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Abstract

The shortest path problem with time window constraints and costs (SPW-Cost) con-
sists of finding a least cost route between a source and a sink in a network GG = (LV. A)
such that a vehicle visits each node within their specified time windows [a,.b,]. Each
arc (¢.)) € A has a positive duration d,; and an unrestrictive cost c,.

This problem has appeared as a sub-problem of many vehicle routing and schedul-
ing problems, most of which are known to be NP-hard.

In this thesis. we will study a variant of SPW-Cost called Continuous Shortest
Path Problem with Time Window Constraints (Continuous-SPW). Unlike SPW-Cost‘
where a vehicle is allowed to wait at a node for a time window to open, in Continuous-
SPW the vehicle must move continuously in the network only passing through the
nodes whose time windows are open.

We will determine the complexity of this and other versions of Continuous-SPW
for restricted classes of graphs that are of practical interest. Our goal is to construct
sequential algorithms and determine their running time complexities. We will also
provide a parallel algorithm for the general Continuous-SPW and show how these

results can be extended to handle SPW-Cost problems.
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Chapter 1

Introduction

Let us consider an Automated Vehicle Guidance(AVG) svstem in a manufacturing
plant in which there are several vehicles that service a set of stations interconnected
bv a set of lanes. A major problem in such a system is determining a conflict-free
path for a vehicle dispatched from a source station to arrive at the destination station
as early as possible without disrupting other active travel schedules [("T91].

This is an elaborate example of a problem known as Shortest Path Problem with
Time Window Constraints (SPW) . It consists of finding a shorterpat,h hetween a
swource and a sink in a network ¢ = (N, A) while respecting specified time windows
la,.b,] at each visited node. Each arc (:.)) € A has a positive duration d;,.

This problem appeared as a sub-problem of a vehicle routing problem studied in
[GK95] where they provide an efficient sequential and parallel algorithm to solve it
exactly.

When there is a cost ¢,,, possibly negative, associated with each arc (1. ;) € .1 and
the objective is to minimize the cost of the route, the problem is known as Shortest

Path Problem with Time Windows and Cost (SPW-Cost) .
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SPW-Cost first appeared as a sub-problem in the construction of school bus routes,
where the number of routes needed to complete all tasks must be found while mini-
mizing total costs [DSD84]. It also appeared as a sub-problem in the time constrained

vehicle routing problem with capacity constraints on vehicles. where a set of minimum

)

cost routes. originating and terminating at a central depot must be determined [Sors6).
Here. vehicles servicing the nodes have a capacity which-cannot be exceeded.

A common characteristic of all these practical vehicle routing and scheduling prob-
lems. including SPW-Cost. is that they are NP-hard and therefore there are no known

algorithms to solve them exactly and efficiently in polynomial time. Solution metholo-

gies currently“capable of solving problems of realistic size range from simple heuristics.

%

to optimization-based heuristics. to optimization methods [DDSS93]. Because of their

practical importance, finding efficient solutions to SPW-Cost is of paramount impor- ~

%:gkance.
In this thesis, we will study variants of SPW-Cost called Continuous Shortest
Path, Problem with Time Window Constraints (Continuous-SPW) . Unlike SPW-

C'ost where a vehicle is allowed to wait at a node until the time window opens. in

Muous-SPW the vehicle must continuously travel visiting nodes strictly within

their specified time windows. This problem has applications in the area of networking
where a continuous streqam of data transfers Between nodes is required, such as video
data. and where intermediate nodes are open only at specific time intervals.

We will be looking at the complexity of this and other versions of Continuous-
SPW under restricted classes of graphs. We will construct sequential algorithms
for Continuous-SPW under different requirements. We will then provide a parallel
algorithm for the general Continuous-SPW. Finally. we will show how these results

can be extended to handle SPW-(Cost.
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¥

Organization of this Thesis

i

Chapter~2 introduces some definitions and background materials that are needed
in later chapters. ’Chapter 3 discusses the complexity and difficulty of Continuous-
SPW under general and restrictive settings. Chapter 4 contains sequential algorithms
for Continuous-SPW under different requirements. Chapter 5 contains a parallel
algorithm for Continuous-SPW. Chapter 6 explores some relaxations of Continuous-
SPW requirements. providing insight into the difficulty of the problem. Chapter 7
describes extension of solutions to Continuous-SPW to solve SPW-Cost. Chapter 8

presents a summary of all the results and a list of related open problems.



Chapter 2

Background

In this chapter. we will introduce basic definitions and concepts used throughout
the thesis. At the end of each section, references are given where a more complete

treatment of the subject can be found.

2.1 Graph Definitions

A graph (' is an ordered pair (Vg. Eg) where Vi is a nonempty set of vertices
{vr.ve.. vn} (sometimes called nodes) and Eg is a subset of edges {v,,v,} where
v, v, are vertices in V. When there is no ambiguity as to which graph &G we refer
to, the subscripts G in Vi, E are dropped. Graphs are generally drawn with labeled
points representing the vertices and lines joining pair of points representing the edges.

A loop is an edge of the form {v,v}.

A vertex v, 1s adjacent to vertex v, whenever {v,.v,} 1s in E. If a vertex v has
d adjacent vertices. then the degree of v 1s d. Vertices which have loops are cgunted

twice in the degree.

a
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- A pathisasequenceof vertices vy. vz.....vg such that for 7 = 1. k=1, {viov b €
E. The lf(zgth of this path 1s k£~ 1. If t}% vertices vy. Uy, .... Uy appear uniquely in the
sequence, then the path is simple.

We say that ‘the distance between two vertices u. v 1s k if the shortest path from
u to v has length k.

A cycle is a ;;ath 1. 9. .... vy where v; = v4. The integer & — 1 is the length of
this cvcle. If all vertices vy. v, ... 14—, appear uniquely. then the cvcle is simple s

- A Hamuilton cyvcle is a simple cvcle containing all vertices of the graph. :\/graph
which hasAa Hamilton cvcle 1s Hamdtonian.

A graph is planar if it can be embedded (ic. drawn) on a plane such that the edges
m't’((féect only at their endpoints.

A graph (& = (V. E) 1s bipartite 1f the set of vertices V' can be partitioned into
disjoint sets Sj. Sy such that no pair of vertices in the same set are adjacent.

A graph wi.th'no cvclesis a tree. Vertices of degree | in a tree are called leafs.

A directed graph D = (1. A) is a graph where the edges are directed: that 1s, A
is a subset of arcs (v,.v;) in V' x 17 sometimes the word digraph is used instead of
directed graph.

A directed path vy.v,.....v¢ in a directed graph D = (1. A) is a path such that for
L= 1. ...:/\' -1 (vovg) € A

Q A directed cvcle 1y vy, ... v 18 a cvele such that arc (v, l‘l+v1 boi=1l.....k—=11isin
the arc set.

£ directed graph with no directed cyvcles is acyclic.

A network is a directed graph with two distinguished vertices called source and
sink.

For more details on graph theory. see [BM76].
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2.2 Graph Algorithms

One of the most fundamental techniques that forms the basis of many other graph
algorithms is graph searching or traversal. The most basic graph searching is Breadth-
First Search (BFS).

Starting at a vertex u in the graph, the order in which BFS visits the vertices
is as follows: vertex u 1s visited first. then the vertices adjacent to u that have not
been visited before are visited. then the vertices adjacent to those vertices are vi_sited.
and so forth. BFS essentially expands its frontier of visited vertices by visiting all
the vertices at distance k from u before visiting any vertices at distance & + 1 from
u. The vertices that are at distance k from vertex u are said to be at level k of the
breadth-first search.

Algorithm 1: Breadth-First Search.
Input: Graph (¢ = (V. F). vertex uwin V",
Output: Sequence of visited vertices.

(1)  Set @ «— {u}. :
(2)  while Q # o

(3) v «— dequeue Q.

(1) Visit vertex v.

(5) foreach vertex w adjacent to v

(6) if w has not been visited

(7) Q — Q+{u}.

For more details see [CLR90].

2.3 Models of Computation

In order to analvse and compare algorithms, we need to look at the underlying model
of computation used to solve the problem. Although there are many models of com-

putation. we will only look at models that are of interest to us in this thesis.
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For sequential algorithms. we will use the Random-Access Machine (RAM) model.
Here. we have a single stream of instrilctionAs operating on a single stream of data
executed sequentially. -

F(;r parallel algorithms, we will use the Parallel Random-Access Machine (PRAM)
model. Here, we have Shared-Memory Single Instruction stream. Multiple Data
stream (SIMD) Computers that have a number of identical processors. each with
its own local memory operating under a single instruction. The processors communi-
cate through a shared common memory where memory writes can be either concurrent
writes or exclusive writes (CW.EW), and memory reads can be either concurrent reads
or exclusive reads (CR.ER). In the exclusive reads (write) policy. only one processor
can read (write).to a memory location at any given time. whereas in the concurrent
read (write) policy., more than one processor can read (write) to a memory location
simultaneously.For more details and examples, see [AkI89]

The overwhelming majority of computers today adhere to these model.

2.4 Complexity Classes

P2

Many problems can be categorized into different complexity classes. Two such classes
that we are interested in are: the class P and the class NP.

Problems in P are those for which there is an algorithm that makes deterministic
steps and solves the problem in polynomial time in the input length. For example.
the problem of finding the shortest path between two vertices is in P. Given a graph
G = (V.E). lengtﬂh l(e) € Z%* for each ¢ € E. vertices a.b € V', and a positive
integer B. the problem is to determine whether there is a simple path from a to b

in GG having total length at most B. A deterministic algorithm for this problem is
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Dijkstra’s Shortest Path Algorithm (see [CLR90]).

Problems in NP are decision problems for which there is an algorithm that makes
nondeterministic steps and outputs yes in polynomial time in the input length when
the problem instance has a ves solution. For example, the problem of finding the
longest path between two Vefiices is in NP. Given a graph G = (V. FE). length
l(e) € Z* for each ¢ € E. vertices a.b € V', and a positive integer B. the problem
is to determine whether there is a simple path from a to b in (i having total length
at least B. A nondeterministic algorithm can generate a sequence of vertices non-
deterministically and then check if this sequence is a simple path of length at least
B.

We sav that a problem 7, reduces to problem 7, when there exists a transformation
that maps any instance of problem 7, to an equivalent instance of problem ;. If all
- problems in NP can be reduced to a problem = in polynomial time. then we say that
problem 7 is NP-hard. If, in addifion. problem = is in NP, then it is a NP-complete
problem. The Hamilton Cycle Problem is an example of an NP-complete problem.
Given a graph G, the problem is to determine whether there is a Hamilton Cycle in
G

Because of the nondeterministic property. it is believed that far more problems can
be solved with nondeterministic algorithms in polynomial time than with deterministic
algorithms. However. to datel it is still unknown whether there exists a problem
which is solvable by a nondeterministic algorithm in polynomial time. but not by a
deterministic algorithm in polynomial time.

Presently, all NP-hard problems can only be solved by deterministic algorithms
in exponential time. So when we show that a problem is NP-hard. we are providing

strong evidence that it is a very hard problem: one that is unlikely to be solved in
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polynomial time by any deterministic algorithm. For more details, see [GJ79]

2.5 Linear Diophantine Equation

Linear equations of the form ar + by = ¢ with integer coefficients a. b, integer value c.
and integer variables r.y are called Linear Diophantine Equations. We shall see next
how this linear equation can be solved for the variables r.y.

Given integers a. b, we define the greatest common divisor (ged) of a. b to be the
greatest integer d such that d divides a and d divides b. We use the notation (a.b) to

mean ged(a.b). and d | a to mean d divides a.

~

Observation 2.5.1. For integers a.b.d. if d | ab and (d.a) =1 then d | b.

~

Observation 2.5.2. For integers a.b,c.d. if (a,b) =d and ¢ | a. ¢| b then ¢ | d.

~

Observation 2.5..3. For integers a.b.c.if a{c. b|cand (a.b) =1 then ab|c.
Observation 2.5.4. For integers a.b.c.if ¢ | a. ¢ |bthen ¢} (a+ b)

For integers a. b. gcd(a.b) can be computed in polvnomial tinie using an algorithm
known as the Fuclidean Algorithm. Assuming that a < b, by the division algorithm

we can find integers ¢;.r; such that
a:qlb—+—r1. 0<T‘1 <b

By observation 2.5.4 we see that (a.b) = (b.r;). Thus by recursively computing
(b.ry) for k steps with b > r; > ... > rp until re_y = reqe, we have (a.b) = (b.r)) =
o= (rk—1.Tk) = r&.

Since at each step computation of (b,r) from a = ¢b + r, either b < a/2 or else .
b>a/2andr =a—-bg=a—-b<a/2 wehave (b.r) < a/2: that is. the bound on the

gcd is reduced by at least half. Hence. ged(a.b) can be determined in O(log b) steps.



CHAPTER 2. BACKGROUND | | 10

Observation 2.5.5. From the above algorithm, we can obtain integers s.t such that
at + bs = (a.b). This is computed by an algorithm known as the Ertended Euclidean

Algorithm.

Lemma 2.5.1. Equation ar + by = c has integer solutions r.y if and only if (a.b) | c.

Furthermore. if ro. yo is a solution. then all integer solutions r,y can be expressed as

I a . .
I=Jo— 0t y=Yot Tt. t integer

{a.b) (a.b) ’
Proof. If ro.yo is a solution. then (a.b) | aury. (é.b) | byo and thus by Observa-
tion 2.5.4 (a.b) | c. |
Conversely, if (a.b) | ¢. then ¢ = m(a,b) fo'r’ some integer m. From ’Observa-
tion 2.5.5. thefe are in£egers r.s such that ar + b% = (a.b): hence, r = mr. g = ms is
a solution to thé équatién ar + by = c - . :

Now. let us suppose r,y is any solution to the equation. Then
0=c—c=alr—r9)+ bly — yo) » : ' (2.1)

Since a | a(‘r - I(;i and a | 0. we have a [ by — yo). Obsefyatibn 2.5.14t0g‘ether

(2.6)" {a.b)

with (=2, 22~) = | implies that for some integer ¢:

a

(a.b)

(%]
[0
—_

' ' a
t =y — . = ——t 2.
¥ — Yo Yy =Yyo+ b (

Substituting 2.2 into Equation 2.1 we get

= alr = o)+ (a.b) ‘ (a.b) ,
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As a generalization. we define the ged of integers a).a;.....a, to be the ged of a,
and the ged of aj.....a,: that is. ged(ay.aq. ... a,) = ged(a,. ged(ay. ....a,)).
Finally, we define the least common multiple (lem) of integers a. b to be the smallest

integer m such that a | m and b | m. We use{a, b} to denote lem(a.b).
Lemma 2.5.2. For integers a. b, ab= lem(a.b)- ged(a.b).

A more complete and in-depth treatment of linear Diophantine equations with

applications in other areas can be found in [Sch36].

2.6 Theory of Congruences

For infegers a.b.m. we say that a is congruent to b modulo m (denoted by a = b

(mod m)) whenever m | (a — b).

Observation 2.6.1. For integers a.b.c, and d

l. Ifa=5b(mod m)and b =c¢ (mod m), then ¢« = ¢ (mod m)

2. Ifa="5b (mod m)and ¢ =d (mod m). then a4+ ¢ = b+ d (mod m).
3. fa=b (mod m) and ¢ = d (mod m), then ac = bd (mdd m).
1. If ac = bc (mod m) and (¢.m) = d, then a = b (mod m/d).

We can see that congruence acts like equality in many ways.

For linear congruence of the form ar = b (mod m) with integer values a. b, m and
integer variable r. a solution in r exists if and only if there are integers r. & such that
ar = b+ km. Hence. the problem of solving this equation is essentially the same as

that of solving linear Diophantine equations. Thus,
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Ob.ser%ztéon 2.6.2. The linear congruence ar = b (mod m) has a solution in r if and

only if (a.m) | b.
Theorem 2.6.1. The Chinese Remainder Theorem. The system of congruences
r =a, (mod m,). p=1.2.. k. . (2.3)
where (m,.m;) = 1 if : # ). has a unique solution for r modulo nymy, - my.

Proof. We show by induction on & that system (2.3) has a solution.
The result is obvious when & = 1. Let us consider the case & = 2. If r = «a,
(mod m,). then all solutions for r are of the form r = «; + &y for an integer &y If

in addition r = a; (mod mjy). then

a, + kim; = a; (mod my) for everv k.
or

kyrmmy = a; —a;  (mod my)

Because (m,.m;) = 1. we know from Observation 2.6.2 that this congruence, with
ky as the unknown. has a unique solution s modulo ;. Thus &) = s+ k,m;, for some

k, and
r=a; +(s+kymy)my =a,+sm;  (mod mymy)
L

satisfies both congruences.
Now. suppose that system (2.3) has a solution (mod mynm,---m,_y). Then there

is a solution s to the svstem

. r=uqa, (modm,) v = 1.2, k—1.
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But the system

r=s (modmumy - -mi_y)

r =ax (mod my)

has a solution modulo m;m, - mg_;my. just as in the case & = 2. since we have
1

ged(mymy - -mye_y.mg) = 1.

Moreover the solution is unique. If r and s are both solutions of the system. then

s =a, (modm,) = 1.2, ... k.

\s
i

som, | (r—us). ¢=1.2.....k. Because the moduli are pairwise relatively prime. by

observation 2.5.3 we have mymy---my | (r —s). But

=My My < 17— < mymp-- Mg

O

whence r — s = 0.

An efficient algorithm to solve system (2.3) can be found in [AHUT1]. For further

details. see [AHUT{, CLR90, Dud73].
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Chapter 3

Complexity of Continuous-SPW

In this chapter. we will show that an eflicient algorithm to solve Continuous-SPW
is unlikely to exist. We will show that Continuous-SPW is NP-hard by providing
a polynom'fal time reduction algorithm from a known NP-complete problem to the
Continuous-SPW. We will show that Continuous-SPW remains NP-hard even when
it. is restricted to simple classes of graphs such as bipartite graphs. planar graphs. grd
graphs and monotone grid graphs. The incentives for studying these classes of graphs
come from these applications: in modeling Continuous-SPW for packet routing over
a network. many of the network connections topology. such as the star topologv. the
n-dimensional cube topology. a.nd the tree topology can be represented as bipartite
graphs: in modeling pick-up service for trucks in a city. the roads can be represented
as grid graphs; and in modeling delivery of components over coveyor belt system in a
factory. the system of belts can be represented as monotone grid graphs.

For the remaining part of this thesis, let us use the notation (G = (V. A. D.T.a.b)
for an instance of the Continuous-SPW. with a network consisting of a vertex set

Vi={ri g ovn).anarcset A = {ey e eq ). vertices a. bin V' for which we want

14
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to compute the shortest path between them. and a set of distances D = {d,.d;.....d}
associated with the arcs in A, and a set of time windows T' = {[a;. bi};. [az. b2]se ..o [@n. ba]0 }
associated with the vertices in V" (the a;’s are the release times. and the b,’s are the

deadlines).

Theorem 3.0.2. Continuous-SPW is NP-hard. |

Proof. Our reduction is from the Hamilton Cycle Problem. We recall that the Hamil-
ton Cvcle Problem is an NP-complete problem that asks if there exists a Hamﬁlronk
('vcle in a given graph.

Let H = (N.FE) be a graph instance of the Hamilton Cycle Problem with vertex
set vV = {vg.....v,_1} and edge set £ = {eg.....m_1}. Let a be any vertex in H.
‘We construct an instance G = (V, A, D, T.a.b) of the Continuous-SPW as follows.
The vertex set V" consists of the vertex a. a new vertex v, = b, and n — | copies

N Vo oV, of the vastex set V. The arc set A consists of arcs (a.v).r € V-

=

such that {a.v} is in E. of arcs (u.v,).u € N,_y such that {u.a} is in E. and of
arcs (r.y).r € Vioy € N.ie=1.....n —2such that {r.y} 1sin £. We assign the
distance of each arc (r.y) € A to 2Y. We assign the time window of each vertex

v € N.i=1....,n—1.and of vertex a. to [0.2"]. while we assign the time window of

<

vertex v, to [2"! — [,2"*! — 1]. For an example. see Figure 3.1.

a

We can easilv see that the above construction takes O(nm + n*) time since there
are (n — 1)n + 2 vertices in V" and at most (n — 2)m + 2n arcs in A.

The purpose of this construction is to correspond a Hamilton Cycle in f{ to a
feasible (a.b)-path of length n in (& such that all vertices of .V appear uniquely.

Let us suppose H has a Hamilton Cycle (" = v, .....v, . v,,. and vertex a 1s some

vy, in C". Then we claim that the path a.v, , .v,,.....00 . b is a feasible (a.b)-

path in G. To see this, we notice that each vertex v, € V,.: = 0.....n - 1.) =



CHAPTER 3. CQMPLEXITY OF CONTINUOUS-SPW 16
~—"

~ Figure 3.1: Construction of a Continuous-SPW Instance from a Hamilton Cycle Prob-

lem Instance
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I....n — 1 has essentially an unbounded time window: thus, all the (a.,,)-subpaths.
k=) +1....n.J — 1. are feasible paths in (&. Since each vertex v, appears uniquely
in the cvcle €, and the distance of arcs into v, is 2', the total distance along the
(a.b)-path must be 20 4214+ ... 4 27 or 2"*! — |, which is within b’s time window.
Hence. it is a feasible path in (.

Conversely. let us suppose (¢ has a feasible (a.b)-path P = a.v,,.....v,, . b with
distances dy.d;. ....d,.2". where d, = 27.1 <: < n for some j. along the arcs. respec-
tivelv. Because P is a feasible (a. b)-path, we must have d, +d,+- - +d,+2" = 2" - L.
However. this equation is feasible if and only if each 2'.1 <1 < n appears uniquely
in the sum. To see this. c®gsider the binary representation

n \
e ’ A )
LI, =277 — ]
Each 2.1 < < n must appealat least once. and since there are only n variables in
the summation. each 2'.1 < : < n must appear exactly once.

Therefore, each vertex in the path P appears uniquely and the cvclea.v,,.....v, _ . a

is a Hamilton C'vcle in H. a

Collorary 3.0.2.1. Co.ntinuou&SP\\' problem remains NP-hard when restricted to bi-

partite graphs.

~
~.

Proof. The graph constructed in the reduction preserves the bipartiteness property.
To see this. suppose that the vertex set .V has a bipartition X,}. Then we can
bipartition the vertex set V' by bipartition the vertex sets .Ny..V;......V,_ the same
as NV and add the vertices a.b to the partition where a is in the X.} bipartition
of V. Since Hamilton Cvcle Problem is NP-complete even when the graph H is

bipartite [GJ79]. the result follows. O
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Next. let us consider Continuous-SPW for the class of planar graphs.

Theorem 3.0.3. Continuous-SPW problem remains NP-hard when its input is re-

stricted to planar graphs.

Proof We are going to use the graph G constructed in the reduction for the gen-
eral graph case in Theorem 3.0.2 and transform it to a planar graph instance F of
Continuous-SPW.

We make the graph (7 planar in the previous reduction by adding a new vertex at
every pair of crossing arcs in the graph; that is. if there are arcs (r,.y,).0 = 1. k
that intersect with arc (u.v).u € Npov € Ny, then we add vertex r,,; to each
( Crdssillg with time window [0.27]. Each arc (r,y, 0. Lvy, 1) 1= 1o k=1 between

—2n?

the new vertices has distance 2 L while arcs (U oy 1) (Toyer.v) have distances

T . N2 . . ) . a .
20 =27k (k= D272 E and-27vL | respectively (see Figure 3.2).

X3

'~

y3

yl

Figure 3.2: Constructing a Planar Instance of Continuous-SPW

Since each arc has at most n? crossings, we can see that the above transformation
takes polynomial time.
The main point in the assignment of the distances to the arcs in this scheme is to

force the existence of a feasible (a,b)-path P in the planar construction if and only
”»
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if the path P with the new vertices deleted is a feasible path in the general instance
graph (. By assigning very small distances between-the new vertices in the crossing.
we essentially introduce fractional values that are canceled only when they are added
together to the total distance of paths in F that correspond to paths in (. We show
next that the planar instance F has a feasible (#b)-path if and only if the instance
H is Hamiltonian. "

If H has @ Hamilton Cycle. then we can easily see that there is a corresponding
(a.b)-path in F since for an arc (u.v) in (& such as the one shown in Figure 3.2, the
corresponding (u.v)-path in F’ has the same distance value.

Now suppose that the planar instance F has a feasible (a,b)-path. Each arc along
the path has a distance of 2* —27*L — (k — 1)“2‘2”%.‘2"[. or. Q'WL. for some integers
i.k. L. Because vertex b has an integer time window [2"*' — [.2"*! — 1]  the total
distance of the (a.b)-path must be 2**!' —1. This implies that for each arc in the (a. b)-
path with distance 27*f for some 7, L. there must be a corresponding arc in the path
with distance 2 — 27t — (k — 1)272"°L and corresponding (k — 1) arcs with distances

52 .. . o2 .
2-2°L for some k. The reason is that each distance 27*L. and 272" are unique: the

—Tn-n

. o2, o2, . 52
smallest value 2 is greater than n2-272"""! ‘and 272" is greater than n2.27 2% (+1)

If we look at their binary representations. the terms 27 i = 1....n. L = l.....n-are
distinct in the first n2-bits of the fractional part. while the terms 272""L are distinct
between 2n?-bits and 2n>-bits of the fractional part.

Hence. the underlving (a.b)-path without the crossing vertices corresponds to an

(a,b)-path in GG. which corresponds to a Hamilton Cycle in H.

O

Theorem 3.0.4. Continuous-SPW problem remains NP-hard when restricted to grid

graphs.
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Proof. From Theorem 3.0.3. it suffices to modify a planar Continuous-SPW instance
to a planar Continuous-SPW instance in which each vertex has both outdegree and
indegree of at most 2. For each vertex u that has arcs a,.a,..... a; into u with distances
dy.d;.....d, and arcs a,4.@,42.....a,4, out of u with distances d,4.di42.....d 4. Te-

spectively. we replace the vertex with a double comb like subgraph consisting of i + o

new vertices yl.y2.....y,4+, as shown in Figure 3.3.

a d . a 82 - o
! 1 a, . -n
\ y i+1 l l%u-z)z d, "
32 u a O —>@— > *°. ——*2 o ae -
,\\) ./' i+2 T . o
. .,n 2 d-27"
: \ : 2 . i+1 V
di+o 31

. a.
. +0 .
a; d1 al+0'l 1+0

Figure 3.3: Constructing a Grid Graph Instance of Continuous-SPW

The vertices y,.yz2..... Y140 in the comb subgraph has time window [0.27]. the
same as all other internal vertices of the planar graph F. The arcs (y,.y,4:).) =
l.....i+ 0 — 1, has distance 27", while the arcs ax.k = 1.....: has distance dy ~ (1 —
k)27™, and the remaining arcs a;.l = ¢+ 1.....¢ + o has distance d; — ({ — )27".

We can see thatethis transformation into a grid graph can be accomplished in

polynomial time. Using Theorem 3.0.3. we see that a feasible (a.b)-path exists if and

only if the instance H is Hamiltonian. d

Next, we show that even with further restriction that all arcs in the grid graph
can be oriented only in two possible directions (eg. right and down). that is. the grid

graph is monotone, the problem remains NP-hard.

Theorem 3.0.5. Continuous-SPW problem remains NP-hard even when the grid graphs

1s monotone.
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Proof. We will use the Partition Problem for our reduction. In this problem. we are
given a finite set A and a size s(a) € Z* for each a € A. The problem is to find a
subset A" C A such that 5~ . s(a) =", .4 4 s(a) and [A'] = [A}/2.

Let ‘us consider such an instance of the Partition Problem with set A = {a;.a;.....a,}.
We construct a monotone grid graph for the Continuous-SPW instance in a diamond
structure such as the one shown in Figure 3.4 where M = 2098(2acast3D1+1 and the

time windows of all vertices but vertex b are unbounded.

AN N /\s%/\ ——
N A WA I AT B

Figure 3.4: Reducing Partition Problem Instance to Monotone Grid Graph Instance

of Continuous-SPW

Her&again. we use an appropriate assignment of distances to arcs so that a feasible
(a.b)-path exists if and only if there i1s a solution to the Partition Problem. Since M
15 larger than the sum of all the item sizes. a feasible (a.b)-path must contain exactly
n arcs with distance M: that is. the path must contain exactly n of the bottom arcs
in the diamond structure. and exactly n of the top arcs that sum to () ., s(a))/2.

Hence. there is a (a.b)-path to the Continuous-SPW instance if and only if there

is a solution to the Partition Problem instance. : O

These results strongly suggest that we are unlikely to find a polynomial time

algorithm for the problem.



Chapter .4

Sequential Algorithms

Although we have shown in Chapter 3 that Continuous-SPW is NP-hard even for
quite restrictive graphs. in many practical situations. it i1s often the case that the
distances along the arcs or the intervals of the time windows at the vertices are small.
bounded by a polynomial in the size of the input instance. For example. consider our
prévious model of pick-up service for trucks in a city with roads represented as grid
graphs. In that model. we can see that the distances of roads between intersections
can easily be bounded by a constant.

In cases such as those shown above, we want to determine if there exist algorithms
that solve the problems in polvnomial time when the maximum of the input values are
- bounded. Algorithms that exhibit this type of behavior are called pseudo-polynomial
time algorithms.

In this chapter, we will show by construction that a pseudo-polynomial time algo-
rithm for Continuous-SPW exists.

| We will construct a set of algorithms that runs in polynomial time with respect to

the input length when the maximum time window interval is bounded. We will then
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construct an algorithm that runs in polynomial time with respect to the input length

when the maximum distance is bounded.

4.1 Algorithms for Bounded Time Window Inter-

vals of Continuous-SPW

Let us consider a Continuous-SPW instance &G = (V. A.D.T.r.y) in which the un-
derlying graph is acyclic. Suppose we want to determine for all possible start times,
and for all vertices r in V. a shortest feasible (z.y)-path. Let M = maxyser{b—a}.

An algorithm for this problem proceeds as follows. Start at vertex y and work
_backwards in a breadth-first traversal. For each traversal along an arc (r.v). compute
the earliest arrival time to y from u, for each start time ¢ in the time window [a.b],

of vertex r. A sketch of the algorithm is shown in Figure 2.

Algorithm 2: Backward BFS Traversal.

Input: Continuous-SPW instance G = (V. A, D, T.z.y)

Output: Shortest path distance d,,(t) for u € | and start times
t € la.b],
(1) - Set dy,(t) =42 for all u € Vit € [a.b],.

2)  Set d,,(t) =0 for all t € [a.b],.

3)  Set queue Q = {y}.

1)  while Q # {}

5) v «— dequeue @

6) foreach vertex u adjacent to v

7) foreach t in [a.b], ,

) computed,,(t) = min{d,, (). dy.+d,,(t+dy.)}. doy € D
) enqueue u to )

(
(
(
(
(
(
(
(

NelNe ¥

We can easily see that the complexity of this approach is O(n + mM); each arc is
traversed once in Step 6. and Step 7 takes O(M) time for each iteration in the loop.

Let us go through the example shown in Figure 4.1. The output produced at each
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'y 4]
Figu»re 4.1: An Instance of Continuous-SPW for the Sequential Algorithm

step is showr in Table 1.1

Breadth Level 1 Breadth Level 2 Breadth Level 3
o, () [ (1) [ o ()] &, (1) [d2,(1) doy(t)
Ly 212 ) 20410 4> (0] 210 2
21313 §) 315 |1 ) 1] 3 l 3
34 2 6 20 4 2 {
1.5 I 314 (315 |3 5

Table 4.1: Output of Continuous-SPW Algorithm

In the first backward BFS iteration starting at vertex y. the shortest (b.y)-path
and the shortest (a.y)-path is computed and remembered. for all the feasible start
times at vertices b and a. In the second iteration. we find an (r.y)-path that uses
vertex a. an (r.y)-path that uses vertex b. and a shorter (b, y)-path that uses vertex

a. In the last iteration we find another (r.y)-path that uses both vertices b and a.

Remark 4.1.1. We note that it is necessary in the algorithm to use backward BFS
because a shortest {u.w)-path passing through vertex v"does not necessarily consist
of the shortest (u.v)-path. Consider for example, the graph in Figure 1.2, Using BFS

from vertex r starting at time 0 we would reach vertex ¢ at time 2 by going through
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4114

Figure 4.2: An Instance of Continuous-SPW for BFS Sequential Algorithm

vertex a. However. this does not yield a feasible (r.y)-path.

Remark {.1.2. We can perform Algorithm 2 n times for each vertex b in the graph to

obtain the all pairs shortest feasible {a.b)-paths.

Remark 4.1.3. We can perform the all pairs source and sink algorithm version M
times for each arrival time in thesink’s time window to find shortest feasible paths
A

for all combinations of source.sink.start time, and arrival time in O((n + mM)nM).
Remark {.1.4. We can easily extend the procedure to handle instances in which the
underlying graph contains cycles by computing the transitive closure. This yields an
algorithm with running time complexity of O((n + m.M)M).

Table 4.2 is a summary of the time complexity for the different CContinuous-SPW

sequential algprithms.



CHAPTER 4. SEQUENTIAL ALGORITHMS . 26

Continuous-SPW Algorithms (C'omplexity
n source. one sink. all start times, shortest arrival time | O(n + m M)
n source, n sink. all start times, shortest arrival time n(n + mM))

Of
‘n source. one sink. all start times. all arrival times O(M(n+mM))
OnM(n +mM))

n source. n sink. all start times. all arrival times

Table 1.2: Complexity of Continuous-SPW Algorithms

4.2 Algorithms for Bounded Distances of Conti-

nuous-SPW

[n the previous section. we constructed algorithms that run in polynomial time with
respect to the input length and the maximum time window interval. Even though
we expect to find these values bounded by a polynomial in the input length in many
practical situations. we would still like to investigate how the problem hehaves when
the distances are bounded. but the time window intervals are of exponential size in
the length of the input. In particular., we are interested in constructing a pseudo-

-

polynomial time algorithm with respect to the imnput l.ength and the maximum dis-
tance. T v

Let us la‘gjsume'.)w'it,hout loss of generality, that all distances are umt 1 (we can
always subdivide an arc in the input graph to paths composed of unit distance arcs
whose total path-length is equal to the initial arc distance).

Given an input instance G = (V. A. T.s.t, ty) with vertex set V', arc set A, set of
time window intervals T'. source s. sink ¢, and initial time ¢, at s, we want to find an

L3

(s.t)-path starting at time ¢.

[f the underlving graph in the problem is acyclic. then clearly the problem reduces

to finding a feasible (s.t)— path. which can be accomplished using a BEF'S algorithm
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on the graph in (4.

So let us suppose that the underlying graph contains cvcles. Then we can simulate
a waiting time w at a vertex u by traversing along the cvecles through w of lengthe.
[f we can pre-compute and dPscribP in polynomial time all the waiting times possible
at each vertex. then we can use a BFS algorithm on (& to solve Continuous-SPW.
Specifically. if we have computed all the arrival times of a (s.a)-path in C'; and (a:h)
is an arc in (7. then we can compute and describe all the arrival times of ()s. h)-paths
using arc (a.b) as follows: the arrival times of (s.b)-paths is the arrival times of (s, a)-
paths plus 1 that are feasible. together with all the waiting times possible at vertex
h.

Hence. our problem is reduced to that of finding a polynomial time description of

possible waiting times at each vertex.

Computing Possible Waiting Times

Suppose we want to compute all possible waiting times feasible at g vertex r. If
vertex . is not in any cycle of the graph. trivially no waiting is possible at r. So let
us suppose that there are simple cycles of length ¢;.¢,.....¢x that go through vertex
. Then anv waiting time w possible at r must be a feasible linear combination of

C1.Cye....Cx: that 1s,
W = rycy + 0oy 4+ ek (+1)

where r,.r,.....r; are non-negative integers. This 1s a linear Diophantine equation
with non-negative integers constraints. Therefore. a polvnomial description to the
solution space of Equation (1.1) corresponds to a polyvnomial description of all the

feasible waiting times at vertex r.
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Unfortunately. determining whether an integer w’ is in the solution space of Equa-
tion (4.1) is an NP-hard problem. It is shown in [Sch36] that the Integer Programming
Problem. known to be NP-complete [GJ79], reduces to the linear Diophantine equa-
tions with non-negative integer variables. There is. however. a pseudo-polynomial

time algorithm for Equation (4.1) that runs in polynomial time in the input length.

-
-

and the maximum value of ¢.c;.....cr and w. In our case, w can take on exponential
values and therefore we cannot use the pseudo-polynomial time algorithm.

In what follows. we will show that if we restrict the problem by requiring that
for a fixed number of values ¢, .¢,,.....c, . the ged(e, . ey ooicp)) 15 1 then there is a
pseudo-polynomial time algorithm to determine what integer values are in the solution
space of Equation (4.1) with respect to the input length, and the maximum values of
only ¢;.c;.....ck. This requirement allows us to solve our waiting time computation
in polynomial time in the maximum distance values only since each of ¢;.c,. ... ¢, are
cyvcle lengths.

Theorem 4.2.1. If for a fixed ;.1 < j < k.ged(ep.cp.ii¢;) = 1 in Equation (\L1).
then there is an algorithin that can describe the solution space of Equation 4.1 in

polynomial time with respect to the max{c;.c,.....c,}.

Proof. We begin with the case for two variables: that is, j = 2, Our linear Diophantine

equation will be:
I ‘+‘ TC, = W (;.Z)

where (¢1.¢;) is not necessarily 1. We recall in Chapter 2, Section 2.5 that for a given

initial integer solution r9. 19, all solutions of 1.2 can be expressed as

0 € 0 ‘1 »
ry =ur; — ——L. Iy =ur,+ ——t, t integer
(cr.c2) (c1.cq)



CHAPTER 4. SEQUENTIAL ALGORITHMS 29

If we let 29 = ms. and 1§ = mr. where r.s are integers such that sc; + rep = (1. ¢2)
&
and where m = w/(c;.c;). then all non-negative integer solutions ry..r; must satisfy:

C) cy _
t >0, Igzmr+—‘t20

Iy =ms— >
(c1.c2)

(cr.c2)
This implies that an integer solution exists if and only if t can take on a value in
the interval.

~mr(Cl-C‘.z)- Tj(ﬁ-@)]

Cy C

[

Recall tuat {c,.c;} is the least common multiple of ¢;.c,. If w > {c|.c;}. then by
Lemma 2.5.2.

m.s‘. mr
(cr.c2) + —(cr.c2) 2 ser+rey 2 1
C) Cy

Since the interval is of size > 1. a non-negative integer solution always exists. For
integer w < {c;.c,} we can do a brute force search of all possible ri..r, values: there
are only polvnomial number of possible values in ¢;.c; — not more than c,c, possible

values. Therefore, we have

tine equation (-1.2).
See also [HW 76, Kan30] for an alternative algorithm. Next. we consider the case

for three variables. The linear Diophantine equation is

IiCy + Iy + Iycy = w (4.3)
Naturally, we would like to apply Theorem 1.2.2.
Claim 4.2.2.1. Equation 4.3 has an integer solution if and only if
4 raa(crc3) = w (+.1)

has an integer solution ry.r,3.
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Proof. Let y,.y.2.y3 be a solution to Equation (4.3). Then y,c, + y3c3 = k for some
integer k. Since (c;.¢3) divides y,c; and yjcs, it must also divide & Thus & = m({c,. c3)
for some integer m. and clearly .1‘1’ =y, Iy;3y=misa solution for Equation (4.1).
Conversely. let us suppose that z,, 23 is a solution to Equation (4.4). Using the
Extended Eucledian algorithm, we can find integers z,.z3 such that z;¢; + 2305 =

(c2.c3). Then we can see easily that r| = 2. Iy = 2,293, I3 = 323 1s a solution to

Equation (4.3) OJ

Hence. we can determine the solution space of non-negative integers for Equa-
tion (4.3) recursively by determining the solution space of Equation (4.4). Hence. we
have
Theorem 4.2.7. There is a polynomial time algorithm in ¢j.c,. ¢y that solves linear
Diophantine equation (1.3).

Now. we can generalize to Theorem 1.2.1 by repeat application of Theorem 4.2.3.
We should notice. however. that the range of feasible values for r,3 in Equation (4.1)
may not be continuous. The reason is that r;c, + r3c; = v is guaranteed to be
feasible only when v > {c;.c3}. Hence, Equation (4.3) always has a non-negative
integer solution when w > {cl.{cy,c3}}. When w < {¢;.c;.c3} then we can again
use brute force search to find all possible ¢;cycy values or. alternatively. find a proper
subset S of ¢1.¢;.¢3 in which the ged of those values is 1 and their lem is smaller than

{c).cy.c3}. Hence, Theorem 4.2.1 follows. d

All that remains is to compute the values ¢;,¢,.....c, in polynomial time. A
simple greedy approach is to compute the shortest cycle lengths progressively: that is.
determine the values in the order ¢; < ¢; < ... <¢,. Each time we find a cycle ¢,, we

compute all gcds gy, g,. .... g of all subsets of ¢, c;.....¢c, such that gy < g, < ... < ¢
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and describe the solution space generated.

" Since we only need to consider a constant number of cyvcles before we obtain a set
of lengths with ged 1. we will have eventually either described all the waiting times
within the vertex's time window. or else. during traversal of the cycles. have reached
the upper bound of some vertex ='s time window. In the former case. we completed
‘the vertex's waiting time description in polynomial time. In the latter case. vertex w
will never be visited again for the purpose of computing waiting times: thus. a vertex

is eliminated in polvnomial time.

Remark 4.2.1. In practical situations. it is very difficult to determine precisely whether
an input instance has a graph in which we expect to find a bound on the number of
cvcle length combinations going through a vertex with ged 1. However. if our input 15
an undirected graph, or that there are bidirectional arcs between any pair of adjacent
vertices in the graph. then the ged requirement can easily be achieved. The reason is
that bidirectional arcs at each vertex provide provide a length 2 cvcle. so the problem
of finding cvcle lengths with ged 1 becomes that of finding odd cycle lengths.
Therefore. when the network has bidirectional arcs between adjacent vertices,
we have a pseudo-polynomial time algorithm in the input length and the maximum

distance value that solves Continuous-SPW.

We now show how to solve the problem for general graphs where we no longer
require that a constant number of cvcle lengths have ged 1.

Our strategy is to construct a cvcle (" with length d from the composition of simplé
cycles of lengths @), < a; < ... < a; through the vertex such that ged(d.a,) = 1.
We can then apply Theorem 4.2.2 to obtain a pseudo-polynomial time algorithm for

Continuous-SPW provided that d is polvnomial in the length of the input instance.

Y
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Hence, we want

d = Z(I,J‘,. 0<ur, <b where gcd(a,.d)=1 (4.5)

1=1 3_‘:

Let us supposélfhat a, has a prime decomposition p{' p3 - - - p;’. Let m = pip2a---p,.

Then ged(a,.d) = 1 if and only if d #0 (mod p,).: = 1.....j. That is,

dlfl Yayr;+ - -arre = ¢ (mod py) (4.6)

a)r, +ayry, +--apry = ¢y (mod py)

ayry +ayry+--aprg = ¢, (mod p))

where ¢, # 0.i = 1.....j. By the Chinese Remainder Theorem, for each setting of the
¢,’s. there is a unique solution d (mod 7). Since there are m = [I/_,(p, — 1) settings of
the ¢,’s such that no ¢, = 0. we can enumerate all integers 0 < d,.d,.."..d,, < 7 such
that d, # 0 (mod py). i =1,....m.s = l] So all we have to show is that there is
a non-negative linear combination of a,, aj. ..., ax which yields one of the d,.d,. ... d.

Fortunately, we can generate all possible linear combinations of a,.a,..... ux values
which are less than 7 in no more than O(kn) steps.

- -

Let us construct a digraph J = (V" :1): with vertex set V' = {0.1,2.....7 — 1} and

arcset A= {(r.y):r+a, =y (mod 7)forsome:}. Clearly. we Can construct~J in no
more than O(k7) steps. Moreover, we can see that any vertex u reachable from vertex
0 corresponds to a linear combination of a;.,a,.....a; that yields u. Hence. finding d
for Equation (4.6) reduces to finding a (0.d;)-path in J. for some 1 < < m. This
can be done using BFS traversal on J starting at vertex 0.

Let us go through an example to illustrate how the possible waiting times are

computed. Suppose there are three cvcles of length 6,10, 15 at vertex u as shown in
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u

Figure 1.3: Computing Possible Waiting Times

Figure 4.3. For simplicity. we assume that the vertices have unbounded time windows.
The shortest cvcle at vertex u has length 6 = 2-3. So we want to compose a cycle of
length d as a linear combination of the cycles with length 10 and length 15 such that

d#0 (mod?2), and d#0 (mod 3) (4.7)

Listing all values 1.2,3.4,5 (mod 6), we see that the only values for d that satisfies

Equation (4.7) are 1 and 5. Next, we construct a digraph as shown in Figure 1.4. .

2 4

Figure 4.4: A Directed Graph Representation of C'ycle Length Combinations

Solid arcs represent addition of 10 modulo 6. while broken arcs represent addition
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of 15 modulo 6. We can see that there are many combinations for (0.1)-paths and
(0.5)-paths in the digraph, such as 0+10+ 15 (mod 6).and 04+ 10415410 (mod 6).

All the steps so far can be done in polynomial time with respect to max{ai, a,..... ax}.
All that is left for us to show is that prime decomposition of a, can also be computed
in polynomial time with respect to max{a, az. ....ax}.

A simple approach that takes O(aiﬁ) time to decompose integer a; 1s to remove
all integers from the set 2.3, ...,ai/z that divides a;. However. a better alternative
algorithm that uses randomization is the Pollard’s Rho Heuristic. It has a expected
running time of O(a}’*) [CLR90).

Hence. we have an algorithm for the Continuous-SPW that runs in polynomial

time with respect to the input length and the maximum input distance.



‘ﬁ"s;

Chapter 5

Parallel Continuous-SPW
Algorithm

In this chapter, we will design a parallel algorithm for Continuous-SPW using a tech-
nique known as pointer doubling.

The pointer doubling technique is used in many parallel algorithms [CLR90]; in
particularly, the parallel algorithm for SPW in [GK95] uses pointer doubling. Be-
cause of the similarities between (Continuous-SPW and SPW. we will introduce the
implementation in [GK95] and follow it closely. adding any extensions necessary for
(Continuous-SPW.

An instance G = (V. A. D, T,s,t) of SPW consists of a network with vertex set
Vo= {v,....tn}. arc set A = {a).a;.....a,}. distance set D = {d,.d,.....d,}, set
of time windows T = {t;,t3,....t.}. a source s and sink t. SPW asks for a shortest
(s.t)—path such that a vehicle visits vertices in the path within their time windows.
This 1s similar to Continuous-SPW, except that the vehicle is allowed to wait at a

vertex for a time window to open.
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Allowing a vehicle to wait makes SPW a much easier problem to solve. In partic-
ular. for SPW there is a polynomial time algorithm with respect to the input length

even when all distances and time windows take on exponential values. The reason is

that the following property holds: an (a.b)-subpath of a shortest path is the shortest -
/

path from a to b. If the vehicle arrives earlier than b's time window. it can simply
wait.

Hence. an algorithm for SPW on.ly has to look for simple paths. Furthermore, a
shortest (s.t)-path can alwgys be obtained by composing shortest subpaths préviousl_v
computed (this is especially useful in the parallel case). The algorithm in [GK95] takes
advantage of this property by composing paths P, P; in parallel, given that P P,
has been computed. The resulting path has length up to twice the length of P, or P,

so that in i steps. all paths of length up to 2' are computed. -

[a.b] [a.b]W [a.b] {a.b] [a.b]
. u v u v
u wow v u v

Figure 5.1: Pointer Doubling Technique

Because there are time constraints involved. a table 7., is used for each computed
(u,v)-path describing start and arrival times of a vehicle using the path. This table
is updated during path compositions and it is shown that the table size never exceeds
O(n). Intuitively, this holds because only the shortest arrival time needs to be known
for any given start time.

An outline of the parallel algorithm is given below.

It is shown in [GK95] that Algorithm 3-has co‘mplexity of O(log® n) time using

O(n*) processors in a CREW PRAM.
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Algorithm 3: Parallel Algorithm for SPW.
Input: SPW instance G = (V. A, D.T.s.t)
Output: Tables r,, for each u.v € V

(1)  In parallel step compute initial 7, for each arc (u.v) € A
(2)  Loop for logn rounds

(3) In parallel step for every u.v in V’

(4) let S ={welV:(uw)(w.r)e A}

(5) foreach w € S

(6) compute 7 by composition from 7, and 7.

(7) set 7,, = min{7,,. min{r% i € S}}

(8) add arc (u.r) to (.

In the case of Continuous-SPW, the property of shortest subpath may not hold as
we have seen in Chapter 4. Figure 4.2: thus. the vehicle cannot arrive earlier than a
vertex's time window and wait. Therefore, con{puting only the shortest path during
compositions is not sufficient: all feasible arrival times for every start time must be
computed. This implies that a table r,, for each (w.v)-path has size at least M*.
where M is the maximum time interval in (.

Using a 0 — 1 matrix to represent feasibility paths in 7,,.. we can implement path
composition simply as a 0 — 1 matrix multiplication: that is, we set 7,.(t,.t;) = L f
and only if there is a (u.v)-path starting at time ¢, and arriving at time ¢t,, and we
set composition 7% to be 7., X T,.. An algorithm for Continuous-SPW can no longer
simply look for simple paths. J

Let us analyse the complexity of Algorithm 1. Initialization in Step | can be
done in O(1) time using O( M?) processors. Composition in Step 6 is a 0 — | matrix
multiplication step which can be done in O(log M) time with O(M?/ log M) processors
using the Four Russian’s Matriz Multiplication [Cha92]. Finally, path computation
in Step Tgcan be done in O{logn) time with O(n.M?) processors.

Hence, the total complexity is O(log? M) time and O(n*M?/ log M) processors in a

CREW PRAM - total work of processor and time product of O(n*M? log M). This is
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Algorithm 4: Parallel Algorithm for Continuous-SPW
Input: Continuous-SPW instance G = (V. A. D, T.s.t)
Output: tables 7, for vertices u,v € V

(1)  In parallel step set 7,, = 0, for vertices u.v in V.

(2) Loop log M times

(3) In parallel step for every u.vin V'
(4) et S ={wel :(uv,uw) (w.v)€ A}
(D) foreach w e S

(6) compute T = T, X T,

(7) compute \/ o7,

(3) add arc (u.v) to (.

quite efficient compared to the sequential algorithm in Chapter 4 which has complexity
of O(nM?*(n + mM)) time for graphs that contain cyvcles. When m € O(n?). this is
O(n3 M),

We can see that for instances where the graph is acvclic. however. the parallel
algorithm takes more work by a factor of O( M) over the sequential algorithm. Finding
an efficient parallel algorithm for acyclic graphs that uses this additional information
1s still an open problem. However, one obvious improvement that can be done to
Algorithm 4 is to reduce the size of tables 7, to O(MnL) where L = max{d € D}.
Any (s.t)-path in the acyclic Continuous-SPW is simple. so with start time ¢, a
vehicle cannot reach other vertices later than nL. This implies that the comple.\’ity of
path composition in Step 6 can be reduced to O(log L) time using O(Mn*L?/log L)
processors. Lhis is a major improvement in processor time product when nl is small
compared to M (especially when L is polynomial in n.m). This only leaves the case

where O(nL) = M open.



Chapter 6

Relaxation

An alternative method of dealiﬁg with problems that are NP-hard is to look for
constraint relaxations in the hope of being able to construct efficient polvnomial time
algorithms that provide approximate solutions.

[n this chapter, we will look at the time window relaxation of Continuous-SPW.
The first relaxation of Continuous-SPW we exa.millle is the Continuous Shortest Path
Problem with Deadlines (CSPd), followed by the Continuous Shortest Pa[h Problem
with Release Times (C'SPr).

Given a Continuous-SPW instance ¢ = (V. A. D, T.s.t). our objective is

. to implement a polynomial time algorithm that finds an initial feasible (s, t)-

path in the relaxed problem .

2. to approximate the solution to Continuous-SPW using the solution to the re-

laxed problem .

39
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6.1 Continuous Shortest Path Problem with Dead-
lines

We define ('SPd as a restricted version of Continuous-SPW where time windows are
of the form [0.b,]: that is. time constraints which consist only of the deadlines b,’s.
Thus. a vehicle can always visit a vertex early before its deadline and therefore. it
never has to wait.

To accomplish Objective 1. our algorithm will look for shortest (s.t)-paths in
('SPd that satisfies the deadlines. It looks for shortest paths because arriving early at

a vertex is no worse than arriving at a later time as long as this is before its deadline.

Algorithm 5: Algorithm for C'SPd

Input: Continuous-SPW instance (v = (V. A. D. T s.t) with time win-
dows [0, b,]

Output: Shortest path distances d,,(t) for s.u € V" and start time /
(1) Set dy, = 0. -

(2) Set d,, = +2>c and d,,(t) = + forall u € V.t € [0.b],.
(3)  Set @Q = {s}.

(1) while @ # o

(5) v — dequeue @)

(6) foreach arc (v, u)in A

(7) Let &/, be the deadline at u

(8) dyy = min{ds,.dy + d(v.u)} where dy, + d(v.u) < d),
(9) if d,,(t) < +2c for some ¢ € [0.b],

(10) Set dy, () = d,u

(11) else

(12) Set dy, () = +

(13) enqueue u to ()

Polynomial time solvability is achieved because shortest path extensions are com-
puted and kept in Step T: thus. only simple paths are constructed.
The algorithm successively computes. in breadth-first traversal from vertex s. all

shortest feasible paths to other vertices. It maintains for each pair of s, u vertices. the
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latest start time at vertex s for which vertex u is reachable. The entire process takes
at most O(n + m) time.

Let us consider an example shown in Figure 6.1.

b [0.1]
L ]
1 2
[0,5] 1 a [0‘7]
o—> @ | ! L
S [0.6] t
2 2
c o
(0,71

Figure 6.1: C'SPd Algorithm

(‘omputation done in each step is shown in Table 6.1.

Breadth Level 1 Breadth Level 2 Breadth Level 3
dsa ( t ) dsa dsb( t ) dsb dsc( t ) dsc d.qt ( t ) dst
[0, 5] 1 [0.5] | +o00 | [0,4] [ 3 10.2] b)

Table 6.1: Output of CSPd Algorithm

Despite the fact that we now have a polynomial time algorithm to find a feasible
solution to the CSPd problem. we would prefer to find the longest (s.t)-path that
satisfies deadline times as this would vield an approximation to (Continuous-SPW.
Unfortunately, this problem turns out to be NP-hard. ™~

To see the complexity of CSPd, it is sufficient that we consider the reduction from

the Hamilton Cycle Problem to Continuous-SPW in Chapter 3, Theorem 3.0.2.
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In that reductior. tL2 vertices in the vertex set V,.: = l.....n — | and the vertex a
have essentially unbounded time windows of [0.2"]. while the time window of vertex b
is [27+1 — 1,271 —1]. For our CSPd, we assign vertex b’s time window to [0. 2"+ — 1].

See Figure 6.2. Notice vertex b's time window is [0.63] instead of [63.63].

Figure 6.2: C'SPd Reduction

Then we ask if there exists an (s.t)-path in the graph constructed this way that
satisfies all time window constraints (only deadlines are concerned) whose total dis-
tance is at least 2"*! — 1. This is equivalent to asking if there is such an (s.t)-path
whose distance is exactly 2"*! — 1. Hence, a solution to ("SPd corresponds to a

solution for the Hamilton Cycle Problem.
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6.2 Continuous Shortest Path Problem with Re- |
lease Times

Like th‘e ('SPd problem. we can define CSPr as Continuous-SPW with the restriction
that the time windows be of the form [a,. +o0]: that is. time constraints which consist
of only release times.

[n a manner analogous to CSPd. we accomplish Objective 1 by implementing an

algorithm that finds the longest (s.t)-paths in CSPr. The reason is that arriving late
*
at a vertex is no worse than arriving at an earlier time after the release time. Let

M =max{a:|a.+x] € T}. ¢

Algorithm 6: Algorithm for CSPr
Input: Continuous-SPW instance (¢ = (V. A. D.T.s.t) with time win-
dows [a,. +2<]|
Output: Longest path distances d,,(t) for s.u € V" and start time ¢
(1) Set d,, = 0. Set dy, = 0 and d,,(t) = —>c for all v € V.t €
[0, M].
Set Q@ = {s}
while Q # o
v «— dequeue @)
foreach arc (v, u) in A
let r, be release time of vertex u.
if vertex u isin a cycle
dg, = +2¢
else ,
dy, = max{d,,.ds, + d(v.u)} where dy +d(v.u) > ry.
if d,.(t) > —oc for some t € [0, .M]
set dg,(t) = dyy
else
set dg,(t) = —

U ~1 DD OV b DD

OU e 2 IO —m O — — e e e

s e s e e o o e
[ N

—_— e . — — — O

enqueue u to @) .

Unlike C'SPd problem, we need to take care of cycles in the input graph. At each
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level of the propagation with vertices v,, we keep track of the longest distance (s.v,)-
path. If at any point in time we determine that a vertex v, is in a cvcle. then we can
traverse along the cycle indefinitely: thus, we set longest distance d,, = +oc. and
proceed to propaLgatf;z this distance.

We can determine when a vertex is in a cycle by testing membership of the vertex
along traversed paths from the source s. This testing can be performed in O(n) time.
Hence. wecan see Lhe‘xt we do not have to traverse more than O(n) levels to find a

feasible solution yielding total time complexity of O(nm). For example. consider the

graph in Figure 6.3. Computation performed at each step is shown in Table 6.2..

C‘[4.+00]
1 > I
5
S @—— > .———l—> @
[0,+00] b(1,+00] (5,400}

1

1

2 11,400]

Figure 6.3: ('SPr Algorithm

Next. we would like to approximate Continuous-SPW by finding a shortest feasible
(s.t)-path that satisfies all release tir‘nes of visiting vertices. Again. this problem turns
out to be NP-hard.

We will use the reduction in Chapter 3, Theorem 3.0.2 with these changes: we

®
assign the time window of vertex b in the constructed graph G to [2"*! — [, +2c] and

we assign the time window of vertices in the vertex set .NV,,: = l.....n — | and the
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Breadth Level 1 Breadth Level 2 Breadth Level 3

doa(t) [du | dlt) [dy | doelt) [ doc | da(t) [ do || do(l) s
0. 400] | 1 [[0.+oc]| 2 |[[1.400] | 3 [[3.42c]] 2 [ [0.+c] | +oc
Breadth Level 4
da(1) dst
[0, +00} | +20

" Table 6.2: Output of CSPr Algorithm

vertex a to [0, +2c]. See Figure 6.4.

Then we ask for a shortest path in the graph constructed this way for CSPr whose "

distance is 27*! — 1. Clearly. a solution to this problem corresponds to a solution to

the Hamilton Cycle Problem.
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Figure 6.1: CSPr Reduction



Chapter 7

Applications

In this chapter. we will show how the results and algorithms developed so far can be
applied to SPW-Cost, a cost optimization version of SPW. Specifically. we will show

an efficient reduction from SPW-Cost to Continuous-SPW.

‘71 Literature on SPW-Cost

Aninstance G = (V. A. D, T.C.s.t) of SPW-Cost is an optimization problem of SPW
on G = (V. A, D, T,s.t) such that each arc (u,v) in the graph has an associated cost
Cye. possibly negative, in (". The objective is to determine the least cost (s,t)-path
that meets the time window requirement when the vertices are visited. The vehicle is
allowed to wait at a vertex until its time window opens.

SPW-Cost was first introduced as a subproblem of the Multiple Traveling Salesman
Problem with Time Windows [DSD84].

Although the continuity constraint is no longer in the SPW-Cost problem, it is still

NP-hard [DDSS93]. SPW-Cost problem includes the Multiple Knapsack Problem §s

17
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a special case.

For the remaining part of this section, let us the notation H = (V, A, D, T.C,s.t)
for an instance of SPW-Cost with network (V, A), source s, sink t, a set of distances
dy,, € D and costs ¢,, € C associated with each arc (u,v) € A, and a set of time
windows [a,.b.],. € T associated with each vertex v € V',

There are generally two families of algorithms proposed to solve SPW-Cost: one
uses dynamic programming and the other involves Lagrangian relaxation.

For algorithms involving Langragian relaxation, SPW-Cost for simple paths can

be formulated as a mathematical program in the following way.

Minimize 3 ¢, X, (7.1)
{1.2)€4
subject to:

1, 1=s

Z4X’1]—Z‘Y]x: —l. l:t (72)
JEV JEV

0. te Vv
X, >0, Y(i.)) € A (7.3)
Xyl +d,, - T)) <0, Y(i.)) € A (7.4)
a, <T, <, Viel. (7.3)

where X,,. (1.J) € A is a variable for the flow on arc (z, ), T, is a variable for the

start of service at vertex i.
The objective function (7.1) seeks to minimize the total travel cost. Constraints
(7.2) - (7.3) define flow condition on the graph ;. Equation (7.5) defines the time

window constraints. Compatibility requirements between flow and time variables is

captured by (7.4).
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Although this program has a nonlinear formulation, it has an appealing charac-
teristic in that if the problem is feasible, then there is an optimal integer solution. To
see this, we note that constraint (7.4) indicates that if X,, > 0, then T, + d;, < T,.
If the flow values are fractional, then the optimal solution of value Z* is composed
of paths of cost ¢,. each with positive flow ¢,: 1.e., Z7 = Zp cp0p. Where Zp o, = L.
Assigning a unary flow to the arcs of the minimum cost path cyin. then cyi, satisfies

the time constraints and constitutes an optimal integer solution since

Z" S Cmin = Zcminép < Zcpop =7
P P

See [MinT5] for a proposed algorithm that involves the solution of a shortest path
problem with costs modified by the addition of a multiplier associated with some
supplementary constraints. It produces a feasible solution and a lower bound on the
value of the optimal solution.

For dynamic programming algorithms. SPW-Cost can be formulated as follows.
Let F'(v.t) be the minimum cost of a (s,v)-path for v € V7 servicing vertex v at time

< t. This cost F(v.t) can be computed by solving these recurrence equations:

F(s.ap) =0 (7.6)

Fr.t)= min {F(u.t)+cu | <t —dy.a, <t <b,},
(uv)eA

forall v € Vand a, <t < b, (7.7)
The optimal solution is given by

min  F(d,t) (7.

adStde

-1
0.9

The first proposed dvnamic programming approach appeared in [Jok66]. It solves
the recurrence equations using a generalization of the FIFO rule for the shortest path

problem. Other rules with better running times have been investigated in [DS38].
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7.2 Using Continuous-SPW

In this section. we will show that solving SPW-Cost is no harder than solving C'ontinuous-
SPW. In particular, we will show that an instance of SPW-Cost can be transformed
to an optimization instance of Continuous-SPW with costs associated to each arc. We
will then show how we can adapt an algorithm for the Continuous-SPW to solve this
optimization version of Continuous-SPW.

Let us consider an SPW-Cost instance H as described previously. We construct
a continuous instance G = (V. Ag. T, Dg.Cg.s.t) of the optimization version of
Continuous-SPW in the following steps.

We take the graph in H and subdivide each arc ¢,, = (v,,v,) in Ay into paths
of length 2; that i1s, a new vertex v,, is added along each arc ¢,, such that arcs
(vi.vy;). (vi;.v,) are added in Ag with corresponding distances d;; — 1. 1 and costs
¢,;. 0. respectively. The time window for v,, is [0, max time]. In addition. a loop

(vy,.vy,) with cost 0 and distance 1 1s added to v, (see Figure 7.1).
[a.b] [c.d] (a,b] [0,max time] [c.d]

SO e ® O —~>0‘ W

Figure 7.1: Waiting at a Vertex Simulation

This subdivision essentially allows the simulation of a wait at vertex v,, for the
Continuous-SPW optimization version before v,’s opening time window by looping

through v,,.
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We can easily see that this construction takes at most O(m) time. More impor-

tantly, we can easily see that the techniques used to solve Continuous-SPW can be

applied for SPW-Cost with only minor changes. Rather than optimizing the distance

from vertices to the sink ¢, we optimize the cost from vertices to t. For example. let

us take Algorithm 2 in Chapter 4 and adapt it to solve SPW-Cost.

Algorithm 7: Algorithm for Continous-SPW with costs
Input: Continuous-SPW with costs instance G = (V. A.D.T.C.r.y)
Output: Least cost path c,,(t) for u € V" and start times ¢t € [a. b],

(1)

AAAAAAA

-1 D U = W D
T2
.

o ]

(9)

(10)

Set ¢,y = 0.dy,(t) = 0 for all t € [a.b],.
Set ¢y, = +0oc,dy,(t) = +oc for all u € At € [a,b],.
Set queue @ = {y}.
while Q # ¢
v« dequeue ()
foreach vertex u adjacent to v
foreach ¢ in [a,b],
compute ¢, (t) = min{cy, (). cye + oy (t + dyi)}. diy €
D.c,, € C
duy(1) = du + g (1 + du) i o + oy (£ + i) > €4y
enqueue u to ()

We see that in Step 8 the least cost (u.y)-path, u € V" determines the choice of

the distance from u to y.

In fact, we can generalize the problem to multiple resource optimization as it is

done in [Des83]. Details of this generalization using Continuous-SPW is left open for

future research.



Chapter 8

Conclusion

In this thesis we have obtained a number of results for a new problem, the contin-
uous shortest path problem with time windows. We showed that this problem was
motivated by the fact that the simgler version appeared as a subproblem of vehicle
routing problems with time windows. Due to the economic implications in the area of

transportation systems, scheduling, and factory automation, there has been extensive

research in the vehicle routing problems. despite its complexity.

8.1 Summary of Results

The main results are summarized below.

1. In Chapter 3. we showed that Continuous-SPW is NP-hard for general graphs.

bipartite graphs, planar graphs, grid graphs. and finally monotone grid graphs.

o]

. In Chapter 4. we developed a number of sequential pseudo polynomial time

algorithms for Continuous-SPW when the input values are bounded.

11
(&)
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3. In Chapter 5. we developed a parallel pseudo-polynomial time algorithm for

Continuous-SPW.

4. In Chapter 6. we showed that polynomial time algorithms for Continuous-SPW
exists when either the upper bound or the lower bound of time windows are

relaxed. We showed that any optimization ob these relaxation to approximate

the actual Continuous-SPW is NP-hard.

Ut

In Chapter 7, we described extensions to algorithms for Continuous-SPW to
solve the cost optimization version of Continuous-SPW. The resulting algo-
rithms can then clearly be used to handle the simpler cost optimization version

of SPW where the continuity requirement is dropped.

8.2 Summary of Open Problems

Some problems that emerged during our study of Continuous-SPW were left unan-

swered. Below is a list of open problems:

1. In Chapter 4. we constructed a pseudo-polynomial time algorithm for the bounded
distance version of Continuous-SPW. We would like to see an implementation
and the running time analysis of the algorithm in comparison with the pseudo-

polvnomial time algorithms for the bounded time windows version.

2. We would like to see a parallel algorithm for the bounded distance version of

Continuous-SPW as we have done in Chapter 5.

3. We would also like to see a even more efficient pseudo-polynomial time algorithm
for the Knapsack Problem by applying of the techniques of Chapter 4 used to

solve the linear Diophantine equations (4.1).
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4. In Chapter 7. we showed how the algorithms for Continuous-SPW can be ex-
tended to handle the optimization problem of Continuous-SPW with single re-
source constraint — time window constraint. We would like to generalize the

extension to optimization problems with multiple resource constraints.

5. We would also like to see other solution methods to develop efficient approxi-

mation algorithms — for example randomized algorithms.

6. Another variatiant to Continuous-SPW that is very much of interest and in ac-
tive research is the Continuous Shortest Path Problem with Periodic Time Win-

dow Constraints ((CSPPW). As the name implies, the time windows in CSPPW

.

are period.
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