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Abstract 

The object hf this thesis project is to build a realistic model of+ PSA cycle. in which 

velocity of flow varies due to significant adsorption; also heat effect needs to be cokidered due 
I # 

to adiabatic thermal condition. Such a realistic model is desired for design of a PSA unit and a 

PSA cycle. However, the mathematical model used to describe such a realistic model would be 
, 

very complex, a& numerical simulation needs to be handled carefully, since it will result in a 

self-sharpening concentration breakthrough curve. Such a mathematical model would require the 

numerical method to have high standard of performance on numerical diffusion (free from 

numerical diffusion) in order to accurately predict the productivity or purity of product. In this 

thesis, we examine two numerical ,methods ---- the numerical method of lines (finite difference . 
formulation for space difference) and the orthogonal collocation method ---- by studying various 

mathematical problems and adsorption sy ems. We have shown that these two numerical < 
methods with higher'order formulations embedded provide the solution to numerical diffusion; 

and the orthogonal collocation methods is superior to the numerical method of lines in 

computation time. In the last two chapters, we take a step by step procedure to solve,our realistic 

model by double collocation method, which is the extension of the orthogonal collocation 

method. The results have shown that the theoretical breakthrough curve of concentration is self- 

sharpening, and the temperature of the adsorption column as well as the uelocity of ow are 

affected by the significant adsorption. 
P 
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Chapter 1 Introduction 
Explain what PSA is, and why we want to model it. 

a 

Explain what a breakthrough curve is, why it is self-sharpening, and why this 2 

means that we deed a model free from numerical diffusion. 

1 - 1 Pressure Swing Adsorption Process 
Pressure swing adsorption (PSA) is a widely used process for separation of gases. The major 

applications of PSA include the recovery qnd purification of hydrogen, the separation of oxygen 

from air, the separation of normal and isoparaffins, and a variety of drying operations. The major 

commercial PSA separation processes have been reviewed by Cassidy and Holrnes, ( 1984). 

1 - 1.1 Adsorption Separation Process 
The essential requirement of all adsorption separation processes is an adsorbent which 

preferentially adsorbs one component (or one family of related codponents) from a mixed feed. 

The selectivity of the adsorbent may depend on a difference in adatption equilibrium or on a - 
. -=-* 

difference in sorption rates (hnetic selectivity). (Ruthven 1994) '* 

All adsorption separation processes involve two principal steps: adsorption, during which the 

preferentially adsorbed species are picked up from the feed; regeneration or desorption, during 
4 

which the adsorbed species are removed from the adsorbent, thus "regenerating" the adsorbent 

for use in the next cycle. 

The adsorption can be affected by changing either the pressure or the temperature, i.e.. the 

degree of adsorption increases with pressure and d e c ~ a s e s  with temperature. 

1 - 1.2 Pressure Swing Adsorption Process 
Pressure swing adsorption processes are cyclic processes for separation of gaseous mixtures 

in which the adsorbent i s  regenerated by reducing the partial pressure of the adsorbed 

component. This partial pressure reduction can be accomplished rather rapidly by lowering the 

total pressure or using a purge gas. (Farooq 1990) 

In the following diagram, we illustrate the two principal steps of a PSA cycle. 



- 't 
Adsorption 

feed, A+B 
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Figure 1 - 1.2.1 The Concept of a PSA process 

The adsorption column (bed) is packed with adsorbent. During the adsorption (feed) step. the 

feed gas is entering the bed from inlet. and as the bed is pressurized with feed gas, the product 

gas A is collected from the outlet. During the desorption step, the bed blows do'wn to lower 

pressure, with or without purge gas. The feed step is normally terminated before the more 

strongly adsorbed component breaks through the bed, while the regeneration step is generally 

terminated before the bed is fully desorbed. At cyclic steady state the profile therefore oscillates 

about a mean position in the bed. 

Thus the pressure of adsorbent bed is changed during each separation cycle. The advantage 

of changing the pressure instead of temperature is that pressure can be changed much more 

rapidly than the temperature. thus making it possible to operate a PSA process on a much faster 

cycle, thereby increasing the throughput per unit of adsorbent bed volume. 

The earliest development of PSA technology can be traced back to Finlayson. Sharp, Hasche, 

Dargan and Perley in their pioneering patents. However, Skarstrom (1960, 1972) first introduced 

the low-pressure purge step to clean the adsorbent bed following the blowdown step ii his patent. 

Many modified versions of Skarstrom PSA cycles have been developed for particular uses since 

then. 

1 - 2 Modelling of PSA Cycles 
Efficient performance of a PSA unit depends on achieving the correct combinatirbn of process 

variables such as bed length, flow rate, cycle time, pressure ratio, and purge to feed ratio. The 

interaction of these process variables and kinetic / equilibrium parameters is so complicated that 

it is difficult to arrive at an optimal design simply by intuition and empiricism; a reliable 

mathematical simulation of the system is therefore required. Partial differential equations are 

used to describe the dynamic behavior of the PSA system at each step of a PSA cycle. Basic 

modelling approaches include equilibrium models, dynamic LDF models and pore diffusion 

models. Most research on PSA modelling and analysis has been done based on the assumption of ' 



( 
, 

isothermal behavior. 

The objective of my thesis project is to build realistic computer models of PSA- processes, to 

support the design and optimization of PSA equipment by our ind~strial partner. Currently, our 

industrial* partner has developed various PSA cycles and laboratory scale apparatus. However, 

when these benchtop prototype apparatus are scaled up to industrial-scale apparatus, the thermal 

boundary conditions change from near-isothermal to near-adiabatic. Because of the temperature 
I 

sensitivity of the adsorption process, this can lead to performance wll below the potential 

optimum. Therefore a reliable computer model is desired to realistically represent the critical 

characteristics of the PSA process, including heat transfer, varying pressure, and varying 

superficial velocity. 

1 - 3 Adsorption Column Dynamics and Breakthrough Curve 
For modelling a PSA process, we need to un'derstand the dynamic behavior of a packed 

adsorbent bed, which depends on the interplay between adsorption kinetics, *aasorption 
b 

equilibrium, and fluid dynamics. The overall pattern of the dynamic behavior is generally . 
determined by the form of the equilibrium relationship, and may be strongly modified by kinetic 

effects (finite resistance to mass transfer). It is useful to consider the analysis of the dynamics of 

an ideal system with infinitely rapid mass transfer (equilibrium theory). This dynamic behavior 

can be rep~.esented by the breakthrough curve. The emphasis is on the introduction of a 

breakthrough curve. A reference on how, in a real system, the ideal patterns of behavior are 

modified by the intrusion of finite resistance to mass transfer can be found in Ruthven (1994). 

1 - 3.1 Equilibrium Theory 
The formal analysis of adsorption column dynamics starts from the basic differential * 

equation derived from a transient mass balance on an element of the column. If the flow pattem is 

represented by the axially dispersed plug flow model, this assumes the form: 

If axial dispersion and pressure drop through the column can be neglected and if the 

concentration of the adsorbable species is small, this expression reduces to: 

In the absence of mass transfer resistance local equilibrium prevails at all points (i.e.,% = q* and 

if the system is isothermal, q* = f (c)  , where / ( c )  represents the. equilibrium isotherm. Under . , 

these conditions (Eq 1 - 3.1.2) becomes: 

r' 



This equation has the form of a traveling wave equation with the wave velocity given by: 

(Eq 1 - 3.1.4) 

If the equilibrium relationship is line& q = K C ,  , 

and it is evident that the wave velocity is independent of concentration. 

For an unfavorable equilibrium relationship d q 0 / d c  increases with concentration so w 

. h decreases with concentration, leading to a profile that spreads as it propagates. Since the profile 

spreads in a direction proportion to the distance traveled, this referred to as "proportionate 

pattern" behavior. . 

The case of a favorable equilibrium isotherm is slightly more complex. d q * / d c  decreases 
Y with concentration, so according to (Eq 1 - 3.1.4). w will increase with concentration. This leads 

to what is commonly referred to as "self-sharpening" behavior. An initially dispersed profile will 

become less and less dispersed as it propagates, eventually approaching a shock'transition. 

Figure 1 - 3.1.1 Development of the concentration profile in an adsorption column. (a) For an 
"unfavorabl;" equilibrium relationship the profile spwads at it propagates, approaching 

proportionate pattern behavior. (b) For a "favorable" equilibrium relationship an initially dispersed 
profile is sharpened as it propagates, approaching a shock wave. 

1 - 3.2 Bulk Separations 
Another situation in which a shock solution is obtained arises in bulk separations, where the 



e . a a ~  
change in flow rate due to adsorption is relatively large. 

P, 
4 ,. 

For a bulk separation we have, 

where. for an isobaric and isothermal system with an adsorbable component in an inert carrier: 

Expressed in terms of y, the mole fraction of the adsorbable (or more adsorbable) component, (Eq 

1 - 3.2.1 ) becomes: 

which, evidently represents a traveling wave with the wave velocity given by: 

For the linear equilibrium system: 
S 

Clearly LL' increases with increasing y, just as in the case of a trace system with favorable 

equilibrium, so that, according io equilibrium theory; t h e ~  will be a shock transition. . 

From the above analyses, we can see that in both cases, the self-sharpening breakthrough 

curves are produced. For the PSA systems we are modelling, the situation is more complicated; 

however, fundamentally, due to adsorption in bulk separation, the change, of flow rate IS 

relatively large. Also, the systems have favorable isotherms; as a result, the con cent ratio^ profile 

is the foim of a self-sharpening breakthrough curve. 

I - 4 Numerical Diffusion and Breakthrough Curve 
? 

The breakthrough curve of our current PSA model is self-sharpening; as a result, the 

numerical method for modelling PSA' processes is required to have quality performance on 

numerical diffusion. 

1 - 4.1 Numerical Diffusion 
Simulation of the behavior of an adsorption column bed produces a certain amount of axial 

diffusion, but this diffusion is entirely an artifact of the modelling process, and i t  is shown that its 

extent depends on the relative values of the fluid velocity, the size of the crank angle increment, 

and the length of a control volume. (Jones 1995) 



Consider a square wave moving along the bed without diffusion: 

Figure 1 - 4.1.1 Square wave flew 

If there is axial diffusion, the square wave will broaden out as it moves along the bed. 

Therefore, another object of this thesis project is to study the fundamentals of various 

different numerical methods and their performance on numerical diffusion; in return, we will 

Figure 1 - 4.1.2 square wave flow plus axial dispersion 

If this amount of axial diffusion is produced by the numerical method we use, it is called 

numerical diffusion, or false diffusion, distinct from the physical diffusion. A further study on 

numerical diffusion will be presented in chapter 2. 

1 - 4.2 Method Free from Numerical Diffusion 
Axial diffusion has an important effect on bed performance. Gas separation is most effective 

when the concentration profile in the bed is a square wave. Since it is shown that the 

concentration profile is self-sharpening and moves along the bed, an almost pure product flows 

out from the down stream end. Then, just as the shock wave is about to reach the dowstream 

end, we reverse the flow. If there is axial dispergon, however, when the self-sharpening wave 

transfer to shock wave, it broadens out as it moves along the bed. So as the tail of the wave 

reaches the downstream end, we either stop collecting the product immediately, in which case we 

can't obtain a high percentage of the product, or we go on collecting the product for a little while, 

in which case we get some of the other species mixed in reducing purity. If our model includes an 

unrealistically high degree of axial dispersion, we will find that it  always predicts low purity or 

low recovery. I t  is therefore important that our model is free from numerical diffusion. 

have the basis to choose among the numerical methods to improve our modelling of PSA - 
Y 

processes. 



Chapter 2 A Survey on Numerical Diffusion 
During the modelling of a PSA process, partial differential equations are used to describe the 

system. Numerical methods are used to approximate solutions of the partial differential 

equations. When solving a PDE numerically, for example, by the finite difference method, the 

numerical diffusion causes a great deal of concern. It is desireh to reduce or even eliminate this 

non-physical false diffusion in the modelling. In this chapter. through studying selected papers on 

numerical diffusion, past research and achievements in.this area will be presented, and the most 

fundamental questions arising will be answered. 
f i ~  

whi t  is numerical diffusion'? 

How is numerical diffusion generated? 

How to reduce or eliminate numerical diffusion? 

In this section, the preliminary knowledge of partial differential equations and numerical 

methods such as the finite difference method and control volume method will be introduced: 

- 2  - 1.1 Partial Differential Equation- A Model Problem 
Consider a simple transient convective-diffusion equation in one dimension (initial-boundary 

< 
value problem): 

subject to the initial condition: * - b ." + (1, 0 )  = 0, 0 5 .r 5 I (Eq 2 - 1.12) 

and boundary conditions: 

Q(U,I) = 0 and + ( I , [ )  = I , ( > ( )  (Eq  2 - 1.13) 

The physical interpretation of this set of equations is: a fluid moving along a thin tube of 

length 1 at velocity u. $ represents the temperature, or the concentration of a trace component. 

The temperature is forced to be O at inlet and 1 at outlet. Initially the fluid is at a temperature 0. 

The constant D is called the thermal diffusivity of the fluid. The solution of $(x,r )  will be the 

temperature at each position x in the tube at time t .  

2 - 1.2 Finite Difference Method 
Taylor's theorem: 

An elementary approach to the finite difference method is provided by Taylor's theorem, 

which we state as follows: 

Let $ be a class of functions that are n + l  times continuously differentiable on the interval 

7 



[a,b]. Then there exists a number 6, a  < 6 < h , such that: 

$ ( " ( a )  Q f n + l )  ( 6 )  
$ ( h )  = x- i! C b - a ) ' + R N ,  where RN = 

( n +  I ) !  
r = O  

do Finite difference approximation to ( a ) ,  

(Eq 2 - 1.2.1) 
a 

I .  Forward difference (first-order accuracy): ( o  ( a  + h )  - o ( 0 )  / h  . 

2. Bykward difference (first-order accuracy): ( o  ( a )  - Q ( a  - h )  ) / h  
e - 

3. Centered difference (second-order accuracy): (Q ( a  + h )  - ( a  - h )  ) ( DI) 
'2 

Finite difference approximation to % ( a ) ,  
dx' 

4. Second centered difference (second order accuracy): ( o ( u + h )  - 2 0  ( a )  + 0 ( u - h )  / h 2 .  

2 - 1.2.1 Spatial Dibretization: 

Assume for the moment that @ does not depend on time. The result is the steady-state 

boundary value 

The analytical solution to this boundary value problem is 

where R = ( u L ) / D  is called the Peclet number, it can be seen that R is the ratio of the 

strengths of convection and diffusion. 

If centered difference approximation is used for the tirst and second derivatives in (Eq 2 - 

1.2.2), we obtain: z. 

1-2 ( 2  + RAx)  The closed form solution to (Eq 2 - 1.2.4) is = - 0 5 ;  5 N ,  where z = . This 
I -z" ( 2 - R A r )  

., solution suffers non-physical oscillation if AJ > 2 / R .  
i 

To avoid this non-physical oscillation, use upwind dinerencing for the tirst derivative, and 

retain centered difference for t!e second derivative; we obtain 

That is, the gradient of $ is approximated by "its gradient between j and the mesh-pomt 

I 

ao 
1.  Herr we use suhanpt n ~ t i o n  for p m d  differentiation. O x  = -. and oII = G. We will u s  this 
nowion whenever i t  is convenient. a.c a.r  



upwind of j". 
1-r' The solution subject to (Eq 2 - 1.2.5) is 9, = - 0 < j 5 N, where, Y = 1 + R A ~ ,  which is 
1-f 

oscillation free. 

2 - 1.2.2 Temporal Discretization: 

Returning to the time-dependent problem (Eq 2 - 1.1.1) ---- (Eq 2 - 1.1.3). assume u>O 

constant. 

The explicit (forward time difference) discretization is: 

The stability condition for such discretization is: AI I 
Ax2 

2 0  + uAx 

The implicit (backward time difference) discretization, which is unconditional stable, is: 

Figure 2 - 13.1 Grid-point cluster for the one-dimensional problem 

Consider one-dimensional convective-diffusion ioverned by (Eq 2 - 1.1. l), 

2 - 1.3 Control Volume Approach 
The basic idea of the control volume approach (Patahkar, 1980) is: the calculation domain is 

divided into a number of non-overlapping control volumes such that there is one control volume 

surrounding each grid point, see Figure 2 - 1.3.1. The differential quatiorris integrated over each 

control volume. The result equation is the discretization equation containing the values of + for a 

graup of grid points. 

( 8  - 1  

Preparation: In Figure 2 - 1.3.1, the dashed lines show the face of the control volume. 

Integrating (Eq 2 - 1.3.1) over the cgntrol volume and over the time interval from t to t+At, we 

I t  can be shown that difference schemes can be applied to the control volume method. 

e n 

" E Q+I) 
n I h wi- 1 ) "p(i, 

+ A x  



For the explicit scheme, 

For the fully implicit scheme, 

Ptofile assumption: ( 1 )  stepwise profile, (2)piecewise-linear profile. 
1 For the convection term, if a piecewise-linear profile is used, 4, = i ( ~ E + ~ p )  and 

1 1 
P, = ( m p  + o w )  . Then o r  - m: = ( 4 ;  - m ; )  . which is a centered difference scheme. 

Assuming u>O, if a stepwise profile is used, qe = (9, and ow = ow. Thus, m: - 0; = ( 0 ;  - o;.). 
which is an upwind scheme. 

Using a piecewise-linear profile assumption for the derivative term, set ( 6 ~ )  = (6.r)  = h. 

a b n  $2.-4; a m n  mF-0; & am 0 ; -  20;+0;,  
Since ( - )  = - . - = --- ,then (-1 - ( - )  = 

a x ,  ( 6 ~ ) ~  a x ,  ( & I ) ,  ax ax , ~ x '  

which is second centered difference scheme. 

The discretization equation: 

For better understanding, set (6.r) = ( 6 ~ )  _ = ~ x ,  substitute j for P, j- 1 for W, j+l for E, then 

the above equation can be rewritten as: 

which is exact same as (Eq 2 - 1.2.6) 

+ I - @;,+ I )  + 

[G;' ' - 6+ ' m;+l-q;.+l)l 
implicit! (4;' ' - (F4 2 - 1.3.7) 

( 6 ~ )  , . ( 6 ~ ) ~  

Again, it can be rewritten as: 

which is exact the same as (Eq 2 - 1.2.7). 

I t  has been shown that the finite difference method and control volume have similar features, 

and both methods suffer from numerical diffusion. 

2 - 1.4 Numerical Diffusion: 
The actual effect of numerical diffusion on the solution of a PDE can be best illustrated by 



setting physical diffusion D to zero in (Eq 2 - 1.1.1): P 

9, + = 0 (4 2 - 1.4.1) 

subject to initial and boundary conditions: 

0 ( 0 . 1 )  = f ( 1 )  , 0  ( x ,  0 )  = g ( X I  (Eq 2 - 1.4.2) 

The analytical solution to (Eq 2 - 1.4.1) for the special case g(x) = 0 and f(t) =,O for t < O is 

~ ( x , I )  = f ( t - X / U )  (Eq 2 - 1.43) 

Further, if we consider the additional special case f(t) = I ,  t > 0, so that at x = 0, the entering 

temperature undergoes a unit step change at t = 0 

then (Eq 2 - 1.4.3) 

4 ( x .  I )  = U ( I - x / u )  (Eq 2 - 1.45) 

But in reality, if u = I ,  at x = 0.5, the numerical solution may look like: 

Figure 2 - 1.4.1 Illustration of numerical diffusion. 
J 

Comparing the analytical solution (solid line) with the numerical solution (dash line), since 

there is no physical diffusion in this model, the smoothing of the step function is purely a result 

of the numerical approximation, which is called nllrnerical diffusion, or artificial viscosity. Since 

it will distort the breakthrough curve in PSA. numerical diffusion must be minimized. 

2 0  plot r-O 6 bound- unlt nrp mrmod DSSOl 2  m u h  30 

2 - 2 Numerical Analysis of the Existing Finite Difference Schemes: 
Preliminary numerical analyses of existing finite difference methods has been done in the 

following literature papers. The common feature of these papers is that they use Taylor's series 

expansion to analyze numerical diffusion based on analysis of the truncation error generated by 

tinite difference schemes. 
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finite difference schemes, and states that the truncation error results in numerical diffusion. The 

latter are also quantitative, depending on the block size and time step. Therefore;the numerical 

diffusivity expressions can provide guidelines for choosing block size and time step 

combinations that minimize the effect of numerical diffusion. 
0 

2 - 2.1.1 Development: -. 
The convective-diffusion equation under consideration is (Eq 2 - 1.1.1 ) with unit velocity: 

k. The explicit finite-difference approximanon to the differential equation (Eq 2 - 2.1.1) using 

backward difference (BD) approximation to the first-order space derivative can be written: 

(Eq 2 - 2.12) 

4 
j The corresponding differential equation being solved by (Eq 2 - 2.1.2), retained only through 

second-order differentials, is then: 

a$ - ( x , I )  + - - i x , t )  ~ t a ' +  = D - ( x , O  a '+ - - ( ~ , t )  a$ + - ? ( x , t )   AX^+ + ... 
at  2 a t 2  ax2 ax 2 a x -  

-1 
An equivalence between time and space derivative can be established by differentiating (Eq 2 

- 2.1.1) with respect to time and with respect to space. The equivalence can be expressed as: 

Consequently, the PDE being solved by a BD representation (Eq 2 - 2.1.2) is: a 

do a$ A x -  Ar a'+ 
- ( x ,  I )  = -- ( x ,  t )  + ( D +  --- 
at ax ) ? ( A  0 + .. 

2 ax- 
Hence the total diffusivity is the quantity D + (AX - At )  1 2 .  The term (AX - A t )  12 will be called 

the numerical diffusivity. D is the physical diffusivity. 

2 - 2.1.2 Summary of Truncation Error of Basic Finite Difference Schemes 

With the above analysis, Lantz shows that numerical diffusivity indeed results from 

truncation error. A summary of the numerical diffusivity resulting from the various finite 

differeke schemes based on analyses of (Eq 2 - 2.1.1 )'is listed in Table 2 - 2.1.1 '. ' 
Table 2 - 2.1.1 Summary of truncation error expressions 

- 

Error Form 

TAr - A [ )  / 2  

Difference Form 

spatial 

Backward differencing 

time 

Explicit 



Table 2 - 2.1.1 Summary of truncation error expressions' 

- -- 

Lantz also compared the observed ahd calculated numerical diffusivity for the above 

difference formulations of convective-diffusion equatiop, and the agreement is good. We don't 

quote it here. He suggested that the researchei can refer to this table to choose the block size and 

time step to keep the numerical diffusion at an acceptable level, in the way that either the 

numerical diffusivity can be made negligibly small compared with physical diffusivity, or 

numerical plus input dlffusivity should be equal to the desired level. 

2 - 2.2 Transient and Steady-State Analysis On Artificial Viscosity 
8 

Roache (Roache 1972) shows that the usual analysis of the implicit artificial viscgity in 

tinite difference analogs of the linear advection equation is ambiguous, with different results . 

Error Form 

( -d l )  12 

( A r + A r ) / 2  

( ~ t )  /2  

Difference Form 

obtained for transient and steady-state problems. For the advection-diffusion equation, the 

steady-state analysis is shown to be more appropriate for steady-state problems. With both 

transient and s~ady-state analysis, he also demonstrated that some popular methods, touted as 

having no artificial viscosity, actually do have such when applied to steady-state problems. 

spatial . 

Centered differencing 

Backward differencing 

,Centered differencing 

2 - 2.2.1 Analysis on Convection Equation (usual analysis) 

time 

Explicit 

Implicit 

Implicit 

Roache cited: "Artificial viscosity" is a particular kind of truncation error exhibited by some 

tinite difference analogs of advection equations. He credits Noh and Protter (Noh and Protter 

1963) with having first presented an analysis of the artificial viscosity of the upwind differencing 

method applied to the convection equation: 

For u>O, the upwind differencing method for (Eq 2 - 2.2.1) gives: 

Rewriting the above equation using Courant number c = ( " A ( )  / (h) , 

. @ : + I  = @:-(~(@:-+;-') 

With a Taylor series expansion, analysis shows 

- - 

1 .  We omit the immiscible c a x .  



where 
* 

Dnum, = u ( A x )  / 2  - u2 ( A t )  / 2  = ( 1 / 2 )  uAx ( 1 - c )  

The nbn-physical coefficient D,,,, of (a261 / (&'), introduced by the method. is ref&ed as the 

artificial viscosity or numerical diffusion. 

2 -3.2.2 Transient vs. Steady-State Analyses: 

The interpretation of D~~~~ in multidimensional, viscous and/or steady-state problems is not 

as straightforward as it might appear. Suspicion arises when one considers (Eq 2 - 2.2.5), which 

shows D , , , ~ ~  dependent on At through the Courant number c. 

Consider a problem in which a steady-state has developed 0:" = 0:. Once this condition is 

reached, both (Eq 2 - 2.2.1) and computational experience with the upwind differencing method 

in multidimensional problems indicate that a change in At does not change the steady-state 

solution. Thus Roache moves to a steady-state analysis. 

For the steady-state problem, setting 9:'' = Q:, expanding in a Taylor series, a steady-state 

numerical viscosity is obtiined, A 

Dnums = ( 1 1 2 )  uAx (Eq 2 -.2.2.6) 

In this formulation, D,,,,, # f ( ~ t ) .  and the steady-state independence of At is not suspect. 

Roache then extended steady-state analysis to the problem with a diffusion term present: 

Q = -  
1 UQX +DQX1 (Eq 2 - 2.2.77) 

Again, the steady-state analysis is (Eq 2 - 2.2.6) while the transient analysis is (Eq 2 - 2.2.5). 

Unlike the situation for the convection equation, the distinction between the D,,,, of (Eq 2 - 

2.2.5) and D,,,, of (Eq 2 - 2.2.6) is then important, and the steady-state analysis is more 

appropriate for this convective-diffusion problem. 

For the multidimensional problems with nonlinear coefficients, the resolution of the transient 

and steady-state analyses is not so neat. Now, consider the application of upwind differencing 

with (physical) diffusion terms in two-dimensional flow. For constant u,. V, > o ,  this gives 

for which stability requires . 

but in the steady-state analysis, D ,,,,, = ( I /2 )  uAr, D ,,,,, = ( 1 / 2 )  \*Av 



Both analyses give different values of D , , ~ ,  or D , , , , ~ ~  in different directions, each of the form 

(Eq 2 - 2.2.5) or (Eq 2 - 2.2.6). The transient analysis predicts that the steady-state solution for 

the upwind differencing method is a function of At, which disagrees with computational 

experience. Thus, the steady-state analysis does appear to be appropriate for multidimensional 

andlor nonlinear steady-state . 

2 - 2.2.3 Transient and Steady-state Analysis of Other Methods 
* 

Roache summarizes the analysis of other methods in Table 2 - 2.2.1. Comparing this table to 

Table 2 - 2.1.1, the earlier one does not contain u because (Eq 2 - 2.1.1 ) ta@s u = 1. 

Table 2 - 2.2.1 Implicit artificial viscosities from transient and steady-state analyses for 
various finite difference methods applied to 4, = with c = (uAr)  (AX)  

2 - 2.3 The Upwind Difference Schemes 
In  "incompressible flow", the author summarizes the common finite difference methods used 

in simulation of incompressible flow. The first upwind differencing method has advantages 

among other finite difference methods, although it suffers from numerical diffusion. For 

example, compared with the Forward-time, centered-space (FTCS) method (see also Table 2 - 

2.2.1 ), upwind differencing is not stability limited by AX > 2 / R  (see also section 2 - 1.2.1 ). 

Based on the first upwind differencing method, the second upwind differencing method is 

developed, and the latter can have better accuracy. 

2 - 2.3.1 The Second Upwind Differencing Method 
In the second upwind differencing method. or "donor cell" method (Gentry, Martin, and Daly, 

1966) sope sort of average interface velocities on each side of the mesh point are detined; the 

sign of these velocities determines, by upwind differencing, which cell values of @ to use. In one- 



t 

dimensional notation, 

Where 

or perhaps some other averaging scheme. 

Consider @ constant with 0, - ,  = 0, = Q,+, = &, but spatially varying u. Then, 

which is second-order accurate for the convection field. 

Thus. it can be ccksidered that the secona upwind differencing method is more accurate than 

the first method, since it retains second order accuracy of possessed by the centered 

difference scheme; as a proof, the author of "impressible floww-refers to Torrance (196X), that it  

is indeed superior to the first upwind difference method in an actual two-dimensional 

computation. 

2 - 2.3.2 Comments 

However, I conjecture that this second upwind method will not be second order accurate if 

the solution has the pattern of a shock wave, since it  is quite contrary to the assumption of (Eq 2 

- 2.3.4). Therefore, it can not be the solution to the numerical diffusion problem in PSA 
ri 
i modelling. As shown in chapter 1 ,  the concentration profile has the pattern of a breakthrough 

curve. -.' 

2 - 2.4 A Consistency Check for Estimating Truncation Error due to 
Upstream Differencing 

I t  has been shown that upstream differencing seems quite an attractive method because of its 

inherent algorithmic simplicity and the fact it is oscillation free (see section 2 - 1.2. I). However. 

the associated numerical diffusion is an extremely serious handicap which may outweigh it,! 

positive features. For this reason, it is important to have a direct method for estimating the error 

incurred when upstream differencing is used for convection. Leonard (1978) outlines a simple 

procedure for achieving this. 



2 - 2.4.1 Introduction 

Cons'lder a convective-diffusive equation with a local source term in one dimension: 

A popular solution has been to use upstream differencing for the convective term. while still 

using central differencing for the diffusion terms. The artificial diffusion takes the form 

( u&) /2.,(see section 2 - 2.3. I )  

(Eq 2 - 2.4.1) can be rearranged into: . . 

(Eq 2 - 2.42) 

The basic idea of the method is as follows: assume that an exact solution mE is known and that 

from this. S* can be computed to any desired degree of accuracy: then at given fix& values'of y, 

z ,  and t ,  (Eq 2 - 2.4.3) represents an ODE which can be solved using upstream differencing for 

the x-derivative. Clearly, a comparison of 0 computed this way with the original Q~ gives a direct 

measure of the truncation error committed in using upstream differencing in the x direction. 
B 

In practice, qE and the corresponding S*(x) will not be known exa&ly. Instead. 0 will be ( 

available from a computer simulation of the particular problem. But for fixed y, z, and t ,  a S* can 

be computed with the given 0 function directly from (Eq 2 - 2.4.3) using any desired numerical 

accuracy. Then using the consistent value of S*(x), 0 is again recomputed from (Eq 2 - 2.4.3) 

using upstream differencing for the x-derivative. The difference between the original and 

b recomputed 0 functions now represents the inconsistency due to upstream differencing in the x 

direction in comparison with the accuracy used in computing S*. To the extent that computed S* 

will be of the same order as the (unknown) 'exact' S*, this inconsistency will be of the same 

order as the 'true' truncation error due to using upstream differencing in the particular coordinate 

direction. The final error estimate can be taken simply as the largest of the individual estimates. 

2 - 2.4.2 Basic formula 

Suppose a numerical solution of (Eq 2 - 2.4.1) has been made called @'(x.  y. Z. 1 )  and u'(.r, v. :. 1 )  , 

and plot as function of I. In a given computational cell, the numerical model of (Eq 2 - 2.4.3) is, 

as defined in Figure 2 - 2.4.1 



Figure 2 - 2.4.1 ~ e ~ i t i o n  of terms in equation (Eq 2 - 2.4.4) 

(Eq 2 - 2.4.4) could be used to recompute @ as function of x, e.g., 
_* I 0, = ( u ) $ ~  + 1% (Eq 2 - 2.45) 

From (Eq 2 - 2.4.3), the consistent control-volume average is given by: 

Therefore, the recomputed function @I1 at each cell: 

$I' = u: (0; - 0;) /u: + 6 (Eq 2 - 2.4.7) 

for up ur > 0, thus generating a ciownstream-marching algorithm for 0". In most cases, a fully 

graphical procedure is adequate. 

Graphical procedure for constant velocity 

Rewrite the equation for constant velocity: Q:! = I( + (0;- I$:) This is the basis for the 

graphical construction or̂  @I1 from 4'. 

I t  can be seen that, at any station: 

I 1  I I1  0' - 0 = 0 - 9 = A+~, = const r C  I L  

Thus, a simpler construction procedure: 

(Eq 2 - 2.4.8) 

..- 
I. compute A@,, = o! - o, at the reference point: 

2. find the @Value from q:! = 0; - A+,,. 

Note that the local inconsistency, 0; - (', is a direct estimate of the truncation error involved 

in the original computation generating @I. 

If the local inconsistency between 0'' and 4' is written: 

I I 1  I I1 I 1  
E = QC - 0, = (Qr - $(-I - (Or - 0,) = - A 0  (Eq 2 - 2.4.9) 

Locally, an estimate of E ,  correct to second order in AK, can be made by noting that: 



Therefore, 

I t  should be clear from the construction of graphic or (Eq 2 - 2.4.9) and (Eq 2 - 2.4.1 I )  that 

the only upstream-difference computations which are free of first-order truncation error (in 

regions of approximately constant velocity) are those for which $ varies, at most, linearly with 

the streamwise grid index. If there is any curvature in $, there will be a non-zero tirst-order 

truncation error. In order to minimize E ,  a tiner grid spacing is needed in regions of larger 

gradient. In fact, if an estimate of the solution is available (from rough calculation or from 

experimental measurements), (Eq 2 - 2.4. I 1  ) can be used to define the appropriate local grid size 

necessary for acceptable values of E .  This procedure may need to be iterated (not usually more 

than once or twice) to check that the incoqsistency in the final upstream-difference computation 

is within acceptable bounds. 

An approximate check for the flux consistency is also developed in (Leonard 1978). The 

same graphical construction can be used in the general case to make i n  adequate tirst-order 

consistency check on the convective flux computation. Leonard claims that method is 

particularly useful in rationalizing empirical tuning procedures used to calibrate upstream- 

difference numerical models in terms of measured results. - 
2 - 2.5 Comments on Section 2-2 

In  this section. we have studied the analyses of numerical diffusion in various finite 

difference methods, especially for upwind difference schemes. The basic idea is to use the 

expression of numerical diffusion 'as guideline to choose proper time step and block size to 

minimize it. This is one way of solving the problem of numerical diffusion. However, i t  is not 

easy to implement this idea, especially, for example, when the transient and steady-state solutions 

for P.D.E are both important or the truncation error bounds check may require impractical fine 

mesh. Alternatively, researchers are seeking generally more accurate numerical methods, such as 

higher-order difference formulation advanced on upwind difference schemes, which will be 

, explored in the next section. 
Z 

2 - 3 Advanced Study on Numerical Diffusion and Improvement of 
Upwind Difference Methods C 

2 - 3.1 A Survey of Finite Differences with Upwinding for Numerical 
Modelling of the Incompressible Convective Diffusion Equation 



Leonard (1980). analyzes the available finite difference schemes, and emphasizes that a 

straight-forward upstream shifted third-order convective ddferencing scheme can automatically 

combine inherent stability and accuracy, and is algorithmatically consistent with second-order 

diffusive differencing. Since a central difference method may lead to unphysical oscillation or 

computational nonconvergence and non-centered upstream-shifted convective differencing 

schemes may cause artificial diffusion, the introduced third-order finite difference method seems 
& a remedy to these problems. 

2 - 3.1.1 Development: 
The model convective diffusion equation: 

\ 

Analysis of Finite-Difference Operators 
Through the feedback sensitivity of various finite difference operators, Leonard demonstrates 4 

the stabilities of these operators. 

/ ( a t )  = RHS , RHS: the numerically modelled terms on the right-hand side. (Eq 2 - 3.13) 

E = ( a ~ t i s )  / (a+l)  , C: feedback sensitivity. (Eq 2 - 3.1.4) 

If C > 0, the algorithm would lead to exponential growth of any perturbations and is therefore 

undesirable. If C = 0, the algorithm has neutral sensitivity and perturbations can be superimposed 

on the solution without affecting the RHS----the algorithm is insensitive to these errors and no 

automatic corrective actions are taken. This type of neutral sensitivity is often associated with 

temporal and spatial oscillations. It  is directly analogous to the oscillatory nature of marginal 

stability in dynamic analyses. If C < 0, the algorithm will damp out random fluctuations. This is 

clearly a highly desirable property of any numerical algorithm. 

The diffusion term 
For the second central difference approximation to the diffusion term 

For this operator, 1 = - 2 0 1  ( b r 2 )  . Therefore this operator is stable. 

The convection term 
I. The second central difference 



So for this operator C = 0, a major problem of this operator. Therefore, it is unstable. 
* 

2. The upwinding Strategy 
i. First order upwinding 

D,,,, = luIAx/2, D,,,,c< D 

X = - I U I / ( A ~ ) ,  stable 
ii. Second order upwinding 

h3 + ...I, for U<O (Eq 2 - 3.1.12) 
2  Ax 

which is of course stabilizing. However, the discretization error is potentially oscillatory. 

iii. Third order upwinding 

which, being unconditionally negative for all (physical) values of u and D, represents very 

good damping qualities. 

2 - 3.1.2 ~ o d ' e l  Test Problem 

For comparative studies of the performance of different spatial differencing methods, a 
s 

simple model test problem is set: 

where u and I- are positive constants 

Figure 2 - 3.1.1 Formulation of model problem 

Second-order central differencing 



which can be rearranged into 
a 

where 9' = ( s o h )  / U  and P ,  is the effective grid Peclet number. ----in this case P: = P , .  

As noted. this method is relatively well-behaved for P ,  < 2 ,  but may lead to oscillatory result 

when P , > z .  

First-order upwinding and hybrid 

First order upwinding 

- - 

can be written as 

methods 

where P: = 2.  Thus, the result is inaccurate, therefore unacceptable. 

This defect is partially corrected by a hybrid technique in which second-order central 

differencing is used for both convection and diffusion when P,< 2 ,  and full upwinding when 

P ,  2 .  The governing equation can still be written in the form in (Eq 2 - 3.1.19), except, P: = P ,  

for P ,  Z,  and P: E 2 ,  for P ,  2 2 .  However, for P ,  2 ,  there is no i'mprovement over central 

differencing and for P , ?  2 ,  the method is so inaccurate that i t  is useless for any practical 

purposes. 

"Optimal" upwinding 

If written in the standard from "optimal" upwind is uivalent to second order central 
/ - - ,  

differencing using an effective grid Peclet number P> 2mh (P,/2). 

Since the effective diffusion coefficient i ? D $ u ~ r / ~ , .  it  can be seen that: 

n,= n , fo r  ~ , < 0 . 5  and oeJf= ( u A x ) / ~ ~ o ~ P , > ~ .  

As PA is increased, the artificial diffusion becomes relatively more dominant. From the 

computed result, we can see that "optimal" upwinding is actually worse than the (already 

unacceptable) hybrid scheme over the complete range of Peclet numbers. 

The QUICK method 



A control-volume formulation named QUICK (~uadrat ic  Upstream interpolation for 

Convective Kinematics) (Leonard, 1979), as shown in Figure 2 - 3.1.2, uses quadratic 

interpolation through three points: two points straddling the control-volume face together with an 

additional adjacent upstream points. 

Figure 2 - 3.1.2 Quadratic and exponential three-point interpolation 

For the QUICK method, the right-face value is 

where the curvature term is given by: \ 
4 

The model equation can be written 

L 
in which P: = P,.  ' a 

In simulations of practical problems the basic QUICK method is extremely "manageable" 

from the user's point of view, generating solutions of high accuracy over most of the flow domain 

in a stable and algorithmatically efficient manner. 

EXQUISITE method 

The problem of resolving a sudden jump in value in the flow direction over a few grid points 

can be solved by using a more appropriate interpolation function than the quadratic polynomial 

used in the QUICK method. One needs an interpolation function which can change rapidly and 

monotonically (when necessary). For this, the exponential function is quite appropriate. Figure 2 

3.1.2 shows how the same three node values can be interpolated by either quadratic function or 

an exponential. 

For the right-face value, quadratic interpolation gives (as before) 



1 1 
Q, = 2 (QC + g R )  - TiCuRV (Eq 2 - 3.1.26) 

where for u>O CURV = - , - 29, + +I  + , , ill 
1 

where a three-parameter exponential of the form + = A + B C ~ ' ,  where 5 = r - x l .  leads to 

@, = A  * 4 ( Q R - A )  ( Q C - A )  

0 = ( Q  - 9 )  ( Q  - Q )  (normalized variable) .- (Q 2 - 3.1.28) 

The resulting method is naturally referred to as Exponential or Quadratic Upstream 

Interpolation for Solution of the Incompressible Transport Equation (EXQUISITE). Clearly, this 

method can handle source terms and boundary jumps with high accuracy. 

2 - 3.2 Beyond First-Order Upwinding: The ULTRA-SHARP Alternative for 
Non-oscillatory Steady-State Simulation of Convection 

Leonard (1990) analyses the shortcomings of Hybrid and PLD method (Power Law 

Differencing scheme of Patankar (1980)) (also see Leonard 1980, or section 2 - 3.1)----They 

suffer numerical diffusion. Then he analyses the problems with high-order methods which 

introduces other problems---usually in the form of overshoots, undershoots or severe oscillation. 

----Finally, Leonard presents the ULTRA-SHARP alternative method, which is the advance 

version of QUICK implemented with a new universal limiter. This method is featured as a high- 

resolution nonoscillatory multidimensional steady-state high-speed convective modelling. 

2 - 3.2.1 Shortcomings of Hybrid and PLDs 

The tirst order upwind scheme and Hybrid and PLD 'scheme has been studied in (Leonard 

1980). In (Leonard 1990). comparing the solution from Hybrid and PLD schemes with the exact 

solution, one can see the numerical diffusion present in these first-order upwind method. 

2 - 3.2.2 Problems with High-Order Methods. 

I .  spurious oscillation of symmetrical schemes. 

2. non-monotonicity of higher-order multidimensional upwinding. 



1 
2 - 3.2.3 ULTRA-SHARP Alternative: 

(a) original unnormalized variables (b) corresponding normalized variables 

Figure 2 - 3.2.1 Normalized variable diagram for the universal Limiter 

Define normalized variables: 

The universal limiter constraints on 6, can be written 

For the explicit control-volume time-marching algorithm (Appendix I1 in (Leonard I W O ) ) ,  

Leonard outlines a procedure to apply the universal limiter constraints based on (Eq 2 - 3.2.2) at 

each stage of a pseudo-time-marching or iterative solution. 

The Downwind Weighting Factor 
Alternatively, an iterative implicit solution can be implemented by introducing the downwind 

weighting factor, as now described. Instead of limiting the interface variable directly, the 

Downwind Weighting F2ctor (DWF) is introduced as an auxiliary variable, thereby generating a , 

compact implicit scheme suitable for tridiagonal solution methods. After explicitly computing 

the high-order multidimensional upwind-biased estimate. $,, define \ 

The universal limiter constraints, in terms of DWF, become: 

D W F  = o.s,for (9 > 1 )  

Now rewrite the face-value as 



Q f = D W F Q ~ ~ +  ( ~ - D w F ) Q ? '  ( ~ q  2 - 3.2.5) 
where TBC stands for 'to-be-computed' in the next iteration of an implicit line-sweep update. 

If +: is the initial higher-order estimate on the control volume west face, the DWF is first 

computed according to: 

Then, the appropriate DWF is limited according to (Eq 2 - 3.2.4). 

The face value in the implicit update is then 

+, = D W F ; + ~  + ( 1 - D W F ; )  +,+,, for  ( u ,  > 0 )  

Q,, = D WF,+, + ( 1 - D WF,) Qp, for ( u ,  < 0 )  

Similarly, the other faces of this particular control volume cell are approximated. This results 

in an update of the form 

upQp = awQw + asQs + + 'lo+E + a n Q ~  + o,QT + ' (Eq 2 - 3.2.8) 
I t  should be stressed that the higher order multidimensional information and the non- 

oscillatory universal limiter constraints are implicitly contained in the DWF's of each face rather 

than involving 'outlying' node-values that are then lumped into the explicit source term. The 

limiter constraints inherent in the DWF's guarantee non-oscillatory results, with stability and 

convergence properties similar to the first-order method (DWF=O)----but without introducing 

artificial numerical diffusion. 

Non-oscillatory Multidimensional Result 

In the Appendix 111 (Leonard 1990). Leonard develops a series of higher order upwinding 

schemes for the convection term. In this experimental test, he shows the simulation results of 

applying the universal limiter constraints to the QUICK-2D scheme for the oblique-step test at 

P ,  = I(M). Comparing these results to the unlimited QUICK (reflect third order accuracy) results, 

the resolution remains sharp (reflecting third-order accuracy without overshoots or undershoot. 

Applying this universal limiter to higher-order convection schemes can dramatically increase the 

sharpness in the simulation of the near-discontinuity. 

Cost-effectiveness and Adaptive Stencil Expansion 

Question: For a prescribed accuracy, which is more cost-effective in terms of overall 

computer usage, a tine-grid computation using a low-order method, or a coarse grid calculation 

using a higher-order schemes? 



Answer: Gaskell and Lau (1988) compared first-order upwinding with the third-order 

QUICK scheme and a non-oscillatory version (similar to ULTRA-QUICK) using successive gnd 

refinement on the two-dimensional oblique-step test. For a prescribed accuracy, 

methods require such a fine grid, compared with the practical grid of third-order, that 

was larger by three orders of magnitude! 

Question: What order is more 'optimal' in the above sense of cost-effectiveness'? 

Answer: A simple strategy of adaptive stencil expansion is proving to be extreme 

effective in both steady-state and time-accurate transient simulation: using third order 

QUICK in 'smooth' regions of the flow. on the basis of some 'non-smoothness' monit 

to a higher-order (ULTRA) scheme locally, as needed. 
4 

Some monitors such as the CURAV (the absolute average 'curvature') and the GRAD (local 

absolute normal 'gradient') can be used: 

C u R A V E  = 0.51(Q,+2-@I+,) - ( Q I - Q , - , ) )  (Q 2 - 3.2.9) 
I 

GRAD = \$I., - $11 (Eq 2 - 32.10) 

The order-switching strategy is shown 

, Figure 2 - 3 2 2  Schematic Diagram of order-switching strategy used in the 
locally adaptive stencil expansion algorithm ' 

For steady-state calculations, i t  appears that an adaptive ULTRA-QUICK/Sth/7th-order 

convection scheme has a number of attractive attributes, including cost-effectiveness (high 

coarse-grid accuracy), reliability (excellent stability and convergence properties) and ease of 

coding. 

2 - 3.2.4 Comments on Section 2-3 

Leonard has presented a relatively new achievement, ,viz, using a higher-order upwinding 

scheme in the region where the solution changes rapidly. These higher-order upwinding schemes 

have the problem of non-monotonicity. To solve this problem, the author uses the universal 

limiter scheme to achieve a monotonic but sharp solution. The results are impressive. 

2 - 3.3 A Method for Predicting and Minimizing Numerical Diffusion 
Peterson (1992) addresses from a Lagrangian viewpoint the problem of inaccuracy of 

interpolation in space and time resulting numerical diffusion. He uses a Taylor's series expansion 

for streamwise and cross-stream interpolation processes to give numerical diffusion coefficients, 

and states that these simple coefficients can be used to adjust physical diffusion coefficients, and 



provide second-order accuracy for convection in control volume solutions. 

2 - 3.3.1 "FAST" solution for transient convection 
Q 

Peterson develops "FAST diffusion correction function, which he provides significantly 

improved performance for large time step and Peclet numbers, something highly desirable 

feature for transient solutions. 

* '. The conservation equation under consideration by Peterson is 

From a Lagrangian viewpoint, with Taylor's series expansion, Peterson gives both " 

streamwise and cross-stream numerical diffusions results from various difference schemes in the 

control volume method. 

For the one-dimensional problem, only streamwise numerical diffusion is considered. viz, 

(Eq 2 - 3.3.2) 

The implicit and explicit upwind numerical diffusion coefficient can be combined as 
a 1 

D,,,,/D = - 1  2 (. 1 - 1 . )  Pel 

-. 
where c is Courant number, defined as c = uAr/Ax, and P r  is the grid Peclet number, detined as 

Peters# argues that, in general, convection terms should be evaluated explicitly to avoid 

dispersion effects and diffusion terms should be evaluated implicitly. 

Therefore, the equations becomes, 

Using numerical diffusion coefficient derived previously to adjust the physical diffusion, the 

following equation is obtained: 

where, the FAST diffusion covection functions A can be written as simple functions of the 

Courant numbers and Peclet numbers, 

A ,  = mux [O, 1 - 0.51 ( 1 - 1c.J ) Pe,l 1 
A ,  = m a x I 0 ,  1 -0 .51  ( I  - I ( . ,J) t 'e , I  I 

The Courant numbers are defined as C* = Alu, , /Ar and = Aru,/Ar,  and Pe, = pu,  ( A X )  / r%,  



2 - 3.3.2 One-Dimensional Transient Flow Problems 
A test problem has been studied by Peterson, some findings are: 

I .  Without physical diffusion, Pe = -, only choosing c = 1 ,  results preserves the exact 
solution, and other values of c will result severe numerical diffusion. a higher order 
scheme is desired. . 

; 2. With physical diffusion Pe < 5 ,  the FAST diffusion correction functions can be employed, 

P J 

good agreement is obtained and it is superior than Hybrid scheme. For Pe > 5 .  higher order 
methods are required for accurate solution. 

e 
3. For transient solutions, convective terms must be evaluated explicitly. Implicit evaluation 

of convective terms introduces strong diffusive effect. This diffusion will strongly 
degrade the quality of any transient solution. 

2 - 3.4 Comments on Section 2-3 
In this section, we explored more advanced higher-order upwind schemes, first the QUICK 

method, and then the ULTRA-SHARP which overcomes the oscillation problem----it is the 

QUICK method implemented with a universal limiter. Although Peterson(l992) presented an 

inexpensive method in which a diffusion correction coefficient is developed to improve the 

accuracy of control volume solution, this method can only be employed with a relatively small 

peclet number. Since in PSA modelling the Peclet number usually has large value, this diffusion 

correction function won't resolve the numerical diffusion in our PSA modelling. All the 

researchers have agreed that the first upwind scheme suffers numerical diffusion, and higher- 

order upwind schemes seems a remedy for numerical diffusion, and noticing that it suffers 

oscillation in a certain degree. 4 

Explicit Artificial Viscosity 
Artificial viscosity which is explicitly added to the equations in numerical method is referred 

to as explicit artificial viscosity. von Neumann and Richtmyer(l950), explicitly added a 

viscosity-like term to the convection equation in order to allow the calculation of shock waves. 

Their explicit artificial viscosity term was deliberately made proportional to Ax2. Approach is 

given below. 

2 - 4.1 An Artificial Dissipation Scheme for the Navier-Stokes Equations 
Kaniel, Mond and Ben-Dor (1993) use the finite element method to solve the Navier-Stokes 

Equations. lsotropic artificial dissipation is added to the Navier-Stokes equations along with a 

correction term which cancels the artificial dissipation terms in the limit when the mesh size is 

zero. For a finite mesh size, the correction term replaces the artificial viscosity terms with a 

hyperviscosity term, i.e., with an artificial dissipation which depends on the fourth derivatives of 

the velocity. 



Development: 
Spurious oscillations often occur in numerical solutions of the Navier-Stokes equations 

which for incompressible flow are 

V . V = O  (Eq 2 - 41.1) 

The Numerical Scheme 
Artificial viscosity is added to (Eq 2 - 4.1.2) as well as a correction term: 

where the artificial viscosity v U  iyassumed to constant, or -* 

(Eq 2 - 4.13) 

(Eq 2 - 4.1.4) - 

if the artificial viscosity is variable. 

To demonstrate this, a finite difference discretization is used for which Qj is given by: 

The x component of the last term on the right hand side of (Eq 2 - 4.1.4) is therefore given by: 

I t  is obvious that the sum of the added terms [the artificial dissipation Vx ( vaVx  V )  plus the 

correction term -V .r ( v a n )  is not zero, but it is small whenever the flow is smooth with respect to 

the mesh size. 

To summarize, instead of directly solving the Navier-Stokes equations; standard Galerkin 

integrations are performed on the following equations: 

1 1  
u - U  I + ( U U )  I + ( u L . )  = - - P I  + [ ( V  + v U )  ( u ,  + vv)  ] I + [ ( V  + v a )  ( u y  - Y,) - v J i l j ,  (Eq 2 - 4.1.9) 

A I  P 

Artificial Viscosity Coefficient 
For the discussed problem, four different artificial viscosity coefficients are presented in the 

order of increasing accuracy. 

These are 



where Pe is an elemental Peclet number, which is based on the analysis on a triangular element. 

u (v ,  - v,.) + v ( x , .  - x , )  
~e = m a x ( ~ ,  i 

6 a ~  B' 

where i* is the vertex next to i the counterclockwise direction. A is the area of the triangle. 

B' = XI: /  ( 2 ~ ' )  and ! is the length of the ith side of the mangular element. 

Numerical results derived using a coarse grid 

The artificial viscosity coefficients were employed in the simulation of the flow over a 

backward facing step----a realistic internal flow situation which has a variety of boundary 

conditions and a complicated flow behavior. The present results compared favorably with the 

experimental result and are by far more accurate than the numerical results obtained by using a' 
finite difference code. 

2 - 5 Conclusion for Chapter 2 
From this chapter, we have learned that numerical diffusion results from truncation error 

exhibited by upwind difference schemes either applied in a finite difference method or a control 
& 

volume approach. Higher order upwind schemes have a better performance on numerical 

diffusion, but with a certain degree of oscillation. A Universal limiter has been implemented to 

improve the oscillation generated by higher order upwind schemes. An inexpensiv; diffusion 

correction function has been developed to improve numerical diffusion in the control volume 

formulation. Finally, we include the possibility of solving difficult P.D.Es by explicitly adding 

artiticial viscosity, which can be minimized when the mesh is retined. One important common 

conclusion to be drawn from the paper studied in this chapter is that higher order upwind 

schemes provide a solution for numerical diffusion when the Peclet number is high, which is the 

case of our modelling of a PSA process. 

c' 



Chapter 3 Convection Equation 
From the study on numerical diffusion in the last chapter, an important conclusio? drawn is" 

that a higher order upwind scheme is the solution to numerical diffusion. In this chapter, we will 

explore the Numerical Method of Lines (NUMOL) and the Orthogonal Collocation Methad, in 

a which the higher order upwind schemes can be embedded. \ 
Convection equations, so called first-order hyperbolic PDEs, can be solved analytically, and 

this appears to be very simple. However, they are also a difficult class of partial differential 

equations to integrate numerically. They are the major governing equations to be solved in our 

modelling of a PSA- process. In this chapter, we will discuss some physical properties of first- 

order hyperbolic PDEs, and as a demonstration of each of the above methods, we will solve the 

convection equation with each method. We then study the effect of numerical diffusion as well as 

oscillation from them by comparing the results. 

3 - 1 Convection Equation 
In this section, we first study the physical properties of convective equation. 

/ 

The convection equation is: \ 

(Eq 3 - 1.1) 

where $ can represent any intensive properties of the fluid, sucb as temperature. Since it is first 

order in  t and x, i t  requires one initial condition and one boundary condition: 

I t  is very easy to verify that the analytical solution to (Eq 3 - 1.1) to (Eq 3 - 1.2) for the 

special case g(x) = 0 and f(t) = 0 for t < 0: 

Further, if we consider the additional special case f(t) = I ,  t > 0, so that at x = 0, the entering 

temperature undergoes a unit step change at t = 0 is 
/ 

Following the (Eq 3 - 1.3), 

i.e., the unit step in temperature at x = 0 propagates along the tube at velocity v. and 

eventually, at t = Llv, the unit-step will reach the other end of the tube (L is the length of the tube). 

At any position along the tube when t = xlo, an observer would see a unit step function pass by. In 

other words. the convection equation propagates a finite discontinuity along the tube for this 

special case. 



- 
The above property of a first-order hyperbolic PDE causes a problem in computing a 

numerical solution. Consider the slope of the solution at any point x along the tube when t = x/v; 

the slope $, in (Eq 3 - 1.1) is infinite. Clearly, any numerical procedure based on well-behaved 

functions will fail under this condition. Therefore the general methods which work well on 

parabolic PDEs or elliptic PDEs will not succeed in dealing with first-order hyperbolic PDEs. 

Unlike the parabolic or elliptic PDEs, the first-order hyperbolic PDE can repre~ent~propagation 

discontinuity or shocks. 

3 - 2 Solving Convection Equation with the Numerical Method of 
Lines 

3 - 2.1 A Brief Introduction to the Numerical Method of Lines 
Generally. we need to replace PDEs with algebraic approximations, and then to obtain 

approximate numerical solutions to PDEs with the auxiliary conditions. This procedure is the 

basis for well-known classical finite difference, finite element, and control volume methods form 

PDEs. The Numerical Method of Lines (NUMOL) is really just a small departure from this basic 

approach. 

1 

Figure 3 - 2.1.1 sketcb of numerical method of lines 

In NUMOL, we retain ttle index i to account for variations of the dependent variable Q with .r, 
but we treat r as a continuous variable. Thus, we keep the derivative 9, term, and substitute the 

derivatives 9, or $,, terms with an difference approximations; this will lead a system of ODEs in 

r. This is the essence of the NUMOL. One of the advantages of NUMOL is that there are many 

ODEs solvers available either in the commercial market or research field. 

Therefore, the basic steps of NUMOL: 

I .  Space differencing 

2. ODE integration 

Next, we will follow the NUMOL procedure to solve the convection equation. 



3 - 2.2 Spatial differentiation 
Space discretization of the PDEs produces a system of ODES. As studied in Chapter 2, for 

spatial discretization of convection term, first upwind difference suffers numerical diffusion, 

while centered difference has serious oscillation, and higher-order upwind difference seems a 

remedy for numerical diffusion. Several finite difference formulations (Schiesser 1994) have 

been used to approximate the convection term, and similar conclusions can be drawn from 

comparison of the results. These approximation formulas are listed in the following: 

I .  DSS002----one-dimensional, three-point centered approximations for first-order 
derivatives, suffer oscillation problems, 

.j 2. DSS004----one-dimensional, f i ve3 in t  centered approximations for first-order 
derivatives, suffer serious oscillation problems. 

3. DSSO 12----one-dimensional, two-point upwind approximations for first-order derivatives, 
suffer serious numerical diffusion. 

4. DSS014----one dimensional, three-point upwind approximations for first-order 
derivatives, gives an improved result on oscillation and diffusion. 

5. DSS020----one-dimensional, five-point upwind approximations for first-order derivatives, 
gives the best performance among these five methods. 

Sqhiesser (1994) also shows that among higher-order upwind difference forrnulatioas, five- 

point upwind DSS020 is the optimal choice between accuracy and oscillation. 

In our experiments, DSSO 12 and DSS020 for the spatial discretization of convection term are 

implemented. Here we briefly explain these two methods: 

I)SS012---First-order upwind approximation to u,: 

for v>O: 

for v<O: 

DSS020---Fourth-order upwind approximation to u, 

for r>O: 



for v<O: 

The performance of DSS020 is better than centered difference methods DSS002 and DSS004 

on oscillation, and better than upwind difference methods DSS012 and DSS014 on numerical 

diffusion. However it still produces some oscillation. It has been found that if we can use a slope 

step function, the so called "ramp function", to approximate the unit step for the boundary, the 

numerical results will agree with the analytical results better. That is also true in reality, in a 

realistic model, we would not expect propagating discontinuities; generally, there will be some 

physical phenomenon that will produce a finite rate of change, for example, molecular diffusion 

of temperature, mass, or momentum. In the -impIementation, we use r(t) = @(0, t), which has a 

steep but finite slope 

0, 1 < 0; 

s x 1 , 0 5 1 <  ( l / s )  

l , l >  ( l / s )  

Here slope can be taken s=5, 10, 20. 

Tha exact solution of the convective equation corresponding to this boundary condition is: 
/ 

o ( x . 1 )  = r ( t - 2 )  (Eq 3 - 2.2.16) . 
u 

3 - 2.3 ODE integration 
After space-discretizing the PDE, the problem has been converted to solve a system of ODEs. 

The system of ODEs generated by the spacing differencing of the convective equation is stiff. 

Therefore we need an implicit method to solve ODEs. 

There are many implicit methods for integrating stiff ODEs. In our implementation, we 



employed the semi-implicit extrapolation method (Press, Teukolsky, Vetterling 1995) for our 

ODE integration. 

Semi-implicit Extrapolation Method 

Complete information about the Semi-implicit Extrapolation Method can be found in [Press, 

Teukolsky. Vetterling 1995). We just excerpt some necessary part to make this chapter self- 

contained. 

First look at the first order implicit method. 

For the system of ODES: 

0 = / ( @ )  

implicit differencing gives 

$"+I = $ " + h f ( ~ ~ + I )  

I Suppose we try linearizing the equations: 

a/ Here - is the matrix of the partial derivatives of the right-hand side (the Jacobian matrix). ao 
Rearrange the equation into the form 

If h is not too big, only one iteration of Newton's method may be accurate enough to solve 
Y (Eq 3 - 2.3.1) using (Eq 3 - 2.3.4). In other words, at each step we have to invert the matrix I - h- a@ 

to find on+ I .  Solving implicit methods by linearization is called a "semi-implicit" method, so (Eq 

3 - 2.3.4) is the semi-implicit Euler method. 

The above method is only first-order accurate. Most problems will benefit from higher-order 

methods. Here we use the implementation of a semi-implicit extrapolation method due to Bader 

and Deuflhard ( 1  983). 

The starting point is an implicit form of the midpoint rule: 

$"+I -+" - I  = 2h f (  1 (Q 3 - 2.35) $ " + I  +@"- I  

2 

bonven this equation into semi-implicit form by linearizing the right-hand side about f (an i  : 

the result is the semi-implicit midpoint rule 

It  is used with a special first step, the semi-implicit Euler step (Eq 3 - 2.3.4) and a special 

"smoothing" last step in which the last 9 is replaced by 



There are also other methods for stiff systems, such as the Rosenbrock methods, which is a 

generalization of the Runge-Kutta method, an the Gear's backward differentiation method. Here B we chose the semi-implicit extrapolation method after comparing these methods. 

3 - 2.4 The Computation Results 
The experiments has been done based on four cases. 

1. DSS012 method with unit step boundary condition. 
dab-boundary unl step method DSSOl2 mesh 31 convectan (MOL) lor x-O 5un.I step boundaryrnethod DSSOl2 mesh 31 , - - - .- - - - -- -. _ _ -- -- 

Figure 3 - 2.4.1 Computation result by NUMOL (DSS012) with unit step boundary condition, 
mesh=31 (a) 3D plot, (b) 2d plot at x S . 5  against exact solution (solid line) 

2. DSS020 method with unit step boundary condition. 

d a t a d n d a r y  mi step method DSSOM mesh 31 oonvedon WOLI lor 1-0 5unl st- boundawmethod DSS020 mesh 31 

Figure 3 - 2.4.2 Computation result by NUMOL (DSS020) with unit step boundary condition 
mesh=31, (a) 3D plot, (b) 2D plot against exact solution (solid line) 



3. DSSOl2 method with slope step boundary condition. 
convection (MOL) tor 14 bbpe 10 boundarymdhod DSSOl2 mesh 31 

~~ --. --- --- 

Figure 3 - 2.43 Computation result by NUMOL(DSS012) with steep slope (slope=lO) step boundary 
condition mesh=31, (a) 3D plot, (b) 2D plot against exact solution (solid line) 

4. DSS020 method with slope step boundary condition 
h 

data-ba~ndtlry slope 10 method DSSmO mesh 31 

Figure 3 - 2.4.4 Computation result by NUMOL(DSSO20) with steep slope (slope=lO) step boundary 
condition mesh=31, (a) 3D plot, (b) 2D plot against exact solution (solid line). 

The purpose for these experiments is to examine the performance of the method of DSSOI 2 , 

and DSS020, including the effect of boundary condition. To examine the performance, we 

observe the numerical diffusion and oscillation among the above different situations. 

At first, we look at the results of case (1-4). The finding are listed here: 

I .  The method of DSS012 (first-order upwind) with a unit step or slope step boundary 
condition, suffers numerical diffusion but without oscillation (Figure 3 - 2.4.1 & Figure 3 - 
2.4.3). As the mesh gets finer, the effect of numerical diffusion is getting less. 

2. The method of DSS020 (fourth-order biased upwind) with unit step or slope step 



boundary condition, gives much improvement on numerical diffusion, but suffers some 
oscillation (Figure 3 - 2.4.2 & Figure 3 - 2.4.4) The effect of oscillation and diffusion 
becomes less as the mesh gets finer (Figure 3 - 2.4.5). 

3. The effect of oscillation and diffusion in the DSS020 method with slope step boundary 
condition becomes less than with unit step boundary condition, and the results have better 
agreement with the,exact solution (Figure 3 - 2.4.4). 

5. DSS020 method with slope step boundary condition with much finer mesh 
Ua--barnday sbp. 10 W h o d  DSSDM mssh 61 convnbon (MOL) lot 14 Ssbpe 10 boundarymethod DSS020 mesh 61 

Figure 3 - 2.45 Computation result by NUMOL(DSSO20) with steep slope (slope=lO) step boundary 
condition mesh=61, (a) 3D plot, (b) 2D plot against exact solution Csolid line). 

3 - 2.5 Comments 
The numerical method of lines, along with five-point upwind spacing differencilbe, for the 

first-order space derivative, and semi-implicit extrapolation integration for the O.D.E. can be 

used to solve the convective equation with steep slope boundary condition, and acceptable results 

are achieved. The number of mesh points in the method of lines is not restrictive, but the 

computations are expensive when the mesh gets finer (case 5). The higher order upwind schemes 

indeed offers a solution to numerical diffusion. 

3 - 3 Solving Convection Equation With the Orthogonal 
Collocation Method 

3 - 3.1 A Brief Intro ction to the Orthogonal Collocation Method e 
Another method embelfded with higher order schemes is the orthogonal collocation method. 

In this section, we briefly introduce this method; for detail we refer to Finlayson (1972) or 

Appendix. 

In a similar manner as NUMOL, by the orthogonal collocation method, the original P.D.E can 

be reduced to a system of O.D.Es, and then the resulting system of O.D.Es. can be solved by 



standard subroutine. 

Trial Function & Orthogonal Polynomials 

Consider an unknown function o (x. I ) ,  which satisfies partial differential equations and 

boundary condition. an Approximating function called a trial function can be chosen;such - that 

the boundary conditions are satisfied. Depending on the problem, non-symmetric or symmetric 

trial functions should be used. 'L 

To solve the convection equation, a non-symmetric trial function is used, as defined by 

M 

O ( X . T )  = ( I - x ) Q ( o , T )  + x w k  + X ( I - X ) ~ ~ , ( T ) ~ ' , - ~ ( ~ )  (FA 3 - 3.1.1) 
, = I  d 

where U ,  ( 7 )  are functions of time or constants and P,  are orthogonal polynomials detined by 

i w ( x ) P , x P , ( x ) d x  = O,n = 0, I  ,... m - 1  ( E q 3 -  3.12) 

0 

where w(x)  is weight function, such as w (x)  = 1 in this work. The polynomials detined by (Eq - 
3 - 3.1.2) are shifted Legendre polynomials. 

The collocation points x , .  .... r M + ?  are the roots of P ,  ( X )  = o,  and X ,  = o,  x M +  = I .  

The resulting orthogonal polynomials and corresponding collocation points can be found in 

the literatures e.g. in Finlayson (1972) for order up to 7. However, in many situations, we need 

higher order polynomials. Indeed, these onhogonal polynomials can be computed in a simple 

manner by the Gram-Schmidt Orthogonalization procedure using inner product (Dorny 191$). 

The symbolic computation can be implemented in Maple V. The order of resulting polynomials 

can be as high as 20, and different polynomials can be easily obtained by changing the definition 

of inner product corresponding to the definition of each individual polynomial, limited only by 

the computer capability. For detail we refer to the Appendix. 

Interior formulas Based on ordinates 

The Trial function can be formulated to an equivalent set of equations in terms of the 

The corresponding set of collocation matrices can be written for the nonsymmetric trial 

functions (Eq 3 - 3.1.1 ) based on the shifted Legendre polynomials. 

Rewrite (Eq 3 - 3. I. 1 ) as, 

/ = I  
I 

Evaluate at collocation points, i.e., 



I =  I 

Take the first derivative and the second derivative of this expression and evaluate th6& at the 

collocation points: 

These can be written in matrix notation as 

@ = Qd* Q,, = i-I/ 1, 

Since d = Q-'@ 

J+ - = Dd = DQ-'+ = B'@ 
dx? 

Matrices AX, BX are called collocation matrices. 

Where. 

dn" Mtl 
, , , t1.r 

(Eq 3 - 3.1.7) 

(Eq 3 - 3.1.8) 

(Eq 3 - 3.1.12) 



The original P.D.E. can then be written in collocation form, which gives a system of 0.D.E.s. 

3 - 3.2 Solving Convection Equation with the Orthogonal Collocation Method 
Rewrite the convection equation which is subject to initial and boundary conditions: 

where 

The profile of $ is approximated by the following nonsymmetric trial function (Eq 3 - 3.1.1 ) 

based on the shifted Legendre polynomials: 

M 

( x )  = ( I  - ) ( O )  + Q ( )  1 - X ) , ( T ) P ~ ~  (x)  
1 = I  

where the polynomials are defined by: 

where H. (x )  = I . 

Then, (Eq 3 - 3.2.1 ) is reduced to a system of 0.D.Es by writing i t  in the collocation form: 



3 - 3.3 The Computation Results 
I. Orthogonal collocation with unit step boundary condition 

3D p b t d a r n Q y  unn slep mash 21 20 pbt at rd 5 boundary unl d.p mash 21 

Figure 3 - 3.3.1 Computation result by orthogonal coHocation method with unit step boundary 
condition, mesh=21, (a) 3D plot (b) 2D plot against exact solution (solid line). 

2. Orthogonal collocation with slope boundary condition 
30 p b t - h n d a y  s w  10 mash 21 2D pbt at x - O  5 boundary sbpe 10 mesh 21 

Figure 3 - 33.2 Orthogonal collocation methogwith slope (slope=lO) boundary condition mesh=2l 
(a) 3D plot (b) 2D plot against exact solution (solid line) 

3.4 Comments: 
From the above Figure 3 - 3.3.1 & Figure 3 - 3.3.2 we can see that the orthogonal collocation 

method also has improved performance on numerical diffusion. With a unit step boundary 

condition, i t  suffers nonphysical oscillation; however, with a steep slope boundary condition, the 

effect of oscillation becomes less, and the numeiical solution agrees with analytical solution 

well. Since the orthogonal polynomials can be computed to order 20 at present, so the mesh 



number is restrict to no more than 22, which gives sufficiently accurate results. 

3 - 4 Comparison between NUMOL and Orthogonal Collocation 
Comparison between the numerical method of lines and orthogonal collocation can be done 

by observing the performance of numerical diffusion and oscillation when solving convection 

equation. In this section, we are going to present the computation results based on the same mesh 

number, and compare the results and computation time. The upwind difference method used in 

NUMOL is DSS020 which we have concluded to be the best upwind scheme among the finite 

difference formulas for first spatial derivative. Also, in the computation with both methods, we 

allow the program to choose an integration step with loose restriction of 0.05 as an upper limit. 

3 - 4.1 observation of performance on numerical diffusion and oscillation 
2D p b l  at 1-0 5 barndary sbpe 10 mesh 9 2D pbt at x d  5 boundary sbpe 10 mesh 13 

2D pbt at 1-0 5 boundary sbpe 10 mesh 17 2Dpbt  at x d  5 boundary sbpe 10 mesh21 

Figure 3 - 4.1.1 2D plot of profiles at xS .5  with steep slope step 10, maxstepS.05 (*---NUMOL, o--- 
-orthogonal collocation), (a)mesh=9, (b)  mesh=13, (c)mesh=17 (d) mesh=21 



3 - 4.2 Comparison of Computation Time 

Table 3 - 4.2.1 Comparison of Computation Time 

1 I I orthogonal collocation I numerical method of lines 

numbers computation time comp integration steps 
(second) I 

lutation time I integration steps I 

3 - 4.3 Conclusion for Chapter 3 
In this chapter, we have used the numerical method of lines and the orthogonal collocation 

method to soive the convection equation. In NUMOL, the  higher order upwinding scheme 

DSS020 is chosen for first-order spatial derivative approximation. And in orthogonal collocation, 

we use inherited global higher order collocation forms for space derivatives. Therefore, in both 

methods, higher zrder formulations have been embedded in the methods to handle the numerical 

diffusion. From Figure 3 - 4.1.1, it can be seen that the orthogonal collocation method has better 

performance on numerical diffusion and less oscillation for the same mesh number. Also from 

Table 3 - 4.2.1 the computation time for same number of mesh points, orthogonal collocation 

take less computation time, which is result of larger integration step allowable in orthogonal 
4 

collocation method because more accurate formulation than in numerical method of lines. 

Therefore, orthogonal collocation has a better performance than method of lines for convection 

simulation for the same number of mesh points. The number of mesh points in method of lines is 

not restrict, but computation are more expensive when mesh get finer. 



Chapter 4 Convective Diffusion Equation , 

4 - 1 Convective - Diffusion Equation 
Consider the extension of convection equation (Eq 3- 1.1) to include axial diffusion: L' 

(Eq 4 - 1.1) 

The above equation is a convective3iffusion equation or parabolic-hyperbolic PDE: D is an 

axial diffusivity. 

One initial condition is: 

(Eq 4 - 1.2) 

Boundary conditions are: 

Since (Eq 4 - 1.1 ) is second-order in x, it requires two boundary conditions. 

(Eq 4 - 1.2) specifies only convection takes place at the exit of the tube. 

Since (Eq 4 - 1 . 1 )  reduces to Fourier's second law for v = 0, and the convection equation for 

D=O, the numerical soludon should have the properties we would expect (i.e., properties of the 

solutions for both Fourier's second law and the convection equation) 

4 - 2 The NUMOL Solution of Convective Diffusion Equation 
Compute a NUMOL soh  

\l=L=l. We will use DSS020 
a % .  

the diffusion derivative in 
a.r- 

tion to'equations (Eq 4 - 1.1) to (Eq 4 - 1.4) for f(t)=I, g(x)=O, 

to calculate the convective derivative ;i; and DSS044 to calculate 

(Eq 4 - 1 . 1 )  

4 - 2.1 Space Discretization 
In chapter 3, we described DSS020, which is the optimal choice of approximation to the tirst- 

' order space derivative. Here, we only give the approximation form DSS044 to second-order 

space derivative. 
d 

In the implementation of NUMOL, two different boundary conditions are co'nsidered. They 

are: Dirichlet boundary (the value of boundary point is specified) or Neumann boundary (the 

derivative of boundary is specified). 

The approximation to second-order space derivative: 

with Dirichlet boundary at inlet, 



at outlet, 

with Neumann boundary condition. at inlet, 

at outlet, 

d  Bn 
- 2  415 3  2 3 don 

( (--) @ ( n )  + 9 6 0  ( n  - 1 )  - 3 6 0  ( n  - 2 )  + -0 ( P I  - 3 )  - - @  ( n  - 4)  '+ 50-dx)  (F4 4 - 2.1.4) 
d.r2 4! dx' 6 3 2 d.r 

for all interior points 

d - u n - ,  '7 - - - -  * , ( l O Q ( n ) - 1 5 6 ( n -  1 ) - 4 Q t n - 2 )  + 1 4 6 ( n - 3 ) - 6 6 ( n - 4 )  + Q ( P I - 5 ) )  (FA 4 - 2.1.7) 
d  x2 4! dx- 

4 - 2.2 ODE Integration 
After space discretization for the first-order derivative and second-order derivative, we obtain 

a system of ODES, we used the same ODE integrator as used in chapter 3. We have known that 

the ODE integrator is step-variable at this point. 

4 - 2.3 The Computation Result 
Tests have been conducted for various values of diffusion coefficient. Maximum integration 

step size is 0.05, 



1. Pure convection case by setting v=1.0, D=O 
30 pld NUMOL b c w b y  Jcpe 10 msrh 21 v-1 d-0 20 pbt by NUMOL for 1-0 5 barndary sbpe 10 mesh 21 v-1 6 0  

Figure 4 - 2.3.1 Simulation for convective diffusion by NUMOL with steep slope (= lo )  boundary 
condition, mesh=2l, pure convection case (a) 3D plot (b) 2D profile at x=0.5 against exact solution 

(solid line) 

2. Convective Diffusion with v=l,  D=0.01 v 
30 pbt by NUMOL boundary slcpe 10 mash 21 v-1 6 0  01 

2D pbt by NUMOL lor r.0 5 bcundary slcpe 10 mesh 21 v-1 d-O 01 

(a, 
Figure 4 - 2.3.2 Simulation for convective diffusion by NUMOL with steep slope (= lo )  boundary 

condition, mesh=21, convective diffusion case (a) 3D plot (b) 2D profile at x=0.5 



' 3. Pure diffusion case with v=O, D=l.O 
3D pbt by NUMOL barndsry sk+w 10 w h 2 1  v-0 d.1 2D pbt by NUMOL for x-O 5 boundary sbpe 10 mesh 21 v-0 6 1  

'I 

Figure 4 - 2.33 Simulation for convective diffusion by NUMOL with steep slope (=fO) boundary 
condition, mesb=21, pure diffusion case (a) 3D plot (b) 2D profile at x=0.5 

4 - 2.4 Comments 
It is evident that the solution is dispersed as the physical diffusion coefticient increased, and 

, * 

with v = l ,  D=0, the solution resembles that of convective equation; with v=O, D = l ,  the solution 

resembles the diffusion equation. I t  is also noticeable that as D  increases, the oscillation of 

solution disappears but with strong physical diffusion effect instead. 

From the experiments we have conducted so far, we can see thz method of lines can handle 

both the convective and convective-diffusion equation. 

4 - 3 Solving Convective Diffusion Equation with the Orthogonal 
Collocation Method. 

4 - 3.1 Collocation Form 
Again as in last chapter, we use the nonsyrnrnetric trial function based on the shifted 

Legendre polynomials. Then collocation form of (Eq 4 - 1 .1  ) can be: 

The collocation form of boundary condition at outlet is: 

I =  I 

(Eq 4 - 3.1.2) can be used to deduce the form of boundary point: 



Substitute the above equation into (Eq 4 - 3.1. I ) ,  we have: 

Thus, (Eq 4 - 1 . I )  has been reduced to a system-of O.D.Es by the orthogonal collocation 

method, the resulting 0.D:E's will be solved by standard 0.D.E solver. 

4 - 3.2 The Computation Result 
Tests has been conducted based on various value of physical diffusion by orthogonal 

collocation method, maximum integration step is 0.05: 

1. Pure convection case with v=l.O, D=O 3 . I. 
3D @ot by Ofth-Cdl boundary d m  10 m s h 2 1  v-1 D-0 2D pbt by OIII-Cdl at x - 0  5 barnday sbpe 10 m& Zl -1 D-0 

2r 

Figure 4 - 3.2.1 Simulation for convective diffusion by the orthogonal collocation with steep slope 
(= lo)  boundary condition, mesh=21, pure convection case (a) 3D plet (b) 2D profile at x=05 against 

exact solution (solid line) 



2. Convective Diffusion with v=l, D=0.01 

3D FJotby OICh-Cdl barrdary slop~ 10 mesh21 v.1 D-0 01 
20 plot by Onh-Coll at x-0 5 boundary sbpe 10 mesh 21 v-1 D 4  01 

- _ - - - - -  

Figure 4 - 32.2 Simulation for convective diffusion by orthogonal collocation with steep slope (=I01 
boundary condition, mesh=2l, convective diffusion case (a) 3D plot (b) 2D profile at x=05 

3. Pure diffusion case with v=O, D=l.O 
3D pbt by Orth-Coil boundary slope 10 mesh 21 v-0 D-1 2D pb t  by ORh-Coll at 1-0 5 boundav she 10 mesh 21 v-0 D-1 1 

' r tm 

Figure 4 - 3.23 Simulation for convective diffusion by orthogonal collocation with steep slope (= lo )  
boundary condition, mesh=21, pure diffusion case (a) 3D plot (b) 2D profile at x=0.5 

4 - 3.3 Comments (1 

Similar comments can be made for the results by the orthogonal collocation method: the 
- ,  

solution is dispersed as the physical diffusion coefficient increased, and with v = / ,  D = O ,  the 
t 

solution resembles that of convective equation; with v=O, D = l ,  the solution resembles the 

diffusion equation. I t  is also noticeable that as D increases, the oscillaiion of solution disappears 



but with strong physical diffusion effect instead. Generally, the result by the orthogonal 

collocation method is more accurate than method of lines at same mesh number. 

4 - 4 Comparison of the Results and Conclusion 
A comparison between results by numerical method of lines and orthogonal collocation 

method, based on the simulation of convective diffusion equation with various value of diffusion 

parameter. 

2D plot for x-0 5 boundary slope 10 mesh:21 v=l d= l  

Figure 4 - 4.1 Comparison between NUMOL and orthogonal collocation, mesh=ll. (*--NUMOL 
results, o--orthogonal collocation result. 

We can see from the above Figure 4 - 4.1, that the orthogonal collocation can handle 

convective diffusion equation which has small physical diffusion better than the numerical 

'method of lines, with less numerical diffusion and nonphysical oscillation (D=0.001). With 
\ increasing of physical diffusion, the results of two methods agree very well. Since in PSA 

modelling, we are interested in a method which can handle strong convection, and a self- 

sharpening curve, therefore, as the conclusion of this chapter, we are in favor of the orthogonal 

collocation method. 



Chapter 5 Simulation of a Fixed-Bed Adsorption Column 
Ruthven (Raghavan & Ruthven 1983) presents the orthogonal collocation method solution to 

a typical problem of adsorption in which a fixed-bed adsorption column is described. The 

problem presents a rather difficult mathematical model to solve numerically, and more important 

it has an analytical solution (Rasmuson and Neretnieks 1980), therefore, we choose it as a basis 

for the comparison of NUMOL and orthogonal collocation in order to give us an insight into the 

performances of the two numerical methods. 

of the Fixed-Bed Adsorption column 
adsorption column, packed with porous spherical particles, which 

is subjected, at time z o. to a small step change in the concentration of an adsorbable species in f the carrier. The flo pattern is described by the axial dispersed plug-flow model, and both 

external and internal diffusional resistances to mass transfer are included. 

adsorbable 

species 

+ 

carrier 4 

Particle Be # 

* 
external fluid 

z 

Figure 5 - 1.1 diagram of adsorption bed 

5 - 2 Mathematical Model: 
The system may be described by the following set of equations. 

P 

5 - 2.1 Dimensional Form: 
Particle Diffusion: 

lnitial and boundary Conditions: 



External fluid: 

Boundary conditions: 

(Eq 5 - 2.1.6) 

(Eq 5 - 2.1.7) 

5 - 2.2 Dimensionless Form: e 

In our numerical simulation, we use the dimensionless forms of equation (Eq 5 - 2.1.1) - (Eq 

5 - 2.1.7). to compute the solution. The dimensionless forms of above equations v n  be written: 

Particle Diffusion: 

Initial and boundary Conditions: 
Q ( t l , ~ ) l ~ = , ,  = 0 

External fluid: 

Boundary conditions: 

Table 5 - 2.2.1 Parameters in dimensionless form: 

distribution ratio: 

Parameter 

Peclet number: 

I - E  
y = . K ( - )  

E 

Definition 

P e  = (L tv )  / D L  

bed length parameter: ~ P R ' E  
I B =  L D K ( 1  - 6 )  

film resistance parameter: 6 = k R / D K  I 



Tabl dl 2.2.2 Dimensionless Variables 

Dimensionless variables 

Q: dimensionless internal concentration in particles 

q : dimensionless radial distance in particle 

U :  dimensionless fluid-phase concentration 

Since (Eq 5 - 2.2.1) and (Eq 5 - 2.2.5) are coupled by (Eq 5 - 2.2.4). we need to solve these 

equations simultaneously. Also, (Eq 5 - 2.2.1) implies that the particles in the bed are being 

treated as a cylinder along the length of the bed, therefore, the internal concentration in a particle 

can be affected not only by (Eq 5 - 2.2.1), but also by the fluid-phase concentration at its axial 

position; meanwhile, the external fluid concentration at an axial position can be ccmputed by 

both (Eq 5 - 2.2.5) and the surface concentration of the particle at that axial position. We will 

solve this problem with both NUMOL and the orthogonal collocation method and compare the 

results against exact solution (Rasmuson and Neretnieks 1980). 

5 - 2.3 Space Discretization of the Computational Domain 
In either of the methods, we need first to space discretize the computational domain Figure 5 

- 2.3.1, the mesh points in external fluid domain and internal fluid domain can be finite difference 

Definition 

Q ytq/c,, 

11 = r / R  

u = C K ,  

x: dimensionless axial distance 

r : dimensionless contact time 1 

mesh points or collocation points. 

x = Z / L  

5 = ( D I ) / R '  

x - 
Figure 5 - 23.1 Space discretizing of the computational region 

Since we treat the collection of spherical particles in the bed as a cylinder along the length of 

the bed, the computational region is not identical to the physical region. To compute the external 

fluid-phase concentration, we not only need to know the concentration at axial positions, but also 

need the internal concentration at radial positions. For example, to compute U(i), we need the 

information of U ( I ) , U ( 2 ) ,  ..., U ( N )  as well as Q(i,m); to compute Q(i,m), we need to know the 



information of U(i) ,  as well as Q(i,I) ,Q(i ,2)  ,...,Q (i,m). Although we treat the computational 

region as a two dimensional region, actually it is simpler than that, since Q(i,j) has no direct 

relation with Q(i-1 j) or Q(i+l,j). Therefore, we can arrange variables of the computational 

region into a computational matrix in the way as shown in Table 5 - 2.3.1 

Table 5 - 2.3.1 relation between Q,U and Y - 

The advantage of arranging these variables in such a way is that the derivative subroutines 

and Jacobian subroutine are easy to implement and to plug into the ODE solver, and the variables 

can be solved simultaneously. This arrangement is applicable to both methods. 

5 - 3 Simulation By the Numerical Method of Lines(NUM0L) 
Generally, by method of lines, we replace first space derivatives and second space derivatives 

in (Eq 5 - 2.2.1) to (Eq 5 - 2.2.7) by finite difference formulas, then the set of PDE's is converted 

into a system of ODEs in time; by standard ODE integrator,,we integrate the system of ODEs and 

solve the problem. 

5 - 3.1 Space differentiation: 
First, for (Eq 5 - 2.2.5) 

au 1 a2u 
- - - -yo, 
hT pe 3 , ~ -  



This equation is similar to convective diffusion equation except that it includes the adsorption 

term, which relate to internal concentration at the surface of particles. After space discretization. 

for the typical point i along the bed, the above equation becomes: 

In chapter 4, wc have concluded, for convective-diffusional differential equation, the first 

space derivative can be replaced by DSS020 (fourth order upwind differencing), and the second 

space derivative can be replaced by DSS044 (fourth order centered differencing). 
dU dU In our problem, the boundary condition are known for- [ I I and , [nl 
dx 

d U  - [ I ]  = - = ( - P d U I x = ,  - U 1 5 = n  - } = - ~ e ( l . 0 - ~ [ 1 ] ) )  
dx 

(Q 5 - 3.13) 

d ' ~  d?lJ which can be used to substitute in DSS044 for solving --, [ 1 I and I n ]  (see section 4-2.1 ) 
dx- dx-  

Second, we study the (Eq 5 - 2.2.1) 

To study the panicles at point i along the bed, and we subdivide the radial domain into M 

points. For Q(i J), Eq. 5-2.1.5 can then be written as: 

2 d Q  . . 
[ I ?  J ]  + -- [ I , , ]  

'1, drl 

where, 

1 .o 
'l, = 0 -  l ) d ' l ,  d q  = - 

( m -  I )  

The boundary conditions are: 

dC) Special care is needed for - I r .  1 1  
dr 

1 1 
lim -@, = lirn -Q,, = Q,, , - + ' l ' l  r- '11 



Either combination of DSSOQ4 and DSS044 (fourth-order accuracy), or D S S 0 2  and DSSO.12 

(second-order accuracy) can be used for space differencing for the first and second space 

derivatives respectively. 

DSS004, fourth-order centered space differencing, can be used for the first space derivative 

c. The scheme is following. 
4 

DSS044 is fourth order space differencing for the second space derivative. (see section 4-2.1 ) 

and boundary conditions 9 [ i, I I and [ i. ml are known. 
drl drl 

Also, DSS002 second-order centered space differencing for the first space derivative, and 

DSS042 second-order centered space differencing for the second space derivative can be 

implemented if less accuracy is required in the internal simulation in exchange for higher speed. 

d f? and ;i; are then assembled into matrix dydt according the arrangement gave in Table 5- 
dr 

2.3.1. 

With present stiff ODE solver, not only do we need to supply the problem dependent 

subroutine durivs, we also need to supply the jucobn subroutine which evaluate Jacobian matrix 

of the differential equation with respect to the dependent variables. Implementation of subroutine 

jucobrl fully depends on the implementation of subroutine derivs. The matching of durivs and 

jucobrz is the main factor to reduce the integrating time of ODE. 

5 - 3.2 The result 
The numerical simulation of a fixed-bed adsorption column by NUMOL with a particular set 

of parameters are presented as follows: 3 



30 Pbt by NUMOL zpscdl pored 20 Pbt by NUMOL at 1-1 wee-21 pore-4 

Figure 5 - 3.2.1 Simulation Result by NUMOL with mesh space=2l, pore=4 (a) 3D plot (b) 2D plot at 
outlet 

5 - 4 Numerical Simulation by the Orthogonal Collocation Method 

5 - 4.1 Collocation Form , 

(Eq 5 - 2.2.1) t-o (Eq 5 - 2.2.7) can bk reduced to a set of ordinary differential equations by 

writing in collocation form. 

The concentration profile in the spherical particle is approximated by the symmetric trial 

function defined as: 

N 

Q ( % T )  = Q ( ~ , T )  + ( 1  - q 2 ) ~ ~ , ( ~ ) ~ l - l ( ~ 2 )  (Eq 5 - 4.1.1) 
I 

where ulcr) are functions of time (or constants) and P ,  are the orthogonal polynomials 

(Jacobi polynomials) detined by: 

I 

~ u ( q ' ) ~ ,  (g2) qu- Id9 = C161, 

I I 

where w,(q2j = i - q 2 . j  = I . ?  

(Eq 5 - 2.2.1) can be written in collocation form as: 

(Eq 5 - 2.2.4) is written in collocation form as: 

I =  I 

where N is the number of collocation points for the particle and N+l refers to the external 



surface of the particle. The above equation can also be written after some simple manipulation: 

thus, (Eq 5 - 4.1.3) becomes: 

The concentration profile in the external fluid phase is similarly approximated by the 

following t i a l  function based on nonsymmetric polynomials: 

where u l ( r )  are, as before, functions of time or constants and P ,  are the non symmetric 

polynomials (Legendre polynomials) defined by the condition. 

(I 

where H' ( x )  = 1 in this work. 

( E q  5 - 2.2.5) to (Eq 5 - 2.2.7) can be written in collocation form as: 

(Eq 5 - 4.1.10) 

I =  I 

The above two boundary conditions can be used to eliminate U ( 1 )  and U ( M + 2 )  from (Eq 5 - 

3.1.9). If we define: 



Thus, (Eq 5 - 4.1 .Y) becomes: 

' K  

The procedures for generating the A, B and AX,' BX matrices of (Eq 5 4.1.11) to (Eq 5 - 

4.1.16) are described in detail in Appendix or Finlayson (1 972) 

5 - 4.2 Simulation Result 
A simulation result by orthogonal collocation method with a set of parameters is present as 

follows: 
317 Plot by CMh-Cdl woe-21 p e e 4  2 0  Pbt by Orth-Coll at x-1 space-21 pore-4 

Figure 5 - 4.2.1 Simulation Result by Orthogonal Collocation method, with mesh space=21, pore=4, 
(a) 31) plot, (b) 2D plot at outlet. 



5 - 5 Experiments and Comparison of Results 
). 

In this section, we are going through several experiments to test the two models implemented 

by NUMOL and Orthogonal Collocation method. 

5 - 5.1 Comparison between Numerical and Analytical results 
2D Plot by at x-1 space-1 1 pore-4 2D Rot by at x-1 space-11 pore-4 

1 ' -  

2D Rot by atr - l  rpaos-11 pu-4  

s, 0 0 2 0 4 0 6 0 8 

I 

(c) 
Figure S - 5.1.1 Comparison between analytical results and numerical results from NUMOL and 

orthogonal collocation, mesh space=ll, p0re=4, x---analytical result, *---NUMOL result, o---orth-coll 
result. (a) Pe=1.93, (b) Pe=193, (c) Pe=2OO 

From the above Figure 5 - 5.1.1, for three different values of Peclet number, both numerical 

results from NUMOL and orthogonal collocation method agree with the analytical results, 

therefore, the results of both numerical methods are verified. We can see that even using a c o m e  

mesh, both numerical methods can handle this model problem. 



5 - 5.2 Effects of Axial Dispersion and External Mass Transfer ~es i s iance  
20 PIOI bv 41 1.1 w e - 1  1 ~ m - 4  20 p a  bv 01 1-1 W C ~ I  i -4 

Figure 5 - 5.2.1 Comparison of simulations conducted by (*---)NUMOL and (0---)Orth-coll (a) effect 
of Peclet Number, (b) effect of extenal film resistance 

I t  has also been shown that simulations from both methods give us similar prediction about 

the effect d Peclet number and external film resistance. 

5 - 5.3 Effects of Distribution Ratio 
ZD Pbt by at x-1 space-1 1 p a r d  20 Pbl by ats.1 v - 1 1  pore4 

T -  - 
@'+' 

Figure 5 - 53.1 Comparison of simulations conducted by (*---INUMOL and (0---)Orfh-coll effects of 
Distribution Ratio. Pe=l.O (a)  plotted versus r ,  (b)  plotted versus r - - w 

Other experiments such as effect of distribution ratio have also been conducted, see Figure 5 

- 5.3.1 for Peclet=l .O and Figure 5 - 5.3.1 for Peclet=20000.0, Figure 5 - 5.3.1 (a) and Figure 5 - 

5.3.1 (a) are plotted against dirnensiodess time variable r ,  and Figure 5 - 5.3.l(b) and Figure 5 - 

5 . 3  1 (b) plotted against modified time variable r - l. Simulations from both methods predict 
@ '4' 



4 

same behavior of adsorption bed. We can see that the effect of the distribution ratio on the 

theoretical breakthrough curves to be significant only when the effect of axial dispersion is 

important. 

2D Plol by at 1.1 spaco.11 pore4 

1 

(a) (b) T-- 
8'4' 

Figure 5 - 5.3.2 Comparison of simulations conducted by (*---)NUMOL and (oi--)Orth-coll effects of 
Distribution Ratio. Pe=20000.0 (aj plotted verse ~ ( b )  r - - 

All the results produced so far agree with that from Dr. Ruthven's paper. 

However, as we look at Figure 5 - 5.3.1 (a) for high Peclet number (20000.0), it can be seen 

that the results of orthogonal collocation have better performance on numerical diffusion and 

nonphysical oscillation. 

5 - 5.4 The Computation Time 1 

Table 5 - 5.4.1 Comparison of computational time (CPU time, unit: second) by NUMOL 
and Orthogonal collocation method with mesh space=ll, pore=4, maxstep=0.05 . 

Parameters 

Y Therefore, we have shown that the orthogonal collocation method is superior to NUMOL on 

64 
,, - 

Computational 
time for NUMOL 

Computational 
time for 0th-Coll 



P 

computational time with similar performance as shown in Figure 5-4.1.1 and Figure 5-4.2.1. 

5 - 6 Conclusion for Chapter 5 
, From this chapter, we have used NUMOL and Orthogonal Collocation method studied in last 

two chapters to deal with a fairly complex problem in PSA modelling. It  has been shown that 

both methods can handle this task, and similar results are achieved and agree with analytical 

results. However, orthogonal collocation method is superior to NUMOL on computational time, 

and has less numerical diffusion and nonphysical oscillation when Peclet number+s large. The 

reason would be that, for the same mesh number, the formulation for' the first and second 

derivatives (DSS020 and DSS044) in NUMOL are locally fourth-order accurate, however, the 

formulation in orthogonal collocation method is globally more accurate, since number of 

collocation points means same number of orthogonal polynomials in the formulation, and more 

collocation points means a higher order of formulation globally. The comparison between the 

formulation of these two methods is not straightforward, but generally we can say that for the 

iame mesh number 1 (>=4), the formulation in orthogonal collocation method is more accurate. 

The accurate formulations in orthogonal collocation method allows large integration step and 

less times of evaluation of derivs and jacobn in 0.D.E integrator, which results less computation 

time. Therefore, we prefer to use the Onhog-l Collocation method in our future study when we 

have to be content with coarse mesh. 



Chapter 6 PSA Simulation by Double Collocation Method 

6 - 1 Introduction 
A simple two-bed PSA system for air separation, in which kinetic effects are important and 

the changes in flow rate due to adsorption are significant, has been studied. Under these 

circumstances, the assumption which have been traditionally employed in modeling of the PSA 

cycle (adsorption equilibrium. constant velo&ty) are no longer valid. In the paper of Raghavan 

and Ruthven (1985), a more general mathematical model was developed without these 

simplifying assumptions. Since the corresponding mathematical model for simulation is more 

general and complicated, and no longer fits in the procedure of PDE-ODE. double collocation 

method is developed and used to solve it  numerically. In this paper, we will present this 

mathematical model and double collocation method as well as the simulation results. The work 

in this chapter will serve as a base for our modelling of the conventional PSA process. 

6 - 2 A System of PSA Process Description 
The basic PSA cycle invol?es four distinct steps: (as shown in Figure h - 2.1 ). 

I .  Feed step 

2. Blowdown step 

3. Purge step 

4. Repressurization step 

Bed 2 0 
Feed 

b 
Product 

S1 
Purge 

! 
Repressurization 

Figure 6 - 2.1 Steps involved in a PSA cycle 



During one cycle, time distribution is shown on Figure 6 - 2.2: 

I .  t,,,,: duration of adsorption at step1 or 3. 

2. t+,: duration of blowdown at step 2 or step 3 

step 1 step 2 step 3 step 4 
Figure 6 - 23 Time distribution of one cycle 

During step 1 a high-pressure feed (in our case air) is supplied continuously to bed 2, which 

is packed with carbon molecular sieve (CMS) pellets in which oxygen is adsorbed more rapidly 

than nitrogen. The nitrogen which remains in the gas phase passes through the bed and is 

removed as pure raffinate product. A small fraction of this stream is expanded to low pressure 

and used to purge bed 1 (which is also packed with CMS pellets). In step 2, bed 1 is pressurized 

with feed while bed 2 is subjected to a pressure reduction (blowdown). The same cycle is 

repeated in steps 3 and 4 with high-pressure flow and adsorption occumng in bed I and purging 

occurring in bed 2. 

In  order to develop a mathematical model the following approximations are introduced: 

I .  The system is considered isothermal with total pressure remaining constant throughout the 
bed during high-pressure and low-pressure flow operations (step 1 and 3). 

2. The flow pattern is described by the axial-dispersed plug flow model. 

3. The equilibrium relationships for both oxygen and nitrogen are assumed linear. 

4. Mass transfer rates are represented by linear driving force expressions and the rate 
coefficient is the same for both high-pressure and low-pressure steps. 

Subject to these assumptions, the dynamic behavior of the system may be described by the 

b 
following set of equations (A=O,, B=N2). 

6 - 3 Mathematical Model 

5 - 3.1 Step I:  High-pressure Flow in Bed 2 and Low-Pressure Flow in Bed 1 
> 

6 - 3.1.1 Dimensional form: 

External fluid phase in bed 2: 

acn 2 -- 
a2cB, ac,, a 1 - E a~~~ 

at 
DL?, + \,,- 

at 
- 0 + C q +  ($- - 

a:- - a- 
CA2  + CB2 = CHP (const) 



adding (Eq 6 - 3. I. 1 )  and (Eq 6 - 3.1.2) and considering (Eq 6 - 3.1.3) 

Solid phase in bed 2: 

where: q* = K,C,,, q* ,? = KBCn2. 

Boundary conditions: 

External fluid phase in bed I: 

C A I  + C,,  = CLP ( ~ ' o I I s ~ )  

Adding (Eq 6 - 3.1.10) and (Eq 6 - 3.1.1 1 ), and considering (Eq 6 - 3.1.12), 

Solid phase in bed I: 

where:; , 4 1  = KAC,41 ,  J ,, = K,C,, . 

Boundary conditions: 

where: 

(Eq 6 - 3.15) 
9 

(Eq 6 - 3.1.15) 

(Eq 6 - 3.1.16) 
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I 

The initial conditions for the start-up of the cyclic operation with two clean beds are the 

following two sets of equations: 
L 

C,, ( & I =  0) = 0;cs, ( z ,  t = 0) = 0 

q,, ( : , I  =0)  = O ; q l s ( z , t  = 0 )  = O  
B 

Since C,, can be found from CHp and C,, (for high-pressure flow in bed 2 ) ,  and C,, can be 

found from C, and C,, (for low-pressure flow in bed I ) ,  the equations which must be solved 

simultaneously along with the relevant boundary conditions are (Eq 6 - 3.1.1) (Eq 6 - 3.1.4) (Eq 6 

- 3.1.5) (Eq 6 - 3.1.6) (Eq 6 - 3.1.10) (Eq 6 - 3.1.13) (Eq6 - 3.1-14) (Eq 6 - 3.1.15). 

6 - 3.1.2 Dimensionless Forms d l  

The above equations can be written in dimensionless form for calculation. First we list the 

necessary dimensionless variables and parameters for future reference. 

Table 6 - 3.1.1 Dimensionless Variables 

I I I x = :/L. dimensionless distance 

dimensionless 
variables 

x A I 

c 

XB I 

* A  I 

Y B  , 

definition 

CA1/CHp or CA,/cLpdepending on whether high-pressure flow adsorption or 
low-pressure flow desorption occurs in the ith bed 

- 7 

CB,/cHP or  depending on whether high-pressure flow adsorption or 
low-pressure flow desorption occurs in the ith bed, also equal to ( 1 - x,,) 

qA,/KACHp adsorbate concentration of component A in solid phase in bed i 

qB,/KBCHp, adsorbate concentration of component B in solid phase in bed i 

Table 6 - 3.1.2 Dimensionless Parameters 

T 

V ,  

dimensionless 
parameters 

r = ~ / h ,  dimensionless time, 
h :  dimensional time interval (see Figure 6 - 4.1) 

V, = ~ ~ / v , , ,  interstitial fluid velocity in  bed i 

definition 

a/h 

p e ~ ,  

a / h  = L /  (\,,,h), 
where a = L/\,,,, ratio of bed length to high pressure feed inlet velocity, s 

PeH = L V ~ ~ / D ~ ~ ,  Peclet number for high pressure flow in bed 2 during step 1 
I 

., 



Table 6 - 3.1.2 Dimensionless Parameters 

dimensionless 
parameters definition 

Dimensionless forms for bed 2: 

P e ~  

k,h 

k ~ h  

K A 

KB 

G 

P 

av, I - &  I - E  
- + ---ak,K, (X,: - Y A 2 )  + TakBKB ( 1  - X,, - Y B 2 )  = 0 ax & 

---- 

Pe, = LvoL /DL1 ,  Peclet number for high pressure flow in bed 1 during step 1 

dimensionless overall mass transfer coefficient for Component A 
I where k, is overall mass transfer coefficient for component A, s- . 

dimensionless overall mass transfer coefficient for Component B I 
where k, is overall mass transfer coefficient,for component B, s- . 

adsorption equilibrium constant for component A. 

adsorption equilibrium constant for component B. 

G = v,,/v,,, purge to feed velocity ratio. 

P = C H P / C L P  = P H / P L ,  total concentration at high-pressure to total concentra- 
tion at low-pressure ratio. 

Boundary condition in dimensionless form for bed 2: 

Dimensionless form for bed 1: 

aaxA,  1 a%Al  ax,, i - E  XA , 
+ V - + P---ak,K, (-- - Y , , )  ( 1  - X, , )  

h aK Pe,a,z I a.r E P 



a y B ,  - I - x ~ l  

as - - hk, (- - 
P YBl )  

av, I - E  xA I I - E  1 - X A I  
- ax + B T a k A K A  (-- B y A 1 )  + B7akBKB (- P - Y B l )  = 0 

Boundary condition in dimensionless form for bed 1: \ 

6 - 3.2 Step 2: Blowdown of Bed 2 and Pressurization of Bed 1 
f 

6 - 3.2.1) For blowdown d bed 2, the following two approximations are introduced: 

1. At each and every position in the bed, the gas phase concentrations of 0, and N, at the end 

of blowdown correspond to the concentrations at the end of the preceding high-pressure flow 

adsorption step, multiplied by the pressure ratio, PJP,, where PH is the pressure at which 

adsorption is carried out and P ,  is the purge or desorption presspre. 

(Eq 6 - 3.2.1) 

(Eq 6 - 3.22) 

Since the concentrations of 0, and N, at the end of blowdown are equal to the concentration 

at the beginning of step 3, i.e., at the beginning of purge(desorption), we can write the above 

equations in dimensionless form: 
- 

X ~ ~ ( x ~ ~ ~ I p = P L . l = r _ , + l ,  - ' A 1  ( x *  ') 1 p =  P , , . ~ = I _ ~  
(F4 6 - 3.23) 

('9 ') I p = PL, 1 = r _ , +  rb = X n z  ( ~ 7  f )  I P = pH, I = I-. (Eq 6 - 3.2.4) 
, 

2. The solid phase concentrations of 0, and N, are assumed to remain frozen. 

qA2 (:Y I  = I h )  = qA2 ( ~ 9  I  = I m a X >  (kkl 6 - 3.25) 
qn? (:? = l m o x  + l h )  = q ~ ?  (:? I  = I m o x )  (F4 6 - 3.2.6) 

Similarly, we can write the above equations in dimensionless form: 
- 

Y a A ?  ( x )  =) I  p = p , , i = l , x + r b  - YA? ( X *  =) 1 p = pH,  r = r r 4 ,  
(F4 6 - 3.2.7) - 

- 
Y B Z  (19 =) l P = PL. 1 = l _ ' +  lb - ' B ?  ') I p = p,,. , = lra, 

(Eq 6 - 3.28) 

6 - 3.2.2 For pressurization of bed I, the following two approximations are introduced: 

1 .  After low pressure purge step, there are still gas phase 0, and N, remaining in the bed. 

During pressurization by feed air, these gas phase remnants are pushed toward the closed end of 
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the bed through a distance (I-PJP,) from the feed inlet. Thus,'for example, if the pressure ratio. 

PJP, is 0.33, then the concentrations of 0, and N, at the end of pressurization are the average of 

the respective concentrations of the remaining 0, and N, at the end of purge step. However, the 

average concentrations exist only through a dimensionless length of 0.33 from the closed end of 

the bed, the rest of bed being filled with the pressurizing feed air. We think this approximation is 

clearly more realistic than assuming a uniform composition in the gas phase. The above 

approximations can be written in mathematical form: 

C B I ( : = 0 - ) , : ~  (0 ,  ( 1 - P L / P H ) L )  

write in  dimensionless form: 

2. The solid phase concentrations of 0, and N, remain unchanged at the values of the end of 

the preceding low pressure purge flow. 

\ qA (" 1 = lmax + I,,) = qA (2' 1 = I,,,) ' (Eq 6 - 32.12) 

q B I ( Z ~ l = l m , I + l h )  = 4 B l ( Z ~ 1 = 1 m o x )  (Eq 6 - 32.13) 

write in dimensionless form: 

6 - 3.3 Step 3 
This step is virtually the same as step 1, except that here the high-pressure feed flows through 

bed 1 while a portion of the exit product (N,) purges bed 2 at the low operation pressure. The 

equations which have been solved to describe this step are identical to those solved for step 1 ,  but 

with the change in the direction of flow taken into account. 

6 - 3.4 Step 4 
The approximations made for step 2 are valid for step 4, the difference being that bed 1 is 

now subjected to pressure reduction (Blowdown) and bed 2 is pressurized. 



r 

6 - 3.5 Cyclic Steady-State: 
The above equations were 'witten in dimensionless form and solved to give the O2 

composition, CAl/CHB CAl/Cu (step I) ,  CA2/C, CA2/cH, (step 3) in the fluid phase, and 0, and N, 

concentration in solid phase, ~ A ~ / K ~ C ~ ~  qB2/KBCHP (step I) ,  %,/KACHR qBI/KBCHP (step 3), as 

functions of dimensionless bed distance (z/L) at various times t. The final cyclic steady-state 

profiles were determined by continuing the simulation for sufficient cycles until no significant 
7 

further changes in the profiles occurred. Mathematically, we use formula: 

1 x x A 2  ('2' 'I 1 =I,  r = I - ,  - zx,42 '1 1 ( c y c l e  = J - I ) ,  r = I me. 

here, we set 6 = 0.01, N is'the total number of collocation points in x domain. 

By repeating the simulation with different sets of parameters the effects of the purgelfeed 

ratio (G=v,Jv,,,), the bed lengthhnlet feed velocity (a=L/v,,), the timeduration (t-) of the 

adsorption and desorption steps and the axial Peckt number (Pe=v,,L/D,) were studied. 

6 - 4 Double Collocation method: 
The current mathematical model no longer fits in PDE-ODE procedure, since application of 

this procedure would lead to sets of ODES together with sets of nonlinear algebraic equations. 

Such a combination of ODE and nonlinear algebraic equations is likely to cause stiffness and 

convergence problems. Therefore, the method of double collocation was applied so that all 

equations would be reduced to sets of nonlinear algebraic equations. We tirst studied this method. 

The method of double collocation involves discretization of the spatial as well as the time 

derivatives in the equations (as shown in Figure 6 - 4.1). The resulting nonlinear algebraic 

equations are then solved using a standard routine. Since our problem is non-symmetric, we use 

nonsymmetric trial function of shifted Legendre polynomials to approximate the dimensionless 

variables. 



Figure 6 - 4.1 space difference and time discretization 
2 

In cyclic operation, the computation will run from step 1 ,  through step 2. step 3, to step. 4 

repetitively. From the above mathematical model description, we know that step 1 and step 3 are 

basically identical, and step 2 and step 4 are identical. Since step 2 and step 4 are only one step 

calculation, the major computational task will be step 1 and step 3. 

Therefore, we will focus on step 1. With dimensionless form, we will solve set of equations 

from (Eq 6 - 3.1.2 1 )  to (Eq 6 - 3.1.33) for time domain 0 to t,,. As shown in Figure 6 - 4.1, we 

subdivide the time domain into various time steps h,, h ,,......., h,. At each time step, h , ,  we derive 

the above equations. And it is in this time period, we apply the double collocation method. First 

we subdivide the time period h, into. N+2 collocation points, and then subdivide the space 

domain into M+2 collocation points. The first time layer, i.e. i = I ,  the variables%n the points of 

this layer are the initial c o n d i a  (marked as *). which are also the results ftom last step h,,. Wth 

the boundary condition (marked as 0), .we can solve the variables on the points at the rest of 

layers (marked as ?) by the double a o c a t i o n  method. In the following section, we describe the 

use of double collocation method for solving the sets of equations at this time period. 

6 - 4.1 Preparation: 
Assuming the symbol 

we may write. 



Here, A; ,  is the colkocation coefficient for the gradient A ' , ,  is the cdocation coefficient for 

the gradient in the time direction, I?,, is the collocation coefficient for the Laplacian, and W, is 

the weight coefficient for integration. For the procedure of obtaining the coefficient matrices 

refer to Appendix. 

The initial condition are given as: 

X , , ( k ,  l ) , k = 2  ... M + l  

Y , ,  ( k ,  1 ) , k =  l . . . M +  1 

Y B , ( k ,  I ) , k =  l . . . M + l  (Eq 6 - 4.1.6) 

V ,  ( k ,  1 ) , k  = l . . . M +  1 

6 - 4.2 Computation for one time step by double collocation: 
The computation for one time step by double collocation involves four steps. 

Step I :  we assume (initial guess) the values of the unknown variables. That is we provide 

initial guess for, 

V , ( k , l ) , k =  I . . . M + l , i = 2 . . . N + 2  
I 

X , 4 , ( k ,  l ) , k = 2  ... M +  l , i = 2  ... N + 2  

Y , ,  ( k ,  1 ) , k =  l . . . M +  l , i =  2 . . . N + 2  

Y B I ( k ,  l ) , k =  l . . . M +  1 , i = 2  ... N + 2  

V , ( k , l ) , k =  l . . . M + l , i = 2 . . . N + 2  

Since the number of unknowns is equal to the number of equations, we have in all 

( 4 * M + 5 ) * ( N + l ) * 2  equations to solve simultaneously for steps 1 and 3 of the PSA simulation. 

Step 2 :  the computation involves the evaluation of X , , ( l , i ) ,  X , , ( M + 2 ) ,  X , 4 , ( l , i ) ,  X , , ( M + 2 ) .  

These values can be extracted based on the values of X , ( k , i )  and X , , ( k , i )  for k=2 ... M + l  and 



i=2. .N+2,  for the dimensionless form of the b~undar~conditions given by (Eq 6 - 3.1.25)--(Eq 6 

- 3.1.26) and (Eq 6;. 3.1.3 1)--(Eq 6 - 3.1.33) which written in collocation form would be: 

For high-pressure flow in bed 2 during step 1, 

M + 2 x A x (  1 .1)  x,, 0, 1) = ( - P e H )  [ X , 4  " = o  - X A 2  ( 1 ,  i )  I (Eq 6 - 4.23) 
I =  I 

M + 2  

~ A ' ( M + ~ . I ) X , ~ O . ~ )  = 0 (Eq 6 - 4.2.4) 
/ =  I 

Solving (Eq 6 - 4.2.3) and (Eq 6 - 4.2.4), we get the expressions for the boundary variables, - 

and for low-pressure flow iin bed 1, 

M + 2  

~ ~ x ( ~ , j ) ~ , l ~ . i ) = ( - ( i P e , ) l X , l ~  *- = o - X A l ( l , i ) 1  
1 s  # 

M + ?  

z A x ( ~ + 2 , j ) ~ , ,  ( J , i )  = O 
I =  I 

& 

solving (Eq 6 - 4.2.10) and (Eq 6 - 4.2.1 I), we get, 4 



X,, ( M + 2 , i )  = C P e L X , l l x = o  R I L +  x ~ ' ( l : j ) ~ A , ~ ~ i ) ~ l ,  
1 = 2 

M +  1 

where, by (Eq 6 - 3.1.32) 
-s 

. Step 3: knowing now the values of the variables at all points in the two beds, we compute 

. P 

Step 4: involves setting up the residuals R":, and updating the initial guess to force the 

(4*M+5)*4*2 residuals to become zero. 

For XA2, YN,YB2,V2 during high-pressure flow adsorption in bed 2 (step 1) we write, 

1 - E  
+ - ak,K, [ X A 2  ( k ,  i )  - 

E 

1 - E  
-- a k B K B X A 2 ( k ,  i )  [ ( 1  -X,,(k. i ) )  - Y B 2 ( k ,  i ) ]  = 0 

E 
I 

where k = 2 . . .M+l :  i = 2... N+2 
N + 2 

R? = C A'.,,Y,, ( t ,  j )  - h k ~  IX,, ( t ,  i )  - Y A 2  (k, i )  I = 
J =  1 

where k = I... M+2,  i = 2...N+2 
N + 2 

R;? = ' I , ~  ( k  k [ ( 1  X A  k i  - Y A  ( k  i ] = 0 
] =  I 

where k = I... M + 2 ,  i = 2 . . .  N+2 

1  - &  + - a k B K B  [ (1.0-X,, ( k ,  i)) - Y,,  ( k ,  i )  I = 0  
E 

where k = 2... M+2;  i = 2...  N+2. 

Similarly, equations for X,,, Y4,,Y,,,V, are written in collocation form for the low-pressure 

purge flow in bed 1 (step 1). 



where k = 2 . . .  M + l ; i  = 2 . . .  N+2 

J =  1 

where k = I . . .  M + 2 ,  i  = 2 . . .  N + 2  
N + ?  

1 - X A l  ( k ,  1 )  
R:: - CA~. . ,Y , ,  ( k , j )  - h k B (  B - Y A I  ( k ,  i)) = O 

] = I  

where k = I . . .  M + 2 ,  i  = 2 . . .  N+2 

where k = 2 . . .  M + 2 ;  i = 2 . . .  N + 2 .  

A standard subroutine such as Newton method is used to solve the nonlinear algebraic 

equations to get the di-stribution of X,, Y,,Y,,,V, and XA,, YAl,YB2,Vl in the two beds at t = I .  
/ 

\ 
The procedure from step 1 to step 4 is repeated until t = t,, = duration of time for the first 

step (adsorption) in bed 2 and desorption (purging in bed 1). So far, we finish the simulation of 

step 1 of PSA cycle. 

After the approximations for step 2 of the PSA, the nonlinear algebraic equations for the step 

3 [adsorption in bed 1 and desorption (purging) in bed 21 are solved, which is follqwed by the 

appioximations for step 4. This essentially completes the computations for one cycle of the PSA 

operation. The computation for the next cycle involves the solution of the nonlinear algebraic 

equations for step 1 with the initial conditions based on the profile in the beds at the end of the 

previous cycle. The computation continues until cyclic steady state is reached. when there is no 

further change in the composition profiles in the beds between two successive cycles. 

6 - 5 The Computation Results and Discussion 

6 - 5.1 The sensitivity of the assumptions for repressurization to the number 
of collocation points 

The simulation was run with v&ious number of collocation points, and it  was found that the 

assumptions for repressurization are sensitive to the number of collocation points. Since the 
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result of repressurization will affect the next step of adsorption, therefore, it will affect the result 

of cyclic operation. To-gain more understanding of this phenomenon, we did an experiment. 
i 

Assume the concentration of repressurized oxygen at inlet is 0.2, and theoncentration of oxygen 

at the rest of bed is 0.05. The total mass after exact integration would be 0.15; comparing with the 

integration result by collocation method, we find the difference, listed in ~ a b l e . 6  - 5.1. 

It can be seen from the above table, the sampling by some numbers of collocation points can 

best represent the assumption of repressurization step such as 7 and 12. It would be the best if we 

could do simulation with m=12. However, for reason of economy, we can also take m=7 as 

compromise between accuracy and speed. Generally, we will run simulations with m=7. 

Table 6 - 5.1 Collocation points with Repressurization 

6 - 5.2 Observation of Mass balance 
One feature of this plogram is the implementation of observation of mass balance during the 

adsorption step. The idea of the mass balance monitor is: 

number of collocation points 

m=6 

(change in mass of oxygen in the bed since time t=O) = 
(mass of oxygen entering since t=O) - (mass of oxygen leaving since t=O) 

difference in total mass 

-0.025 

Therefore, if we set variable R as oxygen mass balance monitor, 
r- 

R = (change in mass of oxygen in the bed since time t=O) - 
(muss of oxygen entering since t=O) + (mass of oxygen leaving since t=O) = 0 

The detailed implementation of mass monitor involves integrals variables such as 

X I ,  x?, Y , ,  Y 2  along the adsorption bed. Refer Appendix for the computation of integral. 

From observation of the ratio of R to total mass of oxygen entering after the cyclic operation 

reaches steady state, we are able to verify the simulation result. For example, with mesh=7, run 

simulation with data listed in row 2 of Table 6 - 5.1, the ratio is 0.12%; again with mesh=12, for 

the same simulation, the ratio is 0.0059%, which also means more accurate results. 



6 - 5.3 Output of the Simulation by Polynomials 
t 

The outputs of our simulation are the values at collocation points. However, we sometime 

would prefer to see the evolution inside the bed, therefore, we also express the profile of various 

variables in the forrn of polynomials. 

I =  I 

. where P, ( x )  are the shifted polynomials. ( x ,  T) can be variables such as,XA2, YA2,  Y B 2 ,  V ? .  For 

'd&ails df the implementation, refer to Appendix. 

In Figure 6.- 5.1, Figure 6 - 5.2, Figure 6 - 5.3, we have shown the profiles of these variables 

at the end of step 1 of tach cycle. The simulation of cyclic operation takes 9 cycles to reach the 

steady state, and the total computation time is 1959 minutes. 

xa2 prof~le at end of%ach cycle 
wm-x -  1 2  num-t- 3 

cycb- 10 tmax-  60 

alpha- 30 beta- 3 
0 15- 

G- 2 eps~lon- 0 4 

ka- 0 04 Ka- 9 35 

0 1 -  kb- 00016 Kb- 9 35 

3 PeH- le+06 PeL- le+06 

0 - 

-0 05 - I 
0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 

X 

Figure 6 - 5.1 Gas phase composition profiles of oxygen in bed 2 at end of high-pressure step. 
Parameter values as for ratio G (row 2, Table 6-- 5.1) 



ya2 proflle at end of each cycle 
n u m - x c  1 2  mum-tr 3 

Figure 6 - 5.2 Solid.phase concentration profiles of oxygen in bed 2 at the end of high-pressure. 
Parameter values as for ratio G (row 2, Table 6 - 5.1) 

Figure 6 - 5.3 Fluid velocity as a function of distance in bed 2 at end of high-pressure step. 
Parameter values as for ratio C (row 2, Table 6 - 5.1). 



6 - 5.4 Result of Steady-state PSA operation 
In the next table, we list the result at the end of step 1 of steady-state PSA operation. 

Table 6 - 5.1 Exit Composition of Oxygen, and Exit Fluid Velocity in Bed 2 at End of Step I 
of Steady-State PSA operation Assuming Solid Pha'se Concentrations of 0, and N, Frozen 

During Blowdown 

- 

30 2 -60 0.040 0.0016 9.35 9.35 100 100 0.01 1505 0.545612 

30 2 60 0.040 0.0016 9.35 9.35 10 10 0.029940 0.556392 

C 

30 2 60 0.0026 0.000106 9.35 9.35 1.0e6 1.0e6 0.145532 0.881673 

6 ,- 5.5 Computation Time. - 

For the parameters listed in row 2 of Table 6-5.2, we run the simulation with different mesh 

number and list the computation time. 



6 - 6 Conclusion: 

Table 6 - 5.1 Collocation points with Repressurization 

As conclusion of this chapter, double collocation method can be used to solve the complex 

mathematical model of combination of P.D.Es and O.D.Es. Comparing our results with 

Raghavan's, there is good agreement between them, therefore, we have successfully reproduced 

the numerical simulation of a PSA cyclic operation with double collocation method. The purpose 

of the work in this chapter is to serve a base for our modelling of PSA process in next chapter, in 

which we will also need to observe the variation of temperature of PSA operation. 

number of mesh 

m=6 

m=7 

computation time 
(minute: second) 

2:40 

3:3 1 

7 

number of cycles 
to reach steady state 

11 , 

9 



Chapter 7 Simulation of A Conventional PSA Process 

7 - 1 Theoretical Model 
In this chapter, we will simulate the adsorption column of a conventional PSA process. In 

order to build a more realistic model, we will npke fewer assumptions than in last chapter. 

Consequently, the mathematical model becomes more complicated, and more difficult to solve. 

We will continue to use the double collocation method, introduced in Chapter 6,  to do the 

numerical simulation. 

The following assumptions are made: 

Conventional PSA, in which the flow boundary conditions at the end of the bed and the 
imposed pressure variations are specified. 

Assume there are two adsorbable gases present, adsorbable to different exients. 

We further assume that the bed may not be isothermal, so we must solve the energy 
equation to obtain the local temperature. Heat effect is considered in this model. 

Pressure drop along x direction is negligible. 

The flow velocity is not constant, but varies along the bed and with time. 

The equilibrium relationships are represented by the linear isotherm. 

Therefore, in this PSA model, there are three variations: concentration (bulk gas and solid 

phase), temperature and velocity of the flow. 

This is the first stage of study of a conventional PSA cycle, since at present we're primarily - 

interested in the adsorption step. The solution developed here can easily be extended to cyclic 

operation by changing the boundary conditions. Therefore, we have further description: the bed 

runs through a cycle; there are four or five distinct phases, each with particular flow and pressure 

boundary conditions. 

7 - 2 Mathematical Model 

7 - 2.1 Dimensional Form 
Conservation of species: 



Temperature dependence of isotherm equation: 

(Eq 7 - 2.13) 

Where T, is the temperature at which the value of B,,and B,, was calculated (usually 300 K) .  

Note that if T is greater than To then B, and B, will be less than B,, and B,, respecti,vely. That is, 

adsorption gets poorer as the temperature rises. Since we are modelling a bed that is at about 

300K, the values of B, and B, will be apprcsximately equal to B,, and B,, respectively. - 
Conservation of energy 

&cIT ~ C , T  1 - E  1 - E  aT C ( % I F  +c, , -  at -H,D,---- E ( ~ , ~ , ~ q , ) )  +c,-p E S a t  - + ~ , , ( T - T , )  = 0 (Eq  7 - 2.1.7) 
I 

Where T ,  is the bed wall temperature, it may be equal to T,, but need not be, in this work we  

set T~ = T,. 

This equation may be simplified if the specific heats of the two species of gases are 

sufficiently close; if we write c, for the mean specific heat at constant pressure, at c,  for the mean 

specific heat at constant volume, we have: , d 

where c = + c ,  is the total conc&tration of the two species - that is, c is the density of the 

mixture. This equation can be further simplified by noting that the ideal gas equation gives us: 

P  = RcT 

and since 

(Eq 7 - 2.1.10) 

I - €  I - &  ar 
(, -- + -- - C Y D , ~  ( B ~ ~ ~ - ~ ~ )  + e s T p s -  + k  ( T -  7%) = o (Eq 7 - 2.1.11) 
P R ~ Z   at at ' 4  

I a 
ap  

where - is supplied as a boundary condition. 
at 

Derivation based on the above equations: 

Differentiate P = RCT on both sides, we have: 

(Eq 7 - 2.1.12) 

adding (Eq 7 - 2. I .  1 ) and (Eq 7 - 2.1.2) and considering (Eq 7 - 2.1.3), (Eq 7 - 2.1.4), and the 



above equation, 

Therefore, we will have the above set of six equations (Eq 7 - 2.1. I ) ,  (Eq 7 - 2.1.2). (Eq 7 - 

2.1.3), (Eq 7 - 2.1.4) and (Eq 7 - 2.1.1 I)(@ 7 - 2.1.14) for solving the variables r , ,  r 2 ,  q l ,  q,, T, v 

along with two auxhiary equations (Eq 7 - 2.1.5) and (Eq 7 - 2.1.6) to find B ,  and B2.  

Initial condition s 

For an initial condition, we can assume that the fraction of nitrogen in the gas in bed varies 

linearly from 80% at the feed end to 0% at the other end. 
, -_- 

/The gases in the adsorbed phase are in local equilibrium with the gases in the gas phase. 

c2 ( 2 ,  0) = c ,  - (- ,  ( z ,  0) (Eq 7 - 2.1.16) 

( 2 9  0) = B l o c l  (Eq 7 - 2.1.17) 

q2 ( ~ 7  0) = BZOc2 (:, 0) (Eq 7 - 2.1.18) 

1, ( 2 ,  0) = vo (Eq 7 - 2.1.19) 

T ( z , O )  = T ,  \ (Eq 7 - 2.1.20) 

Boundary condition: 
The boundary conditions for the variables in dimensional forms are listed as: 

(Eq 7 - 2.121) 

7 - 2.2 Dimensionless Form 
The above-mentioned six equations can be converted into their dimensionless form. 



7 - 2.2.1 Define dimensionless variables in Table 7-2.2.1: 

Table 7 - 2.2.1 Dimensionless Variables 

dimensionless . 
variables definition . 

- 
P I P/P, ,  where PO = RT,cO I 

. 7 - 2.2.2 Equations in dimensionless form: 

(Eq 7 - 2.1.5) and (Eq 7 - 2.1:6) can be rewritten as: 

T 

(Eq 7 - 2.1.3) and (Eq 7 - 2.1.4) can be rewritten as: 

/ 

r / h ,  where h  is dimensional time interval, refer Figure 6 - 4.1 

(Eq 7 - 2. I. 1)  and (Eq 7 - 2.1.2) can be written as: 

* 

(Eq 7 - 2.2.1) 

(Eq 7 - 2.23) 

rh 7 - 2.2.4) 



- a a F  H I  I - E  H ,  I - E  
c  P- + - c  - - - a D  - B l 0 ( p  X  - Y , )  - - a D , - B , ,  ( & X 2  - Y , )  

P ax h  ' d r  T , ,  d E I J 'a E 

a 1" I - E  a7 1 - 
+ - - c , - p  - + a k  - ( T - 1 )  = O  

h c , ,  E eq c o  

(Eq 7 - 2.1.14) can be written as: 

(Eq 7 - 212.8) 
I - &  1 - E  - ? B l 0  ( B I X l  - Y l )  - @ 2 T B 2 0  (B2X2-Y2) 

' So far, we have all the dimensionless equations from (Eq 7 - 2.2.1)--(Eq 7 - 2.23) for the 

dimensionless variables x , ,  x,, y , ,  Y , ,  T, C. 

7 - 2.2.3 Tables of dimensionless parameters 

Here, we list the dimensionless parameters. 

Table 7 - 2.2.2 dimensionless parameters 

I a / h  I L / ( v o h ) .  where a = L / v ,  I 

parameters 

Pel  

equations 

( L v , )  I D , ,  

The complete parameters used in this work are listed in section 7 - 7 at the end'of this chapter. 

Refer (Singh & Jones, 1996) for more information. 

a S / c ,  

Initial condition: 

I - &  I - &  
I . , - p s / c , , ,  where as = c S T p ,  

E 

written in dimensionless form: 
h 



T ( x ,  0) = 1.0 
/ - - V (x, 0) = 1.0 

Boundary condition: 

Rewritten in dimensionlessform: 

7 - 3 Implementation of double collocation 
Four steps nonlinear calculation: 

7 - 3.1 Step 1 
Initial guess, based on the result of last step. 

T ( k , i ) , k =  1 ,..., M + 2 ; i = 2  ,..., N + 2 ;  { ( M + 2 )  ( N +  1 ) )  

C ( k , i ) , k =  1 ,..., M + 2 ; i = 2  ,,.., N + 2 ; { ( M + 2 )  ( N +  I ) }  
4 

7 - 3.2 Step 2 
Solve the boundary condition for x,,X, and T,  6 according to the above nondimensional 

boundary condition equations which are written in matrix form. 



Compute the derivatives for the following variables: 

where b stands for the following variables: 

Table 7 - 3.3.1 Variables 

,7 - 3.4 Step 4 
Setting up the residuals R:,, and updating the initial guess t6 force the (6*M+ti)*(N+l) 

unknown residuals to become zero. To simplify the calculation, we compute p, and p, with the 

local temperature at last step. 
t 



P 2 ( k )  = exp - (- - 1 ) )  
(''a T ( k ,  1) 

1 ak, -- - ax, 
+vk,,-  + ~ , ( k . i ) a V I  

h m p e l s  l k v I  ax 1 'l = 2 a x 1 1  k. I ax k.1 

And (Eq 7 - 2.2.7) and (Eq 7 - 2.2.8) are implemented as the following: 

(Eq 7 - 3.43) 

(Eq 7 - 3.45) 

(Eq 7 - 3.4.6) 

ai ax, ax, % \ + ( X , ( k , i )  + X 2 ( k , i ) ) - + G ( k , i )  ax ( x I k , ~ + x I k , ~ )  

In this step we will use standard subroutine to solve the resulting systems of nonlinear 

equations, in our program, we will also supply full Jacobian analysis in order to reduce 

computation expenses. The simulation will repeat the four steps until time reach to the time 

length of adsorption period. xt 

7 - 4 The Simulation Result: 
With the boundary and initial conditions and the parameters abovementioned, we set: 

space mesh=13 (including 2 boundary points) 

time layers=3 (including 2 boundary layers) 

adsorption duration tmax = 120 seconds, \ 

velocity = 0.02 dsecond. 
b 
I 



x I 

Figure 7 - 4.1 3D plot of variation of variables, (a) concentration of nitrogen, (b) concentration of 
oxygen, (c) concentration of nitrogen in the solid phase (d) concentration of oxygen in the solid phase 

(e) temperature (0 velocity of flow 
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Figure 7 - 4.2 2D plot of variation of variables (a) concentration of nitrogen,~b) concentration of 
oxygen, (c) concentration of nitrogen in the solid phase (d) concentration of oxygen in the solid phase 

(e) temperature (0 velocity of flow 



From the above figures, we can get more insight about the evolution of the absorption step of 

a conventional PSA cycle. 

I .  Figure 7 - 4.1 (a) and Figure 7 - 4.2 (a) clearly shows that the curve representing the 
variation of concentration of adsorbable (nitrogen) species is self-sharpening as adsorption 
goes on. This confirms the theoretical prediction in chapter 1, that when the adsorption.is 
favorable and significant, the concentration curve is self-sharpening. It also shows that 
collocation method can handle this problem. 

2. Figure 7 - 4.1 (b) and Figure 7 - 4.2 (b) shows that as the adsorption proceeds, the . 

concentration breakthrough curve of product (oxygen) in the bed is getting steeper. 

3. ~ i ~ u r e  7 - 4.1 (c) and Figure 7 - 4.2 (c) shows development of the concentration of 
nitrogen in the solid phase. 

,+ 

4. Figure 7 - 4.1 (d) and Figure 7 - 4.2 (d) shows development of the concentration of oxygen 
in the solid phase. 

5. Figure 7 - 4.1 (e) and Figure 7 - 4.2 (e) shows that as flow moves from inlet to the outlet of 
adsorption-column, the adsorption also moves along the bed, the temperature rises at the 
places where the eo rp t ion  takes place intensively. i 

6. Figure 7 - 4.1 (0 and Figwe 7 - 4.2 (f) shows that the velocity of fluid flow is really not 
constant, it slows down where the adsorption take place; it recovers to the inlet velocity 
where the bed gets saturated. 

All the above figures have shown that adsorption in this conventional PSA simulation is 

favorable and significant. the temperature and velocity of fluid vary as the adsorption takes place. 

a self-sharpening breakthrough curve develops as the fluid flows through the adsorption column. 
--.a 



7 - 5 The Computation Time 
Table 7 - 5.1 Collocation points with Repressurization 

number of mesh computation time 
(minute : second) 

7 - 6 Conclusion for Chapter 7 
With double collocation method, we can solve the conventional PSA simulation model, and it 

has shown that the method can handle the self-sharpening simulation, and the results verify our 
? 

predi on in Chapter 1 .  4 



7 - 7 List of Parameters 

Table 7 - 7.1: Parameters Used in Simulation 

Data 

operation 
data 

1 100.0 1 W /  (rn '0 . equivalent radial $onductance 

bed 
properties 

Gas 
properties 

parameter 

cycle 

tmax 

length 

diameter 

e s 

E 

I '0 1 300 1 K, Temperature at initial condition 

value 

1 

1120 

30.0 

R 

Pam 

-- -- - 

unit, explanation 

number of cycle of psa operation 

second. flowing period 

cm, bed length 1 

1.66 

loo0 

0.3 

1 20.8 1 Jlgm-moVK. specific heat of bulk gas (constant volume) 

cm, bed diameter 

J/kg.K specific heat of zeolite 

Porosity of bed 

8.3 14 

101325.0 

V o 

x10 

/ 18.0 I J/gm-moVK. specific heat of bulk gas (constant pressure) 

J/gm-mom universal gas constant 

latm=101325 ~ / m *  

0.02 

0.8 

4 s .  velocib of gas flow at inlet 

dimensionless gas component (percentage) 

Nitrugen: 

I 29.5 I J/gm-mom specific heat of bulk gas (constant pressure) 

D,I 

x20 

Cv2  

H I  

B I O  

rho 1 

- 1 32.0 1 Molecular weight 

0.0@1 - 

0.2 ' 

21.1 

Oxygen: 

/ 0.0001 ( coefficient of axial diffusion 

6.2 

21000 

15.0 

28.0 

pefficient of axid diffusion 

dimensionless gas component (percentage) 

Jlgm-mol/K specific heat of bulk gas (constant volume) 

Linear driving force coefficient or gas diffusivity (per second) 

J/gm-mol. Enthalpy of adsorption 4 

Langmuir constant at standard temperature m 3/gm-mol 
\ 

molecular weight 

D2 

'42 

BZO 

35.0 

19000 

2.0 

Linear driving force coefficient or gas dffusivity (per second) 

J/gm-mol. Enthalpy of adsorption 

Langmuir constant at Standard temperature. m '/gm-mol 



Table 7 - 7.2: Derived parameters 



General Conclusion and FutureWork 

8 - 1 The Present Study Has the Following ~indings: 
0 

1. The object of this thesis is to bu@ realistic models for the design of PSA cycles and PSA 

units. For the realistic modelling of a conventional PSA cycle, the adsorption column can not be 
4 assumed to be isothermal and to have constant gas velocity. When the benchtop apparatus is - 

scaled up to industrial size, the thermal condition of the adsorption column changes from near- 

isothermal to near-adiabatic; therefore, thermal effect has to be considered in our model, as well 

as the variation of fluid flow due to bulk adsorption. In Chapter 1, we have shown that, in this 

circumstance, the breakthrough curve of the concentration profile is self-sharpening as it 

propagates along the adsorption column. Therefore, it is very important that we can represent this 

self-sharpening breakthrough curve accurately, otherwise, we will get low prediction of either 
A P 

total productivity or purity from the computer modelling. This also means the numerical methods 

of computer modelling must be free from false diffusion (numerical diffusion), which is a non- 

physical effect. As another object of our research, we have discussed how to reduce or eliminate 

this effect of false diffusion. 

2. As noted in Chapter 2, the truncation error of applying the finite diherence method to solve 

partial differential equation, which s is the reason for numerical diffusion. Earliefresearchers 

tried to relate the truncation error to block and step size. and through adjusting the block and step 

size to minimize the truncation error. There has been some success in minimizing false diffusion 

this way; however this solution to false diffusion is limited to the specific problem, and 

sometimes results in prohibitively small block and step size. Later researchers started to 

investigate new methods which have higher order accuracy, in order to minimize the truncation 

error. The typical new methods would still be upwinding, the order of accuracy can be third, 

fourth, fifth, or even seventh, ninth order. In the scope of this thesis, I study two methods: the 

numerical method of lines, and the orthogonal collocation method, in either of which higher 

order formulas can be embedded. These two methods have been applied to solve the convection 

equation, the convective-diffusion equation, and a practical PSA model. It has been shown that 

numerical method of lines with fourth-order formula and orthogonal collocation can both give 

solutions to the numerical diffusion; also orthogonal collocation method is superior to the 

numerical method of lines in computation time. 

3. For the mathematical model of the conventional PSA, which is the combination of P.D.Es 

and O.D.Es, solution is not possible by P.D.E-O.D.E. procedure. Therefore, we extend the 

orthogonal collocation method to the double collocation method to solve the mathematical 

model. In Chapter 6, we employ this method to solve a simplified version of PSA model, in 



which the'thermal condition is assumed isothermal, however, we take consideration of variation 

of velocity of fluid flow due to bulk adsorption. Based on the'work of Chapter 6, we solve our 

realistic model of conventional PSA model, in which we take consideration of thermal effect as 

well as the variation of velocity of fluid f l o ~  due to bulk adsorption. ~e results agree with the 

theoretical analysis made in chapter 1. It has been shown that the breakthrough curve of the 

concentration profile is self-sharpening as it propagates along the adsorption column. The 

computer model also present the temperature variation inside adsorption column, as well as 

variation of velocity of fluid flow. The temperature rises at the places where the adsorption take 

place, while velocity of fluid flow slow down at the places where the adsorption take place. 

Therefore, the computer model has provided us with insight into the adsorption column. The 

extension of the double collocation method to a semi-adiabatic bed is and original contribution of 

this thesis. 

8 - 2 Recommendation for Future Work 
Several future tasks are recommended: 

*I, 

1. Extending the current two-component adsorption column into three-component adsorption 

column. 

The present model can be adapted to any other two gases by changing the input parameters. 

However, some separation problems includes three or more gases, in the future, it is also desired 

to include third component such as carbon dioxide. 
t 

2. Realization of cyclic operation. 

\ , Current work of simulation of the conventional PSA cycle is only the simulation of 

adsorption step. The solution we've developed can easily be extended to cyclic operation by 

changing the boundary conditions. Therefore, we have further description: the bed runs through a 

cycle; there are four or five distinct phases, each with particular flow and pressure boundary 

conditions. 

There are two ways of simulating bed behavior; we can try to simulate the operation of the 

bed from initial conditions, through a "warm-up" phase, to cyclically steady state; or we can 

make it a boundary condiPon that the state of the bed at the end of cycle must be identical to its 

state at the beginning. !this could be guaranteed by choosing the solution to be a sum of 

sinusoids with period a ~ u l t i p l e  of the cycle length.) 
s a 

3. Simulation of more advanced cyclic operation such as TCPSA. 

Upon the completion of these simulations, we will obtain realistic models to help on the 

design of PSA unit as well as PSA cyclic. 



3 '  

Appendix: The Ollthogonal Collocation Method and 
Orthogonal Polynomials 

The Orthogonal collocation method has been widely employed in problems of chemical 

engineering. The fundamental step of this method is the solution of the collocation matrices 

which are derived directly from associated orthogonal polynomials. Approaches based on two 

categories of orthogonal polynomials (Jacobi and shifted Legendre polynomials) are presented in 

detail in this sectidn by symbolic computation. A general approach based on the,Gram-Schmidt 

orthogonalization procedure can be employed to obtain variously defined orthogonal 

polynomials. 

A - 1 A Brief Introduction to The Orthogonal Collocation Method 
In the orthogonal collocation method, an original PDE can be reduced to a system of ODEs 

by writing it in collocation form, and then the resulting system of ODEs can be solved by a 

standard subroutine. 

A - 1.1 Trial Function & Orthogonal Polynomials 
Consider an unknown function o (x, I )  , which satisfies partial differential equations and 

boundary conditions. An approximating function cdled trial function can be chosen, such that 

the boundary conditions are satisfied. Depending on nature of the problem, non-symmetric or 

symmetric trial function should be used. 

An example of a symmetric trial function is: 

(Eq A - 1.1.1) 

% where u , ( I )  are functions of time (or constants) and P, are the orthogonal polynomials 

defined by: 

2 .  where w (x?)  = I - ,, = I , ? ,  ... 

Here the volume element dV has been replaced by the proportional quantity xu- Id.r; thus for 

slabs a=l, for cylinders a=2 and for spheres a=3. The polynomials defined by (Eq A - 1.1.2) are 

Jacobi polynomials. 



where a, (T) are functions of time or constants and P I  are the non symmetric polynomials 

defined-by the condition: 5 

1 

~ w ( x ~ P , x P , , , ( x ) ~ x  =.O,n = 0. I , '  ... m -  1 (Eq A-1.1.4) - 
0 1 

where w(x) is weight function, such as w ( X I  = 1 .  The polynomials defined by (Eq A - 1.1.4) 

are shifted Legendre polynomials. 

' The collocation points x , ,  ... X ,  are given by the zeroes of P, ( x 2 )  or p, (x)  

A - 1.2 Interior formulas based on ordinates . 

The trial function can be translated 4 an equivalent set of equations in terms of the unknown 
* 

ordinates 4 ( x , ) .  4 ( x , ) .  .... 4 ( x , )  

For example, rew6te (Eq A - 1.1.1 ) 

N +  1 

@ ( x )  = x d,x2'-' 
j =  1 

Evaluate at collocation points, 

(Eq A - 1.2.1) 

(Eq A - 1.2.2) 

Take the first 

c.ollocat'ion points: 

derivative q d  the Laphcian of this expression and evaluate them at the 
T 

These can be written in matrix notation 

v'@ = D d ,  D,] = v2 ( x 2 ' - ' ) I  x,  

Since d = Q-'I$ 

d 4  - = cd = CQ-'@ = A@ (Eq A - 1.2.8) 
dx 

2 v = ~ d  = DQ- '$  = B@ (Eq A - 1.2.9) 

Integrals of the solution can be calculated with high accuracy via the summation formula 



which requizes the value of solution only at the collocation points x , ,  ... x,, xN+ , 
The collocation points x , .  ... X, that appear here art the roots of pn = o and x,+ , is unity. 

Matrices A, B are called collocation matrices. 

Where. 

(Eq A - 1.2.14) 

Sirmlarly, the corresponding set of collocation matrices can be written for the nonsymmetric 

trial function (Eq A - 1.1.3) based on the shifted Legendre polynomials. 

Rewrite (Eq A - 1.1.3), 

Evaluate at collocation points, 

Take the first derivative and the Laplacian of this expression and evaluate them at the 

collocation' points: 



I =  1 

These can be written in matrix notation 

- 1 
y = Q d ,  QiJ = 2 I,' 

v2, = D d ,  D,]  = V ' ( . X ' - ~ ) ~ ~  = (j- I) ( j - 2 ) d -  3 

Since d = Q-'+ 

Integral of the solution can be obtained by 

(Eq A - 1.2.19) 

(Eq A - 1 2 2 0 )  

(Eq A - 1 2 2 1 )  

(Eq A -  1 2 2 2 )  - 
(Eq A - 1 2 2 3 )  

a Matrices AX, BX are called collocation matrices. 

The collocation points x , .  . . .  x u + ,  that appear here are the roots of pn (x) = o x l  = o and . rM+? is 

unity. 

Where, 
- iCI 

dx" , , , dx"+ I  

(-11 d x  I, (7 ) l I 1  1 
dx" 

(- 

(Eq A - 1 2 2 6 )  



A - 2 &thogonal polynomials 
I. 

Orthogonal polyndnials such as the above mentioned Jacobi polynomials and shifted 

Legendre polynomials and corresponding collocation - points can be found in the literature, such 

as Finlayson(l972), and Villadsen & Stewart (1967) for order from 3 to 7, already resulting in 

very complicatd calculation. However, in many situation, we need higher order polynomials. In 

this sdtion, we provide method to obtain higher order of orthogonal polynomials by symbolic 

computing7The symbolic computation can be implemented in Maple V. 
$ 

A - 2.1 Jacobi Polynomials 
The polynomials defined by (Eq A - 1.1.2)are Jacobi polynomials (Courant & Hilbert 1953. 

Morse & Feschbach 1953). Rewrite it: 

2 .  where w ( x * )  = I -x-. J = I .  2. . . .  , and a = I .  2 . 3 .  

The Jacobi polynomials are given explicitly by: 

The constant c, is correspondingly given by: - 

Here, F is the hypergeometric function, defined by 

(Eq A - 2.1.1) 

(Eq A - 2.1.2) 

I 

I 
. a a ~ ! r ( - ) r ( ; + ~ +  i + s )  

u a 7  2 
F ( - I , ; +  - + 1, - ,x')  = ( - 1 ) '  

.. (Eq A - 2.1.4) 
2 2 a a 

.t = 0 ( I - s ) ! s ! ~ ( ; + - +  I ) ~ ( - + s )  
2 2 

The above equation can be used for symbolic computing of Jacobi polynomials in Maple V . 

r function is defined as GAMMA in Maple V. The program has been listed in A - 5.1, where (1 

can be 1,  2 and 3, the order of resulting Jacobi polynomials and their roots can be as high as 20. 

However, here for tfie reason of space, we can only list jacobi polynomial and their roots for 

order up to 10 in the Table A - 4.1 and Table A - 4.2 for a=3. 



A - 2.2 Shifted Legendre Polynomials 
Another important set of orthogonal polynomials used to construct nonsymrnetric trial 

function are shifted Legendre polynomials, defined as: 

0 

where w(x) is weight function, such as w (XI = 1 .  Indeed, these orthogonal polynomials can be 

computed in a simple manner by Gram-Schmidt Orthogon&ization procedure with an 

. understanding of the concept of inner product (Dorny 1975). 
2 

Define inner product: 

therefore, we can see that the inner product of 
P 

-# 
(Eq A - 2.23) 

which is the definition of orthogonal polynomials. By Gram-Schmidt orthogonalization 

procedure, a natural basis polynomials F, (x )  = 1. F ,  ( x )  = X. F ,  ( x )  = x'. ... can be orthogonalize into: 

'. 
1 Po (x )  = Fo  (x )  = 1 L 

Accordingly, we can obtain orthogonal polynomials: P ,  (XI, P,  (XI ,  P ,  (XI. . . .  , We listed the 

shifted Legendre polynomials and their roots in Table A - 4.3 and Table A - 4.4 

We can also take advantages of symbolic computation in Maple V to perform the 

orthogonalization procedure described in (Eq A - 2.1.4). The program is listed in section A - 5.2. 

The order of resulting polynomials can be as high as 20. 

The advantage of above procedure is that different polynomials can be easily obtained by just 

changing definition of inner product corresponding to definition of each individual polynomial. 

For example, if we define: 

1 

8 )  = (pn.  P m )  = w ( x )  Pn ( x )  Pm ( x )  dx = 0 

- I  

and then utilize the orthogonalization procedure described above. the resulting orthogonal 



polynomials are Legendre polynomials. 

Upon obtaining the oithogonal polynomials, the procedure for obtaining collocation matrices 

is very simple. 

I. Read N, and xu)  roots. . . 
2. Calculate Q, C, D matrices using for (Eq A - 1.2.5)-(Eq A - 1.2.7) Jacobi polynor&als or 

(Eq A - 1.2.19) -(Eq A - 1.2.2 1)  for shift Legendre polynomials. a 

3. Invert Q. 

4. Calculate A, B, AX, BX using (Eq A - 1.2.1 1 )  - (Eq A - 1.2.14) or (Eq A - 1.2.25) -(Eq A - 
1.2.28) respectively. 

After we have obtained the collocation matrices, the P.D.E's can written collocation form 

which will result in a system of 0.D.Es or a system of algebraic equations which can be solved 

with standard subroutines. 

A - 3 Solution in the f o r b f  polynomials 
Sometimes, it is desired to express the computation results in the form of polynomials. 

A - 3.1 Solution in the form of Jacobi polynomials 
Rewrite (Eq A - 1.1.1) 

where 

The integration can be exactly done by 

0 

A - 3.2 Solution in the form of shifted Legendre Polynomials 
Rewrite (Eq A - 1.1.3), 

By definition of shifted Legendre orthogonal polynomials, 

therefore, 



This calculation can be done by symbolic computation in Maple V with k e  definition of 

inner product. See section A - 5.2. 
4 

Since, 

therefore. 

'able of Polynomials and Their Roots 

Table A - 4.1 Jacobi polynomials a=3 % 

Polynomials 

P - I--x 1 2  
1 -  7. 



Table A - 4.2 The mots of Jacobi polynomials a=3 

Order I Roots of polynomials 

Table A - 4.3 Shifted legendre polynomials 

0rd&. 

n= 1 

P Polynomials , 

1 p = 1- - 
I -I 



Table A - 4.4 The roots of shifted lengendre polynomials 

A - 5 Program List 

, Order 

N= 1 

N=2 

N=3 

N=4 

N=5 

A - 5.1 The program for symbolic computation of the Jacobi polynomials in 
Maple V: 

Roots 

0. 5OO0000000 

0.2 1 13248654 0.788675 1346 

-0.1 1270 16654 0.5OOOOOO000 0.8872983346 

0.6943 1 84420 0.3300094782 0.66999052 18 0.930568 1558 

0.0469 1007703 0.2307653449 OSOOOOOOOO 0.769234655 1 0.9530899230 

' > #solve the jacobi polynomials with the formulas in villadsen paper and their roots, here j is 
the order of the polynomials, a=l for slabs, a=2 for cylinders and a=3 for spheres. 

> a:=3; 

> end; 
> for j from 1 to 20 do 
> plj]:=p[i](j,a,xA2); 
> fsolve(plj]=O,x); 
> solutions:="; 
> for k from 1 to 2*j do 
> evalf(solutions[k],20); 
> od; 



A - 5.2 The program for symbolic computation of the shifted Legendre poly- 
nomials in Maple V: \ 

> #This maple program calculate the legendre polynomials and their roots by Gram-Schmidt 
orthogonalization procedure 

> #define inner product .. 
> inner-product: =proc(f,g) 
> int(f*g,x=O.. 1 ); 
> end; 
> #define a natural basis f f~](x)  
> for j from 0 to 20 do 
> Q]:=x"j; P 

> od; 
> #Gram-Schmidt orthogonalization procedure 
> p[O]:=f[O]; 4 

> for k from 1 to 20 do 
> ss:=o; 
> for j from 0 to k-l do 
>ss:=ss+inner-product(f[k],p~])/inner-product(p~],p~])*p~]; 

'-: 

> od; 
> p[k]:=f[k]-ss; 
> c[k]=inner-product(p[k],p[k]); 
> od; 
> #calculate their roots 
> for k from 1 to 20 do 
> k; 
> fsolve(p[k],x); 
> od; 

A - 6 Reference: 
R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1 ,  pp. 90-91, 

interscience 1953 

P. M. Morse and H. Fesch bach, Methods of Theoretical Physics, pp. 542,7804 I ,  1754- 
55, McGraw-Hill 1953. 

B.A. Finlayson, The Method of Weighted Residuals and Variational Principles, Academic 
Press(1972). 

J.V. Villadsen, and W.E. Stewart, "Solution of Boundary Value Problems by Orthogonal 
collobdtion", Chem. Eng. Sc. 22, 1483 (1967). 

C. Nelson Domy, 1975, " A  Vector Space Approach to Models und Optimizations." .US: 
John Wiley & Sons Inc. * i ,  

M.B. Monagan [et al.]; Maple Vpro,gramming guide. Waterlod. ON. 1996 
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