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Abstract .

a

- - -
' -

On-line analytical processing (OLAP) has gained its popularity in database industry.
"With a huge amount of data SLOIGd in spa,tlal databases and the introduction of spatial
components to many relational or ob]ect relatlonal databases. it is nnportant to study

_the methods for spatial data w alehousmg and on-line analytical processing of spatial
data. This thosm investigates methods for spatial OLAP, by mteglatlon of nonspatial
on-line analytical processing (OLAP) miethods with spatial database 1mplementat10h
techniques. A’ spatial data warehouse model, which consists of both spatiélv and
nonspatial dimensions and measures. is proposed. Methods for computation of spatial

data cubes an(l analytical processing on such spatml data cubes are studied, with

several Stlategles proposed, including approximation an(l paltlal materialization of

thcf'.spatlal objects resulting from spatial OLAP operations. Some techniques for

: C _ C e
selective materialization of the spatial computation results are worked out, and the

T .

performance study has demonstrated the effectiveness of these techniques. Spatial

OLAP has been partially impleménted as a part of GeoMiner. a system prototype for
. speiti’al data mining. '

Keywords: Data warehouse, data mining, on-line analytical [)10C0§smg (OLAP), spa-

£

tial databases. spatlal data analysis, spatial OLAP.

>
™ ~

i SR




rAcknowledgment‘sﬂ

“* ©

t

A

I wguld like to thank my senior supervisor, professor Dr. Jiawei Han, for introducing

me to data mining and data warehousing congepts and for directing my research. T .
am very grateful for many 1nsp111ng discussions and for confidence that he has in me.

He has been available and helptul throughout the preparatlon of this thesis, and his

s support and supervisiong have been invaluable. Thanks also goes to my supervisor,
. supj 8 g \

~ professor Dr: "Tiko Kameda, and external examiner, professor Dr Qiang Yang. for

reading this thesis and making ww*a}ﬂable suggestions. )

Additionally. I would like to thank I\rzysztof koperski for verv\ﬂthoﬁghtful con-
ments and suggestions that strengthened and focused my research work. Moreover, it
was great fun working with him on the design and implementation of the GeoMiner -
system prototype. o .

Fwould like to thank my parents and my brother Veljko for their love, encourége- )
ment and support. The potpourri of my gratitude, appreciation, and feelingé are more
than words can say. Not even thousands of kilometers could ever make a:gap between
us. Many thanks go to my uncle and aunt for their generosity and heart-warming
acceptance to their family. If it were not for them. it is unlikely that I would have
come to-(‘anada and studied at Simon Fraser Unixjersity.

Finally, I wish to thank Ya Ling (Donna) Hsiao whose emotional support sustained
me through periods of loneliness and self-doubt. Without her trust, love, and care. I -

would have never overcome numerous problems that I came across. She has been my

greatest inspiration and I am delighted that she knows that.

v




4
*
»
-
- o e 4
i -
. - ) -
= - - z
-~ R
W 3 t .
- L £
g

v ¥ :
. ¥ - * . -
- @ g = -
s ) 3 ;

- ' }

B . . v

- Dedication -+ .- .

- -

To Mom, Dad, and Veljko. : .
~ S -
3 ' ]
' - +
’ .
. [
E o |
= 3
v t : :
N “ - Al . l . .
| :
. v
- ’ v
[i] - E 4
/ x
) .
AN
\ 7'!%
R
.



.. Contents -

-

i

R

De‘d ication
List of Tables =g

List of Figures

l

o

cknowledgments . . . . .. Lo L

...................................

Thesis Organization®
Related Work ™
’ ‘Lo*g;ical Design of a Data Warehouse . . .. .. ..... ... 9

Spatial Data Mining
Model of a Spa‘tial Data Warehouse . . ... ... ... .
Logical Design of a Spatial Data Warehouse . . . . . e
_Dimensions in a Spatial -—Dat.eWarehouse .......
Measures in a Spatial Date Warehouse . . . . . . .. .

An Example of a Spatial Data Warehouse . . . . .

Materialization of Views . . . . . . . . . o 13

Indexing'of OLAP Data . . . ... .. L. 16

v I I o
TN IUE

(S}
1



. . (e o
3.2 Implementatlon of a Spatlal Data C'ube S S BTN P - 33
3.2.1 Challenges in Implementation of.a Spatlal Data Gibe. 33 ¢
3.2.2 Approaches\}to (omputatlon of Spatla] \Iea,sugeb 36
4 Materialization of Spatial \/Ieasuleq .......... .. "* o . 39
4.1  “Approximate Computa,tlon of Spatial Measures .. : I, S
1.2 Selective N‘Iaterializati;n of Spatial Measures.. .- R U
4.2.1 The Problem Statement N . 17
122 Spatial Greedy. r\lgmlthm e o e oo 28
A.2.3 Pothl Intelsectlon Alg011tl1111 ...... L D 1
Y424 Ob]ect ConnPctlon Algorithm . . .. . ... ... .. 61
1.3 [tlllzatlon of Spa,tlal \Iea@ures in, On-Line Ploce<s1ng C .. 69
431 ~U tilization of Estimated Spatial Measures . . . . » 69 .
L 1.3.7 Ltlllzatlon of Precornputed Spatial \Ieasmes 70
5 Implementation and Experiments . . . ... .. ... ..... .. .. 13
5.1 Iﬂ'esigtf and Implementation of the GeoMiner system . . . . . . * 73
5.1.1 System Architecture . . - ............. T
5.1.2 Implementation of OLAIPQ, in the GeoMiner System . .77 t
513~ Role of OLAP in Spatial Data Mining, . . .". . . . . 83
- 5.2 Performance Analysis of Pl‘bp()b‘@(l Algorithms . . . L TS )
52.1" - Effectiveness of the Algorithms . : . . .. ... ... 86
D22 Efﬁcie:hty of the Algorithms . . . -, . . .. 92
6 Conclusion . . . .. ... .. o . w98
6.1 Surnmvary...."...............'..-.V..'..... 93
6.2 ° Discussion and Future Research Issues . . . .. .. e 799
Bibliography . . . ... ... ... .. e P .. 101
\‘.
1
Vil -
o & —




A ) E » '~l ’ "7
, . N ‘ N a
| ©e ® o -
- ) 'v ,. . o . ’ X B . ,v .
\ - L2 - ] ; -
. .. List G{' Tables | L
) 8 ‘ N >
r?’ . ) . [
. , . JREN - .
' | 3.1 Weather probes table . . .. .. ... SRR o e 29
3.2 Result of a roll-up operation . . . . .. B S 31
3.3 Result of another roll-up operation . . . . . L e .32
*. " Sets of pointers for selected cuboids . A R S35
C'andidates for merged MBRs .. . .. .. e e e e e 15
Merged MBRs that are stored in the spatial data cube 16
41 Access frequency of the cuboids . . . . ... .. ... ... 56
4.5 First three iterations of spatial greedy algorithm . . . . . . . . B
1.6 Access frequencies of selected cuboids . . . . . . ... ... .. ..., 62
4.7 (fa_mlida-te:table for selected cuboids . . ... ..., e 63
1.3" Regions to be.premerged . . . . ... ... L. Ll 6
1.9  Candidate_connected_obj table for selected cuboids . . . . ... ... + 63
1.10 Candidates for selection of premerged spatial objects . .. . .. . 71
. ¢
2 ﬁ ‘
viii




g N g
’ :
. .
" List of Figures . u
¥ . : | . ) | » . K]
2.1 Astarschema .. ............. S P (|
2.2 A snowflake s‘chema. SN UL I . 11
23 Adatacube . ... ... L e 13
2.4‘ Acuboid . . .. .. . e e i'.;; e e e L .
L ) ¢ E

3.1 Star model of a spatial data warehouse: BC‘;wea.the’ ......... 27
3.2 Weather probes map . . . . .. .. .. b . F e .. 2B
3.3 (.‘ohcept hierarchies in a spatial data warehouse: B('-‘veather R
3.4 Generalized regions-after different roll-up operations A Ce e 32 =
3.5 A lattice of cuboids . . . . . . .. o e e e s
3.6 Rough apﬁroximaii;)li of thv‘e spatial measures . . Ll « 38 B
4.1 A merged MBR with a lowa area_weight . . .« . .. ... B |
4.2 A lattice showing selected cuboids . . . .. ... .. T 44 »
43 Anexamplemap ! . . .. ... A5
4.4 ‘Anexamplemap?2 ... .. .. ... e e e 35
15 A lattice for the selected cuboids . = . . . . e 55
5.1 General aichitecture of GeoMiner . e e e e e L. 15 -
5.2 Display of spatial characteristic rules . ... . . ... ... .. .. ... 79
5.3 Drilling.—d(v)?wn along spatial dimension ... . . . . .. .. ......... 81 !
5.1 Results of a cémparison query . . ... ... I D 84

- 5.5 'Spatial gvré;dy algorithm: benefits (;f materia{ization .......... 88

¥ & '
1X
. .
4




5.6 Pointer mtelsectlon and object Connectlon algouthms, benefits bf ma-

terlahzatlon e e e e e e e e i e e

@

N (omparlson of algorlthmq benefit of matenallza,tlon C e e
5.8 “Scalability of spat;al greedv algorltvhm as a funct;on of number of map

- , ; . ~

objects R e e e

~ + . " . - . S : . =T,
5.9 Scalablllty of spatial greedy algorithm as a'f’unctlon of number of cuboids

% .10 bcalablht\ of pointer inter SCCthH and obJect connectlon algonthms as

a functlon of number of obrects L e .

5.11 Scalabllltv of pointer intersection and object-connection algonthmq as

a function of numbel .of C11b01ds ) '. S
-~ - . v . . .
»
- ¥
4
X ‘

93

03

4

-

9

4




- - .. - . "

Intr,odiiction” ST ' °

. . TN

- _ With the rapid grbw;t-h of enterprise data. ’it is essentiak to develop techniques that

sumimar 1ze such’

=

- effort on creation, usage, and mamteuancc‘ of data warehouses.

olummous data. In the }abt few years, there has'been a substantldlr'

A data warehouseé i is

-~ designed to manage la.rge volumes of business data and'to providé a foundation for an-.
¥ -

ing [39]. The goal of data warehouses is to provide a bmgle image of busmf-sb reality -

' for the lcramzatlon

- that e\tlact data from the operatlondl environment, a repository that mamtamb the

warehouqe data, and sy stems 1hat prowdc‘ meImatlon to users

) In this Chdptel we gne a brief summary of the conventional OLAP and stress the

. this thesis. ‘ N

1  On-Line Analytical Processing

%

alytical proce%i’ng It can be «lefined.as a subject-oriented, integrated, time varving

non-volatile Colle(tlon of data Jhat is used pnmanl} in organizational decision mal\

Typically, data warehouse systemns consist of a qet of programs,

importance of its extension fqf handling spatial data. Then. we pleqent thie outline of

The notion of extracting useful knowledge [rom collected data is not 4 new idea in

information systems technology. Only with the e\plosne growth of the ([L%aﬂtlt\ of
data has it become crucial to systematically exaniine techmques for data analysis.

Many OI'gamza.t.lonsvpossess a wealth of data that is maintained, and stored, but

-4
. - s
-

-t
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B

they are unable to capltallze on the muggets of miormatlon h1(lden in the data. The

" enterprise. Years of Iesearch Rave ploduce(l stategf the-afbt technologv/I UltheIInOIe

.= in parallel with the investigation into deSLgn of data\warehouses various techniques

« for amal®ing large amounts of data hgve been proposed; Accqr_dmgl‘y, a new term
OL 1P (On-ILine 1n(llyfzcal Proces: ing) [11] was coined.. A

tional and per fmmance quunements of which are very different from those of on«ﬁhne

“transaction plocessmg (OLTP) apphcatlons tra(lmonall\ supporte‘d by the opera-

- to collect and’manago data, analytical pm(essmg systems are Ju(lge(l 011 thelr abil-

ity to e\tract information ffom data. These two ty pes ‘of data plocossmg (llffel in a

V.? é:
L

mmlber of aspects and the dlffelenceq are bllI]lH‘l&IMCd helow.

@ users , o o ‘ .

‘While ‘OLTP is performed mainly. by clerks, OLAP is used by mauégmnont
- V. N . . . R

~ people in a decision support process. : -

»

e data , - . . -
Data in OLTDP is current, accurate, and very detailed. In contrast, data stored
in data warchouses and manipulated by OLAP is historical, multidimensional

. and often summarized. : E .

e umnit of opelatlon ' . . .
~ Transactions in OLTP arve usually 5hort SQL statements, as oppose(l to ()L AP
where a knowledge worl\el deals with very Comple\' nested quéries. This creates
a necessity for a flexible user lnterface and even more importantly for an (‘fﬁment

query optimization.

® number of accessed records

In most cases the number of records arcesse(l by an OLAP server is at least bs

an order of magnitude larger than in the case of OLTP.

primary goal of data warehouses i tommrovequahtv of decision’ making ptocess in the

. Fhe data warehousing supports on-line analytical processing (OL r\P) thé’func— :

. tional (latabases. W'hereas trahsactlon processing svet(‘mq are Judgeﬁ on theirability:
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fransactlon thloughput is tlie main performance mdlcatm n OLTP applllﬂ—

‘ *

pllcatlom» Only if lebponse time 1s adequate (a few secon(ls) can OLAP be

C fruitful and appealmg for (lata analysts. -

|

All these characteristics are stlor}g arguments for physical qepaldtlon of data ware- -

i houses from operational data. Moreover, it is ‘often the case that data warehouses

\) r
contain ddta (onsolldatcd from heterogeneouq sources including legacy data; The

different sources may contain (lata 0[ varying quality, and/or may use\mconqlstent .

N L reprexentatlong codes formats, whlch have.to be reconciled. In most cases OLTP

1s (le\eloped usmg E-R modol [10], that is appllcatlon oriented. Such a modet can-

' ' not effectnely‘m_bm ve for decmon support. since a database model for OLAP is to be

v candidates for models for efficient’ OL,‘\P s

" Y
AN

\ Two basic OI AP opelatlons are loll—up ((lecreasmg the level of deta11Q) an(l (11 dl-

dow n (increasing the level of (letalls) along one or more dimensions. Roll-up/(lnll—
(lown Is _()[t(r‘n‘ considered as a process of a.scen(llng/(lescen(hng concept hierarchies. A
concept hierarchy provides valuable information for iﬁ(lllCLi\’f‘ learning. It is relaged
to a specific attribute in a databasé and is partially ordered accordimig to general-
to-specific ordering {32]. However, above OLAP operations are not ne(‘e‘ssa‘rily asso-

. . . : . . 5 ) . . . 1 .
ciated with the existence of hierarchies. To solve this ambiguity, a concept any is

imtroduced for each dimension. Rolling-up.a dimension to any is equal to dropping it.
‘ y | I

If selection and projection are applied together with a drill-down operation, one gets

xCHAPTERI},IVTRODL(TIOA . B 3

'\ ‘subject-orienio(l Star and snowﬂ(zlw bchemas [b 39, -16] hg,_w em(‘lged as the main .

tlons howeu%;x query throughput and response time are cutlcal for OLAP ap-

e

M

slice-and-dige OLAP operation. Finally, the operat.idn that changes the orientation

of a multidimensional view of data is known as pivoting. .
Data .wagtehous‘es cari be implemented 01‘1' standard or extended relational DBMSs.
called Relational OLAP (ROLAP) servers [8]. These servers assume that data is
stored in relational databases, and they support e)itensiops to SQL that facilitate im-

- plementation of a multidimensional data model: In contrast, Multidimensional OLAP

(MOLAP) servers directly store multidimensional data in a special data structures

(e.g., multidimensional arravs) and implement the OLAP operations over these data

»”
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sfructures [8]. 1 ‘ . . . ' ’

-

Deﬁnlng a schema and sele(“tlng an OLAP server is.only one step in the | ploce% of

bml(llng and mamtammg a data warehouse. It is very important that the alchltectme‘

@\JlllCh fits the needs of knowledge workers be chosen carefully. Ideall) creating an

mteglated enterprise warehouse that ‘collects information about all subjects (e.g..

customers, products, revenues, personnel) spannlng the whole organlyatlon would be

the* best choice. The problem is that building such a wa,rehouse isa long and a (omple‘<

pl()coss Many-different kinds of metadata, lnclu(llng admzmst:atw business, and

i 01)61‘(1fi379ta(lata. have to be managed. Consequently, many OI‘ga,nizations are
F

stttling for’ data marts instead. A.dita mart in an integrated data resource is a subset

of the data tesource, usually oriented to a specifi¢ purpose or major data subject, that

may b¢ distributed to support local busiriess needs [5]. Data marfs erable faster roll

"

out, since they do not require the enterprise-wide consensus, but they rmay lead to
complex integration problems in the long run [8].

&

1.2 M(;tivations for Spatial OLAP

Being recognized as a céumal task in information technology, the OLAP phenom(‘non
has become interesting®rom both an academic and an industrial point of view. We are
B

witnessing a tremendous burst of OLJ\PjIelat,e(l research activity [8, 59, 61, 62, 65].

However, the research interests have.been mainly directed towards OLAP of relational

v (lata while neglecting the importance of consolidating, integrating and summarizing

-
=

other ty pes of more complex data. _
With the popular use of satellite telemetry systems. remote sensing systems, med-

ical imaging. and other computerized data collection tools, a huge amount of spatial

data has been stored in spatial databases, geographic information systems. spatial

components of many relational or object-relational databases. and other spatial in-
formation repositories. It is an imminent task to develop efficient methods for the
analysis and understanding of such huge amount of spatial data and utilize them

effectively [62].

Following the trend of the development of data warehousing and data mining

-

#
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. L , L y
techniques [8, 22, 10, 41; 46, 61, 65], We'proposé to (;OhStLI‘L:iCt .spdtial data warehouses
to facilitate Qn-line spatial data analysis aﬁ?(ldspatial.dhta mihin’g (17, 18,19, 21, 376, 45; ,
18, 49, 53. 54]. Similar'to nonspafial data warehouses [8, 39, 41, 61. 63], we consider
that a spaiml data u'(ne/zoz[se is a -subject- orzenifd integrated. time- variant; and non-
rolatile collectlon of both gpatlal and nonspatlal data in support of. manageinent’s

decision making process.

Ly

*

Ingthis thesis, we study how to censtruct a spatial data warehouse and how to
implement efficiently 0n¥line; analytieal processing of spatial data (i.e.. spatial OLAP)
in such a warehouse environment. To motnate our stu(ly of spatial data walehousmg

and spatial OLAP operations, we examine the following application examples.
* g . -
Example 1 Regional weather pattern analysis,
T There are about 3,000 weather pfobesﬂ scattered in British Columbia, each record-
ing daily temperature and precipitation for a designated small area and transmitting
signals to a provincial weather station. A user may like to view weather patterns on a
map by month. by region, and by different combinations of temperature and precipi-
tation. br may even like to dynamically drill-down or roll-up along” any flimension to
explore destred patterns, such as wet and hot regions in Fraser Valley in July. AIQQT.
. : - . 5 D

Example 2 Overléy of multiple thematic maps

There often exist multiple thematic maps in a spatial database, such as altitude

. map, population ‘map, and daily temperature maps of a_region. By overlaying mul-
tiple thematic maps, one may find some interesting l'ela.tionshﬂi[,)s among altitude,
- r ‘population density and temperature. For example, ﬂa‘i low land in B.C. close to the
coast is characterized by mild climate and dense 1)0p'1tl(ziz'orz.’§OIle may like to performw

data analysis on any selected dimension, such as drill down along ‘a region to find the

relationships between altitude and temperature. . ' il

. Example 3 Maps containing objects of different spatial data types
Maps may contain objects with different spatial data types. For example, one map

could contain highways and roads of a region, the second about sewage network, and
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-

the third about the altitude.of the region. To choose an m"ea'for housing vcleve]opihent, '
one should consider many factors, such as road network corinection, sewage network
connection, altitude, etc. One may like to drill-down and-roll-up «along some dimen-
sion(s) in a spatial data warehouse which may require ovetlay of multiple thematic

maps of different spatial data types, such as regions, lines,-and networks. - - O

. .
- The above examples show some interesting applications of spatial data warehouses
but also indicate that there are many Cha]lénging issues in in‘lplementiingrspatia.l data
warehouses. : ’ .

The first challenge is the construction of spati'él data warehouses by integration: of

spatial data from bheterogeneou‘s sources and systems. Spatial data is usually stored
in different. industrial firms and government aéencies usiugJ differént data formats.
Data formats are not only structure-specific (e.g.. raster- vs. vec;or—Based spatial data,
object-oriented vs. relatjonal models, different spatial storage and indexing structures,
etc.), but also vendor-specific (e.g:, ESRIL, MaplInfo. Intergraph, etc.). Moreover, even
with a sypeciﬁc vendor like ESRI, there are different formats like Arc/Info and ArcView |
(shape) files. There have been a lot of work on data integration and data exchange.
“In this thesis, we are not going to address data integration issues. and we assume
that a si)at,i'ral data wai'ehouse can be construtted either from a homogeneous: spatial
database or by integration of a collection of heterogeneous spatial databases with data-
sharing and information exchange using some existing or futurg techniques. Methods
for incremental update of such spatial data warehouses to make it consistent and
)up—to-da‘t'e will not be addressed in this thesis either.

The second challenge is the realization of fast and flexible on-line analytical prox
cessing in a spatial data warehouse. This is the theme of our study.

In spatial database research, spatial indexing and accessing methods have been
studied extensively for efficient storage and access of spatial data [15. 26, 30, 53].
Unfortunately, these methods alone cannot provide sufficient support for on-line an-
alytical processing of spatial data because spatial OLAP operations summarize and

_characterize a large set of spatial objects in different dimensions and at different levels

of abstraction, which requires fast and flexible presentation of collective, aggregated,

. ;
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¥ T . ! . -

or genera,l properties of spatial objects. L\T’Jig models and techniques ShO‘”{lvld be devel-~

opecl for on-line analysis of voluminous’ Spdtl&l data. S o

In this thems we propose the. construction of a spatial data warehouse using a -

spatial data cube model (also called a spatial mnltzdzmenswnal database model). A
, star/snouﬂal\z model is used to model & spa,tlal data cube which consists of spatial

dimensions and/or measures together with nonspatlal ones. \Ietllods for efficient

(8

implementation of spatial data cubes are examined with some interesting teclm]ques

proposed. especially on precomputation and selective m;t\erialization of spatial OLAP
results. ) - . ‘ » . ‘_

~ We will show that the precomputation of spatial OLAP results (i.e.. spatial mea-
sures). such as merge of a‘num'ber of spatialli' connected regions, is beneficial not

only for fast response in result display but also, and often more inlporta‘ntl’y, for fur-

ther, spatial ahalysis and spatial data mining, such as spatial association, clustering,’

v
AY

classification. etc [36]. ‘ L

-

1.3 The role of Spatial OLAP in Spatial Data Mining

Spatial data mining, i.e., knowledge discovery from large amounts of spatial data,”

is a highly demanding field because voluminous data have been collected in various

appllcatlons, including remote sensmg, medlcal Imaging, en\lronme-ntal assessment

‘and plannmg geographical information systems (GIS). etc [50]. Moreover, most of .

business data contains, at’ least implicitly, spatial .;llmension (e.g., postal code) that

] . e

can be easily geocoded. ] ’ - , o

Since most data mining systems can work with data stored in flat files or oper-

ational databases, neither a data warehouse nor OLAP is required. Yet. mining a -

data warehouse usually results in better inférmation. because data is usually cleansed
before being stored there. Flll':hermore, one of the premises for fruitful data mining
is to be able to perfornll it at different levels of abstraction. Interactive approach in
knowledge discovery is reflected by freqLent usage of various OLAP operations. When
integrated with data-mining modules such as associator, classifier, or clustering mod-

ule, the OLAP engine can serve as a backbone of an interesting and powerful data

~
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mining system {35, 36] Thus, we see spatial OLAP as a AI;I'e'requisite for s,[k)atial'zdvazta" '
mining,. However, the linkage between OLAP and data rﬁiningm?srnot one-directional.

Dealing with large volumes of data involves a high probability of having C;‘I‘OL‘S.
Errors, both spatial and nonspatial; are often caused by inconsistent field lengths.
inconsistent value alignments, inconsistent descriptions, missing entries, and violation
of integrity constraints. In all these cases, data cleaning is an“abqolutel{' necessary
step in the process. Q.f btl]l(llllg a data warehouse. Data Cleamno 1S a ploblem that is
reminiscent of’ heterogeneous data integration, a challenging problem that has been
studied for years. But heg\e;,i’he e;mphams is on data inconsistencies rather than schema
incansistencies [8]. D ata,,cle:aintivng‘i's. nuich more than simply updating a record with the

’_,a

Lorrect (lata because the detectl

I’gf errors 1s a crucial part in this process. Although

the data’ Cleanmg process (an hal(llv be fully automated, by using data mining tools
such as clustering, trend, or deviation analysis one can identify data anomalies. Aftér

detected errors are corrected, one may proceed with a creation of a data warehouse.

-

1.4 Thesi$ Organization

. o w
This thesis is organized as follows: Chapter 2 contains a review of previous related

work on data warehousing, OLAP, and spatial data mining. Chapter 3 describes the
model of a spatial datva.u-'a,re}‘louse. The emphasis is put on spatial measures and their
materialization. Chﬁpter 1 addresses challenges for %elect‘ive materialization of spatial .
_measiires and presents three algorithms. Chapter 5 presents the OLAP component of
“the (xeo.\‘[m,er system and the performance study of the proposed algorithms. Finally,

Chapter 6 summarizes this study and discusses the future research issues.




Chapter 2 | \ |
Related Work - *

é
In this chapter we briefly summarize previous work that has influenced our design
and implementation of spatial OLAP. It includes techniques for the (leslﬂn and im-

pl(‘m(‘ntatlon of data warehouses, and the work-on spatial data mining.

-»

2.1 Logical Design of a Data Warehouse

The fundamental characteristic of the data warehouse technology is its multidimen-
sional paradigm. In contrast. operational data is rvlvla‘inly stored in a form of flat
relational tables. Thus. a new 1nultidjmensi8na‘.l model creates a number of chal-
lenges. : "
Most data warehouses are built using a star schema (also called star jozﬁ schema)
to” represent the multidimensional data model [8, Ii.‘), 16, 61]. The reason behind/
adopting the name star schema is quite clear: the database contains a central fact
table and a numbé‘r;ﬁf radially organized dimension tables. While the fact table is
large. especially in terms of-the number of tuples, the dimensional tables arg usu-
ally relatively small. This asymnﬂietric architecture is very different from whtat the
entity-relati‘onship model is built on. Each tuple in the fact table contains a pointer, ’

in the form of a foreign key. to each of the dimension tables. On the other thdp

each dimension table consists of columnus that represent attributes of the dimé&nsion.

/
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Figure 2.1: A star schema
These attributes may or may not correspond to the concept hierarchy of the dimen-

sion. An example of a star schema architecture is shown in Figure 2.1. While the fact

table is highly normalized, the attendant dimension tables are kept denormalized. For

example, Store dimension table is denormalized since the following functional depen-
dency [16, 64] holds: city — province (violati'ﬁg the third normal form). This table
can be nol}n}'i'{lize(l, .by” eliminating column 'provfinﬁce and creating another table that
Containsbnly Eiiy and provincg columns. $tore table rﬁay contain tuples like { #6145,
Sears, 5183 Main Street, Vancouver, B.C'.} and {#4185, Eatons, 2304 First Avenue,
Vancouver, B.C.}. The normalized table would contain tuples: {#6415, Sears, 5183
Main Street, Vancouver} and {#4185, Eatons, 2304 First Avenue. Vancouver_}. and
the additional dimension table would contain tuple {Vancouver, B.C.}

In addition to dimensions, the star schema collects measures »c.)f fhe business. Since
the main motivation for the whole data warehouse technologyﬁﬁé to enhance decision
support process, obtaining useful measures presents a pivotal issue. All measures of
the business are stored in the fact table. Profii‘, e.rﬁen.ses, and count are measures
shown in Figure 2.1. ’ ’

Due to their denormalized dimension. tables, star schemas do not provide an ex-

plicit support for concept hierarchies, so that many enterprise data warehouses are

P
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Figure 2.2: A snowflake schema

- ’}

designed using a snowflake ..échema, shown in Figure 2.2. where some or all dimension
tables are fully normalized. It results in advantages in schema maintenance and han-
dling of concept hierarchies. Howeversthe denormalized structure of the (lunenslon
tables in a star schema offels easier browsing of the dimensions. For tlns reason Kim-
ball, one of the leading experts in data warehouse teclmologv strongly discourages
using a snowflake schema. “The dimension tables must not be normalized but should
remain as flat tables. Normalized dimensions (lestroj' the ability to browse™ [46].
The main reason for normalization of attendant dimension tables is to minimize stor-
age needs. albeit, the amount of storage used by all dimension tables is negligible
comparing to the storage used by the fact table [16]. »

Finally, some data warehouses are built around fact constellutions, a complex
structure in which multiple fact tables share dimension tables [8]. For instance, in
order to keep track of both projected profit and actual profit oue may form a fact

.
constellation because many dimensions are shared by two fact tables.

Using any of the above structures for modeling multidimensional data leads to
large benefits during decision s.upport process. Howevert,-these models have certain
limitations in handlingpatial data. Although many existing applications deal with di-

~mensions that contain spatial information (e.g., Store dimension, Geography). spatial

- &
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objects are not considered. Introducing sp'at.ria.l objects creates a nuh;ber of 'Chia;HengeST‘“ '
New types of dimensions and measures have to be added to the modle; C-énsequentl]y,.'
techniques for creating, using and maintaining a spatial data warehouse will signifi-
(‘a;lt]\" differ from those for a traditional (nonspatial) data warehouse. The detailed

discussion on the necessary e*(tenmons.m*plesented in Chapter 3.

PN Sw
e
o . ®

i

2.2 "Physical_ Design of a Déta Warehouse

2.2.1 Architectm;e of OLAP Servers

('learly, there are two major directions in the implementation of a data warehouse,
namely MOLAP and ROLAP, and most corporations have followed one of the ap-
proaches. or a mixture of both. ROLAP servers extend traditional relational servers
with specialized middleware to efficientlv\; support. multidimensional OLAP queries.
and they are typically optimized for specific back-end relational DBMS servers. The
main strength of ROLAP is in exploiting“thé scalability, reliability and the trans-
actional features of relational systems. However, the mismatch between OLTP and
OLAP style querying may present the bottleneck for ROLAP servers.

MOLAP servers plon(le a direct support for a multidimensional view 0[ data.
This apploach has the ad\antage of excellent indexing properties, but often Sll](f(‘IS
from poor space utilization especially when data is sparse. A number of techniques
for handling sparse data have been proposed.r We will give a short overview of the

most often used indexing methods in the following subsection. The current state of
MOLAP is very chaotic and there are several reasons for that:
® Unlike in the relational model, there is no standard multidimensional model.

e There are no standard’ access methods or API’s.

® The products range from narfow to broad in addressing the aspects of decision

support.

‘@ Companies do not reveal their design strategies.
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Figure 2.3: A data cube
| 2

There is an on-going debate about advantages of MOLAP over ROLAP and vice
versa. Two approaches are compared in [67], with MOLAP getting a sighiﬁca‘nt edge.
In the same paper, the authors proposed an efficient algorithm that first converts the
relational table into an array, eube the array, and then Qconvvert the results back to a

rela@i’onal table.

#

2.2.2 DMaterialization of Views .

One of distinctive characteristics of OLAP operations is that the queries deal with
summarized data, or aggregates. Hence, materialization of summary data can_accel-
erate many common queries. Multidimensional aggregates, that serve as measures of
the business, arc usually stored in a data cube. |

A data cube consists of a number of views. For that reason. views are often called
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Figure 2.4: A cuboid

subcgbes. or cuboids. In the rest of this thesis we will use these terms interchange-
ably. A lattice of cuboids that constitute one data cube is shown in Figure 2.3. A
3-dimensional cuboid is shown in Figure 2.1. In this cuboid. product, store, and cus-

tomer are dimensions while sales is a measure. Roll-up/drill-down along anyv of the

dimensions leads to decrease/increase in the the number of distinct values for the

}limension. However, a cuboid is associated with a single level of conicept hierarchies
for all dimensions. Note that some dimensions may be at concept any, i.e, dropped

dimension. In order to explain the rfreaning of a measure, we for the moment ignore

the concept hierarchies for dimensions. If there were not the concept hierarchies, cell

sales would contain the total 3ales of a particular product sold in a particular store
and to a particular customer. The.existence of concept hierarchies means that the

dimension values can be at abstraction levels higher that that of raw data’(particu-

“lar product ids, store ids, or customer names). Each cell in the cuboid corresponds

to one combination of dimension values. The main incentive for materialization is
o . C
to shorten on-liffe processing time, a crucial metric for data warehouse performance.

. E
Suppose that the cuboid (view) shown in Figure 2.4 is materiakized, that is all mea-
sures (cells) are Computed off-line. Then, answering an OLAP query that asks for this

cuboid would need no scan of the database table. The H]aJOI challenges in exploiting

-
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- mategialized views are listed in [8] as follows.

. Identifviﬁg the views to materia]ize » . .
‘ " There are three obvious apploa(hes to matenalwat;on of cuboids: (1) materialize
_&“‘?“ " all cuboids (2) materlalue pone of the CllbOldb (3) 1_nateua_llze only selected
- ~.cuboids. While the first a-pproach sufferssfrom the explasion of (*onsumecks’pé.ce

the second one results in a slow 1esponse time. Thus. selective matenahzatlon

seems as the only leabondb]e solution. ,
. ¢ . -

Harmara,)f'an. Rajaraman, and Ullman pfopose(l a scalable greedy algorithm [38]
‘that was shown to have a good performance. In the rest of this thesis we
will refer to this algonthm as' HRU algorithim. ‘The aldorithrh recognizes that
cuboids can be mg,anue(l in a hierarchical Jattice sflucture \CCOl dingly, it usés
the dependency mlatlonshlp among cuboids to (letermme Whl(‘h Cub01(ls should
be selected for materialization in the preprocessing. phase‘ The ObJG‘Ctl\(’ of the
algorlthm is to minimize the average time taken to evaluate a view (cuboid)
while 111'(1.t,(-ria,]izi1»1g a fixed number of views, regardless of the space they use:
The alltllOIS assume the cost of.am\\eung a query is.proportional to the number
. - of rows examined. Then, Ihe} Ob'%(‘l\(‘ that a view containing dimensions
. and B can be (‘om,_pute.}d using view A, B. and ( without schnnmg the original
relational table. Thus the problem is to select a set of optimal views that leads
to the minimal average time taken to evaluate any view. The authors show that
~ the problem is intractable and propose a greedy algo"rithm. In each round, the
algorithin chooses a view to materialize considering what was materialized in
carlier rounds. The benefit of materialization is defined as the decrease in the
number of rows to be scanned. For detailed explanation of this heuristic, we
refer to [38]. The total benefit of the algorithm is at least 63% of the benefit of
the optimal algorithm., . ‘

Later, the same research group augmenté(l this algorithm by proposing a set of
,  greedy algorithms that select cuboids and indices in parallel [29]. These algoh-
" rithms have granularity on the cuboid level. We will show that this characteristic

makes the algorithms inadequate for applying on databases with complex data

-
>
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fr,equency into account. -

* ey
;'Exp101t111g the matellallzed views to answer OLAP quenes
It is very 1mp01tant to make the precompute(l aggregates transparent to the
user of the OLAP engine.- In other words, the user should pose queries to base

“tables rather than to aggregates On line processing should take as much benefit
. as possfble from pre(omputed agglegatlons In general. there may be several
candidates that can be u.sed In answering a query, and it is a non-trivial task to
" dgtermine which of the candidate(s) is/are most suitable for the query. Some

work on this problem have been reported in [9, 27, 52. 63]. .

types, such as spatial data. Furthermore, the algorithims do not take access.

- ?ﬂ R N .
e Lfficient updating of materialized views - )

e

Although OLAP applications are ma,inly:reai *5nly, all materialized €iews I‘E\'e
fo be precomputed when a new batch of (K:;:loa(led. There are two main
streams in this area of research: upda,ting the values of precomputed aggre-
gatlous and updatmg the schema. Arguablv incremental update is the only
lf‘dSOIla})le approach There has been a lot of on-going research worl\ in ad-

diessing this issue [2, 28, 57].

%

g -

2.2.3 Indexing of OLAP Data a - | . P

Speeding up the access to data is often a critical concern for relational DBMS. The

proliferation of end user-oriented tools, the availability of sophisticated applications

for relational DBMSs, and especially the growing interest in data warehousing and

on-line analytical processing (OLAP) applications have contributed to the complex-

ity of workloads,that today’s databases musf support. OL AP applications (equ’%e e

viewing data ffom many different angles (dimensions). It is crucial that these appli-*
cations have faqt interactive response time to a variety of large aggregate quelles on
huge amounts of data. Techniques for deciding which aggregate views to materialize

qertainly improve response time to OLAP queries, without introducing a significant

¥
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ture is adequate can one full\ e\plmt the beneﬁtq of OL*\P appllcatl",ns A'ccor(‘lin&

to [59]. e‘<1st1n6 indexing methods in OLAP data can be classified into the following

four classes.

° \Iultldlmenslonal array- baﬁ(l methods

F

Arguably, the most natural indexing schema f01 the OL: \P data cube is a mul- -

{z‘?}lunenszonal array. This would be the ideal model, if the data cube were

dense. However, in fost applications with large number of dimensions. t.he'%

cube sparsity is a huge problem. Typically, only 20% of data in the data cube

is non-zero [12]. An interesting solution for handling-sparse data is used in

" Arbor Essbase [13] in which dimensions are divided into dense and sparse.di-

mensions. An index trée (B+ tree) is formed using Comhinatio“ valuddJor

sparse dimensions. Leaves of the tree point to multidimensional artays of dense

tinct values for them. the numbel of leaf nodes in the B+ tree grows rapidly.

{

Only il the sparse index fits in the niemory can this method produce satisfactory
performance. " Thus, the success of /the above method heavily depends on the
ability to find enough dense (limensiogs. Moreover, only queries that specify
values for all sparse dimensions have adequate performance.

o~

e Bitmap indices
The increased focus on coniplex queries for data warehousing and OLAP has
revived the interest in bitmap indices. The basic idea beltind a bltmap is to use
asingle bit (instead of multiple bytes of data) to indicate that a %L)emﬁc \alue of
an attribute is associated with an entity. For exa.mple, instead of storing eleven
character long string " programmer” as a skill of a particular employvee, the skill
value is attri bﬂittecifgto the employee by using a single bit. The relative position

of the bit within the string of bits is mapped to the relevant tuple. Queries can
o 4 -

be answered by applving bitwise OR operation for different values of the same

dimension and bitwise AND operation among different dimensions [55]. The

major advantages of this technique are that: (1) For low cardinality data, both

™ N

- .

dimensions. Hmwwe; with-a large humber of sparse dimensions and ‘many dis- \

.

W,
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'st,or-age space overhead for storing bitmaps, especjally for highfardi‘nality data.

N
“high cardinality data have been proposed. Compression of bitmaps indices [23]

, multidimensional structures). Each node represents an index on one attribute

- optimize R-trees for efficient access-to OLAP data. The method allows for two

£ 7 CE

Ed

storage space and response time are low. (2) Sparse data is handled in the same

e . ‘ o
way as dense data. (3) All dimensions are treated symmetrically. -‘On the other

hand, some clear disadvantages of bitmap indices are that: (1) There is increased

(2) Answering range queries may 'be expensive, because it involves a number’

of bitwise OR operations. (3) Updates are costly. because all indices have to

be updated for even a single row insertion. Several approaches for handling

can significantly reduce storage overhead; however. the efficiency of performing
bitwise AND/OR operations,may deteriorate. Some products [1-{] use a hybrid

approach that combines B-tree with bitmap indices.

Hierarchical indexing methods.
Hierarchical indexing rnet.h.ods exploit hierarchical nature of data to save space.
An int‘e‘resti‘ng study on cube forests is presented in [42]. The authors first

define a cube tree as a tree whose nodes are search structures (e.g.. B-trees or

(or collection of attributes). I order to create a cube tree, attributes have to
be ordered and the relational table indexed in such an order. This order defines
a template. This method favors some%’&eries over others, i.e., queries that form
a prefix of the template are answered more quickly than others. In order to
overcome this disadvantage, cube trees are organized in cube forests. Details of

this study can be found in [42].

C'onventional multidimensional indices )
A number of multidimensional indices have heen proposed for handling spatial
data [30, 58]. Data structures like R-trees, Quad-trees and their variations are
primarily used for two (or three) dimensional data, but ‘th'ey do not scale well

if applied to.OLAP applications [4]. Howéver, modifications proposed in [60]

types of nodes: (1) rectangular dense regions that contain more points than that

specified by a threshold, and (2) points in sparse regions. Note that for dense

e
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regions only boundaries are stored. This method relies on the ability"ﬁt-o detect
dense regions in-the multidimensional space. In fnost (V:ermsesr such regions can

be identified by domain experts or by using clustering algorlthms that retrieve
clusters of rectangular shape. R-trees and bitmap indices are compared in [59],
and the study shows that R-trees are preferred unless the cardinality js low and

data is very sparse.

2.2.4 SQL Extensions

I )
We believe that the success of relational databases [16, 64] should be credited in part
to the creation of the standardized relational query language - SQL. Thus. a number

- of researchers have studied extensions to SQL that would facilitate the expression and

processing of OLAP queries. Some extensions as listed in [3] are. A

e Extended family of aggregate functions -
Traditional SQL aggregate functions are not sufficient for efficient decision sup-
port process. “T'hus, 'ra'n,k:vperccntilf', and a number of functions for financial
analysis are b(‘iﬁg added to SQL standard. Howevér, one should note that
results of some aggregate functions are more maintainable than those of the
others. Accordingly, aggregate function$-can be classified into three categories: -

distributive, algebraic, and holistic [25].

e Multiple Group-By
OLAP applications require grouping by different sets of attributes. This could be
§
achieved by a set of SQL statements but the' data set would be scanned multiple

times, that would lead to poor perfor mance. Let us go back to Figure 2.4. The

. cuboid showri on that figure corresponds to the following SQL query: o
SELECT product, store, customer, S[Tl\ff(saies) | =
) FROM Our_sales '

GR({UP BY  product, store, customer

3 In addressing the problem of a multiple scan two pew operators Cube and Rollup

have, been plopose(l [24]. "Bhe Cube operator is the n-dimensional generalization

»
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of the ‘gro‘ilp-by operator. It computes groﬂp—bys‘ Co,rrééponding to all possible

combinations of a list of dimensions (attributes). However, in some cases, it
e N - .

is not necessary to compute the full cube. In such cases, Rollup o_peraftv(or that
generates only silpe;‘~agg1:egat,es can be used instead. While the order of spec-
iﬁed dimensions is irrelevant in the Cube clause, it plays an important role in
Rollup clause. »'\lgouthms?or efficient 1mplementat10n of Cube operator are
(1escr1bed in [1]. These algorithms e\tend sort-based and hash- based grouping
methods Wltl} several optimizations, like combining-common operatjons across

multiple group-bys. caching, and.using plecomput.e(l group-bys for computing

other group-bys. Similar teehniques could be applied for efficient implementa- -

“tion of‘Rollup operator. o .

o Comparisons

Comparing differences among different portions of data sets is a common eper-

ation in de.cision:,s’i:i’pport process. Although the current version of SQL cannot

handle Compa.l‘i;g)ns [47], a recent research paper 7] suggests extensions to SQL
that could teliorate this problem. A challenging implementation issue is how

to avoid multiple sequential scans of the database tables.

Spatial database systems lack a standardized quer\ language -and (urrentl\ the most
plommng option seems to be Spatzal SQL [15]. Extensions similar to‘thes\tlme(l
above would definitely facilitate spatial OLAP.

3

-

2.3 Spatial Data Mining .

Recent years have seen af rapid progress of research into data mining and data ware-
housing: of relational and transactlonal data [22]. Similarly, but to a smaller extent.
_there have been a4 number of promising results in spatial data mining. Spatial data
mining is a subfield of data niining that deals with extraction of impli¢it knowl-
) e(lge; spatial relationships, “or other interesting patterns not explicitly stored in a
database [36]. An excellent survey on state-of-the-art work in spatial data mining can

be found in [50].
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Research into spatial data mining started with a paper: by Lu et al [53]. The au-
thors suggest two methods of generalization, namely nonspatzal-dnta domzn(mt gen-
eralization and spatial-data-dominant genemh*aizo;z The algorithms use attr1bute~
oriented 1n(luct10n method [32] to generallze nonspatial dimensions. Spatlal genexal-
ization is Con(lucte(l by -spatial merging and/or spatial apprommatlpns. This stu»d}v
showed the importance of discovery of general knowledge from large spatial databases.

Spatial data elustering has been recognized as a very useful clagdmin'mg method
in recent years. Accordingly, there has been reported substantial amount of research
in this field. A distance-based clustering method CLARANS, based on randomized .
search is proposed in [34]. .In CLARANS, a cluster is represenged by its medoid,
the most centrally located data point within the cluster. The clustering process is
formalized in terms of searching a graph in which each node is a potential solution.
Unfortunately. being an 1/© extensive algorithm, CLARANS has serious (‘lra,wb,acks
with respect to efficiencyé The method proposed in [20] augments (’,'LAR*ANS by
clustering onl¥ a sample of the.data set that is drawn from corresponding R*-tree (3]
data’pages. While the efficiency is greatlv improved, there is no significant degradation
of clustering qualits- Houme] the scalability problem gets fullv addressed in [66]
where the authors propose a dlstance based BIRCH method. BIRCH makes full use
of available memory to derive the finest possible clusters by minimizing 1/0 costs.
It exploits the important 'observa.tvion‘ that the data space is usually not uniNformlyq
occupied. and that not every point is equally important for the clustering process.
Thus, BIRCH performs well on skewed data and is insensitive to the data input
order. Finally, DBSCAN clustering method [13] that relies on density-based notion:
Of clusters discovers clusters of arbitrary shapes and handles noise well.

The discovery of association rules from relational and transactional databases has
_attracted a large number of researchers. As a result, several mtexestmg methods have
been propose(l An interesting algorithm suggested in [49] proposes an extension of -
transaction association rules, by taking into consideration spatial properties of objects
m a spatial database. For example, a spatial association _rule may show that “golf
courses that are close to resorts generate large profit in Spring months”. Note that

spatial predicate close to can be defined as a certain distance (e.g., 5 kilometers).

]
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The method explores efficient mining of spatial association rules at multiple approx-

imation and abstractlon levels. It consists of two maJOI steps: -filtering and reflmng

Such a two-step method facilitates mining at multlple concept levels b\ a top-down,

progressive deepemng technique.

Recently, in [17] the authors introduced a formal framework for spatial data mining

by proposing a set of basic operations which should be supported by a spatial database
system to express algorithms for knowledge discovery. A concept of neighborhood
graphs and paths, together with a small set of operations for tllelr manipulation
is mtrocluced In addltlon the authors outline-algorithms for ﬁpatlal classification

and spatial tron(l detection. Furthermore, the authors claim that matenallzatlon of

neighborhood indices: and paths significantly speeds up proposed operations. This

claim implicitly suggests the importance of spatial. OLAP as a prerequisite step {'or\

fruitful spatial data'mining. 4 -
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é}hapter 3

Model of a Spatlal Data

Warehouse

In this chapter we describe the model of a spatial data warehouse and emphasize its
distinctive characteristics from the relational counterpart. We e‘xplain the limitations
of a conventional (nonspatial) data warehouse it handling spatial data, and stress
the importance for its necessary extensions. Consequently, we recognize a need for

different algorithms for creation, usage, and maintenance of a spatial data warchouse.

3.1 ngical Design of a Spatial Data Warehouse

To model a spatial data warehouse. the star schema model is still considered to be a
good choice because it provides a concise and organized data warehouse structure and
facilitates OLAP operations and easy browsing. However, applying the star schema
in its original form (8, 39. 46, 61] would lead to inefficiency in performing spatial
OLAP. To show the importance of having a (linel'eqt‘lnodel we revive the examples

from Chapter 1.

Example 1 Regional weather pattern analysis
i
There are about 3,000 weather probes scattered in British Columbia, each record-

ing daily temperature and precipitation for a designated small area and transmitting

»

" signals to a provincial weather station. A user may like to view w%her patterns on a

23
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map by month, by region, and by different combinations of temperature and preeipi-
tation, or may even like to dy‘nva.mically drill-down or rb»ll-lip along any dimension to -
- explore desired patterns, such as wet and hot regions in Fraser Valley in July, 1997.

Here, the obvious question that one may pose is: “Why a conventional data ware-
house and conventional OLAP Canno;}}\andle on-line analysis described in the above
example?”. By answering this questi 11 we show which extensions should be added
to a conventional data warehouse model.

Each’ weather station is associated with a region: on the mapfB It is likely that
neighboring regions have similar weather patterns. Moreover, when a user rolls-up di=
mensions, the likelihood of having same descriptions for neighboring regions increases.
Consequently, one should gét. a number of compound (merged) regions. From a de-
cision support perspective, these merged regions are measures of the business. Note
that this measure type is very different from those discussed in Chapter 2. such as
profit. exrpenses and count since it represents spatial obje%ts. In addition. a user
may wish to perform OLAP operations directly on map regions. None of theséfj\can be

“done by applying conventional OLAP methods, because they deal Qill}: \vith,'h,l&gsures
that are numeric aggregations. '

Region merge is only one of the reasons for exploring a new model. There are
a number of applications that deal with multiple thematic maps (Example 2) and
on-line analysis of such maps involves frequent map overlay operations. The regions
resulting from overlays are treated as measures. Additionally, maps may contain '
spatial objects of different types (Example 3) and overlay of such objects often has to

be calculated too. Note that in all these cases, a user may want to drill-down/roll-up

along both spatial and nonspatial*dimensions.

We now present the model of a spatial data warehouse. From the above djcus-
sion. it is clear that both dimensions and measures may contain spatial comp hents. -
Furthermore, a spatial data cube can be constructed according to the dimetfsions and’
the measures modeled in the spatial data warehouse: |

~» ’

.



We recognize three types of dimensions in a spatial data warehouse:

< L.

[

3.1.1 Dimensions, in a Spatﬁial»Dat"'TWaréh(')"u“s'e
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Nonspatial dimension
A nonspatial dimension is a dimension containing only nonspatial data. For

example, two nonspatial dimensions, temperature and precipitation, can be con-

structed for the data warehouse in Example 1, each is a dimension containing

nenspatial data whose generalizations are nonspatial, such as hot, and wet.

»

. - . . ,
Spatial-to-nonspatial dimension
A spatial-to-nonspatial dimension is a dimension whése primitive level data

is spatial but whose generalization, starting at a certain high level, becomes

" nonspatial. For example, state in the U.S. map is spatial data. However, each

state can be generalized to a nonspatial value, such as pacific_northwest, or
big_state, and its further generalization is nonspatial, and thus playing a similar

role as a nonspatial dimension.

. Spatial-to-spatial dimension

A spatial-to-spatial dimension is a dimension whese primitive level and all of

its high-level generalized data are spatial. For example. (*q'uf-tfmperaturé-r&gion‘ :

in Example 2 is spatial data, and all of its generalized data. such as regions

covering 0-5_degree, 5-10_degree, and so on, are also spatial.

Note that the Tast two dimension types indicate that a spatial attribinte, such as

county. may have mnore than one way to be generalized to high level concepts, and

the generalized concepts can be spatial, such as map representing larger regions, or

nonspatial, such as area or general description of the region.

3.1.2 Measures in a Spatial Date Warehouse

L]

We distinguish two types of measuresin a spatial data warehouse.

1.

Numerical measure

A numerical measure is a measure containing only numerical data. For example,
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one measure in a spatial data warehouse could be monthly redenie ot a IGg]OIl

?;'

'and a roll up may give the total revenite by year, by county, etc. :

Numerical measures can be‘ further classified into distribzitive, algebraic. and
holistic [25]. A measure is distributive if it can be computed by cube partition

and distributed aggregation, such as count. sum. maz; it is algebraic if it can be.-

‘computed by algebrai¢ manipulation of distributed measures, such as average.

standard deviation; and it is helistic if there is no constant bound on the size of
the storage needed to describe a’'sub-aggregate, such as median, most_frequent.
rank. The scope of our discussion related to numerical measures is confined to

distributive and algebraic measures.
kS
Spatial measure

A spatial measure is a measure which contains a collection of pointers to spatial

-

objects. For example, during the generalization (or roll-up) in a spatial data
cube of Example 1, the regions with the same range of temperature and precip-
itation are grouped into the same cell, and the measure so formed contains a

*

collection of pointers pointing to those regions.

A computed measure can be used as a dimension in a data warehouse, which we call

a measure-folded dimension. For example, the measure monthly average temperature

in a region can be treated as a dimension and can be further generalized to a value

range or a descriptive value. such as cold. Moreover, a dimension can be specified

by experts/users based on the relationships &thong attributes or among particular

data values, or be generated automatically based on spatial data analysis techniques,

such as spatial clustering [18, 54]. spatial classification [17], or:spatial association

analysis [49].

We will focus on computation and storage of spatial measures in the remainder of

this thesis. .
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Region_name : ) : Tempermure> 5
) dimension - dimension :
brobe_location ‘ ternperature .
district " | temp_range |
region — o
province ' region_name
tile )
dimension - precipitation |7 dimension
time reg'::e—:mp precipitation
day count prec_range - : -
month : prec_descript »

scason

Figure 3.1: Star model of a spatial data warehouse: BC _weather

3.1.3 An Example of a Spatial Data Warehouse

In this subsection we continue examining Example | by presenting’the star schema
model that corresponds to it. The star schema model of Example | with its’dimensions

and measures is illustrated as follows.

Example 4 Spatial data warehouse for BC__weather . v

A star model can be constructed, shown in Figure 3.1, for the BC_weather data
warehouse of Example 1, where the B.C. map with 1‘egi01“15 covered by weather probes
is shown in Figure 3.2. Note that neither the map nor the data used in this example
is real. Nevertheless, we believe that this facl does not. weaken our study.

The spatial data warehouse model consists of four (liI{IQHSiOIIS: Ierrzt’[)c"rat'ul‘e, precip-
itation. time, and region_name, and three measures: region_map, area, and count. The
concept hierarchy for each dimension, shown in Figure 3.3, can be created by users
or experts or generated automatically by data clustering or data analysis. While the
first three dimensions are nonspatial, the fourth one (region_name) is spatial-to-spatial
dimension. Of the three measures. region_map is a spatial measure which contains a
colle¢tion of spatial pointers point,ing\m/tlle corresponding regions, area is a numeri-

cal measure which represents the sum of the total areas of the corresponding spatial
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Figure 3.2: Weather probes map

objects. and count is a numerical measure which represents the total number of base
» '
regions (probes) accumulated in the corresponding cell.

Table 3.1 shows a data set that may be collected from a number of weather
probes scattered in British Columbia. Notice that region_name at the primitive level
1s a spatial object name representing the eorresﬁoﬂding spattal region on the map.
For example, region_name AM08 may represent an area of Burnaby mountain, and

whose generalization cotild be North_Burnaby, and then Burnaby, Greater_Vancouver,

Lower_Mainland, and Province_of BC, each corresponding to a region on the B.C.

map. ‘ . ) : 0.

With these dimensions, OLAP operations can be performed by stepping up and

down along any dimension shown in Figure 3.1. Let us now revive popular OLAP

operations and analyze how they are performed on a spatial data cube.

Slicing and dicing, each of which selects a ‘portion of the cube based on the
constant(s) in one or a few dimensions. For example, one may be interested only
- in cold and dryregions located in the \01[/16111 part of British Columbia This can
be realized by transforming the selection Crltena into a query against the spatial -

data warehouse .and be procéssed by query processmg methods (6, 25, 30, 64].

4
£ ) SN
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Region name: v _
- probe location C district C city C region C province
~ Time: o | o g
day C month C season _ Rl
Temperature: _
any C (cold. mild, hot) v . .
cold C (below —20, —20 to —10, —10 to 0)
mild C (0 to 10, 10 to 15. 15 to 20) .
hot C (20 to 25. 25 to 30, 30 to 35, above 35) -
“Precipitation:
any C (dry. fair, wet)
dry C (0 to 0.05, 0.05 to 0.2)
fair C (0.2 to 0.5, 0.5_to 1.0, 1.0 to 1.5) :
wet. C (1.5.to 2.0, 2.0 to 3.0, 3.0 to 5.0, above 5.0)
- \ v :
Figure 3.3: Concept hierarchies in a spatial data warehouse: B('_weather
Region_name Time Temperature Prec'ipitation
AA00 01/01/97 —1 1.5
AA01 01/01/97 | . =7 1.0
AA02 01/01/97 =T 2.5
AAO0 7} 01/02/97 —6 2.5
AAO1 01/02/97 -3 1.0
AA02 01/02/97 -9 2.0

Table 3.1: Weather probes table -
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Pivoting, which presents the measures in different cross-tabular layvouts. This
*
can be 1mplemented ina similar way as in nonspatml data cubes. F01 e:\ample a
spreadsheet table contammg femperafure and precipitation as row and (olumns
respectively may be presented to a user. The values (e.g., cells) in the table

may contain- area of the corresponding region(s).

3. Roll-up. which generalizes one or a few dimensions (including the removal of
some dimensions when desired) and pér{ft—)rms appropriate aggregations in the
C()ll(‘prIldlllg measure(s). For example, one may roll-up on temperature dimen-
sion to get summarized information. For nonspatial measures, aggregation is
implemented in the same way as in nonspatial data cubes [1. 25, 67]. Howevar,
for spatial measurcs, aggregation-takes a collection of a spatial pointers in,a
map or map-overlay and performs certain spatial aggregation operation, such as"
region merge, or map overlay. It is challenging to efficiently im]Blmnent such op-

‘ erations since it is both time and space consuming to compute spatial merge or
overlay and save the mergcd or overlaid spatial objects. This will be discussed

in detail in later sections. .

P

1. Dril-down, which specializes one or a few dimensions and presénts low-level
. . . 1] . . . 4
objects, collections, or aggregations. This can be viewed as a reverse opera-
. & - . . .
tion of roll-up and can often be implemented by saving a low level cuboid and
had

performing appropriate generalization from it when necessary. -

-

From this analysis. one can sce that a major performance challenge for the imple-
mentation of spatial OLAP is the efficient construction of spatial data cubes and the

implementation of roll-up/drill-down operations.

Example 5 Spatial OLAP on BC_weather data warehouse

The roll-up of the data cube of B.C. weather probe of Example 4 can be performed
as follows. .

The roll-up on the time dimension is performed to roll-up values from day to
month. Since temperature is a measure-folded dimension, the roll:up on the temper-

ature dimension is performed by first computing the average temperature grouped by

e

L,
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| : ' : Ty ' : oo
Time | Temperatufe Pré’cipitation Regi(;ﬁqhap l
January | - below -20 dry {AK04,AKO07,....VS67}
January | below -20 fair {AG10. AGO5,...,TP90}
Table 3.2: Résult of a roll-up operation - ; ;

’ .

-

month and by spalial region and then generalizingthe values ,tofranges (such as —10
to 0) or to descriptive names (such as “cold”). Notice that one may also obtain av-
uage daily /ugh/low temperature in a smnlar manner as lor’vT -as the way to compute
the measure and transform it into (llIllGIlSlOIl hietarchy is spec1ﬁe(l Similarly, one
may roll-up along the preczpttatton (llmen~5.1on by Computmg the av erage precipitation
grouped by month and by spatial region. The region_narm¢ dimension can be (lroppf‘(l
if one does not :vant to generalize data according to specified regions. '

Thus, the generalized data cube contains three (llmensmns, Time (in month),
Temperature (in ‘monlhly'avf:mgf')“anv(l Prcrcipilation (in monthly average), and one
spatial measure Region_map which is a Collec-ti(')l; of spat-ial object ids, as shown in
Table 3.2. Moreover, roll-up and drill-down can be performed dynamically which may
produce"a,n'other table as shown in Table 3.3. ,

Two different roll-ups from the B.C. weather map data (Figure 3.2) produce two
different generalized region mapé, as shown in Figure-3.4, each being the result of
merging a large number of small (probe) regions from the map shown in Figure 3.2.
Computing such spatial merges of a large number of regions flexibly and dyna.micall;b
poses a major challenge to the implementation of spatial OLAP operations. Note
that hundreds of small regions may need to be merged together. If such an operation
were performed on-the-fly, all these regions would have to be fetched (likely from a
disk) and then merged. Thus. only if appropriate preconiputation is performed, can

the response time be satisfactory to end users.
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Time

Temperature

Precipitation

Region_map

March
March

cold
cold

0.1 to 0.3
0.3t01.0

>

[ALOL.AMO3.. .. .XN87]
| .{AM10, ANO5.....YP90}

Table 3.3: Result of another roll-up operation
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Figure 3.4: Generalized regions after different roll-up operations
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3.2 'Implementatﬂion of a Spatial Data Cube

A nonspatlal data cube contains only nonspatlal dimensions and numerlcal measures.
If a spatial data cube contained Qpatlal dimensions but not spatial measures, its@
OLAP operations could be’ implemented in a way similar to that 6f nonspatial data
cubes. However, the introduction of spatlal measures raises challenging issues on
efficient implementation, which is the focus of this stugfy. In this section we present

the challenges in computation of spatial measures and propose some methods.

3.2.1 * Challenges in implementa‘tion of a Spatial Data Cube

Silllilal‘ to the structure of a nonspatial data cube [8, 67], a spatial data cube consists
of a lattice of cuboids, where the lowest ‘cuboid (bas‘e point) references all the dimen- "
sions at the primitive abstraction level (i.e.. group-by all the'(limensions). and the
highest cuboid (apexr point) summarizes all the dimensions at the top-most abstrac-
tion level (i.c., no group~lé§'"5 in aggregation). Thus, ascending/descending the lattice
corresponds to roll-up/drill-down operation. A lattice structure for a cube with three
dimensions is shown in Figure 3.5, where A, B, and (' represent dimension names,
and subscripts annotate concept hierarchy levels (0 for the lowest level). Note that
rolling-up to “any” (highest level) for a dimension is same as dropping the dimension
(i.e:, dimension reduction). ) '

Drill—(]own,‘roll-up, and dimension reduction in a spatial data cube result in differ-
ent cuboids in which each cell contains the aggregation of measure values or clustered
spatial object poin.ters. While, the aggregation (such as sum, average, etc.) of nu-
meric values results in a new numeric value, the clustering of spatial ()‘l')ject"poirlters
may not lead to a single new spatial object. Only if all the objects poi‘nted to by the
spatial pointers are connected, can they be merged into one large region: othel wise,
they will be represented by a set of isolated regions.

A numeric measure usually takeis only about two- to eight-byte storage space and
requires a relatively small amount of computation time. However, being a spatial
object. a spatial measure may take kilo- to mega-bytes in istorage ‘space and it is

much more costly to compute the merge or overlay of a set of spatial regions than its

.
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pex point

g R

base point

Aigure 3.5: A lattice of cuboids

numerical counterpart. - . )

Furthermore, one may expect that OLAP operations, such as drilling or pivoting,
. be performed flexibly in a spatial data warehouse with fast response time since a user
may like to interact with the system to obtain necessary statistics for decision making.
Instead of computing such agg}rega.tions on-the-fly, it is ofgen necessary to precompute
some high-level views (cuboids) [1] and save them as materialized views (computed
(‘ubo"id.s') to féicili»tate fast response to OLAP_operatiOHS. Can all the possiblé results
of spatial OLAP operations be precomputed and saved for efficient OLAP? Let us
perform a Si[hple analysis.

There are different products in (nonspatial) data warehouse industry: some ma:
terialize every cuboid, some none, but some only part of the cube (i.e.. some of the
cubgids). There are interesting studies on efficient implementation of data cubes [1,
67]. | S

In the implementatibnﬁof spatial data cubes, we face a dilemma of balancing the

~ cost of on-lile computation and the storage overhead of “storing computed spatial

measures: the substantial computation cost of on-the-fly computation of spatial ag- -

spatial values discourages it. Obviously, we should not materialize every cuboid with

lls for precomputation but substantial overhead for storing aggregated

<
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limited storage space but we cannot afford to COI‘I-ViputC all the spatial agg’reg‘ates, on-
the-fly. We first clarify terms that will be extensively used in the rést of this thesis. -«

A cuboid of a spatial data cube Corresp‘onds to a single tva}')le whose columns are
dlmenslons and measures of the spatial data cube. A cell of a cuboz(l C01re9pon(ls to
a tuple in such a table. " "

To show the 1mportz{nc'e of selective materialization of Ctlbloids we exdmine the
data cube structure in more <detail. Let the data cube consist of m measures. M.
..., My and n dimensiong, D;’ ..., D,, where the i-th (Hmension D has &; levels of
'hlerarcln and the top level has only one spemal node “any” which Co:frespon(ls to the
rémoval of the dimension.

LY For an n-dimensional data cube, if we allow new cuboids to be generated by
climbingup the hierérchies along each dimension (note that the removal of a dimension

is equivalent to generalizing to the top level “any™), the total number of cubdids that

can be generated is. , -
n

‘ ) X 1"\":Hl£,‘—l.

i=1 .
This 1s a big number. For example, if the cube(has 10 dimensions and each dimension
has, 5 levelé. the total number of ClleidS that can be generated is 510 -1 =~ 9.8 x 10°.
Therefore. it istecommended to materialize only some of all the possible cuboids that
can be generated.

Three factors may need to be considered when judging whether a cuboid should
be selected for materialization: (1) the potential access frequency of the generated
cuboid, (2) the size of the generated cuboid, and ( ho‘he inaterialization of one -
cuboid may benefit the computation of other cuboids in the lattice. A greedy cuboid-
selection algorithm HRU has been presented in [38] based on the analysis of the
latter two factors. A minor extension to the algorithm may take into consideration
the first factor. the potential access frequency of the generated cuboid, where the
potential access frequency can be estimated by an expert or a user, or calculated
based on the cube access history. The analysis of whether a cuboid should be selected
for precomputation in a spatlal data cube is Snmlal to a nonspatial one although

an additional factor, the cost of on-line Computatlon of a particular spatial cuboid,
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should be considered in the cost estimation since the spé:tiai"C;)mpl.lta.fioh. such as
region merging, map eterlaying, spatial join, eould be expensive when involving a
large number of spatial objects. “

The above analysis motivates us to propose interesting techniques for selective
materialization of spatial data cubes. In the pre\;ious OLAP studies, granularity
of data cube materialization has been at the cuboid level, that is, either completely
materialize a cuboid or not at all. However, for materialization of the spatial measure, -
it is often necessary to consider finer granularity an(l‘examiﬁe individual cells to see

whether a group of spatial objects within a cell should be precomputed.

= -

3.2.2 Approaches to Computation of Spatial Measures

In this discussion. -we assume that the computation of spatial measures involves spa-
tial region merge operation only. The principles discussed here. however. are also
applicable to other kinds of spatial operations, such as spatial map overlay. spatial
: - .

Jjoin [26. 30]. and intersection between lines and regions [56]. |
" There are at least three possil)rle choices regarding the computation of spatial

measures during the spatial data cube construction:

1. Collection of Spatial Pointers
For some applications. it is not mandatory to merge similar ngighboring 6l)je(‘ts.
For example, if one deals with objects that are compact enough (e.g., provinces,
states) additional merge would not convey useful information. In this case,
pointers to corresponding spatial objects can be collected-as shown in Table 3.2 -
and Table 3.3. This can be implemented easily by storing, in the corresponding
cube cell, an indirect pointer to a collection of spatial “object pointers. This
choice clearly indicates that the (region) merge of a group of spatial objects,
when necessary, has to be performed on-the-fly. Nonetheless, this is still a good
choice if only a map display is required (i.e., no need for spatial merge), or if
there are relatively few regions to be merged in any pointer collection ¢thus,
on-line merge is not so costly an operation). The storage space overhead is rel-

atively small, and similar to that for nonspatial measures. Thus, if the OLAP
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results are ploduced onlw for viewing, fhspla\ only mode is nsefn} However. as

we elaborated in previous chaptels OLAP can be mtegrated ‘withe spatial. (lata
mining modules, such as spatial association, clustering, classification, etc [36].
In such cases QLAP results are used for further analysis and it is important to
merge a number of spatially connected régions (with same nonspatial descrip-

tions).

-

Approximate Computation of Spatial Measures
We believe that not all poitions of a map are equally interesting for the user of a
spatial data warehouse. Moreover. different users may have different preferences.

It is thus. plausible to precompute rough approximation/estimation of spatial

measures and store them-in a spatial data cube. If higher precision is needed

for specific cells, the system can either fetch precomputed high quality results.
if available, or compute them on-the-fly. This choife is good for a rough view
or coarse estimation of spatial merge results under fhe assumption that it takes
little storage space to store the coarse estimation results. For exaniple, the
minimum bounding rectangle (MBR) of the spatial merge result (representable
by two spatial points) can be taken as a rough estimation of the merged region.
This estimated measure, Figure 3.6, occupies as little space as a horispatial
measure and can be plebented quickly to users. “Another possible choice i 1? to

use a colvex hull instead of an MBR.

Selective Materialization of Spatial Measures d

Selective materialization seems to be the best choice but the challenge is how
to select a set of sf:)a,tia,l measures.for precomputation. A previoys study [38]
shows that materializing every cuboid requires a huge amount of disk space.
whereas not materializing any ¢uboid requires a great deal of on-the-fly, and
often redundant, computation. That study promotes partial materialization as
a desired solution and algorithms have be(u proposed to determine what should

be precomputed f for partial mater lallzatlon of data cubes.

The selection can be performed at the cuboid level. i.e.. either precomphte

and store every set of mergeable spatial regions for every cell of a selected -
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Figure 3.6: Rough approximation of the spatjal measures

) : , . - ’ .. T
cuboid, or precompute none if the cuboid is not selected. Sinee a cuboid usually

covers the whole map, it may involve precomputation and storage of a large
number of mergeable spatial objects although some of them could be rarely used.
Therefore, it is recommended to perform selection at a finer granularity level
by examining each group of mergeable spatial objects in a cuboid to determine
whether such a merge should bé precomputed. Since this approach examines
individual cells, we also refer to it as selective materialization at the cell level.
In addition to selective materialization, a special care should be taken dui‘ing
on-line processing, i.e. using the spatial data warehouse. Best candidates for a

target query should be chosen from a set of precompute(l merged regions.

Our further discussion is focused on how to select groups of mergeable spatial
objects for precomputation from a set of spatial data cuboids chosén by cuboid-

= selection algorithm HRU [38].

-



Chapter 4

Materialization of Spatial

Measures

In the previous chapter, we underlined the importance of spatial measures and their
precomputation and elucidated that, due to high processing requirements. it is not
feasible to perform all coniputations on-the-fly. We enumerated three approaches for
collecting information of spatial measures. Since the first oné, Cbllection_ of spatial
pointers, is self-explanatory we concentrate on the. rema.i;ling two approaches, namely
Approximate computation of spatial measures and Selective materialization of spatial mea-
sures. This chapter address®s the latter two approaches in more detail and pfoposes .
some algorithms. |

While for the first of the the three approaches selectivity is expressed at the cuboid
level, the remaining two approaches exploif cell-level selectivity. However, the mo-
“tivations for cell-level selectivity differ for these two approaches. While Approximate
computation of spatial measures method materializes only the spatial objects that con-*
vey reasonably high. quality information, Selective materialization of spatial measures
method materializes the objects (aggregations) that are expected to provide signifi-
cantly shorter response time for spatial OLAP queries. Various heuristics are used

and they will be described throughout this C.hapter.
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4.1 Approximate Computation of Spati:al: Meqsﬁre’s -

.

We expressed primary motivations for appvroximate computation of spatial measures
earlier in this thesis. We now explore this approach more specifically and propose a
simple, yet effective algorithm.

Each region of the map can be tepresented by using a minimum bounding Féc‘t’arzgle
(MBR). MBRs have been used e\tenbnely to approximate spatial 0bj6‘CtS in spatial
analysis because they need only two points for their representatlon in particular
each object p is represented as an ordered pair (pj, p!,) of points that correspond to

“the lower left and upper right points of the MBR p’ that completely covers p. while
ha\mg mlmmal area. ”

The MBRs (one for each reglon) can be organized using the R*-tree structure [3].
Note that in our case this data structure is mainly read-only since map objects seldom
(or never) change. Table 3.2 and Table 3.3 show collections of spatial ohbj_e‘cts that
have same nonspatial descriptions after some OLAP operations are performed. In this
approximation method. spatial objects whose MBRs are neighbors are considered for
merging into a larger MBR. In the rest of this discussion we refer to this class of
regions as merged MBR. or MMBR. - o

We encounter inaccuracy problem here, i.e., an MMBR that fully contains two
or more MBRs may be covered only in a small portion with the associated spatial
objects. In that case, the precomputed MMBR providés misleading information (see
Figure 4.1). To cope with this problem, we introduce area_weight as the percentage

of the area covered by the original spatial objects.

Definition 4.1.1 Let R = {ri,r,,....1r,} be a set of regions, M = {my,my,...,m,}
be a set of MBRs such that m; is the MBR for r; (¢ € (1,n)). i.e.. m; = MBR(r;).
and A be the MMBR that includes all MBRs in M. Then, area_werght(A) is defined .

as following: ~ . \
=1 areagr; %
area(A)

areawetght(A) =

Df

In order to mitigate the inaccuracy problem, we introducé threshold min_weight

v
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Figure 4.1: A merged MBR with a low ‘area-weighf

that filters out MMBRs' with low area_weight. We believe that only the objects that
reveal “good enough™ information should be stored.. Rough measures algorithm is

presented as follows.

. ' £ ?
Algorithm 4.1.1 (Rough Measures Algoritiim) An approximation algo-
rithm for precomputation and storage of the merge results during the construction of

a spatial data cube.
Input: e A cube lattice which consists of a set of selected cuboids obtained by
running an extended cuboid-selection algorithm similar to HRU [33].
e A group of spatial pointers in each cell of cuboids in the lattice. .

e A region map which delineates therneighb'o'rhoocl of the regions.

?

e An R™-tree whose leaves are MBRs of regiéns from the map.

° mitn_wm'gh.f: A threshold which represents the minimum area_weight for an

. MMBR to be stored in a spatial data cube as a spatial measure.

Output:% A spatial data cube selectively populated with spatial measures (MMBRs).

*

Method:

e The main program is outlined as follows, where maxr_cuboid is the maximum

number of cuboids selected for materialization.
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a (1) - FOR cubord =1 TO m(tl_cabotd DO - S : o .
(2j . FOR EACH cell IN cuboid DO { |
o (3) .get_zfnterse”c‘tirng_mbrs(cell" éa;uli(lat;c_li.st);
o (1) ' filter_area(candidate list);. “— - , o
(H) populate_cube{candidate. list cell*cuboz(l) "
(6) } ‘

e The procedure gel_intersecting-mbrs(cell, Lcd7zdi(fatc-li.st) is outlined as follows.
Each cell contains Zl.lsetrof pointers to MBRs (oné for each rﬁap reéon). This pro- -
cedure breaks the MBRs into a number of intersecting groups. Each member
(MBR) of an intersecting group must”intersect with at least one otlale*r mem- -
ber from the group. Finally. each intersecting group gets represented with an »

MMBR that contains all members of the group and all the MMBRs are put into

(\\ the candidate_list.

o The procedure filler_area(candidate_list) is outlined as follows.

(1) PROCEDURE filter_area(candidatelist) { -

(2) FOR EACH candidate IN candidate list DO ,

(3) IF area_weig:h't(c’(mdz’ddte) <~mun_weight I .
(4) THEN remove candidate frbni candidate_list; -

(5) } "

_® The procedure populate_cube(candidate_list, i, j) is outlined as follows. If can-
didate_list is non-empty, cell ¢ of cuboid jis populated by storing pointers to
MMBRs. The MMBRs thémselves are stored in the R"~tr’ee Note that the
position of a cell m a cuboid is detetmined by values of its dimensions (see

" Table 3.2 and Table 3.3). y |

Rationale of the algorithm. Rough measures algorithm is to compute and store ap-
proximate spatial measures in a spatlal data cube. The algorithm is applied to the
cuboids selected by the well- l\nown cuboid- selectlon algorlthm HRU [}b] It scans all

pointer groups (spatial measmes) in selected cuboids, and detects potential merged
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a

regions (MMBRs) (Lillé (3)). Line (4)’“’i'5”t0 filter 6}“, rcgr‘ldi'(lé,tes whose “a"réa,_weig&z't s

below min_weight. This threshold can be choSen by users or experts and/br adjusted
dynamically. (an(lldateq that pass the thleshold are stored 1n cells of the spatlal
~ data cube (Lme (5}). Note that in a(ldltlon to the spatlal me?sme (e g., region_map). f
a numerical measure areq has to be computed for the filtering step. However, its .
computation does not differ hom the computation of measures in a nonspaft,ial data
cube. Essentially. the area measure is very siniilar to the sum measure (it belongs to
distri}‘)utvive rilfmerical mea.sureis)., ' '
We- are well aware of limitations of this algorithm. It provides only rough esti-
mation of spatial measures., and it is often necessary to fetch (or compute) refined
measures. Furthermore, since the algorithm works on MBRs, as opposed to ma[; ob-
jects. it does not use a precise neighborhood information, i.e., two or. more slsatial
objects may he (lisjoint but their MBRs may still intersect.
In spite of the above limitations, we believe that rough measures dlgonthm pro-
vides users of a spatial data warehouse with a useful coarse grain information. If more
precise information is n(‘eded for certain sections of the map, uscrs can either fetch
them (if available) or (‘ompu’te on-the-fly. Although MBRs demon.stlate some dis-
a_(lva.nt,ages when approximating non-convex or diagonal objects, they are still most
commonly used approximations in spatial applications. The algorithm is fast and
generated spatial measures do not have high storage demands. Finally. since cycles
of the loop (Lines (3) to (5)) are mutually independent, the ﬁ[g}orithm can be easily

parallelized in a multi-threading environment. ~ ~ ~ a

An example of the execution of the algorithm is presented below.

=

Example 6 Suppose that a set of cuboids has been selected from lattice shown in
Figure 1.2 using an extended cuboid-selection algorithm like HRU [38]. Each cuboid
contains a set of cells. each containing a group of spatial pointers. representing the
spatial measure absomated with a particular set of dlnlenSlon values. Since the focus of
our discussion is on the selective materialization of spatial measures, only the groups
“of spatial pointers are shown in Table 41 witifBut ) presenting the corresponding di-

mension values. Suppose that min_weight is 15%. The map is shown in Figure 1.3.
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Figure 4.2: A lattice showing selected cuboids

5

Cuboid_1 : Cuboid_ 2 ("uboid_3
{1.4,7,8, 11,16, 20} | {1,4, 7,13, 17, 20} | {1, 4, 13}
{2,3,5,6,9,12, 17} {2,3,6,9, 16} {2, 3}
{10, 13, 14, 15, 18, 19} {5, 11, 18} {5, 18}

- © {8, 12,15}, {6, 9, 16}

| {10, 14, 19} | {7, 17, 20}
{8, 12, 15}
{10, 19}
()
{11)

Table 4.1: Sets of pointers for selected cuboids

B




' CHAPTER 4. MATERIALIZATION OF SPATIAL MEASURES . 45

Figure 4.3: An éxample map 1

-

The algorithm analyzes one group of spatial measures at a time. In other words,
. processing of one group 15 not interleaved with that of any other group. Thus, in
order to illustrate the execution of the algorithm, we assume that all iterations are

executed in parallel. . )

After applying Stebs depicted in Lines (3) and (4) of the algorithm. we get a seb of
candidates (MMBRs) shown in Table l .2, where area_weight is associated with each
candidate. Only the Candldates that pass min_ wezght threshold (Tabl( 4.3) are stored

in the spatial data cube.

Cuboid_l ’ ('uboid 2 Cuboid_3
{17, 1L, 161(41%) | {1, 4, 7, 13}(50%) | {1. 4, 13}(40%)
{2.3.5.6,9. IT}(49%) | {2.3.6,9, 16}(43%) | {2, 3}(35%)

{13, 14, 15. 18, 19}(35%) {12, 15}(62%) | {6, 9}61%)
{12, 15}(62%)

-~

Table 4.2: ("andidates for merged MBRs
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o

{12, 15}(62%,) | -
{6. 9}(61%)
{1, 4, 7. 1350%)
{2, 3, 5, 6, 9, 17}(49%)

——

Table 1.3: Merged MBRs that are stored in the spatial (la.ta’xi(;:flbe : '
. 1 .

LA - h : l »,f‘f /\

4.2 Selective Materialization of Spatial Measures.
a3

In this section we examine three algorithms for the selective materialization of spatial

measures that are improvement from the rough measures algorithm. Here, instead of

storing merged MBRs as rough approxin’mtioi’is of spatial measures, we strive for accu-

racy. The process o‘f getting precise spatial measures carries two Challongos:‘in(‘rease(l

computation time and substantial storage overhead. While merging two MBRs takes

small and constant amount of time (i.e., four comparisons), merging two regions takes.

Of(n) time, where 1 is the total number of vertices (with the assumption that the ver-
tices were sorted off-line). Similarly. the storage requirements for a merged MBR are
negligible comparing to that for merged regions.

Thus. even when we decide to materialize a cuboid. it is still unrealistic to compute
and store every spatial measure for every cell because it may consume a substantial
amount of computation time and disk space. especially considering that many of
them may not be ‘examined in detail, or may only be examined a small number of
times. In the following subsections, we introdﬁce spatial greedy algorithm. pointer
intersection algorithm, and object connection algorithm, that selectively materialize
spatial measures. The alﬂonthmq select cells that will be materialized, i.e., merged
during spatial data cube construction time. Therefore, in the remainder of this thesis

we refer to this process as a premerge.
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4.2.1 The Problem Statément

" The goal of selective materialization of spatial measures is to select and merge groups

of connected spatial objects that will, given storage space constraints, provide shortest

time to evaluate results of'spatial OLAP queries. The groups can be organized in a

partial order, 1.e., if a group that contains objects {1. 3, 8} is merged it can help in

merging the group {1, 3, 6, 8}. We now define the partial order more formally.

Consider two groups that contain connéct{ed spatial objects v; and G;. We say
that &;; < G if and only if G; C G;. Similarly to [38]. the operator < imposes a
’ »
partial ordering of the groups. We now state input, output, and benefit of selective

materialization of spatial measures.

Input: e Nregions on a map. where each of the regions has 0 to .V — ] neighbors.
The ids for map regions form a set M.
o A lattice L where each node of the lattice contains a set S described as

follows,

S={s|sC M}
® (VS,‘,Sj € S)(l # ) =50 8; = (0),

The lattice L corresponds the lattice of cuboids chosen by HRU algorithm.
while a set S within a node (i.e., cuboid) of such lattice Conesponds to a

set of mergeable (connected) groups for a cuboid.

e weight w for eech node in lattice L. In our case, the weight of a node

corresponds to the access frequency of a cuboid.

- o Allocated storage space for merged objects.

Output: A set T of selected mergeable groups, described as follows.
Groups in T provide minimum on-line computation time to compute average

merge of all groups within the lattice.

Analysis: The selection of group G provides a benefit for all groups G, such that

f «
G; X G. Suppose that G; = {ay,....a,}and G; = {a1, ..., a0, Gny1v- . s Gngm ).
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The benefit B;; of merging group G; with respect to group G is expressed as o

follows.

3

B, ; :_'mer"qe_time({q‘l, - .an+m)}):—merge_time(‘{{ayl, S N ETCRRN .

Given a lattice L of dimensions, each being associated with a benefit value B and
a weight vaJue W, find a fixed number A of dimensions to merge. such thé,tuthe total
computational time using. the merged dimensions -.as a basis in the computation.. is
minimized. ' :

This problem is intractable because it can be reduced from set-covering problem.

Thus. we prepose several heuristic strategies.

4.2.2 Spatial Greedy Al‘gorithm

As we explained in Chabter 2, the most widely used algorithm for the selectioti of
~ cuboids for materialization is the HRU, a greedy algorithm presented in [38]. Although
this algoritiun performs well in the creation of a conventional (nonspatial) data cube,
it cannot be applied for ha,n(lli‘n'g spatial measures. Therefore, we propose a new
algorithm that materializes only selected cells in the cuboids choseh by the HRU
algorithim. Note that each cell contains a group of pbinters to spatial objects. We
also refer to this as a group of spatial objects. The following heuristics-are used for

selection of groups of connected regions to be premerged.

® access frequency )
Based on the access history or the estimation of the access frequency of a set
of nodes, one can calculate the benefit of the merge. If a group of connected
regions is more frequently accessed than other groups, it is more beneficial to

premerge (and. save) this group of connected regions.

o cardinality of a set of connected regions
If a candidate group has more connected regions than other groups, it is more
beneficial to select this candidate in the premerge (having fewer disk accesses

g on-line processing). Notice that if a merge 1s performed on a set of

I3

7
~

cdurin

e
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connected regions at a. descendant node, the subsequent cost analysis on its

ancestor nodes should count the newly merged region as one region only.

e sharing among the nodes in the cube lattice structuré. . B

If a candidate is shared among more nodes in the lattice st'ru‘cture,ri't is.more
beneficial to select this candidate for premerge. Notice that in this case, the

‘access frequency of a group is the sum of access frequencies of all the nodes in

which the group appears.

Based on these heuristics. a benefirt formula is worked out to compute the total benefit
of merging a group of connected regions. The total benefit is-the sum of direct benefit
and ir_ulire("f benefit. The former IS the benefit generated by the merged group itself .
due to the reduction of both the accessing and merging cost (since no merge needs
to be computed at the query processing time); whereas the latter is the benefit of
the other groups in the ancestors of the node containing the’ premerged group due
to their use of pl'enlefge(l group, which reduces accessing and on-line computation
costs. Ascénding‘ the lattice of cuboids leads to more general descriptions of data
in the database. Subsequently, if some objects have same nonspatial descriptions in
one cuboid, they will have same descriptions in all ancestors of that cuboid. We now

introduce a term non-occluded ancestor.

Definition 4.2.1 Let F and G be groups containing pointers to spatial objects such

that G C F. Then. group F'is a non-occluded ancestor of GG, G < F, if the following

_ conditions are satisfied:

e group F’ has not been materialized
e there is no materialized group J such that G C J C F

e there is no materialized group J, J C F such that GNJ 750) and c’a:‘dz'na;ity(J)
> cardinality(G) o . - -

The following formulae compute the total benefit of premerging a group G:

direct bene fit((G) = access_frequency(G) x cardinality(G) (2.1)

-
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. indirect bene fit(G) = Z access_frequency(A) X (card,in»a,lity(G) - 2.2y ..
' G=<A - - , '

lotal_bencfit(G)r = (lirect_be-n.efit(G) + in(li‘rect‘fbene_fit(G) o (2.3)

The Formula (2.1) indicates that the direct benefit of a group G is the product of
1ts access frequency and its cardinality, i.e., the number of regions to be merged. This

is derived based on the following observation. For a group containing k regions to be

merged. if it is merged into one region, the cost of each access is to fetch the merged
region once. "However, if the group were not merged into one region, it would take
~about k unit accesses to fetch these & regions, perform on-line merge, store the result
into a témporary file, and then take one unit access to fetch the merged temporary
file. Thus, the merge saves about & unit disk fetches for each access.

While the access frezlllency and the cardinality of the connected group of spatial
objects contribute to the direct benefit, sharing among nodes in the cube lattice
structure contributes to the indirect benefit. In order to determine the indirect benefit
for a group G, we have to consider all groups that contain group (. By premerging
groung, we effectively decrease the cardinality of all its ancestor groups. If a group
contairs k connected regiohs:, premerging itﬁswsubgr’oubp that contains n regions (n < k),
decreases cardinality of the group by n—1. Formula 2.2 shows that only non-occluded -
ancestors of a group (' contribute to its indirect benefit. The following example

illustrates computation of the indirect benefit.
L]

Example 7 Let A = {1.2,3,4,5}, B={1.2.3,5},C = {1,535}, D= {2, 3, 4}, and
E = {2.3, 4,5}, and F = {4, 5} be six mergeable groups. We explain the following

five cases that can occur when calculating theindirect benefit of group D.

’ 1. there are no materialized groiips

Since group D is contained within groups A and E, both these groups contribute

to the indirect benefit of 1.

2. only group F has already been materialized
There are no groups that contribute to the indirect benefit of group D. Both A
.and E are occluded ancestors of D (E is materialized and D C E C A).
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3. only group C has already been materialized | 7
The indirect benefit of D is the same as in case 1, because groups C and D do

not intersect.

4. only group F has already been materialized
The indirect benefit of D is the same as in case 1, because even though groups

F and D intersect, the cardinality of D is larger than the cardinality of F.

5. only group B has already been materialized
Ouly group F contributes to the indirect benefit of group D. Group A is oc-
cluded by group B. since groups B and D intersect and the cardinality of B is

larger than the cardinality of D.
- : -

After the mergeable candidate groups are detected, the greedy algorithm proceeds
as follows. In the first round, the algorithm computes the total benefits for all can-
didate groups. compares their benefits, and selects the one with the highest benefit.

In subsequent rounds. the benefit estimation may ¢hange for some groups since these

. groups may contain the subgroups of the merged groups in the previous round(s).

The benefit for these groups will be updated and such updates will propagate up

_along the lattice. The adjusted benefits are compared among the remaining candi-

dates and the one with the highest current benefit is selected for the premerge. This
process continues until it completes the maximum number of allowable merges where
the maximum number of merges can be determined based on the allocated disk space.
or other factors. .

Based on the above outline, the algorithm is présented as follows.

Algorithm 4.2.1 (Spatial Greedy Algorithm) A greedy algorithm which selects
candidate (connected) region groups for premerging in the construction of a spatial

data cube.

Input: e A cube lattice which consists of a set of selected cuboids (presented as

nodes) obtained by running a cuboid-selection algorithm such as HRU [33].
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e An access frequency table which shows the access frequency of ea¢h node -

B in the lattice.

e A group of spatiél pointers in each cell of cuboids in the lattice.

e A region map which delineates the neighborhood of the regions. The infor-
mation is collected in an obj_neighbor table in the format of (object_pointer,
a_list_of_neighbors). '

B 4

o mar_num_group as the maximum number of groups which are expected to
be selected for premerge.

Output: A set of candidate groups, stored in merged_obj_table, selected for spatial
premerge. and a spatial data cube selectively populated with spatial measures.

. Method:
e The main program is outlined as follows.
(1)  find_connected_groups(candidate table);
(2) merged_obj_table = 0; . 7
(3) remaining_set = candidate table:;
(1) REPEAT g )
(5) select _candidate(candidate table, nzcrgé(Lobj _table);
(6) UNTIL cardinality(merged_obj _table) > max_num_group
(7)  populate_cube(merged_obj_table);
8 .

. ‘The procedure find_connected_groups(candidate table) is outlined as follows.
For each cuboid in the cube lattice, determine mergeable groups(s) in its spatial
pointer gr(;ups, by using obj_neighbor table. Then, calculate the access frequency
of every detected group by summing up frequencies of the cuboids in which the

group appears.

»2
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o The procedure qelect can(lz(late(candadate_table ﬂ?GTJC([_DbJ table) is outlmed :‘

as follows.

(1) PROCEDURE select_candldate(Candldatc _table, rnerjfd_ob;table) {
(2) max bene fut = 0; “ o
(3) FOR EACH group IN remainingset DO { - N
(1) total_bene fit = direct. _bene frt(group) +indirect benefzt Jroup) )
(5) TF (max_bene fit < total_hcjn,e.fzt)
(6) . THEN { ' ”
(7) max_benefit = totrzl,bcfz.e_fit; Q
(8) be st_group = group; I
(9) b ﬂ TN
(10) ) ~ o | Y
(1'1) merged_obj _table += best_gro‘up; " -
(12) rfm(;ining_.s‘(t -= best_group;

A13)} | : °

The functions dir‘ﬁci_bﬁnefit(,group)" and indirect _bene fit(group) calculate di-
rect and indirect benefit for the group according to Formula 2.1 and Formula 2.2
Notice that if more than one group have the same laréest total benefit, the group
containing fewer vertices is thOéSI] in order to generate smaller merged region

and save the total space.

e The procedure populate_cube(merged_obj_table) is outlined as follows. Objects
stored in the merged_obj_table are linked with the cells of the cuboids. This can
be implemented by storing pointers. to the premerged objects. Note that more -
than one cell can point to a single spatial object, i.e., a spatial object may bhe

the measure in more than one cuboid. : ' a

Rationale of the algorithm. The spatial greedy algorithm can be reasoned as fol-
lows. The algorithm works on the cuboids selected by the cuboid-selection algorithm

HRU [38]. Line (1) finds all mergeable groups within selected cuboids. Lines (2) and
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(3). initialize merged_obj_table to an empty set,’ andrrrém(l‘iningﬁet to all Conné’cted
groups (candidate_ tabZe) Line (5) presents orie iteration of the greed\ algorithm.
At each iteration. the algorithm selects the best candidate based on the benefit cal-
culation. vThe algonthm i1s a greedy one because it comiits to a local maximum
benefit at each iteration, however, not every locally maximum choice can guai‘ant‘eé

the’ global maximality. As shown in the analysis of the HRU algorithm in [Bb] the

- global optimality is an NP-hard problem. Therefme based on the similar reasoning -

to that in [38]. the algorithm derives a suboptimal solution for the selection of candi-
date groups. Note that instead of the actual number of groups (mar_num_group), the
percentage of groups to be selected for premerge can be specified.

Both our algorithm and the HRU algorithm are greedy a,lgori‘thms for selective
»Ina.teria.liza‘t;ion in the construction of data cubes. Beside the difference in application
domains: ours is-on spatial data cube Construction,wheﬁ‘ea.s theirs is on nonsp‘a‘tiﬂal A
ones, there are several other major differences. First, the HRU algorithm is to selec-
tively materialize cuboids (views). whereas ours is to selectively materialize pa.rticular
cells of the chosen cuboids. This additional level of examination is essential since '
the nonspatial aggregation results in simiple’ measures, whercas the spatial one necds
both nontrivial spatial Com"pﬁfat.ion .and substantial storage space. Thus. the two
algorithms are dealing with the prohlems at different levels. Second, the HRU algo-
rithm does not take node access frequency into consideration, whereas ours considers
it seriously. We believe that access frequency is an 1mp0rtant measure since it may
not be beneficial to precompute and store the rarely accessed spatial elements.

In comparison with the HRU algorithm, the selection handled in our algorithm
is at a deeper level and examines every precomputed element in a node to be mate-
rialized. This refined computation is more costly than examining only at a (lattice) -
node level. H'(.')wever the complexity introduced here involves mainly simple benefit
formula Computzrtlon which costs usually less than a spatial operation. Moreover, this
computation is done at the cube construction time but it will spee(l on-line spatial
computation or sa,w; substantial storage space, and is thus ‘worth doing. - a

An example of the execution of our algorithm is presented below.
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Figure 4.5: A lattice for the selected cuboids
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Example 8 A map with its spatial region partition is given in Figure 4.4 and a (cube)
lattice which represents the relationships among a set of selected nodes after execution
of the HRU algorithm is presented in Figure 1.5. Suppose that the“}mergeable groups
for each cuboid were extracted. We show them too in F‘igin‘e; 4.5. Some groups that
belong to a single cuboids may are connected with each othe}. but they still exist as
the separate groups (e.g.. {4, 6} and {7, 8} in cuboid ApByCh). AThils is explained
as follows. Only groups that belong to same{tupl_es may be merged, because they
describe the object with same values for nonspatial dimensions. Suppose the access
frequency of each cuboid is shown in Table 4.4. i | |

The access frequency of every candidate group (i.e., a set of connected regions) is
equal to the access frequency of the corfesponding node where it resides. If it resides
in more than one.node, its access frequency is the sum of the access frequency of all

the nodes where it resides. For example, group {4, 6} appears in two nodes, AgBoCy
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o
T o Node (CllBOid) Access frequency
AoBo(h ‘ 100
‘ ‘4030 350
A1 By Cy 80
A By ' 220 o
A B (o ., 70 : , t o
B 4 - 60
140 - 70
A - 50
' 4
- Table 1.4: Access frequency of the cuboids
¥
L
)
Group Freq. | dir |indir | total | dir | indir | total | dir | indir | total
7 “1.2” 70 140 60 | 200 | 140 0 140 [ 140 O 140
S| 12406787 60 360 0 360 | 210 0 240 [ 180 0 180
~1,3.4.67 120 480 0 180 | 240 0 240 | 240 0 210
1O =167 570 | 1710 | 360 | 2070 , V
16" 180 | 360 | 820 | 1180 | 360 | 70 | 430 |360 | 70 | 430
“4.6.7.87 70 280 180 | 460 | 280 | 180 | 460 | 210 | 120 | 330
"R 870 ) 1740 | 130 | 187 1740 | 130 | 1870 | '
Tablé 1.5: First three iterations of spatial greedy algorithm
‘ , R
»
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and 4; BoCo. Thus, the accumulated access ﬁequenc‘v of the group {lr 6} is 10{) PR

80 = 180, . |
1 Using the benefit calculation fornmlae,:Ta.}.)le 4.5 is generated which describes the’
process of benefit Cotﬁ])tltation' and premerged region selection, as shown belb\}’. At
the first iteration, starting with group Gz = {17 2)}' we get direct_bene fit(Gh) =
frequency( {1 2})x car(lm(llth {1,2}) =70 x 2 110 and m(ln ect benefzt(G”) =
frequency( ({1,2,.0.6,7,8})x (cardinality({1, )} —1 —60x 1 = 60. rIhus the total-
benefit = direct benefit + indirect benefit = 200. Attention, should be paid to the cal- =~
culation of the indirect benefit of some groups. Let us examine another group. Gléﬁ =
{1.4.6}. Its indirect benefit, indirect bene fit((Ghys) = (frequency( v{l, 2.4.6, 7.8} +
frequency({1,3.14.6})) x(cardinality({1,4, 6}> — 1) = (60 + 120) x 2 = 360. The
largest total benefit (with a value of 2070) is for the group {1,4.6}. and that group
is the first selected premerging group.

In the second iteration, for some groups, such as {4, 6, 7, 8}. the total benefit will
not be changed. However. for some groups direct benefit. indirect benefit, or both may
change. Take group {1.2,4,6,7,8} as an example. With the merge of {1,4,6} in the
first rouhd, the Car(lmalltx of {1,2,4,6, 7,8} reduces from 6 to 1. Therefore, its direct
benefit = frequency {l,u,4 6.7,8}) x cardinality( {{l 4,6}.2,7,8}) = 60 x4 = 240.
The indirect benefit is 0 since there is no any other larger group that can benefit from
merging this one. &

The- computatlon of the indirect benefit beconmes more Comple‘< like in the-case
of {4 6}. In the first iteraticn, {l 4,6}, {1,3,4,6}, {4.6,7.8}, and {1,2,1.6.7.8}
would benefit from merging {4,6}. Howeve{ after group {1,4.6} hab been merged,
it occludes groups {1.3.4,6} and {1,2,4,6,7,8}. In other words, it is more beneficial
to use {144,6:} than {4.6} to iriergé these twa groups. Being the only non-occluded
ancestor of {4,6}, group {4.6.7,8} solely contributes to the indirect benefit of {1.6}.
C'Ohse(lllent,l)'. the indirect benefit drops from 820 to 70 whereas the direct benefit is
not changed. 7 .

After executfof the third round, the three selected groupé are {{l, 4.6}, {7, 8},
{4, 6}}. The prpcess repeats until the number of groups selected reaches a specified

maximum number. O
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4.2.3 "~ Pointer Intersection Algorithm

The spatial greedy algorithin proposed in the previous subsection, although based 9/( ‘
heuristics, selects good candidates for premerge¥ Unfortunately, the algorithm may
not scale well enough in a presence of many map objects, and there are two major

reasons for that:

-

o All groups of spatial pointers have to be divided into disjoint groups i.e.. only

vegions that are connected may be rierged.

o All disjoint groups are énalyzed. The presence of a large number of mergeable
groups is likely to result in very expensive computation of the indirect benefit

i.e.. some groups may have a number of non-occluded ancestors.

Thus. we propose pointer intersection algorithm that favors spatial pointer groups
that appear in many cuboids and with high access frequency. In our subsequent anal-
vsis, we assume that a set of Cugéids*have been selected for materialization using an -
extended cuboid-selection algorithm similar to the HRU algorithm. We now examine
heuristics to determine ‘which sets of mergeable spatial objects should bebpre(.‘orvu~
puted. The general idea of the algorithm is as follows. Given a set of selected cuboids
each associated with an (estimated) access frequency, and min_freq (the minimum
access frequency threshold), a set of mergeable objects should be'precomputed if and
only if its access frequency is no smaller than min_freq. Notice that; a mergéd object
also counts as to be accessed if it is used to construct a larger object. Only after
the intersections among the sets of object pointers are computed and those with low -
access frequency filtered out, does the algorithm examine their corresponding spatial
object connections (neighborl;ood information). .

The pointer intersection algorithm is outlined as follows.

Algorithm 4.2.2 (Pointer Intersection Algorithm) A pointer intersection met-
hod for the selection of a group of candidate connected regions for precomputation

and storage of the merge results during the construction of a spatial (‘la‘ta.‘cube.
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-

Input: e A cube lattice which consiéts of a set of se}ect'ed;cui)oids o',bt.a"med; by
" running an extended cuboid-selection algorlithm similar to the HRU algb—
rithm [38].. The selected cuboids are mapped to a sequence of numbers

from the top level down.

® An access frequency table which registers the access frequency of each

cuboid in the lattice.

® A group of spatial pointers (sorted in increasing order) in each cell of

cuboids in the lattice.

e A region map which delineates the neighborhood of the regions. The infor-
E - .
mation is collected in an obj_neighbor table in the format of (object_pointer.

alist_of_neighbors).

o min_freq: A threshold which represents the minimal access frequency of a

group of connected regions to be premerged.

Output: A set of candidate groups, stored in merged_obj_table. selected for spatial
¥

premerge, and a spatial data cube selectively populated with spatial measures.

Method:

‘o The main program is outlined as follows, where mar_cuboid is the maximum

number of cuboids selected for materialization.

FOR éttboid_i =1 TO max_cuboid DO

(1)

(2) FOR cuboid_j = cuboid_i TO max_cuboid DO

(3) FOR EACH celli IN cuboid_i DO

(4) get_max antersection(cell_i, Cuboid_j, candidate table ):
(5) f‘rfquc‘ncy_compu.ting_&_filterin,g(candi(late:ta_ble);

(6) .spat'ial_con.neciivi!y.testing(C(Lﬂd‘i(l(tie.f(tblf*, connected_obj _table):

(7) 3/1m‘ed-qpatial.merg'ing(conne('te(l_obj_table. merged_obj_table);

(8) populate cube(merged_obj_table);
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. .
-

e The procedure get_maz.intersection (cell_i, cuboid_j, candidate_table) ﬁn(ls the -
maxlmal intersections between the cell cell_i and all cells within the Cub01d

cuboid_j. It is outlined as follows

PROCEDURE get _max_intersection(cell i, cuboid_j, candidate table) {

=0 (1)
(2) cellj = get_first_cell(cuboid j); *
s (3) v remaining cellt = cell_i:
(1) WHILE ([remainingcelli| > 1 AND cell_j ;é(O DO r
(5) mtuacctul_portzon = gel_max_antersect
(remaining_cell i, cell j):
(6)s IF |intersected_portion| > 1 H _A
(7) | THEN iIISCT't_C(ITl(li(l(LfG'(illt(‘I'.S(('t(’([4;2'l‘ffoll.(;71)1(15(1(([6J(lblf ):
(8) remaining_cell i -= illf:l'SC('lt"(l.[)OI’f’f()NZ
(9): . cell j = gcl_nt.l‘t_ccm(cu.boi([_j): _
(1)~ .} :
“(11) } o

The function get_mar_intersect(cell_i, Ce/l_j) can be implemented as follows. Set
two cursors. p; and p;. pointing to tho starting positions in cell_i and cell_j
1'esp(‘ctn'ely (where Ob_](?("[ pointers are sorted in increasing order). If both

» cursors point to the identical object, output the pointer to the resulting buffer
“and forward both cursors. Otherwise, forward the cursor which points to the
smaller pointer. This process repeats until one of the cursors reaches the end of

»

the set. The output is the resulting buffer.

Note that nsert_candidate (intersected_portion, candidafe_table) inserts the in-
tersected_portion into the candidate_table if such a portion is nonexistent in the
table together with cuboid ids. If the intersected portion is already in the can-

L]

didate table, only the new cuboid id(s) is inserted.

® The procedure frequency-computing € _filtering (candidate_table) is outlined as

follows.
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PROCEDURE frfquency_computmj_& f?[terzng(can(lz(late_tab[e) {

(1)

(2) FOR EACH entry p IN candidate _table DO
(3) , IF ma.r_frequency(p) < mm-jreq

(4) THEN remove p from candidate_table:
(5) } |

The function max_frequency(p) returns the sum of the frequencies of the cuboids
in which p or its supersets appear. This can be implemented by registering the
cuboid ids with each candidate in the candidate table and adding the frequencies

of those cuboids which contain p or contain a candidate ¢ being a superset of p.

The procedure spatial_connectivity_testing (cdndidaie-iabk: connected_obj_table)
is outlined as follows. For each entry e in the candidate_table, using the obj_neigh
bor table, repeatedly find the set of connected objects ¢ with maxif:lal cardinal-
ity. Then, put g into connected_obj_table, and remove it from e until no niore
grouped objects can be found. Finally, sort the grouped objects in the con-
nected_obj_table in increasing order according to its Car(linayﬁy“(i.e., the number

of objects in the group).‘

The procedure .shczi;'e-djpafial_mérg'ing (connected_obj_table, merged_obj_table) is
outlined as follows. For each group in the candidate_obj_table, check if any, of its
subsets has already been premerg(;d (candidate_obj_table is sorted). If premerged
subsets of the groups are found, use them to minimize the number of melge(l

regions; otherwise II](‘I&P the original map regions. ¢

The procedﬁre populate_cube (merged_obj_table) does not differ from the popu-

late_cube(merged_obj_table) procedure in spatial greedy algorithm. a
. .

Rationale of the algorithm. The algorithm is to find those spatial object groups in

the data cube which are frequently accessed and mergeable, and to perform spatial

merge for them off-line (during the spatial data cube creation time). The algorithm

works on the cuboids that are selected based on an extension to HRU. a well-known”

cuboid-selection algorithin [38] Lines (1) to (4) ensure that every pair of cuboids
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Cuboid_1. Cuboid-‘Z ’ _Cuboid_3
30 ' 15 20

Table 4.6: Access frequencies of selected cuboids

¥ .
v

is examined for each candidate cube cell which derives the maximal intersections
of spatial object pointers and stores theém into candidate table. Note that a self-
intersection for cuboids is performed as well. Line (5) removes from the candidate
table those candidates whose total access. frequency is smaller than min_freq. Line
(6) finds the spatially connected subsets within each candidate (a group of pointers
to spatial objects) and line (7) materializes ‘them and puts into the merged_obj_table. |
Optimization has been explmed in each ploce(lme/functlon For example, procedure
gel_mar_intersection, checks one cell cell_i against cuboid_j, by first finding the first
candidate cell in cuboid_j and then extracting the intersected portion. Afterwards the
iﬁtcrsectecl portion is removed from cell_i since there is no more such portion in the
remaining cells of the cuboid. ‘

Note. We now clarify the reason for applying the self—intersection in this algorithm
(Lines (1) and (2)), since it might not be obvious to a reader. There can be a number
of groups that appear in a single, vet freflllent cuboid and it is important that such
groups be identified. Were a self-intersection not applied, ‘these groups would be
skipped. The performance analysis, conducted in (haptel 5, will show that the self-

intersection has a significant positive impact on the effectiveness of the. algorlthm (see

Figure 5.6). (]

Example 9 Inorder to illustrate the execution of this algorithm, we revive the exam-
ple used for the rough measures algorithm. The map (Flgure 1.3), the lattice showing
selected cuboids (Figure 4.)) and the sets of pointers for selected cuboids (Table 1.1)
are identical like in Example 6. Let the the access frequency of each selected cuboid
be as shown in Table 1.6, and let min_freq threshold be 40.

After applying steps depicted on Lines (1) to (4) of the algorithm, we get a set

of candidates in Table 1.7. Raw access frequency of a candidate is a sum of the




&

Intersected portion | Raw access | Accumulated access | Total access
, | frequency ~ frequency ~ frequency
- {1,4. 7,20} 45 0 | 45«
{2,3.6.9} | 45 | 0 © 45
{10, 14, 19 } 15 0 15 —
{10+19} 65 0 65 «—
{1, 4} ' 50 15 65
{7. 20} . 50 15 65 —
{2, 3} 65 0 65 «—
{6,9} 50 15 65 «—
{1, 4. 13} 35 "0 35
e {7, 17, 20} 35 0 35
' {6. 9, 16} 35 0 35
{5. 18} 35 0 35
{8.12, 15} 35 0 35
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Table -1.7: Candidate_table for selected cuboids

frequencies of all cuboids in which the candidate is found as a maximal intersection.

For example. candidate {1, 4} is detected as a maximal intersection between cuboids

1 and 3. so that its raw frequency is 50. Note that {1. 1} appears in cuboid 2 as well.

but not as a maximal intersection with any other cuboid ( {1. 1. 7, 20} is a maximal
intersection between cuboids 1 and 2. \\hll( {1, 4, 13} is a maximal intersection
between cuboids 2 and 3). On the’ other hap(l the candidates that fully contain a
certain group contribute to the accumula{e(l access frequency of that group. The

accumulated access frequency of {1, 4} is l*"" access frequency of cuboid 2). Notice

that a single cuboid can be counted only" Oﬁcc in the calculation of the frequencies.

Finally, total access frequency is the sum of r:aw and ‘accumulated access frequencies.
The candidates whose total access flequergry is not below the threshold are shown
with an arrow («). To make Table 4.7 sn;aller, we do not show self-intersections in
this example. Since min_freq threshold is laliger than threshold for any of the cubords,
none of the candidates resulted only from a’self mtorsectxon can be merged.

5

After applying spatial_connectivity_testing plocedure we detect that the following
regions: {1, 4. 7}. {1, 4}, {2. 3}. and {6, 9} (Table 4.8) should be merged. At the first
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0,47
{1, 4}

) | {2,3}

h {67 ()}

Table 4.8: Regions to be premerged

glance, it seems that it is wasteful to store both {1. 4} and {1, 4, 7} since the former

is a subset of the latter. However, if both have high access frequency, it is beneficial to
store both for the fast response (avoiding on-the-fly spatial merge). Moreover, other
on-the-fly spatial merges may also benefit from storing both groups. For example, {1.
2. 4} may use the precomputed {1, 4}, whereas {1, 2, 4, T} may use {1, 4, T}. O

[

-
ey 4.2.4 Object Connection Algorithm .

In this subsection we present object connection algorithm, that is only slightly different -

from pointer intersection algorithm. While the pointer intersection algorithm first

computes the intersections among the sets of object pointers, and then performs

threshold filtering and examines their spatial object connections, the object connection
algorithm examines the corresponding spatial object( connections before threshold
filtering. '

The object connection algorithm is examined in the following.

Algorithm 4.2.3 (Object Connection Algorithm) Thé object connection method

for the selection of a group of candidate connected regions for precomputation and

~ storage of the merge results during the construction of a spatial data cube. ->

Input: The same as Algorithm 4.2.2.

-

Method:

L4



e
o THe main program is different from that of Algorithm 4.2.2 at Lineir(ﬂfl)‘ where L
connection is checked im‘mediately', before proceeding further. Thus. the old -

-

Line (6) i‘sb removed since it has been done in Line (4). ’ e .

h

FOR cuboid_: = 1 TO max_cuboid DO
FOR cuboid_j = ciiboid_i TO max_cuboid DO - o
: FOR EACH cell_i IN cuboidi DO ., o B

" get_maax_connected_intersection

(
(
(-
(

I =
o

Do)

)
)
)
4)

(cell 1, cubord_j, candidate _connected_obj _table);

—_—
It

) frequency_computing & _filtering(candidate_connected_obj table);

[=p)

) shared_spatial_merging(candidate_connected_obj table,
_merged_obj table); ) :
(7)  populate _cube(merged_obj table):;

: ¢
e Since only the procedure get_max_connected_intersection (cell_i, cuboid_j. can-

didate_connected_obj_table) is different-from the procedure‘get_ma.r_inte'r.section
of Algorithm 4.2.2, it is outlined as below. Other procedures are essentially the

same and thus are not presented here. B

(1) PROCEDURE gel_max_connected_intersection

(cell z, cuboird_j, candidate_connected_obj table) {

(2) cell j = get_first_cell(cuboid j); . .

(3) . remaining_cella = cell i;

(4) WHILE (|remainingcelli > 1] AND cell_j # ) DO { -

(5) intersected_portion = get_max_antersect
(remaining _cell 1, cell j);

(6) ~ IF [intersected_portion| > 1

(7) ’ THEN insert_connected.candidate
(intersected_portion, candidate_table); )

(8) remaining _cell 1 -= intersected_portion;

(9) cell_j = get_next_cell(cuboid_j);
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Note that the only difference from Algorithm 4.2.2 is at Line (7)"which calls in-
sert-connected.candidate rather than insert_candidate. The procedure insert_co-
nnected_candidate (intersected_portion, candidate_connected_obj_table) breaks the
iﬁtersected_pbrtion into a set of connected portions, by checking the obj_neighbor
table. Each connecte‘d portion with the length greater than 1 is inserted into
*the candidate_connected_obj_table if sich a portion is nonexistent in the table.
In this case, its combined access fréquency should be the sum of celli’s and
cell_j's access frequencies. If the connected portion is already in the table, the

access frequency should be accumulated. a

Rationale of the algorithm. The -major difference of this algorithfn from the former

connectivity checking after min_freq threshold filtering, whereas this algoritlim does
it at the insertion into thg candidate table. By looking at the algorithrns, onevn!ay
think that they produce identical results in terms of selected regions for premerge. In
the subsequent discussion wle will show that it may not always be the case.

Suppose that A and B are two groups detected by get_mar_intersect procedure.
MoreoV’%l‘, let us assume that both groups contain a common connected subgroup

C. In the case of pointer intersection algorithm these two groups will be_checked

for'spatial connectivity only if their access frequencies are no smaller than min_freq

threshold. On the other hand, if we apply object connection algorithn, groups A
and B will be divided into mergeable (connected) subgroups. Thus, group C willbe
inserted into candidate_connected_obj_table. Its total access frequency can be higher
than that of groups A and B, since it can appear in nglore cu@ojds (union of cubeids
for A and -B). Thus. it may occur that neither A nor B pass fr;quency threshold (in
pointer intersection algorithm) and that C' does pass frequency threshold (in object
connection algorithm). Note that the group C' does not get detected in pointer‘inter-

section algorithm, unless A or B passes the freqyency threshold. Therefore, pointer
»

~



* -

\CHAPTER 4. MATERIALIZATION OF SPATIAL MEASURES . 61

#F

intersection algorithm generates a subset of groups generated by object connection

algorithm. We mow provide a more formal explanation. -

Theorem 4.2.1 Let PIG be a set of groups selected by the pointer intersection
algorithm, and OC(G aset of groups selected by the object connection algorithm. We -

Claim»that PIG C OCG.

Proof. We first provide a proof that each group in PI( must be also in ocd.
According to the algorithm 4.2.2 each group S, S € PIG, must consist of con-

nected regions and its access frequency must pass min_freq threshold. Group S5 will

be also detected by insert_connected_candidate procedure of algorithm 4.2.3 and later

due to its sufﬁcient?acéess frequency wili be selected for the premerge. Thus, PI( is
a subset of- OCG. | o
Now, we prove that relation PIG = OCG does not always hold.
Let G = (/1. (4, ... GG, be groups of spatial pointers found in more than one cuboid

(i.e., intersections) with the following properties:

~ . . . T .
e For all groups in ¢, there is a common subgroup S that consists of connected

regions.
e There is no group outside (7 that has S as a subgroup.
e The total access frequency of every group in (i is below min_freq threshold.

Assume that group S does not exist among intersected groups i.e., it is pot detected
n proicredure get_max_intersection of pointer intersection algorithm.

Due to insufficient access frequency. none of the groups in G will be put in PI(¥
group. In addition. group S will not be detected by/algorit.h‘m 4.2.2. On contrary.
group S will be detected by insert_connected_candidate procedure of algorithmm 1.2.3.

The set of cuboids cuboids(S) in which it resides is

¥

cubords(S) = U cuboids(G;)

i=1

Since the access frequency of S is higher than that of any group in G. group S may

pass the frequency threshold and become a member of OCG.

1
S
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Connected | Raw access | Accumulated access | Total access
intersections | frequency | frequency - | frequency - |
47 5 0 7 | — e
{2, 3} 65 0. | 65
{6, 9} 65 0 65—
- {1, 4} 50 15 | 65— .
{1, 4, 13} 35 0 35
{1215} | 3. | 0 - S

Table 4.9: Candidate_connected_obj table for selected cuboids

Therefore, there may be some groups in OCG that do not appear in PIG. This
concludes the proof. - : | o : ' a.
In addition to its effectiveness, object connection algorithm has different efficiency
than pointer intersection algorithm. This will be studied in more detail in the.following

chapter. ' ' O

For the same example as for pointer intersection algorithm, the execution of Al-

gorithm 4.2.3 is presented as follows.

'

’Example 10 The execution of Lines (1) to (4) of Algorithm 4.2.3 will lead to a
set of candidate connected object pointer groups as shown in Table 4.9. Note that
the algorithm finds same maximal intersection groups like Algorithm 4.2.2 (see col-
umn “Intersected_portion” in Table 4.7). After insert-cbnnected-candidate procedure
is executed for each of the intersections, we get candidates shown in “Connected
intersections” column of Table 4.9. Similarly to Example 9, the access frequencies
are computéd and frequency filteringtapplied. Candidates that pass the frequency
threshold are marked with an arrow («). The marked groups are the regions that
are selected for premerge.

Since Examples 9,:an 10 contain only a small number of objects, the two algo-
rithms produce identical results. Our performance analysis will show that the case
described in Tileorem 4.2.1 occurs very seldom, and that it has a small impact on the

_benefits of selective materialization.
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4.3 Utilization of S-pétiél Measures in On-Line Processing

Clearly, there are three main tasks in the life cycle of a spatial data warehouse:-
creation, usage, and maintenance. The focus of this study is the process of creation =

of a spatial data warehouse. However, we devote this section to the usage ¢f a spatial -

data warehouse, gr more precisely, the usage of materialized spafia;l measures. Note
that the issue of"iqulaint,enance is not studied in this thesis.

Earlier in this thesis, we elaborated three methods for Collect}ng spatial measures,
namely collection of spatial pointers, approximate cbmpu[a,[,ion of spatial measures, .

. =
and selective materialization of spatial measures. While, the measures collected by
the first method can be utilizeéd similarly to nonspatial (numerical) measures, the
latter two methods need more discussion.

Despite having different accuracy and thus different objectives, both approcimate
compudation of spatia-l measures, and sel’ediuc materialization of spatial measures,
populate only portions of the cuboids in the spatial data cube. While the first. method
eliminates merged MBRs with low arca_weight, the second one filters out merged
regions whose materialization is considered to provide little benefit (while wasting
storage space). |

=~ - i

4.3.1 Utilization of Estimated Spatial Measures

Estimated, or roughly calculated spatial measures provide a user of a spatial data
warehouse with an insight into nonspatial and spatial properties of objects on the
map. Although they can seldom be used for final decision making, they can help the
user focus on the particular segments of the map. To make a decision suppbrt process
more fruitful, we suggest the implementation that allows users to dynamically change
the area_weight threshold. Moreover, we believe that approximate ’icomputation of

spatial measures should serve only as a coarse grain tool.
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4.3.2 Utilization of Precomputed Spatigl Measures .

» N . . ;
With a la;l'ge number of f;eclllehtl)f used spatial objects precompute(l and stored m the
rﬁerged_obj_l‘able, it 1s interesting to see how to find the best candidate set stored in
the table for efficient on-line processing. For example, suppbse the rrze“rged_obj_table
stores the following sét of merged regions: {1, 4}, {1, 4, 7}. {2, 3}, and {3, 3, 9}.
A measure cell derived by an OLAP operation may have the following set of spatial
pointers: {1.2,3.4,7,8,9}. A smart search algorii_hm inay return two precomputed
(merged) regions: {1, 4, T}, and {3, 8, 9}. with one additional spatial merge, {2}
o+ {3. 8..9}, done on-the-fly. Howdwver, an unintelligent algorithm may return two
precomputed regions: {1, 4}, and {2, 3}, with three additional spatial merges. {7} +
{1. 4}, {8} + {2, 3} + {9}, done on-the-fly. . - |

At the first glance, one may suggestbto first match the precomputed reg‘ioﬁs (‘OH-'
taining the largest number of Emefge(l objects, then proceed to those with smaller
number of merged objects. However, this may not always work well. For example.
suppose the merged_obj_table contains {1, ..., 10}, {1, .... 11}, {11, .... 20}, and
{12, ..., 14}. and the targeted measure cell is {1, ..., 20}. If we first select the
region containing the most elements, the result will be {1, ... 11}, and {12, ..., 14}.
However, the selection of {1, ..., 10} and {11, ..., 20} is a better choice.

We havesthe following technique for the selection of precomputed spatial objects
for a target T, which consists of a set of spatial object poingers. representing a spatial

measure cell resulted from a spatial OLAP operation. Let M be the merged_obj_table.

1. Create table S such that, S = {s | s € M As C T}. Notice that an element
of merged_obj_table M is also the element of table S, if and only if, it is fully
. contained within the target T If T is a large set, an index can be constructed |

on M and/or S for efficient search.

[ Q)

Search S to find all the maximal groups G such that

¥

G={glge SAgCT}

(V9192 € G) 1 # 92 = 1 N gy = 0)
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No - Set of premerged - Coverage | Num of premerged | Num of on-_ |
' : objects _ ‘ objects line merges -
1 {1,2,3}, {4, 7,8}, {5, 6}, {9, 10} 10 ‘ 4 4 '
, 2 {1, 2.3}, {5, 6}, {7, 8.9, 10} 9 3 4

3 1 {L,2,3,4}, {5, 6}, {7, 8,9, 10} 10 3 3

4 {1, 2,3, 4}, {5, 6}. {9, 10} 8 3 5

5 - {3,4,5,%. 7, 8}, {9, 10} 8 2 4

Table 4.10: Candidates for selection of premerged spatial objects

= This 1s implemented by finding the first match ¢ C T, extracting ¢, and then

. . L 4
recursively repeating for T — g¢.

All maximal groups (& are stored in the pool of candidates I'.
3. For each group G € I' calculate the following parameters:

e coverage: number of objects in (G
e num_of_precomputed_objects: number of premerged groups in (¢

® num_of_on_line_merges: number of objects that have to be merged on-the-

fly in order to compute the target T'.

s

@E.’learly, the following equation holds:

num_of_on_line_merges = cardinality(T) —coverage+numof _precomputed~

- objects

4. Among all groups in I' selecf the group with the smallest value for nu m_of_on_li-

ne.merges.

Example 11 ’Snppor's.eQa spatial measure cell I‘eSr_llltéd from an OLAP operation con-

3 tains the following set of spafial pointers: {1,2, 3,4,5,6,7,8,9, 10}. Assume that the
search of the merged_obj_table, M (Step 1) finds the following sét of precomputed
objects: {1,2,3}. {1. 2. 3, 1}, {3, 4, 5.6, 7, 8}. {4, 7, 8}, {5, 6}, {7. 8, 9, 10}, {9,
10}.
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Step 2 derxves the sets of candidates, shown on I‘able 4.10." In Step 4 gloup No. 3.

- is selected as the answer since only three ObjE‘CtS have to be merged on- the fly.
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‘Chapter 5

| Implemengtvation and Experiments

z

Thl@ Chapter consists of two parts, the presentation of GeoMiner: a sy stem prototype
for spavtlal data and mmmg, and the experimentalresults of our research. ‘Since
the GeoMiner svstem prototype has resulted from a joint work of Geo\hnel Research
Gloup mombers the author of this thesis will focus on his part. OLL\P engine, and its
importance for data mining modules. Since only a portion of the pl?bente(l research
has been implemented in the GeoMiner systein, a simulation-based performance study

was conducted.

-

5.1 Design and Implementation of the GeoMiner system

>
The GeoMiner system [36] is an extension and evolution from a relational data min-

ing system DBMiner [35] researched and developed in Intelligent Database Systemns

Research Laboratory at Simon Fraser University. At the present time the DBMiner*

system contains the following five data mining functional modules: characterizer, com-
parator, associator, classifier, and predzctm Several a(ldmonal data mmmg modules
mcludmg mining from time-related data, are at research and development stage We
adwsy the reader to look at numerous publications that explain DBMiner structure
and its data mining techniques [32, 33, 34, 35, 43, 44].

We are aware that data mining is unsupervised learning, and that a user has to

I

73
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-

direct the discovery procéss. Therefore, an important issue in V(iesfignrirng‘» and devel-

oping a data h]iﬂing system is providing a user with an easy and a straightfofward | e

way to formulate his/her mining requests. Due to our behef that the success of rela- |

tional (latabases should be credited in part to the c1eat10n of the standardized query

language - SQL, we suggest that Lhe’underhmng structure of a proposed data mining

lahguage be SQL’ In addition to expressing mining requests, in the form of rules, the

proposed language has to handle spatial predicates. such as close to, contains. inter-

sects, etc. We sugg‘c)st, a GMQL - Geo-Mining Query Language [37] for formulating

mining requests. ? 7 S . B
An ailfﬁilate presentation of discovered knowledge is yet another significant issue

for a data mining syvstem and dealing with spatial data adds even more importance

~to it: Only if spatiallvﬁelatod knowledgc is visualized, can it be interesting to a

- knowledge worker. Consequently, we designed and 1mp]emented various visualization

tools for all types of discovered knowledge.

5.1.1 System Architecture

’- -

The GeoMiner system is constructed on top of the DBMiner s‘\'stem Mining of nou-

spatial data is d]re(ted to the DBMiner system; whereas mmmo* of spatlal data and
the Iolatlonshlps between spatial and nonspatial ‘data are perf01 med by the dedicated

GeoMiner functions. The general architecture of the GeoMiner system, presented on-.

v

- + .
Figure 5.1, fedtures five units: ] _
. N . .‘; - #

».

1A\ set of (lis'cover\' modules that includes: geo-characterizer, geo comparator. v
~ geo- assocmtm “geo-cluster analyzer, and-gco- -classifier. We plan to develop two -

“additionial moduless gfo-plfdchm and geo-pattern .analyzer,

B . X

2. A data cube mining engine based on DBMiner discovery kernel for multidimen-

<

sional mainipulation of data.

3. A spatial database senel.,mcluded within Maplnfo Professional 4.1 690518[)1’11(‘

- »

Information Sy <tem
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‘ . ( Graphical User Interface ] -
’ 1 GeoMiner: Discovgry Modules ]
: Geo-cl)aracleﬁzer Geu-comparalor» i ,
- : N -
Leo-associator . Geo-classifier -
A L —
r i . '
Geo-cluster analyzer 1 Geo-predictor = .
- b oo e - - = jury
___________ e
- 1 Geo-pattern analyzer: t Future geo modules |
. s _______ o Lo -~ ] & °
- [ Spatial Database Server and Data Cube }
e - (Copvai o spat DB) - (o e
' & Figure 5.1: General architecture of GeoMiner
. A graphical usér interface for mtelactne (lata mmmg> and for display of mining
Iesultq in the form of tables charts, maps, etc. )
5. The data-. and knowledge-base, storing nonspatial and spafial data and their
L
concept hierarchies. &
. The functionalities of the five existing discovery modules are outlined as follows.

® Geo-characterizer finds a set of characteristic rules at multiple levels of abstrac-
tion from a relevant set of data in a spatial database. It provides users with a
multiple level and a multiple angle view of the data in a spatial database. By
using this modulﬁthe following question, for example, can ‘be answered: “Gliven

. spatial hierarchies of the United States ¥what are-general income patterns ac-

cording to region partitions?”.
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e Geo-comparator discovers a set of comparlson rules that contrast the general
“features of different classes of the relevant sets of data i in a spatlal database.

It compares one set of data, known as the farget class, to the other set(s) of

data, known as the contrasting class(es). For example, this module may.show - ,-
the differences in migration patterns in the United States ., or find the (?lusters
or features related.to the locations which differentiate the profiting stores from
the 710h¥proﬁting ones. . - - .
® Geo-associator extracts a set of strong spatldlly-related association 1ules from
a relevant set of data.in a spatial database. An assoeciation rule ;showq the - “
frequently occurring patterns r(o‘r 1'é:lla,t.ionships) a database [19]. A typfc&l spatial
association rule is in the form of *X — ) , where X and Y are sets of spatial
and/or 1101151)at1al predicates. For e)gdmple. an association. rule can reveal the
- relationships between golf courses and other nearby objects like- parks, roads,

lakes, clc.

- L &

® Geo-cluster analyzer uses an efficient algorithm CLAfiAfNS 154] to perform spatial
clustering. Afterit detects Clusters geo-cluster (zlzaly:él‘ finds nonspatial descrip-
tions of the clusters by using the attribute-oriented induction rmethod [32]. For
example, one can find how the stores are clustered and then, fn(l descriptions

>

for each cluster to determine appropriate marketing strategies.

® Geo-classifier adopts a generalization-baged decision tree induction method to
: e L " " T ,
build a classification tree that classifies a set of relevant data according to one
of the nomspatial attributes [44]. The classification tree is displayed and by
clicking on any of the nodes of the treea user highlights corresponding region(s)
on the map. For example, one may- classify states in_the United States according

to the median family ineome in a state.

The (lata mining modules (lescnbed above use spatial database server to extract -
data relevant to the data mining plocess, The spatial database used for the implemen- '

tation. Maplinfo Professional. provides a connection to many external databases using
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ODBC functionalities, lmport of data from other spatial data formats and que1ymg

of spatial-data using" natne version of Spatlal SQL. )
The data retrieved from the clatabaseq is analyzed by (lata mining modules. The
data cube underlying architecture enables fast manipulation (roll—up, drill-down, slic-
ing, dicing) and analysis of large amount of data. The multidimensional data analysis
utilizes concept hierarchies, which are stored in a_database. With the ascension of
a concept hierarchy, information becomes more general, but still remains consistent A
with the l'ower, concept levels. Take occupation concept hierarchy as an example.” Both
VLSI design engineer and systems engineer can be generalized to concept computer
cugineer which ip turn can be generalized to concept engineer, ‘which includes me-
chanical engineer as well. A similar hieraféﬁy may exist for spatial data. For example,
mn a generalﬁtion process, regions representing counties can be merged to states and
states cangbe merged to larger regions. Concept hierarchies can be built based on
the expert knowledge or, in the case of hungerical concept hierarchies, created au-
tomatically. The relational concept hierarchies mre stored as tables in a relational
database. The spatial concept hierarchies 2ontain precomputed spatial aggregations

. L 4
ta accelerate data analysis process.

@

L s '
5.1.2 Implementation of OLAP in the GeoMiner System

One of the essential features ﬁf GeoMlner is its ablllt) to perform multilevel spatial
data mining and 5p§1t1al data analysis. Data in spatial databases usually contains
detailed information at the primitive le\'el of abstraction, also known as raw data. It
is desirable to summarize a large quantity of data, and present it at a high abstraction
level. For example,-given climate data for a region, one may want to summarize this
detailed data. and present the general characteristics of the region’s climate. Such a
process would generalize raw data into concepts like cold, mild, hot (for temperature),
dry. wet (for precipitation), etc. Portions of the map (regions) that are described
ng the same high level concepts can be merged together. However, with a blind.
generalization, data may ‘be summarized to too high a level, and provide a common

sense knowledge. Thus, we stress the interactive and multilevel paradigm of the
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GeoMiner system. )
The system provides not only the powér of generalization (roll-up), but also t}}e
~power of specialization (drill-down). Whileeroll-up or reduction of a (linlellsibn is a
relatively simple concept, drill-down requires more explanation. One may wonder .
how a ;11'i]l-(lovvn~6pération can be performed and whether it introduces an additionat -
" level of complexity. Obviously, it cannot be accomplished by working directly on
a high level "dxboid. A value, once generalized, cannot be restored without being
S‘_@\od beforchand- . Therefore. we maintain a base cuboid, also known as the least
_?]éﬁfralzf:e(l uboid. When drilling-down to a specific cuboid, we effectively roll-up
from the base cuboid. In addition to typical OLAP operations on nonspatial data.
the GeoMiner system allows for OLAP on spatial data=ralso known as spatial OLAP.
The OLAP component of the GeoMiner system Co;}sists of two modules: charac_terl[:er, :
and comparator, that produce C/za-rat:fgg‘gigtic"aﬁZI“ rcom'paxrison rules respectively. We

\\now examine these types of rules in more detail by going through two examples.

- »

3 i % {;'t» . . .
Ei\\n:ple 12 Su]g"pose that a user wangs to éRteracterize (swmmarize) demographic

patterns in the United Stales by presenting the relationships among the regions with

respect to population size, gnedian family income, and percentage of people holding

. bachelor degree. This data mining request can be formulated with the following GMQL

-

query. N .

MINE CHARACTERISTICS

AS “USA states™ )

ANALYZE sum(pops\\ S 3 N

WITH RESPECT TO gé'o statename, ’ L
pop. ‘me(l_fa,m_inc\(gme. wit.hJ)eﬁméholor-ciegp '

FROM states_census |

WHERE time = 1996

-#

-

First. the system retrieves the data related to name of the state (statename).
population (pop). median family income {med fam_income), percentage of population
holding bachelor dcgree (with_bachelor.degp). and with time being the year 1996. (ico

is a spatial attribiite that corresponds to a map object.’



~~ eoMner

[ NorthEast 420000~ or_mote | 32200~37000 2260-31 60

1| NosthE ast 420000~ o_more | 37000~ 45800 NI 720722 60 1,083,464

; BBY (]| NodthE ast 420000~ or_more | 37000~ 45800 22 6031 60 265116132

b Asea of a pre presents 2 C[NoanEast 420000~ or_moie | 45800~0r_mote 2260731 60 11.017.304

’ vt o sumpoodl g s 420000~0s_mors | 3220037000 17 2672260 13108571
65.445.330 = d

4 9 4272295 [ NotthCentral | 420000~ or_more | 2820032200 1300717 20 2776755

8544333 I3[ NosthCentral__| 420000 or_mors | 28200~32200 17202260 7.334.758

B wih_bacheior_degp_0713 3 NonhCerrad | 420000 or_more | 32200~ 37000 1300717 20 16.391,274

PN e st ) NothCential | 426000 or_mote | 32200~37000 172072260 21.0393.73%

with_bacheior_degp_22~71 3| NoehCertral | 420000~ 0c_move | 37000~ 45800 172072260 11.430.602

wih_bachelor_dego_31"or_more | (71| NothCential _ | 420000~ or_more: | 0-28200 1300717 20 696.004

v [~ M| Souh 420000~ 0r_moie | 028200 1306717 20 12829.210

= 3 Souh 420000~ or_moie | 28200~32200 1300717 20 12.404.475

O souh 420000~ or_more | 2820032200 17 2072260 26.760.732

[ Souh 420000~ or_more | 32200~37600 17 20-22 60 19.416.142

L3 E 1 »

roondts T TEiBE *

Flgure 5.2: Display of spatial characterlstlc rules-

Based on the given query and the spatial concept hl(‘rdl(‘h\' for geo attribute

and nonspatial concept hierarchies for pop. med fam_nco

v, and with_bachelor_degp

attributes a spatial-dominated generalization is performed as-follows [53]. -

Spatial-dominated generalization triggers the merge of the connected regions, and
creates a set of larger merged regions. Effectivély, spat.i‘a.l descriptions of states, geo,
are generalized into larger regions like New England, Middle Atlantic, North Central,
etc. Ascending the spatial concept hierarchy leads to fewer objects. Generalization
of the spatial objects continues until the spatial generalization threshold is reached.
The spatial generalization threshold is defined as-the maximum number of l'egions n

a generalized relation. Generalized relation is a table that uses generalized values for

attributes (a table at the right-hand side in Figure 5.2)..

b
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After the spatial generalization process is performed, the nonspatial data is re-
‘trieved and analyzed for each of the generalizezkspatial objects using the attribute-
oriented induction method [32]. Three main stepk of the attribute-oriented induction

techinique are:

L. climbing the concept hierarchy when attribute valués in a tuple are changedrlt"’(r)’

the generalized values

LI - - ¥

- 2. removing attributes when further generalizatton is impossible and/or there are

too many distinct values for an attribute

3. merging identical tuples

The induction continues until a value for every attribute is gen‘(‘ralized to the
desired level, specified by the generalization threshold for that attribute. During the
process of merging identical tuples, the number of merged tuples is stored in additional
attribute count to enable quantitative presentation of the acquired kﬁowleclge. In our
example, sum of population for states in merged regions is also stored to enable
presentation of the measure “sum(pop)”. Notice that a single spatial object can be
described by multiple tuples in a generalized relation. This is the result of having -
different nonspatial descriptions for objects that generalize to the larger object.

The above process creates a generalized map of the United States (Figure 5.2).
p g p nitec g

However. we believe that at this. moment, fruitful and ipteractive OLAP is yet to ~

start. Drill-down or roll-up can be performed interactively on such generalized data
to zoom-in or zoom-out the generalized spatial regions or to examine the details of
their associated nonspatial properties. Invoking roll-up and drill-down OLAP oper-
ations fetches the cuboids from the lattice of cuboid$. The fact that the cuboids
contain materialized spatial measures greatly enhances mining at multiple levels of
abstraction. Figure 5.3 shows the results after (lrilling-’do“}n along spatial dimension
to present details describing the southern part of the United States. The results can
be presented in the form of a two-dimensional chart, pie chart on the map. and a

generalized relation.
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Area of a pie presents
value of "sum(pop30)"

5 43,566,853
~21,783.426.5
~-4,356,685.3

B with_bachelor_degp_0~13

with_bachelor_degp_13~17
with_bachelor_degp_17~22
with_bachelor_degp_22~31

[ with_bachelor_degp_31~or_more

Figure 5.3: Drilling-down along spatial dimension

In the presented example, mining is performed by generalizing first along the spa-
tial hierarchy. Then, this process triggers the attribute-oriented induction process on
nonspatial attributes to describe nonspatial properties of generalized spatial regions.
Therefore, such generalization is called spatial data-dominated generalization [53].

Alternatively to spatial data-dominated generalization presented in the above ex-
ample, nonspatial data-dominated generalization can be performed if a spatial concept

hierarchy is not given. This method includes the following steps:
1. Collecting all data relevant to the query.

2. Applying the attribute-oriented induction on nonspatial attributes, i.e., gener-
alizing to higher' concepts. For instance, median family income values in range

(10K : 20K] can be generalized to poor.

3. Collecting pointers to spatial objects that are described by the same high level

nonspatial concepts. These pointers are put in generalized tuples. Again, the
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process.
) ]

4. Potential mergihg of neighboring objects that belong to same generalized tuples.

The results of this process can be visualized in the form of thematic map which

present regions according to their generalized nonspatial descriptions. We now de-

~ .« scribe the last step in a little bit more detail. In some cases, melgmg of objects that

are compact enough (e.g., states) is not necessary and would onlv add to the overall
complexity. Thus, the current version of the GeoMiner system does not perform such a
~ merge. If the merge operation is to be performed; it could be significantly accelerated
by precomputing and storing the most frequently used spatial aggregations (merged

regions). .

Example 13 Suppose that a user wants to find the migration patterns in the United YA

States, and to compare regions with large increase in the population from 1930 to
1992 and regions where the population decreased during the same period. This data

mining request can be formulated with the following GMQL query.

MINE COMPARISON

AS “Migration Patterns”

ANALYZE sum(pop)

WITH RESPECT TO geo, statename,
pop, crimesl00000R, med fam_income

FROM states_census .

FOR “Significant_population_increase”
WHERE pop30_92P > 20 . ’

VERSUS “Population_decrease”
WHERE pop30_92P < 0

‘u‘é‘)‘
.

The query compares the two classes of objects with respect to spatial location

(geo). name of the state (statename), population (pop), ratio of crimes per 100,000

people (crimes100000R), and median family income (med_fam_income).
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To plocess this querv the system fust retue\es the Ielevant set of data from

& -
the relation states_census. The collected data is partitioned into three contlastmg

classes: “Signiﬁcant_populatzon_mcrmsg , Pop'ulat.zon_decrease , and “Others”. The

“Sig-ﬂmﬁcant_popu.lation_inc-p’éase" class contains states where populatiog béfwe_en 1980
and 1992 increased by more than 20% (where popS0_92P > 20). The ‘:‘Popula-"

. * . . .
tion_decrease” class contains states where population decreased in the same period

of time. Finally, the “Others™ class consists of objects that do mot belong to ei-

ther one of the first two classes. The objects belonging to the contrastlng classes

arc generalized to the same levels of concept hierarchies. Therl roll—up dul‘l—(z’ou'n

and slice operations can be applied ﬁxchron’ously on all classes. Generalization and
specialization are performed based on the hierarchies associated with the following di-
mensions: spatial dimension (geo) and four non-spatial dimensious: statename pop.

- E e .
crimes100000R. and med_fam_income. The measures contain two \'alues' count as the

default measure and aum!pop) to present sum of population in paltlcular regions. An

example of the result of the comparison query y exec ution is presented in Figure 5.4—"

« | ' -

5.1.3 Role of OLAP in Spatlal Data Mining

Presentatlon of summarized data is only one of the reasons for performing spatial

OLAP operations.. More importantly, we see OLAP s a tool that enhances spatial

data mining. Previously, we briefly described geo-associator, geo-cluster analyzer, and

geo-classifier modulés. The attractiveness of these mining modules is at their ability
to discover multilevel knowledge from a spatial database. When performing either
generalization or progressive deepening it is essential that the response time be small.
Underlined data cube technology provides the GeoMiner system with a reasonably fast

response time.

o

%, ?

S
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Area of a pie presents
value of the count

Significant_population_increase
| | Population_decrease
B Others

Figure 5.4: Results of a comparison query

5.2 Performance Analysis of Proposed Algorithms

In Section 4.2, we presented three algorithms for selective materialization of spatial
measures: spatial greedy algorithm, pointer intersection algorithm, and eobject connec-
tion algorithm. In order to evaluate and compare their effectiveness and efficiency, we
implemented the algorithms and conducted a simulation study.

The simulation is controlled by using the following parameters:

o number_of_objects on the map. Since the only spatial data type that we discussed

so far is a region, the map is comprised of regions only.
e maz_number_of_neighbors for an object.
e number_of_cuboids selected by the HRU cuboid-selection algorithm [38].

o min_number_of_tuples as the number of tuples in the most generalized cuboid.
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o mar_number_of-tuples as the number of tuples in the least generalized cubeid.
e maxr_frequency as the maximal access frequency of a cuboid.
® perc_of-groups to materialize (for spatial greedy-algorithm)?

® min_freq_ratio as the ratio (for pointer intersection/ object connection algorithm)
between minimal frequency threshold'and average access fréqueﬁcy of all cuboids.
Minimal fr.’equency threshold is used to filter out groups of spatial objects that
have low access frequency. Specifying the frequfency,threshold is done in an"
indirect way. We enter a ratio between the threshold and the average cuboid

- =

frequency, because it gives more control over the simulation.

o

We now explain the major steps of our simulation.

1. Generating a map.
A map is created by specifying values for number_pf_objects and mar_number_of-
_neighbors. We do not takeé into account size of the ma,[‘) objects (1'egions) lz}_n(l

the number of vertices.

Setting up a spatial data warehouse.

Q)

We create a spatial data warehouse by specifying three parameters: num-
ber_of_cuboids. min_number_of_tuples in a cuboid, and max_number_of-tuples in
a cuboid. Being primarily concerned with spatial measures, we do not compose
values for dimensions, and numerical measures. Instead, we generate a set of
I o ; : : . :
pointers to spatial objects for each tuple in each cuboid. In addition each cuboid

is assigned a random frequency in range (0:mar_frequency].

3. Selective materialization of spatial measures. |
We choose and execute an algorithm. For spatial grffdy aléorithm we specify a
value for-perc_of_groups to be materialized, whereas for the other two algorithms
we specify a value for min_freq_ratio threshol§. The chosen algorithm selects

groups of spatial pointers to be merged and stoted in a spatial data cube.

v .

; - = 5§
£
F
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4. Smmlatmg typical OLAP operatlon on the spatlal data warehouse:
We slmurlate posing of queries to the spatial data warehquse. Here we use cuboid : )
2 ‘freqtlenc1es generdted beforehand.  We also pose queries that are mirequent (do

not appear 111 the set of selected cuboids).

: 'The Hiap co‘Iitént of tuples, -and cubeids’ access frequencies are generated ran--
‘(lomh follomng umfor m distribution. We believe that other distributions should not

Sl“nlflCaI}tI\' aﬂ'ec’t the relative performance and thus would lead to similar conclusions.

i L_lhe %1mulat10n was performed on a Pentium 200MHz machine runnmg Windows \T",

T 4.0 Op.era.tmg system. The simulation code was written entirely in Microsoft Visial

(O 4.2

Inour plesentatlon of all three algorithms, we aqsumed the existence of obj.neighbor

; table that. accelerates checking connectivity of objects on the map. However. creation

“%f such a table is likely to take some substantial processing effort and thus there is an®

option to perform neighborhood test directly on the map objects.
We divide our performance analysis study into two parts. First, we analyze ¢ffec-
tiveness of the algorithms. Since the goal of selective materialization is to enhance

on-line processing, we study the usability of materialized groups. We are interested in

knowing (1) how much on-line processing time is decreased by performing off-line pre-

computation, and (2) what is the storage overhead that such precomputation yields.

Secorid, we compare efficiency of the algorithms in terms of precomputation running

time. Although precomputation running time is not even distantly as crucial as on-line

running time, we are still congerned with precomputation efficiency. The main reason
for this Concern is maintenance of a spatial data warehouse. Even though spatlal
objects may not very frequently change, their nonspatial attributes can change. Smce
we consider merge of objects with same nonspatial descriptions, updates of measures

(both spatial and nonsr)at,ial) may be quite frequent.

» - .4

5.2.1 Effectiveness of the Algorithms

In this subsection we examine effectiveness of the proposed algorithms. We are mainly
interested in determining the benefits that precomputation generates and the resulted

)
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storage’ overhead. We now define a few terms used throughout the subsequent analysis.

£

° s(u'mg in the number of disk accesses 7 o
The goal of materialization of spatial measures is getting short response tlmer
f01 OLAP operations. If-n spatial objects are to be merged during on- llne.

. processing it would take n + 1 disk accesses to read n objects and store the
Lesultmg - merged Ob‘]eC't. If these n objects are premelged only one (11_sk access

- (read) is needed. Moreover, since we focus on computation of spétial measures
we count only disk accesses to objects that are to be merged (1 in the above
example). Note that these Sbjects may be original spatial objects or already -
premerged objects. Thus, we define saving in the number” of disk-accesses as
the percentage of disk accesses that are avoided=(not necessary) due to off-line

9 . £

premerge.

-

o stomgf overhead : . -

Materialization of spatial measures mag vield large storage overhead. We plebent

storage overhead as the-ratio between total storage space needed for spatial

- -

measures and the space f01 the original- map objects.
2n

We first analwe spatial qlfedy algorithm in 1solat10n because of its dlffelent stop-
ping cl‘lt.el'lonn from that of the other two algorithms. Figure 3.5 shows the effectiveneéss

of Sp‘(l,tl.(ll greedy algorithm. The figure illustrates the benefits of selective materializa-

-

".*.tion, expressed as saving in the number of disk accesses durigpg on-line processing.

Noti‘;t.l‘la;t, in this experiment we considered only OLAP queries whose results are
‘(pac‘rtial’ly)‘mz#teriélized {chosen by the HRU algorithm). Later in this subsection we
will exal}lin‘e OLAP queries that are not chosen by the HRU algorithm. |

The sl()’pe for the benefit curve in Figure 5.5 decreases when.the num])el of mate-
rlallzed,groups increases. Our explanation to this is that the initial premerge obtains
a large hoost due to that many of the merged regions are shared by different nodes
and that the premerge leads to a relatl\el\ hig IPdIlCLg,OII ratio on the sizes of the
mvelged nodes. Such initial materlallzatlon really beneﬁts many subsequent OLAP
operations. W hen a certain proportion of all mergeable groups is materialized, the

candidates with such nice features may have been used up and the benefit becomes
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Figure, 5.5: Spatial greedy algorithm: benefits of materialization

' - | &
5 M s -

marginal. However. we feel that the simulation study only discloses such & pogential

trend. The concrete savings-and when the saturation pomt is reached can be only
tol(l by (‘\[)(‘I‘lnl(‘lllb with a large riumber of spatial objects i m the teal world situation.
Based on available storage space, the spatial data Wareh(yuse designer should deter-
mine the numnber of premerged groups. f\(‘(‘OI‘(llIl&;t(?“th(ﬁ:{f;&])el iment described above.
the materialization of :Sma.ll portion of groups leads to FEﬁso"nablv good performance

in ferms of the trade-off botween response time and t};le storage space.
:N

The remaining two algorithms. peinter. intersection and objfcl connection, are
Compale(l with réspect to their effectnencss in Figure 5.6. Here, we anal} ze benefit -
as a function of mm_frfq ratio, mj;loduce(l earlier in this section. The ﬁgme reveals

the following:

® The benefits of both algorithms decrease with the increase of frequency thresh-

old.

B

o There is only a slight difference befween effectiveness of the two algorithms.

v
« »

o If sclf-intersection is not appied. the benefits do not converge to 100%.
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It was expected that a highegAfequency threshold leads to the smaller number of
premerged objects and thus td the smaller benefit.. Like in the case of spatial greedy
algorithm, benefits for these two algorithms converge to 100% (redch 100% percent
“when no frequency threshold is appliﬁe(lr).; Threisligl;t difference between effectiveness
of pointer intersection and object connection algorithms follows from Theorem 4.2.1.
The difference is more or less mamural in our smwlatnon however only the real world .
application with a large number of spatlal objects can confirm a potential tren(l
~As we ewplame(l in our presentation of pointer- intersection an(l object connection
algorithms, performimg the self-intersection on cuboids vastly improves the beneﬁts of
materialization. If the self-intersection were not app‘lled at most 77% of disk acéesses
would be avoided dmmg on-line processing. When the frequency threshold. incréases
the differences become margma]

We used the results gathered in the previous two experiments to compare the
effectix’énos§ of all three algorithms. The objective of this perf(;rma,nce study was
to determine which algorithm selects best candidates for premerge and under which
conditions. In order to compare all three algbrithms, we had to find a common

denominator for the algorithms, and the natural choice was siorage overhead. Note
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that storage overhead i§ not an input parameters for any of the algorithms. -

" Until now. we have looked at benefits of precomputation for partially or fully ma-
terialized cuboids. i.e.. chosen by the HRU algorithm. We are. in addition, interested
in ii’ilpl‘O\'iI]g the response time for all other OLAP queries (those that are not even -
partially materialized). Thus, in the following experiment we generated a-number of -
queries that simulate on-liffe p’rocessing?ﬂnd checked how much the premerged ob-
jects can improve their response time. Being mainly interested in spatial measures we
created 01113: groups of spatial poinf’ers as an-answer to a query. The number of such
queries was as high as 100,000. :

Figure 5.7 shows that: .-

e For materialized cuboids, spatial gr‘ef*dy’algi)ritlml reaches the saturation point
faster than the other two algorithins do.

® Pointer intersection and object connection algorithms are better at handling

non-materialized cuboids.

-

This is analyzed as follows. First and foremost, it is important to realize that

pointer intersection and object connection algorithms select candidate gréups from a
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~larger pool than .'.s:[m#"iali greedy algonthni does.-Let us }ll'tristrrart.e? thls witha srmpiee\*—

ample. Suppose the grouAp (A,B) appears in two or fnoie tuples (in ’(lifférent Euboids):

but is always accompanied by some other Connected obJe(ts Thus, this group w il not

be detected by the greedy algorithm fgroups like (A.B,...) will be detected m‘stead),

~but it may be an intersection $etween at least two cuboids. On the other hand every

mergeable group extracteds
cuboid it belongs to. - - )

‘f"OIlSGqUélltly, pointer intersection]object connection algorithm selects a number
of small cardinality groups™that are common to a number of cuboids. _Note that a
premerged object‘m;y be used for a’ns'\\:’ering, an ()AL'AP query onlyiif it is fully con-

tained in one of the resulting tuples (it cannot be contained within more than one

tuple for a single query). Since premerged objects are computed on the basiSof ma-

terialized cuboids (chosen hy fhe HRU cuboid-selection algorithm), all these objects
are legitimate (‘andl(lates for answe’lmg at least one query. In general, plemﬂoed ob-
jects consolidated from a large number of anrlnal map objects are better candidates
“than the smaller ones. Thus, by not belectmg Tow cardinality groups spatial greedy
algoriilim utilizes storage bettuer than the other two algorithms do=For the above rea-
sofryls spatial greedy algorlthm outperfmms poiwnter intersection and object connection

algorlthms,m answertng the' OLAP queries whose results are materialized:

Exactly the opposite happens when the queries whose results are not materialized-

are poéed. The likelihood of fitting large (in terms of inner cardinality) premerged

obgécts into resulting ones is small. Thus, it is more beneficial to use sinall objects -

generated by pointer intersection and object connectagn algorit.h.mq This explains the .

bottom part of Figure 5.7. However, there is an issue of accessing premelged ohjects

that may not be overlooked when consulenhg non-materialized queries. The access

to spatial measures of a materialized cuboid is fast due to a highly iindexihg structure

of a.spatial data cube. Answering to non-materialized queries requires search for
best candidates among premerged objects. Note that cuboids for such queries are
not created off-line. Intuitively, premerged objects can be organized in a hierarchical

structure such as R*-tree structure. Nonetheless, further research in this direction is

~,

w L4 *

necessary. ¥

.the greedy algorithm, is also a self-intersection of a -
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Another observation from Flglue 5.7 is that curves for pomter mtemecnon and R

objcci connection algorithms intersect. This S]l’ﬂp]) shows that addltlona,l obJects =

(see Theorem 4.2,1) premerged by the latter algorithm are not .alw’ay_s very _useful for -

on-line processing. : , . ' -

The above analysis leads to the following conclusion: If only queries with material-
ized results are to be run againgt the spatial ‘(lata, warehouse, spatial greedy algorithm
should be used. On contrary, if there is no spec1ﬁc pattern in the usage g of the data
W alehouse and there are few queries whose results are ma:tenahzed pozm‘er -intersec-
tion or obfect connection algonthm should be use(l. We believe that latter COD(llthIlS

are more realistic in a real world application.

5.2.2 Efﬁc’iency of the Algorithms

.
The fdct that spatial greedy algorlthm has different stoppmg criterion than the other
two aloorlthms do. makes us unable to strictly compare efficiency of all three algo-
rithms. Thus. we first discuss the efficiency of spatial greedy algorithm and then com-

pare the efficiencies of pointer intersection and object connection algorithms. Despite

“this limitation, we will suggest the favorable conditions for each of the algorithms. We

elected to vary two parameters: ftnfnbﬁﬁof.@bjﬁcia and munber‘_of_cubm(l.s. Not only

that these two parameters are significant in our simulation study, but also and more

importantly, they are vital for a user of a spatial data wareliouse. In all experiments,

we fix the following parameters number_of_ nezghbozs = 10, min_number_of_tuples =

" 5, mar_number_of_ tuples = 100, max flequencJ ~-\100()

- Figure 5.8 shows the execution time as a function of number of objecwt.s in the
database. In this ex])é;‘iment we fix, the numbe’r of cuboids to 10. We can see that
spatial greedy algorithm is very sensitive to the number of objects in the database.
Since we assume that each cuboid covers the whole map, the snnulator generates (num-
ber_of_objects | mar_number_of_tuples, niimber_of- objﬁcis/ min_number_of_tuples) ob-
jects for every tuple. Thus, the first step of the algonthm,,dete(tlon of mergeable

groups 1s very éxpensive and it creates a large number of groups. Having a large
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Figure 5.9: Scalability of spatial greedy algorit}i,m as a function of number of cuboids

number of groupé does not (;nly increase the Iilimbel‘ of iterations in the greedy algo-
rithm, but also prolongs the execution of eacffiteration. Note that benefit for every
unmerged group has to be recalculated in every jteration of the greedy algorithm.
Not Su;};nsmgly, execution time has linear growth with the increase of percentage of
groups perc_of_groups) to be matenallzed.

Figure-5.9 shows the scalability of the algorithm when number of cuboids i increases
(the number of objects wa.§ set to 100). The performance of the algonthm 1s like in
the previous experiment. Thus, we-conclude that spatial greedy algorithm is equally

sensitive to the number of objects and the number of cuboids {views) in the data

~cube: Later, we will see that this property makes the algorithm very useful under ~

"y . . -

certain conditions.

We now focus on the remaining two algorlthms Figure 5.10 shows the per formance
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comparison of the algorithms when they are applied on maps_with different number of
objects. The number of cuboids was set to 10 for,this experiment. When the number
of objects is small, oéjcc[ connection algorithm has an_edge over pointer intersection
a.lg&rithm. However, by increasing the nurhber of objects, the performance of object
connection algorilt.hm significantly cilete-riorates, while pointer interscction algorithm
shows littlegsensif_ivity to the number of objeéts. ’ _ |

This 1s analyzed as follows. The first step of both algorithms is findingv the in-
tersecting groups among the tuples in the cuboids, After the 111tersect1ng groups are
detected, pointer zntersechon algonthm filters groups \\1th low access hequenC\ In
order to perform such a ﬁltelmg, the algorithm has to detect the total access fre-
quency of ’e\fery group (see max_fréquency function in Algorithms 4.2.2 -and 4.2. 3).;
The total frequency is a sum of the raw frequency and the accumulated frequencv
Computatlon of the accumulated frequency of a group is a very expensive opelatlon
since the alﬁorlthm has to find all groups that contain the group. Since pointer inter-
section” algorithm performs the above step for all intersections, there is a large time
overhead. In the case of object connection algorithm the filtering step is postponed
after connectivity test (see spatial_connectivity_testing procedure). A large number of
groups are eliminated in the conmectivity test ea‘rly in object connection algorithm.
For the above reasons, object connection algorithm outperforms pointer intersection
algoi'ithm when the maf) contains small fiumber of objects.

With the small_number of objects on the map, tuples in the cuboids contain

]
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" groups is small too. Increasing the number of objects leads: to the _tupks wifh m
" pointers, and thus to larger cardinality of intersected groups. However, the nutr]

of intersecting groups does not change much, and it converges to

¥ -

TlitmbGT_Off?lﬁéoidS' ) {:;‘ -
(tuples(i) x JZ:, tu.ples‘(J)r)fiv : |

where, M is maximal number of intersgctions, and tuples(k) is numbeF of tuples in
cuboid &

»*% "% Thus. the running time for pointer intersection algorithm only slightly increases

éﬁ?‘é‘i

with the increase of the number of objects. ,

» On the other hand, having. high cardinality groups introduces a‘huge précessi’ng "i‘
ballast for connectivity test a.ppliéd to &1l intersecting groups early in object connection -
algorithm. Being large, many groups are split into a number of mergeable groups so ;
that, the frequency filtering step éppliecl in object connection algorithm, that contains
rn,(z.r_fffquc'ncy function becomes more expensive than the-very same step in pointer
_intersection algofithm (dealing with more groups).

To canclude, object connection algorithm is very sensitive to the increase of the
number of objects on a rﬁap. Notice -that- all-experiments were conducted with
obj_neighbor t,abl;‘ created off-line. | . -

Another observation from the curves in Figjll‘C‘S.l’O is that the frequency threshold . =
is irrelevant for the execution time of object connection algorithm. This was expected :
since frequency filtering is the last step in the algorithm. On conﬁ‘ary, poi'n.ffrﬂZn-
tersection algorithm shows slightly better performance when the frequency threshold
increases. Notice that changing the frequency threshold does not influence execution
time of costly mar_frequency function.
~ We now compare the two algorithms w}th respect to scalability to the number
of cuboids in the spatial data cube. Figures 5.11 (a) and (b) show the performance
of the algorithms when applied to maps having 100 and 1000 objects respectively.

The curves in the figires show that object conneclion algorithm is superior to pointer

intersection algortthim when the number of objects is small. The former algorithm is
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Figure 5.11: Scalability of pointer intersection and object connection algorithms as a
_function of number of cuboids '

very insensitive to-the number of cuboids (with small'number of objects). However,

as soon as the  number of objects increases, we get results similar to the ones in _

Figure 5.10. -

We now analyze the observations from Figure 5.11 (a). Hawng a la;'ge number
of cuboids (lnectl) leads to large number of intersections. While object connection’s
algorithm filters a majority of the intersection groups in its connectivity test, pointer
intersection algofithm considers all the gl‘;oups in its mar_frequency function. If the
experiment were done without creating obj_necighbor table off-line, performances of
object co-nnfct?on algorithm would be not even closely as good. It is very clvear‘t,hat
creation of such a table off-line significantly boosts up the algorithms, especially the
'f;)bjfct connection one. Such a “create-once and use-many-times” model i is realistic
since it is likely that nonspatial properties of ma}; objects will change more-requently
than the map objects themselves.

Figure 5.11 Z'b) silﬁply confirms that poiiiter‘ intersection algorithm is better at
“handling large number of 0})J€Cts and it can be analyzed similarly to Flgure 5.10:

We now identify Condmons that faV01 one algorithm over the others.

n

*

‘o. We anticipate that future spatial data warehouses will be built on the following

-
L 4

two premises: large number of objects and relatively small' number of frequent .

queries. According to the conducted expegiments, we believe that pointer in-
tersection a]g‘orithm fits best into this dat® warehouse environment. Typical
applications that corffirm to above-fssumptions are regional weather pattern

- analysis, demographic analysis, real estate business, etc.

~
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. Howeifer. if the Anumber"_of‘ freqpieut, caiue‘riési is lfka;rge,:.or rt'here are no qu‘e’r_i;eswwvitfh» o

, ) = L 4
prevalent frequency, spatial greedy algorithm can be used.

o Lastly, if a spatial data warehouse is to contain few objects a data warehouse

designer could choose applying object connection algorithm for selective materi-

alization of spatial measures.

- Finally, the above analysts, as well the analysis conductéd in the previous subsec- e
tion, shows that pointer intersection adgorithm is likely to have the best performance o
among all three algorithris. - o " " S

- o
, .
.
\ -
&
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»

We summarize our research work in this chapter. Discussion on future directions in

spatial data warehousing and spatial OLAP follows ‘t',‘hé‘summavry of the research.

.
N

~

6.1 Summrary L « - %

-
-

In this thesis. we have studied. the Constluct]on of a spatial datd warehouse hased on

a spatial_data (ube model, which Consmts of both spatial and /nonspatlal dimensions

DIISIRA &
and measures Accordmgl\ we have made ,nece%a;l VI modifications to the star schema

model, (widely used for organizing data wirehouses of relational ‘data) that fac;lltatc

OLAP operations on the. spatlal data. ~
The focus of our study has been on spatial/ measures and their materialization.
; 2

We have shown that it is not wise to compuge spatial measures on-the-fly, however
p

that materializing them all would lead fo dramatic storage needs. Thus. we have

proposed three heuristic a.lgorithms for%cell—l)ased selective materialization, namely
spatial greedy algorithin, pointer zntcr ection algontlnna,‘an(l object connection algo-

rithm. The performances of the al orlthm have been studied agd<eompared with the
, g € RC I

_conditions listed for choosing one-over the others. In addition; a method for selection

of the best materialized sets of objects from a table storing all the materialized regions

has been outlined. We have also suggested an approximation method (rough measures

algorithm) for computation and storing of spatial measures.

{.()8

¥
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Currently, the mefhods studied In this thesis are'being inip]ehientéd in our spatial
data mining system, GeoMmerBé}.ﬂx hich takes spatial OLAP as the essential funC‘tIOI)y
module \10160\91 spatlal OLAP operations %\ve been integr ated ‘with spatlal dafa

mining modules in the GeoMlner Sy stem.

¢ P Y ) : .
oo .- ~( “

o . ° M

6.2 Discussion and Futufe Research Issues
: : s
The propoéé(l algorithms and their performance étudv present Eonvincing‘ arglii‘nentq
for scloct‘t\(‘ materialization of melgeable reglons for efficient Comtluctlon of spatial
data cubés and for pelfonmng spatlal OLAP opelatlorls 1\011(‘“]6‘](’88, we foresee
further 1111p10\ements and extensions of the algorithms. Thede and some issues that

should be considered imthe future are.outlined-below. '

e noise handling ]
Mergeable regions, discussed in this thesis, are specified as the regions that share
“some cofimon boundaries. »Howe_\’(’r,git is sometimes desirable to ignore small
separations and fnerge the _regio,ns"which are located very close. l'or example,

two wheat fiel(ls sepal‘ate(l by a highway can be considered Eﬁs one reéion. This

, case can-be handled by minor modifications of the algor 1thms that treat those
regions that are sepaldtod by very mineor (?elatn e) distance as connected (and

.

thus mer geable) regions.”

e utilization of materialized spatial measures
Access to spatial measures of a materialized cuboid is fast due to-a highly in-
dexing structure of a spatial data cube. However, answering non-materialized
. . 5 - !
cuboids requires searching for best candidates among precomputed objects. Ac-
cordingly, efficient -algorithms and data structures should be designed and im-

LY

plemented.

‘@ access frequency information
Our algorithms for selective materialization of spatial measures assume the ex-
1stence of information about the cuboid access frequencies. What if there does

not exist-such information initially? There are several methods to handle thls

’
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({n:’ method is to a,s§16n lmtlal access quuencv onlv to e even level I‘n the lattlce
of cuboids based on. some data, temantics or assuming that medium levels are
accessed. most flequentl) and low- levels are accessed less flequently than the ",
higher ones. The frequency counts can be adjusted based on later accessmg
records. Altelnatlvely we may choose to materialize every mergeable group ac-
cessed initially, record group access frequenmes, and choose to throw away the

later rarely used groups when disk space runs low.

R ~ -

- N

- o size.of the regions . e N
The algorithms consider the access frequen(‘} and the car clmallt\ of the merge-
able groups but not the concrete size of the mergeable regions. However, some
regions could be sub\%tantiallv larger or more complicated and thus'take substan-
tially larger spacq and more COH]plltdthIl than the others. A possible'solution »

ccould be to add the compression ratio bcneﬁt which is the ratio in size between

'
-

th(i premelge(l and not premerged I‘PglOHS

- P

e other spatial measure operations 7 ‘
The proposed algorithms address only the region merge opere;timl‘s in the spa-
t{al measure computation. We beliéye that the principles discussed here are
generally applicable to other spatial measure operations, such as thematic map
overlay, spatial join [30, 51]. etc. Take map overlay as an example. If a measure
in a spatial data cuboid represents an overlay of multiple thematic maps, such
as altitude and temperature rhapS it will conmsist of a nontrivial overlay. map
both insize and effort .of computation. Selectlve materialization of such o»ellav
for frequentl\ used groups of spatial objects seems to be essentlal and thus the
studied principles should be applicable. However, the concrete algorithms have

~yet to be explored. A '

e automatic generation and dynamic adjustment of concept hierarchies ~

One of the important features of our research is the existence of concept hi-

erarchies and we assumed that they are created by users or domain experts.

i
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Howéver, it is preferé,bl'e ta genefafé thém aﬁtomatircallv' based on the data dis-
tribution. \Vhlle automatlc generation and dynamic a(ljuqtment of nonqpatlal
hierarchies have béen studied [33], no ‘work has been 1eporte(l on solving these
problems in the domam of spatlal concept h}erarchres Farther advances in thlb . e

“direction could grea‘tl“\v enharrce spatial OLAP, and make it more robust. -

°

e data mtegratlon
- ‘ ; Spatial data is usually stom(l in (llﬁelent industrial fnms and gO\elnment agen- . :
< cies using different data formats. Data formats are both structure-specific and

* vendor-specific. There have been a lot of work on data integration and data
exchange, but with little success. These issues have l)econ:lé'crlfcia.l with' the

i . emergence of:data warehquses. -

> e various application domains ,

. We believe that the pf‘inciples of cell-based selective materialization for com-
putatlon of spatial (latag’cubeq are nat confined to spatial data onl\ Oth(;g ’ L
databases which handle Comple‘< objects, such as .multlme(lla (latabdse en- :
’omeelmg design databas'és will encounter similar problems.and it is essential
o v to perform object-based selective nla.teTlajlzatlon as a space/time trade-off for

CT efficient OLAP operations. N

Several very important issues, not addressed in this thesis, are the efficient storage,

indexing, and incremental update of spatial data cubes, as well as caching of spatial

.measures. Some of these problems have been extensively stu:diéd by the (relatienal)

OLAP community. Some research results, particularly for indesing and incremen-

tal update, can be parti"ally applied to spatial data cubes. However, the selectively -~ - m

populated cuboids in a sI;atial data cube, as opposed to fully populated cuboids ina |

nonspatial data cube, call for new. refined methods. ) | :
sWith the recent success and great- promise of OLAP‘teCh‘nology;' spatial OLAP

holds a hig-h promise for fast and efficient analysis of large amount of spatial '(la'ta

Thus, spatlal OLAP is e‘<pected to be a promising direction for both research and

development in tho vears to coune.
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