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Abstract 

'4 d-dimensional toroidal mesh can be constructed from a mesh (grid graph) by adding 

wrap-around connections in each of the d dimensions. If the wrap-around connections 

are skewed, then the resulting graph often belongs to a class of Cayley graphs called 

circulants. For a triangular mesh the graph is a chordal ring of degree 3. We define a 

similar class of odd degree graphs, odd-circulants, which are constructed by deleting 

one edge from each vertex of a circulant graph. Broadcasting algorithms are developed 

using geometric and tabular techniques, assuming an all-ports (shouting) communica- 

tions model with circuit-switched routing. For N vertices and degree A the algorithms 

broadcast in l ~ g ( ~ + ~ ~ N  rounds (matching the 'lower bound). We consider only values 

for N of the form ( A  + l)nd where n and d are integers. The main part of the thesis 

develops broadcasting schemes to reduce the total path length travelled by a message. 

The diameter of a graph is a lower bound on this total path length and, for values 

of n greater than 1, graphs of even degree give total path lengths less than 1.2 times 

the diameter of the graph. For broadcasting on a d-dimensional toroidal mesh with 

( A  + l)nd nodes we show that the ratio of total path length to diameter tends to 1 as 

d increases, provided n is greater than 1. 
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Chapter 1 

Introduction 

1.1 Motivation 

An important part of massively parallel computers is the network of processor inter- 

connections. Algorithms for such computers often assume the existence of efficient 

communications primitives to transfer information between processors in an orderly 

way. This thesis examines broadcasting (the transfer of a single message from one 

node to all other nodes) on a mesh network with wraparound connections. 

By using wraparound connections the mesh forms a torus and the corresponding 

network graph is made vertex-transitive. As well as reducing the graph diameter, 

this symmetry generally simplifies broadcasting algorithms. The diameter of the 

torus graph is still large (n) compared with the hypercube (log N ) ,  but circuit 

switching techniques described in Section 1.3 can reduce the delays associated with 

a large diameter. Because of physical constraints on device packaging and the layout 

of connections, simple mesh networks have practical advantages over many other 

topologies. 

An optimal broadcasting algorithm on a 2-dimensional square mesh torus is de- 

scribed in Peters and Syska [13], in terms of a recursive tiling. This thesis extends 

the tiling method to three dimensions and higher. 

Tilings of the torus are difficult to visualise in higher dimensions and an alternative 

approach has been adopted. A different network has been chosen which is similar to 
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the torus but which has allowed us to develop a simple and efficient broadcasting 

algorithm. The wraparound torus connections are skewed in such a way as to change 

the torus network graph to a circulant graph (which we will also refer to as a skewed 

torus graph). In essence we are choosing chord lengths for the circulant graph so as 

to approximate a torus mesh network. 

This combination of the properties of a mesh with those of a circulant graph has 

already given useful results in fault tolerance (Bruck, Cypher and Ho [2]). Algorithms 

for d-dimensional skewed torus networks can be designed using a 1-dimensional circu- 

lant graph, which is much easier to visualise and can also be modified to have nodes 

of an odd degree. Several authors (see Section 1.2) have described the advantages 

of the hexagonal grid torus which is naturally skewed. Representing the hexagonal 

grid torus as a circulant graph suggests that the chord lengths (which differ by only 

1) are badly chosen for some applications. Vertices of the three dimensional skewed 

torus have the same degree as those of a hexagonal grid torus, and when viewed as a 

circulant graph the skewed torus only differs from the hexagonal grid torus in having 

its chords spaced further apart. 

Analysis of the skewed torus as a circulant graph leads to broadcasting algorithms 

which have total path lengths only slightly larger than the diameter of the graph. 

Only broadcasting algorithms have been considered in this thesis and the algorithrns 

developed place tight restrictions on the number of vertices in the graph. This is 

not a property of the graphs but results from assumptions that,  in every round of 

the broadcast, each informed node sends the message to  the maximum number of 

uninformed vertices, and also that recursive techniques will be used. Further work is 

required to determine how well the skewed torus is suited to other network algorithms. 

1.2 Background 

The initial stimulus for this work comes from Peters and Syska [13], which describes 

an optimal broadcast algorithm on a square mesh torus in two dimensions, and shows 

its equivalence to  recursive tiling. Their algorithm broadcasts to N vertices in log,N 

rounds. 
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The same tiling has been used independently in Tsai and McKinley [16] for meshes 

without the torus connections by making minor adjustments at the edges. They also 

consider algorithms which use only 3 of the 4 ports available at each vertex, giving 

the effect of a degree 3 graph and requiring log4N rounds for a broadcast. 

Some advantages of two dimensional hexagonal meshes are discussed in Chen, Shin 

and Kandlur [4] and also Bruck, Cypher and Ho [2]. Hexagonaal meshes have a partic- 

ularly elegant tiling described in Vince [17]. Recently Descrable[7] has shown a Cayley 

graph representation of a hexagonal grid which they have named the Arrowhead Torus. 

This has a recursive structure which is useful for information dissemination. 

Another variation is the error tolerant mesh in Bruck, Cypher and Ho [2] which 

is related to the skewed torus described in Chapter 3 of this thesis, and also uses 

the approach of embedding a mesh in a circulant graph. Bruck, Cypher and Ho [3] 

approach fault tolerant meshes by defining extra edges along redundant dimensions 

which are linearly dependent on the standard coordinate axes for the mesh. 

Recently Tong and Padubidri [15] have analysed meshes formed using the diagonal 

connections between nodes. The results of Bruck, Cypher and Ching-Tien [3] show 

that these are often isomorphic to normal square meshes and in some cases they are 

isomorphic to  skewed torus meshes. 

General types of meshes are treated fully in Conway and Sloane [5]. 

Relations between various tilings in 2 dimensions are discussed in Senechal [14] 

and Grunbaum and Shephard [9]. 

This thesis views a skewed torus mesh as a circulant graph and thus generalises 

many of the above approaches. 

1.3 Definitions and Properties 

Two-dimensional torus network A p x q two-dimensional torus network consists 

of pq nodes, each with a label ( 2 ,  j )  where i E 2, and j E 2,. Each node (i ,  j) 

is connected to  the four nodes 

( i f  1 m o d p , j  f 1 mod q).  
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The torus network can be derived from a p x q square rriesh network by connect- 

ing each node at the (rectangular) boundary of the mesh to  the corresponding 

node on the opposite side of the boundary. The torus network can thus be re- 

garded as embedded in the surface of a torus. In graph-theoretic terms, a one- 

dimensional torus network can be represented by a cycle and a two-dimensional 

torus network by the direct product of two cycles. The direct product G x H 

of graphs 

G = (VG, EG) and H = (VH, EH) 

is the graph (V, E )  where V is the cartesian product VG x VH and E  is the union 

The torus mesh has a diameter of L;J + I!]. Often p = q to give symmetry 

and to minimise the diameter for a torus of p x q nodes. For n odd, an n x n 

2-dimensional torus has a diameter of n - 1. 

d-dimensional t o r u s  ne twork The two-dimensional torus network graph can be 

generalised to  a d-dimensional torus graph defined as the direct product of 

d cycles, Assuming each cycle contains n vertices, there are nd vertices and 

the diameter of the torus graph is d [ : J .  The graph can be regarded as being 

embedded in the d-dimensional surface of a torus in (d+l)  dimensions. The torus 

in (d + 1) dimensions is a d-dimensional cube with opposite (d - 1)-dimensional 

faces identified. 

(The torus is also known as the k-ary n-cube: for example, Linder and Harden 

[lo].) 

Skewed t o r u s  ne twork When the graph derived from a square mesh network is 

regarded as being embedded in the surface of a torus, the torus is represented 

as a square with opposite sides identified, and with the edges of the graph drawn 

parallel to the sides of the square. It is possible to draw the graph so that edges 

slope relative to the square and connect up in different ways at opposite sides 
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of the square. We will define this as a skewed torus connecttion. The new graph 

formed in this way is often a circUlant graph, and this thesis concentrates on 

skewed torus networks represented as circulant graphs. 

Chordal ring graph A chordal ring is a degree 3 graph with an even number of 

vertices, formed by adding one edge to each vertex of a cycle graph. If the 

yertices of the cycle are labeled 0 to N - 1 around the cycle, where N is even, 

the added edge incident on vertex i is defined as incident at its other end on the 

vertices 
i + c  mod N for even i 

i - c  mod N for odd i 

where c ( the chord length) is an odd integer less than or equal to N/2 .  When 

the cycle is drawn as a circle, the added edges form chords of the circle, giving 

the graph its name. We will refer to the cycle as the main cycle of the graph 

and the added edge at a vertex as the c-chord where c is replaced by its actual 

length. For consistency, we will refer to an edge which is part of the main cycle 

as a 1-chord. ( Chordal rings are sometimes defined differently in the literature, 

for example as being an alternative name for circulant graphs. ) 

Circulant graph A circulant is a graph with N vertices labelled 0 to N - 1. Its 

edges are defined by a set of chord lengths {co ,  el,  c2, . . .), with edges connecting 

vertex i to  vertices in the set 

It is an even-degree graph unless one of the chords is of length N / 2 .  Its name 

is derived from its incidence matrix, which is a circulant matrix. (Some authors 

ornit the negative edge from the definition, as one node's negative edge is another 

node's positive one.) We will restrict our attention to  circulants for which co = 1, 

and the edges corresponding to co will form a Hamiltonian cycle corresponding 

to the main cycle of a chordal ring. As with the chordal ring, we will refer t o  

this cycle as the main cycle and to  co as the 1-chord. 
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Odd-Circulant graph Circulant graphs normally have even degree. To investigate 

graphs of odd degree we consider a generalisation of the chordal ring and circu- 

lant graphs, and define an odd-circulant graph by removing half of the chords 

of a particular length from a circulant graph. Even-nurnbered vertices have a 

negative chord removed and odd vertices have a positive chord of the same chord 

length removed. This partially removed chord length will be referred to as the 

hlternating chord and the chords of other lengths as symmetric chords. As 

with the chordal ring, the number of vertices must be even and the removed 

chord must have an odd length and (for our algorithm to work) we choose it to 

be the longest or next to longest chord. Note that in some cases the graph is 

isomorphic to  one where a shorter chord is the alternating chord. 

Circuit switched routing Communication between distant vertices in a network 

can be improved by circuit switched routing hardware, whereby the source ver- 

tex sends a header containing the destination address through the network to 

'build' a path. At each intermediate vertex on the path, input and output 

ports used by the header are connected. When the destination vertex receives 

the header, it returns an acknowledgement to the source vertex, establishing a 

direct connection between source and destination. The bytes of the message 

are then sent in pipeline fashion. Since the message is switched through in- 

termediate vertices there is no need to buffer the entire message. The links of 

the path can be released as the last byte passes through each vertex, or by an 

acknowledgement from the destination vertex when the last byte is received. 

Wormhole routing Circuit switched routing can be implemented without having 

an acknowledgement returned when the path has been established. Instead, 

the remaining bytes follow the header immediately in pipeline fashion and the 

last byte releases the switches as it passes through. This method is known as 

wormhole routing. 

Link-bounded or 'shouting' communication models allow a processor to use all its 

links simultaneously. In contrast, the processor-bounded (or whispering) model 
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allows the use of only one link at any given time. We will consider only the 

link-bounded model. 

1.4 Model of Computation 

1.4.1 The Linear Cost Model 

This thesis uses a linear cost model with link-bounded circuit-switched routing, which 

is the same model as in Peters and Syska [13].  The model assumes that the transmis- 

sion time for a message has 3 components: 

0 a fixed startup time of cx to initiate a message 

a switching time of S for each vertex along the path 

0 a transmission time of r for each character in the message, where 1 / ~  is the 

bandwidth of the communication links. 

To send a message of length L through k vertices to  its destination thus costs 

cr + kS * Lr. 

Other factors which affect transmission times are assumed to have been absorbed 

into the constants a,  S, T and their effect is small. For example, routers can 'switch 

through' several paths by connecting pairs of ports and there may be contention when 

these paths are being set up. However, there is no router contention after the paths 

have been established, and no buffering of messages, so the propagation time of a 

message from source to destination is not affected by the number of vertices through 

which it is switched or the number of other messages that are being switched through 

those vertices. 

1.4.2 Broadcasting Assumptions 

Only vertex-transitive networks will be considered, so it is sufficient to describe the 

broadcasting algorithm starting from any vertex. A broadcast is broken into rounds. 
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Initially only one vertex is informed. At each round, every informed vertex can send 

out the message on all its ports. (A 'shouting' model is assumed.) Rounds are not 

allowed to overlap: a round starts when all activity for the previous round has finished. 

Edges of the network graph are undirected but only half-duplex communications is 

used (in the context of broadcasting it would be perverse to send the same message 

along an edge in both directions at once). The paths used by the messages during 

any round must be edge-disjoint, but not necessarily vertex-disjoint. 

The total time to complete a broadcast is the sum of the longest time for a message 

transmission in each round. Writing k, for the maximum path length in round i, if 

there are R rounds with I{ = C k,, then the total time to complete a broadcast is 

For N  vertices, each of degree A, the minimum number of rounds is  log^+^ N 1,  and 

the minimum total path length must be at least the diameter of the graph. 

In this thesis for simplicity we always choose N  to be a power of A + 1 so that 

the lower bound on the number of rounds, l ~ g A + ~  N ,  is an integer. The skewed torus 

network in d  dimensions is graph of even degree, with A = 2d ,  and we will only 

consider values of N = ( 2 d  + l)nd where n is an integer. Similarly for odd-circulant 

graphs with degree A = 2d - 1 we will assume N = ( 2 d ) n d .  

The main algorithm described in Chapter 7 achieves the minimum number of 

rounds and has a total path length within a small multiple (less than 1.2 for graphs 

of even degree) of the diameter of the corresponding normal torus network. For the 

skewed torus network in d  dimensions, this ratio of the total path length to the normal 

torus diameter tends to 1 as d  increases provided n is greater than 1. Note, however, 

that the number of vertices, N  = ( 2 d +  l)nd, increases extremely rapidly with d:  when 

n = 2  a value of d  = 3 gives 117649 vertices. 

Path lengths for broadcasts on graphs of odd degree are similar, but there is no 

standard torus to compare with. Instead we compare the path length of the broadcast 

with an estimate of the diameter of the graph. 
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Outline of Thesis 

Chapter 2 discusses the visualisation of a broadcasting algorithm on a mesh network 

in terms of spanning one dimension at a time and as a recursive tiling. It shows how 

the normal wraparound torus connections can be modified to make the corresponding 

graph into a circulant. 

Chapter 3 derives a near optimal solution for the square mesh with skewed con- 

nections in 2 dimensions, and Chapter 4 extends this to  3 dimensions. 

Chapter 5 gives a geometric solution to broadcasting on a triangular torus mesh, 

and derives constraints on the chord length in the corresponding chordal ring graph. 

Chapter 6 extends the idea of circulant graphs to odd degree and solves the re- 

cursive broadcast problem for degree 5. A geometric interpretation is given as tiling 

a mixed triangularlsquare torus mesh in 3 dimensions. 

In Chapters 7 and 8 these results are generalised to  graphs of any degree. Although 

these results were inspired by geometric properties of the skewed torus-connected 

mesh, they are dealt with in terms of the corresponding circulant and chordal ring 

graphs. The results are summarised in Chapter 9. 

Some associated work has been included in appendices: 

Appendix A describes alternative approaches to tiling the normal torus-connected 

mesh in three dimensions. 

Appendix B derives the maximum number of vertices for a fixed diameter of skewed 

torus mesh, and discusses some relationships between square, triangular and hexago- 

nal meshes. 

Appendix C describes how to decide if a tiling can form a torus. 

Appendix D looks briefly at the practical layout of a d-dimensional torus network. 



Chapter 2 

Broadcasting Visualisat ions 

2.1 Introduction 

This chapter describes broadcasting in terms of 

Spanning one dimension at a time for a normal torus 

Tiling n-dimensional space for a normal torus 

Circulant graphs related to tilings for a skewed torus 

For each method we describe a broadcast strategy with up to  125 vertices. The chapter 

ends by describing a tabular format for broadcast schemes on circulant graphs. The 

tabular format is treated in detail in Chapters 7 and 8. 

2.2 Describing Paths 

A broadcasting algorithm must decide which vertices to  inform at each round and also 

find edge-disjoint paths through the network graph. These are to be chosen in such a 

way that Izi (the total path length for all rounds) and R (the number of rounds) are 

minimised. Correctness and optimality require that each vertex be informed exactly 

once. 
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In each round, each informed vertex sends to a fixed number of target vertices equal 

to the degree of the vertex. When developing algorithms, vertices will be numbered 

from 0 to N - 1 and the paths will be described in two ways: 

The vertex numbers along the path, starting with the source vertex and ending 

with the target vertex. These vertex numbers will generally be given relative 

to the source vertex, so the source vertex will be thought of as vertex 0. Thus 

a path from source vertex x is given by adding x (modulo N) to each of the 

vertex numbers along the corresponding path from vertex 0. 

The number of steps along each coordinate axis of the geometric mesh represen- 

tation, ignoring the order of steps. Thus a path will be expressed as a vector of 

dimension d relative to the source vertex. (These vectors do not form a vector 

space because of the skewed connections.) 

We often ignore the underlying geometric model and describe paths in terms of 

chord lengths in a chordal ring, circulant or odd-circulant graph. Each chord 

length corresponds to a different coordinate axis. Each vertex of a circulant 

graph is incident on two chords for each dimension: the positive and negative 

directions along each axis. For the chordal ring or odd-circulant graph there will 

be one axis where the corresponding chord exists only in the positive or negative 

direction of the axis, depending on whether it is an odd- or even-numbered 

vertex. 

2.3 Broadcasting to One Dimensionat a Time 

In the link-bounded model with vertices of degree A,  each vertex can inform at most 

A other vertices in one round, to give A + 1  informed vertices. Thus a broadcast can 

inform at most ( A  + l ) R  vertices in R rounds. We can regard the (A + l ) R  vertices 

to be in R-dimensional space 
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where a vertex is represented by a vector (x1 ,x2, .  . . , x R )  The natural broadcast 

scheme is to span one dimension at a time, as in Fig 2.1 where the lines represent 

paths rather than edges of the graph. 

Round 1 - 

Figure 2.1: Spanning one dimension at a time 

After r rounds all vertices of the form 

(51,xz,. . - 1  x,, 0,0, . .  - , 0 )  

have been informed, and in round r + 1 vertex 

(ah a2,. . " ,a,, 0 ,0, .  . , 0) 

sends to vertices 

(a l ,  az,. . . ,a,, x, 0 , .  . . , 0 )  for 1 < x < A 

Thus for A + 1 = 5, starting at vertex 0, 

In round 1, vertex 0 informs 1 to 4 

In round 2 vertices 0 to 4 inform 5 to 24 

In round 3 vertices 0 to 24 inform 25 to 124 . . . 
Note that the rounds are independent, in the sense that the dimensions can be 

used in any order (see the discussion for circulant graphs in section 2.8.1). For exam- 

ple, the reverse order for 125 vertices gives the broadcast pattern 

In round 1 vertex 0 informs 25, 50, 75, 100 

In round 2 vertex 0 informs 5, 10, 15, 20 ; 25 informs 30,35,40,45 ; . . . 

In round 3, vertex 0 informs 1 to 4 ; 5 informs 6 to 10 ; . . . 
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In these examples we have ignored details of the paths between vertices. The order 

of the rounds is important because it affects the choice of paths, and in a practical 

broadcast algorithm the order of rounds is the reverse of the visualisation of building a 

tile of increasing size. The correct order for a practical broadcast algorithm is to send 

the maximum distance in the first round and to send to the immediate neighbours in 

the last round (otherwise the last round has many vertices cornnlunicating via long 

paths 'which will guarantee congestion). The natural order for tiling is the reverse 

of this. The initial tile grows by sending to its immediate neighbours, and this is 

repeated recursively. 

Broadcasting as Recursive Tiling 

The visualisation of broadcasting as recursive tiling is useful to describe edge-disjoint 

paths of shortest length and also to show how the torus is formed. Section 2.4.1 

describes the method in detail. 

Figure 2.2: Standard square mesh shown as a tiling and a graph 

We regard each square region as a vertex and each common edge as a communi- 

cations link. Thus the 'wires' between processors are perpendicular to the tile edges. 

Generally a dot will be drawn at the centre of each tile as a reminder of the vertex 

that it represents. 

A vertex and its four neighbours form a cross shape as in Figure 2.3a. In any 

round a vertex can inform its four neighbours, or any other four vertices via suitable 

circuit-switched paths. 

The analysis in Appendix A shows that a good (and somewhat obvious) choice 

for the last round is for each vertex to send to its four immediate neighbours. This is 
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assumed by Tsai and McKinley [16] and changes the ~ r o b l e m  to that of identifying a 

dominating set. Golomb and Welch [8] give a general method for defining a suitable 

dominating set in d dimensions and conjecture that it is essentially unique. 

The analysis for d dimensions in Appendix A also suggests a first round when 

2d + 1 is a prime. This first round is generated by a combination of i steps along each 

dimension i ,  and can be represented by the vectors 

k ( l ,2 ,3 ,  ..., d) mod (2d + 1) for k = 1 , 2 . .  .2d. 

For example in three dimensions, the vectors k ( l , 2 , 3 )  (mod 7) are 

(13'43) 

(2,4,6)  = (2, -3, -1) 

(3,6,9)  = (3,-1,2) 

(4,8,12) = (-3,1, -2) 

(5,10,15) = (-2% 3 , l )  

(6,12,18) = ( - 1 - 2 - 3 )  (mod 7). 

Notice that the values for the coordinates are simply permuted, together with changes 

in sign. 

2.4.1 Broadcasting to 25 Vertices 

Initially one vertex, represented by a square tile, is informed. We will use x, y co- 

ordinates for the tiles and assume the initial tile is at (0,O). Details of communication 

paths will be ignored until later. There are two rounds. In round 2 each informed tile 

informs its four neighbours, at relative coordinates 

giving cross-shapes as in Fig 2.3a. In round 1 the initial vertex (0,O) sends to the 

vertices 

{(+I,  +2)? (-2, + I ) ,  (-1, -2), (+2, -1)) 
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Figure 2.3: a )  Round 2 Forms Cross Shapes.. . b) Round 1 Informs Each Cross 

at the centres of the crosses. This is equivalent to  adding 4 copies of the cross around 

the original one, as shown in Fig 2.3b. The rounds have been described in reverse 

order above, to emphasize how the tiling proceeds. 

Fig 2.4 shows the rounds of a broadcast in the correct order. Round 1 informs 

four widely dispersed vertices (the centres of the surrounding crosses). In round 2 

each informed vertex informs its neighbours. The broadcast is now complete, and we 

can join opposite edges of the final shape to form a torus. 

Seen from this view, the broadcast strategy is to have the informed vertices evenly 

dispersed throughout the mesh after each round. Each informed vertex is then 're- 

sponsible' for a small region around itself. These regions are all the same shape in 

any specific round and can be considered separately. Provided the broadcast paths 

remain within a region for a round, we do not need to consider path contention be- 

tween different regions. (This is not a necessary condition, but makes it easier to 

identify edge disjoint paths.) 

The remainder of the thesis numbers the rounds of a broadcast in the correct order 

for a broadcast, but will often descibe them in some other order. 
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Figure 2.4: a )  Round 1 disperses . . . b) Round 2 fills in 

2.4.2 Broadcasting to 5'" Vertices 

The tiling pattern described for 25 vertices can be repeated, but scaled up by a 

factor of 5 each time. Thus round 1 will inform vertices 

The shape of the combined tile will always be approximately a cross or a square. 

Figure 2.5 from Peters and Syska [13] shows how the pattern develops for n = 4. 

Note that the resulting shape will tile a normal torus only after an even number of 

rounds. (The method discussed in Appendix C shows that it can tile a skewed torus 

after an odd number of rounds.) 

2.5 Relation to Circulant Graphs 

This section looks a t  embedding a mesh network in a circulant graph and compares 

the resulting graph with that of a normal torus-connected mesh network. 

Initially we will consider a 4 x 4 mesh. The tiles are numbered row by row as 

in the shaded area of Figure 2.6. The normal torus connections are indicated by 

surrounding the shaded area by copies of itself - it is easy to see from this diagram 

that,  for example, the torus connection places vertex 0 next to vertices 3 and 12. 
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Figure 2.5: Broadcast Pattern for 54 Vertices 

Appendix C discusses this way of representing torus connections, which is useful for 

more complex shapes. It is also mentioned in Coxeter and Moser [6], page 24. 

Figure 2.7a shows the 4 x 4 mesh network graph redrawn so that the vertices lie on 

a circle. Solid lines represent the mesh connections and the normal torus connections 

are shown as dotted lines. Drawn in this way the mesh looks very similar to a circulant 

graph and only minor adjustments (Figure 2.7b) are needed to convert it to a circulant 

graph. Vertex 0 is connected to vertex 1 5  instead of 3; vertex 4 to 3 instead of 7; 

vertex 8 to  7 instead of 11; and vertex 12 to 11 instead of 4. 

In terms of the tiling diagram (Figure 2.6) these adjustments are equivalent to 

sliding the copies of the 4 x 4 square as in Figure 2.8a. 

We will describe the graph with wraparound connections illustrated by Figure 2.8 

as a skewed torus. This is consistent with the definition in Chapter 1, which is 

repeated here for convenience: 
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Figure 2.6: 4 x 4 tiling, showing normal torus connections 

0 

When the graph derived from a square mesh network is regarded as being em- 

bedded in the surface of a torus, the torus is represented as a square with opposite 

sides identified, and with the edges of the graph parallel to the sides of the square. 

1 

It is possible to draw a modified graph so that edges of the mesh slope relative to 

the square and connect up in different ways at opposite sides of the square. We will 

2 

define this as a skewed torus connection. This definition extends into 3 dimensions 

and higher and the 3-dimensional skewed torus will be discussed in Chapter 4. 

Note that a mesh network can form a skewed torus if and only if the tiling represen- 

3  

tation can tile the plane by translation (reflection and rotation are not allowed), and 

this also extends to higher dimensions. E.g. if a 3-dimensional shape can tile space 

by translation, then the shape can form a torus. This follows from a consideration of 

--- I 'm 0 - 1  

the automorphism group of the tiling, described in Senechal [14] and Grunbaum and 

S hephard [9]. 

Although the circulant graph in Figure 2.7b is vertex-transitive, there is an asym- 

2 

4 5 6 7 4 5 6 7 4 5 6 7  

metry between the x and y directions of the tiling representation in Figure 2.8a: a 

3 - 0  
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Figure 2.7: a )  Redrawn 4 x 4 mesh . . . b) modified to form a circulant graph 

path in the x-direction gives a Hamiltonian cycle; the y-direction does not. We can- 

not skew in both directions at once. In terms of the circulant graph it means that 

following a path consisting only of the chords of length 4 does not give a Hamiltonian 

cycle. 

This asymmetry can be removed by adding a vertex as shown in Figure 2.8b. 

Note that this extra vertex corresponds to the redundant vertex used for resilience 

in Bruck, Cypher and Ho [2]. Because the graph is vertex-transitive we can regard 

any vertex from Figure 2.8b as the 'extra' one and the torus can be cut so that the 

remaining vertices form the 4 x 4 square mesh. This suggests other opportunities for 

designing fault tolerant meshes which are beyond the scope of this thesis. 

Up to this point we have always started by considering a mesh and deriving a 

circulant graph. It is instructive to derive the mesh tiling from an arbitrary circulant 

graph of degree 4. We can always regard the tiles as a strip of squares which represent 

the main cycle of the circulant graph, and such a strip can always be wound into a 

torus as shown in Figure 2.9. 

The chord lengths of the circulant graph correspond to the number of squares in 

one loop around the torus. Thus a short chord length corresponds to a tightly wound 

torus. This construction can be extended in a variety of ways to give representations 
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Figure 2.8: a )  The skewed 4 x 4 tiling b) A 17 vertex tiling skewed both ways 

Figure 2.9: Winding the torus from a strip of squares 

for other constructions, such as tiling with triangles or hexagons and tiling in 3 di- 

mensions. It also gives a canonical form for the diagram of skewed torus connections. 

We have already shown (Figure 2.6) how to surround the square with copies of it- 

self and use this representation to show which tiles will be adjacent when the square 

is wrapped into the corresponding torus. If we represent the circulant by a row of 

squares numbered O to 15 and repeat this row of squares shifted by the circulant chord 

length each time, we get a canonical representation of the skewed torus. Any com- 

bination of tiles O to 15 from this representation which tiles the plane by translation 

represents the same skewed torus or circulant graph. We will use this approach for 
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degree 3 graphs in Chapter 5. 

2.6 Broadcasting on a Skewed Torus in Two Di- 

mensions 

This cqse is treated in detail since 

0 it can be compared with the optimal solution known for the normal torus (Peters 

and Syska); 

0 it is easy to  visualise; and 

0 it illustrates all the methods used in higher dimensions. 

2.7 Five Vertices 

This trivial case forms the basis for all others. The chords can only be rrt2. 

Figure 2.10: Graph, tiling and paths for broadcasting 

The cross shape can be made into a skewed torus (see Appendix C).  

2.8 Twenty-five Vertices 

We start by using the same method as for 5 vertices, and apply it twice, increasing 

the scale by a factor of 5 for round 1. 
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Figure 2.11: Paths for round 1 with 25 vertices 

Initially assume a chord length of 2 (a  very tightly wound torus) and that the 

targets in the last round are vertices f 1, f 2. Thus, scaling by 5, the target vertices 

in the first round must be vertices f 5 ,  f 10, as in Fig 2.11 where the target vertices 

are shown enlarged. We can extend this method so that round 1 always divides the 

vertices into 5 'tiles9 and broadcasts to the centres of the tiles. The next round takes 

each tile and divides it into 5 smaller tiles, until in the last round the tile representing 

each target consists of only 1 vertex. 

2.8.1 Varying the Chord Length 

A chord length of 2 would be inefficient for large networks, so we must choose a 

different chord length. In general we will choose a chord length of approximately fl 
to represent a skewed torus similar to the normal n x n torus. This value gives a 

graph of minimum diameter for a normal torus with n2 vertices. For a skewed torus 

it is possible to achieve a smaller diameter, as described in Appendix B.3, but in this 

thesis we restrict ourselves to changing the normal torus as little as possible. 

Since in the last round of a broadcast the targets of an informed vertex are its 

immediate neighbours, changing the chord length changes the vertices each informed 

vertex sends to in the last round. 
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Figure 2.12 illustrates why increasing the chord length by an appropriate value 

does not alter the set of all destination vertices. 

Figure 2.12: Adding 5 to all targets informs the same vertices 

In the last round, the vertices informed via the $2 chord are 

The same set of vertices are informed if we add any multiple of 5 to  the chord length. 

For example, with a chord length of 7 

Similarly, the -2 chord could be replaced by a -7 chord. In general, for a graph of 

5" vertices, the distance between informed vertices at the start of round r is 5"-'+l 

and we can add any multiple of 5"-'*' to the chord length. 

Changing the order of rounds can destroy the rotational symmetry on which we 

base the option to  change chord lengths. For example, we could start with vertex 0 

sending to  vertices 

-2, -1, 1, 2 

or even, by adding multiples of 5, to  vertices 
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To show that changing the chord length does not interfere with the ability to cliange 

the order of rounds, we will derive a general expression for the set of vertices informed 

by the broadcast and argue that changing the order of rounds has no effect because 

of the commutative properties of addition. 

We assume that in the round that has target vertices of 

that for each target number i where - 2 5 i 5 2 

we can add an arbitrary multiple f (r ,  i )  of 5"-'+l. 

Note that f (r ,  i )  must be the same for each vertex that is sending the message in 

that round, but can be different for different target numbers or rounds. In this round 

vertex 0 will inform the set of vertices 

{[5"-'i + 5"-'+'f (r, z)]  mod 5n I - 2 < i 5 2). 

The set of all vertices X ,  informed after n rounds is then 

X n - - {E[5"- ' i  + 5'"-'" f (r ,  i)] mod 5'"l - 2 < i < 2) 

Since addition is commutative, the order of summation is irrelevant. Thus the order 

of rounds does not affect the set of vertices reached. The order defined by r = 1 to 

r = n which we initially assumed gives rotational symmetry for the infomed vertices. 

From the rotational symmetry we deduce that the arbitrary multiple of 5"-'+l can 

be ignored for each target vertex in each round. 

If we return to the tiling representation and number the tiles to correspond to a 

chord length of 7, then tiles 5, 10, 15 and 20 appear in a familiar pattern shown in 

Fig 2.13. This pattern is the same as for the normal torus, so for 25 vertices the same 

pattern can be wrapped into a skewed torus. 

Other chord lengths possible are 12, -8, or -3 (by adding multiples of 5 to 2). The 

minus signs can be eliminated by reflecting the diagram (which is a null operation 

because of symmetry). 

If we choose a Harniltonian cycle consisting of chords of length 3, then a path of 8 

chords of length 3 brings us to vertex 24, which is equivalent to vertex -1 mod 25 and 
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Figure 2.13: The pattern for tiling a skewed torus 

thus adjacent to  vertex 0. Thus if we renumber the vertices along this Hamiltonian 

cycle, vertex 0 will be adjacent to vertex 8. This shows that chord lengths of 3 arid 8 

give isomorphic graphs. In a similar way, since 12 x 2 = 24, chord lengths of 2 and 

12 give isomorphic graphs. 

2.8.2 Terminology 

Here we define the basic terms used for describing broadcasts in subsequent chapters. 

In this chapter we have dealt with two-dimensional meshes which can be represented 

by graphs with vertices of degree 4. For meshes in d dimensions the corresponding 

graphs will have vertices of degree 2d. 

Base vertices are those which are already informed at the start of the round being 

considered. 

Target vertices are those to be informed during the round. Normally only paths 

in the positive direction will be described since the negative direction can be 

treated symmetrically by reflection. Each base vertex informs d target vertices 

in each direction, and we will refer to the target vertices as target number fl to 

target number f d where the sign of the target number indicates its direction. 
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Edges will be referred to as chords, giving the full chord length e.g. (2d + 112 + 3 

or the chord length modulo (2d + I ) ,  e.g. the 3-chord. The 'chords' in the 

main cycle of the circulant have length 1 and are referred to as 1-chords. This 

notation will not be ambiguous for the chord lengths which are actually chosen. 

Path length is the number of chords traversed to get from a base vertex to a target 

vertex. 

Forwards or backwards will be used to refer to  positive and negative chords from 

a vertex respectively. 

2.8.3 Describing Paths With Tables 

A vertex will be referred to by the difference between its vertex number and that 

of the nearest base vertex. Thus we effectively describe the algorithm in the region 

around vertex 0. Paths for each round of a broadcast will be described by a d x d 

table. Row i describes how many of each chord length are needed for a path from 

the base vertex to target i .  Negative values indicate chords in the reverse direction. 

This table can be regarded as a matrix and, if the positive chord lengths are written 

as a column vector, then multiplication by the matrix results in a column vector of 

the positive target vertices informed by vertex 0 in that round. The order of chords 

in a path is described separately. 

Paths to the negative target numbers are given by reversing the sign of all numbers 

in the body of the table. 

For example, the 25 vertex broadcast can be represented as the table below. 

Target 

Number 

1 

2 

Chord Lengths 1, 7 

Round 1 Round 2 

Chord No. Chord No. 

1 2 1 2 
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Matrix multiplication gives the (positive) target vertices informed by round 2 to 

(1: '2) (i) = (:J 
Note that - 15 = 10 mod 25 as required. 

2.8.4' Broadcasting to 125 Vertices 

For an approximately square shape when the torus is unrolled, we take a chord length 

close to z 11. The chord length must be 2 (or -2) modulo 5, so that the 

neighbours of vertex 0 are f 1, f 2 modulo 5 for the last round of the broadcast. 

Suitable values for the chord length are 12 or 13. As before, we start by assuming the 

target vertices in the three rounds will be 

f 2 5 , f 5 0  (mod125) i n r o u n d 1  

f 5,4110 (mod 25) in round 2 

f l , f 2  (mod 5) in round 3. 

Although this has the same numeric values in the last 2 rounds as the 25 vertex 

broadcast, the tiling changes because of the different chord length. If we assume a 

chord length of 12, the diameter of the graph is 9 and the 3 rounds can be represented 

I d = 2  1 Chord Lengths 1, 12 

The longest paths in the three rounds are of length (1 + O) ,  ( 5  + O ) ,  and (2 + 4) 

respectively, giving a total path length of 12 whereas the diameter is only 9. We can 

Target 

Number 

Round 3 

Chord No. 

1 2 

Round 2 

Chord No. 

1 2 

Round 1 

Chord No. 

1 2 
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adjust the total path to be optimal, but just get the known tiling with adjustments 

at the edges to allow a skewed wraparound. Instead, in the next chapter we extend 

the method to any number of rounds and in Chapter 7 we show that the result is very 

close to optimal. 

A chord length of 13 gives similar results to the chord length of 12, and can be 

described by the table below. 

d = 2  I Chord Lengths 1, 13 

1 Round 3 1 Round 2 1 Round 1 

Target I Chord No. 1 Chord No. I Chord No. 

Number 1 1 2 1 1 2 1 1 2 



Chapter 3 

The Two Dimensional Skewed 

Torus 

3.1 Introduction 

This chapter deals with broadcasting on a skewed torus network in terms of a circulant 

graph. The broadcasting algorithm developed in this way is then visualised as a tiling. 

As in Peters and Syska [13], it is based on a 5" x 5" mesh containing N = 52n vertices. 

For the skewed torus we take the chord length to be 2 + fi = 2 + 5" to give a 

graph with a diameter of fi - 2. We will develop a broadcast scheme requiring the 

minimum number of rounds (2n) and with a total path length only 15% greater than 

the diameter of the graph. (Note that this is not claimed to be the best chord length 

or the best possible broadcast algorithm. The diameter for a skewed torus can be as 

low as with a chord length of m, as shown in Appendix B. ) 

3.1.1 Initial Selection of Vertices For Each Round 

We can regard the 52n vertices to be in 2n-dimensional space 

and the natural broadcast scheme is to span one dimension at a time. We start by 

assuming the base vertices will broadcast to the target vertices shown in the table 
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below for each round. Later we will adjust some of these numbers to take advantage 

of rotational symmetry, and the table indicates this in modulo notation. For example, 

in round 2 n  vertex 0  sends to vertices -2, -1,  1  and 2  (mod 5 )  and we will later 

choose these to be vertices - ( 2  + n), - 1 , l  and 2  + z/N (which is valid since z/N 
is a multiple of 5 ) .  

Round I Targets I 

2 n  - 2  1 f  25,  k 5 0  (mod 125) ] 
" . "  

1  f 5 2 n - 1 , k 2  ~ 5 ~ ~ - ~  (mod s2") 

This construction gives the optimum number of rounds for a broadcast, but does not 

guarantee the existence of edge disjoint paths in any round. Techniques for selecting 

paths are described in Chapter 7 but their existence can also be deduced informally 

by considering the tiling representation of the broadcast which is described below. 

The broadcast can be viewed as a two dimensional recursive tiling with vertices 

described in terms of x y  coordinates, where the x direction represents the main cycle of 

the circulant the y  direction represents the chords. In this case the tile at coordinates 

(x ,  y )  represents vertex number z + ( 2  + n ) y .  Consider first the shape of the tiles 

corresponding to the table below where the rotational symmetry is not used. 

If we do not use rotational symmetry to adjust the target vertex numbers, the 

Round 

2 n  

2 n - 1  

2 n  - 2  

tiling model of the broadcast (which begins with round 2 n )  will first inform vertices 

Targets 

f l , f 2  

k 5 , f 1 0  

k 25,  f 5 0  

-2 to  +2 in round 2 n  and then vertices -12 to +12 in round 2 n  - 1 ,  creating a long 



C H A P T E R  3. T H E  TWO DIMENSIONAL S K E W E D  TORUS 3 1 

thin shape along the x axis. Rounds 2n to 72 + 1 will continue to copy the shape 

in the x direction and then rounds n to I will copy it sideways in the y direction. 

Intuitively each round of a tiling method should fit five copies of the shape from the 

previous round closely together to give a new shape of tile. This closeness corresponds 

to an efficient use of communications paths, and the path lengths should start at 1 

(adjacent tiles in round 2n) and increase as the tile grows (maximal dispersion of the 

message in round 1). In terms of the broadcast, the longest paths are used in round 

1 when there is only one source vertex; the shortest paths are used in the last round 

when every vertex is either a source or a target. (The total number of edges used in 

round r when a path is of length p is 5'-lp, because there are 5'-' source vertices.) 

The shape of the tile can be improved by using rotational symmetry to adjust 

target vertex numbers for the last n rounds and by interleaving them with the first n 

rounds, so that the shape grows simultaneously in the x and y directions. In the last 

round each informed vertex sends to its immediate neighbours, f 1 and f (m+ 2), 

which can be regarded as single steps along the x- and y-axes to form a cross shape. In 

the next to the last round an informed vertex will send to the target vertices f fi, 

1 2 f i  which can be represented by xy coordinates (-2, l ) ,  (2, -I),  (-4,2), (4, -2) 

and give short path lengths of 3, 3, 6 and 6 respectively. Lower numbered rounds 

scale up these last two rounds, giving the target vertices for each round shown in the 

table below. Note that the rounds have been renumbered: the left half of the table 

corresponds to the original rounds 2n to n + 1, which have now become the even 

numbered rounds from 2n to 2. 

Since the rounds can be in any order, interleaving them to take advantage of the chord 

length in this way is valid. 

Round 

2n 

2n - 2 

Targets 

& 1 , f ( f l + 2 )  

f 5 ,  f 5 ( n +  2) 

Round 

2 n - 1  

2n - 3 

Targets 

f 5 " , & 2  x 5" 

f 5"+l, f 2 x 5"+l 
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We now specify the paths for the last 2 rounds in terms of the chord length of 

2 + 5", using the tabular form from the previous chapter. Note that negative targets 

are omitted as the entries would be the same but with the signs reversed. ui 
Round 2n Round 2n-1 

I Target I Chord No. I Chord No. 1 
I Number 1 1 2 1 1 2 1 

As a check, matrix multiplication gives the (positive) target vertices informec 

The total path length for this pair of rounds is 1 + 6 = 7.  

Paths in previous rounds can be the same, but scaled by increasing powers of 5. 

Thus the scaling factor in rounds 1 and 2 is 5"-I and in rounds 2g - 1,2g is 5"-g. 

The total path length will be a geometric sum 

which is about 714 times the diameter. The next section looks at ways of reducing 

the total path length. 

3.1.2 Reducing Path Lengths 

If a path contains a large number of short steps along the main cycle, they can be 

replaced by a long chord. This gives a shorter path when the number of steps along 

the main cycle is more than half the length of the chord. The longest path along the 

main cycle is 4 times the scaling factor of 5"-g in round 29 - 1. This is greater than 

half the chord length when 
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which is only when n - g = n - I ,  the first pair of rounds! (We could also consider 

replacing large enough multiples of fi + 2 by paths along the main cycle, but this 

is never feasible.) 

The chord which replaces the steps along the main cycle is in the opposite direction 

to other chords in the path, so the number of chords decreases by one instead of 

increasing. Thus the target vertex with the longest path in the first round can be 

improved from (in vector notation) 

Note that the vector representation is not unique. 

The length of the first path is reduced in this way from 6 x 5"-' to 

The total path length is reduced by 3 x 5"-' - 1 to  

which is within a factor of 1.15 of the diameter of the normal torus mesh. 

So the first round for a broadcast on a skewed torus with n = 2 (number of vertices, 

N = 625) and a chord length of ( 5 2  + 2) has target vertices 

These target vertices can be represented in coordinate form as 

since 

125 = &(-lo x 1 $ 5  x 27),250 = k ( 7  x 1 + 9  x 27). 

The table describing all four rounds of the broadcast is shown below. 
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I n = 2 , N = 6 2 5  1 Chord Lengths 1, 27 

I 1 Round 4 1 Round 3 1 Round 2 1 Round 1 

Target 

The path lengths for the four rounds are 1, 6 ,  5 ,  and 16 giving a total of 28 

compared with the previous result of (1 + 6 ) ( 1  + 5 )  = 42. This should be compared 

with a diameter of 23 for the skewed torus and 24 for the normal torus. 

For larger n,  rounds 272 - 2 , 2 n  - 4 , .  . . can also be adjusted to give shorter paths 

for target number 1 by replacing 5"-9 - 1 of the 1-chords by (5"-9 - 1)/2 of the 

2-chords. This gives a more compact shape for the tile shown in Figure 3.2 but does 

not reduce the maximum path length for the round because of target number 2. Our 

final broadcast for N = S2" vertices can thus be represented by the tables below. Note 

Number 

1 

2 

that the table showing the general formula descibes all rounds except round 1. 

modulo 5l 

Chord 

1 2 

1 0 

0 1 

modulo 53 

Chord 

Last 4 Rounds 

g = n, n - 1 

Target 

Number 

1 

2 

1 1 modulo 5"-gt1 1 modulo 52n-g+1 

1 2 

-2 1 

-4 2 

General Formula 

Target Chord 

Number 1 2 

modulo s2 
Chord 

Chord Lengths 1, 5" + 2 

Chord 

2 

modulo 54 

Chord 

1 2 

5 0 

0 5 

Round 2 n  

modulo 5' 

Chord 

1 2 

1 0 

0 1 

Chord Lengths 1, 5" + 2 

1 2 

-10 5 

7 9 

Round 2.9 

Round 2 n  - 1 

modulo 5"+' 

Chord 

1 2 

-2 1 

-4 2 

Round 2g - 1 

Round 2 n  - 2 

modulo 52 

Chord 

1 2 

1 2 

0 5 

Round 2 n  - 3 

modulo 5n+2 

Chord 

1 2 

-10 5 

-20 10 
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First 2 Rounds 

Target 

Number 

Chord Lengths 1, 5" + 2 

Round 2 Round 1 

modulo 5" modulo 52n 

Chord Chord 

1 2 2 

Fig 3.1 to Fig 3.3 show the tiling representation of the broadcast for n = 2 for 

rounds 1,2 and 3.  The shading allows the shape of the tile to be seen. It is clear from 

Figure 3.3  that the tiling is not as compact as the original one for the normal torus. 

Figure 3.1: Round 1 tiles for 625 vertices 

Round 4 is represented by any one of the five crosses shown shaded in Figure 3.3. 

Edge disjoint paths for each round can be found by inspection. For larger values of n 

paths can be scaled up together with the tiles. 
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Figure 3.2: Round 2 tiles for 625 vertices 

Figure 3.3: Round 3 tiles for 625 vertices 



Chapter 4 

The Three Dimensional Skewed 

Torus 

4.1 Introduction 

The three dimensional torus is a cube with opposite faces connected. This section 

deals with algorithms for the three dimensional skewed torus using the same general 

techniques as for two dimensions. More factors can be adjusted in three dimensions 

to find an optimal solution, but none has been found to improve on the basic result 

of a total path length which is less than 1.2 times the diameter of the corresponding 

normal torus. 

4.2 Choosing Chord Lengths for the Circulant 

Graph 

There are many ways to  choose the chord length for a circulant graph to represent a 

skewed torus, but we consider only those which are suitable for the type of algorithm 

we have adopted. Note that changing the number of nodes slightly and choosing 

a different chord length can give a graph with a significantly smaller diameter, but 

we have restricted this thesis to a skewed torus formed by minor adjustments to the 
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normal torus with 7" vertices, where the normal torus can be regarded as having 

chords of lengths 7" and 72n. Thus for the skewed torus we choose chord lengths of 

7" + 2 and 72n + 3 which will allow a broadcasting algorithm similar to that for two 

dimensions. 0 ther adjustments to chord lengths and paths which were considered 

include 

to choose the signs in 7" f 2, 72n z t  3;  

to swap the 2 and the 3 ,  giving chord lengths 7" f 3 , 72n f 2; 

to adjust the long chord by multiples of the short chord, e.g. 72" + 7" - 3;  and 

replace multiple short chords with a long chord. 

In higher dimensions the possible combinations increase exponentially, but a small set 

is sufficient to give a good bound on path length and only the last of these adjustments 

was in fact used. 

4.3 Standard Skewed Construction for N = 73n 

vertices 

A normal three dimensional 7" x 7" x 7" mesh network embedded in a circulant graph 

would have chord lengths of 7" and 72n. For the skewed torus we will take chord 

lengths of (7" + 2) and (72n + 3 )  . Negative targets are treated symmetrically, so we 

will omit the It sign from tables and deal only with positive target vertices. In a 

similar way to two dimensions, we start by assuming the positive target vertices for 

each round are given by the table below. 

1 Round I Target Vertices i 

/ 3n - 1 1 7.14,21 (mod 49) 1 
1 3n - 2 1 49,98,147 (mod 343)  1 

I 1 I 73n-1 2 x 73n-1 3 x 73n-1 (mod 73n) I 
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Following the method used for two dimensions, in three dimensions we interleave the 

rounds in groups of three and renumber them, so t,he target vertices for the last three 

rounds will be 

I Round Targets I 

Each group of three rounds scales the previous group by 7 .  In the last round each 

vertex sends to its immediate neighbours and the target vertices for the last three 

3 n - 1  

3n - 2 

rounds can be represented by the table below. 

7 " , 2 x 7 " , 3 ~ 7 "  (mod 7"+l) 

72n,  2 x 72n, 3 x 72n (mod 72n+1) 

1 Last 3 Rounds 

Target 

Number 

Chord Lengths 1, 7" + 2, 72" + 3 

Chord No. 

For example, in round 3n - 1 the vertices informed will be 

In the last three rounds each informed node is effectively broadcasting to a 7 x 7 x 7 

skewed torus. The total path length for these last three rounds is 12 + 5 + 1 = 18 

although the diameter of a normal 7 x 7 x 7 torus network is only 9. 

This broadcast scheme for a group of three rounds can be repeated with a scaling 

factor of 7 ,  and the values adjusted by using a chord of length 7" + 2 to replace two 

chords of length 1, or of length 72n + 3 to replace three chords of length 1. 
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Thus round 3n - 3 has targets 7 ,  14 and 21 which can be replaced by 

1 + 2(72n + 3), (7" + 2)  + 4(72n + 3) and 7(72n + 3) .  

Powers of 7 greater than 7l can be ignored because of rotational symmetry. 

Similarly, round 372 - 4 has target vertices 

7"+l, 2 x 7"" and 3 x 7"" 

which can replaced by 

-2 + 7(7" + 2)  - 4(72" + 3)' 

Powers of 7 greater than 7"+l can be ignored because of rotational symmetry. 

It is convenient to think of 7" + 2 being separated into a 'useful' term of 7" and 

an krror9 term of 2. Thus for round 3n - 4, 7" is a 'useful' chord length for target 

vertices 7"+' , 2 x 7"+' and 3 x 7"+l. Since the actual chord length is 7" + 2 ,we must 

correct the 'error' of 2 x 7 ,  4 x 7 and 6 x 7 with the other chords. 

In round 3n - 5, with target vertices 72n+1, 2 x 72n+1 and 3 x 72n+1, the 72n + 3 

chord provides the 'useful' term of 72n. 

To give integral values for entries in the tables, note that (7' - 1)/3 is an integer 

for any k, and 

7' = 1 + 3 x (7" 1)/3, 

2 x 7' = 2 + 3 x 2(7" 1113, 

4 x 7' = 1 + 3 x (1 + 4[7' - 1]/3), and 

6 x 7'" = 3 x 2(7" 1) 

(where in the last line the 3 x  comes from the length of the 3-chord). 

Using g to number the groups of rounds gives the general results for g > 1 shown 

in the tables below. 
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General Formula 2 I Chord Lengths 1, 7" + 2, 

General Formula 1 

Target 

Number 

1 

2 

3 

Target 

Number 

Chord Lengths 1, 7" + 2, 72" + 3 

Round 3g working m0d7"-~+' 

Chord No. 

1 2  3 

1 0  (7n-g - 1)/3 

0 1 2(7n-g - 1)/3 

0 0 7"-9 

I Round 3g - 1 working m0d7~"-g+' 1 
Chord No. 

2 3 

Since the broadcast uses all edges from each informed vertex, some path must begin 

with a 2-chord. The table for General Formula 3 does not include any 2-chords, and so 

we must adjust one of the paths to correct this. We can include a 2-chord at the start 

of the path to target number 1 or 2, so that the maximum path length (to target 3) 

for this round is not increased. That path must also include a 2-chord in the opposite 

direction to nullify the effect of the initial 2-chord. 

Finally, the first group of rounds can be adjusted to give shorter paths. When 

g = 1, we find that -9 x 7"-9 exceeds 7n and we can replace (7" + 2) of the 1-chords 

with a single 2-chord. 

General Formula 3 

Target 

Number 

Chord Lengths 1, 7" + 2, 72n + 3 

Round 39 - 2 working m0d7~"-g+l 

Chord No. 

1 2 3 
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Round 3 cannot be adjusted to give shorter paths, so General Formula 1 with 

g = 1 reduces to the table shown below. 

In round 2 the chords of length 7" + 2 gives 'errors' of 4 x 7"-' to  target number 2, 

and 6 x 7"-l to target number 3. These can be partially corrected by using one less 

of the 7" + 2 chords, and then correcting the remaining 'error' with the other chords. 

By doing this, the paths for round 2 are as shown in the table below. 

Round 3 

Target 

Number 

1 

2 

3  

Chord Lengths 1, 7" + 2, 72n + 3  

Working mod7" 

Chord No. 

1 2 3  

1 0  (7"-' - 1) /3  

0 I a(?"-' - 1 ) / 3  

0 0 7"-I 

1 Target ( Chord No. 1 

Round 2 

I Number / 1  2 3  1 

Chord Lengths 1, 7" + 2, 7'" + 3  

Working rnod7'" 

d 1 a single 7" + 2 chord is again used to correct a large part of the 'error' 

Round 1 

Target 

Number 

1 

2 

3  

Chord Lengths 1, 7" + 2, 72n + 3  

Working m0d7~"  

Chord No. 

1 2 3  

-3 x 7"-I 0 7"-I 

7n- 1 4- 2 -1 2x7" - '  

- 2 x 7 " - l + 2  -1 3 x 7 " - l  
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We can check round 1 by 

-3 x 7"-1 + 73"-1 $ 3  x 7"-1 73"- 1 

7 + 2 - 7 - 2 + 6 x + 2 x 7 ) = ( 2 x 7 - I  ) . 
-2 x 7"-I + 2 - 7" - 2 + 3 x 73n-1 + 9 X 7"-l 3 x 73n-1 

The total path length for the first 3 rounds is thus 

for round 3 

( 3  x 7"-' - 1) + (7"-' + 2)/3 for round 2 

2 x 7"-' - 2 + 3 x 7"-' + 1 for round 1 

giving a total path length for the first 3  rounds of 

The total path length for all subsequent rounds is 

and the total path length for the whole broadcast is 

The diameter of the corresponding 7" x 7" x 7" torus is 3(7" - 1)/2, and the broadcast 

algorithm gives a total path length of less than ( 3 7 / 2 1 ) / ( 3 / 2 )  = 1.174 times the 

diameter of the normal torus. 

This is worse than it  might seem: the paths for round 3n - 2 are four times as 

long as the theoretical best, but paths for the last round dominate the final total. 

Ideally we would prefer to find a general method to improve the later rounds. In 

three dimensions and higher, geometric intuition fails and we have not pursued this 

further. Instead, in Chapter 7 ,  the basic method is extended to d dimensions and the 

ratio of actual to optimal total path length is shown to converge to 1 as d increases. 



Chapter 5 

Tiling With Triangles 

5.1 Introduction 

Broadcasting on triangular meshes can be represented by triangular tilings. Little 

work has been done on meshes or torus meshes of odd degree. Tsai and McKinley [16] 

give some constructions for broadcasts which use only 3 out of 4 available ports on a 

normal degree 4 mesh. As in previous chapters we will represent the torus connected 

mesh as a cycle graph with chords, but it will be a chordal ring rather than a circulant 

graph. Broadcasting on such graphs (chordal rings) is dealt with in Arden and Lee 

[I]. Arden and Lee assert that their formulae for the diameters of chordal rings imply 

that the largest chordal ring of diameter 5 has only 34 vertices, but in this chapter we 

derive a chordal ring geometrically which has 38 vertices and is of diameter 5. This 

has been shown previously by Morillo, Cornellas and Fiol [ll]. 

5.2 The Diameter of a Triangular Mesh 

We will look at two possible torus connected triangular meshes: 

1. a simple conversion of a square mesh, with diameter 0 .94f l ,  and 

2. the maximum nodes for a given diameter, with diameter % 0 . 8 m .  
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In later sections we use a chordal ring with chord length fl + 3 (chosen for the 

algorithm we develop). This has a diameter of approximately m. 

5.2.1 Converting a Square Mesh to Triangular 

Figure 5.1: Converting a Square Mesh to Triangular 

We start with a normal n x n square tiling. By dividing each square diagonally into 

2 triangles (Figure 5.1), we get a 2n x 2n triangular mesh of 2n2 triangles. If the square 

mesh is connected as a normal torus, then the resulting triangular mesh will have a 

diameter of approximately 4n/3. This diameter has been derived by considering the 

propagation of a message outward from the centre. (See Figure 5.2 for n=9, which 

shows the distance of each vertex from the centre.) 

Triangles within a distance n of the centre form approximately a hexagon (shown 

shaded), which leaves two (roughly) triangular regions a t  opposite corners of the 

square. Because of the wraparound connections each of these triangular regions is 

surrounded by triangles which are at a distance n from the centre of the square. The 

furthest triangle from the centre of the square must be a t  the centre of the one of 

the two triangular regions, and by symmetry will lie on the diagonal of the square. If 

we think of information flowing out from the centre of the square, this diagonal fills 

twice as fast from the corner of the square (by wraparound connections at the sides) 

as it fills from the original path outwards from the centre. The last triangle reached 
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Figure 5.2: Distances of Vertices from the Centre of the Square 

will thus be two thirds the distance from the corner of the square to  the base of the 

triangular region, which is 213 x n / 2  = n / 3 .  The path length from the centre of the 

square to  the furthest triangle is thus n + 7213. So for a triangular mesh of N = 2n2 

vertices, n = and the diameter when the square is connected as a normal torus 

This is surprisingly close to the diameter of a normal square mesh torus. 

5.2.2 Minimum Diameter for a Triangular Torus Mesh 

Figure 5.3: Vertices within a distance 4 of the centre 

We proceed by finding the maximum number of vertices within a fixed distance 
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of a central vertex, and derive a lower bound for the diameter. The tiling for the 

maximum number of vertices is adjusted to give a skewed torus shape and this gives 

the maximum number of vertices for a triangular torus of given diameter (see Morillo, 

Comellas and Fiol [11] for a proof). 

Fig 5.3 shows the 31 vertices within a distance of 4 from the central shaded vertex. 

Consideration of how the shape grows when we increase the selected distance from 

the centre gives the maximum number of vertices N within a distance D  of the centre 

to be 

1  + 3 + 6  + 9 + - - -  = 1 + 3 D ( D  + 1 ) /2 .  

We derive from this a lower bound for D 

The resulting shape in Fig 5.3 cannot tile the plane because the numbers of upright 

and inverted triangles differ. Thus it cannot form a torus. 

Figure 5.4 shows extra vertices, marked x, added to give a shape (reminiscent of 

the outine of a kettle) that tiles the plane and can therefore form a torus. It has a 

diameter of 5 and represents 38 vertices. Increasing the diameter by 1  to an even 

value gives a kettle which is 1 strip of triangles wider in the x direction. Increasing 

the diameter to  the next odd value makes the kettle 2  strips taller in the y direction 

and 1 strip wider in the x direction. The spout is always on the middle row and 

a horizontal Hamiltonian path in the x direction starting on the middle row wraps 

round to  the top row of the kettle and then repeats progressively 1 row lower down 

beneath the middle and top rows. 

In general for even D  this construction requires an extra 3 0 1 2  + 1  vertices to form 

a skewed torus of diameter D  + 1. So for even values of D  there exists a skewed torus 

of N vertices with a diameter of D  + 1  where 
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Figure 5.4: Maximum vertices in a diameter 5 torus 

Representing the torus as a chordal ring (see section 5.3.1), the chord length will be 

3 ( D  + 1 )  E m. 
Similar calculations show that for an odd value of D, there exists a skewed torus 

of diameter D + 1 with 3 ( D  + 1 ) ~ / 2  - D - 1 vertices and the chord length of the 

corresponding chordal ring is 3 ( D  + 1) + 1. 

Thus the minimum diameter of a triangular mesh skewed torus is about 0.8fl. 

We will show later that,  for any odd diameter, the skewed torus with the maximum 

number of nodes also has maximum symmetry. 
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5.3 Broadcasting on a Degree 3 Torus Mesh 

The degree 3 mesh can be represented as a chordal ring graph or as a tiling. The tile 

representing a vertex is a triangle and together with its 3 neighbours it forms a larger 

triangle. Thus the obvious recursive broadcast algorithm builds triangles of increasing 

size. The total path length for a broadcast to N vertices based on this tiling would be 

Unfortunately a triangle cannot be wrapped symmetrically into a torus. (The plane 

cannot be tiled by translated triangles - half of them need to  be rotated.) Various 

modifications to the basic recursion are possible. For example, the last round of the 

broadcast could group 4 triangles into a parallelogram, which does roll up into a torus. 

This would increase the total path to l$fl- 11. Alternatively, we could make any 

other round form a parallelogram. 

5.3.1 Representation as a Chordal Ring 

Figure 5.5: Winding a torus from triangles 

If we consider the torus to be wound from a long strip of N triangles as shown in 

Figure 5.5 then: 

for the ends of the strip to join up, N must be even. 

the chord length must be odd, so that adjacent loops have the triangle bases 

aligned. 
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any odd chord length less than N is possible, and without loss of generality 

we can assume the chord is no greater than N/2 .  (It may seem that the torus 

represented by a chord length of N - 3 is physically very different from one with 

a chord length of 3, but turning one such torus inside out gives the other.) 

connections between 2  adjacent loops alternate to either side. 

The strip of triangles can be identified with the main cycle of a chordal ring and 

numbered in sequence. Placing multiple copies of the strip of triangles for N = 16 

Figure 5.6: Multiple copies of a strip of 16 triangles 

next to each other, as in Figure 5.6, demonstrates which triangles are adjacent to each 

other when wound into the torus represented by a chord length of 5. 

Just as a square mesh has two natural directions corresponding to the positive x 

and y coordinate axes, so the triangular mesh has three natural directions shown by 

the arrows in Figure 5.6. When the torus is drawn as a flat mesh these directions 

define natural straight-line paths. For a chordal ring with a chord length of c, the 

corresponding natural paths are the main cycle and the two paths which alternate 

1-chords with c-chords. The natural paths can be represented as 

or the reverse of any of these paths. 
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Properties of the Three Natural Paths 

It is useful to choose chord lengths for the corresponding graph which increase the 

symmetry of the graph. We will show that for the graphs we are considering, where 

the number of vertices is a power of four, the natural paths are not equivalent. In 

particular, at least one of the natural paths is not Hamiltonian and therefore the 

graph cannot be redrawn with that path as the main cycle. For completeness we 

derive here the conditions under which the natural paths of a chordal ring are not 

only Hamiltonian but also have the property that when the graph is redrawn with 

a different natural path as the main cycle, the chord lengths of the chordal ring are 

unchanged. 

For a chord length of c, where even numbered vertices have a chord in the positive 

direction, suppose we follow the natural path from vertex number 0 of 

or the reverse path 

-1, -C, -1, -C, -1 . 

until it returns to vertex number 0. Since c is odd for a chordal ring, +c will always 

start on an even numbered vertex and $1 on an odd numbered vertex. When we take 

this path as the main cycle and renumber the vertices accordingly, vertex adjacencies 

must be preserved and so vertex number 1 must be renumbered as vertex number 1, 

-1 or C (where C is the new chord length) since the original vertex number 1 remains 

adjacent to vertex number 0. For the chord length to remain unchanged either vertex 

number 1 or vertex number -1 must be renumbered as vertex c, which means it is 

c steps along the path which forms the new main cycle. Since c is odd and chord 

lengths alternate, a path of length c must both begin and end with the same chord 

length. 

Thus one possibility is to choose c so that a path of length c from vertex number 

0 of the form 

+c ,+1 ,+c ,+ l , . . .  4- C 
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which, combining terms into pairs, leads to vertex number 

(c + 1)(c - 1)/2 + c (mod N )  

where this is vertex number 1 or -1. For vertex number -1 the next step along 

the path would lead to vertex number 0, and imply that c + 1 = N,  and thus c is 

effectively 1. Thus we must have 

( C  + 1)(c - 1)/2 + c = 1 (mod N )  

Alternatively, considering a path of length c from vertex number 0 of the form 

which, combining terms in pairs, leads to vertex number 

( -  - 1 - 1 2  - 1 (mod N ) ,  

and we can choose c so that this is vertex number 1 or -1 where for vertex -1 we 

get c - 1 = N and this case can be ignored. Thus we must have 

(-c - 1)(c - 1)/2 - 1 = 1 (mod N) .  

Rearranging terms for these two cases gives 

( c +  1 ) ~ / 2  = 2 (mod N )  or (c2 - 1)/2 = -2 (mod N )  

as the condition for the natural path +c, $1,.  . . (or its reverse) to give an unchanged 

chord length when it is viewed as the main cycle. 

Similarly for the other natural path 

the condition is 

(c2 - 1)/2 = -2 (mod N )  or (c - 1 ) 7 2  = -2 (mod N).  
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For both of the natural paths to give an unchanged chord length we need to 

consider the four possible pairs of equations which will satisfy one of the equations 

for each of the paths. The only non-trivial solution is 

( C  - 1 ) ~ / 2  = -2 (mod N )  

(c2 + 3 ) / 2  = 0 (mod N ) .  

Putting'c = 2a + 1 gives suitable values of N to be given by 

N / 2  = (a(a + 1) + 1 ) / k  for integers a ,  k,  N/2 .  

Clearly a (a  + 1) is even and so N / 2  is odd. Thus N  cannot be a multiple of four. 

Thus the three natural directions are equivalent, in the sense that we can regard 

any of them as the main cycle without changing the chord length of the chordal graph 

representation, when (c2 + 3 ) / 2  = 0 (mod N ) .  Taking values for c of 3,5,7,9, . . . 

gives suitable values of N  to be 

Note that N = 6, c = 3 gives a chordal ring which is also a circulant. 

Earlier in this chapter the maximum number N of vertices in a skewed torus with 

a diameter D + 1 was shown to be 

when D is even. 

The natural paths in these maximal graphs are equivalent, in the above sense, as 

shown by taking c = 3(D $ 1 )  and i'V = (c2 + 3) /6  = (3(D + + 1)/2.  

The remainder of this chapter deals with chordal rings where the number of vertices 

is a power of four. 

5.3.2 Chordal Rings With 16 Vertices 

A chordal ring graph with 16 vertices and a chord length of 5 is shown in Fig 5.7. 

It assumes even-numbered vertices have a positive, clockwise chord. The natural 
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Figure 5.7: Chordal ring showing natural paths in bold 

paths through vertex 0 (except the obvious main cycle) are shown with bold edges. 

To minirnise the number of rounds in a broadcast we have assumed the number of 

vertices is a power of 4. For N = 4" it is possible to have Hamiltonian cycles in 2 

of the natural directions and a pair of interlaced loops in the third direction. On the 

chordal ring diagram, the natural paths can be represented as 

the main cycle: $1, $1, -+I,. . . 

using negative chords: $1, -c, +1, -c, . 

using positive chords: -+c, +1, +c, $1,. . 

The main cycle is clearly a Hamiltonian cycle. Positive chords give a Hamiltonian 

cycle if and only if the highest common factor of N and c + 1 is 2. Negative chords 

give a Hamiltonian cycle if and only if the highest common factor of N and c - 1 is 2. 

As c is odd, both c - 1 and c + 1 are even. They differ by 2 and so one of them 

must equal 2 modulo 4. Since N is a power of four, 

c - 1 = 2 o r c + 1 = 2  (mod N). 

Therefore exactly two of the three cycles must be Hamiltonian. When choosing c we 

can arrange for the non-Hamiltonian cycle to include half the vertices by taking c = 3 

or 5 modulo 8, so that c - 1 and c + I are 2 and 4 modulo N. 
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The fairly trivial case of 16 vertices with a broadcast of only 2 rounds will define 

the tile shape used in all tessellations. If we try to proceed as for even degree graphs 

with a chord length of c, we will need c to be both odd and even. It must be odd 

because the graph is a chordal ring, and it must equal 2 modulo 4 for the algorithm 

to work. 

Figure 5.8: Tiles numbered modulo 16 

To solve this problem and find short disjoint paths and a shape which tiles the 

plane, we proceed geometrically. Fig 5.8 shows, for a chord length of 5, the tiles 

numbered modulo 16. The last round sends to +1, -1 and +5 (a  'large triangle'). 

We need to add 3 nearby 'large triangles' to span all integers modulo 16. The resulting 

shape must tile the plane by translation if it is to form a torus. 

The 3 adjacent large triangles with centres 3, 7 and 11 duplicate vertices 2 and 

6. If we take 2 adjacent large triangles they must be those with centres 3 and 11, 

because both 2 and 6 are in the triangle with centre 7. The third triangle must then 

have centre 8 to span all integers modulo 16. Thus the base vertices for round 2 of 

the broadcast will be 0, 3, 8 and 11. This gives 4 possible shapes for the 16-triangle 

tile, shown in Figure 5.9. All of these shapes tile the plane and can therefore be rolled 

into a torus. (All 4 tiles give the same torus but cut along different edges.) 

5.3.3 The Tabular Method for 1V = 4" Vertices 
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Figure 5.9: Shapes which tile the torus 

Figure 5.10 shows the chordal ring representations of two possible broadcasting 

patterns (with chord lengths of 5 and 3 respectively) for round 2 (the last round) on 

16 vertices. The broadcasting patterns both consist of 2 groups of 8 vertices. We will 

use one of the two patterns for the last round when we extend the broadcasting to 

larger graphs. Since the pattern repeats after 8 vertices we can add any multiple of 

8 to the target vertex numbers in the last round of the broadcast in larger graphs. 

Since the target vertices in the last round are always adjacent to  the base vertex this 

implies the chord length will be of the form 81;+ 3 or 8k+ 5 .  Note that this is precisely 

the condition required to make the non-Hamiltonian natural path include half of the 

vertices. 

When extending the broadcasting algorithm to larger graphs we will not inform 



CHAPTER 5. TILING WITH TRIANGLES 

Figure 5.10: Degree three: two different last rounds for 16 vertices 

odd-numbered vertices until the last few rounds, so as to avoid complications with 

the alternating chord direction. Round n will, as always, inform adjacent vertices. 

Round n - 1 will inform an equal number of odd and even vertices, either (0, 3, 8, 

11) or (0, 5, 8, 13) (mod 16). Rounds 1 to n - 2 will inform only even vertices. 

This will involve a slight change order we choose for rounds - we will interleave all 

rounds except the last two. 

Assuming a chord length of a+ 3 (= 3 mod 8 for N > 16, so natural paths 

will have their maximum cycle length) the method of interleaving rounds which was 

introduced in Chapter 3 can be adapted to give the tables below. Note that in round 

n - 1 the target vertex numbers are f fl and 2 0  which are all even numbers. 

In round n - 2 the target vertex numbers are adjusted from (-4.4.8) to {-3,5,8) 

(mod 16) as is required for round n - 1. Round n - 2 is no longer symmetric and 

an extra row has been added to the table for target number -1. To avoid confusion 

rounds n - 1 and n - 2 have not been renumbered. 

/ Chord Lengths 1, a+ 3 

Target 

Number 

1 

2 

Round n 

Chord No. 

1 2 

I 0 

0 1 

Round n - 1 

Chord No. 

1 2 

-3 1 

-6 2 
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Target 

Number 

I Chord Lengths 1, fl + 3 

I Round n - 2 1 Round n - 3 1 

1 I Chord Lengths 1, fl+ 3 

I I Round 2 1 Round 1 1 Target I Chord No. / ChordNo. 

The actual broadcast must finish with the rounds we have numbered round n - 2 and 

round n, so that no odd vertices are informed until the penultimate round. Thus we 

swap rounds n - 1 and n - 2. 

The total path Length for this broadcast is 3 f l  - 3. Adjustments to  the last 

round can reduce it to 2 0 -  7, but in the next section we give a tiling construction 

which reduces the total path length to approximately :m. 

5.4 A Recursive Tiling Broadcast to 4" Vertices 

A shorter total path length can be achieved by tiling techniques. The successive 

tilings for a broadcast using the 'maple leaf' shape from Figure 5.9 is shown in Fig- 

ure 5.11. The shape at the start of each round is shown shaded and the final shape 

is roughly a rhombus. Note that the tiles are added alternately on the left and right 

to  reduce the path lengths, so the initial tile is one third of the way along the shorter 

diagonal of the rhombus. The total path length for the broadcast is approximately 

4 f i  3 
(the distance from the initial tile to the furthest corner) which is about fi 
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Figure 5.11: Recursive tiling with 43, 44, 4' triangles in groups of 16 

times the diameter of the mesh formed by dividing square tiles diagonally to convert 

a normal square mesh torus to a triangular one. 

Rolling the final shape into a torus differs from the normal broadcast pattern. 

There are 2n-2 maple leaves along each edge of the rhombus, each leaf having 3 

triangles along the edge. Thus there are 3 x 2n-2 triangles along each edge of the 

rhombus. If opposite edges of the rhombus are connected in the obvious way to form 

a torus, each horizontal strip of triangles will join up with itself to form a cycle after 

traversing the tile 3 times. Thus each cycle would use 3 triangles from the edge of 

the rhombus, and so there must be 3 x 2n-2/3 = 2n-2 cycles. The total number of 

triangles is 22n and so each cycle must contain 2n+2 triangles. 

An extra skew is introduced to ensure that a horizontal strip of triangles wraps 

round to an adjacent strip and forms a Hamiltonian cycle. This is always possible 

as the sawtooth pattern along the edge of the rhombus repeats every 3 triangles, 

the horizontal strip would normally be wrapped round to the strip 2n-2 rows higher 

and 2n-2 = &1 (mod 3 ) .  The width of the rhombus doubles a t  each round of the 

broadcast,so each pair of rounds of the broadcast multiplies the width fourfold. As 
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a result, a path across the rhombus is increased by 3 times the width of the original 

rhornbus by a pair of rounds. Because of the serrated edge, the width of the rhornbus 

(i.e. the number of triangles in a row) is not constant, but the sum of 3 adjacent rows 

is constant. The 3 rows correspond t,o the cycle mentioned above which contains 2n+2 

triangles. The corresponding chord length for the chordal ring graph is thus 

5 + 1 6 + 6 4 + . . . + f i = ( 4 / 3 ) f l - 1 / 3  for neven 

1 1 + 3 2 + 1 2 8 + + . ~ + f l = ( 4 / 3 ) V % + l / 3  f o r n o d d  

The chord length is always 3 or 5 mod 8, so the natural paths have the maximum 

possible cycle lengths. 

The diameter of the chordal ring cannot be greater than the number of chords 

to  reach half way round the ring ( ( 3 / 8 ) m )  plus half the chord length ( ( 2 / 3 ) a )  , 
provided the latter is larger (forward chords exist only at alternate vertices). Thus a 

rough upper bound on the diameter is 

and the ratio of the total path to the diameter is at least 1.28. 

Chordal rings with diameters as low as J ( ~ N  - 1) /3  have been described in this 

chapter, giving an upper bound for the ratio of total path length to diameter of 



Chapter 6 

Graphs of Degree Five 

6.1 Introduction 

Degree 5 meshes can be treated essentially in the same way as even-degree meshes. 

The degree 5 mesh can be regarded as a 3-dimensional mesh consisting of many con- 

nected layers of a 2-dimensional triangular mesh. It can also be viewed as layers 

of a 2-dimensional square mesh where only alternate vertices in adjacent layers are 

connected. Wraparound connections convert the mesh to a skewed torus which can 

also be represented as a circulant-like graph. This chapter derives a broadcast scheme 

from a circulant-like graph representation and then discusses geometrical interpreta- 

tions and variations for degree 5 .  There are no 'standard' degree 5 meshes to base this 

work on. It is not clear what values should be taken for chord lengths and diameter, 

and degree 5 gives more choices than can be investigated in detail. 

6.2 Minimum Diameter for Degree Five Torus 

Mesh 

The number iVD of vertices within a distance D from a given vertex is a sum over 

the 2-dimensional layers of the mesh, where the distance from the given vertex to the 

layer reduces the distance which can be reached within the layer. We consider the 
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Figure 6.1: A layer which has grown for 4 steps 

effect of increasing D one step at a time, forming a 3-dimensional region with vertices 

at the boundary of the region being a distance D from the centre. There are two 

separate cases depending on the orientation of the triangles in adjacent layers. (This 

depends on whether the chord length is even or odd when the graph is regarded as a 

circulant, as described in the next section.) 

Regarding each layer as a triangular mesh where all layers of triangles are oriented 

in the same direction, each layer will grow independently, forming the shape shown 

in Figure 6.1. For example, in the first step the initial vertex will inform a vertex in 

each of the two adjacent layers and 3 adjacent vertices in its own layer. Since there 

are layers on both sides of the initial vertex, after D steps there will be 2D + 1 layers, 

and using the results of the previous chapter, the number of vertices in a layer will 

grow by 1 ,3 ,6 ,9 .  . . in successive steps. There will be two layers growing by each of 

these values at each step, except for the single initial layer which grows by 3 0  in step 

D. 

This gives a recurrence relation: 

Solving the recurrence relation with No = 1 gives 

No = o3 + 3 0 2 / 2  + 5 0 1 2  + I 
and thus 

o3 < & < ( D  + I ) ~ ,  

leading to a lower bound for the diameter D for the degree 5  mesh of 
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When adjacent triangles in different layers are oriented in opposite directions, it 

is easier to consider each layer to be a square mesh with a checkerboard pattern, and 

connections between layers to  exist only when a black square is above a white one . 

Now each layer grows in a diamond shape containing k2 + ( k  + squares and new 

layers are formed one at a time on alternate sides of the original layer. A new layer 

formed at step k starts with k2 squares. The number of vertices No at a distance 

5 D  is then 

( D  + + D2 + $ ( 7 ~ '  + 2 )  - ( f ) 2  for even D 

( D  + + D2 + g ( 7 ~ ~  - 3 0  - 1) - 112 + (y)2 for odd D. 

In both cases this is roughly 7D3/6, so a lower bound on the diameter is 

6.3 Broadcasting on 6'" Vertices 

Figure 6.2: Representation of a degree 5 mesh 

The degree 5 mesh will be represented by a degree 6 circulant with an edge re- 

moved from each vertex to give an alternating chord which has a positive direction 

on even vertices and a negative direction on odd vertices. These edges will alternate 

in direction in the same way as for a chordal ring. The other chord will be described 
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as the symmetric chord. A broadcast with n rounds will inform N = 6" vertices and 

we can represent the graph with chords rctc, +C as in Fig 6.2, where as usual only 

the chords from vertex 0 are shown. As with the degree 3 chordal ring graph there 

must be an even number of vertices and the asymmetric chord must have an odd 

length. For 36 vertices, choose chord lengths of $2, -2, $3. Thus a vertex can inform 

the five vertices closest to it on the circle. Round 2 informs vertices f 1, f 2, $3 and 

round l'informs f 6, f 12, $18. This extends naturally to 6" vertices in n rounds. To 

reduce the total path length we add suitable multiples of 6 to the chord lengths. For 

example, -2 could be changed to -2 + 6 = 4. By analogy with the normal three 

dimensional torus we look for suitable chord lengths close to powers of fi FZ 3.3 and 

this suggests chord lengths of 3 and 10. For example, we could choose -2 + 6 = 4, 

2 - 6 = -4 and 3 + 6 = 9. Experience with graphs of degree 3 suggests that the 

chord lengths should be larger to compensate for the alternating chord. For example, 

choosing chord lengths of f 4, +15 reduces the diameter from 6 to 4. The rounds are 

then 

Target 

Number 

1 

Chord Lengths 1, 4, 15 

Round 2 

Chord No. 

1 2  3 

1 0  0 

0 1  0 

0 0  1 

Round 1 

Chord No. 

1 2 3  

Note that the total path length is 4, which is equal to the diameter. For larger graphs 

we would try to make chord lengths odd, as a path which includes more than one 

asymmetric chord must have odd-length chords separating them. 

So the paths for round 1 can be described by chords 

+I ,  $1, $4 to vertex 6 

$4, $4, $4 to vertex 12 

$15, $4, -1 to vertex 18 

-1, -1, -4 to vertex -6, and 
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-4, -4, -4 to vertex -12. 

These paths for round 1 are shown in Fig 6.3. Note that they are edge disjoint. 

The paths can be scaled up directly for N = f i n  vertices, but it would lead to a total 

path length of 

For large N this compares badly with the diameter which is of the order m. 

Figure 6.3: Broadcast round 1 for 36 vertices 

6.4 Geometrical Interpretation 

We can again think of winding the torus from a long strip of tiles, but this time 

continuing to form many layers with adjacent layers connected. The outer layer is 

then twisted round (in the fourth dimension) and connected to the inner layer. This 

is analogous to the way a skewed cylinder is twisted round and then the ends joined 

to form a 2 dimensional skewed torus. Alternatively we can think of taking a very 

long, slightly tapered cylinder and pushing one end into the other so it spirals round 
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inside itself, and then connect the layers. There are two ways to wind the torus from 

a long strip. 

As already stated, form a skewed torus from a strip of triangles but, instead of 

joining the ends, continue to wind many layers on the torus. Join each vertex to 

the one in the layer above and in the layer below. (The inside layer wraps round 

to  the outside layer.) This corresponds with having one short chord (with an 

odd length) and two long chords from each vertex. When the long chords have 

an odd length, triangles in adjacent layers will be oriented in opposite directions. 

Start with a strip of squares coloured alternately black and white and wind a 

multilayer torus as for the strip of triangles. In even layers connect white squares 

to  the layer below and black ones to the layer above. (Clearly the number of 

squares in each layer must be odd so that a white square is always above a black 

square.) This corresponds with having two short chords and one long chord at 

each vertex. If the short chords have an odd length then each layer will have a 

checkerboard pattern. 

Since these two representations are of the same graph, they must be equivalent. For 

example, the 36 vertex graph with chords f 4, $15 is isomorphic with the graph having 

chords f 16, $9 and these will correspond to  the two ways to wind the torus. 

Natural paths for the broadcast are most easily visualised by considering each layer 

of the torus to be a triangular mesh. There are then three natural paths within a layer 

and one natural path perpendicular to the layers. We can also consider natural paths 

consisting of alternating short and long chords, which is possible when the length of 

the symmetric chord is odd. In this case the triangular layers alternate in direction 

and are harder to visualise. 

If we regard the torus as being wound from a strip of squares, with many layers, 

then there are two obvious paths in each layer. Paths perpendicular to the layers 

are not possible as the connections allow only one of the perpendicular paths for 

each square. Each time we go down a layer there are four directions to choose from. 

Two of these directions correspond to the natural paths around a triangular mesh 

(Chapter 5). The other 2 directions seem equally natural, and lead to another square 
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with a downward path when the symmetric chord has an odd length. They correspond 

to using a mixture of short and long chords. 

Figure 6.4: Initial tile and immediate neighbours 

The three-dimensional geometry makes it reasonable to consider three rounds be- 

fore scaling up. The six-vertex tile representing the last round of the broadcast has 

two corresponding forms. It can be a 'large' triangle (formed from four triangular 

prisms corresponding to  vertices) with two triangular projections (Figure 6.4) or it 

can be a three-dimensional cross of cubes with one cube removed. Note that the 

triangular projections will face in opposite directions if the symmetric chords have 

an odd length. The growth of this tile with successive rounds of the broadcast is 

difficult to visualise, as shown in Figure 6.5, and we will consider only the tabular 

construction. For example, taking 63 vertices with chords of length 6 + 2 and 6' + 3 

the table describing the rounds of the broadcasting algorithm is 
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Figure 6.5: Tiling visualisation for 36 vertices 

1 63 Vertices / Chord Lengths 1, 8, 39 

Round 2  

Chord No. 

1 2 3  

Target 

Number 

Round 1 

Chord No. 

1 2 3  

Round 3  

Chord No. 

1 2  3  

Since round two is calculated modulo 62 and round one modulo 63 longer chords can 

be used to reduce the path lengths, giving 
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63 Vertices 

Target 

Number 

Round 3 

Chord No. 

1 2  3 

Round 2 Round 1 

Chord No. Chord No. 

1 2 3  1 2 3  

Chord Lengths 1, 8, 39 

I 
Paths corresponding directly to round 1 of this table do not however exist. Multiple 

chords of length 39 must be separated by other chords of odd length. In round 1 this 

increases the longest path length from 5 to 7. 

This broadcasting algorithm can then be extended to G3* vertices by repeating 

the final 3 rounds scaled up by a factor of 6. Again, longer chords are used whenever 

possible to  shorten the maximum path length in each round. For 66 vertices with 

chord lengths of 6' + 2, 64 + 3 the rounds are shown in the next two tables. 

1 66 Vertices I Chord Lengths 1, 6' + 2, 64 + 3 1 

6"ertices 1 Chord Lengths 1, 62 + 2, 64 + 3 1 

Target 

Number 

1 

2 

3 

I Round 3 1 Round 2 1 Round 1 I 
Target ) Chord No. 1 Chord No. I Chord No. / 

Round 6 

Chord No. 

1 2 3 

1 0  0 

0 1  0 

0 0  1 

By replacing short chords by long chords the 3 rounds shown in the last table can 

Round 5 

Chord No. 

1 2 3 

1 1 - 1 - 3 0 1  

- 1 2 - 1 - 6 0 2  

0 

Number 

1 

2 

3 

then be shortened to  

Round 4 

Chord No. 

1 2 3 

3 - 2 - 9 0 3  

1 2 3 

6 0  0 

0 6 0 

0 0 6 

1 2 3 

6 6 -6 

-6 12 -6 

0 18 -12 

1 2 3  

- 1 8 0  6 

-36 0 12 

-54 0 18 
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Round 1 

Chord No. 

1 2 3  

66 Vertices 

Target 

Number 

1 

2 

3 

Further adjustments are required to ensure that multiple chords of length 39 can 

alternate with steps along the main cycle and that each round uses each edge out of 

an informed node. 

6.5 Path Lengths 

Chord Lengths 1, 62 + 2, 64 + 3 

The total path length for 63 vertices is 

Round 3 

Chord No. 

1 2 3 

0 0  2 

0 0  4 

0 0  6 

and for 66 vertices is 

Round 2 

Chord No. 

1 2 3 

0  6 - 4  

2 11 4 

- 1 1 7  1 

These compare badly with lower bounds on the diameter of 6 and 36 respectively, and 

reflect the lack of geometric intuition in arranging the triangular shapes. The general 

case is treated in Chapter 8. 



Chapter 7 

Broadcasting on Circulant Graphs 

7.1 Introduction 

This chapter describes optimal algorithms for broadcasting on circulant graphs of 

degree 2d with ( 2 d  + l)d or (2d  $ l)nd vertices which represent skewed torus networks 

in d dimensions. It uses the tabular method developed in earlier chapters. 

Note that there are many cases covered: 

graphs with ( 2 d  + l)d or (2d  + I)"* vertices 

examples and methods of construction for tables 

deciding the order of edges in a path 

calculation of path lengths 

special cases for the first round or first group of rounds 

special cases for the first round or first group of rounds 

differences for odd and even rounds or target numbers. 

A summary is included here as a guide to the results. 

Section 7.2 deals with graphs of (2d+ l)d vertices, and mainly describes techniques 

for constructing tables and deciding the order of edges in a path. The path length for 
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round 1 is calculated and, by assuming results from Section 7.3 for the other rounds, 

Section 7.2 derives an upper bound on the total path length of about 3d2 /2 .  

Section 7.3 deals with graphs of (2d  + l )nd  vertices, and is mainly concerned with 

calculating path lengths. In summary: 

0 the last d rounds have a combined path length of d(5d  - 3 ) / 2 .  

0 middle rounds simply scale up the last d rounds. so that the combined path 

length for the last d ( n  - 1) rounds is S ( 5 d  - 3 ) / 4  where S is the maximum 

scaling factor. 

0 alternatives for constructing the middle rounds exist, but do not affect the total 

path length. 

0 the first d rounds are grouped in pairs to simplify the path lengths, 

- round d has a path length of S .  

- rounds d - 1,  d - 2 combined are S ( 2 d  + 1) + d + 1 - ( 2  + l / d ) .  

- rounds d - 3, d - 4 combined are S ( 2 d  + 1 )  + d + 3.  

- rounds d - 5 ,  d - 6 combined are S ( 2 d  + 1 )  + d + 5.  

- . . . 

0 the total path length is less than 1 + 2 + &. 

7.2 Broadcast on a Circulant of (2d + l ) d  Vertices 

In this section we consider circulants of the form 

where (2d  + l ) d  is the number of vertices and the chord lengths are 
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The number of vertices has been selected to model a d-dimensional square mesh 

torus, and the chord lengths approximate those of the mesh, so as to give a diameter 

close to that of the normal torus for comparison. Note that the chord lengths give a 

complete set of residues modulo (2d  + 1) if we include 0 . The inclusion of 0 will be 

assumed for simplicity - it represents transmission from a vertex to itself and can be 

ignored. We will take the residues to be from -d to d  rather than from 0 to 2d and 

use symmetry to deal with f x as a single case. 

Only small values of d  give a reasonable number of vertices. For example, d = 5 

gives 1 l5 = 161051 vertices, but we will assume d  can take any value. 

7.2.1 N = ( 2 d  + l)d: Example for d = 3, N = 73  

Note that the table for the last round is always diagonal as a vertex informs its 

immediate neighbours last. Chord lengths are 1,9 and 52. 

Matrix multiplication gives the vertices informed by round 1 (relative to each base 

d = 3  

Target 

Number 

vertex) to be 

Vertices -49, -98, -147 will also be informed during round 1. The negative targets 

Chord Lengths 1, 7 + 2, 7' + 3  

are treated symmetrically as shown in the table below. 

Round 1 

Chord No. 

1 2 3  

Round 3  

Chord No. 

1 2 3  

Round 2 

Chord No. 

1 2 3 
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ts Treated Symmetrically d  = 3  

Target 

Number 

-1 

-2 

-3 

Round 2  

Chord No. 

1 2 3  

Negative Tarp 

Round 3  

Chord No. 

1 2  3  

-1 0 0 

0 -1 0 

0 0 -1 

Round 1 

Chord No. 

1 2 3  

7.2.2 The General Strategy of Broadcasting 

Use of Rotational Symmetry 

Every base vertex obeys the same algorithm and, as base vertices are always equally 

spaced, rotational symmetry allows us to ignore multiples of the difference between 

base vertex numbers in any round. Thus if base vertex numbers are (2d  + 1) apart, 

then adding (2d  + 1 )  + 5 to the base vertex numbers will give the same set of vertices 

as adding 5 .  Paths starting out along equal positive and negative chords are mirror 

images of each other, so only one needs to be described. 

Order of Chords in a Path 

Each path in a round starts (obviously) with one of the chords incident on a base 

vertex. In each round the distances to target vertices are approximately multiples of 

one of the chords, which we will refer to as the main chord for that round. After 

th  first chord of a path, the path follows the appropriate main chord for the round 

until it is near to its designated target vertex. At this stage, each path has reached a 

vertex near a different target and there is no danger of edge contention, so the path 

to the target vertex can be completed with the remaining chords in any order. 

Informing All Vertices 

The number of rounds required for ( 2 d  + l ) d  vertices is d.  The first round starts 

at base vertex 0 and informs 2d target vertices chosen so that all 2d + 1 vertices are 
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equally spaced around the main cycle. Thus after the first round the informed vertices 

are k ( 2 d  + l)d-l for k = -d to  +d. The paths to the target vertices are very similar. 

After the first chord, the path follows several main chords of length ( 2 d  + l)d-l + d .  

Note that it overshoots each of the target vertices by a multiple of d plus the length of 

the first chord in the path. This overshoot is corrected using the two shortest chords, 

of lengths 1 and 2d + 1, as described in detail in the next section. 

The' second round then informs all other multiples of (2d  + 1)d-2, with paths 

consisting mainly of the (2d + l)d-2 + ( d  - 1 )  chord. Although a vertex informs 

widely dispersed vertices, by rotational symmetry we can consider each base vertex to 

inform the nearest d  target vertices on either side of itself, with a difference (2d  + l)d-2 

between target vertex numbers. This process continues until the final round informs 

all multiples of ( 2 d  + 1)' which is clearly all vertices. Again, by rotational symmetry, 

it is as if each base vertex informed the d  nearest vertices on either side of itself in 

the final round. 

7.2.3 Detailed Paths 

There are (2d  + l)d vertices and broadcasting requires d  rounds. Note that until the 

last round there are relatively few informed vertices. (For round 1 and dimension 

d = 3 the round starts with only 1 vertex out of the 343 informed). This sparseness 

makes edge-disjoint paths plentiful, but it is correspondingly difficult to select the 

'best' set of paths algorithmically, 

Round d, the Last Round 

The base vertices are every multiple of (26 + 1). Target vertices are all other vertices. 

Each base vertex informs its immediate neighbours. By rotational symmetry we can 

ignore multiples of ( 2 d  + I ) ,  so the chords are effectively -d to +d and we can regard 

each vertex as informing the d vertices on either side of it. There are 2d uninformed 

vertices between base vertices, so round d correctly completes the broadcast with a 

path length of 1. 
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Round d - 1 

Vertex 
0 

correspondmg vertex In I 

another cluster I 
1 
1 
I 
I 

a Base Vertex 

Figure 7.1: Cluster of vertices after the first chord in the paths for round d - I 

The base vertices are all multiples of ( 2 d  + Target vertices are all other 

multiples of ( 2 d  + 1). Each path must start with immediate neighbours, and this has 

the effect of reaching vertices numbered plus or minus (1,2d + 3, 3,4 , . . . d ) relative 

to each base vertex, as in Figure 7.1. (Note that the rotational symmetry does not 

apply to  2d + 3 because in round d - I we work modulo ( 2 d  + The description 

of paths is simpler if we take a mixture of positive and negative values covering all 

absolute values (1,3,4, . . . d and 2d + 3). The opposite sign is treated symmetrically 

by reflection. Select even values to be negative. If d is odd, also take the value of 1 

to be negative. Figure 7.1 shows the vertices reached if we take one step along every 

path for round d - 1. Because of rotational symmetry the paths go through vertices 

which are clustered in the same pattern around each base vertex. 

Edge-disjoint Paths for Round d - 1 

Vertex 2d + 3 takes a 1-chord forward and a 3-chord backward to the target vertex 

2d + 1. (If d = 2 the 3-chord does not exist, but two 1-chords backward are 

possible.) 
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Vertex -22 takes x of the 2-chord steps to arrive at the target vertex x(2d + 1) 

If d is even vertex 1 takes d/2 2-chords and then one d-chord forward to the target 

vertex (dl2 + 1)(2d + 1). 

If d is odd vertex -1 takes (d + 1)/2 2-chords forward and then one d-chord back- 

ward to the target vertex ( d +  1)/2 x (2d$ 1). 

Remaining odd vertices (2y + 1) take ( d  - y) 2-chords forward to the target vertex 

(d - y + 1)(2d + 1). 

As required we have informed vertices 

where x ranges from 2 to 141 and y ranges from 1 to 

For d > 3 the maximum path length is d. For d = 2 or 3 the maximum path 

length is d $- 1. 

Paths are Edge-disjoint 

The initial edge in each path is the same as a path in round d, but on a restricted 

set of base vertices. All initial edges start on a base vertex equal to 0 mod (2d + 1)2 

and end on a target vertex which is non-zero (mod 2d + I ) .  Hence the edges are 

disjoint. No subsequent edges are incident on base vertices. The parts of the paths 

along 2-chords start at a cluster of vertices from -d to  +d around a base vertex and 

follow 'parallel' 2-chords. After i 2-chords the paths are incident on a cluster from 

-d + 22 to  d + 2i around vertex i(2d + 1) relative to each base vertex. At each step 

one path ends on the correct target vertex and the cluster moves on with one less 

path. The clusters of vertices do not overlap each other since 

and they do not overlap clusters around the next base vertex because the clusters only 

extend to the d(2d + 1) target vertex and base vertex numbers differ by (2d + . All 
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paths along the 2-chords terminate at the target vertices except for paths starting at 

1 and 2d + 3 relative to the base vertex. The final edges of these two paths must be 

disjoint, as no other edge is incident on the same target vertex. 'The only other edge 

used is from (2d + 3) to (2d + 4) relative to each base vertex (and the mirror irnage). 

Hence the paths are edge-disjoint. The number of steps along each chord is shown 

for d = 2,3,10 and 11 in tables below, with extra columns to show the target vertex 

calculation and to indicate which is the first chord in each path. Note that d = 2 does 

not follow the pattern exactly. 

I Round 1: d = 2, vertices = 25, chords = 1, 7 1 
I Target I Chord No. I I I First / 

I Round 2: d = 3, vertices = 343, chords = 1, 9, 52 

Target Chord No. 

vertex 1 I 2 3 ~ e s u l t  

For sparse tables the zeroes have been omitted. 
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Round 9: d-10, chords = 1,23,444,. . . 
Target 

Vertex 

Chord Number 

1 2  3 4 5  6 7 8  9 1 0  

First 

Chord 

Round 10: d = l l ,  chords = l,25,532, . . . 
Target 

Vertex 

Chord Number 

1 2  3 4 5 6 7 8 9 1 0 1 1  

First 

Chord 
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Round d + l  - r ,  for 1 < r < d 

(Note that this includes round d - 1 which has just been treated in detail.) The base 

vertices are all multiples of (2d + l)r and so by rotational symmetry we can work 

modulo (2d + 1)'. Target vertices are multiples of (2d + I)'-', so the main chord used 

will be the r-chord of length (2d + I)'-' + r .  (We have chosen to make r number the 

rounds in reverse order so as to simplify expressions.) The overshoots to be corrected 

(where we take the first chord of the path to be part of the correction) are plus or 

minus r ,  2r , .  . . , dr and we will try to  correct these with the 2-chord, which has length 

( 2 d + 1 ) + 2 = 2 d + 3 .  

On the following pages we give examples for round d - 2 (where r = 3) in dimen- 

sions d = 5,10 and 11. 

I d = 5, round 3, chords = 1,13,124,1335,14646 

1 Target I Chord Number 1 First 

IVertexl 1 2 3 4 5 1 Chord 

(Here we have added an extra column to indicate which is the first chord in each 

path.) 
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d = 10, round 8 chords = 1,23,444,. . 
Target 

Vertex 

Chord Number 

1 2 3 4 5 6  7 8 9 1 0  

First 

Chord 

d = 11, round 9 chords I ,%,  532,. . 
Target 

Vertex 

Chord Number 

1 2 3 4  5 6 7 8  9 1 0 1 1  

First 

Chord 
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Round 1 

In round 1 we are working modulo (2d + l ) d  and the main chord is of length (2d + 
l)d-l + d giving overshoots of up to d2. As a result only the l-chord and 2-chord 

can be used to  correct the overshoot: any other chord would be too large to correct 

the overshoot and too small to be ignored by the modulo (2d + l ) d  arithmetic. The 

best choice of paths is now essentially unique, as can be seen in the tables below for 

d = 1 0 , l l :  the number of d - chords is equal to the target number; the overshoot is 

d times the target number; and this overshoot is corrected by using as many 2-chords 

as possible. The remaining overshoot is corrected by l-chords. Note that each of the 

chords must be the first chord of some path, and where necessary we will mark the 

first chord of a path with an '*' in the table. This represents a penalty of 2 steps in 

the path because the unwanted first chord must eventually be cancelled out with a 

reverse chord of the same length. 

Round 1: d = 10, chords = 1,23,444, . . . 
Target 

Vertex 

Chord Number 

1 2 3 4 5 6 7 8 9 1 0  
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I Round 1: d = 11 chords 1,25,532,. . . 1 
1 Target / Chord Number I 

In general the path length for round 1 is 2d + 2, plus a possible extra length of 2 

to ensure that every edge out of an informed vertex is the start of one of the paths. 

For small d we will show that this extra length can be transfered to a shorter path 

and will not affect the maximum path length. The examples assumed initially that 

chord i is the start of the path to target i ,  marked with an '*' on the main diagonal 

of the table where this increases the path by 2. This gave a path length of 2d + 4 

to target number 8. The maximum path length was reduced to  2d + 2 by swapping 

chord 8 to be the first chord of the path to target 2 and chord 2 to be the first chord 

of the path to target 8. This is shown by moving the '*' up from the row for target 

8 to the row for target 2. For d = 11 target 10 should be adjusted in a similar way, 

swapping with either target 1 or target 10. 

Creating the Tables for Round d + 1 - r 

In practice, since d is small, it is easy to plan paths for round d + 1 - r ,  1 < r < d, 

using a table and filling entries as described below. 
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0 Label columns with the chord number from 1  to d. Label rows with the target 

vertex number from 1  to d. Thus cell ( 2 ,  j) contains the number of j-chords in 

the path to target vertex i (where target vertex i is i(2d + I)'-'). Note that 

column r is always 1 , 2 , .  . . , d  except for the last round which has 1's on the 

diagonal as a vertex sends to all its neighbours. 

0 Row i requires a correction of -ir. Start with the last row and work upwards 

so that the longest paths get first attention. For each row try to  correct the 

overshoot with as few chords as possible, trying in the order shown 

- The 2-chord (of length 2d + 3);  

- Chords d ,  d  - 1 , .  . . , r + 1 (shorter chords cannot use the rotational sym- 

metry) ; 

- The 1-chord. 

0 Adjust rows d  to r - 1 so each of them uses chord 1 or a chord number in the 

range d to r. If necessary, add two extra chords in each row to achieve this. The 

aim is to match targets (rows) 1 to a! with chords 1 to d (since each path from a 

given base vertex must begin with a different chord). At the same time we can 

balance path lengths by giving distant vertices priority. Complete the matching 

by adding pairs of equal chords in opposite directions - these are indicated by 

entering '*' in the cell. The first chord of a path now determines the target 

vertex according to this matching. 

The results of this procedure are shown below for d  = 9. Only the positive tar- 

get vertices are considered, the paths for the negative target vertices are given by 

reflection. 



Round 9 

Target 

Vertex 

1 

2 

3 

4 ' 

5 

6 

7 

8 

9 

Chord Number 

1 2 3 4 5 6 7 8 9  

1 Round 8 I 

Round 7 

Target 

Vertex 

Chord Number 

1 2 3 4 5 6 7 8 9  

Chord Number 

1 2 3 4 5 6 7 8 9  

Round 6 

Chord Number 

1 2 3 4 5 6 7 8 9  
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Round 5 

Target 

Vertex 

Chord Number 

1 2 3 4 5 6 7 8 9  

Round 4 

Chord Number 

1 2 3 4 5 6 7  8 9 

I Round 3 I Round 2 I 
Target 

Vertex 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Chord Number 

1 2 3 4 5 6 7 8 9  
I Chord Number I 
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1 Round 1 

Chord Number 

1 2 3 4 5 6 7 8 9  

The total path length for this example is 

compared with a diameter of 81 for the corresponding 19 x 19 x . x 19 normal torus. 

7.2.4 N = (2d + l ) d :  Path Length of Round 1 

We show that the maximum path length in round 1 is 2d + 4. The overshoots to be 

corrected with the 2-chord (of length 2d + 3) are d, 2d,. . . , d2. The longest path is 

likely to  be for correcting d2, and we show this is in fact generally true. Note that a 

path for target number x gives rise to a path for target number x - 2 by removing two 

d-chords and a reverse 2-chord then adding three 1-chords. The new path is the same 

length, but contains more 1-chords. We then have the possibility of creating a shorter 

path by replacing many 1-chords with a 2-chord. As before, we use the main chord of 

a path to reach a vertex near the target vertex and then correct the overshoot with 

the remaining chords. This ensures that the paths are edge-disjoint. 

For even d, 0 < i < d/2, (ignoring details of special cases when d is small) 

(d - 2i)d = ( $  - 1 - i)(2d + 3) + ( $  + 3 + 32) target d - 22 
d ( d -  1 - 2i)d = (?  - 1 - i j ( 2 d + 3 )  + (-g + 3 + 3 i )  target d - 1 -2i.  
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When z < d/6, the path lengths for these are at most, 

(d - 2i) + ( f  - 1 - i )  + ( f  + 3 + 3i) = 2d + 2 target d - 22 
d ( d l  2 ) - 1 - ( f - 3 - 3 2 )  = 2 d - 5 - 6 2  target d - 1 - 2 i .  

Paths will be shorter when i 2 d/6. For example, 

so a single (2d + 3) chord would give a shorter path than (5 + 3 + 32) 1-chords. 

The maxirnum path length will be longer if the first chord is not productive. 

When d is so large that 

d 
(- + 3 + 3i) < d + 1 for i < 4, 
2 

for example d = 24, there are 4 paths of length 2d+2 which cannot be shortened. 

We must also take into account the correction for the first chord of each path, 

since all first chords except the 1-chord, 2-chord and d-chord entail a reverse 

chord of the same length. This adds an unproductive 2 chords to the path 

length, and one of the four paths of length 2d + 2 must be extended to 2d + 4. 

0 For odd d, a similar analysis also gives a maximum path length of 2d + 4 since 

(d - 2ijd = (F - 1)(2d + 3) - ( d  - 3 - 6i)/2 target d - 22 

(d - 1 - 2i)d = (9 - 1 - i)(2d + 3) + (d + 9 + 6i)/2 target d - 1 - 22 

and when i < d/6, the path lengths for these are at most 

(d - 2i) + (y - i )  + (d - 3 - 6i)/2 = 2d - 2 target d - 2i 

(d -  1 2  - 1 i )  + ( d + 9 + 6 i ) / 2  = 2 d + 2  target d -  1 -2 i .  

7.2.5 N = (2d+ l)d: Upper and Lower Bounds on Total Path 

Length 

In Section 7.3 we will show that paths in round d + 1 - r (1 < r < d) are at most 

d + r in length, even when the 2-chord is not used for correcting the overshoot, and 
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also that the path length for round 1 is at most 2d + 4, so the total path length for 

the broadcast is at most 

1 
1 for round d 

d for round d - 1 

C:Z;-' [d + r ]  for rounds d - 2 to 2 

2d + 4 for round 1. 

Thus t h .  total path length is 

So for d > 3 the total path is at most 1.5 times the diameter of the corresponding 

normal torus-connected mesh. A tighter limit might be achieved by using the 2-chords 

to  correct the overshoot. For large d ,  the 2-chord can reduce most of the overshoot 

of r d  in round d - r + 1 in about r /2  steps leaving a further correction of at most 

d + 1. Since the 2-chord gives the largest correction possible, a lower bound on the 

path length this algorithm can achieve is 

This is about 1.25 times the diameter. The hand-optimised example for d = 9 achieved 

a ratio of 1.3. 

7.3 Circulants With (2d + 1)" Vertices 

In this section we consider broadcasting on circulants of the form 

This is intended to model the recursive application n times of the method in Section 7.2 

in d dimensions. The total number of rounds is d n ,  and this is done as n groups of d.  

Each group of d rounds uses each of the d chord lengths in turn as the main chord, 

and the next group of d rounds repeats the same pattern scaled down by a factor of 

2d + 1. The 2-chord is now large compared with d2 and is less useful for overshoot 
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correction. Most overshoot correction is done with the d-chord. General methods for 

selecting the entries in the tables for the broadcast are given later in this chapter. 

We will first give an example for d = 3, n = 3, N = 7' and then calculate an upper 

bound on the total path length for the general case. 

7.3.1 An Example for d = 3 , n = 3 , N = 7 '  

The tables below describe a broadcast for a circulant graph of 7"ertices with chord 

lengths of 1, 73+2 and 76$3. 

I I Scaling Factor = 1 I 
Round 9 Round 8 Round 7 

modulo 7'' modulo 74 modulo 77 I 

I modulo 72 1 modulo 75 1 modulo 1 

Scaling Factor = 7 

I 1 Scaling Factor = 49 

Round 6 Round 5 

1 1 Round 3 1 Round 2 

modulo 73 modulo 76 

Round 4 

Round 1 

modulo 7' 
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The diameter of the corresponding 343 x 343 x 343 normal torus mesh is 3 x 171 = 513. 

The total path length for the broadcast is 

Except for the last round, the difference between base vertex numbers is large 

enough to guarantee disjoint paths, and the last round consists trivially of the disjoint 

paths of length I to all immediate neighbours. 

7.3.2 Notation for Calculation of the Total Path Length 

In this section we will use the following notation: 

i is the target number 

j is the round number within a group. 

y is the group of rounds, where 0 5 g < n - 1, so that d n  + 1 - ( d g  + j) is the round 

number. 

s is the scaling factor for successive groups of rounds, and is equal to (2d  + 1)g 

S is the scaling factor used in the first round, equal to  (2d + 

Note that g  and j number the rounds in reverse order so as to simplify expressions. 

7.3.3 The Path Length for the Last d Rounds 

The scaling factor s is equal to 1 and we number this group of rounds with g  = 0 and 

j varying from 1 for round d n  to j = d  for round d ( n  - 1) + 1. In round d n  + 1 - j the 

main chord for paths is of length (2d+ l)(J-')n + j  and target i is vertex i(2d+ l)(jM1)". 

Choosing a path consisting of i main chords for target i in round d n  + 1 - j gives an 

overshoot of i j  for target i ,  for i = 1 to d .  The overshoots can be corrected to give a 

path length of at most d + j for 1 < j < d  as described below. Rounds corresponding 

to j = 1, d  and d  - 1 are considered separately from rounds for j = 2 to  d  - 2. 
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j = 1 This is the last round, where the paths are trivially of length 1 to adjacent 

nodes. 

j = d  we can use only the 1-chord to correct the overshoot of d2, giving a worst path 

length of d  + d2 to target number d. The first chord to target number i can be 

the i-chord without affecting the worst path length. 

; = d -'I The overshoot can be expressed as 

which gives a correction path consisting of ( i  - 1) d-chords and ( d  - i) 1-chords. 

Thus a total of = d - 1 chords can correct the overshoot. Together with the i 

main chords this gives a path length of d + i - 1 and since j  = d - 1 this path 

length is at most d  + j .  We must also allows for the 2 unproductive steps which 

are sometimes required for the first chord of the path and its reverse. For the 

first d - 2 targets , we have i < d - 1 and the path length is at most d + j - 2. 

If we use the 1-chord and d-chord as the first chords for paths to the last two 

targets, no path length will exceed d  -$- j .  

j  < d  - 2 For any round in this range, the strategy depends on whether the target 

number i is less than, equal to, or greater than j .  

For target 2 > j use entries on the main diagonal of the table to correct 

the overshoot of i j  with j  2-chords, which together with the i main chords 

gives a path length of z + j .  As d is the largest value for i, the path length 

z + 3 is at most d  + j .  b r  this range of values for i we can use the z-chord 

as the first chord of the path without increasing the path length. 

For target i = j we have 

So we can use j - 2 ( J  + 1)-chords and a ( j  + 2)-chord, giving a path length 

of 2 j  - 1 < d  + j with the j-chord as the first chord of the path. 
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For target i < j, shorter overshoot corrections can be constructed from the 

i = j case by replacing two ( j  + 1)-chords by a ( j  + 2)-chord. Since we 

start with j - 2  ( j  + ])-chords, this is possible until 

If we continue beyond this (a  negative number of chords is interpreted as 

chords in the opposite direction) the correction will increase by 3 chords for 

each smaller target number until it is 2 j  for target 1, since the overshoot 

for this target is j and 

As j is at most d  - 2, 2 j  is at most d + j  - 2 and even this poor construction 

guarantees a maximum path length of d  + j chords to any target vertex. 

So for the last d rounds the total path will be 

7.3.4 Path Length for Rounds d + 1 to d ( n  - 1) 

The last d rounds are then scaled up by a factor (2d  + 1 )  for each group of d  rounds, 

and since 
g=n-2 

( 2 d  + = ( ( 2 d  + I)"-' - 1 ) / 2 d  

the total path length for the last d ( n  - 1) rounds will be at most 

Note that we can easily derive new paths rather than scaling up the paths found for 

the last d  rounds. The new paths are described below, but do not reduce the bound 



CHAPTER 7. BROADCASTING ON ClRCULANT GRAPHS 94 

on maximum path length. Paths can be shortened if we use d-chords to reduce the 

scaled up number of 1-chords. Because of the scaling factor s = (2d + 1 ) g ,  the largest 

nurnbered target vertex requires the longest path when s > 1 and j < d. The next 

lower target vertex requires s fewer steps along the main chords, which decreases the 

overshoot by j s .  This decrease in overshoot by js can be corrected by 

3(s - 1) d-chords, a ( j  + 1)-chord and a 1-chord, 
d 

giving a total of 

< s extra chords for the correction. 

Since there are s fewer steps along the main chord, we can always construct a 

shorter path to  a smaller nurnbered target vertex when s > 1, j < d. (We have 

already found the results for s = 1 and for j = d.) Note that planning detailed paths 

is simplified because we know d is a factor of s - 1. A correction of xs - x can be 
x(s-1) done with d-chords and the remaining correction of x done in the same way as 

for s = 1. 

7.3.5 N = (2d + l)nd: General Examples for Rounds d + 1 to 

d(n - 1) 

It is easy to  write down a general scheme which meets the s (d  + j) limit when s > 1 

and 1 < j < d - 1. For these case we can reach close to target i with a path 

consisting of i s  main chords (j-chords), giving an overshoot of i j s .  A large part of the 

overshoot can be corrected with z j ( s  - l ) / d  d-chords, leaving i j  still to be corrected. 

The remaining overshoot of ij requires z (3 + 1)-chords and i 1-chords in the opposite 

direction. The results of this are shown in the table below. Note that the last row 

has been simplified: an overshoot of djs can be corrected by js d-chords. Columns 

containing only zeros have been omitted and only the first and last two rows of the 

table are shown. 
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Target 

Vertex 

General scheme for round dn + 1 - (dg + j), scaling factor s = (2d + 
Chord Number 

1 2 . . .  j j + l  . . .  d 

1 s -1 -j(s - 1) /d  
2 2s -2 -2j(s - l ) / d  

Specific cases can be improved by inspection to give shorter paths for some of the 

targets (although the maximum path length is not reduced). The remaining overshoot 

of i j  can always be corrected with extra d-chords to within a distance d/2 of the target 

vertex. The table below shows what is possible when j is a factor of d. In this case 

the remaining overshoot of ij is often a multiple of d and can be corrected entirely 

with d-chords. 

d = 10, j = 5, chords = 1,23,444,. . . 
Target 

Vertex 

Chord Number 

Using d-chords to  reduce the remaining overshoot down to d/2 does not always 

give the shortest path. For example, in the following table, the remaining overshoot 

is left at 54 which can be corrected with 6 9-chords. If it were reduced to  4 with 5 



CHAPTER 7. BROADCASTING ON CIRCULANT GRAPHS 96 

extra 10-chords, it would then need 4 1-chords to complete the path. (The 4-chord 

cannot be used because it is smaller than rotational symmetry allows). 

d = 10, 

Target 

Vertex t 

I 

i = 6, chords = l ,23, 444,. . . 
Chord Number 

7.3.6 N = (2d  + l )nd:  Path Lengths for Rounds 1 to d 

The scaling factor for this first group of rounds is S = (2d + l)n-l and the length of 

the 2-chord can be expressed as (2d + 1 ) s  + 2 . The corrections required for target i 

in round d + 1 - j are 

i j S  for i, j = 1 to d. 

Whenever i j  > d we can use the 2-chord of length (2d + 1 ) s  + 2 to give a shorter 

correction path. As before, target vertex number d will always have the longest path. 

In round d + 1 - j target number d will require a correction of djS. There are six 

cases considered below, depending on the values of j and d. 

1. For j = 1 (round d) the path is simply S d-chords and the path length is S .  

2. For j = 2 (round d - 1) we express the overshoot as 

2dS = [(2d + 1 ) s  + 21 - [(S - l)/d]d - 3. 
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Here the main chord (2d  + 1 ) s  + 2  is used as the correction, so the number 

of main chords is reduced from d S  to d S  - 1  with a remaining correction of 

( S  - l ) / d  d-chords and three 1-chords. The path length is thus 

3.  For j  = d  (round I ) ,  the overshoot for even d  is 

d 2 S  = ( d / 2 ) [ ( 2 d  + 1 ) s  + 21 - d ( S  + 2 ) / 2 ,  

and including the d S  main chords the path length is 

d S  + d / 2  + d ( S  + 2 ) / 2  = 3 d ( S  + 1 ) / 2 .  

4. For j = d  (round I ) ,  the overshoot for odd d  is 

d2S' = [ ( d  - 1 ) / 2 ] [ ( 2 d  + 1 ) s  + 21 + ( d  + 1 ) S / 2  - ( d  - I ) ,  

and including the d S  main chords the path length is 

d S  + ( d  - 1 ) / 2  + ( d  + 1 ) S / 2  - ( d  - 1 )  = ( 3 d  + 1 ) S / 2  - ( d  - 1 ) / 2 .  

5. For 2  < 3 < d ,  J even 

d j S  = ( j / 2 ) ( ( 2 d  + 1 ) S  + 2 )  - [ j ( S  - 1 ) / ( 2 d ) ] d  - 3 j / 2 ,  

and inclilding the d S  main chords the path length is 

d S  + j / 2  + j ( S  - 1 ) / ( 2 d )  + 3 j / 2 .  

6. For 2  < j  < d ,  j odd 

d j S  = ( ( j  - 1 ) / 2 ) ( ( 2 d  + 1 ) s  + 2 )  + [ (2d  - j  + 1 ) ( S  - 1 ) / ( 2 d ) ] d  + (2d  - 3 j  + 3 ) / 2 ,  

and including the d S  main chords the path length is 

d S  + ( j  - 1 ) / 2  + (2d  - j  + 1 ) ( S  - 1 ) / ( 2 d )  + (2d  - 3 j  + 3 ) / 2 .  
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The combined path length for rounds corresponding to j  and ( j  + 1) for even values 

of j  greater than 2 simplifies to 

and for j = 2, rounds d - 1 and d - 2, the combined path length is 

Combined path lengths in pairs this way will reduce the number of cases which need 

to be considered in calculating the total path length. 

7.3.7 N = (2d  + l )nd:  Total Path Length for d n  Rounds 

For even d,  the above results give a path length for the first d rounds of 

For odd d, the path length for the first d rounds is 

In both cases, ignoring small negative terms we get a path length which is less 

than (S + 3 / 4 ) d 2 .  Thus the total path length including the first (n - l )d  rounds is 
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less than 
5  3  

( 5 d  - 31,914 + ( S  + 3 / 4 ) d 2  < s ( d 2  + - d )  + -d2.  
4 4 

The diameter of a comparable normal torus connected mesh is 

Thus for ( 2 d  + l ) d n  vertices the ratio of the total path length for broadcasting on the 

a skewed torus to the diameter of a normal torus mesh is less than 

and approaches 1  for increasing dimension d  when n > 1. 



Chapter 8 

Odd-Circulant Graphs 

Circulant graphs have even degree unless one of the chord lengths equals half the 

number of vertices (which is not dealt with in this thesis). To investigate other 

graphs of odd degree we consider a generalisation of the chordal ring and circulant 

graphs. Define an odd-circulant graph by removing half of the edges of a particular 

odd chord length from a circulant graph. The even vertices have a negative edge 

removed and the odd vertices have a positive edge of the same chord length removed. 

As with the chordal ring, the number of vertices must be even and the removed chord 

must have an odd length and also be (for our algorithm) the longest or next to longest 

chord. Broadcasting algorithms similar to those for circulants will be developed for 

odd-circulant graphs, taking into account that the required chord may not exist with 

the correct sign. 

We will continue to regard d as the dimension of the geometric visualisation, but 

the degree of the corresponding graph is now 2d - 1 and the number of vertices 

informed after r rounds of the broadcast is (2d)'. 

Chapter 5 shows the results for degree 3 vertices in detail, using tiling techniques 

in 2 dimensions. In Chapter 6 we have considered a degree 5 odd-circulant with 6" 

vertices in terms of a 3-dimensional mesh. We will extend the broadcasting algorithm 

to a degree 5 circulant of 63n vertices and also consider higher degree odd-circulants 

of degree (2d - 1) with N = (2d)d vertices. The total path length we derive for a 

broadcast on an odd-circulant with (2d)d vertices is very similar to that for a circulant. 
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The case N = (2d)dn vertices has not been attempted. 

8.1 Broadcasting on an Odd- Circulant 

The general strategy is the same as for a normal circulant with minor changes to 

ensure the sign of the d-chord is correct for the chosen path. 

0 The asymmetric chord must be of odd length, so for even d we cannot have a 

d-chord of length d (mod 2d). The details of broadcasting therefore differ for 

even d, and in the last round it is necessary to increase the vertex number of 

alternate base vertices by one. (As in Chapter 5 ,  the last round of broadcasting 

needs to group base vertices in pairs if (2d - 1) = 3 mod 4.) Alternatively, the 

(d- 1)-chord can be made the asymetric one. This leaves a gap in the immediate 

neighbours of a vertex, and the second last round must still be adjusted to make 

the gaps of adjacent nodes interlock. 

0 There must also be an odd length chord between two d-chords in a path. To 

make this easier, the length of the 2-chord is made odd when d > 3. 

0 The exact reflection of a path containing d-chords is not possible. (The chords 

used can be the same, but with opposite signs and a slightly different order). 

Forward paths can only use the d-chord from even vertices; backward paths 

from odd vertices. 

The total path length for N = (2d)d vertices is shown to be at most (3d2 + d)/2. 

8.1.1 When the Dimension d is Even 

The chord lengths are chosen to be 
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where the sign of the d-chord is negative for odd vertices. Note that the length of 

the d-chord has been increased to (2d)d-1 + (d + 1) so it will be odd. Some caution 

is needed when correcting overshoots as the d chord corrects by d + 1, the 2-chord 

corrects by 3 or 2d + 3, and the 3-chord corrects by 2. 

Details of the even case have been omitted as it is similar to that for odd values of 

d described below, but requires a minor adjustment in the last two rounds. In round 

d - I the target vertices are adjusted to  be 

(2d + I),  4d, (6d + l ) ,  8 d . .  . and (-2d + I ) ,  4d, (-6d + I ) ,  8 d . .  . . 

8.1.2 When the Dimension d is Odd 

For odd dimensions greater than three, the chord lengths are chosen to be 
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where the sign of the d-chord is negative for odd vertices. The 2-chord and 3-chord 

have been adjusted to make the 2-chord an odd length. When d = 3 (degree 5 vertices) 

this would give chord lengths 

which is not possible, as the asymmetric chord must have an odd length. We deal 

with degree 5 first. 

8.2 Degree 5 ,  d = 3, N = 63n 

We will write the round number as 

to  simplify expressions. The rounds for N = €i3" vertices can be expressed in the usual 

way. 

Last 3 Rounds I Chord Lengths 1, 6" + 2, 6'" + 3 

Round 3 n  Round 3 n  - 1 

mod6 modV+' 

Target Chord No. Chord No. 

Number 1 2 3  1 2  3 

Round 3 n  - 2 

mod6'"+' 

Chord No. 

1 2  3 
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General 

Target 

Number 

Round 3(n - g )  

m0d6~+'  

Chord No. 

1 2 3 

Writing S for 6"-' we obtain 

Target 

Number 

Chord Lengths 1, 6" + 2, 62n + 3 

Round 3(n - g )  - 1 

mod6"+g+' 

Chord No. 

1 2 3 

Round 3(n-g)-2 
mod 62n+g+l 

Chord No. 

1 2 3 

I S = 6n-1, Chord Lengths 1, 6" + 2, 6" + 3 I 

The total path length for the degree 5 broadcast is given by the following table. 
r 

- 

- 

Tot a1 

Round Total 

for Row 

There is no 'standard' torus to compare this result with. However the diameter of the 

graph is roughly 1.5 x 6", so the ratio of total path length to diameter is 1.6. 
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A better choice of chord lengths that was considered was {f 1, f 3,5}, so that the 

short and long chords could alternate, but when investigated it gave a greater total 

path length, as calculated below. This choice of chord lengths required vertices to be 

paired in the same way as for degree 3 chordal rings. Vertex 0 sent to vertices 1, 3, 5 

and vertex 7  sent to vertices 2,4,  6 (i.e. -5, -3, -1 relative to vertex 7 ) .  Ignoring this 

and other minor adjustments in the final rounds gives the following tables to describe 

the broadcast. 

Last 3 Rounds I Chord Lengths 1, 6" + 3, 62n + 5 

Target 

Number 

1 Gen. 1 Chord Lengths 1, 6" + 3, 62n + 5 

Round 3n 

mod6 

Chord No. 

1 2  3 

Round 3n - 1 

rnod6"+' 

Chord No. 

1 2  3 

Round 3n - 2 

m0d6~"+' 

Chord No. 

1 2 3  

Target Chord No. Chord No. Chord No. 1 No. 1 1 2 3 3 2 3 

Round 3(n - g) 

mod 69+' 

Round 3(n - g) - 1 

m0d6~+9+ 

Round 3(n - g) - 2 
mOd62n+L7+l 
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Target 

Number 

ODD-CIRCULANT GRAPHS 

S = 6"-' , Chord Lengths 1, 6n + 3, 62n + 5 

Round 3 

mod6" 

Chord No. 

1 2  3 

Round 2 

m0d6~" 

Chord No. 

1 2 3 

Round 1 

m 0 d 6 ~ ~  

Chord No. 

1 2 3 

This gives a total broadcast path length of about 2.525 x 6", which is worse than 

the previous result. Other possibilities include increasing the odd chord length to 

2 x 62n + 5 ,  but this has not been investigated. 

8.3 Degrees 9,13,17. .  . 

This section deals with odd dimensions greater than d = 3 for odd-circulant graphs 

with N = ( 2 ~ l ) ~  vertices. For each round number we will give paths for the broadcast 

and calculate the maximum path length. 

Round 1 for Degrees 9,13,17. .  . 

As for the normal circulant, we will consider the chord length to be separated into 

a 'useful' part and an 'error' term or overshoot. The target vertices in round 1 are 

multiples of (2d)d-1 and so round 1 will use a main chord of length (2d)d-1 + d where 

d is regarded as the overshoot for each main chord in a path. The overshoots to be 

corrected for paths to target numbers 1, 2, 3, . . . , d are d: 2d, 3d,.  . . , d2 respectively 

and they must be corrected with chords of length 1 and 2d + 3. These overshoots and 

chord lengths are the same as for round one of the broadcast on a normal circulant, 

so the maximum path length must be at least the value 2d + 4 which was calculated 

for the normal circulant. The maximum path length on an odd-circulant might be 

worse because there are fewer chords available than in the corresponding circulant. 
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We can show that this is not the case in round 1 by finding how many chords of odd 

length will be in any path. 

Since a t  most d of the chords in the path to a target vertex are main chords, the 

rest must be of length 1 or 2d+ 3. Hence d +  2 of the chords in a path for broadcasting 

on an odd circulant in round 1 will be of length 1 or 2d + 3 and the requirement for 

odd-length chords between d-chords can be satisfied. 

In round 1 there is only one base vertex. The first chord of paths, except for paths 

starting with a 1-chord, 2-chord or d-chord, will spread paths at least (2d)2 = 4d2 

apart and prevent edge contention (since the largest overshoot is only d2). The last 

chord in these paths will be the reverse of the first chord to cancel its effect. Paths 

starting with a 1-chord, 2-chord or d-chord will pass close to target vertices and must 

be planned carefully. 

As an example, consider round one for d = 5,2d = 10, N = 100,000, a degree 

9 graph with 100,000 vertices which requires 5 rounds for the broadcast. The table 

showing how many of each chord length is required for each target vertex is shown 

below. As before, the entries of '*' for chords 3 and 4 indicate that the path begins 

with a step along the chord, but this is cancelled out further along the path by a step 

along an equal chord in the opposite direction. 

I Round 1, d = 5 

/ chords = 1,13,102,1004,10005 

Target 

Vertex 

4 

5 

Chord Number 

1 2 3 4  5 

Using this table we can construct a list of vertices along each path (relative to the 

source vertex). Each path is shown as a column in the table below. The longest path 

is of length 12, to reach target number 4. 
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/ Round 1: Vertex Numbers Along Paths 

Path 

Length 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

To Target Number 

1 2 3 4 5 

The paths to negative targets are slightly different as the backward d-chords (of length 

10,005) are available only at odd vertices. Note that there are only 4 backward paths. 
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Round 1: Vertex Numbers Along Negative Paths 

Path 

Length 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

To Target Number 

-1 -2 -3 -4 -5 

13 does 

-9,992 not 

-9,979 exist 

-19,984 

-19,985 

-29,990 

-29,991 

-39,996 

-39,997 

-39,998 

-39,999 

-40,000 

Round 2 for Degrees 9,13,17. .  . 

The target vertices are multiples of (2d)d-2 and so round 2 will use a main chord 

of length (2d)d-2 + d - 1, where d - 1 is the overshoot for each main chord in a 

path. The overshoots to  be corrected for paths to  target numbers 1 ,2 ,3 ,  . . . , d are 

d - 1,2(d - l ) ,  3(d - I ) ,  . . . , d(d - 1) respectively, and they must be corrected with 

chords of length 1 and 2d + 3. 

Odd target (2i + 1) has an overshoot of 

and, since 

and 

-3jd - 1)/2 < d - 1 - 52 < d - 1 for i = 0 to  (d - 1)/2, 
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the overshoot can be corrected by 

i chords of length (2d + 3), up to one d-chord, and up to (d - 1)/2 I-chords. 

So the path length to odd targets is at most 

Similarly since 

and 

(11 - d)/2 < 2d + 3 - 52 < 2d - 2 for i = 1 to (d - 1)/2, 

the overshoot for an even target 2i can be corrected by 

(i - 1) chords of length (2d + 3), up to  2 d-chords, and up to (d - 1)/2 1-chords. 

So the path length to even targets is at most 

In both cases the maximum path length can be taken as 2d. 

Rounds 3 t o  d - 2 for Degrees 9 ,13,17. .  . 

For round number d + 1 - r ,  where 3 5 r < d - 2, target vertices are multiples of 

(2d)'-l and so round d + 1 - r will use a main chord of length (2d)'-l + r ,  where r 

is the overshoot for each main chord in a path. The overshoots to be corrected for 

paths to target numbers 1 ,2 ,3 , .  . . d are r, 2r, 3 r , .  . . , dr respectively, and they must 

be corrected with chords of length 1 and 2d + 3, together with the d-chord,(d - 1)- 

chord,. . ., ( r  + 1)-chord. 

If r is odd, correct the overshoot of dr by using r d-chords. If r is even (and thus not 

equal to d - 2), correct dr  with 

r /2  - 1 d-chords, a (d - 1)-chord, 7-12 (d - 2)-chords and an ( r  + 1)-chord. 
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Round d - 2 for Degrees 9,13,17..  . 

The overshoot is 2d for target vertex d. Correct with two (d- 2)-chords and a 4-chord. 

If d = 5 ,  use two 4-chords and two 1-chords. 

Round d - 1 for Degrees 9,13,17..  . 

The overshoot will be 3 ,6 , .  . . ,3d. Correct the larger overshoots (those greater than 

d) by using one less main chord and suitable other chords. For example, an overshoot 

of 3d can be corrected by a 2d + 3 main chord and a (d - 3)-chord. The maximum 

path length will be d, just as for round d - 1 of a broadcast on a circulant graph. 

Round d for Degrees 9,13,17. 

The last round is always to adjacent nodes, with a path length of 1. 

Total Path Length for Degrees 9,13,17. .  . 

Thus the total path length for a broadcast for odd dimension d (i.e. odd-circulant 

graphs of degrees 9,13,17 . . .) is less than 

This result is very similar to the results for a normal circulant. 

8.3.1 Comparison of the Total Path Length to the Diameter 

For N = (2d + l)d vertices and the chord lengths approximated by powers of 2d + 1, 

the longest path to a vertex can contain at most d chords of any length. Otherwise 

a longer chord could be used to reduce the path length. If the path includes more 

alternating chords than compensating odd chords, just increase the number of odd 

chords with pairs which cancel out. As there are d chord lengths we can approximate 
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the diameter by d2. The slight deviations of chord lengths from powers of 2d + 1 are 

assumed to  have only a small affect on the diameter. 

Thus the ratio of total path length to diameter is approximately 1.5. 



Chapter 9 

Conclusions 

In this thesis we have shown how a torus can be modified to  form a circulant graph. 

Assuming an all links communications model with circuit-switched routing we derived 

broadcasting algorithms which are optimal with respect to the number of rounds and 

almost optimal in the total path length a message travels. This has been extended to 

graphs of any odd degree, based on the chordal ring structure which we introduced 

to describe a triangular mesh network. 

9.1 Summary of Results 

The number of rounds is always optimal. The tables below show the ratio of total 

path length to the graph diameter for each case of the broadcasting algorithms. 

9.1.1 Normal Torus Topology 

Degree 

of Graph 

4 

6  

Diameter Number 

of Vertices 

52n 

73n 

Total Path 

of Graph 

5" - 1 

3(7" - 1)/2  

Path Length 

5" - 1 

l l ( 7 "  - 1) /6  

Ratio 

1 

1.22 
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9.1.2 Skewed Torus Topology 

For the skewed torus represented as a circulant we have based chord lengths on those 

for normal torus connections, making the chord lengths close to powers of i?% for 

N vertices in d dimensions. For odd-circulants we have chosen chord lengths in an 

analogous manner to be close to powers of $'%. 
For even degree graphs, the total path length for a broadcast is compared with the 

diameter of the corresponding normal torus mesh. This is reaonable because we are 

deliberately choosing chord lengths close to those of a mesh embedded in a circulant 

graph. For example, in two dimensions the minimal skewing of the torus reduces 

its diameter by 1. For graphs of odd degree, the diameter is also approximated by 

ignoring the affect of using chord lengths slightly different from powers of -.\dJN and is 

assumed to be d 2 .  

The most general case for even degree graphs, shown in the last row of the table, 

applies the basic algorithm n times with a decreasing scale factor. For brevity the 

diameter and path length are given in terms of the initial scale factor S = (2d  + I)"-'. 

The results in this row are valid for n > 1. 

I Vertex I No.of 1 Diameter 

Degree Vertices of Graph 

3 4" w 0.96 x 2" 

9.2 Further Research 

Tot a1 1 Path I 
Path Length I Ratio I 

In this thesis we assume an optimal number of rounds, which constrains the number 

of vertices to a power of A + 1. Alternatively we can choose the maximum number of 
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vertices for a given diameter and concentrate on minimising the distance a message 

travels. 

One of our aims in modifying the torus to form a circulant graph is to introduce al- 

gebraic techniques and develop general solutions for broadcasting and other problems 

such as gossiping. Recently Deserable[7] has shown a Cayley graph representation 

of a hexagonal grid. This has a recursive structure which is useful for information 

dissemin'ation. 

The matrix approach of Vince [17] may also yield general solutions. 



Appendix A 

Broadcasting on a Normal Torus 

A .  Introduction 

This appendix gives a variety of broadcast algorithms for a normal three-dimensional 

torus and discusses possible extensions to higher dimensions. The vertices are labelled 

in d dimensions by a vector x = (x l ,  2 2 , .  . . , xd). AS before we assume a square mesh 

in d dimensions with wraparound connections to form a normal torus network with 

N vertices. The broadcast will require log2d+l N rounds and our objective is to find 

simple patterns leading to  algorithms which minimise the total path length. 

Recent work by Park and Choi [12] gives a general solution in d dimensions based 

on spanning one dimension at a time, with no attempt to minimise path lengths. 

A.2 Guiding Principles 

Only one of any pair of adjacent vertices can be informed before last round, otherwise 

there would be only 4d - 2 arcs out of the combined pair of adjacent vertices, instead 

of 4d, and the number of rounds could not then be optimal. (Thus it seems sensible 

to send to all 2d adjacent vertices on the last broadcasting round. This corresponds 

to the tessellation of space by cross shapes.) 

Informing adjacent vertices can be avoided in early rounds by sending to a re- 

stricted set of vertices until the last round. For example, vertices x defined by the 
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sum 

C w x , = O  ( r n o d 2 d + l ) ,  

with 0 < w, < d. A vertex adjacent to x has a single x, changed by 1, so the above 

sum for the adjacent vertex will be f w ,  # 0 which proves it is not in the restricted 

set. 

The vertices which are not in the restricted set are distinct in the last round if 

and only if 

w; = I ~ I u ) ~  =+ i = j ,  

in which case the w; must take all values from 1 to d. This is the condition given 

in Golomb and Welch [8] and they conjecture that it is the only solution for tiling 

d-space with a d-dimensional cross. 

The diameter of a d-dimensional torus is d2 and the maximum path length of a 

broadcast cannot be less than the diameter. A total path length equal to the diameter 

cannot be achieved for d = 4r or 4r + 3 on a d-dimensional (2d + 1) x (2d + 1) x 

. . . x (2d + 1) torus using w; = i (i.e. tessellation with cross shapes). The centres of 

some crosses are distance d2 from the origin, and all centres become informed by the 

broadcast a t  the end of round d - 1. So the total path length excluding round d is at 

least d2. The last round has a path length of 1 to adjacent vertices, so the total path 

length must be at least d2 + 1. For example, consider vertices 

(d, -d, -d,d, d, -d, -d, d , .  . .) or (-d, -d, d, d, -d, -d,d,d, -d, -d,d, .  . .). 

These are at a distance d2 from the origin and since (d - 2d - 3d + 4d) - .  . = 0 and 

(-d - 2d + 3d) + . . , = 0 they satisfy 

Note that the optimum total path length is  achieved in 4 dimensions on a 4-dimensional 

3 x 3 x 3 x 3 torus using the construction in Golomb and Welch [8]. This seems to be 

a contradiction, as recursion will extend the construction to a 9 x 9 x 9 x 9 torus. The 

3 x 3 x 3 x 3 torus has a diameter and a broadcast pa,th length of 4 x 1 = 4. Scaling 

this up by a factor of 3 to broadcast to a 9 x 9 x 9 x 9 torus gives a total path length 
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of 3 x 4 + 4 = 16 which is equal to the diameter of the torus. We must conclude that 

the uniqueness conjecture by Golomb and Welch [8] does not hold in 4 dimensions. 

A.3 Broadcasting Algorithms on the Torus 

Here we describe two algorithms for the three dimensional torus mesh and mention 

several approaches which have been explored for extending the work to d dimensions. 

A.3.1 Maximal Dispersion Broadcasting 

In three dimensions a reasonable first round in broadcasting is sending to six vertices 

maximally dispersed through the torus. Each of the seven informed vertices could then 

send to six vertices maximally dispersed in a sphere-like region around it. This process 

would end with each vertex sending to its six immediate neighbours. Geometric 

intuition suggests this method would always work. Path conflicts would be avoided in 

general, and there seem no shortage of connections. The problem is to find a solution 

with a simple pattern which can be extended to higher dimensions. 

The First Round of Maximum Dispersion 

We will demonstrate a first round to inform 2d + 1 symmetrically dispersed vertices 

when 2d + 1 is prime. In three dimensions consider the vertices centred at 

(lk,2k,3k) mod 7 for k = 0,1, . . .  6. 

These are valid centres for cross shaped tiles as 

1 x lk + 2 x 2k + 3 x 3k = 14k = 0 mod 7. 

We will prove that any two of these vertices are at a distance 6 apart. Regarding the 

coordinates as vectors, let the difference between 2 vertices (lk, 2k, 3k) and (1 j, 2j, 3j) 

be (a,  b, c) , where a = k - j; b = 2k - 2j; c = 3k - 3j. Clearly, a, b and c must all 

be different and also non-zero modulo 7, otherwise r(k - j) = 0 (mod 7), where 

0 < r 5 5 .  Thus the absolute values of a, b, c must be 1,2,3 in some order and will 
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sum to 6. A similar argument in d dimensions gives 2d + 1 centres at a distance 

d(d + 1)/2 apart. 

Thus for a 7 x 7 x 7 torus in three dimensions we will choose a first round which 

informs vertices centred at 

( lk ,  2k, 3k) mod 7 for k = 1 , .  . .6 .  

The last 'round informs immediate neighbours, so we need only find the second round. 

There are many solutions for this, which can be found by a systematic search of all 

possibilities, 

Round 2 of Maximum Dispersion in 3 Dimensions 

The final round of broadcasting is for each informed vertex to send to its six neighbours 

to form cross shapes. Using the algebraic formula from Golomb and Welch [8] the 

centres of the crosses are shown in the table below. For brevity, since all numbers are 

a single digit, we will write 104 to  represent a cross centred at (1,0,4) etc. 

The second round of the broadcast must inform all these vertices using paths which 

are as short as possible. The seven maximally dispersed centres which are informed 

after the first round, (000, 135, 263, 321, 456, 514, 642 ) are highlighted in the table 

below. They will each send to six vertices in the second round, preferably at distances 

of 3, but in some cases 4. To help select vertices close to (0, 0, 0) for round 2, the 

centres at a distances of 3 or 4 from (0, 0, 0) are shown subscripted in the table by 3 

or 4 respectively. 
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From the subscripted vertices, we will choose six which vertex (0, 0, 0) will send to 

in the second round of the broadcast. For a broadcast which can be represented by a 

recursive tiling, each of the seven informed vertices sends to the same set of vertices 

relative to its own position. Therefore each vertex we choose for (0, 0, 0) implies the 

choice of a vertex for each of the other six informed vertices. This will progressively 

eliminate other possible targets and reduce the number of vertices remaining to choose 

from. Thus choosing vertex 112 eliminates vertices 112 + 456 = 561, 112 + 514 = 626 

and the four others obtained by translating vertex 112 by each of the maximally 

dispersed vertices (000, 135, 263, 321, 456, 514, 642) 

Selecting vertices in this way gives the set of vertices 

(112, 120, 166, 665, 650, 611) 

to be informed by (0, 0, 0) in round 2 of the broadcast. By tabulating this set 

translated modulo 7 by the other six informed vertices, it is possible to check that all 

valid centres for the crosses are accounted for. The following table has a column for 

each of the seven informed nodes with its list of target nodes below it. 

Maximally Dispersed Centres 

000 135 263 321 456 514 642 
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Each row in this table can be generated from any of its elements by adding that 

element to each of (000, 135, 263, 321, 456, 514, 642). Because of this, in round 2 of 

the broadcast, 000 can send to any one element from each of the other 6 rows. This 

gives 7 x 7 x 7 x 7 x 7 x 7 possible ways to perform the second round of the broadcast, 

of which 3 x 3 x 4 x 3 x 3 x 4 have a maximum path length of 4. 

The total path length for the broadcast is thus 6+4+1 = 11. The theoretical 

minimum is 9, giving a ratio of 1.22 between total path length and diameter. 

A.3.2 Knight's Move in Three Dimensions 

This is the original unpublished solution by Dr. J. Peters as an extension of his work 

on visualising broadcasting as a tiling in 2 dimensions. In terms of the tiling on a 

7 x 7 x 7 torus 

rn Round 3 of the broadcast informs immediate neighbours, represented by cross- 

shaped tiles; 

rn Round 2 uses Knight's moves to form a sloping plane from seven of the crosses; 

and 

rn Round 1 stacks seven sloping planes to give a shape which can be wrapped into 

a 3-dimensional torus. 

Round 2 consists of moves of two steps along one coordinate axis and one step along 

another axis. This corresponds with the knight's move in the game of chess. Ex- 

pressing (0, 1, -2) as 015 modulo 7 in the same way as before, the vertices forming a 

sloping plane which are informed in round 2 by vertex (0, 0, 0) are 

{ 015, 062, 120, 201, 506, 650 ). The first round stacks seven of these planes together, 

translating the planes by 

Expressing (1,-1,-1) in the form 166 modulo 7 as before, gives a more concise repre- 

sentation 
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{ 166, 255, 344, 433, 522, 611 ), 

and the following table lists all vertices informed after round 2. The first column of 

the table is a list of the vertices informed after round 1 which form the centres of the 

sloping planes. The first row shows the Knight's moves for round 2 which form the 

sloping plane with centre (0, 0, 0). Each row of the table corresponds to  a different 

sloping plane. 

Here round 1 of the broadcast has a path length of 3, 6 or 9 . Note that there is no 

edge contention between paths In round 2. The vertices on the six paths from the 

origin to the centres of the crosses forming a plane are 

Knight's Move Centres 

path 1: vertices 000 100 160 166 (note that 6 is equivalent to -1) 

path 2: vertices 000 060 050 056 055 155 255 

path 3: vertices 000 006 005 004 064 054 044 144 244 344 

path 4: vertices 000 600 610 611 

path 5: 000 010 020 021 022 622 522 

path 6: 000 001 002 003 013 023 033 633 533 433 

This spreads the message to the 7 sloping planes. 

In round 2 each path can remain within a single plane. This is not strictly nec- 

essary, but makes it easy to see that there is no edge contention between different 

paths. To remain within a plane, each Knight's move in round 2 should start with 

two steps along one of the coordinate axes and then can take a single step to the 

target vertex. For example, paths from vertex 000 should be as shown by the rows of 

the table below. 

000 

015 

062 

120 

201 

506 

650 

166 255 344 433 522 611 

104 263 352 441 530 626 

151 240 336 425 514 603 

216 305 464 553 642 031 

360 456 545 634 023 112 

665 054 143 232 321 410 

046 135 224 313 402 561 
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Path 

Number 

Vertices on Path 

For Round 2 

Paths from other centres are the same, translated by the coordinates of the centre. 

'The maximum path length for the knight's move broadcast is thus 9+3+1 = 13. 

The Knight's Move in d Dimensions 

Consider a generalised knight's move in d dimensions which consists of p steps along 

one coordinate axis and q steps along another where p, q and 2d + 1 are co-prime, 

1 < p < q _< d, . (For the normal knight's move, p = 1 and q = 2 and these conditions 

can be satisfied in any number of dimensions.) Let the centres of the crosses be 

ala2 . . . ad, with t: ia, = 0 mod 2d + 1 so the crosses will tile space. 

For fixed p, q there are exactly 2d centres of crosses of the form 00. . .&p. . .f q .  . . O O  

where all but 2 coordinates are zero. For p = 2, q = 1 they are 

a, = 2,a2; = -1 for 22 5 d 

a; = 2, a2d-2;+l = 1 for 22 > d 

together with their mirror images in the origin. Thus the second to last step in the 

construction can always be of this form. 

This gives a wide range of possible rounds by varying p and q and seems a promising 

approach to  a general solution fbr d dimensions. 



Appendix B 

Skewed Torus Represent at ion 

B.1 Introduction 

This appendix looks at the relationships among square, hexagonal and triangular 

tilings and how they can be wrapped into a torus. The close relationships among 

them is surprising. See Senechal [ l4] for a fuller treatment of this in 2 dimensions. 

B.2 The 2-Dimensional Square Mesh 

Figure B.l: Standard square mesh 

This is the normal mesh, each vertex being referenced by its x, y coordinates. We 

assume the number of rows and columns are the same, so as to minimise the diameter 

and to give symmetry between the x and y directions. The torus-connected (or 

wraparound) mesh is formed by connecting the top and bottom vertices and likewise 

connecting the side vertices. 
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B.3 Maximum Vertices For a Given Diameter 

We wish to  select parameters to minimise the diameter of a graph with a fixed number 

of vertices, and this is equivalent to maximising the number of vcrtices for a fixed 

diameter. The vertices at the corners of a square mesh are twice as far from the centre 

as the vertices at the mid-points of the sides. This asymmetry can be eliminated by 

extending the mesh to include all vertices for which the distance 1x1 + I yl < D for 

some constant D (Figure B.2). 

Figure B.2: Tiles for which 1x1 + Iyl < 4 

This almost doubles the number of vertices (to n 2 + ( n - 1 ) 2  ) without increasing the 

diameter. The resulting shape is (roughly) a diamond, or a square rotated through 45'. 

Alternatively we can rotate the shape back to the original orientation and consider 

the tiles to be rotated through 45' as in Fig B.3. This leads to a checkerboard lattice, 

which can also be considered as hexagonal by joining vertices horizontally or vertically. 

(Figure B.4). Note that the hexagon-connected network is triangulated. The edges 

of the corresponding tiling form the dual graph, which is hexagonal. This distinction 

was not necessary for the square mesh, where the graph is self-dual. In the same way, 

a triangular tiling corresponds to a hexagonal network graph of degree 3. Degree 3 

networks are discussed in Chapter 5. 
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Figure B.3: Diamond rotated back to a square 

Figure B.4: Hexagonal connection derived from the diamond 



Appendix C 

Checking if a Shape can Form a 

Torus 

C. l  Wrapping an Irregular Shape Into a Torus 

Can an irregular shape such as Fig C.l  wrap into a torus? To help visualise how the 

Figure C. l :  Can this shape wrap into a torus? 

edges of the shape fit together when it is wrapped as a torus, we will draw the shape 

surrounded by copies of itself. Any shape which tiles the plane by translation defines 
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Figure C.4: a) Diamond tiling b) An impossible tiling 

a Hamiltonian path through the diamond. Attempting to  connect the edges in a 

more skewed fashion leads to Fig C.4b where it is impossible to fill the holes in the 

tiling, and therefore impossible to form a torus. Alternatively, to achieve a specified 

connection pattern, the holes in the tiling show where to  add vertices to the diamond 

to complete the tiling. 

C.2 An Answer to the Initial Question 
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Figure C.5: Yes - this shape can wrap into a torus. 



Appendix D 

Practical Torus Layouts 

Although this thesis is not concerned with fabrication details, note that there is a 

standard arrangement to avoid long connections by spacing the vertices evenly around 

a flattened loop (Figure D. l ) .  Figure 0 . 2  shows how this is applied in 2 dimensions. 

Figure D.1: Spacing vertices evenly around a flattened loop 

Figure D.2: Spacing vertices evenly on a 2-d torus 

The same method can be extended to  higher dimensions. It also extends to all 

patterns of mesh by flattening the torus as shown in Figure D.3. Thus a cycle forming 
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Figure D.3: Flattening a torus to give 2-d cycles 

a spiral around the torus would be projected as shown in Figure D.4. 

Figure D.4: A spiral path on a flattened torus 
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