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Abstract 

We consider the problem of shape correspondence and retrieval. Although our focus is 

on articulated shapes, the methods developed are applicable to any shape specified as a 

contour: in the 2D case, or a surface mesh, in 3D. We propose separate methods for 2D 

and 3D shape correspondence and retrieval, but the basic idea for both is to characterize 

shapes using intrinsic measures, defined by geodesic distances between points, to achieve 

robustness against bending in articulated shapes. In 2D, we design a local, geodesic-based 

shape descriptor, inspired by the well-known shape context for image correspondence. For 

3D shapes, we first transform them into the spectral domain based on geodesic affinities to 

normalize bending and other common geometric transformations and compute correspon- 

dence and retrieval in the new domain. Various techniques to ensure robustness of results 

and efficiency are proposed. We present numerous experimental results to demonstrate the 

effectiveness of our approaches. 



Reader's Summary 

Shape correspondence is an important problem in computer graphics and computer vision. It 

is usually the first step in graphics applications such as parameterization, texture mapping, 

shape morphing and other attribute transfer applications. It is also useful for shape retrieval 

and object alignment, recognition and hence is of interest to both the graphics and vision 

communities. Shape retrieval in the 2D domain has been well studied in computer vision. 

With the recent advances in 3D model acquisition technology, 3D models have become 

ubiquitous, for example, on the internet, and as a result, the need for a system for retrieval 

of 3D models from databases containing numerous 3D shapes has also gained prominence. 

One of the main difficulties faced by any shape correspondence or retrieval algorithm 

involves matching shapes that differ from each other by various forms of geometric transfor- 

mations. Even a simple rotation of shapes can cause many algorithms to return incorrect 

results. Most of the previous work on this problem focuses on shapes that differ from each 

other by rigid transformations (translation and rotation) and uniform scaling. As expected, 

these methods do not perform well for shapes with non-rigid transformations, such as bend- 

ing and non-uniform stretching. 

In this work, we consider the problem of correspondence and retrieval of articulated 

shapes. Along with the usual rigid transformations, such shapes are also expected to undergo 

non-rigid bending transformation. Although the focus of our work is on articulated shapes, 

our methods are in general applicable to any kind of shapes. In 2D, the shapes are defined 

as contours, whereas in 3D, as triangle meshes. The basic idea in both cases is to study the 

shape in a geodesic manner to capture intrinsic shape information. Shape correspondence 

is then con~puted based on this intrinsic information rather than the absolute coordinates 

of the given points. Geodesic distances between two points on a shape remain invariant 

when the shape undergoes bending transformation. Hence, such geodesic approach will 



make the resulting algorithm robust to shape bending, thus suitable for articulated shapes. 

In 2D, this can be done by traversing the contour geodesically and gathering representative 

shape information. We propose a novel shape descriptor for 2D shapes, inspired by the well 

known notion of shape context, that uses such geodesic traversal to attain robustness against 

bending along with invariance to rigid transformations. Due to the way this descriptor is 

constructed, we call it geodesic shape context. 

For 3D shapes. we adopt the spectral correspondence approach. We first perform a 

spectral transformation on the given 3D mesh to obtain another mesh (spectral embedding) 

that is normalized against all rigid transformations and uniform scaling. For articulated 

shapes, we modify the spectral approach to use geodesic point affinities, so that the spectral 

embedding is also normalized against shape bending. Now, conventional algorithms can be 

applied in the spectral domain thus achieving invariance to bending. We also identify various 

problems associated with spectral embeddings and conventional spectral correspondence 

methods. We suspect that these problems arise due to non-uniform scaling and other factors 

such as shape noise and degeneracies. We take appropriate measures to mitigate the effect 

of such problems on the final results. 
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Chapter 1 

Introduction 

Shape recognition is one of the classical problems in the field of computer vision and has 

been the subject of immense amount of research in the vision community. The aim of this 

research is to build a recognition system that performs as well as a human. Even after 

numerous attempts at building an efficient and accurate recognition system, recognition 

performed by a human is still far better than that performed by a machine. For example, 

humans can recognize objects from an extremely cluttered scene, or a scene with a great deal 

of noise, with exceptional accuracy. Humans can even identify a person even if they have 

not seen him/her from the angle they are looking at this person at the moment. One reason 

why conventional shape matching systems do not perform as well as a human is because the 

method used by a human brain to perform recognition is not completely understood and 

hence is hard to simulate. 

A problem closely related to that of shape recognition is shape retrieval. Many instances 

of the recognition problem are in fact also instances of the retrieval problem. For example, 

face recognition is nothing but the problem of retrieving a face from a database, that is 

most similar to the query face. However, recognition is a more general problem and includes 

other applications such as identifyng an object in a cluttered or occluded scene. Another 

problem related to the shape recognition problem is that of shape correspondence and 

registration. In many cases, the result of shape correspondence serves as the starting point 

for a shape recognition system. Many algorithms for shape retrieval also begin with solving 

the correspondence problem first. 

The focus of this thesis is shape correspondence and retrieval. Both shape correspon- 

dence and retrieval in 2D has been well studied in the field of computer vision. Research 
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in the case of 3D shape correspondence and retrieval is however relatively new. Before pre- 

senting the details of our work, we briefly describe the two problems we are addressing, the 

met hod we adopt and our contributions. 

1.1 Background: Problems, Applications and Techniques 

We now give a brief description of the problem of shape correspondence and retrieval. We 

also discuss various relevant applications to motivate our study and give an overview of the 

general techniques used to solve the problem. 

1.1.1 Shape Correspondence and Registration 

Shape correspondence is the problem of finding a meaningful matching between the struc- 

tural elements of two shapes. We consider these shapes to be defined as contours (approxi- 

mated by polygons) in the case of 2D shapes and surfaces (approximated by triangle meshes) 

in the 3D case. The structural elements to be matched in our case are the vertices of the 

two polygons or triangle meshes. Shape registration, on the other hand, refers to finding 

the spatial transformation between the vertices of one shape and the corresponding vertices 

of the second shape, that is, a rigid or non-rigid alignment that best aligns the vertices of 

the two shapes. Shape correspondence and shape registration are interdependent problems 

in the sense that the output of one is generally used to compute the other. 

Applications a n d  General Techniques 

Shape correspondence has numerous applications in both computer vision and graphics. 

A variant of this problem is that of feature point correspondence on images. Here, the 

problem is of finding a matching between the feature points in two similar images. Such 

correspondence leads to the computation of registration parameters between the two images. 

This regishation can be used for various applications such as reconstruction of data from 

different images, similarity measure for image based object retrieval and recognition, etc. 

Shape correspondence also has applications in the field of medical image analysis, such as 

matching t,wo images to identify diseased tissue or detect tumors. In this work however, we 

mainly focus on the applications of shape correspondence in computer graphics. A mean- 

ingful shape correspondence is usually the first step in numerous graphics applications such 
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as constructing animation sequences, shape morphing, parameterization, texture mapping 

and other attribute transfer problems. 

Note that for most of the applications of shape correspondence pertaining to vision and 

medical image analysis, the major concern is to robustly obtain correspondences between 

shapes in the presence of noise, clutter, occlusion and other factors. In many instances, in 

such applications the input images are already well aligned or differ from each other with only 

rigid or minor non-rigid transformations. In contrast, for graphics applications, noise, clutter 

etc. are not the major concerns as the two shapes are already well defined. The challenge 

here is to match shapes that differ from each other from non-rigid transformations such 

as bending and/or non-uniform stretching or scaling as in applications such as animation, 

morphing, etc. In particular, we focus on the class of articulated shapes. Such shapes are 

formed of various segments connected to each other at  movable joints (for example, humans, 

scissors. animals, etc.). The most common transformation between such shapes is bending 

and minor non-uniform stretching. It  is, in general, difficult to define such transformations 

mathematically (for example, using registration parameters). Hence, traditional approaches 

for non-rigid alignment do not give satisfactory results. 

There are in general two types of methods for computing shape correspondence: those 

based on absolute coordinates (extrinsic) and those based on relative information (intrinsic). 

Intrinsic methods are in general more effective than extrinsic ones, as the matching computed 

from intrinsic methods is based on overall shape similarity. We briefly explain the two 

general approaches below: 

1. Extrinsic methods: Methods based on the absolute coordinates of the vertices of 

the two shapes iteratively compute the correspondence and registration between two 

shapes in an inter-leaved fashion e.g., the well known ICP algorithm [7]. The cor- 

respondence is computed using a "closest point" measure which is solely based on 

the spatial coordinates of the vertices. It  can be shown that computing the corre- 

spondence and registration that gives the most optimal alignment of the two shapes 

is NP-hard. Hence, these iterative techniques alternate between the steps of finding 

correspondence, and finding registration parameters. 

2. Intrinsic methods: Given two shapes, the general idea here is to represent every 

point using shape information from the perspective of that point. That is, every point 

is transformed into a high dimensional feature space where the shape information can 
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be encoded in the coordinates of the point. Matching is then performed based on the 

coordinates of the points in this feature space. Such information can be collected in 

bhe original space or in a difference domain such as one that is obtained via spectral 

analysis, which we refer to as the spectral domain. ' ~ a s e d  on this classification, there 

are two types of intrinsic techniques: 

Point descriptor based: For every point on the two shapes construct a descriptor 

that encodes shape information relative to that point. Two points are then 

matched if their descriptors match. The descriptor is constructed in the original 

spatial domain and is defined in a way that is canonical for the two shapes and 

is invariant (or robust) to common geometric transformations. 

Spectral methods: Again, every point is represented using relative shape informa- 

tion. However, the information collected as is, is not canonical for the two shapes, 

and possess other undesirable properties such as redundancy, large complexity, 

non-robustness, etc. Hence, the data is transformed into the spectral domain 

using principal component analysis (PCA). This not only gives a canonical rep- 

resentation of the data for the two shapes, but also enables us to extract the most 

important information (principal components). 

In general, the descriptor based methods are the most recent and most popular in the 

literature. This is mainly due to their simplicity and drawbacks associated with the other 

methods. We give detailed description of the relevant shape correspondence methods and 

their strengths and weaknesses in Chapter 2. 

1.1.2 Shape Retrieval 

Shape retrieval is the problem of retrieving shapes from a large database of shapes that are 

most similar to a given query shape. Hence, shape retrieval can be reduced to the problem 

of shape similarity, i.e., finding how similar two given shapes are. Generally, shape retrieval 

systems consist of a user interface, where the user can specify a query shape, and the result 

returned is an ordered list of shapes in the database, similar to the query shape (ordered 

by similarity). 

Although most research work on this problem is motivated by improvement of the ac- 

curacy of retrieval, the user interface part of the system has its own difficulties. For 2D, 

the query shape can be easily specified by the user via simple drawing(s). However, for 



3D shapes: specifying the query shape is non-trivial and is usually done by drawing the 2D 

image of the shape from various views and then reconstructing the 3D shape from these 

views. This issue is not the aim for this thesis and we assume that the query is already in 

the form of a 3D shape that is constructed using some user interface. As for correspondence, 

we focus on retrieval of articulated shapes in this thesis. 

Applications and General Techniques 

Shape similarity in 2D has many applications and is one of the most studied problems in the 

vision con~munity. It  is used for image based patternlobject recognition, face recognition, 

signature verification, character recognition, and so on. From the perspective of computer 

graphics, however, the shape similarity problem is more important for 3D shapes. With the 

recent advances in the acquisition and visualization technology for 3D models, there has 

been a flurry of 3D models available for use to the common user from, for example, the 

Internet. Many websites [63] provide large databases of 3D models consisting of thousands, 

even tens of thousands of models. In such situation, the need for a shape retrieval system 

is dire in order to facilitate users in fields such as entertainment, medical research, machine 

parts/tools design, etc., to obtain what they require from these databases in an efficient and 

effective manner. 

The major challenge in constructing a shape similarity algorithm is that the algorithm 

must be sufficiently discriminating to distinguish between different shapes, and at the same 

time, be robust to minor variations of a shape. Another aspect of the problem is the time 

and space complexity of the query method as the databases in question can be arbitrarily 

large. There are two most common techniques used for shape retrieval: 

1. Correspondence based: To compute similarity between two shapes, the first step 

in t.hese methods is to construct a correspondence between the vertices of the two 

shapes and then perform a registration. The similarity measure is then computed as 

the cost of performing this correspondence and registration [4, 5, 31, 321. 

2. Global shape descriptor based: In this method, both shapes are first defined using 

some global shape descriptor. This descriptor usually captures the overall shape of the 

object. Similarity between the two shapes is then computed as the similarity between 

their descriptors. Well known examples of such global shape descriptors include the 

spherical harmonics descriptor [34] and the light field descriptor 1131. 
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The correspondence based method is in general more popular in the case of 2D matching 

since in many applications, the input data is simply a set of points and no real shape is 

specified. However, for 3D shape similarity, the second method has been preferred. 

1.2 Our Method 

We present different methods for 2D and 3D shapes. However, the basic idea for both 

methods is to use intrinsic measures to obtain a more meaningful representation of the 

shape. Another commonality between the two methods is the use of geodesic traversal to 

capture the intrinsic information in order to achieve robustness when handling articulated 

shapes. For 2D shape correspondence and retrieval, we adopt the point descriptor approach, 

while for 3D shapes, we use the spectral method. We now describe both methods briefly: 

2D correspondence and retrieval using geodesic shape context: A popular 

way of computing shape matching is to use local shape descriptors. First introduced 

by Belongie et al. 14, 51, the shape context of a shape, at  a point, is a histogram that 

describes the shape relative to that point. This histogram is constructed by dividing 

t,he space around the point into appropriately shaped bins and counting the number 

of points in every bin. The idea behind using such histograms is to match points not 

just based on their spatial coordinates, but based on coordinates that also contain 

shape information from the perspective of that point. 

Shape context is the basis for the method we develop for computing shape correspon- 

dence in 2D. Shape contexts as described by Belongie et al. [4, 51 are invariant to rigid 

transformations in the shapes as well as uniform scaling. Our aim is to design a shape 

descriptor that is additionally robust to shape bending, so that it can be used for ar- 

ticulated shapes. Hence, we identify the property of any shape that remains invariant 

to bending. Clearly geodesic distances between points do not change when shapes are 

bent. Thus, we construct bins in a geodesic manner, hence the name "geodesic shape 

contexts". After constructing these bins, we collect curvatures of the points in every 

bin to form the descriptor. Note that curvature is not invariant to bending. Hence, we 

perform appropriate processing to render the descriptor robust to bending. Matching 

is then computed by comparing the descriptors of the points on the two shapes. 

The matching computed is associated with a correspondence cost, which is the sum 
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of squared differences between the descriptors of corresponding points. We use this 

cost as a similarity measure between two shapes, where a lower cost means greater 

similarity. This similarity measure is then used for the purpose of shape retrieval. 

3D correspondence and retrieval using spectral embeddings: The descriptor 

approach described above can also be used for 3D shapes. However, the computa- 

tion of geometric properties such as curvature or the principal directions of curvatures 

becomes non-robust in the case of 3D shapes. These properties are essential for con- 

structing many shape descriptors. For example, curvature is required for constructing 

geodesic shape contexts, principal directions and surface normals are required by ro- 

tation invariant shape contexts [4, 5, 19, 371 and spin images [31, 321 etc. Moreover, 

many 2D shape correspondence techniques rely on the ordering of the points along the 

contour to compute correspondence efficiently. They are not applicable to 3D: due to 

the lack of a canonical ordering of points on a 3D surface. Hence, we decided not to 

use the conventional descriptor based approaches for 3D correspondence. 

The spectral method of correspondence was first introduced by Umeyarna [62] for 

graph matching and Shapiro and Brady [57] for image matching. The basic idea here is 

to first compute a spectral embedding of the two shapes, and then perform matching in 

the spectral domain. The spectral embedding is given by the eigenvectors of the affinity 

matrix of the shape. The affinity matrix contains the affinity between every pair of 

points on the shape. The advantage of performing such a transformation is that if the 

affinity is defined to be invariant or robust to a certain class of transformations, then 

the whole matching process becomes invariant/robust to this class. Hence, we define 

affinities based on geodesic distances between points to make the matching process 

invariant to bending. Note that affinities defined in such a way are also invariant to 

rigid transformations. Although spectral methods have been well studied, we identify 

certain problems, for example eigenvector switching, with the method that have never 

been identified and suggest appropriate measures to alleviate these problems. 

Once we have the spectral embedding of two shapes, we can regard these embeddings 

as new shapes and conventional shape similarity measures can be applied to compute 

the similarity between these shapes. Hence, traditional global shape descriptor based 

algorithms can be applied to the embeddings to perform shape retrieval. We study 

the effect of these algorithms on spectral embeddings and also present other global 



CHAPTER 1. INTRODUCTION 8 

descriptors that can be easily obtained from the spectral embedding and used for 

retrieval. 

1.3 Contributions 

In this t.hesis, we present methods for correspondence and retrieval of articulated shapes. 

Although our method is designed to work well particularly on articulated shapes, it can 

be used for general shapes that are represented as 2D contours or 3D surface meshes. We 

present. separate methods for 2D and 3D shapes. The basic idea for both methods is to 

represent the shapes using intrinsic measures and to define the intrinsic measures in a 

"geodesic" way in order to achieve robustness against bending in articulated shapes. For 2D 

shapes, we extend the shape contexts of Belongie et al. [4, 51. Whereas, for 3D, we improve 

the spectral correspondence method of Shapiro and Brady [57] using various techniques. 

The following are our contributions in this work: 

0 New point descriptor for 2D shape correspondence: A new descriptor for points 

on a 2D contour is developed. This descriptor is essentially a "geodesic" version of 

shape contexts [4: 51. The descriptor is used for first conlputing a correspondence 

bet,ween the points of two 2D contours and then defining a measure of similarity 

between the two contours for the purpose of shape retrieval. 

0 Bending invariant spectral embeddings for 3D shapes: For 3D shape cor- 

respondence, we use the spectral method of Shapiro and Brady [57]. The spectral 

met,hod has previously been studied only for 2D datasets. First, we adapt the method 

for use with articulated 3D shapes by using geodesic distances to build spectral embed- 

dings. These embeddings can subsequently be used for correspondence and retrieval. 

However, we show that the naive embeddings used by Shapiro and Brady [57] are 

non-robust to various factors and we develop the following improvements over their 

met,hod: 

- We present a new eigenvector scaling scheme for the embeddings and give the- 

oretical arguments to show that the new scheme makes the method robust to 

difference in the size of given data. 

- We show the presence of reflections (cause by eigenvector switchings) in the 

spectral embeddings. This negates the common belief that for spectral methods, 
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the eigenvector order given by the corresponding eigenvalues is suitable for shape 

correspondence. We provide heuristics to deal with these reflections so as to 

obtain more robust matching. 

- We show the presence of other rigidlnon-rigid transformations in the embeddings 

and suggest the use of non-rigid alignment to attain robustness against them. 

- We present a proximity based heuristic to improve the quality of correspondence 

obtained from the spectral correspondence method. In fact, the heuristic can 

be used in conjunction with any correspondence algorithm and we also take 

advantage of it to improve the results of our 2D correspondence method. 

3D shape retrieval using spectral embeddings: We apply the spectral embed- 

ding framework to the problem of 3D shape retrieval on articulated database and 

show absolute improvements over conventional global shape descriptor based retrieval 

algorithms. We also present a another global descriptor and empirically show that it 

performs better than conventional descriptors for the purpose of retrieval. 

1.4 Thesis Organization 

The rest of the thesis is organized as follows: in Chapter 2 we discuss previous attempts 

and methods to solve the correspondence and retrieval problem. Chapter 3 is devoted to 2D 

shape correspondence and retrieval, where we develop a new shape descriptor for 2D shape 

matching and retrieval. In Chapter 4, we discuss the problem of 3D shape correspondence 

and retrieval. We explain in detail the method of spectral correspondence and spectral 

embeddings and use it for the purpose of matching and retrieval of 3D shapes. We conclude 

with limitations of our method and possible future work in Chapter 5.  



Chapter 2 

Previous Work 

Several techniques have been developed over the years for the problem of shape correspon- 

dence and retrieval. In this Chapter, we review those that are most relevant to our work. 

2.1 Shape Correspondence and Registration 

A detailed survey of shape correspondence techniques can be found in [64]. As explained 

briefly in Chapter 1, point correspondence may be computed based on either absolute coor- 

dinates (extrinsic methods) or relative information (intrinsic methods), e.g., using weighted 

graphs. The intrinsic methods can be further classified into spatial domain point descriptor 

based and spectral domain methods. We now review the literature based on this classifica- 

tion. 

The first class of shape correspondence techniques are iterative alignment schemes. These 

methods iteratively compute a correspondence between the two shapes and a transformation 

which would transform one shape into another. The correspondence is computed using a 

"closest point" criteria which is based on the absolute coordinates of the points. The 

transformation is obtained by optimizing an energy. Such techniques include the well known 

iterative closest point (ICP) algorithm of Besl and Mckay [7] and its variants [50], which 

can handle affine transformations. Recent works, most notably the TPS-RPM method of 

Chui and Rangarajan [14], attempt to incorporate non-rigid deformations into the ICP 

framework, using thin-plate splines to model the deformation. However, these methods can 

easily get trapped in bad local minima if the shapes are not approximately aligned initially, 

since the correspondence, which dictates the optimization, is computed using a Euclidean 
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Figure 2.1: TPS-RPM [14] failed by rotation. (a) Two 2D shapes (note that although 
the shapes differ with non-rigid deformations, they are approximately aligned in terms 
of rotations. Hence, the 'klosest point" correspondence is relatively robust); (b) correct 
matching is obtained; (c) one of the shapes is rotated (now the "closest point" matching is 
no longer reliable); (d) Incorrect matching is obtained. 

closest point method. Thus rotation alone can cause a bad matching, as shown in Figure 2.1. 

Sumner et al. [59] and Zayer et al. [69] attempt to alleviate this problem by fixing a 

small number of feature points on the shapes to be matched. Sumner et al. rely on these 

feature points as guidance to ICP in order to escape local minima: whereas Zayer et al. use 

interpolation, based on barycentric coordinates, of the correspondence between the feature 

points to compute the remaining point correspondences. In both methods: it is imperative 

that the feature points selected on the two meshes be corresponding in a meaningful way. 

This can only be done with user assistance as automatic selection and matching of the 

feature points is equivalent to the correspondence problem we are trying to solve in the first 

place. 

The second class of techniques describe every point on a shape by encoding shape in- 

formation from the perspective of that point. Point matching is then based on appropriate 

distances between the descriptors. Well-known descriptors for images include shape contexts 
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[4, 51 and spin images [31, 321, both utilizing a histogram obtained by binning the space 

around a point according to the Euclidean metric and collecting point counts. These meth- 

ods have subsequently been generalized in a straightforward manner to handle 3D point 

sets [19. 371. 

Neither shape contexts nor spin images are invariant to shape bending. For example, 

the shapes in Figure 2.2 are similar a s  they differ only by a bending of the lower part. 

But the bending transformation disturbs the pair-wise distance configuration between the 

points and hence the shape context or spin image representation for similar points would 

vary greatly. 

Belongie et a1 [4, 51 also suggest an iterative solution to improve the robustness of shape 

contexts. They first find a point-tepoint correspondence between two shapes and then 

transform one shape into another using thin plate splines. Then they iterate between these 

two steps. However, such iterative solutions are known to converge to local minima if 

the initial correspondence is not reasonable. Also, designing a transformation model that 

incorporates non-rigid shape deformations is usually difficult. 

In addition, shape context [4, 51 is also not invariant to rotations. To fix this problem for 

2D shapes: it is suggested that the shape context for a point be computed with respect to the 

orientation of the tangent of the contour at that point. This requires a robust estimation of 

tangents and as we noticed in our experiments, the matching obtained with shape contexts 

can be problematic even with slight variations in tangent estimation. It is well known that 

robust estimation of tangent plane and principal directions of curvature over 3D shapes is 

even more difficult. 

Recently, Gatzke et a1 [23] proposed curvature map, a shape descriptor based on sampling 

a number of points on the shape over the geodesic neighborhood of a point and recording the 

curvature of the shape at  these samples. This type of shape descriptor is again not invariant 

to non-rigid shape deformations and as suggested by our experiments, recording curvature 

over sample points is non-robust to noise and moderate bending in a shape. Note that 

Gatzke et al. only describe their descriptor for 3D shape matching. We have implemented 

and analyzed a 2D version of it. 

Liu et a1 [42] propose a shape descriptor for 2D contours using the spectral properties of 

a point's immediate neighborhood, effectively performing a local PCA. The local nature of 

the descriptor achieves better robustness against non-rigid deformations but the descriptor 
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Figure 2.2: Matching of two hand-drawn "L" shapes. (a) Original shapes; (b) matching 
using 2D shape contexts [4, 51; (c) matching using 2D curvature map; (d) matching using 
our descriptor. Note that we use a simple best matching strategy to find the final matching 
in all cases, as we wish to compare the qualities of the descriptors only. 

becomes less descriptive. Therefore, they rely on the second step of their matching algo- 

rithm, which computes the matching by formulating and solving a constrained dynamic 

programming problem, to compensate for any inadequacy in their shape descriptor. 

Indeed, this type of formulation heavily relies on the fact that the given points are ordered 

along the contour. One problem with such an assumption is that, it is not easily applicable 

to 3D shapes, as there is no obvious ordering of points over a surface. In fact, having the 

constraint of order preservation while finding the matching greatly simplifies the problem. 

Scott et a1 [53] present an algorithm for solving an "order preserving assignment problem". 

Using this algorithm in our experiments, we noticed that it gives excellent matchings for 

all the shape descriptors mentioned so far. This shows that considering the points to be 

ordered while finding the matching places less emphasis on the quality of the descriptor. 

Order-preserving matching typically involves expensive optimizations, as in Liu et al. [42] 

and Scott et al. [53]. Since this is often far too expensive for large point sets, these approaches 

can only be applied to a small number of feature points along the shape; this would then 

require robust feature detection. 

More recent shape signature based methods for 3D shapes include those by Gelfand et 

al. [24] and Li et al. [40]. Both methods are robust under only rigid transformations. The 

partial matching scheme of the former do provide a way to detect articulated subparts of a 

shape and subsequently match them to the subparts of the second shape. However, their 

work lacks proper discussion and analysis of the performance and robustness of the matching 

method when there are multiple pose changes in the models or when the models consist of 

a large number of articulated subparts. 
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The third class of techniques, spectral shape correspondence, involves first construct- 

ing intrinsic (relative) point representatioris of the two shapes, in the form of weighted 

graph adjacency or affinity matrices. Elad and Kimmel [17] make use of geodesic proxim- 

ities to construct bending-invariant surface signatures through multi-dimensional scaling. 

Application to object classification has been considered, but they do not solve the harder 

correspondence problem. Given a proximity matrix, a k-dimensional spectral embedding 

can be computed via principal component analysis (PCA). Shapiro and Brady [57] use Lz 

distances between the embedded points to compute a correspondence, while Umeyema [62] 

chooses the correlation between the embedding coordinates. Both Caelli and Kosinov [9] 

and Carcassoni and Hancock [lo] rely on spectral clustering and cluster correspondence to 

guide point correspondence. The use of spectral embeddings has traditionally been exploited 

in the computer vision and machine learning literature. Recently, they have found several 

applications in geometry processing as well, including mesh segmentation [42], spherical 

parameterization [26], and surface reconstruction [36]. 

Common to all the existing spectral correspondence techniques is the premise that the 

eigenmodes from two similar shapes should match up, according to the magnitude of their 

corresponding eigenvalues. One of our main observations is that this ordering of the eigen- 

modes is not always reliable. As the eigenvalues characterize data variance in the direction 

of the corresponding eigenvectors, eigenrnode ordering based on eigenvalues implies ordering 

by data variance. This may not be appropriate since variance only captures global informa- 

tion and does not reflect the way specific data points would vary. We observe that under 

shape stretching, certain eigenmodes may be "switched". Failure to resolve such reflections 

or other non-rigid discrepancies between spectral embeddings will lead to poor matching 

results. In this thesis, we propose heuristics to handle such switchings in the spectral dc+ 

main, where the spectral embeddings will be corresponded after alignment using non-rigid 

ICP based on thin-plate splines. 

There are other ways of finding a correspondence without using shape descriptors. Seder- 

berg et a1 [56] and Zhang [72] present two similar physically based approaches for corre- 

spondence of 2D polygons which fit one polygon over another by optimizing certain energy 

functional and then find a correspondence. Such global optimization is rather expensive. 

Hence, the method cannot be used for applications such as shape searching, where a shape 

has to be matched with many other shapes. 
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2.2 Shape Retrieval 

It  is quite conceivable that a great deal of prior knowledge is incorporated into the process of 

human object recognition and classification, perhaps with subpart matching [28,21] playing 

an important role. In this thesis however, we focus on purely shape-based approaches. Note 

that all correspondence methods described in Section 2.1 can be used for shape retrieval, as 

a similarity measure between two shapes can be defined using the correspondence obtained 

from these methods. In fact, for 2D shape retrieval, such correspondence based similarity 

measure is widely used. However, for 3D shapes, global shape descriptors [61] based methods 

are more popular and a review of such techniques would be the focus of this Section. At a 

high level. a 3D shape retrieval algorithm either works on the 3D models directly, e.g., [34, 

47, 601. or relies on a set of projected images [13, 151 taken from different views. Let us 

call these the object-space arld the image-space approaches, respectively. The latter, e.g., 

the Light Field Descriptors (LFD) of Chen et al. [13], has a more intuitive appeal to visual 

perception and thus often result in better benchmark results for retrieval [48], but at the 

expense of much higher computational cost. 

Many of the object-space shape descriptors construct one or a collection of spherical 

functions, capturing the geometric information contained in a 3D shape in an extrinsic 

manner [48]. These spherical functions represent the distribution of one or more quantities, 

e.g.: distance from points on the shape to the center of mass [65]. curvatures [58], areas [3], 

surface normals [33], etc. The bins are typically parameterized by the sphere radius and 

angles. The spherical functions are, in most cases, efficient to compute and robust to 

geometric and topological noise, but they may be sensitive to the choice of sphere center 

or the bin structures. To align the bins for two shapes properly, these approaches require 

pre-normalization with respect to translation, rotation, and uniform, e.g., [65, 3, 331, or 

nonuniform scaling [35]. As an alternative, rotation-invariant measures computed from the 

spherical functions, e.g., energy norm at  various spherical harmonic frequencies [34], can be 

utilized. However, non-rigid transformations are not handled by these approaches. 

As a salient intrinsic geometric measure, surface curvature, as well as the principal 

curvature directions, have been used for shape characterization and retrieval [68, 581. These 

approaches are sensitive to noise (unless smoothing is applied in pre-processing) and non- 

rigid transformations such as bending. Another intrinsic approach is the use of shape 

distributions [47], where a histogram of pairwise distances between the vertices of a mesh 
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defines the shape descriptor. Other form of statistics, e.g. [46], can also be used and bending- 

invariance can obviously be achieved if geodesic distances are used in this context, but the 

discriminative power of the histograms is suspect. 

The most common approach to handling articulated shapes is via skeletal or other graph 

characterization of the shapes, e.g., [27, 711, and then apply graph matching [9]. The cost of 

extracting the skeletons can be high, e.g., when medial-axes are used [71], and the subsequent 

graph matching is often computationally expensive and the shape descriptor itself is sensitive 

to topological noise. Our approach also uses a graph-based intrinsic characterization of 

the shape structures. The spectral embeddings automatically normalize the shapes with 

respect to rigid-body transformations, uniform scaling, and bending, and they are fast to 

compute. The resulting shape descriptors provide a more intuitive way of characterizing 

shapes, compared to shape distribution [47]. In addition, the spectral approach is quite 

flexible and allows for different choices of graph edge weights and distance computations, 

which can render the approach more robust against topological noise. The effects of these 

choices on shape retrieval is studied. 

The idea of using spectral embeddings for data analysis is not new and clustering [45, 701 

and correspondence analysis [ l l ,  57, 301 are the main applications. Past work that is most 

relevant to ours is the use of bending-invariant shape signatures by Elad and Kimmel [17]. 

They work on manifold meshes and compute spectral embeddings using multidimensional 

scaling (MDS) based on geodesic distances. A more efficient version of MDS is adopted to 

approximate the true embeddings; this is different from Nystrom approximation which we 

have adopted in this work. They only tested shape retrieval on manifold, isometric shapes, 

e.g., models obtained by bending a small set of seed shapes. In practice, many 3D shapes 

are neither manifolds nor isometric to each other, thus a more robust approach, based on 

more general graphs and distance measures, and a more complete experiment, are called 

for. 



Chapter 3 

2D Shape Correspondence and 

Retrieval 

In this Chapter, we explain in detail, our shape descriptor for 2D shapes. The shape 

descriptor is used for computing correspondence and the correspondence is used for com- 

puting similarity measure between two shapes for the purpose of retrieval. We now explain 

the met,hods for shape correspondence and retrieval separately. 

3.1 Shape Correspondence Using Geodesic Shape Contexts 

3.1.1 Overview 

Let us first briefly review the given problem, identify goals and outline our method. Given 

two contours in 2D (approximated by polygons), the problem is to compute a matching 

between the vertices of the contours. We now design the shape descriptor to be used for 

computing this matching. While designing the shape descriptor for 2D contours, we consider 

the followii~g goals: 

1. The descriptor should be invariant to ordinary geometric transformations such as 

rotation, translation and uniform scaling. 

2. It  should be robust against shape noise. 

3. I t  should be robust to non-rigid deformations; especially shape bending. 
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4. It should capture the shape information sufficiently, so that the correspondence ob- 

tained from a (fast) best matching procedure is adequate. In this way, expensive 

bipartite-matching (as in Belongie et al. [4, 51) or dynamic programming formulations 

(as in Liu et al. [42]) for matching the resulting shape descriptors, can be avoided. 

The inspiration for our work is the shape context of Belongie et a1 [4, 51. The 2D 

shape context for a point is constructed by first dividing the plane into concentric circular 

bins and then collecting the number of points in each bin as the shape descriptor. The 

reader is referred to [4] and [5] for details regarding shape contexts. We have noticed in 

our experiments that shape contexts are as such quite robust. However, they fail when 

confronted with shapes having non-rigid deformations, such as bending. As we are aiming 

for robustness to bending, it is intuitive to ask the question: what property of a shape 

remains uilchanged when sub-parts of the shape are bent. It is easy to see that the geodesic 

distance (distance along the contour) between two points on the shape remains constant 

when shapes undergo bending transformations. Hence, a natural generalization of shape 

contexts to include bending transformations would be to construct geodesic bins instead of 

bins according to Euclidean distances. 

We perform a geodesic traversal along the shape and collect geometric information, hence 

the name geodesic shape contexts. The information that we collect is the average curvature 

inside these geodesically formed bins. We refer to this curvature information as the basic 

geodesic shape context for a point. We then refine this basic descriptor using appropriate 

techniques to achieve robustness against non-rigid deformation. 

3.1.2 Geodesic Shape Descriptor 

We now explain in details the construction of the geodesic shape context for every point of 

the contours and describe the matching procedure. 

Basic Geodesic Shape Context 

Given two contours S1 and Sz, we first construct the basic geodesic shape context for 

every point on both contours. For a point P on a contour, the geodesic shape context is 

constructed as follows: 

1. Divide the geodesic neighborhood of P into bins of non-decreasing lengths ending at 

point Q furthest away from P along the contour, as shown in Figure 3.1. 
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2. For each bin, find the average of the curvatures of all the points lying inside the bin. 

3. If Ci is the average curvature of the ith bin, then the basic geodesic shape context of 

bhe point is defined as the vector {C1, C2, C3:. . . C,), where n is the number of bins. 

Instead of increasing the bin size strictly exponentially, as in the original shape context, we 

repeat bins of equal size to capture local information better, e.g., in Figure 3.1. 

If {PI: P2, PSI.. .) are points along the contour, we calculate the curvature at a given 

point P, by fitting a cubic parametric curve (x(t), y(t)) to the set of points 

(Pi-w, E-w+l, - + .  Pi,.  . . E+w-1, E+w) 

for some neighborhood size w. Typically, we choose 3 5 w 5 5. The curvature at Pi is then 

given by: 

Geodesic bins 

CQ 
Figure 3.1: The basic geodesic shape context for point P is the vector {C1, C2, C3,. . . Cn) 
where n is the number of bins and Ci is the average curvature of the points in the ith bin. 

Once the descriptor is formed for every point on the two shapes, we can directly compare 

a point P on S1 to a point Q on S2 with the Euclidean metric: 

where, Cp(i) and CQ(i) are the average curvatures of the ith bin for P and Q, respectively. 

A mat,ch for point P from all points in S2 is the point which has the minimum dissimi- 

larity with P .  In other words: 

match(P) = argminQEs, (DisSim(P, Q)). (3.2) 
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The averaging scheme we use, in contrast to curvature map [23], makes the descriptor 

robust against surface noise and irregularities. This can be explained from a signal processing 

perspective. Consider the curvature plot for a contour as a signal. Curvature map samples 

this signal at  regular intervals. It  is easy to see that if the samples are not selected carefully, 

it is quite probable that some features of the signal are not sampled. Taking averages: 

on the other hand, is equivalent to first convolving this signal with a box filter and then 

recording samples at regular intervals on the convolved signal. A sample on the convolved 

signal cont.ains information about its neighborhood which makes the sampling more feature 

sensitive. At the same time, box filtering also achieves noise removal. 

Hard and hysteresis thresholding 

Although the averaging scheme renders our descriptor robust against noise and small shape 

deformations, it does not handle more drastic bending in the shape well, as the curvature of 

corner vertices can drastically change with bending. To handle this, we propose thresholding 

of curvat,ures. Specifically, we give more weight to negative curvatures, corresponding to 

concavity in a shape, and attenuate the positive curvatures. 

The intuition behind this is based on human perception. I t  is generally believed that 

humans match shapes based on the similarity of their parts. We simulate this by placing 

more emphasis on concavities following the "Minima Rule" [28], which stipulates that part 

boundaries are found at negative curvature minima. This can be accomplished by the 

following simple thresholding scheme: if C is the curvature at a point, the thresholded 

curvature is given by: 

where. C1 is some large constant we select. 

However, our experiments suggested that such a hard thresholding can be rather sensitive 

to slight variations in the shape. We therefore suggest to use a hysteresis thresholding scheme 

instead, which is commonly used for edge detection in image processing [29]. For all our 

experiments, we have used the following thresholding scheme: if Ci is the curvature at point 

Pi, i = 1, . . . , n, the thresholded curvature is given by: 
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I c i ,  otherwise, 

where. r < 0 is the threshold for negative curvature. 

As before, we attenuate all the positive curvature values. For negative curvatures, in 

the hard thresholding scheme before, we were amplifying any curvature that is less than 

zero, which can be sensitive to minor shape variations and noise. In the new scheme, we 

amplify any negative curvature which is less than the threshold r. These are the curvatures 

that consider as shape features. But for negative curvatures greater than the threshold 

r ,  we only amplify them if we find that they indeed define a feature. We decide whether a 

negative curvature represents noise or feature by looking at  the curvature of its neighbors 

where the neighborhood size can be increased when appropriate. This soft thresholding 

generally works well since it uses selective amplification and hence, does not amplify noise. 

We found from our experiments that setting C' to be the maximum curvature along the 

contour and 7 to be a quarter of the average of all the negative curvatures along the contour 

generally works well for our correspondence tasks. 

To further explain the need for thresholding, consider the shapes given in Figure 3.2. 

It is evident that the red contour is similar to the blue except that the top portion is bent 

downwards. Also shown are the plots of the original curvature and their thresholded values. 

As is clear from the curvature plots, the concavities on both the shapes match well with the 

thresholded curvatures than with the original curvatures. The latter can be thought of as 

containing detailed shape information which is non-robust to various shape transformations. 

This information is conveniently filtered out by our thresholding. 

3.1.3 Guiding Heuristic Using Proximity 

We can obtain the matching using equation 3.2 defined earlier, just based on the geodesic 

shape context descriptor. However, due to the global nature of our descriptor, it can be 

hard to distinguish between nearby points on a shape and points that have similar shape 

descriptors. To guide the matching process so as to obtain a consistent (with respect to 

the linear ordering of the contours) matching we propose a proximity heuristic. Note that 
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Figure 3.2: (a) Two hand drawn mushroom shapes. (b) Curvature plots starting from the 
black point along the contour in counter-clockwise direction. (c) Thresholded curvatures. 
(d) Thresholded curvatures averaged over geodesic bins. (e) Matching obtained from our 
shape descriptor. (f) Matching obtained from mapping of unthresholded curvatures. 

this heuristic is independent of the linear ordering of the contour points and hence is ex- 

tendable to 3D. In fact we would use the same heuristic in later Chapters to obtain better 

correspondence for 3D shapes. As our shape descriptor is robust and descriptive, using this 

simple proximity heuristic already leads to excellent results. We now describe the proximity 

heuristic. 

The proximity guidance scheme relies on one or more "anchor" points, chosen on both 

shapes, that are well matched by similarity between point shape descriptors alone. The 

matching of any remaining points is based on both descriptor similarity and the point's 

proximity to the anchor points. In our experiments, we select only two anchor points per 

shape. The first point is chosen to be the best matched pair, a:) and a?), on the two shapes 

using only descriptor similarity. To choose the second point, we add a penalty for choosing 

a point near the first point. This requirement is aimed at improving the accuracy of the 

heuristic, since, if the anchor points are selected close to each other, their impact on nearby 

points would be much less than that on geodesically far points. 

Let As denote the dissimilarity matrix where the i j th  entry is the dissimilarity between 
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the ith point in S1 and jth point in S2. That is, 

As(i ,  j )  = DisSim(i, j ) .  

where. DisSim(i, j )  is defined in equation 3.1 Let  ail), a y ) )  be the minimum entry of 

As,  where a!') and a t )  are points of 4 and S2 respectively. a?) and a?) are the first anchor 

points for the two shapes. We then find the geodesic distance of all points in S1 from point 

a?) and the geodesic distance of all points of S2 from the point a t ) .  Let distjl)(i) be the 

geodesic distance of ith point of S1 from a?), and d i s t t1 ( j )  be the geodesic distance of jth 

point of S2 from a t ) .  We define a distance-dissimilarity matrix A i D  as follows: 

Now we construct a new dissimilarity matrix for choosing the second anchor. As we 

would like to prevent the second anchor from being too close to the first one, the new 

dissimilarity matrix is defined as: 

1 . ( 1 )  . A y w ( i , j )  = AS(i ,  j )  - -[dzstl ( z )  + dis ty) ( j )] .  
2 

The second term on the right hand side is the penalty so that the next best match found 

is generally not close to the first anchor. We appropriately scale both the terms so that they 

are of the same order of magnitude. Let ~ ~ ~ ( a y ) ,  a f ) )  be the minimum entry of A y W .  a?) 

and a?) are the second anchor points for both shapes. Again, if disty)( i)  is the geodesic 

distance of ith point of S1 from a?) and dis tp)( j )  is the geodesic distances of jth point of 

Sz  from a?) we define the second distance-dissimilarity matrix as: 

Finally, we redefine the dissimilarity between two points P and Q as: 

where cl and c2 are free parameters which can be set by the user. 

Subsequently, the correspondence in equation 3.2 is now redefined as: 

match(P) = argmingEs, (DisSimnm(P, Q) ) .  
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This heuristic can be extended to fixing more matching pairs. However, it should be 

noted that fixing more matching pairs will make the process non-robust against stretching 

since this heuristic depends completely on geodesic distances which change drastically with 

stretching. Hence, we restrict ourselves to using only two anchor points. Simply stated, the 

proximity heuristic is a method to define dissimilarity between two points. The heuristic 

not only t,akes into account, the dissimilarity between the descriptors of the points, but also 

considers the dissimilarity between the proximity of the points from the anchor points. 

3.2 Shape Retrieval 

We have already described the process of finding a correspondence between two 2D contours 

S1 and S2. Now we use this correspondence to define a similarity measure between the two. 

This similarity measure will be subsequently used for shape retrieval. The similarity cost 

between Sl and Sz is given by: 

SimCost(S1, Sz) = DisSim(P, match(P)) (3-7) 
PESl 

where. DisSim() and match() are defined in equations 3.5 and 3.6. 

Note t.hat the similarity cost is a cost function, hence, lower the similarity cost between 

two shapes, more similar the shapes. 

3.3 Experimental Results 

For the purpose of evaluating our shape descriptor, we report its performance when applied 

to shape retrieval on two shape databases, and shape correspondence of various contours. 

For shape retrieval experiments, we have used the Brown database [12] of 95 binary images 

and Ling et al's [41] articulated shapes database. The later consists of 40 images from 

8 different objects. Each object has 5 images articulated to different degrees. Both the 

databases are illustrated in Figure 3.3. Note that for all our experiments we first extract 

the contour of the image and then apply our method on this contour. Also, for shapes in 

Ling et al's [41] database, only the outer contour was extracted. 

Figure 3.4 shows some results obtained from our shape searching experiments. The first 

column in the Figure shows the shape that was used as a query to the database. The next 

five columns show the top five matches returned from our searching algorithm. Here, the 
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query shape itself has been excluded from the set of shapes for retrieval. The similarity 

measure used for this experiment has already been defined in the previous Section. Note 

the performance of our method on shapes from the articulated shapes database. 

Figure 3.7(a) and 3.7(b) show an image representation of the dissimilarity matrices 

between the images of Brown database and Ling et al.'s database respectively. The ijth 

entry of the matrix is the dissimilarity between image i and image j. A dark spot represents 

less dissimilarity and a bright spot represents greater dissimilarity. The images were ordered 

so that similar images appear together in the matrix. The block diagonal structure of both 

the matrices show that the dissimilarity, obtained using our shape description, between 

similar images is low. 

Next we evaluate our descriptor when applied to shape correspondence. Given two 

contours. we use our shape descriptor to find a point-to-point matching. Matching obtained 

for different pairs of contours is shown in Figure 3.5 and Figure 3.6. We show matching 

points by drawing a black line between the two. The first column shows the shapes to 

be matched. The second and the third columns show the matching obtained from shape 

contexts [4, 51 and 2D curvature maps respectively. The fourth column shows matching 

obtained from the our descriptor. 

It  can be easily seen from these experiments that the shape context [4, 51 descriptor 

fails to retrieve proper matching when the two shapes differ by some level of bending. For 

example, the arms and legs of the human shapes in 3.5(b) and 3.6(b) are poorly matched 

although the torso is matched fairly well. Note that our descriptor is robust against such 

shape variations, as well as moderate stretching deformations (e.g., Figure 3.6(a)). Fig- 

ure 3.5(c) and 3.5(d) are contours of images taken from Ling et al's database which have 

a great deal of articulation. However, our shape descriptor still performs a good job of 

retrieving the right correspondence. These examples demonstrate that our shape descriptor 

contains more shape information than shape contexts. 

For all the examples shown in this paper, after computing the shape descriptor for every 

point, the point-tepoint matching is computed by a simple best match strategy, that is, 

point P E S1 is matched with Q E Sz if DisSim(P,Q) = miniEs,(DisSim(P,i)). No 

extra measures are being taken to force the correspondence to be one-to-one although, as 

suggested by Figure 3.5, our descriptor performs better in terms of recovering a one-to-one 

correspondence. 
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3.4 Limitations 

The main limitation of our current method is that it can be applied only to shapes defined as 

contoms. In other cases, especially for computer vision applications, the problem is typically 

to correspond two point sets, where the points are features marked on two images with no 

particular shape defined by them. Since our method is based on the calculation of curvature 

and depends on the proper specification of the geodesic neighborhood of a point, it cannot 

be applied in such situations. Nevertheless, the focus of our work is on articulated shapes 

which can be specified in the form of contours. Our method is also inapplicable when the 

contour can not be appropriately specified, for example, on folded or intersecting shapes. 

Another limitation of our method is that its extension to 3D shapes is unclear. As the 

method depends on an ordering of bins in the geodesic neighborhood of a point, it cannot 

be easily extended to 3D since this ordering is not obvious on the geodesic neighborhood of 

a point on a 3D surface. One way to define this ordering canonically is by using reference 

axes, for example, principal directions of curvature at the point. However, calculation of 

properties such as curvature is always much more difficult and non-robust in the case of 3D 

shapes relative to 2D. Since the robustness of correspondence depends on the robustness 

of the calculation of the descriptor, we suspect that descriptor based approaches are not 

suitable for application to 3D shapes especially when the descriptor is based on physical 

properties of the shape, simply because of the non-robustness involved in the computation 

of these properties. This is precisely the reason why we choose to use spectral methods 

for 3D shape correspondence, presented in the next Chapter, instead of descriptor based 

methods. 
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(b) Brown database [12]. 

Figure 3.3: Image databases used for experiments. 
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Figure 3.4: Shape searching results: First column shows the input query shapes. The next 
five columns show the top five matches from the database. 
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Input shpaes Original shape 
context [4, 51 

Sampled curvatures Geodesic shape 
context 

Figure 3.5: Comparison between point correspondence results, where corresponding points 
are linked by a line segment in black. The leftmost column shows the two shapes to be 
matched. Then from left to right, correspondence results using the original shape context [4, 
51, results using sampled curvatures and results using our descriptor. As we can see, the 
original shape context performs surprisingly well on the human figures with a great deal of 
bending, except for a few bad mismatches at the arms and legs; they are not as robust on 
the "mushroom" shapes. Sampling curvatures, even with robust curvature estimation, does 
not work well. Our shape descriptor, on the other hand, exhibits a high degree of robustness 
throughout our experiments. 
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Input shpaes Original shape 
context [4, 51 

Sampled curvatures Geodesic shape 
context 

Figure 3.6: More point correspondence results. Corresponding points are linked by a line 
segment in black. The leftmost column shows the two shapes to be matched. Then from 
left to right, correspondence results using the original shape context [4, 51, results using 
sampled curvatures and results using our descriptor. 
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(a) Dissimilarity matrix for Brown database. 

(b) Dissimilarity matrix for Ling et al's database. 

Figure 3.7: Image plot of the dissimilarity matrix for the Brown shape database and Ling 
et al's articulated shape database, obtained using our shape descriptor as a means for shape 
retrieval. Note that darker spots represent less dissimilarity, hence a better match. 



Chapter 4 

3D Shape Correspondence and 

Retrieval 

In this Chapter, we explain in details, our method for correspondence and retrieval of 3D 

shapes. We apply eigenanalysis to the input 3D shapes and use the resulting spectral 

embeddings for correspondence and retrieval. We first give an overview of the spectral 

method, then explain the construction and properties of the spectral embeddings. Next we 

present the application of spectral embeddings to correspondence and retrieval. 

4.1 Overview 

Let us first give a brief overview of the problem we address and the algorithm we propose. 

The correspondence problem can be stated as: given two 3D shapes Ml and M2, in the 

form of triangular meshes with nl and n2 vertices, respectively, we wish to compute a 

correspondence C between the two sets of vertices in Ml and M2. That is, C(i) is the vertex 

in M2 that best corresponds to vertex i in Ml.  Note that the correspondence computed 

is not required to be bijective. However, in the case where nl = and a one-hone 

correspondence is sought, we can easily modify our method to meet the goal. The retrieval 

problem, on the other hand, reduces to finding a similarity measure between two meshes. 

The major steps of our approach are as follows: first, we establish an nl x nl affinity 

matrix A where Aij is the affinity between vertices i and j of Ml.  Similarly, we compute an 

n2 xn2 mat.rix B, the affinity matrix for M2. The affinities that we use in our implementation 
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are based on geodesic distances in order to attain invariance to bending. The geodesic 

distance between any two points on a surface is defined as the minimal length of all surface 

curves between these points. In other words, it is the shortest distance (along the surface) 

between these points. Next we find the spectral embeddings ak and Bk of the matrices A 

and B: respectively. These embeddings give k-dimensional coordinates of all the vertices of 

M I  and Ad2. Hence, we have essentially transformed 3D mesh vertices into points in k-D 

space. The embeddings are based on the eigenvectors of A and B: properly processed as we 

describe in Section 4.2. The purpose of transforming the 3D mesh from the spatial domain 

to the k-D spectral domain is to attain invariance to bending, rigid transformations, and 

uniform scaling, as well as robustness to difference in mesh sizes, for example. 

Once we have the two k-D meshes that are already properly normalized, we use these 

embeddings to compute correspondence and retrieval. For correspondence, we use iterative 

alignment to robustly align them and then obtain a correspondence via best matching based 

on the La distance. As we shall explain in Section 4.2, rigid alignment is insufficient to deal 

with moderate stretchings in the shapes to be matched. Hence, we modify the well-known 

iterative closest point (ICP) algorithm to include non-rigid transformations. Specifically, 

we use thin plate splines to model non-rigid transformations and compute a registration 

between the meshes in the spectral domain. As mentioned earlier, this registration is not 

required to be one-to-one, but can be forced to be bijective by using the Hungarian algorithm 

for bipartite matching. For retrieval, we compute global descriptors on the k-D embeddings 

and use the distance between the descriptors as the similarity measure between the shapes. 

4.2 Spectral Embedding 

In general, intrinsic point representations can be obtained via pairwise point proximities, 

specified by a symmetric affinity mat r ix  A = {aij), where aij > 0 characterizes the similarity 

or simply the graph adjacency [9, 621 between points i and j. One may view the affinity 

matrix A as a data vector whose n columns (or rows) represent n-dimensional data points. 

The most common proximity measure used to define relationship between points for 

shape matching is the Euclidean distance [ l l ,  10,54,57], which implies invariance to rotation 

and translation. For mesh correspondence and retrieval, we use geodesic distances between 

the mesh vertices, computed via fast marching [17], to include invariance to bending as 

well. Invariance to uniform scaling is achieved by mapping the geodesic proximities into the 
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interval [O. 11 using a scale-dependent, positive semi-definite kernel function. In this thesis, 

we use Gaussian kernels which is a common choice for spectral correspondence [ll, 10, 54, 

571. 

Although the point proximities contain a great deal of shape information, without a 

proper point mapping, one cannot compare such representations for two data sets directly. 

Also, the size of the data sets, or the dimensionality of the point representations, may not be 

the same. Last but not the least, the high dimensional representations may contain a great 

deal of redundancy, resulting in unnecessarily high computational cost. These observations 

naturally lead us to consider transforming two data sets, respectively, into some information- 

preserving subspaces that share the same low dimensionality. This can be accomplished 

through principal component analysis (PCA) on the affinity data. 

4.2.1 Principal Component Analysis (PCA) 

Given the data (affinity) matrix A E Rnxn,  we first compute its principal components 

u l , .  . . , u,. which are the normalized eigenvectors of the autocorrelation matrix R = AAT. 

Since A is symmetric, R = A h n d  u l ,  . . . , u, are simply the eigenvectors of the affinity 

matrix -4. Let XI,. . . , An be the corresponding eigenvalues of A and suppose that A1 2 . . . 2 
A,. Projecting the data matrix onto the first k principal components yield 

where Uk = [ull.. . luk], Ak = diag(A1,. . . , Ak), and the columns of represent a k- 

dimensional spect~al embedding of the data points. Note that a point permutation induces 

the same permutation of the embedded coordinates but leaves the spectrum invariant. 

In the case of mesh spectral embeddings, the data points are mesh vertices. A spectral 

embedding associates with each mesh vertex a k-dimensional coordinate. In the 3D spectral 

domain, one can visualize the embedding of a mesh M by rendering a mesh whose con- 

nectivity is the same as M and whose vertices are given by the embedding coordinates, as 

shown in Figure 4.1. 

Although A, gives a provably best k-dimensional approximation of A (in terms of the 

F'robenius norm) [16], it may not be suitable for matching. The more important requirement 

is for the projection axes, derived from the principal components, to be compatible between 

two data sets. 
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Figure 4.1: A human mesh (left) and its 3D spectral embedding, constructed using the 
second, third, and fourth eigenvectors. This particular choice of the eigenvectors is explained 
in Section 4.3. 

4.2.2 Eigenvalue Scaling 

Given two affinity matrices A and B characterizing two shapes, possibly in different scales, 

a scale-dependent kernel can normalize the affinity values in A and B. If the number of 

vertices, n-4 and nB, in the two (mesh) shapes differ however, we first need to truncate 

both spectral embeddings to the same dimension 5 5 min{nA,ng). In addition, since we 

normalize each eigenvector, the cardinality of a data set affects the magnitude of the entries 

in its eigenvectors, which in turn affects the embeddings. 

Correspondence algorithms that use unscaled eigenmodes [ll, 10, 571 as spectral em- 

beddings are common. Shapiro and Brady [57] first suggest a scaling of the the eigenmodes 

by eigenvalues, as in equation (4.1), but did not elaborate. Caelli and Kosinov [9] scale 

the eigenmodes using squared eigenvalues and then project the resulting embeddings onto 

the unit k-sphere for matching graphs of different vertex counts. Evidently, proper scaling 

of the eigenmodes is a cruciaI normalization step. None of these approaches adequately 

resolves the discrepancies in the scales of the principal components (or embeddings) due to 

difference in the cardinality of the data sets. We propose to scale the principal components 

by the square root of the eigenvalues, yielding projections 

where A = U A U ~  and B = VJ?VT are the eigenvalue decompositions of A and B, respec- 

tively, with U,, &, A,, I?,+ defined as in equation (4.1). Spectral embeddings of this form are 



CHAPTER 4. 3 0  SHAPE CORRESPONDENCE AND RETRIEVAL 

10- 
[+without scalina 4 

Figure 4.2: Effect of eigenvalue scaling on correspondence, based on the correspondence 
error plots. 

well known in the spectral clustering literature [45]. 

Justifications: Consider the vector of projections & from set A. We can estimate the scale 

of these projections by S A , ~  = llAi112/nA. From equation (4.2), we have 

It follows that S A , ~  = &InA and . s ~ , i  = y i / nB .  With the affinity matrices having unit 

diagonal elements, signaling that a point has maximal affinity to itself, we have 

We do not normalize these scales to some constant, since they represent data variations 

along the projection axes and thus contain shape information. We only wish to remove the 

effect of different data size; this is achieved by normalizing the eigenvalues, which represent 

data variations. 

Another justification for equation (4.2) is that the dot-product matrices A*AT and B ~ B ~  

are respectively the best rank-k approximations, in Frobenius norms, of A and B [16], which 

are already normalized to scale. Using the same argument, we see that the dot product 
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matrices resulting from eigenmode scaling with eigenvalues themselves [57] become best 

rank-k approximations of the autocorrelation matrices = A2 and B ~ ,  respectively, 

whose entries do depend on the size of the data sets. 

Experimental results: The effectiveness of our eigenvalue scaling scheme is shown in 

Figure 4.2, where we plot the correspondence errors in the case of scaled versus unscaled 

spectral embeddings. The correspondence error is measured as the total geodesic distance 

Cy=l g(tli. v,!), where n is the number of vertices to be matched, vi is the vertex corresponding 

to i that is computed by an algorithm, and v,! is the ground-truth match for i. The plots 

are against the difference in the number of vertices of the two meshes to be matched. The 

correspondence algorithm used is our own and it is described in Section 4.3. In producing 

the two plots, the only difference is whether the eigenmodes are scaled. 

Measuring error for dense correspondence is not easy since the ground-truth correspon- 

dence is impractical to establish manually. In our evaluation, we first construct successively 

decimated copies of the same 3D mesh using the QSlim mesh decimation program of Gar- 

land [22]. Next we use our algorithm to find correspondences between the decimated copies 

and the original mesh and measure correspondence errors. The ground-truth can be trivially 

established since QSlim retains the positions of undecimated vertices. 

A motivation based on Kernel-PCA: It  turns out that the eigenvalue scaling scheme we 

have proposed can also be motivated in the framework of Kernel-PCA. It  can be shown that 

the embedding of mesh vertices obtained using our scheme is essentially the same as their 

projection obtained using Kernel-PCA, where, the kernel matrix is defined by a Gaussian. 

We give details of Kernel-PCA for completeness, and show its relationship to our method 

in the next Section. 

4.2.3 Kernel-PCA and Spectral Embeddings 

Given a point set X = 21,. . . , xn, where, xi E Rg is a g-D point, recall that standard PCA 

attempts to extract the principal components of the data by computing the eigenvectors of 

the covariance matrix: 

Here, we assume that the points set X is centered to the origin, that is, Cy=, xi = 0. 

The principal components are given by V = [vllv21 . . . lug], where, {vkll < k < g )  is given 



CHAPTER 4. 3D SHAPE CORRESPONDENCE AND RETRIEVAL 38 

by X k ~ k  = Cvk7 and Xk is the corresponding eigenvalue. These eigenvectors define a new 

coordinate system which is an orthogonal transformation of the canonical coordinate sys- 

tem of R g .  The leading eigenvectors are more important principal component directions 

along which the point projections have larger variations. If the variations along the trailing 

eigenvectors are sufficiently small, it is reasonable to discard the corresponding projections, 

effectively reducing the data dimension without losing much information. This process is 

known as dimensionality reduction and is one of the main applications of PCA. 

Kernel PCA (KPCA) [51], an extension to the standard PCA, first applies to X a 

generally non-linear mapping q5 : Rg -+ 3 ,  where 3 is referred to as the feature space. Then 

the standard PCA is carried out in 3 on the point set q5(X) = {q5(xi)lxi E X). Since 3 

may have a very high, possibly infinite, dimensionality, the non-linear properties of the data 

X can be "unfolded7' into linear ones. Thus algorithms that work on linear structures, e.g., 

PCA, can be effectively applied in 3 .  

The mapping q5 is never explicitly given, but implicitly specified by the inner products 

between the data and encoded in a kernel matrix K E Rnxn,  where Kij = k(x,,xj) = 

q5(xi) . Q(xj). Algorithms that run in the feature space based only on inner products can 

be efficiently implemented in the original space by replacing inner products by the kernel 

function k. The most commonly used kernel is the Gaussian radial basis function [51] 

We wish to show in this Section that spectral embeddings and KPCA are infact the 

same except that the kernel function is now the Gaussian of geodesic distances instead of 

the Euclidean distances in equation 4.3. That is, the feature space 3 in the case of spectral 

embeddings is such that inner products are defined by the Gaussian of geodesic distances 

in the original space. This leads us to provide yet another justification for the eigenvector 

scaling scheme we proposed in the previous Section. We first give a brief description of 

KPCA (details can be found in [51]) and show the relationship between KPCA and spectral 

embeddings. To perform PCA in the feature space, the new covariance matrix is given by: 

The principal components of the points in feature space are then given by {Ckll 5 k 5 h), 

where h is the dimensionality of the feature space and, 
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F'rom equations 4.4 and 4.5 we get Akck = ~ ~ = l ( ~ ( ~ i ) . ' 6 k ) ~ ( ~ i ) .  This implies that the 

principal components .itk can be represented by a linear combination of 4(xi)'s. That is, 

Now from equations 4.4 and 4.5 we get: 

(for some I ) .  

1 x Q ~ ~ ( ~ ( x ~ ) . ~ ( x , ) )  = - ( x  m(~i)m(xi)~)  x akj4(xj).4(x1) (after substituting for 
j=l i=1 j=1 

.itk from equation 4.6). 

In the last equation, A E Rnxn is a matrix such that, Aij = 4(xi).4(xj), and a k  is the 

vector (ak1, a k 2 ,  . . . , a k n )  A is essentially the kernel matrix. If A is defined such that it is 

symmetric, the last equation becomes equivalent to: 

Now the principal component of the data point 4(xi) is given by their projection on the 

principal component axes .itk. That is, 

=Aiak (Ai is the ith row of A). 

Hence, the projection of 4(xi) along all the principal components 5 k 5 n) is given 

by the vector: 

&xi) = (Aial, Aia2,. . . , Aian). 
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Hence, the projection of the whole dataset d(X)  is given by the matrix: 

$(x) =[Aa1(Aa21.. . IAan] 

[ n i l a l  ln i2a2(  . . . 1ninan] (from equation 4.7). 

Note that the principal components Gk need to be of unit length. This gives a normalization 

condition for akls: 

+ x akiakj(d(xi)d(xj)) = 1 (after substituting for Gk from equation 4.6). 

Thus, we need to divide all ak , s  by \ lnik.  Now we re-write the equation for the projection 

$(x) after performing this normalization: 

Note from equation 4.7 that a k l s  are the eigenvectors of the kernel A and d k 7 s  are 

the corresponding eigenvalues. Now the relation between spectral embeddings and KPCA 

is quite clear. The projection &x) is exactly the spectral embedding of the point set 

X ,  where we consider that the kernel matrix A is defined using a Gaussian of geodesic 

distances and hence is the same as the affinity matrix. Also, our scaling scheme has emerged 

naturally under the KPCA framework, hence, providing another justification for scaling the 

eigenvect,ors with the square root of the eigenvalues. 

One more detail here is that equation 4.4 assumes that the data set d(X)  is centered at 

the origin which may not be true. Hence, the kernel matrix is not centralized. However, it 

is easy to compute the centralized matrix from the uncentralized version. Another option 

is to exclude the first eigenvector from the projection, which we adopt as it further reduces 

the dimensionality. 
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4.2.4 Non-robustness of Eigenmodes 

Eigenmode switching: Perturbation theory predicts that when eigenvalues move close to 

each other: the corresponding eigenvectors may switch order [25]. We have observed that 

such switching can occur early in the eigenvalue order, e.g., between 4 and 8: even when 

the two shapes being matched are perceptually similar. But there is no general pattern 

of eigenvalue clustering that is sufficiently reliable to detect the switchings. As switching 

of two coordinates, the eigenvectors, induces a reflection in the spectral domain, spectral 

correspondence based on the La distance measure or correlations [57, 621, even with the aid 

of clustering [9, 101, can fail. 

For a visual illustration of eigenmode switching, we color-plot the eigenvectors in MAT- 

LAB, where the entries in an eigenvector are used as indices into the color map. To enhance 

our illustration, we nonlinearly warp the color map. As shown in Figure 4.3, given in the 

color plate, two similar shapes have compatible eigenmodes, reflected by consistent color 

plots, only up to the 4th eigenvalue. The 5th and 6th eigenmodes are switched and color 

patterns for the next a few eigenvectors, those exhibiting higher-frequency color variations, 

do not exhibit any discernible patterns. Evidently, correspondence analysis using eigenvalue 

orderings to pair up eigenmodes beyond the 4th one would be hard to justify in this case. 

Moreover, since the eigenvalue represents the variation- of the data along the projection 

axis, an eigenvector can be made to appear at any position in the spectrum by stretching or 

shrinking the data along that axis. Such stretching can be easily found in real world shapes. 

Relevance to eigenvalue scaling: One interesting point to note is that as the magnitude 

of the eigenvalues of the geodesic affinity matrices exhibit rapid decay, as shown in the 

caption of Figure 4.3, eigenvalue scaling has the effect of rapidly attenuating the effects of 

higher-frequency eigenvectors. This would be quite appropriate since these eigenvectors are 

less reliable to use for correspondence analysis. As a side effect, the resulting correspondence 

algorithm will be less sensitive to the number of eigenmodes chosen. In previous works, 

e.g., [lo], some heuristic has to be adopted to determine the proper dimensionality to use. 

Sign flips: Besides reflections induced by switching, other transformations in the spec- 

tral domain also need to be handled to achieve robust spectral correspondence. One such 

transformation is due to the arbitrary determination of the signs of the eigenvectors by 

the numerical eigenvalue program, as already noted in previous works [9, 571. Note that 

this is another form of reflection. Caelli and Kosinov [9] propose to use a dominant sign 
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Figure 4.3: Eigenvector plots for two shapes, both with 252 vertices. The first 8 eigenvalues 
are [205.6: 11.4, 4.7, 3.8, 1.8, 0.4, 0.26, 0.11 and [201.9, 10.9, 6.3, 3.4, 1.8, 1.2, 0.31, 0.251, 
respectively. 

correction. always ensuring that there are more positive entries in each eigenvector. This is 

highly unreliable however since in practice, most eigenvectors have about the same number 

of positive and negative entries. Shapiro and Brady [57] use a greedy approach to correct 

one sign at a time by optimizing for a correspondence cost. In the presence of eigenmode 

switchings, this approach is not robust either. 

Other transformations: Consider the spectral embeddings of two similar human meshes 

using the 2nd, 3rd and 4th eigenvectors (this particular choice of the eigenvectors is explained 

in Section 4.3), as shown in Figure 4.4(a). Ideally, the embeddings would be perfectly 

aligned. However, a rotational difference in the embeddings is clearly visible. In addition, 

there are also other discrepancies of a non-rigid nature. Another example is given in Figure 

4.4(b): where the second (light gray) mesh is merely a scaled version (scaled along the z 

direction) of the first (dark gray) mesh. But there again is a rotation in the embedding. We 

believe that such transformations in the spectral domain, as well as  eigenmode switchings, 

are the result of non-uniform stretching in the shapes. Obviously, a matching algorithm 

must be able to deal with all these transformations in order to operate robustly. 
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(a) Two similar human meshes with their spectral embeddings differ by a rotation and 
some stretching. 

(b) A human mesh and ,its stretched version. Their spectral embeddings differ by a 
rotation. 

Figure 4.4: Stretching in spatial domain induces rotation and non-rigid transformations in 
the spectral domain. 

4.2.5 Possible Remedies for Non-robustness of Eigenmodes 

We made several attempts to resolve the problem of eigenvector switching and sign flips 

in the spectral embeddings. In this Section, we would like to briefly discuss some of these 

attempts. There are essentially two ways to fix this problem: either un-switch the eigenvec- 

tors to obtain reflections-free embeddings, or axknowledge that the embeddings could have 

reflections and design algorithms that are invariant to these reflections. The first method 

requires us to find the ordering of the eigenvectors that best aligns the two embeddings. 

This can be mathematically expressed as: 

where, as and Bk are the two nl x k and nn x k embeddings defined in equation 4.2, P 
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is a k x k selector matrix whose entries are from {-1,0,1) with exactly one non-zero entry 

per row and column, and M is a n2 x n l  correspondence matrix whose entries are either 

0 or 1, with exactly a one 1 in every row. Here, P is the matrix that selects a particular 

ordering and sign configuration of the eigenvectors (columns) in ak, and M defines the 

correspondence between the embedding coordinates (rows) in ak and Bk. This optimization 

is a generalization to the graph-isomorphism problem, in which, ak and Bk become square 

adjacency matrices representing two graphs and M and P become permutation matrices 

such that M = pT. Since, the size of matrix P is small as k << min(nl, n2), we might 

consider the solution of exhaustively searching for best possible P .  Given P ,  M can be 

established by using the simple "best matching" scheme in 0(nln2) time. Exhaustively 

going through all P ' s  results in a time complexity of 0 ( k ! 2 ~ n ~ n ~ )  since there are k! possible 

orderings of k eigenvectors and 2k sign configurations for every ordering. Unfortunately, 

this con~plexity is tractable only for very small values of k. Hence, we look into heuristic 

minimization of the given problem to reduce the complexity. We discuss some heuristics in 

Section 4.2.6. 

The second method of dealing with reflections in the spectral embeddings is to design 

algorithms invariant to such reflections. Along this direction, we attempted the following 

two approaches: 

0 Reflection invariant point descriptors: Once we have the spectral embeddings 

of two shapes, one way to compute correspondence is to match them using shape 

descriptors, e.g., shape context. Since the embeddings are invariant to bending, the 

shape descriptor used will be invariant to bending. However, now we have to use a 

~eflection invariant shape descriptor to account for the reflections in the embeddings. 

Shape contexts by themselves do not have such property since the bins made by angular 

spatial division will report different point counts if the shapes are reflected. Hence, 

our aim would be to construct a spatial binning scheme in which the point count in a 

bin does not change if the shape is reflected. One such binning strategy would be to 

construct only spherical bins. Such binning is not only invariant to reflections but also 

to rotations. Moreover, we need to deal only with reflections caused by switching of 

coordinate axes or flipping the sign of coordinate axes, but such binning is invariant to 

any arbitrary reflection about the center of the spherical shells. It  is generally believed 

that as invariance of a shape descriptor (towards more transformations) increases, its 
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descriptive power decreases. Hence, ideally we would like to have a descriptor which 

is invariant only to the class of reflections we are concerned with and at the same time 

is sufficiently descriptive. 

0 Symmetric polynomial transformation: We have transformed the shapes from 

t.he spatial domain to spectral domain in order to achieve invariance to bending and 

other transformations. In the same spirit, another way of dealing with reflections 

in spectral embeddings is to transform them in a domain that is invariant to these 

reflections. Symmetric polynomials is one such candidate. Given a set of numbers 

X = {xl, 22,. . . , xk), the k symmetric polynomials for this set are defined as: 

k 

Sl = C x i  
i=l 

Synlmetric polynomials are nothing but the coefficients of a polynomial of degree 

(k - I), whose roots are given by the elements in set X. It  is well known that there 

is a one-to-one mapping between the coefficients of a polynomial and its roots, that 

is. for a particular set of coefficients, there will be a unique set of roots and vice 

versa. Also, symmetric polynomial formulation is invariant to reordering the numbers 

in the original set (for example, the value of sl . . . s k  remain the same if say x l  and 

2 3  are swapped). We use this property and transform the spectral embedding points 

into corresponding symmetric polynomials, thus achieving invariance to eigenvector 

switching. That is, for the (nl x k) embedding matrix Ak, the (nl x k) symmetric 

polynomial matrix SAk is such that the ith row of SAk contains the k symmetric poly- 

nomials obtained from the k numbers in the ith row of Ak. Similarly, Sg, is obtained 

from embedding Bk, and matching is performed using SAk and SBk.  Invariance to 

sign-flips of the eigenvectors is achieved by taking the absolute values of the entries in 

Ak and Bk. 

Although both reflection invariant shape descriptors and symmetric polynomials are 

elegant ways of dealing with reflections in the spectral embeddings, our experiments show 
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that they do not perform satisfactorily when used for correspondence. We suspect two 

reasons for such results: first, making the embeddings invariant to reflections also makes 

the resulting representation less descriptive, second, both the formulations, though invariant 

to reflect.ions, are susceptible to other rigidlnon-rigid transformations in the embeddings 

explained earlier. Experimentally, we found that heuristically finding the right ordering and 

sign configuration of the eigenvectors achieves better results than using reflection invariant 

formulations. 

4.2.6 Heuristic Eigenvector Reordering 

Several heuristics can be proposed in order to efficiently reorder the eigenvectors of two 

spectral e~nbeddings. In this Section, we present a few of them: 

Greedy Reordering: Let us first consider a low dimensional embedding, e.g., with only 

two eigenvectors. We exhaustively find the best possible ordering and signs of these few 

eigenvectors. Now we incrementally add one eigenvector at a time and at each step, compute 

the best possible position and sign of the new eigenvector. This results in 0 ( k 2 )  possibilities 

to compare, greatly reducing the time complexity from 0 ( k ! 2 ~ n ~ n ~ )  for exhaustive search, 

to 0(k2n1n2).  

Pairwise Flipping: Although, theoretically, the eigenvectors of two affinity matrices may 

differ by an arbitrary reordering, in practice, for sufficiently similar shapes, we noticed that 

only consecutive eigenvectors exchange positions. Hence, the best ordering may be found by 

flipping pairs of consecutive eigenvectors. More specifically, at every iteration, we identify a 

pair of consecutive eigenvectors that, if flipped, will reduce the correspondence cost the most. 

This pair is then flipped and next pair is searched for. Note that if an arbitrary reordering 

is given, then this flipping is more likely to result in a local minima, when compared to the 

greedy approach. However, the complexity of this heuristic is 0 ( f k n l n 2 ) ,  where, f is the 

number of pairs that were flipped. In practice, this number is expected to be small. To 

deal with sign flips in eigenvectors, we take the absolute value of the eigenvector coefficients 

while conlputing the right ordering. Once the correct ordering is found, the correct sign 

configuration can be computed using other methods, for example, the greedy approach of 

Shapiro and Brady [57]. 
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4.3 Spectral Shape Correspondence Algorithm 

Observe that iterative alignment techniques, e.g., [14], can work quite well when the initial 

shapes are approximately aligned, while spectral embedding can automatically remove the 

effects of rigid-body transformations, uniform scaling, and shape bending. Hence, a natural 

approach would be to perform non-rigid alignment in the spectral domain before computing 

the matching. The only obstacle now is to handle reflections caused by eigenvector switching 

and sign flips, as they can introduce large discrepancies into the initial configurations of the 

shapes to be matched. As explained earlier, we deal with this problem by heuristically 

finding the right ordering and sign configuration of the eigenvectors. Due to the rapid decay 

of eigenvalues and eigenvalue scaling, we never find it necessary to use more than k = 6 

eigenvectors to arrive at  a satisfactory mesh correspondence. So k is always small and even 

the exhaustive solution for eigenvector reordering can be used. 

Once we have aligned the two spectral embeddings properly, we attempt to transform 

one embedding into another. Due to the presence of non-rigid deformations in the spectral 

domain, we modify the original rigid ICP algorithm [7] by replacing its transformation model 

with the use of thin-plate splines. Thin-plate splines are well-known and have been applied 

to model non-rigid transformations before [6, 141 in the context of 2D shape registration. A 

brief overview of this technique is given in the Appendix A. 

Now consider two 3D meshes Ml and M2 with nl and n2 vertices, respectively. Without 

loss of generality, assume that nl 5 n2. Let us describe each step of our spectral correspon- 

dence algorithm in details below. Experimental results for shape correspondence are given 

in Section 4.6. 

1. Geodesic affinities: Construct Gaussian affinity matrix A where 

where dij  is the geodesic distance between vertex i and j in MI.  The Gaussian kernel 

width ( T ~ I ~  is set to be the maximum geodesic distance between any two vertices in 

M I .  The performance of our method is relatively invariant to the choice of a k I 1  as 

long as it is set to a sufficiently large value. Similarly, we construct B, the Gaussian 

affinity matrix for mesh M2. 

2. Spectral embeddings: The affinity matrices A and B are eigenvalue decomposed 
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and the resulting spectrum are truncated to k. Each of the k eigenvectors is scaled 

with the square root of its corresponding eigenvalue. These steps have already been 

described in details in Section 4.2.1 and 4.2.2. 

We have already stated the reason for ignoring the first eigenvector of the affinity 

matrix in Section 4.2.3. The following is another justification for the same. Note that 

if the Gaussian width is sufficiently large, the row-sums of the affinity matrix are almost 

constant. As a result, the first eigenvector of the matrix will be close to a constant 

vector and can be safely ignored. From now on, we denote by A E R ~ ~ ~ ( ~ - ~ )  and 

B E R ~ ~ ~ ( ~ - ~ ) ,  as first defined in Equation 4.2, the (k - 1)-dimensional embeddings 

of Ml and M2, respectively, where the first eigenvector is disregarded. A and B are 

essentially n l  x (k - 1) and n2 x (k - 1) matrices where the ith rows of A and B are 

t,he (k - 1)-dimensional spectral embedding coordinates of the ith vertices of meshes 

A l l  and M2 respectively. In all our experiments, we have used k = 5 or 6 hence giving 

a 4 or 5-dimensional spectral embedding after disregarding the first eigenvector. 

3. Eigenvector reordering and sign correction: We keep the ordering and signs of 

t,he eigenvectors of one mesh, e.g., MI, fixed. With either the exhaustive search or any 

heuristic, we need to compute the cost of a correspondence, which we describe below. 

First, we obtain a best matching C based simply on the L2 metric; other metric, such 

as the Chi-square or ~ a h i a n o b i s  distance is also possible. Specifically, for a vertex 

@' of mesh MI, u?. is the corresponding vertex of M2, where 
2 )  

Here Ai and Bj denote the spectral embedding coordinates of vertex i in mesh Ml 

and vertex j in mesh M2 respectively (i.e. the ith and the jth row of the matrices A 

and B respectively). The cost of the correspondence C is given by the sum: 

We choose the ordering and signs of the eigenvectors for mesh M2 which give the 

minimum cost(C) . 

4. Non-rigid alignment: Once the eigenvectors for two shapes have consistent ordering 

and signs, we perform a non-rigid alignment using ICP modified by thin-plate splines 

(Refer to the Appendix). The pseudo-code for this alignment procedure is given below. 
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Given two spectral embeddings A and B, 

(a) Initialize parameters d, w, A. 

(b) Transform B into B using the transformation parameters d and w. 

(c) Update correspondence C using Equation (4.10) after replacing Bj with Bj.  
(d) Given the correspondence C, update transformation parameters using Equation 

(A.2). 

(e) Update the regularization parameter A. 

(f) Repeat from Step (b) until convergence. 

We have found experimentally that 5 to 10 iterations of the iterative alignment are 

sufficient to align the embeddings. The value of the regularization parameter X is 

set to be the mean distance between all embedded point pairs. As shown in [6] ,  this 

scale-dependent assignment of X is robust to scaling of the point sets. 

5. Proximity-aided matching: For dense correspondence it is hard to distinguish 

bet.ween near-by points using an alignment and correspondence procedure based on 

optimizing a global energy, which is the case in our approach. As used for 2D shape 

correspondence, we use the proximity heuristic (described in Section 3.1.3) to improve 

correspondence locally. We briefly outline the heuristic here for convenience. 

First. the anchor point pairs are computed as follows. Consider the (nl x nz) matrix 

Z of correspondence costs between all points of Ml and Mz. That is, 

The first anchor point pair (a j'), a?)), where aj') is a vertex of MI and a?) is a vertex 

of M2, is selected as the pair with least correspondence cost. That is, 

The second anchor point pair is calculated in the same way. However, we would need 

the anchor points to be far from each other over the mesh. Hence, before finding the 

second pair, we modify the matrix Z so that points close to the first anchor point are 

penalized. The new correspondence cost matrix is given by: 

1 
-[distM1 2 (i, a?)) + dist"2 ( j ,  a?))] 
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where distM(i, j )  is the geodesic distance between the ith and jt" vertex of mesh M. 

Now: the second anchor point pair is given by: 

This process can be repeated to obtain more anchor point pairs. With the anchor 

points, we modify Equation (4.10) for finding the best correspondence C to incorporate 

the proximity cost: 

h 

a1 - lldistM1 (i, of))  - distM2 (j ,  af))ll] 
1=1 

where h is the number of anchor point pairs chosen and the cq's are free parameters 

set by the user. 

The success of the proximity heuristic depends on two factors: quality of the anchor 

point pairs and geodesic distances. Since the meshes are already well aligned, choosing 

t.he anchor point pairs to be the most trusted matches are expected to be robust. 

However, the dependence on geodesic distances may cause sensitivity of the heuristic 

to stretching in the shapes. Hence, fixing a large number of anchor point pairs can 

render the matching non-robust. Thus we restrict to fixing only three anchor pairs 

and set cul = a 2  = a 3  = 1 for all our experiments. 

4.4 Shape Retrieval based on Spectral Embeddings 

For 3D shape retrieval, we need to define a measure of similarity between any two given 

shapes. This similarity measure must be invariant to common geometric transformations and 

to bending (for articulated shapes). For this purpose we use the bending invariant spectral 

embeddings. The construction of such embeddings has already been explained in Section 4.3. 

In this Section we focus on describing other steps of our shape retrieval algorithm as well 

as heurisbics designed to handle various degeneracies in shapes provided in existing shape 

databases. For any given 3D model, we first compute the spectral embedding as follows: 

1. Construction of structural graph: 
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In order to achieve invariance to bending, we define the affinities based on geodesic 

distances. However, estimation of geodesic distances poses several problems. Con- 

ventional methods of geodesic distance estimation over a mesh depend largely on the 

connectivity of the mesh. This dependency limits the use of geodesic distances, as we 

have noticed that many shapes in all the well-known shape database have disconnected 

components (a small number of them are simply triangle soups), in which case, the 

geodesic distance estimation will completely fail. We thus turn to a heuristic to work 

around this problem, which we describe below. 

We use shortest path graph distances over the mesh connectivity to approximate g e e  

desic distances. This not only provides computational and implementational simplic- 

ity but also removes the constraint that the shape has to be defined using a connected 

manifold mesh. However, this does not solve the problem with disconnected mesh com- 

ponents. Hence, we need to add extra edges to the connectivity graph while making 

sure that the structure of the shape remain largely unchanged. Given a 3D mesh, let 

G ,  = (V, Em) be the connectivity graph of the mesh and Cl, C2,. . . be its components. 

We construct a pconnected graph Gp = (V, E,) over the mesh vertices such that the 

graph faithfully represents the shape. This is done using Yang's efficient algorithm 

for constructing pconnected graph over point clouds in Euclidean space that locally 

minimizes edge lengths by computing and combining p Euclidean minimum spanning 

trees of the given point cloud [67]. As shown in [67] and verified by our experiments, 

the resultant graph Gp approximates the structure of the shape well. Given G, and 

G,, the final structural graph is defined as: 

G = (V, E) 

Informally, the structural graph G includes all edges of G, and only those edges of 

G, that join two disconnected components. In our implementation, we restrict p to 1 

or 2 since higher values of p may result in edges between far away (hence, unrelated) 

components which is undesirable. 

Note that the definition of G makes sure that there is a single connected component. 

However, we include only the edges that are absolutely required to connect the com- 

ponents. The remaining edges come from the original mesh connectivity. This helps 
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in better preserving the structure of the mesh. Once the structural graph G has been 

constructed, the geodesic distance between two vertices can be approximated by the 

short.est path length in G computed using Dijkstra's shortest path algorithm. 

2. Spectral  embedding: 

Having robustly estimated geodesic distances between all pairs of points, we can com- 

pute the spectral embedding according to the procedures given in Section 4.3. We 

outline that procedure here to make the description of our shape retrieval approach 

self-contained. 

Define the affinity matrix A based on geodesic distances. The affinity matrix is given 

by a Gaussian of the distances: 
-2. 

Aij = e T 3 ,  

where dij is the approximate geodesic distance between the ith and the jth vertex 

computed from above, and a = is the Gaussian width. Now we eigende- 

compose A to obtain the spectral embedding: 

We truncate the last n-lc- 1 columns and the first column of A for reasons explained in 

Section 4.2 and 4.3 to obtain the lc-dimensional embedding Ak. For 3D shape retrieval 

and for all results reported in this paper, we represent every shape with a 3-D spectral 

embedding given by the 2nd, xrd and 4th eigenvectors (scaled) of the affinity matrix. 

The 3D embeddings of some articulated shapes from the McGill shape database [63] 

are shown in Figure 4.5. 

3. O the r  affinity measures: 

Alt,hough the use of geodesic distances to define affinities provide invariance to bend- 

ing, it might cause adverse effects in some cases. For example, consider two chair 

models. Suppose that the arm-rest of one model is connected directly to its back-rest, 

however, on the other model, it is not connected directly, but through the bottom 

seat. In the first case, the geodesic distance between a point on the arm-rest and a 
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Figure 4.5: Spectral embeddings (bottom row) of some articulated 3D shapes (top row) 
from the McGill shape database. Note that normalization has been carried out. 

point on the back-rest is small, whereas in the second case it will be relatively large 

since it has to go through the bottom seat. Hence, the spectral embeddings of the 

two chairs could be radically different and the retrieval result will suffer. In general, 

due to the sensitivity of geodesic distances to the topological noise in the shapes, the 

spectral embeddings can be different for two similar shapes. Note that if we define 

affinities based on Euclidean distance between the points, it would resolve the prob- 

lem described above. However, such definition of affinities can no longer be expected 

to be invariant (or even robust) to bending. Nevertheless, this discussion reveals the 

flexibility of our approach, with the use of affinity matrices, in that they can be easily 

tuned to render the retrieval process invariant to a particular class of transformations 

depending on the database in question. 

In the following Sections, we show a comparison of retrieval results using different 

affinity measures. However, since our target database is that of articulated shapes, it 

is not surprising that the geodesic distance based affinities perform the best. Minor 

improvements over conventional shape descriptors can still be seen using other affinity 

measures, which strengthens our proposal of performing retrieval over embeddings 

instead of the original shapes. We use Gaussian affinity matrix in all experiments, 

while varying the term dij  based on various measures. The affinity measures that are 

compared in subsequent Sections, other than geodesic distance based affinities, are: 

(a) Euclidean distance: dij is the Euclidean distance between vertices i and j. 
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(b) Combined distance: dij is the uniform combination of the Euclidean and the 

(approximate) geodesic distance between vertices i and j. 

4. Global Shape Descriptors: 

We have transformed the given 3D shape into its 3D spectral embedding. We can 

now define global shape descriptors on this embedding in the same way as they are 

defined on the original shape. Conventional global shape descriptors can also be used 

on the embeddings by considering the embedding to be just another 3D shape. We 

present a comparative study of various conventional shape descriptors and new shape 

descriptors obtained from the spectral embeddings in Section 4.6 

4.5 Nystrom Approximation for Fast Spectral Embedding 

For b0t.h correspondence and retrieval, we need to construct the spectral embedding of the 

input meshes. Note that the time complexity of constructing the full geodesic-based affinity 

matrix for a mesh with n vertices is 0 ( n 2  logn), as the complexity for computing geodesic 

distance from one vertex to all other vertices using fast marching is O(n1ogn). Moreover, 

the eigen-decomposition of an (n x n) matrix takes 0(n3)  time or 0(kn2) if only the first 

k eigenvectors are computed. This complexity does not affect the performance of shape 

retrieval drastically, since the spectral embeddings of all shapes in the database can be 

precomputed. However, the query model still needs to be processed. To speed things up, we 

use Nyst,rom approximation [18] to efficiently approximate the eigenvectors of the affinity 

matrix. 

Nystroin approximation is a sub-sampling technique that reduces the time complexity 

of affinity matrix construction and eigen-decomposition to O(1nlogn + 13), where 1 is the 

number of samples selected with 1 << n. We adopt a furthest point sampling scheme, which 

at  each step, chooses a sample which maximizes the minimum (approximated) geodesic 

distance from the new sample to the previously found samples; the first sample can be 

chosen randomly. We refer to this sampling strategy as "Max-Min" sampling. Our extensive 

experin~ents confirm that for the purpose of shape retrieval, only 10 to 20 samples, from 

meshes with thousands of vertices, are sufficient. Nystrom approximation and Max-Min 

sampling a.re explained in details in Appendix B. 
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Figure 4.6: A comparison between several correspondence algorithms, including ours. The 
percentage of correct correspondences is plotted. 

4.6 Experimental results 

4.6.1 Shape Correspondence Results 

To evaluate a mesh correspondence algorithm, we hand-pick a small number (17 to 20) 

of feature points on both of the meshes to be matched, where the number of vertices in 

these meshes varies between 100 to 300. The ground-truth correspondence between the 

features is determined by human. Now we compute a correspondence, only between feature 

points, using the algorithm and record the percentage of correct correspondences obtained. 

Figure 4.6 shows a comparison between our algorithm and other well-known schemes, on 

eight test. cases. The shapes to be matched in the test cases are shown in Figure 4.7; each 

pair of shapes exhibit some degree of non-rigid deformations. We now describe briefly the 

other schemes we have experimented with and our experimental setup. 

TPS-RPM [14] in spatial domain: This is one of the most successful non-rigid ICP 

algorithms. It combines thin-plate splines, soft assign, and deterministic annealing to 

achieve robust correspondence. But as we have shown in Figure 2.1, it is susceptible 

to poor initial alignment, such as a difference in rotation. 

To improve its performance, we manzlally and rigidly align the two shapes to be 

matched, attempting to neutralize any rotation or translation between them; this is 
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Airplanes 

Figure 4.7: Correspondence results obtained from our algorithm, shown with color plots. 

done for all the three spatial-domain schemes we have experimented with. However, 

bending in the shapes still cause the algorithm to perform poorly. 

Robust ICP [73] in spatial domain: This method is a recent variant of the original 

ICP [7] algorithm. It  uses a hierarchical approach to achieve robust registration of 3D 

point sets. We use it as a representative of the rigid iterative alignment schemes. 

Shape context [4, 51 in spatial domain: We use a trivial 3D extension of the 

original 2D shape context of Belongie et al. [5] as a representative correspondence 

scheme based on local shape descriptors. Shape context is one of the most successful 

local descriptors for image analysis [44]. 

0 Shapiro and Brady [57]: This is one of the early and best-known spectral point 

correspondence algorithms. It uses Lz distance to compute a best matching, using 

their greedy sign correction but with no eigenvector reordering or eigenvalue scaling 

of eigenvectors. 

Improved Shapiro and Brady: Only eigenvalue scaling is incorporated into the 

original algorithm. 

In each test case, k = 6 eigenvectors are used. Using more eigenvectors does not change 

the result due to eigenvalue scaling. Three out of the eight cases, Armadillo-Human, the 

Hands-1. and the Hands-3, have eigenvector switching occurring. In six of the eight cases, 

the greedy heuristic for eigenvector reordering and sign correction is successful; we shall 



CHAP.TER 4. 3D SHAPE CORRESPONDENCE AND RETRIEVAL 57 

provide a remark on this issue in the next Section. The results shown are obtained by the 

expensive exhaustive search. Hence all results are limited to meshes with a few hundred 

vertices. In all test cases, no more than 10 iterations of our non-rigid ICP procedure are 

needed. In several cases, the procedure converges in less than 5 iterations. In terms of 

results, as can be seen from Figure 4.6, our algorithm clearly outperforms the state-of-the- 

art correspondence schemes mentioned above. 

In Figure 4.7, we show some matching results obtained from our algorithm. The match- 

ing is shown by coloring the vertices of the meshes in an appropriate way. We first assign 

colors to the vertices of one of the two meshes, e.g., M2. Then the color for the ith vertex 

of mesh M I  is set to be the color of the ~ ( 2 ) ~ ~  vertex of M2, where C is the correspondence 

found by our algorithm. This way, a good correspondence will induce a coloring that is 

consist,ent on both meshes. To show the meaningfulness of the correspondence obtained, we 

carefully assign different colors to different parts of the mesh M2. Clearly, our algorithm 

matches bent shapes well, as well, it behaves robustly against moderate stretching in the 

shapes, e.g., the Armadillo vs. the human and the lion vs. the horse. 

Note t,hat in the Human:Human and Lion:Horse pairs, in Figure 4.7, which are of sym- 

metric shapes, the correspondence is symmetrically switched. Namely, the right hand of 

one human is matched to the left hand of the other, etc. Similarly, the right leg of the lion 

is mat,ched to the left leg of the horse, etc. This occurs since we define affinities based on 

geodesic distance, which is an intrinsic measure that cannot distinguish between symmetric 

points. As such, the left hand and the right hand of the human are equally good matches 

for the right hand of the other human. By chance, the Armadillo:Human, Cow:Lion, and 

Airplanes pairs return the right correspondences. 

One solution to the above symmetry problem would be to carefully select the right sign of 

the eigenvectors. For shapes where there is one plane of symmetry, there will be two possible 

sign configurations of the eigenvectors that would give the minimum correspondence cost. 

These can be detected and the right configuration can be picked by inspecting it visually. 

As the number of symmetry planes increase, more sign configurations will give the minimum 

correspondence cost. A more analytical solution would be to define affinities in a symmetry- 

distinguishing way. 

Figure 4.8 gives additional correspondence results obtained using our algorithm on nu- 

merous articulated shapes. In each of shape class, one per column, all the shapes are 
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Figure 4.8: Column 1: correspondence results for human shapes. Column 2: for animal 
shapes. Column 3: for hand shapes. Column 4: for bird shapes. 
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matched to a single reference shape (the first shape in each column of 8) and correspon- 

dence obtained is color coded in accordance with the colors on the reference shape. Apart 

from showing the effectiveness of our method, e.g., see the second column of Figure 4.8, 

these examples also reveal some of its limitations which we discuss below: 

1. Effect of intrinsic shape symmetry: As explained earlier, due to the intrinsic 

nature of the affinity matrix, our method is not guaranteed to match symmetric shapes 

correctly, as shown in Figure 4.8(1-c) and Figure 4.8(4-c) and (4-d). In all three 

cases, the sign configuration of the eigenvectors that gives the lowest correspondence 

cost leads to counterintuitive correspondence results. Our method succeeds in all the 

remaining cases in row 1, 2, and 4, although in each case, the next best eigenvector 

sign configuration, which has a correspondence cost extremely close to the lowest cost, 

would give a symmetrically flipped matching. This shows that the correspondence 

might very well have been symmetrically flipped in these cases too. Note that the 

correspondence may be symmetrically flipped, but it is nevertheless still consistent 

across the shape. 

2. Effect of topological changes: Since our method largely depends on geodesic dis- 

tances, topological changes can seriously harm the correspondence computation. This 

effect is visible in Figure 4.8(3-e) and (3-f), where the fingers of the hands are con- 

nected to the palm which would change the connectivity of the mesh, as well as the 

geodesic distances, drastically, resulting in unnatural correspondence results. Correct 

recovery of the correspondence between the fingers in this case appears to be a rather 

difficult problem, without some level of prior knowledge. 

3. Unreliable geodesic distances: Figure 4.8(4-e) shows a bird shape that is very 

similar to the reference Figure for this group, Figure 4.8(4-a). However, the correspon- 

dence obtained is incorrect. We suspect that this is mainly due to the unreliability of 

geodesic distances on the wings of the bird that contains many L'cuts". Hence, even 

though the shapes look similar in the spatial domain, their embeddings are rather 

different. 

4. Non-robustness of La cost for exhaustive search: Close inspection of Fig- 

ure 4.8(1-b) reveals that the correspondence obtained is inconsistent: the left arm 

is colored orange which means that the left leg must be colored blue which is not 
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Figure 4.9: Incorrect eigenvector ordering is obtained even after exhaustively reordering the 
eigenvectors for shapes in Figure 4.8(1-a) and (1-b). 

the case (note that this is different from the symmetry issue discussed above). This 

should not have been the case as the shapes are topologically sound and the geodesic 

distances are computed robustly. The problem becomes clear when we examine the 

result of the exhaustive reordering of eigenvectors. It turns out that for this shape, the 

exhaustive reordering does not give the right ordering of the eigenvectors, as shown 

in Figure 4.9. After further investigation we find that that the problem lies with the 

crude L2 cost measure used in arriving at the reordering. A more robust cost measure 

should be sought. 

Note that the examples shown in the figures do not reflect the performance of our method 

when applied to datasets containing outliers. In general, input meshes for graphics applica- 

tions are well defined and free of outliers. Hence, this is not a primary concern. However, 

spectral methods are generally believed to be non-robust to outliers, hence, appropriate 

measures axe required to apply such methods on contaminated datasets. We provide a brief 

analysis on this topic in Section 4.7. 

4.6.2 Shape Retrieval Results 

We now present a comparative study of two global shape descriptors, the spherical har- 

monics descriptor [34] (SHD) and the light field descriptor [13] (LFD), in the context of 

shape retrieval. Both of these descriptors have been shown to give excellent shape retrieval 

results in the Princeton shape benchmark [48]. In fact, the light field descriptor is the best 

among all the descriptors compared in [48]. We evaluate the performance of the descriptors 

when applied to the original meshes as compared to when they are applied to the spectral 

embeddings of the meshes. We use McGill's database of articulated 3D shape [63] for our 

experiments. We also present two very simple descriptors, easily obtained from the spectral 

embeddings that perform better than the other descriptors. 

The McGill articulated shape database contains 255 models in 10 categories: Ants, 
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Crabs. Hands, Humans, Octopuses, Pliers, Snakes, Spectacles, Spiders and Teddy-bears. 

There are 20 to 30 models in each category. Some shapes from the database are shown in 

Figure 4.5. We now give a brief explanation of the descriptors we compare. 

1. Light Field Descriptor (LFD) [13]: represents the model using histograms of 

2D images of the model captured from a number of positions, uniformly placed on a 

sphere. The distance between two models is the distance between the two descriptors 

minimized over all rotations between the two models, hence attaining robustness to 

rotat,ions. The main idea of this descriptor is to define shape similarity based on the 

visual similarity of the two shapes. 

2. Spherical Harmonics Descriptor (SHD) [34]: is a geometry based representation 

of the shape which is invariant to rotations. It  is obtained by recording the variation 

of the shape using spherical harmonic coefficients computed over concentric spherical 

shells. 

3. Spectral Descriptors: The following are two descriptors that can be easily obtained 

from the spectral embeddings. As shown by the experiments, these absolutely out- 

perform the LFD and SHD descriptors and are concise and easily obtainable from the 

spectral embeddings. As described below, the EVD descriptor consists of only twenty 

numbers and performs better than LFD and SHD. This shows the effectiveness of the 

affinity matrix and spectral embeddings in encoding shape information. 

(a) Eigenvalue Descriptor (EVD): Note that while the eigenvectors of the affinity 

matrix form the spectral embedding which is a normalized representation of the 

shape, the eigenvalues specify the variation of the shape along the axes defined by 

the corresponding eigenvectors. Hence, as a simple descriptor, we use the square 

root of the first twenty eigenvalues of the affinity matrix to describe a shape. 

Note that more than twenty eigenvalues can also be used. Infact, our experi- 

ments indicate that increasing the number of eigenvalues improves the results in 

the beginning, however, no noticeable improvements are obtained if the number 

is increased beyond twenty. Also, the eigenvalues tend to decrease very quickly, 

hence, only the largest eigenvalues are the ones that encode significant shape in- 

formation. Note that the eigenvalues are affected by the number of vertices in the 
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shape. Since, there are shapes with different number of vertices in the database, 

the eigenvalues cannot be used for shape conlparison as is. However, this is not 

an issue here, since we use eigenvalues obtained from Nystrom approximation, 

for which, the number of samples is the same for all models in the database. The 

distance between two meshes P and Q is given by the X2-distance between the 

square root of their first twenty eigenvalues: 

(b) Correspondence Cost  Descriptor  (CCD): The distance between two shapes 

in the scheme of CCD is derived from the correspondence between the vertices 

of the two shapes. Given the respective k-dimensional spectral embeddings of P 

and Q in the form of an n p  x k matrix Vp and an nQ x k matrix VQ, the CCD 

distance between the two shapes P and Q is given by: 

Here, Vp(p) and VQ(q) are the pth and the qth rows of Vp and VQ, respectively, p 

represents a vertex of P ,  and match() is some computed mapping of the vertices of 

P to the vertices of Q. This matching can be obtained using any correspondence 

algorithm: e.g., [30, 57, 111. We have chosen to compute correspondence using 

the spectral embeddings we have already obtained from the previous step. The 

correspondence algorithm used is a simple best matching based on Euclidean 

distance in the embedding space [57]. Specifically, 

The intuition behind defining such a similarity cost is that if two shapes are 

similar (though they may differ by a bending transformation), their spectral 

embeddings would be similar, hence the Euclidean distance between a point and 

its match will be small, resulting in a smaller value of DistccD(P, Q). However, 

note that the time complexity of finding the distance between two shape in the 

CCD scheme is 0(n2),  where n is the number of vertices. This is extremely slow 

and is not feasible to apply for comparing the query model over and over again 
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with all the models in the database. Hence, we use CCD in conjunction with 

EVD. We first use EVD to filter out all poor matches by thresholding. Only the 

top few matches obtained from EVD are further refined using CCD. 

We plot the precision-recall (PR) curves for the afore-mentioned descriptors when they 

are applied to the McGill database of articulated shapes, in Figure 4.10. In (a), the approx- 

imate geodesic distances are used to construct the affinities. Clearly, the descriptors show 

significant improvements when applied to bending invariant embeddings, compared to their 

spatial domain counterparts. In Figure 4.10(b), we show the performance of the same set of 

descript,ors, however, we construct embeddings based on Euclidean distances. Note that the 

performance of spectral descriptors degrades considerably. This is mainly because spectral 

descriptors are naive descriptors that rely on the ability of the affinity matrix to normalize 

any transformations between the shapes. Since Euclidean distance based affinity matrix 

does not normalize the shapes against bending and the database in question is particularly 

that of articulated shapes, such poor performance is expected. Figure 4.10(c) shows the per- 

formance of the descriptors where the affinities are calculated using an average of geodesic 

and Euclidean distances. For LFD and SHD, both geodesic affinities and combined affinities 

give considerable improvements. Whereas, Euclidean affinities show only minor improve- 

ments since they fail to  normalize the shapes against bending. EVD and CCD perform well 

only when the embeddings are bending normalized for the reason mentioned above. 

The precision-recall curves plotted in Figure 4.10 show analytical results. We now show 

some visual results which emphasize the need for bending invariant spectral embeddings for 

more effective retrieval of articulated shapes. These results are shown in Figure 4.11. The 

spectral enlbeddings used in these results are all constructed using geodesic distance based 

affinities. Figure 4.11(a) shows the results of retrieving an ant shape from the database. Note 

the poor performance of SHD even when the amount of bending is moderate. Figure 4.11(b) 

and (c) show results for querying the database with a human and a plier shape, respectively, 

that have a relatively larger amount of bending. As we can see, LFD performs rather poorly 

on the original shapes. 

It is quite evident from Figure 4.11 that shape descriptors applied to spectral embeddings 

show clear and consistent improvement over their spatial domain based counterparts. It is 

also interesting to note from Figure 4.11 that EVD, our simple shape descriptor based 

on eigenvalues, works the best. We have indeed observed that most, if not all, incorrect 
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Figure 4.10: Precision-recall plots for various global descriptors, derived from different dis- 
tance measures, when applied to the McGill database of articulated shapes [63]. 

retrieval results using EVD axe caused by having parts of a shape incorrectly connected in 

our construction of the structural graph. Recovering the correct shape information from 

a soup of triangles or sparsely and nonuniformly sampled points (which occur often in the 

shape databases) is not an easy problem, but any improvements in this regard will improve 

the performance of the EVD even further. Our current heuristic is quite primitive and we 

would like to look into this problem in our future work. 

In Figure 4.12, we show an image representations of the similarity matrix for all the 

shapes of the database. Here, a bright pixel represents greater similarity. The descriptors 

used are EVD and LFD on spectral embeddings. The diagonal structure of the image matrix 

shows that similar shapes have greater similarity value. Also, the matrix obtained from EVD 

has a more distinct diagonal structure than that obtained from LFD on embeddings. 
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Figure 4.11: Retrieval results using the McGill database of articulated 3D shapes [63l': First 
column in each row is the query shape. This is followed by the top ten matches retrieved 
using the shape descriptor as indicated. 
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LFD on spectral enlbeddings. 

Figure 4.12: Similarity matrix for shapes from the McGill database of articulated 3D 
shapes [63], computed using EVD (top) and LFD on spectral embeddings (bottom). 
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4.7 Gaussian Width and Robustness to Outliers 

One of the main drawbacks of spectral correspondence approaches reported in the related 

literature is their non-robustness against outliers in the data. The initial spectral corre- 

spondence method developed by Shapiro and Brady [57] and all subsequent modifications, 

for example, those of Hancock et al. [ l l ,  101 and Caelli et al. 191, do not provide any analy- 

sis of their approaches with regards to the outlier problem. This is a prime concern when 

dealing with image data for computer vision problems as the result of edge or feature de- 

tection on images typically produce a large number of spurious data points. However, for 

graphics applications, this is not an issue of concern, as the triangular meshes are already 

well defined and they usually specify a surface, hence, outliers (if any) can be detected and 

removed easily. Nevertheless, in this Section, we provide a brief description of the outlier 

problem in spectral embeddings and explain its relation to the Gaussian width a defined in 

equation 4.9. 

Note that for a given affinity matrix A, the spectral embedding ak defined in equation 4.2 

is such that aka: is the best rank-k approximation of A. That is, the dot product of the 

ith and the jth row of ak is an approximation to the i j th  entry of A. However, these rows 

are exactly the embedding coordinates of the ith and jth mesh vertices. Hence, it is clear 

that the affinities between the mesh vertices in the spatial domain are approximated by dot 

products of the embedded vertices in the spectral domain. Now, if an outlier is added to the 

mesh, the embedding will change so that the dot product between the original vertices and 

the newly added outlier approximate the corresponding affinities. Since, the dot product 

approximation is in a least-square sense, the embedding is fairly stable against a small 

number of outliers. However, as the number of outliers becomes large, the embedding can 

no longer be trusted. Nevertheless, this effect can be mitigated through appropriate choice 

of the Gaussian width. 

Gaussian width specifies the "effective neighborhood" of a vertex. As shown in Fig- 

ure 4.13(a), as the width is decreased, the Gaussian function tends to result in affinities 

closer to zero for large geodesic distances. This effect is seen in Figure 4.13(c), (d) and 

(e), where. as  the Gaussian width is decreased, the embedding tends to collapse. Note that 

if the Gaussian width is decreased to almost zero, the affinity matrix becomes an identity 

matrix. Hence, the k-dimensional embedding in that case will be k points on the corners 

of a unit k-hypercube and the rest of the points will collapse to the origin. For example 
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Figure 4.13: Effect of changing Gaussian width: (a) The Gaussian function; (b) A human 
mesh; (c) Embedding with a = 0.5xAvg; (d) Embedding with a = 1.0 x Avg; (e) Embedding 
with a = 1.5 x Avg. Here, Avg is the average geodesic distance between any two points on 
the mesh. 

the two arms and legs come closer to the torso as the vertices on the arms and the legs are 

no longer affected by the points far from them. Hence, the extent, on the mesh, to which 

a vertex has influence, is reduced. Clearly, if the collapsing effect increases, the embedding 

will self intersect making it difficult for the matching process to distinguish between two 

points. This gives us a constraint that the Gaussian width must be sufficiently large. 

Now we consider data with outliers. Note that the affinity matrix of a mesh with outliers 

can be written as: 

where. A is the affinity matrix of the mesh without outliers, 0 contains the affinities between 

the outlier points and Z contains the affinities between outliers and mesh vertices. If A' is 

of the form of a block diagonal matrix (i.e. Z contains all zeros), then the eigenvectors of A' 

are given by the eigenvectors of A padded with zeros. Hence, we can extract the embedding 

of the original mesh easily from that of the contaminated mesh. This, however, would be 

the ideal situation which is generally not possible as setting the matrix Z to zeros would 

require full detection of outliers. This is where the Gaussian width can be used to make 

the matrix Z close to being zeros. Obviously a small Gaussian width would be favored to 

achieve this. 

There is one more disadvantage of setting the Gaussian width small. With a small 
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Gaussian width, the affinity matrix becomes of the form: 

where, Ai are small matrices representing small effective neighborhoods of the mesh vertices. 

Note that, if the Gaussian width is small, the affinity matrix can always be transformed 

to the above form by permuting its rows and columns appropriately. This results in larger 

amount of eigenvector switching as the eigenvalues of Ai7s would be approximately the same. 

Experimental Results: It is clear that setting the Gaussian width to a value that provides 

a large effective neighborhood and is also robust to outliers would involve satisfymg two 

conflicting goals, as large neighborhood can be achieved using large Gaussian width and 

robustness to outliers requires small Gaussian width. Moreover, we have shown that the 

right choice of the width mitigates the effect of outliers which is one of the main drawbacks 

of spectral correspondence. Indeed the conflicting nature of this problem is confirmed by our 

experiments. We proposed in earlier Sections to set the Gaussian width to the maximum 

geodesic distance on the mesh. For this experiment, however, we instead use the average of 

all geodesic distances as it is more robust to outliers. In all other experiments in this thesis, 

we have used maximum geodesic distance, as outliers are not an issue. In Figure 4.14, we 

plot the correspondence error against change in Gaussian width. For every experiment, we 

compute a matching between a mesh and a copy of itself with a number of outliers added 

at randomly selected locations. To add an outlier, a face of the mesh is selected randomly, 

and a vertex is added to the centroid of the face (connected to the three vertices of the 

face) and then pulled off the surface of the mesh resulting in a "spike" on the surface. The 

number of outliers is varied from 10 to 50. The meshes themselves contain 200 vertices. 

Since the original mesh vertices are not moved, the correct matching is trivial to compute. 

The error is then defined as the total geodesic distance between the matching point found 

by the algorithm and the correct matching point. The plots clearly indicate that choice of 

Gaussian width is important when dealing with data that contains outliers, and that in such 

a situation, lowering the Gaussian width can result in more robust matching. However, a 

definitive rule to choose Gaussian width requires further study. 
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Figure 4.14: Correspondence error plots: in each plot, error is plotted against p, where, the 
Gaussian width is given by p x Avg, where, Avg is the average geodesic distance. First row 
shows the mesh used, then from top to down are the plots showing correspondence error for 
LO, 20 and 50 outliers, respectively. 



Chapter 5 

Conclusions and Future Work 

In this thesis, we have described methods for shape correspondence and retrieval. The 

main feat,ure of our methods is the use of geodesic distances to construct intrinsic shape 

representation, which is subsequently used for correspondence and retrieval. 

5.1 Geodesic Shape Context for 2D Shapes 

For the case of 2D shapes, we have presented a new shape descriptor. Our method is 

simple and intuitive to understand and implement and is efficient since the final matching 

is quickly extracted by reading off the dissimilarity matrix. We experimentally show that 

our descriptor is robust against noise and non-rigid shape deformations such as bending and 

moderat,e amounts of stretching. Possible future work includes, generalizing the descriptor 

for 3D shape correspondence and building a framework for 3D shape searching and retrieval 

based on this descriptor. Since, the descriptor depends on the ordering of the neighborhood 

of a point, this generalization is not obvious. Moreover, estimation of curvature on a 3D 

meshes is typically more non-robust than curvature estimation on 2D contours, hence, extra 

measures are required to ensure the robustness of the descriptor. 

Here. we also remark on the possible application of the spectral method to the corre- 

spondence of 2D contours. Note that the spectral method depends only on the definition 

of affinities between points. Clearly these affinities can be defined on 2D shapes as well. 

However, spectral embeddings based on geodesic affinities do not make much sense for 2D 

shapes. Note that any 2D contour can be obtained by performing arc-length preserving 

deformations on a circle. Since, the deformations are arc-length preserving, the geodesic 
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distance between two points on the contour will be preserved. Hence, the geodesic distance 

based spectral embedding of any contour will be same as that of a circle. Clearly such em- 

bedding cannot be used for correspondence or retrieval. Another option is to define affinities 

using Euclidean distances which is usually the case in most spectral correspondence a lge  

rithms. However, this is not robust for articulated shapes. Hence, we prefer the descriptor 

based approach for 2D shapes also because of the simplicity of the approach and the ease 

of computation of the descriptor. 

5.2 Spectral Correspondence for 3D Shapes 

For the case of 3D shapes, we have described a hybrid approach to finding a correspondence 

between the vertices of two 3D meshes. We first transform the meshes into the spectral 

domain, based on geodesic affinities, and then match the spectral embeddings after taking 

appropriate steps to ensure a consistent ordering and sign assignment of the eigenvectors. 

Eigen~alue scaling of the eigenvectors renders our algorithm robust against difference in 

mesh sizes and choice of the dimensionality of the embeddings. Our method does not need 

a pre-selected set of feature vertices and can be completely automated. It  is invariant against 

rigid transformations, uniform scaling, and shape bending. Experimentally, we find it to be 

robust against moderate stretching in the shapes as well, relying on thin-plate splines for 

non-rigid alignment in the spectral domain, and it outperforms well-known existing shape 

correspondence schemes. 

The time complexity for computing the spectral embeddings and the correspondence 

cost, pro\-ided that an ordering and signs of the eigenvectors have been determined, is 

0(n210g n), where n is the number of vertices in the larger mesh. Note that this is in- 

herent to the spectral approach, since the first step, which computes the pair-wise affini- 

ties, already requires 0 ( n 2  logn) time. However, we effectively reduce this complexity to 

O(ln log n) ,  where 1 is the number of samples chosen, by using sub-sampling techniques and 

Nystrom extrapolation [18] to obtain approximate spectral embeddings. To reduce the cost 

of extracting correspondences, where the naive best matching would require 0 (n2 )  time, we 

can take advantage of the accurate alignments that have already been obtained and apply 

spatial partitioning to speed up the search for correspondence pairs. 

One limitation of our current approach, in terms of computational cost, is its reliance 

on an exhaustive search to find a consistent eigenvector ordering and sign assignment. The 
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greedy reordering approach is fast but it does not always give the correct result. The 

pairwise flipping approach is also fast and works in almost all the cases in practice, however, 

it is more likely to give a locally minimum correspondence if the input meshes are not 

sufficiently similar. Moreover, the problem of sign flips is not solved if this heuristic is used. 

Analytically, the problem of finding a reordering and sign assignment which would lead to 

the best correspondence, e.g., according to the simple Lz distance, is as hard as the graph 

isomorphism problem. It would be interesting to look into fast approximation algorithms 

for this problem and adopt it for our purpose. 

Quality-wise, an important issue is related to the quality of the correspondence cost 

used in determining the eigenvector ordering and sign assignment. Currently, we are using 

Lz and in some rare cases as shown earlier, even the exhaustive search would return a poor 

eigenvector ordering or sign assignment. This shows that a better cost function is still 

required. In addition, other limitations of our current method, including the handling of 

shape s-vmmetry and non-manifold meshes, need to be addressed. 

Finally, an investigation into possible definitions of the point affinities that are robust, 

if not invariant, to stretching within perceptually salient parts of a shape is needed. This 

would offer an alternative to using non-rigid alignment in the spectral domain and avoid 

having to find a consistent eigenvector ordering or sign assignment. 

5.3 3D Shape Retrieval in Spectral Domain 

We have also shown that spectral embeddings can be used for shape-based retrieval of 3D 

models from a database. Our focus here, is on articulated shapes. We present a method 

of making conventional shape descriptors invariant to shape articulation, with the use of 

spectral embeddings derived from an appropriately defined affinity matrix. The affinity 

matrix encodes pair-wise distances between the data points and invariance to a particular 

type of transformation can be achieved through a judicious choice of a distance measure. 

When conventional shape descriptors, e.g., LFD and SHD, are applied to spectral embed- 

dings, derived from approximated geodesic distances, on the McGill database of articulated 

3D shapes, absolute improvements are obtained for shape retrieval. Robustness of affinity 

matrices is also shown, as minor improvements for the LFD and SHD descriptors can be 

achieved, on the same database, even with Euclidean distance based affinities, which are not 

invariant to bending. We have also presented a new global shape descriptor, EVD, based on 
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the eigenvalues of the affinity matrix and empirically shown that its performance is better 

than that of LFD and SHD. 

In general, spectral methods can be sensitive to the presence of outliers in the data. 

However, this issue is not of great concern for 3D model correspondence and retrieval, as 

the 3D models are mostly free of outliers. Moreover, since most models define a surface, 

outliers are easy to detect and remove. Nevertheless, robustness to outliers is necessary with 

respect to retrieval and recognition of more general form of data and we suspect that further 

study into appropriate definition of Gaussian width can help in achieving this robustness. 



Appendix A 

Thin Plate Splines 

The thin plate spline, pioneered by Bookstein [8]: is a generalization of cubic splines to 

higher dimensions and it contains affine transformation as a special case. With non-rigid 

transformations, there are infinitely many ways of transforming a point set into another. 

Thin plate splines are effective because of their snloothness constraints which discourage 

arbitrary mappings. In the limit of this snloothness constraint the thin plate spline model 

reduces to an &ne transformation model. The thin plate spline transformation functions 

fp : x E Rk + R: 1 5 p 5 k map a point set X = {XI,  22:. . . ,xn)  in k (say k = 2) 

dimensional space to another point set Y = {yl, y2,. . . , yn) by minimizing the following 

energy functionals: 

where X is the regularization (smoothing) parameter. Note that the correspondence between 

X and Y is assumed to be given. Hence, point yi = (yil, yi2:. . . , yik) is the matching point 

for xi. The unique set of fp's that minimize the above energy functionals can be written in 

mattrix form as: 

f (xi, d, W) = xi . d + 4(xi) . W, 

where zi is now in (k + 1)-dimensional homogeneous coordinates, d is a (k + 1) x (k + 1) 

f ine  transformation matrix, w is an n x (k + 1) warping coefficients matrix and @(xi) is a 

vector of length n such that q5j(xi) = -Ilxj - xill. 
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As shown in [6], the transformation (d, w) that minimizes the energy can be calculated 

by solving the following system: 

Here, K is the matrix (a  - XI) where, I is an identity matrix of appropriate size and 

is an ( n  x n )  matrix whose ith row is 4(xi ) ,  that is, aij = -Ilxj - xill. 

Using these transformation parameters, we transform the point set X to point set Y and 

then recompute the correspondence. This process is iterated until convergence as described 

in Section 4.3. 



Appendix B 

Nystrom Approximat ion 

The computation of spectral embeddings described in this thesis starts by building a matrix 

which encodes certain relationship, called affinities, between each pair of vertices in a mesh. 

This matrix is then eigendecomposed and its eigenvectors and eigenvalues are used to obtain 

the spectral embeddings. 

Computing spectral embeddings is time-consuming due to the quadratic complexity, in 

terms of the data size, of affinity computation and up to cubic-time complexity for eigenvalue 

decomposition. The affinity computation complexity increases to 0 ( n 2  logn) for our case 

since the affinities are based on geodesic distances. Nystrom method [18, 661 is therefore 

proposed to overcome this problem via sub-sampling and reconstruction. 

Consider a set of n points Z = X U  y, where X and y: X n y  = 0, of sizes 1 and m, 

respectively, give a partition of Z. Write the symmetric affinity matrix W E RnXn in block 

form: 

where A E IWlx1 and C E IWmX" are affinity matrices for points in X and y, respectively; B E 

IWIXm contains the cross-afinities between points in X and y. Without loss of generality, we 

designate the points in X as sample points. Let A = UAUT be the eigenvalue decomposition 

of A, bhen the eigenvectors of W can be approximated, using the Nystrom method [18], as 

This allows us to approximate the eigenvectors of W by only knowing the sampled sub-block 



[A B]. The overall complexity is thus reduced from 0(n3) ,  without sub-sampling, down to 

O(ln1ogn) + 0(13), where 1 << n,  in practice. 

The rows of U define the spectral embeddings of the original data points from 2. From 

(B.l), we see that the ith row of U ,  which is completely determined by A, gives the embedding 

Zi of point xi in X and the jth row of B ~ A - ~ B  is the embedding y j  of point yj in y. If we 

let j$ denote the dth component of j j j ,  then equation (B.l) can be rewritten as 

Namely. the embedding tjj is extrapolated using the coordinates of the Zi7s, weighted by the 

corresponding cross-affinities in B. 

With 0, we obtain an approximation W of the original affinity matrix W, 

Max-Min sampling scheme: The quality of Nystrom approximation depends on the 

samples selected over the mesh as suggested by our experiments [43]. We have found the 

following simple sampling scheme to give excellent results: The sample points are chosen 

one at  a time. At any time, the ith sample point is the mesh vertex that maximizes the 

minimum geodesic distance to the already chosen (i - 1) sample points. The first sample 

point is chosen as follows: select a random mesh vertex (vo), then find the vertex (vl) 

farthest (geodesically) to vo, then find vz farthest from vl. After several such iterations 

point vj is chosen to be the first sample. This process will most likely place the first sample 

close to an extremity of the mesh. 

The motivation behind such sampling scheme is to select sample points mutually far 

away from each other. Note that A- l l  gives the coefficients of the expansion of 1 in the 

space whose basis are the columns of A. Moreover, the diagonals of A are 1 and its other 

entries lie in (0, 1). It  is easy to show, in 2D, that the sum of these coefficients, l T ( ~ - ' 1 ) :  

is no larger than I. The maximal 1 is obtained when A's columns are the canonical basis of 

the Euclidean space. This is generalizable to arbitrary dimensions. In order for A's columns 

to be close to the canonical basis, the off-diagonal entries should be close to zero. Thus 

samples should be taken mutually far away from each other. More details and a comparison 

of various sampling schemes can be found in [43]. 
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