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We call a family of primes P normal if it contains no two primes p , q  such that p 

divides q - 1. In this thesis we study two conjectures and their related variants. 

- Giuga's conjecture is that 1;:: kn7' n - 1 (mod n )  implies n is prime. We 

study a group of eight variants of this equation and derive necessary-and sufficient 
)+ 

conditions for which they hold. 3 @ 

a normal family, and we exploit this property in our computations. 
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Chapter 1 

Introduction 

% 

1.1 Introduction 

The fields of number theory and computing science have enjoyed a fruitful partner- 

ship over the last few decades. Studies of such number-theoretic problems as primal- 

ity testing, factoring, and discrete logarithms have helped make practical . - public-key 

cryptography a reality. Conversely, the  computer has become an invaldable tool for 

dealing with large numbers, making once impossibly long calculations feasible, and 

once tedious work trivial. 
-. 

There are many conjectures which have simple and elegant statements, but for 

which there seems to be little hope of a complete resolution. This is particularly true 

in the field of number theory (for example, the twin prime conjecture, the existence 

of odd perfect numbers, and until quite recently Fermat's conjecture). In the absence 

of a proof or disproof, one method of investigation is to  derive a lower bound on the 

size of a counterexample. G. Giuga and D. H. Lehmer each studied such problems 

and obtained computat,ional bounds for them through hand calculations and tables, 

well before the advent of modern computing. 

As computer speeds increase, more problems become tractable, and better bounds 
& 

can be obtained. In this thesis we look a t  both Giuga's and Lehmer's conjectures 
r* 
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as well as some variants, and see what new results we can derive with the level of 

computational power available today. In Chapter 2 we study Giuga's conjecture 

I kn-' n -.1 (mod n )  iff n is prime,l 

together with several related variants. The bulk of this work is contained in (BW). 

In Chapter 3 we examine Lehmer's conjecture 

I 4(n )  I n - 1 iff n is prime, 1 

and obtain a new bound on thekumber  of prime factors of a counterexample. We % 

also partially extend Lehmer's work of determining which n satisfy #(n) I n + 1. We 

will find that these problems all share a common structure which can be exploited to 

make the computations somewhat easier. 

1.2 , Normal Families 

h'e call a finite family of distinct primes P = {pl, p2, p3,. . . , pk) normal i f  p, 1 P, - 1 

for all 1 5 i, j 5 k. It is clear that if k > 1 then 2 4 P .  

We say that a prime q is normal to an existing normal family P if q > max P and 
. . 

P U { q }  i.s also normal. 

Example: {3,5,23,29) is a normal family of primes. The smallest prime normal to 

this family is 53. 

In general, we denote by [PI the first prime normal to P ,  and by [P,ql  the 

first prime greater than or equal to  q which is normal to P .  Except for the trivial 

case P = (2) '  Dirichlet's theorem (Leve) guarantees that such a prime must exist. 

Similarly, [ P ,  qJ denotes the largest prime less than or equal to q which is normal to 

P (provided q > [PI). 
It  turns out that for both Giuga's and Lehmer's conjectures as well as many of 

the variants we consider, a necessary condition for n to be a counterexample is that 
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the prime factors of n form a normal f a m ~ v .  By examining only normal families of 

a given cardinality, we reduce the search space required to  verify these coqjectures 

for a given number of prime factors. Incidentally, these n have an interesting group- 

theoretic property (thanks to Dr. Dbek  Holt a t  the University of Warwick for this 
* 

observation). 

Fact. Let' n be a product of primes from a normal family. Then there is a unique 

group of order n up to  isomorphism (namely 2,). Conversely, i f  n is not squarefree 

or if n is divisible by primes p,  q where p I q - 1, then there exists a group of order n 

- which is not cyclic. 

Sketch.  Let G be a group of order n. If P is a Sylow psubgroup of G ,  then IAut(P)I = 

p - 1 does not d i v i d e ' l ~ ~ .  We then apply Burnside's Transfer ~ h e o r e m  (see Hall) to 

show that G has a normal subgroup N of order n l p  such that G = N P .  Choosing P , 

to  be a normal Sylow psubgroup of G, we see that G %' N x P ,  and an induction on 

the number oipr ime factors of n completes the argument. 

To prove the converse, it is sufficient to  simply find non-cyclit groups of orders p2 

and pq. The former is easily given by 2, x 2,. For the latter, let b be a primitive p t h  
Y 

root of unity modulo q. Then the group with presentation - 

is non-Abelian of order pq. 

Before proceeding to  study the two conjectures in detail, we introduce the following 

concepts which will be useful. 

A A normal  sequence is an infinite sequence P = i p l  < p;? < p3 < . . .} of primes . 
s 

where p, J p, - 1 for all i, j 2 1. It is easy to construct such a sequence inductively from 
= 

any prescribed finite subset P' by repeatedly adjoining [P'l. \Ve d e f i ~ e  a res tr ic t ion 

P [ k ]  of P to be the elements of P which are less than or equal to  k .  We denote by 

Pk the simple restriction consisting of { p l ,  p2.'. . . . p k } .  

Given two families of primes A = { a l  < a;! < . . - < a k }  and 23 = { b l  < b2 < - .  . < 
br} we say that A d o m i n a t e s  23 if k > 1 and a ,  < b, for each 1 < i < I .  This definition 
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.easily extends to an infinite sequence A (and a finite or infinite B ) ,  and a natural 
3 .  

interpretation is that the primes of A'are more densely.distributed than those of B .  
r 

We make the followi<g observation. 

. !Proposition. Let k 2 3.  Then any normal family (or normal sequence) P is domi- . - 
nated by a sequence of the form Q U { a o ,  a l , a z , .  . .), where Q is a (possibly empty) 

normal family with no primes greater than k ,  a0 = [Q, k  + 1 1 ,  and = [& ,a ,  + 11. 

~ro:f. Take Q = P[k] .  @ * 

By considering all possible normal families with elements less than a given k,  we 

can universally bound any normal family. We can assume without loss of generality 

that k is prime. 

Example: When k = 7 ,  the possible normal families are { ), ( 3 1 ,  ( 5 1 ,  ( 7 1 ,  { 3 , 5 )  and 

{ 5 , 7 ) .  Thus every normal family is dominated by one of the following sequences: 



Chapter 2 

Giuga's Family 

2.1 Giuga's Conjecture 

In 1950, G. Giuga conjectured that if an integer n  > 1 satisfies 

C'kn-' n - 1 (mod i ~ ) ,  (2.1) 
k = l  

then n  is a prime. 
I 

L 

Clearly the converse holds: if n is a prime, then kn-' r 1 (mod n )  for 1 5 k 5 n- 1 

by Fermat'slittle theorem, thus 
b 

n-1 n-  1 

kn" 1 r n - 1 (mod n).  . 
k = l  k= 1 e 

Giuga (Giu) showed that a co~nposite n  satisfies this condition if and only if 

p I (n jp]  - 1 and p - 1 I n  - 1 for each prime p dividing n. Using this criterion, he 

verified the conjecture computationally for all integers up to  1000 digits. E. Bedocchi 

(Bed) later improved this to 1700 digits. With greater computational resources and 

a significant refinement of the technique, D. Rorwein, J .  M. Borwein, P. B. Borwein, 

and R. Girgensohn (B3G) have recently verified the conjecture for up to'13887 digits. 

In this chapter we study eight natural variations of condition 2.1 and derive for each 

of them similar characterizations in terms of divisibility. 
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2.2 The Eightfold Way 

Recall that condition 2.1, 

kn-' z n - 1 (mod n) ,  

holds whenever n is a prime. If we altgr this condition by changing the exponent n - I 

to  $(n)  ( the Euler phi function), it will not have aqy effect for prime n.  Similarly we 

can change the right-hand side n - 1 to 4(n) .  Additionally, rather than summing with 

k between 1 and n - 1, we can take the sum over only the d ( n )  integers relatively 

prime to n. 

By combining these alternatives, we get eight (23) different variations on Giuga's 

condition, all of which hold for prime n.  The question remains: for which composite 

n do each of these conditions hold? Before we proceed to  analyze these cases, let us 

introduce some notation. 

LVe use [n] to denote the set of integers between 1 and n (note that the inclusion 

of n does not affect any sum modulo n) ,  and [n]' for the subset of [n] consisting of 

integers relatively prime to n. Recall that [n]' forms a group under multiplication 

modulo n.  

iVe will make the convention that p is a prime, and q = pr is a prime power, 

ki th  r > 1. Given n 2 2 we will denote its prime factorization pi1p;2 0 .  - p ; ' ,  where 

pl < p2 < :.. < P I ,  and define q, = p:'. We will use the notation Ojn)  to represent 

an arbitrary integer divisible by n ,  in a fashion similar to the "big-oh" notation of 

complexity theory. This notatidn is particularly useful when n is a prime power, for 

which we ndte the following. 

Observations: 
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We will use S ( n , A )  to  denote the sum xi,[nl km, And S * ( n , m )  for the sum 

x,+]. km. We call S ( n ,  m )  a sum of Type I r a n d  S*(n, m )  a sum of Type I I .  In the 

next section we prove a theorem that is useful for dealing with Type I and Type I1 

sums modulo n. 

2.3 Evaluating sums 
P 

LZ'e start off with a simple lemma: 

Lemma. If a E 1 (mod p),  then UP' r 1 (mod for all i > 0. 

Proof. If a = 1 + O(p')  for some j, then the binomial expansion gives 

aP = 1 + p .  O(p-') + 0(p2 l )  = 1 + ~ ( p - ' " ) ,  

and the result follows by induction. 

The multiplicative structure of the group Iq]*, where q = p', is well-known (see, 
+ -  

for example, NZM). 

Fact. 

If p is odd, [q]' is cyclic with some generator a, of order d(q)  = pr-'(p - 1 ). 

I f  r 2 2, [2']* is isomorphic to Z2r-2 x Z2, and is generated by the following 

elements: 5 which has order 2'-2 and -1 which has order 2. 

[2]' is  trivial 

Let [q]: denote the set of mth powers (modulo q) of the elements of [q]'. If m  

and d(q)  are relatively prime, then this set is identical to [q]'. Furthermore, we note 

that given any m > 0, we can find m' dividing d(q) such that [q]k = [q];,, namely 

by taking m' = gcd(m. ( (9 ) ) .  If q = 2' and r > 2, then we can replace $(q) in this 

expression with 2'-2 = f d(q).  
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Examples: 

[16]; = [16]; = (1 ) .  
i 

With this in mind. we now prove the following theorem concerning S'(n, m )  when 

n is a prime power. 

Theorem 2.1 If q = p' is a prime power, then S = S*(q.,m) = k m  is cangru- 

ent to either 0 or 4(q)  modulo q. Furthermore, the cases where S - d(q)  (mod q) dre 

characterized as follows. 

Case 1 I f  p 2 3, then S'(q, m )  = d(q)  iff p - 1 I m. 

Case 2 I f  q = 2' and r > 2, then S'(q, m)  = d(q) iff m is even. 

Case 3 If q = 2,  then S = $42) = 1. 

Proof. 1Ve consider the first two cases individually. The third case is trivial. 

where a, is a primitive root modulo pr, and /3 = a;. The condition p , 1 X m is 

equivalent to - 1 being non-zero modulo p and hence invertible modulo q.  Thus if 

p - 1 1 m then S is a geometric series which evaluates to 

'C 

Now suppose p - 1 / m. Then we may assume without loss of generality that 

m = ( p  - I ) ~ " - ' ,  where 1 5 s 5 r ,  and thus 4 r 1 (mod p") by the lemma. Since 
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the order of 3 is q!(q)/m = pr-" we see that the sum ( 2 . 2 )  consists of exactly' m 

re etitions of the sum P 

Since a p  is primitive, the,summands of T are distinct modulo q and are all congru- 

ent to 1 modulo p". Thus they must form a permutation of the arithmetic progression 

1 + n . p3,  0 5 n < p'-".a The sum of the terms in this progression is 

which gives us T = pT-',  hence S = mT = ( p  - l ) p T - '  = $ 0 ) .  

Case 2: For odd m, this is simple: the terms of the sum Ckc(2rJ* km cancel out in 
0 pairs, thus S ( q , m )  = 0. We may therefore assume m = 2" with 1 5 s 5 r - 2.  The 

sum S factors into 
(9141-1 

s = ( 1  + ( - 1 ) " )  C *PCl 

where = 5 m .  Since m is even, the first factor is 2. The second factor consists of 

exactly rn repetitions of the sum , 

The summands of T are distinct modulo q ,  and congruent to - l  modulo 4rn ,  thus 

they form a permutation of the arithmetic progression 1 + 4 m n ,  0 5 n < q / 4 m ,  which 

sums to 

q / 4 m  + 4 m ( q / 4 m ) ( q / 4 m  - 1 ) / 2  = q / 4 m  + - O ( q / 2 ) .  

l l ~ l t i ~ l i c a t i o n  by' 2rn yields S = 2rnT  = 912 = d ( q ) .  Q 
Note in particular that S ' ( p r ,  m )  is always divisible by p'- l ,  regardless of m. This 

observation allows us t o  prove that the results of Theorem 2.1 also hold for most sums 

of the form ~ k E I P r I  k m .  hlore specifically, we have the following theorem: 

Theorem 2.2 If m > 1 ,  then S ( p r ,  m )  r S * ( p r  , m )  (mod p r ) .   en p is odd, the 

congruence holds for m 2 1 .  
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L 

-Proof. This is trivial for rn > r (and hence r = l ) ,  which is really enough for the 

following sections, but the full result has a nice proof by induction: we have, for r > 1, 

S(pr ,  m )  = S*(pr,  m )  + pmS(pr-', m ) .  The last term is divisible by p m ( p r - 2 )  and thus . 

0 modulo p' 

When-m = 1, a straightforward calculation gives 

k=l L 

which is O(pr)  if p is odd. 'a ' 
\ 

* 
'4 

2.4 Classification ' f .  . - ,  

?. *; '. 

In this section we consider the general case of S ( n ,  m )  and S*(n ,  n2) when n is any 

integer greater than 1. Lt7e first consider the four sums of Type I ,  including Giuga's 

o'riginal sum. 

2.4.1 Sums of Type I 

1 Recall that n has a prime- factorization given by n!=, p:* = nl=, q,. For a given 

i (1  < i < I ) ,  the sum km modulo q, simply consists of n/q ,  repetitions of 

km.  Applying Theorem 2.1 to  this latter sum gives us ' 

LVe first consider the case of the right-hand side n - 1. Now, S ( n ,  m )  equals n - 1 

modulo n iff it equals -1 modulo each of the q, .  This gives us the following t,heorem. 

Theorem 2.3 xkE[nI k m  n  - 1 (mod n )  if and only ij n is squareJree, and for all 

o d d p r i m e s p d i r i d i n g n , p - l I m a n d p \ ( n / p - 1 ) .  a 

Proof. First we show that n must be squarefree. Suppose r, 2 2 for some i ,  so that 
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By similar logic, we need km to  be non-zero modulo p, hence the condition 

that p - 1 I m for odd p, from Theorem 2.1. If p = 2, we have the third case of 

Theorem 2.1, and the congruence holds trivially. 

We now must satisfy S ( n ,  m)  r (n/p)$(p) = n - 1 (mod p). Dividing through by 

4(p) E -1 (mod p) we see this is equivalent to n l p  = 1 (mod p), giving us the third 

condition. 

It is clear, from the proof, that these conditions are sufficient. @ 

The next two corollaries follow immediately from Theorem 2.3. 

Coro l la ry  2.1 S (n .  d (n ) )  n - 1 (mod n) ifln is squarefree, and for each prime p 

dividing n ,  p I ( n l p  - 1) .  

Coro l la ry  2.2 (Giuga)  S(n, n - 1) G n - 1 (mod n) ifln is squarefree, and for each 

prime p dividing n, p I ( n l p  - 1) and p - 1 I n - 1. 

A natural number n which satisfies the conditions of Corollary 2.1 is called a Giuga 

number. These numbers are studied in (B3G) as well as in ( B r J ) ,  and we look at  

them briefly in the next section. 
L 

b'e now consider the case S ( n , m )  r 4(n )  (mod n) .  This will hold if  and only if 

for each i, (n/q,)S(q,, m )  = #(n)  (mod q,) By examining the two possibilities for the 

left-hand side of this congruence, we arrive at  the following theorem. 

T h e o r e m  2.4 km = d ( n )  (mod 7 1 )  if and only if, for each i ,  1 < i < 1, one of 

the following conditions holds: 7 

0 S(q,, m )  G 0 (mod q,) and p, I p1 - 1 for some prime p1 dividing n;  or 
a 

Proof. For the first case, we need 4(q,)d(n/q,) E 0 (mod q,). This is equivalent to  

p, I d(n/q,) ,  giving us the first condition. 
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For the second case, we must have (n/qi )$(q, )  $ ( n )  = #(q,)qb(n/q,) (mod qi). 

Since $(q , )  is divisi 1 le by p:'-l but not P:', we can divide through by $(q;) to get 

(nlq:)  = 4(n/q , )  (mod pi ) .  O 
Corollary 2.3 S ( n ,  q5(n)) = d ( n )  (mod n )  i f l  for all primessp dividing n ,  n /q  

$(n;lq) (mod p ) ,  where q ='pr is the highest power of p which divides n .  

We call n a co-Giuga number if it satisfies the conditions of Corollary 2.3. Note 

that co-Giuga numbers need not be squarefree, while Giuga numbers are. Also, the 

prime factors of a co-Giuga number n must form a normal family; otherwise qb(n/q) E 

0 $ nlq (mod p) for some p I n. 

Corollary 2.4 S ( n , n  - 1) r 4 ( n )  (mod n )  iff n = 2 or n is odd, co-Giuga, and 

p - 1 1 n - 1 for all primes p dividing n .  

Proof. We will use a descent argument to rule out the first condition in Theorem 2.4. 

Suppose that for some p,, p, j n - 1 so S(q,, n - 1) G 0 (mod 9,). We can choose such 

a p, to  be maximal. Then there must exist p' dividing n such that p, I p' - 1. But 

clearly p, 1 n, - 1 and thus p' - 1 1 n - 1. Since p' > p,, this is a contradiction. 

Now if n > 2 is even, then it must be a power of two, for no odd prime p can 

satisfy p-  1 j n -  1. Then we have S ( n , n -  1) E 0 (mod n )  by Case 2 of Theorem 2.1, 

and the condition does not hold. @ 

The condition p - 1 I n - 1 stated above is identical to the well-known charac- 

terization of Carmichael numbers (AGP), with the exception that n in our case is 

not required to be squarefree. Relaxing this requirement results in a class of numbers 

which we call pseudo-Carmichael numbers. We will return to these numbers as well 

as the co-Giuga numbers in the next section. - e -  

2.4.2 Sums of Type I1 

We now consider the sums S 0 ( n , m )  = km of Type 11. In order to  do so, we 

need some information about the structure of the group [n]': it is isomorphic to  the 
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Cartesia; ~ r o d u c t  [ql]' x [qz]* . - x [ql]'. Furthermore, we have a natural representation 

as follows. 
# 

For a given n, define [n]; to be the subset of [n]' consisting of all elements congruent 

to 1 modulo nlq,. Then [n]: has cardinality d(q,), and in fact contains a uniqae 

representative modulo q, for each element of [q,]'. Applying the Chinese remainder 

. theorem we see that we can factor [n]' in the following sense. 

Observation. Every x E [ny  can be written uniquely as a product x E ~ 1 x 2 . .  .x l  

modulo n, with each x, E [n];. 

Proof. n:=, x, x, (mod q,), so x, must be the unique element of [n]; which is 

congruent to x modulo q;. 

This representation allows us to  factor S = S*(n ,  m)  into S 1 S 2 . .  . Sl, where 

Now, S, is clearly congruent to d(q,) modulo q, for j # i ;  thus we are only 

interested in S,, which is congruent to km modulo q,. By Theorem 2.1 we 

know that S, - 0 or d(q,) (mod 9,).  Therefore, S = n Si is congruent to either 0, or 

t 0 

We are now in a position to  characterize sums of Type I1 in the manner of the 

previous subsect ion. 

Theorem 2.5 S = ~ t E [ n l .  km E n-  1 (mod n) zf and only if n is prime and n- 1 I m. 

Proof. Since n - 1 is relatively prime to n ,  we cannot have S, - 0 (mod q,) for any i. 

Thus S, s d(q,) (mod q,) for all i, so that S = d(n ) .  But d(n)  < n - 1 when n is not 

prime. The result now follows from Theorem 2.1. @ 

The next two corollaries are immediate, but we include them for conlpletion. 

Corollary 2.5 S'(n, 6 ( n ) )  - n - 1 (mod n) if n is prime. 
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Corollary 2.6 S ' (n ,n  - 1) G n - 1 (mod n)  ifln is prime. 

Theorem 2.6 S = km E d(n )  (mod n)  if and only if, for each z ,  1 < i < 1, 

either S'(q,, n) d(q,) (mod q,), o r  p, / p' - 1 for some prime p' dividing n .  

Proof. As in the proof of Theorem 2.4. if S*(q,, rn) z O (mod q,), then we need d (n )  - 
0 (mod q,), and this is equivalent to the p' condition. . If S*(q,, m)  4(q,) (mod q,), 

then we have S S ( n , m )  r d ( n )  (mod q)  by the arguments preceding Theorem 2..5. 

0 
These final two corollaries complete the Eightfold way. Corollary 2.7 follbws im- 

mediately from Euler's theorem that am(") 1 (mod n )  for a E [n]'. 

Corollary 2.7 S*(n,  $ (n) )  r d ( n )  (mod n) for all natural numbers n .  

Corollary 2.8 S'(n, n - 1) = d ( n )  (mod n )  ifl n = 2 or  71 is odd and p - 1 '1 n - 1 

for each prime p I n .  

Proof. The descent argument of Corollary 2.4 applies here to  prove' that n must be a 

pseudo-Carmichael number. Again, as in Corollary 2.4, the condition does not hold 

when n is a power of two, so n cannot be even. Finally, Theorem 2.6 shows that the 

condition is sufficient. 0 
2 

2.5 Giuga numbers et a1 

2.5.1 Giuga numbers 

Giuga proved a nice alternative characterization of Giuga numbers in terms of the sum 

of reciprocals of the prime factors of the integer n. Suppose, for instance, that n = abc 

is a Giuga number with 3 prime factors. Then we have a I bc - 1, b I ac - 1, c I ab - 1. 

Multiplying these together gives 

(bc - l ) ( a c  - l ) ( ab  - 1) r bc + ac + ab - 1 + O(abc) = 0 (mod abc), 
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which is equivalent to  l / a  + l l b  + l / c  - l labc E 2. The converse also holds: if 

abc ( bc + ac  + ab - 1 then a ( bc - 1 by reduction modulo a,  and similarly for b and c. 
3 

This argument easily generalizes to  the following theorem. 

Theorem 2.7 (Giuga) n is a Ciuga number if and only if n is squarefree and 

Corollary 2.9 n is a Giuga number if and only if 

Proof. The denominator of the summation is squarefree, so if the condition holds then 

r q m s t  be squarefree. @ 

Example: 30 = 2 . 3 - 5 is a' Giuga number, as 2 + ? + ,- $ = 1. Other Giuga 

numbers include 858 = 2 . 3 . 1 1  - 13 and 1722 = 2 . 3 . 7  41. 

2.5.2 Co-Giuga numbers 

L turns out. that co-Giuga numbers have a similar characterization to  the one above 

for Giuga numbers. Since the co-Giuga condition is independent of the exponents r ,  

in the prime factorization of n,  we can restrict our attention to  the 'case where n is 

squarefree. Let us again consider the 3-prime case and take n = abc to  be a co-Giuga 

number. Then we have 

(b - l ) ( c  - 1) - bc (mod a) ,  

(a - l ) ( c  - 1) r ac  (mod b),  

(a - 1)(b-  1) G ab (mod c).  
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e 
0 

Multiplying the first equation by a - 1, the second by b - 1 and the third by c - 1, 

and then applying the Chinese remainder theorem, we obtain 

( a  - l ) (b  - l ) ( c  - 1) r -bc - ac  - ab (mod abc), (2.3) 

which is equivalent t o  l l a  + l l b  + l l c  + (1 - l / a ) ( l  - l / b ) ( l  - l l c )  E 2. 

We can write this more symmetrically as 

Conversely, examining equation (2.3) modulo a we see that it implies T ( b  - l ) ( c  - 

1) -bc (mod a )  (similarly ki th  respect to b and c),  so the above condition is also 

sufficient. 

This argumeM also generalizes to the following theorem. 

Theorem 2.8 n is a co-Giuga number if and only if 

We note that every prime power is a co-Giuga number, but we know of no other 

examples. Indeed, we can use the above characterization to obtain a lower bound on 

the number of prime factors of a non-trivial (not a prime power) co-Giuga number. 

Theorem 2.9 There are no non-trivial co-Giuga numbers with fewer than 7695 prime 

factors. 

Proof. Let P = { p l  < pl < p2 < . . .) be a normal sequence of primes. We consider 

the expression -, 

1 1 
d ( P ,  1 )  = n (1 - ) + - - 2, 

1=1 ,= I  P' 
(2.4) 

where 1 2 1. We see immediately from Theorem 2.8 that fl!=, p, is a co-Giuga number 

iff d ( P ,  I )  E Z. This quantity is equal to  -1 when 1 = 1, and  strictly increases as 
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I -, m. Furthermore, it is also monotonic in the variables pi. Thus if Q.dominates 

P, and m 5 I ,  then d(&,  I)  2 d ( P ,  m) .  

Recalling the proposition of Chapter 1 with k = 3, P is dominated by one of the 

two sequences: 

A =  {5,7,11,13,17,19,23,29,31,37,41,43,47,53 , . . .  ), 

0 = { 3 , 5 , l l ,  17,23,29,41,47,53,59,71,83,89,101,. . .). 

But, d(A, 7694) = -0.0000944 and d(B, 7694) = -0.4071613.. .. thus d ( P ,  m )  is 

still strictly negative for m < 7695. At the same time it is strictly greater than -1, 

and thus cannot be an integer. 

2.5.3 Pseudo-Carmichael numbers 

The pseudo-Carmichael numbers include all prime powers and Carmichael numbers, 

as well as many other numbers. The first five of these "othqs" are 45, 225, 325, 405, 

and 637. 

There are infinitely many such examples, for instance 3*'5" where r, s 2 1. More 

generally, given any two primes p < q with p 1 q - 1, p'*(q-l) 9 '*(P-') is a pseudo- 

Carmichael number. A similar pattern exists for any normal family of primes. 

Proposition. Let P = {pl, P ~ ,  . . . , P I )  be a normal family of primes, and define 
\ 

ri = 1cmltig(p,). Then any number of the form p f 1 r 1 p ~ ' 2  . . p:"l, where k, 1, is 

a pseudo-Carmichael number. Conversely, if n is a pseudo-Carrnichael number then 

the prime factors of n form a normal family. 

Proof. Since Q(h) I P, for j # i ,  we have, by Euler's theorem, p:"' r 1 (mod p, - 1). 

This congruence also holds trivially when j = i, thus n = fli=, p:'k' 1 (mod p, - 1) 

for each j. The converse is trivial: if primes p, q divide n and p I q - 1 then p ( n - 1, 

a contradiction since p I n. @ 

An alternative characterization of pseudo-Carmichael numbers comes from con- 

sidering n' = flpln p, the squarefree portion of n. It is easy to see that p - 1 I n - 1 
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Table 2.1: Conditionsfor CkEl  km - r (mod n )  

I ' 

[n] 

[n] / [n] 

i f  and only if an r a (mod p) for all a ,  and thus the pseudo-Carmichael condition is 

equivalent to  a n  = a (mod n') (compare this with the classical Carmichael condition 

an  a (mod n ) ) .  

( n )  

n - 1 

n - 1  

d (n )  

d (n )  

2.6 Conclusion 

n - 1 

d (n )  

The above table summarizes the characterizations and known examples for each of 

the conditions in the Eightfold Lb'ay. We ignore for the purposes of this table the 

Trivial cases 

P rimes ' 

r I n 

n - 1 

d (n )  
n - 1  

4 ( n )  

n - 1  

trivial case n = 2. 
t 

Non-trivial examples 

30,858,1722,. . . 

" 

n - 1  

n - 1 

d ( n )  

Finally, it is worth noting a related set of problems that we have not discussed. 

Conditions on n . 

Giuga 4 ( n )  

Odd, Co-Giuga & 
Pseudo-Carmichael 

Prime 

Prime 

All n 

Odd & 
Pseudo-Carmichael 

Given the summation/product characterizations of Giuga and co-Giuga numbers in 

Theorems 2.7 and 2.8, it is natural to ask what happens if we relax the condition that 

Giuga & Carmichael 

Co-Giuga 

the indices be prime. In other words, which sequences of integers {n , ,  nz, 723,. . . , n,) 

satisfy 

Odd prime 

powers 

Primes 

Primes 

All n 

Odd prime 

powers 

Primes 

> 7694 prime factors 

None 

None 

None 

Carmichaels, 

45,225,325,. . . 

> 13800 digits 

Prime powers I > 7694 prime factors 
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and similarly, which sequences satisfy 

Borwein et a1 (B3G) call the former a Giuga sequence and have found all such 

sequences up to m = 7. Brenton ( B r B ,  B r D ,  B r J )  and his students (BJM) at 

Wayne State University have studied this problem extensively, and especially the 

dual problem o 

They also showed a correspondence between solutions of this equation and complex 
6 

surface smgularities which are homologically trivial. 
a 

Recently, Connie Mangilin at  Wayne State has found (personal communication) a 

new Giuga number with factorization 

A systematic study of co-Giuga sequences appears to be less feasible as th&e does 

not seem to be as much structure (or known examples!). Note how we were able to 

obtain very large bounds on co-Giuga numbers in Theorem 2.9 with the small value of 

k = 3 and relatively little effort. compared to the extensive computations in (B3G) .  

Cnlike the other two problems, however, it is not clear that the n, must be relatively 

prime. If we do require the n, to be relatively prime, then there are no solutions 

with m 5 33 by a straightforward caltulation. Even i f  we require only that the n, be 

distinct, a similar calculation shows that no solutions with m 5 8 exist. 



Chapter 3 

Lehmer's Conjecture 

3.1 Introduction 

D. H.  Lehmer conjectured in 1932 (Lehm) that 4 ( n )  ( n  - 1 if and only if n is prime.' 

He showed that there were no counterexamples where n has less than 7 prime factors, 

and also found examples of composite n such that d (n )  I n + 1. 

In either case ( n  z!z I ) ,  the number n must lk relatively prime to  d ( n ) .  From this 

we see immediately that n must be squarefree, and the prime factors of n must form 

a normal family (in fact, in the n  - 1 case, n must be a Carmichael number). 

Subsequent workon Lehmer's conjecture has primarily concentrakd on larger 

bounds for w(n), the number of distinct prime factors of n.  Lehmer himself wrote 
1 

that a proof of the conject{re *seems about as remote as the proof of the nonexistence 

of odd perfect number omerance (Porn) considered the analytic question of how 
* TJ 

many composite n < x can satisfy ~ ( n )  1 n - a for a given a ,  and obtained an upper 

bound of ~ ( r ' / ~ ( l n  ~ ) ~ / ~ ( l n  in x)-'I2). Shan Zun (Shan) reduced the exponent of in x 

from 314 to 112. 

Let n = plp2 . . . pr where pl < p2 < . . < pl.  Then kd(n)  = n f 1 is equivalent to 
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Lye focus our efforts on the value k = 2. For larger k, say, k = 3, we need a t  least 

32 prime factors ( L e h m )  before the product term n[,, (1 - -!-) is sufficiently close 
1 to  3 .  

We note the following useful fact: 

Propos i t ion .  If 3 1 n and kr$(n) = n - 1, then k > 4. 

Proof. Suppose k = 2 and let n = 3m. Then 4 ( n )  = 24(m)  (because n is 

squarefree) and we have 44(m)  = 3m - 1. Now, m can have no prime factor congruent 

to  1 modulo 3, for then 4 ( m )  is divisible by 3. Therefore every prime factor of rn is 

congruent to 2 modulo 3, so 44(m) r 1 $ 3m - 1 (mod 3). Thus k > 2, and k # 3 

since 3 cannot divide n - 1. @ 

This greatly reduces the search space required for finding bounds on w(n)  where 

4 ( n )  I n - 1, as it means that any "small" counterexample must have 5 as its smallest 

prime factor, which in turn means that more small prime factors are required to bring 

the product term fll=, (1 - k)  down towards i. 
Lieuwens (Lieu)  showed that if 3 1 n,  then w(n) 2 212 and in the general case 

i;(n) > 11. Kishore (Kish) improved this to w(n) 2 13, and Cohen &: Hagis (CH) 
, , 

have raised this to  w(n)  2 1-1. Hagis (Hag) improved the 3 / n result to w(n) > 
298848. In this section we improve Cogen 8; Hagis' general case result to d ( n )  2 15. 

For the case of r$(n) I n + 1, little is known beyond Lehmer's original work. Part 

of the reason for this is that any small example requires that  3 1 n, and the resulting 

search space for even ~ ( n )  = 8 is (as we shall see) enormous! 

3.2 Computational Technique 

The method we use to analyze the problems 4(n)  I n f 1 is fairly straightforward. 

iVe fix w(n) to a constant, I ,  and compute "prefix strings" [ P , , ~ ~ ,  . . . ,p,] which are 

candidates for the smallest r prime factors of n. We derive the set of prefixes of length 
0 

r by iterating over prefixes of length r - 1, deducing upper and lower bou ds for p,, f 
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and adjoining all t he  primes in this range which are normal to  the  previous r - 1. 

In this manner we generate a complete list of prefix strings of length 1 - 2. We 

then apply one of two techniques t o  find any examples of length 1 beginning with 

each prefix. One method is t o  use the  above technique again t o  obtain a set of 

prefixes of length 1 - 1, and solving the  resulting linear equation for pl. T h e  other  
a 

technique involves solving a quadratic Diophantine equation for pl-1 and pl. We go 

into each method in detail and describe how we choose between them in the  following 

subsections. 

T h e  Maple source codes for each stage of the  process are  included in the  appendix. 

3.2.1 Obtaining bounds for p, 

Suppose n  satisfies 2d(n)  = n + t ( t  = f 1) and let P = i p l  < pz < - < p l }  be 

the  set of prime factors of n. We will determine bounds for p, based on the  values of 

P I , P ~ , - - . , P ~ - I .  

We rewrite equation (3.1) with k = 2 as: 

Let Q,-I denote the  initial product fl::: (1 - $) , and let T be a lower bound 

for the  terminal product n ! = , + ,  (1 - I). In addit,ion let n' be a lower bound for n. 
PI 

For the  purposes of our  computation, Q r F 1  is known, and T and n' can be estimated 

initially by taking the  product OV& the  first ( I  - r )  primes greater than p, which are 

normal t o  P,-,. As we obtain better lower bounds for p, our estimates for T and n' 

can be refined. 

\Ve now have the  inequalities: 
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At this point we separate the two cases r = +1 and r = -1. 

Case 1: r = +l. Inequality (1) gives us 1 - 1 > ~ Q F ? ,  , and this results in a 
Pr 

lower bound m for p,. We can "round up" m to rPrb l ,  m l ,  as p, must be normal to  P. 

This affords us a higher estimate for n'. Taking r to be (1 - L)'-', we use Inequality 
Pr 

1-r+l 
(2) to obtain (1 - &) < (i + $) ( T Q , - ~ ) - ' ,  giving us an upper bound M for 

p,, which we "round downn to LPr-l, hl] . 

Case 2: r = -1. Inequality (1) gives us Qr-l (1 - 1) pr > - I 2 - A- resulting in a 

lower bound rn for p,. This lower bound allows us to obtain a better estimate for n', 

which in turn may give a new lower bound m. In practice, we iterate this cycle only 

a few times; we expect it to converge fairly rapidly. Using the same estimate for T as 
1-r+l 

in the Chse 1, we arrive at  (1 - I) < i (TQ,J', giving us an upper bound ;\.I 
Pr 

for p,. 

3.2.2 Resolving prefixes of length l - 2 

Once pl, p2,. . . , p[-2 are fixed, it remains to  d e t e r m i n e ~ l - ~  and pi. One simple method 

is to use the techniques of the previous subsection to  obtain bounds for pl-1, and 

iterate through all feasible values of The equation 24(n)  = n + r reduces to 

a linear equation in pl, namely Apl = B where A = 2nI=:(p, - 1) - n!~:  pi and 

B = 2 fli=:(Pl - 1) + 6 ,  and we simply check that B/A is a prime integer. 

This is essentially (minus some modular refinements) the method Cohen & Hagis 

used to  eliminate w(n)  = 13 for r = -1. However, for 1 = 14 the search space for pl-1 

on certain prefix-es becomes unwieldy for even today's computers. For these prefixes 

we use a second technique, essentially the one used by Lehmer. 

The equation 24(n)  = n + r can be treated as a quadratic Diophantine equation 

in pl-l and pl, namely 
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where 

B=2fli::(pl - 1),  and 

Multiplying both sides by A and completing the square gives 

(Apl-I - B)(Apl-  B) = B~ - CA. 

Thus, if we have a prime factorization of B2-CA, we can look for divisors (positive 

or negative) of B2 - CA which are congruent to - B modulo A. For each of these 

divisors we solve for pl-1 and pl and check that they are positive and prime. 

Modern factoring methods have allowed us to apply this method for fairly large 

values of '4, B , C .  However, the time it takes to factor a number in the range we are 

dealing with can range between seconds and hours. A typical prefix for 1 = 14 and 

c = -1 is {5,7,13,17,19,23,37,59,67,73,719,1213). This results in the Diophantine 

equation 

which, in turn, requires the factorization of the 39-digit number 

This takes nearly 15 minutes of Maple computation time on our SGI R4000 server, so 

clearly there is a trade-off between the factoring method and the exhaustive method. 

In practice we used the following procedure. 

\Ve first go through the prefixes of length 1 - 2 and apply the factoring method 

using the Maple procedure i f  a c t o r ( e a s y ) ,  or apply the exhaustive method if the 

search space is very small. This eliminates the trivial factorizations (small primes 

times a prime or prime power), and resolves a fair number of cases in a relatively 
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short time. The remaining cases are then sorted by the size of the estimated range 

~ f . p [ - ~ .  We then perform two simultaneous runs: the factoring method on the large 

ranges of pl-I, and the exhaustive method on the small ranges. At the point these 

runs meet, we are done. As a final check, we go through all the factorizations to . 

verify that the factors are indeed primes rather than pseudoprimes. We use Franqois 

Xlorain's Elliptic Curves and Primality Proving (ECPP) package (AM) for this last 

step. 

3.3 Results 

3.3.1 The n - 1 case 

Verification of w(n) > 13: 

We ran the -Maple script gen .mat (see Appendix A )  for 13 prime factors starting 

with (5) .  This generated 730 11-prime prefixes ranging from ( - 5 ,  7, 13, 17, 19, 23, 

37, 59, 67, 73. 317) to (5, 7, 13, 17, 19, 37, 47, 67, 73. 83, 89). The prefix with 

the largest search space for pl-1 was (5, 7, 13, 17, 19, 23, 37, 59, 67, 89, 1'73) with 

2.5855 < pl-1 < 51710. Since this is still fairly small, we tested every prefix with the 

exhaustive method rather than factoring. The entire process took a total of less than 

10 minutes of computation on our SGI R4000 server. Uk then ran the same script for 

12 and fewer factors,.with similarly less computation time. 

Proving w(n) > 14: 

To rule out the case w(n) = 14, we ran gen.mat on our (significantly faster) SGI 

RlOOOO Challenge server. It took less than 15 minutes to generate 29631 feasible 12- 

prime prefixes ranging from (5, 7, 13, 17, 19, 23, 37, 59, 67, 73, 317, 5483) to {Fj, 7, 13, 

17, 19, 47, 59, 67. 73, 83, 89, 97). This first prefix has the large bounds 14242698 < 
pl-I < 28485396, which suggests that the search space required to eliminate the next 

cas'e, w(n) = 15, would be quite large indeed! (We estimate the number of 13-prime 

prefixes for this problem in the next section.) 
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26229 of these prefixes yielded to the first pass of eliminating small search spaces 

and trivial factorizations. We then sorted the remaining 3402 prefixes and ran them 

through the factoring and exhaustive methods as described above. We ran the ex- 

haustive search on our UltraSPARC 1, while the factorizations were done on'a team 

of 3 PowerMac 7600/132's. Two of the factorizations that Maple could not perform 

were done using PARI/GP and then manually converted to Maple  code. The two 

runs were complete in less than 3 days, and no solutions were found. The final step 

was to verify the resulting 3492 primes with ECPP, which took only a few minutes. 

3.3.2 The n + 1 case 

Lehmer found the following eight solutions to $ ( n )  I n + 1 and showed that they are 

the only ones with less than 7 prime factors. 

Lehmer noted that if n satisfies +(n)  I n + 1 and n + 2 is prime, then n en + 2 is also 

a solution. This explains the solutions consisting of consecutive Fermat primes, and 

if F5 = 4294967297 were prime, we .would have one more. This fact did not escape 

Lehmer's attention, as he also noted that another solution would be generated from 

the last one if 6992962672132097 were prime, but did not have the means to verify 

that this number is in fact composite. 
> 

The above ei&t examples are still the only known, but we extend the bound for 

any further examples to at least 8 prime factors. There are 6826 feasible 5-prime 

prefixes ranging from (3, 5, 17, 257, 65.537) to (3, 5, 53, 83, 89). The first prefix has 

the very large bounds 4294967296 < pl-I < 8589934592. Since the prefixes contain 
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relatively small numbers there is little reason not to use the factoring method. The 

large bounds on pr-1 are, however, a good indicator of the search space required to 

rule out w(n) = 8 ,  and in the next section we estimate the number of cases required 

to do so. 

Performing this metho on all 6826 prefixes (except for those with small search 3i spaces) resulted in no new solutions with 8 prime factors. The process took about 

10 hours and then a few more hours to verify primality obthe resulting 10096 primes 

with ECPP. 

3.4 Conclusion 

The last improvement to the lower bound for w(n) in Lehmer's conjecture was made 

fifteen years ago. It is interesting therefore to consider how much computational power 

would be needed to obtain w ( n )  > 15. To estimate the magnitude of this problem, 

we compute all 12-prime prefixes P = {pl, p2,. . . , p12}, and obtain the usual upper 

and lower bounds m 5 pl3 < M .  We then approximate the number of primes in the 

range that are normal to P by 

Summing this quantity over all 12-prime prefixes we get a reasonably accurate 

estimate of the number of 13-prime prefixes required to apply our current methods to 

the problem of w(n) = 1.5: about 31 million. Furthermore, many of the numbers we 

are required to factor will likely be in the 50 to 60 digit range. Even assuming that 

the average case can be solved in the same amount of time, it would still take several 

decades with the techniques and machinery we use here! 

The extension of n + 1 to w(n) > S exhibits even more explosive growth: the 

estimated number of 6-prime prefixes is over 216 million! But while these figures are 

several orders of magnitude larger than the ones we are dealing with, it does not seem 

unreasonable that within a few years it will be quite feasible to tackle these much larger 
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problems. The speed of facto-ng could certainly be improved over the current Maple 

implementation, and the speed of the brute force search would likely be increased 

by rewriting it in C .  Indeed, it should even be possible today, through a distributed 

effort involving many computers, as the problem is highly parallelizable. For example, 

the Great Internet Mersenne Prime Search ( h t t p  : / /www .mersenne. org/prime . htm), 

recently discovered the 33th known klersenne prime 2139826" 1 (also the largest known 

prime), and the DESCHALL effort ( h t t p  : //www .f  r i i  . com/'rcv/desinf o . htm), just 

succeeded in breaking a single 56-bit DES key. 

While most of the attention to Lehmer's problems has been focused on the n - 1 

case, the n + 1 case is perhaps more interesting from a computational perspective as it 

is known to have solutions. In fact, if we relax the problem (as we did in Section 2.6) 

so that the p, do not have to  be prime, we find that there is a similarity between the 

n + 1 problem 

and the Egyptian fraction problems 

studied by Brenton. Namely, if hr = {n l ,  nz, . . . n,) is a solution to (3.2), then so is 

A' U {Hz1 n, + 2). Likewise, i f  iC' is a solution to either form of equation (3.3), then 

so is NU {n:, n, 1 11, respectively. It may therefore be possible to  apply some of the 

techniques used by Brenton ( B r B ,  BrJ) to  Lehmer's problem to obtain new classes 

of solutions to (3 .2) .  



Appendix: Source Code Listings 

These files are available online at h t t p  : / /www . cecrn. s f u  . ca/"er ick/ lehmercode/ .  

Prefix Generation 

# gen.mat: A Maple f i l e  f o r  generat ing a l l  length  (M-2) p r e f i xe s  f o r  

# candidates t o  Lehmer's conjectures  with M primes f a c t o r s  

# with a prescr ibed s t a r t i n g  vector .  We use t h e  g loba l  

# var iab le  A t o  s t o r e  t h e  cur ren t  p r e f i x  s t r i n g .  t o 1  i s  

# a measure of t h e  maximum fan-out f o r  t h e  recurs ive  search.  

# 

with(numtheory): 

# feas ib le (p ,A,n)  r e tu rns  t r u e  i f  p i s  normal t o  t h e  f i r s t  n primes of A 

# and f a l s e  otherwise.  

# 

f e a s i b l e  := proc(p,A,n) l o c a l  i ;  

f o r  i from 1 t o  n do 

i f  p mod A [ i ]  = 1 then RETURN(fa1se) f i ;  

od; 

RETURN ( t r u e  ) ; 

end : 

% nextf(p,A,n) r e tu rns  t h e  smal les t  prime grea te r  than p which is normal 
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# to the first n primes of A, i.e. $\lceil A-n, p+l \rceil$. 

# 

nextf := proc(p,A,n) local q; 

q := nextprime(p1; 

while not feasible(q,A,n) do q := nextprime(q) ; od; 

RETURN (q) ; 

end 

# doit(n,M,L,P,eps) is a recursive function. n represents the length 

# of the current partial prefix, so it reflects the recursive depth. 

# M is the number of prime factors in the final candidate. As toon as 

# n reaches M-2 a prefix is printed out. L is the partial product of 

# the first n primes of A ,  and P is phi(L). eps is +1 or -1 depending 

# on which version of Lehmer's conjecture we are looking at. 

# 

doit := proc(n,M,L,P,eps) . 

global A, tol; 

local lo, hi, i, minN, maxN, foo, bar, p; 

# First, compute lower and upper bounds for the (n+l)-th prime. 

# 

if (eps; = 1) then # The case phi(n) I- n+l 
lo := ceil(l/(l - L/(2*P))); 
if (lo <= A[n]) then lo := A[n]+l; fi; 

minN := L*(lo'(M-n)); 

foo :=  (l+l/minN)*L/(2*P); 

bar : = evalf ( f oo - (I/ (M-n) ) ) ; 

hi := ceil(l/(l-bar)) ; 

elif (eps = -1) then t The case phi(n) I n-1 
C 

lo : =  A[n]+l; 
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# We do two iterations to approximate the lower bound 

minN : = L* (lo- (M-n) ) ; 

foo := (1-l/minN)*L/(2*P); 

lo := ceil(l/(l-foo)) ; 

minN : = L* (lo- (M-n) ) ; 

foo := (1-l/minN)*L/(2*P); 

if (lo <= Ah]) then lo := A[n]+l; fi; 

foo := 1*Ll(2*P); 

bar : = evalf ( f oo - ( 1/ (M-n) ) ) ; 

hi := ceil(l/(l-bar)); 

else 

ERROR( ' eps must be +1 or - 1 ' ; 

fi; 

# If we reach length M-2, then output the prefix as well as estimates 

# for prime number M-1. 

if (n = M-2) then 

lprint('Feasible', [seq(A[i] ,i=l. .n)], lo. .hi); 

RETURN ( 1 ) ; 

fi; 

# Recursively call doit() for every feasible value of the (n+l)-th 

# prime. If the fan-out is above tolerance we give up. 

# 

if (hi < lo) then 

lprint ('Impossible' , [seq(A [il , i=l . .dl , lo. .hi) ; 
elif (hi > lo + toll then 

lprint('Pretty big', [seq(A[i] ,i=l. .n)], lo. .hi) ; 
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od; 

f i ;  

end : 

# boot(B,M,eps) i s  used a s  a  boo t s t r ap  t o  c a l l  d o i t 0  with t h e  c o r r e c t  

# parameters .  B is t h e  s t a r t i n g  a r ray  ( t y p i c a l l y  [3,5] f o r  eps=+l  o r  

# [5] f o r  eps=- I ) ,  and M i s  t h e  t a r g e t  number of prime f a c t o r s .  

# 

boot := proc(B,M,eps) 

l o c a l  i L ,  i P ,  C ;  

g loba l  A; 

f o r  i from 1 t o  nops(B) do 

A C i ]  := B[i]; 

od;  

d o i t  (nops (B) ,M, i L ,  i P ,  eps)  ; 

end : 

D i g i t s  := 100: 

t o 1  := 2000: 
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interf ace(screenvidth= 1000) : 

lprint ( ' %%Run begins here%% ' ; 

- 
Brute-Fogce Solver 

# qsolve .mat : Returns a list of pairs Tp ,q] satisfying n*p*q+eps - 

# = ph(p-l)(q-1) by linear searc) on p. The range for 

# p is passed by the global variable currange. Ever3 . 

# integer solution is returned (even non-primes). 

# f 

qsolve := proc(n,ph,eps) 

local p,q,r,start,finish,a,b,L; 

global curA, currange; 

# Round start and finish to odd numbers 

# 

start :=lhs(currange-) ; start :=start+l-(start mod 2) ; 

finish:=rhs(currange); finish:=finish-l+(finish mod 2); 

1 

L := NULL; 

for p from start to finish by 2 do 

if (a <> 0) then I 

q:=iquo(b,a,"r'); if (q>O and r=O) then L := ~,[p,q,'YEs'l; fi; 

fi; 

ad; 

# Add a special marker if ve found nothing 
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if (nops ( ELI >O) then 

RETURN ( CLI ; 

else 

RETURN( [[currange, 'empty' , 'NO']] ) ; 

fi; 

end 

Factoring Solver 

# pqsolve.mat: Solves the quadratic equation a*pq - b*(p+q) + c = 

# using factoring techniques. If the global variable 

# "easyonly" is true then we only use ifactor(easy). 

# and if this fails we return an error. 

pqsolve := proc(al,bl,cl) 

local disc,S,i,bp,nbp,sp,L,p,q,g, 

a,b,c; 

global curA, currange, easyonly; 

# First, extract the GCD of a and b and make sure c is divisible by it. 

# Otherwise there are no solutions. 

# 

g:=igcd(al,bl); , .  

if (igcd(g)>l) and (irem(c1,g) C >  0) then RETURN([[g,'gcd','NOr]]); fi; 

R Divide through by the GCD and compute the discriminant. 
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# These cases should not happen in real life. They must be errors. 

# 

if (a <= 0) then 

appendto('misfitsC); 

printf ( '%a\n' , curA ,currange) ; 
appendto(termina1); 

RETURN( [[disc, 'negative a' , 'ERROR']] ) ; 

fi; 

if (disc = 0) then 

appendto('misfits'); 

printf ( '%a\n' , curA, currange) ; 

appendto(termina1); 

RETURN([[disc,'zero disc','ERROR']]); 

fi; 

# Try to factor it. If factorization is incomplete give up (assuming 

# easyonly is true) and write it out to a file. 

# 

if (easyonly = true) then 

if (not iype(if actor(disc, easy) ,f acint)) then 

printf ('%a %a,%a\nl ,rhs (currange) -lhs(currange) ,curA, currage) ; 

appendto (t erminal) ; 

fi; 

fi; 

# bp and nbp are the residues of the factors we're looking for. 

# 

bp := b mod a; nbp = -b mod a; 
I 
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# Write f a c t o r i z a t i o n  t o  a f i l e  f o r  l a t e r  v e r i f i c a t i o n .  

# 

s : = d i v i s o r s  (d i sc )  ; 

appendto('primes'  ) ; 

p r i n t f  ( '%a\nt  , i f  a c t o r s  ( d i s c )  ) ; 

appendto ( t  erminal) ; 

L := NULL; 

# Match both negat ive  and p o s i t i v e  f a c t o r s  congruent t o  -b mod a .  

# 

f o r  i from 1 t o  nops(S) do 

i f  (S[i] *S[i] <= a b s ( d i s c ) )  then  

s p  := S[i]  mod a ;  

i f  ( sp  = nbp) then  

f i ;  

i f  ( sp  = bp) then  

p  := (S[i] - b ) / a ;  q := (d i sc /S[ i l  - b ) / a ;  L := L ,  [ p , q ,  'YES'] ; 

f i ;  

f i ;  . 

od; 

# Add a  s p e c i a l  marker i f  we found nothing 

# 

i f  b o p s  ( [LI ) >0) @en 

RErnN(CL1); 

e l s e  

RETURN( [ [d i sc ,  'empty' ,  ' N O ' ] ]  ) ; 

f i ;  

end : 
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Initial Scan 

t easy.mat: Solves only the easy cases, where the linear search space 

# is less than 5000, or the factoring is trivial. The code 

# for solving the other cases is just a simple modification. 

# 

read 'qsolve.matl: 

read ' pqsolve .mat ' : 

doit : = proc(~,range ,eps) 

local Ap, n, ph; 

global curA, currange; 

#print ( 'Solving' ,A) ; 

~p : = map(x->x-1 ,A) ; 

curA:=A; currange:=range; 

if (rhs(range)-lhs(range) <= 5000) then 

printf ( 'Result %a ,%a\n ' ,A, qsolve (n ,ph, eps) ) ; 
else 

printf('Resu1t %a,%a\n',A,pqsolve(2*ph-n,2*ph,2*ph-eps)); 

fi; 

end : 

interface(screenwidth=1000): 

easyonly:=true: 

lprint('%%Run begins here%%'); 

read 'easy.in'; 
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Translators 

#!/usr/local/bin/perl 

# tr12: This perl script converts the output of gen.mat into a sequence 

# of doit0 commands suitable to be read into easy.mat. Requires 

# a parameter eps equal to -1 or +l. 

# 

if ($#ARGV! =O) (die(I1Usage: $0 eps\nl') ;) else ($foo=$ARGV [O] ;shift ;) 

while(<>) 

(chop; if (/Feasible\s*/)($str=$' ; $str='/\] /; $str=I1doit ($ '  $&, $ '  ,$foe) ; ' I ;  

$str=-tr/ //d; $str='tr/ , /, /s ;print "$str\n" ;)) 

#!/usr/local/bin/perl 

# tr23: This perl script converts the 'tuff' file output by easy.mat 

# into a sequence of doit() commands. To sort them from easiest 

# to hardest use 'sort -n tuff I tr23 [+I/-I]'. For the reverse 

# order use 'sort -nr tuff I tr23 [+I/-11'. 

# 

if ($#ARGV!=O) (die("Usage: $0 eps\nl');) else ($foo=$ARGV[O];shift;) 

vhile(<>>(chop; if ( / \  [/)($str=$&. $ '  ; $str=-tr/ /Id; 

print "doit($str,$foo);\n";)) 

I getprimes: This shell script takes the factorizations dumped into 

# the 'primes' file and extracts the primes, then sorts them 

# into 'primes.filt8 and removes duplicates. Currently the 

# exponents are also ,included in the mix but they won't be 

as large as the primes we want to verify. 

perl -p -e '(tr/\s//d;tr/O-9/\012/cs;)' < primes > primes-filt 

sort -un primes.filt -0 primes.filt 
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