On-tine Approaches..... JU 25
On-line Web Database Access 26
3.1 The Java Language -
311 Java Applets ... '. . 28
32 ODBC oo AU 30
3.3 JDBC. o 31
3.3.1 JDBC-ODBCBridge 32
3.3.2 Native-API Partly-Java Drivers 34

vi

3.3.3 Native-protocol All-Java Drivers P U 35
3.3.4 Net-protocol All-Java Drivers PR 36
3.4 COM and ActiveX Technologies DT 38
34.1 Remote Data Object L . 39
3.4.2 Advanced Data Connector oo 4l
4 Performance Comparison 44
4.1 Experimental Setup........ e 45
4.1.1 JDBC wnth Symantec dbANYWHERE 48
4.1.2 JDBC with Intersolv JDBC/ODBC Bridge. 48
4.1.3Y Microsoft Remote Data Object. e 49
4.1.4 Microsoft Advanced Data Connector. T 50
4.2 Summary of Expenmemal Results 50
43 lnterprelatlon of Experlmental Results............. e 52
4.3.1 Performance Difference in First .and Subsequent Queries 54

4.3.2 Intersolv JDBC/ODBC Bridge VS. Microsoft RDO g 55~
4.3.3 Symantec dbANYWHERE VS. Microsoft ADC 56
5 Prototype Web Database Application , - 58
5.1 Evolution. 58
52 Designlssues e P P 59
5.2.1 User Interface and Interactivity 59
© 5.3 Implementation. 65
5.4 Performance Issues........ P 66
5.4.1 Session-oriented Experiment 67
5.4.2 Result and Inlerpfetation N .. 67
6 Summary, Conclusion, and Future Work 72

6.1 Summary. 72
6.2 Conclusion 74
6.3 Future Work 75
Appendix ‘ 77
A Co;nplete Listing of Experimental Results: Chapter4................. .. 77
B Complete Listing of Experimental Results: Chapter S.............. 86
Bibliography 87
}

w,’

viil

List of ’l:ables

Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 4.5:
Table 4.6:
Table 4.7:
" Table 4.8:
Table 4.9:

Table 5.1:

Table 5.2:
Table 5.3:

Table A.1:
Table A.2:
Table A.3:
Table A .4:
Table A.5:
Table A.6:
Table A.7:

Configuration of Web server and Web Client for the Experiment 46

Querying MS Access 7.0 using Symantec dbANYWHERE 51
Querying MS SQL Server 6.5 using Symantec dbANYWHERE 51
Querying MS Access 7.0 using Intersolv JDBC/ODBC Bridge 51
Querying MS SQL Server 6.5 using Intersolv JDBC/ODBC Bridge. 51
Querying MS Access 70 using MSRDO 2.0 ... [................. 52
Querying MS SQL Server’6.5 using MSRDO2.0.............. 52
Querying MS Access 7.0‘using MSADCILO 52
Querying MS'SQL Server 6.5using MS ADC 1.0................... 52
Querying MS Access 70 using MSIDC, 68
Querying MS Access 70 using MS ADC 1.0 68
Querying MS Access 7.0 using Symantec dbANYWHERE 68
Query | on MS Access 7.0 using Symantec dbANYWHERE 77
Query 2 on MS Access 7.0 using Symantec dbbANYWHERE 78
Query I on MS SQL Server 6.5 using Symantec dbbANYWHERE 78
Query 2 on MS SQL Server 6.5 using Symantec dbANYWHERE 79
Query 1 on MS Access 7.0 using Intersolv JDBC/ODBC Bridge 79
Query 2 on MS Access 7.0 using Intersolv JDBC/ODBC Bridge 80

Query I on MS SQL Server 6.5 using Intersolv JDBC/ODBC Bridge ... 80

1X

Table A.8:
Table A.9:

Table A.10:
- Table A.11:
Table A.12:
Table A.13:
Table A.14:
Table A.15:
Table A.16:

Table B.1:
Table B.2:
Table B.3:

?

Query 2 on MS SQL Server 6.5 using Intersolv JDBC/ODBC Bridge ... 81

Query | on MS Access 7.0 using MSRDO 2.0 81
Query 2 on MS Access 7.0using MSRDO 20.. 82
Query 1 on MS SQL Sérver 6.5 using MSRDO2.0.............. ... 82+
Query 2 on MS SQL Server 6.5using MSRDO 20 83
Query 1 on MS Access 7.0using MS ADC 1.0.............. 83
Query 2 on MS Access 70using MSADC 1L.O. 84
Query | on MS SQL Server 6.5 using MS ADC 1.0....... o 84
Query 2 on MS SQL Server 6.5using MSADC 1.0 85
Querying MS Access 7.0using MS IDC oL 86
Querying MS /;ccess 7.0usingMSADC 1.0 86
Querying MS Access 7.0 using Symantec dbANYWHERE 86
/

List of Fignres

Figure 2.1:
Figureéﬂ:
Figure 2.3:
Figure 2 .4:
Figure 2.5:
Figure 2.6:

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:

Figure 3.10:

Figure 4.1:
Figure 4.2:

Figure 4.3:

Traditional Web database access model........................... 10
Interaction between CGI executables and the Web server. T6L
Inter;cticin between ISAPI Application DLLs and the Web server...... 19
Interaflion between the Web Server and Databases viaIDC 22
Stateless nature of HTTP client-server architecture 24
Maintaining user status during an HTTP session. 24
Execution of Java program in a Java-enabled machine 28
Execution of Java applet in a Java-enabled Web browser 29
ODBC architecture 30
Database-enabled Java applet connectionmodel 31
JDBC/ODBC Bridge model 33
Native-API Partly-Java Driver model. 34
Native-Protocol All-Java Driver model 35
Net-Protocol All-Java Driver model. 37
RDO model. 40
ADC client/server model 42
Experiment Client/Server Test-Bed 46
Average ziccess.time toMS Access 7.0 ... L. 53
Average access time to MS SQL Server 6.5. 53

X1

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:
Figure 5.10:
Figure 5.11:

Toplevelscreen 60

Activity Logger window. e .. 61
Expanded menubar............, e 62
Editactivity window. 62
Dialog window displaying error messages o 63
Dialog window confirming activity update e SRR 63
View Preferences window o L 64
View Preferences window with corresponding Sorttab. 64
Activity Logger window after filtering. <o 65
Average individual qugry accesstime L 68
Average cumulative query access time. -. e 69
\

X11

Chapter 1

Introduction

The Internet 1s undoubtedly the most influential medium in our lives today.
providing powerful and univérsal co_nneclivity for information access; and its growth has
been phenomenal during the past few years. As accessibility to the Internet has
continued to grow and develop, the Web's capabilities have also moved ahead, no longer
restricted it to simple document viewing. The Web is also ready for accessing interactive
and dynamic contents. Additional Web-based applications are expected to evolve as
currently available capabilities are ever being expanded. Recently, a lot of research has
been carried out on designing better ways of developing and running Web applications.
With the advances of computer and communication technologies, previously infeasible
means of delivering interactive content through the Web have become reality. Innovative
Web-based systems, including data-driven applications capable of linking live data as
well as providing users interactive features have resulted. These refined systems not only
provide an application environment with powerful new functions and features, but also
dramatically decrease the client-server communications overheads consumed by

traditional Web-based applications.

CHAPTER 1. Introduction : 2

1.1 The HyperText Markup Language

The HvperText Markup Language [DH96, W3C97b], or HTML, provides a set of
well—deﬁned symbols specifying a single universal standard format for Web documents.
Essentially,_i all data formats are supported including text, graphics images, and even
streaming videq. The most remarkable feature of HTML. perhaps, is its support for
navigation enabling users to easily move among related documer;ts. Although the
specification of HTML is being constantly revised to extend its functionality, the
interactivity of the Web supported by HTML is limited to selecting which material to
view from the choices presented. The introduction of gateway programs that use files of
_hypertext on the Web for interface purposes allows some degree of interactivity.
However, any computation must be performed on the server and true interaction is not
possible through gateway programming alone. To bring the Web alive’wilh a higher

degree of interaction. more advanced technologies are needed.

1.2 The HyperText Transfer Protocol

The World Wide Web is built on a client-server model. Clients and servers
communicate with each other using a common protocol. The HyperText Transfer
Protocol [15H96. W3C97a). or -HTTP, i1s a protocol for computers to speak as they
exchange information through the Web. This protocol provides the necessary
connectivity and interface for the Web. The HTTP was designed to efficiently access
information across the Internet to handle a wide variety of data types. In fact, a file’s
data is only useful if its underlying type of data is known. With HTTP, the Web
understands the corresponding data types of Web documents and passes that information
along. Moreover, the HTTP ofters the lightness and speed necessary for distributed and
hypermedia information systems. The HTTP is based on a request/response paradigm.
Typically, a client establishes a connection with a server and sends a request to the server
in the form of request method. URL, and possibly other information. The server then

responds with information including certain server information, body content, etc.

Ll
iﬁf

CHAPTER 1. Introduction 3

Although a connection is established between a client and a server, the HTTP
protocol 1s known as connectionless or stateless because the connection is dropped and
forgotten once the request has been responded. Each individual request is treated as
discrete and brand-new, unrelated to any previous ones. Some other protocols, in
contrast, are state-based and the connection is kept open. For instance, an FTP server
keeps track of a client’s information in an FTP session when i}clienl is moving around in
remote directories. An advantage of stateless systems is that they are relatively easy to
/wrile. However, it is exactly the stateless nature of HTTP that makes traditional Web

applications incapable and inefficient, which leads to tremendous research into more

advanced Web technologies.

. |
1.3 Web-Based Applications

The popularity, simplicity, and performance of the Internet make 1t an excellent
medium for conducting many applications. By combining versatile and sophisticated
techniques for information retrieval and hypermedia, the World Wide Web has become
the most popular service to access Internet information. Web documents can include
numerous data formats such as text, graphics, sound, or video with little effort which
makes the document highly multimedia. Hence, resources can be stored in different
formats and existing resources can be easily made available with slight modifications.
Another strength of the Web is that it provides a common user interface for Internet
utilities such ,asOF:IP and Gopher. As a consequence, users can use their familiar Web
browsers to ré’ac‘h: everything offered by the Internet [Wo0095]. Moreover, the ability to
include active Lif%ks and references to other Web pages also implies several benefits for a
wide range of applications. It allows easy references traceable by followiné the links to
variozus kinds of information 1n a consistent manner [Pim96]. Moreover, it provides great
opportunities for structuring information and simplif.ying grasp of overall content by
actively linking related docurents. Therefore, it seems thére are needs to build

sophisticated Web applications that fit well with the Internet based environment.

CHAPTER 1. Introduction _ 4

On the other hand, Web documents today are largely static ~ they simply present
information or a friendly interface for retrieving information from the user. Recent
developmentsiiin Web technology, Web servers, and Web browsers further enhance the
formatting of Web documents and encourage the creation of more “active™ or “smarter”
Web pages. As a result, highly interactive Web-based applications have become:
possible. Researchers then start designing even more advanced techniques to develop
Web-based systems which allow information to be published in any favorite format
within the context of Web browsers. Applications developed by these advanced and
emerging technologies are even qualified to be compared with desktop applications to
some extent. The successful introduction of these new techniques also provides

promising resources to bring important changes in Web-based application systems.

1.3.1 Data-driven Web Applications

Central to the development of many applications would be data connectivity.
The Internet phenomenon has propagated to the database community as Web data access
opens up a number of options for interactive Web sites such as transaction processing and
search engines. Moreover, database-enabled Web sites have the capability of providing
valuable information in an organized, searchable, and easily modified format. However,
there were very few, although inefficient, approaches for data connectivity through the
Web in the past. Traditionally, the Common Gateway Interfuce, or CGI, is the dnly
popular approach to generate dynamic Web documents. Although writing CGI programs
to enable simple interactive features is not complicated, it is very inefficient since any
interactivity means a communication with the Web server is required. For database
applications, using CGI is even less efficient and not trivial at all. As a result, efficient
ahd effective means for Web database access has become an imminent research issue.

The introduction of light-weight client-side scripting languages does improve the
efficiency of interactive applications to a certain extent. Nevertheless, delivering data-
centric Web contents using these languages is not feasible at all due to their limited

functionality. Being a hot new field, Web database development has attracted the focus

CHAPTER 1. Introduction 5

of many researchers recenllyv. The use and acceptance of executable contents in the Web
allow highly interactive and data-centric Web-based applications to be created. Two of
the representatives of Web executable content approaches are Java applets and ActiveX
-<controls. Basically, they are light-weight reusable programming components which can
be embedded in a Web page to increase the limited functionality of Web documents and
can be used for data connectivity as well. More details of these two different kinds of

components will be introduced in later chapters.

1.4 Java

Nothing has recently captured the attention of the Internet community as much as
Java. As part o§ an advanced consumer electronics project at Sun Microsystems at the
beginning, Java was designed to be a reliable and portable object-oriented programming
language. Due to its tremendous capability, Java possesses all the essentials for
extending the Web in ways that were previously inconceivable. Java brings true
interactivity to the Web. Highly interactive nglicalions such as games and database
applications can now be encountered lhrough\lhe Web at remote network sites.
Fundamentally. software implemented in Java can be safely distributed across the
Internet and run on many different kinds of computers. Moreover, the resulting
executable content shifts the site of activity from the Web server to the Web client.

Class libraries are conlinhous]y developed to extend the functionality of Java for
creating advanced applications. One of such useful libraries, the Java Database
Connectivity, or JDBC. APl is developed to intimately tie connectivity to databases with
the Java language. The JDBC defines every aspect of developing database-enabled Java
applications while the low-level database-translations are performed by JDBC drivers.
The implementation of the actual connection to the data source, whether it is local or
remote, is left entirely to the JDBC driver. A whole bunch of vendors have endorsed the
JDBC and sophisticated JDBC drivers are already available. However, early JDBC

drivers are less capable and mature than recent ones. In essence, some early JDBC

CHAPTER 1. Introduction . 6

driQers are LAN-based instead of Internet-based. More details of Java and JDBC will be

covered in later chapters. ’

1.5 ActiveX

ActiveX is a specification developed by Microsoft for building reusable software

components that can be integrated into a complete software solution. While the use of
ActiveX is diversified, its use in the Web attracts the most attention. In fact, ActiveX can
be used to develop virtually anything that can be achieved in traditional desktop
applications. Moreover, any programming languages can be used in the implementation
and the resulting native code will efficiently execute on appropriate platforms. Similar to
the Java approach, ActiveX software components can be distributed across network and
executed solely on the client side, which brings true real-time interactivity to the Web.
ActiveX is tightly integrated into the Microsoft’'s COM specification. While
COM objects are suitable to be used in desktop applications, ActiveX addresses its focus,
to Web's usage. Due to the tremendous capability and efficiency of ActiveX, many
different ActiveX components were developed to solve complicated problems that
existed in applications implemented in other approaches. One of the most useful
components recently developed is the Advanced Data Connector. or ADC, which
provides a flexible yet efficient database connectivity model to Internet and Intranet

applications. Details of ActiveX and specific components will be given in later chapters.

1.6 Objectives of the Thesis

In order to develop a highly sophisticated Web-based system which links to live
data, various powerful technologies and software components will be employed in the
development process. In almost all situations, the primary concerns of building Web
applications will be user-friendliness, cost, and performance efficiency. The recently
introduced Web technologies are increasingly adopted due to their tremendous capability

and proven efficiency. This thesis evaluates the functionality and feasibility of different)

CHAPTER 1. Introduction ‘ ' 7
®

technologies, tools, and components to be ‘used in building Web-based data-driven
applications. The benefits and tradeoffs of using them will also be discussed.

The objective of this thesis is a “proof of concept™ attempt to develop a user-
friendly yet effective Web database application, by using different technologies. As this
1s a “proof of concept™ attempt, the intention of this thesis is not to devélop a complete
system. In order to demonstrate the concept, appropriate experiments will be performed
and a simple Web database application will be implemented such that evaluations can be
given from both a quantitative and qualitative viewpoint. Accordingly, experiments will
be performed in order to compare the efficiency of traditional and newer approaches.
The implementation of a prototypiczll data-driven Web application further demonstrates
the vast flexibility of the user interface options available for building similar applications

using the latest Web technologies.

1.7 Overview of the {hesis

* In chapter 2, an introduction to traditional technologies for developing dynamic
Web applications will be reviewed. First, delscriptions of various components involved in
a traditional Web database application will be given. An overview of a few
. representative techniques of early Web technologies for building generic and database
specific Web applications will then be presented, together with a discussion of various
issues regarding the mentioned approaches.

In chapter 3, more recent and advanced techniques .for building Web applications
-will be introduced while concentration will be given to database specific development.
Both the advantages and limitations of each approach will be presented together with a
brief comparison to traditional approaches in a high-level sense.

In chapter 4, the set-ups, results, and interpretations of a series of experiments will
be presented in order to give a quantitative analysis of the efficiency of the newer and
more advanced Web technologies. The information presented in this chapter basically
serves as a guideline for evaluating the feasibility of deploying these new approaches in

building efficient Web database applications in different situations.

CHAPTER 1. Introduction 8

In chapter 5, an evaluation of the newer technologies will be given in a qualitative
point of view. In essence, the capability and characteristics of a prototypical Web
database application that deploys a new Web technology will be described. In particular,
several screen shots showing the user-friendly interface of the underlying application will
be presented to demonstrate the superiority of the newer technologies in comparison with
traditional ones. The result and interpretationﬁ of a simple experiment will also, be
presented in order to compare the efficiency of traditional and the newer architectures.

In chapter 6, a summary and conclusion of the thesis will be given. It also
describes any possible future advancement in Web technologies and outlines some ideas

for possible future work.

Chapter 2

Traditional Web Database Access

The search to enhance interactive Web browsing techniques has been the
enlbu.i‘i_z}sgg development of powerful computer, communication. and programming
technologies. However, the power of early Web applications is rather limited in terms of
both the systems’ functionality and communication ability. Early attempts in Web
applications generally ;\rﬁphasized the use of the Internet with hypermedia to deliver
static’ multunedia content rather than the delivery of dynamic information. Today,
advances in-computer and communication technologies provide powerful»environment to
develop sophisticated Web-based systems that can effectively support dynamic and live-
data delivery and interaction. These experiences also serve as a foundation and
in,formativg;guide for future developments in the area of Web and database applications.
Traditional approaches such as the CGI and proprietary APIs are all capable of accessing
remote Database Management Systems (DBMS), though quite vary in programming
" complexity and performance. The ‘fol’lowing diagram simply demonstrates such generic

database access model’through the Internet or Intrgnet.

CHAPTER 2. Traditional Web Database Access 10

(| <

©oQuery |
_w Processing DBMS
: ISR SIS B N . | Applicationj
: Web ’ Web ;
' Browser | Server |
; e ‘

document

| request

HTTP

| ‘ Dynamic |
- ‘ Web i

linernct !
Intranet

| Pages

P e

Figdre 2.1: Traditional Web database access model

A Web browser serves as a classic thin client and provides a common interface,
HTML, across many platforms. When the Web browser generates a request, the data-

driven Web application communicates with the Web server through CGI or proprietary

APIs using HTTP. The query processing application, which often resides on the same =~

machine as the Web server, then handles the desired queries and manages state based on
the request passed from the Web server. Resulting HTML page will be generated and
passed on to the Web server according to the results retrieved from the back-end
database. The Web server then passes the dynamically generated document to the Web
browser for display.

In fact, a successful Web-based application cannot be built without the use of a
good Web server and advanced programming technologies. Moreover, Web browsers
have to support the more advanced technologies in order for any advanced technique to
take effect. However, choosing the right Web server with appropriate programming
models 1s not an easy task. In general, speed and extensibility are two of the important
features of Web Servers. A good Web server platform should be capable of delivering
high speed and secure information publishing as well as providing opportunities for
developers to extend the Internet’s standard commuy’cation capabilities. Apart from the
Web server, certain technologies and components also play important roles in the
development process. This section briefly introduces Web browser and Web server in
general and various programming models that have been commonly employed in the

development of Web-based application systems.

CHAPTER 2. Traditional Web Database Access A 11

2.1 Web Browsers

A Web browser is a program that allows viewing of contents on the Web. The
advantage is that a common interface can be used across various platforms. On the other
hand. Web applications need to present its interface in terms of the relatively simple
HTML format. In fact, the Internet is just another platform for client/server computing.
However, it 1s a fundamentally different field that demands entirely new solutions.
Traditional Web browsers are only capable of viewing plain HTML documents.
Moreover, any execution must be performed in the server and client processing power is
completely ignored in the picture. Recent technologies in Web browsing allow viewing
of additional multimiedia contents and even local execution of small applications. This
section briefly introduces two of such advancements including client-side scripting and

executable content approach.

2.1.1 Client-Side Scripting | —

The iﬁlroduclion of scripting lunguages,‘ which were designed to help the non-
programmer in creating simple interactive Web applications, brings Web application to a
milestone. Scripting languages can actually be used for developing both client-sided and
server-sided Internet applications. However, their use in the client side for Web-based
scripting is more influential. Traditionally, no interaction can be performed in a Web
client. Even simple task has to be performed in the server, for instance. by CGI script. In
a client’s application for Web navigation, scripting statéments embedded in an HTML
page can recognize and respond to user events such as mouse clicks, form input, and
mouse movement over a link. Common usage of client-side scripting includes input
validation and performing appropriate activity with respect to the user’s action such as-
entering or exiting a page. Better still, all these tasks can be performed solely on the
client side without any network transmission. In other words, client-side scripting offers
the benefits of reducing network traffic and response times by keeping simple interactive

tasks local.

]

CHAPTER 2. Traditional Web Database Access 12

Scripting languages are interpreted languages. It means that the scriptin

application code is downloaded as text into the Web browser along with the HTML text

and executed directly within the browser and requires no compilation. Therefore,
dynamic binding is being used and all object references are checked at runtime. Unlike
most programming languages, scripting languages usually' do not require any special
declarations for their methods. Moréover, they support a run-time system based on a
small number of data types. Most scripting languages have a simple instance-based
object model that provides significant capabilities. That is, scripting languages are
object-based that rely on their built-in and extensible objects, but they have no classes or
inheritance, wh’ich existed in most object-oriented programming languages. Popular
scripting languages include JavaScript a-nd VBScript, which are very similar to Java and

Visual Basic in their syntax respectively.

2.1.2 Executable Content Approach

i

Today Web surfers are connected to heavy-loaded Web servers via relatively low
bandwidth lines across the Internet. With today’s powerful client computers, it makes
sense to shift the workload of Web servers to Web clients, and to bypass as much as
possible the growing traffic of the Internet. Although the introduction of client-side
scripting languages does enhance the performance of Web browsing to a certain extent,
scripting languages are designed to be lightweight and not intended to perform
complicated and CPU-intensive tasks. Therefore, it is desirable to allow the local
execution of certain programs so that they can take advantage of a host computer’s
processing power without increasing the load on remote Web servers. The missing link
1s a technology for safely distributing trustworthy executable content across the Internet.

With the advances in Web browsing technique, three different solutions tailored
to these problems were recently developed. Plug-ins are software programs that add new
capabilities to Netscape Navigator including cool audio, video, and other special formats
on the Web. However, only Netscape Navigator natively supports plug-ins and users

have to manually download and install the specific plug-in before using it. Sun

CHAPTER 2. Traditional Web Database Access 13

Microsystem’s Java is perhaps the most influential recent Web technology. Java applets,
which range from simple animations to ﬁlll-fealu,r,e/d/Web applications, can be
dynamically downloaded across the Internet and virtually support all platforms and
browsers. Details of Java and Java applets will be given in the next chapter. Microsoft’s
ActiveX controls are program building blocks that can be assembled into Web
applications. Moreover, ActiveX controls can be developed in virtually any
programming languages and run as native code and hence better performance will be
expected. However, only Microsoft Internet Explbrer natively supports ActiveX
controls. Browsers that support these new technologies are expected to give innovative

changes to the Web by enriching its communication, information, and interaction.

2.2 Web Servers

A Web server communicates with a Web browser using HTTP, which is a simple
protocol for delivering distributed and collaborative hyper media information. A Web
server receives request from a client that has established a connection to it. The Web
server then processes the request, returns a response to the browser, and then closes the
connection. Web servers can store and serve out any kind of file. HTML files and
graphics are two typical examples. A Web server also runs applications such as search
engines or database connectivity processes. While performance is undoubtedly an
important feature of Web servers, issues such as setup, configuration, server management,
administration, content management, security, access control, transaction management, and
application development features are also important in- evaluating Web servers. The

following sub-sections give an overview of some of the most important ones.

—=

R /
2.2.1 = Performance

The question of how important the performance of a Web server 1s depends on
what sort of Web site is being set up. Early phase of most Web servers did not focus on

performance as an inherent part of their design. However, performance becomes a more

A

CHAPTER 2. Traditional Web Database Access 14

important issue for today’'s Web servers, which are expected to handle hundreds of
requests received simultaneously. Moreover, Web servers are now frequently used to
access other server-based applications such as database publishing and collaboration.
Furthermore, Web pages with more dynamic contents such as 3-D. video, and audio have
been moved to the Internet. Hence, the amount of required computing power possessed
by Web servers have to be increased dramatically that leads to the increasing focus on the

performance of Web servers.

2.2.2 Administration

Tools and services that ease administration are 2\11S0 important features of Web
servers. Popular administrative features of today's Wel; servers include the following:
Virtual server support is the ability to allow a single server to be configured to support as
many TCP/IP addresses as desired. This feature is especially useful if the Web server
serves as an Internet Service Provider hosting several Web sites or hosts multiple
department’s site in an Intranet. Remote administration is the activity of managing the
Web server over the Internet in a secure and simple manner such that Web administrators
will feel Comforlablé to do so. Virtual directory management is the option for Web
administrators to distribute the physical stofage of their published information while
providing a different structure to external chents. This action is done by mapping logical
URLs to physical directories. Although most Web servers have the features mentioned
above. the evaluation of these features is usually based on efficiency, simplicity, and

whether an intuitive interface 1s provided.

2.2.3 Security

Security, in the context of the Internet. includes protecting a Web site, restricting
access to a Web site, and the degree of safety of data transfer between the server and the
client, etc. Needless to say, security issues are crucial as Internet becomes more
prevalent. Basic authentication i1s the most common way to provide security. For

example, access restrictions can be achieved by the use of user names and passwords.

CHAPTER 2. Traditional Web Database Access 15
\

Secure Sockets Laver, or SSL, is a standard for encrypting data which provides a higher
level of security than basic authentication does between the server and its clients when
private communication is required. Other security features might be presented in a Web

server’s security model that suits other sorts of secure connections.

A Y

2.2.4 Application Development Environment

Server-based applications and database connectivity are in the forefront of the
extension of Web servers’ capabilities. More and more technologies for application
development are emerging recently with intent to increase the appearance and possibility
of dynamic and interactive Web documents. Among these approaches, the Common
Gateway Interface. or CGL. 1s supported by almost all Web servers. Some Web servers
also support other applicali%i programming interfaces, which allow developers to access
specific functions on the Web server directly. Internet Database Gateway i1s another
achievement in Web server technology, which is a powerful gateway for easy interfacing
HTML documents with database information. Evaluation of these features is usually

based on their capabilities, efficiency, and the degree of ease of use.

1\

2.3 Interface between Web Server and Applications

In order to deliver high-impaclv and live data conle:nl%‘?ra&he Internet, Web sites
have to move beyond the delivery of static HTML files. The ability to generate pages
with information targeted at an individual client is also needed. Hence, Web servers must
offer a comprehensive and efficient yet simple programming model for developers to

deliver this enhanced functionality. Various techniques capable of generating dynamic

and data-aware documents are available in Web servers nowadays. Descriptions of a

number of representative programming models will be given in the following sections.

2.3.1 Common Gateway Interface

CHAPTER 2. Traditional Web Database Access / 16

The Common Gateway Interface (CGI) [MC96, Ncs94] is a standard of interface
for running external gateway programs under information servers such as HTTP or Web
servers in traditional systems. It is also the most popular approach for developing dynamic
Web applications and is supported by almost all Web server implementations. The Web
server responds to a CGI execution for every request from a client browser by-forking a
new process. The data received from the client browser will then be passed to the CGI
program through the environment variables and the script’s standard input (stdin). In the
case of using environment variables, the variables are set when the server executes the CGI
program. Results generated by the CGI program will be sent to the script’s standard output
(stdour') of the newly created process. The output can be either documents generated by the
CGI program, or instructions to the server for retrieving the desiredloutput.

The following illustration shows the interaction of CGI executable files with a
Web server.

environment variables / stdin

- Web Server CGI Process

stdout
4—

——— ——

Figure 2.2: Interaction between CGI executables and the Web server

With the employment of CGI approach. Web servers create a separate process for
each request received. However. this approach is time-consuming and executing a
program frequently by the server is an expensive operation in terms of the server’s main
memory and other resources. Other consequences include slowing down performance
and increasing client-waiting times on the Web. As services available through the Web
are ewpected to increase continuously, more and more server-based applications will be
developed. Advanced interfaces need to be designed to increase the performance of the
existing server-executed CGI applications. As a result, more powerful and efficient
approaches were designed to overcome the mentioned disadvantages. Nevertheless. CGI
will continue to be used for quite some time due to their wide support by all major Web

servers and Web browsers.

CHAPTER 2. Traditional Web Database Access 17

2.3.2 Application Programming Interface

Apart from the CGI, other proprietary APIs are supported by more advanced Web
servers in order to ease the programming complexity and increase the performance of
dynamic Web applications. Although APIs usually outperform CGI: several drawbacks
are shared by all APls. For example, most APIs only work on a limited number of
servers and‘operating systems. Moreover, applications developed by APl are easier to
crash the server if code is poorly written. Furthermore, APl code has to be sometimes
written more carefully in order to deal with multi-threading, clean up. etc. Anyhow. most
issues can be worked around by experienced programmers. The Netscape Server
Application Programming Interface, orr NSAPI, is a proprietary method used by a imited
number of Netscape's Web server implementations. The /nternet Server Application
Programming Interface, or ISAPI, is another proprietary approach used by Microsoft’s
and some other vendors™ Web server. Finally, the Active Server Page, or ASP. s an even
more recent and advanced approach developed by Microsoft for delivering dynamic Web

pages. The following sub-sections briefly introduce each of the three APIs approaches.

2.3.2.1 NSAPI -

The Netscape Server Application Programming Interface (NSAPI) [NCC96] is an
extension developed by Netscape Communications to extend the functionality of the
Netscape server in order to solve performance and efficiency limitations of CGlI
functionality. T;}he subtle design of NSAPI is mainly based on a logical breakdown of the
HTTP request-response process. The definition of these logical steps is taken from
experience with the feature sets of common Web servers. The slepS should be chosen in
a way such that the result of one step affecting the next while the methods employed in
carrying out each step should not affect the next one.

After the logical steps have been identified. a set of server application functions

determined by the inputs must be applied to accomplish each of the identified steps. The

CHAPTER 2. Traditional Web Database Access 18

inputs of these functions consist of the request itself and the server configuration database
while a response will be returned to the client as output.

Seven classes of server applications existed while each of which corresponds to the
request-response step it helps implement. [nitialization is a special class of application
function used to initialize static data such as logging and file typing for various server
modules. Authorization translation 1s the class of functions for authentication. Name
translation class functions translate a logical URL given by the client into a physical path
as used by the server. Path checks class consists of those functions to verify whether or
not a given path 1s safe to return to a given client by performing actions such as system-
specific URL filtering and access control, etc. Object tvpe class functions take the path
resulting from the previous directives and try to locate a file system object for the path or
regurn an error to the client if none exists. Service is the class of functions that sends the
server’s reply to the client. Transaction log functions simply log aN_transactions
established by a client. Whenever any of these functions fail. the error must be handled
by another function. The client must be informed by responses which can be customized

.by the administrator with site-specific information about the error.

2.3.2.2 ISAPI

The Internet Server Application Programming Interface (ISAPI) [MC97g] is a
technique developed by Microsoft Corporation that serves as a powerful and high-
performance alternative to CGI for delivering dynamic interaction and value-add
extensions. The core of the differences between CGI and ISAPI is that CGI scripts are
executable files while ISAPI applications are dynamic-link libraries, or DLL, containing
functions that are compiled. linked. and stored separately from the processes which use
them. As mentioned before. a server responds to a CGI execution request by creating as
many processes as the number of requests received. However, this approach is inefficienl
in terms of both server time and resources. On the other hand, ISAPI application DLLs
can be loaded and made resident in memory once a request is received such that it is

ready to serve other requests until the server decides to respond to the requests.

CHAPTER 2. Traditional Web Database Access 19

Méreover. unlike CGI script-executable files. the ISAPI application DLLs are loaded in
the same address space as the Web server which results in minimal overhead since all the
sever available resources are also available to the ISAPI application DLLs.

In the case of CGI, Web servers communicate with the created process through
environment variables and stdin/stdout. In contrast, interaction between Web sgrvers and
the ISAPI application DLLs is accomplished through extension control b[o&k. or ECB,
which 1s a data structure containing all necessary client and server information for
invoking ISAPI applications. The following illustration shows the interaction of ISAPI

DLLs with a Web server.

Web Server
A a A A TA T"““M"‘T;
. S Y ¥ Y Y v
ECB ECB | ECB. ECB ECB ECB
AR I Sy S S S S
Y Y Yy Y Y Y
ISAL.dI! ISA2.dl ISA3.dll

_— . - ———— S —

Figure 2.3: Interaction between IS API Application DLLs and lhé Web server

As mentioned earlier, less overhead and faster client/server interaction are
expected in {SAPI application DLLs than CGI executables. especially under heavy load.
On the other hand. more programming expertise is usually involved in developing ISAPI
apphications. For instance. multithreaded-safe ISAPI applications DLL must be

developed since multiple requests will be received simultaneously.

2.3.2.3 ASP

The Active Server Page (ASP) [MC97a] is another application environment
developed by Microsoft Corporation that allows the combination of HTML, scripts, and
reusable components to create powerful interactive Web documents. Currently, ASP 1s
only supported by Microsoft Internet Information Server [MC97f], which enables server-

side scripting with virtually any scripting language while built-in support is provided for

CHAPTER 2. Traditional Web Database Access 20

VBScript [MC97;} and Javascript compatible JScript [MC97h}. In fact, ASP is very
similar to server side includes in some aspects. The Web server parses ASP files and
replaces the HTML-like tags with their value or output in the ASP lﬁle.]

ActiveX components are objects which can be accessed from a Web page or other
application to rfﬁe packaged functionality someone else programmed. With proper
server-side scrip{ing, ASP can use ActiveX server components for a variety of tasks. For
example, to refricve records from a database, or access all Web server variables such as
browser propeniés and referring page. Perhaps, this is the main difference and
superiority of ASP over server side includes. A set of key ActiveX server components
are shipped with IIS 3.0 while customized components can also be written to access
virtually any kind of information accessible from the network. Mbreover, since the
scripts are processed by an engine on the Web server with standard HTML as the output,
ASP works with any Web browser in any platform.

An advantage of ASP is that 1t is compile-free. That means a changed script is
automatically compiled the next time it is requested. Moreover, ASP and CGI differ in
their performance since ASP runs in-process with the server, and is optimized to handle
large number of users. In general, ASP provides the flexibility of CGI programs and
scripts without the significant performance tradeoff and development difficulties.
However. one disadvantage of ASP i1s that it requires a fair amount of server CPU and
memory overhead since the Web server has to scan through an entire active server page

to find scripts and take the appropriate action.

2.4 Interface between Web Server and DBMS

All programming models described in the previous section are capable of
database access by periodical extraction of databases™ data and generating dynamic Web
pages based on the retrieved data. Database queries are built from user-input parameters,
hidden variubles,' or cookies. However, the programming model involved is fairly
complicated. For example, CGI requires more than 10 lines of script code for each

individual field to be extracted from the database. Therefore, several proprietary tools for

CHAPTER 2. Traditional Web Database Access 21

Internet database gateway have been developed to ease the development of Web database
applications. Most tools closely adhere to the SQL standard such that the programming
model is both familiar to database developers and relatively easy to implement. This
section introduces two of such approaches — the Microsoft Internet Database Connector

and Netscape LiveWire, which were built into two popular Web servers. \y

2.4.1 Microsoft Internet Database Connector

4

The Internet Database Connector [MC97d], or IDC, is a component of Microsoft
Internet Information Server that allows the Web server to efficiently gain access to
databases. In fact. the IDC runs as a very thin server-based application (1ISAPI DLL) that
communicates with databases via Open Database Connectivity, or ODBC. The %:crnel
Database Connector controls the access of databases and construction of resulting Web
pages using two types of files one for each. The first one (descriptor) contains the query
information necessary to connect to the appropriate data source and execute the SQL
command. It also contains the name and location of the corresponding second type of
file. The second ;)ne (template) is the template for the resulting Web page to be returned.
which is a standard HTML file with special syntax for referencing the query. The
following diagram briefly illustrates the components involved in connecting the, Web

server to databases.

CHAPTER 2. Traditional Web Database Access 22

} Web Browser
L T 7Y :
Reference SQL ' ‘ Resulting HTML

1 |
Web Server

Internet Database Connector |

T =¥ T -
descriptor file . i template file
SQL Command ' ‘ DB Information
ODBC Driver Manager J' .
ER Se T
4 4 —
ODBC Driver . ODBC Driver
i ‘ A

Figure 2.4: Interaction between the Web Server and Databases via IDC

The URL received by the Web server is parsed by IDC and the IDC process then
loads a stored script (descriptor) that defines and invokes communications with the
appropriate ODBC driver. The ODBC driver then communicates with a database and the
retrieved results are converted into HTML pages using templates for delivery back to the
client browser. The IDC is a very simple approach that requires virtually no special
programming knowledge. Instead. developers using IDC are limited to templates and
descriptor files to accomplish database access. This solution is well suited primarily to
simple database queries that requires relatively little expertise. However, IDC opens and
closes” a connection with each incoming request, which can possibly slow down

performance in many cases [Lin96].

2.4.2 Netscape LiveWire

The Netscape LiveWire [NCCO97] is a proprietary Internet database gateway tool
comes with Netscape Enterprise server for integrating database content into an HTML
page. As a widely supported Internet scripting language that adds functionality to Web

pages, JavaScript is being used with LiveWire to provide a complete development

CHAPTER 2. Traditional Web Database Access _ 23

environment that can work with data in relational databases. The database connectivity
library of LiveWire supports native SQL client-server connectivity to ODBC cor;lpliam'
databases. Similar to the IDC approach. the Web server finds the request- for LivéWire‘
by parsing the incoming URL and the interaction with the database occurs from within
the JavaScript code. Unlike IDC, JavaScript retrieves ‘dalabase results using the
conventional database cursor model. A cursor 15 a pointer to rows In ﬁn answer set
xretumed from the database of the requested query. The server-side JavaScript application
Simply reads each row from the cursor and converts it to the resulting HTML file [Lin96].

In comparison with the IDC approach, LiveWire requires relatively more
prdgramming expertise. However. LiveWire is capable of more feature-rich development
than IDC. Moreover, LiveWire maintains a connection with the database throughout
each session rather than opens and closes a connection with individual request, which
might speed up performance. Anyhow, the choice of solution highly depends on the
particular application being developed and the level of programming knowledge of

developers [Lin96].

2.5 Stateless versus State-based Approaches

Pefhaps the most significant challenge facing early Web database development 1s
the “stateless™ nature of the Web. This characteristic makes every server interaction
independent of all other interactions, so there is no notion of persistence. A Web server
responds to page requests either by returning an HTML page or by triggering an external
application via CGI or server API. Once the single request has been satisfied, the
transaction is complete and the connection closes. The Web Server makes no provision
for storing vital information about the application and the user within the application.
Although this approach is fine for delivering most Web documents, it creates huge
problems for designing a highly interactive data-driven Web application. A database
application, for instance. usually issues many queries based on user’s request, incurring
the overhead of repeated connections. The following diagram briefly illustrates the

stateless nature of HTTP architecture.

CHAPTER 2. Traditional Web Database Access 24

open connection

reguests

e — responses :
——i .
= Arand

. close connection
Chient

Figure 2.5: Stateless nature of HTTP client-server architecture

Regardless of the programming complexity involved. both the CGI and
proprietary APIs are capable of accessing remote databases by maintaining session
information or passing state information back and forth to the client. In general. a unique
session identifier has to be generated on the server end by encoding the state or a state
identifier in hidden fields. the path information, or URLs in the HTML form being
returned. The specific information a Web database application maintains and how
smoothly it is available to the application greatly affects the effectiveness of the system.

A simple illustration i1s given in the following diagram.

open connection

H sesston/state !
" information

requests (w/ state info.)
il .
- 1 A‘—L:=w
. close connection
Client

H
=" Figure 2.6: Maintaining user status during an HTTP session

In fact, it makes sense to employ a stateless rather than a state-based approach in
certain situations. For example, it might not be appropriate for a heavy-loaded server to
keep the states for thousands of users who may never complete the operations they start.
Nevertheless, the stateless limitation makes these approaches not capable of developing
highly interactive yet efficient database applications. One obvious disadvantage of
stateless approaches 1s that connection needs to be re-established for every single
database operation. which implies degrade of performance. Another drawback of such

approaches is that considerable programming complexity is involved in order to simulate

CHAPTER 2. Traditional Web Database Access 25

a state-based connection using a stateless approach. Developers thus look into more
advanced techniques for effectively accessing Web database. The newer state-based
approaches typically keep the connection open within the whole session. One of such

new technologies will be discussed in the next chapter.

2.6 Off-line versus On-line Approaches

Although the use of gateway programming mentioned in this chapter allows a
Web server to intelligently interact with data and build HTML documents for the client
dynamically, the data is static and is not really live. Users can work on the data and then
later send it back to the server for update, but it is not interactive like traditional
client/server applications. In order for actual on-line database access to tdke place, data
can be transparently cached locally on the client side by deploying sophisticated
mechanisms, which minimizes round-trips to the server. In essence, an advanced model
must be present that provides the client with the capability to manipulate and update data.
Therefore, sophisticated means must be designed to bring the meta-data and the data to
the client 50 that a user can work on it on the client side. When the client application
finished updating the data, the data will then be delivered to the server.

Database access via traditional off-line approaches is quite limited since it
provides low flexibility of access paths by navigating pages via static links generated in
the HTML pages. Hence, available operations are much more restricted than on-line
accessible approaches. Moreover, highly dynamic and interactive services are not
possible based on the use of CGI or server APIs since all active tasks must be performed
at the server and no interaction is allowed in the client machine at all. As a result, the
chent remains completely passive in this case. Furthermore, a huge number of network
transfers will be resulted since even simple input validation has to be done in the server
[Kra97]. Several executable content approaches have already been developed to achieve
on-line database access through the Internet. A few representative models of such

configurations will be presented in the next chapter.

Chapter 3

On-line Web Database Access

As mentioned in the previous chapter, traditional approaches fail to develop
highly interactive yet efficient database applications due to the low degree of interactivity
of HTML and stateless nature of HTTP. Executable content approaches are recently
being used for developing sophisticated Web applications. High level of interagtivity
becomes possible through executable content that has the ability to engage Web sur;ers n
continuous, real-time. and complex interaction. Executable content approaches can also
be used to access Web database on-line so that data can be manipulated and updated on
the client side. Among various executable content approaches. component technologies
and compiled languages are two of such useful techniques while the use of Java being the
more important and widely adopted one. In essence, Java applications interface with data
sources through JDBC, which is a specification of database specific programming model
similar to the ODBC industry standard. This chapter will discuss various issues
regarding on-line Web database access using Java Applets with JDBC, COM components

and ActiveX controls while focus will be given to the Java approach.

CHAPTER 3. On-line Web Database Access 27

7

3.1 The Java Language

The Java programming language [SM97] is used to create executable content that
can be distributed through networks and was developed by Sun Microsystems and
released in public alpha and beta versions in 1995. The development of Java began at
Sun Microsystems in 1991 with the goal to create a programming language for a new set
of consumer-electronics products. The focus of the language design is such that it can
create processor-independent code to suppon.-a distributed network of communicating
heterogeneous devices. While C++ was used as the starting point to ;mplement this
platform-independence, the team eventually abandoned C++ since C++ was not capable
to do everything they wanted. The team then started developing Java as a small-footprint
object-oriented programming language loosely based on C++. ‘As an object-oriented
programming language, Java possesses object-oriented properties such as inheritance and
polymorphism, but has rather simple syntax by discarding the overwhelming
complexities of similar object-oriented programming languages.

Java source code is compiled into byte-code, which is a high-level. machine
independent and architecture-neutral intermediate format designed to transport code
efficiently to multiple hardware and software platforms instead of platform-specific code
native to any particular processor and operating system. The native architecture of Java
1s the Java Virtual Machine (VM), a specification of an abstract machine such that
exe’cutable code can be generated by Java compilers, which exists only in software today
but will soon exist in hardware as well. The Java VM of a computer will be invoked to
interpret and execute the Java byte code. Java byte-code is interpreted. which means that
each byte-code instruction has to be parsed and interpreted by an interpreter and the
process 1s fairly slow. Recent implementation of the virtual machine includes a just-in-
time (JIT) compiler capable of compiling Java byte-code into native machine code on the
fly which greatly improves the performance of Java byte-code.

As a result, Java applications are portable to any software and hardware platform
that has a Java run-time environment. The environment consists of the Java VM,

standard Java class hbraries, a byte-code verifier for security purpose, and a byte-code

CHAPTEf-? 3. On-line Web Database Access ‘ 28

interpreter or JIT compiler that executes Java applications withouttrequiring programmers
to rewrite or even recompile their source code. Due to its cross-platform compatibility,
Java transcends from being a programming language to being a software platform. Java
developers, whether they realize it or not, are supporting a new platform that exists
independently of the underlying operating system and hardware. The following diagram

simply illustrates the execution process of Java programs.

TN

7 Java ; T
(— Java byte-code verifier :
I —

+ Java Class

Java Class Loader €——

/\ j Libraries |
‘—_—'_[f \] '\
0 Java i Java JIT ||
- Interpreter | | Compiler |

| native machine cudcl

Runtimg System o
Java VM

native OS calls

Native Operating System |

Figure 3.1: Execution of Java program in a Java-enabled machine

In fact, the pen“&nance of executing byte-code with JIT compiler is almost
indistinguishable from direct execution of native C or C++ programs according to Sun
Microsystems’s testing. Moreover, it is exactly this level of “indirection™ that gives the

power. flexibility, and portability of Java code and makes Java so successful.

3.1.1 Java Applets

Applets are Java programs that run on top of a Java-enabled Web browser. When
a page with an embedded applet is accessed by a user, either over the Internet or
corporu-te Intranet, the applet will be automatically download from the server and run on
~the client machine. Applets are downloaded. hence they tend to be designed small or

modular, to avoid large download times. Since Java applets may be loaded into systems

CHAPTER 3. On-line Web Database Access 29

from random "uncontrolled” parts of the Internet, potential danger may enter a user’s
computer and an organization’s Intranet. The Java language was designed to protect
against both unintentional and malicious attacks against the integrity of the client's
system. The underlying security restriction is the so-called “sandbox™ approach. All
conforming Java-enabled browsers provide a protected space known as the sandbox that
restricts the range of things an applet can do on the chent machine. For example. applets
are not allowed to write to local file systems, access to memory, and spaw’n or exit a local
process. The sandbox confines executable code to a run-time environment, seeking to
neutralize any problem by limiting the reach of the code. The following diagram simply

illustrates the execution process of Java applets within a Java-enabled Web browser.

, Web browser
Web page

/Jm ‘ ‘ T :

bute-code /—~——~—> Ja\a b\le code verifier Ja\a Class | Securm
~ - \ .
T : ¢ ! lerancs ‘ \hnaoer‘ !

T e Lol —T L

Java VM

Figure 3.2: Execution of Java applet in a Java-enabled Web browser

Java security for downloaded applets relies on three components: the byte-code
verifier, the applet class loader, and the security manager. These three components,
together, perform load and run-time checks to restrict proper access. The byte-code
verifier first performs format checks and static type checking for the untrusted code. The
tests performed by the byte-code verifier range from simple verification of correct format
for code fragment to passing each code fragment through a simple theorem prover to
establish that 1t plays by certain rules. The class loader then attempts to load and
instantiate all applets and the corresponding referenced classes. The security manager,
the last defense of the Java security model, performs run-time checks based on the calling

class’s origin before a method is executed. The security manager thus has a chance to

CHAPTER 3. On-line Web Database Access 30

forbid any dangerous operation if any is attempted. These three pieces of the Java
security model enforce a program to perform particular operations only on particular

kinds of objects so that untrusted Java applet can be safely executed on a client’s system.

3.2 ODBC

The Open Database Connectiviry (ODBC) [MC97k] specification defines a
standard, database-independent interface for accessing data stored in heterogeneous SQL
databases and is currently the most widely used programming interface for accessing
relational DBMSs. T% ODBC standard is based on work done by Microsoft and
X/Open's SQL Access Group (SAG) with the aim of providing maximum interoperability
so that a single application can access different SQL Database Management Systems
(DBMS) through a common set of code. This characteristic enables a developer to build
and distribute a client/server application without targeting a specific DBMS. Any ODBC
API calls use the ODBC Driver Manager which manages interactions with ODBC drivers
to link the application to the user's choice of DBMS. Each driver handles transactions
with an actual database. using the corresponding DBMS client software and API. The
following diagram simply illustrates the architecture of ODBC-based applications.

Applications

D ,_

ODBC Driver Manager

Yy %ﬁviﬂ/ﬁ
ODBC Driver - ODBC Driver

Figure 3.3: ODBC architecture

ODBC drivers are usually written in C or C++ and implemented as DLLs or
shared libraries. The fact that ODBC drivers are not native Java components means that

they cannot be downloaded from the Internet and interpreted at runtime in a Web

CHAPTER 3. On-line Web Database Access 31

browser. Any ODBC drivers must be pre-installed on all client machines that use them.
Moreover, since ODBC drivers are coded in C or C++ but not Java, they are not
platform-independent and individual implementations must be developed for each
operating system on which they will run. Furthermore. the native nature of ODBC
drivers might pose security problems in Java's security model. As a result. the ODBC
API 1s not suitable for database connectivity with Java and more sophisticated solutions
must be developed to cope with the secubrity. robustness, and platform-interoperability

characteristics of the Java language.

3.3 JDBC

In order to extend the functionality of Java as a serious platform for creating
powerful and scalable client/server applications, a complete yet simple database
connectivity model must be carefully developed. Java Database Connectiviry (JDBC)
[SM96a] is a specification developed by JavaSoft in 1996 that provides a uniform
interface to tie connectivity to DBMS with the Java language. An 1mportant
characteristic of Java applet is that Java connection can have an application session and
store state information. The state-based connection of Java network programming 1s
provided by socket objects that use TCP/IP as their transport mechanism, which is well
suited for interactive applications. Moreover. Java applets run on the client side and can
totally bypass Web browser/Web server connection. As a result. Java applets that
communicate with databases using JDBC can efficiently access databases on-line through
out the whole database session. The following figure simply illustrates the connection
model of database-enabled Java applets.

*7767'" ;ﬁgg— HTTP T T T

Browser —» Web Server

: Server . Y.
Java Applet < » :
TCP'IP protocol Apphication !

Figure 3.4: Database-enabled Java applet connection model

CHAPTER 3. On-line Web Database Access 32

N {

The JDBC API defines Java classes representing database connections, SQL
statements, query result sets, database meta-data, etc. Moreover, the JDBC API is
implemented via a driver manager that can support multiple drivers connecting to
different databases. Experienced programmers can also use the JDBC to create and use
low-level drivers to communicate with data sources. In the JDBC model, Java
applications or applets use the JDBC API to load JDBC drivers which manage
interactions with databases. Similar to ODBC, JDBC drivers are central to the
architecture of JDBC. JDBC drivers can either be entirely written in Java so that they
can be dbwnloaded as part of an applet, or they can be implemented using native methods
to bridge to existing database access libraries. JDBC drivers are generally segmented
into four categories — JDBC/ODBC Bridge, Native-API Partly-Java drivers. Native-
Protocol All-Java drivers. and Net-Protocol All-Java drivers. Descriptions and

characteristics of each category will be given in the following subsections.

3.3.1 JDBC/ODBC Bridge

The JDBC/ODBC Bridge [1197, SM96b] is a joint development of JavaSoft and
Intersolv as a thin trarnslation component that does low-level conversion from JDBC
function calls into ODBC function calls. As JDBC is designed to be efficiently
implementable on ODBC, the bridge is the best way to utilize ODBC from Java
applications. The JDBC/ODBC Bridge allows Java developers to code JDBC-compliant
upplicatio:s and applets, then deploy them with any existing ODBC drivers readily
available in the market today. As the JDBC specification is still very new. the
JDBC/ODBC is an carly attempt to allow database access for Java programs. The
following diagram simply iltustrates the place of JDBC/ODBC Bridge in the overall

architecture of the JDBC model.

CHAPTER 3. On-line Web Database Access 33

Java Application / Applet |
JDBC calls
JDBC Driver Manager
JDBC/ODBC Bridge
4 ODBC clls
ODBC Driver Manager
ODBC Driver .~ ODBC Driver -

native APJ calls

Figure 3.5: IDBC/ODBC Bridge model

The query process for a general database-enabled Java applet using the

JDBC/ODBC Bridge can be described by the following steps:

1. The user launches a Web browser and starts the database applet.

2. The applet verifies and connects to the appropriate data source.

3. Loop

4. The user submits the required information specifying the query.

5. The applet passes the JDBC Qquery to the JDBC Driver Manager.

6. The JDBC driver manager loads the JDBC/ODBC Bridge and passes
the JDBC query to the bridge.

7. The bridge translates any JDBC calls to ODBC calls and passes
the results to the ODBC driver manager.

8. The ODBC driver manager passes the ODBC query to the appropriate
ODBC driver. ’

9. The ODBC driver translates any ODBC calls to DBMS native calls
and submits the results to the remote DBMS.

10. The DBMS processes the query.

11. The DBMS passges the query result back to the invoking applet.

12. The applet displays the result.

13. The applet closes the database connection.

With Iimited availability of sophisticated JDBC drivers, the JDBC/ODBC Bridge
allows developers to begin coding data-centric Java applications and leverage existing
ODBC technology already deployed in organizations today. However. pre-installation of
the bridge and any ODBC drivers in all client machines 15 necessary since both the bridge

and ODBC drivers are written in native code. Its native nature also means that the bridge

CHAPTER 3. On-line Web Database Access 34

approach is not platform-independent. Moreover, the JDBC/ODBC Bridge can only be
used with trusted applets which must be pre-installed on the client’s machine. Due to its
limitations, the JDBC/ODBC Bridge should only be used with LAN-based Java
applications or applets and not suitable for use with downloaded applets across the

Internet or Intranet.

3.3.2 Native-API Partly-Java Drivers

A native-API partly-Java driver [I197. SM96b] translates JDBC calls into client
API calls of the specific targeted DBMS. Since Java classes cannot directly access the
native client libraries of network transport software without going through a special Java
bridge DLL or shared library, some binary code must be loadedan each client machine.

The following diagram illustrates the architecture of native-AP} partly-Java drivers.

Ja\a Application / Applet
4 1DBC alls

JE—— 4
==

JDBC Driver Manager

—r

i

¥

JDBC Driver - JDBC Driver
v f_-‘wjrﬁ
Bl’ldEC DLL Bridge DLL |

native API calls ii ‘ native APILJHx

Ficure 3.6: Native- API Partly-Java Driver model

The query process for a general database-enabled Java applet using a native-API

partly-Java driver can be described by the following steps:

The user launches a Web browser and starts the database applet.
The applet verifies and connects to the appropriate data source.
Loop
The user submits the required information specifying the query.
The applet passes the JDBC qQquery to the JDBC driver manager.
The JDBC driver manager passes the JDBC Qquery to the appropriate
JDBC driver.

AN & wWwh P

CHAPTER 3. On-line Web Database Access 35

7. The JDBC driver loads the required Bridge DLL and passes the
JDBC query to the Bridge DLL.

8. The Bridge DLL translates any JDBC calls to DBMS native calls
and submits the results to the remote DBMS.

9. The DBMS processes the query.

10. The DBMS passes the query result back to the invoking applet.

11. The applet displays the result.

- 12. The applet closes the database connection

Native-API partly-Java drivers share lots of similarities with the JDBC/ODBC
Bridge. A difference between them is that the resulting calls from a native-API partly-
Java driver are native to a specific DBMS while those from the JDBC/ODBC Bridge are
ODBC calls. One benefit over the bridge approach is that no ODBC layer is required and
hence better performance will be expected. However, similar to the JDBC/ODBC
Bridge. the native architecture of these drivers makes them only suitable to be used in

corporate networks since tremendous client pre-installation is required.

3.3.3 Native-Protocol All-Java Drivers

A native-protocol all-Java driver [I197. SM96b] translates JDBC calls into the
network protocol used by DBMSs directly, which allows clients to make direct calls to
database servers. Basically, specific pure Java JDBC driver is used instead of the
network transport software of the particular DBMS. The following diagram illustrates

the architecture of native-protocol all-Java drivers.

Java Application / Applet

l JIDBC calls

JDBC Driver Manager

B T R

JDBC Driver JDBC Driver

native APl calls native APl calls

Figure 3.7: Native-Protocol All-Java Driver model

CHAPTER 3. On-line Web Database Access 36

The query process for a general database-enabled Java applet using a native-

protocol all-Java driver can be described by the following steps:

1. The user launches a Web browser and starts the database applet.

2. The applet verifies and connects to the appropriate data source.

3. Loop

4. The user submits the required information specifying the query.

5. The applet passes the JDBC query to the JDBC driver manager.

6. The JDBC driver manager passes the JDBC Qquery to the appropriate
JDBC driver.

7. The JDBC driver translates any JDBC calls to DBMS native calls
and submits the results to the remote DBMS.

8. The DBMS processes the query.

9. The DBMS passes the query result back to the invoking applet.

10. The applet displays the result.

11. The applet closes the database connection.

The use of native-protocol all—Javu‘drivers eliminates the need of server-sided
applications for APIs translation, which might in turn improve performance. This kind of
drivers can be used with Java applications, downloaded applets in any Java-enabled
platforms across both the Internet and Intranet environments. On the down side, DBMS
client network transport software is typically proprietary, hence the database vendors
themselves will be the primary source for this style of driver. Moreover, a Native-
Protocol All-Java driver is for a specific database. as opposed to being a universal driver
that can connect to a variety of databases. Therefore. an applet that requires connections
to multiple databases will need to download multiple versions of this style of JDBC

driver. which can be inefficient.

3.3.4 Net-Protocol All-Java Drivers

A net-protocol all-Java driver [i197, SMO6b] translates JDBC calls into a DBMS-
independent net protocol, which is then translated to a DBMS specific protocol by a
server middleware. This net server middleware consists of a single universal all-Java
driver that is able to connect its all Java chients to many different databases. Depending
on the design of the server middleware, the middleware communicates with DBMS either
directly or through the use of ODBC drivers. The ability to connect to DBMS through

ODBC allows data access to a large number of ODBC data sources, but perhaps, with a

CHAPTER 3. On-line Web Database Access 37

little tradeoff of performance. In general, this approach is the most flexible alternative
that is suitable for Intranet use. In'order for these drivers to also support Internet access
they must handle the additional requirements such as security, access through firewalls
that the Web imposes. Several vendors are adding JDBC drivers to their existing
database middleware products. The following diagram simply illustrates the architecture

of net-protocol all-Java JDBC drivers.

Java Application / Applet j
v DBC calls
JDBC Driver Manager

. v _

Universal JDBC Driver

v
Server Middleware i ‘
T gobRC Gl
ODBC Driver \Ianager

native APL calls *

ODBC Driver ODBCDH\u

native API;aH;

Eoll Gojl ol G

Figure 3.8: Net-Protocol All-Java Driver model

The query process for a general database-er.i'ed Java applet using a net-API all-

Java driver can be described by the following steps:

1. The user launches a Web browser and starts the database applet.

2. The applet verifies and connects to the appropriate data source.

3. Loop

4. The user submits the required information specifying query.

5. The applet passes the JDBC query to the JDBC driver manager.

6. The JDBC driver manager passes the JDBC query to the universal
JDBC driver.

7. The JDBC driver passes the JDBC query to the server middleware.

8. If (ODBC layer is used)

9. The middleware translates any JDBC calls to ODBC calls and

~ passes the results to the ODBC driver manager.
10. The ODBC Driver Manager passes the ODBC query to the

appropriate ODBC driver.) '

CHAPTER 3. On-line Web Database Access 38

11. The ODBC driver translates any ODBC calls to DBMS native
calls and submits the results to the DBMS.

12. ELSE

13. The middleware translates any JDBC calls to DBMS native calls
and submits the results to the DBMS.

14. The DBMS processes the query.

15. The DBMS passes the query result back to the invoking applet.

16. The applet displays the result.

17. The applet closes the database connection.

In general, net-protocol all-Java drivers are the most flexible JDBC connectivity
solution. As the driver is completely implemented in Ja?a, no client pre-installation is
required. In addition, a net-protocol all-Java driver runs on any Java-enabled platform.
The major benefit of all-Java drivers is that they can be fully downloaded and do- not need
to be pre-installed on the clients. Similar to native-protocol all-Java drivers, this kind of
drivers can be used with Java applications, downloaded applets across both the Internet
and Intranet environments. One limitation of this approach is that downloaded applets
can connect back only to the host from which the applet was downloaded. However, the

use of server-based middleware allows a true three-tier network database architecture.

3.4 COM and ActiveX Technologies

COM and ActiveX are Microsoft’s component models that cover a broad range of
network and multimedia technologies. COM, which stands for Component Object
Model. 15 the underlying object architecture of the 32-bit Windows interface. The
primary responsibility of COM is to allow software components to behave consistently
without imposing design and implementation restrictions. Software components need
only to adhere to a binary external standard, but their internal implementation is
completely unconstrained. Objects conforming to COM can communicate with each
other without being programméd with specific information about each other’s
implementations. Therefore, software components can be easily designed to cooperate
with one another, even though they were written in different programming languages by

different developers at different times [MDE95].

o

CHAPTER 3. On-line Web Database Access 39

Being an industry standard for implementing reusable PC Windows components
adhering to the COM specification, Microsoft's OLE architecture is being used as the
underlying infrastructure of the ActiveX technology. Simply speaking. ActiveX can be
visualized as OLE on the Web, which was developed by Microsoft to primarily enhance
the Internet and multimedia products. With the goals of extending Internet standards, the
key part of ActiveX strategy is building a Windows interface for working on both the PC
and the Web. Being largely based on the COM specification, ActiveX is an unalterable
set of rules introduced for interoperability between software components. Basically,
ActiveX absorbed the OLE technologies and extended them to facilitate the development
of Web applications. As a result, ActiveX controls can both be deployed in desktop and
Web applications. In fact, ActiveX controls can virtually do anything that can be done by
desktop applications. Therefore, ActiveX technology brings a new level of interactivity
to Web browsing. The following subsections introduce two data-aware components,

which were deployed in the experimental application.

3.4.1 Remote Data Object

The Remote Data Object, or RDO, 1s a COM object providing interfaces to
ODBC data sources. Basically, RDO is a thin object layer interface to the ODBC API
with some special features like server-side cursors for efficient access to database server
in traditional chent/server applications. RDO is especially designed for building and
executing queries against stored procedures and handling all types of result sets. A
remarkable feature of RDO is that RDO s fully asynchronous and event-driven, so there
is no need to poll for task completion as an event is fired. Moreover. RDO is thread-safe.
Theretore, the ability of 32-bit Windows environment to run multiple threads of
execution can be fully utilized.

Access to remote ODBC data through RDO 1s achieved by an interface for using
code to create and manipulate components of an ODBC compliant database system.
Objects within the RDO framework have properties that describe the characteristics of

database components and methods used to manipulate them. Using the containment

CHAPTER 3. On-line Web Database Access 40

framework, relationships can be created among objects, and these relationships represent
the logical structure of the database system. Connections to databases are established via
the thin code layer over the ODBC layer and the driver manager. The following diagram

simply illustrates the interface model of applications that use the RDO.

Database Application
¢ RDO calls
RDO
l ODBC calls
ODBC Driver Manager }
: ODBC¢Drivcr j f_OﬁE;Drﬁc}*
native AP calls | nan\;i;PlcaHx

Figure 3.9: RDO model

Although RDO is primarily designed to be used in traditional client/server
applications, it can also be integrated with Java for developing Web database
applications. As RDO is based on ODBC, RDO is a state-based approach such that a
database connection 1s kept oben. The query process for a general database-enabled Java

applet using the RDO can be described by the following steps.

1. The user launches a Web browser and staxtilthe RDO-based applet.

2. The applet verifies and connects to the appropriate data source.

3. Loop .

4. The user submits the required information specifying the query.

5. The applet passes the RDO-based query to the RDO.

6. The RDO translates any RDO calls to ODBC calls and passes the
results to the ODBC driver manager.

7. The ODBC driver manager passes the ODBC query to the appropriate
ODBC driver.

8. The ODBC driver translates any ODBC calls to DBMS native calls
and submits the results to the remote DBMS.

9. The DBMS procegses the query.

10. The DBMS passes the query result back to the invoking applet.

11. The applet displays the result.

12. The applet closes the databhase connection.

CHAPTER 3. On-line Web Database Access 4]

Although a thin code layer is present on top of the ODBC layer, RDO’s
performance is, in most cases, virtually identical to the ODBC API but with radically
reduced coding time. However, the architecture of RDO is based on persistent
sockets/pipes connections to databases, so it is suitable to be used in a LAN-based

environment rather than in an Internet environment.

3.4.2 Advanced Data Connector

The Advanced Data Connector [MC97b, MC97¢. Rau97]. or ADC. is a
technology (ActiveX control) developed by Microsoft that tightly integrated with
Microsoft Internet Information Server (IIS) and ActiveX Data Objects (ADO) to provide
flexible database connectivity to Internet and Intranet applications. ADO is a high-level
database programming model for developers to write database applications on top of
OLE DB. While OLE DB defines a set of low-level C/C++ interfaces designed to
cfficiently build database components, ADO provides a programming model that is
suitable to be called directly from high-level programming languages such as Visual
Basic and Java, or scripting languages such as VBScript and JavaScript. With universal
data access as the primary goal. an OLE DB layer is used instead of ODBC so that a
\ur’iety of data sources can be accessed from the same programming model instead of
only data from relational databases. OLE DB achieves this by identifying common
characteristics between different data providers and services, including ODBC, by
-defining common interfaces to expose those characteristics. The following diagram

simply illustrates how ADC and other components work together for remote data access.

CHAPTER 3. On-line Web Database Access 42

Client : Server
|
—)
S apc | o
" Proxy e IS 4——————» ADO |
OMCU‘ ‘ | "‘5
“Web paze i | OLE DB

© o ActiveX 4—’ cache
\H;M (VTM)
|

Non SQL Data

! . . 1 K
- S Mal o Video Directory

»‘—/;—‘w———-:‘ ‘
W Teut ! Other ¢ Services

Figure 3.10: ADC client/server model

|
|
I
|
i ‘ |
e~ d | v I
§ ! | i :
| J
|
I
|
|
|
)

Internet / Intranct

As illustrated in the above figure, two key components are present in the client
space. The first one is the ADC Proxy object, which basically packages up the method
requests from the ADC and sends them to the Web server over HTTP. Another one is -
known as the Virtual Table Manager, or VTM. which is a key component in ADC’s
client-caching model. The VTM 1s an in-memory relational data cache exposing OLE
DB interfaces for data access and manipulation. The VTM supports state marshaling of
its contents through special intertaces among multiple server tiers while providing client-
side disconnected cursor models over its cache elements. It also maintains relational
data. chient updates, and records status information. The query process for a general Web

database application using the ADC can be described by the following steps:

1. The user launches a Web browser and starts the application.

2. Loop

3. The user submits the required information specifying the query.

4. The ADC verifies and connects to the appropriate data source.

5. The ADC passes the query to the Web server (IIS) via the ADC
Proxy object.

6. The Web server passes the query to the ADO.

7. The ADO translates the query into appropriate API and passes it
to the OLE DB layer.

8. The OLE DB layer translates the query into ODBC API and passes
it to the ODBC layer.

9. The ODBC layer translates the query into DBMS native calls and
passes it to the DBMS.

10. The DBMS processes the query.

11, The DBMS passes the query result to the calling application.

12. The application displays the result.

13. The application closes the database connection.

CHAPTER 3. On-line Web Database Access ‘ 43

As noted in the above algorithm, connection needs to be reopened and closed for
individual database operation. In other words. ADC is basically a stateless database
access approach. However, ADC deploys a sophisticated client-side caching mechanism
that minimizes connections to DBMS. As a compromise between state-based and
stateless database access technologies, ADC achieves a performance comparable to most
state-based approaches while avoiding the server to remember the states of its
tremendous number of clients. Such improvements are especially noticeable when
accessing data across the Internet. Moreover, similar to Java, the ADC can be used in
conjunction with other ActiveX controls for developing Windows-style user interface.

This feature will be discovered in more details in chapter 5.

Chapter 4

-

Performance Comparison

The performance of on-line Web database applications varies according to the
underlying database access technologies being used. In fact. some approaches can be
used to develop Internet-based applications while others are suitable only for applications
to be used within a corporate network. Although the performance of any technology
should be sufficient for simple database access within a particular environment, large
variations may be experienced in complex applications. In order to get an idea of how
various technologies perform, a single operation experiment was carried out to compafe
the response times of a few database queries using these technologies with different
database management systems. Four approaches (or products) were tested including:

e JDBC using Symantec dbANYWHEREVWorkgroup Server 1.0
e JDBC using Intersolv JDBC/ODBC Bridge 1.01

e Microsoft Remote Data Object (RDO) 2.0

e Microsoft Advanced Data Connector (ADC) 1.0.

A data-centric Web application accesses a remote database server according to the
user’s query and displays the extracted information. Although the exact steps involved
vary, the query process for a general Web database application can be described by the

following steps.

CHAPTER 4. Performance Comparison 45

The user launches a Web browser and starts the application.

. The application verifies and connects to the appropriate data source.
The user submits the required information specifying the query.

The application submits the Qquery to the remote data source.

The DBMS processes the query.

The DBMS passes the query result to the invoking application.

The application displays the result.

Nk wne

The objective of the experiment is to determine the overall efficiency of vgﬁf)us
approaches. Hence fairly simple database applications were implemented for each.
Although there are shight differences in the implementation of these applications,
measurements were only made on database specific aspects of the execution of these
functionally equivalent applications. Two quantities were recorded for all tests. Firstly.
the average connection time indicates the time required to completé a client’s request for
setting up a database connection — this corresponds to the time required for step 2 of the
above process. Secondly. the average query time indicates the time required to complete
and respond to a database query — this corresponds to the time required for steps 4 to 6.
These two quantities are expected to consume considerable processing time and are
considered to be sufficient to reflect the overall efficiency of each approach. Note that
step 5 1s a common element of all approaches and should be dropped out. However, steps
4. 5. and 6 usually comprise a single indivisible operation. Nevertheless. the same
processing time by step 5 can be expected by all approaches since this step 1s performed
by the database management system. not the underlying technology being used. Details

and interpretations of the experiment are discussed in the following sections.

4.1 Experimental Setup

An internal network with an Internet connection was established to perform the
experiment because some of the approaches are not Internet-ready and only work in a
LAN-based configuration. Microsoft Internet Explorer 3.02 was used as the Web
browser for all except one approach — a Netscape plug-in was required for that particular
approach. In that case. Netscape Navigator 3.01 was used. In both cases, the JIT

compiler for Java was used to speed up the performance of Java-based applications. The

CHAPTER 4. Performance Comparison 46

performance tests were only carried out on a single test suit given our primary interest
was the performance difference among various database access approaches rather than
different operating systems, Web servers, or server hardware. The configuration of the

Web server and Web client are profiled by the following table.

Table 4.1: Configuration of Web server and Web Client for the Experiment

Web Server Web Client
Hardware Platform e Single Intel P5-166 CPU e Intel 486DX2 66MHz CPU
e 5]2KB cache ® 256KB cache

e 3.1 Gigabyte Hard Disk e 540 Megabyte Hard Disk

Operating System Windows NT Server 4.0 with | Windows 95
Service Pack 3

Web Server Microsoft 11S 3.0 N/A
RAM Memory 64MB 16MB

The server and workstations were connected to a 10Base-T Hub over an internal
network using their internal 10Base-T adapters to factor out connection limitations such
as modems or communications links. The internal network was connected to the Internet
using its local LAN TI communication link. Among the workstations, one of them was
consistently used as the Web client for all experiments. The test-bed of the Web server is

illustrated in the following figure.

[]

Web Client Web Client Web Client Web Chient

Figure 4.1: Experiment Client/Server Test-Bed

CHAPTER 4. Performance Comparison | 47

All tests were executed against two database management systems — Microsoft
Access 7.0 and Microsoft SQL Server 6.5. An ODBC layer is present in all approaches
and hence the use of ODBC drivers 1s necessary. The Microsoft Access ODBC driver
3.50 was used for Microsoft Access while the Intersolv SQL Server ODBC driver 3.00
was used for SQL Server. The Intersolv SQL Server ODBC driver was used instead of
the Microsoft equivalent which could not handle multiple queries within the same
database session.

Two queries, with fairly distinct levels of complexity were consistently used
throughout the experiment. Both queries perform a selection from some relations (or
tables) in the database. The database consists of five relations with appropriate
information for assigning grades to students. Detailed design issues relating to the
database itself are not directly relevant and are therefore not presented.

The five relations managed by the database may be specified as follows (note that
a * symbol 1s associated with attribute(s) that represent the primary key):
accaunt_info(*login id, first_name, last _name, position, student_id, email)

courses(*course_id, *login id, priority)

marks(*/ogin _id, *activicy_:id, mark)
grade range(*course :d, *lerrer grade, min _mark, max_mark)

The first query (QI). a fairly simple one. selects all records from a particular
table. The second query (Q2). relatively specking a much more complex and timeé
consuming one. selects all records from the result of the natural join of the five tables.
These queries are specified as follows:

Q!l: select * from account_info

Q2: select ®* from account_ info, courses, activity, marks, grade_range
where account_info.login id = courses.login id
and account_info.login_id = marks.login_id
and courses.course_id = grade range.course_id
and activity.activity id = marks.activity id

Referring to the tabular results (Tables 4.2 to 4.9) in the next section, five

attributes were measured. The column “connection™ refers to the time required for

CHAPTER 4. Performance Comparison 48

establishing a connection before the query is processed. Only one connection is required
for multiple queries within the same database session. This attribute represents all
preprocessing time required for querying the database. However, the amount of
procéssing the approaches perform might vary according to the architecture of the
underlying technologies. The columns “1° Q1™ and “1™ Q2" refer to the execution of
query | and query 2 for the first time respectively, while "Sub. Q1" and “Sub. Q2" refer
to subsequent executions of the corresponding queries. The times for the first and
subsequent executions of the same query are separated out since significant differences in
their values were observed in all cases. Although a general description of the
experimental setup has been given, specifics of experimental 1ssues regarding the

individual approaches will be described in the following subsections.

4.1.1 JDBC with Symantec dbANYWHERE

The Symantec dbANYWHERE 1s a net-protocol all-Java JDBC driver. which has
been described in Section 3.3.4. To test the performance of this type of driver, a fairly
simple Java applet that makes JDBC calls for database connectivity was implemented and
its database specific execution time was measured. In essence, the connection time and
query ume correspond to step 2 and steps 5 to |5 respectively of the corresponding
algorithm described in Section 3.3.4. As mentioned earlier. Java applets using this type
of JDBC driver can be dynamically downloaded from the Web server to the Web client.
Therefore. no specific client installation 1s required and only a Java-enabled Web browser
1s needed to execute the implemented applets. This characteristic also implies that this
type of JDBC driver is capable of implementing database-enabled Web applications

across the Internet.

4.1.2 JDBC with Intersolv JDBC/ODBC Bridge

The Intersolv JDBC/ODBC Bridge is a joint development of JavaSoft and

Intersolv which translates JDBC calls into ODBC calls as described in Section 3.3.1.

CHAPTER 4. Performance Comparison 49

Again. a simple database-enabled Java applet was implemented in order to measure the
performance of the bridge. In essence, the connection time and query time correspond to
step 2 and steps 5 to 11 respectively of the corresponding algorithm described in Section
3.3.1. However. some ODBC binary code and database client code must be loaded on
each client that uses the bridge and hence client pre-installation is inevitable. In
particular, a special Netscape Navigator 3.0 plug-in that allows the bridge to be used
within a locally loaded applet is required. Dynamically downloaded applets are not
supported by the bridge. Therefore, the plug-in has to be pre-installed on the client
machine and the applet must be loaded from the client’s Java home directory. Due to the
necessary client configuration required. the JDBC/ODBC Bridge is only appropriate to be

used within corporate network but not over the Internet environment.

4.1.3 Microsoft Remote Data Object

As described in Section 3.4.1, Microsoft’s Remote Data Object (RDO) is a COM
object model providing access to remote data sources through ODBC. In fact. RDO is
not primarily designed for Web database access and can be integrated with many desktop
applications. In order to measure the performance of RDO based applications, a simple
data-aware Java applet, whi&h integrates with RDO, was implemented for the experiment.
Again. the connection time and query time corresponding to step 2 and steps 5 to 10
respectively of the corresponding algorithm descrﬁbed in Section 3.4.1 were measured.
However. since COM objects can access local system resources, which violates the Java
security model. applets that use any COM libraries must be digitally signed for security
purposes. Nevertheless, such applets are currently only supported by Microsoft Internet
Explorer 3.0 or later. Simular to the bridge approach, an appropriate ODBC driver has to
be present on the client machine. Using the cabinet (MC97¢] technology, the ODBC
driver can be dynamically downloaded from the Web server to the Web client together
with any required RDO related classes. However, applets integrated with RDO only work

within corporate networks due to the architecture of RDO as described in Section 3.4.1.

CHAPTER 4. Performance Comparison 50

4.1.4 Microsoft Advanced Data Connector

As described in Section 3.4.2, the Advanced Data Connector (ADC) is an
efficient Web-based technology developed by Microsoft that brings database connectivity
to the Internet environment. A simple HTML document with an embedded ADC
ActiveX control was written in order to measure the performance of ADC. It turns out
that the connection time and query time corresponding to steps 4 to 11 of th-e
corresponding algorithm described in Section 3.4.2 cannot be separated as ADC is a
stateless approach and its API only provides a single. indivisible method for those steps.
Although the ADC's API has a ““connect™ method, this method only updates the server’s
IP address and data source name attributes rather than actually establishing a database
connection. Similar to COM integrated applets, ActiveX controls have to be digitally
signed for security purposes and are currently only natively supported by Microsoft
Internet Explorer. ActiveX controls can be dynamically downloaded across the Internet.
Therefore. no special client installation is required for Web database access using ADC.
Moreover. unlike Java applets, ActiveX controls will reside on the client machine
permanently thereafter and hence no download is needed for subsequent browsing of the

same Web page unless a newer version of the same control has been updated.

4.2 Summary of Experimental Results

The following tables summarize the results for Web access and qucrytgg of the
databases by the various approaches. Base statistics including the number of
measurements, minimums. maximums, and average measurements represent the

summarized results. Refer to Appendix A for a complete listing of the experimental data.

CHAPTER 4. Performance Comparison 51

Table 4.2: Querying MS Access 7.0 using Symantec dbANYWHERE
connection| 1" QI Sub. QI 1M Q2 Sub. Q2

Count 10 5 50 5 50
Min. (ms) 2700 3130 1270 5820 2850
Max. (ms) 3460 4280 1650 7140 3190

Avg. (ms) 3021.0 3684.0 1474.2 6272.0 3033.2

Table 4.3: Querying MS SOL Server 6.5 using Symantec dbANYWHERE
connection| 1% Ql Sub. QI 1" Q2 Sub. Q2

Count 10 5 50 3 50
Min. (ms) 2910 3740 1650 6150 3240
Max. (ms) 3740 4120 2090 7970 3840

A\«'g. (ms) 3192.0 3924.0 1862.0 4 6778.0 3444.2

Table 4.4: Querying MS Access 7.0 using Intersolv JDBC/ODBC Bridge

connection| 1" Ql Sub. QI " Q2 Sub. Q2
Count 10 5 50 5 50
Min. (ms) | 12310 1050 440 1870 870
Max. (ms) | 15110 1710 1210 2690 1540
Avg. (ms) | 13064.0 | 1364.0 626.6 | 2180.0 | 1109.0

Table 4.5: Querying MS SOL Server 675 using Intersolv JDBC/ODBC Bridge
connection| 1" QI Sub. QI 1" Q2 Sub. Q2

Count 10 5 50 5 50
Min. (ms) | 13120 880 390 1260 870
Max. (ms) | 14510 950 950 1520 1490

Avg.(ms) 13841.0 918.0 660.2 1378.0 1151.4

CHAPTER 4. Performance Comparison . 52

Table 4.6: Querying MS Access 7.0 using MS RDO 2.0

connection| 1™ Ql Sub. QI Q2 Sub. Q2
Count 10 5 50 5 50
Min. (ms) 5820 940 50 1420 210
Max. (ms) 7250 1160 170 1590 330
Avg. (ms) 6406.0 1030.0 70.0 1480.0 253.4

Table 4.7: Querying MS SOL Server 6.5 using MS RDO 2.0

connection{ 1" QI Sub. QI 1MQ2 Sub. Q2
Count 10 5 50 5 50
Min. (ms) 5220 380 50 - 760 380
Max. (ms) 6090 550 110 900 440
Avg. (ms) 5548.0 482.0 66.2 828.0 405.8

Table 4.8: Querying MS Access 7.0 using MS ADC 1.0

connection| 1" Ql Sub. QI Q2 Sub. Q2
Count " 10 5 50 5 50
Min. (ms) 50 1050 220 4500 2910
Max. (ms) 170 2370 330 6090 4180
Avg. (ms) 110.0 1366.0 263.2 5236.0 3211.0 ¢

Table 4.9: Querying MS SOL Server 6.5 using MS ADC 1.0

connection| 1™ Ql Sub. QI "Q2 Sub. Q2
Count 10 5 50 5 50
Min. (ms) 50 1040 210 4610 3570
Max. (ms) 220 1750 440 6480 4780
Avg. (ms) 127.0 1352.0 274.4 5052.0 3780.8

4.3 Interpretation of Experimental Results

Based upon the entire set of experimental data given in the previous section and

other observations, a companison of the four configurations is now presented. The

CHAPTER 4. Performance Comparison 53

significance of the experiment is to discover how the performance of Web database
apphcations can be affected by the underlying technologies. Moreover, it is highly
desirable to determine the reasons for performance discrepancies, if any. Therefore.
explanations of any unusual experimental behavior have been attempted by pertorming
other smaller and. perhaps, informal tests. A graphical representation of the experimental
data helps illustrate the experimental data in a more meaningful way. The following two

charts provide a comprehensive summary of the experimental results in a graphical manner.

Average Access Time (MS Access 7.0)

Symantec
dbANYWHERE

Olntersolv ¢
JDBC/ODBC Bridge

" B Microsoft RDO 2.0

Access Time (ms)

OMicrosoft ADC 1.0

Connection Ist QI sub. Q1 1st Q2 sub. Q2

Figure 4.2: Average access time to MS Access 7.0

Average Access Time (MS SQL Server 6.5)

B Microsoft RDO 2.0

14000 7+ - — e -)
" | B Symantec
12000 +—1 = — E— " | dbANYWHERE
210000 f :
= O Intersolv
E JDBC/ODBC Bndge
=
A
o
«
[%]
<

OMicrosoft ADC 1.0

&7

Connection 1s1 Q1 sub. Q! 1st Q2 sub. Q2

Figure 4.3: Average access time to MS SQL Server 6.5

CHAPTER 4. Performance Comparison 54

[t can be observed from the above charts that there is no significant performance
difference among the four approaches operated with the two database management
systems. Therefore, the following discussion will be neutral to the underlying DBMSs
(keeping in mind that two of the approaches in the experiment only operate in internal
networked environments while the other two approaches work across the Internet as
well). Needless to say, the processing required for an Internet-based application is much
more than that of an internal network based one. For example, a certain amount of
processing time will be spent in resolving the server’s-IP address in an Internet-based
application. Moreover, the data transmission and communication time is also much
longer in an Internet-based application than an internal networked based application.
Hence. a comparison would be fair only between approaches working under similar
situations. In order words, comparing the two LAN-based approaches: JDBC using
Intersolv JDBC/ODBC Bridge and Microsoft Remote Data Object, and comparing the
two Internet-ready approaches: JDBC using Symantec dbANYWHERE and Microsoft
Advanced Data Connector. The following subsections describe a few interesting

observations of the experiment and comparisons between similar approaches.

4.3.1 Performance Difference in First and Subsequent Queries

One of the most obvious observations is the significant difference in the average
response time of the same query executing for the first time as opposed to subsequent
times in all approaches. Perhaps this observation seems to be very unusual at the
beginning since these queries perform exactly the same operation and thus should yield
similar response times. However, on a second glance, this behavior is reasonable since a
fair amount of time is spent retrieving the meta-data of the targeted database (tables
names, columns names, and fields types). Moreover, certain amounts of processing time
are possibly spent in other initialization processes such as resolving the IP address and
verifying the targeted data source. For the ADC, it is reasonable that certain amounts of

overhead in the first query will be expended in client caching as well. Undoubtedly,

CHAPTER 4. Performance Comparison 55

these initialization processes are only required when the appAlicalion accesses the database
for the first time within the same session but not in any subsequent operations.

In order to examine this behavior further, a completely different and more
complex query (one that retrieves data from different tables) was executed during the
same session after the simpler query had been executed. The response time for the
complex query was indeed similar to the response time of the same complex query
executed multiple times in a different database session and surprisingly, even shorter than
that of the simpler query executed for the first time. Another small test is to execute the
same simple query for subsequent times with changed data in the database. The response
time was also as fast as was usually experienced and updated data could also be
successfully retrieved. These simple tests verify that subsequent queries do access the
database more efficiently and extra processing needs to be done by any query executing
for the first time in a session. Unfortunately, the detailed internal architectures and
implementations of architecture components are not known and hence there is no simple

way of further investigating the facts.

4.3.2 Intersolv JDBC/ODBC Bridge VS. Microsoft RDO

Although both the Intersolv JDBC/ODBC Bridge approach and the Microsoft
RDO approach only work in LAN-based environments, they are appropriate in certain
situations. According to the experimental results. the JDBC/ODBC Bridge approach
typically took a very long time to make a database connection. Moreover, it took about
twice the time for RDO to finish a given query operation. Although the RDO based
application was written in Java, many database-related function calls are based on the
RDO engine which has been compiled into native code instead of Java byte code.
Therefore, the RDO based applications can be expected to run faster than the ones that
use the JDBC/ODBC Bridge. Moreover, all JDBC calls in the app]icali(y(thal used the
JDBC/ODBC Bridge needed to be translated into ODBC calls. This level of translation
does consume considerable amounts of processing time.

3

|

CHAPTER 4. Performance QOmparison 56

Apart from its inefficient;performance for database operations, the JDBC/ODBC
Bridge requires a lot of installatig)n work on each client. Certain software, including the
ODBC driver, a small library f0§r the bridge. and the compiled Java byte code, must be
installed and configured on eac}; system that will be using the bridge and it cannot be
accomplished automatically. This task is quite undesirable- not only from the standpoint
of having the required c>0mp0nen‘ﬁls installed and configured properly, but the appropriate
ODBC drivers and bridge\ libraries may not be readily available or may be very
expensive. Considering lhe\implied additional work and the slow performance, other

alternatives should be considered- rather than the JDBC/ODBC Bridge approach for
developing Web database applipalié)ns.

4.3.3 Symantec dbANYWHERE VS. Microsoft ADC

Both the ADC and dbANYWHERE configurations are Internet-based. Although
the ADC is a stateless approach ,whereas dbANYWHERE is a state-based one, the
advanced client-caching mechanism of ADC makes its performance comparable to state-
based approaches. It is observed that the processing time for the Microsoft ADC
approach is much less than that of the Symantec dbANYWHERE approach in most
measurements. One exception is the average response time for executing Q2 for both the
first and subsequent times. Note that the efficiency of the stateless ADC architecture
depends highly on the Advanced Data Virtual Table Manager (VTM) which contains
butfers for metadata such as tables. rows, columns, and keys, as well as the actual table
data itself. Since Q2 is a fairly complicated query and a fair amount of actual data will be
retrieved. it i1s not feasible to cache the entire set of data. As a result, extra overhead is
required in subsequent database operations and hence relatively large amount of timg_ s
required in this particular case. However, the difference is so small (< 10%) that it
doesn’t deserve‘special attention.

The average response time of the ADC approach is much shorter than that of the
dbANYWHERE approach in all other measures. In particular, the average response time

for subsequent execution of QI of the ADC approach is about one-sixth of that of the

CHAPTER 4. Performance Comparison 57

dbANYWHERE approach. An obvious explanation is that the ADC approach runs in
native code whereas the dbANYWHERE approach runs in byte code that must be
interpreted. “Moreover, ADC’s sophisticated client-caching mechanism tremendously
speeds up its execution regardless of its stateless nature. Furthermore. the
dbANYWHERE uses the middleware approach for any database-related communication,
which possibly slows down the communication process. Unfortunately, none of the log
entries of the middleware is timestamped and hence there is no way to further determine
the degree of performance distortion.

On the other hand, the average connection time of the ADC approach is much
shorter than all other approaches, including the LAN-based ones. In most situations, it is
common that a database application will resolve the server’s IP address and verify the
data source when establishing a connection. However, the connection time of the ADC
based application is so small that it seems that nothing has been done at all. In order to
further examine the work done for making connections by the various approaches, invalid
HTTP DNS entries and data source names were intentionally supplied to the applications
to observe the effect. All except the ADC approaches resulted in an error and could not
continue to run. In contrast, the ADC based application continued to execute until a
database query was submitted. The work associated with making the connection is
delayed in the ADC approach until a query is executed at which time the error is finally
experienced. In spite of the extra work to be done, the response time of a query executed
for the first time in a database session was also comparable or much faster than that of the
middleware approach according to the test results. Therefore, the ADC approach is
indeed much more efficient than the JDBC middleware approach. Unless cross-platform

compatability is a primary issue, the ADC approach should be the way to go.

Chapter 5

Prototype Web Database Application

To further demonstrate the superiority of the newer Web database access
approaches over traditional ones, a prototypical Web database application was developed
using one of the emerging technologies. Three main areas were investigated: (1) the
variety of user interface options available, (11) the degree of interactivity between the user
and the application. and (i11) the performance of remote database access. In this chapter.
several interesting screen shots are presented to illustrate the user-friendliness and
interactivity of the application while the results of a simple experiment will be used to

evaluate its performance.

5.1 Evolution

The prototype was given the name Personal Software Manager. or PSM. which 1s
a software engineering lab tool for managing the Personal Software Process' (PSP). The
development of the application is initiated by Dr: Kal Toth®, who developed a PC

Windows version of the tool. The intention of developing an equivalent Web-based

' Detatls of PSP can be found in Humphrey. Watts S. A Discipline for Sofrware Engineering, Addison-
Westey, 1995
- Dr. Kal Toth 1s an Adjunct Professor in the School of Computing Science at Simon Fraser University

58

a

CHAPTER 5. Prototype Web Database Application 59

version is to allow students engaged in an advanced software engineering course at
Simon Fraser University (SFU) to be able to access the tool through the World Wide
Web. in conjunction with distantly delivery of courses using tools such as SFU's Virtual-
U'. For students to be able to access the application on various platforms w'ith a
universal user interface, it was decided to use Java as the underlying technology. Since
the objective of the PSM tool is to analyze and manage software engineering processes
based on data gathered at different points in the software engineering process, a
completely data-driven application had to be developed. Moreover, a highly interactive
application is desired with an intuitive and easy-to-use user interface. These and several
lesser considerations led to a product with not only the look and feel, but also the

capability that is comparable to its Windows counterpart.

5.2 Design Issues

Simply speaking. the PSM supports the entry, updating. deletion, and printing of
data related to time. software defects, estimating, and planning of software development
prééess. The PSM captures software engineering concepts that are outside the scope of
this thesis. With this in mind. this section discusses general design issues regarding the
quality of the user interface and the degree of interactivity of the application will be
given. Our purpose Is to evaluate the quality of applications might use Java with JDBC

as the underlying programming model. from an end user point of view.

5.2.1 User Interface and Interactivity

The user interface 1s undoubtedly a critical part of any application, including a
Web-based one. In fact, user interface design for Web applications is even more
challenging as it is constrained by the limited capability of HTML. Executable content
approaches bring a variety of new user interface options to Web applications. Instead of

adhering to the constraints imposed by the HTTP protocol with HTML forms, a graphical

*An overview and general information about Virtual-U can be found at http://virtual-u.cs.sfu.ca

CHAPTER 5. Prototype Web Database Application 60

user igterface emulating traditional Windows applications was created. After “logging
in", each user gets a customized view of the application based on the profile of the user.
The interface is organized into a number of windows and the user is free to navigate
among different windows within the same screen of the Web browser. The figure below
1s the top level screen of the application that displays all available operations linked

together by arrows representing data flow within the application.

=~ Netscape [Psm Stait Page]

Rﬁdwﬁcwmm%ﬁ*

olzla] a&lx|g|e | Ol _
E Location: [} //apter cs stu ca/psm/del ok o5p : ‘ :Jm
WhatsNew? | WhatsCol? | Desinions | NetSeach | People | Sofware |

ICL Personal Software Manager Start Page

Welcome. Ravmond Chiu

® Thus page 1s currently under development

913018780 [Raymond Chin ={1A PSP:|00
I l | Progh:

Scripts | Chacklists

—31-":; Personal Software Process 7——-;,,_,. Reuse Library

Y.L] N a7

Figure 5.1: Top level screen

CHAPTER 5. Prototype Web Database Application 61

Although the prototypical application is not a complete implementation, sufficient
functionality of the PSM was used to demonstrate the capability of the underlying
technology. One such function is the activity logger, which logs all activities of the user .,
throughout the software development process. The information kept by the activity
logger can be used to derive useful statistics and analyses of software development
activity. The figure below is the activity logger window being displayed after the “Time”
button in the top level screen (Figure 5.1) was pressed. It displays a list of logged

activities for the user.

EAclnwty { ogger

oo BSE O W)

Date |Prog| Phase | Start | Stop | Intrpt| Act] | _ Comments l
19970711 {2 |HL Design 0915 | 1430 | ooas [osoo ﬂ
1997.07-11 |2C |HLDesgnRev | 1830 | 2245 | 0030 | 0345 |revised the user mterface ,
1997.07.31 [2C [Code Review | 1155 | 2300 | 0300 | 0805 |Found3 defects and recommended recoding sort - -
1997-07-19 [1A | Planng 1010 | 1705 06 55
1997.07.04 | 1A | HL Design 1000 | 1710 0710
1997.07.24[2C |Postmortem | 0330 | 0900 0030 |Fued two bugs
1997.07-30 |2C | Code 0930 | 1900 | 0100 | 0830
1997.07-25 [1A | Plannng 1322 | 1700 0338
1997.08-05 | 1A Test 1015 2000 0045 0500
1997.08.06 | 1A | Compie 1300 | 1315 0015
1997.08-14 [2B | Plannurg 1514 | 1614 0100 :
1997.08.14 |28 | HL Design 1700 | 2000 06 01 . -]
!)

Rl [Unsigned Java Applet Window i

Figure 5.2: Activity Logger window

As the height of the Windows-style component containing the records might not
be long enough to hold all the logged activities. the records’ container was implemented
to feature automatic vertical scrolling. A vertical scroll bar appears automatically when
needed, which provides a mean for the user to scroll through the whole list of activities.
A number of operations such as editing. filtering, and sorting can be performed against
the activities. While all the available operations are listed in the menu bar, a number of

more popular operations appear in the tool bar as well for quick access. These operations

CHAPTER 5. Prototype Web Database Application 62

can either be triggered by selecting the appropriate menu item or clicking the
corresponding image button in the tool bar. When the mouse pointer is over a particular
button, a short description about the use of the button is clisplayed in the status bar at the
bottom of the window to help the user. The following figure shows the expanded views

of the menu bar. one for each corresponding menu.

g
v Show Tocba Aecad New Activiy Help Topics
v Show Status Bar Edit Cument Activilty T T T T T
R Delete Curent Actvi About Personal Software Manages
Preferences - -

Fhw |
IR Asced
Refresh

Descending

™

Figure 5.3: Expanded menu bar

Users can opt to show or hide the tool bar or/and status bar by toggling the
corresp'onding menu item on and off such that components within the window will be
positioned and the window will be resized accordingly. Typical operations of the activity
logger include creating a new record, editing an existing record, and deleting an existing
record. As an illustration. a tour of editing an existing record 1s presented. A user can
either select the “Edit Currenl Activity” item from the “Records’ menu or click the
corresponding button to edit the currently highlighted activity, or double click a record in
the activity listing to edit the desired activity. An edit activity window filled with the

information of the corresponding activity will then be displayed as follows.

E[dll an activity

Date Prog Phave Start Seop Intipt - Actl

[CIEXTIIN P [Code Revew =] [1155 v|2300 Jozoo fazoy
leFoudecbfedsudmcommmkdrecodngsonfummn : OK J le'

|
28] Unwigned Java Applet Window

Figure 5.4: Edit activity window

Suppose the user has finished editing the activity and presses the “Ok™ button to

submit the information. A verification process will then be invoked to validate all the

CHAPTER 5. Prototype Web Database Application 63

inputs. In case oferrone%s input, a modal dialog window with one or more appropriate
error messages similar to the following one will be displayed. The user must close the

dialog window first before proceeding to any other activity.

Figure 5.5: Dialog window displaying error messages

Otherwise, a modal dialog window similar to the one below will be displayed to

confirm that all the inputs have been entered correctly.

EConlum Activity Update | [O] XE

;‘_’;) hmmmmbwmmmw

_Yu | |

_z138l :Unsigned Java Applet Window

Figure 5.6: Dialog window confirmjng activity update

Note that. in contrast to traditional Web technologies where mosl of the
interaction occurs across the client-server connection, all interactivity described above
took place solely on the client side. As mentioned earlier, this kind of true client
interaction has the advantage of reducing the heavy traffic of the Internet, by utilizing the
computing power of the host computer. Suppose now the user really decides to update
the activity by pressing the “Yes” button in the dialog window. The application will then
send the appropriate query and possibly other information to the server. The remote
database in the server end together with the listing of the activity logger window will then
be updated to reflect the change.

In fact, several other operations apart from query operations can be performed
against the records. Typical examples include filtering and sorting of the activities based

on certain predefined preferences. The following description shows the interactivity

F=s

CHAPTER 5. Prototype Web Database Application 64

involved in record filtering. The user starts the operation by entering the preferences of
the operation — selecting the “Preferences” menu item in the “View” menu. A window

like the following one then appears.

a3 View Preterences

© g [3]
™ Das: | Qb'
r Stat: | tof ’

ok | _ouo |

8l UnugnedJava Applet Window

Ficure 5.7: View Preferences window

As shown in the above figure, two tabs, each associated with its independent set
of visual components, appear. This form of component Jayout has the advantage of
conserving window space and arranging related components and information in a
structured and organized manner. The appearance of the corresponding “Sort” tab is
shown in the following figure.

gVIew Preletences . [O] X]
“ Fier Sort |

¥ 1st Prority: |Dutee.ndStu1 'l
I 2ud Priosity: |

o | ocw |

28l Uesigred Java Aopiet Wendow

Ficure 5.8: View Preferences window with corresponding Sort tab

The user supplies the preference information by checking the corresponding
check box and choosing or entering the relevant information. Suppose the information

such as that shown in Figure 5.7 was supplied and the “Ok™ button was pressed for any

¢

CHAPTER 5. Prototype Web Database Application 65

changes to take effect. Whenever the user selects the “Filter” item from the “Records™
menu or clicks the corresponding button from the tool bar, the records are filtered based
on the predefined preferences and the result is reflected in the activity listing. The
~ following figure shows the result of applying the filter operation. Note the difference

between this listing and that of Figure 5.2.

CAchvﬂy Logger

View Records Hlp: -
»*lml»(l E]_é_llill {Z’ll k?f
Prog start | Stop rmt Actl " Comments

1997-07-11 | 2C HLDW 09:15 | 1430 | 00:15 | 0500
1997.07-11 | 2C HL Design Rev | 1830 24 0030 | 0345 |revised the user mnterface

1997.07.31 | 2C Code Review 1155 | 2300 | 0300 | 0805 |Found 3 defects and recoramended recoding sort
1997.07.24 | 2C Postmortem 0830 | 0900 0030 !Fued two bugs

1997-07.30 | 2C Code 0930 | 1900 | 0100 | 0830

|
28] [Unsigned Jave Appiet Window

Figure 5.9: Activity Logger window after filtering

Note that the scroll bar originally appeared in Figure 5.2 now disappears, since all
records can be displayed in the window and there is no need to scroll through them.
Although the operation of filtering seems non-trivial, it is solely performed at the client
machine and there is no need for any client-server interaction. The illustration given in
this section shows some of the available graphical user interface options together with the
degree of interactivity between the user and this prototypical application. In fact, it is
exactly these advantages make executable content approaches so powerful and widely

adopted in the Web community.

5.3 Implementation

CHAPTER 5. Prototype Web Database Application 66

The PSM uses Java with the JDBC API instead of other executable content
approaches and works wilhémosl clients and servers. The entire application is written
using JDK 1.02 API for Java making it work well with most popular Web browsers.
Moreover. a net-protocol all-Java JDBC driver in the form of middleware for database
connectivity is being used. This 1mplementation makes dynamically downloadable
applets possible and allows a true three-tier network database architecture to be

configured with little modification required on any server system.

5.4 Performance Issues

[t should be obvious from previous sections that a much more flexible user
interface design is made possible by using executable content approaches rather than
traditional Web publishing technologies. Moreover. the degree of interactivity between
users and the newer technology-based applications i1s much higher than traditional CGI or
API-based Web applications because of the real-time client-side interaction achieved by
executing operations locally as much as possible.

As mentioned in earlier chapters, traditional and the emerging on-line approaches
not only differ in their capability, but also in their efficiency in handling multiple
operations within the same session. In order to investigate this performance issue, an
experiment was performed among three approaches. They include: 1) the Microsoft
Internet Database Connector (IDC, section 2.4.1), whichgs an easy-to-use traditional
Internet database gateway built into the-Microsoft Internet Information Server, 2) the
Microsoft Advanced Data Connector (ADC, section 3.4.2), which is an executable
content approach based on the ActiveX technology. and 3) Java applet with the Symantec
db/M\IY(WHERE (section 3.3.4), which is also an executable content approach adhering
to the JDBC standard for Java. The JDBC/ODBC Bridge and RDO approaches are not
being tested as they only operate on LAN-based rather than in Internet environments.

The following subsections briefly describe the experiment and its findings.

CHAPTER 5. Prototype Web Database Application 67

5.4.1 Session-oriented Experiment
.

Several single-operation experiments were performed(described in Chapter 4) to
compare the performance of a few on-line Web database access iechnologies. In this
chapter. the result of an experiment for executing multiple database operations within the
same application session is presented. As each of the three approa‘ches under our test
handles multiple operations very differently, significant performance differences are
expected. The objective of the experiment js thus to compare the efficiency of three
ditferent approaches under a session-oriented environment.

The hardware setup of the experiment was exactly the same as that described in
Section 4.1 and the tests were performed against the Microsoft Access 7.0 database
management system. A typical Web database application was implemented for each of
the three approaches. The application allows a user to search for student information
based on the first letter of the student’s last name. Multiple operations can be performed
sequentially during the same ap;plicalion session. For each operation, the user starts by
entering the first letter of the: students’ last name. A query based on the user’s input 1s
generated and submitted to the server for execution when the “submit™ button is pressed.

Assume input 1s the first letter of the last name being entered for the search. A query like:
select ®* from account_info where last_name like ‘input%’

would extract the desired information from an appropriate table in the database. Refer to
Section 4.2 for more details of the underlying database and associated tables. When the
server finishes executing the query, the results are returned to the application for display.
Individual time spent in executing the query and displaying the results for each operation
were measured. The results and interpretation of the experiment are described in the

following section.

5.4.2 Result and Interpretation

The following tables summarize the results of the experiment. Five query operations

were performed sequentially within the same application session. Since the objective of the

CHAPTER 5. Prototype Web Database Application 68

experiment was to find out whether there is any significant difference performing multiple
query operations in applications implemented in various Web database approaches. both the
average individual as well as average cumulative execution times for the five tests were

recorded. Refer to Appendix B for a complete listing of the experimental data.

Table 5.1: Querying MS Access 7.0 using MS IDC

Query # 1 2 3 4 5
Avg. Individual Time (ms) 1642] 1154 1030| 1342 1096

Avg. Cumulative Time (ms) 1642 2796| 3826| 5168| 6264

Table 5.2: Querying MS Access 7.0 using MS ADC 1.0

Query # 1 2 3 4 5
Avg. Individual Time (ms) 1728 540| "506| 560 496

Avg. Cumulative Time (ms) | 1728 2268 2774 3334 3830

Table 5.3: Querying MS Access 7.0 using Symantec dbANYWHERE

f

Query # 1 2 3 4 5
Avg. Individual Time (ms) 5754 | 682 836| 1066| 844

Avg. Cumulative Time (ms) 5754 | 6436| 7272 8338| 9182

The following column and line charts provide additional appreciation for the

experimental data.

Individual Query Time

7000 _]‘
6000 - El Microsoft IDC !

Tl T |

E 5000

%)

E 4000 M Microsoft ADC 1.0

% 3000

-3}

5]

< OSymantec

dbANYWHERE

Queryl Query2 Query3 Query4 QueryS$

Figure 5.10: Average individual query access time

CHAPTER 5. Prototype Web Database Application : 69

Cumulative Query Time

10000

ot

—+— Microsoft IDC

—a— Microsoft ADC
1.0

Access Time (ms)

—&— Symantec
dbANYWHERE

0 . - . T
Query I Query2 Query3 Query4 QueryS5

Figure 5.11: Average cumulative guery access time

[t can be observed from the summary of the experimental data and the column
chart that there 1s no significant difference between the average individual time of Query
I and subsequent queries in the results for MS IDC. On the other hand. very large
differences can be observed in the results of the MS ADC and the JDBC queries using
Symantec dbANYWHERE. especially in the JDBC approach. This is. in fact, a
reasonable observation since the MS IDC 1s a completely stateless approach. . As a result,
subsequent query operations in apphcations developed under MS IDC do not take
advantage of previous ones. The MS ADC approach saves some processing time in
subsequent query operations since information retrieved from the first query operation ‘
will be cached using a sophisticated client caching mechanism in order to keep the time
of any subsequent query operations to a minimum. As mentioned earlier, JDBC using
Symantec dbANYWHERE is a completely state-based approach with the connection kept
open once the connection has been established for the first query operation. Hence,
tremendous performance gains result for subsequent query operations.)

Perhaps more information can be concluded from the linear regression models of
different sets of the experimental data. Therefore, a simple linear regression analysis for
the cumulative query execution time against the number of executed queries was carried

out to further analyze the experimental data. However, similar execution times for each

query need to be assumed in order to come up with a meaningful analytical result.

CHAPTER 5. Prototype Web Database Application 70 .

Although this restriction is not very realistic in most database applications, the data
gathered in our experiment indeed satisfies this requirement and is useful in determining
certain characteristics of the various approaches. Results of the three regressions are given
below. Note that the dependent variable v represents the cumulative query execution time

while the independent variable x represents the number of queries to be performed.

Microsoft IDC: yv = 454.4 + 1161.6x
Microsoft ADC: y = 1205.8 + 527x
JDBC (Symantec dbANYWHERE): y = 4769 + 875.8x

. &

In each of the regression equations, the v-intercept represents the overhead (e.g.
for initialization or establishing the connection) required in the first query operation while
the slope represents the actual time required for each query operation, including the first
one. The y-intercept in the regression equation of the MS IDC is the smallest, and that of
the MS ADC is the next, while that of thc; JDBC approach is the largest. This result
agrees with the nature of each approach and the observations made in the previous
discussion. The overhead (judging from the y-intercept of the corresponding regression
equation) of the JDBC approach is surprisingly large probably due to the immaturity of
the TCP/IP protocol used for JDBC connection. Another possible explanation is that
much more processing is involved in a state-based protocol than a stateless one for
storing vital information of the connection and this form of processing has to be
performed in the slower Java byte-code tormat.

On the other hand. the slope in the regression equation of the MS IDC 1is the
largest since nearly the same processing time 1s required in all query operations due to the
stateless nature of the MS [IDC and not much benefit can be gained from previous
operations. Although the actual time spent in each query in the JDBC approach is less
than that of the MS IDC (judging from the slope of the regression equations), it 1s in fact

more than that of the MS ADC. A possible reason is that the time spent in
| communicating with the remote server and displaying the query results executed as Java

intermediate byte-code is longer than that executed as native code in the MS ADC.

CHAPTER 5. Prototype Web Database Application 71

Moreover, 1t is possible that the client caching mechanism employed by the MS ADC is
as efficient as a state-based database access technology.

It is clear from the above discussion that very large performance gains can result
from on-line Web database access technologies through the use of either a persistent
database connection or sophisticated client caching mechanism. Although considerable
overhead 1s unavoidable in the first query operalion, the performance of on-line
approaches do outperform traditional ones and are recommended for Web database
access in most situations. This observation is particularly true in applications that are

expected to have long database sessions with a huge number of query requests.

Chapter 6

Summary, Conclusion, and Future
Work |

Advanced features and associated technologies for global information retrieval
are being continuously developed to provide better ways of implementing sophisticated
Web-based applications that link to live data. This thesis has presented the characteristics
of both traditional (e.g. CGI. proprietary APIs) and emerging Web database access
technologies (e.g. Java applets with JDBC and Microsoft ADC). While the challenges
and ambitions of developing Web database applications have been identified throughout
the thesis. it is clear that there is still much work to be done before Web-based data-
driven applications become comparable to traditional client/server database applications
in terms of quality, robustness. and scalability. It is hoped that this thesis will serve as a
basis for further investigation or study into the development of better Web database
systems. This chapter will summarize the important points that have been addressed

throughout the thesis and suggest some ideas for possible future work.

6.1 Summary

CHAPTER 6. Summary, Conclusion, and Future Work 73

Different from traditional ones, the newer Web database access technologies
feature a wide range of cszeclive and efficient capabilities. The major strength of the
newer approaches is that they promote a high degree of interaction between the user and
the underlying applications through the use of local executable content and persistence
database service. This leads to the employment of more flexible design mechanisms in
various aspects of the application. This design flexibility has been fully demonstrated by
a prototypical application. The approach also has a performance advantage achieved by
the use of either a state-oriented database protocol in the case of Java with JDBC, or
client-side caching in the case of the Microsoft ADC. With the ever-growing resources
available in global information systems, the use of powerful Web publishing techniques
and efficient database access technologies becomes an essential part in the development
of sophisticated Web database application. The following advantages for Web database

access are generally characterized by the recent approach.
-4

. High-level and intuitive user interfaces: The technologies provide a wide range of
graphical user interface possibilities that are not possible usiﬁg only HTML and
gateway programming. The availability of these -interface options also gives
developers an opportunity to construct intuitive usér interfaces. for Web applications

which are similar to those of the familiar Windows environment.

!\)

High degree of interactivity: Highly interactive Web applications can now be
developed since local execution’in the Web client is made possible. Moreover, the fact
that most activities can be confined to local sites implies reductions of network
bandwidth consumption. better resource utilization; and quick response to user’s requests.
3. Performance enhancement: State or session information no longer needs to be
managed by programmers. Instead, the newer on-line approaches have the ability to
handle these situations through the use of either a sophisliéale‘d built-in client caching
mechanism or a state-based database connection. These kinds of handlers can reduce
or even eliminate the startup cost for multiple requests by the same client — hence,

long database sessions can be processed efficiently.

CHAPTER 6. Summary, Conclusion, and Future Work 74

]

High capability: The new advanced Web programming technologies are designed
specifically to extend the Web in many ways. Although it is sometimes possible to
use certain traditional approaches to achieve similar effects, the functionality of
traditional approaches will not be as powerful and flexible as that of the newer ones,

especially for complex tasks.

On the other hand, it is important to note that certain effects and tradeoffs result

from the use of these newer technologies:

1.

1o

Additional computing resources: As some of the tasks will be shifted from the
server to the client sites, extra resources such as disk space, memory, and CPU speed
are required in the client machines. However, this seems not to be such a great issue
with the low cost of today’s computer hardware.

Intéroperability: Since the technologies under discussion are still emerging, they
might not be well supported in certain Web browsers, Web servers, and operating
environments. The maturity and popularity of these technologies will, however.
ensure their acceptance in the Internet community.

Security: Some users might disable executable content due to the possibility of
security holes and the potential risk of harming the user’s file system. Moreover,
some such approaches might not be able to pass through certain corporate firewalls.
However, the specification of most techniques will be continuously improved,
standardized. and adapted to the construction of Web-based systems and such
restrictions may not need to be employed as rigorously in the future.

Long downioad time: Considerably long download time is necessary for distributing
fairly complicated executable content. The improvement in compression and
versioning techniques. as well as the popularity of higher bandwidth access lines

through ISDN and cable modems, will help in mitigating this issue to a certain extent.

6.2 Conclusion

CHAPTER 6. Summary, Conclusion, and Future Work 75

The architecture of various Web database access techniques has been briefly
described and relevant experiments have also been performed to compare their
performance. However, the adoption of a particular technology is not only based on the
capability and efficiency of that technology. but also highly depends on the particular
situation of usage. Issues such as the target users, server setup, and the nature of
information also play important roles in coming up with an appropriate conclusion.
Being the focus of the thesis, the effectiveness of user interface and interactivity, as well
as the performance of remote database access are the three main issues in evaluating Web
database access technologies. With the use of our prototypical Web application, the
flexibility and effectiveness of two of the emerging techniques, Java and ActiveX
approaches. have already been demonstrated. It is clear that these emerging approaches
are capable of developing Web applications with sophisticated graphical user interface
and effective client-side interaction. As a result, these technologies are very suitable in
developing applications for which effective user interface and interactivity are desired.

Regarding performance issues, the performance of any Web database access
leéhnology indeed varies greatly depending on the combination of the Web server, the
operating system. and the server hardware being used. According to our experiments, the
Microsoft Advanced Data Connector (ADC) running on Microsoft-based operating
environment and Intel-based hardware turned in best perférmance. This observation 1s
true 1In most performance scores of both the single-operation and multiple-operations
experiment. It means that the ADC approach is very efficient in both regular and long
database sessions. However, it is also important to note that when reviewing our
experimental results, keep in mind that they reflect our specific experimental conditions

and are not comparable to the results of other tests with different experimental settings.

6.3 | Future Work

This thesis presents the general consideration for developing interactive Web

¥

database applications and shows that huge differences can be observed by deploying

various techniques. In fact, many of the technologies discussed are very new. For

CHAPTER 6. Summary, Conclusion, and Future Work 76

.-

example, the JDBC specification was only released to the public within the last year.
Microsoft ADC is an even more recently available technology which was made available
to system developers only in the first half of this year. It will be possible to perform
additional studies when these technologies become more mature. For example, it would
be very useful to discover exactly which components in the overall architecture consume
extra overhead. Such investigation and experimentation can help developers deploy the
most effective technology among various alternatives and help researchers improve the
performance of technologies by making appropriate revisions to reduce overheads. The

following is a list of suggestions for possible future work in this area.

. Multiple-user experiments: Several single-user experiments were performed and their
results have been presented. However, it is possible that the performance of certain
technovlogies depends on the load of the server since the communication protocol and
supporting components of a particular technology might be optimized for light or heavy
loads, or a compromise between the two. Therefore, it will be useful to test the

effectiveness of different approaches with varying numbers of clients.

2]

Other performance measures: In fact, issues such as optimization, availability, and
resource allocation are important in evaluating database-related tools. However, our
experiments were only limited to the evaluation of transaction response time. In
order to further investigate the efficiency of various technologies, research can be
/ carried out to study the effect of Web database access using different technologies on
other performance measures including transaction availability and system cost.
3. Custom-built technology: Once the benefits and tradeoffs of various technology
approaches have been identified, there is no reasog{ why a completely new Web
database access configuration cannot be developed.. Such a new approach should
possess the advantages of various techniques and be well suited for general use.
Moreover. the newly developed approach should adhere to existing de facto and open
standards such as Java with JDBC, the ActiveX component model, or other workable

specifications in order to increase usability.

Appendix

A Listihg of Experimental Results: Chapter 4

This appendix contains a complete listing of all experimental data obtained from

the experiments described in chapter 4.

Table A.1: Query | on MS Access 7.0 using Symantec dbANYWHERE

Test # 1 2 3 4 5
Connection (ms) 3460 3180 2700 2800 2800
Execution 1 (ms) 3860 4280 3130 3630 3520
Execution 2 (ms) 1270 1310 1650 1380 1420
Execution 3 (ms) 1490 1430 1490 1540 1650
Execution 4 (ms) 1430 1430 [1480 1480 1490
Execution 5 (ms) 1370 1430 1430 1540 1430
Execution 6 (ms) 1370 1420 1480 | 1590 1540
Execution 7 (ms) 1420 | 1480 | 1540 | 1480 1430
Execution 8 (ms) 1490 | 1370 | 1420 | 1650 | 1420
Execution 9 (ms) 1370 1430 1370 1540 1540

Execution 10 (ms) 1430 1430 1540 1640 1430

Execution 11 (ms) 1540 1650 1540 1590 1430

77 .

APPENDIX:

Table A.2: Query 2 on MS Access 7.0 using Symantec dbANYWHERE

Test # 1 2 3 4 5
Connection (ms) 2850 2910 3300 3350 2860
Execution 1 (ms) 7140 5820 6320 6260 5820
Execution 2 (ms) 3080 2910 3020 2970 3130
Execution 3 (ms) 3020 | 3020 | 3070| 2850 3020
Execution 4 (ms) 3020 3130 3020 2970 3020
Execution 5 (ms) 3070 3070 3020 3130 3130
Execution 6 (ms) 2960 2960 2910 2970 3020
Execution 7 (ms) 3130 3020 3070 2970 3020
Execution 8 (ms) 3190 3180 3180 3070 3130
Execution 9 (ms) 2910 2960 3080 2970 3190
Execution 10 (ms) 3070 3080 2970 2910 3070
Execution 11 (ms) 2970 3020 3020 3080 2910

Table A.3: Query | on MS SOL Server 6.5 using Sﬂ/mantec dbANYWHERE

Test # ‘ 1 2 3 4 5
Connection (ms) 3130 3020 3130 3080 3080
Execution 1 (ms) 3790 4120 3740 3960 4010
Execution 2 (ms) 1650 1700 1710 2090 1870
Execution 3 (ms) 1820 1870 1760 1930 1760
Execution 4 (ms) 1760 1810 1970 1930 1980
Execution 5 (ms) 1810 1810 1870 1760 1810
Execution 6 (ms) 1920 1810 1820 1870 2040
Execution 7 (ms) 1930 1760 1810 1810 1920
Execution 8 (ms) 1930 1920 1920 | 2030 2030
Execution 9 (ms) 2040 1760 1820 1760 1920
Execution 1;0 (ms) 1860 1810 1920 1870 1920
Execution 11 (ms) 1820 1920 18101 1810 1870

APPENDIX

n

Table A.4: Query 2 on MS SOL Server 6.5 using Symantec dbANYWHERE

Test # 1 2 3 4 5
Connection (ms) 3740 3080 3620 3130 2910
Execution | (ms 7970 6150 6420 6590 6760
3350 3350 3350 3300 3620
3290 3350 3400 3240 3570
3300 3460 3410 3350 3620

Execution 2 (ms

Execution 3 (ms

)
)
)
)

Execution 4 (rrgs

Execution 5 (m@)‘ 3410 3520 3510 3460 3740
Execution 6 (ms) 3300 3290 3400 3620 3790
Execution 7 (ms) 3240 3300 3570 3290 3520
Execution 8 (ms) 3240 3410 3620 3400 3840
Execution 9 (ms) 3350 3570 3460 3410 3620

Execution 10 (ms) 3240 3350 | 3510 3400 3460
Execution 11 (ms) 3350 3520 3460 3460 3620

Table A.5: Query | on MS Access 7.0 using Intersolv JDBC/ODBC Bridge

Test # 1 2 3 4 5
Connection (ms) 15110 | 12910 | 13900 | 12410 | 12310
Execution | (ms) 1050 1370 | 1430 1260 1710
Execution 2 (ms) 550 490 550 550 600
Execution 3 (ms) 610 600 660 660 610
Execution 4 (ms) 820 770 710 720 820
Execution 5 (ms) 770 600 1210 600 600
Execution 6 (ms) 770 720 770 660 610
Execution 7 (ms) 710 770 940 660 660
Execution 8 (ms) 500 490 490 440 500
Execution 9 (ms) 600 490 550 490 500
Execution 10 (ms) | 550 550 500 500 500

Execution 11 (ms) 660 550 550 550 600

APPENDIX

Table A.6: Query 2 on MS Access 7.0 using Intersolv JDBC/ODBC Bridge

Test # 1 2 3 4 5
Connection (ms) 12360 | 13780 | 12530 | 12800 | 12530
Execution 1 (ms) 2690 1870 2230 2030 2080
Execution 2 (ms) 1040 880 930 940 880
Execution 3 (ms) 1490 1040 1540 1430 1480
Execution 4 (ms) 880 870 940 880 880
Execution S (ms) . 1040 1050 990 930 940
Execution 6 (ms) 990 990 1050 1040 1100
Execution 7 (ms) 1040 1050 1040 1050 1050
Execution 8 (ms) 1150 1100 1150 1160 1150
Execution 9 (ms) 1270 1310 1150 1210 1150
Execution 10 (ms) 1160 1210 1150 1270 1210
Execution 11 (ms) | 1210 1200 Aino 1320 1260

Table A.7: Query 1 on MS SOL Server 6.5 using Intersolv JDBC/ODBC Bridge

Test # 1 2 3 4 5
\ Connection (ms) 14280 | 14010 | 14510 | 13950 | 13670
Execution 1 (ms) | 880 900 940 880 990
Execution 2 (ms) 660 720 940 660 820
Execution 3 (ms) 440 710 830 550 9890
Execution 4 (ms) 390 710 | 830 660 660
Execution 5 (ms) 440 770 650 490 660
Execution 6 (ms) 550 550 550 490 770
Execution 7 (ms) 660 830 610 550 610
Execution 8 (ms) 610 660 770 550 660
Execution 9 (ms) 610| = 660| 600| 550 660
Execution 10 (ms) 710 710 720 | - 600 |- 550
Execution 11 (ms) | 610 770 | 770 720 770

APPENDIX

Table A.8: Query 2 on MS SQOL Server 6.5 using Intersolv JDBC/ODBC Bridge

Test # 1 2 3 4 5
Connection (ms) 13840 | 13120 | 13240 | 14060 | 13730
Execution 1 (ms) 1380 1520 1260 1460 1430
Execution 2 (ms) 940 990 930 990 870
Execution 3 (ms) 940 1050 940 1210 880
Execution 4 (ms) 930 1040 930 990 880
Execution 5 (ms) 990 990 980 1100 940
Execution 6 (ms) 1040 1050 1200 1480 1150
Execution 7 (ms) 1160 1210 | - 1210 1270 1270
Execution 8 (ms) 1150 1100 1160 1260 1260
Execution 9 (ms) 1210 1210 1270 1480 1370
‘Execution 10 (ms) 1320 1260 1420 1480 1210
Execution 11 (ms) 1480 1260 1370 1490 1260

Table A.9: Query |

on MS Access 7.0 using MS RDO 2.0

Test # 1 2 3 4 5
Connection (ms) 7040 6310 6260 7250 6100
Execution 1 (ms) 940 990 1160 1020 1040
Execution 2 (ms) 110 50 160 60 110
Execution 3 (ms) 60 60 110 110 50
Execution 4 (ms) 50 60 50 170 160
Execution 5 (ms) 50 60 50 50 50
Execution 6 {ms) 110 50 60 50 60
Execution 7 (ms) 50 50 60 60 50
Execution 8 (ms) 60 50 60 60 50
Execution 9 (ms) 60 60 60 50 60
Execution 10 (ms) 60 50 110 110 50
Execution 1 (ms) 50 60 110 50 50

81

APPENDIX

Table A.10: Query 2 on MS Access 7.0 using MS RDO 2.0

Test # 1 2 3 4 5
Connection (ms) 6060 5820 (6200 6480 6540
Execution 1 (ms) 1430 1540 1590 1420 1420
Execution 2 (ms) 330 220 220 270 280
Execution 3 (ms) 270 280 220 270 220
Execution 4 (ms) 280 280 220 270 270
Execution 5 (ms) 220 210 280 220 270
Execution 6 (ms) 270 280 220 280 220
Execution 7 (ms) 220 270 220 220 270
Execution 8 (ms) 220 280 280 280 220
Execution 9 (ms) | 220 270 270 270 320
Execution 10 (ms) 270 220 220 270 280
Execution 11 (ms) 220 280 220 270 220

Table A.11: Query | on MS SQL Server 6.5 using MS RDO 2.0

Test # 1 2 3 4 5
Connection (ms) 6090 5220 5270 5220 5660
Execution | (ms) 490 380 490 500 550
Execution 2 (ms) 110 60 50 50 60
Execution 3 (ms) 50 60 50 50 60
Execution 4 (ms) 60 60 110 50 50
Execution 5 (ms) . 60 60 60 60 60
Execution 6 (ms) 60 110 60 110 110
Execution 7 (ms) 60 110 60 50 60
Execution 8 (ms) 50 60 60 50 60
Execution 9 (ms) 50 60 60 50 50
Execution 10 (ms) 60 110 60 60 110
Execution 11 (ms) 60 60 50 110 60

APPENDIX

Table A.12: Query 2 on MS SOL Server 6.5 using MS RDO 2.0

Test # 1 4 2 | 3 4 5
Connection (ms) 5990 5600 5220 5820 5390
Execution | (ms 880 770 830 900 760
Execution 2 (ms 390 440 440 390 390
Execution 3 (ms 380 440 390 390 440
Execution 4 (m 440 440 440 440 390
Execution 5 (ms) 380 380 440 440 390
Execﬂti0n¥6 (m 380 440 440 440 440
Execution 7 (rm) 390 380 440 380 440
Execution 8 (ms) 390 390 440 380 380
Execution 9 (ms) 390 380 440 380 390
Execution 1) (ms) T 380 440 380 380 390
Execution 11 (ms) 380 390 380 380 390

Table A.13: Query | on MS Access 7.0 using MS ADC 1.0

Test # 1 2 3 4 5
Connection (ms) 110 110 110 110 50
Execution 1 (ms) 2370 1210 1100 1100 1050
Execution 2 (m 270 280 270 330 280
Execution 3 (rm) 220 280 270 270 280
Execution 4 (ms) 220 220 |. 280 270 270
Execution 5 (ms) 220 280 280 220 280
Execution 6 (ms) 280 220 270 220 280
Execution 7 (ms) 220 270 .270 280 280
Execution 8 (ms) 270 220 280 270 220
Execution 9 (ms) 270 280 220 270 330
Execution 10 (ms) 280 280 280 270 280
Execution 11 (ms) 270 220 280 220 270

APPENDIX

Table A.14: Query 2 on MS Access 7.0 using MS ADC 1.0

Test # 1 2 3 4 S
Connection (ms) 110 110 170 110 110
Execution 1 (ms) 6090 5650 5000 4500 4940
Execution 2 (ms) 3130 3350 3070 3020 3130
Execution 3 (ms) 3030 3080 3020 3030 3020
Execution 4 (ms) 3030 3080 3080 3030 3020
Execution 5 (ms) 3020 4180 3070 3020 3080
Execution 6 (ms) 4110 3080 3020 3950 3020
Execution 7 (ms) 3020 3130 3130 3070 4010
Execution 8 (ms) 3020 3070 3020 3020 3020
Execution 9 (ms) 3020 3020 2970 2920 3020
Execution 10 (ms) 4120 4000 3070 2970 3020
Execution 11 (ms) 3020 3070 4120 4120 2910

Table A.15: Query | on MS SOL Server 6.5 using MS ADC 1.0

Test # 1 2 3 4 S
Connection (ms) 110 170 110 110 110
Execution 1 (ms) 1370 1090 1040 1510 1750
Execution 2 (ms) 330 330 330 440 270
Execution 3 (ms) 280 270 220 330 270
Execution 4 (ms) 220 210 270 330 280
Execution 5 (ms) 220 280 280 280 220
Execution 6 (ms) 270 220 220 320 280
Execution 7 (ms) 270 220 280 390 270
‘Execution 8 (ms) 280 270 280 330 220
Execution 9 (ms) 220 270 220 270 270
Execution 10 (ms) 270 220 220 280 270
Execution 11 (ms) 280 280 330 270 270

APPENDIX

Table A.16: Query 2 on MS SQL Server 6.5 using MS ADC 1.0

Test # 1 2 3 4 5
Connection (ms) 170 220 110 110 50
Execution 1 (ms) 4670 4720 4780 4610 6480
Execution 2 (ms) 4780 3730 4060 3740 3900
Execution 3 (ms) 3680 3680 3680 3950 3840
Execution 4 (ms) 3620 3680 3680 3680 3840
Execution 5 (ms) 3630 3740 3680 3630 3840
Execution 6 (ms) 3680 3680 3630 3620 3850
Execution 7 (ms) 3680 3680 3680 3620 3850
Execution 8 (ms) 4770 3680 3570 3730 4510
Execution 9 (ms) 3620 4170 3620 3680 3850
Execution 10 (ms) 3630 3680 3730 3630 3850
Execution 11 (ms) 3620 3630 3630 3570 3840

85

APPENDIX 86

B Listing of Experimental Results: Chapter 5

This appendix contains a complete listing of all experimental data ohjained from

the experiments described in chapter 5.

Table B.1: Querying MS Access 7.0 using MS IDC

Test # . 1 2 3 4 5
Query 1 (ms) 1590 | 1600 | 1720| 1650 1650
Query 2 (ms) 1320 | 1040/ 1040 1320 1050
Query 3 (ms) 930 990 | 1100 930 | 1200
Query 4 (ms) 1210 1370| 1650 | 1210 1270
Query 5 (ms) 1150 | 1260 930 | 1040 1100

Table B.2: Querying MS Access 7.0 using MS ADC 1.0

Test # 1 2 3 4 5
Query 1 (ms) 1510 | 1810| 1700 | 1810 1810
Query 2 (ms) 610 550 490 500 550
Query 3 (ms) 550 450 500 490 500
Query* 4 (ms) 550 600 550 550 550
Query 5 (ms) 500 500 550 440 490

Table B.3: Querying MS Access 7.0 using Symantec dbANYWHERE

Test # 1 2 3 4 5
Query 1 (ms) 6100 | 5380 | 5650 | 6150 | 5490
Query 2 (ms) 660 720 660 710 660
Query 3 (ms) 83¢ 880 820 830 820
Query 4 (ms) 1100 | 1040 1100| 1040| 1050
Query 5 (ms) 760 820 820 | 1050 770

Bibliography

(Bel94)
[Ber93]

(BM95]

([CM97]
(DH96]
[Dut96]

[Haz96]

[Hol95]

(1197}

I

David Belson. The Network Nation Revisited, 1994. Available from
http:Bwww.stevens-tech.edu/~dbelson/thesis/thesis. html.

Edward V. Berard. Essays on Object-Oriented Software Engineering (Vol. 1).
New Jersey: Prentice-Hall, Inc., 1993.

Ken Bergmann, Microsoft Developer Network Technology Group. A High-
Level Look at Microsoft Internet Information Server, 1995. Available from
http://mww.microsoft.com/workshop/admin/iis/iisovw.htm.

Peter Coffee and Mike Moeller. Special Report: Java and Active Platform. In
ZD Internet Magaczine, 8(2):122-33, August 1997.

John Deep and Peter Holfelder. Developing CGIl Applications with Perl, pp.
9-43, 89-100. John Wiley & Sons. Inc., 1996.

William Dutcher. PC WEEK: Interactivating your Web site, 1996. Available
from http.//www.peweek.com/@network/0930/30cgi.html. ’

Deva Hazarika, Vice President. Product Development, Moui Technologies,
Inc. Developing and Deploying Interactive Applications on the Internet,
March 1996. Available from http.://www.microsoft.com/ workshop/prog/prog-

gen/mspaper.htm. ‘

Greg Holden. Publishing on the World Wide Web. Hayden Books. 1995.

=

White Paper: Deploying Java and JDBC - Four Types of Java JDBC
Solutions, Intersolv Incorporation, 1997. Available from
http://www.intersolv.com/products/dd-wp-jdbc-solution. htm.

87

BIBLIOGRAPHY | 28

[Kra97]

[Lin96]

[Lip96]

[Mcg96]

[MDE95]

[MC96]

[MC97a]

[MC97b]

[MC97¢]

[MC97d]

[MC97e]

[(MC97f]

[MC97¢]

[MC97h]

‘Ralf Kramer. Databases on the Web: Technologies for Federation

Architectures and Case Studies. In ACM SIGMOD, 1997.

David S. Linthicum. Linking Web Servers with Live Data. In PC Magacine,
15(15):178-79, September 1996.

Robert . P. Lipschutz. Web Servers. In PC Magazine, 15(15):167-204,
September 1996.

Michael McGee. Web Pages: A Programmer’s Perspective. June 1996.
Available from http://mww.microsoft.comhvorkshop/prog/prog-genfwebpage. htm.

The Component Object Model Specification, Microsoft Corporation and
Digital Equipment Corporation, October 1995. Available from
http://www.microsoft.com/oledev/olecom/title . htm.

Publishing Information and applications, Microsoft Corporation, 1996.
Avallable from hutp://www.microsoft.com/iis/usingiis/resources/iis2docs/08_iis.htm.

About Active Server Pages, Microsoft Corporation, 1997. Available from
http:/fwww.microsoft.com/iis/learnaboutiis/activeserver/about. htm.

ADC Web - Page. Microsoft Corporation, 1997. Available from
http.//www.microsoft.com/data/adc/default. htm.

Cabinets (CAB), Microsoft Corporation, March 1997. Available trom
http:/Awww.microsoft.com/workshop/prog/cab/default. htm.

Internet Database Connector, Microsoft Corporation, 1997. Available from ;
http:/Mwww.microsoft.com/sql/inet/inetdevstrat2. htm.

Internet/Database Technology Roadmap: Advanced Database Connector,
Microsoft Corporation, 1997. Available from
http:/H/mww.microsoft.com/sql/inet/inetdevstrat5.htm.

Internet Information Server 3.0, Microsoft Corporation,-1997. Aleldble from
http.://www.microsoft.com/iis/default.asp.

Internet Server API Overview, Microsoft Corporation, 1997. Available from
http://mww.microsoft.com/win32dev/apiext/isapimrg. htm.

JScript Web Page, Microsoft Corporation, 1997. Available from
http:/A/ww.microsoft.con/jscript.

BIBLIOGRAPHY 89

[MC97i]

[MC97j]

(MC97K]

[Ncs94]

[NCC96]

[NCC97]

[Nor96]

[SN96]

(P1m96]

\
[Rau97]

[SN96)

[SFU97]

[SH96]

[SM9Y6a]

Using Remote Data Objects and the Remote Data Control. Microsoft
Corporation, 1997. Available from
http://premitum.microsoft.com/msdn/library/devprodsAibAbS0docs/F 1/D7/SD874.him.

VBScript Web Page, Microsoft Corporation, 1997. Available from
http://mww.microsoft.com/vbscript.

Welcome to Open Database Connectivity, Microsoft Corporation, 1997.
Available from http://www.microsoft.com/odbc/default. htm.

The Common Gateway Interface, NCSA HTTPD Development Team, 1994.
Available from http://hoohoo.ncsa.uiuc.ediw/cgi/.

The Server-Application Function and Netscape Server API, Netscape
Communications Corporation, . 1996 % Available from
hitp://www9.netscape. com/newsref/srd/sen'é%_b;)i himl.

Netscape LiveWire and Netscape LiveWire Pro. Netscape Communications
Corporation, 1997. Available’ from
http://www.netscape.com/comprod/announce/dst _live.html.

Ken North. PC Week Labs July 3, 1996: ODBC extends reach to servers and
Web, 1996. Available from http://mww. peweek.com/reviews/0701/01odbce. hrml.

Prauk Patel and Karl Moss. Java Database Programming with JDBC.
Coriolis Group Books, 1996.

Ashish Pimplapure. Virtual Groups: A Web Based Electronic Conferencing
Svstem for Online Education. M.Sc. Thesis. Simon Fraser University, 1996.

Stephen Rauch. Manage Data from Myraid Sources with the Universal Data

Access Interfaces — Microsoft Systems Journal, Sept 1997. Available from
http /www.microsoft.com/msj/0997/universaldata. htm, Sept 1997.

Java Unleashed. Sams.net Publishing, 1996.

Virtual-U Research Project. Simon Fraser University, 1997. Available from
http:/virtual-u.cs. sfu.ca.

Performance Benchmark Tests, Shiloh Consulting and Haynes & Company,
1996. Available from hup://mwww.microsoft.com/InfoServ/haynesl. htm.

The JDBC database access API, Sun Microsystems, 1996. Available from
http://splash.javasoft.com/jdbc/index.html.

BIBLIOGRAPHY 90

[SM96b] JDBC Drivers, Sun Microsystems, 1996. Available from
http.://splash.javasoft.com/jdbc/jdbc.drivers.html.

[SM97] Java Universe Overview, March, Sun Microsystems, 1997. Available from
http:/fwww.sun.com/tech/access/JavaUniverseOverview.html.

[Sul94] Gary C. Sullo. Object Engineering - Designing Large-Scale Object-Oriented
Systems. New York: John Wiley & Sons, Inc., 1994.

[TL96] TeleLearning Research Network, TL-RN, 1996. Available from
http://www.telelearn.ca/telelearn/p_access/overview. html.

[Tur96] Shannon R. Turlington. Exploring ActiveX. Ventana Communications
Group, Inc.. 1996.

[W3C97a) HTTP -~ Hypertext Transfer Protocol Overview, World Wide Web
Consortium, 1997. Available from
http://mww.w3. org/Protocols/Overview.himl.

[W3C97b] W3C Activity: Hypertext Markup Language (HTML). World Wide Web
Consortium. 1997. Available from hrp://www.w3. org/MarkUp/Activity.

[Wo0095] D. R Woolley. Conference on the Web. 1995. Available from
http./freenet.msp.mn.us/~drwool/webcon2. html. .

(Za197] Osmar R. Zaiane. Where Web Applications Meét Databases. Theme 3
Workshop on Web Technology. TeleLearning NCE ~ Montreal, May 25 1997.

