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Abstract

‘The object of this thesis project is to build a realistic model ofa PSA cycle, in which
velocity of flow varies due to significant adsorption; also heat effect needs to be céflsidéred due
to adiabat{c thermal candition. Such a realistic model is desired for design of a PSA unit and a
PSA cycle. However, the mathematical model used to describe such a realistic modél would be
very complex, ard m\lmerical simulation needs to be handled carefully, since it will result in a
self-sharpening concentration breakthrough curve. Such a mathematical model would require the
numerical method 7to have high standard of performance on numerical diffusion (free from
numerical diffusion) in order to accurately predict the productivity or purity of product. In this
thesis, we examine two numerical methods ---- the numerical method of lines (finite difference
formulation for space difference) and the orthogonal collocation method ---- by studying various
mathematical problems and adsorption sysfems. We have shown that these two numerical
methods with higher ‘order formulations embedded provide the solution to numerical diffusion;
and the orthogonal collocation methods is superior to the numerical method of lines in
computation time. In the last two chapters, we take a step by step procedure to solve our realistic
model by double collocation method, which is the extension of the orthogonal collocation
method. The results have shown that the theoretical breakthrough curve of concentration is self-
sharpening, and the temperature of the adsorption column as well as the welocity o;,ﬂow are

affected by the significant adsorption.
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Chapter 1 Introduction

o Explain what PSA is, and why we want to model it.
e Explain what a breakthrough curve is, why it is self-sharpening, and why this

means that we deed a model free from numerical diffusion.
1-1 Pressure Swing Adsorption Process

Pressure swing adsorption (PSA) is a widely used process for separation of gases. The major
applications of PSA include the recovery and purification of hydrogen, the separation of oxygen

from air, the separation of normal and isoparaffins, and a variety of drying operations. The major
commercial PSA separation processes have been reviewed by Cassidy and Holmes, (1984).

1-1.1 Adsorption Separation Process
The essential requirement of all adsorption separation processes is an adsorbent which
preferentially adsorbs one component (or one family of related coyponents) from a mixed feed.

The selectivity of the adsorbent may depend on a difference in adsbrption equilibrium or ona _

p—
(e

difference in sorption rates (kinetic selectivity). (Ruthven 1994)

_All adsorption separation processes involve two principal steps: adsorption, during which the

preferentially adsorbed species are picked up from the feed; regeneration or desorption, during
. . - .

which the adsorbed species are removed from the adsorbent, thus “‘regenerating” the adsorbent

for use in the next cycle.

The adsorption can be affected by changing either the pressure or the temperature, i.e.. the

degree of adsorption increases with pressure and decreases with temperature.

1-1.2 Pressure Swing Adsorption Process

Pressure swing adsorption processes are cyclic processes for separation of gaseous mixtures
in which the adsorbent is regenerated by reducing the partial pressure of the adsorbed
component. This partial pressure reduction can be accomplished rather rapidly by lowering the

total pressure or using a purge gas. (Farooq 1990)

In the following diagram, we illustrate the two principal steps of a PSA cycle.
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Figure 1 - 1.2.1 The Concept of a PSA process
The adsorption column (bed) is packed with adsorbent. During the adsorption (feed) step. the
feed gas is entering the bed from inlet, and as the bed is pressurized with feed gas, the product
gas A is collected from the outlet. During the desorption step, the bed blows down to lower
pressure, with or without purge gas. The feed step is normally terminated before the more
strongly adsorbed component breaks through the bed, while the regeneration step is generally
terminated before the bed is fully desorbed. At cyclic steady state the profile therefore oscillates

about a mean position in the bed.

Thus the pressure of adsorbent bed is changed during each separation cycle. The advantage
of changing the pressure instead of temperature is that pressure can be changed much more
rapidly than the temperature, thus making it possible to operate a PSA process on a much faster

cycle, thereby increasing the throughput per unit of adsorbent bed volume.

The earliest development of PSA technology can be traced back to Finlayson, Sharp, Hasche,
Dargan and Perley in their pioneering patents. However, Skarstrom (1960, 1972) first introduced
the low-pressure purge step to clean the adsorbent bed following the blowdown step in his patent.
Many modified versions of Skarstrom PSA cycles have been developed for particular uses since

then.

1 -2 Modelling of PSA Cycles

Efficient performance of a PSA unit depends on achieving the correct combinatsn of process
variables such as bed length, flow rate, cycle time, pressure ratio, and purge to feed ratio. The
interaction of these process variables and kinetic / equilibrium parameters is so complicated that
it is difficult to arrive at an optimal design simply by intuition and empiricism; a reliable
mathematical simulation of the system is therefore required. Partial differential equations a}e
used to describe the dynamic behavior of the PSA system at each step of a PSA cycle. Basic
modelling approaches include equilibrium models, dynamic LDF models and pore diffusion

models. Most research on PSA modelling and analysis has been done based on the assumption of -

25
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~ isothermal behavior.

The objective of my thesis project is to build realistic computer models of PSA processes, to
support the design and optimization of PSA equipment by our industrial partner. Currently, our
industrial partner has developed various PSA cycles and laboratory scale apparatus. However,
when these benchtop prototype apparatus are scaled up to industrial-scale apparat‘u's, the thermal
boundary conditions change from near-isothermal to near-adiéba_tic. Because of the temperature - .
sensitivity of the adsorption process, this can lead to performance well below the potential
optimum. Therefore a reliable computer model is desired to realistically represent the critical

_Characteristics of the PSA process, including heat transfer, varying pressure, and varying

superficial velocity.

1-3 Adsorption Column Dynamics and Breakthrough Curve

For modelling a PSA process, we need to understand the dynamic behavior of a packed
adsorbent bed, which depends on the interplay between adsorption kinetics, adsorption
equilibriu;n, and fluid dynamics. The overall pattern of the dynamic behavior is generally .
determined by the form of the equilibrium relationship, and may be strongly modified by kinetic
effects (finite resistance to mass transfer). It is useful to coﬁsider the analysis of the dynéfnics of
an ideal system with infinitely rapid mass transfer (equilibrium theory). This dynamic behavior
can be represented by the breakthrough curve. The emphasis is on the introduction of a
breakthrough curve. A reference on how, in a real system, the ideal patterns of behavior are
modified by the intrusion of finite resistance to mass transfer can be found in Ruthven (1994). -

1-3.1 Equilibrium Theory
The formal analysis of adsorption column dynamics starts from the basic differential
equation derived from a transient mass balance on an element of the column. If the flow pattern is

represented by the axially dispersed plug flow model, this assumes the form:

_DL8_‘<2;+1(‘.“) + i+ (-;E)%(’i =

1
5 = - 0 (Eq1-3.11)

If axial dispersion and pressure drop through the column can be neglected and if the

concentration of the adsorbable species is small, this expression reduces to:

dc  dc 1-€.dq
Vartat ) T

0 _ (Eq1-3.1.2)
In the absence of mass transfer resistance local equilibrium prevails at all points (i.e..% = ¢ and
if the system is isothermal, q' = f(c), where f(c)represents the equilibrium isotherm. Under

these conditions (Eq 1 - 3.1.2) becomes:
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This.cquation has the form of a traveling wave equation with the wave velocity given by:
l 1-¢ dq. £
= v/ —) = -3.1.
we= v/ (14 ()=o) ~ (Eql1-319)

If the equilibrium relationship is linear q = Ke,

o

1-¢ .
wc=v/(1_+(T)K) ’ (Eq1-3.15)

and it is evident that the wave velocity is independent of concentration.

For an unfavorable equilibrium relationship dq /dc increases with concentration so w
decreases with concentration, leading to a profile that spreads as it propagates. Since the profile
spreads in a direction proportion to the distance traveled, this referred to as *‘proportionate

pattern” behavior. |

The case of a favorable equilibrium isotherm is slightly more complex. dq /dc decreases
with concentration, so according to (Eq 1 - 3.1.4), w will incréase with concentration. This leads
to what is commonly referred to as *‘self-sharpening” behavior. An initially dispersed profile will

become less and less dispersed as it propagates, eventually approaching a shock transition.

q /4y - Simple Wave (a)
3
M)
Iy
(‘/(‘O r4
- b
974, (b)
3
w Self-
Sharpening
c/c

Figure 1 - 3.1.1 Development of the concentration profile in an adsorption column. (a) For an
“unfavorable” equilibrium relationship the profile spreads at it propagates, approaching
proportionate pattern behavior. (b) For a *favorable” equilibrium relationship an initially dispersed
profile is sharpened as it propagates, approaching a shock wave.

1 - 3.2 Bulk Separations

Another situation in which a shock solution is obtained arises in bulk separations, where the




o -
change in flow rate due to adsorptior] is relatively large.
N
For a bulk separation we have, ‘
aC av aC—\ l—E a& _

—tC— — ) = 1-3.2.1
vaz+Caz+ar+( e ) o 0 ‘ . .~ (Fql-32.D
where, for an isobaric and isothermal system with an adsorbablé component in an inert carrier:

-y
LA (Eq1-322)

Yo -y
Expressed in terms of y, the mole fraction of the adsorbable (or more adsorbable) component, (Eq
I -3.2.1) becomes: .

) _ a2 1-¢ dq. dy a)’_ ’
{vo(1=¥5) /(1 =) [1+(—E—)FE}}E+§-0 (Eq1-3.23)

which evidently represents a traveling wave with the wave velocity given by:
9 A 2 l - I
:‘Tz {(1—y(,)/(1—y)-[1+(-——f)‘ij) (Eq1-3.24)
0

For the linear equilibrium system:

=

» W 5 l";':
ol {(l—yo)/(l-.v)‘[H(T)K}} (Eq 1-3.2.5)
. ,

Clearly w increases with increasing y, just as in the case of a trace system with favorable
equilibrium, so that, according io equilibrium theory, there will be a shock transition. .

From the above analyses, we can see that in both cases, the self-sharpening breakthrough
curves are produced. For the PSA systems we are modelling, the situation is more complicated;
however, fundamentally, due to adsorption in bulk separation, the change of flow rate 1s
relatively large. Also, the systems have favorable isotherms; as a result, the concentration profile

is the form of a self-sharpening breakthrough curve.

1 -4 Numerical Diffusion and Breakthrough Curve .
The breakthrough curve of our current PSA model is self-sharpening; as a result, the
numerical method for modelling PSA processes is required to have quality performance on

numerical diffusion.

1-4.1 Numerical Diffusion |

Simulation of the behavior of an adsorption column bed produces a certain amount of axial
diffusion, but this diffusion is entirely an artifact of the modelling process, and it is shown that its
extent depends on the relative values of the fluid velocity, the size of the crank angle increment,

and the length of a control volume. (Jones 1995)



Consider a square wave moving along the bed without diffusion:

Figure 1 -4,1.1 Square wave flow

If there is axial diffusion, the square wave will broaden out as it moves along the bed.

Figure 1 - 4.1.2 square wave flow plus axial dispersion
If this amount of axial diffusion is produced by the numerical method we use, it is called
numerical diffusion, or false diffusion, distinct from the physical diffusion. A further study on
numerical diffusion will be presented in chapter 2.

1-4.2 Method Free from Numerical Diffusion

Axial diffusion has an important effect on bed performance. Gas separation is most effective
when the concentration profile in the bed is a square wave. Since it is shown that the
concentration profile is self-sharpening and moves along the bed, an almost pure product flows
out from the down stream end. Then, just as the shock wave is about to reach the dosaqstream
end, we reverse the flow. If there is axial dispersion, however, when the self-sharpening wave
transfér to shock wave, it broadens out as it moves along the bed. So as the tail of the wave
reaches the downstream end, we either stop collecting the product immediately, in whichlcase we
can’t obtain a high percentage of the product, or we go on collecting the product for a little while,
in which case we get some of the other species mixed in reducing purity. If our model includes an
unrealistically high degree of axial dispersion, we will find that it always predicts low purity or
low recovery. It is therefore important that our model is free from numerical diffusion.

Therefore, another object of this thesis project is to study the fundamentals of various
different numerical methods and their performance on numerical diffusion; in return, we will
have the basis to choose among the numerical methods to improve our modelling of PSA

’

processes.



Chapter 2 A Survey on Numerical Diffusion

During the modelling of a PSA process, partial differential equations are used to describe the
system. Numerical methods are used to approximate solutions of the partial differential
equations. When solving a PDE numerically, for example, by the finite difference method, the
numerical diffusion causes a great deal of concern. It is desired to reduce or even eliminate this
non-physical false diffusion in the modelling. In this chapter, through studying selected papers on
numerical diffusion, past research and achievements in.this area will be presented, and the most

fundamental questions arising will be answered.

A

 What is numerical diffusion?
s How is numerical diffusion generated?
+ How to reduce or eliminate numerical diffusion’’

2 -1 Introduction
In this section, the preliminary knowledge of partial differential equations and numerical
methods such as the finite difference method and control volume method will be introduced.

.2 - 1.1 Partial Differential Equation- A Model Problem
Consider a simple transient convective-diffusion equation in one dimension (initial-boundary

value problem):

3—?+ug—Dz—§=O,()<x<l,l>() (Eq2-1.1.1
subject to the initial condition:
) : 0(x,0) = 0,0<x<1 oY " (Eq2-1.12)
and boundary conditions:
o0, =0 and ¢(1,1) = 1,1>0 (Eq2-1.13)

The physical interpretation of this set of equations is: a fluid moving along a thin tube of
length 1 at velocity u. ¢ represents the temperature, or the concentration of a trace component.
The temperature is forced to be 0 at inlet and | at outlet. Initially the fluid is at a temperature 0.
The constant D is called the thermal diffusivity of the fluid. The solution of ¢(x,r) will be the

temperature at each position x in the tube at time 1.

2 - 1.2 Finite Difference Method
Taylor’s theorem: ‘

An elementary approach to the finite difference method is provided by Taylor’s theorem,
which we state as follows:

Let ¢ be a class of functions that are n+/ times continuously differentiable on the interval

N 7
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[a,b]. Then there exists a number & a<&<b, such that:

(n+1) n+l

n (0 v
i b-
o(b) = zq) ’_!(“) ¢b-a)' +R,, where R, = f:{r(l)! a) (Eq2- 1.2.1)

=0 1

¢

Finite difference approximation to g (@)

1. Forward difference (first-order accuracy): (¢ (a+h)-o0(a))/h

2. Bz}ckward difference (first-order accuracy): (¢(a) -~ (a—-h)) /h

3. Centered difference (second-order accuracy): (¢(a+h) -6 (a—h))/ (2h)
Finite difference approximation to io (a),

a. Second centered difference (seggnd order accuracy): (¢(a+h) —20(a) +0(a—-h))/h.
2-1.2.1 Spatial Diseretization: |

Assume for the moment that ¢ does not depend on time. The result is the steady-state
boundary value problem

\ up -~ D¢ =00<x<

(Eq2-1.22)
0(0) =0,0(1) =1 *a
The analytical solution to this boundary value problem is
1 - eRx
o(x) = — (Eq2-1.23)
—€

where R = (uL)/D is called the Peclet number, it can be seen that R is the ratio of the

strengths of convection and diffusion.

If centered difference approximation is used for the first and second derivatives in (Eq 2 -

oGt

1.2.2), we obtain:

u(m_f‘_‘)_[) 1720+, =0 .1<j<N-1 (Eq2-1.2.4)

2Ax AX: - niEE -

T . . . 1-7 _ (2+RAx) .
The closed form solution to (Eq 2 - 1.2.4) is o = . 0<j<N, where Z = G TRAD This

solution suffers non-physical oscillation if ax>2/R.

To avoid this non-physical oscillation, use upwind differencing for the first derivative, and

retain centered difference for the second derivative; we obtain

¢}—¢}_] ¢_]—2¢*¢¢1
-D- SEREL S 0,1<j<N-1
R e S
(Eq2-1.2.5)
‘¢}+1_¢/ ¢/—l—2¢}+¢j#l .
u -D ~ =0,u<0, 1<y<N-1
Ax Ax

That is, the gradient of ¢ is approximated by “its gradient between j and the mesh-pomt

e

)

. . o - dd a0 . .
1. Here we use subscnpt notation for partial differenuation, o = TR and ¢ = —. We will use this
notation whenever it is convenient. . ax



upwind of j”.

The solution subject to (Eq 2 - 1.2.5) is ¢, = 0<j<N, where, ¥ = 1+RAx, which is
oscillation free. .
2 -1.2.2 Temporal Discretization:

Returning to the time-dependent problem (Eq 2 - 1.1.1) ---- (Eq 2 - 1.1.3), assume u>0

constant.

The explicit (forward time difference) discretization is:

(Eq2- 1.2.6)

PRI R
At Ax sz s

The stabili ndition for such discretization is: Ar<
stability co DT aAR

The implicit (backward time difference) discretization, which is unconditional stable, is:

=0 (Eq2-1.2.7)

¢n+l‘¢’-' [q,@#l_q,;jll) (¢n+l ¢n+l+¢/n:ll)
+Uu -

J J J ]
At Ax sz

2 - 1.3 Control Volume Approach

The basic idea of the control volume approach (Patahkar, 1980) is: the calculation domain is
divided into a number of non-overlapping control volumes such that there is one control volume
surrounding each grid point, see Figure 2 - 1.3.1. The differential equationis integrated over each
control volume. The result equation is the discretization equation containing the values of ¢ for a

‘4___(8;)-—-> lq—(sx) —>‘

W(_] 1) } P()) T E (j+1)
Ay — >

group of grid points.

Figure 2 - 1.3.1 Grid-point cluster for the one-dimensional problem

Consider one-dimensional convective-diffusion governed by (Eq 2 - 1.1.1),

% % 30

a’ a D§—0,0<x<l,1>0 (Eq2-13.1)
Preparation: In Figure 2 - 1.3.1, the dashed lines show the face of the control volume.

Integrating (Eq 2 - 1.3.1) over the control volume and over thé time interval from t to t+At, we
get

e (14 AD (1+ A ¢
j j j j[ a ]dxd' (Eq2-13.2)

It can be shown that difference schemes can be applied to the control volume method.
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For the explicit scheme,

n+l n _ _ n_an % ! _ a¢ §
(¢, —9,)Ax = At( u(9,-9.) +D((5;) e (5) w]) (Eq2-133)
For the fully implicit scheme,
n+ n n+ n+ % el a¢ el
(N l—¢p)AX=A’[_“(¢e 1‘% ')+D((§;)? —(é;)w D (Eq2-134)

Profile assumption: (1) stepwise profile, (2)piecewise-linear profile.

For the convection term, if a piecewise-linear profile is used, ¢, = %(¢E+ ¢, and
o, = %(¢,P+¢W) . Then ¢7-0¢” = %(q,;—a»"w) , which is a centered difference scheme.

Assuming u>0, if a stepwise profile is used, ¢, = ¢, and ¢_ = ¢,. Thus, ¢"-0" = (67-0,).

which is an upwind scheme.

Using a piecewise-linear profile assumption for the derivative term, set (8x), = (8x) = Ax.

) ao n ¢’I_mn 3 n ¢’I_.¢’I n 3 n ¢n_2mn+mn,

Since (=) = = ¢ ¢) = "% then (8_2) _(.2 =& T ¥
ax’, ox Ax

ax’, (&r)e * ox " (ﬁx)w w

L)

which 1s second centered difference scheme.

The discretization equation:

(Eq 2- 1.3.5)

. 0p-0p ¢ —¢"f))
T A+l on — _ A an E P _ P W
explicit: (05 0p) Ax Ar[ u(op—o,) +D( & N
For better understanding, set (8x)_ = (8x), = Ax, substitute j for P, j-1 for W, j+1 for E, then

the above equation can be rewritten as:

(07" =97 (070" ) ((cp,ﬁ, -01) - (0", 90" _) )
o Ny +D - (Eq2-1.3.6)
At Ax (A1)~
which is exact same as (Eq 2 - 1.2.6)
. . , . . ¢/|+l‘_¢r|+l ¢n+l_‘¢n'+l
implicit: (67" - 0}) Ax = A’(‘“(q’; - 1)+D( E(Sr)P B P(&r)w D Fq2-1.3.7)
Again, it can be rewritten as:
n+l_ n n+l_ n+ | n+1_ n+l _ nekl n+t
(¢, %) :—u(cbp Oy )+D((¢E oo ) - (0, -0, )) (Eq2-138)
At Ax (AX):

which is exact the same as (Eq 2 - 1.2.7).

It has been shown that the finite difference method and control volume have similar features,

and both methods suffer from numerical diffusion.

2 - 1.4 Numerical Diffusion:
The actual effect of numerical diffusion on the solution of a PDE can be best illustrated by

10



setting physical diffusion D to zero in (Eq 2 - 1.1.1): Y 4

¢, +udp, =0 ‘ _ (Eq 2-1.4.1)
subject to initial and boundary conditions:
| (0.0 =f(1), 6(x0) = g(x) (Eq2-14.2)
The analytical solution to (Eq 2 - 1.4.1) for the spécial case g(x) =0 and f(t)=0fort < 0is
o(x. 1) = f(1-x/u) (Eq2-143) ‘
Further, if we consider the additional special case f{t) = /, t > 0, so that at x = 0, the entering
temperature l;ndergoes a unit step change atr =0

v = (00 (Eq 2- 1.4.49)
iy =U(W = {.1‘120; Eq2-1.4.
then (Eq2 - 1.4.3)
d(xt) = U(t—x/u) (Eq2-14.5)

But in reality, if u = /, at x = (.5, the numerical solution may look like:

20 plot x=Q 5§ boundary: unit step method: DSS012 mesh: 30
1r —=

-

0.9 : “

-

, Figure 2 - 1.4.1 Illustration of numerical diffusion.
Comparing the analytical solution (solid line) with the numerical solution (dash line), since
there is no physical diffusion in this model, the smoothing of the step function is purely a result
of the numerical approximation, which is called numerical diffusion, or artificial viscosity. Since

it will distort the breakthrough curve in PSA, numerical diffusion must be minimized.

2 - 2 Numericdl Analysis of the Existing Finite Difference Schemes:

Preliminary numerical analyses of existing finite difference methods has been done in the
following literature papers. The common feature of these papers is that they use Taylor’s series
expansion to analyze numerical diffusion based on analysis of the truncation error generated by
finite difference schemes.

2 - 2.1 Quantitative Evaluation of Numerical Diffusion

With a Taylor series expansion, Lantz (Lantz 1971) analyzes the truncation error of basic



finite difference schemes, and states that the truncation error results in numerical diffusion. The
latter are also quantitative, depending on the block size and time step. Therefore, ‘the numerical
diffusivity expressions can provide guidelines for choosing block size and time step

combinations that minimize the effect of numerical diffusion.

2-2.1.1 Development:

The convective-diffusion equation under consideration is (Eq 2 - 1.1.1) with unit velocity:

% 0% 9 '

- FTi ajz“a—x (Eq2-2.1.1)
\ S

The explicit finite-difference approximation to the differential equation (Eq 2 - 2.1.1) using

backward difference (BD) approximation to the first-order space derivative can be written:

¢xr+Ar_¢xr ¢X+Axl_2¢x I+¢X-Axl ¢x{_¢x—A1t
) o . 8 T . - 2.1
At b (Ax)? Ax ‘ (Eq 2 2)

The corresponding differential equation b‘eing solved by (Eq 2 - 2.1.2), retained only through

second-order differentials, is then:

o0 Atd 3% o0 Axd
PN (x, 1)+ —iy(x, 1) = Dé?(x, 1 - E (x, 1) + —2_5_;2—()(' 1+ ... (Eq2-2.1.3)

An equivalence between time and space derivative can be established by differentiating (Eq 2

- 2.1.1) with respect to time and with respect to space. The equivalence can be expressed as:

aZ 2 3 2
?(x, 1) = J ?(x, 1) —D[a—g(x, 1) ——a-[a—?(x, 1) H + ... (Eq2-2.149)
ar ax’ ox 9T\ g5
Consequently, the PDE being solved by a BD representation (Eq 2 - 2.1.2) is: .
90 ) Ax—Ar 3%
5 &0 = -5 0+ (D —5 )a7(x,l)+... (Eq 2-2.15)

Hence the total diffusivity is the quantity D+ (Ax-an /2. The term (Ax- ar) /2 will be called
the numerical diffusivity. D is the physical diffusivity.

2 -2.1.2 Summary of Truncation Error of Basic Finite Difference Schemes

With the above analysis, Lantz shows that numerical diffusivity indeed results from
truncation error. A summary of the numerical diffusivity resulting from the various finite
differeance schemes based on analyses of (Eq 2 - 2.1.1)"is listed in Table 2 - 2.1.1 I

. .
Table 2 - 2.1.1 Summary of truncation error expressions

Difference Form Error Form

spatial time

Backward differencing | Explicit (Ax-An /2




-
I

Table 2 - 2.4.1 Summary of truncation error expressions

Difference Form : Error Form
spatial -~ - | time

Centered differencing Explicit (A1) 72
Backward differencing | Implicit | (Ax+An /2
Centered differencing Implicit (A7) /2

Lantz also compared the observed and calculated numerical diffusivity for the above
difference formulations of convective-diffusion equation, and the agreement is good. We don"t
quote it here. He suggested that the researcher can refer to this table to choose the block size and
time step to keep the numerical diffusion at an acceptable level, in the way that either the
numerical diffusivity can be made negligibly small compared with physical diffusivity, or

numerical plus input diffusivity should be equal to the desired level.

2 - 2.2 Transient and Steady-State Analysis On Artificial Viscosity

Roache (Roache 1972) shows that the usual analysis of the implicit artificial viscasity in
finite difference analogs of the linear advection equation is ambiguous, with different results
obtained for transient and steady-state problems. For the advection-diffusion equation, the
steady-state analysis is shown to be more appropriate for steady-state problems. With both
transient and steady-state analysis, he also demonstrated that some popular methods, touted as

having no artificial viscosity, actually do have such when applied to steady-state problems. -

2-2.2.1 Analysis on Convection Equation (usual analysis)

Roache cited: *“Artificial viscosity” is a particular kind of truncation error exhibited by some
finite difference analogs of advection equations. He credits Noh and Protter (Noh and Protter
1963) with having first presented an analysis of the artificial viscosity of the upwind differencing
_ethod applied to the convection equation: (

0, = —uo, (Eq2-22.1)
For u>0, the upwind differencing method for (Eq 2 - 2.2.1) gives:

(¢l"“—¢;"')/(Al) - —u[(¢‘"—¢,"_l)/(AX‘)] (Eq2-2.22)
Rewriting the above equation using Courant number ¢ = (uAr)/ (Ax),
'¢:|+l — ¢:I_(.(¢‘"_¢‘"ﬁl) (Eq2'2.2-3)

With a Taylor series expansion, analysis shows

1. We omit the immiscible case.



i’ 0, = ~ub, + D0, +0 (A, AF) (Eq 2 - 2.2.4)
where

A
D = u(Ax)/2-u? (A1) /2 = (1/2)uAx (1 -c) (Eq2-2.25)

numi

The ndn-physical coefficient b_.  of (3%) /(&) , introduced by the method, is reféfred as the

numi

artificial viscosity or numerical diffusion.

2-2.2.2 Transient vs. Steady-State Analyses:

The interpretation of »_,  in multidimensional, viscous and/or steady-state problems is not

numt

as straightforward as it might appear. Suspicion arises when one considers (Eq 2 - 2.2.5), which

shows D, dependent on A through the Courant number c.

numt

Consider a problem in which a steady-state has developed o"*' = o". Once this condition is
reached, both (Eq 2 - 2.2.1) and computational experience with the upwind differencing method
in multidimensional problems indicate that a change in a: does not change the steady-state

solution. Thus Roache moves to a steady-state analysis.

For the steady-state problem, setting ¢”*' = o7, expanding in a Taylor series, a steady-state
numerical viscosity is obtdined, g
D = (1/2)ulx (Eq2-2.2.6)

nums

In this formulation, D, _#/(Ar, and the steady-state independence of At is not suspect.
Roache then extended steady-state analysis to the problem with a diffusion term present:
0, = —ud_+Do (Eq2-22.7)
Again, the steady-state analysis is (Eq 2 - 2.2.6) while the transient analysis is (Eq 2 - 2.2.5).
Unlike the situation for the convection equation, the distinction between the »,, , of (Eq 2 -

2.2.5) and D

appropriate for this convective-diffusion problem.

of (Eq 2 - 2.2.6) is then important, and the steady-state analysis is more

nums

For the multidimensional problems with nonlinear coefficients, the resolution of the transient
and steady-state analyses is not so neat. Now, consider the application of upwind differencing

with (physical) diffusion terms in two-dimensional flow. For constant « . v, >0, this gives

(077 = 00) /(A1) =~ (uo] —u6!_, )/ (A0) = (v¢] —v0" )/ (AY)

. . (Eq2-2.28)
+D (9], =207 +07_ )/ (Ax) + (0] | =207 +0; )/ (AY))
for which stability requires
Ar< ! (Eq2-2.29)

2D (1/(AF) + 1/ (AYY)) +lul/ (Ax) + 1M/ (Ay)

where, in the transient analysis: D, ... = (1/2)uldx(1-~¢),D,,... = (1/2)vAy (1 -¢))

but in the steady-state analysis, D = (1/2)ulx, D = (1/2)vAy

numsx numsy

14



Both analyses give different values of b, , or D, .. in different directions, each of the form
(Eq 2 - 2.2.5) or (Eq 2 - 2.2.6). The transient analysis predicts that the steady-state solution for
the upwind differencing method is a function of At, which disagrees with computational
experience. Thus, the steady-state analysis does appear to be appropriate for multidimensional

and/or nonlinear steady-state problems'.

2-2.2.3 Transient and Steady-state Analysis of Other Methods
- :
Roache summarizes the analysis of other methods in Table 2 - 2.2.1. Comparing this table to
Table 2 - 2.1.1, the earlier one does not contain u because (Eq 2 - 2.1.1) ta.&s u=1.

Table 2 - 2.2.1 Implicit artificial viscosities from transient and steady-state analyses for
various finite difference methods applied to ¢, = -uo_, with ¢ = (uA)) / (Ax)

. Transient Stead Formal
Description : Method y )
D,umi D, ums Truncation Error
) R Ax Bx
1. Upwind ot = ol —c(ef-0" ) uT(l—c) "_2_ 0 (At, Ax)
2. FTCS ot = ol -/ (07, =07 ) | a0 0 (At, A)
o= (1/72) (0], +07_ ) NG NG L AC
3. Lax : i+l i1 T(I_CZ) \(m) O(AI.AX‘,-Z-)
~(c/2) (0", =07 ) At f
a+l _ .n n n -
4 Leith or T =l - (/2 (0]-0_ ) | (QJ 0 (A1, A
+ 372 (07, + 207+ 0" ) 2
ate 2 2
S. Matsuno ¢:.+1 = 0" (/D) (0707 ) Y 0 0 (At AxY)
A A (02 TN A

2-2.3 The Upwind Difference Schemes

In “incompressible flow”, the author summarizes the common finite difference methods used
in simulation of incompressible flow. The first upwind differencing method has advantages
among other finite difference methods, although it suffers from numerical diffusion. For
example, compared with the Forward-time, centered-space (FTCS) method (see also Table 2 -
2.2.1), upwind differencing is not stability limited by a«>2/R (see also section 2 - 1.2.1).

Based on the first upwind differencing method, the second upWind differencing method is

developed, and the latter can have better accuracy.

2-23.1 The Second Upwind Differencing Method
In the second upwind differencing method, or “donor cell” method (Gentry, Martin, and Daly,
1966) sogpe sort of average interface velocities on each side of the mesh point are defined; the

sign of these velocities determines, by upwind differencing, which cell values of ¢ to use. In one-
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dimensional notation,

Ao, ub,—u0,

= = (Eq2-23.1)
Where N
‘ 1 1
“tzi(ul+l+u1)'“w:i(“l+“x—l) ’ (Eq2'2'3’2)
or perhaps some other averaging scheme.
And using the upwinding scheme,
¢e = ¢i’ (H'>O) ;¢e = ¢|+ N (“t<0)
(Eq2-233)
o, =9 _.(u,>0)9,a59, (4,<0)
Consider ¢ constant with 6 _ = ¢, = ¢, , = ¢, but spatially varying u. Then,
1 .1
A¢l ue¢e-uw®w ¢§(u‘+l+u') Qz(“,*‘l‘,_l) - ui+l—u: 2
AT T A& T T Ax ( 2Ax ) (Eq2-2.34)

which is second-order accurate for the convection field.

Thus, it can be considered that the second upwind differencing method is more accurate than
the first method, since it retains second order accuracy of a(u¢)/ax possessed by the centered
difference scheme; as a proof, the author of “impressible flow’refers to Torrance (1968), that it
is indeed superior to the first upwind difference method in an actual two-dimensional

computation.

2-2.3.2 Comments

However, 1 conjecture that this second upwind method will not be second order accurate if
the solution has the pattern of a shock wave, since it is quite contrary to the assumption of (Eq 2
- 2.3.4). Therefore, it can not be the solution to the numerical diffusion problem in PSA
modelling. As shown in chapter 1, the concentration profile has the pattern of a breakthrough

curve.

2-2.4 A Consistency Check for Estimating Truncation Error due to
Upstream Differencing
It has been shown that upstream differencing seems quite an attractive method because of its
inherent algorithmic simplicity and the fact it is oscillation free (see section 2 - 1.2.1). However,
the associated numerical diffusion is an extremely serious handicap which may outweigh its
positive features. For this reason, it is important to have a direct method for estimating the error
incurred when upstream differencing is used for convection. Leonard (1978) outlines a simple

procedure for achieving this.
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2-2.4.1 Introduction

Consider a convective-diffusive equation with a local source term in one dimension:
[ ]

%  owe) 3%

e +D§+S (Eq2-24.1)
A popular solution has been to use upstream differencing for the convective term, while still

using central differencing for the diffusion terms. The artificial diffusion takes the form

(uAx) /2.,(sée section 2 - 2.3.1)

(Eq 2 - 2.4.1) can be rearranged into:

d(up) % 0%

d(ud) e -
5 =5 (Eq2-243)

The basic idea of the method is as follows: assume that an exact solution ¢f is known and that

or

from this, $* can be computed to any desired degree of accuracy; then at given fixed values of y,
z, and t, (Eq 2 - 2.4.3) represents an ODE which can be solved using upstream differencing for
the x-derivative. Clearly, a comparison of ¢ computed this way with the original ¢* gives a direct
measure of the truncation error committed in using upstream differencing in the x direction.

In practice, ¢¢ and the corresponding S*(x) will not be known exac/fly. Instead, ¢ will be |
available from a computer simulation of the particular problem. But for fixed y, z, and t, a S* can
be computed with the given ¢ function directly from (Eq 2 - 2.4.3) using any desired numerical
accuracy. Then using the consistent value of S*(x), ¢ is again recomputed from (Eq 2 - 2.4.3)
using upstream differencing for the x-derivative. The difference between the original and

“ recomputed @ functions now represents the inconsistency due to upstream differencing in the x
direction in comparison with the accuracy used in computing S*. To the extent that computed S*
will be of the same order as the (unknown) ‘exaét’ S*, this inconsistency will be of the same
order as the “true’ truncation error due to using upstream differencing in the particular coordinate

direction. The final error estimate can be taken simply as the largest of the individual estimates.

2-2.4.2 Basic formula

Suppose a numerical solution of (Eq 2 - 2.4.1) has been made called ¢/ (x.y.z.1) and 4’ (x.v.2.0),
and plot as function of x. In a given computational cell, the numerical model of (Eq 2 -24.3)is,
as defined in Figure 2 - 2.4.1

u,o —ud e
T’Lzs,u>u (Eq 2-244)

c



¢ Ok
0, ¢
— jyp———> ug
u’ /
u; Uc
u,
Ax)) /2l (Axg) /2
Ax, ple Ax, —»

Figure 2 - 24.1 Definition of terms in equation (Eq 2 - 2.4.4)
(Eq 2 - 2.4.4) could be used to recompute ¢ as function of x, e.g.,

0c = (ujo, +axS) /u] ‘ (Eq2-2.45)

From (Eq 2 - 2.4.3), the consistent control-volume average is given by:

(Axg) /2
s d(up) -1
-(Ax;) /2

Therefore, the recomputed function ¢'' at each cell:

! = ol o) /il o] (Ba2-247

for u,u >0, thus generating a downstream-marching algorithm for ¢'/. In most cases, a fully

graphical procedure is adequate.

Graphical procedure for constant velocity
Rewrite the equation for constant velocity: ¢} =o'+ (¢! -6, This is the basis for the
graphical construction of ¢ from ¢'.
" It can be seen that, at any station:
01— 0. = &~ 6, = Abg,, = const ‘ (Eq2-2.48)
Thus, a simpler construction procedure:
1. compute Ao, . = ¢, -6, at the reference point;
2. find the ¢#®alue from ¢} = ¢/ - Aby,
Note that the local inconsistency, ¢’ - ¢!, is a direct estimate of the truncation error involved
in the original computation generating ¢'.
If the local inconsistency between ¢/ and ¢' is written:
£ = 0r— 07 = (0,-07) = (8, ~0) = Ady, — Ad . (Eq2-249)

Locally, an estimate of ¢, correct to second order in Ax, can be made by noting that:



Ax 3¢

A¢:¢ﬁ—¢’c=781—§87¢m +0(Ax) (Eq 2 - 2.4.10)
Therefore,
1 00 J 1 [&p’) .
Ax,w(ax 5Ar| == (Eq2-24.11)

It should be clear from the construction of graphic or (Eq 2 - 2.4.9) and (Eq 2 - 2.4.11) that
the only upstream-difference computations which are free of first-order truncation error (in
regions of approximately constant velocity) are those for which ¢ varies, at most, linearly with
the streamwise grid index. If there is any curvature in ¢, there will be a non-zero first-order
truncation error. In order to minimize €, a finer grid spacing is needed in regions of larger
gradient. In fact, if an estimate of the solution is available (from rough calculation or from
experimental measurements), (Eq 2 - 2.4.11) can be used to define the appropriate local grid size
necessary for acceptable values of €. This procedure may need to be iterated (notv usually more
than once or twice) to check that the inconsistency in the final upstream-difference computation
is within acceptable bounds. '

An approximate check for the flux consistency is also developed in (Leonard 1978). The
same graphical construction can be used in the general case to make :an gdequate first-order
consistency check on the convective flux computation. Leonard claims that method 1s
particularly useful in rationalizing empirical tuning procedures used to calibrate upstream-

difference numerical models in terms of measured results. -

2-2.5 Comments on Section 2-2

“In this section. we have studied the analyses of numerical diffusion in various finite
difference methods, especially for upwind difference schemes. The basic idea is to use the
expression of numerical diffusion as guideline to choose proper time step and block size to
minimize it. This is one way of solving the problem of numerical diffusion. However, it 1s not
easy to implement this idea, especially, for example, when the transient and steady-state solutions
for P.D.E are both important or the truncation error bounds check may require impractical fine
mesh. Alternatively, researchers are seeking generally more accurate numerical methods, such as
higher-order difference formulation advanced on upwind difference schemes, which will be

.explored in the next section.

2 -3 Advanced Study on Numerical Diffusion and Improvement of
Upwind Difference Methods .

2 - 3.1 A Survey of Finite Differences with Upwinding for Numerical
Modelling of the Incompressible Convective Diffusion Equation
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Leonard (1980), analyzes the available finite difference schemes, and emphasizes that a
straight-forward upstream shifted third-order convective differencing scheme can automatically
combine inherent stability and accuracy, and is algorithmatically consistent with second-order
diffusive differencing. Since a central difference method may lead to unphysical oscillation or
computational nonconvergence and non-centered upstream-shifted convective differencing
schemes may cause artificial diffusion, the introduced third-order finite difference method seems

a remedy to these problems. *
2-3.1.1 Development:
The model convective diffusion equation:
LI .
3‘(‘ - “u$+Dax2+5 ) (Eq2‘3.l.l)
0 . . ‘
or u@ =D ?+S , where, § :S—id—’ (Eq2-3.1.2)
0x ox ot

Analysis of Finite-Difference Operators .

Through the feedback sensitivity of various finite difference operators, Leonard demonstrates
_the stabilities of these operators.

(09,) /(d1) = RHS , RHS: the numerically modelled terms on the right-hand side. (Eq2-3.1.3)
L = (dRHS)/(0¢,), X: feedback sensitivity. (Eq2-3.1.4)
If £ > 0, the algorithm would lead to exponential growth of any perturbations and is therefore
undesirable. If ¥ = 0, the algorithm has neutral sensitivity and perturbations can be superimposed
on the solution without affecting the RHS----the algorithm is insensitive to these errors and no
automatic corrective actions are taken. This type of neutral sensitivity is often associated with
temporal and spatial oscillations. It is directly analogous to the oscillatory nature of marginal
stability in dynamic analyses. If £ < 0, the algorithm will damp out random fluctuations. This is

clearly a highly desirable property of any numerical algorithm.

The diffusion term i
For the second central difference approximation to the diffusion term

[¢l+l _2¢1+¢1-1J { a2¢ 1 (iv) 2 <
D . =D [ 7)+—¢‘ (Ax7) + ... (Eq 2-3.1.5)
Ax~ ax /, 12

For this operator, £ = —2D/ (A<") . Therefore this operator is stable.

The convection term

1. The second central difference

¢'H_¢"l a¢ 1 ey, 2 .
- 2Ax = Ut edAx +J (Eq2-3.1.6)



So for this operator X = (, a major problem of this operator. Therefore, it is unstable.

2. The upwinding Strategy
i. First order upwinding

¢l_¢l—l a¢ 1 (1)
“Nli Ax :l = -u[(;)_;)‘-iq" Ax+...],u>0 (Eq2-3.1.7)
¢l+l_¢l a¢ 1 (11)
_u[T:l——u[(a)'—itp‘ Ax+..},u<0 (Eq2-3.18)
Dnum.\' = 'UIAX/2. Dnum.\' «D (Eq2'3.l.9)
T = —luj/ (Ax) , stable (Eq2-3.1.10)
ii. Second order upwinding
30,-40,_,+9,_, a I oy, 2 1, v, 3
*uli 2AX J = —u[(:);)‘_iQI AX +Z¢' AX +:|,f0r U>0 (qu's.l.ll)
3¢l+2—4¢1+¢l—l a¢ , l (ra1} 2 l (iv) 3
_u[' TAX :l = —u[(-a;)‘—iol Ax —ZQ, Ax +..1,f0r u<0 (Eq2-3.1.12)
T = —(3tul)/ (2Ax) (Eq2-3.1.13)

which is of course stabilizing. However, the discretization error is potentially oscillatory.
iii. Third order upwinding
[-¢1+2+8¢1+1_8¢1—1+¢1—2J ! I[¢1+2_4¢1+l+6¢1_4¢1—1+¢4—2J
— U —iu

12Ax 12Ax
(Eq2-3.1.14)
:—u(@) - Lo ar+ Lugvart+
ax’ T2 Fiag
T = —lul/ (2Ax) - 2DAX (Eq2-3.1.15)

which, being unconditionally negative for all (physical) values of u and D, represents very
good damping qualities.
2-3.1.2 Model Test Problem

For comparative studies of the performance of different spatial differencing methods, a

simple model test problem is set:

o)
u o (L) 2
- Cd d .
u Ad :D—?+S (x),0<x<L
dx dx’
o) o(0) = 0,0(L) = const

>y

s (x) ..
ﬂ]]ﬂmmmﬂnmw where u and I" are positive constants

Figure 2 - 3.1.1 Formulation of model problem

Second-order central differencing



2Ax 2

|:¢i+l_¢l—lJ [¢1+l-2¢1+¢1—l} .
MY () +5 (0 (Eq 2 - 3.1.16)
Axt

which can be rearranged into

%[¢i+l-¢i—l] = [%[¢i+l~2¢i+¢n—l] +§. (Eq2-3.1.17)

A

where §* = (5"A0 /u and P} is the effective grid Peclet number. ----in this case P = P,.

As noted, this method is relatively well-behaved for P, <2, but may lead to oscillatory result

when PA>2.

First-order upwinding and hybrid methods

First order upwinding

¢‘—¢‘_] ¢,+1-2¢,4+¢‘_1 .
u = D( . )+s (Eq2-3.1.18)
Ax Ax”
can be written as
l l =*
(i (0., -0,_,] = = (6., ,-20,+6,_,] )+s (Eq 2-3.1.19)
A .

where P =2. Thus, the result is inaccurate, therefore unacceptable.

This defect is partially corrected by a hybrid technique in which second-order central
differencing is used for both convection and diffusion when P,<2, and full upwinding when
P, >2. The governing equation can still be written in the form in (Eq 2 - 3.1.19), except, P, = P,
for P, <2, and pP,=2, for pP,>2. However, for P,<2, there is no improvement over central
differencing and for p,>2, the method is so inaccurate that it is useless for any practical

purposes.
“Optimal’” upwinding
¢,-0,._, .79, 6,.1720,+0,_,7 .
u[(, (g } - D[ = }s (Eq2 - 3.1.20)
If written in the standard from “optimal” upwind is equivalent to second order central

differencing using an effective grid Peclet number P} = 2tanh (P,/2).
Since the effective diffusion coefticient its\DJfqux/P;\, it can be seen that:
D, = D,for P,<05and D,, = (uAx) /2 for P, >5.

As P, is increased, the artificial diffusion becomes relatively more dominant. From the
computed result, we can see that “optimal” upwinding is actually worse than the (already

unacceptable) hybrid scheme over the complete range of Peclet numbers.

The QUICK method
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ra



A control-volume formulation named QUICK (Qua’dratic Upstream interpolation for
Convective Kinematics) (Leonard, 1979), as shown in Figure 2 - 3.1.2, uses quadratic
interpolation through three points: two points straddling the control-volume face together with an

additional adjacent upstream points.

QUADRATIC EXPONENTIAL
Figure 2 - 3.1.2 Quadratic and exponential three-point interpolation

For the QUICK method, the right-face value is

o, = %(¢i+¢‘.ﬂ)—%CURV - (Eq2-3.21
where the curvature term is given by: \
0, -20+6,, if u>0 (Eq2-3.122)
or ¢,~26,,,+96,,,, if u<0 (Eq2-3.123)
a¢ ¢|+l ~¢1
=) = Eq2-3.1.24
(Bx) Ax (Eq )

r

The model equation can be written

1

$10,, -0, - g (0, ~30,+30,_,-0,_3) = = 10,,,-20,40,_,1+5 (Eq2 - 3.1.25)
2 8 P

A

in which P, = P,. \
In simulations of practical problems the basic QUICK method is extremely “manageable”
from the user’s point of view, generating solutions of high accuracy over most of the flow domain

in a stable and algorithmatically efficient manner.

EXQUISITE method

The problem of resolving a sudden jump in value in the flow direction over a few grid points
can be solved by using a more appropriate interpolation function than the quadratic polynomial
used in the QUICK method. One needs an interpolation function which can change rapidly and
monotonically (when necessary). For this, the exponential function is quite appropriate. Figure 2
s 3.1.2 shows how the same three node values can be interpolated by either quadratic function or

an exponential.

For the right-face value, quadratic interpolation gives (as before)
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1 1 |
0, = 5 (0 + ) ~ 2CURV (Eq 2 - 3.1.26)

where for u>0 CURV = ¢,_, -26,+9¢,, . ®

1

where a three-parameter exponential of the form ¢ = A+ Be ®, where & = x—x,, leads to

0, = At J(0,—A) (9.-A) (Eq2-3.127)
&’= (0-9,)/(¢5—-0¢,) (normalized variable) .— (Eq2-3.1.28)
'- I - 3 -2
5, = L1z ~& (Eq2-3.1.29),
(1-20)
’- 1 - 3 ) ~
Opc = Oc $c 179 ln[ f%j (Eq 2 - 3.1.30)
(1-20.) o
a&’j _ &’RG“I’(
(aTc v (Eq2-3.131

The resulting method is naturally referred to as EXponential or Quadratic Upstream
Interpolation for Solution of the Incompressible Transport Equation (EXQUISITE). Clearly, this

method can handle source terms and boundary jumps with high accuracy.

2 -3.2 Beyond First-Order Upwinding: The ULTRA-SHARP Alternative for
Non-oscillatory Steady-State Simulation of Convection

Leonard (1990) analyses the shortcomings of Hybrid and PLD method (Power Law
Differencing scheme of Patankar (1980)) (also see Leonard 1980, or section 2 - 3.1)----They
suffer numerical diffusion. Then he analyses the problems with high-order methods which
introduces other problems---usually in the form of overshoots, undershoots or severe oscillatio.n.
----Finally, Leonard presents the ULTRA-SHARP alternative method, which is the advance
version of QUICK implemented with a new universal limiter. This method is featured as a high-

resolution nonoscillatory multidimensional steady-state high-speed convective modelling.

2-3.2.1 Shortcomings of Hybrid and PLDs
The first order upwind scheme and Hybrid and PLD scheme has been studied in (Leonard
1980). In (Leonard 1990), comparing the solution from Hybrid and PLD schemes with the exact

solution, one can see the numerical diffusion present in these first-order upwind method.

2-3.2.2 Problems with High-Order Methods.
1. spurious oscillation of symmetrical schemes.

2. non-monotonicity of higher-order multidimensional upwinding.
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2-3.2.3 ULTRA-SHARP Alternative:

o L/ ]
C—

(a) onginal unnormalized vanables (b) corresponding normalized vaniables
Figure 2 - 3.2.1 Normalized variable diagram for the universal limiter

Detine normalized variables:

o (x, v, 2) plrws ~ (Eq2-3.2.1)
X, vV, 2 = — - ok
‘:v o~ 0, B

The universal limiter constraints on ;pf can be written

0-<0,< L for(0<o-<1)
0,=1+0.5(0c— 1), for (9> 1)
&;/: l.Sbr,for(7¢(<0)

?QIS (‘onst&:(-, near (t-pr —-0,)

(Eq2-3.2.2)

For the explicit control-volume time-marching algorithm (Appendix II in (Leonard 1990)),
Leonard outlines a procedure to apply the universal limiter constraints based on (Eq 2 - 3.2.2) at

each stage of a pseudo-time-marching or iterative solution.

The Downwind Weighting Factor

Alternatively, an iterative implicit solution can be implemented by introducing the downwind
weighting factor, as now described. Instead of limiting the interface variable directly, the
Downwind Weighting Factor (DWF) is introduced as an auxiliary variable, thereby generating a
compact implicit scheme suitable for tridiagonal solution methods. After explicitly computing

the high-order multidimensional upwind-biased estimate, Ep/. define

( _ . it —~ .
pwr = 2% Y & (Eq2-3.23)
oy~ 0 1-¢.-

The universal limiter constrai‘nts, in terms of DWF, become:

O0<SDWF <1, for(0< < 1)
DWF < ( ((‘onsl—. 1)o.)/ (~1 —00), near (60— 0,) (Eq2-324)
DWF = ¢/ (2(1-6)), for (0<0)
DWFE = 0.5, for (¢ > 1)

Now rewrite the face-value as



o, = DWFo’ + (1~ DWF) "¢ (Eq2-3.2.5)
where TBC stands for ‘to-be-computed’ in the next iteration of an implicit line-sweep update.

If ¢_ is the initial higher-order estimate on the control volume west face, the DWF is first

computed according to:

L 0.-0,
DWF = = - Jif(u,20)
oo (Eq2-3.2.6)
. . ¢ w ¢(
¥ DWF_ = Vi <0
w ¢“ _ ¢( ’f(uw )
Then, the appropriate DWF is limited according to (Eq 2 - 3.2.4).
The face value in the implicit update is then
= DWF, 1-DWF, >0
¢, =DWF 6, + ( W) Oy for (u,, 20) (Eq2-327)

6, =DWF 0, + (1 -DWF,) 0, for (u, <0)
Similarly, the other faces of this particular control volume cell are approximated. This results

in an update of the form

a,0, = a6, + ad.+ab,+a,d.+ad,+ad +b (Eq2-3.28)

It should be stressed that the higher order multidimensional information and the non-
oscillatory universal limiter constraints are implicitly contained in the DWF’s of each face rather
than involving ‘outlying’ node-values that are then lumped into the explicit source term. The
limiter constraints inherent in the DWF’s guarantee non-oscillatory results, with stability and
convergence properties similar to the first-order method (DWF=0)----but without introducing

artificial numerical diffusion.

Non-oscillétory Multidimensional Result

In the Appendix III (Leonard 1990), Leonard develops a series of higher order upwinding
schemes for the convection term. In this experimental test, he shows the simulation results of
applying the universal limiter constraints to the QUICK-2D scheme for the oblique-step test at
P, = 100. Comparing these results to the unlimited QUICK (reflect third order accuracy) results,
the resolution remains sharp (reflecting third-order accuracy without overshoots or undershoot.
Applying this universal limiter to higher-order convection schemes can dramatically increase the

sharpness in the simulation of the near-discontinuity.

Cost-effectiveness and Adaptive Stencil Expansion
Question: For a prescribed accuracy, which is more cost-effective in terms of overall
computer usage, a fine-grid computation using a low-order method, or a coarse gnd calculation

using a higher-order scheme?



Answer: Gaskell and Lau (1988) compared first-order upwinding with the third-order
QUICK scheme and a non-oscillatory version (similar to ULTRA-QUICK) using successive grid
refinement on the two-dimensional oblique-step test. For a prescribed accuracy,

methods require such a fine grid, compared with the practical grid of third-order, that CPUXime

was larger by three orders of magnitude!
Question: What order is more ‘optimal’ in the above sense of cost-effectiveness?

Answer: A simple strategy of adaptive stencil expansion is proving to be extremely fost-
effective in both steady-state and time-accurate transient simulation: using third order ULEYRA-

QUICK in ‘smooth’ regions of the flow, on the basis of some ‘non-smoothness’ monitor, gwitch

~

to a higher-order (ULTRA) scheme locally, as needed.

Some monitors such as the CURAV (the absolute average ‘curvature’) and the GRAD (local

absolute normal ‘gradient’) can be used:

-

CURAVE = 0.5/(0,,,~6,,,) — (0,-0,_,)]| (Eq2-3.2.9)
" GRAD = |9,,,- 9| (Eq 2 - 32.10)

The order-switching strategy is shown
GRAD

0.15

0.1 0.25 CURAV

Figure 2 -3.2.2 Schematic Diagram of order-switching strategy used in the
locally adaptive stencil expansion algorithm

For steady-state calculations, it appears that an adaptive ULTRA-QUICK/5th/7th-order
convection scheme has a number of attractive attributes, including cost-effectiveness (high
coarse-grid accuracy), reliability (excellent stability and convergence properties) and ease of

coding.

2-3.2.4 Comments on Section 2-3

Leonard has presented a relatively new achievement,.viz, using a higher-order upwinding
scheme in the region where the solution changes rapidly. These higher-order upwinding schemes
have the problem of non-monotonicity. To solve this problem, the author uses the universal

limiter scheme to achieve a monotonic but sharp solution. The results are impressive.

2 - 3.3 A Method for Predicting and Minimizing Numerical Diffusion

Peterson (1992) addresses from a Lagrangian viewpoint the problem of inaccuracy of
interpolation in space and time resulting numerical diffusion. He uses a Taylor’s series expansion
for streamwise and cross-stream interpolation processes to give numerical diffusion coefticients,

and states that these simple coefficients can be used to adjust physical diffusion coefticients, and
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provide second-order accuracy for convection in control volume solutions.

2-33.1 “FAST” solgtion for transient convection
Peterson develops “FAST” diffusion correction function, which he provides significantly
improved performance for large time step and Peclet numbers, something highly desirable

feature for transient solutions.
The conservation equation under consideration by Peterson is

90 d(udp) O(ve) 5 0™ o
PP Py TP 5Py

From a Lagrangian viewpoint, with Taylor’s series expansion, Peterson gives both °

<

a(D ) +§ (Eq2-3.3.1)

streamwise and cross-stream numerical diffusions results from various difference schemes in the

control volume method.

For the one-dimensional problem, only streamwise numerical diffusion is considered. viz,

% dwue 5 00
Por P P’ S

The implicit and explicit upwind numerical diffusion coefficient can be combined as

(Eq2-3.3.2)

2

D, /D= %|(,1—¢:)Pe| (Eq2-3.33)

num!

. ~ . - -
where ¢ is Courant number, defined as ¢ = uA1/7Ax, and Pe is the grid Peclet number, defined as

Pe = (pulx) /b

Petersxl argues that, in general, convection terms should be evaluated explicitly to avoid

dispersion effetts and diffusion terms should be evaluated implicitly.

Therefore, the equations becomes,

(Eq2-3.34)

)

P[¢—————;H—¢;)+puw(¢;_¢;) =D ¢2+|_72¢;H+¢;H)+S
Ax AR

At -
‘Using numerical diffusion coefficient derived previously to adjust the physical diffusion, the
following equation is obtained:
¢;-;rl ¢:)+l ¢;+I ¢’Iw+l

~-0p) +pu, (0,-0,) = A,D, T—AWDW—M———JrSAx (Eq2-335)

n+l

(¢,,

where, the FAST diffusion correction functions A can be written as simple functions of the
Courant numbers and Peclet numbers,

A, =max[0,1-05](1-|c,|)Pe,]]

Eq2-3.3.6)
A, =max [0, 1-05/(1-]|c,|)Pe,|] 4

The Courant numbers are defined as ¢ = A /Ax and ¢, = A /Ax, and Pe, = pu, (Ax) /T,

Pe, = pu, (A} /T,



2-3.3.2 One-Dimensional Transient Flow Problems
A test problem has been studied by Peterson, some findings are:

1. Without physical diffusion, Pe = =, only choosing ¢ = 1, results preserves the exact
solution, and other values of ¢ will result severe numerical diffusion, a higher order
scheme is desired.

a

+ 2. With physical diffusion Pe <5, the FAST diffusion correction functions can be employed,
good agreement is obtained and it is superior than Hybrid scheme. For pe> 5, higher order
methods are required for accurate solution.

[ 4

3. For transient solutions, convective terms must be evaluated exblicitly. Implicit evaluation
of convective terms introduces strong diffusive effect. This diffusion will strongly
degrade the quality of any transient solution.

2 -3.4 Comments on Section 2-3

In this section, we explored more advanced higher-order upwind schemes, first the QUICK
method, and then the ULTRA-SHARP which overcomes the oscillation problem----it is the
QUICK method implemented with a universal limiter. Although Peterson(1992) presented an
inexpensive method in which a diffusion correction coefficient is developed to improve the
accuracy of control volume solution, this method can only be employed with a relatively small
peclet number. Since in PSA modelling the Peclet number usually has large value, this diffusion
correction function won’t resolve the numerical diffusion in our PSA modelling. All the
researchers have agreed that the first upwind scheme suffers numerical diffusion, and higher-
order upwind schemes seems a remedy for numerical diffusion, and noticing that it suffers

oscillation in a certain degree. : .

2 -4 Explicit Artificial Viscosity

Artificial viscosity which is explicitly added to the equations in numerical method is referred
to as explicit artificial viscosity. von Neumann and Richtmyer(1950), explicitly added a
viscosity-like term to the convectian equation in order to allow the calculation of shock waves.
Their explicit artificial viscosity term was deliberately made proportional to Ax?. Approach is

given below.

2-4.1 An Artificial Dissipation Scheme for the Navier-Stokes Equations
Kaniel, Mond and Ben-Dor (1993) use the finite element method to solve the Navier-Stokes
Equations. lIsotropic artificial dissipation is added to the Navier-Stokes equations along with a
correction term which cancels the artificial dissipation terms in the limit when the mesh size is
zero. For a finite mesh size, the correction term replaces the artificial viscosity terms with a
- hyperviscosity term, i.e., with an artificial dissipation which depends on the fourth derivatives of

the velocity.
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Development:
Spurious oscillations often occur in numerical solutions of the Navier-Stokes equations
which for incompressible flow are '
VeV =0 : (Eq2-4.1.1
Vv 1 ,
§+V0VV:—EVP+VV'V (Eq2-4.12)

The Numerical Scheme
Artificial viscosity is added to (Eq 2 - 4.1.2) as well as a correction term:

1%
5,-+VoVV=—%VP+(V+VH)V2 V+v Vx Q, (Eg2-4.13)
where the artificial viscosity v, iy assumed to constant, or

Vv
%—,—+V0VV=—F—1)VP+V [(v+v,) Ve VI =Vx [(v+v)Vx (Q-v Q)] (Eq2-4.14)

if the artificial viscosity is variable.

To demonstrate this, a finite difference discretization is used for which €J;; is given by:

VH-l,j—vl—l,j ut,j+l_u1,;-l
Q= - Eq2-4.1
b 2Ax 24y (Eq 2 )

The x component of the last term on the right hand side of (Eq 2 - 4.1.4) is therefore given by:

u -2u, . +u . _ U, iya—2u, +u, 4 s
——%{Vx Vo) =t T T B2 TR TR 22 g a)Y) (Eq 2-4.1.6)
(>

Ay’ Ay

It is obvious that the sum of the added terms [the artificial dissipation Vx (v, Vx V) plus the
correction term -V x(v_Q) is not zero, but it is small whenever the flow is smooth with respect to
the mesh size.

To summarize, instead of directly solving the Navier-Stokes equations; standard Galerkin

integrations are performed on the following equations:

u +v, =0 . (Eq2-4.1.7)
U, tu, =0 : (Eq2-4.18)
3} .
u;,u + (uu) + (uv) = - %P}+ [(v+V) (“I+"y)],+ [(v+v) (u,=v,) —vau]v (Eq2-4.19)
0 5
\ ;,\ +(uv) + () == %Pv+ [v+v,) (uwv) ] + [(v+v) (u,-v) -V Q) (Eq 2-4.1.10)

Artificial Viscosity Coefficient
For the discussed problem, four different artificial viscosity coefficients are presented in the
order of increasing accuracy.

These are
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\%
=P (Eq2-4.1.11)

) d
1 V

2= Il— U Y d=02 Eq2 1.12
(—g—)| Pe : (Eq2-4.1.12)
Va _ U &)’ =10 (Eq2-4.1.13)
V lé’ f’f q T el
2 _ ( e)zl vx Y ’ (E 2 4114
V Pé’ f ( Sz ) J q o )

where Pe is an elemental Peclet number, which is based on the analysis on a triangular element.

Pe =

u(y,~v.)+vix.-x)
max( , . ; _ IJ (Eq2-4.1.15)

i 60AB°
where i* is the vertex next to i the counterclockwise direction. A is the area of the triangle,
B’ = 213/ (24%) and 1 is the length of the ith side of the triangular element.

Numerical results derived using a coarse grid

The artificial viscosity coefficients were employed in the simulation of the flow over a
backward facing step----a realistic internal flow situation which has a variety of boundary
conditions and a complicated flow behavior. The present results compared favorably with the
experimental result and are by far more accurate than the numerical results obtained by using a

finite difference code.

2 -5 Conclusion for Chapter 2

From this chapter, we have learned that numerical diffusion results from truncation error
_exhibited by upwind difference schemes either applied in a finite difference method or a control
volume approach. Higher order upwind schemes have a better performance on numerical
diffusion, but with a certain degree of oscillation. A Universal limiter has been implemented to
improve the oscillation generated by higher order upwind schemes. An inexpensive diffusion
correction function has been developed to improve numerical diffusion in the control volume
formulation. Finally, we include the possibility of solving difficult P.D.Es by explicitly adding
artificial viscosity, which can be minimized when the mesh is refined. One important common
conclusion to be drawn from the paper studied in this chapter is that higher order upwind
schemes provide a solution for numerical diffusion when the Peclet number is high, which is the

case of our modelling of a PSA process.
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Chapter 3 Convection Equation

From the study on numerical diffusion in the last chapter, an important conclusion drawn is”~
that a higher order upwind scheme is'the solution to numerical diffusion: In this chapter, we will
explore the Numerical Method of Lines (NUMOL) and the Orthogonal Collocation Methad, in
which the higher ordcr\upwind schemes can be embedded.

Convection equations, so called first-order hyperbolic PDEs, can be solved analytically, and
this appears to be very simple. However, they are also a difficult class of partial differential
equations to integrate numerically. They are the major governing equations to be solved in our
modelling of a PSA process. In this chapter, we will discuss some physical properties of first-
order hyperbolic PDEs, and as a demonstration of each of the above methods, we will solve the
convection equation with each method. We then study the effect of numerical diffusion as well as

oscillation from them by comparing the results.

3-1 Convection Equation
In this section, we first study the physical properties of convective equation.

The convection equation is: o
J6 a0

= (Eq3-L1)

where ¢ can represent any intensive properties of the fluid, such as temperature. Since it is first
order in ¢ and x, it requires one initial condition and one boundary condition:

(0.1 = f(1), 6(x.0) = g(x) (Eq3-1.2)

It 1s very easy to verify that the analytical solution to (Eq 3 - 1.1) to (Eq 3 - 1.2) for the

special case g(x) = O and f(t) = O fort < 0:
0(x.1) = f(r—'g) (Eq3-13)

Further, if we consider the additional special case f(t) = /, t > (), so that at x = 0, the entering
temperature undergoes a unit step change at¢ = 0 is

0,1<0 R
Sy =u() = {“20 (Eq3-14)

Following the (Eq 3 - 1.3),
o0 = ult=3) (Eq3-1.5)

1.., the unit step in temperature at x = () propagates along the tube at velocity v, and
eventually, at r = L/v, the unit-step will reach the other end of the tube (L is the length of the tube).
At any position along the tube when ¢ = x/v, an observer would see a unit step function pass by. In
other words, the convection equation propagates a finite discontinuity along the tube for this
special case. .
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The above property of a first-order hyperbolic PDE causes a problem in computing a
numerical solution. Consider the slope of the solution at any point x along the tube when t = x/v;
the slope ¢, in (Eq 3 - 1.1) is infinite. Clearly, any numerical procedure based on well-behaved
functions will fail under this condition. Therefore the general methods which work well on
parabolic PDEs or elliptic PDEs will not succeed in dealing with first-order hyperbolic PDEs.
Unlike the parabolic or elliptic PDEs, the first-order hyperbolic PDE can represent propagation

discontinuity or shocks.

3 -2 Solving Convection Equation with the Numerical Method of
Lines

3-2.1 A Brief Introduction to the Numerical Method of Lines

Generally, we need to replace PDEs with algebraic approximations, and then to obtain
approximate numerical solutions to PDEs with the auxiliary conditions. This proéedure is the
basis for well-known classical finite difference, finite element, and control volume methods for
PDEs. The Numerical Method of Lines (NUMOL) is really just a small departure from this basic

approach.

x0 x1 x2 x3, x4 " x5 x6 x7

x=0) x x=1

Figure 3 - 2.1.1 sketch of numerical method of lines
In NUMOL, we retain the index i to account for variations of the dependent variable ¢ with x,
but we treat  as a continuous variable. Thus, we keep the derivative ¢, term, and substitute the
derivatives ¢, or ¢, terms with an difference approximations; this will lead a system of ODEs in
t. This is the essence of the NUMOL. One of the advantages of NUMOL is that there are many

ODE:s solvers available either in the commercial market or research field.
Therefore, the basic steps of NUMOL.:
1. Space differencing
2. ODE integration
Next, we will follow the NUMOL procedure to solve the convection equation.
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3 -2.2 Spatial differentiation

Space discrétizafion of the PDEs produces a system of ODEs. As studied in Chapter 2, for
spatial discretization of convection term, first upwind difference suffers numerical diffusion,
while centered differencé has serious oscillation, and higher-order upwind difference seems a
remedy for numerical diffusion. Several finite difference formulations (Schiesser 1994) have
been used to approximate the convection term, and similar conclusions can be drawn from
comparison of the results. These approximation formulas are listed in the following:

1. DSS002----one-dimensional, three-point centered approximations for first-order

_derivatives, suffer oscillation problems,

2. DSS004----one-dimensional, five-point centered approximations for first-order
derivatives, suffer serious oscillation problems.

3. DSS012----one-dimensional, two-point upwind approximations for first-order derivatives,
suffer serious numerical diffusion.

a. DSS(14----one dimensional, three-point upwind approximations for first-order
derivatives, gives an improved result on oscillation and diffusion.

5. DSS020----one-dimensional, five-point upwind approximations for first-order derivatives,
gives the best performance among these five methods.

Schiesser (1994) also shows that among higher-order upwind difference formulatiors, five-

point upwind DSS020 is the optimal choice between accuracy and oscillation.

In our experiments, DSS012 and DSS020 for the spatial discretization of convection term are

implemented. Here we briefly explain these two methods:

DSS012---First-order upwind approximation to u,:

for v>():
d¢ (Xl) _ ¢(X2)‘¢(Xl) X
. dx (Eq3-2.2.1)
L4 (x)  0(x) -0(x,_y) )
i Ir (Eq 3-2.2.2)
for v<(): <
Cde(x)  0(x,) ~0(x)
rraie T (Eq 3-223)
do(x,)  0(x,)-0(x, ) .
= P (Eq 3-2.2.4)
DSS020---Fourth-order upwind approximation to u,
for y>():
A GILANIE BIPPY 48 36 16 3 Eq3-2.25
T M SRRl AC IV ¢’(X:)\f» O (x3) + 166 (xy) =30 (x4)) (Fq3-2.2.5)
do (x,) | -
- Tk (=3¢ (x)) — 100 (x5) + 18 (x3) =60 (x;) +¢ (x5)) (Eq 3-2.2.6)
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D009 L (x,) ~80(xp) + 06 (xy) +80 (x0) - 6(x9)) (Eq3-22.7)
dx 12dx ! 2 } ¢ ’
do(x) |
T = o (CO(s) +60.(x, ) — 180.(x,_) + 100 (x) +30(x,, ) (Eq 3-2.2.8)
00 _ L Gewx,_ - 166 ~3) +360(x,_,) —48¢ (x,_,) +250(x,)) (Eq3-2.29)
dx 12dx " " "o " ’
for v<0:
PO L 250x,) + 486 (x2) — 360 (xy) + 166 (x,) — 30 (x,)) (Eq 3-2.2.10)
dx 12dx ! ° } ! ’
do(x) |
— e = T IO~ 100 (x) + 180(x,, 1) ~ 60 (x,,2) +0(x,, 1) (Eq3-22.11)
do(x,_,) 1
T = 5 (0(x,_0) ~80(x, 1) +00(x,2) +8O(x, ) =0 (x,)) (Eq3-22.12)
do (x,_)) 1
o = g (0, ) +60(x, 5) —180(x, ) +100(x,_) +30(x)).  (Eq3-22.13)
a0 _ -—l—(3¢)(x ) =160 (x, ) +360(x, ;) —480(x, ) +250(x,)) (Eq3-22.14)
dx 12dx "o "3 e " "

The performance of DSS020 is better than centered difference methods DSS002 and DSS004
on oscillation, and better than upwind difference methods DSS012 and DSS014 on numerical
diffusion. However it still produces some oscillation. It has been found that if we can use a slope
step function, the so called “ramp function”, to approximate the unit step for the boundary, the
numerical results will agree with the analytical results better. That is also true in reality, in a
realistic model, we would not expect propagating discontinuities; generally, there will be some
physical phenomenon that will produce a finite rate of change, for example, molecular diffusion
of temperature, mass, or momentum. In the implementation, we use 1(t) = ¢(0, t), which has a
steep but finite slope

0,1<0; .
r{t) = |sx,0<1< (1/5) (Eq3-2.2.15)
Lt> (1/%)

Here slope can be taken s=95, 10, 20.

Thg exact solution of the convective equation corresponding to this boundary condition is:

O(x.0) = r(t-"2y (Eq3-2.2.16) -
V

3-2.3 ODE integration
After space-discretizing the PDE, the problem has been converted to solve a system of ODEs.
The system of ODEs generated by the spacing differencing of the convective equation is stiff.

Therefore we need an implicit method to solve ODEs.
There are many implicit methods for integrating stiff ODEs. In our implementation, we
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employed the semi-implicit extrapolation method (Press, Teukolsky, Vetterling 1995) for our
ODE integration.

Semi-implicit Extrapolation Method

Complete information about the Semi-implicit Extrapolation Method can be found in (Press,
Teukolsky. Vetterling 1995). We just excerpt some necessary part to make this chapter self-
contained. -

First look at the first order implicit method.
For the system of ODEs: %

0 = f(0) (Eq3-23.1)

implicit differencing gives

0" = 0"+ hf(O"T) . (Eq3-232)
Suppose we try linearizing the equations:

n+l= n h n g
¢ o+ [f(¢)+a¢)

(0" —¢")J (Eq3-2.33)
”

Here gg is the matrix of the partial derivatives of the right-hand side (the Jacobian matrix).

Rearrange the equation into the form

. . .
ot = ¢)"+h|:l—h%] f(0)) (Eq3-234)
If h is not too big, only one iteration of Newton’s method may be accurate enough to solve

(Eq 3-2.3.1) using (Eq 3 - 2.3.4). In other words, at each step we have to invert the matrix/- h%
to find ¢"*'. Solving implicit methods by linearization is called a ““semi-implicit” method, so (Eq
3 - 2.3.4) is the semi-implicit Euler method.

The above method is only first-order accurate. Most problems will benefit from higher-order
methods. Here we use the implementation of a semi-implicit extrapolation method due to Bader

and Deuflhard (1983).
The starting point is an implicit form of the midpoint rule:

n+l+ n—1
¢n+1_¢n_1:2hf(¢’ 7‘1’ ) (Eq3-23.5)

éonvert this equation into semi-implicit form by linearizing the right-hand side about /(0" :

the result is the semi-implicit midpoint rule

[1 -h%}o”‘ - [1 +h%]o"“‘ +2h[f(0)"—%{0"} (Eq 3 - 2.3.6)

It is used with a special first step, the semi-implicit Euler step (Eq 3 - 2.3.4) and a special
“smoothing™ last step in which the last ¢ is replaced by
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o = %(0“1_0"-1) (Eq 3-2.3.7)

There are also other methods for stiff systems, such as the Rosenbrock methods, which is a
generalization of the Runge-Kutta method, ang-the Gear’s backward differentiation method. Here

we chose the semi-implicit extrapolation method after comparing these methods.

3-24 The Computqtion Results .

The experiments has been done based on four cases.

1. DSS012 method with unit step boundary condition.

convection (MOL) for x=0 Sunt step boundarymethod DSS012 mesh 31

- - o ———

data—-boundary und step method DSS012 mesh 31

T [ -
oot -
1 /
et /.
’
08y ’
07+ ’
4 rd
06+ v
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024 04} ;
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0.l 03t 1/
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02 0 0 o —'; L t L " L
(b)o or 02 03 04 05 06 07 08 09
t

(a) t 0 o

Figure 3 - 2.4.1 Computation result by NUMOL (DSS012) with unit step boundary condition,
mesh=31 (a) 3D plot, (b) 2d plot at x=0.5 against exact solution (solid line)

2. DSS020 method with unit step boundary condition.

convection (MOL) for x=0 Suntt step boundary method DSS020 mesh 31

data—boundary unt step method DSS020 mesh 31

s -~
t2 1 T =
'
LN ’/
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!
064
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—012) 02 i
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Figure 3 - 2.4.2 Computation result by NUMOL (DSS020) with unit step boundary condition
mesh=31, (a) 3D plot, (b) 2D plot against exact solution (solid line)



3. DSS012 method with slope step bbundary condition.

data——boundary:siope 10 method DSS012 mesh 31

convection (MOL) for x=0 Ssiope 10 boundarymethod DSSO12 mesh 31

1~ e
' 09r
08+
07h
o6t

=05}

0O4r

(a) t 0 9 (b) 0 0‘1 0‘2
Figure 3 - 2.4.3 Computation result by NUMOL(DSS012) with steep slope (slope=10) step boundary
condition mesh=31, (a) 3D plot, (b) 2D plot against exact solution (solid line)

4. DSS020 method with slope step boundary g)ndition

data—boundary siope 10 method DSS020 mesh 31 convection (MOL) for x=0 SS\WG 10 boundarymethod DSS020 mesh 31
. 120

08t

06

04}

02p

(a) 1 0 o (b)ﬁzo o1 02z 03 04 05 08 07 08 03 1
Figure 3 - 2.4.4 Computation result by NUMOL(DSS020) with steep slope (slope=10) step boundary
condition mesh=31, (a) 3D plot, (b) 2D plot against exact solution (solid line).

The purpose for these experiments is to examine the performance of the method of DSS012
and DSS020, including the effect of boundary condition. To examine the performance, we

observe the numerical diffusion and oscillation among the above different situations.
At first, we look at the results of case (1-4). The finding are listed here:

1. The method of DSS012 (first-order upwind) with a unit step or slope step boundary
condition, suffers numerical diffusion but without oscillation (Figure 3 - 2.4.1 & Figure 3 -
2.4.3). As the mesh gets finer, the effect of numerical diffusion is getting less.

2. The method of DSS020 (fourth-order biased upwind) with unit step or slope step

RE]



boundary condition, gives much improvement on numerical diffusion, but suffers some
oscillation (Figure 3 - 2.4.2 & Figure 3 - 2.4.4) The effect of oscillation and diffusion
becomes less as the mesh gets finer (Figure 3 - 2.4.5). .

3. The effect of oscillation and diffusion in the DSS020 method with slope step boundary
condition becomes less than with unit step boundary condition, and the results have better
agreement with the exact solution (Figure 3 - 2.4.4).

5. DSS020 method with slope step boundary condition with much finer mesh

data—boundary siope 10 method DSSO20 mesh 61 convection {(MOL) for x=0 Ssiope 10 boundarymethod DSS020 mesh 61
. 12, . .

08r

06}

04r

02

02 . L 1 s |
(b) 0 01 02 03 04 05 06 07 08 09 1

(a)

Figure 3 - 2.4.5 Computation result by NUMOL(DSS020) with steep slope (slope=10) step boundary
condition mesh=61, (a) 3D plot, (b) 2D plot against exact solution (solid line).

3-2.5 Comments |

The numerical method of lines, along with five-point upwind spacing differencing for the
first-order space derivative, and semi-implicit extrapolation integration for the O.D.E, can be
used to solve the convective equation with steep slope boundary condition, and acceptable results
are achieved. The number of mesh points in the method of lines is not restrictive, but the
computations are expensive when the mesh gets finer (case 5). The higher order upwind schemes

indeed offers a solution to numerical diffusion.

3 -3 Solving Convection Equation With the Orthogonal
Collocation Method

3-3.1 A Brief Introdgxctlon to the Orthogonal Collocation Method

Another method embefided with higher order schemes is the orthogonal collocation method.
In this section, we briefly introduce this method; for detail we refer to Finlayson (1972) or

Appendix.

In a similar manner as NUMOL, by the orthogonal collocation method, the original P.D.E can
be reduced to a system of O.D.Es, and then the resulting system of O.D.Es. can be solved by
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standard subroutine.

Trial Function & Orthogonal Polynomials

Consider an unknown function o¢(x.1), which satisfies partial differential equations and
boundary condition. an Approximating function called a trial function can be chosen, such that
the boundary conditions are satisfied. Depending on the problem, non-symmetric or symmetric

trial functions‘ should be used. _ *

To solve the convection equation, a non-symmetric trial function is used, as defined by

M
6(61) = (1=x)6(0,7) +x6(1, 1) +x(l—x)2a,(‘t)P‘_l(x) (Eq3-3.1.1)
=1 'd

where « (1) are functions of time or constants and P, are orthogonal polynomials defined by

1
jw(x)P"me(x) dx = O,n = 0,1,...m— | (Eq3-3.12)
()

where w(x) is weight function, such as w(x) = 1 in this work. The polynomials defined by (Eq

3 - 3.1.2) are shifted Legendre polynomials.
The collocation points x,. ...x,,, , are the roots of P,«x) = 0,and x, = 0, x,,,, = 1.

The resulting orthogonal polynomials and corresponding collocation points can be found in
the literatures e.g. in Finlayson (1972) for order up to 7. However, in many situations, we need
higher order polynomials. Indeed, these orthogonal polynomials can be computed in a simple
manner by the Gram-Schmidt Orthogonalization procedure using inner product (Dorny 1935).
The symbolic computation can be implemented in Maple V. The order of resulting polynomials
can be as high as 20, and different polynomials can be easily obtained by changing the definition
of inner product corresponding to the definition of each individual polynomial, limited only by

the computer capability. For detail we refer to the Appendix.

Interior formulas based on ordinates
The Trial function can be formulated to an equivalent set of equations in terms of the

unknown ordinates ¢ (x)). 6 (x,)..... 6 (xy) .

The corresponding set of collocation matrices can be written for the nonsymmetric trial

functions (Eq 3 - 3.1.1) based on the shifted Legendre polynomials.
Rewrite (Eq 3 - 3.1.1) as,
M+
0(x) = Zd/f“ (Eq 3-3.1.3)
j=1
’

Evaluate at collocation points, i.e.,

40



M+2

o(x) = Y dx” - (Eq 3-3.14)

J=1
Take the first derivative and the second derivative of this expression and evaluate th@ at the

collocation points:

M+?2
~1
I YR (Eq 3-3.15)
dx| . ey dx |
o] U A
7o - Zdj_(_’f (Eq 3-3.16)
2 2 |
d.x x =1 d—x |X‘
These can be wnitten in matrix notation as
> 0=0d4,0,=x"", (Eq3-3.1.7)
. d -1 ' _n
@ - ca, c, =& = (- DY, (Eq3-3.18)
dx 4 dx |, \ :
s -1 N
19 _ pa, D,jziiz_(ﬁ =u-ny-2277, (Eq 3-3.19)
dx - dx’ X '
Since d = Q0 '¢
d - , -
W ca- CQ'o = A%, (Eq3-3.1.10)
dx
£ _
? =Dd=DQ ' =B (Eq 3-3.1.11)
dx”
Matrices A*, B* are called collocation matrices.
Where,
o a0 ]
e N =) i\
M+ 2 Y ’ -1
[, 7] = o ' 0l (Eq3-3.1.12)
dx’ dM!
.. L
Vz()‘”)l,l V:("MH)LI
(M+2) ' Y ' -1
[any™ ™= : f (Eq3-3.1.13)
Vz(.r”)|j“ V_(JMH)‘XW
N | 1
W s ([l [ a0 (Kq3-3.1.14
0
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[ 1 M+
1 x x,
[Q] = | ’ r e ’ (Eq 3 -3.1.15)
1 1 r o 2’I
" M +2 M+ 2]

The original P.D.E. can then be written in collocation form, which gives a system of O.D.E.s.

3-3.2 Solving Convection Equation with the Orthogonal Collocation Method

Rewrite the convection equation which is subject to initial and boundary conditions: -

? = —vgg (Eq3- 3.2.11)
0(0.1) = f(1), 0(x.0) = g(x) (Eq 3-3.22)
where

f =i = (0 (Eq3-3.23)

1:620;

0, <0
or r(1) = |sx,0<1<(1/5) (Eq3-3.24)

11> (1/5)

The profile of ¢ is approximated by the following nonsymmetric trial function (Eq 3 - 3.1.1)
based on the shifted Legendre polynomials:

M

o(x 1) = (l—x)q;((),r)+x¢(1,r)+x(1—.r)2a,(r)/>,_,(_r) (Eq3-3.2.5)
=1
where the polynomials are defined by:
]
jw(x}anl’m(x) dx = 0,n =01, ...m-1 (Eq 3 - 3.2.6)

} -

where w(x) =1 .

Then, (Eq 3 - 3.2.1) is reduced to a system of O.D.Es by writing it in the collocation form:

:—\'EA;‘Q)(xl),j =2,..,m+2 (Eq3-3.2.7)

1=

and o(x, 1) =f(1) ,0r 0(x, 1) =r(1).

do (x)
dt




3-3.3 The Computation Results

1. Orthogonal collocation with unit step boundary condition
3D plot—boundary unt step mesh 21

2D piot at x«0 5 boundary untt step mesh 21
12¢ . . .

/"
e

P
=
> Yo ==

///

Figure 3 - 3.3.1 Computation result by orthogonal collocation method with unit step boundary
condition, mesh=21, (a) 3D plot (b) 2D plot against exact solution (solid line)

2. Orthogonal collocation with slope boundary condition
3D plot—boundary siope 10 mesh 21

2D plot at x=0 5 boundary slope 10 mesh 21
12r :

08t

o6r

04

02k

02 . . .
(a) * (b) !
Figure 3 - 3.3.2 Orthogonal collocation methog with slope (slope=10) boundary condition mesh=21

(a) 3D plot (b) 2D plot against exact solution (solid line)

3-3.4 Comments:
From the above Figure 3 - 3.3.1 & Figure 3 - 3.3.2 we can see that the orthogonal collocation

method also has improved performance on numerical diffusion. With a unit step boundary
condition, it suffers nonphysical oscillation; however, with a steep slope boundary condition, the
effect of oscillation becomes less, and the numeftical solution agrees with analytical solution

well. Since the orthogenal polynomials can be computed to order 20 at present, so the mesh
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number is restrict to no more than 22, which gives sufficiently accurate results.

3 -4 Comparison between NUMOL and Orthogonal Collocation
Comparison between the numerical method of lines and orthogonal collocation can be done
by observing the performance of numerical diffusion and oscillation when solving the convection
equation. In this section, we are going to present the computation results based on the same mesh
number, and compare the results and computation time. The upwind difference method used in
NUMOL is DSS020 which we have concluded to be the best upwind scheme among the finite
difference formulas for first spatial derivative. Also, in the computation with both methods, we
allow the program to choose an integration step with loose restriction of 0.05 as an upper limit.

3-4.1 observation of performance on numerical diffusion and oscillation

20 plot at x«0 5 boundary slope 10 mesh 9 20 plot at x=0 5 boundary siope 10 mesh 13
12¢ 12r .

‘ -020 0‘1 ﬁZ OAS OLA OLS 0‘6 0‘7' 0‘5 0‘9 ; -0 20 0‘1 0A2 013 OAA 0L5 0‘6 017 68 OLQ ;
) 1 (d) t
Figure 3 - 4.1.1 2D plot of profiles at x=0.5 with steep slope step 10, maxstep=0.05 (*---NUMOL, o---
-orthogonal collocation), (a)mesh=9, (b) mesh=13, (c)mesh=17 (d) mesh=21




3 -4.2 Comparison of Computation Time

Table 3 - 4.2.1 Comparison of Computation Time

numerical method of lines orthogonal collocation
mesh .
numbers com;():etzci:)ircl)g)time integration steps com;():et?:)isg)time integration steps
‘7 0.2 38 0.1 26
9 0.3 37 0.2 26
11 0.4 41 0.3 26
13 0.4 27 0.4 26
15 0.7 38 0.5 26
7 " |12 147 0.7 26
19 1.8 69 0.8 26
21 2.6 95 1.1 26

3-4.3 Conclusion for Chapter 3

In this chapter,‘we have used the numerical method of lines and the orthogonal collocation
_method to solve the convection equation. In NUMOL, the higher order upwinding scheme
DSS020 is chosen for first-order spatial derivative approximation. And in orthogonal collocation,

we use inherited global higher order collocation forms for space derivatives. Therefore, in both

methods, higher crder formulations have been embedded in the methods to handle the numerical

diffusion. From Figure 3 - 4.1.1, it can be seen that the orthogonal collocation method has better

performance on numerical diffusion and less oscillation for the same mesh number. Also from

Table 3 - 4.2.1 the computation time for same number of mesh points, orthogonal collocation

take less computation time, which is result of larger integration step allowable in orthogonal

-
collocation method because more accurate formulation than in numerical method of lines.

Therefore, orthogonal collocation has a better performance than method of lines for convection

simulation for the same number of mesh points. The number of mesh points in method of lines is

not restrict, but computation are more expensive when mesh get finer.
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Chapter 4 Convective Diffusion Equation

4 -1 Convective Diffusion Equation

Consider the extension of convection equation (Eq 3-1.1) to include axial diffusion: o
30 a%»
= = “”a—x . (Eq4- 11

The above equation is a convective diffusion equation or parabolic-hyperbolic PDE; D is an
axial diffusivity.

One initial condition is:

0(0,1) = f(n (Eq4-12)

Boundary conditions are:
0(x.0) = g(x) (Eq4-1.3)
0. (L) =0 (Eq4-1.4)

Since (Eq 4 - 1.1) is second-order in x, it requires two boundary conditions.
(Eq 4 - 1.2) specifies only convection takes place at the exit of the tube.

Since (Eq 4 - 1.1) reduces to Fourier’s second law for v = 0, and the convection equation for
D=0), the numerical solution should have the properties we would expect (i.e., properties of the

solutions for both Fourier’s second law and the convection equation)

4 -2 The NUMOL Solution of Convective Diffusion Equation
Compute a NUMOL solution to"equations (Eq 4 - 1.1) to (Eq 4 - 1.4) for f{t)=1, g(x)=0,
v=L=/. We will use DSS020 to calculate the convective derivative % and DSS044 to calculate

dx
the diffusion derivative z—— in(Eq4-1.1)

4 - 2.1 Space Discretization

In chapter 3, we described DSS020, which is the optimal choice of approximation to the first-
order space derivative. Here, we only give the approximation form DSS044 to second-order
space derivative.

In the implementation of NUMOL, two different boundary conditions are considered. They
are: Dirichlet boundary (the value of boundary point is specified) or Neumann boundary (the
derivative of boundary is specified).

The approximation to second-order space derivative:
with Dirichlet boundary at inlet,

d% , :
o S (456(1) — 1540(2) + 2140 (3) - 1560 (4) + 616 (5)~106 (6)) (Eq4-2.1.1)
dx 4\ dx
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at o‘utlet,

2
do, 2

= (456 (n) — 1546 (n—1) + 2146 (n—2) - 1560 (n~3) + 616 (n-4)-106 (n-5)} (Eq4-2.12)

Y

d12 4! dx”

with Neumann boundary condition, at inlet,

- e, v 4 3 a0,

15 32 ;
-, — = (- 96 -360(3) + =0 (4) —26(5) - 50— d. 4-2.
P 4!d12(( 3 JO (1) +960(2) o(3) + 3¢>( ) 211)( ) 50"11)r x) (Eq4-2.13)
at outlet,
v, 3 3 do_
— :—2ﬁ((—il—s)m(n)+960(n—1)—36¢(n—2)+£®(n—3)—;®(n—4)'w“50 dx) (Eq4-2.14)
dx®  4ldx 6 3 2 dx
for all interior points
dloz 2
~ = 5 (106 (1) -156(2) -40 (3) + 140 (4) -6 (5) + 0 (6)) (Eq4-2.15)
dx” 4 dx” ’
d2ul 5"
e (=100 (i-2) +160 (i~ 1) — 3Qa(i) + 160 (i+ 1) — 1.06 (i +2)) ‘ (Eq4-2.16)
dx”® 4! dx* ) .
dzun—] 2
— = = (100 (n) =156 (n=1)-40(n=2) + 140 (n-3)-60(n-4) +d(n-15)) (Eq4-2.1.7)
dx” 4! dx”

4 -2.2 ODE Integration

After space discretization for the first-order derivative and second-order derivative, we obtain
a system of ODEs, we used the same ODE integrator as used in chapter 3. We have known that

.

the ODE integrator is step-variable at this point.

4 - 2.3 The Computation Result
Tests have been conducted for various values of diffusion coefticient. Maximum integration

step size is 0.05,



1. Pure convection case by setting v=1.0, D=0
30 piot by NUMOL boundary siope 10 mesh 21 vat d=0 20 piot by NUMOL for x=0 5 boundary siope 10 mesh 21 va? d=0

08f

o6

04fF

02r

(a) (b)
Figure 4 - 2.3.1 Simulation for convective diffusion by NUMOL with steep Slope (=10) boundary

condition, mesh=21, pure convection case (a) 3D plot (b) 2D profile at x=0.5 against exact solution
(solid line)

2. Convective Diffusion with v=1, D=0.01 -

3D plot by NUMOL boundary slope 10 mesh 21 va1 d=( 01
2D plot by NUMOL for x=0 5 boundary siope 10 mash 21 vai dw=0 01t

081 ’

osH 4

02+ /

(a) (b)

Figure 4 - 2.3.2 Simulation for convective diffusion by NUMOL with steep slope (=10) boundary
condition, mesh=21, convective diffusion case (a) 3D plot (b) 2D profile at x=0.5
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* 3. Pure diffusion case with v=0, D=1.0

3D plot by NUMOL boundary siope 10 mesh 21 va0 du 1 2D piot by NUMOL for x=0 5 boundary siope 10 mesh 21 ve( dat

(a) (b)

Figure 4 - 2.3.3 Simulation for convective diffusion by NUMOL with steep slope (=10) boundary
condition, mesh=21, pure diffusion case (a) 3D plot (b) 2D profile at x=0.5
4 -2.4 Comments 1
It is evident that the solution is dispersed as the physical diffusion coefticient increased, and
with v=/, D=0, the solution resembles that of convective equation; with v=0, D=/, the solution
resembles the diffusion equation. It is also noticeable that as D increases, the oscillation of

solution disappears but with strong physical diffusion effect instead.

From the experiments we have conducted so far, we can see thé method of lines can handle

both the convective and convective-diffusion equation.

4 - 3 Solving Convective Diffusion Equation with the Orthogonal
. Collocation Method.

4 - 3.1 Collocation Form
Again as in last chapter, we use the nonsymmetric trial function based on the shifted
Legendre polynomials. Then collocation form of (Eq 4 - 1.1) can be:

m+2 m+2

- () = —VZA,‘_,MX,) +DZBJ'_‘¢(x,),j =2 ...m+2 (Eq 4-3.1.1)

i=1 j=t
The collocation form of boundary condition at outlet is:

m+2

ZA’M:J@ (x) =0 (Eq4-3.1.2)

1=

(Eq 4 - 3.1.2) can be used to deduce the form of boundary point:
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m+2

O(x,,,) = ZA;+2‘|¢(Xi)/A;+2_m+Z

1=

Substitute the above equation into (Eq 4 - 3.1.1), we have:

m+ 1 m+ |

(x)—— Z"w‘i’(”*”ZBﬂ“’(“

=] 1=

m+1 m+ |

Al
A

m+2.m+2;=] m+2m+2,=1

m B m
_‘,___’_"2_2Am+2‘¢(x)+DA’ N A 1O

(Eq4-3.13)

(Eq4-3.14)

Thus, (Eq 4 - 1.1) has been reduced to a systen{ of O.D.Es by the orthogonal collocation

4 -3.2 The Computation Result

method, the resulting O.DE’s will be solved by standard O.D.E solver.

Tests has been conducted based on various value of physical diffusion by orthogonal

collocation method, maximum integration step is 0.05:

1. Pure convection case with v=1.0, D=0

30 plot by Orth-Coll boundary slope 10 mesh 21 vetl D=l

08t

o6t

02¢

(a) - (b)

Figure 4 - 3.2.1 Simulation for convective diffusion by the orthogonal collocation with steep slope
(=10) boundary condition, mesh=21, pure convection case (a) 3D plet (b) 2D profile at x=0.5 against

exact solution (solid line)
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2. Convective Diffusion with v=1, D=0.01

3D piot by Orth-Coll boundary slops 10 mesh 21 ve1 DaQ 01

(a)

20 plot by Orth-Coli at x~0 5 boundary siope 10 mesh 21 v=1 D=0 01t

o
01 02 03 04 5 06 07 08 08 1

Figure 4 - 3.2.2 Simulation for convective diffusioh by orthogonal collocation with steep slope (=10)
boundary condition, mesh=21, convective diffusion case (a) 3D plot (b) 2D profile at x=0.5

3. Pure diffusion case with v=0, D=1.0
3D plot by Onh-Coll boundary skope 10 mesh 21 v=0 D=1

(a)

2D piot by Orth-Coll at x=0 5 boundary slope 10 mesh 21 ve0 De1 “

(b)

Figure 4 - 3.2.3 Simulation for convective diffusion by orthogonal collocation with steep slope (=10)
boundary condition, mesh=21, pure diffusion case (a) 3D plot (b) 2D profile at x=0.5

4 -3.3 Comments

‘&

Similar comments can be made for the results by the orthogonal collocation method: the

solution i§ dispersed as the physical diffusion coefficient increased, and with v=/, D=(), the

solution resembles that of convective equation; with v=0, D=/, the solution resembles the

diffusion equation. It is also noticeable that as D increases, the oscillation of solution disappears

Al
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but with strong physical diffusion effect instead. Generally, the result by the orthogonal

collocation method is more accurate than method of lines at same mesh number.

4 -4 Comparison of the Results and Conclusion

A comparison between results by numerical method of lines and orthogonal collocation

method, based on the simulation of convective diffusion equation with various value of diffusion

parameter.
2D plot for x=0.5 boundary slope 10 mesh:21 v=1 d=1
1.2F o . : : . :
1+ > —’&—‘5 W_O* 1R |
G._o.u—o-l "
g,;""l : e -
» F-% 4 ,/ : ~O“!o
0.8+ o™ & 7 . 'o" .
am 7 fr g
@™ f 3/,,0’
c;(
o6r x’, ,Q
- %?I‘OO >
. ﬁ /
0.4}t > : -
P : )'(d ;ﬁf
* 0.1 /P
0.2+ o : o’ SN B
» /
- _
el enamaEian o it *0,5-"!
D=0.001
_02 L 1 1 l 1 —1 i 4 l 1 ]
0.1 0.2 0.3 04 0.5 0.6 0.7 o8 0.9 1

t

Figure 4 -4.1 Comparison between NUMOL and orthogonal collocation, mesh=11. (*--NUMOL
results, o--orthogonal collocation result.

We can see from the above Figure 4 - 4.1, that the orthogonal collocation can handle
convective diffusion equation which has small physical diffusion better than the numerical
‘method of lines, with less numerical diffusion and nonphysical oscillation (D=0.001). With
increasing of physical diffusion, the results of two methods agree very well. Since in PSA
modelling, we are interested in a method which can handle strong convection, and a self-
sharpening curve, therefore, as the conclusion of this chapter, we are in favor of the orthogonal

collocation method.
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Chapter 5 Simulation of a Fixed-Bed Adsorption Column

Ruthven (Raghavan & Ruthven 1983) presents the orthogonal collocation method solution to
a typical problem of adsorption in which a fixed-bed adsorption column is described. The
problem presents a rather difficult mathematical model to solve numerically, and more important
it has an analytical solution (Rasmusorf and Neretnieks 1980), therefore, we choose it as a basis
for the comparison of NUMOL and orthogonal collocation in order to give us an insight into the

performances of the two numerical methods.

5-1 Description of the Fixed-Bed Adsorption column

We considhﬂbcnnal adsorption column, packed with porous spherical particles, which
is subjected, at ime ?A‘o. to a small step change in the concentration of an adsorbable species in
the carrier. The flow pattern is described by the axial dispersed plug-flow model, and both

external and internal diffusional resistances to mass transfer are included.

particle diffusion
dsorbabl y
acsorbadle —— Particle Be#Y
species
+
_>. '
carrier external fluid »
—_— z

Figure 5 - 1.1 diagram of adsorption bed

5 -2 Mathematical Model:

The system may be described by the following set of equations.
2

5-.2.1 Dimensional Form:

Particle Diffusion:

d  (dy 299
W_D(§7+75) (Eq 5-2.1.1)

Initial and boundary Conditions:

gr,0|,., =09 (Eq5-2.12)
%9l (Eq5-2.13)
ol _, a»- =
aq [ qlr:R} ~
Dyl ke - (Eq5-2.1.4)
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External fluid:

)) (Eq5-2.15)

ac{ .
Dla—’ 4/—"(6"2:0 _CIZ:O') (Eq5'2.l.6)

=0 (Eq5-2.1.7)

5-2.2 Dimensionless Form: )
In our numerical simulation, we use the dimensionless forms of equation (Eq 5 - 2.1.1) - (Eq

5 - 2.1.7), to compute the solution. The dimensionless forms of above equations @n be written:

Particle Diffusion:

00 5 00 200
= V' = — 5‘ 2.2.1)
ot ¢ on? Ao 4

Initial and boundary Conditions:

oMl _, =0 (Eq5-2.22)
an =0 (Eq5-2.23)
an n="0n )
190 g[U—Ql“zl} (Eq 5-2.2.4)
Konli,_, K

External fluid:

oU 19U oU o, -,
— = —yB— —yOf-— -3 - -2
g Pewﬂaxz WO=- — 3y (U= ——) (Eq 5-2.2.5)

Boundary conditions:

W~ _peyy  -U ) (Eq 5 - 2.2.6)
ax o x=0 x=10N
wr (Eq5-22.7)
a'r x=1

Table § - 2.2.1 Parameters in dimensionless form:

Parameter Definition
Peclet number: Pe = (Lv)/D,
distribution ratio: o -k
y = K(T)
bed length parameter: o vRYe
T LDK(1-¢)
film resistance parameter: § = kR/DK
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Tabled - 2.2.2 Dimensionless Variables

Dimensionless variables Definition
Q: dimensionless internal concentration in particles Q =4/C,
n: dimensionless radial distance in particle In=r/R
U: dimensionless fluid-phase concentration U=Crc,
x: dimensionless axial distance x=z/L
t: dimensionless contact time \ t = (D) /R’

Since (Eq S - 2.2.1) and (Eq 5 - 2.2.5) are coupled by (Eq 5 - 2.2.4), we need to solve these
equations simultaneously. Also, (Eq S - 2.2.1) implies that the particles in the bed are being
treated as a cylinder along the length of the bed, therefore, the internal concentration in a particle
can be affected not only by (Eq 5 - 2.2.1), but also by the fluid-phase concentration at its axial
position; meanwhile, the external fluid concentration at an axial position can be computed by
both (Eq 5 - 2.2.5) and the surface concentration of the particle at that axial position. We will
solve this problem with both NUMOL and the orthogonal collocation method and compare the

results against exact solution (Rasmuson and Neretnieks 1980).

5-2.3 Space Discretization of the Computational Domain
In either of the methods, we need first to space discretize the computational domain Figure 5
- 2.3.1, the mesh points in external fluid domain and internal fluid domain can be finite difference

mesh points or collocation points.

QO an)

Qi)

S O T I O |
[

LA T S S A |

| O R A R |

[ T R T R B}

[ A A

=3
| T I R I
[ N

W

|
|
I
\
\
i
|
1

Uiy

Figure 5 - 2.3.1 Space discretizing of the computational region
Since we treat the collection of spherical particles in the bed as a cylinder along the length of
the bed, the computational region is not identical to the physical region. To compute the external
fluid-phase concentration, we not only need to know the concentration at axial positions, but also
need the internal concentration at radial positions. For example, to compute U(i), we need the

information of U(/),U(2),....U(N) as well as Q(i,m); to compute Q(i,m), we need to know the

55



information of U(i), as well as Q(i,1),Q(i,2),...Q(i.m). Although we treat the computational
region as a two dimensional region, actually it is simpler than that, since Q(i,j) has no direct
relation with Q(-1,j) or Q(i+1,j). Therefore, we can arrange variables of the computational

region into a computational matrix in the way as shown in Table 5 - 2.3.1

Table 5 - 2.3.1 relation between QzU and Y

Yo U] dydt[1].eeoeeeieeieieee dudtf1]
N 1) IO Ulnl  dydtin].eeeeeeeeeeeneeee ..dUdt[n]
YIN+HT] Q1,11 dydt[n+1]..cccecureirennens dQdt[1,1]
yln+m]oo Q[l,mj‘ dydt[n+m].......cccoeueeene. dQdt{1,m]
yln+m+1] Ql2.1] dydt[n+m+1]...ccoeen. dQdt[2,1]
yln+m+m].......oo Q[2.m] dydt[n+m].......cccuerneen. dQdt|1,m]
yin+G-D*m+j)oe. Qli,j] dydt[n+(G-1)*m+j].......... dQdt[i,j]
y(n+n*m).......... R Q[n,m] dydt[n+n*m]............... dQdt[n,m]

The advantage of arranging these variables in such a way is that the derivative subroutines
and Jacobian subroutine are easy to implement and to plug into the ODE solver, and the variables

can be solved simultaneously. This arrangement is applicable to both methods.

5-3 Simulation By the Numerical Method of Lines(NUMOL) -
Generally, by method of lines, we replace first space derivatives and second space derivatives

in(Eq5-22.1)to(Eq 5 -2.2.7) by finite difference formulas, then the set of PDE’s is converted

into a system of ODEs in time: by standard ODE integrator,.we integrate the system of ODEs and

solve the problem.

5-3.1 Space differentiation:
First, for (Eq 5 - 2.2.5)

(Eq5-3.1.1)

W 1 U U ( qu:.J
= gy - .3 _
at Peweax2 Vo ox we U K
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This equation is similar to convective diffusion equation except that it includes the adsorption
term, which relate to internal concentration at the surface of particles. After space discretization,

for the typical point i along the bed, the above equation becomes:

dyy . Lo dU o dU L Qlim]
EU[']—P_eWGE['] WO [l - 3yE {U[i]

X } (Eq5-3.12)

In chapter 4. we have concluded, for convective-diffusional differential equation, the first
space derivative can be replaced by DSS020 (fourth order upwind differencing), and the second
space denvative can be replaced by DSS044 (fourth order centered differencing).

In our problem, the boundary condition are known for‘j—jg 1] and % [n]

=W =5 =0= (-Pe{U| _ -U _ .} =-Pe(l.0-U[1])) (Eq5-3.1.3)
U U )
=5 =0 (Eq5-3.1.4)

=1 )
aU
dx*

which can be used to substitute in DSS044 for solving Q 1] and |n] (see section 4-2.1)
dx”

Second, we study the (Eq 5 - 2.2.1)

a0 00 200 ,
¥ o tna (Eq5-3.1.5)
To study the particles at point i along the bed, and we subdivide the radial domain into M

points. For Q(ij), Eq. 5-2.1.5 can then be wnitten as:

a

dQ . Q. 2dQ ..
T [4,j] = d—nz[:./] +“; an (i, /] (Eq 5 - 3.1.6)
where,
= (-1ydn, dn = —Y (Eq5-3.1.7)
n, = nodn = s iq5- 3.1
The boundary conditions are:
£I—Q—[i,ll :8_Q =0 (Eq 5-3.1.8)
dn
n==0
40 ;) = 92 :Kg{U{il-Q["m]} (Eq5-3.1.9)
dn . K
9 . . Qliym] . ’
g lioml = KE(ULi) - =) (Eq5 - 3.1.10)
Special care is needed for dd—(:) [i 1)
1 1 .
nllHI“ﬁQn = ,IL"](—,TQWW = Quy (Eq5-3.1.11)
00 =T+ 29 0y - 2% = 309211 (Bqs-3L12)
dt dn’ n, dn an’ _ oA dn’
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Either combination of DSS()Q4-and DSS044 (fourth-order accuracy), or DSS002 and DSS(042
(second-order accuracy) can be used for space differencing for the first and second space

derivatives respectively.

DSS004, fourth-order centered space differencing, can be used for the first space derivative

%%. The scheme is following.

xu - xl 1.0

dx = —(m—_-l—), r4fdx = —24—dx (Eq5'3.l.l3)
d
d—f[ll = rafdx (- 500 (1] +960 (2] ~726[3] + 320 (4] - 66(5]) (Eq5-3.1.19)
do
—— 121 = rafdx(-60[1] -200(2] +360(3] - 120(4] +20(5]) (Eq5-3.1.15)
d
d_fm = rdfdx(20[i—2] — 160 [i— 1] +06 (] + 166 [i+ 1] =26 [i+2]) (Eq 5-3.1.16)
d
(_jg fm—1] = rdfdx (=20 [m—4] + 126 (m-3] =360 [m—-2] + 200 [m -1} + 64 |m]) (Eq5-3.1.17)
d
d—i’ (m] = rdfdx(60m—4} —=320[m -3} +720{m-2] -960[i.m—1] + 500 [m]) (Eq5-3.1.18)
DSS044 is fourth order space differencing for the second space derivative. (see section 4-2.1)
and boundary conditions % [i.1] and %3 [i.m} are known.

Also, DSS002 second-order centered space differencing for the first space derivatiwe, and
DSS042 second-order centered space differencing for the second space derivative can be

implemented if less accuracy is required in the internal simulation in exchange for higher speed.

‘L—(lj and (‘13? are then assembled into matrix dydt according the arrangement gave in Table 5-

2.3.1.

With present stiff ODE solver, not only do we need to supply the problem dependent
subroutine derivs, we also need to supply the jacobn subroutine which evaluate Jacobian matrix
of the differential equation with respect to the dependent variables. Implementation of subroutine
jacobn fully depends on the implementation of subroutine derivs. The matching of derivs and

jacobn is the main factor to reduce the integrating time of ODE.

5-3.2 Theresult )
The numerical simulation of a fixed-bed adsorption column by NUMOL with a particular set

of parameters are presented as follows:
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20 Plot by NUMOL at x=1 space=21 pore=d

’ Pa-200
’ Pam6780

, Theta=3

4 X 10404

i i i

02 " s " ;
0 o (b)O 01 02 03 04 0s 06 07 08 09 1

X t .
Figure § - 3.2.1 Simulation Result by NUMOL with mesh space=21, pore=4 (a) 3D plot (b) 2D plot at
outlet

(a) '

5-4 Numerical Simulation by the Orthogonal Collocation Method

5-4.1 Collocation Form ,
(Eg5-221)t(Eq5-227)can be reduced to a set of ordinary differential equations by

writing in collocation form.

The concentration profile in the spherical particle is approximated by the symmetric trial

function defined as:

N
QMO = QL+ (1=1) Y 4 (OP_, () (Eq5-4.1.1)
1

where 4 (1) are functions of time (or constants) and P, are the orthogonal polynomials
(Jacobi polynomials) defined by:
1
fw(nz)'f’,(nz)n”“dn =C8 (Eq5-4.12)

i
0

where w(n’) = 1-17/=1.2

(Eq 5-2.2.1) can be written in collocation form as:

N+
lko QA
- — = B, — k=12,..,N Eq5-4.
K dt Z el (Fq5-4.13

(Eq 5-2.2.4) is written in collocation form as:

N+1
| 4 Qe .
2 Y Ave 20) = EWG) - G)) (Eq5 - 4.1.4)

t=

where N is the number of collocation points for the particle and N+I refers to the external
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surface of the particle. The above equation can also be written after some simple manipulation:

N N
_ 1 . L ;
U0~ gz 2 An2Q:0)  BUG) = £ D Aver 2,0)

Onve U) Z Z :
A e =] = = (Eq 5 - 4.1.5)
K lAN el * 1 Aviiner +5
i r+. +
thus, (Eq 5 - 4.1.3) becomes:
P&
. Byneig 2 Anei Q. 0)
1d0Q,U) B iB 0, U - K; +BK,NHE.-U(_J)
K drt ~ kg ANfI.N+l+é AN+1,N+1+§
N (Eq 5-4.1.6)
1
Bk,N*l— AN*[,:
*i 5. - K,ZT Q"U)+BK,N+1&.-UU)
b Aviine + 6 K Avsiner +6

——

The concentration profile in the external fluid phase is similarly approximated by the
following trial function based on nonsymmetric polynomials:

M -
U(X,©) = (1-x)U(0,17) +xU (1, 1) +x(1—x)2a,(r)f>,_l(x) (Eq5-4.1.7)

i=1
where « (1) are, as before, functions of time or constants and P, are the non symmetric
polynomials (Legendre polynomials) defined by the condition.

1
Jw'(x) PxP _(x)dx=0,n=0,1,..m-1 ' (Eq5-4.1.8)

t)

where w(x) = 1 1n this work.

(Eq5-2.25)t0 (Eq5-2.2.7) can be written in collocation form as:

M+2

M+2 .
vy 1 g g o Oved
or —,,—€¢9;B,,,U(:)—¢9;A,‘,U(:)—3¢é(uu)— ) i=23,..M+1 (Eq5-4.19)
M+2
Y AU = -Peul _ -U1) (Eq5-4.1.10)
t=1 )
M+2
Y Ak )UG =0 (Eq5 - 4.1.11)

=1
The above two boundary conditions can be used to eliminate U(/) and U(M+2) from (Eq S -
4.1.9). If we detine:

D = Ay ma (AN - Pe) — A g A M (Eq5-4.1.12)
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x x H
+2,1 Al_l Al,M+2 AM+2.M+2
Ri= R L

+1 +1
(=Pel] _ IR,- (wz A7 LU () ]/z4+ zA;M_,.U(i) )R3 (Eq5-4.1.14)
UM+2) = PeU| R+ zA N ,U(l))ﬂ FEAM”,U(:)] R, (Eq5-4.1.15)

1=2

(Eq5-4.1.13)

U1y

Thus, (Eq 5 - 4.1.9) becomes:

M+1
du 00 . x %0 . x x x
)= Y [ (B 0BAT) ¢ (B~ 9047 ) (Rihy.y,—RAT)

=2 r
68, N i . . , ;

+ (P_eB/'M+:—¢eAI-M+3) (RlAl.l_RZAM+2“):|U(l)
’ : ' (Eq 5 - 4.1.16)
“hevl. [R4(t ,~004,) — R, (¢ B yea ¢9AJ§M+2)] a

0

‘ 3¢EZA~H,,<Q. U)/K)
1=

E+ AN i Na S+ Ay, ne
The procedures for generating the A, B and A*, B* matrices of (Eq 5 - 4.1.11) to (Eq S -
4 1.16) are described in detail in Appendix or Finlayson (1972)

+ 308 ( -huy -

5-4.2 Slmulatlon Result
A simulation result by orthogonal collocatlon method with a set of parameters is present as

follows:
3D Plot by Orth-Coll. space=21 pore=4 2D Plot by Orth-Coll at x=1 space=21 pore=4

Pe=200
Pem6760
Theta=3

Xim10404

- Figure § - 4.2.1 Simulation Result by Orthogonal Collocation method, with mesh space=21, pore=4,
(a) 3D plat, (b) 2D plot at outlet.
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5 -5 Experiments and Comparison of Results

In this section, we are gorng through several experiments to test the two models implemented
by NUMOL and Orthogonal Collocation method.

5-5.1 Comparison betwéen Numerical and Analytical results

2D Plot by at x=1 space=11 pore=4 2D Plot by at x=1 space=11 pora=4
1 1+
o8- 08}
06 o6
b2l x b2l
04} 04 ;
x Peut 93 Pewld 3
Psi=6780 Psmt780
Theta=3 Theta=3
02 Kim 10404 02r (S Xomt a4
x
o "
0 02 04 06 08 ! 1 0 02 04 06 08 1
| t
(a) (b)

2D Plot by at x=1 space=11 pore=d

o8}

08

04r

Poe200
Pue§780
Theta=3

o2r Kim 10404

ot

L s s )
02 04 06 08 1

() A

Figure § - 5.1.1 Comparison between analytical results and numerical results from NUMOL and

orthogonal collocation, mesh space=11, pore=4, x---analytical result, *---NUMOL result, o---orth-coll
result. (a) Pe=1.93, (b) Pe=19.3, (c) Pe=200

From the above Figure 5 - 5.1.1, for three different values of Peclet number, both numerical
results from NUMOL and orthogonal collocation method agree with the analytical results,
therefore, the results of both numerical methods are verified. We can see that even using a coarse
mesh, both numerical methods can handle this model problem.



5-5.2 Effects of Axial Dispersion and External Mass Transfer Resistance

20 Plot by at x=1 spacee11 pore=d

20 Plotby at x=1 space=11 pore=d

12r 12
1h 1+
08t o8t
o8 o6k

1—Pe=0 8
2—Pesb

1——Xm1
2--Xw10

04 3P 100 04 3--Xm100
Pe=200
Psw10+04 Psmto+04
Theta«0.3 Thetas0 3
02 Xom10 - 02p
02 " a " Vi e - . i e J ~02 A - e A y "t it .t
. 0 1 2 3 4 5 6 7 8 9 10 (b) [ 1 2 3 4 5 6 7 8 9 10
a) : t '

Figure § - 5.2.1 Comparison of simulations conducted by (*---)NUMOL and (0---)Orth-coll (a) effect
of Peclet Number, (b) effect of external film resistance

It has also been shown that simulations from both methods give us similar prediction about

the effect @f Peclet number and external film resistance.

5 -5.3 Effects of Distribution Ratio

. 2D Piot by at x=1 space=11 porewd
1r

20 Plotby at x=1 space=11 pores4

|
o3t ask
i
08t 0 5L
o7t 0 7&»
o6} 06k
1--Psim1 : ,’ 1—Psint
”
05} 2-—Psws ~05r & 2-Psd
3--Psm10 { ” ’ 3—Psiet0
04r 4--Pyr50 o&', ”’ 4-PsB0
L B 4 4
!
03} Pout 03+ ’y‘ Poai
Theta=0 3 w ,I/,’ Thetaeld 3
o2h - Xim10004 02} ! Yoloa04
01 01 e
/ N ol R o O
5 10 15 0 1 2 4 5 [ 7 8 9 10
(d) « (b) ' :
T - —
By

Figure 5 - 5.3.1 Comparison of simulations conducted by (*---)NUMOL and (o—--)()r}h-coll effects of
Distribution Ratio. Pe=1.0 (a) plotted versus t, (b) plotted versus t - oy

Other experiments such as effect of distribution ratio have also been conducted, see Figure 5

- 5.3.1 for Peclet=1.0 and Figure 5 - 5.3.1 for Peclet=20000.0, Figure 5 - 5.3.1(a) and Figure 5 -
5.3.1 (a) are plotted against dimensiorless time variable t, and Figure 5 - 5.3.1(b) and Figure 5 -
5.3.1 (b) plotted against modified time variable - %’ Simulations from both methods predict
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same behavior of adsorption bed. We can see that the effect of the distribution ratio on the
theoretical breakthrough curves to be significant only when the effect of axial dispersion is

important.

2D Plotby at x=1 space=11 pore=4 20 Plot by af x=1 space=11 pore=d

08r

o6+

1—Psiat 1—Psit

> 2-—Pswmb ~ 2—Psid
3—Psm10’ ‘ 12.3.4 3—Psia10
04t 4—Pam50 04~ YEIT 4-Pub0
Pe=2e404 Per20404

| Thets=03 Theta=0.

02¢ Ximtosld - 02F Krato+04

0
! "
_0 2 A 0 21 1 e i I - e L
0 5 10 15 0 1 2 3 4 5 6 7 8 9 10

i
(a) (b) oy
Figure 5 - 5.3.2 Comparison of simulations conducted by (*---)NUMOL and (01---)Orth-coll effects of
Distribution Ratio. Pe=20000.0 (a) plotted verse t(b) T~ v

All the results produced so far agree with that from Dr. Ruthven’s paper.

However, as we look at Figure 5 - 5.3.1 (a) for high Peclet number (20000.0), it can be seen
that the results of orthogonal collocation have better performance on numerical diffusion and

nonphysical oscillation.

5-5.4 The Computation Time -

¥

Table 5 - 5.4.1 Comparison of computational time (CPU time, unit: second) by NUMOL
* and Orthogonal collocation method with mesh space=11, pore=4, maxstep=0.05

Parameter§ ,__Computational 'Computational‘ |

time for NUMOL | time for Orth-Coll
Pe = 193,y = 6780.08 = 3.0, £ = 10000.0 6.6 3.1
Pe = 193,y = 6780,0 = 3.0, & = 10000.0 6.9 33
Pe = 20000,y = 6780,8 = 3.0, = 100000 | 7.5 3.3
Pe = 08,y = 10000.0, 8 = 0.3, & = 10000.0 7.4 3.1
Pe X 50,y = 1000008 =03, =100000 | 87 3.1
Pe = 1000,y = 100000, 8 = 03, & = 10000.0 | 8.5 3.7

2 Therefbre, we have shown that the orthogonal collocation method is superior to NUMOL on
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computational time with similar performance as shown in Figure 5-4.1.1 and Figure 5-4.2.1.

5-6 Conclusion for Chapter 5

From this chapter, we have used NUMOL and Orthogonal Collocation method studied in last
two chapters to deal with a fairly complex problem in PSA modelling. It has been shown that
both methods can handle this task, and simular results are achieved and agree with analytigal
results. However, orthogonal collocation method is superior to NUMOL on computational time,
and has less numerical diffusion and nonphysical oscillation when Peclet number s large. The
reason would be that, for the same mesh number, the formulation for the first and second
derivatives (DSS020 and DSS044) in NUMOL are locally fourth-order accurate, however, the
formulation in orthogonal collocation method is globally more accurate, since number of
collocation points means same number of orthogonal polynomials in the formulation, and more
collocation points means a higher order of formulation globally. The comparison between the
formulation of these two methods is not straightforward, but generally we can say that for the
same mesh number | (>=4), the formulation in orthogonal collocation method is more accurate.
The accurate formulations in orthogonal collocation method allows large integration step and
less times of evaluation of derivs and jacobn in O.D.E integrator, which results less computation
time. Therefore, we prefer to use the OrthogoMal Collocation method in our future study when we

have to be content with coarse mesh. ®

&
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Chapter 6‘ PSA Simulation by Double Collocation Method

6-1 lntroductibn

A simple two-bed PSA system for air separation, in which kinetic effects are important and
the changes in flow rate due to adsorption are significant, has been studied. Under these
circumstances, the assumption which have been traditionally employcd in modeling of the PSA
cycle (adsorption equilibrium, constant veloéity) are no longer valid. In the paper of Raghavan
and Ruthven (1985), a more general mathematical model was developed without these
simplifying assumptions. Since the corresponding mathematical model for simulation is more
general and complicated, and no longer fits in the procedure of PDE-ODE, double collocation
method is developed and used to solve it numerically. In this paper, we will present this
mathematical model and double collocation method as well as the simulation results. The work

in this chapter will serve as a base for our modelling of the conventional PSA process.

6 - 2 A System of PSA Process Description
The basic PSA cycle involves four distinct steps: (as shown in Figure 6 - 2.1).

1. Feed step
2. Blowdown step
3. Purge step

4. Repressurization step

Bed |
Product Product
Bed 2

’ Feed Blowdown Purge Repressurization

Figure 6 - 2.1 Steps involved in a PSA cycle
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During one cycle, time distribution is shown on Figure 6 - 2.2:

1. t,.: duration of adsorption at stepl or 3.
2. t,: duration of blowdown at step 2 or step 4

tma.x tb trmu: th

step | step 2 step 3 step 4
Figure 6 - 2.2 Time distribution of one cycle

During step 1 a high-pressure feed (in our case air) is supplied continuously to bed 2, which
is packed with carbon molecular sieve (CMS) pellets in which oxygen is adsorbed more rapidly
than nitrogen. The nitrogen which remains in the gas phase passes through the bed and is
removed as pure raffinate product. A small fraction of this stream is expanded to low pressure
and used to purge bed | (which is also packed with CMS pellets). In step 2, bed 1 is pressurized
with feed while bed 2 is subjected to a pressure reduction (blowdown). The same cycle is
repeated in steps 3 and 4 with high-pressure flow and adsorption occurring in bed | and purging
occurring in bed 2.

In order to develop a mathematical model the following approximations are introduced:

1. The system is considered isothermal with total pressure remaining constant throughout the

bed during high-pressure and low-pressure flow operations (step 1 and 3).
2. The flow pattern is described by the axial-dispersed plug flow model.
3. The equilibrium relationships for both oxygen and nitrogen are assumed linear.

4. Mass wansfer rates are represented by linear driving force expressions and the rate
coefficient is the same for both high-pressure and low-pressure steps.

Subject to these assumptions, the dynamic behavior of the system may be described by the
following set of equations (A=0,. B=N,).

6 - 3 Mathematical Model
6 - 3.1 Step 1: High-Pressure Flow in Bed 2 and Low-Pressure Flow in Bed 1

6 - 3.1.1 Dimensional form:
External fluid phase in bed 2:

N

9C 4, D 9Cy, aC4) c dvy 1-& gy 0 20 6-3.1.1
o gz T Tt =) = (Eqé-310
aCy, Cy,  0Cy, d, l-& g,
% p, Py L o (——) =2 = -3.1
Y DL_a:2 vy +Cy p +( .. 5 (Eq6-3.12)
Cuy+ Cya = Cyplconst) (Eq6-3.13)
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adding (Eq 6 - 3.1.1) and (Eq 6 - 3.1.2) and considering (Eq 6 - 3.1.3)

dv, 1-¢9dq,, 1-€0dqp,
Cyp=—+ +
oz £ Ot ., |

Solid phase in bed 2:

anZ *
3 = ko (g 42— q42)

!

3432 *
TR = kg(q B2~ dqpy)

where: ¢ 4y = K,Cup. ¢ 52 = KyCy.
Boundary conditions:
oC

D,,—2 = —y . -c,,
L2732 o ‘0;1‘CAL|Z:O CA.,]O,)
aC,, 0
: z=1L
External fluid phase in bed 1:

aCAl_ §A1+VBCAR+C al_Fl—EBQM ~ 0
o Ly.2 boo:z Al 9z e o
aCBl_D iq“+y aCBI+C %_Fl—ﬁa‘/m -0
o Fy.2 boo: b1 9z e d

Cu1+Cyy = Cpplconsy)
Adding (Eq 6 - 3.1.10) and (Eq 6 - 3.1.11), and considering (Eq 6 - 3.1.12),

c a"1+l‘anA1+l‘anm
LP3: " & o e o

Solid phase in bed 1:

9q 4,

o = kA(q*Al—qu)
anl
5 kg (4" 51— q5)

where:q* 4| = K,C4\» ¢ 51 = KzCy,-
Boundary conditions:

aC
DL

= —vo (Cyy b - Call .
=0 -

where:

CAI‘ = Cys

Z =0 -
aC,,

:=LP=P,

=0
=L

-

(Eq 6 -3.1.4)

(Eq 6 - 3.1.5)

(Eq 6 - 3.1.6)

(Eq6-3.1.7)

(Eq 6 - 3.1.8)

(Eq 6 - 3.1.9)

(Eq 6 - 3.1.10)

(Eq6 - 3.1.11)

(Eq6-3.1.12)

(Eq6 - 3.1.13)

’

(Eq 6 - 3.1.14)

(Eq 6 - 3.1.15)

(Eq 6 - 3.1.16)

(Eq6-3.1.17)

(Eq6 - 3.1.18)

(Eq6 - 3.1.19)
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§
The initial conditions for the start-up of the cyclic operation with two clean beds are the

following two sets of equations:

Cyr(2,1=0) =0;Cp,(2,1=0) =0
Gar(5,t=0) =0;q95,(51=0) =0
Ci(z,1=0) =0;Cp,(5,1=0) =0
i (51=0) =0;g9,5(z,t=0) =0

(Eq 6 - 3.1.20)

Since Cg, can be found from C,, and C:2 (for high-pressure flow in bed 2), and Cg, can be
found from C,, and C,, (for low-pressure flow in bed 1), the equations which must be solved
simultaneously along with the relevant boundary conditions are (Eq 6 - 3.1.1) (Eq 6 - 3.1.4) (Eq 6
-3.1.5)(Eq6-3.1.6) (Eq6-3.1.10) (Eq 6 - 3.1.13) (Eq 6 - 3.1.14) (Eq 6 - 3.1.15).

6 - 3.1.2 Dimensionless Forms <

The above equations can be written in dimensionless form for calculation. First we list the

necessary dimensionless variables and parameters for future reference.

Table 6 - 3.1.1 Dimensionless Variables

dimensionless definition
variables
XA, C,./Cyp or C,,/C,pdepending on whether high-pressure flow adsorption or
. low-pressiire flow desorption occurs in the ith bed
X;, Cp,/Cyp or C;,/C,pdepending on whether high-pressure flow adsorption or
low-pressure flow desorption occurs in the ith bed, also equal to (1-X,)
Y, q,,/K,C, » adsorbate concentration of component A in solid phase in bed i
Yy, q5./ K 3Cp, adsorbate concentration of component B in solid phase in bed i
X x = z/L, dimensionless distance
1 t = t/h, dimensionless time,
n: dimensional time interval (see Figure 6 - 4.1)
v, V. = v./voy. interstitial fluid velocity in bed i

Table 6 - 3.1.2 Dimensionless Parameters

dlmen51onl<iss definition
parameters
a/h o/h = L/ (vouh), »
where o = L/v,,,, ratio of bed length to high pressure feed inlet velocity, s
Pe,, Pe, = Lv,,/D,,, Peclet number for high pressure flow in bed 2 during step 1 |
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Table 6 - 3.1.2 Dimensionless Parameters

dimensionless definition
parameters

Pe, Pe, = Lv,,/D,,, Peclet number for high pressure flow in bed'1 during step 1

k h dimensionless overall mass transfer coefficient for Component Ar
where &, is overall mass transfer coefficient for component A, s™".

kgh dimensionless overall mass transfer coefficient for Component BI’
where &, is overall mass transfer coefficient-for component B, s™".

K, adsorption equilibrium constant for component A.

Ky adsorption equilibrium constant for component B.

G G = vo./voy» purge to feed velocity ratio.

B B = Cyp/C.p = Py/P,, total concentration at high-pressure to total concentra-
tion at low-pressure ratio. :

Dimensionless forms for bed 2:

o 0X 4, 1 aZXAz Xy 1-¢

AL L S Y
h 0t Peyyy? )

Vymgom + —— 0k, K (X0 = ¥ 0) (1-X )

(Eq 6 - 3.1.21)
1-¢
—TakBKBXAz ( 1‘_XA2 e YB:) = 0
v,
2= kg (Xgy=Yy) (Eq6-3.122)
aYy,
T}‘t- = th(l—XAl—YAZ) (Eq6'3.l.23)
av2 |l -¢ 1-¢
ot e MK (X = Yag) + —— kK (1= X, = ¥p3) = 0 (Eq 6 - 3.1.24)
Boundary condition in dimensionless form for bed 2:
9X 4 - ;
ax =10 ) ﬁPeH (XA2|X=0 ’_X‘42|x:0‘) (bq6-3.l.25)
X ,, o (Eq 6 - 3.1.26)
dx o
Dimensionless form for bed 1:
o 0X 1 azxm Xy l-¢ X4 |
L S S e ok K. (2 -
h o PeLap MY +P T ak, K, ( B Yo (1=X4)) ]
: (Eq6-3.127)
1-¢ -
—BTakBKBXAl(—B—ﬂ_YBI) :() =
ayl‘.l XAl
i hkA(T—YAI) (Eq 6 -3.1.28)
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Yy, 1-X,

~3‘r—_ = th(_‘B—“ yBl) (Eq6'3.l.29)
avl 1-¢ XAl 1-¢ —Aal
—aT+B?akAKA(T—YAI)+B~—£—akBKB( B —yBl) =0 (Eq6'3.l.30)
Boundary condition in dimensionless form for bed 1: ~ ¢

)¢ :

a;l = ~Pe,G(Xa| _, ~Xul _) | (Eq 6 -3.131)
x=0
where:
Xal . =X, ., (Eq 6 - 3.1.32)
a;f“ =0 (Eq6-3.133)
X
x=1

6-3.2 jStep 2: Blowdown of Bed 2 and Pressurization of Bed 1

6 - 3.2.1; For blowdown of bed 2, the following two approximations are introduced:

1. At each and every position in the bed, the gas phase concentrations of O, and N, at the end
of blowdown correspond to the concentrations at the end of the preceding high-pressure flow
adsorption step, multiplied by the pressure ratio, P,/P,, where P, is the pressure at which

adsorption is carried out and P, is the purge or desorption pressure.

P
Cor(nt=1,,+1,) = C“(:,I:lm“)F—L (Eq6-3.2.1)
H

P, .
Cor(zt=t,,,+1,) = Cya(z0=1 ) (Eq6-3.22)

Py
Since the concentrations of O, and N, at the end of blowdown are equal to the concentration
at the beginning of step 3, i.e., at the beginning of purge(desorption), we can write the above

equations in dimensionless form:

XAz(x,‘t)| Pty X (1) by i=i, (Eq6-3.23)
Xer (0O pp o o = Xp (6D o, | (Eq 6 - 3.2.4)
2. The solid phase concentrations of O, and N, are assumed to remain frozen. '
Gar (0=t 4 1) = Qa5 0=1,,.) (Eq6-3.2.5)
Gua (5 0=t + 1) = qgalz0=1 ) (Eq 6 - 3.2.6)
Similarly, we can write the above equations in dimensionless form:
Vs (0D pp oy o = YD, (Eq6-3.2.7)
Vor (g v = Yr 0D p o, (Eq6-3.28)

6 - 3.2.2 For pressurization of bed 1, the following two approximations are introduced:
1. After low pressure purge step, there are still gas phase O, and N, remaining in the bed.
During pressurization by feed air, these gas phase remnants are pushed toward the closed end of
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the bed through a distance (1-P,/P,) from the feed inlet. Thus, for example, if the pressure ratio,
P,/P, is 0.33, then the concentrations of O, and N, at the end of pressurization are the average of
the respective concentrations of the remaining O, and N, at the end of purge step. However, the
average concentrations exist only through a dimensionless length of 0.33 from the closed end of
the bed, the rest of bed being filled with the pressurizing feed air. We think this approximation is
clearly more realistic than assuming a uniform composition in the gas phase. The above

approximations can be written in mathematical form:

L
jOCAl (z,t=1t,,)d:

vz€ ((1-P/P,)L, L)

Colat=t,, +1) = (P./Py) (Eq6-3.29)
Cy(z=0),z€ (0, (1-P,/P,)L)
sz(z,l: Y
Cp(t=1,, +1,) = PPy e (-P/PYLL) (Eq 6 - 3.2.10)
‘ Cy(z=0),z€ (0, (1-P,/P,)L)
write in dimensionless form:
Xy (5D pop o, duxe ((1=P/Py). D) (Eq6 - 32.11)

X (uD|p_p o :{
#e 1= ety Xg(x=0),x€ (0, (1-P, /Py))

2. The solid phase concentrations of O, and N, remain unchanged at the values of the end of
the preceding low pressure purge flow.
Gay (5 0= 0,0+ 1) = qa (5 0=1,,) " (Eq6-32.12)
Qo (2=t +0,) =g (50=10,,) ‘ (Eq6-32.13)
write in dimensionless form:

Ya (x5, 17)| by ity Ya (a1, Pi=i (Eq 6-3.2.149)

+1,

(Eq 6 -3.2.15)

YBI(X’T”;):PH,r:r_m = YBI(I)(X’

T
+1, )|P=PL,r=rm_

6-33 Step3

This step is virtually the same as step 1, except that here the high-pressure feed flows through
bed 1 while a portion of the exit product (N,) purges bed 2 at the low operation pressure. The
equations which have been solved to describe this step are identical to those solved for step 1, but

with the change in the direction of flow taken into account.

6-3.4 Step4
The approximations made for step 2 are valid for step 4, the difference being that bed 1 is

now subjected to pressure reduction (Blowdown) and bed 2 is pressurized.

-~
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6 - 3.5 Cyclic Steady-State:

The above equations were written in dimensionless form and solved to give the O,
composition, Cy,/Cyp Ca)/Cpp (step 1), Cpp/Crp Cyy/Cyp (step 3) in the fluid phase, and O, and N,
concentration in solid phase, q.,/K,Cyp Qs/KsCrp (step 1), Qu/K,Cpn qQs//KsCyp (step 3), as
functions of dimensionless bed distance (z/L) at various times t. The final cyclic steady-state
profiles were determined by continuing the simulation for sufficient cycles until no significant

further changes in the profiles occurred. Mathematically, we use formula:

N

N
ZXA2 (x" T) I cycle=g =1, B ZXAZ (X‘, T)' (cycle=y~1), 1=,
' ! <d (Eq6-3.5.1)

N
ZX/Q (x" I)l (cyele= . t=1_,,
1]

here, we set 8 = 0.01, N is the total number of collocation points in x domain.

6 - 3.6 Simulation:

By repeating the simulation with different sets of parameters the effects of the purge/feed
ratio (G=v¢/von), the bed length/inlet feed velocity (a=L/vyy), the time-duration (t,,,) of the
adsorption and desorption steps and the axial Peclet number (Pe=v,,L/D,) were studied.

6 - 4 Double Collocation method:

The current mathematical model no longer fits in PDE-ODE procedure, since application of
this procedure would lead to sets of ODEs together with sets of nonlinear algebraic equations.
Such a combination of ODE and nonlinear algebraic equations is likely to cause stiffness and
convergence problems. Therefore, the method of double collocation was applied so that all
equations would be reduced to sets of nonlinear algebraic equations. We first studied this method.

The method of double collocation involves discretization of the spatial as well as the time
derivatives in the equations (as shown in Figure 6 - 4.1). The resulting nonlinear algebraic
equations are then solved using a standard routine. Since our problem is non-symmetric, we use
nonsymmetric trial function of shifted Legendre polynomials to approximate the dimensionless

variables.
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. Figure 6 - 4.1 space difference and time discretization
In t‘i'clic operation, the computation will run from step 1, through step 2, step 3, to step 4
repetitively. From the above mathematical model description, we know that step 1 and step 3 are
basically identical, and step 2 and step 4 are identical. Since step 2 and step 4 are only one step

calculation, the major computational task will be step | and step 3.

Therefore, we will focus on step 1. With dimensionless form, we will solve set of equations
from (Eq 6 - 3.1.21) to (Eq 6 - 3.1.33) for time domain O to t,,,,. As shown in Figure 6 - 4.1, we
subdivide the time domain into various time steps A, A;,....... , h,. Ateach time step, h,, we derive
the above equations. And it is in this time period, we apply the double collocation method. First
we subdivide the time period h, into N+2 collocation points, and then subdivide the space
domain into M+2 collocation points. The first time lay'er, i.e. i = /, the variableson the points of
this layer are the initial conditoh (marked as *), which are also the results from last step 4, ;. With
the boundary condition (marked as O), we can solve the variables on the points at the rest of
layers (marked as ?) by the double cm)cation method. In the following section, we describe the

use of double collocation method for solving the sets of equations at this time period.

6 - 4.1 Preparation:
Assuming the symbol ¢ stands for any one of the variables, X, |, X 0, ¥, . Ya2 Vg, Voo V1o Vo,

we may write,

M+2
ad R ZA’U% (Eq 6 - 4.1.1)
ox|,, oy .
a: M+2
? = zB’x,tb,, . (Eq 6 - 4.12)
2 & P .
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N+2

%‘1’ = ¥ a0, (Eq6-4.13)
ki =1
1 M+2
CJoax = Y we, (Eq6-4.1.4)
0 i =1

Here, 4, ; is the coltocation coefficient for the gradient, A%, ; is the collocation coefficient for
the gradient in the time direction, 8%, ; is the collocation coefticient for the Laplacian, and W, is
the weight coefficient for integration. For the procedure of obtaining the coefficient matrices

refer to Appendix.

The initial condition are given as:

X 1), k=2..M+1
Yok 1), k=1...M+1
Yoy (ko 1), k=1..M+1
Vy(k 1), k=1..M+1

(Eq 6 - 4.1.5)

X, (1), k=2, .M+1
Yotk 1), k=1..M+1

Yo, (ke 1), k=1..M+1  (Eq6-4.16)
Vi 1), k=1..M+1

6 - 4.2 Computation for one time step by double collocation:

The computation for one time step by double collocation involves four steps.

Step 1. we assume (initial guess) the values of the unknown variables. That is we provide

initial guess for,

Xpa(ki), k=2 M+1,i=2..N+2
Yol 1), k=1, M+1,i=2..N+2
Ypo (b, 1), k=1.M+1,i=2._.N+2
Votk, 1), k=1..M+1,i=2..N+2

(Eq6-4.2.1)

Xk, 1), k=2.M+1i=2..N+2
Yok 1), k=1.M+1,i=2.N+2
Yok, 1), k=1.M+1,i=2..N+2 (Eq6-4.22)
Vit 1),k=1.M+1,i=2..N+2

Since the number of unknowns is equal to the number of equations, we have in all
(4*M+5)*(N+1)*2 equations to solve simultaneously for steps 1 and 3 of the PSA simulation.

Step 2: the computation involves the evaluation of X,,(/,i), X.,(M+2), X,,(1,i), X, (M+2).
These values can be extracted based on the values of X,,(k,i) and X,,(k,i) for k=2..M+1 and
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i=2..N+2, for the dimensionless form of the bouﬁndary'conditions given by (Eq 6 - 3.1.25)--(Eq 6
- 3.1.26) and (Eq 6’-,3.1.31)--(Eq 6 - 3.1.33) which written in collocation form would be:

- For high-pressure flow in bed 2 during step 1,

M+2 o :
ZAX(l,j)XM(j, D) = (-Pey) Xy . ~Xap(LD)] (Eq 6 - 4.2.3)
j=1

M+2

Y AM+2 )Xy G0 =0 (Eq6-424)

J=1

Solving (Eq 6 - 4.2.3) and (Eq 6 - 4.2.4), we get the expressions for the boundary variables, -

@, = A" (M+2,M+2) (A(1,1) — Pe,) —A*(ILM+£2) A" (M+2,1) (Eq 6 - 4.2.5)
AT(M+2,1) A (1, 1) - Pey, '
- . Ry = el "H (Eq 6 - 4.2.6)
IH ¢H 2H ¢H ®
AT (LM +2 A" (M+2,M+2) ‘
Ry = ———( )- Ry = (Eq3-4.2.7)
X ¢H QH
M+ M+
X (L) = ~PeyXy|  Ryy= N AL DX GG DR+ D A M+2,)) X0y G DRy (Eq 6 - 4.2.8)
j=2 j=2 . - .
.- M+ M+1
Xo(M+20) = PeyXy R+ Y AL PX GDR - Y ATM+2,) XU DRy (Eq6-4.29)
. j=2 j=2 '

and for low-pressure flow in bed 1,

M+2
Y A L)Xy G = (~GPey) Xal = Xar(Li)] - (Eq6-4.2.10)
=g . -
‘ M+2
2A‘(M+2,j)XM(j,i) =0 (Eq 6 -4.2.11)

Jj=1

-

solving (Eq 6 - 4.2.10) and (Eq 6 - 4.2.11), we get, v .

@ =A"M+2,M+2) (A‘(l,l)—GPQ)—A‘(l,M+2)A’(M+2,1) (Eq6-42.12)
A" M+2,1) A*(1,1) -GPe,
Ry =—", Ry = ——+ o —— (Eq 6-4.2.13)
¢L ¢L
A" (I,M+2) AAM+2,M+2)
Ry = —7F—, aL = (Eq6-4.2.14)
o, : o,
X, (1Li) = (—GPeL)XML:O’ Ry,
M+l M+l E 6-4 15
=Y A L)X G DRy + Y AT (M+2,)) X, G D Ry, (Eq6-4.2.15)
j=2 . j=2
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M+1=
Xa (M+2.0) =GPeXy| Ry + Y ALK GDOR,,

Mol = \ (Eq 6 - 4.2.16)
=Y ATMA2 )X, GO Ry,
i=r
where, by (Eq 6 - 3.1.32) o
\ Xal ,_, = X (M+2,0) | , (Eq 6 - 4.2.17)

. Step 3: knowing now the values of the variables at all points in the two beds, we compute
% , 2% and %
aX kot axl ks ki

Step 4: involves setting up the residuals R%,, and updating the initial guess to force the

(4*M+5)*4*2 residuals to become zero.

For X,;, Y4;.Ys,,V, during high-pressure flow adsorption in bed 2 (step 1) we write,

N+2 M+2 M+2
X

a . 1 . . x o
Ro=0Y A X k) - P, N B X G + Vo (kD Y A X Gd)
J=1

s=1 ;=1

1-¢ -
4ok Ky X (6 D) = Y (k)] (1= X g3 (kD) (Eq6-4.2.18)
I-¢ i . .
~ kKX 4y (k) [(1=X gy (ki 0)) =Ygy (kD] = 0
where k =2 . M+/,i=2..N+2
Y,, P T . . .
R = D A Yap (k) = hkg (X (kD) =Yy (k)] = 0 (Eq 6 - 4.2.19)
j=1 ,
where k= /1. M+2,i=2..N+2
N+2
R = N AT Yy (k) kg L(1=X4y (kD)) Yy (ki) ] = 0 (Eq 6 - 4.2.20)
i=1 .
where k= /. M+2,i=2.. N+2
Vz (s x .. l—‘E . .
R = ZA b V2 0n D)+ —— 0k K (X (ki) =Yy (D))
Py . (Eq 6 -4.221)

1-
+ —Eﬁakﬂx,, [(1.0=X 4q (ki) = Y4y (ko i)] =0

where k=2. . M+2;i=2.. N+2.
Similarly, equations for X,,, ¥,,,Y,,,V, are written in collocation form for the low-pressure

purge flow in bed | (step 1).
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N+2 M+2 M+2

X - 1 . 1 x .. S, x ..
R = ‘,;z{A i Xy (k) _E 23~k./’XA| U b)) +V (k1) zzA X4 G D)
1= 1=

=1 <
1-¢ X4 (k1) . ) ’
+ g @K (g = Y (6 ) (10X, (ki) (Eq6-4222)
1-¢ . (l'O_XAz(kvi)) R .
———akgKBX, (k1) ( : — Yy, (ki) =0
., where k=2 M+1;i=2..N+2
) N+2 .
" X, (ki)
Ry = Y ALY, (k) —hkA(—'“ﬂ——YM(k, i) =0 (Eq 6 - 4.2.23)
j=1
where k=1.. M+2,i=2..N+2
N+2 .
2 1-X,, (ki)
R = Y AT Yy (k) —hk,;(———"B1 —Y, (ki) =0 (Eq 6 - 4.2.24)
=1
where k= /.. M+2,i=2... N+2
M+2 .
. x I—E X (kvl)
Ri= 3 A%V, Gnd) + —— kK B ’“ﬂ ~ Y4 (ki)
fout ' . (Eq 6 - 4.2.25)
1 - 1-X,, (k, i)
* EEakBKBB(' AZB( : ~ Y (ki) =0

where k = 2. . M+2;i=2.. N+2.
A standard subroutine such as Newton method is used to solve the nonlinear algebraic

equations to get the distribution of X, Y,,,Y5,,V, and X, Y,,.Y5,,V, in the two beds at © = 1.

The procedure from step 1 to step 4 is fepeated until ¢ = t,,,, = duration of time for the first
step (adsorption) in bed 2 and desorption (purging in bed 1). So far, we finish the simulation of
step 1 of PSA cycle.

After the approximations for step 2 of the PSA, the nonlinear algebraic equations for the step
3 [adsorption in bed 1 and desorption (pufging) in bed 2] are solved, which is follogwed by the
approximations for step 4. This essentially completes the computations for one cycle of the PSA
operation. The computation for the next cycle involves the solution of the nonlinear algebraic
equations for step 1 with the initial conditions based on the profile in the beds at the end of the
previous cycle. The computation continues until cyclic steady state is reached, when there is no
further change in the composition profiles in the beds between two successive cycles.

6 - 5 The Computation Results and Discussion

6 - 5.1 The sensitivity of the assumptions for repressurization to the number
of collocation points

The simulation was run with various number of collocation points, and it was found that the
assumptions for repressurization are sensitive to the number of collocation points. Since the
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result of repressurization will affect the next step of adsorption, therefore, it will affect the result
of cyclic ope;ation. To-gain more understanding of this phenomenon, we did an experiment.
Assume the concentration of repressurized oxygen at inlet is 0.2, and the€oncentration of oxygen
at the rest of bed is 0.05. The total mass after exact integration would be 0.15; comparing with the
integration result by collocation method, we find the difference, listed in Table 6 - 5.1.

Table 6 - 5.1 Collocation points with Repressurization

number of collocation points | difference in total mass
m=6 -0.025
m=7 -0.0037
m=8 - 0.01 ;
m=9 -0.00925
m=10 _ 0.0022
m=11 0.0107
m=12 ' -0.002836

1t can be seen from the above table, the sampling by some numbers of collocation points can
best represent the assumption of repressurization step such as 7 and 12. It would be the best if we
could do simulation with m=12. However, for reason of economy, we can also take m=7 as

compromise between accuracy and speed. Generally, we will run simulations with m=7.

6 - 5.2 Observation of Mass balance

One feature of this program is the implementation of observation of mass balance during the
adsorption step. The idea of the mass balance monitor is:

(change in mass of oxygen in the bed since time t=0) =

(mass of oxygen entering since t=0) - (mass of oxygen leaving since t=0)

Therefore, if we set variable R as oxygen mass balance monitor,

Iolne

~

R = (change in mass of oxygen in the bed since time t=0) -
(mass of oxygen entering since t=0) + (mass of oxygen leaving since t=0) = 0
The detailed implementation of mass monitor involves integrals variables such as

X,, X, Y, Y, along the adsorption bed. Refer Appendix for the computation of integral.

~ From observation of the ratio of R to total mass of oxygen entering after the cyclic operation
reaches steady state, we are able to verify the simulation result. For example, with mesh=7, run
simulation with data listed in row 2 of Table 6 - 5.1, the ratio is 0.12%; again with mesh=12, for

the same simulation, the ratio is 0.0059%, which also means more accurate results.

79



6 - 5.3 Output of the Simulation by Polynomials
The outputs of our simulation are the values at collocation points. However, we sometime
would prefer to see the evolution inside the bed, therefore, we also express the profile of various

variables in the form of polynomials.

M
06,1 = (1-16(0,7) +x¢(1,7) +x(1—x)2a,.(r)f>,._l(x) (Eq 6 -5.1)

1=
where P, (x) are the shifted polynomials. ¢ (x, T) can be variables such as,X,,, Y., ¥z, V,. For
" ‘details of the implementation, refer to Appendix.

In Figure 6-- 5.1, Figure 6 - 5.2, Figure 6 - 5.3, we have shown the profiles of these variables
at the end of step 1 of each cycle. The simulation of cyclic operation takes 9 cycles to reach the

steady state, and the total computation time is 19:59 minutes.

xa2 profile at end of*®ach cycle

0.2 UM _Xe 12 UM _tm - 3
cycio- 10 tmax= 60
alpha= 30 beta= 3
G 2 opsilona 04
ka= 0.04 Ka=- 9. 35
o1} kb - -0.0016 Kb= - 935
L] PeH= 16+06 Pfel= 1e+06
> .
0.05 > .
O —
_005 ' L L i L ' ' A -y |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1

Figure 6 - 5.1 Gas phase compaosition profiles of oxygen in bed 2 at end of high-pressure step.
Parameter values as for ratio GG (row 2, Table 6 - 5.1)
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ya2 profile at end of each cycle
0.2 . - : - UM _Xe- 12 um_te 3

cycloa 10 \max— 60
alpha= - 30 Seta- 3

Ger . 2 :epsilon- o4
kKaw: ©.04 Kaw - 9:35
kb= ©.0016 Kb= 935

PolL= 18+06

Figure 6 - 5.2 Solid-phase concentration profiles of oxygen in bed 2 at the end of high-pressure.

ve

Parameter values as for ratio G (row 2, Table 6 - 5.1)

v2 profile at end of each cycle

1 - nUM_xX= 12 fnuM_te 3
ool NN, R L : cycla= 10 N A~ 60
o8l . ~N 7‘\\> ~_ . alpha= 30 - betae - 3
07} ‘epsilon= T 0.4
O,éb- : B ; PR 8.35
0.5 kb FeQ16 e 9
0.4 : : PoH= : 2y 06 Pel =~ 5.6
0.3{ :
0.2 . . ) . = . L — . ,

o 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 6 - 5.3 Fluid velocity as a function of distance in bed 2 at end of high-pressure step.
Parameter values as for ratio G (row 2, Table 6 - 5.1).
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6 - 5.4 Result of Steady-state PSA operation

In the next table, we list the result at the end of step 1 of steady-state PSA operation.

Table 6 - 5.1 Exit Composition of Oxygen, and Exit Fluid Velocity in Bed 2 at End of Step 1
of Steady-State PSA operation Assuming Solid Phase Concentrations of O, and N, Frozen
During Blowdown

a | G| tw | ki Ky K, | K, | Pe, | Pe, X, v,
20 [2 [60 [0.040 [0.0016 [9.35 [9.35 |1.0e6 |10e6 [0.015998 [0.654973
30 |2 |60 Jo0.040 [0.0016 935 [9.35 |1.0e6 |1.0e6 |0.009403 |0.578583
40 |2 |60 [0.040 [0.0016 [9.35 [9.35 [1.0e6 |1.0e6 |0.008360 [0.510112
30 (1 l60 0020 |doots 935 935 |1.066 | 1,006 [0.026307 |0.622295
30 {2 |60 |0.040 |0.0016 ]9.35 |9.35 |1.0e6 |1.0e6 [0.009403 |0.578583
30 {3 |60 [0.040 [0.0016 |9.35 [9.35 |1.0e6 |1.0e6 |0.006109 |0.478815
30 (2 |30 0040 [0.0016 935 |9.35 |1.0e6 |1.0e6 |0.026484 |0.523984
30 [2 |60 0040 [0.0016 935 |9.35 |1.0e6 |1.0e6 [0.009403 |0.587583
30 |2 |90 [0.040 |0.0016 |9.35 |9.35 [1.0e6 [1.0e6 |0.006071 [0.570014
30 |2 [120 |0.040 [0.0016 |9.35 |9.35 |1.0e6 |1.0e6 |0.005570 |0.619394
30 [2 |180 |0.040 [0.0016 |9.35 |9.35 |1.0e6 |1.0e6 |0.008284 |0.655468
30 |2 (240 |0.040 |0.0016 |9.35 |9.35 |1.0e6 [1.0e6 |0.014452 [0.683554
30 {2 [60 10040 |0.0016 |9.35 |9.35 [100 {100 [0.011505 [0.545612
30 |2 |60 |0.040 |0.0016 935 [9.35 [10 |10  [0.029940 |0.556392
30 (2 |60 |0.0026 [0.000106 |9.35 |9.35 |1.0e6 |1.0e6 |0.145532 [0.881673

6 - 5.5 Computation Time.

For the parameters listed in row 2 of Table 6-5.2, we run the simulation with different mesh

number and list the computation time.
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Table 6 - 5.1 Collocation points with Repressurization

e | IS | S,
m=6 2:40 \ 11 1’
m=7 3:31 9
m=8 5:29 9
m=9 9:27 ‘ 10
m=10 12:40 10 .
m=11 17:00 10
m=12 19:35 9
m=13 - 126:40 9
- m=14 41:24 10
- m=15 48:21 10

6 - 6 Conclusion:

As conclusion of this chapter, double collocation method can be used to solve the complex
mathematical model of combination of P.D.Es and O.D.Es. Comparing our results with
Raghavan’s, there is good agreement between them, therefore, we have successfully reproduced
the numerical simulation of a PSA cyclic operation with double collocation method. The purpose
of the work in this chapter is to serve a base for our modelling of PSA process in next chapter, in

which we will also need to observe the variation of temperature of PSA operation.
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Chapter 7 Simulation of A Conventional PSA Process
7-1 Theoretical Model

In this chapter, we will simulate the adsorption column of a conventional PSA process. In
order to build a more realistic model, we will make fewer assumptions than in last chapter.
Consequently, the mathematical model becomes more complicated, and more difficult to solve.
We will continue to use the double collocation method, introduced in Chapter 6, to do the
numerical simulation.

The following assumptions are made:

1. Conventional PSA, in which the flow boundary conditions at the end of the bed and the'
imposed pressure variations are specified.

2. Assume there are two adsorbable gases present, adsorbable to different extents.

3. We further assume that the bed may not be isothermal, so we must solve the energy
equation to obtain the local temperature. Heat effect is considered in this model.

4. Pressure drop along x direction is negligible.

5. The flow velocity is not constant, but varies along the bed and with time.

6. The equilibrium relationships are represented by the linear isotherm.

Therefore, in this PSA model, there are three variations: concentration (bulk gas and solid
phase), temperature and velocity of the flow.

This is the first stage of study of a conventional PSA cycle, since at present we're primarily
interested in the adsorption step. The solution developed here can easily be extended to cyclic
operation by changing the boundary conditions. Therefore, we have further description: the bed
runs through a cycle; there are four or five distinct phases, each with particular flow and pressure

boundary conditions.

7 - 2 Mathematical Model

7 - 2.1 Dimensional Form

Conservation of species:

azfl dve, dc 1-¢ v .
_D“aT +T’l+—a—[[ = ~Dl——e (Bl(‘l_ql) (Eq )
82(‘7 dve,  oc, l—¢ -
_Dné—:~+ 5 o T P B a) (Eq7-2.1.2)
il : ' (Eq7-2.13)
o Dy(Bc,-q)
% (Eq7-2.14)
a‘% . DZ(BZFQ—({Q)
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Temperature dependence of isotherm equation:

(H, H, 7-2.15
By = OexP(RT RT, ) *a )

A

H, H, (Eq7-2.1.6)
B, = quexp(RT RT ) Eq

Where T, is the temperature at which the value of B,;and B,, was calculated (usually 300 K).
Note that if T is greater than T, then B, and B, will be less than B, and B,, respectively. That is,
adsorption gets poorer as the temperature rises. Since we are modelling a bed that is at about
300K, the values of B, and B, will be appreximately equal to B, and B,, respectively.

Conservation of energy

el T Tt A e (T-T) =0 7-217
Z(LP.T*’CNT— Di= (Bic;w4)) + ¢ Py5, + ke (T-1,) = (Eq7-2.1.7)

Where T, is the bed wall temperature, it may be equal to T,, but need not be, in this work we -
setT, =T

a’

This equation may be simplified if the specific heats of the two species of gases are
sufficiently close; if we write ¢, for the mean specific heat at constant pressure, at ¢, for the mean

<

specific heat at constant volume, we have:

oveT ocT 1-¢ of
O ZHD——(BL g) + e < P5 +heg(T=T,) =0 (Eq7-2.1.8)

where ¢ = ¢, +¢, is the total concehitration of the two species - that is, ¢ is the density of the

mixture. This equation can be further simplified by noting that the ideal gas equation gives us:

P = RcT | (Eq7-2.19)
and since
oP
— =0, (Eq7 - 2.1.10)
pov ¢, op 1-¢ —¢ T ’ :
YRt R ZH,.D,—E— (Bie,~q) +¢,—— P, + ko (T=T,) = 0‘ (Eq7-2.1.11)

where %? is supplied as a boundary condition.

Derivation based on the above equations:
Differentiate P = RcT on both sides, we have:

F el rr \ Eq7-2.1.12
E‘— L_—-a—l-"”za—l ‘ (q - & 1. )

aC_ 1 0P (T e a7 ill3
E—-R—Tsl‘—?—a—l (Eq7-2.1.13)

adding (Eq 7 - 2.1.1) and (Eq 7 - 2.1.2) and considering (Eq 7 - 2.1.3), (Eq 7 - 2.1.4),-and the
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above equation,

d%, 0%, dve 1P coT 1-¢

P— D— + —
[ ] 2.7
3z 3> oz

RTot Tot

1-¢
+ ( ————— ) = —DIT(Blcl “ql) —DZ—E-—(BZCQ“qz) (Eq7'2.1.14)

Therefore, we will have the above set of six equations (Eq 7 - 2.1.1), (Eq 7 - 2.1.2), (Eq 7 -
2.1.3),(Eq7-2.14) and (Eq 7 - 2.1.11)(Eq 7 - 2.1.14) for solving the variables ¢, c;,q,, ¢, T, v
along with two auxiliary equations (Eq 7 - 2.1.5) and (Eq 7 - 2.1.6) to find B, and B,.

Initial condition .

For an initial condition, we can assume that the fraction of nitrogen in the gas in bed varies

linearly from 80% at the feed end to 0% at the other end.

/ The gases in the adsorbed phase are in local equilibrium wii};the gases in the gas phase.

J 0 = e (F5)
(5 0) = co—¢, (5,0)
q,(z5,0) = Byc,(z 0)
q,(2,0) = By, (5,0)
vz 0) = v,
T(z0) T N

a

]

Boundary condition:

The boundary conditions for the variables in dimensional forms are listed as:

ac,
Dng = _VO(“Ilzzo —Clizz().)
2=0,1
%, 0
oz L
a(q S
re . voled_o—al,
ac, 0
“\] : =L
oP _
5 =
T(:")'z.-_(],! = T" -
v(:’l”z:(u =V

7 - 2.2 Dimensionless Form

(Eq7-2.1.15)

(Eq7-2.1.16)
(Eq7-2.1.17
(Eq7-2.1.18)
(Eq 7 -2.1.19)
(Eq7 - 2.1.20)

(Eq7-2.121)
(Eq7-2.122)
(Eq7-2.123)
(Eq7 - 2.1.24)

(Eq7 - 2.1.25)

(Eq7 - 2.1.26)
(Eq7 - 2.1.27)

The above-mentioned six equations can be converted into their dimensionless form.
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7 - 2.2.1 Define dimensionless variables in Table 7-2.2.1:

Table 7 - 2.2.1 Dimensionless Variables

dimensionless < definition -

X, ¢,/ ¢

X, c5/ ¢y -

Yl q,/B)c,

?’2 9/ B¢,

P P/P,, where P, = RT,¢,

T T/T,

v v/ v,

X z/L )

T 1/ h, where h is dimensional time interval, refer Figure 6 - 4.1

7-222 Equations in dimensionless form:
(Eq 7 -2.1.5) and (Eq 7 - 2.1.6) can be rewritten as:
B“_Bl_ (Hl l~l)j
R R VT

10 a

B B, (H: (l {
5 = = ex =-1)
- B,, P RT, T )

(Eq7-2.1.3)and (Eq 7 - 2.1.4) can be rewritten as:

oY,
5 = hD, (B, X, -Y))
oY,
P hD, (B, X, = 1)
(EqQ7-2.1.1)and (Eq 7 - 2.1.2) can be written as:
“adX, | X, X, l-¢ g
RF Pegg e - M Be BTy
adX, | 0%, ovX, 1-¢
B Peyyg M —ob,— By (BX, = 1)

(Eq7-2.1.11) can be written as:

(Eq7-2.2.1)

1

(Eq7T-222)

(Eq 7-223)

(Eq7-2.2.4)

(Eq7-239).

(Eq7-2.2.6)

s
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_ov a oP H,
CPP

+

et = —— — —
x RN T,

1= Ql—e

1 €
alc l-¢ of

C ——

1 =

(Eq 7 - 2.1.14) can be written as:

1 9%,

—_—— - — 4+

0%, a1dP o (X +X)al WX +Xy) _

Pe 32 Peypfd hTot h T ot . ox

1-¢ ; 1-¢
- aDI—BIO(lel - yl) - aD2—320(52X2—y2)
3 3

aD '834 B.X -Y) " o0 B- (B,X,-Y
' e 10( 1&?]r 1 T_a 2T 20 272 72)

(Eq7-2.2.7)

(Eq7-2.28)

So far, we have all the dimensionless equations from (Eq 7 - 2.2.1)--(Eq 7 - 2.2.8) for the

dimensionless variables X,, X,, Y, Y,, T, v.

7-2.2.3 Tables of dimensionless parameters

Here, we list the dimensionless parameters.

Table 7 - 2.2.2 dimensionless parameters

parameters equations

Pe, [ (Lv,) /D,
Pe, (Lvy) /Dy,
a/h L/ (vyh), where a = L/v,
hD,

T—¢
% aDl“‘E_on

T-¢
9, aD, e B,

T—¢ D T—¢

o./cg “‘:_E'P:/CO’ where a, = ¢ Ps
ak,,/cy

The complete parameters used in this work are listed in section 7 - 7 at the end°of this chapter.

Refer (Singh & Jones, 199

Initial condition:

written in dimensionless form:

6) for more information.

X, (x,0) =.ﬂm (1.0-x)

X;(x,0) = 1.0-X,(x,0)
Y (x,0) = X,(x,0)
Y,(x,0) X, (x,0)

(Eq7 - 2.2.9)
(Eq 7 - 2.2.10)
(Eq7-22.11)
(Eq7-22.12)
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T(x,0) = 10 . (Eq7-22.13)
V(0) =10 (Eq7-22.14)
Boundary condition: '
Rewritten in dimensionless form:
?ﬁ = —Pe,(X)|  -X| ) (Eq7-2.2.15)
or c=0.t 0t 0"t :
19X, =0 (Eq7-22.16)
ar |, _ . . A
X, = —Pe, (X -X (Eq7-22.17)
ox |, _o: ST 2!”'& 2|n',r) - q7- 2=
X, =0 (Eq7-22.18)
aX x=11
%, (Eq7-2.2.19)
= = Eq7-2.2.
T, ,,= 10 (Eq7-2.220)
(LT, L, = 10 g (Eq7-2221)
7 - 3 Implementation of double collocation
Four steps nonlinear calculation:
7-3.1 Stepl
Initial guess, based on the result of last step.
X, (i), k=2, .. . M+1;i=2, . ,N+2; [M(N+1)}
X, (ki) k=2, ..M+ 1;i=2, . N+2; {M(N+1)}
Y (ki) k=1, ,M+2;i=2,  N+2; {(M+2) (N+ 1)}
: , (Eq7-3.11)
Yo(kyiy, k=1, . . M+2;i=2, .. ,N+2;{(M+2) (N+ 1)}
Ty k=1, ,M+2;i=2, . ,N+2; {(M+2) (N+1)}
vik, iy, k=1,.. . . M+2;i=2,, ., N+2; {(M+2) (N+ 1)} }
4

7-3.2 Step2
Solve the boundary condition for X,,X, and 7,7 according to the above nondimensional

boundary condition equations which are written in matrix form.

M+2
S AWNX Gii) = (Pey (X)| =X, (L)) (Eq7-3.2.1)
;=1

M+2

2A’(M+2,j)X1(j,i) =0 (Eq7-322)

=1
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)

M+2

D ALNKGoi) = (~Pey) (Xyf - Xy (1,0))

;=1
M+2
Y A M2, )X, =0
j=1

7-33 Step3

s Compute the derivatives for the following variables:

aq, M+2
-l = A‘,‘qu."
aX ki j§ !
az M+2
—? = 2 Bxk.j¢jv,
aX k1 J=1
> 3 N+2
I YU
= - AW
at ki j§ !

where ¢ stands for the following variables:

Table 7 - 3.3.1 Variables

0 % e %
ox o Jt
ax, %X, aX,

X, — ; —

X ox
X, ax, X,
5 o % &
)4

Y, r

dar,

Y, T

_ o

' ox

N ot

! x

7-34 Step4

(Eq7-323)

(Eq7-3.24)

(Eq7-3.3.0)

(Eq7-3.32)

(Eq7-333)

~ Setting up the residuals R}, and updating the initial guess to force the (6*M+6)*(N+1)

unknown residuals to become zero. To simplify the calculation, we compute B, and B, with the

local temperature at last step.

-

_ H, 1 I
B, (k) = “p(ﬁf,(f(k, D - ))

(Eq7-3.4.1)
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H, 1
B, (k) = exp(RT (T(k 5 l)) (Eq7-3.4ll ‘
R = 2%, _Li;’?‘.r 5.5 X e
h gt Pei 3.2 . ki ox|, (Eq7-343)
+¢, (B, (W)X, -Y)=0
sz. 29X, __]_i?_{z +‘_)k,i?ﬁ +X2(k'i)a—v
h Pery . x|, ox|, ; (Eq7-3.449)
+0,(B,(k)X,-Y,) =0
)
Ry = % —hD | {B, (k)X (k, i) =Y (k i)} (Eq7-345)
ki )
Y, 3)’2’ : .
R = 2 —hDy {B, ()X, (ki) =Yy (ki) } (Eq7-3.4.6)
k, ¢ '
- And (Eq7-2.2.7)and (Eq7 - 2.2.8) are implemented as the following:
~dv H, : .
4 cPPa————(pl(Bl(k)Xl(k,l)—Y,(k,:))
T, = 29T, 0 =0 (Eq7-34.7)
LT hdt a 1 - e
¢,(Bz(k)X2(k By =Yy (ki) + ok, — (T~ 1)
0
RS =- 132)( _Lﬁl X kD)X, i) s (%] L% ] S
' Pe’a Pezaxz o £ L 9y,
+0, (Bl (k) X, (k, i) —_Yl (k, 1)) + 0, (B, (k) Xy (k, i) ~ Y, (ki)
o H, | | (Eq7-3.4.8)
LX)+ XD ¢ C"P&—f‘p'(ﬁ‘(k)x'(m) “hik) 0
T(k, i) H, . . R HE
0 (B () X (i) = Yy (kD)) + kg — (T~ 1y
a 0

In this step we will use standard subroutine to solve the resulting systems of nonlinear

equations, in our program, we will also supply full Jacobian analysis in order to reduce

computation expenses. The simulation will repeat the four steps until time reach to the time

length of adsorption period.

7 -4 The Simulation Result:

>

With the boundary and initial conditions and the parameters abovementioned, we set:

1. space mesh=13 (including 2 boundary points)
2. time layers=3 (including 2 boundary layers)
3. adsorption duration tmax = 120 seconds,

4. velocity = (.02 m/se'cond.

!
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Figure 7 - 4.1 3D plot of variation of variables, (a) concentration of nitrogen, (b) concentration of
oxygen, (c) concentration of nitrogen in the solid phase (d) concentration of oxygen in the solid phase

(e) temperature (f) velocity of flow
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Figure 7 - 4.2 2D plot of variation of variables (a) concentration of nitrogen, b) concentration of

oxygen, (c) concentration of nitrogen in the solid phase (d) concentration of oxygen in the solid phase
(e) temperature (f) velocity of flow



From the above figures, we can get more insight about the evolution of the apéorpﬁon step of

a conventional PSA cycle.

1. Figure 7 - 4.1 (a) and Figure 7 - 4.2 (a) clearly shows that the curve representing the
variation of concentration of adsorbable (nitrogen) species is self-sharpening as adsorption
goes on. This confirms the theoretical prediction in chapter 1, that when the adsorption-is
favorable and significant, the concentration curve is self-sharpening. It also shows that
collocation method can handle this problem.

2. Figure 7 - 4.1 (b) and Figure 7 - 4.2 (b) shows that as the adsorption proceeds, the
concentration breakthrough curve of product (oxygen) in the bed is getting steeper.

3. Fiéme 7 - 4.1 (c) and Figure 7 - 4.2 (c) shows development of the concentration of
nitrogen in the solid phase.

4. Figure 7 - 4.1 (d) and Figure 7 - 4.2 (d) shows development of the concentration of oxygen
in the solid phase.

5. Figure 7 - 4.1 (e) and Figure 7 - 4.2 (e) shows that as flow moves from inlet to the outlet of
adsorption-column, the adsorption also moves along the bed, the temperature rises at the
places where the ag6orption takes place intensively. \

6. Figure 7 - 4.1 (f) and Figure 7 - 4.2 (f) shows that the velocity of fluid flow is really not
constant, it slows down where the adsorption take place; it recovers to the inlet velocity
where the bed gets saturated.

All the above figures have shown that adsorption in this conventional PSA simulation is
favorable and significant, the temperature and velocity of fluid vary as the adsorption takes place,
a self-sharpening breakthrough curve develops as the fluid flows through the adsorption column.
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7 -5 The Computation Time
Table 7 - 5.1 Collocation points with Repressurization

number of mesh gml%?;a}i;llgr?&g
m=6 0:05
m=7 0:11
m=8 0:27
m=9 1:02
m=10 1:58
m=11 3:35
m=12 6:23
m=13 10:22
m=14 15:46
m=15 27:03

7 - 6 Conclusion for Chapter 7

With double collocation method, we can solve the conventional PSA simulation model, and it
has shown that the method can handle the self-sharpening simt:lation, and the results verify our
predid’\on in Chapter 1.

95



7 -7 List of Parameters

Table 7 - 7.1: Parameters Used in Simulation

Data parameter | value | ‘ unit, explanation
operation ,cTcle 1 number of cycle of psa 0pet~;_t:"pn N ) _1
data tmax - 120 second. flowing period
length 30._’0 cm, bed length 1
diameter 1.66 cm, bed diameter -
bed e, 1000 J/kg K specific heat of zeolite
properties
. ‘ £ 0.3 Porosity of bed
P, 640 kg/m’
k,, 100.0 W/ (m’K), equivalehl radial gonductance
R 8.314 J/gm-mol/K universal gas constant
patm 101325.0 | latm=101325 N/m’
Sr?)sperties Po 20 atm.
T, 300 K, Temperature at initial condition
2 0.02 m/s, velocity of gas flow at inlet
x10 0.8 dimensionless gas component (percentage)
c, 20.8 J/gm-mol/K, specific heat of bulk gas (constant volume)-
Cpl 18.0 J/gm-mol/K, specific heat of bulk gas (constant pressure)
Nitrogen: D, 6.2 Linear driving force coefficient or gas diffusivity (per second)
H, 21000 J/gm-mol. Enthalpy of adsorption | -
B, 15.0 Langmuir constant at standard temperature m 3/gm-mol
rhol 28.0 molecular weight
D, 0.0@[ | goefficient of axial diffusion
x20 0.2 ’ . dimensionless gas component (percentage)
C,; 21.1 J/gm-mol/K specific heat of bulk gas (constant volume)
Cp 29.5 J/gm-mol/K specific heat of bulk gas (constant pressure)
Oxygen: D, 35.0 Linear driving force coefficient or gas diffusivity (per second)
H, 19000 J/gm-mol. Enthalpy of adsorption |
| B,y 20 Langmuir constant at standard temperature, m Yy gm-mol
rho2 32.0 ‘Molecular weight )
D, 0.0001 coefficient of axial diffusion
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Table 7 - 7.2: Derived Parameters

parameters definition
Co pa*pamV(R;“Ta)
gas c, (c,;+¢,,)/2.0
c, (c, ’+C,'”2)/2'0
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Chapter 8 General Conclusion and Future Work

8 -1 The Present Study Has the Follow«’ing Findings:

1. The object of this thesis is to build realistic models for the design of PSA cycles and PSA
units. For the realistic modelling of a conventional PSA cycle, the adsorption column can not be
assumed to be isothermal and to have constant gas velocity. When the benchtop apparatus is -
scaled up to industrial size, the thermal condition of the adsorption column changes from near-
isothermal to near—adiabatic;‘therefore, thermal effect has to be considered in our model, as well
as the variation of fluid flow due to bulk adsorption. In Chapter 1, we have shown that, in this
circumstance, the breakthrough curve of the concentration profile is self-sharpening as it
propagates along the adsorption column. Therefore, it is very important that we can represent this
self-sharpening breakthrough curve accurately, qtherwise, we will get low prediction of either
total productivity or purity from the computer‘modelling. This also means the numerical methods
of computer modelling must be free from false diffusion (numerical diffusion), which is a non-
physical effect. As another object of our research, we have discussed how to reduce or eliminate

this effect of false diffusion.

2. As noted in Chapter 2, the truncation error of applying the finite difference method to solve
partial differential equation, which s is the reéson for numerical diffusion. Earlier"researchers
tried to relate the truncation error to block and step size. and through adjusting the block and step
size to minimize the truncation error. There has been some success in minimizing false diffusion
this way; however this solution to false diffusion is limited to the specific problem, and
sometimes results in prohibitively small block and step size. Later researchers started to

“investigate new methods which have higher order accuracy, in order to minimize the truncation
error. The typical new methods would still be upwinding, the order of accuracy can be third,
fourth, fifth, or even seventh, ninth order. In the scope of this thesis, I study two methods: the
numerical method of lines, and the orthogonal collocation method, in either of which higher
order formulas can be embedded. These two methods have been applied to solve the convection
equation, the convective-diffusion equation, and a practical PSA model. It has been shown that
numerical method of lines with fourth-order formula and orthogonal collocation can both give
solutions to the numerical diffusion; also orthogonal collocation method is superior to the

numerical method of lines in computation time.

3. For the mathematical model of the conventional PSA, which is the combination of P.D.Es
and O.D.Es, solution is not possible by P.D.E-O.D.E. procedure. Therefore, we extend the
orthogonal collocation method to the double collocation method to solve the mathematical
model. In Chapter 6, we employ this method to solve a simplified version of PSA model, in

®
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which the thermal condition is assumed isothermal, however, we take consideration of variation
of velocity of fluid flow due to bulk adsorption. Based on the work of Chapter 6, we solve our
realistic model of conventional PSA model, in which we take consideration of thermal effect as
well as the variation of velocity of fluid flove due to bulk adsorption. The results agree with the
theoretical analysis made in chapter 1. It has been shown that the breakthrough curve of the
concentration profile is self-sharpening as it propagates along the adsorption column. The
computer model also present the temperature variation inside adsorption column, as well as
variation of velocity of fluid flow. The temperature rises at the places where the adsorption take
place, while velocity of fluid flow slow down at the blaces where the adsorption take place.
Therefore, the computer model has provided us with insight into the adsorption column. The
extension of the double collocation method to a semi-adiabatic bed is and original contribution of

-

this thesis.

8 - 2 Recommendation for Future Work
Several future tasks are recommended: R %A

1. Extending the current two-component adsorption column into three-component adsorption

column. .

The present model can be adapted to any other two gases by changing the input parameters.
However, some separation problems includes three or more gases, in the future, it is also desired

to include third component such as carbon dioxide.
2. Realization of cyclic operation.

=~ - Current work of simulation of the conventional PSA cycle is only the simulation of
adsorption step. The solution we’ve developed can easily be extended to cyclic operation by
changing the boundary conditions. Therefore, we have further description: the bed runs through a
cycle; there are four or five distinct phases, each with particular flow and pressure boundary

~ conditions.

There are two ways of simulating bed behavior; we can try to simulate the operation of the
bed from initial conditions, through a “warm-up” phase, to cyclically steady state; or we can
make it a boundary cond'igion that the state of the bed at the end of cycle must be identical to its
state at the beginning. This could be guaranteed by choosing the solution to be a sum of
sinusoids with period a multiple of the cycle length.)

s N
3. Simulation of more advanced cyclic operation such as TCPSA.

Upon the completion of these simulations, we will obtain realistic models to help on the

design of PSA unit as well as PSA cyclic.
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Appendix: The Orthogonal Collocation Method and
Orthogonal Polynomials

The Orthogonal/collocation method has been widely employed in problems of chemical
engineering. The fundamental step of this method is the solution of the collocation matrices
which are derived directly from associated orthogonal polynomials. Approaches based on two
categories of orthogonal polynomials (Jacobi and shifted Legendre polynomials) are presented in
detail in this section by symbolic computation. A general approach based on the Gram-Schmidt .
orthogonalization procedure can be employed to obtain variously defined orthogonal

polynomials.

A -1 A Brief Introduction to The Orthogonal Collocation Method

In the orthogonal collocation method, an original PDE can be reduced to a system of ODEs
by writing it in collocation form, and then the resulting system of ODEs can be solved by a

standard subroutine.

A - 1.1 Trial Function & Orthogonal Polynomials

éCc)nsider an unknown function ¢(x ), which lsatisﬁes partial differential equations and
boundary conditions. An approximating function called trial function can be chosen, such that
the boundary conditions are satisfied. Depending on nature of the problem, non-symmetric or

symmetric trial function should be used.

An example of a symmetric trial function is:

N
O(xt) = o(lo) + (l—xz)Zai(l)P‘_l(.rz) (Eq A-LLD)
1

where a (1) are functions of time (or constants) and P, are the orthogonal polynomials
defined by:
1

Jw(xz)Pj(.rz)xa_lH,t = C8 t (¥q A-1.12)
! ,

Ly
where w(xz) = l—xz,j =12 ...
Here the volume element dV has been replaced by the proportional quantity x*~'ax; thus for

slabs a=1, for cylinders a=2 and for spheres a=3. The polynomials defined by (Eq A - 1.1.2) are

Jacobi polynomials.

An example of a nonsymmetric trial function is:

B M
0(x. 1) = (1-00(0, 1) +x0(L,1) +x(1-x) Y a(1)P,_,(x) . (Eq A-113)

=1
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where q (1) are functions of time or constants and P, are the non symmetric polynomials
defined by the condition: N

i R
Iw(x) P xP_(x)dx =.0.n = 0, L ..m-1 - (Eq A-114)
0

1

where w(x) is weight function, such as w(x) = 1. The polynomials defined by (Eq A - 1.1.4)
are shifted Legendre polynomials.

* The collocation points x,,...x, are given by the zeroes of P, (x*) or p, (x)
A - 1.2 Interior formulas based on ordinates

The trial function can be translated tg an equivalent set of equations in terms of the unknown

ordinates o (x,). 6 (x,). ... 6 (xy)

For example, rewrite (Eq A - 1.1.1)

N+l ) ]
o) = ¥ dP7? (Eq A-1.2.1)
Jj=1
Evaluate at collocation points,
N+l )
0(x) = ¥ dx’7? (Eq A-1.22)

ji=1
Take the first derivative- a,égrd the Laplacian of this expression and evaluate them at the

collocation points:

do N+1 4 2 -2 :
Y= d (Eq A-123)
dx 1, jg T dx x, q
N+l _
Viel, = ¥ 4V, (Eq A - 1.2.4)
1 j: 1 )
These can be written in matrix notation
6=0d,0,=x""7, (Eq A - 1.2.5)
»
do | o
- = Cd, Cu‘ =2 1 (Eq A -1.2,6)
Vo = Dd, D, = V(¥ Y, (Eq A-1.2.7)
Since d = 0'¢
d
73 =Cd=CQ 0 = A0 (Eq A-1.28)
V2 = Dd = DQ7'6 = Bo ‘ (Eq A -1.29)

Integrals of the solution can be calculated with high accuracy via the summation formula
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1 IN+1 N+l | N+1
Jcp () x° " dx = szij-Zxa-ldx - djszj‘Zxa‘ldx = ZW‘¢(x‘) (Eq A - 1.2.10)
0 . 0j=1 i=1 o ’ i=1 :

which requires the value of solution only at the collocation points Xy oo Xy Xy
The collocation points x,. ...x, that appear here are the roots of P, (% = 0 and Xy, IS unity.

Matrices A, B are called collocation matrices.

Where, . -

[ (dxo) (dsz)

dx "} dx x,

R , .
[Ai(jN)] - . cea [()] (Eq A -1.2.11)
a0 eV

(—) (—)
L dx Xy dx ANl

Vz(xo)lxI TtV (x

BV - . , i (Eq A -1.2.12)

’ st ’

~

vz(xo)"ﬂ.l o v~(X2N)i‘N.

1 1
[Wi(N)] = ':!;0+°—]dx J'xZN+°~Idx (o™ (Eq A-1.2.13)
0
1 xf Y fo
Q= - (Eq A-1.2.14)

LR N
Similarly, the corresponding set of collocation matrices can be written for the nonsymmetric
trial function (Eq A - 1.1.3) based on the shifted Legendre polynomials.
Rewrite (Eq A - 1.1.3),

M+2 _
o(x) = Y axd"! (Eq A-1.2.15)
J=1
Evaluate at collocation points,
M+
o(x) = ¥ dx! (Eq A - 1.2.16)

=1
Take the first derivative and the Laplacian of this expression and evaluate them at the
collocation{poiqnts:
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M+2 i1

do). _ 5 g  (Eq A-1217
&, - 2, 3 aA-121n
' }-l :
M+2 s ’
2 _ 2 -1 .
Vie, = Y 4Vi(¥ M. o (Eq A - 1.2.18)
j=1
These can be written in matrix notation
y=0d,0,=xX"", (Eq A -1.2.19)
-1 *
b cd, c. = 9% = (-2, (Eq A -1.220)
dx Y dx |, _ .
Vly=Dd, D, =V, = - (-d7° (Eq A -1.221)
Since d = 07'¢ ‘
d)‘ _ _ -1 _aX .
E_Cd_CQ ¢d=A40 (Eq A-1.2.22)
Viy = Dd = DQ™'¢ = B% (Eq A-1.223)
Integral of the solution can be obtained by
! IM+2 M+2 | 5 M+2
j¢(x)dx - JZd}-i"dx = Edjjﬂ“‘dx =Y wox) (Eq A - 1.2.24)
0 0s=1 ~ Jj=1 90 j=1

Matrices A*, B* are called collocation matrices.

The collocation points x,. ...x,,, , that appear here are the roots of P, (x) = 0 x, = 0 and x,,,, is

unity.
3
Where,
| F 4z LA —
. dx Y dx X,
e , ca , L
(a5, 7] = S : [l (Eq A - 1.2.25)
’ vy ’ ‘
dx’ . dM*! ’
(—) ( )
i dx |, dx Sy
VZ( l))‘x B V"(XM+1) y
L M) ’ T ’ -1
L) 1= ' ' (0] (Eq A -1.226)
Vi, Y],

| |
(WMD) J.xﬂdx J'xM”dx (o)™ (Eq A-1.227)

0 0
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1 ,,,MH—
er=4 - - - . (Eq A -1228)

. 1 rre Mgl
LN R R 1Y ¥ -

A-2 6§thogonal polynomials

OrthOg’ona! polynofnials such as the above mentioned Jacobi polynomials and shifted
- Legendre polynomials and corresponding collocation points can be found in the literature, such
as Finlayson(1972), and Villadsen & Stewart (1967) for order from 3 to 7, already resulting in
very complicated calculation. However, in many situation, we need higher order polynomials. In
this se€tion, we provide method to obtain higher order of orthogonal polynomials by symbolic

computing” The symbolic computation can be implemented in Maple V.
<

A - 2.1 Jacobi Polynomials
The polynomials defined by (Eq A - 1.1.2)are Jacobi polynomials (Courant & Hilbert 1953,
Morse & Feschbach 1953). Rewrite it:

1
[wid P () ax = € 8, (Eq A-2.11)
0

where w(x’) = 1-x.j=12 .. ,and a =1,23.

The Jacobi polynomials are given explicitly by:

P(X) = F(-i,i+§+1,§,,€) (Eq A-2.12)

The constant ¢, 1s correspondingly given by: . -~
[r(g)]‘r(in)r(mz)
C = - (Eq A-2.13)
(4i+a+2)r(i+g)r(i+g+l)

Here. F is the hypergeometric function, defined by

. i!r(g)r(i+§+1+s)
F-ii+3+1.5.5) = 3 (-1 - ' (Eq A -2.14)
2 2 . . a a
s=0 (1-5)!s!l'(x+§+1)r(§+s)

The above equation can be used for symbolic computing of Jacobi polynomials in Maple V .
[" function is detined as GAMMA in Maple V. The program has been listed in A - 5.1, where a
can be 1, 2 and 3, the order of resulting Jacobi polynomials and their roots can be as high as 20.
However, here for the reason of space, we can only list jacobi polynomial and their roots for
order up to 10 in the Table A - 4.1 and Table A - 4.2 for a=3.
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A - 2.2 Shifted Legendre Polynomials
Another important set of orthogonal polynomials used to construct nonsymmetric trial
function are shifted Legendre polynomials, defined as:

1 !
[w PP (0dx = 0n =01, ..m-1 _ (Eq A-2.2.1y
o .

where w(x) is weight function, such as w(x) = 1. Indeed, these orthogonal polynomials can be
computed in a simple manner by Gram-Schmidt Orthogon;ilization procedure with an

. understanding of the concept of inner product (Dorny 1975).
Define inner product:

1 ' A Y

gy = [w(xnf(xgx) dx (Eq A-222)
0
therefore, we can see that the inner product of .
‘ ‘ ¥
(PoP,)= [wx)P ()P, (xdx =0, (Eq A -2.2.3)

0
which is the definition of orthogonal polynomials. By Gram-Schmidt orthogonalization

procedure, a natural basis polynomials F,(x) = 1.F, (x) =x F,(x) =x°, ... can be orthogonalize into:

S Py(x) = Fy(x) = 1 .
P (x)=F (x)~ wPo(x) >
(Po‘ b)
Py (x) = F,(x) L LS (x) (Eq A-224)
2 PPy © PPy -
Py(x) = F(x) L LA —w&m .
: (Py. Py) ° (PP ! Py Py)

Accordingly, we can obtain orthogonal polynomials: P, (x).P,(x).P,(x)...., We listed the
shifted Legendre polynomials and their roots in Table A - 4.3 and Table A - 4.4

We can also take advantages of symbolic computation in Maple V to perform the
orthogonalization procedure described in (Eq A - 2.1.4). The program is listed in section A - 5.2.
The order of resulting polynomials can be as high as 20.

The advantage of above procedure is that different polynomials can be easily obtained by just
changing definition of inner product corresponding to definition of each individual polynomial.
For example, if we define:

. l !
(.8)= (PuP,)= [w()P, ()P, (x)dx = 0 (Eq A-225)

-1

and then utilize the orthogonalization procedure described above, the resulting orthogonal
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polynomials are Legendre polynomials.

Upon obtaining the orthogonal polynomials, the procedure for obtaining collocation matrices
is very simple.

1. Read N, and x(j) roots. |

2. Calculate Q, C, D matrices using for (Eq A - 1.2.5)-(Eq A - 1.2.7) Jacobi polynomials or
(Eq A - 1.2.19) -(Eq A - 1.2.21) for shift Legendre polynomials.

3. Invert Q.

a. Calculate A, B, A*, B* using (Eq A - 1.2.11) - (EQA-12.14)o0r (Eq A - 1.2.25) -(Eq A -
1.2.28) respectively.

After we have obtained the collocation matrices, the PD.E’s can written in collocation form
which will result in a system of O.D.Es or a system of algebraic equations which can be solved
with standard subroutines.

A -3 Solution in the form-of polynomials

Sometimes, it is desired to express the computation results in the form of polynomials.

A - 3.1 Solution in the form of Jacobi polynomials
Rewrite (Eq A-1.1.1)

N -
ot =010+ (1 -V a P _ () (Eq A-3.1.1
1

where

|
a, (1) = ClJm(x, H =0 (L0lp () dx, k= 1,..N (Eq A ~3.1.2)

0
The integration can be exactly done by

N
l 0y .
a, (1) = C—k _EIW,M(J,,I) -0 (L,N)1p(x), k=0,..N (Eq A-3.13)

¢

A - 3.2 Solution in the form of shifted Legendre Polynomials
Rewrite (EqQ A - 1.1.3),

M
O(x.T) = (1=x)0(0, ™ +x0(1.t) +x(1 ~x) Zu‘(‘r)P“l% (Eq A-3.2.1)

t=1
By definition of shifted Legendre orthogonal polynomials,

|
0,i %)
Jp.0p,(nax = cgg. where 5, = (| ,,~j, (Eq A -3.2.2)

3]

therefore,
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pi(x)p, (x)dx

n
S o

(Eq A-3.23)

This calculation can be done by symbolic computation in Maple V with the definition of

inner product. See section A - 5.2.
Since,

1 M 1

1 1
I(x(l X)¢(x) -¢(0) - lqu’(]))pk(X)dX = Za,“.pi‘l () py(x)dx=a,C,

0 1

(Eq A-3.24)

k=1, .Mi=1,..M+2
therefore,
1
1
a, = — x)——=0(0) - —o (1 x)dx
: CJ(X“ 50 20(0) ~0.(1))p, (x)
o (Eq A-3.2.5)
'S 1 1 I
==Y W (———0(x) -—06(0) - ——o (1 x
C‘Z A= ) 0O — e () py(x)
A -4 Table of Polynomials and Their Roots
Table A - 4.1 Jacobi polynomials a=3 “
Order Polynomials
7
n=l Pl = ]‘;Xz
n= P,=1-6x+ 24"
n=3 Py=1- llx2+£x4—%§x6

_ _ 52 g 884 ¢ 4199 K
n=4 Py=1-Sx +78x" -t

_ _ 2 4 3230 ¢ 1615 3 7429 |,
n=5 P5—125x+170x—7x+3x 33x .

5
n= Py = 1-342 +323x - 129248+ 14208 _ 7432390;(‘0 ”11443‘5;(”

— 3, 19 L T6475 § 137655 1o 130663 13 _ 392863 1
n=7 Pr=1-5x+— 30594+ —5—=#' - = 143 143"

_ _ 2 4508 4 6 s 560280 ;o 8684340 |2 496248 4 2171086 ¢
n=§ Pg = 1 -56x + ="+ 6440x" + 24150x T 3 T
n=9 Py =1-69x" + 1380x" - 12420x° + 60030x* - 1861()193();'0 + 372112860;:”

3721860 14 34427205 1o _ 11475735 14
2_° 221 323
n=10 | P,=1- zzu +2025x* m’;’mﬁ 134850x% - 485460x' + ﬂgﬂ"x”
_ 19957800 14 22452525 6 204567450 15 293213345
13 17 X 2261
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Table A - 4.2 The roots of Jacobi polyﬁomials a=3

Order Roots of polynomials
n=1 |0.6546536707
n=2 0.4688487935 0.8302238963
n=3 0.3631174638 0.6771862795 0.8997579954
n=4 0.2957581356 0.5652353270 0.7844834737 0.9340014304
n= 0.2492869301 0.4829098211 0.6861884691 0.8463475647 0.9533(098466
n=6 0.2153539554 0.4206380547 0.6062532055 0.7635196900 0.8850820442
0.9652459265
n=7 0.1895119735 0.3721744336 0.5413853993 0.6910289806 0.8156962512
0.9108799959 0.9731321766
n=8 0.1691860234 0.3335048478 (0.4882292857 0.6289081373 0.7514942026
0.8524605778 0.9289015282 0.9786117662
n=9 0.1527855158 0.3019898565 0.4441157833 0.5758319603 0.6940510261
0.7960019261 0.8792947553 0.9419762970 0.9825722966
n=10 1 0.1392762040 0.2758415489 0.4070379379 0.5303117711 0.6432636445
0.7436950412 0.8296510966 0.8994585580 0.9517579557 0.9855271559
Table A - 4.3 Shifted legendre polynomials}
Order- JPolynomials
1
n=1 P = X_E
S 1
n=2 P,=x"—x+ 3
- 3 13 3,
n=3 F'3 =x 20+ sJ(— 2x
1 2 9
n=4 P4:,r4+%—7x+7x2—2x
_ _ s 1 5 57 5 53
n= F'5 x 73 + 3—2 5 5 X
_ 6 1 1 52 20, 154
n=6 P6_x+m—52-x+ﬁx 7+ 5t ~3x
_ B 7_1 1 7 _63 1 175 3_&4 63,\'5-2,\'6
n= Ry Ry Rl TR v R R A
- _g 1 4 142 283354 28€ 986
n=8 Py =X * oo " 1t % Tnr 5
n= P_!) 1 9 92843614 441514761447 93
- ST R TR 7 TR S R VA VN o
1=10 | p = 40 1 5 135 5 60 3 7354 1323 5 2940 ¢ 240 7 405 g o

10 =Y * 1275 8398 T898° 33" Teme” - Tt T t®w
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Table A - 4.4 The roots of shifted lengendre polynomials

. Order T | , Roots
=1 0.5000000000
N=2 0.2113248654 0.7886751346
N= .0.1127016654 0.5000000000 0.8872983346
N=4 0.6943184420 0.3300094782 0.6699905218 0.9305681558
N=5 0.04691007703 0.2307653449 0.500000000 0.7692346551 0.9530899230

N=6 0.03376524290 0.1693953068 0.3806904070 0.6193095930 0.8306046932
0.9662347571

N=7 0.02544604383 0.1292344072 0.2970774243 0.5000000000 0.7029225757
- 0.8707655928 0.9745539562

N=8 0.01985507175 0.1016667613 0.2372337950 0.4082826788 0.5917173212
0.7627662050 0.8983332387 0.9801449282

N=9 0.01591988025 0.08198444634 (0.1933142836 0.3378732883 0.5000000000
0.6621267117 0.8066857164 0.9180155537 0.9840801198

N=10 0.01304673574 0.06746831666 0.1602952159 0.2833023029 0.4255628305
0.5744371695 0.7166976971 0.8397047841 (0.9325316833 0.9869532643

A -5 Program List

A - 5.1 The program for symbolic computation of the Jacobi polynomials in
Maple V: ‘

> #solve the jacobi polynomials with the formulas in villadsen paper and their roots, here j is
the order of the polynomials, a=1 for slabs, a=2 for cylinders and a=3 for spheres.

> a:=3;

> pli]:=proc(i,a,x)

>sum((-DAs*(I'*GAMMA(2/2)*GAMMA (a/2+ 1 +i48))/((i-8) ' *s!* GAMMA (a/
2+1+1)*GAMMA (2/2+5))*x7s,s=0..1);

> end;

> for j from | to 20 do

> plyl:=pl1](j.a,x72);

> fsolve(p[j]=0.x);

> solutions:="";

> for k from 1 to 2*j do

> evalf(solutions[k],20);

> od;

> od;
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A -5.2 The program for symbolic computation of the shifted Legendre poly-
nomials in Maple V: ,

> #This maple program calculate the legendre polynomials and their roots by Gram-Schmidt
orthogonalization procedure

> #define inner product

> inner_product:=proc(f,g)

> int(f*g,x=0..1);

> end;

> #define a natural basis f[_i](x)‘

> for j from O to 20 do .

> fljl:=x"); P

> od; ¢

> #Gram-Schmidt orthogonalization procedure

> pl0]:=f0]; !

> for k from 1 to 20 do

> ss:=0;

> for j from O to k-1 do

>ss:=ss+inner_product(fTk],p[j])/inner_product(p(jl.p[i])*plil;

> od; )

> plk]:=flk]-ss;

> c[k]=1nner_product(p(k].p(k]);

> od;

> #calculate their roots

> for k from 1 to 20 do

> k;

> fsolve(p(k].x);

> od;
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