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Abstract

In this thesis. we have two general aims: to learn more about design and analysis of paired-
comparison experiments, and to develop some tests of fit for logistic regression models, of
which some commonly-used models for paired-comparison data are a special case.

We begin with some “model-free” considerations for paired-comparison experiments. We
review some constructions for round-robin designs, especially those with certain desirable
prbperties such as the arrangement of home and away games and the equalization of “carry-
over effects™, where we improve on some previous work in the field. Also considered are '~
non-parametric tests of equality of strength of the teams in a tournament, where we obtain
some new asymptotic results in the presence of ties and order effects, and show by simulation
that the asymptotic approximations are generally good.

We then review the Bradley-Terry model for paired comparisons, and its generalizations
to handle ties and order effects. We review some algorithms for fitting the model. and
illustrate with examples the kinds of data for which the algorithms perform well.

Next, we turn to the issue of optimal design for the Bradley-Terry model. We review
the theory of continuous designs, and show that the special structure of the Bradley-Terry
model enables the D-optimal continuous design to be found explicitly in many cases. We
then discuss the implementation of a well-known algorithm for finding exact D-optimal
designs and indicate by example that the algorithm usually works well enough. Since both
of the preceding design types assume known parameters, we also investigate sequentlal
designs in which each stage of the design is deduced from parameter estimates obtained from
the previous stages of the design, and show that the obvious algorithm works reasonably
well. We then carry out numerical efficiency comparisons of the D-optimal designs with the
round-robin and Swiss designs introduced in Chapter 2.

The final chapter is an investigation of some goodness-of-fit tests for logistic regression
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models. We arrange the (kno;vn or fitted) response success probabilities in ascending order,
and then look at the process given by the cumulative difference between observed and
expected successes. We obtain asymptotic distribution theory for a class of statistics based
on the integral of this process, by central limit theorem arguments, and for a class of statistics
based on the integrated squared process, which rests on the theory of weak convergence of
quadratic forms in sequences of random variables. Finally, we show by examples that the
asymptotic distributions usually form good approximations for finite samples, and so can

be recommended for use in practice.
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Chapter 1

Introduction

1.1 Motivations

Most of the work in this thesis was motivated by a desire to understand the design and
analysis of paired-comparison experiments. There seem to be several problems worthy of
consideration, and these are dealt with separately in the following chapters. As a result,
the chapters may appear to have little to do with each other, but each, it is hoped, serves
to shed light on a part of the problem.

In a paired-comparison experiment, some number t of objects are to be compared, but .
they can only be compared two at a time, and each\C(‘)mparison yields only the result that one
of the two objects was “preferred” to the other (or, possibly, that the objects were equally
preferable). In sporting parlance, this corresponds to a tournament containing ¢ teams (or
players); the comparisons correspond to games between the teams, and preferences to wins
for one team or the other, with “equally preferable” corresponding to a tie. It is also possible
to see an “order effect™, whereby (say) the first object in each comparison has an advantage
purely by being first; in sporting terms, this corresponds to a home ﬁeld advantage.

The sporting terminology seems easier to follow, and will be used frequently in this
thesis, but it should be borne in mind that the methods apply equally to other applications,
such as taste-testing, where objects are compared by a judge.

From such an experiment, it is natural to want an overall ranking of the objects, or, better
vet. an estimate of their “strengths”. Furthermore, we will want to design the experiment in
such a way as to achieve an accurate estimation of team strengths with the smallest possible

experimental effort.
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Finally, we will want to assess the goodness of fit of our proposed models. It turns
out that our proposed testing procedure extends easily to the more general case of logistic
regression, and so we have investigated the asymptotic theory behind our test statistics in

some detail in this more general setting.

1.2 The chapters

‘The organization of the chapters in this thesis is intended to lead the reader from the
simple.towards the more complex, with Chapter 5 containing the most general and the
most mathematical work. In particular, the different chapters aim to address the issues
described below.

1.2.1 Chapter 2

4

This Chapter is concerned with the simplest case, where modelling is to be kept to a mini-
mum. In particular. attention is focused on round-robin tournaments, which seem naturally
to yield a “fair” ranking of the teams. There are numerous designk issues here; we review
some different constructions from the graph-theory literature, and show how tournaments
can be (exactly or approximately) balanced for home and away games and for nuisance
factors known as “carry-over effects™. In particular, for the class of designs known as “gen-
eral cvclic designs™, we investigate the pattern of carry-over effects in some detail. We also
review an algorithm for generating “random” round-robin designs, and give an algorithm
of the same type for generéting such a design with a specified pattern ef home and away
games for each team.

We then turn to tests of overall equality in round-robin tournaments. Such tests are
an obvious first step in the analysis of paired comparison data. We review a test based on
a natural idea, namely the variability of the “scores” (the number of wins for each team);
clearly, the greater this variability, the less tenable a hvpothesis of the teams being of equal
strength. We extend these tests to enable an assessment of overall equality in the presence
of ties and order effects. All the test statistics have asymptotic chi-squared distributions.
We show, by simulation and by comparison with previous results, that the asymptotic
distribution is a remarkably good approximation even when the number of teams and games
is small. We also study the distribution of the range of scores, for which an asymptotic

approximation based on the range of normal random variables is generally adequate, and
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indicate how this may be used for a multiple-comparison proéedure like that used in analysis
of variance.

Finally, we introduce the Swiss tournament, which is played in rounds like a round-robin
tournament, but the constitution of each round is determined from the results of previous
rounds rather than being fixed in advance. Swiss tournaments, which are used in such games
as chess and bridge, can be thought of as an alternative to round-robins when the number
of participants is large. We give a detailed algorithm for use in the typical case where no
prior informa/tion is available about the teams; this algorithm chooses between otherwise
equally-preferable matchups at random. Non-random algorithms are available that use prior
information about the team strengths as a seeding mechanism, but we do not pursue these

ideas.

1.2.2 Chapter 3

In this chapter, we look at the Bradley-Terry model, which is the standard model used in

paired-comparison experiments, and extensions of the model for estimating the effects of

ties and home field advantage. The likelihood derivatives are obtained based on an additive

version of the model, and, as has been previously shown, the maximum likelihood estimates
are obtained by equating observed and expected wins or “points™ in a manner’reminiscent
of contingency table analysis.

\We next turn to estimation procedures, considering the obvious candidate of Newton's
method along with a simple method due to Ford (in two guises) and Jacobi's method, which
assumes, incorrectly, that the second derivative matrix of the log-likelihood is diagonal. Ve
give a detailed investigation of the computational complexity of these algorithms, showing
how many additions, multiplications and exponentiations one iteration of each algorithm
requires, and then, by means of examples, we assess the actual number of operations required
by each algorithm, allowing for the fact that simpler algorithms will tend to require a larger
number of iterations. Except for the very largest data sets, Newton's method tends to come
out best, despite the complexity of each iteration, because it requires very few iterations.
The other methods are preferable when the number of teams is large; Jacobi's method works
best when the tournament design is approximately balanced, and Ford's method is good
otherwise.

Implicit in the work of Chapter 2 was the idea that ranking teams in a round-robin or

Swiss tournament by the wins (or more generally points) they had obtained was a reasonable
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thing to do. When the Bradley-Terry model holds, it is known that the ranking of teams in
a round-robin by wins is identical to the ranking by Bradley-Terry strengths in the absence
of ties and order effects. We show that, when one point is awarded for a win and a half point
for a tie, this result continues to hold in'the presence of ties and order effects, provided that
the home and away games for each team are properly balanced. For Swiss tournaments,
no such general results are available, however. We show by simulation that, when ranking
teams by points and breaking ties by a standard quantity known as the Buchholz score,
the agreement between this ranking and the one obtained from the Bradley-Terry strengths
is Fi4However, most of the mis-rankings *v:hmM:Wxs kEquite high. Though there are
few mis-rankings, those that do occur can be attributed to imbalance in the strength of
opposition faced by the teams involved. We demonstrate that a composite score based on
both the points and the Buchholz score produces a ranking that is consistently closer to

that based on the Bradley-Terry model.

1.2.3 Chapter 4 .

In this chapter. we apply the theory of D-optimal designs to paired comparisons, and con-
sider how this theory might be used in practice. We also compare the D-optimal designs
with some more familiar types of tournament.

After a brief review of the ideas of optimal design, we show how D-optimality can be
applied to pairecl comparisons when the Bradley-Terry model, in its simplest form, holds.
We first need to consider how to deal with an information matrix that is singular; two
methods are proposed for “fixing up” the matrix, and these are shown to be equivalent,
allowing us to use whichever is more convenient.

Since optimal design for non-linear models requires knowledge of the true parameter
values, at least if a complete design is to be generated, we are forced to assume that the
parameter values (true team strengths) are indeed known. This offers a conditional approach
to design issues: “if these are the team strengths, then the optimal design is this”.

We first consider “continuous designs”, which indicate the fraction of games in the tour-
nament that should be played between each pair of teams, without regard to the practical
issue of obtaining a design in which the numbers of games are integers. We review a re-
sult known as the General Equivalence Theorem which yields checkable conditions for the
optimality or otherwise of a candidate design, and show how these conditions translate to

our case. As we show, this leads to a method which can be used to obtain the D-optimal
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continuous design explicitly, at least when games between every pair of teams feature in the
optimal design, and we offer some ideas concerning the way to proceed if the method fails.

Practical designs require the numbers of games between each pair of teams to be integers.
Such designs are called “exact™. We review some known algorithms for obtaiﬁing exact
designs, and consider the details of implementation of one of the simpler algorithms, which
is based on the idea of adding games to and removing games from the design one at a
time until no further improvement can be made. The structure of the Bradlev-Terry model
permits a straightforward assessment of which games to add or remove, as well as simple
updates of the inverse and determinant of the information matrix. Some examples are given;
the structure of the D-optimal designs shows up clearly, and the choice of a simple algorithm
is justified by noting that it finds the best design on a fair proportion of its runs and never
(in the examples given) finds a badly sub-optimal design.

We then drop the assumption of known team strengths and consider sequential designs.
in which the design is constructed in stages based on the game results previously observed.
An obvious algorithm is given, and an example is presented of the algorithm in action.

[t is natural to wish to compare different designs; we do so by means of a well-known
criterion called D-efficiency, which indicates how a design performs relative to a D-optimal
(exact) design of the same size. We look at round-robin and Swiss designs for various
numbers of teams and various spreads in team strength, comparing these with the same-
size exact D-optimal design (which assumes that the true téam strengths are known) and
one of the class of sequential designs that we call “sequential-1" (which makes no such
assumption). Because the Swiss and sequential-1 designs are generated sequentially, their
behaviour can only be assessed by simulation. We find that both round-robin and Swiss
designs decrease in efficiency relative to the D-optimal exact designs as the variability in
team strengths increases, with the latter decrease being slower, results that correspond to
intuition; relative to the sequential-1 designs, we see a slower decrease in efficiency for the
round-robin designs and essentially no decrease in efficiency at all for the Swiss designs.
This indicates that, relative to the best designs that can be realized in practice, the Swiss

tournament performs very well, at least for the range of tournament sizes given.

1.2.4 Chapter 5

This chapter provides the mathematical culmination of the thesis. In considering the as-

sessment of goodness of fit of the Bradley-Terry model introduced in Chapter 3, it became



CHAPTER 1. INTRODUCTION 6

\

clear that an obvious idea there, namely that of comparing observed and expected frequen-
cies in a cumulative fashion, could be extended to general logistic regression (of which the
Bradley-Terry model is a special case). We there%ore consider, in detail, the asymptotic
theory of our proposed statistics in this more general case, and, by simulations, assess the
quality of the asymptotic distributions as approximations for finite-sample tests.

The idea of comparing observed and expected “successes” cumulatively leads naturally
to an empirical process on which test statistics can be based. Standard work with such
processes’normally results in proofs of weak convergence to a Gaussian process; statistics
based on the empirical process can then easily be shown to have asymptotic distributions
based in the same way on a Gaussian process. The presence of estimated parameters makes
such an approach too difficult in our case, and 'so we have studied our chosen statistics
individually. We look at two families of statistics, an “area family”, based on the average of
the empirical process itself, and a “quadratic family”, based on the average of the squared
empirical process. In each family, we begin with the statisticsbased on all the parameters
being known. and work towards the practically-useful statistic in which all pa;ameters are
estimated from the data. We are able to find asympto’ticwdistributions, under general con-
ditions, for all the statistics in the area family and (with some difficulty) for the statistic of
the quadratic family that is based on known parameters; we also obtain asymptotic results
for the entire quadratic family based on a rather more restrictive limiting process.

In order to assess the quality of the asymptotic distribution theory‘asA:in gpproximation
for finite samples, we carry out some simulation studies of examples that are intended
to be “typical”. The studies show that, when parameters are known, coﬁvergence to the
asymptotic distributions is fast, especially for the quadratic statistic. When parameters
are estimated. convergence is (not surprisingly) slower. For the quadratic statistic, the
correspondence between simulated and asymptotic distribution is generally good in the lower
tail, which is the important tail for inference, but the tails of the simulated distribution of

the area statistic are less well behaved.



Chapter 2

Model-free design and analy-s‘is

2.1 Introduction

The kinds of tournaments that are easiest to interpret are those in which the teams can be
assessed by their wins and losses. For example, a knockout tournament is very comnmonly
used; these tournaments are discussed further in David (1988). However, while these tour-
naments are very effective in eliciting the best team (Maurer, 1965), they are much less
helpful in producing a ranking of all the teams, or an assessment of their strengths. In this
thesis, we are concerned more with these last two jssues and less with the problem of finding
the best team, and so we do not consider knockout tournaments further.

The most intuitively satisfactory approach for paired comparisons is to make each pos-
sible comparison the same number of times. This design is called a round-robin tourna-
ment, and if each comparison is made r times, it is a -tuple round robin tournament.
In a round-robin tournament, it is “fair” to compare the objects by comparing their wins
and losses, in a sense that can be made precise (see Theorem 3.4), and so the results are easy
to interpret. In Section 2.2, we review some known methods of constructing round-robin
tournaments, indicate how these methods may be extended or simplified in some cases,
and consider some properties of these tournaments concerning home and awaly games and
“carry-overs”. We obtain some new results concerning carry-overs, and show that in general
it is impossible to design a round-robin tournament with desirable properties for both home
and away games and carry-overs.

We then turn to some basic non-parametric tests for use in round-robin tournaments,

considering an overall test of equality and some ideas of multiple comparisons. We wish to

=1

C’



CHAPTER 2. MODEL-FREE DESIGN AND ANALYSIS 8"

consider the effect on these tests of the possibility of ties or the presence of an “order effect”
or “home field advantage”; we begin by reviewing known results in the case when ties are
impossible and there is no order effect, and then develop tests for use when either or both
of these effects are present.

Another design. often used in games such as chess and bridge. is the Swiss tournament,
which occupies a position between the knockout and the round-robin, and in which it is at
least reasonably fair to rank the teams according to their wins and losses. In Section 2.5,

we describe how such a tournament may be constructed, and briefly discuss its properties.

2.2 Round-robin designs

2.2.1 Introduction

A general round-robin tournament can have each pair of objects compared any number of
times, but in this chapter we consider designs for a single round-robin, where each compar-
ison is only made once. An r-tuple round-robin tournament can be, and usually is, con-
structed by combining r single round-robins. In practice, single and double round-robins
are most common.

It might seem a trivial task to design a round-robin tournament. However. in practice we
often prefer to do more than simply choose a pair, compare them, and move on to another
pair. We may wish to arrange the pairs so that the comparisons for each object are spread
evenly through the design, rather than being concentrated at the beginning or at the end.
Most commonly, this is achieved by partitioning the comparisons into “rounds™ so that
each object has precisely one comparison in each round; this is what we will attempt to do.
Alternatively, if the pairs are simply compared one after the other, we may wish to ensure
“maximal spacing”: that is, once each object has appeared in a comparison, we perform as
many comparisons as possible between other objects before this object is compared again.
Ross (1939) gives a procedure for an odd number of objects.

Splitting a round-robin into rounds is definitely not a trivial task, as Rosa and Wallis
(1982) observe. Consider the following tournament for t = 6 objects, with the first three

rounds as given. There are t — 1 = 5 rounds altogether.
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Round 1: 1wvsd4 2vs3 3vsb
Round 2: 1vsH® 2vs6 3vsd
Round 3: 1vs6 2vs4 3vsH

The comparisons 1 vs 2, 1 vs 3 and 2 vs 3 are still to be made, but it is impossible to
arrange them into only two rounds.

In this chapter, we will examine a number of round-robin designs and algorithms. and
we will consider how well these are equipped to deal with practical issues such as the order
within a pair (which object is presented first to a judge, which player or object is at home,
etc.). We consider only even t; when t is odd, we can construct a round-robin design for
t + 1 objects and ignore any comparisons containing object t + 1.

.

2.2.2 Relation to graph theory

A paired-comparison experiment of any type, not just a round-robin tournament, can be
expressed as a graph whose vertices represent the objects being compared. If two objects
are compared during the experiment, the graph has an edge between their two veru e

In a single round-robin tournament, all pairs of objects are compared once, and so there
is a single edge between each pair of vertices on the graph. This is the “complete graph™
on the t vertices.

We wish to partition the tournamtent into rounds, such that each object appears precisely
once in each round. On the graph, a round is represented as a digjoint set of edges with each
vertex appearing on precisely one edge. Such a set of edges ig called a 1-factor, ane the
collection of rounds that make up the tournament is representgd as a collection of 1-factors,
known as a 1-factorization. '

Mendelson and Rosa (1985) give a detailed survey of known results about 1-factor-
izations; because of the equivalence just described, these results may also be applied to

round-robin tournaments.

2.2.3 Carry-over effects

Suppose object-7 is paired with object j in one round, and object k in the next. Suppose
also that object j is very strong: then object 7 will probably suffer a heavy defeat against

J and will be “discouraged™, and perform below par, against k. This happens in sports,
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but also in comparisons by a judge: the judge may consciously or subconsciously remember
that object 1 was much less preferable than object j, and may more easily regard i as less
preferable than k also. Because j is strong, & benefits from being compared to ¢ after j, and -
k is said to receive a carry-over effect from j.

If object k frequently receives carry-over effects from object j, the benefit to k could be
substantial. We therefore prefer designs at least approximately “balanced™ for carry-over
effects: that is. each object receives carry-over effects from as many different objects as

possible.

Ed

2.3 Designs

2.3.1 The design GA,

This is probably the oldest and certainly the most commonly used design for round-robin
tournaments. It was known long before 1-factorizations were studied in general, and appears

for example in Kraitchik (1953). who gives a simple alternative derivation.

Construction

To obtain the design. number the t (¢ even) objects 1.2,...,¢t — 1 and *; the last object
plays a special role. Two objects are paired in round k if their numbers sum to either k or
k 4+t — 1; one object will be left over in each round, and that object is paired with *.

For exatmple. let t= R: the first three rounds of G A'g are then:

Round'1: (Sum =1lor8) 1vs7 2vs6 3vs> 4vs*
Round 2: (Sum =2o0r9) 2vs7 3vs6 4vsdH 1vs*
Round 3: (Sum =3o0r10) 1vs2 3vs7T 4vs6 Hvs?*

To ensure that this does indeed generate a round-robin tournament, we must establish

the following:

1. The pairing is well-defined: that is, for each object. there is exactly one possible

opponent in each round.

2. Each pair of objects does indeed occur precisely once.

Consider object 7 in round k. Its possible opponents are k —tand t — 1+ k—1. If k -

is a possible opponent. we must have k — ¢ > 1, but then t =1 + k — 2 > n. Conversely, if
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t—~1+k~—1isa possible opponent, t — 1+ k—-i<t—-1= k—1<0. Since the opponent
must‘%ve a number between 1 and ¢ — 1 inclusive, only one of the two alternatives can yield
an opponent for object 1. However, it may h'a.ppen that k —1 = 7, when 2: = k (k even), or
t—1+k-i=1i,when?2i=t~1+k (kodd). For any k, there is only one ¢ for which this
happens, and then i is paired with * in round k. ’

To show that each pair of objects does occur precisely once, note that any two objects
tand j must have 1 <147 <2(t—1),since 1 <,j<t~-1.1f14j<t-1,then objects
i and j are paired in round i + j; otherwise, ¢ and j are paired in round i+ 7 — t + 1. We
already saw that the object * is paired with objectsAl,‘Z, ..,t/2—=1in rounds 2,4,...,t -2,
and with objects ¢/2,t/2+1,...,t~1in rounds 1,3,...,t - 1. Thus object * is also paired

with each of the other objects exactly once.

Home and away games

In practice, it may well make a difference which object of a pair is presented to a judge first,

or. in sporting encounters, which player plays first (as in chess), or which object plays on

its home field. In this situation, we list the pairings so that the (;bject listed first is the one
aving at home.

. The design G A’; has two desirable properties concerning home and away games:

1. It is possible to'arrange for each object to alternate home and away games with at most
one exception. In fact. two of the objects alternate home and away games precisely,
while of the remaining ¢t — 2 objects, half have two consecutive home games at some

stage, while half have two consecutive away games.

2. The objects can be grouped into pairs so that whenever one object of the pair has a
home game, the other has an away game, and vice versa. This is important if pairs of

objects (teams) have the same home stadium.

Proofs of these results can be found in de Werra (1980). We illustrate with an example

for t = 6:
Round 1: 1vs5 2vs4 3Jvs*

Round 2: *vs1 5vs2 4vs3
Round 3: 2vs1 3vshH 4vs?*
Round 4: lvs3 *vs2 5vs4
Round 5: 4vs1l 3vs2 5jvs*

{@
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The procedure is as follows: in the first round, the lower-numbered object is at home (*
is highest); after that, alternate home and away games wherever possible, but ensure that
object * always alternates, even at the expense of one of the other objects.

We see that objects 3 and * alternate home and away games throughout, while object 1
has two consecutive away games in rounds 2 and 3, object 2 has two away in rounds 4 and
5, object 4 has two home games in rounds 2 and 3, and object 5 has two in rounds 4 and 5.

Furthermore, preciselv one of objects 1 and 4 is at home in each round, and the same
holds true for 2 and 5, and 3 and *.

These results are the best possible, as de Werra proves, but we will see in Section 2.3.3
that there exist designs different from G A, for which these properties also Hold.

A double round-robin is usually constructed from a single round-robin by repeating the
t—1 rounds in the same order, but with allocation of home and away reversed.” Unfortunately,
using the allocation of home and away games described above, an object can then have three

consecutive home or away games, as we see below with t = 6:

Round 4 *vs2 1vs3 5vsd
_Round 5 3vs2 4vsl Svs*
Round 6 4vs2 *vs3 5vsl
where Round 6 is the same as Round 1, but with home and away allocations reversed; here,
object 2 plays three consecutive away games and object 5 plays three consecutive home
games. This problem is addressed m practice in a number of ways: some tournaments
schedule a break at the halfway point, so that the presence of the consecutive games is
“forgotten”; in some cases, * plays two consecutive home or away games earlier in the
tournament in such a way that the last two rounds of the first half of the tournament have
each team at home once and away once, thus avoiding the problem, and in some other cases,
the order of rounds in the second half of the tournament is rearranged - for example, playing
the rounds of the second half in reverse order ensures that the last round of the first half
and the first round of the second half feature the same games, but with home and away
reversed.
L'nforgunatel)'. the design GG Ay is very unbalanced for carry-over effects. De Werra (1982)

proves the following result:

Theorem 2.1 In GRK'y, objects 1,2,....t — 1 each receive t — 3 carry-over effects from one

other Olg“t' This result assumes that carry-overs from round t — 1 to round [ are also
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counted.

2.3.2 The general cyclic design

A more general design for round-robin tournaments is the general cyclic design. Given a
strong starter, which we define below, each round of the design is determined iq&ctively
from the previous round. It turns out that GK’, is, in a way, a special case of the general

cyclic design.

Construction

As before, we label the t objects 1,2,...,t — 1,*. A strong starter (Dinitz and Stinson,
1981) from a set § = {1,2,...,t — 1} is defined to be a partitioning of the set into pairs
(a,.b),a,,b, € S,1=1,2,...,t/2~ 1 such that

1. Each element of S5 appears in no more than one pair.

2. The differences a; — b, and the differences b, — a,, 1 = 1,2....,t/2 — 1 are all distinct

modulo t — 1.

Since there are t — 1 elements of § and only t/2 — 1 pairs, one element ¢ of § d(;es not appear
In any pair.

A strong starter always exists for even t: for example, take @, = 7 and b; = t — 1 for
1 =1,2,...,t/2 — 1, with object t/2 being left over. Generally, there will be many other
strong starters for given t; if a “random™ strong starter is desired, the algorithm of Dinitz
and Stinson (1981) can be used.

The first round of a general cyclic design for n objects is then determined by finding a
strong starter from the set S = {1,2,...,t — 1}. The pairings for the first round are the -
pairs of the strong starter, together with the pair (c,*) where ¢ is the element of S that
does not appear in the strong starter.

The remaining rounds are determined by induction. If, in round k, objects ¢ and j are
paired, with 1, j # *,objects 1+ 1 and j+1 are paired in round k + 1, with arithmetic being,
as before, modulo ¢t — 1 with the result being taken from the set {1,2,...,¢t - 1}. Round &
contains one other pairing. that of * and some other object i; in round k + 1, * and i + 1

are paired.
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As an example, suppose that ¢t = 6 and we choose the strong starter (1,2),(3,5). This-is
indeed a strong starter since, modulo 5, the differences 1 -2 = 4,3-5=3,2—-1=1,5-3 = 2

are all distinct. The first round is completed by pairing 4 and *, and the entire design follows:

Round 1: 1vs2 3vsH 4vs*
Round 2: 2vs3 4vsl 5uvs*
Round 3: 3vs4 5vs2 1vs*
Round 4: 4vs5 1vs3 2vs*

Round 5: 5vs1l 2vsd4 3Jvs* .

It is evident that a sixth round generated in the same way would be identical to Round
1; this explains the name “cyclic”.

The structure of the design is apparent with the example laid out in this form. The first
column of pairings contains all the pairings 7 vs j for whichi—j =1or4 (mod ¢t~ 1), the
second all those for which the difference is congruent to 2 or 3 (mod t — 1), and the final
column contains all the pairings involving *. /

As we did with G A, we need to prove that this construction does indeed yield a design
in which each object appears precisely once in each round, and that each possible pairing
occurs in precisely one of the rounds.

Note first that there are t/2 — 1 pairs in the strong starter, and so 2(t/2 — 1) =t - 2
differences that must be distinct. But, working modulo t — 1, there are only t — 2 possible
non-zero differences, so, given a difference d, there must exist some pair (a,,b,) in the starter
such that either ¢; — b, =d (modt—-1)orb, —a,=d (modt-1).

Now, list the design as above for t = 6, with each pairing listed below the pairing it was
generated from. Each object appears exactly once in the first round, because that round is
based on the strong starter. Now suppose that each object appears exactly once in some
round k; then, in round k + 1, object * will be listed below itself in round k, while any other
object ¢ will be listed below i — 1, with object 1 listed below object t — 1. Thus each object
also appears exactly once in round & + 1.

Finally, note that all pairings of * with any other object are found in the last column.
For any other pairing z vs j, let d = 1 —j (modt — 1), and find the pair of the strong
starter, (k,!) say, for which k = lBd (modt—-1)orl{—k=d (modt-1). Such a pair
must exist, as we observed above. If k — ! =d (modt — 1), 7 and j are paired in round

r=i1—k (modt- 1)+ 1; otherwise, they are paired in round s = j—1! (mod ¢ - 1)+ L.
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Since 1 < r,s < t — 1, each possible pairing ¢ vs j must appear in exactly one of rounds

1,2, ., t—1.

Relation to GA,

Theorem 2.2 The design GK', is a special case of the general cyclic design, although with
the rounds in a different order. In particular, the first round of GK,, with the pairing
containing * removed, is a strong starter, and rounds 1,2,...,t — 1 of the general cyclic

design are rounds 1,3....,t ~1,2,4,...,t —2 of GK,.

Proof: Except for the pairing ¢/2 vs *, the other pairings in the first round of G Iy are
of the form 7 vs. t — 1,7 = 1,2,...,¢/2 — 1, with, by this definition, 1 < t — 1. ¢ < t — 1.
The differences d, = (t — 1) — ¢ = t — 2t are always positive and also less than t, so that
d, is already reduced modulo ¢ — 1; this implies that these d; are all distinct and all even
(since t and 27 are both even). Now let d; = 1 — (¢ — i) = 21 — t; these are all negative but
larger than —t. They can therefore be “reduced” modulo ¢ — 1 by adding ¢t — 1, so that
d, =21 —t+t—-1=2i—1; these are all distinct and odd. Thus the first round of G A,
with /2 vs * removed, is indeed a strong starter. ‘ —n

In the first round of both designs, the objects paired, except for *, sum to 1 or ¢. Thus, for
any objects t and j that are paired in the first round, i+j =1 (mod t-1). In rouAnd k of the
general cyclic design, i1+ k-1 and j+k ~ 1 are paired (both numbers being reduced modulo
t-1 ifneceséag;. In this round, therefore, (i+k-1)+(j+k—-1) =i+ +2k-2=2k-1,
meaning that objects meeting in round & of the general cyclwic design meet in round 2k - 1,
or 2k - 1—(t—1) =2k ~t (reducing modulo t — 1), of GA’, and this proves the result.

Of course, by choosing a strong starter that does not correspond to a round of GA,. we

-

can obtain a design that is very different from GA’.
q

Home and away games

There do not appear to be any useful results concerning allocation of home and away games
in a general cyclic design. Even those general cyclic designs that correspond to G A’ cannot
benefit from the results discussed in Section 2.3.1 on this subject, because the order of the
rounds is rearranged.

The strongest results available seem to be those of de Werra (1980) and Wallis (1983),

and these results apply to any round-robin design in which the pairings are arranged with
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t/2 of them in each of t — 1 rounds. The results are as follows:

Theorem 2.3 Arrange, in any fashion, t — 2 of the t — 1 rounds into disjoint pairs of
rounds. Then, within each pair of rounds, each object can be allocated one home game and

one away game.

The (constructive) proof depends on the fact that a pair of rounds can be represented as
a graph which is the union of two 1-factors, and so cannot have cycles of odd length. This
permits the allocation to be made.

In practice, the result is most useful if the pairs of rounds are adjacent. For example,
the pairs might be of rounds (1,2),(3,4),...,(t=3,t—=2). In this case, in the first £ rounds

(k even), each object has exactly £/2 home games and k/2 away games.

Theorem 2.4 For any grouping of the objects into pairs, an allocation of home and away
games can be found in which one of the objects in each pair plays at home and the other

plays away.

This is a general version of the result we had for GK,. However, in general, the theorems
of this section do not combine usefullv: one can have pairs of rounds in which each object
plays once at home and once away, or pairs of objects in which exactly one plays at home in
each rofind. but not both in general. As an example, consider the following general cyclic

design with t = 10:

Round I: 1vs2 3vsd 4vs8 6vs9 7Tvsl0
Round 2: 2vs3 4vs6 5vs9 Twvsl 8vs 10
Round 3: 3vs4 5vs7 6vsl 8vs2 9vs10
Round 4: 4vs) 6vs8 7Tvs2 9vs3 1vsl0
Round 3: 5vs6 7vs9 8vs3 lvsd 2vs 10
Round 6: 6vs 7T 8vsl 9vsd 2vs)H 3wvs 10
Round 7: 7vs8 9vs2 1vsd 3vsb6 4d4vs 10
Round 8: 8vs9 1vs3 2vs6 d4vsi 5vs 10
Round 9: 9vs1l 2vsd4 3vs7T 5vs8 6vs 10

We pair the rounds (1 and 2, 3 and 4, etc.), and arrange the comparisons so that

each object has one comparison at home and the other away in each pair of rounds, as in
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Round pair " Howré imother °
land2 134910 25678
3and4 14789 235610
S5and6 12369 457810

7and 8 167910 23458

The home and away games for round 9 can be assigned in any fashion. Consi
2: during the course of the round-robin, this object is at home and away in the same round
as every other object (for example, in rounds 5 and 6, but at no other time, object 2 plays at
home at the same time as object 9). In other words, it is impossible to find, in the manner
of Theorem 2.4, a pairing of the objects such that exactly one of each pair is at home in
each round, without destroying the property constructed from Theorem 2.3.

In this example, a partial pajring of the teams is available. however. If object 3 is paired
with object 7, object 4 with object 6 and object 5 with either 1 or 9, exactly one object
of each ;;air is at home in each round. Note also that the nature of this example is not
changed if we pair rounds 2 and 3, 4 and 5, etc.; object 3 is then left without a pair, and we
obtain a partial pairing similar to the above, but with the objects relabelled (specifically,
the partial pairing is 4 and 8.5 and 7, 6 and 1 or 2). In practice, the existence of a partial
pairing of the teams may be sufficient (for example, in a sporting context, if only some of
the teams in a league are geographically close to another team). We do not have general
results concerning the nature of partial pairings of the teams, although we suspect that the
size of the partial pairing will generally become small relative to t as ¢ increases, because
each object is at home at the same time as a greater number of other objects for larger t.
For example, with ¢t = & there are three round pairs and four comparisons in each round,
so that each team is at home at the same time as 3 x 3 = 9 other (non-distinct) objects,
wheteas with t = 10, each object is at home at the same time as 4 x4 = 16 other objects. It
is more likely. in the absence of any special structure, that the 16 objects will exhaust the
nine potential team-pairs available when ¢t = 10, as compared to the situation when t = 8,

where there are seven potential team-pairs and only 9 objects at home at the same time.
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Carry-over effects

In contrast to the paucity of useful results in the previous section, the carry-over effect
situation is a good deal brighter for the general cyclic design than for G KA.

Russell (1980) shows the following:

Theorem 2.5 Ift = 2% for some k, there erists a round-robin design which is completely

LN
balanced for carry-over effects.

The converse of Russell's result does not hold: we will show that there is a general cyclic
design for t = 20 that is completely balanced for carry-over effects. A more useful result in
practice is that for any (even) t. there are designs which are “approximately™ balanced for
carry-over effects.

In order to investigate carry-over patterns in general cyclic designs, the following results
are useful. We define the carry-over pattern for any object to be a list of the frequencies
of carry-over effects received from the other objects, without regard to the identities of the
other objects. For example, if object 4 receives 5 carry-over effects from object 3 and one
each from object 2 and object *. the carry-over pattern is [5 x 1.1 x 2|, read as “five carry-
over effects from one object and one each from two other objects™. A carry-over pattern

of [1 x (t — 1)] denotes a balanced set of carry-over effects for an object: one each received

from the ¢t — | other objects.

Theorem 2.6 In the general cyclic design, object * always receives one carry-over effect

from each other object, and for objects 1.2,...,t — 1, the carry-over pattern is the same.

Proof: Suppose that objects 1 and * are paired in round k. anq that 7 is paired with j in
round k — 1. Then. in round k. * receives a carry-over effect from j. But 1 + 1 and * are
paired in round K + 1. and 1+ | and j + 1 in round k. so that in round k + 1, * receives a
carry-over effect from j + 1. (In all the arithmetic here, the result is reduced modulo ¢ — 1 if
necessaryv.) In general. in round k +d. * receives a carry-over effect from j +d, and it is seen
that object * must therefore receive exactly one carry-over effect from each other object.
Now suppose that object m receives a carry-over effect from object j <t — 1 in round
k. This means that some object i must have been paired with object j in round £ — 1 and
object m in round k. Now, from the construction, it must also be true that object 1 4+ 1 is

paired with object ; + 1 in round k, and object ¢ + 1 is paired with object m + 1 in round
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k 4+ 1. Hence object m + 1 receives a carry-over effect from object j + 1 in round k + 1.
The same applies if 7 = *: if object m receives a carry-over effect from object t in round &,
object m 4 1 receives a carry-over effect from object ¢ in round & + 1. Thus, for example, if
object m has a carry-over pattern of [3 x 1,1 X (¢ —4)], the same will be true for all objects
1,2,...,t - 1.

As a result of Theorem 2.6, it makes sense to talk about “the carry-over pattern” of a
general cyclic design, where the carry-over pattern applies to all the objects 1,2,...,t — 1,

and the carry-over pattern for object * is always [1 X (t — 1)].

Theorem 2.7 The carry-over pattern for any object in a general cyclic design can be de-

termined from the first- and second-round pairings.

Proof: Consider an object 7 < t — 1 whose first two opponents are not *, and call these
opponents objects j and j+d, with difference d (mod t—1) between their numbers. Then,
starting in round k, object 1 + k — 1 plays object j + k — 1 followed by j+ d+ k — 1, and the
"numbers of these objects also differ by d. If j+ d+k —1 =1, object 1 receives a carry-over
effect from object j4+hk—-1=1-d =t—-d (mod t—-1). Thus, object 1 receives m carry-over
effects from object t — d if and only if there are m objects whose first two opponents differ
in number by d, and are not *. In addition, object 1 receives one carry-over effect from *,
and one from object t — 1 (since objects t — 1 and 1 are successive opponents of object t).
The carry-over effect from object ¢t — 1 must be the only one, since if d = 1, the pairing of
objects i and j first round implies the pairing of both ¢ and j + 1 (since d = 1) and 1 + 1
and j + 1 (by construction), and this is impossible.

Since the theorem has been proved ior object 1, Theorem 2.6 implies that the result
holds for objects 1,2,...,t — 1.

Since the second round is determined from the first, Theorem 2.7 can be extended:

Theorem 2.8 In a general cyclic design, the carry-over pattern for all objects can be de-

termined from the pairings for the first round.

Proof: To prove this, let v be a (t — 1)-vector with v, being the number of the first-round
opponent of object i. Then object 7's first two opponents’ numbers differ by d (and neither
opponent is *) if and only if v,_; — v; = d — 1 (following our usual arithmetic conventions,

v,—1 = v;— if i = 1). Consequently, object 1 receives m carry-over effects from object d if
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and only if there are m i’s,1 <2 <t —1,such thatv,.; —v, =d~-1 (mod! ~¢) and
Vi1, U # t.

As an example, we investigate two different admissible first-round pairings for t = 8-

objects. It is helpful to define e; = v;,_; — v,, provided v,_;,v; # t (the value of e; not
being needed otherwise). Consistently with our arithmetic being modulo t — 1, we define
e = vy— — t;. We also define the (¢ — 1)-vector n such that n, is the number of e, that
equal J.

Consider the first-round pairing 1 vs 2, 3 vs 7, 4 vs 6, 5 vs 8. The 7-vector v is
(2,1,7,6,8,4,3). Then e; = e; = e3 = ¢4 = er = 1, with e5 and eg undefined. So object 1
receives 5 carry-over effects from object t — 1 — 1 = 6, and, as mentioned before, one each
from objects 8 and 7. Therefore the carry-over pattern for this design is {5 x 1,1 x 2], and
n =(5,0,0,0,0,0,0).

Compare now the first-round pairing 1 vs 2, 3 vs 5,4 vs 7, 6 vs 8: the vector v is now
(2.1,5.7.3,8,4).and so e¢; = 2.e; = 1,e3 = 3,e4 = 5.e5 = 4, and eg and e; are undefined.
Since the e, are all distinct, object 1 receives (and hence all objects receive) exactly one
carry-over effect from each other object. This is a design completely balanced for carrv-over
effects, and clearly the carrv-over pattern for the design is {1 x 7], with n = (1,1,1,1,1,0.0).

In order to compare these carry-over patterns with those from other designs (in which
the carry-over patterns may not be the same for all objects), we define a matrix M for
any design with element m,, being the number of carry-over effects received by object j
from object :. We have seen that a design that is balanced for carry-over effects will have
m,, = 1 for 1 # j, whereas an unbalanced design will exhibit greater variability in the m,;:
it is thus natural to use the variance of the elements of M. or equivalently the quantity
S=3%., m?J = MM, the sum of squares of the elements of M, as a measure of a design’s
balance or otherwise for carry-over effects. For general cyclic designs, the last column of M
contains t — | ones, while the remaining t — 1 columns each contain. the same set of numbers
(permuted), so that each column’s sum of squares is related to the sum of squares of n.
Specifically, noting that object ¢t receives one carry-over effect from each of the t — 1 other
objects, and that, for 1 < i <t — 1, object ¢, receives an additional carry-over effect from
each of two other teanis aside from the ones summarized in n, we find that S can be written

as

t-1
5:(:-1)(Zn?+3).
1=1

sb
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P
If we couple Theorem 2.8 with a method for generating all possible strong starters for

any given t, we can find the general cyclic design which comes closest to complete balance,
simply by an exhaustive search. Such a simple-minded approach is in fact practical, at least
for t,< 20 or so. Compared with Russell (1980), this approach appears more capable of
finding designs that achieve or approach balance. ’

An alternative approach is to use a modification of an algorithm given by Dinitz and
Stinson (1981) that generates “random” strong starters; by repeatedly generating a strong
starter in this way, and using the above results to calculate S for the general cyclic design
that uses the strong starter as its first round, we may be able to find balanced or nearly-
balanced designs with less effort than is required for a complete enumeration. Of course, by
doing this, we cannot be sure that the most balanced design has been found unless some
external check is available. Dinitz and Stinson derive their algorithm in a context that is
more general than we require; we found that the following simplified algorithm works quickly

and successfully:

1. Let the set of objects (for this algorithm) be 7" = {1,2,...,t — 1} and the set of
“differences” be D = {1,2,...,t/2 - 1}.

2. Mark all objects and differences as “unused”.

3. Choose an unused object k and an unused difference d, both choices being made at

random with equal probability from the available possibilities.

4. Let ry = k —d and r, = k 4+ d, in both cases reducing the answer modulo t — 1 to the
set T.

5. If objects r| and r; are both used or both unused, choose one of them at random, and

denote that object r. Otherwise, let r be the unused object out of r; and rj.

6. If object r is already used, there exists an object r3 and a difference d3 such that the
comparison r vs. 73, corresponding to the difference d3, is currently a part of the strong
starter. Remove r vs. r3 from the strong starter, and mark object r3 and difference

d3 unused.

7. Mark objects k and r and the difference d used, and add k vs. r to the strong starter,

corresponding to the difference d.
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8. If there are any unused differences, go back to step 3. Otherwise stop.

Table 2.1 shows the minimal values of S found, along with an example first round, for
general cyclic designs of sizes up to¢ = 32. The values for ¢t < 20 were found by enumeration,
and are thus the smallest possible for general cyclic designs; the remaining values were found
using our version of the Dinitz-Stinson algorithm, as given above, witk 10,000 random strong
starters generated for each t. Also shown are the values of S obtained by Russell (1980)
for the designs he studied. Our result for t = 32 is surprising, since a design is known to
exist that is completely balanced for carry-over effects. We do not know whether this design
cannot be expressed as a general cyclic design, or whether it can but we were unable to find
it. /

The algorithm given above for random strong starters was also able to reproduce the
values of S obtained in Table 2.1 for t < 20 with a smaller computational effort than
was required to find the optimal values of 5 by enumeration. Though we generated 10,000
random strong starters for each value of t, a much smaller number would have been sufficient
for smaller values of t. This is not surprising, considering that the number of different general
cvclic desigrs increases rapidly with ¢; we would expect to require a more extensive search
to locate a design with minimal S when ¢t is larger. Nonetheless, for larger values of t. for
which an exhaustive search is not feasible, this method provides a means for generating

designs with near-minimal S in a reasonably short time.

2.3.3 Random round-robin designs

In this Section we consider two algorithms which generate round-robin designs that do not
necessarily follow any particular pattern. As remarked at the beginning of this Chapter, it
is not a trivial matter to generate such designs, and so a certain amount of care may be

needed.

A construction

As well as giving an algorithm for generating strong starters, Dinitz and Stinson (1987} also
give an algorithm for generating random round-robins, in which the pairings in one round
~are not necessarily determined by the pairings in another. The algorithm consists of two
“heuristics” H, and H,. which are used as described below. Object i is called live if there

exists another object j such that the pairing (i, ) does not appear in any round; similarly,
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Minimum values of S

t Balanced This thesis Russell Example first-round pairing
4 12 12 12 1vs2, 3vs4
6 30 60 60 1vs2, 3vsS5 4vsH
8 56 56 56 1 vs2 3vs5 4vsT, 6vs 8
10 90 108 138 1vs2,3vs5 4vs8 6vs9 Tvs 10
12 132 176 196 1vs 2, 3vsS5 4vs 10, 6vs9 7vsll,
8 vs 12
14 182 234 260 1 vs2,3vs5 4vs9 6vs 13, 7 vsl0,
8 vs 12, 11 vs 14
16 240 240 240 1 vs2,3vs8,4vsb6, 5vsll T vsl5,
9vs 12, 10 vs 14, 13 vs 16
18 306 340 428 1 vs2 3vs7,4vs 1l 5vs 14, 6vs9,
8 vs 18, 10 vs 16, 12 vs 17, 13 vs 15
20 380 380 520 1 vs2,3vs9 4vs12 S5vsT,6vsll,
8 vs 15, 10 vs 19, 13 vs 16, 14 vs 18,
17 vs 20 .
22 462 546 1vs2 3vsS5 4vs10,6vs 13,7 vs 15,
8 vs 12, 9 v5 18, 11 vs 21, 14 vs 19,
16 vs 22, 17 vs 20
24 352 644 1 vs7,2vs2],3vs15 4vs 20,5 vs 24,
6 vs 14, 8 vs 10, 9 vs 18, 11 vs 12,
13 vs 23, 16 vs 19, 17 vs 22
26 6350 750 1 vs 13, 2 vs 25, 3 vs 22, 4 vs 19,
5vs23,6vs15 7Tvs2],8vs9, 10 vs 18,
11 vs 16, 12 vs 26, 14 vs 17, 20 vs 24
28 756 918 1vs10,2vs24, 3vs5 4vs 14, 6 vs 25,
T vs 21, 8 vs 9, 11 vs 22, 12 vs 27,
13 vs 28, 15 vs 18, 16 vs 20, 17 vs 23,
19 vs 26
30 870 1102 1 vs23, 2vs19 3vs8 4vs5 6vs 17,
7 vs 15, 9 vs 18, 10 vs 20, 11 vs 30,
12 vs 16, 13 vs 26, 14 vs 29, 21 vs 24,
22 vs 28, 25 vs 27
992 1240 1vs27,2vs 15, 3vs12 4vs 14 5vs6,

T vs 30, 8 vs 20, 9 vs 25, 10 vs 16,
11 vs 28, 13 vs 17, 18 vs 29, 19 vs 22,
21 vs 23, 24 vs 31, 26 vs 32

Table 2.1: Values of S for various ¢

23
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a round r is live if fewer than t/2 pairings appear in round r. At the beginning, therefore,

all objects and rounds are live, while at “the end, there are no live objects or rounds. All

choices in the algorithm and heuristics are made at random with equal probability from the

available choices.

The algorithm is simply:

1.

2.

VWhile there exists a live object:

(a) Choose either Hy or Hj, and carry out the chosen heuristic.

(b) End.

End.

Heuristic H, is defined as follows:

6.

. Choose a live object 1.

. Choose an object j for which the pairing (1, j) has not been assigned to a round.
. Choose a round r in which object ¢ does not appear.

. Add the pairing (7,j) to round r.

. If j is paired with another object k in round r, remove the pairing (. k) from round

r.

End.

Heuristic H; is:

1.

Ut

(Choose a live round r.

. Choose two objects 7 and j that do not appear in round r.

. Add the pairing (¢.j) to round r.

If the pairing (i, j) appears in any other round s, remove it from round s.

End.
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Table 2.2: Example run of Dinitz-Stinson round-robin algorithm for t = 4

Step Heuristic [ ¢ j r | Round1 Round 2 Round 3

1 2 2 1 1|12

2 2 1 4 3|12 1-4

3 1 3 1 3|12 1-3

4 1 3 4 2|12 3-4 1-3

5 2 4 2 3112 3-4 1-3. 2-4
6 1 1 4 2|12 1-4 1-3, 2-4
T 1 4 3 1]1-2,34 1-4 1-3, 2-4
8 2 2 3 212,34 14,23 1-3,24

The algorithm is “downhill” in the sense that the number of pairings currently assigned
to rounds never decreases as the algorithm proceeds. There are only three possibilities at
each step: a new pairing is added, one pairing is replaced by another, or a pairing is moved
from one round to another. This means that, unless the algoritlhm reaches a point at which
there is a live object but no new pairings can be added (no matter how many moves or
replacements are made). it must eventually produce a design. In fact, the algorithm has
never been known to fail, even though a proof of its certain success has not been found.

As an example, we show a run of the algorithm for t = 4. The details are given in
Table 2.2, where it is seen that the algorithm required eight steps to complete a design with
six games. (In fact. t = 4 is generally easy for the algorithm; our experience indicates that
the ratio of steps to total games increases with t.) In this run, the algorithm makes what
seems a pointless change at step 3, replacing 1 vs. 4 with 1 vs. 3. In general, however, the
ability of the algorithm to make this kind of change can prevent it from becoming blocked.
In step 4, the addition of 3 vs. 4 to round 2, instead of round 1 where it “belongs”, seems
to be a mistake, but in step 6, everything is sorted out: team 1 has one remaining game,
against team 4, and team 1 has a game in every round but round 2, so that 1 vs. 4 must
be placed in round 2, replacing the game involving team 4 that was already there. From
this point, the algorithm has no trouble placing the two remaining games to complete the

design.
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Home and away games

The results of Section 2.3.2 apply here also. With the random nature of the designs produced
by the algorithm, it is impossible to make more general statements. The same is true
concerning carry-over effects; it is possible that there exist random designs that are more
balanced for carry-over effects than any general cyclic design. The situation with home and
away games can be improved, however, by use of the algorithm given below.

One reason for the popularity of the design G A, is, as was discussed, the ease with
which home and away games can be assigned to ensure that objects alternate home and
away games as far as possible, with, at the same time, pairs of objects never both being at
home in the same round. It is possible, however, to generate designs different from G A,
which nonetheless still have the same pattern of home and away games for each object.

Consider. for example, the pattern of home and away games generated from G Ay. An
“H" in row ¢ and column j in the table below indicates that object i plays at home in round

J:an "A”7 in that position indicates an away game.

Object 1 2 4 5 6 7
1 H A A H A H A
2 H A H A A H A
3 H A H A H A A
4 H A H A H A H
) H H A H A H
6 A H A H H A H
T A H A H H

*A H A H A H A

In this table. we see that one of objects 1 and 5 plays at home in each round, while
the other plays away. The same applies for objects 2 and 6. 3 and 7. 4 and *. A pair of
objects can be paired in a round only if one of them is at home in that round and the other
is awav. This means, for example, that there is only one round, namely round 7, in which
3 and 4 can be paired. The same applies for objects 7 and *. In contrast, objects 1 and 5
can be paired in any round. An algorithm seeking to be successful in assigning pairings to
rounds should. intuitively. deal first with those pairings for which there is a small number
of “live” rounds. The following simple procedure seems to work, at least for the home and

away pattern generated from GA:

=
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1. List the pairings which either:

(a) can only appear in one round

(b) can be added to a round that currently contains ¢/2 — 1 pairings (ie. all but one).
2. If this list is empty, instead list the pairings which either:

(a) can only appear in two rounds

(b) can be added to a round that currently contains t/2 — 2 pairings.
3. Choose a pairing at random (with equal probability) from the list.

4. Choose a round at random for the pairing to be assigned to, and assign it. (There

may, of course, be only one possible round.)

5. If there still exists a live round, go back to 1. Otherwise end.

Since the carry-over effects in G A’y are so unbalanced, this method provides the possi-
'ﬁity of balancing out the carry-over effects somewhat while still maintaining a desirable
pattern of home and away games for each object.

A proof that this method will always work is as elusive as one for Dinitz and Stinson’s
original method, and for the same reason. Our limited experience suggests that when a
round-robin schedule can be generated at all, the algorithm will probably find one, though
not necessarily quickly: the practical solution is to stop it and try again if it seems to be

taking too long.

2.4 Tests of overall equality and multiple comparisons

2.4.1 Introduction

Suppose that t objects are compared in a possibly replicated round-robin tournament. Later,
we wish to investigate order effects and ties, so that in this Section a single round-robin
consists of all ¢(t — 1)/2 pairs of objects being compared twice, once in each order. Thus
the nur{lber r of replications is half the n of David (1988). In the presence of ties, we also
consider the “score™ a, for each object to include a half-point for each tie as well as a point

for each time the object was preferred in a comparison.
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2.4.2 Overall test of equality

We will usually first wish to test whether the objects are all equally preferable. To do this,
we assume that each comparison is independent, and that (in the most general case) our
null hypothesis states that the probabilities of the first object being preferred, the second
object being preferred or a tie being declared do not depend on which objects are being
compared (they are the same for all comparisons). Natural statistics for a test of equality
are measures of the spread of the a,, such as the variance or the range. It turns out that the

variance of the a,, or equivalently S"!_, a2, is also the score test for overall equality if and

0
only if the Bradley-Terry model holds (for which see Chapter 3 and Biithlmann and Huber,
1963). We consider this variance test first.

David (1988) shows that, in the absence of order effects and ties, the suitably scaled sum
of squared scores has an asymptotic y2_; distribution (for large r), and provides tables for
small experiments. Starks (1958) shows that use of the asymptotic distribution is accurate
for moderatelv-sized experiments. Gillot and Caussinus (1966) derive some exact results for
the joint distribution of the a, in the presence of ties, but do not consider order effects. When
order effects or ties are present, one would expect the variability in scores to be smaller,
and so use of David's results in such situations would lead to (possibly very) conservative
tests. We show that this is indeed the case.

We begin by considering what happens in the absence of ties, but with order effects.
Under the null hypothesis that all objects are equally preferable, the only factor affecting
the preference probabilities is the order effect; specifically, Hy assumes that for all pairs
of objects, the probability that the one presented first is preferred is p, where p = 0.5 in
David’s results.

Under this hypothesis, the total score for any object ¢ is the sum of two binomial random
variables: the number of preferences in the r(t — 1) cases where object i is presented first,

and the number in the r(t — 1) cases where object ¢ is presented second. Thus, for each 1,

s

—

B
H

M- D{p+(1-p}=r(t-1)
var(a,) = 2r(t—1)p(1-p)=c?, say.
Defining
g =tz
v2rtp(1l - p)
it follows that E(d,) = 0, var(d,) = (t — 1)/t. The d, are clearly correlated, and, under
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Hg, equally correlated, but we can find the correlation by the same method as David:
‘!_,a; = rt(t — 1), since each of the rt(¢t — 1) comparisons yield a total of one point, and
so ¢_, di = 0. Since these sums are fixed, their variances are zero, and so, letting p be the

common correlation, we have

0 = var (Z d,) = Zvar(d,-) + Z cov(d,.d;)

1#)
Cot=1) = D)(t-1)
and thus p = —1/(t — 1) and the common covariance is —1/t.
Thinking of d = {d,} as a random vector, the covariance matrix of d has diagonal

entries (¢t — 1)/t and off-diagonal entries —1/¢ in a ¢t x ¢ matrix. Such a matrix has one
zero eigenvalue and ¢ — 1 unit eigenvalues; as a result, "{_, d> = d’d has an asymptotic \?

distribution with t — 1 d. f., just as when order effects are absent. Writing

2rtp(l - p)

we see that the tendency for values of p far from % to decrease the variability in the q, is

t t 2
d?: Zl:l{a‘_r(t_l)} .
2

balanced by the presence of a p(1 — p) term in the denominator of the test statistic.

When there are ties as well, the score for any single object is no longer binomial, but
the same sort of argument goes through. Let p, denote the probability of the first object
being preferred in any paired comparison (since the objects are equally preferable under
Hg. the probability is the same for all comparisons), let p, be the probability of the second
object being preferred, and let py denote the probability of a tie. Counting one point when
object ¢ is preferred and half a point for a tie, the expected number of points for object
tin a single comparison is p; + po/2 when object 1 is presented first, and p; + pg/2 when
object 1 is presented second. The variance of the number of points in a single comparison
is p1(1 = p1)+ po(1l = po)/4 — popy in the first case and py(1 — p2) + po(1 = po)/4 — pop2 in
the second. After a little algebra, we find that

E(a;) = r(t-1),
var(a;) = r(t— 1){pi(1 = p1)+ pa(l = p2) = po(l = po)/2}.

Defining, then,
a, —r(t-1)

dx = )
Vrt{pi(1 = p1) + pa(1 = p2) — po(1 — po)/2}

(2.1)
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enables us to show in exactly the same way as before that 3_!_, d? has an asymptotic x?_,
distribution. '

We do not present any theory concerning the range of the a; or d;; David (1988, p.
35) indicates, in the absence of ties and order effects, that an approximation based on the
distribution of the range of normal random variables will work well.

It is also possible to simulate the behaviour of our statistics, for comparison with
these asymptotic results and David’s small-sample tables. For each combination of val-
ues t, 7, p1, p2. Po. we simulated 10,000 values of the sum of squares and of the range. Table
2.3 shows the results of our simulations for §_,a? and Table 2.4 shows the corresponding
results for the range of the a;. It is clear that the effect both of increasing the order effect
and increasing the tie probability is to decrease the critical values of the test statistics, in
some cases considerably. The agreement between the simulations and the exact results of
David, where they overlap, is good (the case py = p; = 0.5 in Tables 2.3 and 2.4, and
Tables 1 and 3 of David, for the sum of squares and the range respectively). Further (see
Table 2.3), the agreement between the simulated distribution of the sum of squares and the
critical values obtained from the chi-squared asymptotic distribution is extremely good —
even for t = 3,7 = 1, where }_, a? < 20 and some percentage points do not exist, the ones
that do exist are very well approximated using the asymptotic distribution. For the range
(Table 2.4). the general picture is that the points obtained from the distribution of the range
are somewhat anti-conservative; for moderate sample sizes, adding 1 to the approximated
critical values seems yé improve matters somewhat.

One could also consider using the range of the scores as an overall test of equality. It
seems, however, that the test based on the variance of the scores will be more powerful
because it uses all the scores, not just the most extreme ones. The range of scores, however,
is a'natural candidate for use in multiple comparisons, as we discuss below.

The above results consider the distribution of the sum of squared scores and the range of
scores conditional on the probability of the first object being preferred and on the probability
of a tie. In practice, though, these probabilities will not be known, and will have to be
estimated by the observed proportions of first-object preferences and of ties. The effect of

this estimation procedure on the true ley#

o test is not clear.

e
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2.4.3 Multiple comparisons

As in analysis of variance, having shown that some difference exists between the objects, we
then wish to decide which objects differ from the others. David (1988) discusses tests which
are analogous to those used in analysis of variance: a least significant differences method,
a multiple range test paralleling Tukey’s, and a method like Scheffé’s for judging contrasts.
These tests, like the corresponding tests in analysis of variance, attempt to control error
rates when a null hypothesis of equality holds; in particular, when the objects are equally
preferable, these tests, run at level a, will have probability 1 — a of declaring none of the
objects to be different. When this null hypothesis is false, the behaviour of the tests is less
clear, but in that case the experimenter may prefer to fit a model, such as the Bradleyv-Terry
model described in Chapter 3, in which the relative strengths of the objects are estimated
directly.

The range of scores is a natural statistic for use in multiple-comparison tests. When
there are no order effects or ties, Table 3 of David (1988) can be used for small experiments.
Asymptotically, David states that the distribution of the range of the d, is that of the range
1, of t independent normal random variables with variance 0?(1 — p) = 1. When there are
order effects, the d, are still asvmptotically normal with the same variance and covariances
(because of the presence of the factor p(1 — p) in the denominator of the d,). so this result
still holds. The discussion above also shows that the same asymptotic distribution holds for
suitably-defined d, in the presence of ties.

The distribution of the range can then be used for a Tukey-like multiple range test. by
declaring significantly different anyv objects whose scores differ by more than the critical
range for that value of t. Alternatively, one can carry out a Student-Newman-Keuls-tvpe
procedure, using the distribution of the range of a smaller number of normal random vari-

ables within a group of scores where differences have been shown to exist.

2.4.4 Example

In the 1995-96 season, the Scottish soccer league had 10 teams. who played each other twice
each at home and away. Since the home team is listed first, the order effect here indicates a
home field advantage. In the notation above, t = 10 and r = 2. Of the 180 games, 45% were
won by the home team, 33% by the away team. and 22% were drawn (tied). The scores for

each team are shown in Table 2.5, with the d, calculated using (2.1).
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For the overall test of equality, 3, a2 = 3679. Comparing this to the line of Table 2.3 for
which t = 10, r = 2, p; = 0.5, p3 = 0.25, pg = 0.25, whose p;-values are fairly close to the
ones observed, the test statistic is easily significant at the 1% level, as it would be for any
of the p; combinations shown. For comparison, 3, d? = 57.3, which, when compared with
the x2 distribution, is significant even beyond the 0.0005 level. There is clearly a difference
between the teams in this league.

To decide which teams differ from which, we turn to the corresponding line of Table 2.4,
to find that two teams are significantly different at the 5% level if their scores differ by 13 or
more. Thus the top two teams are significantly stronger than the bottom six, but no other
differences are revealed (the top two teams are not quite significantly stronger than the
3rd- and 4th-placed teams). For comparison, using the asymptotic distribution, the upper
5% point of the range of 10 independent standard normal random variables is 4.47 (using
the “~c d. f.” line of a table of the Studentized Range). so that any teams whose d, differ
by more than this are significantly different. This yields the same result as the previous

procedure.

2.5 The Swiss tournament

2.5.1 Introduction and construction

Often, the number of participating teams in a tournament is too large for a round-robin, but
not so large that a knockout is the only possible alternative. Various solutions are possible,
such as running a double or triple knockout (in which a team is not eliminated until it has
lost two or three games), or dividing the teams into groups small enough for a round-robin
to be feasible in each group, and then plaving a further round-robin or knockout between the
top teams in each group. These solutions do not permit easy comparison between teams in
different groups or different parts of the knockout. A Swiss tournament, however, provides
an immediate ranking for all the teams, by virtue of not splitting them into groups.

In a Swiss tournament, the idea is to play most of the games between teams that are
evenly matched, as far as the games previously played allow this to be judged. This is
achieved by the following procedure. If the number of teams is odd, introduce a fictitious
team called “Bye”, where any team drawn against “Bye" does not play in that round, but
is awarded a “free” win. In this way, the effective number of teams in the tournament ¢ is

even.
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Table 2.3: Sum of squares: simulated and approximate points

5% 1%
t r|p1 p2 po | Sim. Asymp. | Sim. Asymp.
3 1[50 50 0 21 21.0- 21 25.8
3 1175 25 0 19 18.7 21 22,4
3 11350 25 25 19 18.2 21 21.5
3 1120 20 60 16 15.6 17 17.5
3 1130 10 60 16 15.2 17 17.0
3 3|50 50 0 135 135.0 147 149.4
3 3|75 25 0 127 128.2 135 139.1
3 3|50 25 25 127 126.5 135 136.5
3 3|20 20 60 119 118.8 124 124.6
3 3130 10 60 118 117.7 123 122.9
3 5150 30 0 343 344.9 363 369.1
3 5175 25 0 333 333.7 351 351.8
3 5150 25 25 331 330.9 346 347.5
3 5120 20 60 319 318.0 327 327.6
3 5130 10 60 316 316.2 325 324.9
4 2350 50 0 175 175.3 185 189.4
4 2175 25 0 169 167.4 177 178.0
4 2150 25 25 166 165.5 174 175.2
4 220 20 60 157 156.5 162 162.2
4 2|30 10 60 156 155.3 160 160.3
4 3|50 50 0 371 370.9 391 3921
4 3|75 25 0 361 359.2 375 375.1
4 3350 25 25 356 356.2 370 370.8
4 3|20 20 60 343 342.8 352 351.2
4 330 10 60 342 340.9 349 348.5
6 1130 30 0 183 183.2 191 195.3
6 1175 25 0 175 174.9 183 183.9
6 1350 25 25 173 172.8 180 181.1
6 120 20 60 164 163.3 168 168.1
6 1] 30 10 60 162 162.0 166 166.3
10 1] 30 50 0 895 894.6 913 918.3
10 1|75 25 0 873 873.4 889 891.2
10 1|50 25 25 868 868.2 882 884.5
10 120 20 60 844 843.8 854 853.3
10 1]30 10 60 841 840.5 849 849.0
10 2|30 50 0 | 3409 3409.2 | 3451 3456.7
10 2|75 25 0 | 3367 3366.9 | 3407 3402.5
10 2 |50 25 25| 33537 3356.3 | 3387 3389.0
10 21|20 20 60| 3308 3307.7 | 3326 3326.7
10 2|30 10 60 | 3301 3300.9 | 3318 3318.0
14 1|50 50 0 | 2521 2522.5 | 2553 - 2559.8
14 1175 25 0 | 2483 2483.4 | 2511 2511.4
14 1|50 25 25 | 2472 2473.6 | 2496 2499.2
14 1 ]20 20 60 | 2429 2428.6 | 2443 2443.5
14 1130 10 60 | 2422 2422.4 | 2435 2435.8

33
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Table 2.4: Range:

simulated and approximate points

5% 1%
t r!lpit p2 pol| Sim. Asymp. | Sim. Asymp.
3 1]/5 50 0 5 1.1 5 54
3 1175 25 0 4 3.5 5 4.7
3 1/50 25 25 4 3.4 5 45
3 1020 2 60 4 2.6 4 3.4
3 1/30 10 60 4 2.4 4 3.2
3 3150 50 0 8 7.0 9 9.4
3 3|75 25 0 7 6.1 8 8.1
3 3|50 25 25 7 5.8 8 78
3 3,20 20 60 6 4.4 7 5.9
3 3130 10 60 5 4.2 6 56
3 5[50 5 0 10 9.1 12 12.1
3 507 25 0 9 7.9 11 10.5
3 5|50 25 25 9 7.5 11 10.0
3 %5120 20 60 7 5.7 8 7.7
3 5]30 10 60 7 5.4 8 7.3
4 2|50 50 0 8 73 9 94
4 21075 25 0 7 6.3 8 8.1
4 215 25 25 7 6.0 8 7.8
4 2120 20 60 6 4.6 7 5.9
4 2130 10 60 6 44 6 5.6
4 3|5 5 o0 10 8.9 11 11.5
4 317 25 0 9 7.7 10 9.9
4 3|50 25 25 9 7.4 10 9.5
4 3120 20 60 7 5.6 8 7.3
4 3130 10 60 7 5.3 8 6.9
6 1|50 50 0 8 7.0 9 8.7
6 1|75 25 0 7 6.0 8 7.5
6 1|50 25 25 7 5.8 8 7.2
6 1|2 20 60 6 4.4 6 5.5
6 130 10 60 5 4.2 6 5.2
10 15 50 0 11 10.0 12 12.1
10 1,75 25 0 10 8.7 11 10.5
10 15 25 25 9 8.3 11 10.0
10 1120 20 60 8 6.3 8 7.7
10 130 10 60 7 6.0 8 7.3
10 2]5 50 0 15 14.1 17 171
10 2|7 25 0 13 12.2 15 14.8
10 215 25 25 13 11.7 15 14.2
10 2|20 20 60 10 8.9 11 10.8
10 2|30 10 60 10 8.5 11 10.3
14 1|50 50 0 13 12.5 15 14.3
14 1175 25 0 12 10.9 13 12.4
14 1]5 25 25 12 10.4 13 11.8
14 120 20 60 9 7.9 10 9.0
14 1/3 10 60 9 7.5 10 8.6

V]
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Table 2.5: Scores for the Example

Team a,
Rangers 30.0
Celtic 29.5
Aberdeen 19.5
Hearts 19.5
Hibernian 16.0
Raith Rovers 15.5
Kilmarnock 15.0
Motherwell 15.0
Partick 11.0
Falkirk 9.0

1. Start:

(a) If this is the first round, arrange the teams in random order.

(b) Otherwise, rank the teams by points, breaking ties randomly.

d;
4.34
4.16
0.54
0.54
-0.72
-0.90
-1.08
-1.08
-2.53

3.25

35

2. Arrange the teams in “pairing order™: for a team whose rank is 7 < t/2, its pairing

order is 25 — 1, and for a team with rank k > t/2, its pairing order is 2(t + 1 — k).

When this is done, the team that is first in pairing order is the top-ranked team, the

second in pairing order is the lowest-ranked team, and so on, alternating high- and

low-ranked teams.

3. For:=1,2,...,t

(a)

Let r be the‘kteam with pairing order :.

(b) If team r has already been paired, proceed to the next value of i. Otherwise,

()

(d)

continue.

Make a list of the available opponents for team r (where “available™ opponents

are those which have not yet played team r and are not yet paired in the current

round). If team r has rank no larger than t/2, arrange the available opponents

with the highest-ranked listed first: otherwise arrange them with the lowest-

ranked listed first. (This list is of the opponents for team r in order of desirability.)

If it is not known to cause a blockage (see below), pair team r with the first team

on its available opponent list; otherwise, proceed down the list until an opponent
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is found that is not known to cause a blockage, in which case team r is paired

with that opponent, or until the list is exhausted.

(e) If the list of opponents for team r is empty, or if it has been exhausted by the
previous step. then a blockage has occurred: with the pairings already made, it is
not possible to pair the remaining teams without causing some of them to meet
an opponent f%}le second time. In this case, find the pairing s, vs. s; that was
the last to be made, mark this as being known to cause a blockage, and reset ¢ to
the pairing order of team s;. (In plainer terms: go back and find a new opponent

for team sy, until one is found for which all teams can be paired.)

4. In each game, award the winning team 1 point, and give % point to each team for a

tie (draw). (Any linear transformation of this scale will give the same result.)

If the desired number of rounds has not yet been played, go back to Step 1.

(S} ]

6. The teams are ranked by points, with ties broken by the “Buchholz score™. For
each team. the Buchholz score is the total number of points obtained by that team’s
opponents, and is therefore a measure of the quality of opposition faced by that team.
Using the Buchholz score as a tiebreaker is desirable. since each team has faced different

opponents.

The number of rounds played is typically somewhat larger than the number of rounds
contained in a knockout for the same number of teams, so that the teams have the op-
portunity to play most of the other teams of similar strength. The restriction to a single
meeting between each pair of teams, while making the pairing procedure more difficult, is
an attempt to even out the randomness present in the assignment of opponents. as well as
to ensure that each team does indeed play a collection of similar-strength opponents, rather
than the same opponent repeatedly.

The algorithm used in chess tournaments differs slightly from the above in that chess
plavers have “ratings™ which offer prior information about the relative strengths of the play-
ersin the tournament, and these can be used as a seeding mechanism. In a chess tournament,
players with the same number of points are sorted by their ratings, and the highest-rated
players play against the lowest-rated players in the next round. While this information typ-

ically permits a ranking of the players in fewer rounds than would be necessary under the
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procedure given above, we have preferred to assume that, in general, this prior information

will not be available.

2.5.2 Discussion

Since each team faces different opposition, it is not immediately obvious that it is fair to
compare teams by the number of points they have obtained. However, a Swiss tournament
is designed, roughly speaking, to allow each team to “find its own level”, in that a team
with an incorrectly high ranking will face difficult opposition in the next round and will
tend to lose, and a team with an incorrectly low ranking will face easy opposition in the
next round, and should move towards their correct position. This ameliorates (although
does not always completely overcome) the effect of the randomness in pairing each round.

We further discuss the issue of ranking teams from a Swiss tournament in Section 3.6.2,

after we have introduced the Bradley-Terry model.



Chapter 3

The Bradley-Terry model

3.1 Introduction

The Bradley-Terry model (Bradley and Terry, 1952) is commonly fitted to paired-comparison
data. It offers a means for modelling the probabilities of winning or tying in terms of param-
eters which can be interpreted on an odds or log-odds scale (depending on the parameteriza-
tion chosen) as the “strengths™ of the teams participating in the tournament. The original
model has been extended by Davidson (1970) to accommodate ties, and by Davidson and
Beaver (1977) to permit the estimation of an order effect, which has a natural interpretation
of “home field advantage™ in a sporting context. While, as pointed out in Davidson and
Beaver (1977), it is straightforward to extend the models further to allow the order effect
and tie parameters to be team-dependent. in practical situations there is rarely sufficient
data to be able to demonstrate that such a model is appropriate. Below, therefore, we
consider a version of the Bradley-Terry model with a single tie parameter and order effect,
common to all comparisons.

An extensive bibliography of the Bradley-Terry and related models is given by Davidson
and Farquhar (1976). A good reference to paired comparisons in general is David (1988).

There are two equivalent parameterizations of the Bradley-Terry model. Davidson (1977)
uses parameters which combine multiplicatively; ﬁere, we use an additive parameterization
that we find more convenient for estimation.

Specifically, suppose there are t teams in the tournament, and let 3;,...,3; represent

their “strengths™. Let d be the tie parameter, and let h denote the home advantage (in

38
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contrast to Davidson, we assume that the first team in each game has the advantage, fol-
lowing the European sports tradition, although there is no problem if the second team has
the advantage, for h will simply be negative). For a comparison between teams i and j in
that order, let p;;; denote the probability that team ¢ wins, p;;2 denote the probability of
team j winning, and let p;;o denote the probability of a tie, with Zi:o pijk = 1. Then the

Bradley-Terry model asserts that the following relations hold:

pin < exp(h+ 3
Pij2 X exp(f;) (3.1)
pijo o exp{d+ (h+ B+ 3;)/2},
with the constant of proportionality, denoted D,;, being chosen so that these probabilities
sum to 1. The equivalence to the Davidson (1977) model is seen by expressing our parameters
3., h,din terms of his parameters 7;,y,vas 3, = log7;, h = ~logy and d = logv—(log v)/2.
The first two of these probabilities are apparently reasonable: the probability of a team
‘winning increases with that team’s strength, while team i, playing at home, has its “effec-
tive” strength increased by h. The last, p;;o, has behaviour which is less clear; its properties

are given in the following two Lemmas.
Lemma 3.1 The probabilities are unchanged if any constant is added to both 3; and 3,.

Proof: Let ¢ be the constant added; then p,;; x exp(h + 3; + ¢), pi)2 x exp(3, + ¢), and
Pyo X exp{d+(h+38,+3,)/2+c}. We see that there is a common value €° multiplying each
probability, and thus also the constant of proportionality, so that the probabilities when
properly scaled do not depend on c.

This result shows that there are only t — 1 freely varying §,, since, by the above result,
any one 3, can be set equal to zero. As we see in Section 3.3, this requires us to make some

adjustments to the estimation process.

Lemma 3.2 For firedd > —oc, the tie probability p;,o ts marimum when |h+ 3, — 3, = 0,

and decreases monotonically with |h + 3, — 8,].

Proof: By Lernma 3.1, we can, without affecting the probabilities, replace h + 3, by h +
3, —(h+3,)=0and 3, by 8, — (h+ 8,) = €. say, so that |¢|] = |h + 3, — 3,]. With this
parameterization, p,,; X 1, p,,2 o exp(¢) and p,jo x exp(d + €/2), so that

exp(d + €/2)
{1 + exp(e) + exp(d + €¢/2)}

PUO
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ar
1+ az + 22’

where z = exp(e¢/2) and a@ = exp(d). This, as a function of z, is positive for £ > 0 (since
a > 0), and is zero for z = 0 and as z — oo. It has one stationary point, at z = 1, which
must therefore be a maximum, indicating that p;jo has a maximum at ¢ = 2log1 = 0 and
decreases with [e|, as required.

This result says that, after allowing for home field advantage, the probability of a tie is
greatest when the teams are evenly matched, ie. 3; + h = §;, which is a property we are
entitled to expect.

The quantities being exponentiated on the right-hand sides of (3.1), being linear in the
parameters, have the air of a linear predictor in a generalized linear model. To that end,
let ;0 = h + By, mijy2 = By, mjo =d+ (h+ 5+ 3,)/2. When there are no ties, the third
relation of (3.1) is discarded, and the correspondence is exact: the Bradley-Terry model is
a special case of logistic regression. The design matrix has a special form: for a meeting
between teams ¢ and j, the row of the design matrix has a 1 in position 7, a —1 in position j
and zeroes elsewhere, with the intercept corresponding to the home field advantage (order
effect). In the more general case, the link with generalized linear modelling is less useful,
though the 7,;¢ notation continues to be helpful. Specifically, note that p,;x = exp 7,4/ D,
for k =0,1,2.

3.2 Likelihood and derivatives

Let y,,1 denote the observed frequency of wins for team ¢ against team j when the former is
playing at home, and let y,;2, yijo denote the observed frequencies of wins for team j and of
ties in these games. Further, let Yij+ = Yiy1 + ¥ij2 + Yijo denote the total number of games
played between teams : and j with team 7 at home.
The likelihood is simply
L=[Iri,

1,7,k
and the log-likelihood
1=y log pisk,

1.k
where the product and sum extend over 1 < 2;j < t with ¢ # j and k = 0,1,2, and the

dependence on the parameters is contained within; p;.
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It is most convenient to develop the likelihood derivatives in stages. First, since the n;;«

are linear in the parameters,

Onj _ Onipn Oz _ 9nijo _q
23 ~ oh _ 83;  o8d

and
81]!]0 _ 877;'1‘0 _ 3771]0 _ 1

0B3i ~ 03j  O0h 2’

with the remaining derivatives being zero.

Next, noting that D;; = Zizo exp 7,jk, and therefore that
oD;; O
k

where # denotes a “generic” parameter, it follows that

oD;, 0D;; oy lex ‘
831 - Ik = eXpTuj 9 P 7150,
oD, + ! ex
= D i o 1}1;0-
83, eXp 7,2 + 5 €XP 7ij0
oD;,
B T P
Dividing through by D,,, we therefore obtain
1 (9D,J‘ _ 1 (9D,J _ » +1
D,, 83, ~ D,; oh Put T gbuo
1 4D;, s b
Az = Pu2t 5Pyos
D,; 03, I R
1 (9D,‘J' »
D,, od Piso-

Now, once again letting § denote any of the parameters, and noting that
Pijk = exp i/ Dij.

we find that

8P1]k_ _ aﬂqk__laaDu
a6 ~"*\798 "D, a6 |

As a result, we can write down the derivatives of p;,;x with respect to the parameters, for

all k, as follows:

(9)9‘)1 _ 8P\ﬂ _ 1 . >
93, _O_h = P:Jl(l_pul 2P:Jo
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=% = (0-m - o)
e e (s
P2 = i (0= o)
Opij2  _ :
’ aaigf = Pij0 (%_p‘JQ_ %pu‘o)
agzl = pij1(0-pi0)
agif = Ppij2(0 ~ pijo)
ag:’jo = pi,o(l=pi),

where the zeroes, while not necessary, illustrate the pattern.

Since
O~ v O
06 Pk 09’

the derivatives of the log-likelihood with respect to the parameters can now be found. With
respect to 3., the derivative must be summed over all opponents for team r and all games,
home and away; with respect to h and d, the sum is simply over all 7 and j. After some

algebra, we find that the likelihood derivatives are readily interpretable:
ol 1 1
93, = 2 {yer + §ytr0 = Yirs (P;lz + 51’1[0)}

1 1
+ Z {yrjl + §yr_]0 —Yrj+ <pr_]1 + §pr10)}-
J

Summing over all home and away games played by team r, this is the difference between
the observed “points” and expected “points™ obtained by team r, where a win is worth one
point and a tie a half point. (Any linear transformation of this point scale would also work,
such as two points for a win and one for a tie.) \

Moving on, we find that

al 1 1
5}: = Z {yul + §yi_]0 - Y+ (ple + 5[’(]0)} ’

1,]
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which is the difference between observed and expected points obtained by the home teams

in all the games. Likewise,
al
% = Zyuo - yx_7+pxj0~
1]

which is the difference between observed and expected ties summed over all the games.

In summary, we see that the maximum likelihood estimates of the parameters are such
that the sufficient statistics (numbers of points for each team, total points scored by home
teams, total number of draws) are equal to their expectations, and that a score statistic
would be based on the degree to which these differ under some hypothesis. These results
were anticipated by Fienberg (1979), who showed that the Bradley-Terry model given here,
when suitably parameterized, could be considered as an incomplete contingency table, and
therefore proved that the maximum likelihood estimates of the parameters were obtained
bv equating observed and expected frequencies. Fienberg's results are valid in greater or
lesser generality: to fit team-specific home field or tie effects, we can match the observed and
expected home wins or ties for each team; if we do not wish to fit a home field advantage,
we set h = 0 and do not match the observed and expected frequencies, and if we do not
wish to fit ties, we set d = —oc, and do not match the observed and expected frequencies
of ties.

The foregoing calcu¥ons also enable us to find the second derivatives of the log-

likelihood without great difficulty. They are, after some algebra:

0% 1
Tﬁ = - 2 ytr+{pzrlpxr2 + prrO(1 - ero)}
1
- Z y"J+{pTlerJ2 + ZprJO(l - prJO)}
7]
9 1
9303, Yor+ {Psr1Porz + {Psro(1 = pyro)}
1
? + yr3+{prslprs2 + ZprsO(l - prsO)}
0 1
m = Z Yirg {PirPir2 + ZPTJO(I - prjO)}

1

1
- Zyrj+{prjlpr12 + Zp,,o(l - per)
J
0?1 1 :
——_8,3 9d = Ezyxri-ptrO(pxr? —er1)+ EZyTJ‘prJO(prJl "pr_ﬂ)
r R -
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0l 1
32 = - Zy:j+{P;J‘1PU'2 + zp,Jo(l — pijo)}
I‘J
o 1 .
ghod _ 2 ; Yij+Piy0(Pij1 = Pij2)
Fokd|
Py _Zyij+pi_;0(l — Pijo).
1.

Alternatively, one can note that each game makes a contribution to the (observed)
information matrix. Letting [,, denote the contribution to the log-likelihood from a game

between teams r and s in that order, we find that

L O O P 1 U i A + <praoll - proo)
937 ~ 93% Ok T 93, 0h 05, 083, 03, 0h FretPrezT Praotl T Prao)y
Oy _ O, O )
53.0d  0had  03,0d  ProotPrsi = Pre2);

and 52
L,
9d? = "pr30(1 - Prso)-

3.3 Solving the likelihood equations

There are a couple of practical problems with the results we have obtained so far. First,
since the probabilities are obtained from differences between the 3;, and in the light of
Lemma 3.1, it is impossible to obtain unique estimates for the parameters unless one of
the 0, is fixed. Consequently, the information matrix cannot be inverted, since it is rank-
deficient by one (or more). Second, it is possible in practice for the parameter estimates
to be infinite. This usually happens when there are teams that defeat every other team
they play, or are defeated in all their games. From the likelihood equations, we see that
such a team r must have p,;3 = 1 or 0, and then ﬁ, = o or /j, = -oc. This is a curious
result, given that it is perfectly possible to observe 100% success or failure with 3; that
are finite, but it is an instance of a phenomenon known as “separation” which can afflict
any binary-response model. Albert and Anderson (1984) and Santner and Duffy (1986)
have carried out detailed studies of separation and quasi-separation, showing that infinite
parameter estimates will exist if there is a plane in X-space such that all the observations

on one side of the plane are successes and all those on the other side are failures. In our
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7

application, as mentioned, this usually takes the form of one team winning or losing all its
games, but it is also possible to observe an interdependence with the home field effect that

L
s
.

renders finite estimation impossible.

A simple approach that fixes both these problems is to introduce a “fictitious™ team
t+ 1 against which all other teams are given a neutral-field tie, say. If we then fix the rating
of this (¢t + 1)-th team at 0, or some other convenient figure, we can then obtain unique
estimates for the other ratings. Furthermore, simply from its comparisons with team ¢ + 1,
it is impossible for any team to attain 100% success or failure, and hence all teams will
have finite strengths. If a home field or tie effect is being fitted, a fictitious game can
be included in which was “observed™ a third of a home win, a third of an away win, and
a third of a tie (or, if a tie effect is not being fitted, half a home win and half an away
win). This guarantees that finite estimates will exist for all the parameters no matter what
the arrangement of games played, and also ensures that the information matrix is strictly
positive definite rather than merely positive semi-definite. (Since the “likelihood equation™
for the fictitious team is never actually used, being a consequence of the other equations.
the effect on the information matrix is purely to add positive quantities to the diagonal, a
standard way of making a matrix positive definite.)

Such a procedure is necessarily ad hoc, but is not without precedent; consider, for ex-
ample, the practice of adding % to the entries in a contingency table to deal with zeroes.
Though we approach our estimation from a classical rather than a Bayesian viewpoint (for
which see Davidson and Solomon, 1973), it is interesting to note that this procedure can be
viewed as a hypothesis of “prior equality” from which we proceed, in a Bayesian fashion,
towards a posterior distribution for the parameters, by combining this prior distribution
with the data, with the maximum likelihood estimate corresponding to the mode of the
joint posterior distribution.

We now turn to the problem of obtaining the maximum likelihood estimates. In the
remainder of our discussion of this subject, we assume that the “fictitious team” has been
introduced, and we are thereby assured that the estimates are finite. (Strictly, once the
fictitious team has been introduced. we are no longer maximizing a likelihood, but solving a
set of equations for the parameters that happens to bear a close resemblance to the likelihood
equations.)

While the likelihood equations are linear in the p,;x, they are certainly not linear in

the 3,, h or d, and so an iterative procedure will be necessary. Below, we consider some
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candidate methods and discuss their advantages and disadvantages. Detailed theoretical
comparisons (in terms of operation counts) are given in Section 3.4, and some examples are
considered in Section 3.5.

Any iterative algorithm needs a place to start; often the choice of initial estimate can
determine whether or not the algorithm converges. In this problem, the log-likelihood tends
to be well approximated by a quadratic in most cases, and is unimodal due to general
results concerning exponential families. The second derivative is also positive definite for

“not too

any finite values of the parameters. Therefore, any choice of initial values that is
unreasonable” should suffice. We set the strength of the fictitious team equal to 0, and then

set the initial values for 3,,3,....,08, h,d equal to zero also.

3.3.1 Newton’s method

Since all the second derivatives are readily available, and since the likelihood is approxi-
matelv quadratic, an obvious choice for this problem is the\rﬁultivariate Newton's method
(Dennis and Schnabel, 1989). The first derivative vector and second derivative matrix are
evaluated at the current parameter estimate and used to find a quadratic approximation to
the log-likelihood:; the maximum of this quadratic is the next parameter estimate.

Let 8 denote the entire parameter vector 3;....,5;,h,d; if a home field effect or tie
parameter is not being fitted. it is omitted from the parameter vector and its likelihood
derivatives are omitted from the estimation procedure. Let g denote the vector of first
derivatives of the log-likelihood . and let H denote the matrix of second derivatives, so
that g, = dl/df, and h,, = d*1/d6,df,. Further, let I, g.. H. denote [, g and H evaluated at
6 = 6.. Then a quadratic approximation to the log-likelihood is

1

Q.8)=1.+g(8-6.)+ (6~ 8.)TH.(6-9.)

and, provided H. is negative deﬁnité\, this quadratic will have a single maximum at the value
#, which satisfies Y
H(8, -6.)=—g..

I

Newton's method for our problem consists of repeating the following steps:
1. Evaluate g. and H. at the current value § = 6..

2. Solve H.(8. —6.) = —g. for 8,.
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3. Set 6. = 6,

until convergence is attained.

In this problem, H. is always negative definite. Thus, at each iteration, Newton's method
is finding the maximum of the quadratic approximation. In principle, we also need to check
that each step actually increases the likelihood (for example, a step might be in the right
direction but too long, passing over the maximum to a point where the likelihood is smaller),
though in practice for this problem, the likelihood is sufficiently well-behaved for such a check
to be unnecessary.

The principal advantage of Newton's method is its local quadratic convergence: once 6, is
close to the maximizing §, the number of correct significant figures approximately doubles
on each iteration. As a result, the total number of iterations required is usually small.
On the other hand, each iteration of Newton's method requires the solution of a system of
equations, which is considerable numerical work if ¢ is large. Other methods which can avoid
solving this system may therefore converge using a smaller number of arithmetic operations,

even if the number of iterations is larger.

3.3.2 Ford’s algorithm

Ford (1954) proposed a model for paired comparisons which is equivalent to the Bradley-
Terry model, and gives an iterative method. and a proof of its convergence, for estimating
the parameters of the model. We describe the method, as did Ford, for the simple model
lacking home field advantage and draw parameter.

Let 7, = exp(.3,). and let =, . be the value of m, after the r-th iteration. The algorithm

begins by setting 7, = 1 (say) for all 7, then, forz = 1,2....,¢t, cvclically, setting
Trr+1 = Li|/ Z] AIJV/(NLT + 7r],r)
"TJ.T'?I = ﬁ].f ]f] # i.

where 1’ is the observed number of wins for team 1 and 4,, = y,, + y,, is the total number
of games plaved between teams ¢ and j.

As with Jacobi's method. described in Section 3.3.3 below. Ford's algorithm ignores any
correlation between the ratings, and may therefore be expected to converge slowly if any
correlations are appreciable. (Strictly, Ford's method is a kind of Gauss-Seidel algorithm,
since the most recent values of 7, are used to update 7,.) In practice, convergence generally

requires a large number of iterations (David, 1988, p. 62). but is guaranteed.

\
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The algorithm as described above seems to have been intended for hand calculation,
where the W, and A;; will be either available or easily calculated at the beginning. A
pefhaps more natural implementation for machine use consists of passing through the data
!:tﬂ:)ne game at a time (for further discussion of this issue see Section 3.4.5), for which we

define one iteration to consist of the following steps:
1. Fort=1,2,...,t:
(a) Set S5, =0.
(b) For each game in the data set:
i. If team ¢ played in this game, against team j say,let S, = S, + 1/(m, + 7,).
(c) Set nr, = W,/S5,.
This implementation of Ford’s algorithm, which we call “Ford-1", is analyzed in Sec-
tion 3.4 and used in the Examples of Section 3.5. Viewed in this light, however, it seems
that an unnecessary number of passes is made through the data set (in searching for games

involving team ). This suggests a modification whereby the changes to all the r, are com-

puted from one pass through the data, as follows:

1. Set S, =0fori=1,2.....t.
2. For each game in the data set:

(a) Let 6 = 1/(m 4+ 7,).
(b) Add é to both S, and §,.

3. Set m, = W,/S5, fori=1.,2,....¢t.

We call this algorithm “Ford-2". One might suspect, since the previous values of w;
are being used rather than the most recent ones, that this algorithm will require a higher
number of iterations; on the other hand, this loss may be offset by the smaller amount of

arithmetic at each iteration.

3.3.3 Jacobi’s method

A simple method that can work reasonably well is to pretend that the matrix H of second

derivatives of the log-likelihood is diagonal: each iteration is then reduced to a collection of
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one-variable equations to solve. This is known as Jacobi’s method (Dennis and Schnabel,
1984). This method does not appear to have been proposed as a solution to this problem,
despite its promise in dealing with tournaments with large numbers of teams.

In practice, convergence will be quickest if the off-diagonal elements of H are much
smaller than the diagonal elements. When fitting a Bradley-Terry model, this will be true if
(a) the parameter values are not too widely dispersed (so that the p;;x are not too different
from each other) and (b) if each team has been compared with many of the other teams
(rather than being compared many times with a small number of other team).

Each iteration of the method is, in general, as follows. As with Newton’s method, we let
g denote the vector of likelihood derivatives, 8 denote the entire parameter vector including
home field effect and tie parameter if included in the model, and subscripts ¢ and + denote

the current and updated versions of the quantities of which they are subscripts.

1. Calculate g. and the diagonal elements h;;. of H..
2. Let 9:+ = gtc + gxc/hnc'

3. Replace 6,. bv §,,.

Relative to Newton's method, the number of iterations required for Jacobi's method is
usually large. However, each Jacobi iteration is quick to complete, and so even if many

iterations are required. the total amount of computation is still small.

3.4 Computational complexity of the algorithms

3.4.1 Introduction

A simple way of comparing the algorithms given above is by the number of iterations they
require on “tvpical” problems. This, however, ignores the fact that some algorithms have
iterations that are much simpler than others. For example, Newton’s method requires the
solution of a t x t (or bigger) system of linear equations at each iteration, whereas an
iteration of Ford's method requires only the calculation of some simple quantities on one
pass through the data set. A fair comparison of the algorithms needs to take this into
account; one approach is to measure the time taken by each algorithm on a problem, but

here we prefer to count the number of floating-point arithmetic operations performed by each
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method. This is most easily done by calculating the number of additions, multiplications
and exponentiations required for one iteration of each method, as functions of the number
of teams ¢ and the number of games n, and then multiplying by the number of iterations
required for each problem.

We restrict our analysis of floating-point operations to the simplest version of the
Bradley-Terry model, with neither home field advantage nor ties included in the estima-
tion. (Some of the data sets used ingSection 3.5 contain ties, but these are counted as half
a win and half a loss if a tie paralxter is not present.)’ We count the number of addi-
tions (and subtractions), the number of multiplications (and divisions) and the number of
exponentiations required in each case.

In counting operations, we have assumed a data layout in which one row of the design
matrix'represents one game; the operation counts will therefore contain a term proportional
to the number of games n. With some precomputation, the data can be aggregated so that

one row of the design matrix represents all the games between a particular pair of teams.

We return to this issue in Section 3.4.5.

3.4.2 Ford’s methods

In counting the number of arithmetic operations, we assume that the observed numbers of
wins W, have already been calculated for each team; this can be done in one pass through
the data using only integer arithmetic.

The fundamental operation in Ford’s methods is the calculation of 1/(#x, + 7,), which
requires one addition and one multiplication (which is actually a division). (

In Ford-1, this calculation is made twice for each game, once eath on the two separate
passes for the two teams involved in each game. On each occasion, a value of S, is updated,
requiring another addition. Finally, for each team, the calculation of W,/S, takes another
multiplication. There are thus 4n additions and 2n + ¢t multiplications in each iteration of
Ford-1.

In Ford-2, the value of 1/(m, + 7,) is used for both teams. saving an addition and a
multiplication for each game. Apart from the smaller number of passes through the data
(we ignore any saving of time due to this), the algorithm has otherwise the same number of

operations. Thus Ford-2 has 3n additions and n + ¢ multiplications per iteration.
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3.4.3 Jacobi’s method '

An iteration of Jacobi’s method consists of two parts: the calculation of the derivatives g,
and h;;, and the use of these derivatives to update the ;. ‘

For a game between teams ¢ and j, the derivative calculation consists of the calculation
of the win probability p = {1 + exp(8; — 8i)}, which requires two additions, a multiplication
and an exponentiation, the calculation of y — p, the increment to the first derivative and its
addition to g; and subtraction from g; (three additions), and the calculation of p(1 — p) and
its addition to h,; and h,, (three additions and a multiplication). Since there are n games,
each of these operation counts must be multiplied by n.

The update to 3, consists of adding g,/h,;, and so contributes an extra addition and
multiplication for each of the t teams. One iteration of Jacobi’s method therefore requires
8n + t additions, 2n + t multiplications and n exponentiations. (We note that it may be
possible to save some exponentiations by storing and updating exp(3;) instead of 3;; an
exponentiation is then necessary for each of the t updates, but one is saved for each of the

n probability calculations.)

3.4.4 Newton’s method

One iteration of Newton’s method is considerably more complicated than for any of the

other methods. Specifically, one iteration consists of
1. Calculation of the derivative vector ¢ and second derivative matrix H.

2. Decomposition of H into a suitable form for solving Hé = g for 6, where 6 is the update
to the vector of 3,. We use the square-root-free Cholesky decomposition H = LDL’,

where L is unit lower triangular and D is diagonal.
3. Solution of Hé = g using the decomposition.
4. Updating of the 3,.

Step 1 takes a similar form to that for Jacobi’s method. The operations for calculating a
probability for each game, calculating the updates to g and H and carrying out the update to
g are identical, but two extra additions occur because four elements of H must be updated,

two off-diagonal elements as well as the two diagonal ones. Over all n games, there are
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therefore 10n additions, 2n multiplications and n exponentiations (some of which can be
avoided with sufficient care; see the discussion of this issue under Jacobi’s method).

Step 2 simply requires a count of the operations involved in the standard algorithm for
this decomposition. There are t(t—1)(t+1)/6 additions and ¢(t—1)(2¢t+5)/6 multiplications
(a result which seems to be correct, though which differs from Table 3.2.2 of Dennis and
Schnabel (1983, p. 51), where the coefficient of the cubic term is asserted to be } for both
the number of additions and the numb/}af/multlphcatlons)

Step 3 requires the sum of the operation counts for a solution of a diagonal system of
equations (¢-multiplications only) and two solutions of triangular systems, one for L and
one for L’ (t(t — 1)/2 additions and multiplications each). The total number of additions in
this step is then (¢t — 1) and of multiplications is ¢(t — 1) — t = ¢.

Step 4 simply consists of the addition of the solution of the set of equations calculated
in Step 3 to the current values of 3;, which requires ¢t additions.

Combining these results, we find that Newton’s method requires 10n + ét(ﬁ + 6t~ 1)
additions, 2n + ét(t + 5)(2t — 1) multiplications and n exponentiations on each iteration.

-

-
3.4.5 Summarytand additional notes

In the application of i:}1ese methods to real data, we also include “fictitious games”, one for
each team, to ensure (that the estimated 3; are all finite. A data set with n “real” games
thus actually contains a total of n + ¢t games as far as the algorithms are concerned. To get
accurate operation counts, we therefore need to replace n in the formulas derived above by
n + t. When this is done, and the resulting quantities simplified, we obtain the operation
counts shown in Table 3.1.

As was remarked earlier, our data layout, in which one rowof the design matrix repre-
sents one game, leads to components of the operation counts that are proportional to n. By
doing some precomputation, all the games between each pair of teams can be aggregated
into one row of the design matrix; the effect of this, for all the algorithms, is to reduce
n to the number n, of distinct games. In tournaments where each pair of teams meets
several times, the difference between n and n, will be considerable, and the gains achieved
by aggregation will be large.

As one would expect, the operation counts are linear in ¢t for all the methods except
Newton, where the number of additions and multiplications is cubic in ¢t because of the

necessity of solving a system of linear equations at each iteration. Of the other methods,
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Table 3.1: Operation counts for the algorithms

Algorithm Adds Multiplies Exp’ns
Newton 10n + gt(t° + 6t +59) 2n+ S22 +9t+7) n+t
Jacobi 8n + 9t 2n + 3t n+t
Ford-1 4n + 4t 2n + 3t 0
Ford-2 3n + 3t n+ 2t 0

Ford-2 has the smallest coefficients attached to both n and ¢, and so this will be the method
whose individual iterations are quickest.

In deciding which algorithm to apply to a particular problem, we will also need to
consider the typical numbers of iterations required for convergence of the algorithms, so
that the total amount of arithmetic for each can be assessed. In the next Section, we will

see how this works out for some real data sets.

3.5 Examples

3.5.1 Introduction

We consider four real data sets here, from the sports of soccer, ice hockey and basketball.
These are intended to illustrate how different aspects of the data set influence the conver-
gence properties, and hence the desirability, of the algorithms we have considered. Two of
the data sets are from round-robin tournaments, while the other two are less balanced and
therefore provide more of a test for the algorithms.

In each of our examples, the algorithms were run until the largest change in any of the
3, (and h and d, if fitted) was less than 10~%, an attempt (not always successful) to obtain
four decimals of accuracy. It is unlikely that greater accuracy would be required in practice;
indeed, three- or even two-decimal accuracy might be sufficient to obtain fitted probabilities
to the accuracy desired. With our choice of convergence criterion, it was generally true that
the estimates obtained from Newton and Jacobi agreed to four decimals, but those obtained
from Ford’s methods tended to differ in the fourth place. This seems to be a consequence
of the local convergence rates of Ford's methods being slower than their competitors’, a
property that also suggests that these methods will be more competitive if only moderate

accuracy is desired.
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Table 3.2: Scores for the Iceland example

Team Score
Akranes 13.5
KR 13.0
Leiftur 10.5
IBV 8.5
Valur 8.5
Stjarnan 8.5
Keflavik 7.5
Grindavik 7.0
Fylkir 6.5

Breidablik 6.5
Home team 52.0
Ties 20

Table 3.3: Iterations and operation counts for the Iceland example

Algorithm | Iterations | Adds Multiplies Exp’'ns
Newton 4 | 5,060 2,700 400
Jacobi 30 | 24,300 6,300 3,000
Ford-1 122 | 48,800 25,620 0
Ford-2 133 | 39,900 14,630 0

3.5.2 A small round robin

Weather conditions in Iceland ensure that the soccer season has to run during the (short)
summer. In 1996, the t = 10 teams in the top division played a double round-robin tourna-
ment for a total of 18 games per team and n = 90 in total. The scores for the teams (one
point for a win, half a point for a tie) are shown in Table 3.2, along with the total number
of points obtained by the home teams and the total number of ties.

Fitting the simple Bradley-Terry model using the four different algorithms required
the numbers of iterations shown in Table 3.3. Of greater interest is the total number of
arithmetic operations required in each case; these are shown in the remaining columns of
the Table, and were calculated by substituting ¢t = 10, n = 90 into the formulas of Table 3.1
and multiplying by the number of iterations.

With this small number of teams, Newton’s method clearly comes out best, the additional
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complexity of each iteration more than offset by the much smaller number of iterations
required. Ford's methods are not competitive, but it is worth noting that the operation
count of Ford-2 is noticeably smaller than that of Ford-1, despite requiring a greater number
of iterations. Ford’s methods compare in this way in all of our examples, suggesting that
this behaviour persists in some generality.

In this round-robin, each pair of teams plays twice, so that even though n = 90, there
are only n; = 45 different games played. Aggregating the data produces the most dramatic
reduction in operations for our two implementations of Ford’s method, but with the small
t of this problem, Newton’s method is still preferred.

Newton's and Jacobi's methods can also be used to fit models containing a tie parameter,
a home field effect, or both. We have not carried out an analysis of operation counts for
these models, but it is instructive to compare the iteration counts — Newton’s method
required four iterations no matter which model was fitted, but Jacobi required a greater
number of iterations when a tie parameter was included: 44 for the tie parameter only, and

42 when a home field effect was fitted as well.

3.5.3 A larger round robin

The soccer season in England traditionally runs from late summer to spring. In the 1996/97
season, the top (*Premier”) division contained ¢t = 20 teams who played 38 games each for
a total of n = 380. The scores for the teams, giving one point for a win and half a point
for a tie, the total points for the home teams, and the total number of ties, are shown in
Table 3.4.

The numbers of iterations required and the operation counts for each method are shown
in Table 3.5. Ford’s methods are again uncompetitive, but this time, with the increased
number of teams, Jacobi’s method is superior to Newton, indeed almost matching Newton's
number of iterations (this is probably due to the balance in the data).

As in the previous Example, each pair of teams meets twice, so that n; = n/2 = 190.
Recalculating the numbers of operations, however, does not lead to any change in the relative
merits of the algorithms: Jacobi's method is still preferable to Newton, with the operation
counts for Ford-1 and Ford-2 being higher.

When a home field effect and a tie parameter are fitted, Newton’s method continues to
require only four iterations for convergence, but Jacobi requires one extra iteration with

a home field effect and an additional 9 iterations with a tie parameter. (The numbers of
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Table 3.4: Scores for the England example

Team Score
Manchester Utd  27.0
Newcastle 24.5
Arsenal 24.5
Liverpool 24.5
Aston Villa 22.0
Chelsea 21.5
Shefhield Wed 21.5
Wimbledon 20.5
Leicester 17.5
Leeds 17.5
Derby 17.5
Tottenham 16.5
Blackburn 16.5
West Ham 16.0
Everton 16.0
Coventry 16.0
Middlesbrough 16.0
Southampton 15.5
Sunderland 15.0
Nottingham F 14.0
Home team 221.5
Ties 119

Table 3.5: Iterations and operation counts for the England example

Algorithm | ITterations Adds Multiplies Exp’ns

Newton 4 22,920 16,200 1,600
Jacobi 5 16,100 4,100 2,000
Ford-1 140 | 224,000 114,800 0

Ford-2 159 | 190,800 66,780 0
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Table 3.6: Iterations and operation counts for college hockey

Algorithm | Iterations Adds Multiplies Exp’ns
Newton 5 | 121,630 164,510 4,100
Jacobi 119 | 785,876 200,396 97,580
Ford-1 289 | 947,920 486,676 0
Ford-2 321 | 789,660 277,344 0

iterations happen to behave additively.) In the presence of ties, therefore, the advantage of

Jacobi seems to have been lost.

3.5.4 College ice hockey

In the US, 44 college teams compete in the top level, “Division 17, of ice hockey organized
by the National Collegiate Athletic Association. These teams are mostly based in the
northeastern and midwestern US, and play anywhere between fewer than 20 and more than
40 games in a season that stretches from October to March. In the 1996/97 season, a total
of n = 776 games were played between Division 1 teams; a fair number of games were
played between Division 1 teams and those at lower levels, but these are not included here.
The range in strength of teams is quite wide, though “upsets” do happen. The teams are
‘arranged in conferences, and play most of their games against teams in the same conference;
there are also some “independent” teams, not affihated with any conference, who tend to
play a smaller number of games than average. This lends a fair imbalance to the data,
although the four conferences were, in this season, of similar strength, so that teams in
different conferences will have a similar calibre of opposition. In terms of wins and losses,
as well as according to the Bradley-Terry model, the strongest team was Michigan, with 34
winé, 4 losses and 4 ties, while the weakest on both counts was Air Force, who had 2 wins,
16 losses and 1 tie.

The iteration and operation counts are shown in Table 3.6. Despite the large number
of teams, Newton’s method is clearly the best here; it maintains its record of convergence
in a small number of iterations while the imbalance in the data adversely affects the other
methods. Indeed, there is little to choose between Jacobi and Ford-2 here.

Because of the arrangement of the teams into conferences, some pairs of teams play

many games against each other and many pairs of teams do not meet at all. As a result, the
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Algorithm | Iterations Adds Multiplies Exp’ns
Newton 6 | 29,484,846 58,200,570 27,072
Jacobi 112 | 4,077,024 1,044,960 505,344
Ford-1 360 | 6,497,280 3,358,800 0
Ford-2 393 | 5,319,648 1,893,474 0

value of n; is 317, less than half of n = 776. Running the algorithms on the aggregated data
therefore saves a considerable number of operations, especially with Ford-1 and Ford-2, but
the pattern remains the same, with Newton preferred and little to choose between Jacobi
and Ford-2.

Ties are possible, though rare, in céllege hockey, and the advantage of home ice seems
to be small, though the assessment of home ice advantage is clouded by some of the games
being played on neutral ice (which was not accounted for in the fitting process). The models
including these parameters were fitted anyway, using Newton and Jacobi. Newton's method
contined to require five iterations for convergence, while Jacobi’s method was essentially
unaffected by the extra parameters, requiring from 117 iterations with one extra parameter

to 120 when both were included.

3.5.5 College basketball

For our final example, we have an extremely large data set. Basketball is played at an
enormous number of colleges and universities in the US; our data, which is taken only
from the top level (“Division 1”) of the National Collegiate Athletic Association’s structure,
consists of 4,206 games played by 306 different teams during the period from October 1996
to March 1997. As with the previous example, the teams are arranged in conferences and
play most of their games against teams in their own conference, although there is a greater
amount of inter-conference play in basketball due to a large number of small tournaments
played before the turn of the year and the 64-team knockout competition that ends the
season. Not only do the teams vary widely in strength, but the conferences do as well; a
team’s won-lost record is generally a poor indicator of the team’s strength.

With the large number of teams and the unbalancedness of the data, estimation is

challenging for any algorithm. Table 3.7 shows how our four algorithms fared. With this
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Rl

many teams, Newton’'s method, even though convergént in six iterations, simply cannot
compete; Jacobi appears to be the method of choice, though Ford-2 is not far behind,
especially when the cost of an‘exponentiation is considered.

The conference structure of this data set means that many pairs of teams never meet,
i)ut any particular pair of teams plays no more than twice. The value of n; is 2861, which
is close to %n, a larger ratio than for the other Examples. The effect of aggregating the
data is therefore not large: the operation counts are reduced by roughly a third for Jacobi,
Ford-1 and Ford;
almost unchafiged.

Bas

set between home and away teams or gaines played-on a neutral court, so we do not

‘while the operation counts for Newton, which are dominated by ¢, are

ball games cannot end in a tie, and I have not attempted to distinguish in the
da

assess the effect of estimating home advantage or a tie parameter here.

3.5.6 Discussion

These examples have shown that Newton’s method, though the most complicated to pro-
gram, requires the smallest number of operations for convergence for small and moderate
values of t. Ford-2 always seems to outperform Ford-1, and tends to perform similarly to
Jacobi’s method in large or unbalanced data sets. All these methods are far superior to
Newton when t is large. Jacobi’s method, on the other hand, appears to perform well when
the data set is balanced.

Newton’s method appears to be the most reliable, converging always in a small number of
iterations — this is unusual behaviour, since Newton’s method generally requires some sort of
safeguard to prevent occasional large steps being taken. The reason for this may be that the
log-likelihood is close to quadratic for typical Bradley-Terry problems. When the number of
tearhs» is small, Newton’s method can be recommended without question, but as the number
of teams increases, the number of operations per iteration becomes insupportably large, at

which point Jacobi's method or Ford-2 are to be preferred.
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3.6 Comparisons with round-robin and Swiss tournaments

3.6.1 Round-robins

It is known (see David, 1988, p. 104; Bihlmann and Huber, 1963) that, in the simplest
version of the Bradley-Terry model in which there is no home field advantage (order effect)
or possibility of ties, the ranking of the teams given by the Brad}sy-Terry model is identical
to that given by the number of wins. Further, two teams with the same number of wins
will have the same strengths as given by the Bradley-Terry model. Biihlmann and Huber
also show that the converse holds: only under the Bradley-Terry model are the rankings
guaranteed to be identical.

The identity of rankings extends to tournaments with ties (Davidson, 1970): the teams
are now ranked by points, with 1 point given for a win and % point for a tie. As noted in
the discussion of the likelihood equations in Section 3.2, a linear transformation of this scale
has no effect on the estimation procedure, and since such a transformation does not affect
the ranking of the teams by points either, the result continues to hold. However, there is no
guarantee of equality of rankings when some other point system is used, such as awarding
3 points for a win and 1 for a tie (which is the world standard for soccer).

We show in Theorem 3.4 that equality of rankings holds in the presence of a home field
advantage, provided that the round-robin is properly “balanced”. As a preliminary, we

require a Lemm® that enables us to assert that the expected number of points for a team

from a game increases with the difference in strengths: N

\

~
Lemma 3.3 The ezpected number of points p;;| + pi,0/2 is an increasing function of h +
3, - 8.

Proof: Let 22 = exp(h + 8,), y? = exp(3,) and é = exp(d). Then p,;; = z2/(z2 + y* + bzy)
and p,;0 = zy/(z* + y* + bzy). Thus the expected number of points is
%+ dxy/2
Sy = .
T 224 y? + by
For fixed y, this is seen to be a function of z that is zero when r = 0, and increases to 1

with z, and thus, since z is an increasing function of h + 3; for §; fixed, the result is proved.
TA

Theorem 3.4 In a round-robin where, for each i and j play against each other r times at

the field of team 1 and r times at the field of team j, the teams are ranked identically by the



\_,/\

e

CHAPTER 3. THE BRADLEY-TERRY MODEL 61

Bradley-Terry model and by points, with one point awarded for a win and a half point for a

tie (or any linear transformation of this scale).

Proof: It suffices to show that all pairs of teams (¢, j) are correctly ranked; in particular, we
show that the observed numbers of points are correctly greater, equal or smaller as B,— > ﬁj,
Bi = Bj, B; < ﬁJ Furthermore, since the Bradley-Terry likelihood equations require ﬁ to
be found such that the observed and expected points are equal, we need only show that the
expected numbers of points are ordered correctly. Let s;un = Pmn1 + Pmno/2 be the expected
number of points for team m in a game at home against team n.

Consider a pair of teams 7 and j for which B, > BJ For k # 1, j, both teams play team
k at home r times and away r times. Now, s;z > s;x because of Lemma 3.3 and sx; < si;
by the same Lemma, so that, for each opponent k, team 7 has a greater number of expected
points than team j, both home and away. Also, h + B, - ﬁj > h+ Bj - Bi, so that team 1 is
expected to gain more points than team j in the totality of games between team. Thus the
result holds if ;j, > 131

The other cases follow similarly; if B,' < Bj, the preceding argument can be used with 2
and j exchanged, whereas if B, = Bj, Sik = $;k and s = sk; for all k and s;; = s;;. Thus
the proof is complete.

It is worth noting that the Theorem does not in general hold if the balance condition is
not satisfied. For example, if the home field advantage is large, then a team that plays most
of its games at home will be expected to gain a larger number of points than a team that
plays the same opposition predominantly away from home. Even if the number of home and
away games is balanced for each team, there is still an advantage in expected points for the
team that plays the very strongest and very weakest opposition away from home, where the
probabilities are affected least, and the other teams at home, where the probabilities are
affected most by the home field advantage.

y

"'!’1’

3.6.2 Swiss tournaments

In Section 2.5, we introduced Swiss tournaments as an alternative to round-robins when the
number of teams ¢t is too large for a round-robin to be feasible.

It should be noted first that, because the design produced by a Swiss tournament is
sequential in nature, standard likelihood results cannot be applied blindly. In particular, the

probability of a particular game ending in a win, loss or tie depends on the teams involved in
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that game, and this in turn depends on the results of previous games, so that the likelihood
is a product not of independent probabilities, but of conditional ones that express this
dependence. This has an impact both on the information matrix and on repeated-sampling
inference: up to now, we have not had to worry about distinguishing between observed and
expected information, since the second derivative of the log-likelihood for independent data
does not contain the data, and therefore the observed and expected information matrices
are equal. However, calculation of the expected information for a sequential design requires
us to include the conditioning, and this will in general be very difficult. Similarly, repeated-
sampling inference from a sequential design requires us not to conceive of replications of
results from the design that was observed, but to consider that the design itself will vary in
repeated sampling. (Adherents to the “pure likelihood” principle of inference face no such
problem, since for them the only relevant issue is what was actually observed, rather than
any rules determining the design of the experiment.)

This issue also arises in the sequential construction of optimal designs, as we shall see
in Chapter 4. Silvey (1980, p. 63) gives a discussion in this context. While acknowledging
that these problems exist, however, we continue to estimate parameters as if the design had
been fixed in advance; this approach seems to yield sensible results with considerably less
attention to detail than a more careful approach would require.

The lack of balance inherent in a Swiss tournament, as well as the sequential nature of
the tournament design discussed above, precludes any easy theoretical results concerning the
equality of rankings obtained from the tournament itself and from Bradley-Terry estimation.
We turn, therefore, to simulation studies to investigate the nature and strength of agreement
between the two rankings.

In order to do this: we need to recall that, in a Swiss tournament, the teams are first
ranked by points, denoted here a;, and then, if tied, by Buchholz score (the sum of points
obtained by all the opponents of each team, a measure of “strength of schedule™), which is
here denoted b;. Then we need a measure of the agreement between the two rankings. We
have chosen Kendall’s T for our measure of rank correlation, since it is based on the number
of “discordances”, that is, the number of pairs of teams (i, j) such that team i is ranked
above team j on one ranking but below on the other; the number of discordances seems a
natural way to quantify disagreement between rankings.

Simulations were carried out for various combinations of number of teams, disparity of

team strengths and tendency for ties to happen. Specifically, we assumed that the true g3; for
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the teams are equally spaced and in descending order, with the difference §; — 3, chosen so
that the probability of team i defeating team j (given a non-tie, in the cases where ties are
possible) is pw, for pw = 0.5,0.6,0.7. The tie parameter in the Bradley-Terry model can
be related to the probability of a tie occurring between two teams of equal strength; in our
simulations, the parameter is chosen so that this probability is pr = 0,0.1,0.25,0.4. Finally,
the numbers of teams t investigated were t = 10,20, 30,45, the number of rounds in the
tournaments were respectively r = 6,9,10, 12 (approximately 2log, t), and 100 simulations
were carried out for each combination.

The results of the simulations are shown in Table 3.8. The column marked 7y shows the
mean “raw” Kendall correlations between the rankings obtained from the Swiss tournaments
and the Bradley-Terry 3;. The correlations are generally high, but tend to decrease as t
increases and increase as pw increases (the relationship with pr seems unclear). As pw
increases for fixed t and pr, the true ranking becomes easier to discern, and so it seems
likely that both rankings are approaching the true ranking. As t increases for fixed pyw
and pr, the number of rounds in the tournament becomes a smaller fraction of t — 1, the
number of rounds in a single round-robin, so that it becomes increasingly difficult to rank
close-together teams correctly.

A more detailed investigation was conducted of the situations in which a pairv of teams
would be misranked in the Swiss tournament (relative to the Bradley-Terry 3;). In the vast
majority of cases (typically 70%-80%), especially for pw > 0.5, a pair of teams (i, j) would
be misranked because team i had more points but a distinctly smaller Buchholz score than
team j. This means that team ¢ faced considerably easier opposition than team j through
the tournament, and so, even though a; > a;, is actually assessed as weaker (3; < 3;) by the
Bradley-Terry model. This suggests that a better approach might be to calculate a Swiss
tournament score by a; + ab,, for some value of a, and rank the teams in this fashion. Note
that the standard procedure consists of taking a to be a slightly larger than zero.

For each of the simulated tournaments, the value a,,,, of a was found such that the mean
value of 7 was maximized for that combination of t, pw, pr; in other words, a was chosen to
make the rankings based on this modified score correspond as closely as possible on average
to the rankings from the §,. Because a small change in a may not change the ranking, and
hence 7 has a plateau as a function of a, the maximizing value a,,; is not uniquely defined,
and in particular cannot be pinned down to more than two or three decimals. In Table 3.8,

the column labelled 7,,,; shows the maximum value of 7 (which s precisely defined), and
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Table 3.8: Kendall rank correlations for simulated Swiss tournaments

t PW PT To T Tmazx Omazx
10 050 0.00 | 0.9098 0.9522 0.9531 0.18
10 050 0.10 | 0.9298 0.9571 0.9573 0.16
10 0.50 0.25 | 0.9253 0.9627 0.9642 0.16
10 050 0.40 | 09369 0.9649 0.9649 0.17
10 0.60 0.00 | 0.9287 0.9424 0.9438 0.19
10 060 0.10 | 0.9382 0.9498 0.9518 0.13
10 060 0.25 | 0.9311 0.9578 0.9593 0.17
10 060 9.40 | 0.9447 0.9656 0.9660 0.14
10 0.70 0.00 | 0.9533 0.9609 0.9629 0.21
10 0.70 0.10 { 0.9493 0.9627 0.9636 0.16
10 0.70 0.25 | 0.9376 0.9507 0.9511 0.23
10 0.70 0.40 | 0.9329 0.9522 0.9547 0.19
20 0.50 0.00 | 0.9157 0.9473 0.9478 0.18
20 050 0.10 | 0.8854 0.9445 0.9459 0.16
20 0.50 0.25 | 0.8987 0.9523 0.9528 0.16
20 0.50 0.40 | 0.9088 0.9548 0.9559 0.16
20 060 0.00 | 0.9209 0.9376 0.9377 0.16
20 060 0.10 § 0.9000 0.9376 0.9388 0.15
20 0.60 0.25 | 0.8915 0.9386 0.9393 0.14
20 0.60 0.40 | 0.9015 0.9421 0.9427 0.14
20 0.70 0.00 | 0.9249 0.9413 0.9415 0.14
20 0.70 0.10 | 0.9086 0.9421 0.9424 0.16
20 0.70 0.25 | 0.8921 0.9378 0.9384 0.15
20 0.70 0.40 | 0.8937 0.9385 0.9393 0.14
30 050 0.00 | 0.8977 0.9385 0.9389 0.18
30 050 0.10 | 0.8709 0.9417 0.9419 0.17
30 0.50 0.25 | 0.8630 0.9414 0.9415 0.16
30 050 040 | 0.8835 0.9474 0.9477 0.16
30 060 0.00 | 09109 0.9264 0.9270 0.20
30 060 0.10 | 0.8967 0.9292 0.9295 0.19
30 060 0.25 | 0.8884 0.9346 0.9353 0.19
30 060 0.40 | 0.9001 0.9383 0.9392 0.19
30 070 0.00 | 09189 0.9323 0.9324 0.18
30 0.70 0.10 | 0.9040 0.9302 0.9303 0.16
30 0.70 0.25 | 0.8896 0.9282 0.9283 0.14
30 0.70 0.40 | 0.8883 0.9308 0.9309 0.16
45 0.50 0.00 | 0.8466 0.8948 0.8951 0.16
45 050 0.10 | 0.8036 0.8868 0.8878 0.14
45 050 0.25 | 0.8037 0.8870 0.8871 0.17
45 050 0.40 | 0.8146 0.8912 0.8924 0.15
45 060 0.00 | 09080 0.9195 0.9197 0.18
45 060 0.10 | 0.8899 0.9209 0.9209 0.18
45 060 0.25 | 0.8825 0.9210 0.9210 0.17
45 060 0.40 | 0.8881 0.9238 0.9242 0.17
45 0.70 0.00 | 0.9131 0.9253 0.9256 0.18
45 070 0.10 | 0.8984 0.9232 0.9233 0.18
45 0.70 0.25 | 0.8886 0.9242 0.9247 0.21
45 0.70 0.40 | 0.8878 0.9237 0.9238 0.18
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the column labelled a4, shows the (unique to two decimals) maximizing a.

The values of ,,,, are substantially greater than those of 7y in almost all cases; fur-
thermore, the variability in the values of a,,,, is small over the entire range of values of
t,pw,pr in the study. In particular, the value a = é seems to be “typical” of the am,;
values, and is also a readily memorable number. We can therefore propose ranking teams
in a Swiss tournament, instead of by points with the Buchholz score as a tiebreaker, by the
“scores” s; = a, + b;/6. This was done for each simulated tournament. and the values r of
the mean Kendall correlation for each combination of ¢, pw, pr are’shown in the Table. It
is seen that the values of 7, are very close to Tp,., even when a4, is not especially close
to —é—. so that, as with 7., the rank correlations are substantially improved in almost all
cases. |

The simulations were carried out by awarding two points for a win and one for a tie, so as
to enable integer arithmetic to be used, but it should be noted that any linear transformation
of the point scale has the same effect on the Buchholz scores as it does on the points, so
that the same value a = § can be used for any such point scale.

In a Swiss tournament with r rounds, the points scored by each team.are proportional
to r, while the Buchholz scores are the sum of r quantities each proportional to r, and so
themselves are proportional to r2. With this in mind, one might suspect that a score of th‘é
form a; + o’\/b; would give better results. This was tried with the results of the simulation.
It turned out that the values of 7, were very similar (sometimes slightly larger, sometiines
slightly émaller) to those obtained with a4z, but, rather less conveniently, the values of
al .. were very much more variable with no obvious pattern. So our recommendation
stands: namely, to rank teams by s; = a, + b,/6.

It should be borne in mind that these conclusions are only valid in the range of the
simulations performed. In particular, the gains in using the s; rather than ranking by points
may be negligible for a = é for larger values of t or pr. The evidence of our simulation

study, however, suggests that the variability in values of a4, is small for large ¢, and that

the biggest gains 7} — 1y are obtained for large values of pr.



Chapter 4

Optimal designs and comparisons

4.1 Introduction

In Chapter 2, we considered designs for paired-comparison experiments in a general setting.
and in Chapter 3, we looked at the Bradley-Terry model. It is natural now to consider the
design problem in cases where the Bradley-Terry model is tenable; in particular, we can use
the theory of eptimal design to develop designs which should permit accurate estimation of
the parameters in a Bradley-Terry model, and we can investigate the efficiency relative to
these “optimal™ designs of round-robin and Swiss tournaments.

Throughout this chapter, our objective is to estimate accurately the strengths of all
teams in a tournament. There are other possible objectives, such as maximizing the prob-
- ability of detecting the best team, for which the design goals are different. (For example, a
knockout tournament is, relative to the number of games that need to be played, an effective
way of finding the best team but a very ineffective way of ranking all the teams; see David,
1988, Section 6.4.)

We begin with a short review of the ideas of optimal experimental design. Atkinson and
Donev (1992) and Silvey (1980) provide a more general background. We then investigate the
nature of optimal designs and their determination when the Bradley-Terry model holds. The
problem is interesting because of the design space: rather than being able to choose from
an infinite set of z-values in some closed region, our design space consists of the t(t —'1)/2
different games that could be played between the teams, and is a matter of choosing which
games to play, and how frequently. Like Atkinson and Donev, we consider “continuous”,

“exact” and “sequential” designs, and offer some ideas about the application of optimal

66
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design in practice. Finally, we present some efficiency comparisons between round-robins,

Swiss tournaments and sequential designs with optimal exact designs of the same size.

4.2 Optimal design

The meaning of a “best” design depends on the objectives of the experiment. One might, for
example, be interested in estimating the parameters of a model accurately, or be interested
in predicting the response variable with high accuracy in some region. There are thus
numerous optimality criteria in use - see, for example, Atkinson and Donev (1992, ch. 10).
However, since accuracy of estimation and prediction are both governed by the information
matrix, most of the commonly-used criteria are functions of the information matrix. There
are, in fact, some equivalence results, given in (4.2) and Theorem 4.2.

For our notation, let u denote a design, that is, a collection of values {z,, w,} where the
r; are design points and the w, indicate the amount of experimental effort at that point.
We distinguish between “continuous” designs, in which 3}, w; = 1 and the w; indicate the
fraction of observations to be taken at design point z;, and “exact™ designs, where the w;
are integers with " w, = n for some chosen value of n. Let M(u,8) denote the p x p
information matrix based on a design u, evaluated at parameter value 8. We will tend to
have a particular value of @ in mind, in which case the dependence on 8 will be suppressed.
Let Ay,..., A, denote the eigenvalues of M(u,#); note that the eigenvalues of M~!(u,#),
the asymptotic covariance matrix of the parameters, are 1/A;,...,1/A,.

Continuous designs are generally easier to obtain or verify by means of the theory, but
in practice, exact designs are required. For large samples, exact designs can be obtained by
the obvious process of multiplying the w; in a continuous design by n and then rounding,
but for small samples, and commonly in the design‘é required for the Bradley-Terry model,
the loss of accuracy due to rounding can be too great, and so we will consider methods for
generating exact designs directly.

Some commonly-used optimization criteria are expressed in terms of the eigenvalues as

follows:

A-optimality Minimize ) ,(1/A;), the sum (or equivalently average) of the variances of

the parameter estimates.
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D-optimality Minimize 1/[], Ai, which is the inverse determinant of the information ma-

trix (the “generalized variance” of the parameter estimates™).

E-optimality Minimize max;(1/A;), the variance of the least well-estimated contrast a’é

where a’'a = 1.

In linear models, designs can typically be found which are optimal under the chosen
criterion for all parameter values, and therefore there is no doubt about the optimality of
the design. For non-linear models, however, of which the Bradley-Terry model is an exam-
ple, the optimal design depends on the values of the parameters. In theory, this presents
no problem, since optimal designs can be found for any given values of the parameters,
but in practice the dependence on the true parameter values presents a difficulty. Two
possible approaches suggest themselves: to design based on a priori values for the parame-
ters, as we do in Sections 4.3.2 and 4.3.3, or to adopt a sequential approach, making a few
observations, estimating the parameters, constructing a small design based on the current
information about the parameters, and repeating as necessary. We investigate this approach
in Section 4.3.4.

We concentrate on D-optimality, which turns out to have some attractive properties for

the Bradley-Terry model.

4.3 D-optimal design for the Bradley-Terry model

4.3.1 Introduction

As discussed above, we will need to consider a number of different design problems. Assum-
ing the parameters to be known, we wish to find continuous and, if possible, exact designs.
Then we discuss sequential designs. The algorithms used in each case are well-known (see
Atkinson and Donev, 1992); it is the nature of the designs produced by these algorithms
that is of particular interest here.

In Chapter 3, we found the likelihood and derivatives for a general form of the Bradley-
Terry model. In this thesis, we consider only the simplest form of the model, in which there
is no home field (order) effect and no tie parameter. In this case, the design space consists
of the set of t(t — 1)/2 different games between the ¢ teams, and a design consists of this
list of games together with a value w;;,i,7 = 1,...,t,7 # j, that represents its frequency or

relative frequency in the design. There is no longer any need to distinguish between, say,
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i vs. j and j vs. 7, so we adopt the convention that w;; = w,;. The notation of Chapter 3
simpliﬁes: since pijo = 0 for all ¢, 7, p;j2 = 1 — p;j1 and p,;1 = pij2 = 1 — pi;1. Noting also
that the design implies w;; = w,i = yij+ = ¥Yji4+, we find that the off-diagonal elements of

the information matrix M(u,3) become
mi; = —wipiji(l = pipn ) Tt # 7.
and the diagonal elements become
mi = Y wiipinll = pijn)-
I#
The diagonal elements are such that the row sums of this matrix are all zero, so that

A is rank-deficient by one {or more, if too many of the w;; are zero). We cannot therefore

immediately apply D-optimality, det M being zero. Two possible remedies are:

e Remove one row and column of M, producing a (¢t — 1) x (¢ — 1) matrix of full rank

for all reasonable designs.

e Add a constant 4 to the diagonal of M, which will increase all the eigenvalues by 4,

including any of them that were zero, and thus render M positive definite.

Either course can be helpful in certain circumstances. In dealing with continuous designs,
we know or suspect that the information matrix will be rank-deficient by exactly one, and
so the first course will be easier to follow. However, with exact and sequential designs, it
is generally easier to take the second course (choosing é large enough to ensure that M is
numerically positive definite but small enough not to interfere with the determination of the
design), because in the early stages of design construction, we wish to be able to proceed
sensibly even if the information matrix has multiple zero eigenvalues. The two approaches

give answers that are “equivalent” in the following sense:

Theorem 4.1 Let an nxn matriz A have eigenvalues Ay, ..., A, with A; > 0 for all i. Sup-
pose that k eigenvalues of A are ezactly zero. Then the determinant of the matrir obtained
from A by deleting k linearly dependent rows and columns is approrimately 6% det(A + 61)

for 6 small.

Proof: The matrix A + 61 has eigenvalues Ay +6,...,A, + 8, and these eigenvalues are all
positive if &6 > 0. The determinant of A + é/ is [[I=,(A; + &), which can be written as the
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sum of H,’-‘zl A;, 0 times the sum of all products containing n — 1 A,, ..., 6% times the sum
of all products containing n — k A, ..., and é™ times the sum of the A,. Thus if A contains
k zero eigenvalues, det(A + 6I) = 6* [1:i:a,20 A: plus terms containing higher powers of 4.
Neglecting these terms, we see that this determinant contains the product of the non-zero
A; values.

Now, the matrix A is of rank n — k, and thus has k rows that can be expressed as linear
combinations of other rows of A. Deleting these rows and their corresponding columns yields
a non-singular matrix A" with non-zero eigem)alues the same as those of A. (This can be
shown by first applying a linear transformation to set the elements of the rows and columns
concerned to zero, then noting that zero rows and columns can be deleted to yield a matrix
with the same non-zero eigenvalues.) Thus, provided higher powers of é can be neglected,

det A’ = 6~% det(A + 6I). as we wished to prove.

4.3.2 Continuous designs when parameters known

The w;, of a continuous design are the proportion of all games that are played between
teams ¢ and j, based on the assumption that all 3; and pi;, are known. Since the w,, of a
D-optimal continuous design depend continuously on the 3; and p,;,, it is possible to state
general results which allow one to check the optimality of particular designs, and to use
methods of continuous optimization to find optimal (continuous) designs. These issues are
considered in Chapter 9 of Atkinson and Donev (1992).

For small ¢, the continuous D-optimal design can sometimes be found analytically. For
. Since

example, consider a tournament with ¢t = 3 teams, for which p;;; = % and py3; =

. Fora

~HO WIin

the Bradley-Terry model is based on additivity of log-odds, it follows that p;3, =
general design u, it follows that M(u) is

3 6 3., 6 .,
TeWi2 + g3 — g W12 — 5 W13
3 3 2 2
—16 W12 jeWi2 + §w23 —§W23
6 2 6 2
— 25 W13 —jw23 W13 + W3

The determinant is zero, because the row and column sums are zero, t%ut the determinant
! . . 9
of the upper left 2 x 2 submatrix is 35;wywy3 + %wlzwgg + %47‘(0‘3‘(1)23.
Maximizing the determinant subject to the constraint wy; + w3 + wy3 = 1 yields the

solution wy,; = 0.420,w,3 = 0.146, w3 = 0.434. Thus D-optimality tells us to play fewest
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games between the teams 1 and 3 that are most different in strength, and most games
between the teams 2 and 3 that are most evenly matched.

This is typical of D-optimal designs for Bradley-Terry models — the “information” in
a game is p;;1(1 — pyij1), which is maximum when p,;; = % so that the optimal design
tends to contain as many of these “informative” games as is consistent with being able to
estimate all the team strengths accurately. One other noteworthy feature in general is that
the teams do not play the same number of games: in this example, team 2 features in over
85% of the games, while team 1 appears in fewer than 57%. This is in contrast with the
other tournament types we have considered; in both round-robins and Swiss tournaments,
all teams play the same number of games.

If the teams are all assumed to be of equal strength, there should be no reason for the
D-optimal design to call for any one pair of teams to meet more often than any other pair.
We will show that this is indeed the case, and we will also derive a method for finding
D-optimal designs in general for the Bradley-Terry model.

To do this, we review a result, known as the General Equivalence Theorem, that yields
checkable conditions for D-optimalitv. We present the result in greater generality first.

Let W{}M(u)} denote a convex function of the information matrix which is to be min-
imized.r All of the optimality criteria above can be written in this way; for example, the
D-optimality criterion can be taken as —logdet{M(u)}. Let u denote the design measure
that puts unit mass at u, and let ¢(z,u) denote the directional derivative of ¥{M(u)} in
the direction u. The General Equivalence Theorem (as given in Atkinson and Donev, 1992)
is then:

Theorem 4.2 The following three statements are equivalent:

1. The design u* minimizes ¥{M(u)}.

2. mino(z,u™) > 0.

3. o(x.u*) achieves its minimum at the points of the design.

Proof: See Silvey (1980, p. 22).
The nature of the theorem can be seen more easily in the case of D-optimality. Let p

be the number of parameters being estimated. When

Y{M(u)} = — logdet{M(u)},
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it follows that ¢(z,u) = p — d(z,u), where d(z,u) is the standardized variance of the pre-
dicted response at r (see Atkinson and Donev, 1992, p. 95). The three equivalent conditions

can therefore be expressed:
1. u”is D-optimal.
2. maxd(z,u*) < p.
3. d(z,u”) achieves its maximum at the points of the design.

It is worth noting that, by this result, D-optimality is the same as a criterion, known as
G-optimality, which tries to minimize the maximum prediction variance over the design
space. This explains the name of the Theorem. The same result, however, does not hold
for exact designs; see Atkinson and Donev (1992, p. 43-44) for an example. ‘

These results can be used to check a candidate continuous design to see whether it is
D-optimal or not. Typically, the maximum of the second condition is equal to p. It should
be noted that this maximum is over the entire design space; it is not enough to check the
standardized variance only at the points in the design. ‘

For the Bradley-Terry model, with information matrix M(u) for a continuous design u
(evaluated at some fixed parameter value 3), the standardized variance takes the simple
form

d(i»j» u) = px]l(l — Dyl )(mh + m? — Qm”),
where m" denotes the (i, j)-th element of {A(u)}~!, for a game between teams i and j.
The General Equivalence Theorem then asserts for the D-optimal design that

d(i,j.U) = p;_;l(l - px;l)(mﬁ + m/ - Qmi‘]) <t-1

for all ¢ and j. We can therefore check a candidate design for D-optimality by checking this

condition. The following Theorem is a useful example.

Theorem 4.3 When p,;1 = p,,2 = 3 for all i and j, the D-optimal design sets w,; =
2/{t(t = 1)} for all i and j.

Proof: Since p,,1(1 — pij1) = % for all 7,7, each off-diagonal element of the information
matrix for the postulated design is m;; = —1/{2t(t — 1)}. The diagonal elements are

the negative sums of the t — 1 other entries in each row (or column), and are therefore
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m, = 1/(2t). Applying the tactic of removing row and column t to produce a matrix
M’ that is non-singular, we can apply a well-known result to deduce the inverse of M’,
and thus obtain an “inverse” for M by appending a row and column of zeroes to ML
This “inverse” has, for 1 < i,j < t -1, m" = 4(t -~ 1) and m" = 2(t ~ 1) for ¢ # j.
Thus, for such 7 and j, d(i, ], = -n+4-1-2-2t-1)} —¢- 1, and also

~d(i,t,u) = 4{4 (t-1)} =t—-1=4d(ti,u). In other words, for each pair of teams ¢, with
1 < 1,7 < t, the standardized variance is exactly equal to p = t — 1. Since the desig‘n
space consists of all such pairs 1, j, the General Equivalence Theorem can be applied, and
we conclude that the hypothesized design is indeed D-optimal, completing the proof.

An interpretation of this result is that “equally matched teams should meet an equal
number’ of times”. In other words, if the w;; are scaled up to an integer, a round-robin
tournament is D-optimal when the teams are evenly matched. This adds a mathematical -
justification to the heuristic notion of round-robin tournaments being “sensible”.

It also turns out to be possible, at least in certain circumstances, to obtain the D-
optimal continuous design when the teams are not evenly matched. This is done by using
the General Equivalence Theorem to show that the inverse of the information matrix for
the D-optimal design must take a certailt form, and showing how to extract the w;; for a

de51gn from the mformatlon matrix. The details are given in the next two Theorems.

"Theorem 4.4 For anyinformation matrz'.t M(u) that comes from a Bradley-Terry model,
the continuous design that produced M (u) has w;; given by wi; = —my; /{p;1(1 = pij1)} for
L# .

Proof: The proof is straightforward, since the only contribution to m,; comes from games

between teams ¢ and j. In particular, if a continuous design calls for a fraction w;, of the

sampling effort to be applied to ¢ vs. j, m;; = —w;;pi;1(1 — pi;1). The result follows.

Theorem 4.5 If the D-optimal design is such that all games i vs. j have weight w;; > 0,
then the upper left (t — 1) x (¢t — 1) submatriz of M(u) for the D-optimal design has an

inverse whose elements are
t-1
© paa(l = pinn)
and . .
m" +m? — (¢t = 1)/{pii(1 = pij1)}
2

m' =

fori £ 5.

¥
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Proof: The proof consists simply of showing that d(¢,j,u) =t — 1 for all 7 and j based on
this matrix M(u). First, for 1,5 <t -1,

d(i,jou) = pi(1—piji)(m* + m? —2mY)

g g g : t—1
= piji(l = pij1) {mf' +m? —m" —m? 4+ ~—(———)——}

pij1(1 = pij1)
\ -

Then - ‘
d(i,t,u) = pi(l _f pin)m* =t — 1.

The same argument holds for d(t,4, u). Thus, without assuming that w;; > 0 for all 7 # 7,
we have obtained the form of the inverse. However, Example 2 below illustrates that if
w;; = 0 for some 7, j with i # j, the above procedure does not yield a sensible M(u). Thus
the condition is necessary, and the proof is complete.

We look at two examples to illustrate the above theory. For Example 1, we take t = 6
teams whose strengths are equally spaced on the logistic scale; specifically, suppose that
Bi = Biy1 = 0.2 for 1 < ¢ < 5. This means that each team has probability approximately
0.55 of defeating its “immediate neighbour”, and, by the Bradley-Terry model, team 1 will
defeat team 6 with probability approximately 0.73. These are six reasonably well-matched
teams, so we might expect that the theory above will apply and will yield a design with w;,
positive and not too dispersed. Table 4.1 shows the results. The theory has indeed worked
correctly, but the optimal design shows that games between teams 1 and 2 (and teams 5
and 6) should occur almost three times as frequently as games between 1 and 6. In general,
the design calls for games between close teams to be most fre:cﬁlent. Note, however, that
games between teams 3 and 4 are relatively infrequent, because these two teams are already
often compared indirectly, and therefore direct comparisons between them are not especially
profitable.

For Example 2, we return to ¢ = 3 teams, but space their strengths more widely; specif-
ically, we let 8, = 3,3, = 1,33 = 0. This means that p;5; = 0.88 and py3; = 0.73
approximately. Applying the theory in this case, under the assumption that w;; > 0 for all
t # 7, yields the absurd result wy; = 0.9855, wp3 = 1.2290, w3 = —1.2145. While it is still
true that the w;, sum to 1, the value of w3 can only point to the fact that there are no
games between teams 1 and 3 in the D-optimal design. With this and the symmetry of the
problem in mind, it seems likely that the optimal design in fact places equal weight of 0.5
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Table 4.1: Relative frequencies of games;in Example 1

4

Game(s)

Rel. frequency

1-2, 5-6
1-3, 4-6
2-3, 4-5
1-4, 3-6
3-4

2-4, 3-5
2-5

1-5, 2-6

1-6

.0909
0781
0717
10654
.0653
0646
.0581
0512
.0333

on the other two games. This design produces (to the accuracy shown)

13,4145 13.4145

- [ 26.827 13.4145

|
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from which, by straightforward calculation, it follows that for this design d(1,2,u) = 2 =
t -1 =4d(2,3,u) and d(1,3,u) = 1.2126. The General Equivalence Theorem then shows

that this is indeed the D-optimal design, since the maximum value, 2, of d(3, 7, u) occurs at

the games featured in the design; d(1,3,u) < 2, but this ¥oes not matter since the design

contains no games between teams 1 and 3.

For t = 3, assuming without loss of generality that B, > B, > (33, we can show that either

Theorems 4.5 and 4.4 yield a D-optimal design with all three possible games occurring, or -

(when application of these results yields w3 < 0), that the D-optimal design sets w;; =

wyz = 0.5, w3 = 0. The latter case is easily demonstrated to be D-optimal when w;3 =0

by directly maximizing the determinant of the upper left 2 x 2 submatrix of M subject to

w3 = 0 and w4+ w3 = 1. For larger values of t, however, it does not seem to be possible to

make general statements about D-optimality when some of the possible games are missing

from the optimal design.

For general t we can note that for games between i and j not in the design, d(i, j,u) <

t — 1, so that there exists a value of d(i,j,u) for which, if we calculate M~! and M as

described above, we will find that m,, = 0 and hence that w,; = 0 as required. If values

d(i,j,u)can be found for all z, j pairs for which 7 vs. j is not in the design in such a'way that

each m,; = 0, then the General Equivalence Theorem tells us that the D-optimal design has
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been found. For designs where the number n. of games excluded is small, this leads to a
practical method - a grid search of trial d(¢, 7, u) values will reveal the values for which m;;
is approximately zero. For instance, in Example 2, reducing d(1,3,u) to 1.6 while leaving
d(1,2,u) = d(2,3,u) = 2 produces m;3 = 0.0002, w;; = 0.5017, w23 = 0.5008, w;3 =
—0.0025, which strongly suggests that the design with wj2 = we3 = 0.5, w;3 = 0 is the
D-&ptimal design, as we showed to be the case.

When n, is larger, however, grid searches become impractical, and greater insight into

the interdependence of d(¢,j, u) and the elements of M(u) is needed.

4.3.3 D-optimal exact designs when parameters known

A D-optimal exact design u is one for which det M(u) achieves its maximum over the set
of integer w,;, where now 3, ;w;; = n, the desired number of games in the tournament.

If n in a tournament is large, the most straightforward way to design the tournament
is to find the D-cptimal continuous design, using the methods of Section 4.3.2, and then
to multiply the fractional w;; thus obtained by n and round off to integers. For large n,
the distortion induced by the rounding process will be slight, and we may confidently assert

- that this exact design is D-optimal or very close to it.

On the other hand, when n is small, the rounding process may induce sufficient distortion
for there to exist a different exact design with noticeably larger det M. In this case, we will
wish to consider algorithms for producing exact designs directly, so as to avoid the rounding

{Sste. l

There are numerous algorithms available (Atkinson and Donev, 1992, ch. 15). They
share a philosophy of maintaining a “current” design and adjusting it by adding or deleting
design points, continuing until the design is of the right size and cannot be improved by
exchanging one design point for another. Such algorithms are well suited for the Bradley-
Terry model, where the set of candidate design points is discrete and finite; in our discussion
below, we focus on application of these algorithms to the Bradley-Terry problem. For D-
optimality, there are two other helpful facts. First, the greatest increase in det M (u) is
obtained by adding the point where d(z, 7, u) is largest (and, correspondingly, the smallest
decrease is obtained by removing the point where d(3, j, u) is smallest). This is shown by
(4.2) below. Second, formulas exist (eg. Atkinson and Donev, 1992, p. 170; Dennis and
Schnabel, 1983, p. 188; Thisted, 1988, p. 117) to enable M, det M and M~! to be updated

without having to be recalculated from scratch each time a design point is added, removed
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or exchanged with another point.

In dealing with exact optimality, it is usually easiest to work with a “regularized” version
of M obtained by adding a small positive constant é to each diagonal entry. As noted earlier,
" this does not, for small 6, affect the optimality or otherwise of designs, but in deriving exact
designs, it is useful to have an information matrix that is guaranteed to be non-singular
even when the number of points in the current design is very small. In the remainder of
this section, we assume that the information matrix has been so regularized.

The simplest algorithm is known as the “forwards procedure”. It starts by choosing one
game at random, and thereafter adding a game ¢ vs. j for which d(%, j, u) is maximized for
the current design (breaking ties at random), until the design contains the desired number n
of games. It is known (Wynn, 1972) that this procedure produces designs which, as n — oo,
converge to the D-optimal continuous design, so there is some hope that stopping when the
design contains n games will yield a reasonably good, if perhaps not optimal, design.

Complementary to the forwards procedure is the “backwards procedure”. A design
containing ng > n games is chosen (perhaps randomly), and the game in the current design
for which d(¢,7,u) is minimum is removed. This removal process is continued until the
design contains the desired n games.

In the same way that explanatory variables in a regression can be chosen “automatically”
by forward selection, backward selection, or a stepwise procedure, the natural extension of
these design algorithms is to allow games to be both added to and deleted from the design
as the algorithm progresses. This is desirable in the design problem for the same reason
as in the regression variable-selection problem: whether or not a game should be added to
or removed from a design typically depends on which other games are also in the design.

There are various ways in which this addition and removal can be handled, for example:

o Add the game for which d is largest for the current design, then remove the game for
which d is smallest in the resulting design (Mitchell and Miller, 1970; Wynn, 1970),
or do the removal first (Van Schalkwyk, 1971).

e Add, and then remove, more than one game at each iteration (Mitchell, 1974).

e Combine the addition and removal processes by considering all possible games ¢ vs. j
that could be added to the design and games k vs. ! that could be removed (because
they are currently in the design), and exchange the pair of games for which the increase
in the determinant is largest (Fedorov, 1972, p. 164).

.
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¢ Instead of finding the largest increase in det M, choose pairs of games at random and

exchange any games for which det M is increased (Cook and Nachtsheim, 1980).

e Speed up the Fedorov algorithm by considering only the A" games with the largest
values of d for addition and the L games with smallest values of d for deletion (Atkinson
and Donev, 1992, p. 173).

In the same wéy that stepwise regression does not necessarily detect the best set of
explanatory variables in a regression, these algorithms are not guaranteed to find a design
with the largest possible det M, since this is a combinatorial optimization problem (unlike
the finding of a continuous D-optimal design, which is a continuous optimization problem9,
and the algorithms may find a local rather than a global maximum. Generally speaking,
the above algorithms trade intelligence in adding and removing games for speed; the more
sophisticated algorithms will tend to produce better designs, but will take longer to do so.
Of course, the user is at liberty to run a faster algorithm repeatedly from different starting
designs, and to take the best design generated by any of the runs; whether this is preferable
to running a slower algorMhm once will be problem-dependent.

Since the Bradley-Terry design problem seems to be a reasonably co-operative one, we
do not carry out a comparison of algorithms here; the Mitchell-Miller-Wynn algorithm, re-
run a number of times and the best design chosen from these runs, seems to work well at
a reasonable speed and without undue computational complexity. Our implementation of

the algorithm follows these steps to produce a design with n games:

1. Set M~! = I/6 for some small §, and set det M = §*. (This corresponds to an initial
M = 61, so that the matrix M is the Fisher information with I added.)

2. Select n games at random (with equal probability and with replacement) from the set
of possible games, and add them to the design, keeping track of A ~! and det M as

each game is added.

3. Save the current value of det Af(u).

4. Find a game ¢ vs. j for which d(z, 7, u) is maximized (in the case of a tie, choose one

game at random or arbitrarily) and add it to the design, updating M~! and det M.

5. Find a game k vs. [ currently appearing at least once in the current design for which

d(k,l,u) is minimum, breaking ties as in the previous step. Remove (one instance of)



CHAPTER 4. OPTIMAL DESIGNS AND COMPARISONS 79

this game from the design, and “downdate” M ~! and det M.

6. If the current value of det M is no bigger than the saved value, then stop. (In practice, .
one compares the increase in the logarithm of the determinant against a small tolerance
such as 107%.) Typically, the algorithm will stop with the same game being added °

and then removed. Otherwise, if det M is still increasing, go back to step 3.

There are ways to select the initial n-game design other than that given in Step 2. Our
choice, it is hoped, will allow the algorithm to explore different parts of the design space on
different runs, and therefore should have an improved chance of finding a D-optimal design.
Other possibilities are to use either the forwards algorithm or the scaled-up continuous D-
optimal design to generate the initial n-game design, which gives a better initial design at
the expense of allowing the algorithm to explore less of the design space, or a compromise
version of this in which ng < n games are generated in this way with the remaining n — ng
games of the initial design generat.ed at random.

As noted earlier, there are also different ways to implement the instruction to update
M~! and det M. Note that the effect on M of adding a game 7 vs. j to the design is to add
the quantity p;;,(1 — pi;1) to m;; and m;; and to subtract the same quantity from m;; and
m,;. If z,;; denotes the vector with 1in the i-th position, —1 in the j-th, and zeroes elsewhere,
this means that M becomes M + p;;1(1 - pijvl)rijrfj, or, writing v = /pi;1(1 — pij1)zi;, M
becomes M + vv’. This is a rank-one update to M, as is the case generally when adding
points to a regression; so is the update connected with removing a game from the design,
since M becomes M — vv'.

We have chosen to use the Sherman-Morrison-Woodbury formula to M ~! without recal-
culating the ipverse from scratch. There is also a corresponding formula for the update of
the determinant. They are given in Dennis and Schnabel (1983, p. 188) and Thisted (1988,
p. 117), and are:

(M~'e) (M-
1+ ov'M-ty °
det(M £ vv') = (1+ "M 'v)det M.

(Mtve)y' = M 'z

'z;;; the nature of z,;

In our case, some further simplifications are possible. Let ¢t = M~
implies that t = m' — m’, where m'! denotes column ! of Af~!. The calculation of v'M~!v

then has only four nonzero terms based on m", m’’, m*, m’"; in fact, M ~'v = d(i, j, u).
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Thus, letting ¢ = 1 £ d(¢, 7, u), the updates become

Mty =y Pl o
o4
det(M:tvv') = odetM. (4.2)

We have chosen to implement this update directly because of its simplicity. Dennis and
Schnabel (1983) note that this is not the most numerically stable way to proceed, especially
if M ! becomes nearly singular during the course of the computation, which can happen,
especially when removing games from the design (Thisted, 1988). By only ever removing
points from our designs when they reach size n + 1, we hope to avoid the worst of these
problems, although we have coded the algorithm in double precision as a precaution. A
more numerically stable alternative is to update a factorization (guch as Cholesky or QR)
of either M or M ~}; Thisted (1988, p. 118) gives an example and dpme references.

One way to check the numerical quality of the algorithm usinggthe Sherman-Morrison-
Woodbury formulas is to take the purported M ™! matrix of a final design, invert it accu-
rately, and compare with the M that would have been calculated directly from the design.
As an example, consider an experiment with t = 3, 3y = 8, = 83 = 0, n = 10. The
D-optimal design consists of two of the three games played three times and the other game
played four times (by symmetry, it does not matter which). In our case, it happened that
1 vs. 3 was played four times. The correct information matrix is therefore, using é = 0.01

and displaying the upper triangle only:

1.76 -0.75 ~1.00
- M = ?51 -0.75
1.76

while the inverted M ~! from the algorithm, implemented on an IBM 386SX with numeric

coprocessor in Turbo Pascal, came out to be

1.77101 -0.75424 -1.00677
1.51848 —0.75424
1.77101 N

There is clearly some degradation of accuracy, though not, in this case, nearly enough to
affect the optimality or otherwise of designs. This, however, was a reasonably co-operative

case; when the D-optimal design calls for some matches to be played many more times than
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Example no. | No. of games Strength vector 8
1 24 (0,0,0,0,0,0)
2 30 (1.0,0.8,0.6,0.4,0.2,0.0)
3 30 (2.5,2.0,1.5,1.0,0.5,0.0)
4 30 (2.5,1.5,1.3,0.9,0.2,0.1)

Table 4.2: Examples for exact design algorithm

others, it may take a large number of additions to and deletions from the initial random
design in order to obtain an optimal design. In such cases, one might expect more serious
numerical difficulties, although even then, the likelihood of being unable to find a D-optimal
design as a result seems slight.

In Section 4.3.2, we noted some properties of D-optimal continuous designs, and saw in
general that more games need to be played between teams of similar strength than between
those of dissimilar strength, subject to {the demands of an overall level of comparison between
the teams. Likewise, we found that if the teams were all of equal strength, then they should
play each other an equal number of times. The picture is similar for exact designs, though
the effect of requiring the w;, to be integral is serious for small n.

We now consider some examples. While these examples all feature t = 6, for ease of
comparison between them. what is observed is, in our experience, similar for all numbers
of teams. Table 4.2 shows the true team strengths, arranged in a vector 3, as well as
the number of games the design should contain. The best designs found by the algorithm
are shown in tables 4.3-4.6. In each case, the algorithm was run 20 times and the best
design (ranked by calculated det M) was chosen. The designs are shown as grids where,
for example, the number in the first row and fourth column indicates the number of times
teams 1 and 4 will meet. The grids are symmetric, but giving the whole grid makes it easier
to judge the opponents that will be faced by a particular team, as well as to count up the
total number of games played by each team in a parti::ular exact design.

As a prelude to Example 1, it is worth noting that when all the teams are of equal

strength and the desired number of games is a multiple of ¢(t — 1)/2, the algorithm will

_produce a round-robin as the optimal design without any trouble; indeed, in re-running

Example 1 with 30 games instead of 24, the algorithm produced a double round-robin
design on each of its 20 runs.

For Example 1, therefore, it is of interest to see what kinds of design are optimal when
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-1 1 2 2 2
1 - 1 2 2 2
11 - 2 2 2
2 2 2 -1 1
2 2 21 -1
2 2 2 -

Table 4.3: Optimal design for Example 1

-3 2 2 2 1
3 - 2 2 1 2
2 2 - 2 2 2
2 2 2 - 2 2
21 2 2 - 3
1 2 2 2 3 -

Table 4.4: Optimal design for Example 2

-4 3 1 00
4+ - 3 3 0 0
3 3 - 2 3 1
1 3 2 - 3 3
0 0 3 3 - 4
0 01 3 4 -

Table 4.5: Optimal design for Example 3

-4 3 1 0 0
4 - 2 3 1 1
3 2 - 2 2 2
1 3 2 - 3 2
01 2 3 - 4
01 2 2 4

Table 4.6: ©ptimal design for Example 4

82



CHAPTER 4. OPTIMAL DESIGNS AND COMPARISONS 83

the number of games is not a multiple of ¢(¢ — 1)/2. Simply allocating the nine leftover
games from a single round-robin at random is not good enough; the optimal designs have
structure. This structure varies according to the number of teams and the number of games,
of course, but takes a particularly interesting form for ¢t = 6.n = 24 as shown in Table 4.3.
The teams are split into two groups (in this case the first three teams and the last three),
and the additional games after the single round-robin are all those featuring a team from
one group against a team from the other. This means that, amongst the additional games,
the teams within a group do not play against each other, but they have three common
opponents, namely the teams in the other group, and so within-group comparisons can still
be made with high precision.

For the remainder of the examples, n was taken equal to 30, to facilitate comparison
between the designs produced and the double round-robin design with the same number of
games. In Example 2, the teams are somewhat closely matched: a difference of 0.2 on the
3 scale corresponds to a probability of close to 0.55. Even so, the probability of the best
team defeating the worst in this example is still over 0.73. Nonetheless, Table 4.4 indicates
that the optimal design is close to a round-robin, with only one extra game between the
two best and the two worst teamks, and one fewer instance of two of the less evenly-matched
games. This indicates, as we investigate further in Section 4.4.2, that round-robin designs
have a certain amount of robustness to unequal strengths of the teams involved; however,
the next Example shows that this robustness extends only so far.

In Example 3, the gap in probability terms between neighbouring teams is about 0.62,
and between best and worst is about 0.92. Now, Table 4.5 shows that the optimal design is
anything but balanced, with a large majority of games being between teams that are close
together in strength. The relationship is not monotonic, however — for example, teams 3
and 4 play only twice — but this is illustrative of the need for the design to be balanced
enough to provide good estimation of the relative strengths of all the teams. Here, teams 3
and 4 are compared well by the games between them and teams 2 and 5, so that additional
games between the two teams are not necessary.

The last example had a pattern to it which seemed to be the result of happenstance with
the number of games and the equal spacing of the team strengths. In Example 4, we space
the team strengths irregularly, with one clearly strongest team and two weak teams that are
close together. Table 4.6 shows that the resulting optimal design has no particular pattern,

other that previously noted of generally calling for more games between teams closer in
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Table 4.7: Summary of designs found by the algorithm in the Examples

<1

Times found log det M
Ex. | Buns Opt. design | Designs | High Low
1| 20 7 2 0.7852 0.7821
2 20 20 1 1.7943 1.7943
31 20 7 2 0.7039 0.7022
41 20 6 6 0.7275 0.7228

strength.

This Example and the previous one also show that, when the teams vary widely in
strength, there is no restriction on the teams each playing the same number of games; in
these Examples, the total numbers of games vary from 8 to 12, with the middle-strength
teams playing the most games and the strongest and weakest teams playing the fewest.
This phenomenon occurs generally with D-optimal designs (it could also be observed in
the continuous designs of Section 4.3.2), in contrast to round-robins and Swiss tournaments
where each team plays the same number of games.

Another issue of interest is the variety of supposed “optimal” designs found by different
runs of the same algorithm on the same design problem. Table 4.7 shows the results for
our four examples. In no case was a seriously sub-optimal design found, and on these
examples, the algorithm found the best design frequently enough to offer convincing evidence
that it indeed is the best design. The algorithm is not always as convincing: runs with
the parameters of Example 2, but with n = 15 instead of 30 yielded the (apparently)
optimal design only about once every 30 runs, amid a large variety of other designs. These
experiences indicate that the likelihood of finding the optimal design and the number of
different designs generated by the algorithm are very problem-dependent. In practice, the
only advice that can be given is to run the algorithm a few times, then look at the values of
det M and decide whether a maximum seems to have been attained. Sometimes, as when
most or all of the values are the same, this decision is easy; otherwise, a decision has to
be made about whether it is worth running the algorithm again. Some optimal designs are
simply harder to find than others, although it is some comfort to know that the algorithm

is unlikely ever to find a seriously sub-optimal design.
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4.3.4 D-optimal sequential designs
Y

All of the foregoing has assumed that the team strength parameters 3; are known, an as-
sumption that is highly unrealistic in practice. We have also seen that the designs generated
from known (3, are quite strongly dependent on the values of the 3;; in other words, the opti-
mal design for one set of values 3; can be far from optimal for a different set of 3;. Designing
an entire tournament based on possibly bad guesses of the 3; is therefore hazardous, and‘it is
natural to proceed sequentially: design a small subtournament based on current knowledge
about the §;, run this subtournament, use the results to improve knowledge about the 3;,
and then repeat as desired. The final tournament design is then obtained by combining the
subtournaments.

Let s denote the number of “stages”, that is, subtournaments, in the sequential tourna-
ment, and let n, denote the number of games in stage j, with n = 3"]_, n,;. For simplicity,
we will assume that s and the n; are known beiiore the tournament begins. Typically, one
might take all the n; equal. Choice of the value or values of the n; might be made from cost
considerations, balancing the cost of stopping the tournament to re-estimate the 3; and to
design the next stage with the benefit of possessing the most accurate estimates of the j;

at all times. An obvious way to proceed is then as follows:
1. Set j = 1.

2. Assuming that all 3; are equal (or, perhaps, obtaining values for the g; from prior
knowledge), use the algorithm of Section 4.3.3 to obtain a D-optimal design with n,

games.
3. Play the games in stage j.

4. Estimate the 3, based on the game results from tl%e current design, by maximum

likelihood, using the methods of Chapter 3.
5. If 7 = s, stop; otherwise, continue.

6. Add 1 to j.

-1

. Use a modified version of the algorithm of Section 4.3.3 to find the n, games which,
when added to the games in the current design, produce a D-optimal (3 %, nk)-game
design. (The modification required is that the algorithm does not delete games that

have already been played.)

g



CHAPTER 4. OPTIMAL DESIGNS AND COMPARISONS 86

8. Go back to step 3.

There is nothing new here. Indeed, the above is merely a slight generalization of an
algorithm given in Silvey (1980, p. 62). Interest therefore centres mostly in the performance
of the algorithm in practical caseé. However, two issues arise immediately, one technical
and one practical. '

The technical issue is one that afflicts all sequential experimentation, where the choice of
experimental conditions for one data point is dependent on previous observations. The like-
lihood itself is unaffected by the kind of experimentation performed, but repeated-sampling
inferences based on the likelihood are certainly affected, because a repeated sample would
consist of observations at different data points, not merely different observations at the same
data points, as would happen if the design were fixed. In our context, two sequentially-
designed tournaments with an identical set of teams-w4ll consist of two different sets of
games, so that inference about the team strengths has to consider not only the variability
in results of particular games, but also the variability in designs in repeated samples. It
is natural to hope that inferences which ignore the sequential nature of the design will be
approximately correct, but this hope should be supported by simulated repetitions of the
entire sequentially—d_eswigned structure. We do not pursue this idea here, however.

Given all the above, it is natural to ask what it is that a D-optimal sequential design
is optimizing. The answer seems to be that, at each stage, it is producing the D-optimal
design conditional on the current estimates of the 3, being correct. This does not sound
especially compelling; on the other ha‘nd, the algorithm given above does seem sensible on
practical grounds, and therefore its effectiveness in practice is worth investigating.

When we were looking at the designs generated in Sections 4.3.2 and 4.3.3, we found
that some of the designs resembled a round-roebin tournament (in particular, those where
the [3;' did not vary widely). In Chapter 2, we also looked at the Swiss tourpament, which
is constructed sequentially by pairing teams of similar apparent strength, subject to the
constraint that two teams may not meet more than once. We will therefore investigate
similarities between the structure of sequential D-optimal designs and Swiss tournaments:

In our Example below, and also in Section 4.4, we concentrate on what might be called
a “sequential-1” design, where only one game is selected and played at each stage. In
our notation, this sets s = ¢, the total number of games, and n; = 1 for all ;. By re-

estimating the team strengths 0; as often as possible, we should be making the best use of
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the information collected throughout the tournament, and therefore should be constructing
the best possible sequential D-optimal design. Sequential-1 designs thus give us an idea of
the potential of sequential designs in general. Note that the algorithm above simplifies when
n, = 1, since step 7 consists only of finding the game 1 vs j for which d(i,7,u) is greatest,
based on the current ddsign, and then adding this game to the design.

Let us examine an example of a sequential-1 design. In this example, t = 6, and the
true team strengths are all equal, although of course this affects only the simulated game
results and not the design procedure. The estimation of the team strengths 3; is carried
out using the device of a “fictitious team”, as described in Chapter 3, so that the estimated
team strengths are always finite. We begin the procedure‘ by setting M(u) = 61 for some
small 8, and, whenever a tie exists for the best game to add, we choose one of the games
involved at random.

Not surprisingly, the first three games ensure that all of the six teams appear in the
design. Our algorithm produced the games 1vs2 3vsd,5vs 6, with teams 1, 4 and 6
winning. (By symmetry, any other pairing involving all six teams is equally good.) This
yields estimated strengths of 0.76 for the winning teams and —0.76 for the losers.

“ As in a Swiss tournament, the next two games have two of the winners and two of the
losers play each other. In our case, the games were 1 vs 4 and 2 vs 5, with 1 and 5 winning.
Now we see our first divergence from a Swiss tournament: there, teams 3 and 6 would
meet to complete the second round. Here, howeVer, there is less information to be gained
from playing a game between these two teams than there is from playing 1 vs 6, the two
undefeated teams, and 2 vs 3, the two winless teams. In these games, teams 6 and 3 were
the winners.

At this point, the design is

1 01 0 1
1 1 01 0
0 1 1 0 0
1 0 1 0 0
0 1 0 O 1
1 0 0 0 1

with the estimated team strengths 3 being

(0.69,-2.01,-0.61,0.03,-0.03, 1.87).

/
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Note that team 2 has played the next two weakest teams, according to this estimation, and
team 6 has played the second and fourth strongest teams. Despite team 6 having played
only twice, this team doe’g not feature in any of the next five games, and then team 6 plays
teamn 1 again, losing this time. After the next game, 4 vs 5, with 5 winning, the design is

the following:

- 1.0 1 1 2
1 1 1 0
002 - 110
i1 1 - 20
( 1 1 1 2 1!
2 0 0 1 -

with 3 being’
(1.67,-1.70,-1.68,-0.51,0.60,1.56).

At this point, the teams seem to have split themselves into two groups, even though in truth
they are all of equal strength. The next six games are all “within-group™, but eventually 1

plays 3 twice consecutively, losing both, and 3 becomes
(0.09, —1.55, -0.02, —0.50,0.55, 1.34),

based on the design

1 2 1 2 3
1 3 1 0
2 3 2 1 0
1 2 2 2 0
2 1 1 2 2
3 0 0 0 2

which is far from balanced. Indeed, continuing until 100 games have been plaved does not

yield a design that looks noticeably more balanced: :

4 4 9 9 8
4 14 5 3 6
4 14 - 5 3 4
9 5 5 9 8
9 3 3 9 -9
8 6 4 8 9
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with 5 of
(0.42,-0.92,-1.08,0.55,0.62,0.30).

We see that a sequential-1 design can be noticeably sub-optimal, in that too few games are
played between teams that are actually equal in strength but seem to be far apart (such as
2 vs 5, 3 vs 5). It is also worth noting that the sequential-1 strategy of playing games early
in the tournament between teams with similar numbers of wins and losses guarantees that,
after these games, there will be one team that looks very strong and another that looks very
weak, even if the truth is otherwise.

This example suggests that sequential-1 designs will not be optimal when the teams are
close together in strength. On the other hand, when the teams vary widely in strength,
the teams that win their first few games in a sequential-1 tournament are likely to be the
strongest, so that later games will concentrate on teams of similar (true) strength. In this
case, we might expect a sequential-1 design to be nearly D-aptimal, especially as the number

of games increases.

4.4 Efficiency comparisons of designs

4.4.1 Introduction

In Chapter 2, we examined round-robin and Swiss tournaments. and saw that they behaved
in a reasonably intuitive fashion. In this Chapter, we have seen that a round-robin tourna-
ment is D-optimal if the teams are of equal strength, and we ha;z&}seen that the guiding
principle of the Swiss tournament, namely to pair teams of similar sttength provided that
they have not met too many times before, is similar to the const/r;f/ction of a D-optimal
v:lesi‘gn. [t is natural then to define a measure of “efficiency™ and to see how the tournament
designs compare.

Atkinson and Donev (1992) define the D-efficiency of a design u, relative to u, as

det M(u,))'/“—” (4.3)

Dog=\|+—7—
eff (det M(u,)
where ¢t — 1 is the number of estimable parameters in the Bradley-Terry model. To see that
extracting the (¢ — 1)-th root is the appropriate scaling, consider two designs u, and u; for
which the D-efficiency of u, relative to u, is 0.5 for the same number of games. Replicating

the design u, has the effect of doubling M (u;), which means that its eigenvalues are also
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doubled. This increases det M(u;) by a factor of 2!~!, since in general -1 'thile eigenvalues
are non-zero; therefore, from (4.3), the D-efficiency of the replicated u, relative to'u, is 1.
Like other measures of efficiency, the D-efficiency can therefore be mtetpreted as the ratio of
sample sizes necessary to estimate the parameters with equa] prec;snon from the two designs.

The definition (4.3) can be applied to any designs, though a typical application has u,
as a D-optimal design (continuous, exact, sequential) and u; as some other design.

We now look at the different designs we have seen, and see how efficient they are as the
number of teams and variability in strength of the teams changes. A natural measuge of the
variability is the standard deviation o of the 3;; we use this as our parameterization of the
variability of team strength. In our calculations, we assume that 3, = F~'{i/(t+ 1)} where
F(z) is the cumulative distribution function of a logistic distribution with mean 0 and scale
pararﬁeter d. This assumption was made because it mimics the pattern of team strengths
often found in practice, with many teams of similar strengths and a few teams noticeably
stronger or weaker than the rest. The scale parameter d can be chosen to provide greater or
lesser overall variability in the team strengths. For any fixed t, there is a simple relationship

between o and d, namely

t

=T e ()]

1=1

In our calculations, we choose d such that o = 0,0.2,0.4,0.6, 1,2, values again intended to
be illustrative of what occurs in practice.

Other methods of measuring team strength variability are possible. A-rather more
intuitive mea;ue is the expected fraction w of wins by the. strongest team when playing the
remaining teams once each; the larger this “expected winning percentage”, the greater the
variability in team strengths. It turns out that w, for fixed o, is only weakly dependent on ¢
(it has a limit as t — oc), and so the categorization of variability in strength can be viewed

in terms of w as well as in terms of ¢, as shown in Table 4.8.

" 4.4.2 Efficiency of round-robin tournaments

The Examples of Section 4.3.3 showed that when the teams are of equal strength, the
round-robin design was D-optimal, but the D-optimal designs in other cases bore little
resemblance to round-robins. We would therefore expect round-robin tournaments to be

fully efficient when o = 0, but for the D-efficiency to drop off fairly quickly as o increases.

)\
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T
0 0.2 0.4 0.6 1 2
6 | 0.500 0.590 0.671 0.740 0.836 0.941
10 | 0.500 0.594 0.678 0.748 0.843 0.943
1410500 0.598 0.685 0.756 0.852 0.948
t 200500 0.603 0.694 0.766 0.862 0.954
30 | 0.500 0.610 0.705 0.780 0.876 0.962 N
40 | 0.500 0.615 0.713 0.790 0.885 0.967
50 1 0.500 0.619 0.720 0.798 0.893 0.971

Table 4.8: Values of w in terms of ¢t and o*

It is straightforward to calculate det M directly for round-robin designs, and these values
are then compared with the best design containing the same number of games as found by
the Mitchell-Miller-Wynn algorithm. This was done for values of t between 6 and 20, with
the results shown in Table 4.9.

We see that our expectations were justiﬁed;‘the second-to-last column of the Table
shows that once the teams differ too much in strength. round-robin tournaments are very
inefficient. This is because, in a round-robin, t00 much experimental effort is devoted to
games which are “foregone conclusions™, in that p,,; is very close to 0 or 1 and the resuit of
the game gives very little information.

’fhe results shown in Table 4.9 are for single round-robins, in which the teams play
each other only once, but r-tuple round-robins tell exactly the same story. Indeed, the D-
efficiencies are almost exactly the same, because A for an r-tuple round-robyn is exactly r
times that for a single round-robin, and the D-optimal exact design for the larger tournament
has w,, close to r times those for the smaller (though not exactly equal because of requiring

an exact design with integer wy,).

4.4.3 Efficiency of Swiss tournaments

One might expect Swiss tournaments to have higher D-efficiency when the teams are more
different in ability, since the structure of the tournament means that teams of approximately
equal strength will tend to play each other, at least in rounds after the first.

To assess this, Swiss tournaments were simulated for t = 6,10, 14,20,30,40,50. The
number of rounds in each tournament was 3,6,7,9.10, 11,12 respectively: these are ap-

proximately 2log,t, and might be expected to be typical numbers of rounds for Swiss
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= S

Table 4.9: D-efficiency of round-robin designs

i log det M D-efficiency
Teams Games ¢ RR Seq.-1 D-opt. RR  Seq.-1
6 15 0.0] -2.545 -2.828 -2.545] 1.000 0.945
6 15 0.2 -2.661 -2.951 -2.661 { 1.000 .0.943
6 15 0.4 -2993 -3.243 -2.989 | 0.999 0.950
6 15 0.6 -3.486 -3.681 -3.349| 0.973 0.936
6 15 1.0 -4.750 -4.635 -4.126 | 0.883  0.903
6 * 15 20/} -8.240 -7.304 -5.947|0.632 0.762
10 45 0.0] 3.677 ‘3.155 3.677 | 1.000 0.944
10 145 0.2 3.482 2973 3.482 1 1.000 0.945
10 45 01 2936 - 2.543 3.046 | 0.988  0.946
10 45 0.6 | 2.131 1.892 2.547 1 0.955  0.930
10 43 1.0 0.105 0.550 1.528 | 0.854  0.897
10 15 2.0 -5.259 -2548 -0.861 | 0.613 0.829
14 91 0.0 11.718 11.025 11.718 | 1.000 0.948
14 91 0.2) 11.444 10.757 11.450 | 1.000 0.948
14 91 0.4 10.682 10.159 10.912 | 0.982 0.944
14 91 0.6 9.566 9.368 10.309 | 0.944 0.930
14 91 10| 6.792 7.720 9.118 | 0.836  0.898
14 91 2.0 -0.440 4.231 6.326 | 0.594 0.831
20 190 0.0 | 26.012 25.061 26.012 | 1.000 0.951
20 190 0.2 | 25.620 24.767 25.649 { 0.998 * 0.955
20 190 0.4 | 24.532 23.941 24970 0.977 0.947
20 190 0.6 | 22.960 23.036 24.245:0.935 0.938
20 190 1.0 | 19.054 21.202 22.825|0.820 0.91R8
20 190 2.0 9.037 16.895 19.547 | 0.575 0.870
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tournaments for these numbers of teams. For each combination of ¢t and . 100 tourna-
ments were simulated, and log det A‘[l calculated for each based or the true 3,. The mean
log-determinant is shown in Table 4.10, along with the “exact” log-determinant for the D-
optimal exact design with the same number of games. The standard deviation of values of
log det M from the simulated Swiss tournaments (not shown) increased dramatically with
o. This means that the relative efficiencies are not accurately determined for larger values
of 0.

For 0 = 0. we see from the second-to-last column of Table 4.10 that the Swiss tourna-
ments are essentially fully efficient relative to the exact D-optimal design. As with round-
robin tournaments, the D-efficiency drops off rapidly as ¢ increases; however, the initial rate
of decrease is smaller, and in none of the cases shown in the Table is the D-efficiency truly
small. The inaccuracy in estimation of the “true™ D-efficiencies for larger values of o-does
not have a serious effect, since it is clear that the D-efficiency in these cases is decreasing

with o.

4.4.4 Efficiency of sequential-1 designs

Y

As with the Swiss tournaments, we can only assess the efficiency of the sequential-1 designs
kby simulation. For ease ogcomparison‘ we investigated designs with the sanie nur?lbers
of games as for the round-robin and Swiss tournaments considered in the previous two
Sections, although of course any number of games is possible. In each case, 100 simulations
were run and the average log-determinant calculated. (It is worth noting that an alternative
approach, for the simulated Swiss tc‘)urn/a,ments as well aS here, would be to calculate the
“average information matrix” over zfﬁrtﬂe simulations, since this is then an estimate of the
observed information matrix even hi’ough the tournaments are designed sequentially and
therefore the information matrix is not constructed from independent observations.)

The results of the simulations appear in Tables 4.9 and 4.10, for comparison with single
round-robin and Swiss tournaments respectively. The last column in each table shows the
D-efficiency of the sequential-1 designs relative to the exact D-optimal design for the same
number of games. In both cases, we see that the D-efficiency for the sequential-1 designs,
as for the round-robin and Swiss tournaments. is close to | when o = 0 and drops off slowly
as o increases. The reason appears to be that when @ is large, some games are played at
the beginning of the sequential-1 tournament that later turn out to be between teams of

widely different strength, so that in retrospect it would have been more informative to play
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Table 4.10: D-efficiency for Swiss tournaments

log det M D-efficiency
Teams Games o Swiss  Seq.-l1 D-opt. | Swiss  Seq.-1
6 9 00| -5350 -5.343 -5291] 0988 0.990
6 9 02| -5459 -5433 -5.389 | 0.986  0.987
6 9 04] -5760 -5.758 -5.670| 0.982 0.983
6 9. 06| -6.267 -6.273 -6.004 | 0.949 0.948
6 9 10| -7.526 -7.530 -6.646 | 0.839 0.838
6 - 9 201]-10930 -10.912 -8582 | 0.625 0.628
10 30 007 -0.184 -0.185 -0.167 | 0.998 0.993
10 30 02 -0.379 -0377 -0.322 | 0.994 0.994
10 30 047 -088 -0911 -0.683 | 0.978 0.975
10 J0 06| -1593 -1.674 -1.149 | 0952 0943
10 JO 10| -3494 -3.418 -2.109 | 0.857 0.865
10 J0 20| -8660 -8497 -4507 | 0.630 0.642
14 49 0.0 3.285 3.271 3.352 | 0.995  0.994
14 49 0.2 2.997 2995  3.122 1 0990 0.990
14 49 04 2.271 2286 2683 | 0969  60.970
14 49 06 1.250 1306 21421 0934  0.938
14 49 10| -1.249 -1093 1.068 | 0.837  0.847
14 49 20 -7.305 -7.131 -1.711 | 0650  0.659
20 90 0.0 11.283 11.260 11.381 | 0.995  0.994
20 90 0.2 | 10885 10.889 11.087 | 0.989  0.990
20 90 0.4 9.889 9.856 10531 | 0.967  0.965
20 90 06 8.557 8.689 9831 | 0.933 0.939
20 90 1.0 5.259 5526 8586 { 0.839 0.851]
20 90 2. -1.648  -1.839 5356 | 0.692 0.685
30 150 0.0 ] 22033 22043 22194 ] 0.994  0.995
30 150 0.2] 21478 21460 21.799 | 0.989 0.988
30 150 04 19.983 19944 21136 | 0.961 0.960
30 150 06| 17949 17.970 20359 | 0.920 0921
30 150 1.0 13744 13962 18804 |0.840 0.846
30 150 2.0 4.134 4.343 15.128 | 0.684  0.689
40 220 00 | 34589 34594 34760 | 0.996  0.996
40 220 0.2 33823 33809 34.280 | 0.988 0 988
40 220 04| 31882 31899 33502 | 0959 0.960
40 220 06| 29468 29550 32620 | 0922 0.924
40 220 1.0 | 24060 24374 30878 | 0.840 0 R46
40 220 2.0 12.053 12350  26.789 | 0.685  0.691
50 300 0.0 { 48.698 43682 48.879 1 0.996 0.996
50 300 02| 47726 47739 48334 | 0.988 0 988
50 300 04| 45420 45423 47443 | 0960  0.960
20 300 0.6 | 42597 42457 46465 | 0924 0921
50 300 1.0] 36.038 36.165 44551 | 0.841 0 843
50 300 2.0 22245 22389 40.075 | 0695  0.697,
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i
|

|
another game instead. However, of course, the)ise games need to be played first in order to
learn which teams are strong or weak. )

It i3 of interest to see how the round-robin and Swiss tournaments compare in efficiency
with the sequential-1 tournaments, since the sequential-1 tournaments are, one might say,
the best that the D-optimality theory can provide in the absence of prior knowledge.

Comparison of the last two columns of Table 4.9 shows that the round-robin design
becomes clearly less efficient as o increases. This is expected: eventually, the sequential-1
procedure will recognize that the teams vary in strength, and will begin to design accordingly,
producing designs closer to those-of Section 4.3}3. It should be noted that the sequential-1
efficiency ﬁgures given in Table 4.9 are only estipnates; nonetheless, the pattern seems clear.
Further simulation with double round-robins (not givVén here) shows that the pattern of

relative efficiency is the same there, with a lagger rate of decrease, corresponding to the

idea that a larger round-robin is “further away” from the exact D-optimal design or an

approximation to it.

The last column of Table 4.10 shows the relative efficiency of the sequential-1 designs
relative to the D-optimal exact design with the same number of observations. The last two
columns of this Table therefore indicate how the Swiss and sequential-1 tournaments com-
pare in terms of D-efficiency. Although these figures are subject to appreciable variability,
since the log-determinants for both the Swissjand sequential-1 tournaments are estimated
from simulations, it seems clear that there is ljttle to choose between these two tournament
tvpes. For values of o in the range shown here, therefore, Swiss tournaments perfprm well,

and can be recommended.




Chapter 5

Goodness of fit for logistic

regression models

5.1 Introduction

When the response variable in a model is binary or binomial, it is natural to consider assess-
ing the fit of the model by comparing the observed successes with the expected successes
(that is. the exact or estimated success probabilities) in some way.

Two obvious approaches suggest themselves: to partition the observations, and then to
carry out the usual chi-squared test based on the observed and expected successes within
each group. or to compare observed and expected successes in a cumulative fashion. Within
each approach, there is also the choice of using the z-variables to guide the partitioning or
cumulation, or of using the fitted probabilities of success. In the partitioning camp, Tsiatis
(1980) uses the r-variables, while Hosmer and Lemeshow (1980) use the fitted prc;babilities.
Su and Wej (1991) define a supremum statistic based on cumulation by the z-variables: they
.are able to obtain the asymptotic distribution of their statistic by showing weak convergence
of an process to a Gaussian process, which is the usual technique for statistics based on
cumulation. We will investigate the other possibility on the cumulation side, namely to
cumulate according to the fitted probabilities. We will not be able to use the same kinds of
weak convergence arguments as Su and Wei, however, berause of the additional presence of
estimated qlihqtities: we will therefore derive the asymptotic distributions of our statistics

directly. Although. by doing this, we give up the ability to prove general results about
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statistics based on the empirical process, we are able to obtain, without excessive difficulty,
useful results about the statistics we do study.

A third approach is possible if there are repeated observations at each z-value (compare
Section 5.3.1), and that is to cumulate, not by the p,, but by the numbers of successes in
each covariate group. This approach was explored by Spinelli (1994), and leads, for each
k, to a comparison between the observed and expected numbers of groups for which the
number of successes is less than or equal to k. Such an approach focuses on whether the
responses in each covariate group are truly binomial with a success probability that depends
only on z.

We consider that tests based on cumulation by the p, are most suitable for our purposes
here. In particular, a logistic regression model may fit badly because some other binary-
response model is more appropriate or because the relationship between the explanatory
variables and the fitted probabilities is mis-specified. In these cases, departures from the
hypothesized logistic regression will tend to be smooth. Tests of the chi-squared type are
sensitive to all departures from the hypothesized model, including many non-smooth depar-
tures which are not of interest in this context. It therefore seems better to base tests on
the cumulative difference between observed and engé“éﬂted successes, since such tests will be
more sensitive to the smooth departures that are of interest.

Let us suppose that there are n observations in total, and let y;,1 = 1,2....,n, denote the
responses. In most of the following work, the responses are assumed to be independently
Bernoulli, with P(y, = 1) denoted by p, (and thus P(y; = 0) = 1 — p,), so-that y; = 1
denotes “success”. At one point when dealing with the quadratic statistics defined below,
the responses are instead assumed to be binomial with index parameters n,; this occasion
1s noted when it occurs.

The situation in which the p, are known and we desire to test fit based on these known
p: is rarely of interest in practice, butﬁe theory provides a useful stepping-stone to the
more practical cases, and is therefore detailed below. It is perhaps worth noting that no
model is involved in the known-p; case (except for the untested assertion that the y, really
are independently Bernoulli).

It is more useful to address the case when the success probabilities are estimated. The
most common model, and 'the one addressed here, is the logistic model, in which the ex-

planatory variables, arranged in a design matrix X, and the “slope” parameters 3, arranged
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)
in a vector, are connected to the p; as follows:
logit p; = log{pi/(1 - p.)} = n, (5.1)
where 7; is the so-called “linear predictor”, and
n = 1.0, | (5.2)

where z! denotes the i-th row of X, and, in general, primes denote vector and matrix

~ : . . .
transposes. We shall need the score vector and information matrix, as functions of the
parameter vector J: these are most compactly written as

n

sa(B) =Y (v — P (5.3)

1=1
and

Fu(8) =Y pi(1 - pi)z.zi, (5.4)
1=1

where s, denotes the score vector and F, the information matrix, and are functions &P
implicitly, since each p, is a function of 3. The maximum likelihood estimate ﬁ is found in
the’/usua\l\way, by solving sn(ﬁ) = 0 (which must be done numerically in general).

Our strategy for testing fit was outlined above; specifically, we define a proces:s X.(p)

by

n

Xa(p) = 07123y = p)(pi < p). | (5.5)

=1
where the indicator restricts the comparison to those observations where p; is no bigger
than p, so that X,(p) compares the observed and expected successes cumulatively. When,
as is usually the case, the probabilities have been estimated, p, is replaced by p,. We then
construct test statistics by averaging (integrating) some function of this process over p.
so as to get a single-number summary of the discrepancy between Fobserved and expected
successes. The particular functions we investigate are the process itself and its square.
This 'strategy parallels that of the standard tests of fit based on the empirical process
Wo(z) = n=Y/3{%, I(z, < z) — nz}, which are studied by Stephens (1986). In Section 5.2
we st{ld}:”statistics based on the integral of X (p), which correspond to the goodness-of-fit
statistic n!/2(f — %). and in Section 5.3 we study statistics based on the integral of { X,(p)}?,

‘which correspond to the Cramér-von Mises statistic.
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5.2 - Asymptotic theory for the area family of statistics

5.2.1 The area statistics

These statistics are based on the integral of X, (p) itself, on the basis that if X,,(p) is usually
close to zero, so is its integral. The area statistics take a simple form, being linear in the y,,
and yield relativeiy straightforward asymptotic distributions because of this. On the other
hand, these statistics are also close to zero if X, (p) oscillates around zero without always
being small, and so one might expect a loss of power in comparison with the quadratic
statistics considered in the next Section.

<

Specifically:
1 n
Ag = "_1/2/0 Y (vi = p)I(p: < p) dp.
=1

and the corresponding statistic, which we call A;, in which the p, are replaced by p;, their
maximum likelihood estimates under a logistic model. In addition, we look at a statistic A,
formed by replacing only the first occurrence of p; by p,: this is of no practical purpose, but
eases thfe theoretical development.

Interchanging the order of integration and summation and noting that

1 o
/Ol(p.smdp=1—p,.
we find that:

Ao = 7Yy - p)(1-py). (5.6)
1=1

A o= 0TS (g - p)(1 - p). (5.7)
1=1

Az = 7Y (wi- B - ). (5.8)

=1
TheYinear appearance of these statistics suggests that we might reasonably expect them
to have asymptotic normal distributions; we devote this section to showing that this is
indeed the case, under certain reasonable assumptions about the limiting behaviour of the

p, and, in the case of A; and A,, about the z-variables in the logistic regression.

5.2.2 Two invariance results

One might imagine that some arbitrary decisions have been made in the definition of the

area statistics. Specifically, it is of interest to know what happens if the values of y, —~ p,
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are cumulated downwards, with decreasing p; rather than increasing p,, or when successes
and failures are interchanged. The following two results show that tests based on estimated

parameters are unaffected, at least when there is an intercept in the model.

Theorem 5.1 If the model has an intercept, the statistic A, obtained by cumulating the
values of y, — p; downwards is the negative of the statistic A;. An analogous result holds for

Ay

Proof: The definition of Aj is
1
‘4I2: n—1/2/0 Z(yx_i)x)l(ﬁz ZP) dp~

since the indicator selects only those values p, that exceed p. The sum is over 1 <1 < n.

Thus:
Ay o= VY (g - m/ol I(p, > p)
Ry (g - BB
= MBSy - poft - (1= p)}
nEY (- ) - Ae
When the model has an intercept, one of the likelihood equations is 5~ y, — p, = 0. and so
the result is proved for A;. The same algebra, with p, replacing p, in the indicator function,

shows that the corresponding result also holds for A;.

The second result concerns the interchange of successes and failures:

Theorem 5.2 If the model has an intercept, the statistic A} obtained by cumulating the

observed and erpected numbers of failures ts the negative of A;. The corresponding result
holds for A,.

Proof: Let w, = 1 -y, be the observed numbers of failures and ¢, = | — p, be the estimated

probabilities of failure. Then

1
n—1/2,4;':/0 S, =) 14, < q) dg.
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Making the change of variable p = 1 — ¢, and writing w; and §; in terms of y, and p,, we
find that 1
A = n—v?/O S (v = 5i) I(pi 2 p)dp = Ay = — Ay,

since two minus signs cancel from the change of variable. The proof for A; is complete:
the effect of interchanging success and failure is the same as that of cumulating downwards
rather than upwards. And, as before, the proof for A is carried out with exactly the same
algebra, replacing p; in the indicator with p;.
For «Aok,yv‘z'i)qd for models without an intercept, we have the results
Ao+ Ap = Ao+ Ag = n"2 Y (i~ pi),
:
and ’
A+ A=A+ A =0 Y (g - )
i
for j = 1.2. One can argue in this case that if the right-hand side differs too much from
zero, this in itself is evidence of a lack of fit, since the observed number of successes was
very much larger or smaller than the probabilities would lead one to expect. Thus, in the
r:lore interesting cases where the lack of fit is due to the pattern of the y, rather than the
number of them that are 1, we can expect the right-hand side to be small, and thus the
test statis.tics obtained by downward cumulation or exchange of successes and failures to be
approximately the negatives of the original statistics.
As a final remark, it should be noted that tests based on the area statistics will be two-

tailed in general, rejecting for large | A;|, so the appearance of minus signs in the preceding

Theorems has no effect on the P-values of tests based on these statistics.

5.2.3 Statistic Ap '

When the p, are known, statistic Ag of (5.6) can be used. ?{\e %ly random quantities
it contains are the y,, which are Bernoulli with success prob}billity p.- The appearance
of the statistic, a linear function of the y;, suggests that its asymptotic normality may be
demonstrated using a version of the Central Limit Theorem such as that of Lyapunov which
applies to a sum of random variables with non-identical variances. This is in fact exactly
how it works.

We begin by proving a more general result, one which will be used again later in our

work with A,.

PN
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Theorem 5.3 Let {u;n}, | < i < n, be a triangular array of numbers, and let m, =
. MaXi<i<n luin|. Let s2 =" n! Sp(l - p,)u?; if lim,_.. 82 erists and is equal to s?, say.
with 52 > 0, and if limp— n~Y2m, =0, then
( n
n_]/2 {Z(y — D um} /511 - N (0, 1).
t=1

Proof: Let T, = n='/?(y, — Pi)uin, so thatit is 3, T, whose limiting distribution we seek.

. . . D .
Since s2 — s? (s2 is not random), it suffices to show that "1 | T,/s — N (0, 1). Now:

E(y,—p)=0= E(T;)=0;
var(yi = p,) = p(1 = p) = var(T,) = p,(1 = p,)u,/n;
E(ly=pP)=(1=pPpi+ pl(1 - p) =
E(IT?) = n=32p,(1 = p){p2 + (1 = p)*} [
Noting that p? + (1 — p,)* < 1 for each i, consider
E(TP) Ziipl=p){pE+ (1= p)*Hua)’
{Z  var(T,)}? (T p(l = pou? }7?
My Zln—lp px)
(il = pul }W

-1/2
= n—lnmn {n"l Zp:(l -~ pl)u?}
t=1

— O-(s(‘))“l/2 =0 since s* > 0.

A

since |u,,| < my,

Therefore, by Lyapunov's version of the Central Limit Theorem (as in. for example,
Grimmett and Stirzaker, 1982, p. 110), the random variable 3°1", T, divided by its standard
deviation converges in distribution to standard normal, and the result is proved.

The specialization of this result to 1y is immediate:

Theorem 5.4 Let s = n= 'S0 p(1 = p)°. If s = lim,—« 82 erists with s* > 0. then
Ao/sn 2 N(0,1).

Proof: Take u,, = 1 — p, in Theorem 5.3. Since m,, < 1 for all n, the result holds.

We remark that the condition on the p, for the theorem is an eminently reasonable one.
since it will fail only if the p, are tending towards 0 or 1. In this case the “information” in
the data is not increasing quickly enough, so that other problems such as inconsistency of

.

estimators will also occur.
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5.2.4 Some additional results

Before moving on to the other two statistics, we give some general results that will be used
in the sequel. The first gives a Taylor series expansion in terms of J — 3. and the second
gives conditions for the asymptotic normality of 3 in the logistic regression case.
Expanding p, = p,(3) in a Taylor series about p, = p,(3) gives
. ’ 1. . - ; 2
Po= b= L= P23 = 0) 4 SRl 1= pi)(] - 2p) {;j(d - 3)} .

¢
where p, = p,(3,), and each 3, lies on the line joining 3 and dg
VWritten this way, the quantity 3, in the remainder term depends on i, but we will use the
series expansion in sums of the form 3°°, f(p.}(p, — p). for which one quantity J suffices.

since the series is for the whole sum:

n

S fpdip-p) = Y, [f(p;)p.(l “p)ri(d - 3)
1=1

1=1

| oy

b fpop =0 20 {Fd - a5

‘

N

where now p, = p,(j). and J lies on the line joining 3 and 3.

Fahrmeir and Kaufmann (1985) give conditions for the asymptotic existence, (weak
and strong) consistency and asymptotic normality of maximum likelihood estimators in
generalized linear models. Their Corollary 2 concerns the case where the response variable

is bounded, as is the case here, since 0 < y, < 1 for all 1.

Theorem 5.5 (Fahrmeir and Kaufmann) If max,;<,<n o F7lr, — 0, then 3 is weakly

consistent for 3 and

L3, - 3) 2 N0, 1),

n

where L' 1s such that the information matriz F,, = L, L},

We will use this result frequently. The result is true for any tvpe of “square root” matrix
L, that depends continuously on g, provided that the same type is used for all n. Ip our
calculations we use the Cholesky square root. For a matrix A, this is the unique lower
triangular matrix R with positive diagonal elements for which RR’ = A. To the condition
of Fahrmeir and Kaufmann we will, in our work, add the assumption that lim, . (Fn/n)

exists and is positive definite; we will call the limit matrix .

»
/
{
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Fahrmeir and Kaufmann (1985) show that, in models like logistic regression which have
a canonical link function and a bounded response, the condition of Theorem 5.5 implies
their condition (N); cor}lbining this condition with our assumption of convergence of F,,/n

to (7, and using some elementary properties of matrix norms, we see that

sup Hn"l{Fn(d')~Fn(5)}HEO.
{BILn(3°=B)i<C} N

for all finite (", and equivalently

sup In" Y Fa(3%) - E (3] & 0.
(I lInt 2 (3~ 3)||<C)

Now we obtain asymptotic results for linear and quadratic functions of J:

Theorem 5.6 Let S, = n~ /2" g(p,)c!(3 ~ 3). If the condition of Theorcm 5.5 holds.
togéth(r with

lim F,/n=G (5.10)
Ny
with (i positive definite, and ~
lim n! ig(p,)r; =, ’ (5.11)
bt -
then .
S 2 N(0NG ).

%
Proof: Write }
S, = n~l/? {Zy(p,)r:}(l,;)_ll/;(j ~ 3).
- 1=1

Noting' that lim,_ n~ 2L, = M for some matrix M with MM’ = (7, as a result of (5.10).

and using (5.11), we find that
Sn L n‘/)r'n_l/z(:\[')“l*: v(MYTZ,

where Z has a standard multivariate normal distribution, using Theorem 5.5. Thus it follows
that ‘

. D . — ~ . v —

Sa = NOV(MYTTM ey = V0,0G ),

completing the proof.
Once again, the conditions imposed seem reasonable. Condition (5.10) requires the

information per observation to tend to a limit, a standard requirement in inference, and
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condition (5.11) is roughly a requirement that the “average z;” does not get too large. In
fact, since g(p,) is typically a function like p,(1 —p,), (5.11) is not as strong as this, because
for such g(p,), large z; can be, and often are, counterbalanced by the corresponding p; being
close to 0 or 1. ¥

Considering now quadratic forms in [3 — 3, we have the following result:

] . 2
Theorem 5.7 Let T, = n~ V25" h(p;) {r:(ﬁ - ﬁ)} , Ap = Y, h(p)zizl. Under the
conditions of Theorem 5.5, and assuming also that lim, .o Fp/n = G,lim,_., A, /n = A

for some matrices A and G with G positive definite, we have T, Fo.
Proof:
n'?T, = (3-8) {Z h(p,v)rlr:} (8- 3)
=1
= (3-8)Aa8-3).

Now, from Theorem 5.5, L;(j - 3) b N(0,7), so write n2T, as

n'2T, = (3~ 3) L L7 AL~ L (3 - 3).
The matrices n='/2L, and A,/n both have limits by hypothesis: denote lim,_~ n~'/%L,
by M. Then

D

2T, = Z' (" VAM YA {n VMYV 2 = 2'QZ,

where Q = M~1A(M’)"! and Z has a standard multivariate normal distribution. The
distribution of Z'QZ is well known to be that of 5°7_, A\,Y,?, where p is the dimension of 3.
the Y, are independent standard normal random variables, and the A, are the eigenvalues
of Q. Since this limiting distribution of T, itself is this multiplied by n='/2 it follows that
i .
T, — 0.
In dealing with remainder terms, we will also be faced with quadratic forms containing
possibly random quantities p, as well as p,. An extension of Theorem 5.7 enables us to deal

with these as well, provided that we now allow the function h to depend on both p, and p,:

Theorem 5.8 Let "
To= 2725 hip. po{z.(8 - D)

1=1

and assume that there erists a constant C such that

h(pwﬁx) < C{pt(l "Pi) +ﬁl(1 _ﬁx)}'



CHAPTER 5. GOODNESS OF FIT FOR LOGISTIC REGRESSION MODELS 106

Then T, Fo.

Proof: By hypothesis,

R0,

IA

C(B-8) {Zi).-(l - ﬁ,)r,r:} (3 - 8)
1=1

-

] + C(B— ﬁ), {pr(l _px)IiI:’}([j- B)

1=1

C(B - BYFaB)Y3-B8)+C(3-B)Fu(3-15)

It

Now, n'/2(5 — ) has a limiting normal distribution, and, as observed in the disc#ssion

following Theorem 5.5, n™! F.(3) and n™'F, both converge to G the former in probdbility
since the sequence is of random variables. Thus n'/?T, is bounded in probability, and h 1ce
Tn itself converges in probability to zero as claimed. ’ \

Notice that in fact the conditions of Theorems 5.7 and 5.8 lead to limiting distributions
for n'/2T,, and n!/2T,.
With these results in hand, we can now move on to proofs of the asymptotic distributions

of A; and A,.

5.2.5 Statistic A4,

The asymptotic distribution of this statistic is not important in practice, but it turns out to
be a useful stepping stone to that of A;. We give the theory for A, in two stages: first we
show that its limiting distribution is that of the sum of two random variables, one of which

is Ag. and then we show that the distribution of this sum is in fact normal.

Theorem 5.9 If the conditions of Theorems 5.4, 5.5. 5.6 and 5.8 hold, with h(p;.p,) =
(1- Pz)ﬁ:(l —'ﬁz)(l — 2p,), then

Ay = Ao - n7VEY pu(1 = p)Pl(3 - 3) 4+ op(1). ,

1=1

Proof:

n

f‘l = n_1/22(y. —ﬁl)(l—pl)

1=1

= 23 (- p) ~ (B - P} (1= p)
1=]

n

= Ao—n_1/2Z(1—P1)(ﬁ:—PI)-

1=1
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Using (5.9) with f(p,) = 1 — p,.

A = Ao —nEY (1 - p)Pi(3 - B)
=1
1 e .
LD VAR DS S EACEIN
=1 '
Since

L4

h(Pnfh) = (1 - px)ﬁt(l - ﬁt)(l - 213!) < 3{P;(1 - P:) + px(l - ﬁt)}*

the condition of Theorem 5.8 is satisfied, and hence the last term converges in probability
to zero (in other words. is 0,(1)). The result is therefore proved.

It remains to discover what the limiting distribution of A, is. The only random quantities
in Ay are the y, — p,, so we can attempt to write the second term as a function of y, — p,

also. The next theorem shows how this may be done:

Theorem 5.10 Assume that the conditions of Theorem 5.9 hold. Let G = lim,_. F,/n
(the limit being assumed to erist and be positive definite), let w,, = 37, p](l-p])21'; Flr,

-1 n

and let s> = n Pl =p (1= p, — wi,)? Provided that s* = lim,, . 2 erists and is

positive, it follows that A,/s, D N(0,1).

/
Proof: /

A = Ao—é“”Zp;u—p,>2ri<3—3>—Rn
1=1

= 272y (y - p)(1 = p))

1=1

— Y 1= P22 (L) T (3 = 3) - Ra, (5.12)
t=1

where R, is a quantity that converges in probability to zero. Under the conditions that we
have imposed here, Fahrmeir and Kaufmann (1985) show {in the proof of their Theorem 3).

by using the mean-value theorem for vector-valued functions, that =«
n ’ 1 i i
L' Sy - pori = [/ Vo84 05 - 3)) dt] LL(3 - 9.
=1 0 .

where V,(3%) = L7V F,(3%)(L],)~". and the integral of this matrix-valued function is under-

stood elementwise. Letting U, denote this integral, Fahrmeir and Kaufmann show (later on
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~

in the same proof) that U, it I, so that for all n sufficiently large, U, is invertible with a

probability that can be made as close to 1 as we please. For such n,
L(B-8)=U"L] Z e (5.13)

Thus, changing the index of summation in the second term of (5.12) to j, using (5.13), and
neglecting the term R, that converges in probability to zero,

n

A= Y - e - )

= l

_Zp] p]'ZILI llr IL 12 —px }
—1/22 _p, {l_px ZPJ p] 2 ! Ll) l['r;—lL;l—ll.‘}

_ -1/22 C—p (1= p = Win) (5.14)

n

= n—l/QZ(yz_pt)(l—px—wm)
t=1

V2N Ny - p) (Wi = win), (5.

=1

It
f—
(1]
—

where (5.14) defines the random variable W/,,.
We next show that the last term on the right-hand side of (5.15) converges in probability

to zero:

n—1/2 Z(y’ - pt)(vym - u'm)
1=1 ,

n

= 223 (g - p) ij P (Ll L) = 7Y 1,

1=1

= n‘IZpJ( -p,)ix £’ {n( (L UnLl )™ = (Fo/n)™ 1

—l/?LLIZ _pl
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By the hypotheses of previous theorems, these quantities all have limits:

nT a1 =p)irt — W as in Theorem 5.6,
n(LaCnLl) ™ = (Fa/n)™t £ 0 since 0 £ 11
n~Y2L, — M since L,L' = F;.
L' Sy —p)z 2 N(0.D).

Thus n=1/2 ey = p)(Win — win) L 0 as claimed. It follows that A, converges to the
same distribution as n™Y2 " (g, — pi)(1 — pi = wn).

To complete the proof, we wish to take u,, = 1 = p, — w,, in Theorem 5.3: this requires
us to show that n='/2 max<;<a(l — p. = w,,) tends to zero. Since 1 — p, is bounded, it
remains to show that n7'/? max|uw,,| tends to zero: We do this by showing that, in fact,
the convergence holds for every :.

Let b, = e p (1= p,)%r,: then

w, = bOLET'r,
(n~tor )~ EO T
{2 (n o) Y {(n VAL ) r )

I

Thus
lwin) < [ 2L (7 o)l 2L ).

As n — . the first norm has a limit, namely ||AM ~'¢||. The second norm can be written as

VIonTtE) ", = n!/? I:F,flrl.

Since the radicand tends to zero by hypothesis, it follows that n=1/2{w,,| also does for each

i, and hence that n='/? max |u',,| converges to zero as well.

Finally, appeal to Theorem 5.3 shows that A, /s, L N(0.1), completing the proof.

5.2.6 Statistic A,

Our strategy with A4, is to show that it is the sum of A; and some other quantities that

converge in probability to zero, which would show that A, is also asymptotically normal.
First, however, we have to note that in practice, the statistic will be normalized using

a quantity &, which contains estimated parameters, so that we must also show that §2 and

s% converge in probability to the saite non-zero limit. i
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Specifically, define .
g 'pr (1= p, — ), (5.16)

where w,, = 37, p,(1 - p,)? ran‘ (3)z;, analogously to the definition of s2. Also let
bn = 3272 py(1~ p,)%z,, and define b, analogously.

. . - P .
We proceed to establish that §2 — s2 = 0 by means of a series of Lemmas.

Lemma 5.11 The quantity s® can be writlen as
= IZPr L-p)° lsz 2wy (5.17)
Proof: Expand out s to obtain
= ‘IZp.l-p, ‘Zp,l—p, um+n12p,l——p, (5.18)
Writing b, for 27:1 p,(1 - pJ)2IJ. we find that

Y p(l=pu
=1

Zb “p.(V = p)x, 2l F7 b,
- ann b
= ZpJ(l - pJ)2b:1Fn"lr

= ZP](I - p])2u'xn-
J=1

In other words. the third term on the right-hand side of (5.1%) can be subsumed into the

second. and
s2 = ‘Zpll—px IZP (1= p) win.

as we wished to prove.

Note that the same algebra yields the corresponding result

S NIIEEUREE S (RN 519
>

Our convergence proof therefore rests on the difference between the right-hand sides of (5.17)
and (5.19). Lemmas 5.12 and 5.16 will show that the two constituents of this difference

converge in probability to zero.
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Lemma 5.12 Let R, = n™ ' 37 {p.(1 —~ p,)° — p.(1 — p.)3}. Then R, Fo.

Proof: R, contains a polynomial function of the p;, evaluated at p, and p;. This polynomial
is seen to have derivative with respect to a particular p, of (1 —Wp,)z(l —4p;). Thus, thinking

of R, as a function of 3. R,, can be written in a T&{lm series about 3 as
= IZPzI‘Px 1‘4P1) (j—'d)»

for p, between p, and p, for all . (The process of differentiating p, with repect to 3 produces
a term p,(1 — p,).) Using the Cauchy-Schwarz inequality with a judicious splitting of the

terms in the sum. we find that

R, < JZp,l—p, (1-4p,) \J Z p,rz(ﬁ—,;?)
< a3 - 3y Fa(B)(3 - 8).

since each term in the sum of the first radicand is bounded by 9. The second radicand can

*

be written as _
(3= 3V Lo L7 Fa(I)(Ly) 7 L3 = 3)

where L,‘llﬂ(j)(L;)“l I for all 3 in a suitable neighbourhood of 3 and L’n(3 - 3) b

N(0.1) (see Fahrmeir and Kaufmann, 1985, and the discussion following Theorem 5.5).
The second radicand is therefore bounded in probability, and the remaining powers of n are
sufficient to ensure that R, £ 0, as wte wished to prove.

There now follow three small lemmas asserting some other useful convergence results.
Lemma 5.13 Let L7'(3) denote L' evaluated at 3. Then n'/2L71(3) £,

Proof:
n'2L7Y3) = a 2LIN )L LD

By assumption. n'/2L7" — A ~1: condition (Q) of Fahrmeir and Kaufmann (1985) shows

that L2Y(3)L, = 1.

Lemma 5.14 n~'b, is bounded as n — ~.
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Proof: We show that each element b,; of b, is, when divided by n, bounded in absolute

value by a quantity that has a limit. Specifically,

n' Y pll = pi)lay
1=1
> op(1- pi)3\Jpr(1 ~ P
=1 1=1

< V()

|an|/n

I

IA

n~!(F,),, has a limit as n — oc. namely (,,, the j-th diagonal element of the matrix (.
Lemma 5.15 n~'(b, — by) Fo.
Proof:

ot =) = n“i{ﬁ,(l—ﬁf—pz(l—p‘)g}

= —IZp, 1 - p)? 1—3p,)11(3 3)

IN

‘Zp‘ S ALEACEN)
= .n~1/2{an 3)/n}{nV¥3 - 3)).

Since Fn(;’j)/n converges in probability to G, by our assumptions and the discussion after
Theorem 5.3, and n1/2(3—3) converges in distribution to normal, it follows that n*‘(i)n —by)

converges in probability to zero.
Lemma 5.16 Let Tp = n=' o {pu(1 = p)%4in — py(1 = p)2win}. Then T, L0,

Proof: Using the definitions of wy, and w,,,

n-l Z{ﬁx(l - ﬁx)Qéan(B)_lrx - px(l - pt)sznFn—lrx}

‘1{b’ Fu(3) "bn — b, F; ' b,}
n-‘[{L- 3)ba Y (L7 (3)ba} — {L; by }’{L“b Y
nVHLI ()b — L7 n} n ™ 2L (B)bs + L7 b0}

T,

i
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The last line expresses T, as the inner product of two vectors. Our aim is to show that the
first vector converges in probability to zero, while the second is bounded in probability.

The first vector is

VUL (3)b, — L7}
= (207N (b = ba)} + [RVH{LTN(3) - L7 (n 7 hy)

Lemmas 5.13 and 5.15 show that the first term converges in probability to zero, while
Lemmas 5.14 and 5.15 show that the second term also does, both being the product of a
factor converging in probability to zero and a factor with a'limit in probability. The second

vector is attacked in the same way:

—1/2{L b + L lb }
= {nl“L; (30" b = b)) + (LN 3) + L7 (07100

This time. Lemmas 5.13 and 5.15 show that the first term converges in probability to zero.

while the second term has a limit in probability because both of its factors do. Putting
P

these results together. we see that T, = 0 as cted.

We now have the tools to prove the following:

2 P
n

Theorem 5.17 32 — s2 — 0.

Proof: By Lemma 5.11, we have

n .
531_5721 = n_lz (l_px lszl_P: um
=1

lszl—px lszl'P1 Win

= Rn—Tn.

Since both R, and T, converge in probability to zero, by Lemmas 5.12 and 5.16 respectively.
so does their difference. and the result is proved.

Finally, we turn to the main result. the convergence in distribution of A;:

Theorem 5.18 ['nder the conditions of Theorem 5.10. Ay has the same limiting distribu-
tion as A,. that is, defining 2 analogously to the s of Theorem 5.10, replacing the p, and
w,, by estimates, A;/s, b N(0.1).
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Proof: First, Theorem 5.17 shows that 52 and s? have the same limit, assumed nonzero by

Theorem 5.10.

Az = VS (y - Bl - By)
1=1

= n-1/22(y1_i’i) 1~p) ( '_pz)}

= Al—n"”\; = (P - pi)

= A ~T7,-1/2 Z{ ""px —Px)}(ﬁ:—Px)
= A=Y g =)o)+ 27 Y (B - p)h (5.20)

1=1 ) 1=1

The first term of the right-hand side of (5.20), A, is already known to be asymptotically

normal, so we turn to the second, using the expansion of (5.9):
n=1/2 Z ) {5.21)
= ””2: c~ PP~ p)zi(3 - 3)
-1/22 — p)(1 = o)Al ~ Bl = 2p){zl(3 - 3)}2, (5.22)

where 3 lies on the line joining 3 and 3. Looking at the.second term, we note that, with

probability 1, |y, — p.| < 1. s0 in absolute value, this term is no bigger than

Y _h(p i)
1=1

1
Lo~
2

with A(p.,p,) = (1 = p,)p.(1 — p.)(1 = 2p,). Thus. by Theorem 5.8, this term converges in
probability to zero. ,
Turning to the first term of (5.22), and taking its absolute value, we find

n

z]m-pmml—mﬁﬂ3—34

1=1
{Z(yt - p)p(l = px)ri} (L) 'L (3 - 3))

1=1

Ve

o172
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—_—

{Z(y.‘ - Pi)l‘f} (L)' LL(B - 13)’

1=1

~

01/

IN

= 2|7 s L8 - B).

The two random variables here are both converging in distribution to the standard multivari-
ate normal distribution, and so each, and therefore their product, is bounded in probability.
It follows that the term as a whole, being multiplied by n~'/2, is converging in probability
to zero.

Finally, we expand the last term of (5.20) in a Taylor series:
n_l/2 Z(ﬁz - p1)2
1=1
20 EST(BHL = BT+ (B - pOB(1 = AL = 26} (=05 - B
1=1

Letting h(p,.p,) denote the quantity enclosed in braces, Theorem 5.8 shows that the whole
term converges in probability to zero. Thus we have shown that the statistic A, can be
written as the sum of A, and some “correction” terms that converge in probability to zero,

and therefore that A, and A4, have the same asymptotic distribution.
5.3 Asymptotic theory for the quadratic family of statistics
5.3.1 Introduction .
Starting once again from our “empirical process”
Xn(p) =n""2S (v = p)(p, < p).
1=1

or the corresponding versions with one or both of the p, replaced by estimates, we define the
quadratic family of statistics by squaring the process and integrating. This can be expected
to yield test statistics that are sensitive to any departures of X,(p) away from zero.

For example, Qg is found as follows:

Qo

/1{.’&',1(1))}2 dp
0

1 0 n
= n-lv/(; ZZ(y'—Px)(yJ—p,)I(p,gp)[(pJSp)dp

1=1 =1
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A

-122 yeo= pi)( /I{max p..p;) < p}dp

ll]l

—IZZ ¥ — pi)( pJ){l—maX(pan)}

tl)l

_122(],] - p )y, - p) (5.23)

1=1 =1

H

where ¢,, = 1 — max(p,.p;).

Unfortunately, the theory for this general situation is difficult for the statistics ¢, and
Q2 (especially the latter). For Qo, a general result can be given, as shown in Section 5.3.6.
First, however, we obtain results for the simpler case described below.

Suppose that, instead of n distinct success probabilities, we have p; that take on only
a fixed number d of different values. Suppose there are n, observations at the design point
corresponding to p,, and assume that v; = lim,_.(n,/n) exists and lies strictly between
0 and 1, where now n = }:?:1 ni. Let yi,,1 = 1.2,...,d.7 = 1.2.....n, denote the result
of the j-th trial at the design point with success probability p,, and let y,4 = }:;‘:1 Y., be
the total number of successes observed for this value p,. Under our assumptions, y,4+ has a
binomial distribution with index n; and probability p,.

[t is also convenient to express these quantities in vector-matrix terins. Let X denote
the design matrix, let y denote the d-vector with i-th element y,,, and let p denote the
d-vector whose i-th element is p,. Further, let N, denote the diagonal matrix with (z,7)-th
element n,. (The rather cumbersome notation is necessarv because the n, depend on n.)

Some additional notation is desirable: as we shall see, the statistics depend on ¢,, =
1 — max(p,.p,); let Q@ be the, matrix with (z,7)-th element ¢,,. In addition, let V,(J3) be
the diagonal matrix with (¢,¢)-th entgy n,p,(1 — p,). where p, is really p,(3); Vo.(3) is the
covariance matrix of the y,4, diagonal because the y,, are independent. Let V/(J) be the
diagonal matrix with (z.2)-th entry v,p,(1 — p,); by assumption, lim,_. V,(3)/n = V(3).
The matrices V,, and V" without argument are evaluated at the true 3.

When dealing with estimated parameters, we also use the obvious notation p for the
vector of p; and Q, for the matrix of ¢, = 1 — max(p,.p,) based on a saniple of size n.

With the new notation, our empirical process becomes

d n,
Xo(p) = 725" N (g — p(p < p)

=1 k=1
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d
Y gy — mp)I(ps < p). (5.24)

1=1 .
Clearly. it follows that the statistic Qg. and the corresponding statistics Q, and Q;
obtained by replacing some or all of the parameters with estimates, can be written as

follows:

d d
Qo = n—lzzflu(yx+—n1px)(y]+—anJ)

t=1)=1
= 27Ny~ Nap)Qly — Nup) (5.25)
d d
Ql = n_lzqu(yx+“nxﬁx)(yj+_n')ﬁj)
=] j=1
= 07y~ Nap)Qy — Nup) (5.26)

d d
Q2 = n~IZZd,)(yi+"nlﬁ1)(y]+ ~n_hI}J)’

1=1)=1

"'y — NVup)Qy — Nap). «(5.27)

Our strategy is similar to that with the area family: we show that @y and @, have
different asymptotic distributions from the same family, while @, and @, have the same
asvmptotic distribution. In the proofs, we can take advantage of the fact that the number
of the terms in the sums, and hence the dimension of the vectors y and p, remains finite,
whereas within the sums, we have binomial random variables with increasing n,. for which
convergence to normality applies.

In the proofs, we shall need the forms of the score vector and information matrix under

this new arrangement of the data. For general 3, these are seen to be

sa(3) = _}é(yx nipy I,

= jf‘?'l(y—l\'nzn) (5.28)
Fu(3) = inlp,u ER

= l;'ltn(a)x (5.29)

The design matrix X, with i-th row z:, now has d rows rather than n. As before, s, and
F,, without argument denote the score vector and information matrix evaluated at the true

parameter value J.
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5.3.2 Two invariance results

As with the area family of statistics, two invariance results are available for the quadratic
family, showing that, whenever an intercept is estimated, the statistics ¢, and Q, are
unchanged under downward cumulation and exchange of successes and failures. These

results hold under the most general conditions, since they do not depend on asymptotics.

Theorem 5.19 When the model includes an intercept, the statistic Q' obtained by cumu-

lating (y, — pi)y, — p,) downwards instead of upwards is equal to Qy calculated from the

same data. The corresponding result holds for Q.

Proof: Beginning from the integral defining the quadratic statistics, and modifving to

cumulate downwards, we find

1
& = w7 [ X Y B, - 5) 12 p) a2 ) dp
i

Tl—1 ZZ(% - Pn)(yj - ﬁj)min(pl‘p})
= R By - @)po e - L L max(pepy)

f

”ZZ y-p)ptr - +Qr (5.30)

Since the model contains an intercept, one of the likelihood equations is 5, (yx — px) = 0.

It follows that,. for any 7,.7,.
227 Y= PY, — b)) ZZ% v = Py, — p,) = 0,

by carrying out the summations in the right order, and therefore that the double sum on
the right-hand side of (5.30) is also zero. Thus Q) = Q. As with the area family, the same

argument shows that Q| = Q,, and so the proof is complete.

Theorem 5.20 When the model contains an intercept, the statistic Q') obtained by erchang-
ing successes and failures is equal to Qy calculated on the same data. The corresponding
result holds for Q.

Proof: Let w, = 1 -y, be the observed numbers of failures, and let ¢, = 1 — p, be the failure

probabilities. The definition of @, gives

”_ —1/ ZZ J_QJ)I(QxSQ)I(qJSq)dq
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Making the change of variable p = 1 — ¢, and replacing w, by 1 — y, and ¢, by 1 — p,. we
obtain

1
’2’:/0 Y > (v =PIy, —B) I(p. 2 p) I(p, > p) dp.
)

This is the same integral as that defining Q. It therefore follows that Q5 = Q) = Q.. The
corresponding algebra shows that QY = Q] = Q, completing the proof.

5.3.3 Statistic @

The asymptotic distribution for (Jg is easily obtained.

Theorem 5.21 Letm,, = q,l\/u,p,(l —p)v,p,(1 = p,). and let M be the matrir with (1, ))-
th element m,,. Provided that 0 < p,.v; < 1, Qo 2N Zii:l/\,:;z. where the A, are the

etgenvalues of M, and the z, are independent standard normal random variables.

Proof: Fach y,, — n,p,. when suitably scaled, converges .independently in distribution to
normal, because of the normal approximation to the binomial distribution. In particular,
let the vector w, = n~ Y2V =1/2(y — N, p): E(w,) = 0. while var(uw,) = n7'V =1V, — [ as
n — . Thus n=Y/2V Y2y — N,p) b N(0,7). (Note that V}, and V" are diagonal, so that
raising these matrices to the power —% is done by raising each diagonal element to the same
power. The assumptions 0 < p;,v, < | for all 1 prevent anv of these elements being zero
whenever n is sufficiently large.) ’

Starting from (5.25), (Jo can be written as

QO — {n-—l/‘ZV—l/’Z(y_‘gvnp)}lvl/ZQVl/Z{n—l/Z"—l/‘Z(y_ \np)}

14
= u'nMn Up,

where the matrix M, = VY2QV Y2 has (4, j)-th element

n_qu \/nxpx(l - Pn)”;P;(l - PJ)-

and w, is a d-vector with i-th element (y,4 — n,p.)/v/np (1l — p). Now, as n — oc.
n’l\/n,—nj — /v, for each 7 and j, so that the (non-random) matrix M, — Af. Thus, by
a well-known result for quadratic forms of normal random variables, Qg L 54 Az2, where
the z, are independent standard normal random variables and the A, are the eigenvalues of

the matrix of the quadratic form, in this case M.

q
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5.3.4 Statistic ¢,

In the light of our experiences with 4g and A,, we might expect (; also to have an asymp-
, totic distribution which is a sum of squ\h‘res of normal random variables, but with different‘
weights. This turns out to bethe casé, with an interesting parallel to weighted linear
regression. ’

Note that the condition of Fahrmeir and Kaufmann (1985) now requires only that the
maximum of r/ F;7'r, tend to ze/o over the finite set of r,, the dependence on n arifing onlv

through Fi.

Theorem 5.22 Assume that max,c,<q I,F; 'z, — 0 as n — . Assume also that G =
lim,_ Fn/n erists and is positive definite, and that limn,_ n,/n = v, exnists for all 1 with

0<v, <l. Then
D - . , )
Q= n "y = Nap)(I = HYQ(I -~ H)y = Nup).
where H = V.\'(.\'/",\')—l‘\".
Paks

Proof: We begin by writing out @, as follows:

Qi = n7Hy = NapYQ(y = Nap)
= 07y = Nap) = Nalp = p)YQ{(y — Nap) = Nu(p - p)}
= 07Ny = NapYQUy = Nap) = 7y = Nap)QNalp - p)
: =07 P = pYNQUY = Nap) + 07 (= PV NLQNA(D - p). (5.31)
The first term of (3.31) is just Q. and is already in the desired form. For the other terms,
we require a link between p - p and y — ¥, p, as we did in dealing with A,. The link takes

a somewhat different form here, since we are dealing with p — p as a vector; Dennis and

Schnabel (1983, p. 74) give a suitable mean value theorem, from which it follows that

1 - o
Nop—p) = [/0 Vod3 4+ t(3 = )} dt] X(J3 - 3),

since the (matrix) derivative of p with respect to J is V,,(J).X. The integral is to be
interpreted elementwise. Let V., denote the integral, and note that, from Fahrmeir and
. 5 i¢ P . C o - .

Kaufmann, 3 L 3,sothat n='V, = n~! fol V. dt = V. The link between 3 —J and y— .V,p

is the same as before, adjusted for the vector-matrix notation; it is

Lo(3-3)=UaL X (y = Nap),
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where [, is 2 matrix converging in probability to the identity. Putting these two results
together, we have

Nap=p) = VaX(LaUnl' ) ' X (y = Nop). " (5.32)

Looking now at the second term of (5.31), and applying (5.32), we obtain
Ry = Nap)QNa(p=p) = n7 (4 = Nap)QVaX (Ll L) X (y = Nop).

The quantity n~'/2(y — N,.p) is bounded in probability (it has mean zero and variance
which tends to V"), so the convergence in bability of the second term of (5.31) rests
on the convergence of the terms depending on n. V,/n coxﬁ’ergos in probability to "
meanwhile, [, converges in probability to the identity matrix. so that L, [’ /n converges
in probability to the same limit as F,/n, which is here X'V"X. The terms depending on n
thus converge in probability to VX ( X'V X)7LX7, the n's cancelling. Letting [ denote this

limit, the quantity as a whole converges to
nTHy = Nap)QH(y ~ Nup). (5.33)

The third term of (5.31) is the transpose of the second. so its limit must be

-

n~'(y - Nap) H'Qy - A\'njv). (5.31)

The fourth and final term of (5.31) also contributes to the asymptotic distribution of

¢

nHp = pYNLQ NP~ p)
= Ny = Nap) X(LaCn L) XV Q VX (LU L) 7 Xy = Noup)
— Ny = N XXV TRV QU (YY) T Y (y — Vap)
= "Ny - Nup)H'QH(y = Nup). (5.3

Combining the first term of (5.31) with (5.33). (5.34) and (5.35). we find that @, con-

4
~
[

verges to the same distribution as

Qi = nHy-NpVQ-QH -H'Q-HQH)y - Nup)
= 7Ny = Nap) = HYQ(U = H)(y - Nap),

which was to be proved.
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It follows that the asymptotic distribution of Q is $1_ Azi where the =, are inde-
pendent standard normal random variables, and ngow the A, are the eigenvalues of VY-
HYQUI - HWV'Y2

[t is also worth noting that the matrix H is idempotent, and indeed resembles the “hat
matrix” in weighted least squares. This comes about becauser estimation in generalized

linear models can be thought of as an iterated weighted least squares problem. and for large

n, iterations after the first make almost no difference “in the limit, evervthing is linear™.

5.3.5 Statistic (),

As with the area family of statistics, we now show that 0, has the same asyvmptotic dis
tribution as was just found for Q. The result rests on the continuity of p as a function of

J.

N

Theorem 5.23 [ 'nder the conditions of Theorem 5 22 the asymptotie distribution of the

statistie @y s the same as that of (9.
Proof: (), can be written as

Qr = n Ny - NapVQaly - Nup)
- ”»_l(_l/ - \nl’)/Q(y - \'}p) + ”‘I(U - ‘\"LP)IQQN - Q)(u - \up\'

= O+ n*l(y - A\',.p)’(Q,. - Q)y - Nap)

As was shown in Theorem 522, n=Y2(y = NV, p) converges in distribution to a normal
distribution with mean zero and a variance that does not depend on n, and so is bounded
in probabifity. It thus suffices to show that ., — () converges in probability to zero. The

(1. 7)-th element of this matrix is

{1 = max(p,.p,)} - {1 - maxip,.p)}

— max(p,.p,) - maxip,.p,). {5.30)
Now, the condition of Fahrmeir and Kaufmann (19%5), namely that

hm max £ F s, =0,
ne o r<<d

S
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ensures that 3 — 3 Ll 0. But there is a chain of functions linking 3 -3 to (5.36), all of
which are continuous: n = X, the linear predictor, is linear and therefore continuous:;
p: R? — R%is a continuous though nonlinear function of 3 max(p;,p,) is a continuous
(though not differentiable) function of p for all i and j. Thus Qn -~ () is a continuous function
of B~ 3. Finally, since any continuous function of a convergent (in probability) sequence of
random variables converges in probability to the corresponding limit, we have shown that

Qn - Q F 0. and thus that the statistics @, and @, have the same asymptotic distribution.

5.3.6 A more general result for statistic @

The theory of Guttorp and Lockhart (1988) provides the means for a more general attack
on (Qg. As was seen above, the restriction to a finite number of design points enables us to
assert the asymptotic normality of each suitably standardized y,, and thence to complete
relatively straightforward convergence proofs. However, when each y; is a Bernoulli trial
with a possibly different success probability, the asymptotic distribution of a statistic must
come from a central-limit-like argument whereby the statistic is expressed as a‘large number
of independent quantities which are each almost certainly small, but not so small as to be
converging to zero. Guttorp and Lockhart provide the theory to make such an argument
rigorous in our case.

Equation (5.23) gives the general form of Q. It will. however, be more convenient for

the Theorem given below if we write
n n
Qo = Z Z My, WU,
=1 3=1
where
— pl
pl(l - P])

{1 - max(p,,p, }\/1; = p)pyt 1-1),)

my, =
The m;, can be thought of as elements of an n x n matrix M.

Theorem 5.24 Let B, = {1:e < p, < 1—¢}, and let Q5 = 371, 3", my, 2.z, where the
z, are independent standard normal random variables. If, for some € > 0, |B.|/n > 1 >0
t

A
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for all n, then
sup  |P(Qo € u) - P(Qp S u)|'— 0

—00<u<no

asn-— oc.

Proof: Since E(w?) = E(z?) =1, E(Qo) = E(Qg) = S, m,, = u.say. Let 02 = 2 t1M?.
Then, provided that ¢ > 0. we can write

_sup [P(Qo<u) = P(Q < w)
(CERRICED

because Qg and @ have undergone the same linear transformation, and therefore the value

= sup
-2 <u<o0

v’ of u at which the maximum occurs on the left-hand side becomes (v’ ~ u)/o on the
right-hand side, and the difference in probabilities is the same. It suffices, therefore. to
demonstrate that the right-hand side tends to zero as n — .

We now partition the set of pairs (i, 7) as follows: let

Ac = {(i.j):i#j. 1€ B,je B,
Ac = {1 # 50 0) € Ad,
Jo = {(s,j)ri=],i€ B},
Joo= {(i.j):1=],i¢ B.}.
Note that |J.| = |B.] and |A, U J| = | B.|?. Furthermore,

AL = 1B =B = |BJ*(1 = 1/|BJ) > |B.*/2 > 2?2

for all sufficiently large n, since |B,] — oc with n.

With these definitions, we can bound ¢? above and below
1
P=2uM?= 2ZZ{I—maxp,,pJ}p, =p)p,(l-p)) <2~ :
=1 =1
and

2
0'2 2 — Z {I—maX(P..PJ)}2Px(1—Px)PJ(1‘PJ)
(t.7)€AU, :

2¢* (I-¢) |AUJ|/n

IV

v

2¢4(1 - €)*n® = n, say,
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with m > 0.
We now focus our attention on a fixed value ¢ that is no larger than the ¢ stated in the

Theorem, and decompose Qg and QF. Note first that

n n n n
- — .2 .
Qo—p= E E myww, —Zm,, ~Zm,,(u‘ -1+ E mw,u,.
1=1 1=

1=1 =1 1%]
Thus .
Qo — 4 I ¢ l !
= = ;Zm,,(u'?— 1)+; Z m,w,w, + > Z muwau,
=1 (v.))EA, (r.7)eA,

= T, + T, + T3, say.

Letting T be Ty wi'th w, replaced by é,, we obtain the same decomposition for (Q7 — u)/o.
We will show later that the terms with & = 3 dominate the asymptotic behaviour in both
cases. and so we concentrate on T3 and 75 for the moment.

Define M to be the result of setting the diagonal elements of M to zero and deleting
each row and column : for which 7 ¢ B,,. The matrix M is therefore a [B.| x |B.| matrix
with diagonal elements zero, and contains |A.| nonzero elements. The subscripts ¢ and j
will be used equally for elements A and M, and quantities w,. w;, 3. 2, even though the
matrices are of different sizes. No confusion should arise, however,

Let 6% = 2 trM?. Clearly 62 < o2, since M was obtained from M by deleting some
elements. Also, m,, is, for all 1 # j, based only on probabilities that lie between ¢ and 1~¢’,
so that such m,, > ¢'*(1 = €)/n (because pi(1 — pk) > €(1 =€) and max(pe.pi) <1 - ¢€).
Therefore

gl=2tr M > 24N = ) A n?

> ('4(1 - )t = ;72 > 0,

since for ¢ < ¢, |Be| > | B.|, and where the above defines n,.

Having shown that ¢ is bounded away from zero and possesses an upper bound, it
makes sense to consider the closeness of the distributions of T3 = > Z}(mu/d)uv,u'] and
T3 =32, 3,y /d)zz,. In particular, we would like to apply Corollary 1 of Guttorp and
Lockhart (1988%).

The w, are uniformly square integrable because they are bounded, for ¢’ <
VT =€)]€. Also,

) 1 2
maxz — < TEmameU
1 02 [ea 1
J J

A | ,
2+ by
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. = :—-ma‘(n—22{l — max(p..p,)}*pi(1 ~ p)p,(1 - p,)

. 1 1'n 1
= 327216 16ne?

Since 62 > n; > 0. this quantity tends to zero as n — >c. The corollary aoplies, therefore,

and so, as n — oc,

sup [P(T < u) - P(T5 <u)l—0.

Now,

5= s S e = 2 2t
= - m,,w,u, = 7—- Z m,uw,w, = —143.
g - - J J J g

79 {1.0)€A,
The same applies to T3' with z,. z; replacing w,, w,. Thus P(Ty < u) - P(T35 < u) = P(T; <
uo/a) — P( Tg < uo/a). Since the distribution functions.of Ts and Tg are being compared
at the same place, and the supremum of this difference is. in absolute value, tending to zero,

it follows that
sup |P(Ts < u) - P(T; <u)l —0

as n — o as well.

The foregoing applies to'a fixed ¢ < ¢. However, by using a result from Chung (1974).
we can construct a sequence {¢,} — 0 for which the result still holds. Let m = 1/¢, and let
U(m,n)=sup,|P(T3 < u)— P(T; < u)|, where T3 and T3 depend on both m and n. Since
mu_ ["{m,n) =0, Lemma 1 of Chung (1974, p. 206) shows that there exists a sequence
{mn.} — oc such that lim,_. U(m,,n) = 0. Then take ¢, = 1/m, to obtain the desired
sequence.

v In the remainder of the proof, we use the sequoncé {€!,} just constructed. Next, we show
that Ty, Ty £ 0.
Since Ty = o7 TI, my (w2 — 1) and E(w?) =1, E(T)) = 0. Also,

var(Ty) = = Zm var(w?

1=1

(4 — p.)?
e m{ =

= - 02 Z Yvar{(y, - p.)?}

=1

l

Al
no?
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since (y, — p,)?, its variance, and (1 - p,)? are all positive and less than 1. Since o2 > .
lim, .. var(Ty) = 0. It follows that T, k 0. Because var(z?) is also bounded, a similar
argument shows that T £o.

For T, = U—lz(ld)efi,/ m,,w,w,. we find that E(T;) = 0 since E(w,) = E(uv,) = 0.
Since the same is true for .:,,zj, E(T;) = 0 as well. The two quantities also have the same
variance:

var{(T,) = var(T;) = ;12— Z m;z].
(ro)€A,
Since one of p,.1 — p,,p,,1 = p, is less than ¢ and the others, as well as 1 — max(p,.p,).
are bounded above by 1, m?J < ¢/,/n? for each term in the sum. There are no more than n?

terms (indeed, the number of terms is typically only a small fraction of n?), so that

N

var(T;) = var(T3) < =%,

Q

which tends to zero since lim,_ ¢, =0 and o > n; > 0. Thus 7;, I; Fo.
Having disposed of 7} and T, and their starred counterparts, we now look at the mean
and variance of T3 and 73:
E(T3) = l Z m,, E(w,w,) =0

g
(I,J)Ef‘cl
n

since t # j and E(w,) = 0. The same applies for E(T3). Meanwhile,

%)

1 ’ N
var(Ty) = var(T3) = = Z me = % < 1.

('J)th;‘
Since T3 and T3 have constant means and bounded variances for all n, they are both bounded
in probability; the families of distributions of T3 and of Tj are “tight™.
Now suppose that the theorem were false. This would mean that there exist sequences
{ne} and {u,,} and a & such that
lP (QO B unk> -p (Q" —H unk>l >4 forall k. (5.37)

g g

In other words, there has to exist a subsequence of points u,, for which the distribution
functions of the standardized Qg and QF do not get close together. Passing to a subsequence
is necessary because there may be some values of n for which the distribution functions

are arbitrarily close together. Consider the (sub)sequence of distribution functions {H }
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of T3, where the sequence {ni} is that of the counterexample described above. By the
Helly Selection Theorem (Theorem 25.10 of Billingsley, 1995, p. 336), there exists a further
subsequence {H;u(,)} and a bounded function HZ such that HZ (u) = lim;_. H,’,k())(u.)
exists for all u where H2 (u) is continuous. Furthermore, since the family {H}} is tight,
and therefore any subfamily is tight, this limit is a distribution function.

The same considerations apply to T3, since its family of distribution functions is also
tight. Thus Hoo(u) = lim; .o Hn, () exists for all u such that H(u) is continuous. But
since sup, |Hy,,(u) - H;, (u)] — 0 and Hp, (u) = Hoo(u), it must be that Hoo(u) = H} (u).

At this point, we would like to be able to assert that H, is continuous. This is in fact
the case, but we defer its non-trivial proof to a following Lemma. )

Since (Qq — p)/0o is equal to the sum of T3 and some quantities that converge in prob-
ability to zero, (Qo — u)/o L Y, where Y has distribution function H. The same is true

of (Q5 — u)/o, since it is the sum of T and some quantities that converge in probability to

zero. Since H..(u) is continuous, it follows that

P(QO—#SU) — Ho(w)

o
and P (QQ_;E
a

IA

u> — Hy(u)

for all u. While this demonstrates the pointwise convergence of the probabilities, it is not
quite enough to establish the uniform convergence that we need. However, we can use
a Lemma of Chung (1974, p. 133); taking the @ of the Lemma to be, for example, the
set of rational >numbers and the J of the Lemma to be empty since H is continuous,
we can conclude that P{(Qo — st)/a < u} converges to H.(u) uniformly, and so does

P{(Q5 — u)/o < u}. Thus

sup
u

P (QO — < u) — He(u)
and equally for QJ. As a result,

(g ) (e

u) - H.(u)

sup
u

P(%;ﬂ < u) ~ Hoo(u)

g

+ sup

since both terms do. As observed at the beginning, this suffices to show that

sup [P(Qo < u) = P(Q5 < u)l — 0
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and hence the proof is complete.

This proof rested on a Lemma, which we now prove:
Lemma 5.25 The function H, defined in the proof of the preceding Theorem s continuous.

Proof: Since T3 LA Y, where P(Y < u) = H_(u), every subsequence of the sequence of
T3 also converges in distribution to Y. In the preceding proof. we showed that 0 < 7, <

52 < 02 < %, so that 0% and 2 are both bounded above and bounded away from zero.

Thus, from the counterexample subsequence we can extract a subsequence for which both

with m; < 02,82 < L1 (For example, the required subsequence
i =10 8 p q q

=2

bod 2

G

2

2
and 0° — oL,

— &
can be found by first extracting a subsequence for which the sequence of 62 converges, and
then extracting a further subsequence for which 02 converges.) For such a subsequence,

PUT; <u)=P(T5 < ) - (2=,

)

Now. from the subsequence just constructed, we can follow the proof of Corollary 1 of

Guttorp and Lockhart (1988) to extract a further subsequence for which

T3 2 Xozo + 3 A2 - 1),

1=1

for scalars Ag. Aj.... with 257, A2 4+ A2 = 1. In other words,

1=

UG ad
Hx(a > :P{Ao:o+§A,(z?—l)§ u}.

¢

Since, by Feller (1968, vol. 2. p. 144, Theorem 1), the right-hand side is continuous (if
Ag # 0, it is the convolution of a normal random variable, which is continuous, with some
other random variables, and if Ag = 0, it is the sum of at least one chi-squared random

variable. also continuous), H is also continuous, as we wished to prove.

5.4 Finite samples

When carrying out a test of fit in practice, one would typically use the asymptotic distribu-
tion of the test statistic, hoping that this distribution is a reasonable approximation to the
exact distribution. Ve assess the validity of this approach by simulations on three examples:
in each case, three designs of the same type are chosen with n approximately equal to 20,

50 and 100, so that the effect of increasing n can be seen.
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All three examples contain an intercept, and contain a true intercept of zero and true
slopes of 1. (Provided that the slope coeflicients are not exactly zero, in which case any model
will fit equally well, the choice of coefficents is not crucial, since, for example, one can double
a slope coefficient and halve the corresponding z-variable to leave the probabilities the same.
Given our choice of intercept and slope, the values for the z-variables were chosen to give a
mixture of high, low and intermediate success probabilities.) The first example contains one
r-variable, taking values between —2 and 2 in steps of 0.4. This design contains 11 points.
and is then replicated 2, 5 and 9 times to produce logistic regressions with n = 22,55, 99.
The second example has two z-variables: r; takes values between ~2 and 1 in steps of 0.6,
and z, takes the values —1,0,1,2. Each possible combination of values of z; and z, is
taken, producing a design with n = 24; this design is then replicated twice and four times to
produce designs with n = 48 and n = 96. In these first two examples, the passage to infinity
can be viewed as an increasing number of replications of a fixed design, so the simpler theory
of Section 5.3 holds for the (}-statistics. The third example, on the other hand, has one
r-variable whose values are random samples of sizes 20, 50 and 100 from a standard ;?ormal
distribution (the same design is used for all the simulations for a particular value of n), and
so the most general theory is needed to obtain an asymptotic distribution.

For each example, we give Q-Q plots for the statistics Ay and Qg, for which all pa-
rameters are known, and for the statistics called here A3 and @5, which are A; and Q,
with the parameters of their asymptotic distributions estimated from the data. These latter
statistics are typically the ones that would be used in practice. The A-statistics are asymp-
totically normally distributed, and so normal Q-Q plots are shown. The Q-statistics have
distributions that are weighted sums of chi-squared random variables; in the case of @3, the
distribution is different on each simulation, because the parameters A; are estimated from
the data. For this reason, we have adopted the attitude for )3 (and, for ease of comparison,
for Qo also) that the P-value is the test statistic, and therefore a Q-Q plot against uniform
order statistics is appropriate. These plots are shown in Figure 5.1-5.6.

Although the rate of convergence appears to differ in the three examples, with the two-
r-variable Example 2 showing the lowest accuracy in the approximations, some patterns are
evident. The statistics Ap and Qo converge very rapidly to their asymptotic distributions;
even for the smallest sample sizes shown here, the approximations are very good. The
statistics A3 and Q3 converge rather more slowly, and in some cases the approximations are

still poor even for n near 100; however, convergence does appear to be taking place, even if
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slowly. We note also that the binary responses in a logistic regression do not, individually,
cbnvey much information (compare, for example, binary-response opinion polls in which a
sample size of 1000 is typically required to achieve the desired accuracy), so that n = 100 is
by no means an especially “large” sample in this kind of experiment. It is also worth pointing
out that for @Qj, it is the lower tail that is of most interest, and this tail is approximated

better than any other part of the distribution, at least in the examples considered here.

5.5 Power considerations

We have not, so far, carried out a power study to assess the ability of our proposed tests and
their competitors to reject false null hypotheses. Until this is done, it is difficult ‘to do more
than speculate about the relative performances of the tests. Nonetheless, the quadratic
statistics of Section 5.3 may be expected to perform well against a variety of alternatives in
which the true p, diverge {from the hypothesized values in a smooth way, as will typically
be the case when the link function has been misspecified.

The same may not be true of the area statistics of Section. 5.2, since there may be positive
and negative deviations of the process X,(p) from zero that cancel each other out when the
statistics are calculated. For example, suppose that the true relationship between a single
z-variable and logit p; is hypothesized as linear but is actually quadratic. Then it may be
that for large and small z, the true p; are smaller than the hypothesized, while for the
remaining z-values, the true p; are larger. As a result, the process X, (p) will generally be
negative for small z and positive for large z, and the area statistics will exhibit lesser power.
On the other hand, a misspecified link function will usually result in the hypothesized p,
being too large in one tail and too small in the other; in this case, X, (p) will generally have

the same sign for all p, and the area statistics can be expected to have reasonable power.
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