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Abstract 

The (asymptotic) degree distribution of the best known scale free network models are all 

similar and are independent of the seed graph used. Hence it has been tempting to assume 

that networks generated by these models are similar in general. In this thesis it is shown 

that several key topological features of such networks depend heavily on the specific model 

and seed graph used. Furthermore, it is shown that starting with right seed graph, the 

duplication model captures many topological features of publicly available PPI networks 

very well. 

keywords: protein-protein interaction networks,topological properties,duplication model. 
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Chapter 1 

Introduction 

Understanding the topology of protein-protein interactions (PPI) is an important problem in 

proteomics. It is believed that understanding the topology and dynamics of these networks 

can give deep insight into the inner working of a cell, which may lead to the development 

of potential drugs for complex diseases. 

Protein-protein interactions play a central role in the execution of key biological functions 

of a cell. It is possible to represent interactions between pairs of proteins as binary relations 

which can be summarized as a undirected graph (network) in which each node represents a 

protein and each edge represents an interaction. A graph including all proteins and possible 

interactions between these proteins can be called the proteome network of an organism. 

In the past few years protein-protein interaction (PPI) networks of several organisms 

have been derived and made publicly available. 

1.1 PPI Databases 

Using high throughput techniques a large amount of experimental protein-protein interaction 

data has been generated and made publicly available through various databases. Perhaps 

the best known PPI network database is DIP (Database of Interacting Proteins) [28] which 

includes the S. Cerevisiae (Yeast) PPI network (the best developed PPI network available 

with 4902 proteins and 17200 interactions), as well as the C.Elegans (Worm) network (with 

2387 proteins and 3825 interactions). In this manuscript the main focus is on the Yeast PPI 

network from DIP but also there are results from other networks, such as Worm network 

from DIP as well as a more accurate but smaller CORE Yeast network(2345 proteins and 
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5609 interactions), also available through DIP [12]. Less developed PPI  networks available 

through DIP 1351 include those of the fruit fly, human, and mouse. Other PPI network 

databases include BIND [2], IntAct [16] and MINT [36]. 

1.2 Networks Interesting Properties 

It is now well known that the structure of the Yeast proteome network seems to reveal two 

interesting graph theoretic properties [18, 311 : 

(i) The degree distribution of nodes (i.e. the proportion of nodes with degree k as a 

function of k )  approximates a power-law (i.e. is approximately ckPb for some constants c, b). 

(ii) The graph exhibits the small world effect: the shortest distance between a randomly 

selected pair of nodes is "small". 

Small world phenomena and the power-law degree distributions have previously been 

observed in a number of naturally occurring graphs such as communication networks [13], 

web graphs [I, 3, 8, 10, 20, 211, research citation networks [26], human language graphs [14], 

neural nets [34], etc. These two properties cannot be observed in the classical random graph 

models studied by Erdos and R h y i  [27] in which edges between pairs of nodes are determined 

independently.Erdos and R6nyi random graph generation model starts with a set of vertices 
Av .Degree and add edges between each pair of nodes with constant probability p = , where 

Avg.Degree represents average degree of the graph we want to emulate, and also n represents 

number of nodes. 

Since well known random graph models also have power-law degree distributions [3], [8], 

[33] it has been tempting to investigate whether these models agree with other topological 

features of the PPI  networks. 

There are two well known models that provide power law degree distributions (see [lo, 

9, 41). The preferential attachment model 11, 81, was introduced to emulate the growth of 

naturally occurring networks such as the web graph; unfortunately, it is not biologically well 

motivated for modeling PPI  networks. The duplication model on the other hand [7, 30, 231 

is inspired by Ohno's hypothesis on genome growth by duplication [22]. Both models are 

iterative in the sense that they start with a seed graph and grow the network in a sequence 

of steps: 

The degree distribution is commonly used to test whether two given networks are sim- 

ilar or not. However, networks with identical degree distributions can have very different 
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topologies.l Furthermore, it was observed in [15] that given two networks with substantially 

different initial degree distributions, a partial (random) sample from those networks may 

give subnetworks with very similar degree distributions. Thus the degree distribution can 

not be used as a sole measure of topological similarity. 

In the recent literature two additional measures have been used to compare PPI networks 

with random network models. The first such measure is based on the k-hop reachability. 

The 1-hop reachability of a node is simply its degree (i.e. the number of its neighbors). 

The k-hop reachability of a node is the number of distinct nodes it can reach via a path 

of < k edges. The k-hop reachability of all nodes whose degree is l is the average k- 

hop reachability of these nodes. Thus the k-hop reachability (for k = 2,3,.  . .) of nodes 

as a function of their degree can be a used to compare network topologies. An earlier 

comparison of the k-hop reachability of the Yeast network with networks generated by 

certain duplication models concluded that the two network topologies are quite different 

[5]. The second similarity measure is based on the graphlet distribution. Graphlets are 

small subgraphs such as triangles, stars or cliques. In [24] it was noted that certain "scale 

free" networks are quite different from the Yeast PPI network with respect to the graphlet 

distribution. This observation, in combination with that on the k-hop degree distribution 

seem to suggest that the known PPI networks may not be scale free and existing scale free 

network models may not capture the topological properties of the PPI networks. 

There are other topological measures that have been commonly employed in comparing 

social networks etc., but not PPI networks. Two well known examples the betweenness 

distribution and the closeness distribution [32]. Betweenness of a vertex v is the number 

of shortest paths between any pair of vertices u and w that pass through v, normalized 

by the total number of such paths. Closeness of v is the inverse of the total distance of 

v to all other vertices u. Thus one can use betweenness and the closeness distributions, 

which respectively depict the number of vertices within a certain range of betweenness and 

closeness values can be used to compare network topologies. 

'Consider, for example, an infinite two dimensional grid vs a collection of cliques of size 5; in both cases 
all nodes have degree 4. 



Chapter 2 

Measures for Comparing Networks 

There are several topological features that can be used to test whether two networks are 

similar or not, starting at very rigorous measures like isomorphism, to very relaxed charac- 

teristics like degree distribution. 

2.1 Graph Isomorphy 

Two networks G and G' are called isomorphic if there exists a bijective mapping F from 

each node of G to a distinct node in G', such that two nodes v and w  are connected in G 

if and only if F ( v )  and F ( w )  are connected. G and 6' are called approximately isomorphic 

if by removing a "small" number of nodes and edges from G and G' they could be made 

isomorphic. Ideally a random graph model that aims to emulate the growth of a PPI 

network should produce a network that is approximately isomorphic to  the PPI network 

under investigation. 

Graph Isomorphism problem has been intensively studied, not only because of its many 

applications, but also in part because it is one of the few problems in NP that has resisted 

all attempts to be classified as NP-complete, or within P. Hence, it has been proposed by 

researchers to find some particular features and compare these features of the graphs instead 

of the graphs themselves. 
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2.2 Network Features 

As explained in previous section, we do not know of a way of testing graph isomorphism in 

polynomial time. Hence, to fulfill the purpose of graph comparison we need to select a set 

of graph features and compare them. However, the selected features should have two main 

characteristics. 

First, the feature's behavior for real PPI networks should be different from that of 

graphs generated using the Erdos-Rhyi graph generation model Second, the selected 

feature should be robust, i.e. when minor changes happen it should not change behavior 

substantially. Furthermore, it should be sensitive, i.e. when a significant portion of edges 

are randomly changed the feature should be able to recognize the change. 

2.2.1 Random Change of the Network 

As explained in previous section, one of the properties that a feature should have in order 

to be acceptable for graph comparison is to be robust, i.e. not to change significantly when 

minor changes occur. In addition, the feature's behavior should be sensitive, i.e. when huge 

portion of edges have altered the features behavior should change significantly. To do this, 

a method is needed to randomly alter the edges of the given graph without changing the 

number of nodes and edges. 

First we need to define the percentage of changes we are looking for, e.g. p = lo%, 20%, ..., 100%. 

Then the algorithm with probability proportional to p deletes each edge in the graph, and 

adds one edge to the graph, by randomly selecting two unconnected nodes and connecting 

them (therefore the total amount of edges will not change). However, there is one exception, 

if the selected edge has an end point with degree 1 then we can only change the other end of 

the chosen edge to a random node (because if both ends of the edge are changed, it results 

in reduction of the number of nodes). 

2.2.2 Degree Distribution 

The first and foremost graph topology feature used in comparing two graphs (e.g. PPI 

networks and a graph generated by a particular random model) is degree distribution. 

'1n this classical random model all the nodes are created at once and then each pair of nodes get connected 
independently with fixed probability p 
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One very interesting property of some natural graphs such as the Internet or PPI net- 

works is that their degree distribution seems to be in the form of power-law [18] [31], 

i.e. probability of a node having degree k is approximately ck-b for some constants c, b. 

However, some recent works have challenged this behavior of PPI network, by attributing 

the power-law like behavior to sampling issues, experimental errors or statistical mistakes 

[15, 24, 29, 25, 111. 

2.2.3 k-hop Reachability 

Let V(i) denote the set of nodes in V whose degree is i. Given a node v, its k-hop degree, 

i.e. the number of distinct nodes it can reach in at most k hops is denoted by d(v ,  k). We 

Define f (i, k), the k-hop reachability of V(i) as 

Thus f (i, k) is the "average" number of distinct nodes a node with with degree i can reach 

in k hops; e.g. f (i, 1) = i by definition. 

First, let us show that k-hop reachability is a useful feature for comparing PPI networks 

against graphs generated using random generation models. For this purpose, it is needed to 

compare the k-hop reachability of Yeast PPI network with the networks emulated using the 

simplest random graph generation model, i.e. Erdos-Rhyi generation models. In Figure 

2.1 it is shown that k-hop reachability of Yeast PPI network has a clear difference from that 

of Erdos-R6nyi graphs, which means that k-hop reachability can be a good candidate for 

comparing different random model generations against real PPI networks. 

The second second test is to see if k-hop reachability is robust (and sensitive) when yeast 

PPI network is considered or not. 

In figure 2.2, it is illustrated that k-hop reachability is fairly robust. The reason for this 

claim is that when a minor portion (10% or 20 %) of edges are changed the behavior of the 

feature does not change significantly (in figure 2.2, the red plots represent the Yeast PPI 

network, while green represents 10% and blue 20 % random changes in Yeast PPI network). 

In addition, in the same figure it is shown that k-hop reachability is also sensitive. Because 

when considerable portion (50% or 60%) of edges are changed it is reflected in features 

behavior. (in figure 2.2, the red plots represent the Yeast PPI network, yellow for 50% and 

black for 60% random changes). 
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2.2.4 Betweenness Distribution 

The betweenness of a fixed node of a network measures the extent to which a particular point 

lies 'between' point pairs in the network G = (V, E). The formal definition of betweenness 

is as the following. Let a,,, be the number of shortest paths from x E V to y E V for all 

pairs of x, y E V (note that in undirected graphs a,,, = a,,,). Let a,,,(v) be the number of 

shortest paths from x E V to y E V which go through node v. The betweenness Bet(v) of 

node v is now defined as: 

In the same manner as k-hop reachability, betweenness feature must have two properties 

to be considered as an feature to compare PPI networks against graphs emulated using 

random graph generator models. First, we need to show that betweenness distribution of 

yeast PPI network has a different behavior from that of Erdos-Rhyi networks Second, it 

must be shown that this feature is robust and sensitive to random change. In figure 2.3 we 

have illustrated both claims. 

2.2.5 Closeness Distribution 

For all x, y E V, we define d,,, as the length of the shortest path between x and y. The 

closeness of a node v E V is defined as 

Here we will verify that closeness distribution also has the necessary properties to be 

considered as an feature for PPI  network comparison. In figure 2.4, we show that Yeast PPI 

network has a different closeness distribution than Erdos-Rgnyi graphs. Moreover, we show 

that this feature is robust and sensitive to random changes. 

2.2.6 Graphlet Frequency 

The graphlet frequency has been introduced in [24] to compare the topological structure 

of networks. A graphlet is a small connected and induced subgraph of a large graph, for 

example a small triangle or a small clique. The graphlet count (graphlet frequency) of a 
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given graphlet g with r nodes in a given graph G = (V, E) is defined as the number of 

distinct subsets of V (with r nodes) whose induced subgraphs in G are isomorphic to g. 

In this paper we consider all 141 possible graphlets/subgraph topologies with 3, 4, 5 and 6 

nodes. Furthermore, we consider cliques of sizes 7, 8, 9 and 10 (permutation of all graphlets 

is shown in A.l). Like all the previous features, graphlet frequency of Yeast PPI network 

must have different behavior form graphs generated using Erdos-R6nyi graph generation 

model. In addition to being robust and sensitive to  random changes. In Figure 2.5 we show 

that, Yeast PPI network has a different graphlet frequency than Erdos-Rhyi graphs. In 

addition, it is shown that graphlet frequency is robust and sensitive to random change of 

network. 





Chapter 3 

Network Generation Models 

There are many random network generator models, however, few of them achieve power- 

law degree distribution. Two of the most famous ones are preferential attachment and 

duplication model. Also, a new model has recently been proposed in [24] which claims to 

emulate the PPI networks accurately, called random geometric model. In the rest of these 

thesis we will focus on these three models. 

The preferential a;ttachment and duplication network models both start with a small 

seed graph and add one node to it in each iteration. In contrast, the random geometric 

model creates all the nodes in the first step, and then adds edges. 

Let G(t) = (V(t), E(t)) be the graph at the end of time step t, where V(t) is the set of 

nodes and E(t) is the set of edges/connections. Let vt be the node generated in time step 

t. Given a node v,, we denote its degree at the end of time step t by dt(v,). In the coming 

sections we will explain each of these models in detail. 

3.1 Preferential Attachment Model 

As explained previously preferential attachment model is an iterative model, which achieves 

power-law degree distribution. The preferential attachment model was analyzed in [I], [6], 

[8] ,[lo]. In step t it generates vt and connects it to every other node v, independently with 

probability c - dt-l(v,)/21E(t - 1)1, where c is the average degree of a node in G; i.e. vt 

prefers to connect itself to high degree nodes. 
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3.2 Duplication Model 

This model is based on Ohno's hypothesis of genome evolution [7], 1231, [30]. In iteration t ,  

a node v, of G(t - 1) is picked uniformly at random and "duplicated", i.e. an exact copy 

of v, as vt is generated (including its edges). The model then updates vtls edges, first by 

deleting each of its edges with probability (1 - p), then by connecting each node v t ~  (except 

the neighbors of v,) to vt independently with probability r/lV(t)l. Here, p and r are user 

defined parameters. Much of the earlier work on the duplication model aim to maintain 

a constant average degree throughout the generation of the network; this is achieved by 

setting r = 1 - 2p. 

As mentioned earlier, the degree distribution of the preferential attachment model as 

well as the duplication model asymptotically approaches a power law [I], 181, [lo], 191. More 

specifically, in the log-log scale, it forms a straight line (this is valid for only "high degree" 

nodes) whose slope is independent of the seed graph and a function of the values of p and r 

for the duplication model or c for the preferential attachment model. Thus, the two iterative 

models are equivalent with respect to the degree distribution. 

Both the preferential attachment and the duplication model produce many singletons 

[4]. Singletons are nodes which are not connected to any other node. Unfortunately there 

are no known bounds on the number of generated singletons in the duplication model. In 

the duplication model, for the special case r = 0, p = 112, the proportion of singletons 

asymptotically approaches 1. Also, we observed in our experiments that for other values of 

p and r, number of singletons generated by duplication model is much higher than number 

of singletons in known PPI networks (in PPI networks number of singletons are very small). 

3.2.1 Modified Duplication Model. 

It is well known that the number of singletons in PPI networks are quite limited. This does 

not come as a surprise as genes with no functionality are not conserved during evolution. 

Thus a slightly modified duplication model which deletes each singleton node as soon as it 

is generated may better emulate the growth of PPI networks. This model has also been 

shown to achieve a power law degree distribution 141. 

'we also note that the known PPI networks have several self loops. Both the preferential attachment and 
the duplication models can be modified slightly to  produce such self loops(homo dimers). 
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Unfortunately, similar to the number of singletons in duplication model, in modified 

model the total number of generated nodes is not known. Moreover, it is not known which 

values of p and r ensure that the expected average degree is constant through all iterations. 

In Section 3.2.2 we derive conditions on p and r that are necessary for having a constant 

expected degree. We later use the derived relationship between p and r so that the modified 

duplication model can well approximate the desired average degree as well as the degree 

distribution of the PPI networks under investigation. 

3.2.2 The Parameters of the Modified Duplication Model 

Here we show how to determine conditions on deletion probability 1 - p and insertion 

probability r so that the expected average degree of the network can be set to any given 

value. For this, we make the the assumption that the degree frequency distribution and the 

average degree of nodes are fixed asymptotically once the values of p and r are determined. 

Let G(t) = (V( t ) ,  E( t ) )  be the network generated by the modified duplication model and let 

n(t)  = IV(t)l and e(t) = IE(t)l. Also, let nk( t )  be the number of nodes in time step t  with 

degree k and a(t) be the average degree of nodes in G(t) .  Finally let Pk(t) = nk(t) /n(t) ,  the 

frequency of nodes with degree k at time step t .  We assume that Pt(k) is asymptotically 

stable, i.e. Pk(t) = Pk(t + 1) for all 1 < k < t  for sufficiently large values of t .  In other 

words we assume that Pk(t) = dk  for some fixed dk. By definition 

Now we can calculate the average degree a(t + 1) under the condition that degree frequency 

distribution is stable and a(t) = a, a constant. 

Let Pr,(t) be the probability that vt+l ends up as a singleton. 

2 ~ h e r e  might be an alternative method which combines different biological factors to determine the values 
of p and r ,  such as mutation probabilities, probability of preserving interactions, etc. 
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Since this probability does not depend on t asymptotically, we can set Pr,(t) = Pr,. Now 

we can calculate the expected number of nodes and the expected number of edges in step 

t + l .  

Exp[n(t + I)] = Pr, . n(t) + (1 - Pr,) . (n(t) + 1). 

a 
Exp[e(t + I)] = - . (Pr, . n(t) + (1 - Pr,) . (n(t) + 1)). 

2 

Comparing the above equation with the first equation for Exp[e(t + I)] we get 

a n(t> . a@> n(t) . a 
- . (Pr, . n(t) + (1 - Pr,) - (n(t) + 1)) = 

2 
+ p - a ( t )  + r  = - 

2 2 
+ p . a + r .  

Solving the above equation results in a = 2r/(l  - Pr, - 2p) where Pr, is a function of p, r 

and dl, only. 

The discussion above demonstrates that the two key parameters p and r of the (modified) 

duplication model are determined by the degree distribution (more specifically the slope of 

the degree distribution in the log-log scale) and the average degree of the PPI network we 

would like to emulate. Perhaps due to the strong evidence that the seed network does not 

have any effect on the asymptotic degree distribution [ 5 ] ,  the role of the seed network (the 

only free parameter remaining) in determining other topological features of the duplication 

model has not been investigated. 

3.3 Random Geometric Model 

The random geometric graph [24] generation model generates the graph in a bounded l- 

dimensional Euclidean space (l is typically 3 or 4). It picks independently and uniformly 

at random points from the underlying space and assigns a node to every point picked. Two 

nodes are connected if the (Euclidean) distance between the nodes is at most some user 

defined value r .  If we want the generated graph to have a particular average degree we need 

to pick the r value in a matter so that we can achieve the desired average degree. 



Chapter 4 

Scale-Free Models Comparison 

The main results that we show is that, first, although Duplication Model and Preferential 

Attachment both generate graphs with power-law degree distribution, however other features 

of networks generated using these two models are different. Also, we show that the networks 

generated using duplication model is dependent to the initial "seed network" it starts with, 

although the degree distribution of networks generated is asymptotically independent of 

"seed network". 

4.1 Duplication against Preferential Attachment Model 

In this section we show that the modified duplication model and the preferential attachment 

model with similar degree distributions may have very different k-reachability, betweenness 

distribution, closeness distribution and graphlet frequency, thus considering only one of 

these models as a representative of "scale free" networks can be misleading. 

Figure 4.1 depicts the degree distribution, k-hop reachability, closeness distribution, be- 

tweenness distribution and graphlet frequency of the duplication model and the preferential 

attachment model with 4902 nodes (as per they Yeast PPI network [28]). We set r = 0.12, 

p = 0.365 and d = 7 so that the average degree of nodes in both models is 7 (again as 

per the Yeast PPI network [28]). Figure 4.1 compares the k-hop reachability achieved by 

the two models for k > 1. As can be seen, the k-hop reachability is quite different espe- 

cially for k = 3,4. Figure 4.1 also shows how the graphlet distributions differ, especially 

for dense graphlets (e.g graphlets 17-29 and 85-145). For instance, as it can be seen in 
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Figure 4.1 duplication model generates around 500 times more subgraphs than pref- 

erential attachment. In terms of betweenness and closeness there are some differences as 

well. 

4.2 The Effect of the Seed Network in Shaping the Topolog- 

ical Behavior of the Duplication model and Preferential 

Attachment Model 

We now show that the seed network has a key role in characterizing the topology of the 

duplication model. Figure 4.2 depicts how various topological features of duplication models 

with identical parameters (p = 0.365 and r = 0.12) but different seed graphs vary. The first 

seed graph (red) is obtained by highly connecting two cliques of respective size 10 and 7 by 

several random edges. To reduce the average degree some additional nodes were generated 

and randomly connected to one of the cliques. The second seed graph (blue) is obtained by 

enriching a ring of 17 nodes by random connections so as to make the average degree match 

that of the first seed graph. The third seed graph (green) is formed by sparsely connecting 

two cliques of respective sizes 10 and 7 with some added nodes randomly connected to one 

of the cliques. 

All three networks were grown until both had 4902 nodes as per the Yeast PPI network 

[28]. (We depict the average behavior of five independent runs of each of the models.) It can 

be observed that although all of them have very similar degree distributions, their graphlet 

distributions(Figure 4.2(i)) may be quite different, especially for dense graphlets. Note that 

the figure 4.2(i)and 4.2(g) are in logarithmic scale and seemingly small variations in the 

figure may imply several factors of magnitude of a difference between the two distributions. 

Figure 4.2 also compares the khop reachability, closeness and betweenness distributions. 

As can be seen the k-hop reachability and the closeness distribution can vary considerably. 

Now a very crucial and difficult question to answer is that how we should pick a "right" 

seed network to generate PPI networks using duplication model. We will return to this 

question in Section 5.3.1, and try to use a heuristic method to  guide us in choosing the seed 

network. 

For preferential attachment model, we have tried different seed networks and it seems 

' ~ 2 , 4  has graphlet id of 115 
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to be robust to seed network change. in another words, all the features we used were 

independent of the seed network for preferential attachment model. 



Chapter 5 

Emulating Yeast PPI Network 

In this chapter we will look at how networks generated by different random network genera- 

tion models compare with Yeast PPI network. The models we will consider here are preferal 

attachment, random geometric model and duplication model(modified). 

5.1 Preferal Attachment against Yeast PPI Network 

In this section, we are going to compare the networks generated using preferal attachment 

with the Yeast PPI network available. The average degree of the Yeast PPI network is 7, 

hence we have to pick the preferal attachment parameters so that we can achieve the same 

average degree. As explained in subsection 3.2.2, the parameter that we need to decide on 

is c = 7. 

In Figure 5.1 we give the comparison of networks generated using preferal attachment 

with the Yeast PPI network. 

5.2 Random Geometric Network against Yeast PPI Network 

In this section we will compare the graphs generated using the random geometric model in 

euclidean 4-dimension space. The value r is chosen in such that it achieves average degree 

7(the same as Yeast PPI network). In figure 5.2 comparison of graphs generated using 

random geometric model and Yeast PPI network is shown. 
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5.3 Duplication Model (Modified) against Yeast PPI Net- 

work 

As we have seen in previous chapter two networks generated by the same duplication model 

(and hence have very similar degree distributions) can differ substantially in terms of the 

other topological measures, if their seed networks are different. 

If the seed selection makes such a difference in shaping the topology of the generated 

network, is it possible to select the "right" seed network so that all interesting topological 

features of the PPI network in question can be captured 2? 

We answer this question positively by demonstrating that carefully chosen seeds can 

result in a network that is very similar to PPI networks we considered in terms of all of the 

above distributions. 

The PPI networks we tested include (the largest connected component of) the complete 

Yeast PPI network [28] with 4902 proteins and 17200 edges (as of Jul2006). 

5.3.1 Seed Network Selection and Emulation of Yeast PPI Network via 

(Modified) Duplication Model 

We were able to closely approximate the features of complete Yeast PPI network via the 

(modified) duplication model, using a specific seed graph that (to a great extent) exists 

in the Yeast PPI network as a subgraph. The choice of the seed graph was based on 

the observation that the duplication model is very unlikely to generate "large" cliques3. 

However, the Yeast PPI network includes a clique with 10 nodes, which, as a result, must 

be included in the seed network. There are other smaller cliques in Yeast PPI network 

which are represented in the seed graph as a single independent clique with 7 nodes. These 

two cliques were highly connected in the seed network, which also included a few additional 

nodes sparsely connected to the two cliques (the total number of nodes was 50) so that the 

normalized degree distribution of the Yeast PPI network was similar to that of the seed 

graph. This ensured that the (normalized) degree distribution of the Yeast PPI network as 

' B ~  "right" seed network we mean, a seed network, which partially exists in the PPI network we want 
to emulate, and the result of emulating a graph via duplication model using the chosen seed network to be 
close to real PPI network 

2A combinatorial method to choose the best seed network has not yet been developed, and this can be 
one way that this project can be extended. 

3 ~ y  large cliques we mean its size should be bigger than 5 or 6 nodes 



CHAPTER 5. EMULATING YEAST PPI NETWORK 27 

well as its clique frequency distribution (which turns out to be an important determinant 

of the overall graphlet distribution) were similar to that of the seed graph. 

There are two additional parameters associated with the duplication model: p, the edge 

maintenance probability and r ,  the edge insertion probability (see Methods and Materials). 

These two parameters alone determine the (asymptotic) degree distribution and the average 

degree of the generated network. We chose p = 0.365 and r = 0.12 so that the degree 

distribution of the duplication model matches that of the Yeast PPI network. 

We used the duplication model to generate 5 independent networks each with 4902 

vertices. The resulting networks are compared to the Yeast PPI network in terms of the k- 

hop reachability, the graphlet , betweenness, and closeness distributions in Figure 5.3. Under 

all these measures, the Yeast network is very similar to those produced by the duplication 

model. In fact the duplication model we consider here provides much better fits to both 

the k-hop degree distribution and the graphlet distribution of the Yeast network than the 

random graph models described in of [5] and [24] - which were specifically devised to capture 

the respective features of PPI networks. 

As it can be seen in Figures 5.1,5.2 and 5.3 it is obvious that duplication model with 

right choice of initial seed network gives results much closer t o  the real Yeast PPI network. 





Chapter 6 

Emulating PPI Networks via 

Duplication Model 

As seen in previous chapter duplication model was much better fit than other models consid- 

ered when comparing their results against Yeast PPI netwrok [12]. In this chapter we want 

to compare results of duplication model against two other available PPI's. First, we compare 

the networks created using duplication model with Core Yeast PPI network and, second, we 

will compare the duplication networks against Worm network. In both experiments we see 

a very nice fit of the features, which further increases our confidence on duplication model. 

6.1 Duplication Model against Core Yeast Network 

We provide some additional evidence on the power of the duplication model in capturing the 

topological features of available PPI networks. We first compare the duplication model with 

the main component of the CORE subset of Yeast network. The CORE subset contains the 

pairs of interacting proteins identified in Yeast that were validated according to the criteria 

described in [12]. It involves 2345 nodes and 5609 edges. The values of r and p were set to 

r = 0.12, p = 0.322 as prescribed by the average degree formula a = 2r/(l  - P, - 2p) and 

the fact that P, is a function of r and p. The seed network we used was very similar to that 

used for the complete Yeast network. The results are shown in Figure 6.1. 
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6.2 Duplication Model against Worm Network 

We compare the duplication model with the Worm PPI network [28] as well. This network 

is less developed than the Yeast network with only 2387 nodes and 3825 edges. The r and p 

values used for this network are r = 0.12, p = 0.322. The seed network used was again very 

similar to that used for the Yeast network. The comparative results are shown in Figure 6.2. 





Chapter 7 

Conclusion 

In this thesis comparison and emulation of protein protein interaction networks was studied. 

First problem that was addressed is how to compare graphs, knowing that no efficient 

algorithm for graph isomorphism or approximately graph isomorphism problems is known. 

In chapter 2, five different features (which each try to capture unique properties of PPI 

networks) for the purpose of comparing networks was explained. 

In chapter 3 three different graph emulation models have been described. Two of them, 

preferential attachment and duplication model, produce graphs with power-law degree distri- 

bution. The third model is random geometric, which is not a scale-free emulator. However, 

it has been claimed in [24] to be a suitable emulator of PPI networks. 

After showing the network generated using duplication model is dependent to initial seed 

network, we illustrated that duplication model can achieve a much closer network to  yeast 

PPI (considering the features) than random geometric and preferential attachment models 

(chapter 5 ) .  

7.1 Contributions 

The main contributions we made in this thesis are as follow: First, we selected a set of 

features from available literature on PPI network comparison and social network comparison 

and tested each feature (1) to capture a unique property of PPI networks,and (2) being 

robust to minor changes. Second, we choose a slightly modified version of duplication model 

(modified duplication model), and analyzed the relationship between p and r for it to achieve 

a desired stable average degree. Third, we showed that although preferential attachment 
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model and duplication model have almost the same degree distribution (power-law), the 

graph these models produce can be very different when other features are considered. Fourth, 

the most important contribution of this thesis is that we showed (modified) duplication 

model is dependent to the initial seed network it starts with (although its degree distribution 

is independent from the network chosen). Last but not least we were able to use (modified) 

duplication model with carefully chosen seed networks (see Section 5.3.1) to emulate Yeast 

PPI network, Core Yeast PPI network and Worm PPI network with high similarity to real 

networks I.. 

7.2 Future work 

There are several directions to which this work can be extended. One interesting path, is to 

analytically study the effect of the seed network on the graphs emulated using duplication 

model. We can also try to come up with a systematic way to generate the "correct" seed 

network for each given PPI network. Another challenging problem is to explore whether 

the duplication model is able to produce close networks to other available PPI networks. 

Finally it is challenging to find other features of PPI network that can be used to compare 

networks generated using network emulators against real PPI networks. 

1 .  similarity comparison is made using the selected features 
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Graphlets 
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Figure A. 1: Graphlets 
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