
Continuous Shortest Path Problems with Time
Window Constraints

Chia-iVe Chang
" " &

B.Sc., Jlathernatics and Computer Science. Simon Frasrr T'niversity. 1$ga4 % '

-2 >

OF T H E R E Q U I R E M E N T S FOR T H E DEGREE pF " . ' '

L , - .
b MASTER OF SCIENCE

6 . .
B

in the Department B

Computing Science

@ Chia-lf'e Chang 1997

51x1 ON FRASER I 'NI \7ERSI 'T~ '

August 14, 1997

XU rights reserved. This work may not be

reproduced in whole or in part, by p h o t o c o p

or other means, without the permission of the author.

Name:

Degree:

Title of thesis:

APPROVAL
t

Chia-LVe C h a n g

hlas ter of Science

= . d
Cont-inuous Shor tes t P a t h Problems wi th T i m e It'indow ,

Constra ints
. .

Examining Committee: Dr. T i k o I i a m e d a .

('hair

Date Approved:

-

Dr. Xrvind G u p t a

Senior Supervisor

. I

Dr. Rarnesh Iirishtiarnurt i *

Senior Supervisor ~-

Dr. Perry Fizzano

National Library 1*1 . of Canada
Bibliotheque nationale
du Canada .

Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa ON K 1 A O N 4 Ottawa ON K1 A O N 4
Canada Canada -

Your hie votre reterence

Our hie Notre relereoce

n e a ~ t h o r has granted a non-
exclusiye licence allowing the
National ~ i b r e of Canadato

e e= J repr~duce, lobm, Qstribute or sell -

o Q 1 'copies gf this ththe~+~:m mrcroform, o

a paper dr ele'ctronic , fokats. *
, a 3

The author retains ownership of the
copyright in thls thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, prcter, dstribuer ou .
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
dectronique .

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent &re imprimes
ou autrement reproduits sans son
autonsation.

Abstract

The shortest path problem with time window constraints and costs (SPCV-Cost) con-

sists of finding a !cast cost route between a source and-a sink in a network C; = (.Y. A)

such that a vehicle visits each node within their specified time windows [a, . h ,] . Each

arc (i . j) E A has a positive duration d,, and an unrestrictive cost c,, .

This problem has appeared as a sub-problem of many vehicle routing and sctiedul-

ing problems. most of which are known to be NP-hard.

In this thesis. we will study a variant of SPW-Cost called Continuous shortest

Path Problem with Time CVindow Constraints (Continuous-SPW). I'nlike SPCV-Cost

kvhere a vehicle is allowed to wait at a node for a time window to open, in Continuous-

SPN: the vehicle must move continuously in the network only passing through the

nodes whose time windows are open.

We will determine the coniplexity of this and other versions of Continuous-SF'CV

for restricted classes of graphs that are of practical interest. Our goal is to construct

sequential algorithms and determine their running time complexities. We will also

provide a parallek algorithm for the general Continuous-SPCV and show how these

results can be extended to handle SP W-Cost problems.

Acknowledaments

.c

I wquld like t o express m y eternal g ra t i tude t o m y supervisors. Professor Xrvind

G u p t a a n d Professor Ramesh Krishnamurt i , for their suppor t . motivation. and pa-

t ience guiding m e through m y research. Fur thermore, I a m very grateful for their

coritributions t o Chap te r :3 of this thesis.

I ~vou ld also like t o ex tend m y gra t i tude t o Erick li 'ong for his contribution t o

C h a p t e r 4 of this thesis. and T a m a r a Dakic for many helpful discussions.

Dedication

T o my pa ren t s w h o h a v e been a lways suppor t ive of my work.

Contents
\

.I\ bstract

. Dedication

. List of Tables

. List of Figures

. 1 I n t r o d u c t i o n . .

. 2 Background

. 2.1 Graph Definitions

. 2 . 2 Graph Algorithms

2.3 llodels of Comput,ation .

. 2.1 Complexity Classes

. 2 . Linear Diophantine Equation

2.6 Theory of Congruences .

3 Complexity of (_'ontinuous-SPW .

. 1 Sequent,ial .Algorithms

4 . 1 .Algorithms for Bounded Time LVindow Int,ervals of (-'ontin~io~is-

. SPW ?:I

. . . . 4.2 Algorithms for Bounded Distances of (.'ont,inuo~ls-SPLV 26

5 Parallel Continuons-SPW Algorithm :],?I

6 Relaxation . ;39

. 6 1 Continuous Shortest Path Problem with Deadlines .40
I

6.2 Continuous Shortest Pat,h Problem with Release Times 4:3

-
r Applications . -47

- . r . l Literature on SPW-Cost 47

-
. 1 .2 17sing Continuous-SPLV 50

8 C o n c l u s i o n . . . ,5 2

. 3.1 Summary of Results 52

. 2 Summary of Open Problems .53
- -

. Bibliograph; :I.)

List of Tables

. -1.1 Output of Continuous-SPW Algorithm 24

. 4.2 Complexit,?; of C'ont.inuous-SPLV AIgorit.hms 26
A

. 6.2 Output, of CSPr Algorithm .15

...
V l l l

List of Figures

3.1 ('onstruction of a Continuous-SPW Instance from a Harnilton Cycle

Problem Instance . 16

3.2 Constructing a Planar Instance of Continuous.SPCC IS

3.3 Constructing a Grid Graph Instance of Continuous-SPCV 20

3.1 Reducing Partition Problem Instance to llonotone Grid (iraph In-

stance of Continuous-SPii7 . 21

1 :In Instance of Continuous-SPCC' for the Sequential ;Ilgorithrrl 2-1

4 .2 An Instance of C'ontinuous-SPiV for BFS Sequential . 4lgorithrn 25

. 1.3 Computing Possible CVaiting Times :I:]

4.4 :I Directed Graph Rcpresentat. ion of ('ccle Length ('onibinatioris . . . :I:]

. . 5 .1 Pointer Doubling Technique . :]6

6.1 ('SPd.4lgorithm . 11

. 6.2 C'SPdReduction 42

6.3 CSPr Algorithm . 11

6.1 (ISPr Reduction . 16

.
. r . 1 LVaiting at a L7ertex Sinlulat ion 8 . 5 0

Chapter 1

Introduction

Let us ronsider an .dutomated L'ehicle Guidance(.-11-C;) system in a manufacturing

plant in which there a r e several vehicles that service a set of stations interconnected

hv a set of lanes. :I major problem in such a system is determining a wriflict-fret.

path for a vehicle dispatched from a source station t,o arrive at the destinat,ion stat.ion

as early as possible without disrupting other active travel schedules (('T!) 11.

This is an elaborate example of a problem known as Shor t~ . s t Path Problcrn 1 ~ 1 t h
---e

Tlmc CZplndou. Corlstrulnts (SPCi.) . It consists of finding a shortest path between a

source and a sink in a network C;' = (.V, .-I) while respecting specified t ime windows

[a , . h,] a t each visited node. Each arc (t . j) E '-1 has a positive duration d,,

This problem appeared as a sub-problem of a vthicle routing probleni studied in

[GK95] where they provide a n efficient sequential and parallel algorithm to sol\.e i t

exact ly.

\l.hen there is a cost c , , , possibly n e g a t i v ~ . associated with each arc (1 . 1) E .1 and

the objective is to minimize the cost of the route, the problem is known as Short ts t

SPW-Cost first appeared as a sub- problem in the construction of school bus routes,

where the number of routes needed t o complete all tasks must be found while mini-

mizing total costs [DSD84]. It also appeared as a sub-problem in the time constrained

vehicle routing iroblem with capacit,y constraints on vehicles. where a set of minimum

cost routes. origina.ting and terminating at a centra.1 depot must be determined [SorSG].

Here. vehicles servicing the nodes have a capacity which cannot be exceeded.

A common characteristic of all thesk practical vehicle routing and scheduling prob-

lems. including SP\C'-Cost. is that they are NP- hard and therefore there are no known

algorithms to solve them exactly and efficiently in polynomial time. Solution mctholo-

gies cnrrentIy+capable of solving problems of realistic size range from simple heuristics.
b

to optimization-based heuristics. to optimization methods [DDSSM]. Because of their

practical irnportance, finding efficient solutions to SPLV-C'o3t is of paramount irripor-

I n this thcsis, we will study variants of SPLV-Cost called C'ontlnuon..; Short~. .; t

Path, Problem with Tinzt. Ll.indout Constraints (Continuou..;-SPL+.) . L7nlike SPLV-

ere a vehicle is allowed to wait at a node until the time window opens. in

the vehicle must continuously travel visiting nodes strictly within

windows. This problem has applications in the arcla of networking

where a continuous stream of da ta transfers between nodes is required, such as video

data. and where intermediate nodes are open only at specific time intervals.

\Ye will be looking at the complexity of this arid other versions of ('ontinuous-

SPLi' under restricted classes of graphs. \\P will construct sequential algorithnis

for Continuous-SPLV under different requirements. LCe will then provide a paranel

algorithm for the general Continuous-SPCi'. Finally. we will show how these results

can be extended to handle SPLV-C'ost.

Organization of this Thesis I

,

Chapter-:! introduces some definitions and background materials that are needed

in later chapters. Chapter 3 discusses the complexity and difficulty of Continuous-

SPIZ' under general and restrictive settings. Chapter 1 contains sequential algorithms

for Continuous-SP\V under different requirements. Chapter 5 contains a parallel

algorithm for Continuous-SP\Z'. Chapter 6 explores some relaxations of C'ontinuous- b

SP\V requirements, providing insight into the difficulty of the problem. ('hapter 7

describes extension of solutions to Continuous-SP\$' to solve SP\V-('ost. Chapter S

presents a summary of all the results and a list of relatcd open problems.

Chapter 2

Background

In this chapter. we will introduce basic definitions arid concepts used throughout

the thesis. At the end of each section, references are given where a more complete

treatment of the subject can be found.

2.1 Graph Definitions

.A g r a p h C: is an ordered pair (Ck. EG) where 1& is a nonernpty set of t.ertices
43

{ L ' ~ . 1 ' 2 [l n) (sometimes called nodes) and EG is a subset of edges ((7 , . 1 ;) where

r v , , ts, are vertices in 1'. IVhen there is no ambiguity as to which graph G we refer

to, the subscripts C; in I & , EG are dropped. Graphs a re generally drawn with labeled

points representing the vertices and lines joining pair of points representing t tic edges.

X loop is an edge of the form { t * , (3) .

.4 vertex tl , is a d j a c e n t t o vertex r q , whenever { t l , . I , ,) is in E. If a vertex 1* has

d adjacent vertices. then the degree of t3 is d. L'ertices which have loops are counted

twice in the degree.

C'ti.4 PTER 2. B.4C'KGRO 1-50

.A path is a sequence of vertices t 3 1 . 2 3 2 c.k such tha t for I = 1. k - 1. { t * , . 1 , , + 1) E

E. T h e l eng th of th is p a t h is k - 1. If t vertices t - 1 . 2 . 2 1-ii appear uniquely in t h e

sequence, then t h e p a t h is s i m p l e .
3

\i'e say tha t t h e d i s t a n c r between two vertices 1 1 . 1, is k i f t h e shortest pa th from

21 t o r has length k.

.A cycle is a p a t h t - 1 . r.2 t b k where r.1 = r ' k . T h e integer k - 1 is t h e Icngth of

th is cycle. I f all \.ertices 1 ' 1 . 1 . 2 ~ ~ k - ~ appear uniquclj.. then t h e cj.cle is s imple j
/'

:\ I l a m z l t o n cycle is a s imple cycle containing all vertices of thr. graph. .t graph

ivhich has a IIarnilton cj.clc is H a r n i l t o n i a n .

.A graph is p l a n a r i f it car1 be f r n b c d d ~ d (t f . d r a w n) on a plane s ~ i c h tha t t h e edges

h sect only a t their endpoints .

:\ graph G = (I: E) is blpart l te i f t h e set of vertices I- can h c part i t ioned into

disjoint sets .ql. .q2 such tha t no pair of vertices in t h e s a m c sct a r e adjacent .

.-I graph with no cycles is a t r t e . i 'ertices of degree 1 in a t ree a r e called 1taf.s.

.4 dir- fc tcd graph I) = (\ '. .-I) is a graph where t h e edges a rc directed: t h a t is. :I

is a subset of arcs (t , , . r s ,) in I. x I.: somet imes t h e word digraph is used instcad of

d i r e c t ~ d graph.

.A\ directed pa th 1'1, 2.k in a directed graph D = (I . . '-1) is a pa th such that for

a = 1 k - 1. (t ~ l . t ~ l + l) E :I.
. .

.-I directed c c l e 1 . 1 . 1 . 2 l ' k is a cj.cle 5uch that a rc f l s , .). 2 = 1. k - 1 I S In

t hc arc set.

.f directed graph i v i t h no directed cycles is acyc l i c .

.A n t t u - o r k is a directed graph with tivo distinguished \.erticcs called s o u r c f and

sink.

For more details on graph t heorj.. see [BlI'iG].

2.2 Graph Algorithms

One of the most fundamental techniques that forrns the basis of many other graph

algorithms is graph searching or traversal. The most basic graph searching is Hrfadth-

Flrs f S f a r c h (B F S) .

Starting at a vertex u in the graph, the order in which BFS visits the vertices

is as follows: vertex u is visited first. then the vertices adjacent to u that have riot

been visited before are visited. then the vertices adjacent to those vertices are visited.

and so forth. BFS essentially expands its frontier of visited vertices by visiting all

the vertices at distance k from u before visiting any vertices at distance k + 1 frorri

u . 'The Lwtices that are at distance k from vertex u are said to bc at l c i . c i k of t h c

Algorithm 1: Breadth-First Search.
Input: Graph C; = (1'. E). vertex 11 in \ '
Output: Sequence of visited Lwtices.
(1) Set Q +- { u) .
('2) while Q # o
-(:N L - t dequeue Q.
(4) 17isit vertex 1 % .

(3 foreach vertex us adjacent to 1.

(6) if u1 has not been 1,isited

(7 Q +- Q + { w) .

For more details see [C'LRYO].

2.3 Models of Computation
d

I n order to anal~.se and compare algorithms, we need to look at the ur~derl~,irig niodel

of computation used to solve the problem. Although there are rriany models of corri-

putation. wc will only look a t models that are of interest to us in this thesis

CW.4 PTER 2. B.4CKCROI',YD

For sequential algorithms. we will use the Randorn-.-lcres,~ .\lachine (R,A .\I) model.

Here. we have a single stream of instructions operating on a single stream of da ta

executed sequentially.

For parallel algorithms, we will use the Parallel Random-,4ccess .\lachint. (PR.4 .\I)

model. Here. we have Shared-LIemory Single Instruction stream. hlultiple Data

stream (SIhID) 'Computers that have a number of identical processors. each with

its own local memory operating under a single instruction. The processors conlniuni-

cate through a shared common memory where memory writes can be either concurrent

writes or exclusive writes (C'\.V.EIC'), and memory reads can be cither concurrent reads

or exclusive reads (CR.ER) . In the exclusive reads (write) policy. only one processor

can read [write) to a memory location at any ,@yen time. whereas in the concurrent

read (write) pobcy, more than one processor can read (write) to a rncniory location

simultaneously. For morc details and examples, see [A klSS]

'The overwhelming majority of computers today adhere to these niotfcl.

Complexity Classes
r. ."

l lany problenis can be categorized into different coniplexity classes. Two such classes

that we are interested in are: the class P and the class NP

Problems in P are those for which there is an algorithm that rriakes deterrriinistic

steps and solves the problem in polynomial time in the input !ength. For example.

the problem of finding the shortest between two vertices is in P. (iiven a graph
I

G = (I : E). length I (€) E Z+ for each E E E, vertices a.6 E I'. and a positive

integer B. the problem is to determine whether there is a simple path from (1 to 6
6

in G having total length at most B. .A deterministic algorithm for this probler~i is

C'H.4 PTER 2. B.4CKGROI',YD

Dij kstra's Shortest Path Algorithm (see [CLRSO]).

Problems in N P are decision problems for which there is an algorithm that makes

nondeterministic steps and outputs yes in polynomial time in the input length when

the problem instance has a yes solution. For example. the probleni of finding the
;g

longest path between two vertices is in N P . Given a graph C; = (I: E) , length

I (€) E Z+ for each c E' I.:, vertices a . 6 E I., and a positive integer B, the probleni

is to determine whether there is a simple path from a to b in (; having total length

at least B. .A nondeterministic algorithm can generate a sequence of vertices non-

deterministically and then check if this sequence is a simple path of length at least

B.

\t'e say that a problem n, reduces to problem rr when there exists a transformation

that maps any instance of problem ;rl to an equivalent instance of problcrn I;> I f all

problems in N P can be reduced to a problem 7: in polynomial time. then we say that

problem ir is NP-had. I f , in addition. problem 7: is in NP. then i t is a NP-cornpltfr

problem. The Ilarndton C'yclc Problem is an example of an NP-complete probleni.

Given a graph G, the problem is to determine whether there is a Hamilton C'ycle in

G .

Because of the nondeterministic property. it is believed that far more problems can

be solved with nondeterministic algorithms in polynomial time than with deterministic

algorithms. However. to date. it is still unknown whether ihere exists a problcrn

which is solvable by a nondeterministic aliorithm i n polynomial time. but not by a

" deterministic al,

Presently. a1

in exponential t

strong evidence

orithni in polynomial time.

NP-hard problems can only be solved by deterministic algorithrris

me. So when we show that a problem is NP-hard . we are providing

that it is a very hard problem; one that is unlikely to be solved in

polynomial time by any deterministic algorithm. For more details, see [GJTS]

2.5 Linear Diophant ine Equation

Linear equations of the form a x + by t c with integer coefficients a . b, integer value c.

and integer variables x. y are called Linear Diophantinr Equations. LVe shall see next

how this linear equation can be solved for the variables s. y .

Given integers a . b. we define the greatesf c o m m o n diri.for (gcd) of a . b to be the

greatest integer d such that d divides a and d divides b. CCve use the notation (a . b) t,o

mean gcd(a. b) . and d I a to mean d divides a .

Obserwztion 2..5.1. For integers a . b. d. i f d / ab and (d , a) = 1 t her1 d 1 h.

0 b . s ~ r r a t i o n 2..5.3. For integers u . b , c . d . i f j n ,b) = d and c / a . c I b then c I d .

O b . s ~ r ~ a t i o n ..2.r5..1'. For integers a , b. c. i f a / c. b / c and (a . 6) = 1 then ah / r .

Ob,<crration 2..5.4. For integers a . b, c, i f c 1 a , c I b then c 1 (a + b)

For integers a . b. gcd(a. b) can be computed in polynoniial tirrie using an algorithrri

known as the Euclidean .Algorithm. Assuming that a < 6; by the division algorith~ri

we can find integers q l . r l such that

By observation 2..5.-1 we see that (a . b) = (6 . r l). Thus by recursively computing

(h , r l) for k steps with b > r l > ... > rk until rk-1 = rkqk. we have a . b) = (b . r l l =

. . = (T k - l J k l = rl(.

t
Since at each step computation of (b , r) from a = qb + r , either b 5 a/' or else

b > a/ ' and r = u - bq = a - b < a / ? . we have (6 . r) 5 a/': that is. the bound on the

gcd is reduced by at least half. Hence. gcd(a , b) can be determ~ned In Ojlog b) steps.

CHAPTER 2. BACh-GROI'LYD

Obsrrvatton ?.i..i. From t h e above a lgor i thm. we can ohtiin integers .i. t such t h a t

at + b.s = (a . b) . This is computed by a n a lgor i thm known a s t h e E z t c n d d E ' u c l d t w n

.-llgorzthm.

L e m m a 2..i. I . Equat ion a x + by = c has integer solutions x . y i f a n d only i f (a , b) / c.

Furthermore . i f s o . yo is a solution. t h e n all integer solutions x , y can b e expressed as

Proof. I f so, yo is a solution. then (a . b) 1 aso , (a . h) I bye a n d t h u s by Observa-

t ion 2.5.4 (a . h) I c.

Conversely. i f (a . 6) 1 c. then c = m (a , b) for s o m e integer n2. From Observa-

t ion 2.5..$. t b e k a r e integers r . s such t h a t (LT + 65 = (a , b) ; hence, x = rrlr. g = rr1.s i >

a solution t o the equa t ion a s + b y = c . ,

Now, let u s suppose x , y is a n y solution t o t h e equat ion. T h c n

Since a I a (x - rij a n d a / 0. we have a / b(y - y o) Obseivat ion 2 . 5 1 , together

with (A. L) = 1 iqplies t h a t for s o m e integer t ;
(a . b) (ah)

Subs t i tu t ing 2.2 in to Equat ion 2.1 we get
\

arr

As a generalization. we define the gcd of integers a l .n2 . . . : .a , t o be the gcd of a l

and the gcd of a 2 a,: tha t is. gcd(a l , a2 a,) = gcd(a , .gcd(a2 a ,)) .

Finally, we define the least corn mon mu6tip6~ (lcm,) of integers u , h to be the smallestl

integer m such tha t a 1 n? and h / m. LVe use'{a, h) t,o denote Icm(a. 6) .

Lemma 2..5.2. For integers a . h. a h = l c m (a , h) . ycd(a. h)

.4 more complete a.nd i n d e p t h treatment, of linear Diophantine equat.ions with

applications in other areas can be found in [Sch86].

2.6 Theory of Congruences

For inegers a . h. nt. we say tha t n is congru~n,t to h modulo rn (denoted by n e h

(mod m)) whenever m (a - 6) .

Obscr~mtion 2.6.1. For integers a. h. c , and d

1 . If a h (mod n l) and b G c (mod rrr), then (1 E c (m o d m)
'J

2. If n h (mod m) and c d (mod nl) . t,hen a + c z h + ct (mod r r t) .

:j. I f a h (mod r n) and c G d (mod m) , then nc s hd (mdd m) .

4. I f nc 3 bc (mod m) and (c . m) = d , then a h (mod nt. /d) .

LVe can see that congruence acts like equality in rrlanj wnys.

For linear congruence of the form a s r h (mod rn) with integer value5 a . 6, r r l dnd

integer variable x, a solution in x exists i f and only i f there are integers s. k such that

a x = h + km. Hence. the problem of solving this equation i \ essentially the same as

that of solving linear Diophantine equations. Thus.

Ob.srrytron 2 .6 .3 T h e l inear congruence a s = h (m o d m) h a s a so lu t ion in .r i f a n d

on ly if (a . m) 1 h.

T h f o r e m 3.6. I . T h e C h i n e s e R e m a i n d e r T h e o r e m . T h e s y s t e m of congruences

s G a , (m o d n i ,) . i = 1. 2 k . (2 . 3 \

where (m , . m,) = 1 i f i # j, h a s a un ique solut,ion for .c m o d u l o n t l r n 2 . . . mi;.

Proof. LVe show by incluction on k t h a t s y s t e m (2.:3) has a so lu t ion .

T h e result is obvious w h e n k = 1 . Let, us cons ider t h e case k = 2. I f .r E (11

(m o d m l) . t h e n all so lu t ions for s a r e of t h e form s = a1 + klrrrl for a n integer X.1. I f

in add i t i on s r a 2 (m o d m 2) . t h e n

Because (m 1 . r n L) = 1. we know f rom Oht . rva t , ion 2.6.2 t.hat, t h i s c-ongriwric~tx. 1vit.h

k I as . . t h e unk11ots.n. h a s a un ique solut,ion .+ rnodulo r i t 2 . T h u s k1 = .s + k 2 ~ , l 2 for souit>

k2 a n d

satisfies b o t h congruences .

Now. suppose t h a t s y s t e m (2 . 3) has a solut.ion (m o d r n l n t 2 . . . 1 7 1 ~ - ~) . T h e n t h t w

is a so lu t ion s t o t,he s y s t e m

--

C'H.4 P T E R 2. B.4 Ch-GRO I .,VD

But t h e system

has a sol~it,ion modulo m l m 2 . . . mk-lnrk. just, as in t,he case k = 2. sirlce we have

g c d (m l m 2 . . . mk- l . mk) = 1.

XIoreover t h e solution is unique. If r arid .s are hot,h solutions of the s ~ s t m i . t h c ~ i

s o 7 1 (r -) I = 1.2 k . Because t h e moduli a r c pairwisc relatively prime. h?;

observation 2.5.:1 we have rnlm2 . . . mk 1 (r - . s) . Rut,

.-In efficient a lgor i thm to solve sys tem (2 . 3) can h e found in [.-\H1771]. For flirt,her

details. see [:lHl"i-4. CLRSO. Dud781.

Chapter 3

Complexity of Continuous-SP W

In th is chapt.er. we will show t h a t a n efficient algorit.hrn t o solve Cant inrioiis-SPCV

is unlikely t.o m i s t . We will show t h a t Continuous-SPCV is N P - h a r d by providing

a p o l y n o r n ~ l time. reduction a lgor i thm from a known N P - c o f n p l c t e problem t o t h e *

('ontinuous-SPCV. CVe will show t,hat Cont inuous-SPW remains N P - h a r d even when

it. is restr icted t o s imple classes of g raphs such as b ipar t i te graphs . p lanar graphs. grid

graphs a n d monotone grid graphs . T h e incentives for st,udying t, hese classes of graphs

c o m e from these applicat,ions: in modeling t-'ont,inlious-SPLV for packet, routing over

a network, many of t h e network connections t,opology. such a s t.he st jar t.opology. t tic.

n-dimensional cube topology. a n d t h e tree topology can he represent.ed as hipart,it.e

graphs: in modeling pick-up service for trucks in a city. t h e roads can he represented

as grid graphs; a n d in modeling delivery of component,^ over coveyor belt sys tem in a

factory, t h e sys tem of belts can h e representled as monot,one grid g raphs .

For t h e remaining pa r t of th is thesis , let us use t h e not,ation G = (t.. :I. D. 7'. a , h)

for a n ins tance of t h e Continuous-SPCV. with a network consisting of a vertex set

I* = (1 9 , . 1'2. 11,) . a n a r c set .4 = { f ti. e m } . vertices 11. h in I ' for whic-h we want

CH.4 PTER .'3. CO,ZlPL E?ilTY OF COiYTISIrO I 'S-SPIt' 1 *5

to compute the shortest path bet,ween them. and a set of distances D = { d l . 4. ..., d m }

associated with the arcs in '-1. and a set of time windows 7' = {[a1. 611 1 . [a2. h 2 l 2 [a,. h,].}

associated with the vertices in I' (t h e a,'s are the release t,imes, and the h,'s are thc

deadlines).

Proof. Our reduction is from the Hamilton Cycle Problem. LVe recall that thc, Haniil-

ton Cycle Problem is an NP-complete problem that asks i f thew cvists a H a ~ ~ i l t o n

Cycle in a given graph.

Let H = (.Y. E) be a grapb instance of the Hamilton Cycle Prohlem with v e r t c ~

set .V = { L ' ~ t , n - l) and edge set E = {cO F ~ - ~ } . Let n be any vertex in H.

CVe construct an instance G' = (I.', .4, D, T.a . h) of the C'ontinuous-SPM7 as follows.

The vertex set I - consists of the vertex a , a new vertex I,, = h. and T I - 1 copies

.Ip,. .VL.Vn-, of the v m e x set .V. The arc set .4 consists of arcs (a . 1 ,) . r - E .VI -
Z

such that { a . 1 1) is in E. of arcs (u . (7 ,) . u E such that { I L . ~) is in E,'. and of

arcs i .r .y). .r E .L,.!j E . 'L,+,.I = 1, n - 2 such that { s , y) is in E . \C+ assign the

distance of each arc (x . y) E .4 to P. LC'e assign the time window of each vertex

1, E .V,. 1 = 1. ..., n - 1 . and of vertex a . to [O. PI. while we assign the time window of

")"+' - 1.2"" - 11. For an example. see Figure 3.1. . vertex r-, to (,
ri

CCe can easily see that the above construction takes O(nrr2 + 71') time since ttlcml

are (n - 1) n + 2 vertices in I . and at most (T I - 2) m + 2 n arcs i n :I.

, The purpose of this construction is to correspond a Hamilton ('yclc in H to a

feasible (a , b)-path of length n in C; such that all vertices of .V appear uniquely.

Let us suppose H has a Hamilton Cycle C' = t9 , , t,,,, t q , , . and vertex a is some

I,, , in C'. Then we claim that the path a . v,,,, . L,,:,,, ,,-, . h is a feasible (u . h) -

path in G. To see this, we notice that each vertex tq, E .2;. 1 = 0. n - 1.1 =

@ a 2 4

graph H

graph G

Figure 3 . ! : Cons t ruc t ion of a Continuous-SPLV Ins t ance f rom a Hamilton Cycle P roh-
lem Ins t ance

C'H.4 PTER .?. C'O.tIP1, EXlTE' OF C'O.VT1.Y~'O ITS-SPIt' 17

1 , ... n - 1 has essentially a n unbounded t i m e window: thus , all t,he (a , I . , ,)-subpaths.

k = j + 1. n . j - 1. are feasible paths in C;. Since each vertex t . , appears uniquely

in t h e cycle C , and t h e dis tance of arcs into t,, is 2'. t h e to ta l distance along t h e

(a . b) -pa th mus t be 2' + 2 ' , + . . . + 2". or 'Ln+ ' - 1, which is within b's t i m e window.

Hence. it is a feasible path in G.

Conversely. let us suppose C; has a feasible (a. b)-path P = a . c 3 , , 1 . ,"-,. b wit t i

distances d l . d 2 cl,. 2". where d, = 2'. 1 < 1 5 n for some j . along t h e arcs. rcspec-

- tively. Because P is a feasible (a . b)-path . we must have dl + d 2 + . . .+d,+2" - 2"" - 1

However. this equat ion is feasible i f and only if each 2'. 1 5 r. < n appc.ars u n i q ~ ~ c l y

in t h e sum. To see this. t h e binary representation
\

n - \

111- ... 1112 = - 1

Each ? ' . I 5 I < n must t least once. and since the re a re only 11 variables in I

t h e surnniation. each 2 ' . 1 < i 5 n must appear exactly once

Therefore, each vertex in t h e pa th P appears uniquely a n d t h e cycle (1. r * , , 1 , ,,-, . n

is a Hamilton (_'j.cle in H. 0

C'ollorary ;3.O.J. 1 . Continuous-SPiV problem remains N P - h a r d when restricted t o bi-

pa r t i t e graphs.
\ -..
, , . /

Proof. T h e graph const ructed in t h e reduction preserves t h e h ipar t i tmess property.

To see this, suppose t h a t t h e vertex set .Y has a bipart i t ion .Y. 1 . . Then we can

. .
bipart i t ion t h e vertex set I ' by bipart i t ion t h e vertex sets .L .I2. Yrr-l t h e s a m e

as .I7 a n d a d d t h e vertices a , b t o t.he part i t ion where a is in t h e .Y. I . bipart i t ion

of .Y. Since Hamil ton Cycle Problem is N P - c o m p l e t e even when t h e graph H is

b ipar t i te [C;J79]. t h e result follows. 0

Next. let us consider Continuous-SPLV for the class of planar graphs.

Thcorkm 3.0.9. Continuous-SPU' problem remains NP- hard when its input is rc-

stricted to planar graphs.

Proof. LVe are going to use the graph G constructed in the reduction for the grn-

era1 graph case in Theorem 3.0.2 and transform i t to a planar graph instance j;' of

C'ont.inuous-SP\Z7.

\\'e make the graph C; planar in the previous reduction by adding a new \.erttx at

cvcry pair of crossing arcs in the graph; that is. i f there are arcs (1,. y,). 1 = 1. k
.

that intersect with arc ((1 . r *) . n E .YL. L? E .VL+, . then we add vertex s , ,,L to each

crbssing with tirr;e window [O. .'"I. Each arc (s , : , ~ . r,,,,, L) . i = I k - 1 lwtwern

-%- the new vertices has distance .I-2n2 , L , while arcs (11 . s,.,,r,). (s c , , L . 1 9) havt tlistanccs

- .jr - s) - t L - (A . - l) 2 - 2 * 2 L - - and--.'-"L. respectively (see Figure 3.2).

y l '

Figure 3.2: Constructing a Planar Instance of Coritinuous-SP\L

Since each arc has at rnost n L crossings. we can see that the above transfor~nation

takes polynomial time.

The main point in the assignment of the distances to the arcs in this scheme is to

force the existence of a feasible (a , b)-path P in the planar construction i f and only
A

i f the path I' with the new vertices deleted is a feasible path in the general instance

graph G. By assigning very small distances between the new verLices in the crossing.

we essent iallq- introduce fractional values that are canceled only when they are added

together to the total distance of paths in F that correspond t o paths in G. \Ce show

next that the planar instance F' has a feasible (d b) - p a t h i f and only i f the instance

H is Hamiltonian.

I f H has zi Hamilton C'ycle. then we can easily see that there is a corresponding

(a . b)-path in F since for an arc (u . t ,) in (: such as the one shown in Figure 3.2. the

corresponding (u . 1 9 j-pat h in F has the same distance value.

NOW suppose that the planar instance F has a feasible (a , b)-pat h . Each arc along

the path has a distance of 2' - 2-lL - (k - 1)2-2n2L . - or '>-2n2L - , for some integcrs

i. k. I,. Because vertex b has an integer time window - I . ? + ' - 11. the total

distance of the (a . 6)-path rnust be 2"" - 1. This implies that for each arc in the (a . b) - -
- path kvith distance 2-lL for some i . L. there must be a corresponding arc in the path

with distance 2' - 2-1' - (k - 1).)-2n2 and corresponding (t - 1) arcs with distancrs

' j -2n2L . - for some k. The reasor; is that each distance 2-lL. and 2-'"lL are unique: the

smallest value 2-"" is greater than n2 - 2-2"21. arid 2-2n21 is greater than n' .2-2"'"t1).

I f we look at their binary representations. the terms 2-"). i = 1. ..., T I . L = 1 n .art.

distinct in the first ri2-bits of the fractional part. \chile the terms L ' - " " ~ a r t distinct

between 2r12-bits and 2n3-bits of the fractional part.

Hence. the underlying (a . 6)-path without the crossing vertices corresponds to an

(a , b)-path in G. which corresponds to a Hamilton C'ycle in H.

0

Th forcm 3.0.4. Continuous-SP\l' problerri remains NP-hard when restricted to grid

graphs.

CHAPTER 3. COALIPLEX1T17 O F COS7I.VI;O I ;SSP\\'

Proof. From Theorem 3.0.3, it suffices to modify a planar Continuous-SPiV instance

to a planar Continuous-SPhT instance in which ~ a c h vertex has both outdegree and

indegree of at most 2. For each vertex u that has arcs a l . a2. a , into u with distances

d l , dz, d, and arcs a , + l . a,+2. a,,, out of u with distances re- ..
spectively. we replace the vertex with a double comb like subgraph consisting of i + o

new vertices y 1.92. y,+, as shown in Figure 3.3.

'&

Figure 3.3: Constructing a Grid Graph Instance of Continuous-SP\i7

The vertices y l . 92. y,+, in the comb subgraph has time window [O. L ' "] , the

same as all other internal vertices of the planar graph F. The arcs (y , , y,+:). J =

1 , 2 + o - 1, has distance 2-". while the arcs ak. A: = 1, 1 has distance dk - (1 -

k) 2 - " , and t h e remaining arcs a / . 1 = 1 + 1. ..., 1 + o has distance dl - (I - 1)2-".

\ \ e can see that*this transformation into a grid graph can be acconiplished i r i

polynomial time. I-sing Theorem .3.0.3. we see that a feasible (a , 6)-path exists i f and

only i f the instance H is Hamiltonian. 0

Sex t , we show that even with further restriction that all arcs in the grid graph

can be oriented only in two possible directions (eg. right and down). that is. the grid

graph is monotone. the problem remains NP-hard .

Theorem :3.0..5. Continuous-SPh; problem remains NP-hard even when the grid graphs

is monotone.

Proof. \ i e will use the Part l t lon Problem for our reduction. In this problem. N'T are

given a finite set .4 and a size s (a) E Z+ for each a E '4. The problem is to find a

subset '4' c A such that CaE s j a) = CaE . $ (a) and 1.4'1 = ld41/2.

Let us consider such an instance of the Partition Problem with set .4 = { a l . (1 2 a ,) .

\\'e construct a monotone grid graph for the ('ont inuous-SF'\!. instance in a diarnorid

st ructure such as the one show1 in Figure 3 . 4 where .\I = ~ P " R (~ . F A ' (.))l+' and the

t irne windows of all vertices but vertex b are unbounded. v

Figure 3-1: Reducing Partition Probleni Instance to llonotonc Grid Graph Instance
of Continuous-SP\\'

Herkagain. we use an appropriate assignment of distances to arcs so that a frasiblc

(a . 6)-path exists i f and only i f there is a solution to the Partition Problern. Si~ice .\I

is larger than the sum of all the item sizes. a feisible (a . b) p a t h must contain rxactly

T I arcs with distance -11: that is. the path must contain exactly n of the bottorri arcs

in the diamond structure. arid exactly rl of the top arcs that sum to (El,, . < (a)) / ? .

Hence. there is a (a , b)-path to the Continuous-SP\V instance i f arid only i f t h c v

is a solution to the Partition Problem instance. 0

These results s trongl~. suggest that we are unlikely to find a polynomial time

algorit hnl for the problem.

Chapter 4

Sequential Algorithms

.4lthough we have shown in Chapter 3 that Continuous-SP\V is NP-hard evcn for

quite restrictive graphs. in many practical situations. i t is often the castx that the

distances along the arcs or the intervals of the time windows at the v~r t i ccs are srriall.

bounded by a polynoniial in the size of the input instance. For esaniple. consider our

previous rriodel of pick-up service for trucks in a city with roads represented as grid

graphs. In that model. we can see that the distances of roads between intersections

can easily be bounded by a constant.

In cases such as those shown above, we want to determine i f there exist algorithrris

that solve the problems in polynomial time when the maximum of the input values are

bounded. .4lgorithnis that exhibit this type of behavior are called pscudo-polynomial

t i m e algorithnzs.

In this chapter. we will show by construction that a pseudo-polynoniial time algo-

rithm for Continuous-SP\V exists.

l ive will construct a set of algorithms that runs in polynoniial time with respect to

the input length when the rnasirnuni time window interval is bounded. lVe will thtan

construct an algorithm that runs in polynomial time with respect to the input length

when the nmximum distance is bounded.

4.1 Algorithms for Bounded Time Window Inter-

vals of Continuous-SPW

Let us consider a Continuous-SPLV instance G' = (I : '4. D. T . x . y) in which the un-

derlying graph is acyclic. Suppose we want to determine for all possible start times.

and for all vertices x in I * . a shortest feasible (x . 3) -path . Let .I1 = ma?c[,,,~,~.{b - a) .

An algorithm for this problem proceeds as follows. Start at vertex y and work

. backwards in a breadth-first traversal. For each traversal along an arc (x. 1 .) . corr~plitc

the earliest arrival time to y from u . for each start tinie t in t tic tinie window [a. b] ,

of vertex x. .1 sketch of the algorithm is shown in Figure 2.

Algorithm 2: Backward BFS Traversal.
Input: ('ontinuous-SPLV instance G' = (I7. .4, D, T, x, y)
Output: Shortest path distance d,,(t) for 11 E I arid start tirrirs
t E [a. b],
(1) . Set d,,(t) = +X fa all n E I',t E [a,b],.
(2 S e t d , , (t) = O f o r a l l t ~ [a . b] , .

\ (3) S e t q u e u e Q = { y) .
(4) while Q # {)

(+ +- dequeue Q

(6) foreach vertex u adjacent to L ,

(7) foreach t in [a . b],

($ 1 c ~ n l p u t ~ d , ~ (t) = min{d,,(t). d u L + d l y (t + d u L)) . d,, E L)
(9 enqueue u to Q

LC'e can easily see that the complexity of this approach is O (n + nt.\I); each arc is

traversed once in Step 6. and Step 7 takes O(121) time for each iteration in the loop.

Let us go through the example shown in Figure 4.1. The output produced at each

Figure 4 . 1 : A n Ins t ance of C'ontinuous-SPiV for t h e Sequent ia l . l lgori t hn i

s . ..
s t e p is show; in Table .I. 1 .

1 B r e a d t h Level 1 1 1 B r e a d t h Level 2 / I B r e a d t h Level :I 1

Tab le - 4 . 1 : O u t p u t . of ('ontinuous-SPLV Algor i thm

In t h e first backward BE'S i t e r a t ion s t a r t i n g a t ver tex y . t h e sho r t e s t (b.!/)-pat,h

a n d t h e sho r t e s t i n . ~) - ~ a t h is c o m p u t e d a n d r emembered . for all t h e fclasihle st,art

t i m e s a t vert ices b a n d a . In t h e second i te ra t ion . we find a n (s, 9) - p a t h t h a t uses

ver tex a . a n (s. ! /) -pa th t h a t uses ver tex b. a n d a short.er (h , y) - p a t h that , uses v e r k x

a . In t h e last i t e r a t ion we find a n o t h e r (1. y) -pa t h that, uses b o t h vert ices b a n d a .

Remark 4 . 1 . 1 . LVe n o t e t h a t i t is necessary in t h e a lgo r i thm t o use backward R F S

because a shor t e s t (u . &) - p a t h passing th rough ver tex r a d o e s riot necessari ly consist,

o f t h e sho r t e s t (1 1 , [,) - p a t h . Cons ide r for example . t h e g r a p h in F igu re 1.2. {.sing BFS

f r o m ver tex x s t a r t i n g a t t i m e 0 we would reach ver tex c a t t i m e 2 by going t ,hrough

Figure 4.2: An Instance of C'ontinuo~is-SPLV for BFS Sequential Algorit,hrn

vertex a . However. this does not yield a feasible (. r . !/)-path.

R ~ r n n r k 4 . 1 2 . IVe can perform Algorithm 2 n times for each vertex h in the graph to

obtain the all pairs shortest feasible (a , b)-paths.

K f m n r k 4.1. .3. LC'e can perform the all pairs source and sink algorit,hm version .I1

times for each arrival t ime in the ,sink's t ime ~vindow to find shortest feasible paths
4

for all combinations of source,sink.start time. and arrival t ime in O((rr + nl . l l)n . l l) .

Rrmnrk 4 . 1 . 4 . LC'e can easily extend the procedure to handle instances in which thc

iinderlying graph contains cycles by computing the transitive closure. This yields an

algorithm with running t ime complexity of O ((n + rn.\l).CI).

Table 4 .2 is a summary of the t ime complexity for the different ('ontin~ioris-SPLV

sequential alggrithms.

C'H.4 PTER 4. SEQ I'E.VT1.4 L .4 LGORITH,LIS

/ n source. o n e s ink . all s t a r t t,irnes. all arr ival t , imes 1 O(.I . I(n + n r . t l)) 1

C o n t i n u o u s - S P W Algor i thms
n source. o n e s ink . al l s ta .r t t imes , sho r t e s t a r r iva l t , ime
7) source. n s ink . all s t a r t t , imes, sho r t e s t arr ival t i m e

I n source. n s ink . all s t , a r t t imes . all arrival t , imes 1 O (n (+ I)) 1
*

T a b l e -1.2: Complex i ty of Cont,inuous-SPLV A l g ~ r i t ~ h m s

C o m p l e x i t y

O (n + m,.l.I)
O (n (n + nz.l.1))

4.2 Algorithms f for Bounded Distances of Conti-

In t h e previous sect ion. we cons t ruc t ed a lgo r i thms t h a t r u n in polynomial t in le w i th

respect t n t h e i n p u t length a n d t h e m a x i m u m t i m e window in terva l . Even t h o ~ i g h

we expec t t o find t,hese values bounded by a polynomial in t.he input , 1engt.h in man!

prac t ica l s i t ,uat ions. we would still like to investigat.e how t h e p rob lem hehavt-s when

t h ~ d i s t a n c r . ~ a r e h o u n d e d . h u t t h e t i m e window intervals a r e of exponent in l s i r e in

t,he l ength of t h e input , . In pa r t i cu l a r , we a r e int,erest,ed in cons t ruc t ing a, pseudo-
.-

polynomial t i m e a l g o r i t h m wi th respec t t o t h e i n p u t l eng th a n d tjhe m a x i m u m ciis-

t ancc . -

Let us a s sume , w'it,hout loss of g e n ~ r a l i t y , t ,hat all dist.a.nces a r e un i t 1 (w e c a n

a lways subd iv ide a n a r c in t h e input , g r a p h t o pat,hs composed o f ini it, d i s t ance arcs

whose t o t a l pa t h- length is equa l t o t,he ini t ial arc. d i s t a n c e) .

Gix-en a n i n p u t i n s t ance C; = (C: .4. T . .s, t , t o) witah ver tex se t C.. arc- se t .-\. se t of

t i m e window int,ervals T, sou rce s. sink t , a n d ini t ial t i m e t o a t .5, we wan t t o firid an
*

(.I;, t) - p a t h s t a r t i n g a t t i m e to .

If t h e unde r ly ing g r a p h in t h e problem is acyclic. t,hen clearly t,he p rob lem reduces

t o f inding a feasible (..i. t) - p a t h . which can be accompl ished us ing a BFS algori t ,hm

on t h e g raph in G.

So let, us suppose t h a t t,he underlying gra.ph cont.ains cycles. T h e n .we can sirn1ila.t.e

a wa.it,ing t i m e 11: a t a vertex rr by t.raversing along t , h ~ qc - les through (L of 1rngt.h.p.

If we can pre-cornputt. a n d describe in polynomial t i m e all t.he wait,ing t,irnes possible

a t each \.errex. then wt can use a RFS algorit,hm on G t.o solve (' on t , in~~oi~s -SPLV,

Specific-a.lly. i f we have computed all t.he arriva.1 t,imes of a (.r . (1)-pat,h in G. anti (nib)
9

is a n arc in G. then we can c-omprlte and dcscribe a.ll t h e arrival t.imes of (.u. h)-pat hs

rlsing a r c (a . h) a.s follows: t h e a r r i ~ a l t imes of (.u. h)-pat,hs is t h e arriva.1 t imes of (. s . (1) -

pa ths plus 1 that. a r e f ~ a s i h l e . t.oget.hrr wit.h all t h e ivait ing t imes possible at \.crtc>x

h.

Hence. our problem is reduced to t hat of finding a pol)-nornial t ime cl~w.ript ion of

possible waiting t irnes a t each \.ertex.

Computing Possible Waiting Times

S ~ i p p o s e we want t o coniput,e all possihle waiting tirnt.s feasihlr at ~ v t > r t t ' x 1 - I f

vertex 1, is not in any c~,c.le of t h e g raph , t,rivially no wait,ing is possihle at. I . . So let,

ris suppose t h a t the re a r e s imple cycles of length c , . c2. c k tha t g o t hroiigh vtlrtex

1 . . T h e n any waiting t i m e (1- possible a t 1 , must be a ft3asihle linear cwn11,ination of

cl , C L c k : tha t is.

where xl. 11. xk arp non-negat,ivt. integers. Th i s is a, linear Diophant ine ecluat.ion

with non-negat.ive int,egers c o n ~ t ~ r a i n t s . Therefore, a polynomial tiescript.ion t.o t, he

solution space o f Equat ion (1 . 1) corresponds t o a polynomial descript.ion of all t ,he

feasible wait ing t imes a t \.ert,ex I , .

T.nfortunately. determining whet,her an integer 11:' is in the solut,ion space of Equa-

tion (4 . l) is an N P - h a r d problem. It is shown in [Sch;36] tha t the 1degc.r Progrnn~nlirrg

Problem. known to be NP-comple te [G.J79], reduces t o the linear Diophantine eqlla-

tions with non-negative integer variables. There is, however. a pseudo-poly nomial

t ime algorithm for Equation (4.1) tha t runs in polynomial t ime in the input length.
2
-.

and the maximum value of c l . C L ck and 11:. In our case, w can take on exponential

values and therefore we cannot, use the pseudo-polynomial t ime algorithm.

In what, follows. we will show that i f we restrict the problem by requiring that,

for a fixed number of values c,, . e,, , c,, . the gcd(c,, , c,, c,,) is 1 t.hen t.here is a

pseudo-polYndmial t ime algorithm to dek rmine what integer values arc in t.hc solr~t,ion

space of Equation (1 .1) with respect t,o t,he input lengt,h, and the maximum valuc.s of

only c l . c2. c k This requirement allows us to solvt- our wait,ing tinie conipr~t,at,ion

in polynomial tinie in the rna.ximum distance valuc~s only since each of e l . c2. ck are

c c l e lengths.

T h ~ o r r m 4.2.1. I f for a fixed J . 1 5 j 5 k . gcd(c l . cl c,) = 1 in Equation (1 . 1) .

then there is an algorithm that can describe the solution space of Equation I . 1 in

polynomial t ime with respect to the max{cI . c2 , c,).

Proof. \ ' I 7 begin with the ca.se for two variables: that, is, j = 2., Our linc.ar Diophantinc

equation will be:

where (c l . c z) is not necessarily 1. LVtl recall in Chapter 2, Sect ion 2.3 that for a givcn

initial integer solution sy. .r:, all solutions of 1 . 2 can be expressed as

C'H.4 PTER 3. SEQI'ENTIA L '4 LC;ORITH,LfS
--4

If we let xy = m s , and x: = m r , where r. s are integers such t h a t .sc1 + rc2 = (e l . c2)
9

and where m = w/(c1. c 2) . then all non-negative integer so l~ i t ions X I . .r2 must satisfy:

Th is implies t,hat an integer solution exists if and only if t ca.n t ake on a valuc in

t h e interval.

Recall t i ~ a t {c l . c 2 } is t h e least common mul t ip le of c l . c2. If w 2 {cI . c2}. then b~

L e m m a 2..5.2,

Since t h e intercal is of size 2 1. a non-negative integer solution a l w a j s exists. For

integer 11. < {c,. e l) ~e can d o a brut,e force search of all possible . r l . .r2 values: there

a re only polynomial number of possible values in e l . c2 - not more t h a n clc2 possible

values. Therefore, we have
-. '

Theorem 4.J.2. There is a polynomial t i m e algorithm in c l , ci for t h e linear Diophan-

t ine equat ion (-1.2).

See also [HW'iG, E;an$O] for a n a l ternat ive a lgor i thm. Ncxt, we consider t h e case

for th ree variables. T h e linear Diophantine equation is

Naturally, we would like t o apply Theorem 1.2.2.

Claim 4.2.2.1. Equat ion 1.:3 has a n integer solution i f a n d onl>- i f

has a n integer solution . r l . . r 2 ~ .

C'H.4 P T E R 4. S E Q -ESTI.A L .A LC;ORITHLZIS

Proof. Let yl . y2. y3 be a solution to Equation (4 . 3) . Then y2cz + y 3 ~ : ~ = k for some

integer k. Since (c 2 . c 3) divides y2c2 and ync3, it must also divide k . Thus k = rn(c2 , c , ~)
I

for some integer m. and clearly x l = y l . x2.3 = m is a solution for Equation (4 . 4) .

Conversely. let us suppose that 2 , . zz3 is a solut.ion to Equation (4 .4) . 17sing the

Extended Eucledian algorithm, we can find integers z2, 23 such that - 2 ~ 2 + 2 3 ~ ~ 3 =

(c? . c J) . Then we can see easily that x l = z l , x 2 = 22223. x3 = Z J - 2 3 i~ a solut,ion to

Equation (4 . 3) 0

Hence. we can determine the solution space of non-negative integers for Equa-

tion (4 . 3) reci~rsively by determining the solutiori space of Eq~lation (4 . 4) . Hcncc. w1

have

T h ~ o r c r n 4.,'..1'. There is a polynomial time algorithm in c l , e l . c.3 that. solvcs linear

Diophant,ine equation (4.3).

Now, we can generalize to 'Theorem 4.2.1 by repeat application of Theorem 4.2.3.

L \C'e should notice. however. that the range of feasible va.lues for in Equation (4 . 4)

may not be continuous. The reason is that x2c2 + x3cJ = t7 is guaran-teed to be

feasible only when t, 3 { C ~ . C ~ } . Hence, Equation (1.3) always has a non-rit.gat,ive

integer solution when 1 ~ ' 2 { c l , { c 2 , ~ 3)) . When tc < { c l . c 2 . C I J) then we car1 again

use brute force search to find all possible clcrc3 values or. alternatively. find a proper

subset 5 of c l . C L . C J in which the gcd of those values is 1 and their lcm is smaller than

{c l . ~ 2 . c 3) . Hence. Theorem 4.2.1 follows. 0

.All that remains is to comp.ute the values c1 ,c2 C , in polqnorriial tinie. .4

simple greedy approach is to compute the shortest cycle lengths progressively; that is.

determine the values in the order cl < C J 5 ... 5 c,. Each tinie we find a cycle c, , we

compute all gcds g1.g.2. ..., gl of all subsets of c , , c2. C , such that gl 5 gz < ... 5 y,

a n d descr ibe t h e so lu t ion s p a c e gene ra t ed .

S ince we only need t o cons ider a cons t an t n u m b e r of cycles before we o b t a i n a se t

of l eng ths wi th gcd 1. we will h a v e even tua l ly e i the r descr ibed all the. wai t ing t i m e s

wi th in t h e ver tex ' s t i m e window, o r else. d u r i n g t raversa l of t h e cycles. have reached

t h e u p p e r bound of s o m e ver tex z's t i m e windokv. In t h e fo rmer case. we comple t ed

t h e ver tex ' s ivaiting t i m e descript iori in polynomial t i m e . 111 t h e l a t t e r case. ver tex 1 1 .

~v i l l never b e \.i.;itcd again for t h e pu rpose of c o m p u t i n g wai t ing t imes : t huh. a ver tex

is e l imina ted in polynoniial t i m e .

R e m a r k 4.2.1. In prac t ica l s i t ua t ions . it is very d i f i c u l t t o d e t e r m i n e precisel!. whether

a n i n p u t i n s t ance h a s a g r a p h in which we expect t o find a b o u n d o n t h e nurnbcr of

cycle length conib ina t ions going th rough a ver tex w i t h gcd 1 . IIowt.\.er. i f orlr i npu t is

a n und i r cc t cd g r a p h . o r t h a t t.here a r e bidirect ional a r c s be tween a n y pa i r of ad j acen t

vert iccs in t h e g r a p h . t h e n t h e gcd requi rement car1 easi ly be actiie\.cd. T h e rrasori is

t h a t b id i r cc t io r~a l a r c s a t each ver tex provide provide a length '2 cycle. so t h c prohl t rn

of f inding cycle l eng ths wi th gcd 1 becomes t h a t of f inding odd c ~ , c l c lengths .

Therefore . when t h e rict\rork h a s bidirect iorial a r c s be tween ad jacen t vert ices.

we ha\.e a pseudo-polynomial t i m e a lgo r i thm in t h e i n p u t length a n d t t ~ c maxiniurn

d i s t a n c e valuc t h a t solves ('or i t inuolls-SP\iy.

\\'c now show how t o solve tht' p roblem for genera l g r a p h s u h t > r c ~ v c n o 1orlgt.r

r t y u i r e t h a t a cons t an t n u m b e r of cycle lengths have gcd 1 .

O u r s t r a t e g is t o cons t ruc t a cycle C ' with length d f rom t h e corripositiorl of sinlpl;

cycles of lengths a l 5 n2 < ... < - a k t h rough t h e ve r t ex such t h a t g c d (d . u l) = 1 .

\Ye c a n t h e n app ly T h e o r e m 4.2.2 t o o b t a i n a pseudo-polynorriial t i r ~ i c algori t t ini for

Con t inuous -SP \ i ' p rovided t h a t d is polynomial in t h e length of t h e inpu t ins tance .

Hence, we want

d = n,x,. 0 5 x, < h, where gcd(n l .d) = 1 (4..5)
1 = 1 6 - -

< -
Let us suppose tha t o l has a prime decomposition pi' p;2 . . . p;' . Let x = plp2 . . . p,.

Then g c d (a l . d) = 1 i f and only i f d g.0 (mod p,) . 1 = 1. j. That is.
. .-

where c, # 0. r = 1. 1. By the ('hincse Remainder Theorem, for each set tirig of the

c,'s. t herc is a unique solution d (mod T) . Since there are 1 1 1 = I I i= l (p , - 1) s e t t inqs of

the c,'s such that no c, = 0. kve can enumerate all integers 0 < t i l , d 2 . .1.. d,, < :: <licti

that dl $ 0 (mod p,). i = 1 , ..., I I Z . ,$ = 1. j . So all bvt. have to show is that t t i t v is

a non-negative linear corribination of u l , a2. a k which yields one of thc d l . t i2. ..., ti,,.

Fortunately. we can generate all possible linear combination? of n l . (12. uk ~ a l u c s

. ,
which arc less than x in no rnorc than O (l z ~) steps.

-a

Let us construct a digraph J = (I7. .-I)' with vertex set 1' = (0. I , 2. x - 1) and

&

arc set '-1 = {(s, y) : s + a , y (mod n)Sor.wrntl) . ('learly. we can constrlrct .,J i n no

more than O (~ T) steps. hloreover, we can set that any vertex LL rtactiahlc. from vertex

0 corresponds to a linear conlbiriatiori of a l , a 2, nk that yields 11 . IIence. finding ti

for Equation (4 .6) reduces to finding a (O.d,)-path in . I . for sorrie 1 5 I 5 I I L . T h i s

can be done using RFS traversal on J starting at vertex 0.

Let us go through an example to illustrate how the possible waiting tir11r.s are

computed. Suppose there are three cxcles of length 6. 10, l . i at vertex 11 as stiown in Q

U

Figure 4.:3: Computing Possible It'aiting Times

Figure 4 .3 . For simplicit>.. we assume that the vertices have unbounded time windows.

The shortest cycle at vertex t~ has length 6 = 2 . 3 . So bve want to cornpose a cycle of

length d as a linear combination of the cycles with length 10 arid length 1.5 such that

d $ 0 (mod 2) . and it $ 0 (mod 3) (4 . 7)

Listing all values i , 2 , : 3 . 1 . .5 (mod 6) . we see that the only values for d that satisfies

Equation (4 .7) are 1 and 5 . Sex t , we construct a digraph as shown in Figure 1.1. .

&

Figure 1 .4 : .A Directed Graph Representation of Cycle Length C'orribinations

Solid arcs represent addition of 10 modulo 6. while broken arcs represent addition

C H A P T E R 3. SEQI 'EIVTIAL ALGORITHhlS

of 1.5 modulo 6. LVe can see that there are many combinations for (0.1)-paths and

(0.5)-paths in the digraph, such as 0 + 10 + 1.5 (mod 6) . and 0 + 10 + I.? + 10 (mod 6) .

A11 the steps so far can be done in polynomial time with respect to max{al , az. ak).

All that is left for us to show is that prime decomposition of a l can also be computed

in polynomial time with respect to max{al , a;!, ak).

A simple approach that takes 0 (a l i 2) time to decompose integer a l is to remove

1 /? all integers from the set 2 . 3, a , that divides a l . However, a better alternative

algorithm that uses randomization is the Pollard k Rho Heuristic. It has a expected

running time of O(all ') [CLRSO].

Hence. we have an algorithm for the Continuous-SPLt' that runs in polynomial

time with respect to the input length and the maximum input distance.

Chapter 5

Parallel Cont inuous-SP W

Algorithm

In th is chapter , we will design a parallel algorithm for Continuous-SPkf; using a tech-

nique known as pointer doubling.

T h e pointer doubling technique is used in many parallel a lgor i thms [CLRYO]; in

particularly. t h e parallel a lgor i thm for SPN' in [GIiSFi] uses pointer doubling. Be-

cause of t h e similarities between Cont inuous-SPW a n d SPlir. we will introduce t h e

implementat ion in [GKS.i] and follow it closely. add ing any extensions necessary for

Cont inuous-SPl t ' .

An instance G' = (I: '4. D, T . s , t) of S P W consists of a network with vertex set

C r = {z'~, I , ,) , arc set '4 = { a l . a 2, a,), dis tance set D = { d l , d 2, d m) , set

of t i m e windows T = { t l , t 2 , ..., t ,) . a source .S and sink t . S P h ' asks for a shortest

(s , t) - p a t h such t h a t a vehicle visits vertices in t h e p a t h within thei r t i m e windows. '

This is similar t o Cont inuous-SPh ' , except t h a t t h e vehicle is allowed t o wait at a

vertex for a t i m e window t o open.

CH24 PTER .5. P.48.4 L L E L CO;YTI,YI'O ITS-SP\tr .4 LGOR1TH.ZI 3 6

Allowing a vehicle t o wait makes SPIV a much easier problem to solve. In partic-

ular, for SPW there is a polynomial time algorithm with respect t o the input length

even when all distances and time windows take on exponential values. The reason is

that the following property holds: an (a . 6)-subpath of a shortest path is the shortest r

i
path from a to b. If the \;chicle arrives earlier than b's time window. i t can simply

wait .

Hence. an algorithm for SPIZ' only has to look for simple paths. Furthermore, a

shortest (s. t)-path can alwqys be obtained by composing shortest subpaths previously
Q

computed (this is especially useful in the parallel case). The algorithm in [GIi95] takes

advantage of this property by composing paths P I , P2 in parallel, given that P I . P2

has been computed. The resulting path has length up to twice the length of PI or fi

so that i n 1 steps. all paths of length up to 2' are computed.

Figure 5.1: Pointer Doubling Technique

Because there are time constraints involved, a table T,, is used for each computed

(u . [>)-path describing start and arrival times of a vehicle using the pat ti. This table

is updated during path compositions and i t is shown that the table size never exceeds

O [n) . Intuitively, this holds because only the shortest arrival time needs to be known

for any given start time.

An outline of the parallel algorithm is given below.

It is shown in [GKSi] that Algorithm 3- has complexity of 0 (l o g 2 r z) tinre using

O (n 9 processors in a CREW PR.411.

C'H.4 PTER .5. P.4R.4 L L E L COLYT1,YI.OI;S-SPtC' .I,LGORITH,ZI

Algorithm 3: Parallel Algorithm for SPLV.
Input: SPW instance G = (I.: '4, D , T , s , t)
Output: Tables T,, for each u. 1 , E L'
(1) In parallel step compute initial T,,, for each arc (u . r *) E .-I
(2) Loop for log n rounds

(3) In parallel step for every u . 1. in I '

0) let 5 = { L C E Lr : (u , U-). (U ' . 1 1) E :1)
(5) foreach u7 E 5'
(6) compute T:, by composition from T,,,. and T,,.,.

(7) set T,, = min{r,,.. min{r;L,Iu' E 5'))
(8 add arc (u , 1 1) to G'.

In the case of Continuous-Spit'. the property of shortest subpath may not hold a.s

we have seen in -Chapter 4. Figure 4.2: thus. the vehicle cannot arrive tarlier than a

vertex's time window and wait. Therefore. computing only the shortest path during

compositions is not sufficient: all feasible arrival times for every start time must be

computed. This implies that a table T, , for each (11, L+)-path has size at least .\IL.

where is the maximum time interval in G.

[-'sing a 0 - 1 matrix to represent feasibility paths in T,,., we can implenient path

composition simply as a 0 - 1 matrix multiplication: that is, we set ~ , , (t , . t L) = 1 i f

and only i f there is a (n . [*)-path starting at time t l and arriving a t time t L . and we .

set composition T:;, to be T,,,, x T,,.,,. An algoritfim for C'ontinuous-SPLV can no longer

simply look for simple paths.

Let us analyse the complcxit,y of Algorithm 4. Initializatiori in Step 1 can be

done in 0(1) time using 0(.l12 j processors. Composition in Step 6 is a 0 - 1 matrix

rnultiplicat,im step which can be done in'O(1og ,I/) time with 0 (. \ f 3 / log .\I) processors

using the Four Russian's .liatris ,Ifultiplication [ChaS'I)]. Finally, path coniputation

in Step 7 can be done in O(1ogn) time with 0 (r 1 . 2 1 2) processors.

Hence. the total complexity is O(logZ .21) time and 0(n3.1f3/ log .If) processors in a

CRELV PR.451 - total work of processor and time product of 0(n3.2f3 log .\I). This is

C'H.4 PTER 5 . P.4 R.4 L L E L COLYTI-YI-O 17S-SPCt' -4 LGORITH,Ll :IS

Algorithm 4: Parallel Algorithm for Continuous-SPIV
Input: Continuous-SPLV instance (I' = (L : .4. D, T. s. t)

Output: tables T,, for vertices u , z1 E I.'
(1) In parallel step set T,, = 0, for vertices u . r q in \
(2) Loop log .\I times

(3) In parallel step for every 11. L, in L *
(4) let S = { w E l 7 : (u , w) . (u'. 1 ') E .-1)

foreach u7 E S
(6 1 compute T:~ = T ,,,, x T,,,

(7) compute VILE 5 Tl!i'L

(8) add arc (u . 1 .) to G.

quite efficient compared to the sequential algorithm in C'haptcr -I which has complexit>-

of O(n.ZIL(n + m.11)) time for graphs that contain cycles. LVhen n, E O (n L) , this is

O(n?Zd".

\VP can see that for instances where the graph is acyclic. ho~vever. tht. parallcl

algorithm takes more work by a factor of O(.Zl) over the sequential algorithm. Finding

a ion an eficient parallel algorithm for acyclic graphs that uses this additional inform t '

is still an open problem. However, one obvious improvement that can be done to

.4lgorithm 4 is to reduce the size of tables T,,. to O(. l ln l ,) where L = rnax{d E D)

An?; (3 . t)-path in the acyclic Continuous-SPN is simple. so with start time t l , a

vehicle cannot reach other vertices later than n L . This implies that the complexit> of

path composition in Step 6 can be reduced to O(log L) time using O (. l l n L L L / log L)

processors. This is a major improvement in processor time when n L is small

compared to .\I (especially when L is polynomial in n . m) . This only lea\.es the caw

where O (n L) = .Z1 open.

Chapter 6 a

Relaxat ion

An alternative method of dealing with problems that are NP-hard is to look for

constraint relaxations in the hope of being able to construct efficient polynorriial time

algori t h n x that provide approximate solutions.

In this chapter. we will look a t the time window relaxation of Continuous-SPLV.

'The first relaxation of ('ontinuow-SPW we examine is the C7ontrnuou,s 5'hortc.d Pnth

Problem with Deadlines (C'SPd), followed by the Clon,tinuous S h o r t ~ s t Pnth Problem

with R ~ l e n s e Time.+ ((.'.SPr).

Given a C'ontinuous-SPCV instance G' = (I r , '4. D. T, s , t) , our objectjive is

1. t,o implement a polynomial t,ime algorithm that finds an initial feasibte (s, t) -

path in the relaxed problem ,

2. to approximate the solution to ('ontinuous-SPLV using the solution to the re-

laxed problem

6.1 Continuous Shortest Path Problem with Dead-

lines

We define CSPd as a restricted version of (,'ontinuous-SPN where t ime windows are

of the form [O. b,]: tha t is. t ime constraint,^ which consist only of t h e deadlines b,'s.

Thus. a vehicle can always visit a vertex early before it,s deadline and therefore. i t

never has t o wait.

To accomplish Objective 1 , our algorithm will look for shortest (.s . t)-pat,hs in

C'SPd tha t sat,isfies the deadlines. It looks for shortest, pat,hs because arriving early at,

a vertex is no worse than arriving a t a later t ime as long as this is before it,s deadline

Algorithm 5: Algorithm for CSPd
Input: Cont.inuous-SPLV inst,ance G' = (I: '4. D. T . ..;. t) with t inle win-
dows [0, b,]
Output: Shortest. distances d,7,(t) for ,*. (L E I ' and st,art t.irnfb t
(1) Set , r t , ,=O. - e9.
(2) Set d,, = +,x and d,9,(t) = +,x for all u E 1.; t E [O. h],.
(3) Set Q - { s) .

(4) w h i l e Q # d
(!5) 1 . +- dequeue Q

(6) foreach arc (t 3 , I L) in .-I

(7) Let, d:, he the deadline at, IL

(8 dsu = rnin{d,,, d,,, + d(t*. 11.)) where d,,, + d(r l . u) < d:,

($ 1) if d,,,(t) < +x for some t E [O.b],

(10) Set d,,(t) = d,,
(11) else
(12) Set d,,(t) = +x

(13) enqueue u to Q

Polynomial t ime solvability is achieved because shortest path extensions are corn

puted and kept in Step 7: thus, only simple paths are constructed.

T h e algorithm successively computes. in breadth-first, traversal from vertex .s. all

shortest feasible paths t o other vertices. It maintains for each pair of s, 11 vertices. the

latest start time a t vertex .s for which vertex u is reachabl~. The entire process takes

at most O (n + m) time.

Let us consider an example shown in Figure 6.1.

Figure 6.1: CSPd Algorithm

C'omputation done in each step is shown in Table 6.1

~ 1 , e v e l 1 1 1 Breadth Level 2 / I Breadth Level 3 I

Table 6.1: Output of CSPd Algorithm

Despite the fact that we now have a polynomial t ime algorit.hm to find a feasible

solution to the C'SPd problem. we would prefer to find the longest (s . t) -pa th that

satisfies deadline times as this would yield an approxiniation t,o ('ontinuous-SPCC'.

\
Vnfort,unat,ely, this problem turns out to be NP-hard .

To see the complexity of CSPd, it is sufficient that we consider the reduction from

the Hamilton Cycle Problem to Continuous-SPW in Chapter 3. Theorem 3.0.2

CHAPTER 6. REL3-12Y2-1TIOLy t 2

In that reduct ior.. tk3 vertices in the vertex set .V,. r = 1. n - 1 and the vertex n

have essentially ~~nborlnded time windows of [O. 2"] . while the time window of vertex h

is ['Ln+' - 1. 'Ln+ - 11. For our CSPd. we assign vertex b's time window to [O. Zn+' - 1 I .
See Figure 6.2. ?jot,ice vertex h's time window is [O. 631 instead of [6 3 , 6 3] . a A 7 4,

graph H

graph G

Figure 6.2: C'SPd Reduct,ion

Then we ask i f there exists an (.s,t)-path in the graph constructed this way that .

satisfies all time window constraints (only deadlines are concerned) whose t,otal dis-

tance is at least Zn+' - 1 . This is equivalent to asking i f there is such an (.$. t)-path

whose distance is exactly Y f ' - 1. Hence, a solution to ('SPtl cwrrespontfs t o a

solution for the Harriilton Cycle Problem.

6.2 Continuous Shortest Path Problem with Re-

lease Times

Like the CSPd problem. we can define CSPr as C'ontinuous-SPW with the restriction

that the time windows be of the form [a,. +o]; that is, time constraints which consist,

of only release t,imes.

In a manner analogous to CSPd. we accomplish Object,ivr 1 by implenlenting an

algorithm that finds the longest (.<, t)-paths in C'SPr. The reason is that arriving late
s

at a vertex is no worw than arriving at an earlier time after the release time. Let

.\I = max{a : [a . +x] E T) .
i.

Algorithm 6: Algorithm for C'SPr
Input: Continuous-SPLV instance C; = (I.. .4. D. T . s. t) with time win-
dows [a,. + x]
Output: Longest path distances d,,,(t) for .s. u E I * and start time t

Set d,, = 0. Set d,, = O and d,,(t) = -x for all E I ' . t E

[O. MI.
Set Q = {.9)
while Q # o

r 7 t dequeue Q
foreach arc (1 1 , u) in .-i

let r, be release time of vertex u .

if vertex u is in a cycle
d,, = +x

else
d,, = nlax{d,,,d,, + d (r , u)) where d,, + d((' . u) 2 r,.

if d,,,(t) > -x for some t E [O, -111
set d,,(t) = d,,

else
set d,,(t) = -x

enqueue u to Q i

Vnlike C'SPd problem, we need to take care of cycles in the input graph. At each

4

C'H.4 P T E R 6. REL:I?('ATIO.Y

level of the propagation with vertices I * , , we keep track of the longest distance (. u . 1 3 ,) -

path. If at any point in time we determine that a vertex 1 1 , is in a cycle. then we can

traverse along the cycle indefinitely: t,hris, we set longest distance d,,,, = +x, and
t

proceed to propagate t,his distamce.

LVe can determine when a vertex is in a cycle by testing membership of the vertex

along traversed paths .from the source .s. This testing can be performed in O(n .) t,ime.

Hence. we?an see &hat we do not have to traverse more than O (n) levels t,o find a

feasible solution yielding total time complexity of O(nn1) . For example. consider the

graph in Figure 6.3. C'omputation performed at each 2tep is shown in Tablr 6.2..

a [I ,+oOI

Figure 6.3: ('SPr Algorithm

Next. we would like to approximate Continuous-SPW by finding a shortest feasible
*

(s , t)-path that satisfies all release times of visiting vertices. Again. this problem turns

out t,o be NP-hard .

We will use the reduction in Chapter 3, Theorem 3.0." with these changes: we
1

assign the time window of vertex 6 in the constructed graph C; to [.Ln+' - I , +x] and

we assign the time window of vertices in the vertex set .V,, 1 = 1, n - 1 and t,he

CHAPTER 6. REL.4.YA4'T10S

Breadth Level 1 Breadth Level 2 / I Breadth Level 3 1

Breadth Level 3

d , t (t) I dst

Table 6.2: Output of CSPr Algorithm

d s , (t)
' 10. +XI

vertex a to [0, +x]. See Figure 6.1

Then we ask for a shortest path in the graph constructed this way for C'SPr whose

distance is '2"" - 1. Clearly. a solution to this problem corresponds to a solutiori to

the Hamilton Cycle Problem.

I

dsb
2

d s c (t)
[I . +mi

d s b (t)
10. +xi

d,,
1

dsb

+x
d,b(t)

(0. +-I
dsc
3

d s t (t)
[3. +=I

$t

2'

a graph H

graph G

Figure 6.1: C'SPr Reduction

Chapter 7

Applications

In this chapter. we will show how the results and algorithms developed so far can be

applied to SPCV-Cost, a cost optimization version of SPItT. Specifically, we byill show -
an efficient reduction from SPIV-Cost to Continuous-SPM'.

-.'7.1 Literature on SPW-Cost

.An instance G = (1: '4. D, T , C , s, t) of SPW-Cost is an optimization problem of SPCC'

on G = (k'. A , D , T. s , t) such that each arc (2 1 . P) in the graph has an associated cost

c,,.. possibly negative, in C'. The objective is to determine the least cost (9 , t)-path

that meets the time window requirement when the vertices are visited. The vehicle is

allowed to wait a t a vertex until its time window opens.

SPM'-Cost was first introduced as a subproblem of the .\lultlpk Trawling Salcsman

Problem ulzth Tzme CZ'zndows [DSD84].

Although the continuity constraint is no longer in the SPIV-Cost problem, it is still

N P - h a r d [DDSS93]. SPIV-Cost problem includes the hlultiple Knapsack Problem +s

CHAPTER 7. APPLICATIONS

a special case.

For the remaining part of this section, let us the notation H = (\ , '4, D, T . C , s. t)

for an instance of SPLV-Cost with nethork (/ ' ,A). source s , sink t . a set of distances

d,, E D and costs c,,, E C associated with each arc (u . 2 7) E A. and a set of time

windows [a,., b,.],. E T associated with each vertex E IT.

There are generally two families of algorithms proposed to solve SPL!'-Cost: one

uses dynamic programming and the other involves Lagrangian relaxation.

For algorithms involving Langragian relaxation, SP1V-Cost for simple paths can

be formulated as a mathemat ical program in the following way

Slinimize C c,,.YIJ

subject to:

where -Y,,. (i,;) E A is a variable for the flow on arc (i , j) , TI is a variable for the

start of service at vertex i.

The objective function (7 .1) seeks to minimize the total travel cost. Constraints

(7.2) - (7.3) define flow condition on the graph G'. Equation (7 .5) defines the time

window constraints. Compatibility requirements between flow and time variables is

captured by (7.4).

CHAPTER 7. APPLICA71O;VS

Although this program has a nonlinear formulation, it has an appealing charac-

teristic in tha t if the problem is feasible, then there is an optimal integer solution. To

see this. we note tha t constraint (7 . 4) indicates that i f .Y,, > 0, then T, + d,, < TI .

If the flow values are fractional, then the optimal solution of value Z* is composed

of paths of cost c, . each with positive flow 0,: i.e.. Z* = 1, cpOp. where C p op = 1 .

Assigning a unary flow to the arcs of the minimum cost path c,;,. then c,,, satisfies

the t ime constraints and constitutes an optimal integer solution since

P P .
See [ll in75] for a proposed algorithm tha t involves the solution of a shortest path

problem with costs modified by the addition of a multiplier associated with some

supplernentary constraints. It produces a feasible solution and a lower bound on the

value of the optimal solution.

For dynamic programming algorithms. S P W C o s t can be formulated as follows.

Let F (r * , t) be the minimum cost of a (s , [?)-path for L' f I ' servicing vertex t 1 at t ime

< t . This cost F(t1. t) can be computed by solving these recurrence equations: -

F (t , , t) = min { F (u , t l) + c,,, I t1 5 t - d,,..a, 5 t1 5 b ,) ,
(u . c) € . 4

for all t1 E I' and a,, 5 t 5 b ,

T h e optimal solution is given by

min F (d , t) (7 . 8)
a d L t 5 b d

T h e first proposed dynamic programming approach appeared in [Jok66]. It solves

the recurrence,equations using a generalization of the FIFO rule for the shortest path

problem. Other rules with better running times have been investigated in [DSSS].

C H A P T E R 7. A PPLICAT1O;YS

7.2 Using Continuous-sPW

In this section. we will show that solving SPW-Cost is no harder than solving C'ontinuous-

SP1V. In particular, we will show that an instance of SPW-Cost can be t,ransformed

to an optimization instance of Continuous-SPW with costs associated to each arc. IVe

will then show how we can adapt an algorithm for the Continuous-SPW' to sol\.e this

optimization version of Cont inuous-SP\V.

Let us consider an SPW-Cost instance H as described previously. 1i.e construct

a continuous instance G = (I%. AG, T , DG. CG. s. t) of the optimization version of

Continuous-SP1V in the following steps.

\t'e take the graph in H and subdivide each arc e,, = (r , , , r l ,) in .AH into paths

of length 2; that is. a new vertex z7,, is added along each arc e l , such that arcs

(z',. P , ,) . (v I J . t v J) are added in AG with corresponding distances d,, - 1, 1 and costs

c,,, 0. respectively. The time window for t7,, is [0, max time]. In addition. a loop

(z, , , , r 3 , ,) with cost 0 and distance 1 is added to tl,, (see Figure 7 .1) .

[O,max time] [cd]

Figure 7.1: 1C'aiting a t a i'ertex Simulation

*

This subdivision essentially allows the simulation of a wait at vertex rt , , for the

Continuous-SP1V optimization version before 21,'s opening time window by looping

through [I , ,

CH.4 PTER 7. .4PPLlCAT1OA~S .5 1

\.Ye can easily see tha t this construction takes at most O (m) t ime. hlore irnpor-

tantly, we can easily see tha t the techniques used t o solve Continuous-SPLV can be

applied for SPW-Cost with only minor changes. Rather than optimizing the distance

from vertices to the sink t . we optimize the cost from vertices to t . For example, let

us take Algorithm 2 in Chapter 4 and adapt it to solve SPW-Cost .

Algorithm 7: Algorithm for Continous-SPCC' with costs
Input: Continuous-SPW with costs instance C; = (1 : '4. D. T , C. .r. y)
Output: Least cost path c,,(t) for u E I..' and start times t E [a. b] ,

(1) Set c,, = 0, d,,(t) = 0 for all t E [a, b],.

(2) Set c,, = +CG, d U y (t) = +fx for all u E A. t E [a , b],.

(3) Set queue Q = {Y).
(4) while Q # d
(.5) 2% t dequeue Q
(6) foreach vertex u adjacent to r1

(7) foreach t in [a , 61,
(8). compute c,,(t) = min{c,,(t),c,, , + c,,(t + d, ,)) , d,., E

n, c,, E C
(9 d u y (t) = d,,, +d,,,(t +d,,,) i f c,, +c,.,(t +d, ,) > c,,
(10) enqueue u t o Q

iCP see tha t in Step 8 the least cost (u . y)-path. u E 1' determines the choice of

the distance from u t o y . -

In fact, we can generalize the problem to multiple resource optimization as it is

done in [DesSS]. Details of this generalization using Continuous-SPiV is left open for

future research.

Chapter 8

Conclusion

In this t,hesis we have obtained a number of results for a new problem, t,he cont,in-

uous shortest path problem with time windows. LC'e showed that this problem was
-P

motivated by the fact that the simpler version appeared as a subproblem of vehicle

routing problems with time windows. Due to the economic implications in the area of

transporta.tion systems, scheduling, and factory automation, there has been extensive

research in the vehicle routing problems. despite its complexity.

8.1 Summary of Results

The main results are summarized below.

1 . In Chapter 3. we showed that Continuous-SPbV is NP-hard for general graphs,

bipartite graphs, planar graphs, grid graphs. and finally monotone grid graphs.

2. In Chapter 1. we developed a number of sequential pseudo polynomial time

algorithms for Continuous-SPLV when the input values are bounded.

CH.4 PTER 8. CONCL I'SIOAV

3. In Chapter 5. we developed a parallel pseudo-polynomial time algorithm for

Continuous-SPW.

1. In Chapter 6. we showed that polynomial time algorithms for Continuous-SPW

exists when either the upper bound or the lower bound of time windows are

relaxed. LVe showed that any optimizat,ion of these relaxation to approximate

the actual Continuous-SPLV is NP-hard.

5 . In Chapter 7. we described extensions to algorithms for Continuous-SPCV tjo

solve the cost opt,imization version of Continuous-SPCC'. The resulting algo-

rithms can then clearly be used to handle the simpler cost optirniza.t,ion version

of SPLV where the continuity requirement is dropped.

8.2 Summary of Open Problems

Sorne problems that emerged during our study of Continuous-SPW were left unan

swered. Below is a list of open problems:

1 . In Chapter 4 . we constructed a pseudo-polynomial time algorithm for the bounded

distance version of Continuous-SPW. We would like to w e an implementation

and the running time analysis of the algorithm in comparison with the pseudo-

polynomial time algorithms for the bounded time windows version.

2. \Ve would like to see a parallel algorithm for the bounded distancc version of

Continuous-SPW as we have done in Chapter 5 .

3. Me would also like to see a even more efficient pseudo-polynomial time algorithm

for the Knapsack Problem by applying of the techniques of C'hapter 4 used to

solve the linear Diophantine equat~ons (4 . 1) .

-
CHAPTER 8. COiliCL C:SlON

4. In Chapter 7. we showed how the algorithms for Continuous-SPW can be ex-

t,ended to handle the optimization problem of Continuous-SPW 6 t h single re-

source constraint -- t ime window constraint. We would like t.o generalize the

extension t o optimization problems with multiple resource constraints.

5 . W'e would also like t o see other solution methods to develop efficient approxi-

ma.tion algorithms - for example randomized algorithms.

6. Another variatiant t,o Continuous-SPh' that is very much of interest and in ac-

t.ive research is t'he Continuous Sh,orte.ut Path Problpm. with Periodic Time W-112-

dolr Con,.straints (CSPPW') . As the name implies, the t ime windows in C S P P W

are period.

Bibliography

[A H '] Alfred \'. Xho. John E. Hopcroft, and .Jeffrey D. I-l lman. T ~ P Drszgn and

.4nalysz.s of Computer .-tlgorzthms. Addison-PVesley Publishing Company.

19'74.

[.A k189] Selim G. .A kl. Thc Deszgn and ,4 nnlysis of Pamllel .-llgorzthms. Prentice
P

Hall. 1989.

[Bhl'iG] J . A . Bond. and I... S. R. hlurty. Graph, T h m r y c i f h .-lpplicatiorrs. Nort,h-

Holland. 1976.

[ChaS'L] Pranay Chaudhuri. Parallel ,-llgorzthms, Deslgn and .-lnalys1s. Prentice

Hall. 1!192.

[C'LRSO] Thomas H . Cormen, Charles E. Leiserson, and Ronald L. Rivest. [ntro- ,

duction to ,-llgorithms. hIIT Press, Cambridge, hlass.. 1990.

[CTy l] W. Ii im Chang and J .3I .X. Tanchoco. Conflict-free shortest-t ime bidirec-

tional avg routeing. 1,L'T. J. PROD. RES.. 29(l'L):'L3Z-'L39 1. 1991.

[DDSS93] Jacques Desrosiers, k'van Dumas, hlarius h1. Solomon, and F ran~o i s

Sournis. T i m e Constrained Routing and Scheduling. North-Holland, 1993.

[Des88] Xfartin Desrochers. .An algorithm for the shortest path problem with re-

source constraints. Technical report, GERAD, 1988.

[DS88] Xfartin Desrochers and Franeois Soumis. .A generalized permanent labelling

algorithm for the shortest path problem with t,ime windows. I.VFOR.

%(:I): 191-21 1. 1988.

[DSD84] .J . Desrosiers. F. Soumis, and XI. Desrochers. Routing with t.ime windows

by column generation. . V ~ t t ~ ~ ~ r k . s ' , 14:545-565. 1984.

[Dud781 I 'nderwood Dudley. Elementary .Yum,ber Thcory. W. H . Freeman .and

Company. 1978.

[G.J-79] XI. R . Garey and D. S. .Johnson. C o m p u t ~ r s and Intractabdrty: ,l G u l d ~ t o

.VP-C'ornpl~t~nts.5. LV.H. Freeman and ('ompany. San Francisco, ('alifornia.

19-70.

[C;K95] Arvind Gupta and Ramesh Iirishnarnurti. Parallel algorit,hms for vehicle

routing problems. TB,-l, 199.5.

[H\IV-76] D.S. Hirschberg and C. K. LVong. .A polynomial-time algorithm for t,he

knapsack problem with two variables. . lssociation for Comput ing .Ilach,in-

ery. 2:1(1):137'-1.54. 1976.

[Jok66] H. C,. Joksch. The shortest route with constraints. .Clathem.aticd .lnalysi,q

and .4pplications, 14: 191 -197, 1966.

[IianSO] Ravindran Iiannan. .A polynomial algorithm for the two-variable integer

programming problem. Journal of ,-lssocznt~on of Computzng .\lar.hlnery,

27(1):118 -122. 1980.

[hIin7.5] M. blinoux. Plus cour t chemin avec contraintes: algorithmes et applica-

tions. In A nnnles ~ P S T & ' c ~ m m ~ ~ n i c a t i o n . ~ , volume 30, pages 1 - 12, 197.5.

[SchSG] Alexander Schrijver. Theory of Linear And Integer Progmm.m,ing. .John

Wiley a n d Sons Ltd . , 1986.

[Sor86] B. Sornesen. lnteractzve Dzstrzbutlon Planning. P h D thesis. Technical

TVniversity of Denmark , 1986.

Index

Chinese Remainder Theorem, 12

complexity classes

P, XP. NP-hard. NP-complete. d

congruences, 11

Continuous-SPLV

definition, 2

Diophantine equation

definition. 9

integer solutions. 10

nor)-negative integer solutions, 27

Extended Euclidean Algorithm, 10

Four Russian's Matrix .Llultiplication,

3 8

graph

algorithms

BFD. DFS, 6

definitions, 4

greatest common divisor. gcd, 9

Integer Programming, 27

least common multiple, lcm, 1 1

models of computation

R.Al1. PRAXl, i'

Partition Problem, 20

pointer doubling,

prime decomposition

Pollard's Rho Heuristic, 34

pseudo-polynomial algorithms. 22

SPU'

definition,exarnple, 1

SPLV-Cost

definition, 2

Hamilton Cycle Problem, lt5

