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Abstract

We investigate two topics toward efficient sensor-based collision detection and path
planning in real-world environments. The first topic deals with the gathering of real-
world data via integration of multiple-view laser range images, and the second topic
deals with the creation and use of hierarchical distance maps.

The integration of range images from multiple views generates three-dimensional
spatial occupancy (voxel) models. As opposed to CAD or geometric models, spatial
occupancy models are closer to raw data, thereby they can be easily derived from
raw range images. Furthermore, they can easily and accurately represent complex
real-world environments. Two integration methods are examined: direct mapping,
which accurately represents the surface shapes of objects; and peeling, which creates
a model that represents the space occupied by objects, in addition to unscanned ar-
eas. The resulting voxel array may then be used for collision detection. However,
for efficiency and speed, these voxel maps can be pre-processed into distance maps —
each free pixel is assigned a value equal to the closest object, at the expense of signif-
icant memory requirements. We propose and implement a novel hierarchical distance
map for collision detection. It is based on the standard octree representation and is
called the octree distance map (ODM). The ODM represents distance information in
a hierarchical manner, yielding efficient memory use while maintaining low cost in
execution time. Two algorithms are presented, one for ODM creation and the other
for ODM-based collision detection.

Experiments with both range image integration and ODM’s were promising; ODM’s
in particular proved to be an excellent compromise between using array-based distance
maps (high speed, high memory requirements) and regular octrees (low speed. low

memory requirements) for collision detection.

11



Acknowledgements

This research has been supported by a grant from the Institute for Robotics and
Intelligent Systems (IRIS), a Federal Centre of Excellence in Canada.

I wish to thank Dr. Kamal Gupta, Simon Fraser University, for his time, support,
and patience. In addition, thanks to Dr. Shahram Payandeh of Simon Fraser Univer-
sity, for accepting a position on my Thesis Committee, and to Dr. Ze-Nian Li of SFU
Computing Science for accepting the position of Examiner. I must also thank Bill
Woods for all his time and effort in helping me with hardware and material matters,
Chao Cheng for keeping the computers up and running, and the people at Techni-
cal Arts, Inc., for answering my range scanner questions. I also wish to thank Dr.
Joe Peters and Robert Hwang of the School of Computing Science at Simon Fraser
University for their comments and suggestions.

Finally, thanks to all my family, friends, and fiancée for their support (and for not

letting me give up on this!).



Contents

A DSETaCt . . e iii
Acknowledgements .............. iv
List of Tables ... ..o viii
List of FAgUres . ...t '
1 OV VIOW . oottt e 1
1.1 Generation of Workspace Models via Range Image Integration ....... 2
1.2  Octree-Based Distance Map Representation for Path Planning ....... 2
1.3 Contributions of Thesis . ....... ... . 3

I Spatial Occupancy Recovery by the Integration of Range

Images 4
2 Introduction .............. i 5
3 Background ............. . 7
3.1 Range SCANNING .. ..ottt 7
3.2 Previous Work ... ... 9

4 Range Image Integration ............. ... .. ... 16
4.1 Description of Svstem Components . ... ...... ... .. ... ... ... .... 16
4.2 Relations of System Transforms ... ... ... . 0 I8
121 Notatlon 18



4.3

4.4

II Hierarchical Octree-Based Distance Map Representa-

4.2.2 Calibration of the Laser Scanner ..........................
4.2.3 Relating the PUMA to the Scanner ........................
Image Integration Methods ............ ... ... ... ... ... ... ..
4.3.1  OVEIVIEW ottt ittt e e
4.3.2 Direct Mapping . ......c.oiuiiii
4.3.3 Peeling ... .o
Experiments . ..........i

tion for Path Planning

B Introduction . ....... ...

6 Background .............. .
6.1 Previous WOTK ...ttt e
6.2 OCHT@OS it
6.3 DISLAICE . oot

7 Implementation of Octree Distance Maps ...........................
7.1 Motivational Factors in ODM Design ........... ... .. ... .. ... .....
7.2 Creation of Octree Distance Maps ........... ... .. ...
7.3 Collision Detection Using an ODM ....... ... ... ... ... .. .. .. ... ..

8 EXperiments ................iii

IIT Conclusions

9 Conclusion and Future Work ...... ... . . ... . i i
0.1 Future WorK .. ..o

References ... ...

A Range Scanner System Calibration ... .. . ... ... ... ...
A1 Calibration Procedure .o

vl

33

34

38
38
40
44

45
45
46
03

29

64

65
67

68



A.1.1 Capture of Multiple-View Range Images .................... 75

A.2 Offline Integration of Range Images .............................. 75
A.3 Display of integrated voxel map ......... ... .. .. ... . . ... 77
Detailed ODM Creation Algorithm .................................. 78
Detailed ODM Collision Detection Algorithm .................... .. 81

ODM Collision Detection for a Line Segment ................... ... 83



List of Tables

8.1

8.2

8.3

8.4

Memory usage for ODM, octree, and voxel-based distance map for five
WOTKSPDACES. v vt ettt e et e et e
Condition-check results of 3-D collision detection using ODM and oc-
tree. (1000 t€StS PEr AVE.) .ottt e it e
Times (Sparc-10) for 3-D collision detection, using ODM and octree.
(1000 tEStS PET AVE.) .+ ettt et e ettt e
Speed performance (Sparc-10) for 3-D collision detection with 4 robot

configurations (159 spheres) using ODM and octree. (Times in ms.)

vill

63



List of Figures

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9

5.1
5.2

Example of a range image vs. an intensity image. ..................
The spreader and director mirrors on the White scanner. ............

Operation of the White scanner. .......... ... ... ... ... oo ii..

Block diagram of our multi-view range scanning system. ............
Mounting of the scanner on the PUMA wrist joint. .............. ...
Notation used for designating geometric transforms. ................
The transforms used in the scanner system. .......................
The peeling technique for range image integration. .................
A schematic of the objects used in the experiments. Axes are used as

reference for voxel map results only. ...... ... .. ... ... ... ... ...,
Range images used for integration. .............. ... ... . .. ...,
Direct mapping results. . ..........

Peeling technique results. ......... .. .. ... .. ... . . i

Example of a pixel-level Manhattan distance map. .................
The memory-speed compromise achieved with the ODM, illustrated

qualitatively. ... ...

A 2-D image and corresponding quadtree. .............. .. ... ...

Octant numbering based on Morton ordering. .....................

A fundamental problem in hierarchical distance representation. ......
The concepts of near-distance and far-distance. ........ .. ... ... ..
lustration of maximum bound for maximum-NSI search. ... ... .

Mlustrations for the ODM creation example. ... . ... .

1X



7.5

7.6

7.7

8.1

8.2

Al

The octree distance map structure constructed for Figure 6.1; records
under white nodes contain maximum and minimum NSI. .......... ..
Bound on maximum radius of robot; if robot is larger, a collision is
detected. ...

Illustrations for the ODM collision detection example. ..............

Results of 2-D experiments with data from Figure 2 for robot radii of
1, 2, and 3 voxels (a, b, and c respectively). (x indicates collision).
Example of a workspace used for collision detection tests; robot spher-

ical model ShOWIL. . .. .o

PUMA-to-scanner calibration using the V-block. ...................



Chapter 1
Overview

The use of detailed, real-world three-dimensional data for collision avoidance and
path planning in robotics is very desirable and thus a significant area of research.
While using CAD-type data to model real-world environments is currently an accept-
able approach, the growing number of applications for robotics expands the range of
possibilities for real-world situations such that modeling these situations using CAD
techniques can be very difficult. In addition, the power of computing hardware today
removes many limitations on the computational requirements for compiling sensed
data into a usable model.

Using real-world data, this thesis addresses these two issues of robot path plan-
ning: (1) generation of a usable, efficent model of the workspace and (2) algorithms
for performing collision detection with this model. In our view, a robot workspace
may contain any number of objects of all shapes and sizes. While specific situations
may limit the number and class of objects to provide clean, controlled environments
and thus simplify model generation and collision detection, we decided to investigate
the strategies that would provide a system usable in the widest range of environments
possible. For instance, the workspace model generation and collision detection algo-
rithms both use voxelized space and octrees to model the environment. Thus, any
object or set of objects can be modeled with the only limiting factor being the chosen
resolution.

This section provides a brief introduction to these two issues. workspace model
generation and collision detection using the workspace model: hoth issues are dis-

cussed in far greater detail later in the thesis. They are separately presented in this
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thesis because, although both are important issues in robot path planning, the two
issues are complementary. The common link between the two is that a generated
workspace model would be passed to the collision detection algorithm in an actual-
ized system; this was, unfortunately, not achieved due to experimental delays in the
project. However, path planning algorithms using CAD environments have been de-
veloped at SFU (Gupta and Zhu 1995) and can be adapted to use voxel maps such
as those generated using algorithms presented here. The thesis provides concrete
evidence that, given more sophisticated hardware and further development, a fully

integrated system using the concepts and algorithms described here is achievable.

1.1 Generation of Workspace Models via Range

Image Integration

The first part of this thesis discusses the investigation of the use of laser range images
in the generation of a workspace model. Specifically, multiple range images are taken
from sufficiently different points of view and integrated via geometric calculations into
a discrete “voxel map” or 3-d bitmap. The resulting voxel map, once all images are
integrated, is the workspace model. Note that the model is a volumetric model, not
a CAD model, for reasons given above.

Chapter 2 provides a more detailed introduction on this subject, while Chapter
3 discusses previous work in this field and introduces range scanning. In Chapter 4,
the concepts behind range image integration, and in particular the integration system
used for this thesis, are presented as well as the algorithms investigated. Chapter 5
discusses the experiments performed and results obtained, and Chapter 6 presents the

conclusions for this part.

1.2 Octree-Based Distance Map Representation for
Path Planning

Part 2 of the thesis investigates the issue of using volumetric workspace models for

collision deteetion and path planning. Previous efforts in the use of distance maps
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for path planning (Latombe 1991) have shown promise, particularly in terms of per-
formance, but have been less than ideal in terms of efficiency in memory use. In
this thesis, an octree-based representation, the Octree Distance Map, is presented
and shown to be (1) usable for collision detection and (2) efficient in memory usage
and collision detection performance. This part of the thesis is based primarily on an
upcoming article in the Journal of Robotic Systems (Jung and Gupta 1997).
Chapter 7 introduces this topic in greater detail. Chapter 8 provides background
information about previous related work and about octree representations. Chapter 9
presents the Octree Distance Map and algorithms for its generation and use in collision
detection. Chapter 10 discusses the experiments performed using the Octree Distance

Map concept, and Chapter 11 presents the conclusions drawn from the experiments.

1.3 Contributions of Thesis

This thesis has contributed in terms of both function and theory. The theoreti-
cal contributions include the direct-mapping and peeling algorithins for range image
integration, the concept of the octree distance map (ODM), and algorithms for creat-
ing ODM’s and using ODM’s in sensor-based collision detection and path planning.
Functionally, the thesis has produced an experimental system for the acquisition and
integration of multiple-view range images. In addition, the above algorithms have

been implemented and experiments have been performed using these algorithms.
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Chapter 2
Introduction

Most robot path-planning programs in the past have operated on CAD models of robot
workeells, or on completely artificial environments (Latombe 1991). CAD models are
simple representations, but obtaining a CAD model of a real environment based on
sensed data is quite difficult, simply because the modeling of complicated real-world
objects using CAD primitives is a non-trivial problem. This problem, in fact, is the
basis of a great body of research. An alternative to using CAD models is to build a
spatial occupancy model, that is, a model which maps the volumes or spaces occupied
by objects in the workcell. Such models are easier to obtain from sensed data than
CAD models. An example of a volumetric model is a binary vozel array. A voxel is
a elementary volume (3-d) element, analogous to a pixel in 2-d. By setting voxels in
obstacle or object space to ON and voxels in free space to OFF, the spatial occupancy
model of a robot workcell is obtained.

Acquiring information about a robot workspace can be accomplished in a number
of ways, using many different types of sensors: sonar, video cameras, force sensors,
and so on. One such type of sensor is the laser range scanner, which has the added
advantages of direct three-dimensional information capture and high accuracy. How-
ever, a single range image in most cases will not adequately describe a workspace, and
therefore we must use multiple scans and find a way to merge or fuse the resulting
1nages into a single representation.

The process of merging 3-D data contained in multiple range images into oue 3-D
workspace model lies in the realm of computer vision research. However. most 3-D vi-

sion research has concentrated on object recognition aspects rather than workspace or
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environment modeling. In object recognition, one is generally concerned with a single
object and matching it among models with geometric descriptions. For the workspace
modeling problem, however, the main concern is the actual spatial occupancy of each
object — and there may be multiple objects — in the workspace; the geometric prop-
erties of the objects are of interest only insofar as the effect of such properties on
spatial occupancy. In addition, we have a contrast in the ideologies behind the na-
ture of the acquired models: object recognition deals with a model of a single object,
whereas I am interested in a model of an entire environment - both occupied and
unoccupied spaces. Research in mobile robot navigation has dealt with mapping the
environment, but with different types of sensor systems, e.g., sonar/intensity images,
and in different situations, e.g., on a different spatial scale.

In this first part of the thesis, I provide an overview of previous related research
in image integration. I briefly present the concepts behind range imaging, and then
discuss the calibration processes required in our particular system for us to obtain the
proper transforms for range image integration. Next, I examine the actual problem
of range image integration. I propose an algorithm, called peeling, which fuses range
images from multiple views given the geometric transforms for those views. The result
of the algorithm is a spatial occupancy model (in the form of a vozel array, a voxel
being a single volume element) of the robot workcell; this model can then be input
to a path planner. I also take a look at another method of range image integration,
direct mapping, which combines the images into a voxel array but provides only a
surface modelling of the objects in the workcell, not a spatial occupancy model. I
then describe the implementation of the prototype system and present results of the

experiments.



Chapter 3

Background

3.1 Range Scanning

Many methods for obtaining 3-d data exist. For instance, one can use sonar, which
involves emitting sound waves and timing their return to determine the distance of
the reflecting surface. Stereo systems are common, and exist in two varieties. The
first uses two or more intensity cameras separated by a known distance. All of the
cameras capture an image of the same object or scene at the same time and, based
on the disparities between matched features in the multiple images and the geometry
of the cameras, the distance to points in the images may be determined. The second
variety of stereo vision is called photometric stereo. Photometric stereo involves a
single intensity camera, which captures images of an object or scene from different
points of view (or images of a moving object). 3-d data is again calculated using
disparity of matched features and geometry. Shape data can also be approximated
from single intensity images through shape-from-shading — inferring 3-d data from
light intensity gradients.

The method used in this thesis, laser range scanning, produces 3-d data in the
form of range images. A range image is a 2-d image whose pixels have values relative
to the range (or distance) between the scanned surface and some reference point.
Figure 3.1 provides an example of the information contained in a range image.

Laser range scanning has a nummber of advantages over the above methods: First,
no feature matching between images is required, as tong as the geometric transforma-

tions between each scanner position are known. Second, only one camera is required.
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range image
reference point

——

camera object

light intensity image range image

- darker pixels indicate less - darker pixels indicate shorter
illumination of surface distance to reference point

Figure 3.1: Example of a range image vs. an intensity image.

Third, no special lighting conditions are required, as long as the camera may discern
reflected laser light from ambient lighting. Fourth, colour differences on the surface of
an object do not affect accuracy (with certain exceptions: black, for example, tends
not to reflect light very well and thus our laser scanner has problems with black sur-
faces.). Finally, and most significantly, the range image obtained from the laser range
scanner contains explicit and highly accurate 3-d data — no further manipulation of
the image is required.

Two types of range scanners are most common: time-of-flight scanners and light-
stripe scanners. Time-of-flight scanners use a principle similar to sonar: a pulse of
laser light is emitted and the time required for it to hit and be reflected by a surface
is measured. These scanners arc extremely accurate, but also extremely expensive.
Light-stripe or White scanners are slightly less accurate and thus less expensive. Our
White scanner has two components: a laser source and a CCD camera. The laser
source has two mirrors: a spreader mirror, and a director mirror (see Figure 3.2)
The spreader mirror oscillates quickly, such that when a laser beam contacts it, the
mirror reflects the beam at various angles, thus creating the light plane. This plane is
then positioned by the director mirror to fall onto the surfaces to be imaged. When

the light plane hits a surface, the result is a light stripe on the surface. which is
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imaged by the CCD camera (see Figure 3.3). If there are variations in the height
of the surface, these variations will show up on the image as a displacement of the
light stripe. By previously measuring parameters such as the angles and heights of
the laser and camera from the surface (thus defining the geometrical situation), the
heights of the variations may be calculated from the image. An area scan of an entire
scene can be performed by having the director mirror gradually step the laser stripe
across the complete scene. The image of the stripe is passed from the CCD camera to
a frame grabber, which digitizes the image. The digitized values are then fed into a
computer, which calculates the range (distance) to each scanned point. Accuracy can

be improved by taking repeated scans for a given position and averaging the range

— U O — e e 4 o kIS e o S T

values associated with each point.

spindle oscillates spreader
mirror to create light plane laser

o
\%58:? -7
-
spreader ) :
mirror spindie step-rotates director to
/Y step light plane across scene
light plane

mirror

Figure 3.2: The spreader and director mirrors on the White scanner.

3.2 Previous Work

A great deal of active research exists in the area of image integration. While mv own
concentration has been the integration of range images only, many researchers have
investigated fusing range and intensity data in the same system, and the integration
of other tvpes of data, such as sonar. from which 3-d structure may be obtained.

For instance. Asada (Asada 1990) combines both intensity and range data to build
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laser and
mirrors CCD camera

laser light plane

image captured by
camera

Figure 3.3: Operation of the White scanner.

environment maps for a mobile robot. The method in this paper uses a single range
image to produce a “height map” which represents the environment in 3-D. This
height map is then segmented and used with intensity data to identify and classify
the obstacles located in the image as artifical objects (objects with planar surfaces),
natural objects, or uncertain. Unfortunately, the approach is limited to mapping
convex, floor-mounted objects. Grandjean and Robert de Saint Vincent (Grandjean
et al. 1989) have proposed a method for fusing both range data from a laser range
scanner and photometric data from a stereo (intensity-image) system. Its results,
scene descriptions consisting of a set of planar faces, is more suited for polyhedral and
geometric modeling. The method uses “extended Kalman filtering” to fuse lower-level
primitives (points/pixels) into higher ones (3-D lines, planes) and for calibrating the
transformations between reference frames. Leonard and Moran (Leonard and Moran
1992) describe a geometric approach for the integration of sonar data in order to
reconstruct underwater 3-D scenes. They use an approximation of the geometrical
characteristics of high-frequency acoustic scattering to try to recover explicit geometric
surface descriptions of objects.

In range image integration research, one can easily identify two main areas of
concentration: (i) the production of a geometrical or CAD model, and (ii) the pro-
duction of a spatial occupancy model in the form of a voxel array or octree. (Octrees
are discussed in detail in the second part of this thesis.) The largest body of work in
Image integration, particularly in range image integration, deals with the extraction
of geometrical models from fused images. These models are generally then used for

ohject recognition and pattern matching, or to build CAD models of objects. The
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methods proposed usually involve some form of segmentation or feature extraction.
For example, Succi and others (Succi et al. 1990) describe a system for extracting fea-
tures from a sequence of range data. The system performs volumetric integration on
the range data, and then detects planes and vertices from a “Polynet” 3-D superficial
representation built from the volumetric one. Stenstrom and Connolly (Stenstrom
and Connolly 1986) generate polyhedral wire frames from multiple range images by
extracting line segments from each view, and then transforming them into a global
frame. Herman (Herman 1985) produces descriptions of polyhedral objects from range
data, in the form of 3-D primitives (vertices, lines, planes, etc.) as well as topological
and geometric relationships. Yao and others (Yao, Podhorodeski, and Zuomin 1993)
present a multiple-view range image integration method based on partial geometric
modeling for each range image. A global model is updated after each partial model is
generated, with the final result being a complete 3-D geometric description of objects
in the scene, once all the range images have been considered. There are many other
such examples, as well as examples of raw range data processing for object recognition
(e.g., Lin and Wee (Lin and Wee 1985) apply a generalized Hough transform on range
data in order to recognize or locate 3-D objects).

Stenstrom and Connolly (Stenstrom and Connolly 1992) demonstrate a method for
producing solid 3-D models from multiple range or intensity images, or from digitized
line drawings. For each image, the algorithm first finds all pixels which form part
of an edge and groups these into chains. Next, I-cycles, or sets of edges where each
endpoint is common to only two edges in the set, are located from the edges identified
in the image. Each 1-cycle defines a finite area in a plane. 1-cycles are then extruded
orthogonally in the view direction from the image plane’s physical position to produce
cycle volumes or 2-cycles. (2-cycles are defined as a set of faces where edges of faces
are incident on only two faces in the set, and cycle volumes are 2-cycles formed by
the extrusion of 1-cycles.) Cycle volumes from multiple views are then intersected
to obtain a bounding volume for the object in question. The end result is a closed
2-cycle object model which fully bounds the object and approximates the object by
a planar solid.

Previous work at Simon Fraser University involving the integration of range im-

ages 1s documented in (Xu 1992). Xu generates a 3-D bhoundary representation or

b-rep description of a polyhedral object by fusing multiple svnthetic range images of
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the object, taken from multiple viewpoints. In his approach, the rigid-body transfor-
mations between each view are first determined through a matching algorithm which
identifies and relates triple branch structures (structures containing an object’s par-
tial geometric information, formed by three intersecting and noncoplanar edges) in
the range images. Once the relationships between the views are known and the fea-
tures (vertices, edges, and faces) in each view have been identified, the features are
transferred to a global reference frame based on the rigid-body transformations. Du-
plicate features are checked for and removed. The resulting geometrical b-rep model
is a list of vertices (and their z — y — z coordinates), a list of edges (with start and
end vertices and bordering faces), and a list of faces (with a list of vertices for each
face). These three lists provide a complete description of a polyhedral object.

The second main branch of range imnage integration research, the generation of
volumetric or spatial occupancy models (such as voxel maps or octrees) from multiple
range images, has also attracted attention from researchers. Some methods used
for range image integration have been derived from earlier efforts using intensity
images. An early example is (Martin and Aggarwal 1983), which discusses a method
for obtaining models of three-dimensional objects in multiple intensity images. In
each image, the occluding contour of the object is determined; the occluding contour
is the boundary in the image plane of the silhouette of the object, with the silhouette
generated by intensity-thresholding the image. Another way to conceptually define
the occluding contour is to look at lines parallel to the line of sight or optical axis. By
taking only those lines which tangentially intersect the object surface and are parallel
to the view direction (e.g., the y axis), and intersect them with the plane perpendicular
to the view direction (in this case, the z — z plane), we obtain the occluding contour
of the object. These lines, called contour generating lines, form an infinite volume
which encloses the object. By intersecting the volumes generated for each view, the
bounding volume of the object may be obtained, and by using common raster lines
to segment each contour, this bounding volume is split into parallelograms. These
parallelograms are then themselves rasterized to obtain the line segments which form
the volume segment representation used here.

Potmesil (Potmesil 1987) discusses the generation of octree models of 3-D objects
1‘1‘01;1 silhouettes. Intensity images are captured from multiple views. These linages

arc then thresholded in order to isolate the objects from the background, using a
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threshold level determined from a histogram of the image, and thus obtain silhou-
ettes. (The assumption is made that high contrast exists between the objects and the

background.) The 2-D silhouettes are then converted into 3-D conic volurnes using

the 4x3 perspective transform matrix for the camera (computed by camera cahbra—
‘t‘gn) recurswely project each octree node into the image plane (thereby producing a
2-D “image” of the octree node cube) and determine if the octree node image (actu-
ally, its bounding rectangle) falls within the silhouette regions earlier determined. (If
a node intersects both object and background regions, the eight leaf or child nodes of
the parent branch node are then recursively considered.) This intersection of the oc-
tree node image with the image regions involves converting the image into a quadtree.
The smallest quadtree node which encloses the octree node image is then recursively
intersected with the octree node image to determine the contents of the octree node
image. The result of this complete algorithm is a partial octree containing nodes
which make up the conic volumes produced by the silhouettes obtained for one par-
ticular view. All partial octrees are then intersected, along with an octree designating
the unseen volumes, to determine the complete model octree. One should mention
that object concavities may not be represented using this algorithm.

Noborio and others (Noborio, Fukuda, and Arimoto 1988) present an algorithm
for producing an octree representation of a workspace from multiple intensity images.
This algorithm has a similar methodology as (Potmesil 1987) in making use of 3-D
conic volumes, or “polyhedral cones”, defined by the polygonal contour of the object
image and the viewpoint for each view, and intersects these polyhedral cones using
volume intersection. (Although it is not mentioned in the paper, it must be assumed
that the perspective transform for each view is known in order to generate these
cones.) First, the algorithm classifies each octree child node of a parent node as being
inside, intersecting, or outside each polyhedral cone. This is accomplished by first
checking points on the cubic region defining the node against the view cone surfaces.
Intersecting nodes are subdivided into their eight child nodes and reclassified. Next,
the algorithm intersects all of the view cones by recursively checking all “inside”
nodes (from the first step) to see if they lie inside, outside, or intersect the “common
region”™ (the volume intersected by all view cones). Nodes which are “inside” for
every polvhedral cone are therefore “inside”™ the common region: those which are

113 : . . . . .
outside” for any one cone are outside the common region. Again. intersecting nodes
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are subdivided and reclassified. Once the octree has been completely classified versus
the common region, the nodes in the common region are output. Again, this algorithm
may lose object concavities and an assumption must be made that each view contains
all the objects or useful workspace.

Ahuja and Veenstra (Ahuja and Veenstra 1989) also generate octrees using sil-
houette images of an object. The images must be obtained from a subset of thirteen
pre-determined viewing directions, severely limiting flexibility. In their experiments,
they obtained simulated silhouette images of several geometric objects (generalized
cones). For each image, depending on from which viewpoint in the subset it was
viewed, an octree is generated. All of the octrees are subsequently intersected to
produce a global octree.

Roth-Tabak and Jain (Roth-Tabak and Jain 1989) present an algorithm to gener-
ate a 3-D voxel-based environment model from simulated dense range images. Rather
than simple binary (on-off) voxels, this algorithm uses voxels with three states: Void
(off), Full (on), and Unknown (for voxels for which no meaningful information has yet
been acquired). Starting with a model of completely Unknown voxels, the algorithm

checks every non-void voxel within the scope of the sensor as follows:

1. The three-dimensional coordinates of each vertex for the voxel are found.

2. For each vertex, the pixel in the range image corresponding to the vertex’s

position (found by view-transforming the vertex coordinates) is identified.

3. If the distance of any vertex is smaller than the range of any corresponding

range image pixel, the voxel is marked Void.

4. Otherwise, if the difference in range between the pixels corresponding to the

vertices is within a threshold, the voxel is marked Full.

Thus, for each voxel to be classified, the algorithm makes up to eight range compar-
isons (one for each vertex of the voxel), in addition to view-transforming each vertex
and thresholding. Obviouslv. this algorithm requires an extreme amount of process-
ing for large arrayvs of voxels. (The size of array used in the paper is 64x64x16.) The

reason for this is that this method assumes that each voxel occupies a finite volume.

In comparison, most algorithms, including the two presented in this thesis, assume



CHAPTER 3. BACKGROUND 15

that each voxel is a single point in space (that point in space being the centroid of
the voxel) and thus requires only a single range comparison to each reference point.
(As we see in Chapter 4.3, the direct mapping method has one reference point, while
the peeling method has two.)

Sharma and Scrivener’s work (Sharma and Scrivener 1990) is very pertinent to
my research. This paper discusses an approach for constructing 3-D object models
using video (intensity) images from a scene (although no actual images are used for
the paper). From these images, their approach involves deriving so-called “2%-D
sketches”. (They do not actually derive these images, but rather assume that such
sketches can be accurately derived from images and obtain simulated 2%—D sketches by
creating a 3-D mathematical model of the geometry of objects in a scene.) The 2%—D
sketch is considered as an image with depth information for every pixel in the image
— essentially, a completely-dense range image derived from a video or intensity image.
With multiple 2%-D sketches from different points of view, they introduce their 3-D
model construction scheme — a “chipping” process which removes unwanted pieces
from a block of voxels. The process sounds very similar to the “peeling” algorithm
we propose, although without an explicit description of their process in the paper,
comparison is difficult. However, we may compare topic areas: our project involves
actual range data, rather than simulated 2%—D sketches, and therefore must take into
account the real-world aspects of the scanning system, e.g., separated camera and
light source; we also use a linear octree to represent our data, thereby producing a
more memory-efficient model; our project is application-oriented, its results required
to be suited to path-planning, and thus is more concerned with modeling environments

than objects.



Chapter 4

Range Image Integration

4.1 Description of System Components

16

The prototype system used for multiview range scanning and range image integration

consists of four main components (see Figure 4.1):

® range scanner

e robot

e image capture computer

e image integration computer

range
scanner
(laser and

CCD camera)

scal
moun
rol

Figure 4.1:

—

nner
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robot and

raw image data
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transforms

image capture
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(386 PC with
video digitizer
and Technical
Arts software)

processed
range images

UniMate
controller

Block diagram of our multi-view range scanuing syvstem.

image integration

computer
(Sun workstation
with integration

software)

integrated 3-D
workspace
voxel maps

The range scanner is a Technical Arts Corporation T00AT White scanner. The

scanner itself has three subcomponents: a laser source.

ule. The laser source currently being used is a helium-neon laser with an output of

a camera, and a director mod-
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10mW. This laser is admittedly somewhat more powerful than is required for my pur-

E);ég,ﬁalthough the extra power may be useful in later extensions of this work — for
instance, the scanning and modeling of larger workspaces. Spreader and director mir-
rors have been attached to the laser source to allow for area scanning (see Section 3.1).
The second subcomponent of the scanner, the camera, is a Sony XC-75 CCD camera
with a Schneider 10mm lens. The camera is especially sensitive to the laser light,
thus capturing the image of the laser line intersecting objects in the workspace and
transmitting the image to the image capture computer. The third subcomponent, the
director module, contains the power supply for the laser and circuitry for control of
the directofN%irror. The absolute accuracy of this scanner when properly calibrated
is better than 1 part in 1000, or 01%2, The accuracy of scanning and calibration is
increased by taking multiple scans‘ for each position of the laser line and averaging
the range values obtained. Five scans are averaged for each laser line position during
calibration, while fifty are averaged during scanning.

In order to use the scanner from multiple views, the scanner is mounted on a
PUMA 560 robot, the second major component in the system. The scanner is mounted
on a beam attached to the wrist joint of the PUMA (see Figure 4.2). Four degrees of
freedom are available for movement of the scanner: the waist, shoulder, elbow, and
one wrist joint. Programs and commands for controlling the PUMA are entered on an
SGI workstation, which sends the appropriate signals to a separate PUMA controller.
The PUMA may also be controlled by issuing commands on a teach pendant. From
testing, PUMA positioning is accurate to approximately + 1mm.

The image capture computer, the third major component of the system, is an
80386-based PC with a digitizer board for image capture. A second interface board
in the computer controls the spreader mirror. Software on this computer operates
the scanner, performs calibration, and i‘célculétes range values for the data points
obtained with the digitizer. The scanned range images are stored in binary files on
the computer’s hard drive. - /.

The binary range image files are then converted into ASCII data for use by the
image integration computer, the fourth major component. The image integration
routines are written for Sun workstations; however, one may remotely connect to
a Sun through the SGI workstation which controls the PUMA. Because the image
capture PC and the SGI workstation are currently separate, the ASCII range data
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@(A \/GD\IA/ attachment at wrist joint

4 degrees of freedom:

@ waist
@ shoulder

Figure 4.2: Mounting of the scanner on the PUMA wrist joint.

must be ported to the workstation by floppy disk. In the future, however, the two
computers may be connected by an interface such that the range scanner may be
controlled on the SGI and range data may be directed fed into the SGI.

4.2 Relations of System Transforms

4.2.1 Notation

This section describes the relationships of the various geometric transforms between
different components of the range scanning and image integration system and different
positions of the scanner and PUMA. The notation used in this thesis for geometric
transforms is as follows: Assume we have a base reference frame, P (see Figure 4.3).
If we wish to express the transform to obtain a second frame S relative to P, the
notation would be: ZT.

Additignally, a point X may be expressed relative to frame S with the following

notation: X. We may then obtain the coordinates of point X expressed with respect

P P S
to the base reference frame P: X = sT X
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Figure 4.3: Notation used for designating geometric transforms.

4.2.2 Calibration of the Laser Scanner

In relating the transforms of the system, we must consider two separate issues: cal-
ibrating the laser scanner, and relating the PUMA to the scanner. Calibrating the
laser scanner allows us to obtain accurate range measurements in the range images.
As we shall see later, scanner calibration need only be performed once for a given set
of multiple view range images, provided the positions of the laser and camera are not
changed with respect to each other.

The laser scanner involves three separate components: the laser unit, the CCD
camera, and the calibration gauge supplied by Technical Arts. When these three
components are properly aligned and certain parameters (laser angle, camera angle,
laser height, camera height, and gauge dimensions) entered into the control program,

line on the calibration gauge and, based on the parameters entered and the expected

shape of the calibration gauge, fixes the location of the range image reference frame
(which we shall call Go. As illustrated in Figure 4.4, the Go frame is fixed on a
corner of the gauge (when the edge of the gauge is lined up with the first scan line);
the z-axis is vertical, the y-axis is along the direction of the scan line, and the z-
axis perpendicular to the scan line. As the scan line is stepped in the z-direction,
the calibration routine uses the shape of the image to determine the correct (x,y, z)

coordinates for each step.
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calibration
block

Figure 4.4: The transforms used in the scanner system.

4.2.3 Relating the PUMA to the Scanner

We can change our view by changing the position of the PUMA arm, and at each
new position, we can obtain the transformation at that position from the PUMA
controller. This transformation consists of the X, Y, and Z coordinates and the 3
rotational components of a tool reference point. These coordinates and rotations
are with respect to the PUMA'’s base reference frame, which we’ll call P. Let’s call

P
the tool transformation at position i, s-T' Now, let’s say the transformation at the
' P
initial position, where the laser scanner is calibrated, is S T. In other words, at the
0

transformation :oT, the image exists in the base frame Go. However, we also need
to establish relationship between the PUMA position and image space in order to
locate the range image information with respect to the PUMA. This is the second
issue in relating system transforms — linking PUMA to the physical space that has
been related to the image space by laser scanner calibration, and in so doing, linking
PUMA to the image space.

To accomplish this, we have considered a number of alternatives. A rough estimate
should be attainable by manually measuring the translation and orientation difference
of the point on the scanner calibration gauge corresponding to the origin of Gg, with
respect to the base of PUMA, where the base frame of PUMA, P, resides. This
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locates Gg in the global reference frame that is located at the base of the Puma,
and so links image space to the global frame. Another more accurate method would
involve measuring the relationship between a number of separate points on the gauge,
obtaining the relationships by touching them with the PUMA moving a pointer of
known translation from the tool transformation reference point and doing an error-fit
to determine the best transformation to the origin of Gg. Let’s assume that, through
one of these methods, we obtain the relationship of P to Gg, which we’ll call i T.
A point in frame Gg can be expressed in terms of the frame P by transforming itoby
ZOT. Thus, for a point GoX in the space defined by G,

P Go P

T X=X
Go

where PX is the point X expressed in the P frame.

We should next mention how these relationships are used for integrating multiple
views. We obtain a second view by moving the PUMA to a position Sy, with trans-
formation :1T' The second range image we obtain would be in a new image space,
with frame Gy. In order to relate the image points in Gy back to the Gg frame, we
must find the correct transformation z:T If we look at Figure 4.4, we see that this
transform can be obtained by following the transform path

Go Go P Si

T=_T_ T T
G1 P~ Si Gi

Note that with the scanner at S; using the same scanner calibration as that for
the scanner at Sy, the geometry between the scanner position, i.e., S;, and the image

frame G; must remain constant. In other words,

So S1
T= T
Go Gy
Thus,
Go Go P _So
T=_T_ T T
Gy P S Go

Go
We can express this in terms of measurable transforms. P T is directly measurable

P
(see Appendix A), while S T is provided by the PUMA controller. The relationship
1
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So
GOT can be obtained from the transformation for S¢ from PUMA and the measured

relationship between P and Gy:

So S P
T = T
Go P~ Go
So P -lp
T= T T
Go So Go

So, in terms of measurable transforms,

T
G1 P Sy So Go
. GO . Gl . . .
Using c T then, we can relate a point X' in the image frame Gy into the
1

G P
corresponding point °X'in the image frame Gg, and finally into point X' in the
PUMA base frame P:

PXI _ P T GOXI _ P - GOT G1X’
Go o Gi

This system is expressed pictorially in Figure 4.4. (Note that the X and Y axes on
the scanner calibration gauge frame Gy have been swapped from the X and Y axes
used by the scanner in order to maintain consistency in orientation with the PUMA
P frame.)

Because we have the relationship of P to G, i.e., ZOT, we can relate images in Gy
(and images in subsequent views in image frames Gj) to the globaéreference frame

P, simply by transforming images in G; back to Gg by calculating GT]T for each Gj.

4.3 Image Integration Methods

4.3.1 Overview

A number of factors characterize the range image integration problem presented in

this thesis:
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1. Transform availability: The geometric transforms between each view (or
between each view and the base reference frame) are available, thus providing a
simpler problem (and more accurate solution) than if transforms needed to be

derived based on the sensed range data.

2. Voxel-map integration: The range images are integrated directly into a voxel
map, unlike some approaches which segment range images in order to obtain a

geometric model.

3. Two-component scanner: As explained earlier, our scanner is a two-component
system, with each component in a separate location. Many other range scanners
have both components at the same or nearly the same location. This factor is

particularly important when the peeling algorithm is discussed later.

4. Path planner suitability: The prime focus of the range image integration
project is the production of a model suitable for use by a path planner. Because
the path planner does not care about the geometric properties or finer details
of the objects in the workspace, we need not have an exact representation of
each object; merely their spatial occupancy (i.e., size and location in space)
need be accurate. However, the objects should be represented as “filled-in” or
solid volumes rather than surface shells, in order to avoid non-collision positions
within objects. In addition, unscanned areas must be treated as obstacles:
without knowledge of the contents of these areas, the planner should avoid

them.

With these factors in mind, two separate integration algorithms were investigated:
(i) direct mapping and (ii) peeling. The two methods, which are explained in detail in
this chapter, differ in the way they interpret the range data in each image and in the
nature of the resulting integrated models produced by each method. As we shall see,
the peeling algorithm produces a model more suitable for a path planner, though the

direct mapping algorithm is useful for verification of correctness of the transforms.

4.3.2 Direct Mapping

The direct-mapping algorithm is so named because it maps pixels in range images

directly into our voxel map (3-d bitmap). In other words, if a pixel in a range image
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contains depth information, that depth information is used to determine the location
of one (and only one) voxel in the voxel map - that voxel being on the surface of
an object or obstacle in the workspace. The direct mapping algorithm thus creates a
surface-map model of the workspace.

Below is a high-level algorithm for direct mapping (calculation of PUMA-to-image-

frame transforms was explained in the Calibration chapter):

Main routine: Direct_Map
Input:

e array of images Image|]

e number of images Num_Images

P
e array of matrices Transform = PUMA-to-image-frame transform for each image (G.T)

Qutput: Voxel array representing workspace VozArray.

1. Initialize all voxels in Voz Array to OFF

2. Forn =1 to Num_Images do:

(a) Search incrementally in x and y (relative to range image frame) in range image I'mage[n|

for a pixel with a valid range value (2)
(b) For each such pixel, do:
i. Let Vector = [z,y, 2] be the range image pixel converted to a vector in the range
image frame

ii. Let PUM A Vector = Transform|n] x Vector be the vector transformed into the
PUMA frame

iii. Locate the voxel in VorArray corresponding to PUM A_Vector and set it to ON

iv. Evaluate next pixel in I'mage[n] (go to 2a)

(c) When all pixels evaluated, go to next range image (go to 2)

In the voxel map, the direct mapping algorithm produces thin shells, a few voxels
thick, that represent surfaces scanned in the range images. By viewing the results of
direct mapping, the correctness of the “fitting” of the multiple-view range images can
be determined - if correct, one should be able to distinguish the objects that were
scanned. However, the objects are not represented in a solid fashion. The object

surfaces (if scanned) have representation in the voxel map as thin shells, but the
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interior of the objects are not represented. In addition, the areas that have not been
scanned in our range images (the "unknown” areas) are not mapped to the voxel
map; hence, these areas are considered to be empty space rather than as obstacle
areas to be avoided. These two drawbacks indicate that the direct mapping algorithm

1s unsuitable for generating models for path planning.

4.3.3 Peeling

The peeling algorithm is an attempt to overcome the drawbacks of direct mapping.
The concept of peeling is similar to that of woodcarving: starting with a completely
filled voxel map (solid block of wood), range images are used to peel away voxels
known to be in free space (chip away wood), so that the remaining voxels represent
the workspace model. The underlying basis for the peeling algorithm is that each
range pixel (i.e., a range image pixel that has a range value) provides two pieces of
information: (i) the location of a point on an object’s surface, and (ii) that points in
space between that surface point and the laser, and between the surface point and
the camera, are free: a scanned point corresponding to the range pixel must have
had the laser beam hit it and must have been seen by the camera. Therefore, by
starting with a completely voxel-filled workspace model and, for each scanned surface
point, removing voxels from the model along the vector from the surface point to
the laser, as well as thé vector from the surface point to the camera, an accurate
workspace model is achieved (see Figure 4.5). The positions of both the camera and
the director mirror on the scanner must be measured relative to some known point
(e.g., the robot’s tool center point). Note that range image pixels with no range value
(i.e., unscanned points) are not mapped to the voxel array; thus unscanned areas are
left unpeeled and treated as obstacle areas.

Below is a high-level algorithm for peeling:
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Figure 4.5: The peeling technique for range image integration.

Main routine: Peeling

Input:

e array of images I'mage
¢ number of images Num_Images
P
e array of matrices Transform = PUMA-to-image frame transform for each image (G T)
0

e locations of the laser LaserPos and camera CamPos with respect to image frame

Output: Voxel array representing workspace Voz Array.

1. Initialize all voxels in VozArray to ON

2. For n = 1 to Num_Images do:

(a) Let Laser PosT = Transform[n] x Laser Pos be the transformed laser position relative
to PUMA frame

(b) Let CamPosT = Transform|n]x CamPos be the transformed camera position relative
to PUMA frame

(¢) Search incrementally in z and y (relative to range image frame) in range image Image([n]

for a pixel with a valid range value (z)
(d) For each such pixel, do:

i. Let Vector = [z,y, z] be the range image pixel converted to a vector in the range

image frame
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ii. Let PUM A _Vector = Transform([n] x Vector be the vector transformed into the
PUMA frame

iii. Let LaserPeelDir = LaserPosT — PUM A _Vector be the peeling direction to-

wards the laser

iv. For all voxels between the endpoint of PUM A Vector and Laser PosT in direction
LaserPeelDir:

A. Turn voxel OFF
v. Let CamPeelDir = CamPosT — PUM A_V ector be the peeling direction towards

the camera

vi. For all voxels between the endpoint of PUM A_Vector and CamPosT in direction
CamPeelDir:

A. Turn voxel OFF

vii. Evaluate next pixel in Image[n] (go to 2c)

(e) When all range pixels evaluated, go to next range image (go to 2)

The peeling technique is highly dependent on the choice of views of each scan: in
order to effectively remove “noise” voxels, the views must encompass as much of the
scene as possible. Hence, multiple scans of the same surface (from different points of
view) may be required in order to reduce noise and increase the effectiveness of this
algorithm (the direct-mapping algorithm requires only a single scan of a surface — with
data of reasonable density — in order to represent that surface). As the number of
scans is increased, processing time is likewise increased, as is memory usage. However,
the resulting voxel map is suitable for path-planning applications in that objects have

a solid representation and unknown areas are represented as obstacle space.

4.4 Experiments

For the experiments, a number of objects (shown pictorially in Figure 4.6) were placed
in the robot workcell and scanned from multiple views using the range scanner system
described earlier. The range images obtained are shown in Figure 4.7. Using software
on the Sun workstation platform, the range images were integrated using both the
direct-mapping and peeling algorithms; voxel map files were generated in both cases.
The voxel maps were viewed on an SGI workstation; screen snapshots were taken
for both the direct-mapping and peeling results and are shown in Figure 4.8 and

Figure 4.9 respectively. Each voxel map has been framed by a wire-frame cube to
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show, generally, the 3-d orientation of the voxel map. The dotted areas in each

snapshot indicate voxel-mapped areas, i.e., obstacle areas.

Figure 4.6: A schematic of the objects used in the experiments. Axes are used as
reference for voxel map results only.

The results for direct mapping (Figure 4.8) show the correct shape and position
of the objects. However, as stated previously, the voxel maps generated by the direct
mapping algorithm are shell representations of the objects in the workcell. Such rep-
resentations may be useful in some circumstances, but if proper solid representations
are required, the raw results of direct mapping cannot be used. A possibility is to
solidify these shell representations using some sort of fill algorithm starting from their
center, but other problems arise, the most significant of which being that gaps in the
range data (due to occluded surfaces, unscanned surfaces, or surface properties which
prohibit or limit scanning) would cause such a fill algorithm to function incorrectly.
A much greater shortcoming of this technique, however, is that one cannot tell which
areas are unscanned simply by looking at the voxel map. For a path planner, these
areas should be avoided (i.e., treated as obstacle, not as free space) because their con-
tents are unknown — these unscanned areas may contain objects which are unknown
to the planner.

The results for the peeling algorithm (Figure 4.5) show the two advantages of
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this algorithm over direct mapping: that objects have a solid representation, and
that unscanned areas are mapped as obstacles. They also, however, show a possible
problem: that without a sufficient number of range scans of wide enough field of
view, large numbers of extraneous voxels are left in the voxel map, enough to obscure
the actual objects in some cases. (Of course, using 2-D images to depict a 3-D
environment — especially one being represented as individual voxels — results in even
greater obscurity.)

The advantages of peeling — that is, representation of object areas as solids and
representation of unscanned areas as obstacles — are extendable to situations where a
greater number of range images of wider range may be obtained and integrated using
more powerful hardware than was available for this thesis (and more readily available
today). Obviously, the resulting voxel maps for these situations would contain far

fewer extraneous voxels and thus higher definition of object areas (lower obscurity).
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Figure 4.7: Range images used for integration.
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+z, —y cube planes closest to viewer

+z,+y cube planes closest to viewer
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+y cube plane closest to viewer

+2 cube plane closest to viewer
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Chapter 5
Introduction

Distance maps (also known as distance transforms or distance fields) or their varia-
tions, such as potential fields, have been used in robotics for a variety of path planning
and collision-avoidance applications (Latombe 1991; Jarvis 1993). Computational
implementations of these distance maps invariably involve discretized or grid-based
representation of the domain over which the distance map is defined. Consider, for
instance, a discretized distance map that maps the (L; or Manhattan) distance in
voxels from a particular voxel to the nearest obstacle. This distance map is repre-
sented in an array with each voxel containing an integer representing the distance
between it and the nearest obstacle voxel. An example of a 2-D pixel-level distance
map is shown in Figure 5.1. One of the many uses for such distance maps has been for
efficient collision-detection and path planning in static environments. For example,
assuming a spherical robot model (often used for mobile robots), collision checking
can be done very efficiently and easily if such a distance map has been pre-generated
for the workspace. It merely involves comparing the radius of the robot to the value
of the distance map at the (z,y) location of the robot. Using spherical representa-
tions as in (del Pobil, Serna, and Llovet 1992) for the entire manipulator arm, this
basic collision-detection computation can then be carried out for each sphere in the
manipulator to compute the collision situation for the entire manipulator (Greenspan
and Burtnvk 1996). This scheme forms the core collision detection component of a
path planner developed in (Yang, Gupta, and Greenspan ).

A miain drawback of such discretized representations. however, is the large amount

of memory required to store it. For instance, for a three-dimensional space measuring
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Figure 5.1: Example of a pixel-level Manhattan distance map.

1000 units per side, and assuming each number in the distance map is a two-byte
integer, one would require 1000® x 2 = 2 gigabytes of memory. Larger spaces and/or
finer resolution, of course, increase this usage exponentially. In the image processing
field, a more memory-efficient method than a raw binary array is the octree data
structure! (Samet 1990a). The octree representation is a “binary” representation of
space, where the space is recursively subdivided into hierarchically represented cells as
nodes in a tree. The nodes are labeled white or black indicating if a node is completely
free or completely occupied, respectively. In effect, a single white or black node can
be substituted for a great number of binary array elements while requiring only a
comparatively tiny fraction of memory, hence the greater memory efficiency. A third
category. grey nodes, represent cells which are partially occupied. There s, however,
no distance information associated with each node of an octree. Furthermore, although

octrees have been used in robotics for collision detection ((Hayward 1986), (Arimoto,

"Commonly called quadtrees in 2-d and octrees in 3-d. Because of the emphasis here on 3-D
modeling and representation, we shall use the term octree in situations where either 2-D and 3-D
representations may be involved.
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Noborio, Fukuda, and Noda 1988)), the essence of previous approaches is to detect if
a given point lies inside the black node of the environment octree. There is no known
previous attempt using octrees that incorporates the use of distance information in the
collision detection process.

This part of the thesis proposes a novel hierarchical method for representing dis-
tance maps, called the Octree Distance Map or ODM. As the name indicates, the
ODM representation adapts and augments the conventional octree data structure in
order to represent distance maps in a hierarchical manner. The ODM representation
drastically reduces the expensive memory requirements associated with a voxel-array
based distance map — by more than an order of magnitude — with some trade-off
in collision-detection computations. Additionally, the approach presented here im-
proves substantially on the collision-detection performance of conventional octrees.
The results of this thesis illustrate the advantageous compromise achieved: although
an ODM requires slightly more memory than an unaugmented octree for the same
workspace (though still much less memory than a voxel-based distance map struc-
ture), the ODM provides a significant improvement in performance over an octree for

collision detection. Figure 5.2 qualitatively illustrates this compromise.

Conventional octree
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o 4 o
&
£ ODM
£ /
=2
o
[<}]
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2 o p
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Low P High

Memory Requirements

Figure 5.2: The memory-speed compromise achieved with the ODM, illustrated qual-

itatively.
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Two algorithms are presented here: (i) given a conventional octree that repre-
sents a given workspace, build an ODM that hierarchically represents the distance
from the obstacles, and (ii) given such an ODM, compute whether a spherical robot
is in collision with the obstacles if positioned at a given point in workspace. The
ODM building process is off-line and is executed only once for a given workspace, pre-
computing the ODM for multiple collision detections. The ODM collision detection
process may be repeatedly performed, and thus is required to be efficient. In addition,
the robot radius size may vary between separate executions of the collision detection
algorithm, using the same ODM; we cannot assume a fixed radius length. Although
the main motivation has been collision detection, the algorithm can be easily modified

for determining distance between a robot and its environment.
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Chapter 6

Background

6.1 Previous work

(Samet 1990a) discusses the issue of representing distance hierarchically and defines
a distance transform for quadtrees. This distance transform represents the shortest
distance from the center of each obstacle (black) node to a boundary between a black
node and a white node. An algorithm is given for computing the L., (Chessboard)
distance transform for a quadtree. Briefly, the algorithm searches the quadtree for
black nodes in top-down traversal. For each black node, its eight neighbours are
examined in order to determine the distance to the closest white piels to the black
node. (Shneier 1981) offers a similar distance transform for quadtrees (using the L,
distance), with the addition of storage of the minimum distance to a white pixel in
each of the four neighbour directions (north, south, east, and west).

Although the central issue of this thesis, that of representing distance hierarchi-
cally, is the same as in the above work, the main motivation was very different: that
of efficient image representation as opposed to collision detection. Therefore, there
are significant differences between the ODM representation and the above work. In
particular, the use of a single distance value for an octree node, while adequate for
image representation, is inefficient for collision detection (see Section 7.1). For greater
collision detection efficiency, therefore, an ODM associates a minimum-maximum dis-
tance range with cach white node of the octree. Building an ODM, consequently, is
more search intensive, and hence time consuining. However, it leads to more efficient

collision detection. Additionally, this distance range is very compactly represented in
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the ODM. The ODM maps distances of free-space nodes, not obstacle nodes. Finally,
we present efficient collision detection algorithms based on an ODM representation
of a static environment. A distinguishing feature of these algorithms is the use of
hierarchical distance information which, to the best of my knowledge, has not been
done before in collision detection algorithms based on octrees.

In other work, (Hayward 1986) outlines two approaches. The first approach as-
sumes a robot representation where each volumetric piece of the robot is represented
by a cylinder with a hemisphere on each end. An octree is duplicated for each rep-
resented robot cylinder and hemisphere, and obstacles are grown by the radii of the
component volumes. The robot is then represented with line segments, and each seg-
ment is recursively checked (by binary subdivision) for collision in the appropriate
octree. Obviously, this approach is extremely memory-intensive, requiring storage of
multiple octrees. Without growing multiple octrees, the 3-d models of each robot link
would need to be converted into octrees and subdivided. The second approach uses
only a single octree, but its methodology is less robust: the robot is represented as a
number of selected control points based on the robot’s boundary surface representa-
tion, and each control point is located within the octree to determine if it is within
an obstacle (thus, collision). Questions arise as to the spacing and position of the
control points, and the number of such points, required in order to ensure proper ex-
ecution. In addition, if an object were to be completely within the robot’s boundary
representation, the algorithm may not detect any interference between the object and
the control points.

(Arimoto, Noborio, Fukuda, and Noda 1988) has also used conventional octrees
for interference detection and path planning. The proposed approach to collision de-
tection is to subdivide the space containing robot links into octree nodes and evaluate
each node to determine if it contains obstacle regions, robot regions, or both. If the
node contains both, it is recursively subdivided until its components are classified to
be either completely inside or completely outside a robot, an obstacle, or both. A
collision results if a node is in both the robot and an obstacle. In effect, this approach
imtersects an octree model of the robot with an octree of the workspace. The main
disadvantage here is the high degree of computation involved - a new octree must be
recomputed for cach new robot configuration.

Another related body of work is (Noborio, Naniwa, and Arimoto 1990) which
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proposes a quadtree-based algorithm for path-planning for mobile robots. Compu-
tationally, collision detection is simplified by using a quadtree whose nodes are no
smaller than the size of the robot; any node containing any part of an obstacle is
considered black — in other words, grey nodes are eliminated from the quadtree. Thus,
after locating the node in which the robot is located, the robot is known to be in col-
lision if the robot is in a black node, and not in collision if it is in a white node. While
this approach to collision detection is simple and not computationally expensive, and
well-suited for its stated path-planning problem in 2-D, a number of drawbacks exist
for the use of this approach in collision detection. The greatest disadvantage is that
this approach is overly conservative. For instance, because a grey node is considered
black even if it contains a single obstacle pixel, a robot placed in close proximity to
the real obstacle will most likely be considered in collision even if the robot is not.
This problem would be amplified given a highly occupied workspace and/or a large
robot, when any free space would likely be within “black” nodes.

It should be noted, at this point, that none of the references mentioned above
use distance in their collision detection processes. This observation further separates
these previous efforts from the work presented in this thesis, which makes significant
use of distance in collision detection. '

More up-to-date work in this field includes (Bandi and Thalmann 1995), which
uses spatial subdivision to perform collision detection on animated rigid bodies, and

(Egbert and Winkler 1996), which uses vector fields for path planning.

6.2 Octrees

Of the many forms of representation for spatial data, octrees are one of the most
widely used (Samet 1990b). They provide much greater memory efficiency than raw
binary arrays as well as a simple structure and good operational flexibility. A conven-
tional tree structure is composed of a hierarchy of nodes. A node, in tree-structure
terminologv. is a structure which represents a section of space. The size of that sec-
tion of space varies from node to node within the tree, from an element of the finest
resolution (a pizel in 2-D or wvozel in 3-D) to the entire space itself: the further a
node is away from the tree’s root. the smaller is its section of space. Each node 1n a

conventional octree is given one of three states to represent the spatial content of that
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particular section of space: black indicates that the entire node is in obstacle space,
white indicates that the node is free space (free of obstacle), and grey indicates a node
with a mixture of free space and obstacle space.

Each node contains up to a certain number of pointers (four for quadtrees, eight
for octrees) to child nodes or subnodes, each of which representing a section of the
space represented by the original node. These subnodes may in turn have children,
who may have children, and so on, all the way to the bottom of the tree, where each
node corresponds to a unit spatial element (pixel or voxel). The number of children
for a particular node depends on the colour or state of the node. white and black
nodes have no children, while grey nodes have pointers to each of their black or grey
child nodes. Figure 6.1 provides an example of the breakdown of a 2-D image into a
quadtree.

Location codes are a concept commonly associated with linear or pointer-less oc-
trees (Gargantini 1982; Samet 1990b) to identify a particular node in the octree. A
location code consists of a string of octal digits (or the equivalent in decimal). Each
digit provides information as to which branch, 0 to 7, of an octree to traverse at each
level in order to locate the node. For example, the location code 35045 (or 1860,¢)
allows us to locate the node by following branch 3 of the root, then branch 5 of the
node at level 1 (level 0 being the root), then branch 0 of the node at level 2, then
finally branch 4 of the node at level 3.

Besides providing a convenient way of identifying octree nodes within a tree, lo-
cation codes also encode Cartesian-coordinate information, and thus are a way of
locating the Cartesian location of an octree node, and a way of finding the location
of a set of Cartesian coordinates in an octree. Assume we use a Morton ordering
of octants (see Figure 6.2) ' . Given an octal-digit location code, we first convert
each digit to its binary form, which is composed of three binary digits, b, b, b,. By
forming a binary string of all the b, and converting back to decimal, we obtain the
z-coordinate. We likewise obtain the y- and z-coordinates. For example, we convert
the location code 3504g to binary: 011 101 000 100. For the z-coordinate, we have
the following: 0101, = 5. For y, we have 1000, = 8, and for z, 1100, = 12. To obtain

"A left-handed coordinate system has been implicitly assumed, with the z-axis pointing into the
page. A trivial modification in the ordering - with nodes 0, 1, 2, and 3 forming the back plane and
nodes 4, 5, 6, and 7 forming the front plane - can be used to be consistent with a right-handed
coordinate system, with the z-axis pointing out of the page.
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Figure 6.1: A 2-D image and corresponding quadtree.
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a location code (and thus octree location) from (z, y, z), the reverse process is used.

Despite the use of conventional octree structures in this thesis rather than linear

octrees in building and utilizing the ODM, location codes are used in three situations.

The first situation arises in QDM construction when we wish to locate all nodes of

level L which are at a (nodal separation) distance r from a given white node. In effect.

we wish to determine the level-L nodes forming the surface of a Manhattan spherc

of radius (rx size of level-L node). First. assume we have the location code LC for

the white node W, (Note that LC refers to the voxel in W closest to the origin of

space, i.e.. (0,0.0), assuming that our space is non-negative. The voxel called LC' is
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Figure 6.2: Octant numbering based on Morton ordering.

the nodal reference vozel of W. For the numbering scheme shown in Figure 6.2, the
nodal reference voxel is the leftmost, bottom-most, minimum-z voxel in W.) From
LC, we can then derive, as above, the Cartesian coordinates (z, 4o, 20) of the nodal
reference voxel of W. Let s = 2(P~L) be the length of one side of a node at level L.
Then if T is a level-L target node at nodal distance r from W, its reference voxel is
at (T,, Yn, 2n) = (zo + 18,40+ 75,20 + ks),and (] i |+ | j | + | k|) = 7. Therefore, by
adding or subtracting increments of s to the coordinates of the reference voxel of node
W, we obtain the reference voxel of T. Conversion of the reference voxel’s coordinates
to location code provides us the node T.

In the second situation, we are given the Cartesian coordinates of a robot for
collision detection purposes, and must determine the octree node in which the robot
is located. Here, the (z,y,2) coordinates are converted to binary, the binary digits
are interlaced to obtain octal-digit location code, and the location code is used to
traverse the octree to the desired node.

The third situation arises when we wish to determine the nodal separation between
two nodes of level L given their location codes, LC; and LC,. First, a property of
location codes should be pointed out here: for a node of level L < D, where D is the
depth of the octree, at least the last D — L octal digits of the location code will be
zero. This property is a result of the location of the nodal reference point discussed
above. For L = D — 1. reference points will be in increments of 2 along cach axis.

for L = D — 2, the increment is 4, and so on. Thus, in order to determine the nodal
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separation between two nodes, we merely drop the proper number of trailing zeros
(D — L), find the two sets of Cartesian coordinates associated with the truncated
location codes, and take their difference. The nodal separation can then be found by

summing the differences in z, y, and z.

6.3 Distance

The distance function that maps a pair of points, p and ¢, into non-negative numbers is
denoted by d(p, ¢). The two common distance measures used in this part of the thesis
are the L, (Manhattan) distance denoted by dys, and the L, (Euclidean) distance,
denoted by dg. Unless Euclidean distance is specified, the Manhattan distance is
used throughout this part of the thesis. For completeness, the distance calculations

are shown here:

dy=lp—alh=31Ip - g

1=1

(Pz‘ - %)2
1

n

de =l p—q o=

1
where p = p1,...,Pny ¢ = q1, - - -, qn, and n is the number of dimensions of space.
The distance d from a point p to a set X is d(p, X ) = min,{d(p,q),qg € X}. The

distance between two sets, X and Y, is d(X,Y) = min,{d(p,Y),p € X}.
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Chapter 7

Implementation of Octree Distance

Maps

7.1 Motivational Factors in ODM Design

The main motivation for a hierarchical scheme to represent distance maps was to
lower the memory requirements; however, we also wished to have reasonable per-
formance in collision detection. Thus, we decided to augment the octree structure
with precomputed distance indicators in order to limit the amount of searching which
would otherwise be necessary with simply a standard octree. The distance indicators,
however, must not add significantly to the memory requirement.

A fundamental question is what would the distance indicator(s) represent, and
how they would be computed. A problem arises when we attempt to associate a
distance-to-nearest-obstacle to an octree mode which is not at the lowest level of the
tree (vozel level): the closest obstacle to that node may be different depending on from
which location within that node the measurement is made.

An illustration of the problem in the collision detection context can be seen in
Figure 7.1. First, let us assume that we shall store only a single distance indicator
within each white node W: the Manhattan distance to the closest target node. that
is, a grey or black node at the same level L as W, measured in units of nodes of level
L. rather than voxels. {We call this indicator the nodal separation index or NSL.) In

Figure 7.1, the Manhattan distance (measured in level-L nodes) from W to target
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node T} is 1, while the Manhattan distance to T5 is 2, and thus the NSI of W would
be 1. In other words, we would be assuming that T} is “closer” than Ty. Let’s say
that our collision-detection scheme is such that only nodes with Manhattan distance
from W equal to 1 would be checked for collision with obstacles. Then T, would
not be examined and the collision with the obstacle area within 7, (for the given
robot position and radius 7) would not be detected. The detection algorithm would

therefore return a wrong result since no collision would be found with T3.

a robot here would be closer to
Y T, obstacle than T,

VN
.W q . VA T4
white node { NS - 1
Robot is not
: in collision
T2 : ’ sk robot location
NSI =2 I
?n“tcéﬂ?s?éﬁ i . obstacle area

Figure 7.1: A fundamental problem in hierarchical distance representation.

One simple way to avoid this problem is to use the NSI as a minimum search pa-
rameter. Starting with a Manhattan distance of NSI, the collision detection scheme
would search for obstacles at the current distance and check for collisions until a
collision were detected or until a maximum limit were reached. The maximum limit
would be based on the node size of W and the robot radius length. Unfortunately,
putting the the complete onus of finding the maximum search parameter on the col-
lision detection algorithm (rather than on the algorithm to create the distance map
structure) would severely affect the performance during collision detection. Therefore,
we calculate minimum and maximum distance bounds during the creation phase and
store a minimum and a maximum NSI for each white node within the distance map

structure; we discuss these calculations in the next section.

7.2 Creation of Octree Distance Maps

The proposed octree distance map (ODM) is represented in a data structure similar

to that of a conventional octree. The ODM node record is identical to an octree node
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record except that, for white child nodes which would otherwise (in a conventional
octree) be represented as null pointers inside their parent grey nodes, the parent grey
node record also contains two numbers indicating the minimum and maximum search
parameters (NSI) for the white subnode; the maximum and minimum NSI are used
during collision detection.

The computation of the minimum and maximum NSI’s occurs during the ODM
creation phase of our algorithm. Essentially, the algorithm searches outward from
the white node W, at incrementally-increasing nodal distance, for obstacle nodes
at the same level L as W. Two Euclidean distance measures, called near-distance
and far-distance, are then computed between W and the obstacle node O (see Fig-
ure 7.2). First, assume that the obstacle node is black. The near-distance is the
distance between the respective regions represented by the nodes W and O, i.e.,
dg(W,0) = miny o{dg(w,0),w € W,0 € O}. Let { PO} indicate the set of points in
O that correspond to the near-distance. To define far-distance, imagine that, for each
point w in W, the distance to any point o in O were calculated. The far-distance
is the maximum of these distances, i.e., maz,{dg(w, PO),w € W}. In the collision
detection context, the near-distance is the upper bound on the robot radius such that,
no matter where in W the robot is located, the robot cannot be in collision with the
obstacle node O. If the robot radius 1s smaller than the near-distance, it 1s guaranteed
not to be in collision with the obstacle node. The far-distance is a lower bound on
the radius such that, no matter where in W the robot is located,it is certain to be in
collision with O. If the robot radius is greater than the far-distance, then the robot is
gquaranteed to be in collision with the obstacle node.

Obviously, more than one pair of points in W and O may give the same near-
distance or far-distance calculation result, but the distance values themselves are
unique. Furthermore, since the nodes in the octree have a simple geometric shape
(a cube), the near- and far-distances are easily computed using bounding boxes sur-
rounding W and O, as shown in Figure 7.2. Also, note that if the obstacle node
is grey. the near-distance and far-distance for that obstacle node are the minimums
of the near-distance and far-distance calculations for each black subnode of the grey
level-L node.

The near-distance and far-distance calculations are used to determine if an obstacle

node is ignorable. An obstacle node O at level L is considered ignorable if the radius
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Figure 7.2: The concepts of near-distance and far-distance.

required for a robot in W to collide with O (i.e., the near-distance) is larger than the
radius required for certain collision with some previous obstacle (i.e., the minimum
far-distance). In other words, if this situation exists, a robot in W colliding with O
will also undoubtedly collide with an obstacle that was previously found. Ignorable
nodes are determined in order to lower the maximum-NSI bound and thus reduce
time and computation requirements during collision detection. The maximum NSI
for W is the largest Manhattan distance (units being nodes at the same level L as
W) for which there are non-ignorable obstacle nodes.

As illustrated in Figure 7.3, the absolute upper limit on NSI at which a robot in
W may be in collision is (3 x DIM — 1). The rationale for this limit is as follows:
Node W is within a grey parent node; thus one of W’s sibling nodes must be grey or
black. The largest possible distance between a robot in W and some obstacle voxel
in a sibling of W is the diagonal length of the parent of W. A robot in W with this
distance as its radius can may be in collision with nodes of nodal separation up to,
but not including, (3 x DIM); thus, (3 x DIM — 1) is the limit of our search for
the maximum NSI. We could, of course, perform the search during collision detection
(having stored a minimum NSI during ODM creation), proceeding outwards from the
minimum NSI for W. However. by conducting the search during ODM creation to
obtain both minimum and maximun NSDI’s. we can obtain better performance during
collision detection.

As for the memory requirements for storing the minimum and maximum NSL
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(Using 2-D example)

Because white node W is inside grey

parent, largest possible distance between

robot and obstacle in grey parent is rmax.

position

Imagine a robot in the bottom left-hand
corner of W with radius rmax. If we
examine outside the parent of W, we
can see the nodes that can be in
collision.

Of the shaded nodes, the one with the
greatest nodal separation from W is

the one labeled Tnax. (NS! = 2 x DIM)

Notice that nodes T1 and T2 can also
be reached, but the node marked LIM
cannot be reached from W with radius
rmex- 1he node marked LIMis at a

nodal separation from W of (3 x DIM).

Therefore, we must search all nodes
up to

NSljim = (3 x DIM) - 1
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because NSI'’s are calculated for white child nodes of grey nodes only, minimum NSI's

will fall within the interval [1, 3], requiring only 2 bits per NSI (in the 3-D case; in
the 2-D case, minimum NSI will fall within the interval [0,2]). (The maximum NSI

will fall within the interval [1,8] and thus will require 3 bits per NSI.)

To demonstrate the construction of a 2-D ODM structure, we present the following

example based on the binary image and quadtree in Figure 6.1. Our algorithm would

operate as follows (please refer to Figures 6.1 and 7.4):

1. We start at the root of the tree and visit its four children in order. The leftmost

child (child 0) is grey; we let this child be our current node and examine its four

children. (Figure 6.1)

2. We are now at level 2 of the tree. Let child 0 be CurrNode. CurrNode is white;

therefore. we must find its minimum and maximum NSI. (Figure 6.1)

3. We scarch level-2 nodes starting at a nodal separation of 1 and continuing to
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10.

11.

the NSI limit of (3 x DIM — 1) = 5. There are no grey or black nodes at
NSI = 1, so we increment and search at NSI = 2. (Figure 6.1)

. There are two level-2 target nodes at NSI = 2; thus the minimum NSI for

CurrNode is 2. We shall examine the node shown in Figure 7.4(a) first. Let
this node be Target.

We recursively locate obstacle subnodes within T'arget and determine that the
near-distance is 10.0 and the far-distance is /349 = 18.68. See Figure 7.4(b).

The next target node is shown in Figure 7.4(c). The near-distance is 4.0 and

far-distance is 14.42. This now becomes smallest_far _dist.

We now let NSI = 3. There is one target node (shown in Figure 7.4(d)). Near-
distance is 8.0, which is not less than smallest_far_dist = 14.42, and so this
node is not ignorable. Far-distance is 17.89, so smallest_far_dist is unchanged.
Since there is a non-ignorable target node at NSI = 3, temp_-maz_NSI is set to

3.

We now let NSI = 4. Here, there are two target nodes (Figure 7.4(e)). Target 1
has a near-distance of 16.12, which is greater than smallest.far_dist = 14.42,
so this target node is ignorable. The far-distance is 26.0, so smallest_far _dist

is unchanged.

Target 2 at NSI = 4 is evaluated. Near-distance is 12.80 < 14.42, so this target
is not ignorable. The far-distance is 24.08, so smallest_far_dist is unchanged.
A non-ignorable target node has been found at NSI = 4, so temp_maz_NSI is
set to 4.

NSI is now 5. There is one target node (Figure 7.4(f)). The near-distance is
18.86 > 14.42, so the target is ignorable. No non-ignorable target nodes have

been found at NSI = 5, so temp_maxz N SI remains unchanged.

We have reached the NST limit for searching. We store tempmar NST 4 as
the maximum NSI for CurrNode.
This algorithm is repeated for all white nodes in the tree. The completed data

structure is shown in Figure 7.5
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We now state a high-level version of our ODM creation algorithm, Build_ODM,
which generates an ODM given an octree for a non-empty workspace. (For a more

detailed algorithm, please see Appendix B.)

Main routine: Build_ODM
Input: Octree representing voxel map.

Output: ODM representing hierarchical distance map.
1. Augment octree nodes with minimum- and maximum-NSI storage fields

2. For each white subnode of a grey node in the tree:

(a) For all nodal distances NSI = 1to (3DIM —1), where DIM is the number of dimensions:

i. Locate all target nodes at nodal distance NSI

il. For each black or grey target node:
A. Calculate near-distance and far-distance for target
B. If minimum NSI not stored, set minimum NSI = VST
C. Else:

e If near-distance > smallest far-distance for current white node, target is

ignorable
e Else, target is non-ignorable
D. Evaluate next target node (go to 2(a)ii)
iii. If non-ignorable targets found at current nodal distance, set maximum NSI = NSI
iv. Increment NSI and go to 2a

(b) Store min. and max. NSI for current white node

(c) Find next white node (go to 2)

Although the creation algorithm is search-intensive, finding the maximum/minimum
NSI parameters allows us to reduce the search-time during collision detection. Build-

ing the ODM is a one-time off-line preprocessing step.
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7.3 Collision Detection Using an ODM

After the octree distance map structure (the ODM) has been generated, it may be
used in efficient collision detection. Here, let us assume that the robot is modeled using
a number of spheres, and use a single sphere for the robot as an illustration. Note
that a robot can be approximated to an arbitrary level of accuracy using spheres (del
Pobil and Serna 1995).

Given a robot’s center voxel and Euclidean radius, the algorithm below is used for
collision detection. Note that robot radius may change from query to query without
affecting the pre-generated ODM structure; the ODM is repeatedly used for each
query without any further changes.

The algorithm first finds the white node W containing the robot in the octree.
Then, with NSI equal to the min NSI of W, the algorithm considers the set of
black and grey nodes (target nodes) with nodal separation from W equal to NSI.
(The target nodes are determined using the location-code process discussed in the
Background section.) For each target node T, the algorithin calculates bounds on
robot size (see below) to determine if the robot is or is not in collision with 7", or if the

collision situation is indeterminate. For the latter, the algorithm performs a recursive
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detection process: using the Get_Distance routine given in the previous section, the
near-distance and far-distance (from W) to T are determined. If the robot size is less
than the near-distance, no collision with 7" can occur. Otherwise, if T' is black, the far-
distance is compared with robot size. If the robot size is larger, a collision situation
exists and a TRUE value is returned. If not, the algorithm calculates the near-distance
between T and the robot center voxel (not W), and compares the distance with the
robot size to evaluate the collision situation.

If T was grey and not black, the algorithm first creates a maximum-radius bound
on the robot (see Figure 7.6). This bound implies that if the robot has a radius greater
than the bound, the robot is in collision with grey node T' no matter where the robot
is located in the white node W. If such is the case, the algorithm immediately returns
a TRUE collision result. Otherwise, the collision situation remains indeterminate.
The algorithm proceeds to refine these bounds by further localizing the obstacle(s),
identifying the grey and black child nodes of T. The child nodes are then evaluated
using this recursive process until a TRUE/FALSE result is reached. If no collision
is found with these target nodes, NSI is incremented (up to mazx_NSI for W) and
the process is repeated until the bottom of the tree is reached and/or the collision

situation is determined.
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= length of diagonal of parallelepiped formed by string of (NS/
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—se/INSI+ 1) %4 2

Figure 7.6: Bound on maximum radius of robot: if robot is larger. a collision is

detected.
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We shall illustrate the use of ODM’s in collision detection using the 2-D example
from Figure 6.1. Suppose we define our robot with a center position of (12,6) (in-
dicated by a star in the figure) and a radius of 6. The algorithm would operate as

follows (the steps are illustrated in Figures 7.7(a) to (f).

1. Using the center position, the robot’s location code is found to be 01320,. We
localize the robot to the white node at level 2 with reference point (8, 0). Let
this node be W. (Figure 7.7(a))

2. We retrieve min_NSI = 1 and maz_NSI = 1 from the parent of this node.

3. We find a single level-2 obstacle node at a nodal separation of 1 from the white

node, and evaluate the collision situation. Let this node be T. (Figure 7.7(b))

4. Using the Get_Distance routine in Appendix B, we find the near-distance to be
0.0 (since the nodes are adjacent) and the far-distance to be 8.0. Since the far-
distance is greater than the robot radius, the collision situation is indeterminate.
(Figure 7.7(c))

5. Because T is grey, we first evaluate the maximum-radius condition. The maxi-
mum radius (the robot radius which would make collision a certainty) is 17.89 >

6.0; the situation remains indeterminate. (Figure 7.7(d))

6. We localize the obstacle: T becomes child 1 of the previous 7. The robot is
localized to quadrant 3 of W (which becomes the new W), and we increment
the level to 3. The recursive routine is called again with these new parameters.
(Figure 7.7(e))

7. For the new T and W, we find the near-distance to be 0.0 and the far-distance
to be 4.0. Because T is black, we can compare the robot size to the far-distance.
Because the robot size is greater (6.0 > 4.0), we can conclude that there is a

collision. The algorithm returns a TRUE result. (Figure 7.7(f))

We now state a high level version of the algorithm, ODM Detect. (For a more

detailed algorithm, please see Appendix C.)
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Main routine: ODM _Detect
Input: octree distance map, robot position, robot radius.

Output: collision situation: TRUE if collision, else FALSE.
1. Localize robot to the highest white node in tree
2. Retrieve min_.NSI and max_NSI
3. For NSI = min_NSI to maz_NSI do:
(a) Generate list of black and grey target nodes with nodal distance equal to NST

(b) For each target node in list
i. Call Recurse_Detect to obtain collision result

ii. If there is a collision
e Return TRUE result
iii. Otherwise, go to next target node (go to 3b)

(c) No collision found; increment NSI and go to 3

4. No collision has been found. Return FALSE result.

Subroutine: Recurse_Detect
Input: robot white node W, position, radius, target node T Qutput: collision situation: TRUE if

collision, else FALSE.

1. Calculate near- and far-distance for W and T

2. If robot radius < near-distance
e No collision; return FALSE
3. Else, if (T is black)

e If robot radius > far-distance
— Collision is certain; return TRUE

e Else:

— Calculate shortest distance between robot position and T (i.e., near-distance with
robot voxel as the white node)
- If robot is bigger than shortest distance
* Return TRUE collision result

-~ Else, no collision; return FALSE result

4. Else (if T is grey)
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o Calculate the maximum-radius bound for W and T (see Figure 7.6)
o If robot is larger than bound /*certain collision*/
— Return TRUE result

¢ Else, recursively call Recurse Detect with all black and grey children of T as target

nodes
e If any result from the recursive call is TRUE
— Return TRUE result
¢ Else, if no TRUE result after all children evaluated

— Return FALSE result /*No collision with T*/

For a robot modeled as multiple spheres, the following algorithm is then used:

Main routine: ODM _Robot_Detect
Input: ODM, number of robots N _robots, robot centers and radii.
Output: collision situation: TRUE if collision, else FALSE.

1. For Indez = 1 to N _robots do:
(a) Call ODM Detect, passing center location and radius for robot[Indez]. Get collision
result in Result.

(b) If Result is TRUE, output TRUE and end.

Note that while the collision detection algorithm is specifically written for use with
spherical robot models, it may also be extended for use for collision detection with
line segments (see Appendix D).

Another extension of our work is that of distance estimation, i.e., determining the
distance from the robot to the nearest obstacle. However, the algorithm would need
to be modified such that the minimum distance to obstacle must be kept and updated

whenever a black node were evaluated to be closer than any previous one.
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Chapter 8
Experiments

Both the ODM _Build and ODM_Detect algorithms were implemented in C on
a Sun Sparcstation platform, and several experiments were performed. In the first
experiment, the same 32 x 32 quadtree in Figure 6.1 was input into the creation
algorithm and generated the correct distance map output. I executed the detection
algorithm for every pixel in the grid for robots with Euclidean radii of 1, 2, and 3

units. These results are shown in Figure 8.1. As illustrated, the algorithms work.
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Figure 8.1: Results of 2-D experiments with data from Figure 2 for robot radii of 1,
2, and 3 voxels (a, b, and c respectively). (x indicates collision).

Next, I performed experiments on 3-d examples. I ran the algorithms on voxel
maps of five different 3-D workspaces, each discretized in a 100 x 100 x 100-voxel array.
Table 8.1 lists the memory requirements of each ODM, along with the requirements
for cach unaugmented octree and the constant memory requirement of a voxel-arrayv-

based Euclidean distance map. From the results, we can see that the the ODM
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requires about 25 percent more memory compared to the amount required for the
corresponding unaugmented octree; the extra memory is the result of the five-byte
requirement for storage of minimum and maximum NSI. However, the ODM’s memory
requirements are significantly less than those of a voxel-based distance map: the ODM
uses between 70 to 95 percent less memory.

The next experiment involved measuring the speed performance using both ODM’s
and unaugmented octrees in 3-d collision detection. The algorithm used for octree
collision detection was simply the ODM _Detect algorithm without the benefit of
stored minimum and maximum NSI; for the unaugmented octree, the minimum NSI
is assumed to be 1 and maximum NSI is assumed to be (3 x DIM) — 1 = 8. Thus,
the octree collision detection algorithm, not being a dedicated octree algorithm, may
not be the most efficient one available, and other, more dedicated octree collision
detection algorithms may yield better performance.

In comparing ODM versus octree performance, both a count of condition checks
(when a comparison is made between the robot size and a number) and the aver-
age time required on a Sparc-10 for each collision check (in milliseconds) were mea-
sured. The experiment consisted of 3 sets of 1000 collision detections each for the five
workspaces, using random robot positions and radius sizes (each set having a different
range of radii). The results are shown in Tables 8.2 and 8.3. There is a substantial
improvement in performance using ODM’s over octrees, both in the number of con-
dition checks (ODM: 10 to 48% (35% on average) fewer) and in run-time (ODM: 20
to 50% (39% on average) faster). These results stand to reason: a great deal of the
searching done when using an unaugmented octree in collision detection is performed
when an ODM is created.

The third series of tests involved performing collision detection for complete robot
models each comprising 159 spheres. Figure 8.2 shows an example of a robot mod-
eled by spheres. I tested four separate robot configurations in the same workspace
~ two configurations not in collision, two in collision. Again, the performance of
ODM collision detection is compared with collision detection using an unaugmented
octree: the results are shown in Table 8.4, We once again see a drastic improvement
in performance (between 28 to 58Y%. average 43%) when using ODM’s for collision

detection.
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Figure 8.2: Example of a workspace used for collision detection tests; robot spherical

model shown.

Workspace Memory usage % Extra
ODM Octree | memory

1 594,256 | 468,552 27

2 653,276 | 516,720 26

3 1,169,832 | 919,352 27

4 234,240 | 186,536 26

) 1,018,776 | 804,376 27
Voxel-based dist. map 4,000,000

(100% array, 4 bytes / voxel

Table 8.1: Memorv usage for ODM, octree. and voxel-based distance map for five

workspaces.
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Avg. # of condition checks / test

Max Data Workspace
size | Structure | 1 [ 2 | 3 | 4 | 5
10 Octree 26.0 | 74.1 | 62.5 | 75.9 73.2
voxels ODM 13.7 | 38.3 | 34.1 | 58.4 38.2
% Improvement | 47 | 48 | 45 | 23 48
25 Octree 12.3 1 40.9 | 34.5 | 62.3 41.3
voxels ODM 6.7 | 25.8 | 22.2 | 53.6 26.4
% Improvement | 46 | 37 | 36 | 14 36
40 Octree 9.7 | 23.4|24.1 532 22.7
voxels ODM 5.3 | 14.2 | 15.3 | 48.2 14.0
% Improvement | 45 | 39 | 36 9 38

62

Table 8.2: Condition-check results of 3-D collision detection using ODM and octree.

(1000 tests per avg.)

Avg. time per test (ms)
Max Data Workspace
size | Structure | 1 | 2 | 3 | 4 | 5 |
- 10 Octree [ 4.5]13.4]11.2|16.6 | 13.4
voxels ODM 23] 66 | 5.8 | 11.1 | 6.7
% Improvement | 48 | 51 | 48 | 33 50 |
25 Octree 211 72 | 6.0 |12.7] 7.2
voxels ODM 12143 | 3.7 95 | 4.3
% Improvement | 45 | 40 | 39 | 25 | 40
40 Octree 1.8 42 | 42 | 10.0 | 4.1
voxels ODM 09] 25 | 25 | 80 | 24
% Improvement | 47 | 41 | 39 | 20 | 41 |

Table 8.3: Times (Sparc-10) for 3-D collision detection, using ODM and octree. (1000

tests per avg.)
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Robot configuration

1 2 3 4

# Spheres in collision none | none | 10 19
Octree: Total time required | 5245 | 3841 | 5157 | 4877
Octree: Avg time/sphere | 33.0 | 24.2 | 32.4 | 30.7
ODM: Total time required | 3254 | 2765 | 2799 | 2063
ODM: Avg time/sphere 205 | 17.4 | 17.6 | 19.3

l % Improvement

[ 38 [ 28 [ 46 [ 58 |

63

Table 8.4: Speed performance (Sparc-10) for 3-D collision detection with 4 robot
configurations (159 spheres) using ODM and octree. (Times in ms.)
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Chapter 9

Conclusion and Future Work

This thesis explored the use of real-world, sensor-based data for modeling three-
dimensional workspaces and for performing collision detection and path planning for
a robot within that workspace. Specifically, the thesis examined ways to integrate
range images to model a 3-d workspace. In addition, the thesis introduced a way of
converting such a model to a form that is conducive to efficient collision detection and
path planning, and algorithms for the creation and use of such a model are presented.
For multiple-view range image integration, we needed to look at the intended use
of the generated 3-d model of the workspace. Since the model is to be used for robot
path planning and collision detection, the model should have several characteristics:
(i) a spatial occupancy model using voxels, which is quicker to generate and less
complex than modeling real-world scanned data with CAD primitives; (ii) obstacles
represented as solid groups of voxels rather than as shells enclosing empty space to
avoid path planning problems where, for instance, the robot’s starting position is put
inside an object; and (iii) unscanned areas to be represented as obstacle areas, so that
the path planner avoids moving the robot into unknown regions of the workspace.
The first step for integrating range images was to determine how to geometrically
relate the individual range images, taken from several points of view, into a single
frame of reference. Because the laser scanner was mounted on a Puma 560 robot,
the robot vielded transformations for each scanner position. By fixing the location of
the range image reference frame and then relating it to the PUMA global frame. it

became possible to relate range images from multiple views to the PUMA frame.
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Two approaches were examined for integrating range images. The first, direct map-
ping, maps range images into workspace voxels on a one-to-one basis. This method
produced shell representations of objects and did not take into account the unscanned
workspace areas, so was deemed unfit for path planning purposes, but this method
did produce shell representations which verified the correctness of the transforms.

The second approach, peeling, uses the mirror and camera positions for each range
image pixel to determine in which directions to remove voxels from a complete “block”
of voxels. The approach uses the concept that points which have been scanned by
the laser scanner must have direct light paths to both the laser source (mirror) and
imager (camera), and therefore these paths must be free of voxels. The advantages of
this approach are that 1) since voxels are removed away from the surfaces of objects
but not below the surface, the leftover voxels form solid representations of the objects;
and 2) unscanned space does not have voxels removed, and so are treated as obstacles.

Based on the results of integration via peeling, we see that the shapes of objects
have begun to be uncovered. However, due to the limited number of scans and the
limited scanned area of each scan, not enough voxels are removed from the block
to provide us with clear pictures of the objects for this thesis. When viewed in 3-
D animation, shapes are more easily discernable in the integrated voxel map. The
results showed the previously mentioned advantages of the peeling algorithm, namely
solid representations of objects and voxelized representation of unscanned areas.

A generated voxel map can be made much more efficient for collision detection
by converting it into a distance map. Large voxel-based distance maps, however, use
impractical amounts of memory. In the second part of this thesis, I presented a novel
hierarchical representation for distance maps, called octree distance map, or ODM,
which utilizes the memory efficiency of octrees for the purposes of collision detection
and robot path planning, without a large sacrifice in terms of performance. The ODM
is based on the conventional octree data structure, but is augmented with nodal sepa-
ration indices or NSI, which provide distance-to- closest-obstacle information for each
whate node in the octree while keeping memory requirements low. This thesis pre-
sented algorithms for creating an ODM from a conventional octree, and for utilizing
the ODMN in collision detection. The experiments using these algorithms indicated

that the use of the ODM (i) is correct. (ii) provides a drastic reduction in memory
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requirements over voxel-based distance maps, and (iii) exhibits a significant improve-
ment in collision-detection performance, both in condition-check comparisons and in
overall speed, over the use of unaugmented octrees for collision detection, at the cost
of slightly higher memory requirements. On average, ODM collision detection is 35
to 40 percent faster and more efficient than when performing the same tasks using an
unaugmented octree. In future, we intend to run further experiments based on our
approach, and explore different applications for the ODM. We will also investigate
possible memory efficiency improvements, as well as certain theoretical aspects; for
instance, rather than storing only the minimum and maximum NSI, what distance
information can be stored to further improve collision detection efficiency without

seriously affecting memory efficiency.

9.1 Future Work

One direction of future work that holds promise is the exploration of the mem-
ory/performance tradeoff of the ODM. Specifically, it may be possible to include more
distance information within the data structure — thus using more memory, though still
much less than a voxel-based distance map — in order to gain better collision detection
performance. One feasible approach is to store some perimeter distance function for
each white node, rather than a single distance indicator. Collision detection would
involve determining the closest point of the node perimeter to the robot sphere cen-
ter point, evaluating the perimeter distance function for that perimeter point, and
comparing the result to the robot sphere radius. Such an approach would avoid the

recursion required for ODM collision detection, thus improving performance.
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Appendix A

Range Scanner System Calibration

A.1 Calibration Procedure

The laser range scanner was calibrated using the software and V-shaped calibration
block (hereafter called the V-block) provided by Technical Arts. (The calibration

block is shown in Figure 4.4.) The software performed the following required functions:

1. Oscillation of a mirror which produces a plane of laser light. The intersection

of this plane with various surfaces is captured by the camera to calculate range.

2. Stepping of a second mirror, thus stepping the light plane across the workspace

and producing a 2-D range image.

3. Determination of two camera orientation parameters, pitch and roll, based on

the shape of the light plane intersecting the V-block.

The software also included an automatic calibration procedure which, assuming
proper camnera/laser alignment and accurate camera/laser parameters entered by the
user, stepped the light plane through a user-defined range of positions and performed
calibration at each X-Y point in its image space.

Thus. the steps to calibrate the laser scanner are:

I. Measurement of camera/laser parameters:

angle of the light plane at zero position
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angle of the camera with respect to vertical
height of the V-block
vertical distance from top of V-block to laser

vertical distance from top of V-block to camera

2. Adjustment of the camera’s orientation, based on the pitch and roll parameters
calculated by the software. (Pitch and roll are required to be between -1.0 and

1.0 degrees.)

3. Execution of the automatic calibration procedure. This procedure is quite slow
on a 386 PC, averaging approximately 10 lines or light plane positions per

minute.

4. At the PUMA data terminal, type show t6*tool. This command will display
a matrix, T60, and transform angles O, A, and T (which correspond with ¢,
6, and ¢ in Euler Z-Y-Z rotation). Write down the first three elements of the
fourth column of T60O (which are the (X, Y, Z) coordinates of the hand with
respect to the PUMA) and the transform angles; these parameters provide the

transform for the initial calibration position.

5. Finally, use a tape measure to measure the positions of the oscillating mirror
and camera lens in terms of displacement from the PUMA tool center point
(center of the PUMA tool flange) in the X, Y, and Z directions (relative to the

tool frame).
To perform the PUMA-to-scanner calibration, the following steps are required:

1. Attach a measurement device (e.g. a plumb line) of known length L to the
end-effector of the PUMA, such that the device hangs directly vertically. The
displacement of the point of attachment A from the PUMA’s tool reference
point must also be measured; this displacement is expressed in reference to
the tool reference frame position for calibration Sq as A With these two
measurenients known, the position of the measurement device with respect to

So So . .
Sois D= A-10,0.L:.
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2. With the V-block in the position in which the laser scanner was calibrated, touch
the tip of the measurement device to the corner of the V-block which is used as
reference in range scanner calibration (see Figure A.lg. Obtain the position of
the tool reference point from the PUMA controller (SOT). Since we know the
position of the measurement device with respect to S from the previous step,

P P Sg
we can determine D = 5 T D.
0

3. Since this corner of the calibration block is (0, 0, 0) in the scanner’s image
space, and since we know the position of the tip of the measurement device
with respect to PUMA (from the previous step), we now have the coordinates
in the PUMA frame of reference for the center of the reference frame Gy of
the scanner’s image space and thus the transform from PUMA space to scanner

space, as discussed in Section 3.2.3.

4. Using the dimensions of the V-block, the measurement device tip may be touched
to other corners of the V-block in order to verify the accuracy of the transform

calculated above.

Go

(needs to bé
measured).i

............... - calibration
_________________________ block

position of measuring device
= center of reference frame G,

Figure A.1: PUMA-to-scanner calibration using the V-block.
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A.1.1 Capture of Multiple-View Range Images

Once the scanner system is calibrated, the range images are captured using the fol-

lowing procedure:

1. Move the robot to a suitable position via teach pendant or robot control pro-
gram. The selected position should allow the camera to image a significant part
of the unscanned object space. Roughly keep track of which parts of the ob-
ject space have been scanned by noting the general direction of the camera in

relation to the object space.

2. Once the robot is in position, obtain the robot transform from the PUMA
controller via the data terminal by typing show t6*tool. Write down (X, Y,
Z) and (¢, 6, ¢) as before.

3. Type show joint and write down the joint angles J1-J6 in case the experiment

must be repeated at a later date.

4. On the scanner PC, examine the current start and end positions of the scanner.
If the scan area is too large for the portion of object space you are scanning,
change the positions; this will decrease your scan time. Note the start and end

positions.
5. Enter a scan file name. The range image will be written to this file.
6. Start the scan.

7. When the scan is complete, repeat steps 1-6 until the object space has been

satisfactorily scanned.

A.2 Offline Integration of Range Images

(Note: This section assumes that the required Unix executables are in the Unix scan
directory.) Once scanning has been completed. the range image files arc integrated

offline. The integration process is as follows:
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6.

Convert each of the image files from binary format to ASCII text by running
the program rdascii. At the scanner PC, change the directory to c:
100at

data and type the following command for each image:
rdascii > text-file-name.txt

where text-file-name. txt is the name of the new text file. Then type the scan
file name entered at the scanning setup screen. The resulting text file contains

a list of the 3-d coordinates of all scanned points in the image.

Copy the text files to a 3.5” floppy disk and insert the disk a Sun workstation.
On the workstation, go to your scan integration directory and copy the files to

the Sun file system by typing:

mcopy ‘‘a:x’’

For each text file, start an editor (e.g., EMACS) and manually insert the fol-
lowing information on the top line of the file:

X-coord Y-coord Z-coord ¢-angle f-angle iy-angle

This information was obtained from the PUMA controller via the data terminal.
Create a file in the Unix scan directory called HO.DATA. In this file, manually

enter on a single line the (X, Y, Z) and (¢, 6, 9) coordinates of the initial
calibration position of the PUMA:

XYZ g0y
Create a file in the same directory called LASER.DATA. On two separate lines,

manually enter the (X, Y, Z) displacement of the laser oscillation mirror and

camera lens:
laser-X laser-Y laser-Z camera-X camera-Y camera-Z
Create a third file called CAL.DATA. In this file, manually enter the (X, Y. 7)

displacement D] of the V-block origin point. Enter three zeroes following the

displacement:

XYZ000
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7. Finally, type the command
integ
and enter the appropriate information when prompted (number of scans, file
names, output voxel map file). The resulting voxel map file may be viewed on

an SGI Indigo workstation or on a Sun workstation remotely connected to an
SGI (see Section 4.1.4).

A.3 Display of integrated voxel map

Display of the voxel map is performed by a program on the SGI Indigo workstation
using OpenGL routines. Once the voxel map file has been generated, follow this

procedure to display the voxel map.

1. Copy the generated voxel map file to your viewing directory (if the viewing

program does not exist in the scan directory).

2. Use the command show3d <voxel-map> <d|c> where voxel-map is the name
of the generated voxel map file and d|c indicates whether to display voxels as

dots or cubes.

3. Once processing is complete, a window displays the voxel map within a wire-
frame cube denoting the extent of the voxel mapped space. Use the mouse
pointer position to control the speed and direction of rotation of the display.

Use the - and + keys to zoom in and out of the scene.

4. When you have finished viewing the voxel map, close the window to exit the

viewing program.
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Appendix B

Detailed ODM Creation Algorithm

Main routine: Build_ODM
Input: Octree representing voxel map.
Output: Octree Distance Map representing hierarchical distance map.

1. Augment octree nodes with minimum- and maximum-NSI storage fields

2. Beginning at root, traverse across all eight children and down tree. For each white node

CurrNode within a grey node

(a) Let L = level of CurrNode

(b) Initialize NSI_limit to (3 x DIM — 1), where DIM is the dimension of space. (See
Figure 7.3)

(¢) For NSI_Dist = 1to NSI.limit do
i. Locate all nodes of level L with nodal separation from CurrNode equal to NSI_Dzst.
Store nodes in array Targets
ii. For each member Targets|i]
A. If (Targets[i] is black or grey)
Call Get_Distance, passing CurrNode, Targets[i], white node level, tar-

get node level (both levels equal to L), and receiving near dist, far_dist

If (smallest_far_dist is not initialized or far dist < smallest_far _dist)

—~ Let smallest_far_dist = far_dist

If (CurrNode.min_NSI has not been initialized)
— Let CurrNode.min NSI = NSI_Dist

Else /*Determine if Targetsii] is ignorable™/
— If (near_dist > smallest_far_dist)

Targets[i] is ignorable
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B. Evaluate next Targets[i] (go to 2(c)ii)
iii. If (one of T'argetsfi] was not a non-ignorable obstacle node)
o Let temp.max_ NSI = NSI_Dist
iv. Increment NSI_Dist and go to 2¢

(d) Let CurrNode.mazx_NSI = temp.maz NSI

(e) Evaluate next node (go to 2)

Subroutine: Get_Distance

Input:
o WhiteNode, the current white node

e Target, the current target node
o WhiteLevel, the level of WhiteNode

e TargLevel, the level of Target
Output:
e targ_near, the near-distance from WhiteNode to Target

o targ_far, the far-distance from WhiteNode to Target
1. If (T'arget is grey)
o Determine the black and grey child nodes of Target; store in array TargChild
e Initialize targ_near as some maximal value and targ.far as 0
o Let ChildLevel = TargLevel + 1
e For all elements TargChild[i]:
(a) Call Get_Distance, passing WhiteNode, TargChild[i], W hiteLevel, ChildLevel

and receiving child_near, child_far
(b) Let targ_near be the minimum of {targ_near, child_near}
(¢) Let targ_far be the minimum of {targ_far, child_far}
(d) Evaluate next TargChild[i] (go to 1)

2. Else /*Target is black*/

e Call CalcNearFarDist, passing WhiteNode, Target, WhiteLevel, TargLevel, and

receiving targ_near and targ_far

3. Return targ near. targ_far

Subroutine: CalcNearFarDist
Input:
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e WhiteNode, the current white node
o Target, the current target node
o WhiteLevel, the level of WhiteN ode

o TargLevel, the level of Target
Output:
e near_dist, the near-distance from WhiteNode to Target

o far _dist, the far-distance from WhiteNode to Target

1. (Assume we have location codes for WhiteNode and Target) Calculate reference points

Whiteref and Targ_ref of WhiteNode and Target, respectively, from location codes
2. Let White_size be side length of WhiteNode node
3. Let Targ_size be side length of Target node

4. Obtain the bounding box dimensions for W hiteNode and Target:

e Find the minimum min.z and maximum maz.z of {W hite_ref.x, W hite_re f.x+W hite_size,

Targref.x, Targref.x + Targ_size}
e Find the difference dif f.x = maz.x — min.z;
o If (dif fx <0),letdiff.x =0
e Do the same for y and z, obtaining dif f.y, dif f.z
5. (Refer to Figure 7.2) Find far-distance targ_far:
o Subtract Targ size from each of (dif f.z,dif f.y,dif f.z)
o Let far_dist be the length of the vector dif f
6. Find targ_near:
e Subtract W hite_size from each of (dif f.z,dif f.y,dif f.z)

e Let near_dist be the length of dif f

7. Return near_dist, far_dist
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Appendix C

Detailed ODM Collision Detection
Algorithm

Main routine: ODM _Detect
Input: octree distance map, robot position, robot radius.
Output: collision situation: TRUE if collision, else FALSE.
1. Localize robot to the highest white node W in tree
2. Retrieve min_.NSI and maz_NSI for W
3. For NSI = min_ NSI to maz-NSI do:
(a) Generate list of nearest black and grey target nodes at same level L as W, with nodal
distance from W equal to NSTI
(b) For each target node T in list

i. Call Recurse_Detect; receive collision result in Result
ii. If (Result == TRUE) /*collision*/
e Return TRUE result
iii. Else /*no collision*/
e Go to next target node (go to 3b)

(¢) No collision has been found; increment NSI and go to 3

4. No collision has been found. Return FALSE result.

Subroutine: Recurse_Detect

Input:
e robot white node W
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¢ robot center voxel position w
e robot radius robot_size
e target node T

o level of white node, L
Output: collision situation: TRUE if collision, else FALSE.

1. If (T is black)

o Calculate near-distance for robot center voxel w and T'
o If (robot.size > near-distance)

— Collision is certain; return TRUE
e Else:

— No collision; return FALSE
2. Else (if T is grey)
(a) Calculate the maximum-radius bound for w and T (see Figure 7.6)
(b) If (robot_size > maximum bound)
o Collision is certain; return TRUE result

(c) Else:
i. Recursively call Recurse Detect with all black and grey children of T as target
nodes
ii. If any result from recursive call is TRUE
o Collision detected; return TRUE result
iii. Else (no TRUE results)
e No collision with T; return FALSE
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Appendix D

ODM Collision Detection for a

Line Segment

The following algorithm can be used for performing collision detection against a line
segment using an ODM. This algorithm could be useful with robots modeled as line

segments instead of spheres.

Main routine: Line_Detect
Input: ODM, line segment endpoints P and P, line length len
Qutput: collision situation: TRUE if collision, else FALSE.

1. Call ODM_Detect, specifying a sphere with center P, and radius of 0.5len; receive collision

result in Result
2. If (Result is FALSE)

e Call ODM _Detect, specifying a sphere with center P, and radius of 0.5len; receive

collision result in Result
3. If (Result is FALSE)
e Return FALSE collision result /*No collision with line seg*/
4. Else

e Lot A be the midpoint on line L
e Recursively call Line_Detect, passing Py and M as endpoints of a line, and (0.5l¢n)
as the length: receive result in Result

o If (Result is TRUE) /*Line segment in collision*®/
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— Return TRUE collision result

e Recursively call Line_Detect, passing M and P, as endpoints of a line, and (0.5len)

as the length; receive result in Result
o If (Result is TRUE) /*Line segment in collision*/
— Return TRUE collision result
e Else /*No collision*/

— Return FALSE collision result



