
RANGE IMAGE INTEGRATION AND HIERARCHICAL
DISTANCE MAPS FOR SENSOR-BASED COLLISION

DETECTION AND PATH PLANNING

Derek Jung

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F T H E REQUIREMENTS F O R T H E DEGREE O F

MASTER OF APPLIED SCIENCE

in the School

of

Engineering Science

@ Derek Jung 1997

SIMON FRASER UNIVERSITY

August 1997

All rights reserved. This work niav not bc

reprod~iced in whole or in part. by photocopy

or othvr mc,aiis. witholit the pcwnission of the alithor

National Library
of Canada

Bibliothbque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques

395 Wellington Street 395, we Welltngtm
OnawaON K l A W OnawaON K l A O N 4
Canada Canada

, our h e Vmre referenos

Our hle Nofre reference

The author has granted a non- L'auteur a accorde une licence non
exclusive licence allowing the exclusive pennettant a la
National Library of Canada to ~ i b l i o t h t ~ ~ . n & o n a l e du Canada de
reproduce, loan, distribute or sell reproduire, prtter, distribuer ou
copies of h s thesis in microform, vendre des copies de cette these sous
paper or electronic formats. la forme de microfiche/film, d e n

reproduction sur papier ou sur format
electronique.

The author retains ownershp of the L'auteur conserve la propriete du .
copyright in t h s thesis. Neither the droit d'auteur quj protege cette these.
thesis nor substantial extracts fiom it Ni la these ni des extraits substantiels
may he printed or o t h e m e de celle-ci ne doivent itre imprimes
reproduced without the author's ou autrement reproduits sans son
permiskion. autorisation.

Name:

APPROVAL

Date Approved:

Abstract

We investigate two topics toward efficient sensor-based collision detection and path

planning in real-world environments. The first topic deals with the gathering of real-

world da t a via integration of multiple-view laser range images, and the second topic

deals with the creation and use of hierarchical distance maps.

The integration of range images from multiple views generates three-dimensional

spatial occupancy (voxel) models. As opposed to CAD or geometric models, spatial

occupancy models are closer to raw data , thereby they can be easily derived from

raw range images. Furthermore, they can easily and accurately represent complex

real-world environments. Two integration methods are examined: direct mapping,

which accurately represents the surface shapes of objects; and peeling, which creates

a model that represents the space occupied by objects, in addition to unscanned ar-

eas. The resulting voxel array may then be used for collision detection. However,

for efficiency and speed, these voxel maps can be pre-processed into distance maps -

each free pixel is assigned a value equal t o the closest object, at the expense of signif-

icant memory requirements. We propose and implement a novel hierarchical distance

map for collision detection. It is based on the standard octree representation and is

called the octree distance map (ODM). The ODM represents distance information in

a hierarchical manner, yielding efficient memory use while maintaining low cost in

execution time. Two algorithms are presented, one for ODM creation and the other

for ODM-based collision detection.

Experiments with both range image integration and ODM's were promising; ODM's

111 p ~ r t l c ~ l l a r proved to be ail cxccllent compromise bctwccn using arravhascd distnncc

Irlal)\ ~lligll spred. high memory recpircmr-lnts) and rtglilar octrers (low spwti . low

Ilrc.lliorJ r o r j l ~ i ~ ~ ~ r i ~ n t i) for colliiion d~tcc t ion

Acknowledgements

This research has been supported by a grant from the Institute for Robotics and

Intelligent Systems (IRIS), a Federal Centre of Excellence in Canada.

I wish to thank Dr. Kamal Gupta, Simon Fraser University, for his time, support,

and patience. In addition, thanks to Dr. Shahram Payandeh of Simon Fraser Univer-

sity, for accepting a position on my Thesis Committee, and to Dr. Ze-Nian Li of SFU

Computing Science for accepting the position of Examiner. I must also thank Bill

Woods for all his time and effort in helping me with hardware and material matters,

Chao Cheng for keeping the computers up and running, and the people a t Techni-

cal Arts, Inc., for answering my range scanner questions. I also wish to thank Dr.

Joe Peters and Robert Hwang of the School of Computing Science a t Simon Fraser

University for their comments and suggestions.

Finally, thanks to all my family, friends, and fiancke for their support (and for not

letting me give up on this!).

Contents

... Abstract . 111

. Acknowledgements iv

... List of Tables viii

. List of Figures x

. 1 Overview 1

. 1.1 Generation of Workspace Models via Range Image Integration 2

. 1.2 Octree-Based Distance Map Representation for Path Planning 2

. 1.3 Contributions of Thesis 3

I Spatial Occupancy Recovery by the Integration of Range
Images 4

. 2 Introduction 5

. 3 Background 7

3.1 Range Scanning . 7

. 3.2 Previous Work 9

. 4 Range Image Integration 16

. 4.1 Descript. ion of System Clornponent. s 16

. 4.2 R.clat.ioiis of Systci11 Transfi)rrns 18

4 .2 .1 Yot.iit.io11 . 15

. 4.2.2 Calibration of the Laser Scanner 19

. 4.2.3 Relating the PUMA to the Scanner 20

. 4.3 Image Integration Methods 22

. 4.3.1 Overview 22

. 4.3.2 Direct Mapping 23

. 4.3.3 Peeling 25

4.4 Experiments . 27

I1 Hierarchical Octree-Based Distance Map Representa-
tion for Path Planning 33

5 I n t r o d u c t i o n . 34

. 6 B a c k g r o u n d 38

. 6.1 Previous work 38

6.2 Octrees . 40

6.3 Distance . 44

. 7 I m p l e m e n t a t i o n of O c t r e e D i s t a n c e M a p s 45

. 7.1 Motivational Factors in ODM Design 45

. 7.2 Creation of Octree Distance Maps 46

. 7.3 Collision Detection Using an ODM 53

8 E x p e r i m e n t s . 59

I11 Conclusions 64

. 9 Conc lus ion and Future W o r k 65

9.1 Future Work . 67

. Refe rences 68

. A R a n g e S c a n n e r S y s t e m Ca l ib ra t ion 72

. I Calil)~.;itio~l P I Y) (. ~ ~ ~ I I I . I J 72

A. l . l Capture of Multiple-View Range Images . 75

. A.2 Offline Integration of Range Images 75

. A.3 Display of integrated voxel map 77

. B Detailed ODM Creation Algorithm 78

. C Detailed ODM Collision Detection Algorithm 81

. D ODM Collision Detection for a Line Segment 83

vii

List of Tables

Memory usage for ODM, octree, and voxel-based distance map for five

workspaces. 61

Condition-check results of 3-D collision detection using ODM and oc-

tree. (1000 tests per avg.) . 62

Times (Sparc-10) for 3-D collision detection, using ODM and octree.

(1000 tests per avg.) . 62

Speed performance (Sparc-10) for 3-D collision detection with 4 robot

configurations (159 spheres) using ODM and octree. (Times in ms.) . . 63

. . .
V l l l

List of Figures

. 3.1 Example of a range image vs . a n intensity image 8

. 3.2 The spreader and director mirrors on the White scanner 9

. 3.3 Operation of the White scanner 10

. Block diagram of our multi-view range scanning system 16

. Mounting of the scanner on the PUMA wrist joint 18

. Notation used for designating geometric transforms 19

. The transforms used in the scanner system 20

. The peeling technique for range image integration 26

A schematic of the objects used in the experiments . Axes are used as

. reference for voxel map results only 28

. Range images used for integration 30

. Direct mapping results 31

. Peeling technique results 32

. 5.1 Example of a pixel-level Manhattan distance map 35

5.2 The memory-speed compromise achieved with the ODM. illustrated

. qualitatively 36

. 6.1 A 2-D image and corresponding quadtree 42

. 6.2 Octant numbering based on Morton ordering 43

7.1 A fundamental problem in hierarchical dist. ance representation 46

. 7.2 The. concept. s of near-dist. ancc anti far-distance 48

7.3 I l l~~s t ra t . ioii of rriaxirnurn bound for maxirriu~~i-NSI sear-1.11 49

. 7 . 1 1111istr;~tioris for thv OD31 c.rc.;lt.ioli e x a ~ r ~ p l c 52

7.5 The octree distance map structure constructed for Figure 6.1; records

under white nodes contain maximum and minimum NSI 53

7.6 Bound on maximum radius of robot; if robot is larger, a collision is

detected . 54

7.7 Illustrations for the ODM collision detection example 58

8.1 Results of 2-D experiments with da ta from Figure 2 for robot radii of

1. 2. and 3 voxels (a. b. and c respectively) . (x indicates collision) 59

8.2 Example of a workspace used for collision detection tests; robot spher-

ical model shown . 61

A. l PUMA-to-scanner calibration using the V.block . 74

Chapter 1

Overview

The use of detailed, real-world three-dimensional da ta for collision avoidance and

path planning in robotics is very desirable and thus a significant area of research.

While using CAD-type da ta to model real-world environments is currently an accept-

able approach, the growing number of applications for robotics expands the range of

possibilities for real-world situations such tha t modeling these situations using CAD

techniques can be very difficult. In addition, the power of computing hardware today

removes many limitations on the computational requirements for compiling sensed

da ta into a usable model.

Using real-world data, this thesis addresses these two issues of robot path plan-

ning: (1) generation of a usable, efficent model of the workspace and (2) algorithms

for performing collision detection with this model. In our view, a robot workspace

may contain any number of objects of all shapes and sizes. While specific situations

may limit the number and class of objects to provide clean, controlled environmerits

and thus simplify model generation and collision detection, we decided to investigate

the strategies that would provide a system usable in the widest range of environments

possible. For instance, the workspace model generation and collision detection algo-

rithms both use voxelixed space and octrees to model the environment. Thus, any

ohlect or set of ol~jects can he modeled with the only limiting fact01 1)c'ing thr c.lloit.~l

I csollltlo~l

Tl~i:, i (~ tiori providci 1)ric.f introdut tion to thew t ~ v o iwics. morkspxc 111oclc.l

p , t>~ i (, i <I t 1011 imd (ollivoi~ d v t c~ t I O ~ I 11ii1ig thtl IT orkspdc e 11iod~~l \)otli iiiutJi <ii P (115-

cllisc~l 111 ~ , I I grc.ater t l~ t a i l L I ~ C I 111 t h r ~ ~ s T h ~ v i i ~ c sepnrdtc.1~ ~) r r s ~ ~ i t e c l 111 t h ~ s

CHAPTER 1. OVERVIEW 2

thesis because, although both are important issues in robot path planning, the two

issues are complementary. The common link between the two is that a generated

workspace model would be passed to the collision detection algorithm in an actual-

ized system; this was, unfortunately, not achieved due to experimental delays in the

project. However, path planning algorithms using CAD environments have been de-

veloped a t SFU (Gupta and Zhu 1995) and can be adapted to use voxel maps such

as those generated using algorithms presented here. The thesis provides concrete

evidence that , given more sophisticated hardware and further development, a fully

integrated system using the concepts and algorithms described here is achievable.

Generation of Workspace Models via Range

Image Integration

The first part of this thesis discusses the investigation of the use of laser range images

in the generation of a workspace model. Specifically, multiple range images are taken

from sufficiently different points of view and integrated via geometric calculations into

a discrete "voxel map" or 3-d bitmap. The resulting voxel map, once all images are

integrated, is the workspace model. Note that the model is a volumetric model, not,

a CAD model, for reasons given above.

Chapter 2 provides a more detailed introduction on this subject, while Chapter

3 discusses previous work in this field and introduces range scanning. In Chapter 4,

the concepts behind range image integration, and in particular the integration system

used for this thesis, are presented as well as the algorithms investigated. Chapter 5

discusses the experiments performed and results obtained, and Chapter 6 presents the

conclusions for this part.

1.2 Octree-Based Distance Map Representation for

Path Planning

Part 2 o f t . 1 1 ~ t.licxis invostigat,t~s t hc' iss~io of ilsi~ig volu~r~(>tric. workspacc~ ~riociels for.

collisiori cic\tcc-tior~ arid])at11 p1;mnirlg. l'rcvious cffort,~ ill t,llcl usc o f ciistaricx> tn;ry)s

CHAPTER 1. OVERVIEW

for path planning (Latombe 1991) have shown promise, particularly in terms of per-

formance, but have been less than ideal in terms of efficiency in memory use. In

this thesis, an octree-based representation, the Octree Distance Map, is presented

and shown to be (1) usable for collision detection and (2) efficient in memory usage

and collision detection performance. This part of the thesis is based primarily on an

upcoming article in the Journal of Robotic Systems (Jung and Gupta 1997).

Chapter 7 introduces this topic in greater detail. Chapter 8 provides background

information about previous related work and about octree representations. Chapter 9

presents the Octree Distance Map and algorithms for its generation and use in collision

detection. Chapter 10 discusses the experiments performed using the Octree Distance

Map concept, and Chapter 11 presents the conclusions drawn from the experiments.

1.3 Contributions of Thesis

This thesis has contributed in terms of both function and theory. The theoreti-

cal contributions include the direct-mapping and peeling algorithms for range image

integration, the concept of the octree distance map (ODM), and algorithms for creat-

ing ODM's and using ODM's in sensor-based collision detection and path planning.

Functionally, the thesis has produced an experimental system for the acquisition and

integration of multiple-view range images. In addition, the above algorithms have

been implemented and experiments have been performed using these algorithms.

Part I

Spatial Occupancy Recovery by the

Integration of Range Images

Chapter 2

Introduction

Most robot path-planning programs in the past have operated on CAD models of robot

workcells, or on completely artificial environments (Latombe 1991). CAD models are

simple representations, but obtaining a CAD model of a real environment based on

sensed da t a is quite difficult, simply because the modeling of complicated real-world

objects using CAD primitives is a non-trivial problem. This problem, in fact, is the

basis of a great body of research. An alternative to using CAD models is to build a

spatzal occupancy model, tha t is, a model which maps the volumes or spaces occupied

by objects in the workcell. Such models are easier to obtain from sensed data than

CAD models. An example of a volumetric model is a binary voxel array. A voxel is

a elementary volume (3-d) element, analogous to a pixel in 2-d. By setting voxels in

obstacle or object space to ON and voxels in free space to OFF , the spatial occupancy

model of a robot workcell is obtained.

Acquiring information about a robot workspace can be accomplished in a number

of ways, using many different types of sensors: sonar, video cameras, force sensors,

and so on. One such type of sensor is the laser range scanner, which has the added

advantages of direct three-dimensional information capture and high accuracy. How-

ever, a single range image in most cases will not adequately describe a workspace, and

therefore wc must 11sc multiple scans and find a wav to merge or fuse the r~sul t ing

lrriagcl\ 11it o d 5iriglc rt~prcsc~ritatiori.

T l i ~ 1)roc c\ \ of ~ncq+ip, 3-D data contained in m~lltiplc range i11iagcs into olic 3-11

\ f o r kip1c.c. rnodrl l i o i in thc realm of c o ~ ~ i p u t c ~ r visiori I cw~arch Ho~wvc~l . most 3 D I I -

i1o11 r~\i>clrch has coricentrated on ohlect recognition aspect\ rather than workspace or

CHAPTER 2. INTRODUCTION

environment modeling. In object recognition, one is generally concerned with a single

object and matching it among models with geometric descriptions. For the workspace

modeling problem, however, the main concern is the actual spatial occupancy of each

object - and there may be multiple objects - in the workspace; the geometric prop-

erties of the objects are of interest only insofar as the effect of such properties on

spatial occupancy. In addition, we have a contrast in the ideologies behind the na-

ture of the acquired models: object recognition deals with a model of a single object,

whereas I am interested in a model of an entire environment - both occupied and

unoccupied spaces. Research in mobile robot navigation has dealt with mapping the

environment, but with different types of sensor systems, e.g., sonarlintensity images,

and in different situations, e.g., on a different spatial scale.

In this first part of the thesis, I provide an overview of previous related research

in image integration. I briefly present the concepts behind range imaging, and then

discuss the calibration processes required in our particular system for us to obtain the

proper transforms for range image integration. Next, I examine the actual problem

of range image integration. I propose an algorithm, called peeling, which fuses range

images from multiple views given the geometric transforms for those views. The result

of the algorithm is a spatial occupancy model (in the form of a voxel array, a voxel

being a single volume element) of the robot workcell; this model can then be input

to a path planner. I also take a look a t another method of range image integration,

direct mapping, which combines the images into a voxel array but provides only a

surface modelling of the objects in the workcell, not a spatial occupancy model. I

then describe the implementation of the prototype system and present results of the

experiments.

Chapter 3

Background

Range Scanning

Many methods for obtaining 3-d da ta exist. For instance, one can use sonar, which

involves emitting sound waves and timing their return to determine the distance of

the reflecting surface. Stereo systems are common, a n d exist in two varieties. The

first uses two or more intensity cameras separated by a known distance. All of the

cameras capture an image of the same object or scene a t the same time and, based

on the disparities between matched features in the multiple images and the geometry

of the cameras, the distance to points in the images may be determined. The second

variety of stereo vision is called photometric stereo. Photometric stereo involves a

single intensity camera, which captures images of a n object or scene from different

points of view (or images of a moving object). 3-d d a t a is again calculated using

disparity of matched features and geometry. Shape d a t a can also be approximated

from single intensity images through shape-from-shading - inferring 3-d data from

light intensity gradients.

The method used in this thesis, laser range scanning, produces 3-d da ta in the

form of r m g e im,o,ges. A range image is a 2-d image whose pixels have values relative

t'o thr range (or distance) between the scanned surface and some reference point.

Figure 3.1 pro~.ides an example of t,he inforrnat,ion contained in a rangc image.

L;isor ~.i\lig(' sca~i~i i l ig has a n111ril)er of adv;mtagc>s over t,hv ;11)ov0 ~rlc%hocls: First.

110 f~;rtllrc~ rllatc~liirig hctwcwi ir1iagc.s is rcqliirccl. as l o ~ i g as t l iv gcoriic~tric tr;liisf'orl~l;~-

t ioi~s I) (> ~ M W I I (la(.li scit~i~ler position arc. kllow~i. Second. only onr. camera is rrquirecl.

CHAPTER 3. BACKGROUND

range image
reference point

camera object

light intensity image range image

- darker pixels indicate less - darker pixels indicate shorter
illumination of surface distance to reference point

Figure 3.1: Example of a range image vs. an intensity image.

Third, no special lighting conditions are required, as long as the camera may discern

reflected laser light from ambient lighting. Fourth, colour differences on the surface of

an object do not affect accuracy (with certain exceptions: black, for example, tends

not to reflect light very well and thus our laser scanner has problems with black sur-

faces.). Finally, and most significantly, the range image obtained from the laser range

scanner contains explicit and highly accurate 3-d data - no further manipulation of

the image is required.

Two types of range scanners are most common: tzme-of-flzght scanners and light-

stripe scanners. Time-of-flight scanners use a principle similar to sonar: a pulse of

laser light is emitted and the time required for it to hit and be reflected by a surface

is measured. These scanners arc extremely accurate, but also extremely expensive.

Light-stripe or Whzte scanners are slightly less accurate and thus less expensive. Our

White scanner has two components: a laser source and a CCD camera. The laser

source has two mirrors: a spreader mirror, and a d ~ r e c t o r mirror (see Figure 3.2)

The spreadtr mirror oscillates quicklv, such that when laser beam contact5 it. the.

mirro~ rcfloct s tlic hcam at various angles, thus creating tlic light plane. Thls p h c is

r l l c ~ i ~) o ~ t ioiicd 111 t l i ~ director mirror t o f < ~ l l orito tllv 5111 f < ~ c ~ i to 1)c 1i i i+ ,~(l It'lic111

t] I (> hght l) l i ~ n ~ 111ti n \urfdc c , thcl rcslllt is d light itrllw 011 t l l ~ s~lrf~lc c l . ivliic h 15

CHAPTER 3. BACKGROUND 9

imaged by the CCD camera (see Figure 3.3). If there are variations in the height

of the surface, these variations will show up on the image as a displacement of the

light stripe. By previously measuring parameters such as the angles and heights of

the laser and camera from the surface (thus defining the geometrical situation), the

heights of the variations may be calculated from the image. An area scan of an entire

scene can be performed by having the director mirror gradually step the laser stripe

across the complete scene. The image of the stripe is passed from the CCD camera to

a frame grabber, which digitizes the image. T h e digitized values are then fed into a

computer, which calculates the range (distance) to each scanned point. Accuracy can

be improved by taking repeated scans for a given position and averaging the range
---C - ----.- ----..__ _ . _ __".________ " _ __ - - --

values associated with each point.

spindle oscillates spreader
rnlrror to create light plane laser

spreader
mirror

l~ght plane

spin,
step

dle steprotates dir
hght plane across

'ector to
scene

Figure 3.2: The spreader and director mirrors on the White scanner

Previous Work

A grcat deal of active rcsearch cxists in thc area of imagt integration UThiSc mr- own

contentration has been the integration of range images onlv. manv rtwarchers h a w

l n \ ~ ~ s t i g d t ~ c ~ fuilng rdngc dnd lntensitv data i l l the saiilr i~ste111, arid the l~ltcgrdtiori

of otl~(li i v 1) w o f (Ia t<~. \11(11 \oriCIr. ~ I O I I I 111iic11 3 (1 \ t 1 1 i i t 1 1 1 ~ nicl\ I J O ol)tCli~~o(l

For ~ r~s t ; t r i c~ \ . Asacia (-4sada 1990) corril)i~ies 110th in t cn i~ t~ and rang(' (IC] ta to h~iild

CHAPTER 3. BACKGROUND

laser and
mirrors

image captured by
camera

Figure 3.3: Operation of the White scanner.

environment maps for a mobile robot. The method in this paper uses a single r a s e -
image to produce a "height map" which represents the environment in 3-D. This

height map is then segmented and used with intensity da ta to identify and classify

the obstacles located in the image as artifical objects (objects with planar surfaces),

natural objects, or uncertain. Unfortunately, the approach is limited to mapping

convex, floor-mounted objects. Grandjean and Robert de Saint Vincent (Grandjean

et al. 1989) have proposed a method for fusing both range data from a laser range

scanner and photometric data from a stereo (intensity-image) system. Its results,

scene descriptions consisting of a set of planar faces, is more suited for polyhedral and

geometric modeling. The method uses "extended Kalman filtering" to fuse lower-level

primitives (points/pixels) into higher ones (3-D lines, planes) and for calibrating the

transformations between reference frames. Leonard and Moran (Leonard and Moran

1992) describe a geometric approach for the integration of sonar data in order to

reconstruct underwater 3-D scenes. They use an approximation of the geometrical

characteristics of high-frequency acoustic scattering to try to recover explicit geometric

surface descriptions of objects.

In range image integration research, one can easily identify two main areas of

concentration: (i) the production of a geometrical or CAD model, and (ii) the pro-

duction of a spatial occupancy model in the form of a voxel array or octree. (Octrees

,\rcl dismsscd in detail in the second part of this thcsis.) The largest 11od~- of work in

image intcgratioii, particularly in range image integration, deals with thc cx t rx t ion

of' georriet,rical models from fused images. These models are generally the11 used for

ol) . joc . t . rc>coguitio~i a.nd pattern rriatchirlg, or to build CAD rnodels of ol).jects. Thc~

CHAPTER 3. BACKGROUND 11

proposed usually involve some form of segmentation or feature extraction.

For example, Succi and others (Succi e t al. 1990) describe a system for extracting fea-

tures from a sequence of range data. The system performs volumetric integration on

the range data , and then detects planes and vertices from a "Polynet" 3-D superficial

representation built from the volumetric one. Stenstrom and Connolly (Stenstrom

and Connolly 1986) generate polyhedral wire frames from multiple range images by

extracting line segments from each view, and then transforming them into a global

frame. Herman (Herman 1985) produces descriptions of polyhedral objects from range

data, in the form of 3-D primitives (vertices, lines, planes, etc.) as well as topological

and geometric relationships. Yao and others (Yao, Podhorodeski, and Zuomin 1993)

present a multiple-view range image integration method based on partial geometric

modeling for each range image. A global model is updated after each partial model is

generated, with the final result being a complete 3-D geometric description of objects

in the scene, once all the range images have been considered. There are many other

such examples, as well as examples of raw range da t a processing for object recognition

(e.g., Lin and Wee (Lin and Wee 1985) apply a generalized Hough transform on range

data in order to recognize or locate 3-D objects).

Stenstrom and Connolly (Stenstrom and Connolly 1992) demonstrate a method for

producing solid 3-D models from multiple range or intensity images, or from digitized

line drawings. For each image, the algorithm first finds all pixels which form part

of an edge and groups these into chains. Next, 1-cycles, or sets of edges where each

endpoint is common to only two edges in the set, are located from the edges identified

in the image. Each 1-cycle defines a finite area in a plane. 1-cycles are then extruded

orthogonally in the view direction from the image plane's physical position to produce

cycle ~ i o l u m e s or 2-cycles. (2-cycles are defined as a set of faces where edges of faces

are incident on only two faces in the set, and cycle volumes are 2-cycles formed by

the extrusion of 1-cycles.) Cycle volumes from multiple views are then intersected

to obtain a bounding volume for the object in question. The end result is a closed

2-cvclc ohjcct rriodcl which fully bounds the object and approximates the ot~jcct ha.

a plCiliar \ohd

P r r l loui nor l\ ,it Sirnor1 FI aser lJnivcr\itv iiivolviiig the integration of Iaiigc iir i-

rtg+ i i (Io(1i11i i~nt~~1 111 (Xu 1992'1 Xu generates '1 3-D lmliridnry iepreseiltatiol~ or

h-rcp clcvript~on of a polvh~dral o b l i ~ t 1)v fusing mliltrplr \vnthrtic range iniagcs of

CHAPTER 3. BACKGROUND 12

the object, taken from multiple viewpoints. In his approach, the rigid-body transfor-

mations between each view are first determined through a matching algorithm which

identifies and relates trzple branch structures (structures containing an object's par-

tial ,geometric information, formed by three intersecting and noncoplanar edges) in

the range images. Once the relationships between the views are known and the fea-

tures (vertices, edges, and faces) in each view have been identified, the features are

transferred to a global reference frame based on the rigid-body transformations. Du-

plicate features are checked for and removed. The resulting geometrical b-rep model

is a list of vertices (and their x - y - z coordinates), a list of edges (with start and

end vertices and bordering faces), and a list of faces (with a list of vertices for each

face). These three lists provide a complete description of a polyhedral object.

The second main branch of range irnage integration research, the generation of

volumetric or spatial occupancy models (such as voxel maps or octrees) from multiple

range images, has also attracted attention from researchers. Some methods used

for range image integration have been derived from earlier efforts using intensity

images. An early example is (Martin and Aggarwal 1983), which discusses a method

for obtaining models of three-dimensional objects in multiple intensity images. In

each image, the occiudzng contour of the object is determined; the occluding contour

is the boundary in the image plane of the silhouette of the object, with the silhouette

generated by intensity-thresholding the image. Another way to conceptually define

the occluding contour is to look a t lines parallel to the line of sight or optical axis. By

taking only those lines which tangentially intersect the object surface and are parallel

to the view direction (e.g., the y axis), and intersect them with the plane perpendicular

to the view direction (in this case, the x - z plane), we obtain the occlilding contour

of the object. These lines, called contour generatzng lznes, form an infinite volume

which encloses the object. By intersecting the volumes generated for each view, the

bounding volume of the object may be obtained, and by using common raster lines

to segment each contour, this bounding volume is split into parallelograms. These

~)arallclogra~ns arc then themselves rasterized to obtain the lint segments whicli form

thr \.olilrnc scgrricrit rcpresentatlon i ~ s c d here

Pot rrlrsil (Potrric~sil 1987) discxsscs the gerlrr~tiori of o c t r (~ 111od~~ls of 3-D o l ~ j ~ c t s .
flo111 \~lliolle~ttc~\ 111tc~11sit~ imrlg(\s r i r (' e; i l) tu~~vl f101ii ni~ilt i l) l(~ \ l (' i v i T l i (w~ 111i~ig~i

;LIT tli(w thrc~sholdcti in ortlcr t o isolate thc objccts frorn the. background. ~ i i inq a

CHAPTER 3. BACKGROUND

threshold level determined from a histogram of the image, and thus obtain silhou-

ettes. (The assumption is made that high contrast exists between the objects and the

background.) T h 2 - D silhouettes are then converted into 3-D conic volumes: using
---- -- _ ___ . _- - ___I_-- --- - - .- .- - --

the 4x3 perspective transform matrix for the camera (computed by camera calibra-
i/ - d

&n), recursively project each octree node into the image plane (thereby producing a

2-D "image" of the octree node cube) and determine if the octree node image (actu-

ally, its bounding rectangle) falls within the silhouette regions earlier determined. (If

a node intersects both object and background regions, the eight leaf or child nodes of

the parent branch node are then recursively considered.) This intersection of the oc-

tree node image with the image regions involves converting the image into a quadtree.

The smallest quadtree node which encloses the octree node image is then recursively

intersected with the octree node image to determine the contents of the octree node

image. The result of this complete algorithm is a partial octree containing nodes

which make up the conic volumes produced by the silhouettes obtained for one par-

ticular view. All partial octrees are then intersected, along with a n octree designating

the unseen volumes, to determine the complete model octree. One should mention

that object concavities may not be represented using this algorithm.

Noborio and others (Noborio, Fukuda, and Arimoto 1988) present an algorithm

for producing an octree representation of a workspace from multiple intensity images.

This algorithm has a similar methodology as (Potmesil 1987) in making use of 3-D

conic volumes, or "polyhedral cones", defined by the polygonal contour of the object

image and the viewpoint for each view, and intersects these polyhedral cones using

volume intersection. (Although it is not mentioned in the paper, it must be assumed

that the perspective transform for each view is known in order to generate these

cones.) First, the algorithm classifies each octree child node of a parent node as being

inside, intersecting, or outside each polyhedral cone. This is accomplished by first

checking points on the cubic region defining the node against the view cone surfaces.

Inters~ct ing nodes are subdivided into their eight child nodes and reclassified. Next,

the algorithm intersects a11 of the view cones by recursively checking a11 "inside"

node:, (from the first step) to see if they lie inside, outside, or intersect tht. "commo~i

r(>gio~i" jt l lc> ~ml~ ln l c~ intc>rwcted i) ~ . all view C O H P S) . Sode \ ivl i ic l i :i1c1 %sid(>'' for

('\.(m poi~,lirclr a1 (0110 ;II r > t1irrrfo1.c. "insid(>" t l iv c o ~ m i o ~ i wgioli. t liosr. n 11 I (11 a1 c'

' loilt~ide'' for an\- orlc cone arc outsitlc the cornmoll rcgio~i Again. i~ltorsccti~lg c lodes

CHAPTER 3. BACKGROUND 14

are subdivided and reclassified. Once the octree has been completely classified versus

the common region, the nodes in the common region are output. Again, this algorithm

may lose object concavities and an assumption must be made that each view contains

all the objects or useful workspace.

Ahuja and Veenstra (Ahuja and Veenstra 1989) also generate octrees using sil-

houette images of an object. The images must be obtained from a subset of thirteen

pre-determined viewing directions, severely limiting flexibility. In their experiments,

they obtained simulated silhouette images of several geometric objects (generalized

cones). For each image, depending on from which viewpoint in the subset it was

viewed, a n octree is generated. All of the octrees are subsequently intersected to

produce a global octree.

Roth-Tabak and Jain (Roth-Tabak and Jain 1989) present an algorithm to gener-

ate a 3-D voxel-based environment model from simulated dense range images. Rather

than simple binary (on-off) voxels, this algorithm uses voxels with three states: Void

(off), Full (on), and Unknown (for voxels for which no meaningful information has yet

been acquired). Starting with a model of completely Unknown voxels, the algorithm

checks every non-void voxel within the scope of the sensor as follows:

1. The three-dimensional coordinates of each vertex for the voxel are found.

2. For each vertex, the pixel in the range image corresponding to the vertex's

position (found by view-transforming the vertex coordinates) is identified.

3. If the distance of any vertex is smaller than the range of any corresponding

range image pixel, the voxel is marked Void.

4. Otherwise, if the difference in range between the pixels corresponding to the

vert,ices is within a threshold, the voxel is marked Full.

Thus. for each voxel to be classified, the algorithm makes up to eight range compar-

isons (on(. for ~ x h l7ertex of the voxel), in additlion to view-transforming each vertex

and t,ilrcdiolding. Oln4ously. t,liis algorithm rcql1irc.s an cxtrcme ;trrio~lnt of proems-

irig fo~ . largv arra!.s of ~ m c l s . (The size of a r r w lisrtl in tht. papc'r is G3xG4xlG.) Tliv

wtisor~ f o r this is 11iat this 111ot,11od ass11rncs t11at t:ach ~ o x ~ l o c c ~ i p i w a firlit,() Y O ~ I I I I I V .

In co~ril)arison, most algorithms, including the t,wo preseritcd i r l this thcsis. xislunr.

CHAPTER 3. BACKGROUND 15

that each voxel is a single point in space (that point in space being the centroid of

the voxel) and thus requires only a single range comparison to each reference point.

(As we see in Chapter 4.3, the direct mapping method has one reference point, while

the peeling method has two.)

Sharma and Scrivener's work (Sharma and Scrivener 1990) is very pertinent to

my research. This paper discusses an approach for constructing 3-D object models

using video (intensity) images from a scene (although no actual images are used for

the paper). From these images, their approach involves deriving so-called "2;-D

sketches". (They do not actually derive these images, but rather assume tha t such

sketches can be accurately derived from images and obtain simulated 2;-D sketches by

creating a 3-D mathematical model of the geometry of objects in a scene.) The 2;-D

sketch is considered as an image with depth information for every pixel in the image

- essentially, a completely-dense range image derived from a video or intensity image.

With multiple 2;-D sketches from different points of view, they introduce their 3-D

model construction scheme - a "chipping" process which removes unwanted pieces

from a block of voxels. The process sounds very similar to the "peeling" algorithm

we propose, although without an explicit description of their process in the paper,

comparison is difficult. However, we may compare topic areas: our project involves

actual range data , rather than simulated 2;-D sketches, and therefore must take into

account the real-world aspects of the scanning system, e.g., separated camera and

light source; we also use a linear octree to represent our data , thereby producing a

more memory-efficient model; our project is application-oriented, its results required

to be suited to path-planning, and thus is more concerned with modeling environments

than objects.

Chapter 4

Range Image Integration

4.1 Description of System Components

The prototype system used for multiview range scanning and range image integration

consists of four main components (see Figure 4.1):

range scanner

robot

image capture computer

image integration computer

image capture
a a a a 'Om 1 (X36 &,?ith

(laser and wdeo d~git~zer
CCD camera) and Technical
w I Arts software) I

scanner I
mounted on I

robot 1 I processed
range Images *

PUMA 560 robot poslt~on image integration
robot and transforms computer

UniMate). (Sun workstation

controller with integration
software)

Thv r a ~ i g ~ s (. ; I T ~ I ~ P ~ is 21 T~(. I i~i ica l A r t s Corporation IOOAT Wllit ,~ sc~ar inr~r . Thc~
- - . -. - -. . -..

--__I

.~('dllll(' l~ i t ~ (~ 1 f ' !l:l.q till.('(' ~ 1 1 ~) ~ ~ 0 1 ~ 1 ~ ~ 0 ~ 1 ~ ~ 1 1 ~ ~ ~ 21 !il~('l' sollrc(>. CAUi('r:I. iill(1 A (iirfl(,to~- i~ io(j -

CHAPTER 4. RANGE IMAGE INTEGRATION

10mW. This laser is admittedly somewhat more powerful than is required for my pur-
L... -
poses, although the extra power may be useful in later extensions of this work - for

instance, the scanning and modeling of larger workspaces. Spreader and director mir-

rors have been attached to the laser source to allow for area scanning (see Section 3.1).

The second subcomponent of the scanner, the camera, is a Sony_C-75 CCD camera
---. _

with a Schneider lOmm lens. The camera is especially sensitive to the laser light,

thus capturing the image of the laser line intersecting objects in the workspace and

transmitting the image to the image capture computer. The third subcomponent, the

director module, contains the power supply for the laser and circuitry for control of - -
the director mirror. The absolute accuracy of this scanner when properly calibrated

is better than 1 part in 1000, or 0.1%. The accuracy of scanning and calibration is
.----

increased by taking multiple scans for each position of the laser line and averaging

the range values obtained. Five scans are averaged for each laser line position during

calibration, while fifty are averaged during scanning.

In order to use the scanner from multiple views, the scanner is mounted on a

PUMA 560 robot, the second major component in the system. The scanner is mounted

on a beam attached to the wrist joint of the PUMA (see Figure 4.2). Four degrees of

freedom are available for movement of the scanner: the waist, shoulder, elbow, and

one wrist joint. Programs and commands for controlling the PUMA are entered on a n

SGI workstation, which sends the appropriate signals to a separate PUMA controller.

The PUMA may also be controlled by issuing commands on a teach pendant. From

testing, PUMA positioning is accurate to approximately III lmm.

The image capture computer, the third major component of the system, is a n

80386-based P C with a digitizer - .- ----- board for image capture. A second -. interface board --

in the computer controls the spreader mirror. Software on this computer operates - - -

the scanner, performs calibration, and calculates range values for the data points

obtained with the digitizer. The scanned range images are stored in binary files on

the computer's hard drive. //
The binary range image files are then converted into ASCII dat+for use by the

image integration computer, the fourth major component. The image integration

routines are written for Sun workstations; however, one may remotely connect to

a Sun through the SGI workstation which controls the PUMA. Because the image

capture P C and the SGI workstation are currently separate, the ASCII range data

CHAPTER 4. RANGE IMAGE INTEGRATION

urn support beams

Figure 4.2: Mounting of the scanner on the PUMA wrist joint.

must be ported to the workstation by floppy disk. In the future, however, the two

computers may be connected by an interface such tha t the range scanner may be

controlled on the SGI and range data may be directed fed into the SGI.

4.2 Relations of System Transforms

4.2.1 Notation

This section describes the relationships of the various geometric transforms between

different components of the range scanning and image integration system and different

positions of the scanner and PUMA. The notation used in this thesis for geometric

transforms is as follows: Assume we have a base reference frame, P (see Figure 4.3).

If we wish to express the transform to obtain a second frame S relative to P, the
P

notation would be:

Additionally, a point X may be expressed relative to frame S with the following
S

notation: X. We may then obtain the coordinates of point X expressed with respect
P P S

to the base reference frame P: X = T X
S

CHAPTER 4. RANGE IMAGE INTEGRATION

Figure 4.3: Notation used for designating geometric transforms.

4.2.2 Calibration of the Laser Scanner

In relating the transforms of the system, we must consider two separate issues: cal-

ibrating the laser scanner, and relating the PUMA to the scanner. Calibrating the

laser scanner allows us to obtain accurate range measurements in the range images.

As we shall see later, scanner calibration need only be performed once for a given set

of multiple view range images, provided the positions of the laser and camera are not

changed with respect to each other.

The laser scanner involves three separate components: the laser unit, the CCD

camera, and the calibration gauge supplied by Technical Arts. When these three

components are properly aligned and certain parameters (laser angle, camera angle,

laser height, camera height, and gauge dimensions) entered into the control program,

a calibration routine is executed. Briefly, the routine analyzes the image of the laser --- - - -

line on the calibration gauge and, based on the parameters entered and the expected
" ---L

-/ -- - - --
shape of the calibration gauge, fixes the location of the range image reference frame

_. _ _ _- _.--- - - -
(which we shall call Go. As illustrated in Figure 4.4, the Go frame is fixed on a

corner of the gauge (when the edge of the gauge is lined up with the first scan line);

the z-axis is vertical, the y-axis is along the direction of the scan line, and the z-

axis perpendicular to the scan line. As the scan line is stepped in the x-direction,

the calibration routine uses the shape of the image to determine the correct (x, y, z)

coordinates for each step.

CHAPTER 4. RANGE IMAGE INTEGRATION

Figure 4.4: The transforms used in the scanner system.

4.2.3 Relating the PUMA to the Scanner

We can change our view by changing the position of the PUMA arm, and a t each

new position, we can obtain the transformation a t that position from the PUMA

controller. This transformation consists of the X, Y, and Z coordinates and the 3

rotational components of a tool reference point. These coordinates and rotations

are with respect to the PUMA'S base reference frame, which we'll call P. Let's call
P

the tool transformation a t position i, T. Now, let's say the transformation a t the
Si

P

initial position, where the laser scanner is calibrated, is T. In other words, a t the
so

P
transformation T, the image exists in the base frame G o . However, we also need

so
to establish relationship between the PUMA position and image space in order to

locate the range image information with respect to the PUMA. This is the second

issue in relating system transforms - linking PUMA to the physical space that has

been related to the image space by laser scanner calibration, and in so doing, linking

PUMA to the image space.

To accomplish this, we have considered a number of alternatives. A rough estimate

should be attainable by manually measuring the translation and orientation difference

of the point on the scanner calibration gauge corresponding to the origin of G o , with

respect to the base of PUMA, where the base frame of PUMA, P, resides. This

C H A P T E R 4. R A N G E IMAGE INTEGRATION 2 1

locates Go in the global reference frame that is located a t the base of the Puma,

and so links image space to the global frame. Another more accurate method would

involve measuring the relationship between a number of separate points on the gauge,

obtaining the relationships by touching them with the PUMA moving a pointer of

known translation from the tool transformation reference point and doing an error-fit

to determine the best transformation to the origin of G o . Let's assume that , through
P

one of these methods, we obtain the relationship of P to Go, which we'll call T.
G 0

A point in frame Go can be expressed in terms of the frame P by transforming it by
P Go

T. Thus, for a point X in the space defined by Go,
G 0

P Go P
T X = X

G 0

P
where X is the point X expressed in the P frame.

We should next mention how these relationships are used for integrating multiple

views. We obtain a second view by moving the PUMA to a position S1, with trans-
P

formation T. The second range image we obtain would be in a new image space, s 1
with frame G I . In order to relate the image points in G1 back to the Go frame, we

Go
must find the correct transformation G I T . If we look a t Figure 4.4, we see tha t this

transform can be obtained by following the transform path

Note tha t with the scanner a t S1 using the same scanner calibration as that for

the scanner at So, the geometry between the scanner position, i.e., S i , and the image

frame Gi must remain constant. In other words,

Thus,

Go
We can express this in terms of measurable transforms. T is directly measurable

P
(see Appendix A), while T is provided by the PUMA controller. The relationship

s1

CHAPTER 4. RANGE IMAGE INTEGRATION 2 2

s o
T can be obtained from the transformation for So from PUMA and the measured

G 0
relationship between P and Go:

So, in terms of measurable transforms,

Go G 1

Using T then, we can relate a point X' in the image frame G I into the
c. - 1

Go P
corresponding point X' in the image frame Go, and finally into point X ' in the

PUMA base frame P:

This system is expressed pictorially in Figure 4.4. (Note tha t the X and Y axes on

the scanner calibration gauge frame G o have been swapped from the X and Y axes

used by the scanner in order to maintain consistency in orientation with the PUMA

P frame.)
P

Because we have the relationship of P to Go, i.e., T, we can relate images in GI
G 0

(and images in subsequent views in image frames G i) to the global reference frame
G 0

P, simply by transforming images in Gi back to Go by calculating T for each Gi.
Gi

4.3 Image Integration Methods

4.3.1 Overview

A number of factors characterize the range image integration problem presented in

this thesis:

CHAPTER 4. RANGE IMAGE INTEGRATION 2 3

1 . Transform availability: The geometric transforms between each view (or

between each view and the base reference frame) are available, thus providing a

simpler problem (and more accurate solution) than if transforms needed to be

derived based on the sensed range data .

2. Voxel-map integration: The range images are integrated directly into a voxel

map, unlike some approaches which segment range images in order to obtain a

geometric model.

3 . Two-component scanner: As explained earlier, our scanner is a two-component

system, with each component in a separate location. Many other range scanners

have both components a t the same or nearly the same location. This factor is

particularly important when the peeling algorithm is discussed later.

4. Path planner suitability: The prime focus of the range image integration

project is the production of a model suitable for use by a path planner. Because

the path planner does not care about the geometric properties or finer details

of the objects in the workspace, we need not have an exact representation of

each object; merely their spatial occupancy (i.e., size and location in space)

need be accurate. However, the objects should be represented as "filled-in" or

solid volumes rather than surface shells, in order to avoid non-collision positions

within objects. In addition, unscanned areas must be treated as obstacles:

without knowledge of the contents of these areas, the planner should avoid

them.

With these factors in mind, two separate integration algorithms were investigated:

(i) direct mapping and (ii) peeling. The two methods, which are explained in detail in

this chapter, differ in the way they interpret the range da ta in each image and in the

nature of the resulting integrated models produced by each method. As we shall see,

the peeling algorithm produces a model more suitable for a path planner, though the

direct mapping algorithm is useful for verification of correctness of the transforms.

4.3.2 Direct Mapping

The direct-mapping algorithm is so named because it maps pixels in range images

directly into our voxel map (3-d bitmap). In other words, if a pixel in a range image

CHAPTER. 4. RANGE IMAGE INTEGRATION 2 4

contains depth information, that depth information is used to determine the location

of one (and only one) voxel in the voxel map -- that voxel being on the surface of

an object or obstacle in the workspace. The direct mapping algorithm thus creates a

surface-map model of the workspace.

Below is a high-level algorithm for direct mapping (calculation of PUMA-to-image-

frame transforms was explained in the Calibration chapter):

Main routine: Direct-Map

Input:

array of images Image[]

number of images Num-Images
P

array of matrices Transform = PUMA-to-image-frame transform for each image (T) G i

Output: Voxel array representing workspace VoxArray.

1. Initialize all voxels in VoxArray to OFF

2. For n = I to N u m J m a g e s do:

(a) Search incrementally in x and y (relative to range image frame) in range image Image[n]

for a pixel with a valid range value (z)

(b) For each such pixel, do:

i. Let Vector = [x, y, z] be the range image pixel converted to a vector in the range

image frame

ii. Let PUMA-Vector = Transform[n] x Vector be the vector transformed into the

PUMA frame

iii. Locate the voxel in VoxArray corresponding to PUMA-Vector and set it t o ON

iv. Evaluate next pixel in Image[n] (go to 2a)

(c) When all pixels evaluated, go to next range image (go to 2)

In the voxel map, the direct mapping algorithm produces thin shells, a few voxels

thick, that represent surfaces scanned in the range images. By viewing the results of

direct mapping, the correctness of the "fitting" of the multiple-view range images can

be determined - if correct, one should be able to distinguish the objects that were

scanned. However, the objects are not represented in a solid fashion. The object

surfaces (if scanned) have representation in the voxel map as thin shells, but the

CHAPTER. 4. RANGE IMAGE INTEGRATION 2 5

interior of the objects are not represented. In addition, the areas that have not been

scanned in our range images (the "unknown" areas) are not mapped to the voxel

map; hence, these areas are considered to be empty space rather than as obstacle

areas to be avoided. These two drawbacks indicate that the direct mapping algorithm

is unsuitable for generating models for path planning.

4.3.3 Peeling

The peeling algorithm is an attempt to overcome the drawbacks of direct mapping.

The concept of peeling is similar to that of woodcarving: starting with a completely

filled voxel map (solid block of wood), range images are used to peel away voxels

known to be in free space (chip away wood), so that the remaining voxels represent

the workspace model. The underlying basis for the peeling algorithm is that each

range pixel (i.e., a range image pixel that has a range value) provides two pieces of

information: (i) the location of a point on an object's surface, and (ii) that points in

space between tha t surface point and the laser, and between the surface point and

the camera, are free: a scanned point corresponding to the range pixel must have

had the laser beam hit it and must have been seen by the camera. Therefore, by

starting with a completely voxel-filled workspace model and, for each scanned surface

point, removing voxels from the model along the vector from the surface point to

the laser, as well as the vector from the surface point to the camera, an accurate

workspace model is achieved (see Figure 4.5). The positions of both the camera and

the director mirror on the scanner must be measured relative to some known point

(e.g., the robot's tool center point). Note that range image pixels with no range value

(i.e., unscanned points) are not mapped to the voxel array; thus unscanned areas are

left unpeeled and treated as obstacle areas.

Below is a high-level algorithm for peeling:

CHAPTER 4. RANGE IMAGE INTEGRATION

voxels along
these spans
are "peeled"

peeling (removed)
direction # peeling

direction laser) ..."'b (towards
---sJ / \ &----- camera)

completely
voxel-filled)

Figure 4.5: The peeling technique for range image integration.

Main routine: Peel ing

Input:

0

0

0

0

array of images Image

number of images N u m J m a g e s
P

array of matrices T r a n s f o r m = PUMA-to-image frame transform for each image

locations of the laser LaserPos and camera C a m P o s with respect t o image frame

Output: Voxel array representing workspace V o x A r r a y .

1. Initialize all voxels in V o x A r r a y to ON

2. For n = 1 to N u m J m a g e s do:

(a) Let LaserPosT = T r a n s f o r m [n] x LaserPos be the transformed laser position relative

to PUMA frame

(b) Let C a m P o s T = T r a n s f o r m [n] x C a m P o s be the transformed camera position relative

to PUMA frame

(c) Search incrementally in x and y (relative to range image frame) in range image Image[n]

for a pixel with a valid range value (2)

(d) For each such pixel, do:

i. Let Vector = [x , y , z] be the range image pixel converted to a vector in the range

image frame

CHAPTER. 4. RANGE IMAGE INTEGRATION 27

ii. Let PUMA-Vector = Transform[n] x Vector be the vector transformed into the

PUMA frame

iii. Let LaserPeelDir = LaserPosT - PUMA-Vector be the peeling direction to-

wards the laser

iv. For all voxels between the endpoint of PUMA-Vector and LaserPosT in direction

LaserPeelDir:

A. Turn voxel OFF

v. Let CamPeelDir = CamPosT - PUMA-Vector be the peeling direction towards

the camera

vi. For all voxels between the endpoint of PUMA-Vector and CamPosT in direction

CamPeelDir:

A. Turn voxel OFF

vii. Evaluate next pixel in Image[n] (go to 2c)

(e) When all range pixels evaluated, go to next range image (go to 2)

The peeling technique is highly dependent on the choice of views of each scan: in

order to effectively remove "noise" voxels, the views must encompass as much of the

scene as possible. Hence, multiple scans of the same surface (from different points of

view) may be required in order to reduce noise and increase the effectiveness of this

algorithm (the direct-mapping algorithm requires only a single scan of a surface - with

data of reasonable density - in order to represent tha t surface). As the number of

scans is increased, processing time is likewise increased, as is memory usage. However,

the resulting voxel map is suitable for path-planning applications in that objects have

a solid representation and unknown areas are represented as obstacle space.

4.4 Experiments

For the experiments, a number of objects (shown pictorially in Figure 4.6) were placed

in the robot workcell and scanned from multiple views using the range scanner system

described earlier. The range images obtained are shown in Figure 4.7. Using software

on the Sun workstation platform, the range images were integrated using both the

direct-mapping and peeling algorithms; voxel map files were generated in both cases.

The voxel maps were viewed on an SGI workstation; screen snapshots were taken

for both the direct-mapping and peeling results and are shown in Figure 4.8 and

Figure 4.9 respectively. Each voxel map has been framed by a wire-frame cube to

C H A P T E R 4. RANGE IMAGE INTEGRATION 2 8

show, generally, the 3-d orientation of the voxel map. The dotted areas in each

snapshot indicate voxel-mapped areas, i.e., obstacle areas.

Figure 4.6: A schematic of the objects used in the experiments.
reference for voxel map results only.

Axes are used as

The results for direct mapping (Figure 4.8) show the correct shape and position

of the objects. However, as stated previously, the voxel maps generated by the direct

mapping algorithm are shell representations of the objects in the workcell. Such rep-

resentations may be useful in some circumstances, but if proper solid representations

are required, the raw results of direct mapping cannot be used. A possibility is to

solidify these shell representations using some sort of fill algorithm starting from their

center, but other problems arise, the most significant of which being that gaps in the

range da ta (due to occluded surfaces, unscanned surfaces, or surface properties which

prohibit or limit scanning) would cause such a fill algorithm to function incorrectly.

A much greater shortcoming of this technique, however, is that one cannot tell which

areas are unscanned simply by looking a t the voxel map. For a path planner, these

areas should be avoided (i.e., treated as obstacle, not as free space) because their con-

tents are unknown - these unscanned areas may contain objects which are unknown

to the planner.

The results for the peeling algorithm (Figure 4.5) show the two advantages of

CHAPTER 4. RANGE IMAGE INTEGRATION 2 9

this algorithm over direct mapping: that objects have a solid representation, and

that unscanned areas are mapped as obstacles. They also, however, show a possible

problem: that without a sufficient number of range scans of wide enough field of

view, large numbers of extraneous voxels are left in the voxel map, enough to obscure

the actual objects in some cases. (Of course, using 2-D images to depict a 3-D

environment - especially one being represented as individual voxels - results in even

greater obscurity.)

The advantages of peeling - tha t is, representation of object areas as solids and

representation of unscanned areas as obstacles - are extendable to situations where a

greater number of range images of wider range may be obtained and integrated using

more powerful hardware than was available for this thesis (and more readily available

today). Obviously, the resulting voxel maps for these situations would contain far

fewer extraneous voxels and thus higher definition of object areas (lower obscurity).

CHAPTER. 4. RANGE IMAGE INTEGRATION

Figure 4.7: Range images used for integration.

CHAPTER 4. RANGE IMAGE INTEGRATION

+x, -y cube planes closest to viewer

+x, +y cube planes closest to viewer

CHAPTER 4. RANGE IMAGE INTEGRATION

+y cube plane closest to viewer

+z cube plane closest to viewer

Part I1

Hierarchical Octree-Based Distance

Map Representat ion for Path

Planning

Chapter 5

Introduction

Dzstance maps (also known as distance transforms or distance fields) or their varia-

tions, such as potential fields, have been used in robotics for a variety of path planning

and collision-avoidance applications (Latombe 1991; Jarvis 1993). Computational

implementations of these distance maps invariably involve discretized or grid-based

representation of the domain over which the distance map is defined. Consider, for

instance, a discretized distance map tha t maps the (L1 or Manhattan) distance in

voxels from a particular voxel to the nearest obstacle. This distance map is repre-

sented in an array with each voxel containing an integer representing the distance

between it and the nearest obstacle voxel. An example of a 2-D pixel-level distance

map is shown in Figure 5.1. One of the many uses for such distance maps has been for

efficient collision-detection and path planning in static environments. For example,

assuming a spherical robot model (often used for mobile robots), collision checking

can be done very efficiently and easily if such a distance map has been pre-generated

for the workspace. It merely involves comparing the radius of the robot to the value

of the distance map a t the (x, y) location of the robot. Using spherical representa-

tions as in (del Pobil, Serna, and Llovet 1992) for the entire manipulator arm, this

hasic collision-detection computation can then be carried out for each sphere in the

rnaniplilator to computc the collision situation for t h ~ entire manipulator (Grecnspan

arid Ullrtnvk 1996). TIM sclirrric forms t11v core (ollisio~i d~t(1ctiori iwnpo~i(>r~t of

~),itli ~)l;lnricr d c ~ ~ l o p c d in (Yallg, Crllpt~, <11i(l G T C C I ~ S ~ ~ I I I

'4 I ~ I ~ I ~ I I (lrav l ~ c k of \lic11 (]is(r i > t i / d re1)rc~s~~11t~1tio11\. 11inwvrr. i \ thi> l i i r~o c ~ ~ r i o ~ l l ~ t

o f 1nt.morv rccjiiird to store it For insti tnc~, for d t l ~ r e ~ ~ - d i ~ i i ~ ~ l s i o ~ ~ a l space tneasllring

CHAPTER 5. INTRODUCTION

Obstacle pixels

Figure 5.1: Example of a pixel-level Manhattan distance map.

1000 units per side, and assuming each number in the distance map is a two-byte

integer, one would require 10003 x 2 = 2 gigabytes of memory. Larger spaces and/or

finer resolution, of course, increase this usage exponentially. In the image processing

field, a more memory-efficient method than a raw binary array is the octree da ta

structure' (Samet 1990a). The octree representation is a "binary" representation of

space, where the space is recursively subdivided into hierarchically represented cells as

nodes in a tree. The nodes are labeled white or black indicating if a node is completely

free or completely occupied, respectively. In effect, a single white or black node can

be substituted for a great number of binary array elements while requiring only a

compa,ratively tiny fraction of memory, hence the greater memory efficiency. A third

category, grey nodes, represent cells which are partially occupied. There is , however,

no di.stni,c~ inforrri~c~tion, c~ssociated with each, node of an, octree. Furtlictrrriore. alt,lioligli

octrers have been i l sed in robotics for collision detection ((Hayward 1986), (Arimoto,
-

'Co rn~ i io~ i ly callctl quadt,rees in 2-d and octrees in 3-(I. Becausc of the emphasis here or1 3-D
~liotlelirig m t l rrprescnt,ation. we s l~al l 11se the tr,rrn octrc2c i l l s i tua t io l~s \1'11ertt either 2-D autl 3-D
rc~l)rc~sr~it ;~tions may hr i~ ivo lwd .

CHAPTER 5 . INTRODUCTION 3 6

Noborio, Fukuda, and Noda 1988)), the essence of previous approaches is to detect if

a given point lies inside the black node of the environment octree. There is no known

previous attempt using octrees that incorporates the use of distance information i n the

collision detection process.

This part of the thesis proposes a novel hierarchical method for representing dis-

tance maps, called the Octree Distance Map or ODM. As the name indicates, the

ODM representation adapts and augments the conventional octree da ta structure in

order to represent distance maps in a hierarchical manner. The ODM representation

drastically reduces the expensive memory requirements associated with a voxel-array

based distance map - by more than an order of magnitude - with some trade-off

in collision-detection computations. Additionally, the approach presented here im-

proves substantially on the collision-detection performance of conventional octrees.

The results of this thesis illustrate the advantageous compromise achieved: although

an ODM requires slightly more memory than an unaugmented octree for the same

workspace (though still much less memory than a voxel-based distance map struc-

ture), the ODM provides a significant improvement in performance over a n octree for

collision detection. Figure 5.2 qualitatively illustrates this compromise.

High

Low

,-- Conventional octree

Low , H~gh

Memory Requirements

Figure 5.2: Thc rriernory-speed co~rrpro~riise achieved with t,he ODM. illustrated qllal-
i t ;I t , i \ . c x l ~ . .

CHAPTER 5 . INTRODUCTION 3 7

Two algorithms are presented here: (i) given a conventional octree that repre-

sents a given workspace, build an ODM that hierarchically represents the distance

from the obstacles, and (ii) given such an ODM, compute whether a spherical robot

is in collision with the obstacles if positioned a t a given point in workspace. The

ODM building process is off-line and is executed only once for a given workspace, pre-

computing the ODM for multiple collision detections. The ODM collision detection

process may be repeatedly performed, and thus is required to be efficient. In addition,

the robot radius size may vary between separate executions of the collision detection

algorithm, using the same ODM; we cannot assume a fixed radius length. Although

the main motivation has been collision detection, the algorithm can be easily modified

for determining distance between a robot and its environment.

Chapter 6

Background

6.1 Previous work

(Samet 1990a) discusses the issue of representing distance hierarchically and defines

a dzstance transform for quadtrees. This distance transform represents the shortest

distance from the center of each obstacle (black) node to a boundary between a black

node and a whzte node. An algorithm is given for computing the L, (Chessboard)

distance transform for a quadtree. Briefly, the algorithm searches the quadtree for

black nodes in top-down traversal. For each black node, its eight neighbours are

examined in order to determine the distance to the closest whzte piels to the black

node. (Shneier 1981) offers a similar distance transform for quadtrees (using the L1

distance), with the addition of storage of the minimum distance to a whzte pixel in

each of the four neighbour directions (north, south, east, and west).

Although the central issue of this thesis, that of representing distance hierarchi-

cally, is the same as in the above work, the main motivation was very different: that

of efficient image representation as opposed to collision detection. Therefore, there

are significant differences between the ODM representation and the above work. In

particular, thc usc of a single distance value for an octree node, while adequate for

imagp I c~prc~so~ltation, is inefficient for colli5ion detection (see Sectlon 7 1) For greater

t ollision detection efficiency. therefore. an ODhI associatci a minirn~im-rriax1111~11n d ~ s -

t ~ l i c c. I ~ t i g c u i t h cac 11 uih . r fc node of thc octrw B ~ ~ i l d ~ n g m ODM. (o t i w q u (~ ~ i t l ~ , 15

I I ~ O I P w a cli mt (> t i \ i w , ~ (1 l ivli(t mi(> (on\ulrlilig HOWCT (>I. ~t l (~ & t o morv ~ f f i (i (~ 1 i t

(o l l l i~on detection Additionallv, this &stance range is verv cornpactli rtyresenteti in

CHAPTER 6. BACKGROUND 3 9

the ODM. The ODM maps distances of free-space nodes, not obstacle nodes. Finally,

we prcsent efficient collision detection algorithms based on an ODM representation

of a static environment. A distinguishing feature of these algorithms is the use of

hierarchical distance information which, to the best of my knowledge, has not been

done before in collision detection algorithms based on octrees.

In other work, (Hayward 1986) outlines two approaches. The first approach as-

sumes a robot representation where each volumetric piece of the robot is represented

by a cylinder with a hemisphere on each end. An octree is duplicated for each rep-

resented robot cylinder and hemisphere, and obstacles are grown by the radii of the

component volumes. The robot is then represented with line segments, and each seg-

ment is recursively checked (by binary subdivision) for collision in the appropriate

octree. Obviously, this approach is extremely memory-intensive, requiring storage of

multiple octrees. Without growing multiple octrees, the 3-d models of each robot link

would need to be converted into octrees and subdivided. The second approach uses

only a single octree, but its methodology is less robust: the robot is represented as a

number of selected control points based on the robot's boundary surface representa-

tion, and each control point is located within the octree to determine if it is within

an obstacle (thus, collision). Questions arise as to the spacing and position of the

control points, and the number of such points, required in order to ensure proper ex-

ecution. In addition, if an object were to be completely within the robot's boundary

representation, the algorithm may not detect any interference between the object and

the control points.

(Arimoto, Noborio, Fukuda, and Noda 1988) has also used conventional octrees

for interference detection and path planning. The proposed approach to collision de-

tection is to subdivide the space containing robot links into octree nodes and evaluate

each node to determine if it contains obstacle regions, robot regions, or both. If the

node contains both, it is recursively subdivided until its components are classified to

be either completely inside or completely outside a robot, an obstacle, or both. A

collision rcsults if a node is in both the robot arid an obstacle. In effect. this approach

Ilitc'rsclc ts a 1 1 octree rrlo(le1 of the robot w t h a11 octree of t hc works pa^^. Thc main

tl~s~lcl\,intagc~ licrc. 15 tho high clcgrer of corriput~tiori i l i r o l d ~1 11(~w oc t l w 111uit 1) ~

I r1c ~ I I I I) I I ~ ocl foi P ~ C I I rlou rol~ot t onfigllratlorl.

A~lothcr rclatcd l) o d ~ , of work is (Nohorio. Xaniwa. and Arirnoto 1990) w111ch

CHAPTER 6. BACKGROUND 40

proposes a quadtree-based algorithm for path-planning for mobile robots. Cornpu-

tationally, collision detection is simplified by using a quadtree whose nodes are no

smaller than the size of the robot; any node containing any part of an obstacle is

considered black - in other words, grey nodes are eliminated from the quadtree. Thus,

after locating the node in which the robot is located, the robot is known to be in col-

lision if the robot is in a black node, and not in collision if it is in a white node. While

this approach to collision detection is simple and not computationally expensive, and

well-suited for its stated path-planning problem in 2-D, a number of drawbacks exist

for the use of this approach in collision detection. The greatest disadvantage is that

this approach is overly conservative. For instance, because a grey node is considered

black even if it contains a single obstacle pixel, a robot placed in close proximity to

the real obstacle will most likely be considered in collision even if the robot is not.

This problem would be amplified given a highly occupied workspace and/or a large

robot, when any free space would likely be within "black" nodes.

It should be noted, a t this point, tha t none of the references mentioned above

use distance in their collision detection processes. This observation further separates

these previous efforts from the work presented in this thesis, which makes significant

use of distance in collision detection.

More up-to-date work in this field includes (Bandi and Thalmann 1995), which

uses spatial subdivision to perform collision detection on animated rigid bodies, and

(Egbert and Winkler 1996), which uses vector fields for path planning.

Octrees

Of the many forms of representation for spatial data , octrees are one of the most

widely used (Samet 1990b). They provide much greater memory efficiency than raw

binary arrays as well as a simple structure and good operational flexibility. A conven-

tional tree stmcture is composed of a hierarchy of nodes A nodc. in tree-structlirc

tcrrill~iolog~r. i i a structlirc. which rcprcw~its a scction of spacc Tlic slzc of t l i<~t srt -

tion o f 5ph((> vallcs fro111 node to nodc within thv tree. from ~t11 elmlcrit of the fincbst

~ o i o l l l t 1011 (A p 1 1 t 1 111 2-D 01 U O L P ~ i11 3-D) to the critilc \l)atr' itielf, the f i l l t h (~ CI

~ioclt> is nwfl\ fro111 the. t ~ t ~ ' s root. the i r ~ i ~ ~ l l c ~ 15 it\ irctiori of ipacc Each ~ i o d ~ 111 ~i

coIir c ~ i t i o n ~ ~ l octrw is ~ I X P I I onc of thrcc ~ t a t e 5 to represent thc ipatial c.oritc>nt of that

CHAPTER 6. BACKGROUND 4 1

particular section of space: black indicates tha t the entire node is in obstacle space,

white indicates that the node is free space (free of obstacle), and grey indicates a node

with a mixture of free space and obstacle space.

Each node contains up to a certain number of pointers (four for quadtrees, eight

for octrees) to child nodes or subnodes, each of which representing a section of the

space represented by the original node. These subnodes may in turn have children,

who may have children, and so on, all the way to the bottom of the tree, where each

node corresponds to a unit spatial element (pixel or voxel). The number of children

for a particular node depends on the colour or state of the node. white and black

nodes have no children, while grey nodes have pointers to each of their black or grey

child nodes. Figure 6.1 provides a n example of the breakdown of a 2-D image into a

quadtree.

Location codes are a concept commonly associated with linear or pointer-less oc-

trees (Gargantini 1982; Samet 1990b) to identify a particular node in the octree. A

location code consists of a string of octal digits (or the equivalent in decimal). Each

digit provides information as to which branch, 0 to 7, of an octree to traverse a t each

level in order to locate the node. For example, the location code 35043 (or l86OI0)

allows us to locate the node by following branch 3 of the root, then branch 5 of the

node a t level 1 (level 0 being the root), then branch 0 of the node a t level 2, then

finally branch 4 of the node a t level 3.

Besides providing a convenient way of identifying octree nodes within a tree, lo-

cation codes also encode Cartesian-coordinate information, and thus are a way of

locating the Cartesian location of an octree node, and a way of finding the location

of a set of Cartesian coordinates in an octree. Assume we use a Morton ordering

of octants (see Figure 6.2) ' . Given an octal-digit location code, we first convert

each digit to its binary form, which is composed of three binary digits, b, by b,. By

forming a binary string of all the b, and converting back to decimal, we obtain the

z-coordinate. We likewise obtain the y- and x-coordinates. For example, we convert,

t,hc location code 350& to binary: 011 101 000 100. For the z-coortli~iatc, \tre h a w

t,hc following: 01012 = 5. For y , urc havc 10002 = 8, and for x , 11002 = 12. To obtain
--

' A Id-liantiecl coordinate systcm has Iwe~l implicitly assurried, with the z-axis pointing into the
pagr. .A t,rivial ~!iodificatio~i in the ordering with nodes 0, 1, 2 , and 3 forlnirig tlic Imck pla~itx a11d
11odt.s 4. 5, 6, arid 7 forming the front plane can bt. used to 1)c consistent wit,h a right-1i;~ndod
cwordiriatc system. with the z-axis pointirig out of the page.

CHAPTER 6. BACKGROUND

0 white node
black node

0 grey node

dJJo/Jdd d d b L\.\.\o
. . . . , , . , . , . , , . , , . , , , , .

numbering: 0 0 0 0 =
0 1 2 3

Figure 6.1: A 2-D image and corresponding quadtree.

a location code (and thus octree location) from (x, y , z) , the reverse process is used.

Despite the use of conventional octree structures in this thesis rather than linear

octrees in building and utilizing the ODM, location codes are used in three situations.

The first situation arises in ODM construction when we wish to locate all nodes of

I?\-cl L n7hic.h are a t a (nodal scparation) distance r from a given I L I ~ I ~ P node. In e f f~c t .

\vc wish t,o t-fet,ermine the level-L nodes forming tlic surfarc of a Mnnh,nttcm s p h e u :

of radius [T X S ~ Z C of It.\-c.1-L nodc). First. itssurric wc h a w thc location c o c l c ~ L C for

t l i v U I / I . I ~ (' ~iod(l I T - . (No t (' t h i ~ t LC' refers to tlitl voxel i11 T l r (;losest t o tlic origin o f

s p a c ~ . i . ~ . . (0. 0. O) , ass~irni~ig that olir spar^ is nori-negativ~. Thr voxel called LC is

CHAPTER 6. BACKGROUND

Figure 6.2: Octant numbering based on Morton ordering.

the nodal reference voxel of W . For the numbering scheme shown in Figure 6.2, the

nodal reference voxel is the leftmost, bottom-most, minimum-z voxel in W.) From

L C , we can then derive, as above, the Cartesian coordinates (xo, yo, 20) of the nodal

reference voxel of W. Let s = be the length of one side of a node a t level L.

Then if T is a level-L target node a t nodal distance r from W, its reference voxel is

a t (xn,yn,z ,) = (X ~ + Z S , ~ ~ + J S , Z ~ + ~ S) , and (I i / + I j / + I k 1) = r . Therefore, by

adding or subtracting increments of s to the coordinates of the reference voxel of node

W, we obtain the reference voxel of T. Conversion of the reference voxel's coordinates

to location code provides us the node T.

In the second situation, we are given the Cartesian coordinates of a robot for

collision detection purposes, and must determine the octree node in which the robot

is located. Here, the (x, y, z) coordinates are converted to binary, the binary digits

are interlaced to obtain octal-digit location code, and the location code IS used to

traverse the octree to the desired node.

The third situation arises when we wish to determine the nodal separation between

two nodes of level L given their location codes, LCI and LC2. First, a property of

locatiori codcs should be pointed out here for a node of level L < D , whcre D IS thc

clcpth of t l ~ t , o c t r e t . at]cast the lctst D L c,c tal tilgitk of the locatlo11 c.oclc' ~ ~ 1 1 1

y e r o This propertv is a result of the location of th r nodal reference point discusiccl

1 0 FOI I, - Ll - 1. lefc>r(>~lcp points will lle 111 lncl tmc.~l t~ of 2 dlong (' ~ 1 1 ~ X I S .

for 15 = D - 2 . tlic i r i c r c > r r i c > r i t 15 4, ctild i o on Thus, 111 ordci to dctcrrriiricl thc 1lodC11

CHAPTER 6. BACKGROUND 44

separation between two nodes, we merely drop the proper number of trailing zeros

(D - L) , find the two sets of Cartesian coordinates associated with the truncated

location codes, and take their difference. The nodal separation can then be found by

summing the differences in x, y, and z.

6.3 Distance

The distance function that maps a pair of points, p and q, into non-negative numbers is

denoted by d(p, q). The two common distance measures used in this part of the thesis

are the L1 (Manhattan) distance denoted by dM, and the L2 (Euclidean) distance,

denoted by dE. Unless Euclidean distance is specified, the Manhattan distance is

used throughout this part of the thesis. For completeness, the distance calculations

are shown here:

where p = p l , . . . ,p,, q = ql, . . . , q,, and n is the number of dimensions of space.

The distance d from a point p to a set X is d (p , X) = min,{d(p, q), q E X } . The

distance between two sets, X and Y , is d (X , Y) = min,{d(p, Y) , p E X}

Chapter 7

Implementation of Octree Distance

Maps

7.1 Motivational Factors in ODM Design

The main motivation for a hierarchical scheme to represent distance maps was to

lower the memory requirements; however, we also wished to have reasonable per-

formance in collision detection. Thus, we decided to augment the octree structure

with precomputed distance indicators in order to limit the amount of searching which

would otherwise be necessary with simply a standard octree. The distance indicators,

however, must not add significantly to the memory requirement.

A fundamental question is what would the distance indicator(s) represent, and

how they would be computed. A problem arzses when we attempt to assoczate a

dzstance-to-nearest-obstacle to an octree node whzch zs not at the lowest level o f the

tree (voxel level): the closest obstacle to that node m a y be dzflerent dependang on from

whzch locatzon wzthzn that node the measurement zs made.

An illustration of the problem in the collision detection context can be seen in

Figure 7 1 First. let us assume that we shall store only a single distance indicator

~ v ~ t h i n O ~ K I I whzte node 11- the IZanhattan distance to the closest tcirqet nodc. thdt

15. a grcy or black nodc at thr sarnc Icvel L as W , measured ln units of nodes of 1cvc.l

I,. 1dl11(~r thr l~i \oxel\ (\l(' (dl1 thii i ~ i d i c d t ~ l the no(hd sepnr(~t?o?~ 171dc~ or i 111

Figlire 7 1 , tlir 1 Ianhat ta i cliitancc. jrnt'asurcd In lt~vt~l-L nodes) from Itr t o t ~ ~ l g o t

CHAPTER 7. IMPLEMENTATION OF OCTREE DISTANCE MAPS 4 6

node TI is 1, while the Manhattan distance to T2 is 2, and thus the NSI of W would

be 1. In other words, we would be assuming that TI is "closer" than T2. Let's say

that our collision-detection scheme is such that only nodes with Manhattan distance

from W equal to 1 would be checked for collision with obstacles. Then T2 would

not be examined and the collision with the obstacle area within T2 (for the given

robot position and radius T) would not be detected. The detection algorithm would

therefore return a wrong result since no collision would be found with T I .

a robot here would be closer to
TI obstacle than T,

NSI = 2
But robot is
in collision!

NSI = 1
Robot is not

. . . in collision

I--* robot location .
obstacle area

Figure 7.1: A fundamental problem in hierarchical distance representation.

One simple way to avoid this problem is to use the NSI as a minimum search pa-

rameter. Starting with a Manhattan distance of NSI, the collision detection scheme

would search for obstacles a t the current distance and check for collisions until a

collision were detected or until a maximum limit were reached. The maximum limit

would be based on the node size of W and the robot radius length. Unfortunately,

putting the the complete onus of finding the maximum search parameter on the col-

lision detection algorithm (rather than on the algorithm to create the distance map

structure) would severely affect the performance during collision detection. Therefore,

we calculate minimum and maximum distance bounds during the creation phase and

store a minimum and a maximum NSI for each whzte node within the distancc map

structure: wc discuss these calculations in the next section.

Creation of Octree Distance Maps

l l i (~ 1)1opow(I o((~ / ~ L (L I I ((ruap (O D l I) IS ~ i ~ p ~ (w ~ i t ~ ~ 111 d data structuw \im11a1

to tliat of ;I co~ivcntiorial octrcc. The ODM noclc rccortl is identical to a n octrec 1ioc1c

CHAPTER 7. IMPLEMENTATION OF OCTREE DISTANCE MAPS 4 7

record except that , for white child nodes which would otherwise (in a conventional

octree) be represented as null pointers inside their parent grey nodes, the parent grey

node record also contains two numbers indicating the minimum and maximum search

parameters (NSI) for the white subnode; the maximum and minimum NSI are used

during collision detection.

The computation of the minimum and maximum NSI's occurs during the ODM

creation phase of our algorithm. Essentially, the algorithm searches outward from

the white node W , a t incrementally-increasing nodal distance, for obstacle nodes

a t the same level L as W . Two Euclidean distance measures, called near-distance

and far-distance, are then computed between W and the obstacle node 0 (see Fig-

ure 7.2). First, assume tha t the obstacle node is black. The near-distance is the

distance between the respective regions represented by the nodes W and 0, i.e.,

dE(W, 0) = min,,,{dE(w, o), w E W, o E 0) . Let { P O) indicate the set of points in

0 tha t correspond to the near-distance. To define far-distance, imagine tha t , for each

point w in W , the distance to any point o in 0 were calculated. The far-distance

is the maximum of these distances, i.e., max,,{dE(w, P O) , w E W) . In the collision

detection context, the near-distance is the upper bound on the robot radius such that ,

no matter where in W the robot is located, the robot cannot be in collision with the

obstacle node 0 . If the robot radius is smaller than the near-distance, it is guaranteed

not to be in collision with the obstacle node. The far-distance is a lower bound on

the radius such that , no matter where in W the robot is located,it is certain to be in

collision with 0 . If the robot radius is greater than the far-distance, then the robot is

guaranteed to be in collision with the obstacle node.

Obviously, more than one pair of points in W and 0 may give the same near-

distance or far-distance calculation result, but the distance values themselves are

unique. Furthermore, since the nodes in the octree have a simple geometric shape

(a cube)? the near- and far-distances are easily computed using bounding boxes sur-

rounding W and 0 , as shown in Figure 7.2. Also, note that if the obstacle node

is grey. thc near-distancc and far-c-listanct for that obstacle node arc the minimums

of t,l~c ricar-c1istanc:e and far-distarice c:alculat,ions fi)r each black sul)~~ocle of thr. g w ~ j

l O \ Y ~ l - T. 11Od f~ .

' rhr nc';ir.-(1ist;tnc.c ant1 far-c1istaiic.c' calc.ulatioiis iiw 11src1 to tlrter~rii~io if ; i r i ol)st;ic.lc>

11odc is zgn,orcj,t)lle An ohst,acle node O at level L is considered ignorahlc if t hc radiws

CHAPTER 7. IMPLEMENTATION OF OCTREE DISTANCE MAPS 48

target
ack nc

T
\

Figure 7.2: The concepts of near-distance and far-distance.

required for a robot in W to collide with 0 (i.e., the near-distance) is larger than the

radius required for certain collision with some previous obstacle (i.e., the minimum

far-distance). In other words, if this situation exists, a robot in W colliding with 0

will also undoubtedly collide with an obstacle that was previously found. Ignorable

nodes are determined in order to lower the maximum-NSI bound and thus reduce

time and computation requirements during collision detection. The maximum NSI

for W is the largest Manhattan distance (units being nodes a t the same level L as

W) for which there are non-ignorable obstacle nodes.

As illustrated in Figure 7.3, the absolute upper limit on NSI a t which a robot in

W may be in collision is (3 x DIM - 1). The rationale for this limit is as follows:

Node W is within a g r e y parent node; thus one of W's sibling nodes must be grey or

black. The largest possible distance between a robot in W and some obstacle voxel

in a sibling of W is the diagonal length of the parent of W. A robot in W with this

distance as its radius can may be in collision with nodes of nodal separation up to,

but not including, (3 x D I M) ; thus, (3 x D I M - 1) is the limit of our search for

t,hc maximllrn NSI. We could, of course, perform the search during collision det,cction

(having stored a rninirnurri NSI during ODM creation), proceeding outwards from thr.

~riini~riuni NSI for LC7. HOMY>VP~. hy ~ . o n d u ~ t , i n g tllr-' stxr(:h (Illring 01111 creatioli t>o

ol)tai~l I~otli ~ r i i l i i ~ r i l l r l i rrlasilrlllili NSI's. wc car1 c,l)taill hcttcr pr~rfor-~rl;l~lc-c' (1111-ilip,

c,ollisioli clotc1c.t,iorl.

As for thc memory rcytlirmients for st,ori~lg, the' rninimilrn and ~ n a x i ~ ~ i l l ~ n YSI.

CHAPTER 7. IMPLEMENTATION OF OCTREE DISTANCE MAPS

(Using 2-D example)

Because white node W is inside rey w parent. largest possible distance%etween
robot and obstacle in grey parent is r,,,.

possible robot poslt~on

Lill~lll 9 8 , ,i*ll*ll, lmaglne a robot ~n the bottom left-hand
I>I ti% corner of W wlth radlus rma, If we

examme outslde the parent of W, we
can see the nodes that can be In
coll~s~on

Of the shaded nodes, the one wlth the
$; greatest nodal separat~on from W IS

4'1 F 1 " the one labeled T,,, (NSI = 2 x DIM)
Tmax

Notice that nodes T I and T2 can also
be reached, but the node marked LIM
cannot be reached from W with radius
r,,,. The node marked LIM is at a
nodal separation from W of (3 x DIM).

Therefore, we must search all nodes
up to

Figure 7.3: Illustration of maximum bound for maximum-NSI search.

because NSI's are calculated for white child nodes of grey nodes only, minimum NSI's

will fall within the interval [I , 31, requiring only 2 bits per NSI (in the 3-D case; in

the 2-D case, minimum NSI will fall within the interval [O, 21). (The maximum NSI

will fall within the interval [I, 81 and thus will require 3 bits per NSI.)

To demonstrate the construction of a 2-D ODM structure, we present the following

example based on the binary image and quadtree in Figure 6.1. Our algorithm woilld

operate as follows (please refer to Figures 6.1 and 7.4):

1. We start a t the root of the tree and visit its four children in order. The leftmost

child (child 0) is grey; we let this child be our current node and examine its four

children. (Figure 6.1)

2 \YP arc now a t level 2 of the trcc. Let child O 1)c C u r r N o d ~ . C ~ ~ r r ~ V o c h is I L ~ I ~ C :

t h r r~ fo rc . IW must find its 1ninimll1ii and rnaxirnu~r~ NSI (Figure G 1)

3. \ i 7 v scn~c,li lcvcl-2 nodcs starting a t a nodal sepa~at ion of 1 arid (o~ i t i~ i l i i~ ig t o

CHAPTER 7. IMPLEMENTATION OF OCTREE DISTANCE MAPS 5 0

the NSI limit of (3 x DIM - 1) = 5. There are no grey or black nodes a t

NSI = 1, so we increment and search a t NSI = 2. (Figure 6.1)

4. There are two level-2 target nodes a t NSI = 2; thus the minimum NSI for

CurrNode is 2. We shall examine the node shown in Figure 7.4(a) first. Let

this node be Target .

5. We recursively locate obstacle subnodes within Target and determine tha t the

near-distance is 10.0 and the far-distance is = 18.68. See Figure 7.4(b).

6. The next target node is shown in Figure 7.4(c). The near-distance is 4.0 and

far-distance is 14.42. This now becomes smallest- f ar-dist.

7. We now let NSI = 3. There is one target node (shown in Figure 7.4(d)). Near-

distance is 8.0, which is not less than s m a l l e s t ~ f a r ~ d i s t = 14.42, and so this

node is not ignorable. Far-distance is 17.89, so smallest- f ar-dist is unchanged.

Since there is a non-ignorable target node a t NSI = 3, temp-max-ATSI is set to

3.

8. We now let NSI = 4. Here, there are two target nodes (Figure 7.4(e)). Target 1

has a near-distance of 16.12, which is greater than smallest_far-dist = 14.42,

so this target node is ignorable. The far-distance is 26.0, so smallest-f ar-dist

is unchanged.

9. Target 2 a t NSI = 4 is evaluated. Near-distance is 12.80 < 14.42, so this target

is not ignorable. The far-distance is 24.08, so smallest-f ar-dist is unchanged.

A non-ignorable target node has been found a t NSI = 4, so t emp-max-NSI is

set to 4.

10. NSI is now 5. There is one target node (Figure 7.4(f)). The near-distance is

18.86 > 14.42, so the target is ignorable. No non-ignorable target nodes have

lwen found at NSI = 5, so t emp-max-NSI remains unchanged.

12. J'hi:, dgor i t 11rr1 is rc~pt~at,(~tl for all white 11otl(>s i11 tlicl t r c~ ' . Tlic. c.orl~l)l('tc~i ;I

st,ruc.t~irc~ is show11 in Figurt. 7.5

CHAPTER 7. IMPLEMENTATION OF OCTREE DISTANCE MAPS 5 1

We now state a high-level version of our ODM creation algorithm, Build-ODM,

which generates an ODM given a n octree for a non-empty workspace. (For a more

detailed algorithm, please see Appendix B.)

Main routine: Build-ODM

Input: Octree representing voxel map.

Output: ODM representing hierarchical distance map

1. Augment octree nodes with minimum- and maximum-NSI storage fields

2. For each white subnode of a grey node in the tree:

(a) For all nodal distances N S I = 1 to (3 D I M - l), where DIM is the number of dimensions:

i. Locate all target nodes a t nodal distance N S I

ii. For each black or grey target node:

A. Calculate near-distance and far-distance for target

B. If minimum NSI not stored, set minimum NSI = N S I

C. Else:

If near-distance > smallest far-distance for current white node, target is

ignorable

Else, target is non-ignorable

D. Evaluate next target node (go to 2(a)ii)

iii. If non-ignorable targets found at current nodal distance, set maximum NSI = N S I

iv. Increment N S I and go t o 2a

(b) Store min. and max. NSI for current white node

(c) Find next white node (go t o 2)

Although the creation algorithm is search-intensive, finding the maximum/minimum

NSI parameters allows us to reduce the search-time during collision detection. Build-

ing the ODM is a one-time off-line preprocessing step.

CHAPTER 7. IMPLEMENTATION OF OCTREE DISTANCE MAPS

31

NSI = 2

Figure 7.4: Illustrations for the ODM creation exa~nple.

CHAPTER 7. IMPLEMENTATION OF OCTREE DISTANCE MAPS 5 3

Figure 7.5: The octree distance map structure constructed for Figure 6.1; records
under white nodes contain maximum and minimum NSI.

7.3 Collision Detection Using an ODM

After the octree distance map structure (the ODM) has been generated, it may be

used in efficient collision detection. Here, let us assume that the robot is modeled using

a number of spheres, and use a single sphere for the robot as an illustration. Note

that a robot can be approximated t o an arbitrary level of accuracy using spheres (del

Pobil and Serna 1995).

Given a robot's center voxel and Euclidean radius, the algorithm below is used for

collision detection. Note tha t robot radius may change from query to query without

affecting the pre-generated ODM structure; the ODM is repeatedly used for each

query without any further changes.

The algorithm first finds the whzte node W containing the robot in the octree.

Then, with N S I equal to the mzn-NSI of W, the algorithm considers the set of

black arid grey nodes (target nodes) with nodal separation from W- equal to NSI.

(Tlit. targct nodes are deterrninccl using the location-code process discussed 111 tllc.

Background section.) For each target node T, the algorithm calculates bounds 011

robot si/e (see below) to determine if the robot i r or is not in collision with T. or if the

collision situation is indeterminate. For the latter, the algorithm performs a recursive

CHAPTER 7. IMPLEMENTATION OF OCTREE DISTANCE MAPS 54

detection process: using the Get-Distance routine given in the previous section, the

near-distance and far-distance (from W) to T are determined. If the robot size is less

than the near-distance, no collision with T can occur. Otherwise, if T is black, the far-

distance is compared with robot size. If the robot size is larger, a collision situation

exists and a TRUE value is returned. If not, the algorithm calculates the near-distance

between T and the robot center voxel (not W) , and compares the distance with the

robot size to evaluate the collision situation.

If T was grey and not black, the algorithm first creates a maximum-radius bound

on the robot (see Figure 7.6). This bound implies that if the robot has a radius greater

than the bound, the robot is in collision with grey node T no matter where the robot

is located in the white node W. If such is the case, the algorithm immediately returns

a TRUE collision result. Otherwise, the collision situation remains indeterminate.

The algorithm proceeds to refine these bounds by further localizing the obstacle(s),

identifying the g r e y and black child nodes of T. The child nodes are then evaluated

using this recursive process until a TRUE/FALSE result is reached. If no collision

is found with these target nodes, NSI is incremented (up to max-NSI for W) and

the process is repeated until the bottom of the tree is reached and/or the collision

situation is determined.

Largest radius for 2 nodes of side-length s, with nodal sep. NSI
= length of diagonal of parallelepiped formed by string of (NSI
+ 1) nodes.

CHAPTER 7. IMPLEMENTATION OF OCTREE DISTANCE MAPS 5 5

We shall illustrate the use of ODM's in collision detection using the 2-D example

from Figure 6.1. Suppose we define our robot with a center position of (12,6) (in-

dicated by a star in the figure) and a radius of 6. The algorithm would operate as

follows (the steps are illustrated in Figures 7.7(a) to (f) .

1. Using the center position, the robot's location code is found to be 013204. We

localize the robot to the white node a t level 2 with reference point (8, 0). Let

this node be W . (Figure 7.7(a))

2. We retrieve min-NSI = 1 and max-NSI = 1 from the parent of this node.

3. We find a single level-2 obstacle node a t a nodal separation of 1 from the white

node, and evaluate the collision situation. Let this node be T. (Figure 7.7(b))

4. Using the Get-Distance routine in Appendix B, we find the near-distance to be

0.0 (since the nodes are adjacent) and the far-distance to be 8.0. Since the far-

distJance is greater than the robot radius, the collision situation is indeterminate.

(Figure 7.7(c))

5. Because T is grey, we first evaluate the maximum-radius condition. The maxi-

mum radius (the robot radius which would make collision a certainty) is 17.89 >
6.0; the situation remains indeterminate. (Figure 7.7(d))

6. We localize the obstacle: T becomes child 1 of the previous T. The robot is

localized to quadrant 3 of W (which becomes the new W), and we increment

the level to 3. The recursive routine is called again with these new parameters.

(Figure 7.7(e))

7. For the new T and W , we find the near-distance to be 0.0 and the far-distance

to be 4.0. Because T is black, we can compare the robot size to the far-distance.

Because the robot size is greater (6.0 > 4.0), we can conclude tha t there is a

collision. The algorithm returns a TRUE result. (Figure 7.7(f))

IZ'c now state a high level vcrsion of the algorithm, ODM-Detect. (For a rriorc.

tletailrcl algoritlini, please see Appendix C .)

CHAPTER 7. IMPLEMENTATION OF OCTREE DISTANCE MAPS

Main routine: ODMDetect

Input: octree distance map, robot position, robot radius.

Output: collision situation: TRUE if collision, else FALSE.

1. Localize robot to the highest white node in tree

2. Retrieve min -NSI and max-NS1

3. For N S I = min-NSI to max-NSI do:

(a) Generate list of blaclc and grey target nodes with nodal distance equal to N S I

(b) For each target node in list

i. Call RecurseDetect to obtain collision result

ii. If there is a collision

0 Return TRUE result

iii. Otherwise, go to next target node (go to 3b)

(c) No collision found; increment N S I and go to 3

4. No collision has been found. Return FALSE result.

Subroutine: Recurse-Detect

Input: robot white node W, position, radius, target node T Output: collision situation: TRUE if

collision, else FALSE.

1. Calculate near- and far-distance for W and T

2. If robot radius < near-distance

0 No collision; return FALSE

3. Else, if (T is black)

0 If robot radius > far-distance

- Collision is certain; return TRUE

0 Else:

- Calculate shortest distance between robot position and T (i.e., near-distance with

robot voxel as the white node)

- If rolmt is bigger t l ia~i sliortest distalicc

* Rcturn TRUE collisiori result

Else, no collisiori; return FALSE result

1. Llsr. (if T is grey)

CHAPTER 7. IMPLEMENTATION OF OCTREE DISTANCE MAPS

Calculate the maximum-radius bound for W and T (see Figure 7.6)

0 If robot is larger than bound /*certain collision*/

- Return TRUE result

0 Else, recursively call R e c u r s e D e t e c t with all black and grey children of T as target

nodes

0 If any result from the recursive call is TRUE

- Return TRUE result

0 Else, if no TRUE result after all children evaluated

- Return FALSE result /*No collision with T*/

For a robot modeled as multiple spheres, the following algorithm is then used:

Main routine: O D M - R o b o t D e t e c t

Input: ODM, number of robots N-robots, robot centers and radii.

Output: collision situation: TRUE if collision, else FALSE.

1. For Index = 1 to N-robots do:

(a) Call ODM-De tec t , passing center location and radius for robot[Index]. Get collision

result in Result.

(b) If Result is TRUE, output TRUE and end.

Note tha t while the collision detection algorithm is specifically written for use with

spherical robot models, it may also be extended for use for collision detection with

line segments (see Appendix D).

Another extension of our work is that of distance estimation, i.e., determining the

distance from the robot to the nearest obstacle. However, the algorithm would need

to be modified such that the minimum distance t o obstacle must be kept and updated

whenever a black node were evaluated to be closer than any previous one.

CHAPTER 7. IMPLEMENTATION OF OCTREE DISTANCE MAPS 5 8

31 31

-. * -. .---. , ~

, * -robot center * * ,: - robot canter
.. , . . -, and rsdlua , nl l tvd?

I
W W

(robot (robot
white node)

0 0
-. . *. .

1 X 31 I X 31

31
31

.-. , .
, * : - robot center
'. ; and radius

,-. , ~ * , - robot center
'~ ,I and radius

Fa~dlstanm - 8 0 W
(1 (Nmrd7dww = 0 0) (r o b

wh,k white n

31

Because robot radlus IS larger than far-distance
(6 0 > 4 0) and T IS black rob1 IS mcolllsion

Figlire 7.7: Illlistrations for the ODhl collision detc\ctiorl rxarnplc

Chapter 8

Experiments

Both the ODM-Build and ODM-Detect algorithms were implemented in C on

a Sun Sparcstation platform, and several experiments were performed. In the first

experiment, the same 32 x 32 quadtree in Figure 6.1 was input into the creation

algorithm and generated the correct distance map output. I executed the detection

algorithm for every pixel in the grid for robots with Euclidean radii of 1, 2, and 3

units. These results are shown in Figure 8.1. As illustrated, the algorithms work.

Figure 8.1: Results of 2-D experiments with da ta from Figure 2 for robot radii of 1,
2, and 3 voxels (a, b, and c respectively). (x indicates collision).

Next. I performed experiments on 3-d examples. I ran the algorithms on voxel

r n a p ~ c f fi1.r d i f f e r~~ i t 3-D workspaccs, each discretiztd in a. 100 x 100 x 100-voxrl nrrn\-

Tahlc 8.1 lists thtl rricmorv requirements of each ODM. along with tllc recluircrrlcnts

for cach ~lnallgmrntcd octrce and the constant memory r cqu i r e~n~n t of a vow-array-

hasrtl Euclidean distance map. From the results, we can see that the the ODhl

CHAPTER 8. EXPERIMENTS 60

requires about 25 percent more memory compared to the amount required for the

corresponding unaugmented octree; the extra memory is the result of the five-byte

requirement for storage of minimum and maximum NSI. However, the ODM's memory

requirements are significantly less than those of a voxel-based distance map: the ODM

uses between 70 to 95 percent less memory.

The next experiment involved measuring the speed performance using both ODM's

and unaugmented octrees in 3-d collision detection. The algorithm used for octree

collision detection was simply the ODM-Detect algorithm without the benefit of

stored minimum and maximum NSI; for the unaugmented octree, the minimum NSI

is assumed to be 1 and maximum NSI is assumed to be (3 x DIM) - 1 = 8. Thus,

the octree collision detection algorithm, not being a dedicated octree algorithm, may

not be the most efficient one available, and other, more dedicated octree collision

detection algorithms may yield better performance.

In comparing ODM versus octree performance, both a count of condition checks

(when a comparison is made between the robot size and a number) and the aver-

age time required on a Sparc-10 for each collision check (in milliseconds) were mea-

sured. The experiment consisted of 3 sets of 1000 collision detections each for the five

workspaces, using random robot positions and radius sizes (each set having a different

range of radii). The results are shown in Tables 8.2 and 8.3. There is a substantial

improvement in performance using ODM's over octrees, both in the number of con-

dition checks (ODM: 10 to 48% (35% on average) fewer) and in run-time (ODM: 20

to 50% (39% on average) faster). These results s tand to reason: a great deal of the

searching done when using an unaugmented octree in collision detection is performed

when an ODM is created.

The third series of tests involved performing collision detection for complete robot

models each comprising 159 spheres. Figure 8.2 shows an example of a robot mod-

eled by spheres. I tested four separate robot configurations in the same workspace

- two configurations not in collision, two in collision. Again, the performance of

OD34 col1ic;ion detection is compared with collision detection using an unaugmentcd

octrw: t lit. r rs~i l ts are sliow~i in Table 8.4. We once aga i~ i see a drastic i~r iprowri i~r~t

111 i)c~rform;i~ic.i~ (l>c>tw~rn 28 to 58%. ;lvcriigc. 4.3%) n.hi>n ~ising ODhl'.; for c.ollisio11

~l(>trct io~i .

CHAPTER 8. EXPERIMENTS

Figure 8.2: Example of a workspace used for collision detection tests; robot spherical
model shown.

% Extra Workspace

1
2
3
4
5

memory
27
2 6
27
26
2 7

4,000,000

T a l ~ l c 8.1: l l ~ r n o r v lisage for ODM, o c t r w . arid voxcl-Imsrd tlistancc nlaI) for fivc
workhj)aces.

Voxel-based dist. map
(1 0 0 ~ array, 3 bytes / voxel

Memory usage
ODM

594,256
653,276

1,169,832
234,240

1,018,776

Octree
468,552
516,720
919,352
186,536
804,376

CHAPTER 8. EXPERIMENTS

Max
size

10
voxels

Max
size

I I I I I

/ 25] Octree (1 2.1 / 7.2 1 6.0 1 12.7 1 7.2 1

Data
Structure

Octree
ODM

Avg. # of condition checks / test
Workspace

10
voxels

I voxels / ODM I/ 1.2 1 4.3 (3.7 / 9.5 1 4.3 1

1

26.0
13.7

Data
Structure

% Improvement

Avg. time per test (ms)
Workspace

1 1 2 1 3 1 4 1 5

Octree
ODM

1 voxels I ODM / 0.9 / 2.5 / 2.5 1 8.0 1 2.4 1

Table 8.2: Condition-check results of 3-D collision detection using ODM and octree.
(1000 tests per avg.)

47

12.3
6.7
46

9.7
5.3
45

2 5
voxels

% Improvement

1 40 1 Octree

% Improvement 47 41 / 39 20 41
-PA--

2

74.1
38.3

Octree
ODM

4.5
2.3

'Titl)l(' 8.3. Ti111('s (Spitrc-10) for 3-D collisiol~ d(>t('ctio~i. using O D h l and octrecJ. (1000

4

75.9
58.4

3

62.5
34.1

45

1 1 . 8

5
73.2
38.2

48

40.9
25.8
37

23.4
14.2
39

% Improvement

13.4
6.6

23

62.3
53.6
14

53.2
48.2

9

45

34.5
22.2
36

24.1
15.3
36

40
voxels

40

4.2

48

41.3
26.4
36

22.7
14.0
38

Octree
ODM

11.2
5.8

% Improvement

39

4.2

16.6
11.1

I

13.4
6.7 /

25

10.0

40

4.1

CHAPTER 8. EXPERIMENTS

7 Robot configuration

Table 8.4: Speed performance (Sparc-10) for 3-D collision detection with 4 robot
configurations (159 spheres) using ODM and octree. (Times in ms.)

Spheres in collision
Octree: Total time required

Octree: Avg time/sphere
ODM: Total time required

ODM: Avg time/sphere
% Improvement

-

none
5245
33.0
3254
20.5

38

none
3841
24.2
2765
17.4

28

10
5157
32.4
2799
17.6
46

19
4877
30.7
2063
19.3

58

Part I11

Conclusions

Chapter 9

Conclusion and Future Work

This thesis explored the use of real-world, sensor-based data for modeling three-

dimensional workspaces and for performing collision detection and path planning for

a robot within tha t workspace. Specifically, the thesis examined ways t o integrate

range images to model a 3-d workspace. In addition, the thesis introduced a way of

converting such a model to a form that is conducive to efficient collision detection and

path planning, and algorithms for the creation and use of such a model are presented.

For multiple-view range image integration, we needed to look a t the intended use

of the generated 3-d model of the workspace. Since the model is to be used for robot

path planning and collision detection, the model should have several characteristics:

(i) a spatial occupancy model using voxels, which is quicker to generate and less

complex than modeling real-world scanned da ta with CAD primitives; (ii) obstacles

represented as solid groups of voxels rather than as shells enclosing empty space to

avoid path planning problems where, for instance, the robot's starting position is put

inside an object; and (iii) unscanned areas to be represented as obstacle areas, so that

the path planner avoids moving the robot into unknown regions of the workspace.

The first step for integrating range images was to determine how to geometrically

relate the individual range images. taken from several points of view, into a single

frame of reference. Because the laser scanner was mounted on a Puma 560 robot,

thr. ro1)ot vicldcd transformations for c x h scanner position. By fixing the location of

the. rang(> irnagc reference frarnc arid then r ~ l a t i n g it to thr' P U I I A glolml frame, it

1) c ~ ,lirlc\ ~)os\ihl(> to relatcl rarigc irriages from multiple view\ to thv PITMA frarno

CHAPTER 9. CONCLUSION AND FUTURE W O R K 6 6

Two approaches were examined for integrating range images. The first, direct map-

ping, maps range images into workspace voxels on a one-to-one basis. This method

produced shell representations of objects and did not take into account the unscanned

workspace areas, so was deemed unfit for path planning purposes, but this method

did produce shell representations which verified the correctness of the transforms.

The second approach, peeling, uses the mirror and camera positions for each range

image pixel to determine in which directions to remove voxels from a complete "block"

of voxels. The approach uses the concept that points which have been scanned by

the laser scanner must have direct light paths to both the laser source (mirror) and

imager (camera), and therefore these paths must be free of voxels. The advantages of

this approach are that 1) since voxels are removed away from the surfaces of objects

but not below the surface, the leftover voxels forrn solid representations of the objects;

and 2) unscanned space does not have voxels removed, and so are treated as obstacles.

Based on the results of integration via peeling, we see tha t the shapes of objects

have begun to be uncovered. However, due to the limited number of scans and the

limited scanned area of each scan, not enough voxels are removed from the block

to provide us with clear pictures of the objects for this thesis. When viewed in 3-

D animation, shapes are more easily discernable in the integrated voxel map. The

results showed the previously mentioned advantages of the peeling algorithm, namely

solid representations of objects and voxelized representation of unscanned areas.

A generated voxel map can be made much more efficient for collision detection

by converting it into a distance map. Large voxel-based distance maps, however, use

impractical amounts of memory. In the second part of this thesis, I presented a novel

hierarchical representation for distance maps, called octree distance map, or ODM,

which utilizes the memory efficiency of octrees for the purposes of collision detection

and robot path planning, without a large sacrifice in terms of performance. The ODM

is based on the conventional octree data structure, but is augmented with nodal sepa-

ration indice.5 or NSI, which provide distance-to- closest,-obstacle information for each

whatr' liocic i l l the oct,rcc while keeping mcmory recluircrncnts lmv. This thesis prc'-

scntcd i~lgoritllr~ls for crctating a n ODM from a convctrlt,ional ortrcc. and for ~lt,ilizirig

t l i (\ OD11 i l l collision clrtc.c.tion. Tlic cxpc:rirnents llsil~g tlicscl algoritlilris indiciitc~tl

t,liat tilt. 11s~ of the' OD11 (i) is corrc\c.t. j i i) proi.icles i i clrastic. r(x1uct~io1i iri Irit~nior!-

CHAPTER 9. CONCLUSION AND FUTURE WORK 6 7

requirements over voxel-based distance maps, and (iii) exhibits a significant improve-

ment in collision-detection performance, both in condition-check comparisons and in

overall speed, over the use of unaugmented octrees for collision detection, a t the cost

of slightly higher memory requirements. On average, ODM collision detection is 35

to 40 percent faster and more efficient than when performing the same tasks using an

unaugmented octree. In future, we intend to run further experiments based on our

approach, and explore different applications for the ODM. We will also investigate

possible memory efficiency improvements, as well as certain theoretical aspects; for

instance, rather than storing only the minimum and maximum NSI, what distance

information can be stored to further improve collision detection efficiency without

seriously affecting memory efficiency.

Future Work

One direction of future work tha t holds promise is the exploration of the mem-

ory/performance tradeoff of the ODM. Specifically, it may be possible to include more

distance information within the da ta structure - thus using more memory, though still

much less than a voxel-based distance map - in order to gain better collision detection

performance. One feasible approach is to store some perimeter distance function for

each white node, rather than a single distance indicator. Collision detection would

involve determining the closest point of the node perimeter to the robot sphere cen-

ter point, evaluating the perimeter distance function for that perimeter point, and

comparing the result to the robot sphere radius. Such an approach would avoid the

recursion required for ODM collision detection, thus improving performance.

References

Ahuja, N. and J. Veenstra (1989, February). Generating Octrees from Object Silhou-

ettes in Orthographic Views. IEEE Transactions on Pattern Analysis and Machine

Intelligence 11 (2), 137-149.

Arimoto, S., H. Noborio, S. Fukuda, and A. Nods (1988). A Feasible Approach

to Automatic Planning of Collision-Free Robot Mot io~s . In B. R. R. Bolles (Ed.) ,

Internationa.l Symposium on Robotics Research, pp. 479-488. MIT Press.

Asada, M. (1990, November-December). Map Building for a Mobile Robot From

Sensory Data. IEEE Transactions on Systems, Man and Cybernetics 20 (6), 1326-

1336.

Bandi, S. and D. Thalmann (1995, September). An Adaptive Spatial Subdivision of

the Object Space for Fast Collision Detection of Animated Rigid Bodies. Computer

Graphics Forum 14 (3), (31259-(21270.

del Pobil, A. P. and M. A. Serna (1995). Spatial Representation in Motion Planning.

Number 1014 in Lecture Notes in Computing Science. Springer.

del Pobil, A. P., M. A. Serna, and J. Llovet (1992). A New Representation for Collision

Avoidance and Detection. In 1992 IEEE International Conference on Robotics and

Automation.

REFERENCES 69

Grandjean, P. et al. (1989). 3-D Modeling of Indoor Scenes by Fusion of Noisy Range

and Stereo Data. In Proceedings. 1989 I E E E International Conference o n Robotics

and Automation, Volume 2.

Greenspan, M. and N. Burtnyk (1996). Obstacle Count Independent Real-Time Col-

lision Avoidance. In Proceedings. 1996 I E E E International Conference o n Robotics

and Automation.

Gupta, K. K. and X. Zhu (1995). Practical global motion planning for many degrees of

freedom: A novel approach within sequential framework. Journal of Robotic Sys tems

12(2) , 105-118.

Hayward, V. (1986). Fast Collision Detection Scheme By Recursive Decomposition

of A Manipulator Workspace. In 1986 I E E E International Conference o n Robotics

and Automation, Volume 2 , pp. 1044-1049.

Herman, M. (1985). Generating Detailed Scene Descriptions from Range Images. In

I E E E International Conference o n Robotics and Automation.

Jarvis, R. (1993). Distance Transform Based Pa th Planning for Robot Navigation.

Recent Trends in Mobile Robotics .

Jung, D. and K. Gupta (1997). Octree-based hierarchical distance maps for collision

detection. t o appear in Journal of Robotic Sys tems , 26 manuscript pages.

Latombe, J . C. (1991). Robot Mot ion Planning. Kluwer Academic Publications.

Leonard, J . J . and B. A. Moran (1992). Sonar Data Fusion for 3-D Scene Reconstruc-

tion. In Proceedings -of the S P I E - T h e International Society for Optical Engineering,

Volume 1828.

Lin, X. and W. G . Wee (1985). Shape Detection Using Range Data. Published by

IEEE.

REFERENCES 70

Noborio, H., S. Fukuda, and S. Arimoto (1988, November). Construction of the

Octree Approximating a Three-Dimensional Object by Using Multiple Views. IEEE

Transactions on Pattern Analysis and Machine Intelligence 10 (6), 769-781.

Noborio, H., Naniwa, and S. Arimoto (1990). A Quadtree-Based Path-Planning Al-

gorithm for a Mobile Robot. Journal of Robotic Systems 7(4), 555-571.

Potmesil, M. (1987). Generating Octree Models of 3D Objects from Their Silhouettes

in a Sequence of Images. Computer Vision, Graphics, and Image Processing 40, 1-29.

Roth-Tabak, Y. and R. Jain (1989, June). Building an Environment Model Using

Depth Information. Computer .

Samet, H. (1990a). Applications of Spatial Data Structures: Computer Graphics, Im-

age Processing, and GIS. Don Mills, Ontario: Addison-Wesley Publishing Compan,~.

Samet, H. (1990b). The Design and Analysis of Spatial Data Structures. Don Mills,

Ontario: Addison- Wesley Publishing Company.

Sharma, A. and S. A. R. Scrivener (1990). Computer Vision Based Automatic Con-

struction of 3-D Geometry Scene Models. In UK IT 1990 Conference, pp. 71-78.

IEE.

Shneier, M. (1981). Path-length distances for quadtrees. Information Sciences 23.

Stenstrom, J. R. and C. I. Connolly (1986). Building Wire Frames from Multiple

Range Views. Published by IEEE.

Stenstrom, ,J. R. and C. I. Connolly (1992). Constructing Object Models from Multiple

Images. International Journal of Computer Vision 9 (3) .

Succi, G . ct al. (1990). 3D Feature Extraction from Sequences of Rangr Data. In

R o h o f ~ c R~smrch. F?fth Internntzonal Symposzum. M I T Press

Xl i . %. (l9!)2. . J ~ l l l r .) . Estr;lr.ting Cornl)lctc. 3-Dirllnnsiorlal Bollndiir~- ll(l~)rc~so~it;it,ioli

f v o ~ r ~ 1111ltil)le Rangc> 11liagc.s. l l i ist t~r 's tllrsis. Simon Frasvr V~li\wsit>..

REFERENCES 7 1

Yang, H., K . Gupta, and M. Greenspan. Pa th Planning with Distance Map Based

Efficient Collision Detection. Technical report, Simon Fraser University, in prepara-

tion.

Yao, H., R. Podhorodeski, and D. Zuomin (1993). A Cross-Section Based Multiple-

View Range Image Fusion Approach. In Proceedings of the SPIE - The International

Society for Optical Engineering, Volume 1956.

Appendix A

Range Scanner System Calibration

A.1 Calibration Procedure

The laser range scanner was calibrated using the and V-shaped calibration

block (hereafter called the V-block) provided by Technical Arts. (The calibration

block is shown in Figure 4.4.) The software performed the following required functions:

I. Oscillation of a mirror which produces a plane of laser light. The intersection

of this plane with various surfaces is captured by the camera to calculate range.

2. Stepping of a second mirror, thus stepping the light plane across the workspace

and producing a 2-D range image.

3. Determination of two camera orientation ~ ~ r a r n e t e r s , pitch and roll, based on

the shape of the light plane intersecting the V-block.

The software also included an automatic calibratio~l procedure which, assurning

proper carnera/laser alignment and accurate camerallaser parameters entered by the

user, stepped thc light plane through a user-defined range of positions and performed

calibration a t each X-Y point in its image space.

'I'hus. t l i v st,q)stto c.alit)rat,e tlic 1;tsc:r scanner a r r :

i111glc of the light plane at zero position

APPENDIX A. RANGE SCANNER SYSTEM CALIBRATION

angle of the camera with respect to vertical

height of the V-block

vertical distance from top of V-block to laser

vertical distance from top of V-block to camera

2. Adjustment of the camera's orientation, based on the pitch and roll parameters

calculated by the software. (Pitch and roll are required to be between -1.0 and

1.0 degrees.)

3. Execution of the automatic calibration procedure. This procedure is quite slow

on a 386 PC, averaging approximately 10 lines or light plane positions per

minute.

4. At the PUMA data terminal, type show t 6 * t o o l . This command will display

a matrix, T 6 0 , and transform angles 0 , A, and T (which correspond with $,

9, and $ in Euler Z-Y-Z rotation). Write down the first three elements of the

fourth column of T 6 0 (which are the (X, Y, Z) coordinates of the hand with

respect to the PUMA) and the transform angles; these parameters provide the

transform for the initial calibration position.

5. Finally, use a tape measure to measure the positions of the oscillating mirror

and camera lens in terms of displacement from the PUMA tool center point

(center of the PUMA tool flange) in the X, Y, and Z directions (relative to the

tool frame).

To perform the PUMA-to-scanner calibration, the following steps are required:

1. Attach a measurement device (e.g. a plumb line) of known length L to the

end-effector of the PUMA, such tha t the device hangs directly vertically. The

displacement of the point of attachment A from the PUMA'S tool rcfcrcnce

point rrilist a lw bc measurtd: this displacement is exprc.ssct1 in rcfc>rcnc.c to
s o

the tool refercncc frarnc position for calibration So as A. Wit11 these two

APPENDIX A. RANGE SCANNER SYSTEM CALIBRATION 74

2. With the V-block in the position in which the laser scanner was calibrated, touch

the tip of the measurement device to the corner of the V-block which is used as

reference in range scanner calibration (see Figure A. l . Obtain the position of J
the tool reference point from the PUMA controller Since we know the

position of the measurement device with respect to So from the previous step,
P p so

we can determine D = T D.
so

3. Since this corner of the calibration block is (0, 0, 0) in the scanner's image

space, and since we know the position of the t ip of the measurement device

with respect to PUMA (from the previous step), we now have the coordinates

in the PUMA frame of reference for the center of the reference frame Go of

the scanner's image space and thus the transform from PUMA space to scanner

space, as discussed in Section 3.2.3.

4. Using the dimensions of the V-block, the measurement device tip may be touched

to other corners of the V-block in order to verify the accuracy of the transform

calculated above.

calibration
block

\ p o s t ~ o n of measuring devlce
= center of reference frame Go

Fijillrc A . l : I 'UlIA-to-scanner ca1ihr;ttiorl usirig t l i ~ \ 7 - l) l ~) ~ k .

APPENDIX A. RANGE SCANNER SYSTEM CALIBRATION 75

A . l . l Capture of Multiple-View Range Images

Once the scanner system is calibrated, the range images are captured using the fol-

lowing procedure:

1. Move the robot to a suitable position via teach pendant or robot control pro-

gram. The selected position should allow the camera to image a significant part

of the unscanned object space. Roughly keep track of which parts of the ob-

ject space have been scanned by noting the general direction of the camera in

relation to the object space.

2. Once the robot is in position, obtain the robot transform from the PUMA

controller via the da t a terminal by typing show t6* too l . Write down (X, Y,

Z) and (4, 8, $1 as before.

3. Type show j o i n t and write down the joint angles Jl-J6 in case the experiment

must be repeated a t a later date.

4. On the scanner PC, examine the current start and end positions of the scanner.

If the scan area is too large for the portion of object space you are scanning,

change the positions; this will decrease your scan time. Note the start and end

positions.

5. Enter a scan file name. The range image will be written to this file.

6. Start the scan.

7. When the scan is complete. repeat steps 1-6 until the object space has been

satisfactorily scanned.

A.2 Offline Integration of Range Images

(Yutt.: This section assu1nc.s that the required Unix executablrs art> in the Unis sc.a:~

clirect,or~..) 01icc scanni~lg has bee11 completed. the range irnagc filcs are integrated

offlil~c\. ' I ' l ~ c l i r i t t~gratio~i 1)roc~'ss is as follows:

APPENDIX A. RANGE SCANNER SYSTEM CALIBRATION 76

1. Convert each of the image files from binary format to ASCII text by running

the program rdascii. At the scanner PC, change the directory to c :

100at

data and type the following command for each image:

rdascii > text-file-name.txt

where text-f ile-name . txt is the name of the new text file. Then type the scan

file name entered a t the scanning setup screen. The resulting text file contains

a list of the 3-d coordinates of all scanned points in the image.

2. Copy the text files to a 3.5" floppy disk and insert the disk a Sun workstation.

On the workstation, go to your scan integration directory and copy the files to

the Sun file system by typing:

3. For each text file, start an editor (e.g., EMACS) and manually insert the fol-

lowing information on the top line of the file:

This information was obtained from the PUMA controller via the data terminal.

4. Create a file in the Unix scan directory called HO. DATA. In this file, manually

enter on a single line the (X, Y, Z) and (4, 8 , $I) coordinates of the initial

calibration position of the PUMA:

5. Create a file in the same directory called LASER.DATA. On two separate lines,

manually enter the (X, Y, Z) displacement of the laser oscillation mirror and

camera lens:

6. ('rc.i~ti. a third file ca1lt.d C A L . D A T A . In t,his file. r r i a n ~ i a l l ~ ~ P I I ~ P I . t hc' (X . Y. %)

ilisl)li\t .~~r~ctnt L):, of thc V-\)lock origin point . Enter t,hrcc zi>roc1s followirlg t,llc

clisl)lac~c~rrictrit,:

X Y Z O O O

APPENDIX A. RANGE SCANNER SYSTEM CALIBRATION

7. Finally, type the command

integ

and enter the appropriate information when prompted (number of scans, file

names, output voxel map file). The resulting voxel map file may be viewed on

an SGI Indigo workstation or on a Sun workstation remotely connected to an

SGI (see Section 4.1.4).

A.3 Display of integrated voxel map

Display of the voxel map is performed by a program on the SGI Indigo workstation

using OpenGL routines. Once the voxel map file has been generated, follow this

procedure to display the voxel map.

1. Copy the generated voxel map file to your viewing directory (if the viewing

program does not exist in the sca,n directory).

2. Use the command show3d <voyel-map> <dl c> where voxel-map is the name

of the generated voxel map file and dl c indicates whether to display voxels as

dots or cubes.

3. Once processing is complete, a window displays the voxel map within a wire-

frame cube denoting the extent of the voxel mapped space. Use the mouse

pointer position to control the speed and direction of rotation of the display.

Use the - and + keys to zoom in and out of the scene.

4. When you have finished viewing the voxel map, close the window to exit the

viewing program.

Appendix B

Detailed ODM Creation Algorithm

Main routine: B u i l d - O D M

Input: Octree representing voxel map.

Output: Octree Distance Map representing hierarchical distance map.

1. Augment octree nodes with minimum- and maximum-NSI storage fields

2. Beginning a t root, traverse across all eight children and down tree. For each white node

CurrNode within a grey node

(a) Let L = level of CurrNode

(b) Initialize N S I - l i m i t to (3 x D I M - I) , where DIM is the dimension of space. (See

Figure 7.3)

(c) For N S I - D i s t = 1 to N S I - l i m i t do

i. Locate all nodes of level L with nodal separation from CurrNode equal to N S I - D i s t .

Store nodes in array Targets

ii. For each member Targe t s [i]

A. If (Targets[i] is black or grey)

Call G e t m i s t a n c e , passing CurrNode, Targe t s [i] , white node level, tar-

get node level (both levels equal to L), and receiving near-dist, far-dist

0 If (smallest-f ar-dist is not initialized or f ar-dist < smallest-f ar-dzst)

- Let smallest-f ar-dist = f ar-dist

0 If (CurrNode .min-NSI has not, been initialized)

- L(,t Ci~r~i.il\'ocic~.rrrlrr *\-SI = iVSI -Dis t

Elst, /*Det,ermirlc~ if Tar.,qets;i7: is ignor;rhlc*/

- If (n r a r d i s t s~r~allest-f trr-dzst)

Tnrgcts[7] is ignoral)l<,

APPENDIX El. DETAILED ODM CREATION ALGORITHM

B. Evaluate next Targets[i] (go t o 2(c)ii)

iii. If (one of Targets[i] was not a non-ignorable obstacle node)

Let temp-max-NSI = NSI -Di s t

iv. Increment NSI -Di s t and go to 2c

(d) Let CurrNode.max-NSI = temp-max-NSI

(e) Evaluate next node (go to 2)

Subroutine: Get -Dis tance

Input:
WhiteNode, the current white node

0 Target, the current target node

0 WhiteLevel , the level of WhiteNode

0 TargLevel, the level of Target
Output:

0 targ-near, the near-distance from WhiteNode to Target

0 targ-far, the far-distance from WhiteNode t o Target

1. If (Target is grey)

0 Determine the black and grey child nodes of Target; store in array TargChild

0 Initialize targ-near as some maximal value and targ-f ar as 0

0 Let ChildLevel = TargLevel + 1

For all elements TargChild[i]:

(a) Call Get-Distance, passing WhiteNode, TargChild[i] , WhiteLevel , ChildLevel

and receiving child-near, child-f ar

(b) Let targ-near be the minimum of {targ-near, child-near}

(c) Let targ- f ar be the minimum of {targ- f ar, child- f a r}

(d) Evaluate next TargChild[i] (go to 1)

2. Else /*Target is black*/

0 Call Ca lcNearFarDis t , passing WhzteNode, Target, W h z t e L ~ v e l . TnryLevel, and

receiving tarq-near and targ- f ar

S ~ l i ~ r o ~ l t in (' . Ca lcNearFarDis t

I r ~ p t :

APPENDIX B. DETAILED ODM CREATION ALGORITHM

W h i t e N o d e , the current white node

Target , the current target node

0 WhiteLevel . the level of Whi teNode

TargLevel , the level of Target
Output:

near-dist, the near-distance from Whi teNode to Target

far-dist , the far-distance from Whi teNode to Target

1. (Assume we have location codes for Whi teNode and Targe t) Calculate reference points

Whi te - re f and Targ-re f of Whi teNode and Target, respectively, from location codes

2. Let White-s ize be side length of Whi teNode node

3. Let Targ-size be side length of Target node

4. Obtain the bounding box dimensions for WhiteNode and Target:

0 Find the m i n i m u m m i n . ~ and maximum max.x of {White-re f . x , Whi te-re f .x+White-size,

Targ-re f .x, Targ-re f .x + Targ-s ize)

0 Find the difference di f f.x = max.x - min.x;

If (d i f f . x < O) , let d i f f . x = 0

0 Do the same for y and z , obtaining di f f .y, di f f .z

5. (Refer to Figure 7.2) Find far-distance targ- far:

Subtract Targ-size from each of (di f f .x, di f f .y, di f f . z)

Let f ar-dist be the length of the vector di f f

6. Find targ-near:

0 Subtract White-s ize from each of (di f f.x, di f f .y , di f f . z)

0 Let near-dist be the length of di f f

7 . Return near-did , f ar-dist

Appendix C

Detailed ODM Collision Detection

Algorithm

Main routine: O D M - D e t e c t

Input: octree distance map, robot position, robot radius.

Output: collision situation: TRUE if collision, else FALSE.

1. Localize robot to the highest white node W in tree

2. Retrieve min-NSI and max-NSI for W

3. For N S I = min-NSI to max-NSI do:

(a) Generate list of nearest black and grey target nodes a t same level L as W , with nodal

distance from W equal to N S I

(b) For each target node T in list

i. Call Recurse -Detec t ; receive collision result in Result

ii. If (Result == TRUE) /*collision*/

Return TRUE result

iii. Else /*no collision*/

Go to next target node (go to 3b)

(c) To collision has bccn found; increment IVSI and go to 3

S~it~rol~tiric,: Recursc D e t e c t

APPENDIX C. DETAILED ODM COLLISION DETECTION ALGORITHM 82

robot center voxel position w

robot radius robot_size

target node T

level of white node, L
Output: collision situation: TRUE if collision, else FALSE.

1. If (T is black)

Calculate near-distance for robot center voxel w and T

If (robot-size > near-distance)

- Collision is certain; return TRUE

Else:

- No collision; return FALSE

2. Else (if T is grey)

(a) Calculate the maximum-radius bound for w and T (see Figure 7.6)

(b) If (robot-size > maximum bound)

Collision is certain; return TRUE result

(c) Else:

i. Recursively call RecurseDetect with all black and grey children of T as target

nodes

ii. If any result from recursive call is TRUE

Collision detected; return TRUE result

iii. Else (no TRUE results)

No collision with T; return FALSE

Appendix D

ODM Collision Detection for a

Line Segment

The following algorithm can be used for performing collision detection against a line

segment using an ODM. This algorithm could be useful with robots modeled as line

segments instead of spheres.

Main routine: L ine -De tec t

Input: ODM, line segment endpoints PI and P2, line length l e n

Output: collision situation: TRUE if collision, else FALSE.

1. Call O D M D e t e c t , specifying a sphere with center PI and radius of 0.51en; receive collision

result in Resul t

2 . If (Resu l t is FALSE)

0 Call O D M - D e t e c t , specifying a sphere with center P2 and radius of 0.51en; receive

collision result in Resul t

3. If (Resu l t is FALSE)

0 Return FALSE collision result /*No collision with line seg*/

0 If (R r . s ~ ~ l f is TRUE) !*Lirlc) scglntrit in collisiori*/

APPENDIX D. ODM COLLISION DETECTION FOR A LINE SEGMENT 84

- Return TRUE collision result

Recursively call Line-Detect, passing M and Pz as endpoints of a line, and (0.51en)

as the length; receive result in Result

If (Result is TRUE) /*Line segment in coIlision*/

- Return TRUE collision result

Else /*No collision*/

- Return FALSE collision result

