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Abstract 

We investigate two topics toward efficient sensor-based collision detection and path 

planning in real-world environments. The first topic deals with the gathering of real- 

world da t a  via integration of multiple-view laser range images, and the second topic 

deals with the creation and use of hierarchical distance maps. 

The integration of range images from multiple views generates three-dimensional 

spatial occupancy (voxel) models. As opposed to  CAD or geometric models, spatial 

occupancy models are closer to  raw data ,  thereby they can be easily derived from 

raw range images. Furthermore, they can easily and accurately represent complex 

real-world environments. Two integration methods are examined: direct mapping, 

which accurately represents the surface shapes of objects; and peeling, which creates 

a model that  represents the space occupied by objects, in addition to unscanned ar- 

eas. The resulting voxel array may then be used for collision detection. However, 

for efficiency and speed, these voxel maps can be pre-processed into distance maps - 

each free pixel is assigned a value equal t o  the closest object, at the expense of signif- 

icant memory requirements. We propose and implement a novel hierarchical distance 

map for collision detection. It  is based on the standard octree representation and is 

called the octree distance map (ODM). The ODM represents distance information in 

a hierarchical manner, yielding efficient memory use while maintaining low cost in 

execution time. Two algorithms are presented, one for ODM creation and the other 

for ODM-based collision detection. 

Experiments with both range image integration and ODM's were promising; ODM's 

111 p ~ r t l c ~ l l a r  proved to be ail cxccllent compromise bctwccn using arravhascd distnncc 

Irlal)\ ~lligll spred. high memory recpircmr-lnts) and rtglilar octrers (low spwti .  low 

Ilrc.lliorJ r o r j l ~ i ~ ~ ~ r i ~ n t i )  for colliiion d~tcc t ion  
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Chapter 1 

Overview 

The use of detailed, real-world three-dimensional da ta  for collision avoidance and 

path planning in robotics is very desirable and thus a significant area of research. 

While using CAD-type da ta  to model real-world environments is currently an  accept- 

able approach, the growing number of applications for robotics expands the range of 

possibilities for real-world situations such tha t  modeling these situations using CAD 

techniques can be very difficult. In addition, the power of computing hardware today 

removes many limitations on the computational requirements for compiling sensed 

da ta  into a usable model. 

Using real-world data,  this thesis addresses these two issues of robot path plan- 

ning: (1) generation of a usable, efficent model of the workspace and (2) algorithms 

for performing collision detection with this model. In our view, a robot workspace 

may contain any number of objects of all shapes and sizes. While specific situations 

may limit the number and class of objects to  provide clean, controlled environmerits 

and thus simplify model generation and collision detection, we decided to  investigate 

the strategies that  would provide a system usable in the widest range of environments 

possible. For instance, the workspace model generation and collision detection algo- 

rithms both use voxelixed space and octrees to  model the environment. Thus, any 

ohlect or set of ol~jects can he modeled with the only limiting fact01 1)c'ing thr  c.lloit.~l 

I csollltlo~l 

Tl~i:, i ( ~  tiori providci 1)ric.f introdut tion to thew t ~ v o  iwics. morkspxc 111oclc.l 

p , t>~ i ( , i  <I t 1011 imd ( ollivoi~ d v t  c~ t I O ~ I  11ii1ig thtl IT orkspdc e 11iod~~l \)otli iiiutJi <ii P (115- 

cllisc~l 111 ~ , I I  grc.ater t l~ t a i l  L I ~ C I  111 t h r ~ ~ s  T h ~ v  i i ~ c  sepnrdtc.1~ ~ ) r r s ~ ~ i t e c l  111 t h ~ s  



CHAPTER 1. OVERVIEW 2 

thesis because, although both are important issues in robot path planning, the two 

issues are complementary. The  common link between the two is that  a generated 

workspace model would be passed to  the collision detection algorithm in an  actual- 

ized system; this was, unfortunately, not achieved due to  experimental delays in the 

project. However, path planning algorithms using CAD environments have been de- 

veloped a t  SFU (Gupta and Zhu 1995) and can be adapted to  use voxel maps such 

as those generated using algorithms presented here. The  thesis provides concrete 

evidence that ,  given more sophisticated hardware and further development, a fully 

integrated system using the concepts and algorithms described here is achievable. 

Generation of Workspace Models via Range 

Image Integration 

The first part of this thesis discusses the investigation of the use of laser range images 

in the generation of a workspace model. Specifically, multiple range images are taken 

from sufficiently different points of view and integrated via geometric calculations into 

a discrete "voxel map" or 3-d bitmap. The resulting voxel map, once all images are 

integrated, is the workspace model. Note that  the model is a volumetric model, not, 

a CAD model, for reasons given above. 

Chapter 2 provides a more detailed introduction on this subject, while Chapter 

3 discusses previous work in this field and introduces range scanning. In Chapter 4, 

the concepts behind range image integration, and in particular the integration system 

used for this thesis, are presented as well as the algorithms investigated. Chapter 5 

discusses the experiments performed and results obtained, and Chapter 6 presents the 

conclusions for this part. 

1.2 Octree-Based Distance Map Representation for 

Path Planning 

Part 2 o f  t . 1 1 ~  t.licxis invostigat,t~s t hc' iss~io of ilsi~ig volu~r~(>tric. workspacc~ ~riociels for. 

collisiori cic\tcc-tior~ arid ])at11 p1;mnirlg. l'rcvious cffort,~ ill t,llcl usc o f  ciistaricx> tn;ry)s 



CHAPTER 1. OVERVIEW 

for path planning (Latombe 1991) have shown promise, particularly in terms of per- 

formance, but have been less than ideal in terms of efficiency in memory use. In 

this thesis, an octree-based representation, the Octree Distance Map, is presented 

and shown to be (1) usable for collision detection and (2)  efficient in memory usage 

and collision detection performance. This part of the thesis is based primarily on an 

upcoming article in the Journal of Robotic Systems (Jung and Gupta 1997). 

Chapter 7 introduces this topic in greater detail. Chapter 8 provides background 

information about previous related work and about octree representations. Chapter 9 

presents the Octree Distance Map and algorithms for its generation and use in collision 

detection. Chapter 10 discusses the experiments performed using the Octree Distance 

Map concept, and Chapter 11 presents the conclusions drawn from the experiments. 

1.3 Contributions of Thesis 

This thesis has contributed in terms of both function and theory. The theoreti- 

cal contributions include the direct-mapping and peeling algorithms for range image 

integration, the concept of the octree distance map (ODM), and algorithms for creat- 

ing ODM's and using ODM's in sensor-based collision detection and path planning. 

Functionally, the thesis has produced an experimental system for the acquisition and 

integration of multiple-view range images. In addition, the above algorithms have 

been implemented and experiments have been performed using these algorithms. 



Part I 

Spatial Occupancy Recovery by the 

Integration of Range Images 



Chapter 2 

Introduction 

Most robot path-planning programs in the past have operated on CAD models of robot 

workcells, or on completely artificial environments (Latombe 1991). CAD models are 

simple representations, but obtaining a CAD model of a real environment based on 

sensed da t a  is quite difficult, simply because the modeling of complicated real-world 

objects using CAD primitives is a non-trivial problem. This problem, in fact, is the 

basis of a great body of research. An alternative to  using CAD models is to  build a 

spatzal occupancy model, tha t  is, a model which maps the volumes or spaces occupied 

by objects in the workcell. Such models are easier to obtain from sensed data  than 

CAD models. An example of a volumetric model is a binary voxel array. A voxel is 

a elementary volume (3-d) element, analogous to  a pixel in 2-d. By setting voxels in 

obstacle or object space to ON and voxels in free space to  OFF ,  the spatial occupancy 

model of a robot workcell is obtained. 

Acquiring information about a robot workspace can be accomplished in a number 

of ways, using many different types of sensors: sonar, video cameras, force sensors, 

and so on. One such type of sensor is the laser range scanner, which has the added 

advantages of direct three-dimensional information capture and high accuracy. How- 

ever, a single range image in most cases will not adequately describe a workspace, and 

therefore wc must 11sc multiple scans and find a wav to merge or fuse the r~sul t ing  

lrriagcl\ 11it o d 5iriglc rt~prcsc~ritatiori. 

T l i ~  1)roc c\ \  of ~ncq+ip, 3-D data  contained in m~lltiplc range i11iagcs into olic 3-11 

\ f o r  kip1c.c. rnodrl l i o i  in thc  realm of c o ~ ~ i p u t c ~ r  visiori I cw~arch Ho~wvc~l .  most 3 D I I -  

i1o11 r~\i>clrch has coricentrated on ohlect recognition aspect\ rather than workspace or 



CHAPTER 2. INTRODUCTION 

environment modeling. In object recognition, one is generally concerned with a single 

object and matching it among models with geometric descriptions. For the workspace 

modeling problem, however, the main concern is the actual spatial occupancy of each 

object - and there may be multiple objects - in the workspace; the geometric prop- 

erties of the objects are of interest only insofar as the effect of such properties on 

spatial occupancy. In addition, we have a contrast in the  ideologies behind the na- 

ture of the acquired models: object recognition deals with a model of a single object, 

whereas I am interested in a model of an  entire environment - both occupied and 

unoccupied spaces. Research in mobile robot navigation has dealt with mapping the 

environment, but  with different types of sensor systems, e.g., sonarlintensity images, 

and in different situations, e.g., on a different spatial scale. 

In this first part  of the thesis, I provide an  overview of previous related research 

in image integration. I briefly present the concepts behind range imaging, and then 

discuss the calibration processes required in our particular system for us to  obtain the 

proper transforms for range image integration. Next, I examine the actual problem 

of range image integration. I propose an algorithm, called peeling, which fuses range 

images from multiple views given the geometric transforms for those views. The result 

of the algorithm is a spatial occupancy model (in the form of a voxel array, a voxel 

being a single volume element) of the robot workcell; this model can then be input 

to  a path planner. I also take a look a t  another method of range image integration, 

direct mapping, which combines the images into a voxel array but provides only a 

surface modelling of the objects in the workcell, not a spatial occupancy model. I 

then describe the implementation of the prototype system and present results of the 

experiments. 



Chapter 3 

Background 

Range Scanning 

Many methods for obtaining 3-d da ta  exist. For instance, one can use sonar, which 

involves emitting sound waves and timing their return to  determine the distance of 

the reflecting surface. Stereo systems are common, a n d  exist in two varieties. The 

first uses two or more intensity cameras separated by a known distance. All of the 

cameras capture an  image of the same object or scene a t  the same time and,  based 

on the disparities between matched features in the multiple images and the geometry 

of the cameras, the distance to  points in the images may be determined. The second 

variety of stereo vision is called photometric stereo. Photometric stereo involves a 

single intensity camera, which captures images of a n  object or scene from different 

points of view (or images of a moving object). 3-d d a t a  is again calculated using 

disparity of matched features and geometry. Shape d a t a  can also be approximated 

from single intensity images through shape-from-shading - inferring 3-d data  from 

light intensity gradients. 

The method used in this thesis, laser range scanning, produces 3-d da ta  in the 

form of r m g e  im,o,ges. A range image is a 2-d image whose pixels have values relative 

t'o thr  range (or distance) between the scanned surface and some reference point. 

Figure 3.1 pro~.ides an example of t,he inforrnat,ion contained in a rangc image. 

L;isor ~.i\lig(' sca~i~i i l ig  has a n111ril)er of adv;mtagc>s over t,hv ;11)ov0 ~rlc%hocls: First. 

110 f~;rtllrc~ rllatc~liirig hctwcwi ir1iagc.s is rcqliirccl. as l o ~ i g  as t l iv gcoriic~tric tr;liisf'orl~l;~- 

t ioi~s I ) ( > ~ M W I I  (la(.li scit~i~ler position arc. kllow~i. Second. only onr. camera is rrquirecl. 
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range image 
reference point 

camera object 

light intensity image range image 

- darker pixels indicate less - darker pixels indicate shorter 
illumination of surface distance to reference point 

Figure 3.1: Example of a range image vs. an  intensity image. 

Third, no special lighting conditions are required, as long as the camera may discern 

reflected laser light from ambient lighting. Fourth, colour differences on the surface of 

an  object do not affect accuracy (with certain exceptions: black, for example, tends 

not to reflect light very well and thus our laser scanner has problems with black sur- 

faces.). Finally, and most significantly, the range image obtained from the laser range 

scanner contains explicit and highly accurate 3-d data  - no further manipulation of 

the image is required. 

Two types of range scanners are most common: tzme-of-flzght scanners and light- 

stripe scanners. Time-of-flight scanners use a principle similar to sonar: a pulse of 

laser light is emitted and the time required for it to hit and be reflected by a surface 

is measured. These scanners arc extremely accurate, but also extremely expensive. 

Light-stripe or Whzte scanners are slightly less accurate and thus less expensive. Our 

White scanner has two components: a laser source and a CCD camera. The laser 

source has two mirrors: a spreader mirror, and a d ~ r e c t o r  mirror (see Figure 3.2) 

The spreadtr mirror oscillates quicklv, such that when laser beam contact5 it. the. 

mirro~ rcfloct s tlic hcam at various angles, thus creating tlic light plane. Thls p h c  is 

r l l c ~ i  ~ ) o ~ t  ioiicd 111 t l i ~  director mirror t o  f < ~ l l  orito tllv 5111 f < ~ c ~ i  to 1)c 1i i i+ ,~( l  It'lic111 

t ] I ( >  hght l ) l i ~ n ~  111ti n \urfdc c ,  thcl rcslllt is d light itrllw 011 t l l ~  s~lrf~lc c l .  ivliic h 15 
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imaged by the CCD camera (see Figure 3.3). If there are variations in the height 

of the surface, these variations will show up  on the image as  a displacement of the 

light stripe. By previously measuring parameters such as  the angles and heights of 

the laser and camera from the surface (thus defining the geometrical situation), the 

heights of the variations may be calculated from the image. An area scan of an  entire 

scene can be performed by having the director mirror gradually step the laser stripe 

across the complete scene. The image of the stripe is passed from the CCD camera to 

a frame grabber, which digitizes the image. T h e  digitized values are then fed into a 

computer, which calculates the range (distance) to  each scanned point. Accuracy can 

be improved by taking repeated scans for a given position and averaging the range 
---C - ----.- ----..__ _ . _ __".________ " _ __ - - -- 

values associated with each point. 

spindle oscillates spreader 
rnlrror to create light plane laser 

spreader 
mirror 

l~ght plane 

spin, 
step 

dle steprotates dir 
hght plane across 

'ector to 
scene 

Figure 3.2: The spreader and director mirrors on the White scanner 

Previous Work 

A grcat deal of active rcsearch cxists in thc area of imagt integration UThiSc mr- own 

contentration has been the integration of range images onlv. manv rtwarchers h a w  

l n \ ~ ~ s t i g d t ~ c ~  fuilng rdngc dnd lntensitv data  i l l  the saiilr i~ste111, arid the l~ltcgrdtiori 

of otl~(li i v 1 ) w  o f  ( Ia t<~.  \11(11 \oriCIr. ~ I O I I I  111iic11 3 (1 \ t 1 1 i i t 1 1 1 ~  nicl\ I J O  ol)tCli~~o(l 

For ~ r~s t ; t r i c~ \ .  Asacia (-4sada 1990) corril)i~ies 110th in t cn i~  t~ and rang(' (IC] ta to h~iild 
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laser and 
mirrors 

image captured by 
camera 

Figure 3.3: Operation of the White scanner. 

environment maps for a mobile robot. The method in this paper uses a single r a s e  - 
image to produce a "height map" which represents the environment in 3-D. This 

height map is then segmented and used with intensity da ta  to identify and classify 

the obstacles located in the image as  artifical objects (objects with planar surfaces), 

natural objects, or uncertain. Unfortunately, the approach is limited to mapping 

convex, floor-mounted objects. Grandjean and Robert de Saint Vincent (Grandjean 

et al. 1989) have proposed a method for fusing both range data  from a laser range 

scanner and photometric data  from a stereo (intensity-image) system. Its results, 

scene descriptions consisting of a set of planar faces, is more suited for polyhedral and 

geometric modeling. The method uses "extended Kalman filtering" to  fuse lower-level 

primitives (points/pixels) into higher ones (3-D lines, planes) and for calibrating the 

transformations between reference frames. Leonard and Moran (Leonard and Moran 

1992) describe a geometric approach for the integration of sonar data  in order to 

reconstruct underwater 3-D scenes. They use an  approximation of the geometrical 

characteristics of high-frequency acoustic scattering to try to recover explicit geometric 

surface descriptions of objects. 

In range image integration research, one can easily identify two main areas of 

concentration: (i) the production of a geometrical or CAD model, and (ii) the pro- 

duction of a spatial occupancy model in the form of a voxel array or octree. (Octrees 

,\rcl dismsscd in detail in the second part of this thcsis.) The largest 11od~- of work in 

image intcgratioii, particularly in range image integration, deals with thc  cx t rx t ion  

of' georriet,rical models from fused images. These models are generally the11 used for 

ol) . joc . t .  rc>coguitio~i a.nd pattern rriatchirlg, or to build CAD rnodels of ol).jects. Thc~ 
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proposed usually involve some form of segmentation or feature extraction. 

For example, Succi and others (Succi e t  al. 1990) describe a system for extracting fea- 

tures from a sequence of range data.  The  system performs volumetric integration on 

the range data ,  and then detects planes and  vertices from a "Polynet" 3-D superficial 

representation built from the volumetric one. Stenstrom and Connolly (Stenstrom 

and Connolly 1986) generate polyhedral wire frames from multiple range images by 

extracting line segments from each view, and then transforming them into a global 

frame. Herman (Herman 1985) produces descriptions of polyhedral objects from range 

data,  in the form of 3-D primitives (vertices, lines, planes, etc.) as well as topological 

and geometric relationships. Yao and others (Yao, Podhorodeski, and Zuomin 1993) 

present a multiple-view range image integration method based on partial geometric 

modeling for each range image. A global model is updated after each partial model is 

generated, with the final result being a complete 3-D geometric description of objects 

in the scene, once all the range images have been considered. There are many other 

such examples, as well as examples of raw range da t a  processing for object recognition 

(e.g., Lin and Wee (Lin and Wee 1985) apply a generalized Hough transform on range 

data  in order to  recognize or locate 3-D objects). 

Stenstrom and Connolly (Stenstrom and Connolly 1992) demonstrate a method for 

producing solid 3-D models from multiple range or intensity images, or from digitized 

line drawings. For each image, the algorithm first finds all pixels which form part 

of an  edge and groups these into chains. Next, 1-cycles, or sets of edges where each 

endpoint is common to only two edges in the set, are located from the edges identified 

in the image. Each 1-cycle defines a finite area in a plane. 1-cycles are then extruded 

orthogonally in the view direction from the image plane's physical position to produce 

cycle ~ i o l u m e s  or 2-cycles. (2-cycles are defined as a set of faces where edges of faces 

are incident on only two faces in the set, and cycle volumes are 2-cycles formed by 

the extrusion of 1-cycles.) Cycle volumes from multiple views are then intersected 

to obtain a bounding volume for the object in question. The end result is a closed 

2-cvclc ohjcct rriodcl which fully bounds the object and approximates the ot~jcct  ha. 

a plCiliar \ohd 

P r r l  loui nor l\ ,it Sirnor1 FI aser lJnivcr\itv iiivolviiig the integration of Iaiigc iir i-  

rtg+ i i  ( Io(1i11i i~nt~~1 111 (Xu 1992'1 Xu generates '1 3-D lmliridnry iepreseiltatiol~ or 

h-rcp clcvript~on of a polvh~dral  o b l i ~ t  1)v fusing mliltrplr \vnthrtic range iniagcs of 
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the object, taken from multiple viewpoints. In his approach, the rigid-body transfor- 

mations between each view are first determined through a matching algorithm which 

identifies and relates trzple branch structures (structures containing an object's par- 

tial ,geometric information, formed by three intersecting and noncoplanar edges) in 

the range images. Once the relationships between the views are known and the fea- 

tures (vertices, edges, and faces) in each view have been identified, the features are 

transferred to  a global reference frame based on the rigid-body transformations. Du- 

plicate features are checked for and removed. The  resulting geometrical b-rep model 

is a list of vertices (and their x - y - z coordinates), a list of edges (with start  and 

end vertices and bordering faces), and a list of faces (with a list of vertices for each 

face). These three lists provide a complete description of a polyhedral object. 

The second main branch of range irnage integration research, the generation of 

volumetric or spatial occupancy models (such as  voxel maps or octrees) from multiple 

range images, has also attracted attention from researchers. Some methods used 

for range image integration have been derived from earlier efforts using intensity 

images. An early example is (Martin and Aggarwal 1983), which discusses a method 

for obtaining models of three-dimensional objects in multiple intensity images. In 

each image, the occiudzng contour of the object is determined; the occluding contour 

is the boundary in the image plane of the silhouette of the object, with the silhouette 

generated by intensity-thresholding the image. Another way to conceptually define 

the occluding contour is to look a t  lines parallel to  the line of sight or optical axis. By 

taking only those lines which tangentially intersect the object surface and are parallel 

to the view direction (e.g., the y axis), and intersect them with the plane perpendicular 

to the view direction (in this case, the x - z plane), we obtain the occlilding contour 

of the object. These lines, called contour generatzng lznes, form an infinite volume 

which encloses the object. By intersecting the volumes generated for each view, the 

bounding volume of the object may be obtained, and by using common raster lines 

to segment each contour, this bounding volume is split into parallelograms. These 

~)arallclogra~ns arc then themselves rasterized to obtain the lint segments whicli form 

thr \.olilrnc scgrricrit rcpresentatlon i ~ s c d  here 

Pot rrlrsil (Potrric~sil 1987) discxsscs the gerlrr~tiori of o c t r ( ~  111od~~ls of 3-D o l ~ j ~ c t s  . 
flo111 \~lliolle~ttc~\ 111tc~11sit~ imrlg(\s r i r ( '  e; i l ) tu~~vl  f101ii ni~ilt i l) l(~ \ l ( ' i v i  T l i (w~  111i~ig~i  

;LIT tli(w thrc~sholdcti in ortlcr t o  isolate thc objccts frorn the. background. ~ i i inq  a 
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threshold level determined from a histogram of the image, and thus obtain silhou- 

ettes. (The assumption is made that  high contrast exists between the objects and the 

background.) T h 2 - D  silhouettes are then converted into 3-D conic volumes: using 
---- -- _ ___ . _- - ___I_-- --- - - .- .- - -- 

the 4x3 perspective transform matrix for the camera (computed by camera calibra- 
i/ - d 

&n), recursively project each octree node into the image plane (thereby producing a 

2-D "image" of the octree node cube) and determine if the octree node image (actu- 

ally, its bounding rectangle) falls within the silhouette regions earlier determined. (If 

a node intersects both object and background regions, the eight leaf or child nodes of 

the parent branch node are then recursively considered.) This intersection of the oc- 

tree node image with the image regions involves converting the image into a quadtree. 

The smallest quadtree node which encloses the octree node image is then recursively 

intersected with the octree node image to  determine the  contents of the octree node 

image. The  result of this complete algorithm is a partial octree containing nodes 

which make up the conic volumes produced by the silhouettes obtained for one par- 

ticular view. All partial octrees are then intersected, along with a n  octree designating 

the unseen volumes, to  determine the complete model octree. One should mention 

that object concavities may not be represented using this algorithm. 

Noborio and others (Noborio, Fukuda, and Arimoto 1988) present an  algorithm 

for producing an  octree representation of a workspace from multiple intensity images. 

This algorithm has a similar methodology as (Potmesil 1987) in making use of 3-D 

conic volumes, or "polyhedral cones", defined by the polygonal contour of the object 

image and the viewpoint for each view, and intersects these polyhedral cones using 

volume intersection. (Although it is not mentioned in the paper, it must be assumed 

that  the perspective transform for each view is known in order to generate these 

cones.) First, the algorithm classifies each octree child node of a parent node as being 

inside, intersecting, or outside each polyhedral cone. This is accomplished by first 

checking points on the cubic region defining the node against the view cone surfaces. 

Inters~ct ing nodes are subdivided into their eight child nodes and reclassified. Next, 

the algorithm intersects a11 of the view cones by recursively checking a11 "inside" 

node:, (from the first step) to see if they lie inside, outside, or intersect tht. "commo~i 

r(>gio~i" jt l lc> ~ml~ ln l c~  intc>rwcted i ) ~ .  all view C O H P S ) .  Sode \  ivl i ic l i  :i1c1 %sid(>'' for 

('\.(m poi~,lirclr a1 ( 0110 ;II r >  t1irrrfo1.c. "insid(>" t l iv  c o ~ m i o ~ i  wgioli. t liosr. n 11 I (  11 a1 c' 

' loilt~ide'' for an\- orlc cone arc outsitlc the cornmoll rcgio~i Again. i~ltorsccti~lg c lodes 



CHAPTER 3. BACKGROUND 14 

are subdivided and reclassified. Once the octree has been completely classified versus 

the common region, the nodes in the common region are output.  Again, this algorithm 

may lose object concavities and an  assumption must be made that  each view contains 

all the objects or useful workspace. 

Ahuja and Veenstra (Ahuja and Veenstra 1989) also generate octrees using sil- 

houette images of an  object. The images must be obtained from a subset of thirteen 

pre-determined viewing directions, severely limiting flexibility. In their experiments, 

they obtained simulated silhouette images of several geometric objects (generalized 

cones). For each image, depending on from which viewpoint in the subset it was 

viewed, a n  octree is generated. All of the octrees are subsequently intersected to  

produce a global octree. 

Roth-Tabak and Jain (Roth-Tabak and Jain 1989) present an  algorithm to  gener- 

ate a 3-D voxel-based environment model from simulated dense range images. Rather 

than simple binary (on-off) voxels, this algorithm uses voxels with three states: Void 

(off), Full (on), and Unknown (for voxels for which no meaningful information has yet 

been acquired). Starting with a model of completely Unknown voxels, the algorithm 

checks every non-void voxel within the scope of the sensor as  follows: 

1. The three-dimensional coordinates of each vertex for the voxel are found. 

2. For each vertex, the pixel in the range image corresponding to the vertex's 

position (found by view-transforming the vertex coordinates) is identified. 

3. If the distance of any vertex is smaller than  the range of any corresponding 

range image pixel, the voxel is marked Void. 

4. Otherwise, if the difference in range between the pixels corresponding to the 

vert,ices is within a threshold, the voxel is marked Full. 

Thus. for each voxel to be classified, the algorithm makes up to eight range compar- 

isons (on(. for ~ x h  l7ertex of the voxel), in additlion to  view-transforming each vertex 

and  t,ilrcdiolding. Oln4ously. t,liis algorithm rcql1irc.s an cxtrcme ;trrio~lnt of proems- 

irig fo~ .  largv arra!.s of ~ m c l s .  (The size of a r r w  lisrtl in tht. papc'r is G3xG4xlG.) Tliv 

wtisor~ f o r  this is 11iat this 111ot,11od ass11rncs t11at t:ach ~ o x ~ l  o c c ~ i p i w  a firlit,() Y O ~ I I I I I V .  

In co~ril)arison, most algorithms, including the t,wo preseritcd i r l  this thcsis. xislunr. 
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that  each voxel is a single point in space ( that  point in space being the centroid of 

the voxel) and thus requires only a single range comparison to each reference point. 

(As we see in Chapter 4.3, the direct mapping  method has one reference point, while 

the peeling method has two.) 

Sharma and Scrivener's work (Sharma and Scrivener 1990) is very pertinent to  

my research. This paper discusses an  approach for constructing 3-D object models 

using video (intensity) images from a scene (although no actual images are used for 

the paper). From these images, their approach involves deriving so-called "2;-D 

sketches". (They do not actually derive these images, but  rather assume tha t  such 

sketches can be accurately derived from images and obtain simulated 2;-D sketches by 

creating a 3-D mathematical model of the geometry of objects in a scene.) The  2;-D 

sketch is considered as  an  image with depth information for every pixel in the image 

- essentially, a completely-dense range image derived from a video or intensity image. 

With multiple 2;-D sketches from different points of view, they introduce their 3-D 

model construction scheme - a "chipping" process which removes unwanted pieces 

from a block of voxels. The  process sounds very similar to  the "peeling" algorithm 

we propose, although without an  explicit description of their process in the paper, 

comparison is difficult. However, we may compare topic areas: our project involves 

actual range data ,  rather than simulated 2;-D sketches, and therefore must take into 

account the real-world aspects of the scanning system, e.g., separated camera and 

light source; we also use a linear octree to  represent our data ,  thereby producing a 

more memory-efficient model; our project is application-oriented, its results required 

to be suited to path-planning, and thus is more concerned with modeling environments 

than objects. 



Chapter 4 

Range Image Integration 

4.1 Description of System Components 

The prototype system used for multiview range scanning and range image integration 

consists of four main components (see Figure 4.1): 

range scanner 

robot 

image capture computer 

image integration computer 

image capture 
a a a a  'Om 1 (X36 &,?ith 

(laser and wdeo d~git~zer 
CCD camera) and Technical 
w I Arts software) I 

scanner I 
mounted on I 

robot 1 I processed 
range Images * 

PUMA 560 robot poslt~on image integration 
robot and transforms computer 

UniMate ). (Sun workstation 

controller with integration 
software) 

Thv r a ~ i g ~  s ( . ; I T ~ I ~ P ~  is 21 T~( . I i~i ica l  A r t s  Corporation IOOAT Wllit ,~ sc~ar inr~r .  Thc~ 
- - .  -. - -. . -.. 

--__I 

.~('dllll( ' l~ i t ~ ( ~ 1 f '  !l:l.q till.('(' ~ 1 1 ~ ) ~ ~ 0 1 ~ 1 ~ ~ 0 ~ 1 ~ ~ 1 1 ~ ~ ~  21 !il~('l' sollrc(>. CAUi('r:I. iill(1 A (iirfl(,to~- i~ io( j -  
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10mW. This laser is admittedly somewhat more powerful than is required for my pur- 
L... - 
poses, although the extra power may be useful in later extensions of this work - for 

instance, the scanning and modeling of larger workspaces. Spreader and director mir- 

rors have been attached to the laser source to  allow for area scanning (see Section 3.1). 

The second subcomponent of the scanner, the camera, is a Sony_C-75 CCD camera 
---. _ 

with a Schneider lOmm lens. The camera is especially sensitive to the laser light, 

thus capturing the image of the laser line intersecting objects in the workspace and 

transmitting the image to  the image capture computer. The third subcomponent, the 

director module, contains the power supply for the laser and circuitry for control of - - 
the director mirror. The absolute accuracy of this scanner when properly calibrated 

is better than 1 part in 1000, or 0.1%. The accuracy of scanning and calibration is 
.---- 

increased by taking multiple scans for each position of the laser line and averaging 

the range values obtained. Five scans are averaged for each laser line position during 

calibration, while fifty are averaged during scanning. 

In order to  use the scanner from multiple views, the scanner is mounted on a 

PUMA 560 robot, the second major component in the system. The scanner is mounted 

on a beam attached to  the wrist joint of the PUMA (see Figure 4.2). Four degrees of 

freedom are available for movement of the scanner: the waist, shoulder, elbow, and 

one wrist joint. Programs and commands for controlling the PUMA are entered on a n  

SGI workstation, which sends the appropriate signals to  a separate PUMA controller. 

The PUMA may also be controlled by issuing commands on a teach pendant. From 

testing, PUMA positioning is accurate to approximately III lmm.  

The image capture computer, the third major component of the system, is a n  

80386-based P C  with a digitizer - .- ----- board for image capture. A second -. interface board -- 

in the computer controls the spreader mirror. Software on this computer operates - -  - 

the scanner, performs calibration, and calculates range values for the data  points 

obtained with the digitizer. The scanned range images are stored in binary files on 

the computer's hard drive. // 
The binary range image files are then converted into ASCII dat+for use by the 

image integration computer, the fourth major component. The image integration 

routines are written for Sun workstations; however, one may remotely connect to  

a Sun through the SGI workstation which controls the PUMA. Because the image 

capture P C  and the SGI workstation are currently separate, the ASCII range data  
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urn support beams 

Figure 4.2: Mounting of the scanner on the PUMA wrist joint. 

must be ported to  the workstation by floppy disk. In the future, however, the two 

computers may be connected by an interface such tha t  the range scanner may be 

controlled on the SGI and range data  may be directed fed into the SGI. 

4.2 Relations of System Transforms 

4.2.1 Notation 

This section describes the relationships of the various geometric transforms between 

different components of the range scanning and image integration system and different 

positions of the scanner and PUMA. The notation used in this thesis for geometric 

transforms is as follows: Assume we have a base reference frame, P (see Figure 4.3). 

If we wish to express the transform to obtain a second frame S relative to  P, the 
P 

notation would be: 

Additionally, a point X may be expressed relative to frame S with the following 
S 

notation: X. We may then obtain the coordinates of point X expressed with respect 
P P S 

to the base reference frame P: X = T X 
S 
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Figure 4.3: Notation used for designating geometric transforms. 

4.2.2 Calibration of the Laser Scanner 

In relating the transforms of the system, we must consider two separate issues: cal- 

ibrating the laser scanner, and relating the PUMA to the scanner. Calibrating the 

laser scanner allows us to  obtain accurate range measurements in the range images. 

As we shall see later, scanner calibration need only be performed once for a given set 

of multiple view range images, provided the positions of the laser and camera are not 

changed with respect to each other. 

The laser scanner involves three separate components: the laser unit, the CCD 

camera, and the calibration gauge supplied by Technical Arts. When these three 

components are properly aligned and certain parameters (laser angle, camera angle, 

laser height, camera height, and gauge dimensions) entered into the control program, 

a calibration routine is executed. Briefly, the routine analyzes the image of the laser --- - - - 

line on the calibration gauge and, based on the parameters entered and the expected 
" ---L 

-/ -- - - -- 
shape of the calibration gauge, fixes the location of the range image reference frame 

_. _ _ _- _.--- - - - 
(which we shall call Go. As illustrated in Figure 4.4, the Go frame is fixed on a 

corner of the gauge (when the edge of the gauge is lined up with the first scan line); 

the z-axis is vertical, the y-axis is along the direction of the scan line, and the z- 

axis perpendicular to the scan line. As the scan line is stepped in the x-direction, 

the calibration routine uses the shape of the image to determine the correct (x, y, z )  

coordinates for each step. 
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Figure 4.4: The transforms used in the scanner system. 

4.2.3 Relating the PUMA to the Scanner 

We can change our view by changing the position of the PUMA arm, and a t  each 

new position, we can obtain the transformation a t  that  position from the PUMA 

controller. This transformation consists of the X, Y, and Z coordinates and the 3 

rotational components of a tool reference point. These coordinates and rotations 

are with respect to  the PUMA'S base reference frame, which we'll call P. Let's call 
P 

the tool transformation a t  position i, T. Now, let's say the transformation a t  the 
Si 

P 

initial position, where the laser scanner is calibrated, is T. In other words, a t  the 
so 

P 
transformation T, the image exists in the base frame G o .  However, we also need 

so 
to establish relationship between the PUMA position and image space in order to 

locate the range image information with respect to the PUMA. This is the second 

issue in relating system transforms - linking PUMA to the physical space that  has 

been related to the image space by laser scanner calibration, and in so doing, linking 

PUMA to the image space. 

To accomplish this, we have considered a number of alternatives. A rough estimate 

should be attainable by manually measuring the translation and orientation difference 

of the point on the scanner calibration gauge corresponding to the origin of G o ,  with 

respect to the base of PUMA, where the base frame of PUMA, P, resides. This 
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locates Go in the global reference frame that  is located a t  the base of the Puma, 

and so links image space to the global frame. Another more accurate method would 

involve measuring the relationship between a number of separate points on the gauge, 

obtaining the relationships by touching them with the PUMA moving a pointer of 

known translation from the tool transformation reference point and doing an error-fit 

to determine the best transformation to the origin of G o .  Let's assume that ,  through 
P 

one of these methods, we obtain the relationship of P to  Go, which we'll call T. 
G 0 

A point in frame Go can be expressed in terms of the frame P by transforming it by 
P Go 

T. Thus, for a point X in the space defined by Go, 
G 0 

P Go P 
T X =  X 

G 0 

P 
where X is the point X expressed in the P frame. 

We should next mention how these relationships are used for integrating multiple 

views. We obtain a second view by moving the PUMA to  a position S1, with trans- 
P 

formation T. The second range image we obtain would be in a new image space, s 1 
with frame G I .  In order to relate the image points in G1 back to the Go frame, we 

Go 
must find the correct transformation G I T .  If we look a t  Figure 4.4, we see tha t  this 

transform can be obtained by following the transform path 

Note tha t  with the scanner a t  S1 using the same scanner calibration as that  for 

the scanner at So, the geometry between the scanner position, i.e., S i ,  and the image 

frame Gi must remain constant. In other words, 

Thus, 

Go 
We can express this in terms of measurable transforms. T is directly measurable 

P 
(see Appendix A), while T is provided by the PUMA controller. The relationship 

s1 
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s o  
T can be obtained from the transformation for So  from PUMA and the measured 

G 0 
relationship between P and Go:  

So, in terms of measurable transforms, 

Go G 1 

Using T then, we can relate a point X' in the image frame G I  into the 
c. - 1 

Go P 
corresponding point X' in the image frame Go, and finally into point X '  in the 

PUMA base frame P: 

This system is expressed pictorially in Figure 4.4. (Note tha t  the X and Y axes on 

the scanner calibration gauge frame G o  have been swapped from the X and Y axes 

used by the scanner in order to maintain consistency in orientation with the PUMA 

P frame.) 
P 

Because we have the relationship of P to  Go, i.e., T, we can relate images in GI 
G 0 

(and images in subsequent views in image frames G i )  to  the global reference frame 
G 0 

P, simply by transforming images in Gi back to  Go by calculating T for each Gi. 
Gi 

4.3 Image Integration Methods 

4.3.1 Overview 

A number of factors characterize the range image integration problem presented in 

this thesis: 
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1 .  Transform availability: The geometric transforms between each view (or 

between each view and the base reference frame) are available, thus providing a 

simpler problem (and more accurate solution) than if transforms needed to  be 

derived based on the sensed range data .  

2.  Voxel-map integration: The range images are integrated directly into a voxel 

map, unlike some approaches which segment range images in order to obtain a 

geometric model. 

3 .  Two-component scanner: As explained earlier, our scanner is a two-component 

system, with each component in a separate location. Many other range scanners 

have both components a t  the same or nearly the same location. This factor is 

particularly important when the peeling algorithm is discussed later. 

4. Path planner suitability: The prime focus of the range image integration 

project is the production of a model suitable for use by a path planner. Because 

the path planner does not care about the geometric properties or finer details 

of the objects in the workspace, we need not have an exact representation of 

each object; merely their spatial occupancy (i.e., size and location in space) 

need be accurate. However, the objects should be represented as "filled-in" or 

solid volumes rather than surface shells, in order to avoid non-collision positions 

within objects. In addition, unscanned areas must be treated as obstacles: 

without knowledge of the contents of these areas, the planner should avoid 

them. 

With these factors in mind, two separate integration algorithms were investigated: 

(i) direct mapping  and (ii) peeling. The two methods, which are explained in detail in 

this chapter, differ in the way they interpret the range da ta  in each image and in the 

nature of the resulting integrated models produced by each method. As we shall see, 

the peeling algorithm produces a model more suitable for a path planner, though the 

direct mapping algorithm is useful for verification of correctness of the transforms. 

4.3.2 Direct Mapping 

The direct-mapping algorithm is so named because it maps pixels in range images 

directly into our voxel map (3-d bitmap). In other words, if a pixel in a range image 
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contains depth information, that depth information is used to determine the location 

of one (and only one) voxel in the voxel map -- that  voxel being on the surface of 

an object or obstacle in the workspace. The direct mapping algorithm thus creates a 

surface-map model of the workspace. 

Below is a high-level algorithm for direct mapping (calculation of PUMA-to-image- 

frame transforms was explained in the Calibration chapter): 

Main routine: Direct-Map 

Input: 

array of images Image[] 

number of images Num-Images 
P 

array of matrices Transform = PUMA-to-image-frame transform for each image ( T )  G i 

Output: Voxel array representing workspace VoxArray. 

1. Initialize all voxels in VoxArray to  OFF 

2. For n = I to  N u m J m a g e s  do: 

(a) Search incrementally in x and y (relative to  range image frame) in range image Image[n] 

for a pixel with a valid range value (z) 

(b) For each such pixel, do: 

i. Let Vector = [x, y, z] be the range image pixel converted to  a vector in the range 

image frame 

ii. Let PUMA-Vector = Transform[n] x Vector be the vector transformed into the 

PUMA frame 

iii. Locate the voxel in VoxArray corresponding to  PUMA-Vector and set it t o  ON 

iv. Evaluate next pixel in Image[n] (go to  2a) 

(c) When all pixels evaluated, go to  next range image (go to 2) 

In the voxel map, the direct mapping algorithm produces thin shells, a few voxels 

thick, that represent surfaces scanned in the range images. By viewing the results of 

direct mapping, the correctness of the "fitting" of the multiple-view range images can 

be determined - if correct, one should be able to  distinguish the objects that  were 

scanned. However, the objects are not represented in a solid fashion. The object 

surfaces (if scanned) have representation in the voxel map as thin shells, but the 



CHAPTER. 4. RANGE IMAGE INTEGRATION 2 5 

interior of the objects are not represented. In addition, the areas that  have not been 

scanned in our range images (the "unknown" areas) are not mapped to the voxel 

map; hence, these areas are considered to be empty space rather than as obstacle 

areas to be avoided. These two drawbacks indicate that  the direct mapping algorithm 

is unsuitable for generating models for path planning. 

4.3.3 Peeling 

The peeling algorithm is an attempt to overcome the drawbacks of direct mapping. 

The concept of peeling is similar to that  of woodcarving: starting with a completely 

filled voxel map (solid block of wood), range images are used to peel away voxels 

known to be in free space (chip away wood), so that  the remaining voxels represent 

the workspace model. The underlying basis for the peeling algorithm is that  each 

range pixel (i.e., a range image pixel that  has a range value) provides two pieces of 

information: (i) the location of a point on an  object's surface, and (ii) that  points in 

space between tha t  surface point and the laser, and between the surface point and 

the camera, are free: a scanned point corresponding to the range pixel must have 

had the laser beam hit it and must have been seen by the camera. Therefore, by 

starting with a completely voxel-filled workspace model and, for each scanned surface 

point, removing voxels from the model along the vector from the surface point to  

the laser, as well as the vector from the surface point to  the camera, an accurate 

workspace model is achieved (see Figure 4.5). The positions of both the camera and 

the director mirror on the scanner must be measured relative to  some known point 

(e.g., the robot's tool center point). Note that  range image pixels with no range value 

(i.e., unscanned points) are not mapped to the voxel array; thus unscanned areas are 

left unpeeled and treated as obstacle areas. 

Below is a high-level algorithm for peeling: 
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voxels along 
these spans 
are "peeled" 

peeling (removed) 
direction # peeling 

direction laser) ..."'b (towards 
---sJ / \ &----- camera) 

completely 
voxel-filled) 

Figure 4.5: The peeling technique for range image integration. 

Main routine: Peel ing 

Input: 

0 

0 

0 

0 

array of images Image 

number of images N u m J m a g e s  
P 

array of matrices T r a n s f o r m  = PUMA-to-image frame transform for each image 

locations of the laser LaserPos and camera C a m P o s  with respect t o  image frame 

Output: Voxel array representing workspace V o x A r r a y .  

1. Initialize all voxels in V o x A r r a y  to  ON 

2. For n = 1 to N u m J m a g e s  do: 

(a) Let LaserPosT = T r a n s f o r m [ n ]  x LaserPos be the transformed laser position relative 

to  PUMA frame 

(b) Let C a m P o s T  = T r a n s f o r m [ n ]  x C a m P o s  be the transformed camera position relative 

to PUMA frame 

(c) Search incrementally in x and y (relative to  range image frame) in range image Image[n]  

for a pixel with a valid range value (2) 

(d)  For each such pixel, do: 

i. Let Vector = [ x ,  y ,  z ]  be the range image pixel converted to  a vector in the range 

image frame 
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ii. Let PUMA-Vector = Transform[n] x Vector be the vector transformed into the 

PUMA frame 

iii. Let LaserPeelDir = LaserPosT - PUMA-Vector be the peeling direction to- 

wards the laser 

iv. For all voxels between the endpoint of PUMA-Vector and LaserPosT in direction 

LaserPeelDir: 

A. Turn voxel OFF 

v. Let CamPeelDir = CamPosT - PUMA-Vector be the peeling direction towards 

the camera 

vi. For all voxels between the endpoint of PUMA-Vector and CamPosT in direction 

CamPeelDir: 

A. Turn voxel OFF 

vii. Evaluate next pixel in Image[n] (go to  2c) 

(e) When all range pixels evaluated, go to  next range image (go to  2) 

The peeling technique is highly dependent on the choice of views of each scan: in 

order to effectively remove "noise" voxels, the views must encompass as much of the 

scene as possible. Hence, multiple scans of the same surface (from different points of 

view) may be required in order to  reduce noise and increase the effectiveness of this 

algorithm (the direct-mapping algorithm requires only a single scan of a surface - with 

data  of reasonable density - in order to  represent tha t  surface). As the number of 

scans is increased, processing time is likewise increased, as is memory usage. However, 

the resulting voxel map is suitable for path-planning applications in that  objects have 

a solid representation and unknown areas are represented as obstacle space. 

4.4 Experiments 

For the experiments, a number of objects (shown pictorially in Figure 4.6) were placed 

in the robot workcell and scanned from multiple views using the range scanner system 

described earlier. The range images obtained are shown in Figure 4.7. Using software 

on the Sun workstation platform, the range images were integrated using both the 

direct-mapping and peeling algorithms; voxel map files were generated in both cases. 

The voxel maps were viewed on an  SGI workstation; screen snapshots were taken 

for both the direct-mapping and peeling results and are shown in Figure 4.8 and 

Figure 4.9 respectively. Each voxel map has been framed by a wire-frame cube to 
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show, generally, the 3-d orientation of the voxel map. The dotted areas in each 

snapshot indicate voxel-mapped areas, i.e., obstacle areas. 

Figure 4.6: A schematic of the objects used in the experiments. 
reference for voxel map results only. 

Axes are used as 

The results for direct mapping (Figure 4.8) show the correct shape and position 

of the objects. However, as stated previously, the voxel maps generated by the direct 

mapping algorithm are shell representations of the objects in the workcell. Such rep- 

resentations may be useful in some circumstances, but if proper solid representations 

are required, the raw results of direct mapping cannot be used. A possibility is to 

solidify these shell representations using some sort of fill algorithm starting from their 

center, but other problems arise, the most significant of which being that  gaps in the 

range da ta  (due to occluded surfaces, unscanned surfaces, or surface properties which 

prohibit or limit scanning) would cause such a fill algorithm to function incorrectly. 

A much greater shortcoming of this technique, however, is that  one cannot tell which 

areas are unscanned simply by looking a t  the voxel map. For a path planner, these 

areas should be avoided (i.e., treated as obstacle, not as free space) because their con- 

tents are unknown - these unscanned areas may contain objects which are unknown 

to the planner. 

The results for the peeling algorithm (Figure 4.5) show the two advantages of 
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this algorithm over direct mapping: that objects have a solid representation, and 

that unscanned areas are mapped as obstacles. They also, however, show a possible 

problem: that  without a sufficient number of range scans of wide enough field of 

view, large numbers of extraneous voxels are left in the voxel map, enough to obscure 

the actual objects in some cases. (Of course, using 2-D images to depict a 3-D 

environment - especially one being represented as individual voxels - results in even 

greater obscurity.) 

The advantages of peeling - tha t  is, representation of object areas as  solids and 

representation of unscanned areas as obstacles - are extendable to  situations where a 

greater number of range images of wider range may be obtained and integrated using 

more powerful hardware than was available for this thesis (and more readily available 

today). Obviously, the resulting voxel maps for these situations would contain far 

fewer extraneous voxels and thus higher definition of object areas (lower obscurity). 
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Figure 4.7: Range images used for integration. 
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+x, -y cube planes closest to  viewer 

+x, +y cube planes closest to viewer 
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+y cube plane closest to viewer 

+z cube plane closest to viewer 
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Chapter 5 

Introduction 

Dzstance maps (also known as distance transforms or distance fields) or their varia- 

tions, such as potential fields, have been used in robotics for a variety of path planning 

and collision-avoidance applications (Latombe 1991; Jarvis 1993). Computational 

implementations of these distance maps invariably involve discretized or grid-based 

representation of the domain over which the distance map is defined. Consider, for 

instance, a discretized distance map tha t  maps the (L1  or Manhattan) distance in 

voxels from a particular voxel to the nearest obstacle. This distance map is repre- 

sented in an  array with each voxel containing an integer representing the distance 

between it and the nearest obstacle voxel. An example of a 2-D pixel-level distance 

map is shown in Figure 5.1. One of the many uses for such distance maps has been for 

efficient collision-detection and path planning in static environments. For example, 

assuming a spherical robot model (often used for mobile robots), collision checking 

can be done very efficiently and easily if such a distance map has been pre-generated 

for the workspace. It  merely involves comparing the radius of the robot to  the value 

of the distance map a t  the (x, y) location of the robot. Using spherical representa- 

tions as in (del Pobil, Serna, and Llovet 1992) for the entire manipulator arm,  this 

hasic collision-detection computation can then be carried out for each sphere in the 

rnaniplilator to computc the collision situation for t h ~  entire manipulator (Grecnspan 

arid Ullrtnvk 1996). TIM sclirrric forms t11v core (ollisio~i d~t(1ctiori iwnpo~i(>r~t  of 

~),itli ~)l;lnricr d c ~ ~ l o p c d  in (Yallg, Crllpt~, <11i(l G T C C I ~ S ~ ~ I I I  

'4 I ~ I ~ I ~ I I  (lrav l ~ c k  of \lic11 (]is( r i > t i / d  re1)rc~s~~11t~1tio11\. 11inwvrr. i \  thi> l i i r~o  c ~ ~ r i o ~ l l ~ t  

o f  1nt.morv rccjiiird to  store it For insti tnc~, for d t l ~ r e ~ ~ - d i ~ i i ~ ~ l s i o ~ ~ a l  space tneasllring 
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Obstacle pixels 

Figure 5.1: Example of a pixel-level Manhattan distance map. 

1000 units per side, and assuming each number in the distance map is a two-byte 

integer, one would require 10003 x 2 = 2 gigabytes of memory. Larger spaces and/or 

finer resolution, of course, increase this usage exponentially. In the image processing 

field, a more memory-efficient method than a raw binary array is the octree da ta  

structure' (Samet 1990a). The octree representation is a "binary" representation of 

space, where the space is recursively subdivided into hierarchically represented cells as 

nodes in a tree. The nodes are labeled white or black indicating if a node is completely 

free or completely occupied, respectively. In effect, a single white or black node can 

be substituted for a great number of binary array elements while requiring only a 

compa,ratively tiny fraction of memory, hence the greater memory efficiency. A third 

category, grey nodes, represent cells which are partially occupied. There is ,  however, 

no di.stni,c~ inforrri~c~tion, c~ssociated with each, node of an, octree. Furtlictrrriore. alt,lioligli 

octrers have been i l sed in robotics for collision detection ((Hayward 1986), (Arimoto, 
- 

'Co rn~ i io~ i ly  callctl quadt,rees in 2-d and octrees in 3-(I. Becausc of the emphasis here or1 3-D 
~liotlelirig m t l  rrprescnt,ation. we s l~al l  11se the  tr,rrn octrc2c i l l  s i tua t io l~s  \1'11ertt either 2-D autl 3-D 
rc~l)rc~sr~it ;~tions may hr i~ ivo lwd .  
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Noborio, Fukuda, and Noda 1988)), the essence of previous approaches is to detect if 

a given point lies inside the black node of the environment octree. There is  no  known 

previous attempt using octrees that incorporates the use of distance information i n  the 

collision detection process. 

This part  of the thesis proposes a novel hierarchical method for representing dis- 

tance maps, called the Octree Distance Map or ODM. As the name indicates, the 

ODM representation adapts and augments the conventional octree da ta  structure in 

order to  represent distance maps in a hierarchical manner. The ODM representation 

drastically reduces the expensive memory requirements associated with a voxel-array 

based distance map - by more than an  order of magnitude - with some trade-off 

in collision-detection computations. Additionally, the approach presented here im- 

proves substantially on the collision-detection performance of conventional octrees. 

The results of this thesis illustrate the advantageous compromise achieved: although 

an  ODM requires slightly more memory than an  unaugmented octree for the same 

workspace (though still much less memory than a voxel-based distance map struc- 

ture),  the ODM provides a significant improvement in performance over a n  octree for 

collision detection. Figure 5.2 qualitatively illustrates this compromise. 

High 

Low 

,-- Conventional octree 

Low , H~gh 

Memory Requirements 

Figure 5.2: Thc rriernory-speed co~rrpro~riise achieved with t,he ODM. illustrated qllal- 
i t  ;I t , i \ . c x l ~ . .  
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Two algorithms are presented here: (i) given a conventional octree that  repre- 

sents a given workspace, build an ODM that  hierarchically represents the distance 

from the obstacles, and (ii) given such an  ODM, compute whether a spherical robot 

is in collision with the obstacles if positioned a t  a given point in workspace. The 

ODM building process is off-line and is executed only once for a given workspace, pre- 

computing the ODM for multiple collision detections. The  ODM collision detection 

process may be repeatedly performed, and thus is required to be efficient. In addition, 

the robot radius size may vary between separate executions of the collision detection 

algorithm, using the same ODM; we cannot assume a fixed radius length. Although 

the main motivation has been collision detection, the algorithm can be easily modified 

for determining distance between a robot and its environment. 



Chapter 6 

Background 

6.1 Previous work 

(Samet 1990a) discusses the issue of representing distance hierarchically and defines 

a dzstance transform for quadtrees. This distance transform represents the shortest 

distance from the center of each obstacle (black) node to a boundary between a black 

node and a whzte node. An algorithm is given for computing the L, (Chessboard) 

distance transform for a quadtree. Briefly, the algorithm searches the quadtree for 

black nodes in top-down traversal. For each black node, its eight neighbours are 

examined in order to determine the distance to the closest whzte piels to the black 

node. (Shneier 1981) offers a similar distance transform for quadtrees (using the L1 

distance), with the addition of storage of the minimum distance to a whzte pixel in 

each of the four neighbour directions (north, south, east, and west). 

Although the central issue of this thesis, that  of representing distance hierarchi- 

cally, is the same as in the above work, the main motivation was very different: that  

of efficient image representation as opposed to collision detection. Therefore, there 

are significant differences between the ODM representation and the above work. In 

particular, thc usc of a single distance value for an octree node, while adequate for 

imagp I c~prc~so~ltation, is inefficient for colli5ion detection (see Sectlon 7 1) For greater 

t ollision detection efficiency. therefore. an ODhI associatci a minirn~im-rriax1111~11n d ~ s -  

t ~ l i c  c. I ~ t i g c  u i t  h cac 11 uih . r fc  node of thc octrw B ~ ~ i l d ~ n g  m ODM. ( o t i w q u ( ~ ~ i t l ~ ,  15 

I I ~ O I P  w a  cli mt ( > t i \ i w ,  ~ ( 1  l ivli(  t mi(> ( on\ulrlilig HOWCT (>I. ~t l ( ~ &  t o  morv ~ f f i (  i ( ~ 1 i t  

(o l l l i~on  detection Additionallv, this &stance range is verv cornpactli rtyresenteti in 



CHAPTER 6. BACKGROUND 3 9 

the ODM. The  ODM maps distances of free-space nodes, not obstacle nodes. Finally, 

we prcsent efficient collision detection algorithms based on an ODM representation 

of a static environment. A distinguishing feature of these algorithms is the use of 

hierarchical distance information which, to  the best of my knowledge, has not been 

done before in collision detection algorithms based on octrees. 

In other work, (Hayward 1986) outlines two approaches. The  first approach as- 

sumes a robot representation where each volumetric piece of the robot is represented 

by a cylinder with a hemisphere on each end. An octree is duplicated for each rep- 

resented robot cylinder and hemisphere, and obstacles are grown by the radii of the 

component volumes. The robot is then represented with line segments, and each seg- 

ment is recursively checked (by binary subdivision) for collision in the appropriate 

octree. Obviously, this approach is extremely memory-intensive, requiring storage of 

multiple octrees. Without growing multiple octrees, the 3-d models of each robot link 

would need to  be converted into octrees and subdivided. The second approach uses 

only a single octree, but  its methodology is less robust: the robot is represented as a 

number of selected control points based on the robot's boundary surface representa- 

tion, and each control point is located within the octree to determine if it is within 

an obstacle (thus, collision). Questions arise as to the spacing and position of the 

control points, and the number of such points, required in order to  ensure proper ex- 

ecution. In addition, if an object were to be completely within the robot's boundary 

representation, the algorithm may not detect any interference between the object and 

the control points. 

(Arimoto, Noborio, Fukuda, and Noda 1988) has also used conventional octrees 

for interference detection and path planning. The  proposed approach to collision de- 

tection is to subdivide the space containing robot links into octree nodes and evaluate 

each node to determine if it contains obstacle regions, robot regions, or both. If the 

node contains both, it is recursively subdivided until its components are classified to 

be either completely inside or completely outside a robot, an obstacle, or both. A 

collision rcsults if a node is in both the robot arid an obstacle. In effect. this approach 

Ilitc'rsclc ts a 1 1  octree rrlo(le1 of the robot w t h  a11 octree of t hc  works pa^^. Thc main 

tl~s~lcl\,intagc~ licrc. 15 tho high clcgrer of corriput~tiori i l i r  o l d  ~1 11(~w oc t l w  111uit 1 ) ~  

I r1c ~ I I I I ) I I ~  ocl foi  P ~ C I I  rlou rol~ot  t onfigllratlorl. 

A~lothcr rclatcd l ) o d ~ ,  of work is (Nohorio. Xaniwa. and Arirnoto 1990) w111ch 
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proposes a quadtree-based algorithm for path-planning for mobile robots. Cornpu- 

tationally, collision detection is simplified by using a quadtree whose nodes are no 

smaller than the size of the robot; any node containing any part  of an obstacle is 

considered black - in other words, grey nodes are eliminated from the quadtree. Thus, 

after locating the node in which the robot is located, the robot is known to be in col- 

lision if the robot is in a black node, and not in collision if it is in a white node. While 

this approach to  collision detection is simple and not computationally expensive, and 

well-suited for its stated path-planning problem in 2-D, a number of drawbacks exist 

for the use of this approach in collision detection. The  greatest disadvantage is that  

this approach is overly conservative. For instance, because a grey node is considered 

black even if it contains a single obstacle pixel, a robot placed in close proximity to  

the real obstacle will most likely be considered in collision even if the robot is not. 

This problem would be amplified given a highly occupied workspace and/or a large 

robot, when any free space would likely be within "black" nodes. 

It should be noted, a t  this point, tha t  none of the references mentioned above 

use distance in their collision detection processes. This observation further separates 

these previous efforts from the work presented in this thesis, which makes significant 

use of distance in collision detection. 

More up-to-date work in this field includes (Bandi and Thalmann 1995), which 

uses spatial subdivision to perform collision detection on animated rigid bodies, and 

(Egbert and Winkler 1996), which uses vector fields for path planning. 

Octrees 

Of the many forms of representation for spatial data ,  octrees are one of the most 

widely used (Samet 1990b). They provide much greater memory efficiency than raw 

binary arrays as well as a simple structure and good operational flexibility. A conven- 

tional tree stmcture is composed of a hierarchy of nodes A nodc. in tree-structlirc 

tcrrill~iolog~r. i i  a structlirc. which rcprcw~its a scction of spacc Tlic slzc of t l i<~t  srt - 

tion o f  5ph( (> vallcs fro111 node to nodc within thv tree. from ~t11 elmlcrit of the fincbst 

~ o i o l l l t  1011 ( A  p 1 1 t  1 111 2-D 01 U O L P ~  i11 3-D) to the critilc \l)atr' itielf, the f i l l  t h ( ~  CI 

~ioclt> is nwfl\ fro111 the. t ~ t ~ ' s  root. the i r ~ i ~ ~ l l c ~  15 it\ irctiori of ipacc Each ~ i o d ~  111 ~i 

coIir c ~ i t i o n ~ ~ l  octrw is ~ I X P I I  onc of thrcc ~ t a t e 5  to represent thc ipatial c.oritc>nt of that 
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particular section of space: black indicates tha t  the entire node is in obstacle space, 

white indicates that  the node is free space (free of obstacle), and grey indicates a node 

with a mixture of free space and obstacle space. 

Each node contains up  to  a certain number of pointers (four for quadtrees, eight 

for octrees) to child nodes or subnodes, each of which representing a section of the 

space represented by the original node. These subnodes may in turn have children, 

who may have children, and so on, all the way to  the bottom of the tree, where each 

node corresponds to  a unit spatial element (pixel or voxel). The  number of children 

for a particular node depends on the colour or state of the node. white and black 

nodes have no children, while grey nodes have pointers to each of their black or grey 

child nodes. Figure 6.1 provides a n  example of the breakdown of a 2-D image into a 

quadtree. 

Location codes are a concept commonly associated with linear or pointer-less oc- 

trees (Gargantini 1982; Samet 1990b) to identify a particular node in the octree. A 

location code consists of a string of octal digits (or the equivalent in decimal). Each 

digit provides information as to which branch, 0 to  7, of an octree to traverse a t  each 

level in order to locate the node. For example, the location code 35043 (or l86OI0) 

allows us to locate the node by following branch 3 of the root, then branch 5 of the 

node a t  level 1 (level 0 being the root), then branch 0 of the node a t  level 2, then 

finally branch 4 of the node a t  level 3. 

Besides providing a convenient way of identifying octree nodes within a tree, lo- 

cation codes also encode Cartesian-coordinate information, and thus are a way of 

locating the Cartesian location of an octree node, and a way of finding the location 

of a set of Cartesian coordinates in an octree. Assume we use a Morton ordering 

of octants (see Figure 6.2) ' . Given an  octal-digit location code, we first convert 

each digit to its binary form, which is composed of three binary digits, b, by b,. By 

forming a binary string of all the b, and converting back to decimal, we obtain the 

z-coordinate. We likewise obtain the y- and x-coordinates. For example, we convert, 

t,hc location code 350& to binary: 011 101 000 100. For the z-coortli~iatc, \tre h a w  

t,hc following: 01012 = 5. For y ,  urc havc 10002 = 8, and for x ,  11002 = 12. To obtain 
-- 

' A Id-liantiecl coordinate systcm has Iwe~l implicitly assurried, with the z-axis pointing into the 
pagr. .A t,rivial ~!iodificatio~i in the ordering with nodes 0, 1, 2 ,  and 3 forlnirig tlic Imck pla~itx a11d 
11odt.s 4. 5, 6, arid 7 forming the front plane can bt. used to  1)c consistent wit,h a right-1i;~ndod 
cwordiriatc system. with the  z-axis pointirig out of the  page. 
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0 white node 
black node 

0 grey node 

dJJo/Jdd d d b  L\.\.\o 
. . . . , , . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . , . . . . . . . , . , , . , , , , . . . . . . . . . . . . . . . . . . . . . . . . . 

numbering: 0 0 0 0 = 
0 1  2 3  

Figure 6.1: A 2-D image and corresponding quadtree. 

a location code (and thus octree location) from (x, y ,  z ) ,  the reverse process is used. 

Despite the use of conventional octree structures in this thesis rather than linear 

octrees in building and utilizing the ODM, location codes are used in three situations. 

The first situation arises in ODM construction when we wish to locate all nodes of 

I?\-cl L n7hic.h are a t  a (nodal scparation) distance r from a given I L I ~ I ~ P  node. In e f f~c t .  

\vc wish t,o t-fet,ermine the level-L nodes forming tlic surfarc of a Mnnh,nttcm s p h e u :  

of radius [ T X  S ~ Z C  of It.\-c.1-L nodc).  First. itssurric wc h a w  thc location c o c l c ~  L C  for 

t l i v  U I / I . I ~ ( '  ~iod(l I T - .  (No t ( '  t h i ~ t  LC' refers to tlitl voxel i11 T l r  (;losest t o  tlic origin o f  

s p a c ~ .  i . ~ . .  (0.  0. O ) ,  ass~irni~ig that olir  spar^ is nori-negativ~. Thr  voxel called LC is 
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Figure 6.2: Octant numbering based on Morton ordering. 

the nodal reference voxel of W .  For the numbering scheme shown in Figure 6.2, the 

nodal reference voxel is the leftmost, bottom-most, minimum-z voxel in W.) From 

L C ,  we can then derive, as  above, the Cartesian coordinates (xo, yo, 20) of the nodal 

reference voxel of W. Let s = be the length of one side of a node a t  level L. 

Then if T is a level-L target node a t  nodal distance r from W, its reference voxel is 

a t  (xn,yn,z , )  = ( X ~ + Z S , ~ ~ + J S , Z ~ + ~ S ) ,  and ( I  i / + I j / + I k 1 )  = r .  Therefore, by 

adding or subtracting increments of s to the coordinates of the reference voxel of node 

W, we obtain the reference voxel of T. Conversion of the reference voxel's coordinates 

to location code provides us the node T. 

In the second situation, we are given the Cartesian coordinates of a robot for 

collision detection purposes, and must determine the octree node in which the robot 

is located. Here, the (x, y, z )  coordinates are converted to binary, the binary digits 

are interlaced to obtain octal-digit location code, and the location code IS used to 

traverse the octree to  the desired node. 

The third situation arises when we wish to  determine the nodal separation between 

two nodes of level L given their location codes, LCI and LC2. First, a property of 

locatiori codcs should be pointed out here for a node of level L < D ,  whcre D IS thc 

clcpth of t l ~ t ,  o c  t r e t .  at ]cast the lctst D L c,c tal tilgitk of the locatlo11 c.oclc' ~ ~ 1 1 1  

y e r o  This propertv is a result of the location of th r  nodal reference point discusiccl 

1 0  FOI I, - Ll - 1. lefc>r(>~lcp points will lle 111 lncl tmc.~l t~ of 2 dlong ( ' ~ 1 1  ~ X I S .  

for 15 = D - 2 .  tlic i r i c  r c > r r i c > r i t  15 4, ctild i o  on Thus, 111 ordci to dctcrrriiricl thc 1lodC11 
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separation between two nodes, we merely drop the proper number of trailing zeros 

(D - L) ,  find the two sets of Cartesian coordinates associated with the truncated 

location codes, and take their difference. The nodal separation can then be found by 

summing the differences in x, y, and z.  

6.3 Distance 

The distance function that  maps a pair of points, p and q, into non-negative numbers is 

denoted by d(p, q). The two common distance measures used in this part  of the thesis 

are the L1 (Manhattan) distance denoted by dM, and the L2 (Euclidean) distance, 

denoted by dE. Unless Euclidean distance is specified, the Manhattan distance is 

used throughout this part of the thesis. For completeness, the distance calculations 

are shown here: 

where p = p l ,  . . . ,p,, q = ql, . . . , q,, and n is the number of dimensions of space. 

The distance d from a point p to  a set X  is d ( p ,  X )  = min,{d(p, q), q E X } .  The 

distance between two sets, X and Y ,  is d (X ,  Y) = min,{d(p, Y) ,  p E X} 



Chapter 7 

Implementation of Octree Distance 

Maps 

7.1 Motivational Factors in ODM Design 

The main motivation for a hierarchical scheme to  represent distance maps was to  

lower the memory requirements; however, we also wished to  have reasonable per- 

formance in collision detection. Thus, we decided to  augment the octree structure 

with precomputed distance indicators in order to limit the amount of searching which 

would otherwise be necessary with simply a standard octree. The  distance indicators, 

however, must not add significantly to  the memory requirement. 

A fundamental question is what would the distance indicator(s) represent, and 

how they would be computed. A problem arzses when we attempt to assoczate a 

dzstance-to-nearest-obstacle to an  octree node whzch zs not at the lowest level o f  the 

tree (voxel level): the closest obstacle to that node m a y  be dzflerent dependang on from 

whzch locatzon wzthzn that node the measurement zs made. 

An illustration of the problem in the collision detection context can be seen in 

Figure 7 1 First. let us assume that we shall store only a single distance indicator 

~ v ~ t h i n  O ~ K I I  whzte node 11- the IZanhattan distance to the closest tcirqet nodc. thdt 

15. a grcy or black nodc at thr sarnc Icvel L as W ,  measured ln units of nodes of 1cvc.l 

I,. 1dl11(~r  thr l~i  \oxel\ (\l(' ( dl1 thii i ~ i d i c d t ~ l  the no(hd sepnr(~t?o?~ 171dc~  or i 111 

Figlire 7 1 ,  tlir 1 Ianhat ta i  cliitancc. jrnt'asurcd In lt~vt~l-L nodes) from Itr t o  t ~ ~ l g o t  
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node TI is 1, while the Manhattan distance to T2 is 2, and thus the NSI of W would 

be 1. In other words, we would be assuming that  TI is "closer" than T2. Let's say 

that  our collision-detection scheme is such that  only nodes with Manhattan distance 

from W equal to  1 would be checked for collision with obstacles. Then T2 would 

not be examined and the collision with the obstacle area within T2 (for the given 

robot position and radius T )  would not be detected. The detection algorithm would 

therefore return a wrong result since no collision would be found with T I .  

a robot here would be closer to 
TI obstacle than T, 

NSI = 2 
But robot is 
in collision! 

NSI = 1 
Robot is not 

. . .  in collision 

I--* robot location . 
obstacle area 

Figure 7.1: A fundamental problem in hierarchical distance representation. 

One simple way to avoid this problem is to use the NSI as a minimum search pa- 

rameter. Starting with a Manhattan distance of NSI, the collision detection scheme 

would search for obstacles a t  the current distance and check for collisions until a 

collision were detected or until a maximum limit were reached. The maximum limit 

would be based on the node size of W and the robot radius length. Unfortunately, 

putting the the complete onus of finding the maximum search parameter on the col- 

lision detection algorithm (rather than on the algorithm to create the distance map 

structure) would severely affect the performance during collision detection. Therefore, 

we calculate minimum and maximum distance bounds during the creation phase and 

store a minimum and a maximum NSI for each whzte node within the distancc map 

structure: wc discuss these calculations in the next section. 

Creation of Octree Distance Maps 

l l i ( ~  1)1opow(I o( ( ~ / ~ L ( L I I ( (  ruap ( O D l I )  IS ~ i ~ p ~ ( w ~ i t ~ ~  111 d data structuw \im11a1 

to tliat of ;I co~ivcntiorial octrcc. The ODM noclc rccortl is identical to a n  octrec 1ioc1c 
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record except that ,  for white child nodes which would otherwise (in a conventional 

octree) be represented as null pointers inside their parent grey nodes, the parent grey 

node record also contains two numbers indicating the minimum and maximum search 

parameters (NSI) for the white subnode; the maximum and minimum NSI are used 

during collision detection. 

The  computation of the minimum and maximum NSI's occurs during the ODM 

creation phase of our algorithm. Essentially, the algorithm searches outward from 

the white node W ,  a t  incrementally-increasing nodal distance, for obstacle nodes 

a t  the same level L as W .  Two Euclidean distance measures, called near-distance 

and far-distance, are then computed between W and the obstacle node 0 (see Fig- 

ure 7.2). First, assume tha t  the obstacle node is black. The  near-distance is the 

distance between the respective regions represented by the nodes W and 0, i.e., 

dE(W, 0) = min,,,{dE(w, o), w E W, o E 0 ) .  Let { P O )  indicate the set of points in 

0 tha t  correspond to  the near-distance. To define far-distance, imagine tha t ,  for each 

point w in W ,  the distance to any point o in 0 were calculated. The far-distance 

is the maximum of these distances, i.e., max,,{dE(w, P O ) ,  w E W ) .  In the collision 

detection context, the near-distance is the upper bound on the robot radius such that ,  

no matter where in W the robot is located, the robot cannot be in collision with the 

obstacle node 0 .  If the robot radius is smaller than the near-distance, it is guaranteed 

not to be in collision with the obstacle node. The  far-distance is a lower bound on 

the radius such that ,  no matter where in W the robot is located,it is certain to be in 

collision with 0 .  If the robot radius is greater than the far-distance, then the robot is 

guaranteed to be in collision with the obstacle node. 

Obviously, more than one pair of points in W and 0 may give the same near- 

distance or far-distance calculation result, but the distance values themselves are 

unique. Furthermore, since the nodes in the octree have a simple geometric shape 

(a  cube)? the near- and far-distances are easily computed using bounding boxes sur- 

rounding W and 0 ,  as shown in Figure 7.2. Also, note that  if the obstacle node 

is grey. thc near-distancc and far-c-listanct for that  obstacle node arc the minimums 

of t,l~c ricar-c1istanc:e and far-distarice c:alculat,ions fi)r each black sul)~~ocle of thr. g w ~ j  

l O \ Y ~ l -  T. 11Od f~ .  

' rhr  nc';ir.-(1ist;tnc.c ant1 far-c1istaiic.c' calc.ulatioiis iiw 11src1 to tlrter~rii~io if ; i r i  ol)st;ic.lc> 

11odc is zgn,orcj,t)lle An ohst,acle node O at level L is considered ignorahlc if t hc  radiws 
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target 
ack nc 

T 
\ 

Figure 7.2: The concepts of near-distance and far-distance. 

required for a robot in W to  collide with 0 (i.e., the near-distance) is larger than the 

radius required for certain collision with some previous obstacle (i.e., the minimum 

far-distance). In other words, if this situation exists, a robot in W colliding with 0 

will also undoubtedly collide with an  obstacle that was previously found. Ignorable 

nodes are determined in order to lower the maximum-NSI bound and thus reduce 

time and computation requirements during collision detection. The maximum NSI 

for W is the largest Manhattan distance (units being nodes a t  the same level L as  

W )  for which there are non-ignorable obstacle nodes. 

As illustrated in Figure 7.3, the absolute upper limit on NSI a t  which a robot in 

W  may be in collision is (3 x DIM - 1). The rationale for this limit is as follows: 

Node W  is within a g r e y  parent node; thus one of W's sibling nodes must be grey  or 

black. The largest possible distance between a robot in W and some obstacle voxel 

in a sibling of W is the diagonal length of the parent of W. A robot in W with this 

distance as its radius can may be in collision with nodes of nodal separation up to, 

but not including, (3 x D I M ) ;  thus, (3 x D I M  - 1) is the limit of our search for 

t,hc maximllrn NSI. We could, of course, perform the search during collision det,cction 

(having stored a rninirnurri NSI during ODM creation), proceeding outwards from thr. 

~riini~riuni NSI for LC7. HOMY>VP~. hy ~ . o n d u ~ t , i n g  tllr-' stxr(:h (Illring 01111 creatioli t>o 

ol)tai~l I~otli ~ r i i l i i ~ r i l l r l i  rrlasilrlllili NSI's. wc car1 c,l)taill hcttcr pr~rfor-~rl;l~lc-c' (1111-ilip, 

c,ollisioli clotc1c.t,iorl. 

As for thc memory rcytlirmients for st,ori~lg, the' rninimilrn and  ~ n a x i ~ ~ i l l ~ n  YSI. 
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(Using 2-D example) 

Because white node W is inside rey w parent. largest possible distance%etween 
robot and obstacle in grey parent is r,,,. 

possible robot poslt~on 

Lill~lll 9 8 ,  ,i*ll*ll, lmaglne a robot ~n the bottom left-hand 
I>I ti% corner of W wlth radlus rma, If we 

examme outslde the parent of W, we 
can see the nodes that can be In 
coll~s~on 

Of the shaded nodes, the one wlth the 
$ ;  greatest nodal separat~on from W IS 

4'1 F 1 " the one labeled T,,, (NSI = 2 x DIM) 
Tmax 

Notice that nodes T I  and T2 can also 
be reached, but the node marked LIM 
cannot be reached from W with radius 
r,,,. The node marked LIM is at a 
nodal separation from W of (3 x DIM). 

Therefore, we must search all nodes 
up to 

Figure 7.3: Illustration of maximum bound for maximum-NSI search. 

because NSI's are calculated for white child nodes of grey nodes only, minimum NSI's 

will fall within the interval [ I ,  31, requiring only 2 bits per NSI (in the 3-D case; in 

the 2-D case, minimum NSI will fall within the interval [O, 21). (The maximum NSI 

will fall within the interval [I, 81 and thus will require 3 bits per NSI.) 

To demonstrate the construction of a 2-D ODM structure, we present the following 

example based on the binary image and quadtree in Figure 6.1. Our algorithm woilld 

operate as follows (please refer to  Figures 6.1 and 7.4): 

1. We start  a t  the root of the tree and visit its four children in order. The leftmost 

child (child 0) is grey; we let this child be our current node and examine its four 

children. (Figure 6.1) 

2 \YP arc now a t  level 2 of the trcc. Let child O 1)c C u r r N o d ~ .  C ~ ~ r r ~ V o c h  is I L ~ I ~ C :  

t h r r~ fo rc .  IW must find its 1ninimll1ii and rnaxirnu~r~ NSI (Figure G 1) 

3. \ i 7 v  scn~c,li  lcvcl-2 nodcs starting a t  a nodal sepa~at ion of 1 arid (o~ i t i~ i l i i~ ig  t o  
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the NSI limit of (3  x DIM - 1) = 5. There are no grey or black nodes a t  

NSI = 1, so we increment and search a t  NSI = 2. (Figure 6.1) 

4. There are two level-2 target nodes a t  NSI = 2; thus the minimum NSI for 

CurrNode  is 2. We shall examine the node shown in Figure 7.4(a) first. Let 

this node be Target .  

5. We recursively locate obstacle subnodes within Target  and determine tha t  the 

near-distance is 10.0 and the far-distance is = 18.68. See Figure 7.4(b). 

6. The next target node is shown in Figure 7.4(c). The near-distance is 4.0 and 

far-distance is 14.42. This now becomes smallest- f ar-dist. 

7. We now let NSI = 3. There is one target node (shown in Figure 7.4(d)). Near- 

distance is 8.0, which is not less than s m a l l e s t ~ f a r ~ d i s t  = 14.42, and so this 

node is not ignorable. Far-distance is 17.89, so smallest- f ar-dist is unchanged. 

Since there is a non-ignorable target node a t  NSI = 3, temp-max-ATSI is set to  

3. 

8. We now let NSI = 4. Here, there are two target nodes (Figure 7.4(e)). Target 1 

has a near-distance of 16.12, which is greater than smallest_far-dist  = 14.42, 

so this target node is ignorable. The far-distance is 26.0, so smallest-f ar-dist 

is unchanged. 

9. Target 2 a t  NSI = 4 is evaluated. Near-distance is 12.80 < 14.42, so this target 

is not ignorable. The far-distance is 24.08, so smallest-f ar-dist is unchanged. 

A non-ignorable target node has been found a t  NSI = 4, so t emp-max-NSI  is 

set to 4. 

10. NSI is now 5. There is one target node (Figure 7.4(f)). The near-distance is 

18.86 > 14.42, so the target is ignorable. No non-ignorable target nodes have 

lwen found at NSI = 5, so t emp-max-NSI  remains unchanged. 

12. J'hi:, dgor i t  11rr1 is rc~pt~at,(~tl for all white 11otl(>s i11 tlicl t r c~ ' .  Tlic. c.orl~l)l('tc~i ;I 

st,ruc.t~irc~ is show11 in Figurt. 7.5 
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We now state a high-level version of our ODM creation algorithm, Build-ODM, 

which generates an  ODM given a n  octree for a non-empty workspace. (For a more 

detailed algorithm, please see Appendix B.) 

Main routine: Build-ODM 

Input: Octree representing voxel map. 

Output: ODM representing hierarchical distance map 

1. Augment octree nodes with minimum- and maximum-NSI storage fields 

2. For each white subnode of a grey node in the tree: 

(a) For all nodal distances N S I  = 1 to  ( 3 D I M -  l), where DIM is the number of dimensions: 

i. Locate all target nodes a t  nodal distance N S I  

ii. For each black or grey target node: 

A. Calculate near-distance and far-distance for target 

B. If minimum NSI not stored, set minimum NSI = N S I  

C. Else: 

If near-distance > smallest far-distance for current white node, target is 

ignorable 

Else, target is non-ignorable 

D. Evaluate next target node (go to  2(a)ii) 

iii. If non-ignorable targets found at current nodal distance, set maximum NSI = N S I  

iv. Increment N S I  and go t o  2a 

(b) Store min. and max. NSI for current white node 

(c) Find next white node (go t o  2) 

Although the creation algorithm is search-intensive, finding the maximum/minimum 

NSI parameters allows us to  reduce the search-time during collision detection. Build- 

ing the ODM is a one-time off-line preprocessing step. 
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31 

NSI = 2 

Figure 7.4: Illustrations for the ODM creation exa~nple. 
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Figure 7.5: The  octree distance map structure constructed for Figure 6.1; records 
under white nodes contain maximum and minimum NSI. 

7.3 Collision Detection Using an ODM 

After the octree distance map structure (the ODM) has been generated, it may be 

used in efficient collision detection. Here, let us assume that  the robot is modeled using 

a number of spheres, and use a single sphere for the robot as an  illustration. Note 

that  a robot can be approximated t o  an  arbitrary level of accuracy using spheres (del 

Pobil and Serna 1995). 

Given a robot's center voxel and Euclidean radius, the algorithm below is used for 

collision detection. Note tha t  robot radius may change from query to query without 

affecting the pre-generated ODM structure; the ODM is repeatedly used for each 

query without any further changes. 

The algorithm first finds the whzte node W containing the robot in the octree. 

Then, with N S I  equal to the mzn-NSI  of W, the algorithm considers the set of 

black arid grey nodes (target nodes) with nodal separation from W- equal to NSI.  

(Tlit. targct nodes are deterrninccl using the  location-code process discussed 111 tllc. 

Background section.) For each target node T, the algorithm calculates bounds 011 

robot si/e (see below) to determine if  the robot i r  or is not in collision with T. or if the 

collision situation is indeterminate. For the latter, the algorithm performs a recursive 
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detection process: using the Get-Distance routine given in the previous section, the 

near-distance and far-distance (from W )  to T are determined. If the robot size is less 

than the near-distance, no collision with T can occur. Otherwise, if T is black, the far- 

distance is compared with robot size. If the robot size is larger, a collision situation 

exists and a TRUE value is returned. If not, the algorithm calculates the near-distance 

between T and the robot center voxel (not W ) ,  and compares the distance with the 

robot size to evaluate the collision situation. 

If T was grey  and not black, the algorithm first creates a maximum-radius bound 

on the robot (see Figure 7.6). This bound implies that  if the robot has a radius greater 

than the bound, the robot is in collision with grey  node T no matter where the robot 

is located in the white node W. If such is the case, the algorithm immediately returns 

a TRUE collision result. Otherwise, the collision situation remains indeterminate. 

The algorithm proceeds to  refine these bounds by further localizing the obstacle(s), 

identifying the g r e y  and black child nodes of T. The  child nodes are then evaluated 

using this recursive process until a TRUE/FALSE result is reached. If no collision 

is found with these target nodes, NSI is incremented (up to max-NSI  for W )  and 

the process is repeated until the bottom of the tree is reached and/or the collision 

situation is determined. 

Largest radius for 2 nodes of side-length s, with nodal sep. NSI 
= length of diagonal of parallelepiped formed by string of (NSI 
+ 1 ) nodes. 
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We shall illustrate the use of ODM's in collision detection using the 2-D example 

from Figure 6.1. Suppose we define our robot with a center position of (12,6) (in- 

dicated by a star in the figure) and a radius of 6. The  algorithm would operate as 

follows (the steps are illustrated in Figures 7.7(a) to  (f) .  

1. Using the center position, the robot's location code is found to  be 013204. We 

localize the robot to  the white node a t  level 2 with reference point (8, 0). Let 

this node be W .  (Figure 7.7(a)) 

2. We retrieve min-NSI = 1 and max-NSI = 1 from the parent of this node. 

3. We find a single level-2 obstacle node a t  a nodal separation of 1 from the white 

node, and evaluate the collision situation. Let this node be T. (Figure 7.7(b)) 

4. Using the Get-Distance routine in Appendix B, we find the near-distance to  be 

0.0 (since the nodes are adjacent) and the far-distance to be 8.0. Since the far- 

distJance is greater than the robot radius, the collision situation is indeterminate. 

(Figure 7.7(c)) 

5. Because T is grey, we first evaluate the maximum-radius condition. The maxi- 

mum radius (the robot radius which would make collision a certainty) is 17.89 > 
6.0; the situation remains indeterminate. (Figure 7.7(d)) 

6. We localize the obstacle: T becomes child 1 of the previous T. The  robot is 

localized to quadrant 3 of W (which becomes the new W),  and we increment 

the level to 3. The recursive routine is called again with these new parameters. 

(Figure 7.7(e)) 

7. For the new T and W ,  we find the near-distance to be 0.0 and the far-distance 

to  be 4.0. Because T is black, we can compare the robot size to the far-distance. 

Because the robot size is greater (6.0 > 4.0), we can conclude tha t  there is a 

collision. The  algorithm returns a TRUE result. (Figure 7.7(f)) 

IZ'c now state a high level vcrsion of the algorithm, ODM-Detect. (For a rriorc. 

tletailrcl algoritlini, please see Appendix C . )  
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Main routine: ODMDetect 

Input: octree distance map, robot position, robot radius. 

Output: collision situation: TRUE if collision, else FALSE. 

1. Localize robot to  the highest white node in tree 

2. Retrieve min -NSI  and max-NS1 

3. For N S I  = min-NSI  to  max-NSI  do: 

(a) Generate list of blaclc and grey target nodes with nodal distance equal to N S I  

(b) For each target node in list 

i. Call RecurseDetect to  obtain collision result 

ii. If there is a collision 

0 Return TRUE result 

iii. Otherwise, go to  next target node (go to  3b) 

(c) No collision found; increment N S I  and go to 3 

4. No collision has been found. Return FALSE result. 

Subroutine: Recurse-Detect 

Input: robot white node W, position, radius, target node T Output: collision situation: TRUE if 

collision, else FALSE. 

1. Calculate near- and far-distance for W and T 

2. If robot radius < near-distance 

0 No collision; return FALSE 

3. Else, if (T is black) 

0 If robot radius > far-distance 

- Collision is certain; return TRUE 

0 Else: 

- Calculate shortest distance between robot position and T (i.e., near-distance with 

robot voxel as the white node) 

- If rolmt is bigger t l ia~i sliortest distalicc 

* Rcturn TRUE collisiori result 

Else, no collisiori; return FALSE result 

1. Llsr. (if T is grey) 
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Calculate the maximum-radius bound for W and T (see Figure 7.6) 

0 If robot is larger than bound /*certain collision*/ 

- Return TRUE result 

0 Else, recursively call R e c u r s e D e t e c t  with all black and grey children of T as target 

nodes 

0 If any result from the recursive call is TRUE 

- Return TRUE result 

0 Else, if no TRUE result after all children evaluated 

- Return FALSE result /*No collision with T*/  

For a robot modeled as  multiple spheres, the following algorithm is then used: 

Main routine: O D M - R o b o t D e t e c t  

Input: ODM, number of robots N-robots, robot centers and radii. 

Output: collision situation: TRUE if collision, else FALSE. 

1. For Index = 1 to N-robots do: 

(a) Call ODM-De tec t ,  passing center location and radius for robot[Index]. Get collision 

result in Result. 

(b) If Result is TRUE, output TRUE and end. 

Note tha t  while the collision detection algorithm is specifically written for use with 

spherical robot models, it may also be extended for use for collision detection with 

line segments (see Appendix D). 

Another extension of our work is that  of distance estimation, i.e., determining the 

distance from the robot to  the nearest obstacle. However, the algorithm would need 

to be modified such that  the minimum distance t o  obstacle must be kept and updated 

whenever a black node were evaluated to be closer than any previous one. 
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Chapter 8 

Experiments 

Both the ODM-Build and ODM-Detect algorithms were implemented in C on 

a Sun Sparcstation platform, and several experiments were performed. In the first 

experiment, the same 32 x 32 quadtree in Figure 6.1 was input into the creation 

algorithm and generated the correct distance map output.  I executed the detection 

algorithm for every pixel in the grid for robots with Euclidean radii of 1, 2, and 3 

units. These results are shown in Figure 8.1. As illustrated, the algorithms work. 

Figure 8.1: Results of 2-D experiments with da ta  from Figure 2 for robot radii of 1, 
2,  and 3 voxels (a,  b, and c respectively). (x indicates collision). 

Next. I performed experiments on 3-d examples. I ran the algorithms on voxel 

r n a p ~ c f  fi1.r d i f f e r~~ i t  3-D workspaccs, each discretiztd in a. 100 x 100 x 100-voxrl nrrn\- 

Tahlc 8.1 lists thtl rricmorv requirements of each ODM. along with tllc recluircrrlcnts 

for cach ~lnallgmrntcd octrce and the  constant memory r cqu i r e~n~n t  of a vow-array- 

hasrtl Euclidean distance map. From the results, we can see that the the  ODhl 
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requires about 25 percent more memory compared to the amount required for the 

corresponding unaugmented octree; the extra memory is the result of the five-byte 

requirement for storage of minimum and maximum NSI. However, the ODM's memory 

requirements are significantly less than those of a voxel-based distance map: the ODM 

uses between 70 to 95 percent less memory. 

The next experiment involved measuring the speed performance using both ODM's 

and unaugmented octrees in 3-d collision detection. The  algorithm used for octree 

collision detection was simply the ODM-Detect algorithm without the benefit of 

stored minimum and maximum NSI; for the unaugmented octree, the minimum NSI 

is assumed to  be 1 and maximum NSI is assumed to  be (3  x DIM) - 1 = 8. Thus, 

the octree collision detection algorithm, not being a dedicated octree algorithm, may 

not be the most efficient one available, and other, more dedicated octree collision 

detection algorithms may yield better performance. 

In comparing ODM versus octree performance, both a count of condition checks 

(when a comparison is made between the robot size and a number) and the aver- 

age time required on a Sparc-10 for each collision check (in milliseconds) were mea- 

sured. The experiment consisted of 3 sets of 1000 collision detections each for the five 

workspaces, using random robot positions and radius sizes (each set having a different 

range of radii). The results are shown in Tables 8.2 and 8.3. There is a substantial 

improvement in performance using ODM's over octrees, both in the number of con- 

dition checks (ODM: 10 to  48% (35% on average) fewer) and in run-time (ODM: 20 

to 50% (39% on average) faster). These results s tand to reason: a great deal of the 

searching done when using an unaugmented octree in collision detection is performed 

when an ODM is created. 

The third series of tests involved performing collision detection for complete robot 

models each comprising 159 spheres. Figure 8.2 shows an  example of a robot mod- 

eled by spheres. I tested four separate robot configurations in the same workspace 

- two configurations not in collision, two in collision. Again, the performance of 

OD34 col1ic;ion detection is compared with collision detection using an unaugmentcd 

octrw: t lit. r rs~i l ts  are sliow~i in Table 8.4. We once aga i~ i  see a drastic i~r iprowri i~r~t  

111 i)c~rform;i~ic.i~ (l>c>tw~rn 28 to 58%. ;lvcriigc. 4.3%) n.hi>n ~ising ODhl'.; for c.ollisio11 

~l(>trct io~i .  
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Figure 8.2: Example of a workspace used for collision detection tests; robot spherical 
model shown. 

% Extra Workspace 
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memory 
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2 6 
27 
26 
2 7 

4,000,000 

T a l ~ l c  8.1: l l ~ r n o r v  lisage for ODM, o c t r w .  arid voxcl-Imsrd tlistancc nlaI) for fivc 
workhj)aces. 

Voxel-based dist. map 
( 1 0 0 ~  array, 3 bytes / voxel 

Memory usage 
ODM 

594,256 
653,276 

1,169,832 
234,240 
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919,352 
186,536 
804,376 
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Table 8.2: Condition-check results of 3-D collision detection using ODM and octree. 
(1000 tests per avg.) 
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7 Robot configuration 

Table 8.4: Speed performance (Sparc-10) for 3-D collision detection with 4 robot 
configurations (159 spheres) using ODM and octree. (Times in ms.) 

# Spheres in collision 
Octree: Total time required 

Octree: Avg time/sphere 
ODM: Total time required 

ODM: Avg time/sphere 
% Improvement 

- 

none 
5245 
33.0 
3254 
20.5 

38 

none 
3841 
24.2 
2765 
17.4 

28 

10 
5157 
32.4 
2799 
17.6 
46 

19 
4877 
30.7 
2063 
19.3 

58 
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Chapter 9 

Conclusion and Future Work 

This thesis explored the use of real-world, sensor-based data  for modeling three- 

dimensional workspaces and for performing collision detection and path planning for 

a robot within tha t  workspace. Specifically, the thesis examined ways t o  integrate 

range images to  model a 3-d workspace. In addition, the thesis introduced a way of 

converting such a model to  a form that  is conducive to  efficient collision detection and 

path planning, and algorithms for the creation and use of such a model are presented. 

For multiple-view range image integration, we needed to  look a t  the intended use 

of the generated 3-d model of the workspace. Since the model is to be used for robot 

path planning and collision detection, the model should have several characteristics: 

(i) a spatial occupancy model using voxels, which is quicker to generate and less 

complex than modeling real-world scanned da ta  with CAD primitives; (ii) obstacles 

represented as solid groups of voxels rather than as shells enclosing empty space to 

avoid path planning problems where, for instance, the robot's starting position is put 

inside an  object; and (iii) unscanned areas to  be represented as obstacle areas, so that  

the path planner avoids moving the robot into unknown regions of the workspace. 

The first step for integrating range images was to determine how to  geometrically 

relate the individual range images. taken from several points of view, into a single 

frame of reference. Because the laser scanner was mounted on a Puma 560 robot, 

thr. ro1)ot vicldcd transformations for c x h  scanner position. By fixing the location of 

the. rang(> irnagc reference frarnc arid then r ~ l a t i n g  it to  thr' P U I I A  glolml frame, it 

1 ) c ~  ,lirlc\ ~)os\ihl(> to  relatcl rarigc irriages from multiple view\ to  thv PITMA frarno 
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Two approaches were examined for integrating range images. The first, direct map- 

ping, maps range images into workspace voxels on a one-to-one basis. This method 

produced shell representations of objects and did not take into account the unscanned 

workspace areas, so was deemed unfit for path planning purposes, but this method 

did produce shell representations which verified the correctness of the transforms. 

The second approach, peeling, uses the mirror and camera positions for each range 

image pixel to determine in which directions to remove voxels from a complete "block" 

of voxels. The approach uses the concept that  points which have been scanned by 

the laser scanner must have direct light paths to  both the laser source (mirror) and 

imager (camera), and therefore these paths must be free of voxels. The advantages of 

this approach are that  1) since voxels are removed away from the surfaces of objects 

but not below the surface, the leftover voxels forrn solid representations of the objects; 

and 2) unscanned space does not have voxels removed, and so are treated as obstacles. 

Based on the results of integration via peeling, we see tha t  the shapes of objects 

have begun to be uncovered. However, due to the limited number of scans and the 

limited scanned area of each scan, not enough voxels are removed from the block 

to provide us with clear pictures of the objects for this thesis. When viewed in 3- 

D animation, shapes are more easily discernable in the integrated voxel map. The 

results showed the previously mentioned advantages of the peeling algorithm, namely 

solid representations of objects and voxelized representation of unscanned areas. 

A generated voxel map can be made much more efficient for collision detection 

by converting it into a distance map. Large voxel-based distance maps, however, use 

impractical amounts of memory. In the second part  of this thesis, I presented a novel 

hierarchical representation for distance maps, called octree distance map, or ODM, 

which utilizes the memory efficiency of octrees for the purposes of collision detection 

and robot path planning, without a large sacrifice in terms of performance. The ODM 

is based on the conventional octree data  structure, but is augmented with nodal sepa- 

ration indice.5 or NSI, which provide distance-to- closest,-obstacle information for each 

whatr' liocic i l l  the oct,rcc while keeping mcmory recluircrncnts lmv. This thesis prc'- 

scntcd i~lgoritllr~ls for crctating a n  ODM from a convctrlt,ional ortrcc. and for ~lt,ilizirig 

t l i ( \  OD11 i l l  collision clrtc.c.tion. Tlic cxpc:rirnents llsil~g tlicscl algoritlilris indiciitc~tl 

t,liat tilt. 11s~  of the' OD11 ( i )  is corrc\c.t. j i i )  proi.icles i i  clrastic. r(x1uct~io1i iri  Irit~nior!- 
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requirements over voxel-based distance maps, and (iii) exhibits a significant improve- 

ment in collision-detection performance, both in condition-check comparisons and in 

overall speed, over the use of unaugmented octrees for collision detection, a t  the cost 

of slightly higher memory requirements. On average, ODM collision detection is 35 

to 40 percent faster and more efficient than when performing the same tasks using an 

unaugmented octree. In future, we intend to run further experiments based on our 

approach, and explore different applications for the ODM. We will also investigate 

possible memory efficiency improvements, as well as certain theoretical aspects; for 

instance, rather than storing only the minimum and maximum NSI, what distance 

information can be stored to  further improve collision detection efficiency without 

seriously affecting memory efficiency. 

Future Work 

One direction of future work tha t  holds promise is the exploration of the mem- 

ory/performance tradeoff of the ODM. Specifically, it may be possible to  include more 

distance information within the da ta  structure - thus using more memory, though still 

much less than a voxel-based distance map - in order to gain better collision detection 

performance. One feasible approach is to store some perimeter distance function for 

each white node, rather than a single distance indicator. Collision detection would 

involve determining the closest point of the node perimeter to the robot sphere cen- 

ter point, evaluating the perimeter distance function for that perimeter point, and 

comparing the result to the robot sphere radius. Such an approach would avoid the 

recursion required for ODM collision detection, thus improving performance. 
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Appendix A 

Range Scanner System Calibration 

A.1 Calibration Procedure 

The laser range scanner was calibrated using the and V-shaped calibration 

block (hereafter called the V-block) provided by Technical Arts. (The calibration 

block is shown in Figure 4.4.) The software performed the following required functions: 

I. Oscillation of a mirror which produces a plane of laser light. The intersection 

of this plane with various surfaces is captured by the camera to  calculate range. 

2. Stepping of a second mirror, thus stepping the light plane across the workspace 

and producing a 2-D range image. 

3. Determination of two camera orientation ~ ~ r a r n e t e r s ,  pitch and roll, based on 

the shape of the light plane intersecting the V-block. 

The software also included an automatic calibratio~l procedure which, assurning 

proper carnera/laser alignment and accurate camerallaser parameters entered by the 

user, stepped thc light plane through a user-defined range of positions and performed 

calibration a t  each X-Y point in its image space. 

'I'hus. t l i v  st,q)stto c.alit)rat,e tlic 1;tsc:r scanner a r r :  

i111glc of  the light plane at zero position 
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angle of the camera with respect to vertical 

height of the V-block 

vertical distance from top of V-block to laser 

vertical distance from top of V-block to camera 

2. Adjustment of the camera's orientation, based on the pitch and roll parameters 

calculated by the software. (Pitch and roll are required to be between -1.0 and 

1.0 degrees.) 

3. Execution of the automatic calibration procedure. This procedure is quite slow 

on a 386 PC, averaging approximately 10 lines or light plane positions per 

minute. 

4. At the PUMA data  terminal, type show t 6 * t o o l .  This command will display 

a matrix, T 6 0 ,  and transform angles 0 ,  A, and T (which correspond with $, 

9, and $ in Euler Z-Y-Z rotation). Write down the first three elements of the 

fourth column of T 6 0  (which are the (X, Y,  Z) coordinates of the hand with 

respect to  the PUMA) and the transform angles; these parameters provide the 

transform for the initial calibration position. 

5. Finally, use a tape measure to measure the positions of the oscillating mirror 

and camera lens in terms of displacement from the PUMA tool center point 

(center of the PUMA tool flange) in the X, Y, and Z directions (relative to the 

tool frame). 

To perform the PUMA-to-scanner calibration, the following steps are required: 

1. Attach a measurement device (e.g. a plumb line) of known length L to the 

end-effector of the PUMA, such tha t  the device hangs directly vertically. The 

displacement of the point of attachment A from the PUMA'S tool rcfcrcnce 

point rrilist a lw  bc measurtd: this displacement is exprc.ssct1 in  rcfc>rcnc.c to 
s o  

the tool refercncc frarnc position for calibration So as A. Wit11 these two 
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2. With the V-block in the position in which the laser scanner was calibrated, touch 

the tip of the measurement device to  the corner of the V-block which is used as 

reference in range scanner calibration (see Figure A. l  . Obtain the position of J 
the tool reference point from the PUMA controller Since we know the 

position of the measurement device with respect to  So from the previous step, 
P p so 

we can determine D = T D. 
so 

3. Since this corner of the calibration block is (0, 0, 0) in the scanner's image 

space, and since we know the position of the t ip of the measurement device 

with respect to PUMA (from the previous step), we now have the coordinates 

in the PUMA frame of reference for the center of the reference frame Go of 

the scanner's image space and thus the transform from PUMA space to scanner 

space, as discussed in Section 3.2.3. 

4. Using the dimensions of the V-block, the measurement device tip may be touched 

to other corners of the V-block in order to verify the accuracy of the transform 

calculated above. 

calibration 
block 

\ p o s t ~ o n  of measuring devlce 
= center of reference frame Go 

Fijillrc A . l :  I 'UlIA-to-scanner  ca1ihr;ttiorl usirig t l i ~  \ 7 - l ) l ~ ) ~ k .  
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A . l . l  Capture of Multiple-View Range Images 

Once the scanner system is calibrated, the range images are captured using the fol- 

lowing procedure: 

1. Move the robot to a suitable position via teach pendant or robot control pro- 

gram. The  selected position should allow the camera to image a significant part  

of the unscanned object space. Roughly keep track of which parts of the ob- 

ject space have been scanned by noting the general direction of the camera in 

relation to  the object space. 

2. Once the robot is in position, obtain the robot transform from the PUMA 

controller via the da t a  terminal by typing show t6* too l .  Write down (X, Y, 

Z) and (4, 8,  $1 as before. 

3. Type show j o i n t  and write down the joint angles Jl-J6 in case the experiment 

must be repeated a t  a later date. 

4. On the scanner PC, examine the current start  and end positions of the scanner. 

If the scan area is too large for the portion of object space you are scanning, 

change the positions; this will decrease your scan time. Note the start  and end 

positions. 

5. Enter a scan file name. The range image will be written to  this file. 

6. Start  the scan. 

7. When the scan is complete. repeat steps 1-6 until the object space has been 

satisfactorily scanned. 

A.2 Offline Integration of Range Images 

(Yutt.: This section assu1nc.s that  the required Unix executablrs art> in the Unis sc.a:~ 

clirect,or~..) 01icc scanni~lg has bee11 completed. the range irnagc filcs are integrated 

offlil~c\. ' I ' l ~ c l  i r i t t~gratio~i 1)roc~'ss is as follows: 
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1. Convert each of the image files from binary format to ASCII text by running 

the program rdascii. At the scanner PC,  change the directory to c : 

100at 

data and type the following command for each image: 

rdascii > text-file-name.txt 

where text-f ile-name . txt is the name of the new text file. Then type the scan 

file name entered a t  the scanning setup screen. The resulting text file contains 

a list of the 3-d coordinates of all scanned points in the image. 

2.  Copy the text files to  a 3.5" floppy disk and insert the disk a Sun workstation. 

On the workstation, go to your scan integration directory and copy the files to  

the Sun file system by typing: 

3. For each text file, start  an editor (e.g., EMACS) and manually insert the fol- 

lowing information on the top line of the file: 

This information was obtained from the PUMA controller via the data  terminal. 

4. Create a file in the Unix scan directory called HO. DATA. In this file, manually 

enter on a single line the (X, Y, Z) and (4, 8 ,  $I) coordinates of the initial 

calibration position of the PUMA: 

5. Create a file in the same directory called LASER.DATA. On two separate lines, 

manually enter the (X, Y, Z) displacement of the laser oscillation mirror and 

camera lens: 

6. ('rc.i~ti. a third file ca1lt.d C A L .  D A T A .  In  t,his file. r r i a n ~ i a l l ~ ~  P I I ~ P I .  t hc' ( X .  Y. % )  

ilisl)li\t .~~r~ctnt L):, of thc  V-\)lock origin point .  Enter t,hrcc zi>roc1s followirlg t,llc 

clisl)lac~c~rrictrit,: 

X Y Z O O O  
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7. Finally, type the command 

integ 

and enter the appropriate information when prompted (number of scans, file 

names, output voxel map file). The  resulting voxel map file may be viewed on 

an  SGI Indigo workstation or on a Sun workstation remotely connected to  an 

SGI (see Section 4.1.4). 

A.3 Display of integrated voxel map 

Display of the voxel map is performed by a program on the SGI Indigo workstation 

using OpenGL routines. Once the voxel map file has been generated, follow this 

procedure to display the voxel map. 

1. Copy the generated voxel map file to  your viewing directory (if the viewing 

program does not exist in the sca,n directory). 

2. Use the command show3d <voyel-map> <dl c> where voxel-map is the name 

of the generated voxel map file and dl c indicates whether to display voxels as  

dots or cubes. 

3. Once processing is complete, a window displays the voxel map within a wire- 

frame cube denoting the extent of the voxel mapped space. Use the mouse 

pointer position to control the speed and direction of rotation of the display. 

Use the - and + keys to  zoom in and out of the scene. 

4. When you have finished viewing the voxel map, close the window to exit the 

viewing program. 



Appendix B 

Detailed ODM Creation Algorithm 

Main routine: B u i l d - O D M  

Input: Octree representing voxel map. 

Output: Octree Distance Map representing hierarchical distance map. 

1. Augment octree nodes with minimum- and maximum-NSI storage fields 

2. Beginning a t  root, traverse across all eight children and down tree. For each white node 

CurrNode  within a grey node 

(a) Let L = level of CurrNode 

(b)  Initialize N S I - l i m i t  to  (3  x D I M  - I ) ,  where DIM is the dimension of space. (See 

Figure 7.3) 

(c) For N S I - D i s t  = 1 to  N S I - l i m i t  do 

i. Locate all nodes of level L with nodal separation from CurrNode equal to  N S I - D i s t .  

Store nodes in array Targets  

ii. For each member Targe t s [ i ]  

A.  If (Targets[ i]  is black or grey) 

Call G e t m i s t a n c e ,  passing CurrNode,  Targe t s [ i ] ,  white node level, tar- 

get node level (both levels equal to L),  and receiving near-dist, far-dist 

0 If (smallest-f  ar-dist is not initialized or f ar-dist < smallest-f ar-dzst) 

- Let smallest-f ar-dist = f ar-dist 

0 If (CurrNode .min-NSI  has not, been initialized) 

- L(,t Ci~r~i.il\'ocic~.rrrlrr *\-SI = iVSI -Dis t  

Elst, /*Det,ermirlc~ if Tar.,qets;i7: is ignor;rhlc*/ 

- If ( n r a r d i s t  s~r~allest-f trr-dzst)  

Tnrgcts[7] is ignoral)l<, 
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B. Evaluate next Targets[i] (go t o  2(c)ii) 

iii. If (one of Targets[i] was not a non-ignorable obstacle node) 

Let temp-max-NSI = NSI -Di s t  

iv. Increment NSI -Di s t  and go to 2c 

(d) Let CurrNode.max-NSI = temp-max-NSI 

(e) Evaluate next node (go to  2) 

Subroutine: Get -Dis tance  

Input: 
WhiteNode,  the current white node 

0 Target,  the current target node 

0 WhiteLevel ,  the level of WhiteNode 

0 TargLevel,  the level of Target 
Output: 

0 targ-near, the near-distance from WhiteNode to  Target 

0 targ-far,  the far-distance from WhiteNode t o  Target 

1. If (Target is grey) 

0 Determine the black and grey child nodes of Target; store in array TargChild 

0 Initialize targ-near as some maximal value and targ-f ar as 0 

0 Let ChildLevel = TargLevel + 1 

For all elements TargChild[i]: 

(a) Call Get-Distance,  passing WhiteNode,  TargChild[i] ,  WhiteLevel ,  ChildLevel 

and receiving child-near, child-f ar 

(b) Let targ-near be the minimum of {targ-near, child-near} 

(c)  Let targ- f ar be the minimum of {targ- f ar,  child- f a r}  

(d) Evaluate next TargChild[i] (go to 1) 

2. Else /*Target is black*/ 

0 Call Ca lcNearFarDis t ,  passing WhzteNode, Target,  W h z t e L ~ v e l .  TnryLevel,  and 

receiving tarq-near and targ- f ar 

S ~ l i ~ r o ~ l t  in ( ' .  Ca lcNearFarDis t  

I r ~ p t :  
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W h i t e N o d e ,  the current white node 

Target ,  the current target node 

0 WhiteLevel .  the level of Whi teNode  

TargLevel ,  the level of Target  
Output: 

near-dist, the near-distance from Whi teNode  to Target 

far-dist ,  the far-distance from Whi teNode  to Target 

1. (Assume we have location codes for Whi teNode  and Targe t )  Calculate reference points 

Whi te - re  f and Targ-re f of Whi teNode  and Target,  respectively, from location codes 

2. Let White-s ize  be side length of Whi teNode  node 

3. Let Targ-size be side length of Target node 

4. Obtain the bounding box dimensions for WhiteNode and Target:  

0 Find the m i n i m u m m i n . ~  and maximum max.x  of {White-re  f . x ,  Whi te-re  f .x+White-size,  

Targ-re f .x, Targ-re f .x + Targ-s ize)  

0 Find the difference di f f.x = max.x - min.x;  

If ( d i f f . x  < O ) ,  let d i f f . x  = 0 

0 Do the same for y and z ,  obtaining di f f .y, di f f .z 

5. (Refer to Figure 7.2) Find far-distance targ- far:  

Subtract Targ-size from each of (di  f f .x, di f f .y, di f f . z )  

Let f ar-dist be the length of the vector di f f 

6. Find targ-near: 

0 Subtract White-s ize  from each of (di  f  f.x, di f f .y ,  di f f . z )  

0 Let near-dist be the length of di f f 

7 .  Return near-did ,  f ar-dist 



Appendix C 

Detailed ODM Collision Detection 

Algorithm 

Main routine: O D M - D e t e c t  

Input: octree distance map, robot position, robot radius. 

Output: collision situation: TRUE if collision, else FALSE. 

1. Localize robot to  the highest white node W in tree 

2. Retrieve min-NSI  and max-NSI  for W 

3. For N S I  = min-NSI  to  max-NSI  do: 

(a) Generate list of nearest black and grey target nodes a t  same level L as W ,  with nodal 

distance from W equal to  N S I  

(b) For each target node T in list 

i. Call Recurse -Detec t ;  receive collision result in Result 

ii. If (Result == TRUE) /*collision*/ 

Return TRUE result 

iii. Else /*no collision*/ 

Go to next target node (go to 3b) 

( c )  To collision has bccn found; increment IVSI and go to 3 

S~it~rol~tiric,: Recursc D e t e c t  
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robot center voxel position w 

robot radius robot_size 

target node T 

level of white node, L 
Output: collision situation: TRUE if collision, else FALSE. 

1. If ( T  is black) 

Calculate near-distance for robot center voxel w and T 

If (robot-size > near-distance) 

- Collision is certain; return TRUE 

Else: 

- No collision; return FALSE 

2. Else (if T is grey) 

(a) Calculate the maximum-radius bound for w and T (see Figure 7.6) 

(b) If (robot-size > maximum bound) 

Collision is certain; return TRUE result 

(c) Else: 

i. Recursively call RecurseDetect with all black and grey children of T as target 

nodes 

ii. If any result from recursive call is TRUE 

Collision detected; return TRUE result 

iii. Else (no TRUE results) 

No collision with T; return FALSE 



Appendix D 

ODM Collision Detection for a 

Line Segment 

The following algorithm can be used for performing collision detection against a line 

segment using an  ODM. This algorithm could be useful with robots modeled as line 

segments instead of spheres. 

Main routine: L ine -De tec t  

Input: ODM, line segment endpoints PI and P2, line length l e n  

Output: collision situation: TRUE if collision, else FALSE. 

1. Call O D M D e t e c t ,  specifying a sphere with center PI and radius of 0.51en; receive collision 

result in Resul t  

2 .  If (Resu l t  is FALSE) 

0 Call O D M - D e t e c t ,  specifying a sphere with center P2 and radius of 0.51en; receive 

collision result in Resul t  

3. If (Resu l t  is FALSE) 

0 Return FALSE collision result /*No collision with line seg*/ 

0 If ( R r . s ~ ~ l f  is TRUE)  !*Lirlc) scglntrit  in collisiori*/ 
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- Return TRUE collision result 

Recursively call Line-Detect, passing M and Pz as endpoints of a line, and (0.51en) 

as the length; receive result in Result 

If (Result is TRUE) /*Line segment in coIlision*/ 

- Return TRUE collision result 

Else /*No collision*/ 

- Return FALSE collision result 


