
Continuous Shortest Path Problems with Time 
Window Constraints 

Chia-iVe Chang 
" " &  

B.Sc., Jlathernatics and Computer Science. Simon Frasrr T'niversity. 1$ga4 % ' 

-2 > 

OF T H E  R E Q U I R E M E N T S  FOR T H E  DEGREE pF " .  ' ' 

L , - .  
b MASTER OF SCIENCE 

6 . . 
B 

in the  Department B 

Computing Science 

@ Chia-lf'e Chang 1997 

51x1 ON FRASER I 'NI \7ERSI 'T~ '  

August 14, 1997 

XU rights reserved. This work may not be 

reproduced in whole or in part,  by p h o t o c o p  

or other means, without the permission of the author. 



Name: 

Degree: 

Title of thesis: 

APPROVAL 
t 

Chia-LVe C h a n g  

hlas ter  of Science 

= . d 
Cont-inuous Shor tes t  P a t h  Problems wi th  T i m e  It'indow , 

Constra ints  
. . 

Examining Committee: Dr. T i k o  I i a m e d a  . 

( 'hair 

Date Approved: 

- 

Dr. Xrvind G u p t a  

Senior Supervisor 

. I 

Dr.  Rarnesh Iirishtiarnurt i * 

Senior Supervisor ~- 

Dr.  Perry  Fizzano 



National Library 1*1 . of Canada 
Bibliotheque nationale 
du Canada . 

Acquisitions and Acquisitions et 
Bibliographic Services services bibliographiques 

395 Wellington Street 395, rue Wellington 
Ottawa ON K 1 A O N 4  Ottawa ON K1 A O N 4  
Canada Canada - 

Your hie votre reterence 

Our hie Notre relereoce 

n e  a ~ t h o r  has granted a non- 
exclusiye licence allowing the 
National ~ i b r e  of Canadato 

e e= J repr~duce, lobm, Qstribute or sell - 

o Q 1 'copies gf this ththe~+~:m mrcroform, o 

a paper dr ele'ctronic , fokats. * 
, a  3 

The author retains ownership of the 
copyright in thls thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur a accorde une licence non 
exclusive permettant a la 
Bibliotheque nationale du Canada de 
reproduire, prcter, dstribuer ou . 
vendre des copies de cette these sous 
la forme de microfiche/film, de 
reproduction sur papier ou sur format 
dectronique . 

L'auteur conserve la propriete du 
droit d'auteur qui protege cette these. 
Ni la these ni des extraits substantiels 
de celle-ci ne doivent &re imprimes 
ou autrement reproduits sans son 
autonsation. 



Abstract 

The shortest path problem with time window constraints and costs (SPCV-Cost) con- 

sists of finding a !cast cost route between a source and-a sink in a network C; = (.Y. A )  

such that a vehicle visits each node within their specified time windows [a, .  h , ] .  Each 

arc ( i .  j) E A has a positive duration d,, and an unrestrictive cost c,, . 

This problem has appeared as a sub-problem of many vehicle routing and sctiedul- 

ing problems. most of which are known to be NP-hard. 

In this thesis. we will study a variant of SPW-Cost called Continuous shortest 

Path Problem with Time CVindow Constraints (Continuous-SPW). I'nlike SPCV-Cost 

kvhere a vehicle is allowed to wait at a node for a time window to open, in Continuous- 

SPN: the vehicle must move continuously in the network only passing through the 

nodes whose time windows are open. 

We will determine the coniplexity of this and other versions of Continuous-SF'CV 

for restricted classes of graphs that are of practical interest. Our goal is to construct 

sequential algorithms and determine their running time complexities. We will also 

provide a parallek algorithm for the general Continuous-SPCV and show how these 

results can be extended to handle SP  W-Cost problems. 
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Chapter 1 

Introduction 

Let us ronsider an  .dutomated L'ehicle Guidance(.-11-C;) system in a manufacturing 

plant in which there a r e  several vehicles that service a set of stations interconnected 

hv a set of lanes. :I major problem in such a system is determining a wriflict-fret. 

path for a vehicle dispatched from a source station t,o arrive at the destinat,ion stat.ion 

as early as possible without disrupting other active travel schedules (('T!) 11. 

This is an elaborate example of a problem known as Shor t~ . s t  Path Problcrn 1 ~ 1 t h  
---e 

Tlmc  CZplndou. Corlstrulnts (SPCi.) . It consists of finding a shortest path between a 

source and a sink in a network C;' = (.V, .-I) while respecting specified t ime windows 

[ a , .  h,] a t  each visited node. Each arc ( t .  j ) E '-1 has a positive duration d,, 

This problem appeared as a sub-problem of  a vthicle routing probleni studied in 

[GK95] where they provide a n  efficient sequential and parallel algorithm to  sol\.e i t  

exact ly. 

\l.hen there is a cost c , , ,  possibly n e g a t i v ~ .  associated with each arc ( 1 . 1 )  E .1 and 

the  objective is to  minimize the  cost of the route, the  problem is known as Short ts t  



SPW-Cost first appeared as a sub- problem in the construction of school bus routes, 

where the  number of routes needed t o  complete all tasks must be found while mini- 

mizing total costs [DSD84]. It also appeared as a sub-problem in the time constrained 

vehicle routing iroblem with capacit,y constraints on vehicles. where a set of minimum 

cost routes. origina.ting and terminating at a centra.1 depot must be determined [SorSG]. 

Here. vehicles servicing the  nodes have a capacity which cannot be exceeded. 

A common characteristic of all thesk practical vehicle routing and scheduling prob- 

lems. including SP\C'-Cost. is that  they are NP- hard and therefore there are no known 

algorithms to solve them exactly and efficiently in polynomial time. Solution mctholo- 

gies cnrrentIy+capable of solving problems of realistic size range from simple heuristics. 
b 

to optimization-based heuristics. to optimization methods [DDSSM]. Because of their 

practical irnportance, finding efficient solutions to SPLV-C'o3t is of paramount irripor- 

I n  this thcsis, we will study variants of SPLV-Cost called C'ontlnuon..; Short~. .; t  

Path, Problem with Tinzt. Ll.indout Constraints  (Continuou..;-SPL+.) . L7nlike SPLV- 

ere a vehicle is allowed to wait at a node until the time window opens. in 

the vehicle must continuously travel visiting nodes strictly within 

windows. This problem has applications in the arcla of networking 

where a continuous stream of da ta  transfers between nodes is required, such as video 

data. and where intermediate nodes are open only at specific time intervals. 

\Ye will be looking at the complexity of this arid other versions of ('ontinuous- 

SPLi' under restricted classes of graphs. \\P will construct sequential algorithnis 

for Continuous-SPLV under different requirements. LCe will then provide a paranel 

algorithm for the general Continuous-SPCi'. Finally. we will show how these results 

can be extended to handle SPLV-C'ost. 



Organization of this Thesis I 

, 

Chapter-:! introduces some definitions and background materials that are needed 

in later chapters. Chapter 3 discusses the complexity and difficulty of Continuous- 

SPIZ' under general and restrictive settings. Chapter 1 contains sequential algorithms 

for Continuous-SP\V under different requirements. Chapter 5 contains a parallel 

algorithm for Continuous-SP\Z'. Chapter 6 explores some relaxations of C'ontinuous- b 

SP\V requirements, providing insight into the difficulty of the problem. ('hapter 7 

describes extension of solutions to Continuous-SP\$' to  solve SP\V-('ost. Chapter S 

presents a summary of all the results and a list of relatcd open problems. 



Chapter 2 

Background 

In this chapter. we will introduce basic definitions arid concepts used throughout 

the thesis. At the end of each section, references are  given where a more complete 

treatment of the subject can be found. 

2.1 Graph Definitions 

.A g r a p h  C: is an ordered pair (Ck.  EG) where 1& is a nonernpty set of t.ertices 
43 

{ L ' ~ .  1 ' 2 .  .... [ l n )  (sometimes called nodes) and EG is a subset of edges ( ( 7 , .  1 ; )  where 

r v , ,  ts, are vertices in 1'. IVhen there is no ambiguity as to  which graph G we refer 

to, the subscripts C; in I & ,  EG are dropped. Graphs a re  generally drawn with labeled 

points representing the vertices and lines joining pair of points representing t tic edges. 

X loop is an edge of the form { t * ,  ( 3 ) .  

.4 vertex tl ,  is a d j a c e n t  t o  vertex r q ,  whenever { t l , .  I , , )  is in E. If a vertex 1*  has 

d adjacent vertices. then the degree of t3 is d. L'ertices which have loops are counted 

twice in the degree. 
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.A path is a sequence of vertices t 3 1 . 2 3 2 .  .... c.k such tha t  for I = 1.  .... k -  1. { t * , .  1 , , + 1 )  E 

E. T h e  l eng th  of th is  p a t h  is k - 1.  If t vertices t - 1 .  2 . 2 .  .... 1-ii appear  uniquely in t h e  

sequence,  then t h e  p a t h  is s i m p l e .  
3 

\i'e say tha t  t h e  d i s t a n c r  between two vertices 1 1 .  1, is k i f  t h e  shortest  pa th  from 

21 t o  r has length k. 

.A cycle  is a p a t h  t - 1 .  r.2 ..... t b k  where r.1 = r ' k .  T h e  integer k - 1 is t h e  Icngth of 

th is  cycle. I f  all \.ertices 1 ' 1 .  1 . 2 .  .... ~ ~ k - ~  appear  uniquclj.. then  t h e  cj.cle is s imple  j 
/' 

:\ I l a m z l t o n  cycle is a s imple  cycle containing all vertices of thr. graph.  .t graph 

ivhich has a IIarnilton cj.clc is H a r n i l t o n i a n .  

.A graph is p l a n a r  i f  it car1 be  f r n b c d d ~ d  ( t f .  d r a w n )  on a plane s ~ i c h  tha t  t h e  edges 

h sect only a t  their  endpoints .  

:\ graph G = (I: E)  is blpart l te  i f  t h e  set of vertices I- can h c  part i t ioned into 

disjoint sets  .ql. .q2 such tha t  no pair of vertices in t h e  s a m c  sct a r e  adjacent .  

.-I graph with no cycles is a t r t e .  i 'ertices of degree 1 in a t ree  a r e  called 1taf.s. 

.4 dir- fc tcd graph I )  = ( \  '. .-I) is a graph where t h e  edges a rc  directed: t h a t  is. :I 

is a subset of arcs ( t , , .  r s , )  in I. x I.: somet imes t h e  word digraph  is used instcad of 

d i r e c t ~ d  graph.  

.A\ directed pa th  1'1 .  ..., 2.k in a directed graph D = (I . .  '-1) is a pa th  such that  for 

a = 1 ... . .  k -  1. ( t ~ l . t ~ l + l )  E :I. 
. . 

.-I directed c c l e  1 . 1 .  1 . 2 .  .... l ' k  is a cj.cle 5uch that  a rc  f l s , .  ). 2 = 1. .... k - 1 I S  In 

t hc  arc  set. 

.f directed graph i v i t  h no directed cycles is acyc l i c .  

.A n t t u - o r k  is a directed graph with tivo distinguished \.erticcs called s o u r c f  and  

sink. 

For more  details  on graph t heorj.. see [BlI'iG]. 



2.2 Graph Algorithms 

One of the most fundamental techniques that forrns the basis of many other graph 

algorithms is graph searching or traversal. The most basic graph searching is Hrfadth-  

Flrs f  S f a r c h  ( B F S ) .  

Starting at a vertex u in the graph, the order in which BFS visits the vertices 

is as follows: vertex u is visited first. then the vertices adjacent to u that have riot 

been visited before are visited. then the vertices adjacent to those vertices are visited. 

and so forth. BFS essentially expands its frontier of visited vertices by visiting all 

the vertices at distance k from u before visiting any vertices at distance k + 1 frorri 

u .  'The Lwtices that are at distance k from vertex u are said to bc at l c i . c i  k of t h c  

Algorithm 1: Breadth-First Search. 
Input: Graph C; = (1'. E). vertex 11  in \ '  
Output: Sequence of visited Lwtices. 
( 1 )  Set Q +- { u ) .  
( '2) while Q # o 
-(:N L -  t dequeue Q. 
( 4 )  17isit vertex 1 % .  

(3 foreach vertex us adjacent to 1. 

( 6 )  if u1 has not been 1,isited 

(7 Q +- Q + { w ) .  

For more details see [C'LRYO]. 

2.3 Models of Computation 
d 

I n  order to anal~.se and compare algorithms, we need to  look at the ur~derl~,irig niodel 

of computation used to  solve the problem. Although there are rriany models of corri- 

putation. wc will only look a t  models that are of interest to  us in this thesis 
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For sequential algorithms. we will use the Randorn-.-lcres,~ .\lachine (R,A .\I) model. 

Here. we have a single stream of instructions operating on a single stream of da ta  

executed sequentially. 

For parallel algorithms, we will use the Parallel Random-,4ccess .\lachint. (PR.4 .\I) 

model. Here. we have Shared-LIemory Single Instruction stream. hlultiple Data 

stream ( SIhID) 'Computers that have a number of identical processors. each with 

its own local memory operating under a single instruction. The processors conlniuni- 

cate through a shared common memory where memory writes can be either concurrent 

writes or exclusive writes (C'\.V.EIC'), and memory reads can be cither concurrent reads 

or exclusive reads (CR.ER) .  In the exclusive reads (write) policy. only one processor 

can read [write) to a memory location at any ,@yen time. whereas in the concurrent 

read (write) pobcy, more than one processor can read (write) to a rncniory location 

simultaneously. For morc details and examples, see [ A  klSS] 

'The overwhelming majority of computers today adhere to these niotfcl. 

Complexity Classes 
r. ." 

l lany problenis can be categorized into different coniplexity classes. Two such classes 

that we are interested in are: the class P and the class NP 

Problems in P are those for which there is an algorithm that rriakes deterrriinistic 

steps and solves the problem in polynomial time in the input !ength. For example. 

the problem of finding the shortest between two vertices is in P. (iiven a graph 
I 

G = ( I :  E).  length I ( € )  E Z+ for each E E E, vertices a.6  E I'. and a positive 

integer B. the problem is to determine whether there is a simple path from (1 to 6 
6 

in G having total length at most B. .A deterministic algorithm for this probler~i is 
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Dij kstra's Shortest Path Algorithm (see [CLRSO]). 

Problems in N P  are decision problems for which there is an algorithm that makes 

nondeterministic steps and outputs yes in polynomial time in the input length when 

the problem instance has a yes solution. For example. the probleni of finding the 
;g 

longest path between two vertices is in N P .  Given a graph C; = (I: E) ,  length 

I ( € )  E Z+ for each c E' I.:, vertices a .  6 E I., and a positive integer B, the probleni 

is to  determine whether there is a simple path from a to b in (; having total length 

at least B. .A nondeterministic algorithm can generate a sequence of vertices non- 

deterministically and then check if this sequence is a simple path of length at least 

B. 

\t'e say that a problem n, reduces to  problem rr  when there exists a transformation 

that maps any instance of problem ;rl to  an equivalent instance of problcrn I;> I f  all 

problems in N P  can be reduced to a problem 7: in polynomial time. then we say that 

problem ir is NP-had. I f ,  in addition. problem 7: is in NP.  then i t  is a NP-cornpltfr 

problem. The Ilarndton C'yclc Problem is an example of an NP-complete probleni. 

Given a graph G,  the problem is to determine whether there is a Hamilton C'ycle in 

G . 

Because of the nondeterministic property. it is believed that far more problems can 

be solved with nondeterministic algorithms in polynomial time than with deterministic 

algorithms. However. to date. it is still unknown whether ihere exists a problcrn 

which is solvable by a nondeterministic aliorithm i n  polynomial time. but not by a 

" deterministic al, 

Presently. a1 

in exponential t 

strong evidence 

orithni in polynomial time. 

NP-hard  problems can only be solved by deterministic algorithrris 

me. So when we show that a problem is NP-hard .  we are providing 

that it is a very hard problem; one that is unlikely to  be solved in 



polynomial time by any deterministic algorithm. For more details, see [GJTS] 

2.5 Linear Diophant ine Equation 

Linear equations of the form a x  + by t c with integer coefficients a .  b, integer value c. 

and integer variables x. y are called Linear Diophantinr Equations.  LVe shall see next 

how this linear equation can be solved for the variables s. y .  

Given integers a .  b. we define the greatesf c o m m o n  diri.for (gcd)  of a .  b to be the 

greatest integer d such that  d divides a and d divides b. CCve use the notation ( a .  b )  t,o 

mean gcd(a.  b ) .  and d I a to mean d divides a .  

Obserwztion 2..5.1. For integers a .  b. d.  i f  d / ab and ( d ,  a )  = 1 t her1 d 1 h. 

0 b . s ~ r r a t i o n  2..5.3. For integers u . b , c . d .  i f  j n ,b )  = d and c / a .  c I b then c I d .  

O b . s ~ r ~ a t i o n  ..2.r5..1'. For integers a ,  b. c. i f  a / c. b / c and ( a .  6 )  = 1 then ah / r .  

Ob,<crration 2..5.4. For integers a .  b, c, i f  c 1 a ,  c I b then c 1 ( a  + b )  

For integers a .  b. gcd(a.  b )  can be computed in polynoniial tirrie using an algorithrri 

known as the Euclidean .Algorithm. Assuming that a < 6; by the division algorith~ri 

we can find integers q l .  r l  such that 

By observation 2..5.-1 we see that ( a .  b )  = ( 6 .  r l  ). Thus by recursively computing 

( h , r l )  for k steps with b > r l  > ... > rk until rk-1 = rkqk. we have a . b )  = ( b . r l l  = 

. .  = ( T k - l J k l  = rl(. 

t 
Since at each step computation of ( b ,  r )  from a = qb + r ,  either b 5 a/' or else 

b > a/ '  and r = u - bq = a - b < a / ? .  we have ( 6 .  r )  5 a/': that is. the bound on the 

gcd is reduced by at least half. Hence. gcd(a ,  b )  can be determ~ned In Ojlog b )  steps. 
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Obsrrvatton ?.i..i. From t h e  above a lgor i thm.  we can ohtiin integers .i. t such t h a t  

at + b.s = ( a .  b ) .  This  is computed  by a n  a lgor i thm known a s  t h e  E z t c n d d  E ' u c l d t w n  

.-llgorzthm. 

L e m m a  2..i. I .  Equat ion a x  + by = c has  integer solutions x .  y i f  a n d  only i f  ( a ,  b )  / c. 

Furthermore .  i f  s o .  yo is a solution. t h e n  all integer solutions x ,  y can  b e  expressed as  

Proof. I f  so, yo is a solution.  then  ( a .  b )  1 aso ,  ( a .  h )  I bye a n d  t h u s  by Observa- 

t ion 2.5.4 ( a .  h )  I c. 

Conversely. i f  ( a .  6 )  1 c. then  c = m ( a ,  b )  for s o m e  integer n2. From Observa- 

t ion 2.5..$. t b e k  a r e  integers r .  s such t h a t  (LT + 65 = ( a ,  b ) ;  hence,  x = rrlr. g = rr1.s i >  

a solution t o  the  equa t ion  a s  + b y  = c .  , 

Now, let u s  suppose  x ,  y is a n y  solution t o  t h e  equat ion.  T h c n  

Since a I a ( x  - rij a n d  a / 0. we have a / b(y  - y o )  Obseivat ion 2 . 5 1  , together  

with (A. L) = 1 iqplies t h a t  for s o m e  integer t ;  
( a . b )  (ah) 

Subs t i tu t ing  2.2 in to  Equat ion 2.1 we get  
\ 



arr 

As a generalization. we define the gcd of integers a l .n2 .  . . : .a ,  t o  be the gcd of a l  

and the  gcd of a 2 .  .... a,: tha t  is. gcd(a l , a2 .  .... a,) = gcd(a , .gcd(a2 .  .... a , ) ) .  

Finally, we define the  least corn mon mu6tip6~ (lcm,) of integers u ,  h to  be the smallestl 

integer m such tha t  a  1 n? and h  / m. LVe use'{a, h )  t,o denote Icm(a.  6 ) .  

Lemma 2..5.2. For integers a .  h. a h  = l c m ( a ,  h )  . ycd(a.  h )  

.4 more complete a.nd i n d e p t h  treatment, of linear Diophantine equat.ions with 

applications in other areas can be found in [Sch86]. 

2.6 Theory of Congruences 

For inegers  a .  h. nt. we say tha t  n  is congru~n,t to h modulo rn (denoted by n e h  

(mod  m ) )  whenever m ( a  - 6 ) .  

Obscr~mtion 2.6.1. For integers a. h. c ,  and d 

1 .  If  a  h  (mod  n l )  and b  G c  (mod rrr), then (1 E c ( m o d  m )  
'J 

2. If n  h  (mod m )  and c d (mod  nl) .  t,hen a + c z h  + ct (mod r r t ) .  

:j. I f  a h  (mod  r n )  and c G d (mod  m ) ,  then nc s hd (mdd  m ) .  

4. I f  nc 3 bc (mod  m )  and ( c .  m )  = d ,  then a h  (mod  nt. /d) .  

LVe can see that  congruence acts like equality in rrlanj wnys. 

For linear congruence of the form a s  r h  (mod rn) with integer value5 a .  6, r r l  dnd 

integer variable x, a solution in x exists i f  and only i f  there are  integers s. k such that  

a x  = h + km. Hence. the problem of solving this equation i \  essentially the same as 

that of solving linear Diophantine equations. Thus. 



Ob.srrytron 2 .6 .3  T h e  l inear  congruence  a s  = h ( m o d  m ) h a s  a so lu t ion  in .r i f  a n d  

on ly  if ( a . m )  1 h. 

T h f o r e m  3.6. I .  T h e  C h i n e s e  R e m a i n d e r  T h e o r e m .  T h e  s y s t e m  of congruences  

s G a ,  ( m o d  n i , ) .  i = 1. 2 .  .... k .  ( 2 . 3  \ 

where  ( m , .  m,) = 1 i f  i # j, h a s  a un ique  solut,ion for .c m o d u l o  n t l r n 2  . .  . mi;. 

Proof. LVe show by incluction on  k t h a t  s y s t e m  (2.:3) has  a so lu t ion .  

T h e  result is obvious  w h e n  k = 1 .  Let, us cons ider  t h e  case  k = 2. I f  .r E (11 

( m o d  m l ) .  t h e n  all so lu t ions  for s a r e  of t h e  form s = a1 + klrrrl  for a n  integer  X.1. I f  

in add i t i on  s r a 2  ( m o d  m 2 ) .  t h e n  

Because  ( m 1 .  r n L )  = 1. we know f rom Oht . rva t , ion  2.6.2 t.hat, t h i s  c-ongriwric~tx. 1vit.h 

k I as . .  t h e  unk11ots.n. h a s  a un ique  solut,ion .+ rnodulo r i t 2 .  T h u s  k1 = .s + k 2 ~ , l 2  for souit> 

k2 a n d  

satisfies b o t h  congruences .  

Now. suppose  t h a t  s y s t e m  ( 2 . 3 )  has  a solut.ion ( m o d  r n l n t 2  . . . 1 7 1 ~ - ~  ) .  T h e n  t h t w  

is a so lu t ion  s t o  t,he s y s t e m  



-- 
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But  t h e  system 

has a sol~it,ion modulo  m l m 2 . .  . mk-lnrk. just, as in t,he case k = 2. sirlce we have 

g c d ( m l m 2  . .  . mk- l .  mk)  = 1.  

XIoreover t h e  solution is unique.  If r arid .s are  hot,h solutions of the s ~ s t m i .  t h c ~ i  

s o  7 1 ( r  - ) I = 1.2 .  .... k .  Because t h e  moduli  a r c  pairwisc relatively prime. h?; 

observation 2.5.:1 we have rnlm2 . . . mk 1 ( r  - . s ) .  Rut, 

.-In efficient a lgor i thm to solve sys tem ( 2 . 3 )  can h e  found in [.-\H1771]. For flirt,her 

details. see [:lHl"i-4. CLRSO. Dud781. 



Chapter 3 

Complexity of Continuous-SP W 

In th is  chapt.er. we will show t h a t  a n  efficient algorit.hrn t o  solve Cant inrioiis-SPCV 

is unlikely t.o m i s t .  We will show t h a t  Continuous-SPCV is N P - h a r d  by providing 

a p o l y n o r n ~ l  time. reduction a lgor i thm from a known N P - c o f n p l c t e  problem t o  t h e  * 

('ontinuous-SPCV. CVe will show t,hat Cont inuous-SPW remains  N P - h a r d  even when 

it. is restr icted t o  s imple  classes of g raphs  such as  b ipar t i te  graphs .  p lanar  graphs.  grid 

graphs  a n d  monotone grid graphs .  T h e  incentives for st,udying t, hese classes of graphs  

c o m e  from these applicat,ions: in modeling t-'ont,inlious-SPLV for packet, routing over 

a network,  many  of t h e  network connections t,opology. such a s  t.he st jar  t.opology. t tic. 

n-dimensional  cube  topology. a n d  t h e  tree topology can  he  represent.ed as  hipart,it.e 

graphs:  in modeling pick-up service for trucks in a city. t h e  roads can  he represented 

as grid graphs;  a n d  in modeling delivery of  component,^ over coveyor belt  sys tem in a 

factory, t h e  sys tem of belts  can h e  representled as monot,one grid g raphs .  

For t h e  remaining pa r t  of th is  thesis ,  let us use t h e  not,ation G = (t.. :I. D. 7'. a ,  h )  

for a n  ins tance  of t h e  Continuous-SPCV. with a network consisting of a vertex set 

I* = ( 1 9 , .  1'2. .... 11, ) .  a n  a r c  set  .4 = { f ti. .... e m } .  vertices 11.  h in I '  for whic-h we want 
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to compute the shortest path bet,ween them. and a set of distances D = { d l .  4. ..., d m }  

associated with the arcs in '-1. and a set of time windows 7' = {[a1.  611 1 .  [a2. h 2 l 2 .  .... [a,. h,].} 

associated with the vertices in I' ( t h e  a,'s are the release t,imes, and the h,'s are thc 

deadlines). 

Proof. Our reduction is from the Hamilton Cycle Problem. LVe recall that thc, Haniil- 

ton Cycle Problem is an NP-complete problem that  asks i f  thew cvists a H a ~ ~ i l t o n  

Cycle in a given graph. 

Let H = ( .Y. E )  be a grapb instance of the Hamilton Cycle Prohlem with v e r t c ~  

set .V = { L ' ~  . . . . .  t , n - l )  and edge set E = {cO ..... F ~ - ~ } .  Let n be any vertex in H. 

CVe construct an instance G' = (I.', .4, D, T.a .  h )  of the C'ontinuous-SPM7 as follows. 

The vertex set I -  consists of the vertex a ,  a new vertex I,, = h. and T I  - 1 copies 

.Ip,. .VL. .... .Vn-, of the v m e x  set .V. The arc set .4 consists of arcs ( a .  1 , ) .  r -  E .VI - 
Z 

such that { a .  1 1 )  is in E. of arcs ( u .  ( 7 , ) .  u E such that { I L . ~ )  is in E,'. and of 

arcs i .r .y). .r  E .L,.!j E . 'L,+,.I = 1 ...., n - 2 such that { s , y )  is in E .  \C+ assign the 

distance of each arc ( x . y )  E .4 to P. LC'e assign the time window of each vertex 

1, E .V,. 1 = 1.  ..., n - 1 .  and of vertex a .  to [O. PI. while we assign the time window of 

")"+' - 1.2"" - 11. For an example. see Figure 3.1. . vertex r-, to (, 
ri 

CCe can easily see that the above construction takes O(nrr2 + 71') time since ttlcml 

are ( n  - 1 ) n  + 2 vertices in I .  and at most ( T I  - 2 ) m  + 2 n  arcs i n  :I. 

, The purpose of this construction is to correspond a Hamilton ('yclc in H to  a 

feasible ( a ,  b)-path of length n in C; such that all vertices of .V appear uniquely. 

Let us suppose H has a Hamilton Cycle C' = t9 , ,  . .... t,,,, t q , , .  and vertex a is some 

I,, ,  in C'. Then we claim that the path a .  v,,,, . L,,:,, . ..., ,,-, . h is a feasible ( u .  h ) -  

path in G. To see this, we notice that each vertex tq,  E .2;. 1 = 0. .... n - 1.1 = 



@ a 2 4 

graph H 

graph G 

Figure  3 . ! :  Cons t ruc t ion  of a Continuous-SPLV Ins t ance  f rom a Hamilton Cycle P roh-  
lem Ins t ance  
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1 ,  ... n - 1 has essentially a n  unbounded t i m e  window: thus ,  all t,he ( a ,  I . , , )-subpaths.  

k = j + 1. .... n .  j - 1. are  feasible paths  in C;. Since each vertex t . ,  appears  uniquely 

in t h e  cycle C ,  and  t h e  dis tance of arcs into t,, is 2'. t h e  to ta l  distance along t h e  

( a .  b ) -pa th  mus t  be 2' + 2 ' , +  . . . + 2". or  'Ln+ '  - 1, which is within b's t i m e  window. 

Hence. it is a feasible path  in G. 

Conversely. let us suppose C; has a feasible (a. b)-path  P = a .  c 3 , , .  .... 1 .  ,"-,. b wit t i  

distances d l .  d 2 .  .... cl,. 2". where d, = 2'. 1 < 1 5 n for some j .  along t h e  arcs. rcspec- 

- tively. Because P is a feasible ( a .  b)-path .  we must have dl  + d 2 + .  . .+d,+2" - 2"" - 1 

However. this  equat ion is feasible i f  and  only if  each 2'. 1 5 r. < n appc.ars u n i q ~ ~ c l y  

in t h e  sum.  To see this.  t h e  binary representation 
\ 

n - \ 

111- ... 1112 = - 1 

Each ? ' . I  5 I < n must  t least once. and  since the re  a re  only 11 variables in I 

t h e  surnniation.  each 2 ' .  1 < i 5 n must  appear  exactly once 

Therefore,  each vertex in t h e  pa th  P appears  uniquely a n d  t h e  cycle (1. r * , , .  .... 1 ,  ,,-, . n 

is a Hamilton (_'j.cle in H. 0 

C'ollorary ;3.O.J. 1 .  Continuous-SPiV problem remains N P - h a r d  when restricted t o  bi- 

pa r t i t e  graphs.  
\ -.. 
, , . / 

Proof. T h e  graph const ructed in t h e  reduction preserves t h e  h ipar t i tmess  property. 

To see this,  suppose t h a t  t h e  vertex set .Y has a bipart i t ion .Y. 1 . .  Then  we  can 

. . 
bipart i t ion t h e  vertex set I '  by bipart i t ion t h e  vertex sets .L .I2.  .... .Yrr-l t h e  s a m e  

as .I7 a n d  a d d  t h e  vertices a ,  b t o  t.he part i t ion where a is in t h e  .Y. I .  bipart i t ion 

of .Y. Since Hamil ton Cycle Problem is N P - c o m p l e t e  even when t h e  graph H is 

b ipar t i te  [C;J79]. t h e  result follows. 0 



Next. let us consider Continuous-SPLV for the class of planar graphs. 

Thcorkm 3.0.9. Continuous-SPU' problem remains NP-  hard when its input is rc- 

stricted to planar graphs. 

Proof. LVe are going to  use the graph G constructed in the reduction for the grn- 

era1 graph case in Theorem 3.0.2 and transform i t  to a planar graph instance j;' of 

C'ont.inuous-SP\Z7. 

\\'e make the graph C; planar in the previous reduction by adding a new \.erttx at 

cvcry pair of crossing arcs in the graph; that is. i f  there are arcs (1,. y,). 1 = 1. .... k 
. 

that intersect with arc ( ( 1 .  r * ) .  n E .YL. L? E .VL+, . then we add vertex s ,  ,,L to each 

crbssing with tirr;e window [O. .'"I. Each arc ( s , : , ~ .  r,,,,, L ) .  i = I .  .... k - 1 lwtwern 

-%- the new vertices has distance .I-2n2 , L , while arcs (11 .  s,.,,r,). ( s c , , L .  1 9 )  havt tlistanccs 

- .jr - s ) - t L  - ( A .  - l ) 2 - 2 * 2 L  - - and--.'-"L. respectively (see Figure 3.2).  

y l  ' 

Figure 3.2: Constructing a Planar Instance of Coritinuous-SP\L 

Since each arc has at rnost n L  crossings. we can see that the above transfor~nation 

takes polynomial time. 

The main point in the assignment of the distances to  the arcs in this scheme is to 

force the existence of a feasible ( a ,  b)-path P in the planar construction i f  and only 
A 



i f  the path I' with the new vertices deleted is a feasible path in the general instance 

graph G. By assigning very small distances between the new verLices in the crossing. 

we essent iallq- introduce fractional values that are canceled only when they are added 

together to  the total distance of paths in F that correspond t o  paths in G. \Ce show 

next that the planar instance F' has a feasible ( d b ) - p a t h  i f  and only i f  the instance 

H is Hamiltonian. 

I f  H has zi Hamilton C'ycle. then we can easily see that there is a corresponding 

( a .  b)-path in F since for an arc ( u .  t , )  in (: such as the one shown in Figure 3.2. the 

corresponding ( u .  1 9  j-pat h in F has the same distance value. 

NOW suppose that the planar instance F has a feasible ( a ,  b)-pat h .  Each arc along 

the path has a distance of 2' - 2-lL - ( k  - 1)2-2n2L . - or '>-2n2L - , for some integcrs 

i.  k.  I,. Because vertex b has an integer time window - I . ? + '  - 11. the total 

distance of the ( a .  6)-path rnust be 2"" - 1. This implies that for each arc in  the ( a .  b ) -  - 
- path kvith distance 2-lL for some i .  L.  there must be a corresponding arc in the path 

with distance 2' - 2-1' - ( k  - 1 ).)-2n2 and corresponding ( t  - 1 ) arcs with distancrs 

' j -2n2L .  - for some k. The reasor; is that each distance 2-lL. and 2-'"lL are unique: the 

smallest value 2-"" is greater than n2 - 2-2"21. arid 2-2n21 is greater than n' .2-2"'"t1). 

I f  we look at their binary representations. the terms 2-"). i = 1.  ..., T I .  L = 1 .  .... n .art. 

distinct in the first ri2-bits of the fractional part. \chile the terms L ' - " " ~  a r t  distinct 

between 2r12-bits and 2n3-bits of the fractional part. 

Hence. the underlying ( a .  6)-path without the crossing vertices corresponds to an 

( a ,  b)-path in G. which corresponds to a Hamilton C'ycle in H. 

0 

Th forcm 3.0.4. Continuous-SP\l' problerri remains NP-hard  when restricted to grid 

graphs. 
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Proof. From Theorem 3.0.3,  it suffices to modify a planar Continuous-SPiV instance 

to a planar Continuous-SPhT instance in which ~ a c h  vertex has both outdegree and 

indegree of at most 2. For each vertex u that has arcs a l  . a2.  .... a ,  into u with distances 

d l ,  dz, .... d, and arcs a , + l .  a,+2. .... a,,, out of u with distances .... re- .. 
spectively. we replace the  vertex with a double comb like subgraph consisting of i + o 

new vertices y 1.92. .... y,+, as shown in Figure 3.3. 

'& 

Figure 3.3: Constructing a Grid Graph Instance of Continuous-SP\i7 

The vertices y l .  92. .... y,+, in the comb subgraph has time window [O. L ' " ] ,  the 

same as all other internal vertices of the planar graph F. The arcs (y , ,  y,+:). J = 

1 ,  .... 2 + o - 1,  has distance 2-". while the arcs ak. A: = 1,  .... 1 has distance dk - ( 1  - 

k ) 2 - " ,  and t h e  remaining arcs a / .  1 = 1 + 1. ..., 1 + o has distance dl - ( I  - 1)2-". 

\ \ e  can see that*this transformation into a grid graph can be acconiplished i r i  

polynomial time. I-sing Theorem .3.0.3. we see that a feasible ( a ,  6)-path exists i f  and 

only i f  the instance H is Hamiltonian. 0 

Sex t ,  we show that even with further restriction that all arcs in the grid graph 

can be oriented only in two possible directions (eg. right and down). that is. the grid 

graph is monotone. the problem remains NP-hard .  

Theorem :3.0..5. Continuous-SPh; problem remains NP-hard even when the grid graphs 

is monotone. 



Proof. \ i e  will use the Part l t lon  Problem for our reduction. In this problem. N'T are 

given a finite set .4 and a size s ( a )  E Z+ for each a E '4. The problem is to find a 

subset '4' c A such that CaE s j a )  = CaE . $ ( a )  and 1.4'1 = ld41/2. 

Let us consider such an instance of the Partition Problem with set .4 = { a l .  ( 1 2 .  .... a , ) .  

\\'e construct a monotone grid graph for the ('ont inuous-SF'\!. instance in a diarnorid 

st ructure such as the one show1 in Figure 3 . 4  where .\I = ~ P " R ( ~ . F A  ' ( .))l+' and the 

t irne windows of all vertices but vertex b are unbounded. v 

Figure 3-1:  Reducing Partition Probleni Instance to llonotonc Grid Graph Instance 
of Continuous-SP\\' 

Herkagain. we use an appropriate assignment of distances to arcs so that a frasiblc 

( a .  6)-path exists i f  and only i f  there is a solution to the Partition Problern. Si~ice .\I 

is larger than the sum of all the item sizes. a feisible ( a .  b ) p a t h  must contain rxactly 

T I  arcs with distance -11: that is. the path must contain exactly n of the bottorri arcs 

in the diamond structure. arid exactly rl  of the top arcs that sum to (El,, . < ( a ) ) / ? .  

Hence. there is a ( a ,  b)-path to the Continuous-SP\V instance i f  arid only i f  t h c v  

is a solution to the Partition Problem instance. 0 

These results s trongl~.  suggest that we are unlikely to find a polynomial time 

algorit hnl for the problem. 



Chapter 4 

Sequential Algorithms 

.4lthough we have shown in Chapter 3 that Continuous-SP\V is NP-hard  evcn for 

quite restrictive graphs. in many practical situations. i t  is often the castx that the 

distances along the arcs or the intervals of the time windows at the v~r t i ccs  are srriall. 

bounded by a polynoniial in the size of the input instance. For esaniple. consider our 

previous rriodel of pick-up service for trucks in a city with roads represented as grid 

graphs. In  that model. we can see that the distances of roads between intersections 

can easily be bounded by a constant. 

In cases such as those shown above, we want to determine i f  there exist algorithrris 

that solve the problems in polynomial time when the maximum of the input values are 

bounded. .4lgorithnis that exhibit this type of behavior are called pscudo-polynomial 

t i m e  algorithnzs. 

In this chapter. we will show by construction that a pseudo-polynoniial time algo- 

rithm for Continuous-SP\V exists. 

l ive will construct a set of algorithms that runs in polynoniial time with respect to 

the input length when the rnasirnuni time window interval is bounded. lVe will thtan 



construct an algorithm that runs in polynomial time with respect to  the input length 

when the  nmximum distance is bounded. 

4.1 Algorithms for Bounded Time Window Inter- 

vals of Continuous-SPW 

Let us consider a Continuous-SPLV instance G' = ( I :  '4. D. T . x .  y )  in which the un- 

derlying graph is acyclic. Suppose we want to determine for all possible start times. 

and for all vertices x in I * .  a shortest feasible (x .  3) -path .  Let .I1 = ma?c[,,,~,~.{b - a ) .  

An algorithm for this problem proceeds as follows. Start at vertex y and work 

. backwards in a breadth-first traversal. For each traversal along an arc (x. 1 . ) .  corr~plitc 

the earliest arrival time to y from u .  for each start tinie t in t tic tinie window [a. b] ,  

of vertex x. .1 sketch of the algorithm is shown in Figure 2. 

Algorithm 2: Backward BFS Traversal. 
Input: ('ontinuous-SPLV instance G' = (I7. .4, D, T, x, y )  
Output: Shortest path distance d,,( t )  for 11 E I arid start tirrirs 
t E [a. b], 
( 1 )  . Set d,,(t) = +X fa all n E I',t E [a,b],. 
( 2  S e t d , , ( t ) = O f o r a l l t ~ [ a . b ] , .  

\ ( 3 )  S e t q u e u e Q = { y ) .  
( 4 )  while Q # { )  

( +  +- dequeue Q 

( 6 )  foreach vertex u adjacent to L ,  

( 7 )  foreach t in [a .  b], 

( $ 1  c ~ n l p u t ~ d , ~ ( t )  = min{d,,(t). d u L + d l y ( t + d u L  ) ) .  d,, E L) 
( 9  enqueue u to Q 

LC'e can easily see that the complexity of this approach is O ( n  + nt.\I);  each arc is 

traversed once in Step 6. and Step 7 takes O(121) time for each iteration in the loop. 

Let us go through the example shown in Figure 4.1. The output produced at each 



Figure  4 . 1 :  A n  Ins t ance  of C'ontinuous-SPiV for t h e  Sequent ia l  . l lgori t  hn i  

s .  .. 
s t e p  is show; in Table .I. 1 .  

1 B r e a d t h  Level 1 1 1  B r e a d t h  Level 2 / I  B r e a d t h  Level :I 1 

Tab le  - 4 . 1 :  O u t p u t .  of ( 'ontinuous-SPLV Algor i thm 

In t h e  first backward  BE'S i t e r a t ion  s t a r t i n g  a t  ver tex  y .  t h e  sho r t e s t  (b.!/)-pat,h 

a n d  t h e  sho r t e s t  i n . ~ ) - ~ a t h  is c o m p u t e d  a n d  r emembered .  for all t h e  fclasihle st,art 

t i m e s  a t  vert ices b a n d  a .  In t h e  second i te ra t ion .  we find a n  (s, 9 ) - p a t h  t h a t  uses 

ver tex  a .  a n  (s. ! / ) -pa th  t h a t  uses ver tex  b. a n d  a short.er ( h ,  y ) - p a t h  that ,  uses v e r k x  

a .  In t h e  last i t e r a t ion  we  find a n o t h e r  (1. y ) -pa t  h that,  uses b o t h  vert ices b a n d  a .  

Remark 4 . 1 . 1 .  LVe n o t e  t h a t  i t  is necessary in t h e  a lgo r i thm t o  use backward  R F S  

because  a shor t e s t  ( u .  & ) - p a t h  passing th rough  ver tex  r a d o e s  riot necessari ly consist, 

o f  t h e  sho r t e s t  ( 1 1 ,  [ , ) - p a t h .  Cons ide r  for example .  t h e  g r a p h  in F igu re  1.2. {.sing BFS 

f r o m  ver tex  x s t a r t i n g  a t  t i m e  0 we would reach ver tex  c a t  t i m e  2 by going t ,hrough 



Figure 4.2: An Instance of C'ontinuo~is-SPLV for BFS Sequential Algorit,hrn 

vertex a .  However. this does not yield a feasible ( . r .  !/)-path. 

R ~ r n n r k  4 . 1 2 .  IVe can perform Algorithm 2 n times for each vertex h in the graph to  

obtain the all pairs shortest feasible ( a ,  b)-paths. 

K f m n r k  4.1. .3.  LC'e can perform the all pairs source and sink algorit,hm version .I1 

times for each arrival t ime in the ,sink's t ime ~vindow to  find shortest feasible paths 
4 

for all combinations of source,sink.start time. and arrival t ime in O((rr + nl . l l )n . l l ) .  

Rrmnrk 4 . 1 . 4 .  LC'e can easily extend the procedure to  handle instances in which thc  

iinderlying graph contains cycles by computing the transitive closure. This yields an  

algorithm with running t ime complexity of O ( ( n  + rn.\l).CI). 

Table 4 .2  is a summary of the t ime complexity for the different ('ontin~ioris-SPLV 

sequential alggrithms. 
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/ n source.  o n e  s ink .  all  s t a r t  t,irnes. all arr ival  t , imes 1 O(.I . I(n + n r . t l ) )  1 

C o n t i n u o u s - S P W  Algor i thms  
n source.  o n e  s ink .  al l  s ta .r t  t imes ,  sho r t e s t  a r r iva l  t , ime 
7) source.  n s ink .  all s t a r t  t , imes,  sho r t e s t  arr ival  t i m e  

I n source.  n s ink .  all  s t , a r t  t imes .  all  arrival t , imes 1 O ( n (  + I ) )  1 
* 

T a b l e  -1.2: Complex i ty  of Cont,inuous-SPLV A l g ~ r i t ~ h m s  

C o m p l e x i t y  

O ( n  + m,.l.I) 
O ( n ( n  + nz.l.1)) 

4.2 Algorithms f for Bounded Distances of Conti- 

In t h e  previous sect ion. we  cons t ruc t ed  a lgo r i thms  t h a t  r u n  in polynomial  t in le  w i th  

respect  t n  t h e  i n p u t  length  a n d  t h e  m a x i m u m  t i m e  window in terva l .  Even t h o ~ i g h  

we expec t  t o  find t,hese values bounded  by a polynomial  in t.he input ,  1engt.h in man! 

prac t ica l  s i t ,uat ions.  we would still  like to investigat.e how t h e  p rob lem hehavt-s when 

t h ~  d i s t a n c r . ~  a r e  h o u n d e d .  h u t  t h e  t i m e  window intervals  a r e  of exponent in l  s i r e  in 

t,he l ength  of t h e  input , .  In pa r t i cu l a r ,  we a r e  int,erest,ed in cons t ruc t ing  a, pseudo- 
.- 

polynomial  t i m e  a l g o r i t h m  wi th  respec t  t o  t h e  i n p u t  l eng th  a n d  tjhe m a x i m u m  ciis- 

t ancc .  - 

Let  us a s sume ,  w'it,hout loss of g e n ~ r a l i t y ,  t ,hat  all dist.a.nces a r e  un i t  1 ( w e  c a n  

a lways  subd iv ide  a n  a r c  in t h e  input ,  g r a p h  t o  pat,hs composed  o f   ini it, d i s t ance  arcs  

whose  t o t a l  pa t  h- length  is equa l  t o  t,he ini t ial  arc. d i s t a n c e ) .  

Gix-en a n  i n p u t  i n s t ance  C; = (C: .4. T .  .s, t ,  t o )  witah ver tex  se t  C.. arc- se t  .-\. se t  of 

t i m e  window int,ervals T,  sou rce  s. sink t ,  a n d  ini t ial  t i m e  t o  a t  .5, we wan t  t o  firid an 
* 

(.I;, t ) - p a t h  s t a r t i n g  a t  t i m e  to .  

If t h e  unde r ly ing  g r a p h  in t h e  problem is acyclic. t,hen clearly t,he p rob lem reduces  

t o  f inding a feasible (..i. t ) -  p a t h .  which can  be  accompl ished  us ing  a BFS algori t ,hm 



on t h e  g raph  in G. 

So let, us suppose  t h a t  t,he underlying gra.ph cont.ains cycles. T h e n  .we can sirn1ila.t.e 

a wa.it,ing t i m e  11: a t  a vertex rr by t.raversing along t , h ~  qc - les  through ( L  of 1rngt.h.p. 

If we can pre-cornputt. a n d  describe in polynomial t i m e  all t.he wait,ing t,irnes possible 

a t  each \.errex. then wt can use a RFS algorit,hm on G t.o solve ( ' on t , in~~oi~s -SPLV,  

Specific-a.lly. i f  we have computed  all t.he arriva.1 t,imes of a ( .r .  (1)-pat,h in G. anti (nib) 
9 

is a n  arc in G. then  we can c-omprlte and  dcscribe a.ll t h e  arrival t.imes of (.u. h)-pat  hs 

rlsing a r c  ( a .  h )  a.s follows: t h e  a r r i ~ a l  t imes  of (.u. h)-pat,hs is t h e  arriva.1 t imes of ( . s .  (1  ) -  

pa ths  plus 1 that. a r e  f ~ a s i h l e .  t.oget.hrr wit.h all t h e  ivait ing t imes  possible at  \.crtc>x 

h. 

Hence. our  problem is reduced to t hat of finding a pol)-nornial t ime cl~w.ript ion of 

possible waiting t irnes a t  each \.ertex. 

Computing Possible Waiting Times 

S ~ i p p o s e  we want t o  coniput,e all possihle waiting tirnt.s feasihlr at  ~ v t > r t t ' x  1 -  I f  

vertex 1,  is not in any  c~,c.le of t h e  g raph ,  t,rivially no wait,ing is possihle at. I . .  So let, 

ris suppose  t h a t  the re  a r e  s imple  cycles of length c , .  c2.  .... c k  tha t  g o  t hroiigh vtlrtex 

1 . .  T h e n  any  waiting t i m e  (1- possible a t  1 ,  must be  a ft3asihle linear cwn11,ination of 

cl , C L .  . ... c k :  tha t  is. 

where  xl. 11. .... xk arp non-negat,ivt. integers. Th i s  is a, linear Diophant ine ecluat.ion 

with non-negat.ive int,egers c o n ~ t ~ r a i n t s .  Therefore, a polynomial tiescript.ion t.o t, he 

solution space o f  Equat ion ( 1 . 1 )  corresponds t o  a polynomial  descript.ion of all t ,he 

feasible wait ing t imes  a t  \.ert,ex I , .  



T.nfortunately. determining whet,her an  integer 11:' is in the solut,ion space of Equa- 

tion (4 .  l )  is an N P - h a r d  problem. It is shown in [Sch;36] tha t  the 1degc.r Progrnn~nlirrg 

Problem. known to  be NP-comple te  [G.J79], reduces t o  the linear Diophantine eqlla- 

tions with non-negative integer variables. There is, however. a pseudo-poly nomial 

t ime algorithm for Equation (4.1 ) tha t  runs in polynomial t ime in the input length. 
2 
-. 

and the maximum value of c l .  C L .  .... ck and 11:. In our case, w can take on exponential 

values and therefore we cannot, use the pseudo-polynomial t ime algorithm. 

In what, follows. we will show that  i f  we restrict the problem by requiring that, 

for a fixed number of values c,, . e,, . . .. , c,, . the gcd(c,, , c,, . . ... c,, ) is 1 t.hen t.here is a 

pseudo-polYndmial t ime algorithm to dek rmine  what integer values arc  in t.hc solr~t,ion 

space of Equation (1 .1 )  with respect t,o t,he input lengt,h, and the maximum valuc.s of 

only c l  . c2. .... c k  This requirement allows us to solvt- our wait,ing tinie conipr~t,at,ion 

in polynomial tinie in the rna.ximum distance valuc~s only since each of e l .  c2.  .... ck are  

c c l e  lengths. 

T h ~ o r r m  4.2.1. I f  for a fixed J .  1 5 j 5 k .  gcd(c l .  cl .  .... c,) = 1 in Equation ( 1 . 1  ) .  

then there is an algorithm that can describe the solution space of Equation I .  1 in 

polynomial t ime with respect to the max{cI .  c2 ,  .... c,).  

Proof. \ ' I 7  begin with the ca.se for two variables: that, is, j = 2., Our linc.ar Diophantinc 

equation will be: 

where ( c l .  c z )  is not necessarily 1. LVtl recall in Chapter 2, Sect ion 2.3 that  for a givcn 

initial integer solution sy. .r:, all solutions of 1 . 2  can be expressed as 



C'H.4 PTER 3. SEQI'ENTIA L '4 LC;ORITH,LfS 
--4 

If we let xy = m s ,  and  x: = m r ,  where r. s are  integers such t h a t  .sc1 + rc2 = ( e l .  c2 )  
9 

and  where m = w/(c1. c 2 ) .  then  all non-negative integer so l~ i t  ions X I .  .r2 must satisfy: 

Th is  implies t,hat an  integer solution exists  if  and  only if t ca.n t ake  on a valuc in 

t h e  interval. 

Recall t i ~ a t  {c l .  c 2 }  is t h e  least common mul t ip le  of c l .  c2. If w 2 {cI .  c2}. then b~ 

L e m m a  2..5.2, 

Since t h e  intercal is of size 2 1. a non-negative integer solution a l w a j s  exists. For 

integer 11. < {c,.  e l )  ~e can d o  a brut,e force search of all possible . r l .  .r2 values: there  

a re  only polynomial number  of possible values in e l .  c2 - not more  t h a n  clc2 possible 

values. Therefore,  we have 
-. ' 

Theorem 4.J.2. There  is a polynomial t i m e  algorithm in c l ,  ci for t h e  linear Diophan- 

t ine  equat ion (-1.2). 

See also [HW'iG, E;an$O] for a n  a l ternat ive  a lgor i thm.  Ncxt,  we consider t h e  case 

for th ree  variables. T h e  linear Diophantine equation is 

Naturally, we would like t o  apply  Theorem 1.2.2. 

Claim 4.2.2.1. Equat ion 1.:3 has a n  integer solution i f  a n d  onl>- i f  

has a n  integer solution . r l .  . r 2 ~ .  
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Proof. Let yl .  y2.  y3 be a solution to  Equation ( 4 . 3 ) .  Then y2cz + y 3 ~ : ~  = k for some 

integer k. Since ( c 2 . c 3 )  divides y2c2 and ync3, it must also divide k .  Thus k = rn(c2 ,  c , ~ )  
I 

for some integer m. and clearly x l  = y l .  x2.3 = m is a solution for Equation ( 4 . 4 ) .  

Conversely. let us suppose that 2 , .  zz3 is a solut.ion to Equation (4 .4) .  17sing the 

Extended Eucledian algorithm, we can find integers z2, 23 such that - 2 ~ 2  + 2 3 ~ ~ 3  = 

(c? .  c J ) .  Then we  can see easily that x l  = z l ,  x 2  = 22223.  x3 = Z J - 2 3  i~ a solut,ion to  

Equation ( 4 . 3 )  0 

Hence. we can determine the solution space of non-negative integers for Equa- 

tion ( 4 . 3 )  reci~rsively by determining the solutiori space of Eq~lation ( 4 . 4 ) .  Hcncc. w1 

have 

T h ~ o r c r n  4.,'..1'. There is a polynomial time algorithm in c l ,  e l .  c.3 that. solvcs linear 

Diophant,ine equation (4.3). 

Now, we can generalize to  'Theorem 4.2.1 by repeat application of Theorem 4.2.3. 

L \C'e should notice. however. that the range of feasible va.lues for in Equation ( 4 . 4 )  

may not be continuous. The reason is that x2c2  + x3cJ = t7  is guaran-teed to be 

feasible only when t, 3 { C ~ . C ~ } .  Hence, Equation (1.3) always has a non-rit.gat,ive 

integer solution when 1 ~ '  2 { c l ,  { c 2 ,  ~ 3 ) ) .  When tc < { c l .  c 2 .  C I J )  then we car1 again 

use brute force search to find all possible clcrc3 values or. alternatively. find a proper 

subset 5 of c l .  C L .  C J  in which the gcd of those values is 1 and their lcm is smaller than 

{c l .  ~ 2 .  c 3 ) .  Hence. Theorem 4.2.1 follows. 0 

.All that remains is to comp.ute the values c1 ,c2 .  .... C ,  in polqnorriial tinie. .4 

simple greedy approach is to compute the shortest cycle lengths progressively; that is. 

determine the values in the order cl < C J  5 ... 5 c,. Each tinie we find a cycle c, ,  we 

compute all gcds g1.g.2. ..., gl of all subsets of c , ,  c2. .... C ,  such that gl 5 gz < ... 5 y, 



a n d  descr ibe  t h e  so lu t ion  s p a c e  gene ra t ed .  

S ince  we only  need  t o  cons ider  a cons t an t  n u m b e r  of cycles before we o b t a i n  a se t  

of l eng ths  wi th  gcd  1. we will h a v e  even tua l ly  e i the r  descr ibed  all the. wai t ing  t i m e s  

wi th in  t h e  ver tex ' s  t i m e  window,  o r  else. d u r i n g  t raversa l  of t h e  cycles. have  reached 

t h e  u p p e r  bound  of s o m e  ver tex  z's t i m e  windokv. In t h e  fo rmer  case.  we comple t ed  

t h e  ver tex ' s  ivaiting t i m e  descript iori  in polynomial  t i m e .  111 t h e  l a t t e r  case.  ver tex  1 1 .  

~v i l l  never  b e  \.i.;itcd again  for  t  h e  pu rpose  of c o m p u t i n g  wai t ing  t imes :  t  huh. a ver tex  

is e l imina ted  in polynoniial  t i m e .  

R e m a r k  4.2.1. In prac t ica l  s i t ua t ions .  it is very d i f i c u l t  t o  d e t e r m i n e  precisel!. whether 

a n  i n p u t  i n s t ance  h a s  a g r a p h  in which we expect  t o  find a b o u n d  o n  t h e  nurnbcr  of 

cycle  length  conib ina t ions  going th rough  a ver tex  w i t h  gcd 1 .  IIowt.\.er. i f  orlr i npu t  is 

a n  und i r cc t cd  g r a p h .  o r  t h a t  t.here a r e  bidirect ional  a r c s  be tween a n y  pa i r  of ad j acen t  

vert iccs in t h e  g r a p h .  t h e n  t h e  gcd requi rement  car1 easi ly be actiie\.cd. T h e  rrasori is 

t h a t  b id i r cc t io r~a l  a r c s  a t  each  ver tex  provide provide a length  '2 cycle.  so  t h c  prohl t rn  

of f inding cycle l eng ths  wi th  gcd  1 becomes  t h a t  of f inding odd c ~ , c l c  lengths .  

Therefore .  when t h e  rict\rork h a s  bidirect iorial a r c s  be tween ad jacen t  vert ices.  

we ha\.e a pseudo-polynomial t i m e  a lgo r i thm in t h e  i n p u t  length  a n d  t t ~ c  maxiniurn  

d i s t a n c e  valuc t h a t  solves ( 'or i t inuolls-SP\iy.  

\\'c now show how t o  solve tht' p roblem for genera l  g r a p h s  u h t > r c  ~ v c  n o  1orlgt.r 

r t y u i r e  t h a t  a cons t an t  n u m b e r  of cycle lengths  have  gcd 1 .  

O u r  s t r a t e g  is t o  cons t ruc t  a cycle  C '  with  length  d f rom t h e  corripositiorl of sinlpl; 

cycles of lengths  a l  5 n2  < ... < - a k  t h rough  t h e  ve r t ex  such  t h a t  g c d ( d .  u l )  = 1 .  

\Ye c a n  t h e n  app ly  T h e o r e m  4.2.2 t o  o b t a i n  a pseudo-polynorriial t i r ~ i c  algori t t ini  for 

Con t inuous -SP \ i '  p rovided  t h a t  d is polynomial  in t h e  length  of t h e  inpu t  ins tance .  



Hence, we want 

d = n,x,.  0 5 x, < h,  where gcd(n l .d )  = 1 (4..5) 
1 = 1  6 - - 

< - 
Let us  suppose tha t  o l  has a prime decomposition pi' p;2 . . . p;' . Let x = plp2 . . . p,. 

Then g c d ( a l . d )  = 1 i f  and only i f  d g.0 (mod p,) .  1 = 1.  .... j. That is. 
. .- 

where c,  # 0. r = 1.  .. .. 1.  By the ('hincse Remainder Theorem, for each set tirig of the 

c,'s. t herc is a unique solution d (mod T ) .  Since there are 1 1 1  = I I i= l (p ,  - 1 ) s e t t  inqs of 

the c,'s such that no c, = 0. kve can enumerate all integers 0 < t i l ,  d 2 .  .1.. d,, < :: <licti 

that dl $ 0 (mod p,). i = 1 ,  ..., I I Z .  ,$ = 1.  .... j .  So all bvt.  have to show is that t t i t v  is 

a non-negative linear corribination of u l ,  a2. .... a k  which yields one of thc d l .  t i2.  ..., ti,,. 

Fortunately. we can generate all possible linear combination? of n l .  (12.  .. .. uk ~ a l u c s  

. ,  
which arc less than x in no rnorc than O ( l z ~ )  steps. 

-a 

Let us construct a digraph J = (I7. .-I)' with vertex set 1' = (0.  I ,  2. .... x - 1 ) and 

& 

arc set '-1 = {(s,  y ) : s + a ,  y (mod n)Sor.wrntl) .  ('learly. we can constrlrct .,J i n  no 

more than O ( ~ T )  steps. hloreover, we can set  that any vertex LL rtactiahlc. from vertex 

0 corresponds to a linear conlbiriatiori of a l , a 2 .  ..., nk that yields 11 .  IIence. finding ti 

for Equation (4 .6 )  reduces to finding a (O.d,)-path in . I .  for sorrie 1 5 I 5 I I L .  T h i s  

can be done using RFS traversal on J starting at vertex 0. 

Let us go through an example to illustrate how the possible waiting tir11r.s are 

computed. Suppose there are three cxcles of length 6. 10, l . i  at  vertex 11 as stiown in Q 



U 

Figure 4.:3: Computing Possible It'aiting Times 

Figure 4 .3 .  For simplicit>.. we assume that the vertices have unbounded time windows. 

The shortest cycle at vertex t~ has length 6 = 2 .  3 .  So bve want to cornpose a cycle of 

length d as a linear combination of the cycles with length 10 arid length 1.5 such that 

d $ 0 (mod 2 ) .  and it $ 0 (mod 3)  ( 4 . 7 )  

Listing all values i , 2 , : 3 . 1 .  .5 (mod 6 ) .  we see that the only values for d that satisfies 

Equation (4 .7 )  are 1 and 5 .  Sex t ,  we construct a digraph as shown in Figure 1.1. . 

& 

Figure 1 .4 :  .A Directed Graph Representation of Cycle Length C'orribinations 

Solid arcs represent addition of 10 modulo 6. while broken arcs represent addition 
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of 1.5 modulo 6. LVe can see that there are many combinations for (0.1)-paths and 

(0.5)-paths in the digraph, such as 0 + 10 + 1.5 (mod 6) .  and 0 + 10 + I.? + 10 (mod 6 ) .  

A11 the steps so far can be done in polynomial time with respect to  max{al ,  az. .... ak). 

All that  is left for us to  show is that prime decomposition of a l  can also be computed 

in polynomial time with respect to max{al ,  a;!, .... ak). 

A simple approach that takes 0 ( a l i 2 )  time to decompose integer a l  is to remove 

1 /?  all integers from the set 2 . 3 .  ..., a ,  that divides a l .  However, a better alternative 

algorithm that uses randomization is the Pollard k Rho Heuristic. It has a expected 

running time of O(all ')  [CLRSO]. 

Hence. we have an algorithm for the Continuous-SPLt' that runs in polynomial 

time with respect to  the input length and the maximum input distance. 



Chapter 5 

Parallel Cont inuous-SP W 

Algorithm 

In th is  chapter ,  we will design a parallel algorithm for Continuous-SPkf; using a tech- 

nique known as  pointer doubling. 

T h e  pointer doubling technique is used in many parallel a lgor i thms [CLRYO]; in 

particularly. t h e  parallel a lgor i thm for SPN' in [GIiSFi] uses pointer  doubling. Be- 

cause  of t h e  similarities between Cont inuous-SPW a n d  SPlir.  we will introduce t h e  

implementat ion in [GKS.i] and  follow it closely. add ing  any extensions necessary for 

Cont inuous-SPl t ' .  

An  instance G' = (I: '4. D, T . s ,  t )  of S P W  consists of a network with vertex set 

C r  = {z'~, .... I , , ) ,  arc  set '4 = { a l . a 2 .  ..., a,), dis tance set D = { d l , d 2 .  ..., d m ) ,  set 

of t i m e  windows T = { t l ,  t 2 ,  ..., t , ) .  a source .S and  sink t .  S P h '  asks for a shortest  

( s ,  t ) - p a t h  such t h a t  a vehicle visits vertices in t h e  p a t h  within thei r  t i m e  windows. ' 

This  is similar t o  Cont inuous-SPh ' ,  except t h a t  t h e  vehicle is allowed t o  wait at a 

vertex for a t i m e  window t o  open.  
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Allowing a vehicle t o  wait makes SPIV a much easier problem to  solve. In  partic- 

ular, for SPW there is a polynomial time algorithm with respect t o  the input length 

even when all distances and time windows take on exponential values. The reason is 

that the following property holds: an (a .  6)-subpath of a shortest path is the shortest r 

i 
path from a to b. If the  \;chicle arrives earlier than b's time window. i t  can simply 

wait . 

Hence. an algorithm for SPIZ' only has to look for simple paths. Furthermore, a 

shortest (s.  t )-path can alwqys be obtained by composing shortest subpaths previously 
Q 

computed (this is especially useful in the parallel case). The algorithm in [GIi95] takes 

advantage of this property by composing paths P I ,  P2 in parallel, given that P I .  P2 

has been computed. The  resulting path has length up to  twice the length of PI or fi 

so that i n  1 steps. all paths of length up to 2' are computed. 

Figure 5.1: Pointer Doubling Technique 

Because there are time constraints involved, a table T,, is used for each computed 

( u .  [>)-path describing start and arrival times of a vehicle using the pat ti. This table 

is updated during path compositions and i t  is shown that  the table size never exceeds 

O [ n ) .  Intuitively, this holds because only the shortest arrival time needs to be known 

for any given start time. 

An outline of the parallel algorithm is given below. 

It is shown in [GKSi]  that Algorithm 3- has complexity of 0 ( l o g 2  r z )  tinre using 

O ( n 9  processors in a CREW PR.411. 
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Algorithm 3: Parallel Algorithm for SPLV. 
Input: SPW instance G = (I.: '4, D ,  T ,  s ,  t )  
Output: Tables T,, for each u. 1 ,  E L' 
(1 )  In parallel step compute initial T,,, for each arc ( u .  r * )  E .-I 
( 2 )  Loop for log n rounds 

( 3 )  In parallel step for every u .  1. in I '  

0) let 5 = { L C  E Lr : ( u ,  U-). ( U ' .  1 1 )  E :1) 
( 5 ) foreach u7 E 5' 
( 6 )  compute T:, by composition from T,,,. and T,,.,. 

( 7 )  set T,, = min{r,,.. min{r;L,Iu' E 5')) 
(8  add arc ( u ,  1 1 )  to G'. 

In the case of Continuous-Spit'. the property of shortest subpath may not hold a.s 

we have seen in -Chapter 4. Figure 4.2: thus. the vehicle cannot arrive tarlier than a 

vertex's time window and wait. Therefore. computing only the shortest path during 

compositions is not sufficient: all feasible arrival times for every start time must be 

computed. This implies that a table T, ,  for each (11, L+)-path has size at least .\IL. 

where is the maximum time interval in G. 

[-'sing a 0 - 1 matrix to represent feasibility paths in T,,., we can implenient path 

composition simply as a 0 - 1 matrix multiplication: that is, we set ~ , , ( t , .  t L )  = 1 i f  

and only i f  there is a ( n .  [*)-path starting at time t l  and arriving a t  time t L .  and we . 

set composition T:;, to be T,,,, x T,,.,,. An algoritfim for C'ontinuous-SPLV can no longer 

simply look for simple paths. 

Let us analyse the complcxit,y of Algorithm 4.  Initializatiori in Step 1 can be 

done in 0( 1 ) time using 0(.l12 j processors. Composition in Step 6 is a 0 - 1 matrix 

rnultiplicat,im step which can be done in'O(1og ,I/)  time with 0 ( . \ f 3 /  log .\I) processors 

using the Four Russian's .liatris ,Ifultiplication [ChaS'I)]. Finally, path coniputation 

in Step 7 can be done in O(1ogn) time with 0 ( r 1 . 2 1 2 )  processors. 

Hence. the total complexity is O(logZ .21) time and 0(n3.1f3/ log .If) processors in a 

CRELV PR.451 - total work of processor and time product of 0(n3.2f3 log .\I).  This is 
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Algorithm 4: Parallel Algorithm for Continuous-SPIV 
Input: Continuous-SPLV instance (I' = ( L :  .4. D,  T. s. t )  

Output: tables T,, for vertices u ,  z1 E I.' 
( 1 )  In parallel step set T,, = 0, for vertices u .  r q  in \ 
( 2 )  Loop log .\I times 

( 3 )  In parallel step for every 11. L,  in L *  
( 4  ) let S = { w  E l 7  : ( u ,  w ) .  (u'. 1 ' )  E .-1) 

foreach u7 E S 
( 6  1 compute T:~ = T ,,,, x T,,, 

( 7 )  compute VILE 5 Tl!i'L 

(8) add arc ( u .  1 . )  to G. 

quite efficient compared to  the sequential algorithm in C'haptcr -I which has complexit>- 

of O(n.ZIL(n + m.11)) time for graphs that contain cycles. LVhen n, E O ( n L ) ,  this is 

O(n?Zd". 

\VP can see that for instances where the graph is acyclic. ho~vever. tht. parallcl 

algorithm takes more work by a factor of O(.Zl) over the sequential algorithm. Finding 

a ion an eficient parallel algorithm for acyclic graphs that uses this additional inform t '  

is still an open problem. However, one obvious improvement that can be done to 

.4lgorithm 4 is to reduce the size of tables T,,. to O( . l ln l , )  where L = rnax{d E D )  

An?; ( 3 .  t )-path in the acyclic Continuous-SPN is simple. so with start time t l ,  a 

vehicle cannot reach other vertices later than n L .  This implies that the complexit> of 

path composition in Step 6 can be reduced to O(log L )  time using O ( . l l n L  L L /  log L )  

processors. This is a major improvement in processor time when n L  is small 

compared to .\I (especially when L is polynomial in n .  m ) .  This only lea\.es the caw 

where O ( n L )  = .Z1 open. 
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Relaxat ion 

An alternative method of dealing with problems that are NP-hard  is to look for 

constraint relaxations in the hope of being able to construct efficient polynorriial time 

algori t h n x  that provide approximate solutions. 

In this chapter. we will look a t  the time window relaxation of Continuous-SPLV. 

'The first relaxation of ('ontinuow-SPW we examine is the C7ontrnuou,s 5'hortc.d Pnth 

Problem with Deadlines (C'SPd),  followed by the Clon,tinuous S h o r t ~ s t  Pnth Problem 

with R ~ l e n s e  Time.+ ((.'.SPr). 

Given a C'ontinuous-SPCV instance G' = ( I r ,  '4. D.  T, s ,  t ) ,  our objectjive is 

1. t,o implement a polynomial t,ime algorithm that finds an initial feasibte (s, t ) -  

path in the relaxed problem , 

2. to approximate the solution to ('ontinuous-SPLV using the solution to the re- 

laxed problem 



6.1 Continuous Shortest Path Problem with Dead- 

lines 

We define CSPd as a restricted version of (,'ontinuous-SPN where t ime windows are  

of the form [O.  b,]: tha t  is. t ime  constraint,^ which consist only of t h e  deadlines b,'s. 

Thus. a vehicle can always visit a vertex early before it,s deadline and therefore. i t  

never has t o  wait. 

To accomplish Objective 1 ,  our algorithm will look for shortest ( .s .  t )-pat,hs in 

C'SPd tha t  sat,isfies the  deadlines. It looks for shortest, pat,hs because arriving early at, 

a vertex is no worse than arriving a t  a later t ime as long as this is before it,s deadline 

Algorithm 5: Algorithm for CSPd 
Input: Cont.inuous-SPLV inst,ance G' = ( I: '4. D. T .  ..;. t ) with t inle win-  
dows [0, b,] 
Output: Shortest. distances d,7,(t) for ,*. (L E I '  and st,art t.irnfb t 
( 1 )  Set , r t , ,=O.  - e9. 
( 2 )  Set d,, = +,x and d,9,(t) = +,x for all u E 1.; t E [O.  h],. 
( 3 )  Set Q - { s ) .  

( 4 )  w h i l e Q # d  
( !5 ) 1 .  +- dequeue Q 

( 6 )  foreach arc ( t 3 ,  I L )  in .-I 

( 7 )  Let, d:, he the deadline at, IL 

( 8  dsu = rnin{d,,, d,,, + d(t*.  11.)) where d,,, + d(r l .  u )  < d:, 

( $ 1 )  if d,,,(t) < +x for some t E [O.b], 

(10 )  Set d,,(t) = d,, 
(11)  else 
( 12) Set d,,(t) = +x 

( 13) enqueue u to  Q 

Polynomial t ime solvability is achieved because shortest path extensions are corn 

puted and kept in Step 7: thus, only simple paths are constructed. 

T h e  algorithm successively computes. in breadth-first, traversal from vertex .s. all 

shortest feasible paths t o  other vertices. It maintains for each pair of s, 11 vertices. the 



latest start  time a t  vertex .s for which vertex u is reachabl~.  The entire process takes 

at most O ( n  + m )  time. 

Let us  consider an example shown in Figure 6.1. 

Figure 6.1: CSPd Algorithm 

C'omputation done in each step is shown in Table 6.1 

~ 1 , e v e l  1 1 1  Breadth Level 2 / I  Breadth Level 3 I 

Table 6.1: Output  of CSPd Algorithm 

Despite the fact that  we now have a polynomial t ime algorit.hm to find a feasible 

solution to the C'SPd problem. we would prefer to find the longest ( s .  t ) -pa th  that 

satisfies deadline times as this would yield an approxiniation t,o ('ontinuous-SPCC'. 

\ 
Vnfort,unat,ely, this problem turns out to be NP-hard .  

To see the complexity of CSPd, it is sufficient that we consider the reduction from 

the Hamilton Cycle Problem to  Continuous-SPW in Chapter 3.  Theorem 3.0.2 
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In that reduct ior.. tk3 vertices in the vertex set .V,. r = 1. .... n - 1 and the vertex n 

have essentially ~~nborlnded time windows of [O. 2"] .  while the time window of vertex h 

is ['Ln+' - 1. 'Ln+ - 11. For our CSPd. we assign vertex b's time window to [O. Zn+' - 1 I .  
See Figure 6.2. ?jot,ice vertex h's time window is [O. 631 instead of [ 6 3 , 6 3 ] .  a A 7 4, 

graph H 

graph G 

Figure 6.2:  C'SPd Reduct,ion 

Then we ask i f  there exists an (.s,t)-path in  the graph constructed this way that . 

satisfies all time window constraints (only deadlines are concerned) whose t,otal dis- 

tance is at least Zn+' - 1 .  This is equivalent to asking i f  there is such an (.$. t)-path 

whose distance is exactly Y f '  - 1. Hence, a solution to ('SPtl cwrrespontfs t o  a 

solution for the Harriilton Cycle Problem. 



6.2 Continuous Shortest Path Problem with Re- 

lease Times 

Like the CSPd problem. we can define CSPr as C'ontinuous-SPW with the restriction 

that the time windows be of the form [a,. +o]; that is, time constraints which consist, 

of only release t,imes. 

In a manner analogous to CSPd. we accomplish Object,ivr 1 by implenlenting an 

algorithm that finds the longest (.<, t )-paths in C'SPr. The reason is that arriving late 
s 

at  a vertex is no worw than arriving at an earlier time after the release time. Let 

.\I = max{a : [a .  +x] E T ) .  
i. 

Algorithm 6: Algorithm for C'SPr 
Input: Continuous-SPLV instance C; = (I.. .4. D. T .  s. t )  with time win- 
dows [a,. + x] 
Output: Longest path distances d,,,(t) for .s. u E I *  and start time t 

Set d,, = 0. Set d,, = O and d,,(t) = -x for all E I ' . t  E 

[O. MI. 
Set Q = {.9) 
while Q # o 

r 7  t dequeue Q 
foreach arc ( 1 1 ,  u )  in .-i 

let r, be release time of vertex u .  

if vertex u is in a cycle 
d,, = +x 

else 
d,, = nlax{d,,,d,, + d ( r ,  u ) )  where d,, + d(( ' .  u )  2 r,. 

if d,,,(t) > -x for some t E [O,  -111 
set d,,(t) = d,, 

else 
set d,,(t) = -x 

enqueue u to Q i 

Vnlike C'SPd problem, we need to take care of cycles in the input graph. At  each 

4 
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level of the propagation with vertices I * , ,  we keep track of the longest distance ( . u .  1 3 , ) -  

path. If  at  any point in time we determine that a vertex 1 1 ,  is in a cycle. then we can 

traverse along the cycle indefinitely: t,hris, we set longest distance d,,,, = +x, and 
t 

proceed to propagate t,his distamce. 

LVe can determine when a vertex is in a cycle by testing membership of the vertex 

along traversed paths .from the source .s. This testing can be performed in O(n . )  t,ime. 

Hence. we?an see &hat we do not have to  traverse more than O ( n )  levels t,o find a 

feasible solution yielding total time complexity of O(nn1) .  For example. consider the 

graph in Figure 6.3. C'omputation performed at each 2tep is shown in Tablr 6.2.. 

a [ I ,+oOI 

Figure 6.3: ('SPr Algorithm 

Next. we would like to approximate Continuous-SPW by finding a shortest feasible 
* 

( s ,  t )-path that satisfies all release times of visiting vertices. Again. this problem turns 

out t,o be NP-hard .  

We will use the reduction in Chapter 3, Theorem 3.0." with these changes: we 
1 

assign the time window of vertex 6 in the constructed graph C; to [.Ln+' - I ,  +x] and 

we assign the time window of vertices in the vertex set .V,, 1 = 1, . ... n - 1 and t,he 
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Breadth Level 1 Breadth Level 2 / I  Breadth Level 3 1 

Breadth Level 3 

d , t ( t )  I dst 

Table 6.2: Output  of CSPr Algorithm 

d s , ( t )  
' 10. +XI 

vertex a to  [0, +x]. See Figure 6.1 

Then we ask for a shortest path in the graph constructed this way for C'SPr whose 

distance is '2"" - 1.  Clearly. a solution to this problem corresponds to a solutiori to 

the Hamilton Cycle Problem. 

I 

dsb 
2 

d s c ( t )  
[ I .  +mi 

d s b ( t )  
10. +xi 

d,, 
1 

dsb  

+x 
d,b( t )  

(0. +-I 
dsc 
3 

d s t ( t )  
[3. +=I 

$t 

2' 



a graph H 

graph G 

Figure 6.1: C'SPr Reduction 



Chapter 7 

Applications 

In this chapter. we will show how the results and algorithms developed so far can be 

applied to SPCV-Cost, a cost optimization version of SPItT. Specifically, we byill show - 
an efficient reduction from SPIV-Cost to  Continuous-SPM'. 

-.'7.1 Literature on SPW-Cost 

.An instance G = (1: '4. D,  T ,  C ,  s, t )  of SPW-Cost is an optimization problem of SPCC' 

on G = (k'. A ,  D ,  T. s ,  t )  such that each arc ( 2 1 .  P )  in the  graph has an associated cost 

c,,.. possibly negative, in C'. The objective is to determine the least cost ( 9 ,  t )-path 

that meets the time window requirement when the vertices are visited. The vehicle is 

allowed to wait a t  a vertex until its time window opens. 

SPM'-Cost was first introduced as a subproblem of the .\lultlpk Trawling Salcsman 

Problem ulzth Tzme CZ'zndows [DSD84]. 

Although the continuity constraint is no longer in the SPIV-Cost problem, it is still 

N P - h a r d  [DDSS93]. SPIV-Cost problem includes the hlultiple Knapsack Problem +s 
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a special case. 

For the remaining part of this section, let us the notation H = ( \ ,  '4, D,  T .  C ,  s. t )  

for an instance of SPLV-Cost with nethork (/ ' ,A). source s ,  sink t .  a set of distances 

d,, E D and costs c,,, E C associated with each arc ( u .  2 7 )  E A. and a set of time 

windows [a,., b,.],. E T associated with each vertex E IT. 

There are generally two families of algorithms proposed to solve SPL!'-Cost: one 

uses dynamic programming and the other involves Lagrangian relaxation. 

For algorithms involving Langragian relaxation, SP1V-Cost for simple paths can 

be formulated as a mathemat ical  program in the following way 

Slinimize C c,,.YIJ 

subject to: 

where -Y,,. (i,;) E A is a variable for the flow on arc ( i ,  j ) ,  TI is a variable for the 

start of service at vertex i. 

The objective function (7 .1)  seeks to minimize the total travel cost. Constraints 

(7.2) - (7.3) define flow condition on the graph G'. Equation (7 .5)  defines the time 

window constraints. Compatibility requirements between flow and time variables is 

captured by (7.4). 
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Although this program has a nonlinear formulation, it has an  appealing charac- 

teristic in tha t  if the  problem is feasible, then there is an  optimal integer solution. To  

see this. we note tha t  constraint ( 7 . 4 )  indicates that  i f  .Y,, > 0, then T, + d,, < TI .  

If the  flow values are  fractional, then the optimal solution of value Z* is composed 

of paths of cost c, .  each with positive flow 0,: i.e.. Z* = 1, cpOp.  where C p  op = 1 .  

Assigning a unary flow to  the  arcs of the minimum cost path c,;,. then c,,, satisfies 

the t ime constraints and  constitutes an optimal integer solution since 

P P . 
See [ll in75] for a proposed algorithm tha t  involves the  solution of a shortest path 

problem with costs modified by the  addition of a multiplier associated with some 

supplernentary constraints. It produces a feasible solution and a lower bound on the  

value of the optimal solution. 

For dynamic programming algorithms. S P W C o s t  can be formulated as follows. 

Let F (  r * ,  t ) be the minimum cost of a (s ,  [?)-path for L' f I '  servicing vertex t 1  at t ime 

< t .  This cost F(t1. t )  can be computed by solving these recurrence equations: - 

F ( t , , t )  = min { F ( u ,  t l )  + c,,, I t1  5 t - d,,..a, 5 t1  5 b , ) ,  
( u . c ) € . 4  

for all t1 E I' and a,, 5 t  5 b ,  

T h e  optimal solution is given by 

min F ( d ,  t )  ( 7 . 8 )  
a d L t 5 b d  

T h e  first proposed dynamic programming approach appeared in [Jok66]. It solves 

the  recurrence,equations using a generalization of the FIFO rule for the  shortest path 

problem. Other rules with better running times have been investigated in [DSSS]. 
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7.2 Using Continuous-sPW 

In this section. we will show that solving SPW-Cost is no harder than solving C'ontinuous- 

SP1V. In particular, we will show that an instance of SPW-Cost can be t,ransformed 

to an optimization instance of Continuous-SPW with costs associated to  each arc. IVe 

will then show how we can adapt an algorithm for the Continuous-SPW' to sol\.e this 

optimization version of Cont inuous-SP\V. 

Let us consider an SPW-Cost instance H as described previously. 1i.e construct 

a continuous instance G = (I%. AG, T ,  DG. CG. s. t )  of the optimization version of 

Continuous-SP1V in the following steps. 

\t'e take the graph in H and subdivide each arc e,, = ( r , , , r l , )  in .AH into paths 

of length 2; that is. a new vertex z7,, is added along each arc e l ,  such that arcs 

(z',. P , , ) .  ( v I J .  t v J )  are added in AG with corresponding distances d,, - 1,  1 and costs 

c,,, 0. respectively. The  time window for t7,, is [0, max time]. In addition. a loop 

(z, , , ,  r 3 , , )  with cost 0 and distance 1 is added to tl,, (see Figure 7 .1) .  

[O,max time] [ cd]  

Figure 7.1: 1C'aiting a t  a i'ertex Simulation 

* 

This subdivision essentially allows the simulation of a wait at vertex rt , ,  for the 

Continuous-SP1V optimization version before 21,'s opening time window by looping 

through [ I , ,  
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\.Ye can easily see tha t  this construction takes at  most O ( m )  t ime. hlore irnpor- 

tantly, we can easily see tha t  the  techniques used t o  solve Continuous-SPLV can be 

applied for SPW-Cost with only minor changes. Rather than optimizing the  distance 

from vertices to  the sink t .  we optimize the  cost from vertices to  t .  For example, let 

us take Algorithm 2 in Chapter 4 and adapt it to  solve SPW-Cost .  

Algorithm 7: Algorithm for Continous-SPCC' with costs 
Input: Continuous-SPW with costs instance C; = ( 1 :  '4. D. T ,  C. .r. y ) 
Output: Least cost path c,,(t) for u E I..' and start  times t E [a. b ] ,  

( 1 )  Set c,, = 0, d,,(t) = 0 for all t E [a, b],. 

( 2 )  Set c,, = +CG, d U y ( t )  = +fx for all u E A. t E [a ,  b],. 

( 3 )  Set queue Q = {Y). 
(4) while Q # d 
(.5) 2% t dequeue Q 
( 6 )  foreach vertex u adjacent to r1  

( 7 )  foreach t in [ a ,  61, 
(8). compute c,,(t) = min{c,,(t),c,, ,  + c,,(t + d, , ) ) ,  d,., E 

n, c,, E C 
(9  d u y ( t )  = d,,, +d,,,(t +d,,,) i f  c,, +c,.,(t +d, , )  > c,, 
(10) enqueue u t o  Q 

iCP see tha t  in Step 8 the least cost ( u .  y)-path.  u E 1' determines the choice of 

the  distance from u t o  y .  - 

In fact, we can generalize the  problem to  multiple resource optimization as it is 

done in [DesSS]. Details of this generalization using Continuous-SPiV is left open for 

future research. 
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Conclusion 

In this t,hesis we have obtained a number of results for a new problem, t,he cont,in- 

uous shortest path problem with time windows. LC'e showed that this problem was 
-P 

motivated by the fact that the simpler version appeared as a subproblem of vehicle 

routing problems with time windows. Due to the economic implications in the area of 

transporta.tion systems, scheduling, and factory automation, there has been extensive 

research in the vehicle routing problems. despite its complexity. 

8.1 Summary of Results 

The main results are summarized below. 

1 .  In Chapter 3. we showed that Continuous-SPbV is NP-hard  for general graphs, 

bipartite graphs, planar graphs, grid graphs. and finally monotone grid graphs. 

2. In Chapter 1. we developed a number of sequential pseudo polynomial time 

algorithms for Continuous-SPLV when the input values are bounded. 
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3. In Chapter 5. we developed a parallel pseudo-polynomial time algorithm for 

Continuous-SPW. 

1. In Chapter 6. we showed that polynomial time algorithms for Continuous-SPW 

exists when either the upper bound or the lower bound of time windows are 

relaxed. LVe showed that any optimizat,ion of these relaxation to approximate 

the actual Continuous-SPLV is NP-hard. 

5 .  In Chapter 7. we described extensions to  algorithms for Continuous-SPCV tjo 

solve the cost opt,imization version of Continuous-SPCC'. The resulting algo- 

rithms can then clearly be used to handle the simpler cost optirniza.t,ion version 

of SPLV where the continuity requirement is dropped. 

8.2 Summary of Open Problems 

Sorne problems that  emerged during our study of Continuous-SPW were left unan 

swered. Below is a list of open problems: 

1 .  In Chapter 4 .  we constructed a pseudo-polynomial time algorithm for the bounded 

distance version of Continuous-SPW. We would like to  w e  an implementation 

and the running time analysis of the algorithm in comparison with the pseudo- 

polynomial time algorithms for the bounded time windows version. 

2. \Ve would like to see a parallel algorithm for the bounded distancc version of 

Continuous-SPW as we have done in Chapter 5 .  

3. Me would also like to see a even more efficient pseudo-polynomial time algorithm 

for the Knapsack Problem by applying of the techniques of C'hapter 4 used to 

solve the linear Diophantine equat~ons  ( 4 . 1  ) .  
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4. In Chapter  7. we showed how the algorithms for Continuous-SPW can be ex- 

t,ended to  handle the optimization problem of Continuous-SPW 6 t h  single re- 

source constraint -- t ime window constraint. We would like t.o generalize the  

extension t o  optimization problems with multiple resource constraints. 

5 .  W'e would also like t o  see other solution methods to  develop efficient approxi- 

ma.tion algorithms - for example randomized algorithms. 

6. Another variatiant t,o Continuous-SPh' that  is very much of interest and in ac- 

t.ive research is t'he Continuous Sh,orte.ut Path Problpm. with Periodic Time W-112- 

dolr Con,.straints (CSPPW') .  As the name implies, the  t ime windows in C S P P W  

are period. 
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