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Abstract 

In tt:is thesis. we have two general aims: t o  learn more about  design and  analysis of paired- 

comparison experiments, and  t o  develop some tests  of fit for logistic regression models, of 

which some commonly-used models for paired-comparison d a t a  a re  a special case. 

\Ve begin with some "model-free" considerations for paired-comparison experiments. \Ye 

review some constructions for round-robin designs, especially those with certain desirable 

properties such as  t he  arrangement  of home and  away games and  the  equalization of "carry- 

over effects", where we improve on some previous work in t he  field. Also considered a re  " 

non-parametric tests  of equality of s t rength of t he  teams in a tournament ,  where we obtain 

some new asymptot ic  results in the  presence of ties and order  effects, and  shou by simulation 

tha t  the  a s ~ m p t o t i c  approximations a re  generally good. 

Lf'e then review the  Bradley-Terry model for paired comparisons, and  its generalizations 

t o  handle ties and  order  effects. We review some algorithms for fitting the  model. and 
* 

illustrate with examples the  kinds of d a t a  for which the  algorithms perform well. 

Next,  we turn  t o  t h e  issue of opt imal  design for t he  Bradley-Terry model. \Ye revie\\ 

the  theory of continuous designs, and show tha t  the  special s t ructure of the  Bradley-Terry 

model enables the  D-opt imal  continuous design t o  be found explicitly in many cases. \Ve 

then discuss the  implementation of a well-known algorithm for f i nd~ng  exact D-optimal  

designs and indicate by example t ha t  the  algorithm usually works well enough.  Sincr both 

of t he  preceding design types assume known parameters ,  we also investigate sequentlal 

designs in which each s tage  of the  design is deduced from parameter  est imates obtaincd from 

the  previous stages of t he  design, and show tha t  the  obvious a lgo r~ thn i  uo rks  reasonably 

well. We then carry ou t  numerical efficiency comparisons of the 11-optimal designs with the 

round-robin and Swiss designs introduced in Chapter  2.  

T h e  final chapter  is an investigation of some goodness-of-fit tests for logistic regression 



models. We arrange the (known or fitted) response success probabilities in ascending order, 

and then look a t  the process given by the cumulative difference between observed and 

expected successes. We obtain asymptotic distribution theory for a class of statistics based 

on the integral of this process, by central limit theorem arguments, and for a class of statistics 

based on the integrated squared process, which rests on the theory of weak convergence of 

quadratic forms in sequences of random variables. Finally, we show by examples that  the 

asymptotic distributions usually form good approximations for finite samples, and so can 

be recommended for use in practice. 
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Chapter 1 

Introduction 

1.1 Motivations 

SIost of the work in this thesis was motivated by a desire to  understand the design and 

analysis af paired-comparison experiments. There seem to  be several problems worthy of 

consideration, and these are dealt with separately in the following chapters. As a result. 

: the chapters may appear to  have little to  do  with each other, but each, it is hoped, serves 
*. 

to  shed light on a part of the problem. 

In a paired-comparison experiment, some number t of objects are to  be compared, but 

they can only be compared two at  a time, and each comparison yields only the result tha t  one 

of the two objects was "preferred" to  the other (or,  possibly, that  the objects were equally 

-- preferable). In sporting parlance, this corresponds to  a tournament containing t teams (or 

p l a ~ e r s ) ;  the comparisons correspond to  games between the teams, and preferences to  wins 

for one team or the other, with "equally preferable" corresponding to  a tie. It is also possible 

to see an  "order effect", whereby (say) the first object in each comparison has an advantage 

purely by being first; in sporting terms, this corresponds to  a home field advantage. 

The sporting terminology seems e a i e r  to follow, and will be used frequently in this 

thesis. but it should be borne in mind that  the methods apply equally to  other applications, 

such as taste-testing, where objects are compared by a judge. 

From such an experiment, it is natural to want an overall ranking of the objects, or ,  better 

yet, an estimate of their "strengths". Furthermore, we will want to  design the experiment in 

such a way as to  achieve an accurate estimation of team strengths with the smallest possible 

experimental effort. 
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Finally, we will want  t o  assess t he  goodness of fit of o u r  proposed models. It tu rns  

ou t  t ha t  our  proposed testing procedure extends easily t o  t he  more general case of logistic 

regression, and so  we have investigated the  asymptotic theory behind our  test statistics in 

some detail in this more general setting. 

1.2   he chapters 

T h e  organization of the  chapters  in this thesis is intended t o  lead the  reader from the  

simple.towards"the more complex, with Chapter  5 containing the  most general and  t h e  

most mathematical work. In particular,  the  different chapters  aim t o  address t he  issues 

described below. 

1.2.1  Chapter 2 

This  Chapter  is concerned with t he  simplest case, where modelling is t o  be kept t o  a mini- 

m u m .  In particular. a t tent ion is focused on round-robin tournaments ,  which seem naturally 

t o  yield a "fair" ranking of t he  teams.  T k r e  are numerous design issues here; we review 

some different constructions from the  graph-theory l i terature,  and show how tournaments  

can be (exactly or approximately)  balanced for home and away games and for nuisance 

factors known as "carry-over effects". In particular, for t he  class of designs known as "gen- 

eral cyclic designs". we investigate t he  pat tern of carry-over effects in some detail. We also 

review an algorithm for generating "random" round-robin designs, and  give an algorithm 

of the  same type for generating such a design with a specified pat tern ef  home and away 

games for each team.  

i c e  then turn  t o  tests  of overall equality in round-robin tournaments .  Such tests a r e  

an  obvious first s tep in the  analysis of paired comparison da t a .  kl'e review a test based on 

a natural  idea. namely the  variability of the  "scores" ( t h e  number of wins for each t e a m ) ;  

clearly. the greater this variability, the  less tenable a hypothesis of the  teams being of equal 

s t rength .  LC'e extend these tests  t o  enable an assessment of overall equality in the  presence 

of ties and order effects. All t he  test statistics have asymptot ic  chi-squared distributions. 

M'e show, by simulation and  by comparison with previous results, t ha t  the  asymptot ic  

distribution is a remarkably good approximation even when the  number of teams and games 

is small. Lye also s tudy the  distribution of the  range of scores, for which an  asymptot ic  

approximation based on the  range of normal random variables is generally adequate,  and 
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indicate how this may be used for a multiple-comparison procedure like that  used in analysis 

of variance. 

Finally, we introduce the Swiss tournament, which is played in rounds like a round-robin 

tournament, but the constitution of each round is determined from t h e  results of previous 

rounds rather than being fixed in advance. Swiss tournaments, which are used in such games 

as chess and bridge, can be thought of as an  alternative t o  round-robins when the number 

of participart:~ is large. We give a detailed algorithm for use in theptypical case where no 

prior information is available about the teams; this algorithm chooses between otherwise 

equally-preferable matchups a t  random. Non-random algorithms are available that  use prior 

information about the team strengths as a seeding mechanism, but we do not pursue these 

ideas. 

1.2.2 Chapter 3 

In this chapter, we look a t  the Bradley-Terry model, which is the standard model used in 

paired-comparison experiments, and extensions of the model for estimating the effects of 

ties and home field advantage. The likelihood derivatives are obtained based on an additive 

version of the model, and,  as has been previously shown, the m i m u m  likelihood estimates 

are obtained by equating observed and expected wins or "points" in a manner reminiscent 

of contingency table analysis. 

LVe next turn t o  estimation procedures, considering the obvious candidate of Newton's 

method along with a simple method due to  Ford (in two guises) and Jacobi's method, which 

assumes, incorrectly, tha t  the second derivative matrix of the log-likelihood is diagonal. L C  

give a detailed investigation of the computational complexity of these algorithms, showing 

how many additions, multiplications and exponentiations one iteration of each algorithm 

requires. and then, by means of examples, u e  assess the actual number of operations required 

by each algorithm, allowing for the fact that  simpler algorithms will tend to  require a larger 

e number of iterations. Except for the very largest d a t a  sets, Newton's method tends to  come 

out best, despite the complexity of each iteration. because it requires very few iterations. 

The other methods are preferable when the number of teams is large; Jacobi's method works 

best when the tournament design is approximately balanced. and Ford's method is good 

otherwise. 

Implicit in the work of Chapter 2 was the idea that  ranking teams in a round-robin or 

Swiss tournament by the wins (or more generally points) they had obtained was a reasonable :& 
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6 thing to  do. When the Bradley-Terry model holds,it  is known that  the ranking of teams in 
--I a round-robin by wins is identical t o  the ranking by Bradley-Terry strengths in the absence 

of ties and order effects. We show t h a t ,  when one point is awarded for a win and a half point 

for a tie, this result continues t o  hold in the presence of ties and order effects, provided that  

the home and away games for each team are properly balanced. For Swiss tournaments, 

no such general results are available, however. We show by simulation that ,  when ranking 

\ teams by points and breaking ties by a standqrd quantity known as the Buchholz score, 

the agreement between this ranking and the one obtained from the Bradley-Terry strengths 

is FiqHowever, most of the mis-rankings *v:hmM:Wxs kEquite high. Though there are 

few mis-rankings, those that  do  occur can be attributed t o  imbalance in the strength of 

opposition faced by the teams involved. We demonstrate that  a composite score based on 

both the points and the Buchholz score produces a ranking that  is consistently closer to  

that  based on the Bradley-Terry model. 

1.2.3 Chapter 4 N 

In this chapter. we apply the theory of D-optimal designs to  paired comparisons, and con- 

sider how this theory might be used in practice. LYe also compare the D-optimal designs 

wlth some more familiar types of tournament. 

After a brlef review of the ideas of optimal design, we show how L)-optimalit?; can be 

applied to paired comparisons when the Bradley-Terry model, in its simplest form, holds. 

if'e first need to consider how to  deal with an information matrix that  is singular; two 

methods are proposed for "fixing up" the matrix, and these are shown to be equivalent, 

allowing us to use whichever is more convenient. 

Since optimal design for non-linear models requires knowledge of the true parameter 

values, at  least i f  a complete design is to  be generated, we are forced to  assume that  the 

parameter values ( t rue  team strengths) are indeed known. This offers a conditional approach 

to  design issues: "if these are the team strengths, then the optimal design is this". 

iVe first consider "continuous designs", which indicate the fraction of games in the tour- 

nament that  should be played between each pair of teams, without regard to the practical 

issue of obtaining a design in which the numbers of games are integers. \.Ye review a re- 

sult k n o ~ n  as the General Equivalence Theorem which yields checkable conditions for the 

optimality or otherwise of a candidate design, and show how these conditions translate t o  

our case. As we show, this leads t o  a method which can be used to obtain the D-optimal 
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continuous design explicitly, a t  least when games between every pair of teams feature in the 

optimal design, and we offer some ideas concerning the way to proceed if the method fails. 

Practical designs require the numbers of games between each pair of teams to  be integers. 

Such designs are called "exact". We review some known algorithms for obtaining exact 

designs, and consider the details of implementation of one of the simpler algorithms, which 

is based on the idea of adding games t o  and removing games from the design one at  a 

time until no further improvement can be made. The stiucture of the Bradley-Terry model 

permits a straightforward assessment of which games to add or remove, as well as simple - 

updates of the inverse and determinant of the information matrix. Some examples are given; - 
the structure of the D-optimal designs shows up clearly, and the choice of a simple algorithm 

is justified by noting that  it finds the best design on a fair proportion of its runs and never 

(in the examples given) finds a badly sub-optimal design. 

Li'e then drop the assumption of known team strengths and consider sequential designs, 

in which the design is constructed in stages based on the game results previously observed. 

An obvious algorithm is given, and an example is presented of the algorithm in action. 

It is natural to wish to  compare different designs; we do so by means of a well-known 

criterion called D-efficiency, which indicates how a design performs relative to a D-optimal 

(exact)  design of the same size. \Ye look a t  round-robin and Swiss designs for various 

numbers of teams and various spreads in team strength, comparing these with the same- 

size exact D-optimal design (which assumes that  the true team strengths are known) and 

one of the class of sequential designs that  we call "sequential-1" (which makes no such 

assumption). Because the Swiss and sequential-1 designs are generated sequentially, tht3ir 

behaviour can only be assessed by simu!ation. LVe find that  both round-robin and Swiss 

designs decrease in efficiency relative t o  the D-optimal exact designs as the variability in 

team strengths increases, with the latter decrease being slokver, results tha t  correspond to 

intuition; relative to  the sequential-1 designs, we see a slower decrease in efficiency for the 

round-robin designs and essentially no decrease in efficiency a t  all for the Swiss designs. 

This indicates tha t ,  relative to  the best designs that  can be realized in practice, the Swiss 

tournament performs very well, at  least for the range of tournament sizes given. 

1.2.4 Chapter 5 

This chapter provides the mathematical culmination of the thesis. I n  considering the as- 

sessment of goodness of fit of the Bradley-Terry model introduced i n  Chapter 3,  it became 



clear that  an obvious idea there, namely that  of comparing observed and expected frequen- 

cies in a cumulative fashion, could be ext'ended to  general logistic regression (of which the 

Bradley-Terry model is a special case). We therefore consider, in detail, the asymptotic 

theory of our proposed statistics in this more general case, and,  by simulations, assess the 

quality of the asymptotic distributions as approximations for finite-sample tests. 

The idea of comparing observed and expected "successes" cumulatively leads naturally 

to  an empirical process on which test statistics can be based. Standard work with such 

processes normally results in proofs of weak convergence to  a Gaussian process; statistics 

based on the empirical process can then easily be shown to  have asymptotic distributions 

based in the same way on a Gaussian process. The presence of estimated parameters makes 

such an approach too difficult in our case, and so we have studied our chosen statistics 

individually. CVe look a t  two families of statistics, an "area family", based on the average of 

the empirical process itself, and a "quadratic family", based on the average af the squared 

empirical process. In each family, we begin with the s t a t i ~ t i c ~ b a s e d  on all the parameters 
+ 

being known, and work towards the practically-useful statistic in which all parameters are 

estimated from the da ta .  We are able to find asymptotic'distributions, under general con- 

ditions. for all the statistics in the area family and (with some difficulty) for the statistic of 

the quadratic family that  is based on known parameters; we also obtain asymptotic results 

for the entire quadratic family based on a rather more restrictive limiting process. 
< 

In order to  assess the quality of the  asymptotic distribution theory as an Bpproximation 

for finite samples, we carry out some simulation studies of examples that' are intended 

to  be "typical". The  studies show that ,  when parameters are k n w n ,  convergence to  the 

asymptotic distributions is fast, especially for the quadratic statistic. CC'hen parameters 

are estimated, convergeRce is (not  surprisingly) slower. For the quadratic statistic, the 

correspondence between simulated and asymptotic distribution is generally good in the  lower 

tail, which is the important tail for inference, but the tails of the simulated distribution of 

the area statistic are less well behaved. 



9 Chapter 2 

. Model-free design and analysis 

2.1 Introduction 

T h e  kinds of tournaments  t ha t  a r e  easiest t o  interpret a re  those in which the  teams can be 

assessed by their wins and  losses. For example. a knockout tournanlent  is very cornnionly 

used; these tournaments  a re  discussed further in David (1988). However, while these tour-  

naments  a re  very effective in eliciting the  best team ( l f a u r e r .  1965), they are  much less 

helpful in producing a ranking of all t he  teams,  or an assessment of their strengths. In this 

thesis, we are  concerned more with these last two issues and less with the  problem of finding 

the  best t e am,  and so  we d o  not consider knockout tournaments  further .  

T h e  most intuitively satisfactory approach for paired comparisons is t o  make earh pos- 

sible comparison the  same number of times. This  design is called a round-robin tourna- 

ment,  and  if each comparison is made  r tirnes, it is a r-tuple round robin tournament. 

In a round-robin tournament ,  it is "fair" t o  compare the  objects  by comparing their wins 

and  losses, in a sense t ha t  can be made  precise (see Theorem 3 . 4 ) ,  and so  t he  results a re  easy 

t o  interpret .  In Section 2.2, we review some known methods of constructing round-robin 

tournaments ,  indicate how these methods may be extended o r  simplified in some cases. 

and  consider some properties of these tournaments  concerning home and  away games and 

"carry-overs". Lye obtain some new results concerning carry-overs, and  show tha t  in general 

it is impossible t o  design a round-robin tournament  with desirable properties for both home 

and  away games and carry-overs. 

LVe then turn  t o  some basic non-parametric tests for use in round-robin tournaments ,  

considering an  overall test of equality and some ideas of rnultiplt comparisons. R7e wish t o  
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consider the effect on these tests of the possibility of ties or the presence of an  "order effect" 

or "home field advantage"; we begin by reviewing known results in the case when ties are 

impossible and there is no order effect, and then develop tests for use when either or both 

of these effects are present. 

Another design. often used in games such as chess and bridge. is the Swiss tournament, 

which occupies a position between the knockout and t h e  round-robin, and in which it is at  

least reasonably fair t o  rank the teams according to their wins and losses. In Section 2.5, 

we describe how such a tournament may be constructed, and briefly discuss its properties. 

2.2 Round-robin designs 

2.2.1  Introduction 

A general round-robin torirnament can have each pair of objects compared any number of 

times. but in this chapter we consider designs for a single round-robin, where each compar- 

ison is only made once. An r-tuple round-robin tournament can be. and usually is, con- 

structed by combining r single round-robins. In practice, single and double round-robins 

are most common. 

It might seem a trivial task to design a round-robin tournament. However. in practice we 

often prefer to do more than simply choose a pair. compare them, and move on to  another 

pair. \.Ye may wish to  arrange the pairs so that  the cdmparisons for each object are spread 

e v e n l ~  through the design, rather than being concentrated at  the beginning or a t  the end. 

I lost  commonly, this is achieved by partitioning the comparisons into "rounds" so that  

each object has precisely one comparison in each round; this is what we will at tempt to do. 

Alternatively, if the pairs are simply compared one after the other, we may wish to  ensure 

"maximal spacing": that  is, once each object has appeared in a comparison, we perform as 

many comparisons as possible between other objects before this object is compared again. 

Ross (1939) gives a procedure for an odd number of objects. 

Splitting a round-robin into rounds is definitely not a trivial task, as Rosa and M'allis 

( 198'2) observe. Consider the following tournament for t = 6 objects, with the first three 

rounds as given. There are t - 1 = 5 rounds altogether. 



CHAPTER 2. MODEL-FREE DESIGN A N D  AiVALYSlS 

Round 1: 1 vs 4 2 vs 5 3 vs 6 

Round 2: 1 vs 5 2 vs 6 3 vs 4 

Round 3: 1 vs 6 2 vs 4 3 vs 5 

The comparisons 1 vs 2, 1 vs 3 and 2 vs 3 are still t o  be made, but it is impossible to  

arrange them into only two rounds. 

In this chapter, we will examine a number of round-robin designs and algorithms, and , 
we will consider how well these are equipped to deal with practical issues such as the order 

within a pair (which object is presented first to a judge, which player or object is a t  home, 

etc.).  1j;e consider only even t ;  when t is odd,  we can construct a round-robin design for 

t + 1 objects and ignore any comparisons containing object t + 1 

2.2.2 Relation to graph theory 

.A paired-comparison experiment of any type, not just a round-robin tournament, can be 

expressed as a graph whose vertices represent the objects being compared. If two objects 

are compared during the experiment, the graph has an edge between their two verG,-c 

In a single round-robin tournament, all pairs of objects are compared once, and so there 

is a single edge between each pair of vertices on the graph. This is the "complete graph" 

on the t vertices. 

M'e wish to partition the tourna t into rounds, such that  each object appears precisely 

once in each round. On the graph,  a round is represented as a digoint set of edges with each 

vertex appearing on precisely one edge. Such a set of edges i called a 1-factor ,  a n d  the 

collection of rounds that  make up the tournament is represent d as a collection of 1-factors, I 
known as  a 1 - fac to r i za t ion .  

Mendelson and Rosa (1985) give a detailed survey of known results about l-factor- 

izations; because of the equivalence just described, these results may also be applied t o  

round-robin tournaments. 

2.2 .3  Carry-over effects 

Suppose 0bject.i  is paired with object j in one round, and object k in the next. Suppose 

also that  object j is very strong: then object i will probably suffer a heavy defeat against 

j and will be "discouraged", and perform below par, against k .  This happens in sports, 
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but also in comparisons by a judge: the judge may consciously or subconsciously remember 

that  object i was much less preferable than object j ,  and may more easily regard i as less 

preferable than k also. Because j is strong, k benefits from being compared to  i after j, and ' 

k is said to  receive a carry-over effect from j. 

If object k frequently receives carry-over effects from object j ,  the benefit to  k could be 

substantial. LVe therefore prefer designs a t  least approximately "balanced" for carry-over 

effects: that  is. each object receives carry-over effects from as many different objects as 

possible. 
it 

2.3 Designs 

2.3.1 The design G'A', 

This is probably the oldest and certainly the most commonly used design for round-robin 

tournaments. I t  was  known long before I-factorizations were studied in general, and appears 

for example in Kraitchik (19.53) .  who gives a simple a1ternative.derivation. 

Construction 

To obtain the design. number the t ( t  even) objects 1 . 2 , .  . . , t - 1 and * ;  the last object 

plays a special role. Two objects are paired in round k if their numbers sum to  either k or 

k + t - 1;  one object will be left over in each round, and that  object is paired with *. 
For example, let t= 8: the first three rounds of G k  are then: - -- - 

Round 1: (Sum = 1 or 8 )  1 vs 7 2  vs 6 3 vs 5 4 vs * 
Round 2: ( S u m  = 2 or 9 )  2 vs 7 3 vs 6 4 vs 5 1 vs * 
Round 3 :  (Sum = 3 or 1 0 )  1 vs 2 3 vs 7 4 vs 6 .5 vs * 

To ensure that this does indeed generate a round-robin tournament, we must establish 

the following: 

1 .  The  pairing is well-defined: that  is, for each object. there is exactly one possible 

opponent in each round. 

2 .  Each pair of objects does indeed occur precisely once. 

Consider object i in round k .  Its possible opponents are k - i and t - 1 + k - i .  I f  k - i 

is a possible opponent. we must have k - i > 1,  but then t  - 1 + k - i > n .  Conversely, i f  
/ 
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t - 1 + k - i is a possible opponent, t - 1 t k - i < t - 1 3 k - i _< 0. Since the opponent 

ve a number between 1 and t - 1 inclusive, only one of the two alternatives can yield 

an  opponent for object i. However, it may happen tha t  k - i = i ,  when 2i = k ( I ;  even), or 

t - 1 + k - i = i ,  when 2i = t - 1 + k (k odd).  For any k ,  there is only one i for which this 

happens, and then i is paired with * in round k. 

To show that  each pair of objects does occur precisely once, note that  any two objects 

i and j must have 1 5 i + j 5 2(t - I ) ,  since 1 < i ,  j < t - 1. If i + j < t - 1, then objects 
B 

i and j are paired in round i + j; otherwise, i and j are paired in round i + j - t t 1. LVe 

already saw that  the object * is paired with objects 1 , 2 , .  . ., t /2  - 1 in rounds 2 , 4 , .  . ., t - 2, 

and with objects t /2 ,  t / 2  + 1 , .  . . , t  - 1 i~ rounds 1,3,. . . , t - 1. Thus object * is also paired 

with each of the other objects exactly once. 

Home and away games 

In practice, it may well make a difference which object of a pair is presented to  a judge first, 

or. in sporting encounters, which player plays first ( a s  in chess), or which object plays on 

its home field. In this situation, we list the pairings so that  the object listed first is the one 

p&ying at  home. 

. The design G K t  has two desirable properties concerning home and away games: 

1. It is possible to arrange for each object to alternate home and away games with a t  most 

one exception. In fact. two of the objects alternate home and away games precisely, 

while of the remaining t - 2 objects, half have two consecutive home games at  some 

stage, while half have two consecutive away games. 

2. The objects can be grouped into pairs so that  whenever one object of the pair has a 

home game, the other has an away game. and vice wrsa. This is important if pairs of 
i 

objects ( t eams)  have the same home stadium. 

Proofs of these results can be found in de LVerra (1980). \\'e illustrate with an examplc 

for t = 6:  
R o u n d l :  1 v s . 5  2 v s 4  3 v s *  

Round 2: * vs 1 5 vs 2 3 vs 3 

Round 3: 2 vs 1 3 vs 5 4 vs * 
Round 4: 1 vs 3 * vs 2 5 vs 4 

Round 5: 4 vs 1 3 vs 2 5 vs * 



T h e  procedure is a s  follows: in t he  first round, the lower-numbered object is a t  home ( *  

is highest);  after t h a t ,  a l te rna te  home and away games wherever possible, but  ensure t h a t  

object  * always al ternates ,  even a t  t h e  expense of one of the  o ther  objects.  

We see t ha t  objects 3 and  * a l te rna te  home and away games throughout ,  while object  1 

has two consecutive away games in rounds 2 and 3 ,  object  2 has  two away in rounds 4 a n d  

5, object  4 has two home games in round; 2 and 3, and object 5 has two in rounds 4 and  5.  

Furthermore, precisely one  of objects  1 and 3 is a t  home in each round,  and the  s ame  

holds t rue  for 2 and 5 ,  and  3 and  *. 
These results are  t he  best possible, as  de  Werra proves, bu t  we will see in Section 2.3.3 

t h a t  there exist designs difierent from Clit  for which these properties also Hold. 

.A double round-robin is usually constructed from a single round-robin by repeating the  

t -  1 rounds in the same order ,  bu t  with allocation of home and away reversed.. Unfortunately, 

using the  allocation of home and  away games described above, a n  object  can then have three 

consecutive home or  away games,  a s  we see below with t = 6: 

Round 4 * vs 2 1 vs 3 5 vs 4 

.Round 5 3 vs 2 4 vs 1 5 vs * 
Round 6 4 vs 2 * vs 3 5 vs 1 

where Round 6 is the same a s  Round 1, but  with home and  away allocations reversed; here, 

object  2 plays three consecutive away games and object 5 plays three consecutive home 

games.  This problem is addressed in practice in a number of ways: some tournaments  

schedule a break a t  t he  halfway point ,  so t ha t  the  presence of t he  consecutive games is 

"forgotten"; in some cases, * plays two consecutive home or  away games earlier in t h e  

tournament  in such a way t h a t  t he  last two rounds of t he  first half of t he  tournament have 

each team at home once and away once, thus avoiding the  problem, and  in some other  cases, 

t he  order  of rounds in the  second half of the tournament is rearranged - for example, playing 

the  rounds of the second half in reverse order ensures t ha t  t he  last round of the  first half 

and  the  first round of the  second half feature the  same games,  bu t  with home and away 

reversed. 

Vnfortunately. the  design Ghrt is very unbalanced for carry-over effects. De LC'erra ( 1982) 

proves the  following result: , 

Theorem 2.1 In G K l ,  objects 1,2,. . ., t - 1 each receive t - 3 carry-over eflects from one 

other ob'tct This result assumes that carry-overs from round t - 1 to round 1 are also 4 .  
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counted. 

2.3.2 The  general cyclic design 

A more general design for round-robin tournaments  is t h e  general cyclic design. C '  liven a 

strong starter, which we define below, each round of the  design is determined i 

from the  previous round.  It tu rns  ou t  t ha t  is, in a way, a special case of t h e  general 

cyclic design., 
* 

Construction 

As before, we label t h e  t objects 1 , 2 . .  . . , t - 1, *. A strong starter (Dinitz and  Stinson. 

1981) from a set S = ( 1 . 2 . .  . . , t  - 1) is defined t o  be a partit ioning of t he  set into pairs 

( a , ,  b , ) ,  a , ,  b, E S ,  i = 1 , 2 , .  . . , t / 2  - 1 such t h a t  

1. Each element of S appears  in no more t han  one pair. 

2. T h e  differences a, - b, and  the  differences b, - a, ,  i = 1 . 2 . .  . ., t / 2  - 1 are  all distinct 

modulo t - 1.  

. 
Since there a re  t - 1 elements of S and only t / 2  - 1 pairs, one element c of S does not appear  

in any  pair. 

A strong s ta r te r  always exists for even t :  for example, take a,  = i and  b, = t - i for 

i = 1 , 2 ,  . . . , t / 2  - 1, with object t /2  being left over. Generally, there will be many other  

s t rong s ta r te rs  for given t; i f  a "random" s t rong  s ta r te r  is desired, t h e  algorithm of Dinitz 

and  Stinson (1981) can be used. 

T h e  first round of a general cyclic design for n objects is then determined by finding a 

strong s ta r te r  from the  set S = {1 ,2 ,  . . . , t - 1) .  T h e  pairings for the  first round are  the  

pairs of the  s trong s ta r te r ,  together with t he  pair ( c , * )  where c is t he  element of S tha t  

does not appear  in t he  s trong s ta r te r .  

T h e  remaining rounds a re  determined by induction. If, in round k,  objects  i and  j are  

paired, with i ,  j # *, objects  i + 1 and j +  1 are  paired in round kt 1, with ar i thmetic  being, 

as before, modulo t - 1 with the  result being taken from the set {1 ,2 ,  . . . , t - 1) .  Round k 

contains one o ther  pairing, t h a t  of * and some o ther  object i ;  in round k + 1, * and i + 1 

are paired. 
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As an example, suppose t h a t  t  = 6 and we choose t h e  s t rong  s ta r te r  ( 1 , 2 ) ,  ( 3 , 5 ) .  This  is 

indeed a s t iong  s ta r te r  since, modulo 5 ,  the  differences 1-2  = 4.3-Fj = 3 , 2 -  1 = 1 , 5  - 3  = 2 

are  all distinct. T h e  first round is completed by pairing 4 and *, and the  entire design follows: 

Round 1:  1  vs 2  3  vs 5 4 vs * 
Round 2 :  2  vs 3 4  vs 1  5 vs * 
Round 3: 3 vs 4 5 vs 2 1  vs * 
Round 4: 4 vs 5 1  vs 3  2 vs * 
Round 5: 5 vs 1 2 vs 4  3 vs * 

4 

It is e\>dent t ha t  a sixth round generated in the s ame  way would be identical t o  Round 

1; this explains t he  name "cyclic". 

-The s tructure of t h ~  design is apparent  with the  example laid out  in this form. The first 

column of pairings contains all the  pairings i vs j for which i - j = 1 or  4 (mod  t - l ) ,  t he  

second all those for which the  difference is congruent t o  2  o r  3  (mod  t - 1).  and the  f i n d  

column contains all t he  pairings involving *. 
AS we did with G K t ,  we need t o  prove tha t  does indeed yield a design 

in which each object  appears  precisely once in each round,  and  tha t  each possible pairing 

occurs in precisely one  of t he  rounds. 

Note first that  there a r e  t / 2  - 1  pairs in the  s trong s ta r te r ,  and so  2 ( t / 2  - 1 )  = t - 2 

differences that  must be distinct.  But ,  working modulo t  - 1 ,  there a re  only t - 2 possible 

non-zero differences, so,  given a difference d,  there must exist some pair ( a , ,  b,) in the  s ta r te r  

such tha t  either a, - b, r d (mod  t - 1 )  or  6, - a, 5 d ( m o d  t - 1).  

Now, list the design as  above for t  = 6, with each pairing listed below the pairing it was 

generated from.,Each object  appears  exactly once in t h e  first round, because t h a t  round is 

based on the  s trong s ta r te r .  S o w  suppose t ha t  each object  appears  exactly once in some 

round k ;  then,  in round k + 1 ,  object * will be listed below itself in round k, while any o ther  

object  i will be listed below i - 1,  with object 1 listed below object t - 1 .  Thus  each object  

also appears  exactly once in round k + 1. 

Finally, note t h a t  all pairings of * with any other object a re  found in t he  last column. 

For any other  pairing i vs j, let d = i - j (mod t - l ) ,  and  find the  pair of the  s t rong  

s ta r te r ,  (k,l) say, for which k - 1 d (mod  t  - 1) or  1 - k E d (mod  t - 1 ) .  Such a pair 

must  exist, as  we observed above. If  k - 1 = d (mod  t  - l ) ,  i and j are paired in round 

r = i - k (mod  t - 1 )  + 1; otherwise, they are paired in round s = j - 1 (mod  t - 1 )  + 1. 
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Since 1 5 r ,  s _< t - 1, each possible pairing i vs j must appear in exactly one of rounds 

1,2 , . . . ,  t -  1. 

Relation to G K t  

Theorem 2.2  The design GILt is a special case of the general cyclic design, although with 

the rounds in  a diflerent order. In particular, the first round of G l i t ,  with the pairing 

containing * removed, is a strong starter, and rounds 1,2,. . . , t - 1 of the general cyclic 

design a w  rounds 1 , 3 , .  . ., t - 1 , 2 , 4 , .  . . , t - 2 of G l i t .  

Proof: Except for the pairing t / 2  vs *, the other pairings in the first round of G K t  are 

of the form i vs. t - i ,  i = 1 , 2 . .  . ., t / 2  - 1 ,  with, by this definition, i < t - i. i < t - i. 

The differences d,  = ( t  - i )  - i = t - 2i are always positive and also less than t ,  so that  

d ,  is already reduced modulo t - 1; this implies that  these d, are all distinct and all even 

(since t and 2 i  are both even). Now let d, = i - ( t  - i )  = 2i - t ;  these are all negative but 

larger than - t .  They can therefore be  "reduced" modulo t - 1 by adding t - 1, so that 

d,  = 21 - t t t - 1 = 2i - 1; these arc  all distinct and odd. Thus the first round of GZit ,  

with t /2  vs * removed, is indeed a strong starter .  + 
In  the first round of both designs, the objects paired, except for *, sum t o  1 or t .  Thus, for 

any objects i and J that  are paired in the first round, i t j  1 (mod t -  1 ) .  In round k of the 

general cyclic d -ign, i + k - 1 and j + k - 1 are paired (both numbers being reduced modulo 

t - 1 i f  necess y). I n  this round, therefore, ( i  + k - 1)  t ( j  + k - 1 )  = i + J + 2k - 2 = 2k - 1 ,  4' I 
n l ~ a n i n g  that  objects meeting in round k of the general cyclic design meet in round 2 k  - 1, 

or 2k - 1 - ( t  - 1 )  = 2k - t (reducing modulo t - 1 ) .  of G K t ,  and this proves the result. 

Of course, by choosing a strong starter  that  does not correspond to  a round of G1Yt. we 

can obtain a design that  is very different from G K t .  

Y 

Home and away games 

There do not appear to  be any useful results concerning allocation of home and away games 

in a general cyclic design. Even those general cyclic designs that  correspond to  GZit  cannot 

benefit from the results discussed in Section 2.3.1 on this subject, because the order of the 

rounds is rearranged. 

The strongest results available seem t o  be those of de U'erra (1980) and Wallis (1983), 

and these results apply to  any round-robin design in which the pairings are arranged with 
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t / 2  of them in each of t - 1 rounds. T h e  results a re  as  follows: 

Theorem 2.3 Arrange, in any fashion, t - 2 of the t - 1 rounds into disjoint pairs of 

rounds. Then, ui thin each pair of rounds, each object can be allocated one home game and 

one away game. 

T h e  (constructive) p ~ o o f  depends on the  fact t ha t  a pair of rounds can be represented as 

a graph which is t he  union of two 1-factors, and  so  cannot  have cycles of odd  length. This 

permits t he  allocation t o  be made.  

In practice, t he  result is most useful if t he  pairs of rounds a re  adjacent .  For example. 

t he  pairs might be of rounds ( 1, 2) ,  (3,  A), . . . , ( t  - 3,  t - 2) .  In this case, in the  first k rounds 

( k  even), each object has exactly k /2  home games and k / 2  away games. 

Theorem 2.4 For any grouping of the objects into pairs, an allocation of home and away 

games can be found in  which one of the objects in each pair plays at home and the other 

plays away. 

This is a general version of the  result we had for GJI'~. However, in general, the'theorems 

of this section d o  not combine usefully: one can have pairs of rounds in which each object 

plays once a t  home and  once away, or  pairs of objects in which exactly one  plays a t  home in 

each r o f i d .  but not both in general. As an example, consider the following general cyclic 

design with t = 10: 

Round 1: 1 v s 2  3 v s 5  4 v s 8  6 v s 9  i v s 1 0  

Round 2: 2 vs 3 4 .vs 6 5 vs 9 7 vs 1 8 vs 10 

Round 3: 3 vs 4 5 vs 7 6 vs 1 8 vs 2 9 vs 10 

Round 1: 4 vs 5 6 vs 8 7 vs 2 9 vs 3 1 vs 10 

Round 5 :  5 vs 6 7 vs 9 8 vs 3 1 vs 4 2 vs 10 

Round 6: 6 vs 7 8 vs 1 9 vs  4 2 vs .5 3 vs 10 

Round 7: 7 vs 8 9 vs 2 1 vs 5 3 vs 6 4 vs 10 

Round 8:  8 vs 9 1 vs 3 2 vs 6 I vs 7 5 vs 10 

Round 9: 9 vs 1 2 vs  4 3 vs i 5 vs 8 6 vs 10 

LVe pair the  rounds ( 1  and 2, 3 and 4, e t c . ) ,  and arrange the  comparisons so  t h a t  

each object has one comparison a t  home and the  other  away in each pair of rounds, a s  in 
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1 
Theorem 2.3. We find the  following, where the first five objects listed for each round-ir i 
are a t  home in the first round and away in the seconh or vice versa: 

Round pair 

l a n d 2  1 3 4 9 1 0  2 ~ 6 7 8 ~  

7 a n d 8  1 6 7 9 1 0  2 3 3 5 8  

The home and away games for round 9 can be assigned in any fashion. Cons1 

2: during the course of the round-robin, this object is a t  home and away in the same round 

as every other object (for example, in rounds 5 and 6, but a t  no other time, object 2 plays a t  

home a t  the same time as object 9). In other words, it is impossible to  find, in the manner 

of Theorem 2.4, a pairing of the objects such that  exactly one of each pair is at  home in  

each round, without destroying the property constructed from Theorem 2.3. 

In this example, a partial pairing of the teams is available. however. If object 3 is paired 

with object 7, object 1 with object 6 and object 5 with either 1 or 9, exactly one object 

of each pair is a t  home in each round. Note also that  the nature of this example is not 

changed i f  we pair rounds 2 and 3, 3 and 5, etc.; object 3 is then left without a pair, and we 

obtain a partial pairing similar to  the above, but with the objects relabelled (specifically, 

the partial pairing is 4 and 8. 5 and 7, 6 and 1 or 2 ) .  In practice. the existence of a partial 

pairing of the teams may be sufficient (for example, in a sporting context, if only some of 

the teams in a league are geographically close to another team).  iVe do not have general 

results concerning the nature of partial pairings of the teams, although we suspect that  the 

size of the partial pairing will gene'rally become small relative t o  t as t increases, because 

each object is a t  home a t  the same time as a greater number of other objects for larger t .  

Fur example, with t = 8, there are three round pairs and four comparisons in each round, 

so that  each team is at  home a t  the same time as 3 x 3 = 9 other (non-distinct) objects, 

whereas with t = 10. each object is a t  home at  the same time as &I x 4 = 16 other objects. It 

is more likely, in the absence of any special structure, that  the 16 objects will exhaust the 

nine potential team-pairs available when t = 10, as compared to  the situation when t = 8. 

where there are seven potential team-pairs and only 9 objects at  home a t  the same time. 



Carry-over effects 

In coritrast t o  t he  paucity of useful results in t he  previous section, t he  carry-over effect 

situation is a good deal brighter for t he  general cyclic design t han  for 

Kussell (1980) shows the  following: 

Theorem 2.5 If t = 2k  for some k ,  there exists a round-robin design which is  completely 
r\ 

balanced for tarry-ozser effects. 

T h e  converse of Russell's result does not hold: we will show t h a t  there is a general cyclic 

design for t = 20 t h a t  is completely balanced for carry-over effects. A more useful result in 

practice is t ha t  for an- (even)  t .  there a r e  designs which a re  "approximately" balanced for 

carry-over effects. 

In order t o  investigate carry-over pa t te rns  in general cyclic designs, t he  following results 

a re  useful. L3e define t he  carry-over pattern for any object t o  be a list of the frequencies 

of carry-over effects received from the  o ther  objects ,  without regard t o  t he  identities of the  

o ther  objects .  For example,  i f  object 4 receives 5 carry-over effects from object  3 and  one 

each from object  2 and  object *. t he  carry-over pa t te rn  is ( 5  x 1, 1 x 21. read as  "five carry-  

over effects f rom one  object and  one each from two other  objects".  A carry-over pat tern 

o f  11 x ( t  - I ) ]  denotes  a balanced set of carry-over effects for an  ob jec t :  one each received 

from the  t - 1 o ther  objects .  

Theorem 2.6 In the general cyclic design, object * always rcceir*es one carry-over efJccl 

from each other object, and for objccts 1.2,. . . , t - 1 ,  the carry-over pattern is the  same.  

Proof: Suppose t h a t  objects i and * are  paired in round k .  and  t h a t  i is paired with j in 

round k - 1. Then .  in round k .  * receives a carry-over effect from j. But  i + 1 and  * are 

paired in round k + 1.  and I t 1 and j + 1 in round k .  so t ha t  in round k + 1, * receives a 

carry-over effect from + 1 .  ( In  all t he  ar i thmetic  here. the  result is reduced modulo t - 1 i f  

necessary.) In general.  in round k + d. * receives a carry-over effect from j + d ,  and  it is seen 

tha t  object * must therefore receive exactly one carry-over effect from each o ther  object .  

Now suppose t h a t  object m receives a carry-over effect from object  j 5 t - 1 in round 

k .  This  means t h a t  some object i must  have been paired with object  j in round k - 1 and 

object m in round k .  S o w ,  from tile construct ion,  it must also be t rue  t h a t  object  i + 1 is 

paired with object  j + 1 in round k ,  and object  i + 1 is paired with object m + 1 in round 
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k + 1. Hence object m + 1 receives a carry-over effect from object j + 1 in round k + 1. 

The  same applies if  j = *: i f  object m receives a carry-over effect from object t in round k ,  

object m + 1 receives a carry-over effect from object t in round k + 1. Thus, for example, i f  

object m has a carry-over pattern of [3 x 1 , l  x ( t  - 4)],  the  same will be true for all objects 

1 , 2  , . . . ,  t - 1 .  

As a result of Theorem 2.6, it makes sense to  talk about "the carry-over pattern" of a 

general cyclic design, where the carry-over pattern applies t o  all the objects 1 , 2 ,  . . . , t - 1, 

and the carry-over pattern for object * is always [ l  x ( t  - I ) ] .  

Theorem 2.7 The carry-over pattern for any object in a general cyclic design can be de- 

termined from the first- and second-round pairings. 

Proof: Consider an object i 5 t - 1 whose first two opponents are not *, and call these 

opponents objects j and j + d, with difference d (mod t - 1 )  between their numbers. Then,  

starting in round k ,  object i + k - 1 plays object j + k - 1 followed by j + d + k - 1, and the 

numbers of these objects also differ by d. If j + d + k - 1 = 1, object 1 receives a carry-over 

effect from object j + k - 1 = 1 - d = t - d (mod t - 1).  Thus,  object 1 receives m carry-over 

effects from object t - d if and only if  there are m objects whose first two opponents differ 

in number by d,  and are not *. In addition, object 1 receives one carry-over effect from *, 
and one from object t - 1 (since objects t - 1 and 1 are successive opponents of object 1 ) .  

The carry-over effect from object t - 1 must be the only one, since if d = 1, the pairing of 

objects i and j first round implies the pairing of both i and j t 1 (since d = 1 )  and i + 1 

and j + 1 (by construction), and this is impossible. 

Since the theorem has been proved $r object 1, Theorem 2.6 implies that the result 

holds for objects 1 , 2 , .  . ., t - 1. 

Since the second round is determined from the first, Theorem 2.7 can be extended: 

Theorem 2.8 In a general cyclic design, the carry-over pattern for all objtcts can br dc-  

ternined from the pairings for the first round. 

Proof: To prove this. let v be a ( t  - 1)-vector with v, being the number of the first-round 

opponent of object i. Then object i's first two opponents' numbers differ by d (and neither 

opponent is * )  if and only i f  v , - l  - v, = d - 1 (following our usual arithmetic conventions, 

c , - l  = t.l-1 i f  i = 1 ) .  Consequently, object 1 receives m carry-over effects from object d i f  
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and only i f  there are m i's, 1 < i < t - 1, such that  r,-1 - o, - d - 1 (mod t -4). and 

z.,-l, u, # t .  
0 

As an example, we investigate two different admissible first-round pairings for t = 8 

objects. It is helpful t o  define e, = v,-1 - v,, provided v,-1, v, # t ( t h e  value of e, not 

being needed otherwise). Consistently with our arithmetic being modulo t - 1, we define 

el = ct- l  - q .  b'e also define the ( t  - 1)-vector n such that  n, is the number of e, that  

equal j. 

Consider the first-round pairing 1 vs 2, 3 vs 7, 4 vs 6. 5 vs 8. T h e  7-vector v is 

( 2 , 1 , 7 , 6 , 8 , 4 , 3 ) .  Then e l  = ez = es = e4 = e; = 1, with e5 and e6 undefined. So object 1 

receives 5 carry-over effects from object t - 1 - 1 = 6, and, as mentioned before, one each 

from objects 8 and 7 .  Therefore the carry-over pattern for this design is [5  x 1, 1 x 21. and 

n = ( ~ ~ , 0 , 0 . 0 , 0 , 0 , 0 ) .  

Compare now the first-round pairing 1 vs 2, 3 vs 5, 4 vs 7, 6 vs 8: the vector v is now 

(2 .1 .5 .7 ,3 ,8 .4 ) .  and so el  = 2,  e2 = l , e 3  = 3 ,  e4 = 5 , e 5  = 4 ,  and es and e;- are undefined. 

Since the e, are all distinct. object 1 receives ( a n d  hence all objects receive) exactly one 

carry-over effect from each other object. This is a design completely balanced for carry-over 

effects, and clearly the carryover pattern for the design is [ l  x 71, with n = ( 1 , 1 , 1 , 1 , 1 , 0 , 0 ) .  

In  order to compare these carry-over patterns with those from other designs (in which 

the carry-over patterns may not be the same for all objects), we define a matrix 151 for 

any design with element m,, being the number of carry-over effects received by object J 

from object 1 .  We have seen tha$ a design that  is balanced for carry-over effects will have 

m,, = 1 for 2 # 1 ,  whereas an unbalanced design will exhibit greater variability in the m,,: 

it is thus natural to use the variance of the elements of hi, or equivalently the quanti t l  

5 = C1,j rn; = MJI', the sum of squares of the elements of M ,  as a measure of a design's 
balance or otherwise for carry-over effects. For general cyclic designs, the last column of .ti 

contains t - 1 ones. while the remaining t - 1 colunlns each contain.the same set of numbers 

(permuted) ,  so that  each column's sum of squares is related to the sum of squares of n .  

Specifically, noting that  object t receives one carry-over effect from each of the t - 1 other 

objects, and tha t ,  for 1 5 i 5 t - 1, object i ,  receives an additional carryover effect from 

each of two other teams aside from the ones summarized in n, we find tha t  S can be written 
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If we couple Theorem 2.8 with a method for generating all possible strong starters for 

any given t ,  we can find the general cyclic design which comes closest to  complete balance, 

simply by an exhaustive search. Such a simple-minded approach is in fact pyactical, a t  least 

for t , <  20 or so. Compared wrth Russell (1980), this approach appears more capable of 

finding designs that  achieve or approach balance. 

An alternative approach is to  use a modification of an  algorithm given by Dinitz and 

Stinson (1981) that  generates "random" strong starters; by repeatedly generating a strong 

starter  in this way, and using the above results to  calculate S for the general cyclic design 

that  uses the strong starter  as its first round, we may be able to  find balanced or nearly- 

balanced designs with less effort than is required for a complete enumeration. Of course, by 

doing this, we cannot be sure that  the most balanced design has been found unless some 

external check is available. Dinitz and Stinson derive their algorithm in a context that  is 

more general than we require; we found tha t  the following simplified algorithm works quickly' 

and successfully: 

1. Let the set of objects (for this algorithm) be T = ( 1 . 2 , .  . . , t  - 1 )  arid the set of 

"differences" be D = { 1 , 2 , .  . . , t / 2  - 1). 

2. %lark all objects and differences as "unused". 

3. Choose an unused object k and an unused difference d ,  both choices being made a t  

random with equal probability from the available possibilities. 

4 .  Let rl  = k - d and rz = k + d, in both cases reducing the answer modulo t - 1 to  the 

set T. 

5 .  If objects r l  and r2 are both used or both unused, choose one of them a t  random, and 

denote that  object r .  Otherwise, let r be the unused object out of rl  and r2.  

6. If object r is already used, there exists an object 7-3 and a difference d3 such that  the 

comparison r vs. rg .  corresponding to  the difference d g ,  is currently a part of the strong 

starter. Remove r vs. rg from the strong starter ,  and mark object 7-3 and difference 

d3 unused. 

7 .  Mark objects k and r and the difference d used, and add k vs. r to  the strong starter ,  
---- 

corresponding to  the difference d. 
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8. If there are any unused differences, go back to  step 3. Otherwise stop. 

Table 2.1 shows the minimal values of S found, along with a n  example first round, for 

general cyclic designs of sizes up t o  t = 32. The values for 2 5 20 were found by enumeration, 

and are thus the smallest possible for general cyclic designs; the remaining values were found 

using our version of the Dinitz-Stinson algorithm, as given above, wit 10,000 random strong 1 starters generated for each t .  Also shown are the values of S obtaiaed by Russell ( i980)  

for the designs he studied. Our result for t = 32 is surprising, since a design is known to  

exist tha t  is completely balanced for carry-over effects. We do not know whether this design 

cannot be expressed as a general cyclic design, or whether it can but we were unable to  find 

it.  / 
The algorithm given above for random strong starters was also able to  reproduce the 

values of S obtained in Table 2.1 for t 5 20 with a smaller computational effort than 

was required to find the optimal values of S by enumeration. Though we generated 10.000 

random strong starters for each value o f t ,  a much smaller number would have been sufficient 

for smaller values o f t .  This is not surprising, considering that  the number of different general 

cyclic desigws increases rapidly with t;  we would expect t o  require a more extensive search 

to  locate a design with minimal S when t is larger. Nonetheless, for larger values of t, for 

which an exhaustive search is not feasible, this method provides a means for generating p r 

designs with near-minimal S in a reasonably short time. 

2.3.3 Random roundlibbin designs 

In this Section we consider two algorithms which generate round-robin designs that  do not 

necessarily follow any particular pattern. As remarked a t  the beginning of this Chapter, it 

is not a trivial matter to generate such designs, and so a certain amount of care may be 

needed. 

A construction 

As well as giving an algorithm for generating strong starters, Dinitz and Stinson (19Xi') also 

give an algorithm for generating random round-robins, in which the pairings in one round 
> 

are not necGssarily determined by the pairings in another. The algorithm consists of two 

"heuristics" H I  and H z ,  which are used as described below. Object i is called live if there 

exists another object j such that  the pairing ( 1 ,  j )  does not appear in any round; similarly, 
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%iinimum values of S 
i Balanced This thesis Russell Example first-round pairing 
4 12 12 12 1 vs 2 , 3  vs 4 

Table 2.1: I'alues of S for various 
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a round r is live if  fewer than t / 2  pairings appear in round r .  At the beginning, therefore, 

all objects and rounds are  live, while a t  *the end, there are no live objects or rounds. All 

choices in the algorithm and heuristics are made a t  random with equal probability from the 

available choices. 

The algorithm is simply: 

1 .  L\.hile there exists a live object: 

( a )  Choose either H I  or H 2 ,  and carry out the chosen heuristic. 

( b )  End. 

2.  End. 

Heuristic H I  is defined as follows: 

1 .  Choose a live object i .  

2.  Choose an object j for which the pairing ( i ,  j) has not been assigned to  a round. 

3 .  Choose a round r in which object i does not appear. 

1. Add the pairing ( i ,  j )  to  round r .  

5. If j is paired with another object k in round r ,  remove the pairing (j. k )  from round 

r . 

6. End. 

Heuristic Hz is: 

1. Choose a live round r .  

2 .  Choose two objects i and j that  do not appear in round r .  

3 .  .4dd the pairing ( i ,  j )  to  round r .  

4 .  If  the pairing ( i ,  j) appears in any other round s,  remove it from round s. 

.5. End. 
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Table 2.2: Example run of Dinitz-Stinson round-robin algorithm for t = 4 

Step Heuristic [ i j r Round 1 Round 2 Round 3 

The  algorithm is "downhill" in the sense that  the number of pairings currently assigned 

t o  rounds never decreases as the algorithm proceeds. There are only three possibilities at  

each step: a new pairing is added, one pairing is replaced by another, or a pairing is moved 

from one round to  another. This means tha t ,  unless the algorithm reaches a point a t  which 

there is a live object but no new pairings can be added (no matter  how many moves or 

replacements are made) ,  it must eventually produce a design. In fact, the algorithm has 

never been known to  fail, even though a proof of its certain success has not been found. 

.As an example, we show a run of the algorithm for t = 4. The details are given in 

Table 2.2, where it is seen that  the algorithm required eight steps to  complete a design with 

six games. (In fact, t = 4 is generally easy for the algorithm; our experience indicates that  

the ratio of steps to  total games increases with t . )  In this run, the algorithm makes what 

seems a pointless change at  step 3,  replacing 1 vs. 4 with 1 vs. 3. In general, however, the 

ability of the algorithm to make this kind of change can prevent it from becoming blocked. 

In step 4 ,  the addition of 3 vs. 4 t o  round 2, instead of round 1 where it "belongs", seems 

t o  be a mistake, but in step 6, everything is sorted out: team 1 has one remaining game, 

against team 4 ,  and team 1 has a game in every round but round 2, so that  1 vs. 4 must 

be placed in round 2,  replacing the game involving team 4 that  was already there. From 

this point, the algorithm has no trouble placing the two remaining games to  complete the 

design. 
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Home and away games 

T h e  results of Section 2.3.2 apply here also. LVith the  random nature of  t he  designs produced 

by the  algorithm, it is impossible t o  make more general s tatements .  T h e  same  is t rue  

concerning carry-over effects; it is possible t ha t  there exist random designs t ha t  a re  more 

balanced for carry-over effects than  any general cyclic design. T h e  situation with home and  

away games can be improved, however, by use of the  algorithm given below. 

One  reason for t h e  popularity of the  design GKt is, as was discussed. t he  ease with 

which honie and away games can be assigned t o  ensure tha t  objects al ternate  honie and 

away games as far a s  possible. with, a t  the same time, pairs of objects never both being a t  

home in the  same round.  It is possible, however, t o  generate designs different from GIYt 

which nonetheless still have the  same pat tern of home and away games for each object .  

Consider. for example,  the  pat tern of home and away games generated from GK8.  An 

"H" in row 2 and column 1 in the  table below indicates t ha t  object 1 plays a t  home in round 

j: an '*.A" in t ha t  position indicates an away game. . 

Object I 2 3 4 5 6 7  

1 H A A H A I I : l  

' L H A H A A H A  

3 H  A H .A H  .4 A 

4 H 'A Ii A H  '1 H 

5 A H H A H A H  

G A H A H I I A H  

7 H X A H H  

* A H A H A I 1 . A  

In this table. we see t ha t  one of objects 1 and 5 plays a t  home in each round, whilil 

the  other  plays away. T h e  same applies for objects 2 and 6. 3 and 7 ,  -1 and * .  A pair of 

objects  can be paired in a round only i f  one of them is a t  home in tha t  round and the other  

is away. This  means,  for example, t ha t  there is only one  round,  namely round 7 ,  in which 

3 and 4 can be paired. T h e  same applies for objects 7  and * .  In contrast ,  objects 1 and  5 

can be paired in any round.  A n  algorithm seeking t o  be  successful in assigning pairings t o  

rounds should. intuitively. deal first with those pairings for which there is a small number ' 
of b*live" rounds. T h e  following simple procedure seems t o  work, a t  least for the  home and 

away pat tern generated from G K t :  

@F 
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1. List the  pairings which ei ther:  

( a )  can only appear  in one  round 

( b )  can be added t o  a round t h a t  currently contains t / 2  - 1  pairings (ie. all but  one) .  

2. If this list is empty,  instead list t he  pairings which either: 

( a )  can only appear  in two rounds 

( b )  can be added t o  a round t h a t  currently contains t / 2  - 2 pairings. 

3. Choose a pairing a t  random (with equal probability) from t h e  list. 

4 .  Choose a round a t  random for t he  pairing l o  be assigned to ,  and  assign it .  (The re  

may, of course. be only one  possible round.)  

5.  If there still exists a live round,  go  back t o  1.  Otherwise end .  

Since the  carry-over effects in a re  so  unbalanced, this method provides the possi- atv of balancing out  t h e  carry-over effects somewhat while still maintaining a desirable 

pa t te rn  of home and away games for each object .  

A proof t ha t  this method will always work is as elusive as one  for Dinitz and Stinson's 

original method,  and for the  s ame  reason. Our limited experience suggests tha t  when a 

round-robin schedule can be generated a t  all, the  algorithm will probably find one, though 

not necessarily quickly; t he  practical solution is t o  s top it and t ry  again i f  it seems t o  be 

taking too  long. 

2.4 Tests of overall equality and multiple comparisons 

2.4.1 Introduction 

Suppose tha t  t objects a re  compared in a possibly replicated round-robin tournament .  Later ,  

we wish t o  investigate order  effects and  ties, so  t ha t  in this Section a single round-robin 

consists of all t ( t  - 1 ) / 2  pairs of objects  being compared twice, once in each order.  Thus  

t h e  number r of replications is half t h e  n of David ( 1988 ) .  In t he  presence of ties, we also 

consider the  "score" a ,  for each object  t o  include a half-point for each tie as well as a point 

for each time the  object was preferred in a comparison. 
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2.4.2 Overall test of equality 

We will usually first wish t o  test whether the objects are all equally preferable. To do this, 

we assume that  each comparison is independent, and that  (in the most general case) our 

null hypothesis states that  the probabilities of the first object being preferred, the second 

object being preferred or a tie being declared do not depend on which objects are being 

compared (they are the same for all comparisons). Natural statistics for a test of equality 

are measures of the spread of the a , ,  such as the variance or the range. It turns out that  the 

variance of the a , ,  or equivalently Cf=l a;, is also the score test for overall equality if  and 

only i f  the Bradley-Terry model holds (for which see Chapter 3 and Biihlmann and Huber, 

1963). LVe consider this variance test first. 

David (1988) shows tha t ,  in the absence of order effects and ties, the suitably scaled sum 

of squared scores has an asymptotic i:-, distribution (for large r ) ,  and provides tables for 

small experiments. Starks (1958) shows that  use of the asymptotic distribution is accurate 

for moderately-sized experiments. Gillot and Caussinus ( 1966) derive some exact results for 

the joint distribution of the a ,  in the presence of ties, but do not consider order effects. LVhen 

order effects or ties are present, one would expect the variability in scores to  be smaller, 

and so use of David's results in such situations would lead to  (possibly very) conservative 

tests. \Ve show that  this is indeed the case. 

LVe begin by considering what happens in the absence of ties, but with order effects. 

Vnder the null hypothesis that  all objects are equally preferable. the only factor affecting 

the preference probabilities is the order effect; specifically, H o  assumes that  for all pairs 

of objects, the probability that  the one presented first is preferred is p, where p = 0.5 in 

David's results. 

r n d e r  this hypothesis, the total score for any object i is the sum of two binomial random 

variables: the number of preferences in the r ( t  - 1 )  cases where object i is presented first, 

and the number in the r ( t  - 1 )  cases where object i is presented second. Thus, for each i ,  

E ( a , )  = r ( t  - l ) { p  + ( 1  - p ) )  = r ( t  - 1)  

var(a,)  = 2 r ( t  - l ) p ( l  - p )  = a 2 ,  say. 

Defining 

it follows that  E ( d , )  = 0,  var(d,) = ( t  - l ) / t .  The d, are clearly correlated, and, under 
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H o ,  equally correlated, but we can find the correlation by the same method as David: 

CfZ1 a, = r t ( t  - l ) ,  since each of the r t ( t  - 1 )  comparisons yield a total of one point, and 

so I:=, d l  = 0. Since these sums are fixed, their variances are zero, and so, letting p be the 

common correlation, we have 

and thus p = - l / ( t  - 1 )  and the common covariance is - 111. 

Thinking of d = { d l )  as a random vector, the covariance matrix of d has diagonal 

entries ( t  - l ) / t  and off-diagonal entries - l / t  in a t  >( t  matrix. Such a rnatrix has one 

zero eigenvalue and t - 1  unit eigenvalues; as a result, Cf=, d: = d'd has an asymptotic \' 

distribution with t - 1 d .  f., just as when order effects are absent. CVriting 

we see that  the tendency for values of p  far from $ t o  decrease the variability in the a, is 

balanced by the presence of a p ( l  - p )  term in the denominator of the test statistic. 

CVhen there are ties as well, the score for any single object is no longer binomial, but 

the same sort of argument goes through. Let pl denote the probability of the first object 

being preferred in any paired comparison (since the objects are equally preferable under 

! lo ,  the probability is the same for all comparisons), let p;, be the probability of the second 

object being preferred, and let po denote the probability of a tie. Counting one point when 

object i is preferred and half a point for a tie, the expected number of points for object . 

i in a single comparison is pl + p o / 2  when object i is presented first, and p;, + p o l 2  when 

object i is presented second. The variance of the number of points in a single comparison 

is p l ( 1  - p l )  + po(1  - p o ) / l  - pop1 in the first case and p 2 ( 1  - p 2 )  t p o ( l  - p o ) / l  - pop;, in 

the second. After a little algebra, we find that  
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enables us to  show in exactly the same way as before that  Cf=l d: has an asymptotic k:-l 

distribution. , 

We do not present any theory concerning the range of the a, or d, ;  David (1988, p. 

35) indicates, in the absence of ties and order effects, that  an approximation based on the 

distribution of the range of normal random variables will work well. 

It is also possible to  simulate the behaviour of our statistics, for comparison with - i 

these asymptotic results and David's small-sample tables. For each combination of val- 

ues t ,  T ,  p l ,  p2,  po, we simulated 10,000 values of the sum of squares and of the range. Table 

2.3  shows the results of our simulations for C, a; and Table 2.4 shows the corresponding 

results for the range of the a,. It is clear that  the effect both of increasing the order effect 

and increasing the tie probability is to  decrease the critical values of the test statistics, in 

some cases considerably. The agreement between the simulations and the exact results of 

David, where they overlap, is good ( the  case pl = pz = 0..5 in Tables 2.3  and 2.4 ,  and 

Tables 1 and 3 of David, for the sum of squares and the range respectively). Further (see 

Table 2 . 3 ) .  the agreement between the simulated distribution of the sum of squares and the 

critical values obtained from the chi-squared asymptotic distribution is extremely good - 

even for t = 3,  r = 1 ,  where C, a: < 20 and some percentage points do  not exist, the ones 

that  do  exist are very well approximated using the asymptotic distribution. For the range 

(Table 2 .4 ) .  the general picture is tha t  the points obtained from the distribution of the range 

are  somewhat anti-conservative; for moderate sample sizes, adding 1 t o  the approximated 

critical values seems & improve matters somewhat. 

One could also consider using the range of the scores as an overall test of equality. It 

seems, however. that  the test based on the variance of the scores will be more powerful 

because it uses all the scores, not just the most extreme ones. The range of scores, however, 

is a natural candidate for use in multiple comparisons, as we discuss below. 

The above results consider the distribution of the sum of squared scores and the range of 

scores conditional on the probability of the first object being preferred and on the probability 

of a tie. In practice, though, these probabilities will not be known. and will have to  be 

estimated by the observed proportions of first-object preferences and of ties. The effect of 

this estimation procedure on the true le test is not clear. 



CHAPTER 2. I1lODEL-FREE DESIGN A N D  AMALI'SIS 

2.4.3 Multiple comparisons 

As in analysis of variance, having shown tha t  some difference exists between the  objects ,  we 

then wish t o  decide which objects differ from t h e  others .  David ( 1988) discusses tests  which 

are  analogous t o  those used in analysis of variance: a least significant differences method,  

a multiple range test  paralleling Tukey's, and  a method like Scheffe's for judging contrasts .  

These tests,  Like t he  corresponding tests  in analysis of variance, a t t e m p t  t o  control error 

rates  when a null hypothesis of equality holds; in particular,  when the  objects  a r e  equally 

preferable, these tests ,  run a t  level a ,  will have probability 1 - a of declaring none of the  

objects  t o  be different. i t 'hen this null hypothesis is false, the  behaviour of t he  tests  is less 

clear, but  in t h a t  case t h e  experimenter may prefer t o  fit a model, such as  t he  Bradley-Terry 

model described in Chap te r  3, in which the  relative s trengths of the  objects  a re  estimated 

directly. 

T h e  range of scores is a natural  statistic for use in multiple-comparison tests.  1Vhen 

there a re  no order effects or  ties, Table 3 of David (1988) can be used for small experiments. 

Asymptotically. David s ta tes  t ha t  the  distribution of the  range of the  d ,  is t ha t  of t he  rangr 

It; of t independent normal random variables with variance u 2 ( 1  - p )  = 1.  iVhen t h ~ r e  a r r  

order effects, t he  d l  are  still asymptotically normal with t he  same variance and  covariances 

(because of t he  presence of the  factor p ( l  - p)  in the  denominator of the  d , ) .  so  this result 

still holds. T h e  discussion above also shows tha t  t he  same asymptotic distribution holds for 

suitably-defined d l  in t h e  presence of ties. 

T h e  distribution of t he  range can then be used for a Tukey-Like multiple range tes t ,  by 

declaring significantly different any objects  whose scores differ by more t han  the  critical 

range for t ha t  value of t .  Alternatively, one can carry out  a S tudent -Sewman-I ieu ls - type  

procedure. using t h e  distribution of the  range of a smaller number of normal random vari- 

ables within a group of scores where differences have been shown t o  exist.  

2.4.4 Example 

In the  1995-96 season, t h e  Scottish soccer league had 10 teams.  who played each other  twice 

each a t  home and away. Since the  home team is listed first, the  order effect here indicates a 

home field advantage. In t he  notation above, t = 10 and r = 2. Of the 180 games,  45% were 

won by the  home t eam,  33% by the  away t eam.  and 22% were drawn ( t i e d ) .  T h e  scores for 

each team are shown in Table 2.5. with the  d l  calculated using ( 2 . 1 ) .  
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For the  overall test of equality, C, a: = 3679. Comparing this t o  the  line of Table 2.3 fur 

which t = 10, r = 2,  p l  = 0.5, pz = 0.25, po = 0.25, whose p,-values a re  fairly close t o  t h e  

ones observed, the  test statistic is easily significant a t  t h e  1% level. a s  it would be for any  

of t he  p, combinations shown. For comparison, C, df = 57.3, which, when compared with 

t he  distribution, is significant even beyond the  0.0005 level. There  is clearly a difference 

between the  teams in this league. 

To  decide which teams differ from which, we turn  t o  t he  corresponding line of Table 2.4. 

t o  find tha t  two teams a re  significantly different a t  the  5% level if their scores differ by 13  o r  

more. Thus  the t op  two teams &e significantly stronger t han  t h e  bot tom six, bu t  no o ther  

differences are revealed ( t h e  t o p  two teams are  not qui te  significantly stronger t han  t h e  

3rd- and  -It h-placed t eams) .  For comparison, using the  asymptot ic  distribution, the  upper  

5% point of the range of 10 independent s tandard normal random variables is 4.47 (using 

the  *'x, d .  f." line of a table of the  Studentized Range),  so  t h a t  any teams whose d,  differ 

by more than  this a re  significantly different. This yields the  same result as t he  previous 

procedure. 

2.5 The Swiss tournament 

2.5.1 Introduction and construction 

Often,  the number of participating teams in a tournament  is t oo  large for a round-robin, bu t  

not so  large t ha t  a knockout is the  only possible alternative. Various solutions a re  possible, 

such as  running a double o r  triple knockout (in which a team is not eliminated until it has 

lost two or three games) ,  o r  dividing the  teams into groups small enough for a round-robin 

t o  beTeasible in each group,  and  then playing a further round-robin or  knockout between t h e  

t op  teams in each group.  These solutions do  not permit easy comparison between teams in 

different groups or different par t s  of the  knockout. A Swiss tournament ,  however, provides 

an  immediate ranking for all t he  teams,  by virtue of not splitt ing them into groups. 

In a Swiss tournament ,  t he  idea is t o  play most of t he  games between teams tha t  a r e  

evenly matched, as far a s  t he  games previously played allow this t o  be judged. This  is 

achieved by the  following ~ r o c e d u r e .  If the  number of  teams is odd ,  introduce a fictitious 

team called "Bye", where any team drawn against "Bye" does not play in t ha t  round, bu t  

is awarded a "free" win. In this wag, the  effective number of teams in the  tournament  t is 

even. 



Table 2.3: Sum of squares: simulated and approximate points 

Sim. Asymp. 
2 1 25.8 
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Table 2.3: Range: simulated and  approximate points 

Sim. Asymp. 
5 4 .1  

1 % 
Sim. Asyrnp. 

5 5 . 4  
5 4 . 7  
5 4 .5  
4 3 .4  
4 3 . 2  
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Table 2.5: Scores for the  Example 

Team 
Rangers 
Celtic 
Aberdeen 
Hearts 
Hibernian 
Raith Rovers 
Kilmarnock 
Mot herwell 
Partick 
Falkirk 

1.  S t a r t :  

( a )  If this is t he  first round,  arrange the  teams in random order .  

( b )  Otherwise, rank the  teams by points, breaking ties randomly. 

2. Arrange the teams in "pairing order": for a team whose rank is j 5 t /2 ,  its pairing 

order  is 2 j  - 1, and  for a team with rank k > t /2 ,  its pairing order  is 2 ( t  + 1 - k ) .  

Llihen this is done, the  team t h a t  is first in pairing order  is t he  top-ranked team,  t he  

second in pairing order is t he  lowest-ranked team,  and so  on ,  alternating high- and  

low-ranked teams.  

3. For i = 1 , 2 , .  . . , t :  

( a )  Let T be the  team with pairing order i .  % 
( b )  If team r has already been paired, proceed t o  the  next value of i.  Otherwise, 

continue. 

( c )  Make a list of the  available opponents  for team r (where "available" opponents  

a re  those which have not yet played team r and are  not yet paired in t he  current 

round).  If t eam r has rank no larger than t / 2 ,  ar range  the  available opponents  

with the  highest-ranked listed first: otherwise arrange them with the  lowest- 

ranked Listed first. (This  List is of the  opponents for team r in order of desirability.) 

( d )  If it is not known t o  cause a blockage (see below), pair t eam r with t he  first t eam 

on its available opponent  list; otherwise, proceed down the  list until an  opponent  
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.$ - . 
f .  

is found t h a t  is not known t o  cause a blockage, in which case team T is paired 
# 

with t ha t  opponent ,  o r  until t h e  list is exhausted. 

( e )  If the  list of opponents for team T is empty, or  i f  it has been exhausted by the  

previous s tep.  then a blockage has occurred: with the  pairings already made, it is 

not possible t o  pair the  remaining teams without causing some of them t o  meet 

a n  opponent  second time. In this case, find the  pairing sl vs. s2 t ha t  was 

t he  last t o  be made, mark this as  being known t o  cause a blockage, and  reset i t o  

the  pairing order of team s,. (In plainer terms: go back and  find a new opponent 

for team sl, until one is found for which all teams can be paired.) 

4 .  In each game.  award the  winning team 1 point,  and  give point t o  each team for a 

tie ( d r a w ) .  (.Any linear transformation of this scale will give t he  s ame  result.)  

5. If the  desired number of rounds has not yet been played, go back t o  S tep  1 

6. T h e  teams are ranked by points, with ties broken by the  "Buchholz score". For 

each team. the  Buchholz score is the  total  number of points obtained by tha t  team's 

opponents.  and is therefore a measure of the  quality of opposition faced by tha t  team.  

Using the  Buchholz score as  a tiebreaker is desirable. since each t eam has faced different 

opponents .  

T h e  number of rounds played is typically somewhat larger than  the  number of rounds 

contained in a knockout for t he  same number of teams,  so t ha t  t he  teams have the op- 

portunity t o  play most of the  other  teams of similar s t rength.  T h e  restriction t o  a single 

meeting between each pair of teams,  while making the  pairing procedure more difficult, is 

an a t t empt  t o  even out  the  randomness present in the  assignment of opponents .  as well as 

t o  ensure t ha t  each team does indeed play a collection of similar-strength opponents,  rather  

than  the  same opponent repeatedly. 

T h e  algorithm used in chess tournaments  differs slightly from the  above in that  chess 

players have "ratings" which offer prior information about  the  relative s trengths of the  play- 

ers in the  tournament ,  and these can be used as a seeding mechanism. In a chess tournament ,  

players with the  same number of points a re  sorted by their ratings, and  the  highest-rated 

players play against the  lowest-rated players in the  next round. LVhile this  information typ-  

ically permits a ranking of the players in fewer rounds than would be necessary under the  
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procedure given above, we.. have preferred to assume tha t ,  in general, this prior information 

will not be available. 

2.5.2 Discussion 

Since each team faces different opposition, it is not immediately obvious that  it is fair t o  

compare teams by the number of points they have obtained. However, a Swiss tournament 

is designed, roughly speaking, to  allow each team t o  "find its own level", in that  a team 

with an incorrectly high ranking will face difficult opposition in the next round and will 

tend to  lose, and a team with an incorrectly low ranking will face easy opposition in the 

next round, and should move towards their correct position. This ameliorates (although 

does not always completely overcome) the effect of the randomness in pairing each round. 

We further discuss the issue of ranking teams from a Swiss tournament in Section 3.6.2. 

after we have introduced the Bradley-Terry model. 



Chapter 3 

The Bradley-Terry model 

3.1 Introduction 

The Bradley-Terry model (Bradley and Terry, 1952) is commonly fitted to  paired-comparison 

data.  It offers a means for modelling the probabilities of winning or tying in terms of param- 

eters which can be interpreted on an odds or log-odds scale (depending on the parameteriza- 

tion chosen) as the "strengths" of the teams participating in the tournament. The  original 

model has been extended by Davidson (1970) to  accommodate ties, and by Davidson and 

Beaver (1977) to  permit the estimation of an order effect, which has a natural interpretation 

of "home field advantage" in a sporting context. LVhile, as pointed out in Davidson and 

Beaver (1977), it is straightforward to extend the models further to  allow the order effect 

and tie parameters t o  be team-dependent. in practical situations there is rarely sufficient 

data  to  be able to demonstrate that  such a model is appropriate. Below, therefore, we 

consider a version of the Bradley-Terry model with a single tie parameter and order effect, 

common t o  all comparisons. 

.4n extensive bibliography of the Bradley-Terry and related models is given by Davidson 

and Farquhar (1976). A good reference to  paired comparisons in general is David (1988). 

There are two equivalent parameterizations of the Bradley-Terry model. Davidson (1977) 
b. 

uses parameters which combine multiplicatively; here, we use an additive parameterization 

that  we find more convenient for estimation. 

Specifically, suppose there are t teams in the tournament, and let P I , .  . . , P t  represent 

their "strengthsw. Let d be the tie parameter, and let h denote the home advantage (in 
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contrast to  Davidson, we assume that  the first team in each game has the advantage, fol- 

lowing the European sports tradition, although there is no problem if the second team has 

the advantage, for h will simply be negative). For a comparison between teams i and j in 

that  order, let p,,l denote the probability that  team i wins, p,,:! denote the probability of 

team j winning, and let p , , ~  denote the probability of a tie, with ptJk = 1. Then the 

Bradley-Terry model asserts that  the following relations hold: 

with the constant of proportionality, denoted Dl], being chosen so that  these probabilities 

sum to  1. The equivalence to  the Davidson (1977) model is seen by expressing our parameters 

g1. h,  d in terms of his parameters T,, y ,  v as P, = log T , ,  h = - logy and d = log v-(log y) /2 .  

The first two of these probabilities are apparently reasonable: the probability of a team 

'winning increases with that  team's strength, while team i ,  playing a t  home, has its "effec- 

tive" strength increased by h .  The last, p , , ~ ,  has behaviour which is less clear; its properties 

are given in the following two Lemmas. L 
Lemma 3.1 The probabilities are unchanged if any  constant is added to both P, and f i , .  

Proof: Let c be the constant added; then p,,l a exp(h t 3, t c) ,  p,,2 (X exp(0, t c) ,  and 

ptIo x exp{d + ( h  + 0, + 0, ) /2  + c) .  We see that  there is a common value ec multiplying each 

probability, and thus also the constant of proportionality, so that  the probabilities when 

properly scaled do not depend on c. 

This result shows that  there are only t - 1 freely varying Dl, since, by the above result, 

any one 3, can be set equal to  zero. As we see in Section 3.3,  this requires us to  make.some 

adjustments to the estimation process. 

Lemma 3.2 Forfized d > -x, the tie probability p,,o is mazimum when J h  + 0, - 0,I = 0 ,  

and decreases monotonically with Ih t Dl - P, I. 

Proof: By Lemma 3.1, we can, without affecting the probabilities. replace h + ?, by h + 
3, - ( h i - & )  = 0 and 3, by , - ( h + p , )  = c ,  say, so that  1 ~ 1  = I h + P , - P , I .  CYith this 

parameterization, p l J l  x 1 ,  piI2  lx exp(c) and p,,o c< exprd + c/2), so that  
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where x = exp(c12) and a = exp(d). This, as a function of x,  is positive for x > 0 (since 

a > O), and is zero for x = 0 and as x -, m. It has one stationary point, a t  x = 1, which 

must therefore be a maximum, indicating tha t  p,,o has a maximum a t  c = 2 fog 1 = 0 and 

decreases with 161, as required. 

This result says tha t ,  after allowing for home field advantage, the probability of a tie is 

greatest when the teams are evenly matched, ie. P, + h = P,, which is a property we are 

entitled to  expect. 

The quantities being exponentiated on the right-hand sides of (3.1), being linear in the 

parameters, have the air of a linear predictor in a generalized linear model. To  tha t  end, 

let ql,l = h + PI,  vt12 = PI, qt10 = d + ( h  + 0, + P1)/2. When there are no ties, the third 

relation of (3.1) is discarded, and the correspondence is exact: the Bradley-Terry model is 

a special case of logistic regression. The  design matrix has a special form: for a meeting 

between teams i and j. the row of the design matrix has a 1 in position i ,  a -1 in position j 

and zeroes elsewhere, with the intercept corresponding to  the home field advantage (order 

effect). In the more general case, the link with generalized linear modehng is less useful, 

though the .q,,k notation continues to  be helpful. Specifically, note that  p,,k = exp qtlk/Dl1 

f o r k  = 0 , 1 , 2 .  

3.2 Likelihood and derivatives 

Let y , , ~  denote the observed frequency of wins for team z against team 1 when the former is 

playing a t  home, and let y1,2, ytlo denote the observed frequencies of wins for team j and of 

tie< in these games. Further, let ytl+ = ylll + yt12 + yl,o denote the total number of games 

played between teams t and j with team i a t  home. 

The likelihood is simply 

and the log-likelihood 

l J !k  

where the product and sum extend over 1 5 i, j 5 t with i # j and k = 0 , 1 , 2 ,  and the 

dependence on the parameters is contained within, p,,k. 



C H A P T E R  3. T H E  B R A D L E Y - T E R R Y  MODEL 4 1' 

It is most convenient to develop the likelihood derivatives in stages. First, since the q;,k 

are linear in the parameters, 

and 

with the remaining derivatives being zero. 
2 Next, noting that D,,  = exp qlJk,  and therefore that 

where 0 denotes a "generic" parameter, it follows that 

Dividing through by Dl,,  we therefore obtain 

Now, once again letting 0 denote any of the parameters, and noting that 

we find that 

-- 
aq l lk  1 a ~  
- ae - -2) D,,  ae 

As a result, we can write down the derivatives of ptJk with respect to the parameters, for 

all k ,  as follows: 
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where t he  zeroes, while not necessary, i l lustrate t he  pat tern.  

Since 

t he  derivatives of the  log-likelihood with respect t o  the  parameters  can now be found. Wi th  

respect t o  p,, t he  derivative must be summed over all opponents  for t eam r and all games, 

home and  away; with respect t o  h and  d ,  t h e  sum is simply over all i and  j .  After some 

algebra, we find tha t  t h e  likelihood derivatives a re  readily interpretable: 

Summing over all home and away games played by team T ,  this is the  difference between 

the  observed "points" and  expected "points" obtained by team r ,  where a win is worth one 

point and  a tie a half point.  (Any linear transformation of this point scale would also work, 

such a s  two points for a win and  one  for a tie.) 't 

Moving on ,  we find tha t  
\ 
\ 
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which is the difference between observed and expected points obtained by the home teams 

in all the games. Likewise, -. 
i l l  
ad = C %JO - Yl,+P.]0. 

IvJ 

which is the difference between observed and expected ties summed over all the games. 

In summary, we see that  the maximum likelihood estimates of the parameters are such 

that  the sufficient statistics (numbers of points for each team, total points scored by home 

teams, total number of draws) are equal to  their expectations, and that  a score statistic 

would be based on the  degree t o  which these differ under some hypothesis. These results 

were anticipated by Fienberg (1979), who showed that  the Bradley-Terry model given here, 

when suitably parameterized, could be considered as an incomplete contingency table, and 

therefore proved that  the maximum likelihood estimates of the parameters were obtained 

by equating observed and expected frequencies. Fienberg's results are valid in greater or 

lesser generality: to  fit team-specific home field or tie effects, we can match the observed and 

expected home wins or ties for each team; if we do not wish to fit a home field advantage, 

we set h = 0 and do not match the observed and expected frequencies. and if we do not 

wish to fit ties, we set d = -x, and do not match the observed and expected frequencies 

of ties. 

The foregoing ca lcub ions  also-enable us to  find the second derivatives of the log- 

likelihood without great difficulty. They are, after some algebra: 
-7 b 
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Alternatively, one can note that  each game makes a contribution t o  the (observed) 

information matrix. Letting I,, denote the contribution to  the log-likelihood from a game 

between teams r and s in that  order, we find that  

and 

3.3 Solving the likelihood equations 

There are a couple of practical problems with the results we have obtained so far. First, 

since the probabilities are obtained from differences between the Dl, and in the light of 

Lemma 3.1, it is impossible to obtain unique estimates for the parameters unless one of 

the 0, is fixed. Consequently, the information matrix cannot be inverted, since it is rank- 

deficient by one (or more). Second, it is possible in practice for the parameter estimates 

t o  be infinite. This usually happens when there are teams that  defeat every other team 

they play, or are defeated in all their games. From the likelihood equations, we see that  

such a team r must have pr1l = 1 or 0, and then Dl = C ~ C  or a, = -m. This is a curious 

result, given that  it is perfectly possible t o  observe 100% success or failure with P I  that  

are finite, but it is an instance of a phenomenon known as "separation" which can afflict 

any binary-response model. Albert and Anderson (1983) and Santner and Duffy (1986) 

have carried out detailed studies of separation and quasi-separation, showing that  infinite 

parameter estimates will exist if there is a plane in X-space such that  all the observations 

on one side of the plane are successes and all those on the other side are failures. In our 
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application, as  mentioned, this usually takes t he  form of  one team winning o r  losing all i ts 

games, bu t  it is also possible t o  observe an  interdependence with the  home field effect t ha t  

renders finite estimation impossible. a 4  

X simple approach tha t  fixes both  these problems is t o  introduce a "fictitious" team 

t + 1 against which all other  teams are  given a neutral-field tie, say. If we then fix t he  rating 

of this ( t  + 1) - th  t eam a t  0 ,  o r  some o ther  convenient figure, we can then obtain unique 

est imates for t he  o ther  ratings. Furthermore, simply from its comparisons with team t + 1, 

it is impossible for any  team t o  a t ta in  100% success or failure, and  hence all t eams will 

have finite s t rengths.  If a home field or  tie effect is being fitted, a fictitious game can 

be included in which was "observed" a third of a home win, a third of an  away win, and 

a third of a tie (or ,  if a tie effect is not being fitted, half a home win and  half an  away 

win). This  guarantees t ha t  finite estimates will exist for all t he  parameters  no ma t t e r  what  

the  arrangement of games played, and  also ensures t ha t  the  information matr ix is strictly 

positive definite rather  than  merely positive semi-definite. (Since the "likelihood equation" 

for t he  fictitious team is never actually used, being a consequence of t he  other  equations. 

the  effect on the  information matr ix is purely t o  add positive quantities t o  the  diagonal, a 

s tandard  way of making a matr ix positive definite.) 

Such a procedure is necessarily ad hoc, but  is not without precedent; consider, for ex- 

ample, t he  practice of adding ; t o  the  entries in a contingency table t o  deal with zeroes. 

Though we approach our  estimation from a classical rather  than  a Bayesian viewpoint (for 

which see Davidson and  Solomon, 1973). it is interesting t o  note t ha t  this procedure can be 

viewed as  a hypothesis of "prior equality" from which we proceed, in a Bayesian fashion, 

towards a posterior distribution for t he  parameters ,  by combining this prior distribution 

with t he  d a t a ,  with the  maximum likelihood est imate corresponding t o  t he  mode  of the 

joint posterior distribution. 

LVe now tu rn  t o  the  problem of obtaining the  maximum likelihood est imates.  In the 

remainder of  our  discussion of this subject ,  we assume tha t  the  "fictitious team" has been 

introduced, and  we are  thereby assured t h a t  t he  estimates are finite. (Strictly, once the  

fictitious team has been introduced. we are  no longer maximizing a likelihood, but  solving a 

set of equations for t he  parameters t ha t  happens t o  bear a close resemblance t o  t he  likelihood 

equations.) 

LVhile the  Likelihood equations are linear in the  p , ,k ,  they are  certainly not Linear in 

the  p,, h or  d, and so  an iterative procedure will be necessary. Below, we consider some 
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candidate methods and discuss their advantages and disadvantages. Detailed theoretical 

comparisons (in terms of operation counts) are given in Section 3.4, and some examples are 

considered in Section 3.5. 

Any iterative algorithm needs a place t o  start ;  often the choice of initial estimate can 

determine whether or  not the algorithm converges. In this problem, the log-likelihood tends 

to  be well approximated by a quadratic in most cases, and is unimodal due t o  general 

results concerning exponential families. The  second derivative is also positive definite for 

any finite values of the parameters. Therefore, any choice of initial values that  is "not too 

unreasonable" should suffice. iVe set the strength of the fictitious team equal to  0, and then 

set the initial values for 0 2 . .  . . ,DL,  h , d  equal to  zero also. 

3.3.1 Newton's method 

Since all the second derivatives are readily available, and ,since the likelihood is approxi- 
C .  

mately quadratic, an obvious choice for this problem is the multivariate Newton's method 

(Dennis and Schnabel. 1989). The first derivative vector and second derivative matrix are 

evaluated a t  the current parameter estimate and used t o  find a quadratic approximation to 

the log-likelihood; the maximum of this quadratic is the next parameter estimate. 

Let 6 denote the entire parameter vector J1 , .  . . , P , ,  h , d ;  i f  a home field effect or tie 

parameter is not being fitted. it is omitted from the parameter vector and its likelihood 

derivatives are omitted from the estimation procedure. Let g denote the vector of first 

derivatives of the log-likelihood I .  and let H denote the matrix of second derivatives, so 

that  g ,  = d l l d 6 ,  and h , ,  = d21/d6,d6, .  Further, let l,,g,. H ,  denote I ,  g  and H evaluated a t  

6 = 6,. Then a quadratic approximation to  the log-likelihood is 

1 
Q c ( 6 )  = I ,  + g T ( 6  - 6 , )  + - ( 6  - 6 c ) T ~ c ( 6  - 6 , )  

2 

and. provided H c  is negative definitd? this quadratic will have a single maximum a t  the value 

6 ,  which satisfies $ 

Sewton's method for our problem consists of repeating the following steps: 

1 .  Evaluate g, and H z  at  the current value 6 = 6,. 

2 .  Solve H z ( @ ,  - B c )  = -gc  for 0, 



CH.4PTER 3. THE BRADLEY-TERRY hfODEL 

3.  Set 9, = 9+ 

until convergence is a t ta ined .  

In this problem, H ,  is always negative definite. Thus ,  a t  each i terat ion,  Newton's method 

is finding the  maximum of t h e  quadrat ic  approximation. In principle, we also need t o  check 

tha t  each s tep  actually increases t h e  likelihood (for example, a s tep  might be in the  right 

direction but  too  long. passing over t he  maximum t o  a point where t h e  likelihood is smaller),  

though in practice for this problem, t he  likelihood is sufficiently well-behaved for such a check 

t o  be unnecessary. \. 

T h e  principal advantage of Newton's method is its local quadrat ic  convergence: once 9, is 

close t o  the  maximizing 9 ,  t he  number of correct significant figures approximately doubles 

on each iteration. As a result, t he  total  number of iterations required is usually small. 

On the  other  hand,  each iteration of Newton's method requires t h e  solution of a system of 

equations, which is considerable numerical work if t is large. Other  methods  which can avoid 

solving this system ma! therefore converge using a smaller number of arithmetic operations, 

even i f  the  number of iterations is larger. 

3.3.2 Ford's algorithm 

Ford (1954)  proposed a model for paired comparisons which is equivalent t o  the Bradley- 

Terry model, and gives an iterative method.  and a proof of its convergence, for estimating 

the  parameters of the  model. 1j.e describe the method,  as did Ford, for the  simple model 

lacking home field advantage and  draw parameter .  

Let T, = e x p ( 3 , ) .  and let x , , ,  be the  value of a ,  after t he  r - t h  i terat ion.  T h e  algorithm 

begins by setting T,,, = 1 ( s a y )  for all t ,  then,  for i = 1 , 2 . .  . . , t ,  cyclically, setting 

where II', is the observed number of wins for team 1 and .1,, = yIJ + y,, is the total number 

of games played between teams i and  j. 

As with Jacobi's met hod. described in Section 3.3 .3  below. Ford's algorithm ignores any 

correlation between the ratings, and may therefore be expected t o  converge slowly if any 

correlations are appreciable. (Strictly, Ford's method is a kind of Gauss-Seidel algorithm, 

since the  most recent values of a, a r e  used t o  update T , . )  Irr practice, convergence generally 

requires a large number of iterations (David ,  1988, p. 62) .  but  is guaranteed.  
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The algorithm as described above seems t o  have been intended for hand calculation, 

where the I.t; and A,, will be either available or easily calculated a t  the beginning. A 

aps more natural implementation for machine use consists of passing through the d a t a  

et one game a t  a time (for further discussion of this issue see Section 3.4.5), for which we P 
define one iteration to  consist of the following steps: 

( a )  Set S,  = 0. 

( b )  For each game in the d a t a  set: 

i. If team i played in this game, against team j say, let S, = S ,  + l/(.rr, + x,). 

( c )  Set x, = I.trl/S,. 

This implementation of Ford's algorithm, which we call "Ford-1", is analyzed in Sec- 

tion 3.4 and used in the Examples of Section 3..5. Viewed in this light, however. it seems 

that  an unnecessary number of passes is made through the d a t a  set (in searching for games 

involving team i ) .  This suggests a modification whereby the  changes to  all the T, are com- 

puted from one pass through the da ta ,  as follows: 

1. Set S , = O f o r i =  1 .2  . . . . .  t .  

2. For each game in the da ta  set: 

( a  

( b  

3.  Set x, = M,/S, for i =  1.2  , . . . .  t 

) Let h = 1/(;7, + T,) .  

) .Add 6 to both S,  and S, 

LVe call this algorithm "Ford-2-'. One might suspect, since the previous values of x, 

are being used rather than the most recent ones, that  this algorithm will require a higher 

number of iterations; on the other hand, this loss may be offset by the smaller amount of 

arithmetic a t  each iteration. 

3.3.3 Jacobi's method 

.A simple method that  can work reasonably well is to  pretend that  the matrix H of second 

derivatives of the log-likelihood is diagonal; each iteration is then reduced t o  a collection of 
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one-variable equations to  solve. This is known as Jacobi's method (Dennis and Schnabel, 

1984). This method does not appear t o  have been proposed as a solution to this problem, 

despite its promise in dealing with tournaments with large numbers of teams. 

In practice, convergence will be quickest if the off-diagonal elements of H are much 

smaller than the diagonal elements. When fitting a Bradley-Terry model, this will be true if 

( a )  the parameter values are not too widely dispersed (so that  the p,,k are not too different 

from each other) and ( b )  if each team has been compared with many of the other teams 

( ra ther  than being compared many times with a small number of other team). 

Each iteration of the method is, in general, as follows. As with Newton's method, we let 

g denote the vector of likelihood derivatives, O denote the entire parameter vector including 

home field effect and tie parameter if  included in the model, and subscripts c and + denote 
- 

the current and updated versions of the quantities of which they are subscripts. 

1. Calculate g ,  and the diagonal elements h,,, of H,. 

2.  Let O,+  = O,,  + g, , /h , ,c .  

3 .  Replace O,,  by O,+ 

Relative to  Xewton's method, the number of iterations required for Jacobi's method is 

usually large. However, each Jacobi iteration is quick to  complete, and so even if many 

iterations are required. the total amount of computation is still small. 

3.4 Computational complexity of the algorithms 

3.4.1 Introduction 

.A simple way of comparing the algorithms given above is by the number of iterations they 

require on "typical" problems. This, however, ignores the fact that  some algorithms have 

iterations that  are much simpler than others. For example, Newton's method requires the 

solution of a t x t (or  bigger) system of linear equations a t  each iteration, whereas an 

iteration of Ford's method requires only the calculation of some simple quantities on one 

pass through the data  set. .A fair comparison of the algorithms needs to  take this into 

account; one approach is to measure the time taken by each algorithm on a problem, but 

here we prefer to count the number of floating-point arithmetic operations performed by each 
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D 

method. This is most easily done by calculating the number of additions, multiplications 

and exponentiations required for one iteration of each method, as functions of the number 

of teams t and the number of games n ,  and then multiplying by the number of iterations 

required for each problem. 

We restrict our analysis of floating-point operations to the simplest version of the A 

Bradley-Terry model, with neither home field advantage nor ties included in the estima- 

tion. (Some of the d a t a  sets used i ection 3.5 contain ties, but these are  counted as half 

a win and half a loss if a tie para X' ter is not present.)' We count the number of addi- 

tions (and subtractions), the number of multiplications (and divisions) and the number of 

exponentiations required in each case. 

In counting operations, we have assumed a d a t a  layout in which one row of the design 
4 

matrix represents one game: the operation counts will therefore contain a term proportional 

to  the number of games n .  With some precomputation, the da ta  can be aggregated so that  

one row of the design matrix represents all the games between a particular pair of teams. 

iVe return to this issue in Section 3 . 3 . 5 .  

3.4.2 Ford's methods 

In counting the number of arithmetic operations, we assume that  the observed nunlbers of 

wins Myl have already been calculated for each team; this can be done in one pass through 

the da ta  using only integer arithmetic. 

The fundamental operation in Ford's methods is the calculation of l / ( x ,  + x,), which 

requires one addition and one multiplication (which is actually a division). I 
In Ford-1, this calculation is made twice for each game, once eaFh on the two separate 

passes for the two teams involved in each game. On each occasion, a value of S, is updated, 

requiring another addition. Finally. for each team, the calculation of It',/S, takes another 

multiplication. There are thus 472 additions and 2 n  + t multiplications in each iteration of 

Ford- 1. 

In Ford-2, the value of 1 / ( ~ ,  + x,) is used for both teams. saving an addition and a 

multiplication for each game. Apart from the smaller number of passes through the d a t a  

(we ignore any saving of time due to this), the algorithm has otherwise the same number of 

operations. Thus Ford-:! has 3 n  additions and n + t multiplications per iteration. 
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3.4.3 Jacobi's method I 

An iteration of Jacobi's method consists of two parts: the calculation of the derivatives g, 

and h,,. and the use of these derivatives t o  update the p,. 

For a game between teams i and j, the derivative calculation consistsoof the calculation 

of the win probability p = (1 +exp(P, -PI) ) , ,  which requires two additions, a multiplication 

and an exponentiation, the calculation of y - p, the increment t o  the first derivative and its 

addition to g, and subtraction from g, (three additions), and the calculation of p( 1 - p)  and 

its addition to h,, and h,, ( three additions and a multiplication). Since there are n games, 

each of these operation counts must be multiplied by n .  

The  update to  3, consists of adding g, /h, , ,  and so contributes an  extra addition and 

multiplication for each of the t teams. One iteration of Jacobi's method therefore requires 

8 n  + t additions, 2n + t multiplications and n exponentiations. (We note that  it may be 

possible to save some exponentiations by storing and updating exp(3,)  instead of PI; an 

exponentiation is then necessary for each of the t updates, but one is saved for each of the 

n probability calculations.) 

3.4.4 Newton's method 

One iteration of Newton's method is considerably more complicated than for any of the .. 

other methods. Specifically, one iteration consists of 

1.  Calculation of the derivative vector g and second derivative matrix H 

2.  Decomposition of H into a suitable form for solving I26 = g for 6, where 6 is the update 

to  the vector of 3, .  Ll'e use the square-root-free Cholesky decomposition H = LDL', 

where L is unit lower triangular and D is diagonal. 

3.  Solution of H b  = g using the decomposition. 

1. Updating of the 3,. 

Step 1 takes a similar form to  that  for Jacobi's method. The operations for calculating a 

probability for each game. calculating the updates t o g  and H and carrying out the update to  

g are identical. but two extra additions occur because four elements of H must be updated, 

two off-diagonal elements as well as the two diagonal ones. Over all n games, there are 
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therefore 10n additions, 2n multiplications and n exponentiations (some of which can be 

avoided with sufficient care; see the discussion of this issue under Jacobi's method). 

Step 2 simply requires a count of the operations involved in the standard algorithm for 

this decomposition. There are t(t - l ) ( t  + 1) /6  additions and t ( t  - 1)(2t + 5 ) / 6  multiplications 

( a  result which seems t o  be correct, though which differs from Table 3.2.2 of Dennis and 

Schnabel (1983, p. 51), where the c o e f f i c i e ~  of the cubic term is asserted to  be i for both 

the number of additions and the numb? ad multiplications). 

Step 3 requires the sum of the o ~ r a t i o n  counts for a solution of a diagonal system of 

equations (t.multiplications only) and two solutions of triangular systems. one for L and 

one for L' ( t ( t  - 1) /2  additions and multiplications each). The total number of additions in 

this step is then t( t  - 1 )  and of multiplications is t( t  - 1) - t = t2.  

Step 4 simply consists of the addition of the solution of the set of equations calculated 

- .  in Step 3 t o  the current values of p,, which requires t additions. 

Combining these results, we find that  Newton's method requires 10n + i t ( t 2  + 61 - 1 )  

additions, 2n  + i t ( t  + 5 ) ( 2  - 1 )  multiplications and n exponentiations on each iteration. 

/' 

3.4.5 ~ummar$and additional notes 

In the application of these methods to  real da ta ,  we also include '.fictitious games", one for 

each team, to  ensure that  the estimated 13, are all finite. A da ta  set with n "real" games 

thus actually contains a total of n + t games as far as the algorithms are concerned. To get 

accurate operation counts, we therefore need to  replace n in the formulas derived above by 

n t t. IVhen this is done, and the resulting quantities sim@ed, we obtain the operation 

counts shown in Table 3.1. 

As was remarked earlier, our da ta  layout, in which one rowof the design matrix repre- 

sents one game, leads to  components of the operation counts that  are proportional to  n .  By 

doing some precomputation, all the games between each pair of teams can be aggregated 

into one row of the design matrix; the effect of this, for all the algorithms, is to  reduce 

n to  the number n l  of distinct games. In tournaments where each pair of teams meets 

several times, the difference between n and nl will be considerable, and the gains achieved 

by aggregation will be large. 

As one would expect, the operation counts are linear in t for all the methods except 

Newton, where the number of additions and multiplications is cubic in t because of the 

necessity of solving a system of linear equations a t  each iteration. Of the other methods, 
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Table 3.1: Operation counts for the algorithms 

Ford-:! has the smallest coefficients attached to  both n and t ,  and so this will be the method 

whose individuaI iterations are quickest. 

In deciding which algorithm to  apply to  a particular problem, we will also need to  

consider the typical numbers of iterations required for convergence of the algorithms, so 

that  the total amount of arithmetic for each can be assessed. In the next Section, we will 

see how this works ou t  for some real da ta  sets. 

Algorithm 
Newton 
Jacobi 
Ford- 1 
Ford-:! 

3.5 Examples 

Adds Multiplies Exp'ns 
Ion + i t ( t 2  + 6t  + 59) 2n + i t ( 2 t 2  + 9t + 7)  n + t  ' 

8n + 92 2n + 3t n t t  
4n + 4t 2n + 3t 0 
3n + 3t n + 2t 0 

3.5 .1  Introduction 

LVe consider four real d a t a  sets here, from the sports of soccer, ice hockey and basketball. 

These are intended t o  illustrate how different aspects of the data  set influence the conver- 

gence properties, and hence the desirability, of the algorithms we have considered. Two of 

the da ta  sets are from round-robin tournaments, while the other two are less balanced and 

therefore provide more of a test for the algorithms. 

In each of our examples, the algorithms were run until the largest change in any of the 

3, (and h and d, if fitted) was less than an a t tempt  (not always successful) to  obtain 

four decimals of accuracy. It is unlikely that  greater accuracy would be required in practice; 

indeed, three- or even two-decimal accuracy might be sufficient to  obtain fitted probabilities 

t o  the accuracy desired. CVith our choice of convergence criterion, it was generally true that  

the estimates obtained from Newton and Jacobi agreed to  four decimals, but those obtained 

from Ford's methods tended to  differ in the fourth place. This seems to  be a consequence 

of the local convergence rates of Ford's methods being slower than their competitors?, a 

property that  also suggests that  these methods will be more competitive i f  only moderate 

accuracy is desired. 
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Table 3.2: Scores for the Iceland example 

Team Score 
Akranes 13.5 
K R  13.0 
Leift ur 10.5 
IBV 8.5 
Val u r 8.5 
Stjarnan 8.5 
Keflavik 7.5 
Grindavik 7.0 
Fylkir 6.5 
Breidablik 6.5 
Home team 52.0 
Ties 20 

Table 3.3: Iterations and operation counts for the Iceland example 

[ Algorithm I Iterations I Adds hlultiplies Exp'ns I 
Newton 

Jacobi 
Ford- 1 
Ford-2 

3.5.2 A small round robin 

Weather conditions in Iceland ensure tha t  the soccer season has t o  run during the (short) 

summer. In 1996, the t = 10 teams in the top division played a double round-robin tourna- 

ment for a total of 18 games per team and n = 90 in total.  The  scores for the teams (one 

point f o r  a win, half a point for a tie) are shown in Table 3.2, along with the total number 

of points obtained by the home teams and the total number of ties. 

Fitting the simple Bradley-Terry model using the four different algorithms required 

the numbers of iterations shown in Table 3.3. Of greater interest is the total number of 

arithmetic operations required in each case; these are shown in the remaining columns of 

the Table, and were calculated by substituting t = 10, n = 90 into the formulas of Table 3.1 

and multiplying by the number of iterations. 

With this small number of teams, Newton's method clearly comes out best, the additional 
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complexity of each iteration more than offset by the much smaller number of iterations 

required. Ford's methods are not competitive, but it is worth noting that  the operation 

count of Ford-:! is noticeably smaller than that  of Ford-1, despite requiring a greater number 

of iterations. Ford's methods compare in this way in all of our examples, suggesting that  

this behaviour persists in some generality. 

In this round-robin, each pair of teams plays twice, so that  even though n = 90, there 

are only n l  = 45 different games played. Aggregating the data  produces the most dramatic 

reduction in operations for our two implementations of Ford's method, but with the small 

t of this problem, Newton's method is still preferred. 

Newton's and Jacobi's methods can also be used to  fit models containing a tie parameter, 

a home field effect, or both. We have not carried out an analysis of operation counts for 

these models, but it is instructive t o  compare the iteration counts - Newton's method 

required four iterations no matter  which model was fitted, but Jacobi required a greater 

number of iterations when a tie parameter was included: 33 for the tie parameter only, and 

42 when a home field effect was fitted as well. 

3.5.3 A larger round robin 

The soccer season in England traditionally runs from late summer to  spring. In the 1996197 

season, the top ("Premier") division contained t = 20 teams who played 38 games each for 

a total of n = 380. The scores for the teams, giving one point for a win and half a point 

for a tie, the total points for the home teams, and the total number of ties, are shown in 

Table 3.4. 

The  numbers of iterations required and the operation counts for each method are shown 

in Table 3.5. Ford's methods are again uncompetitive, but this time, with the increased 

number of teams, Jacobi's method is superior to  Newton, indeed almost matching Newton's 

number of iterations (this is probably due to  the balance in the da ta ) .  

.As in the previous Example, each pair of teams meets twice, so that  n l  = n / 2  = 190. 

Recalculating the numbers of operations, however, does not lead to  any change in the relative 

merits of the algorithms: Jacobi's method is still preferable to Newton, with the operation 

counts for Ford-1 and Ford-2 being higher. 

When a home field effect and a fie parameter are fitted, Newton's method continues to  

require only four iterations for convergence, but Jacobi requires one ext ra  iteration with 

a home field effect and an additional 9 iterations with a tie parameter. (The  numbers of 
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Table 3.4: Scores for the England example 

Team 
Manchester Utd 
Newcastle 
Arsenal 
Liverpool 
Aston Villa 
Chelsea 
Sheffield Wed 
Wimbledon 
Leicester 
Leeds 
Derby 
Tottenham 
Blackburn 
West Ham 
Everton 
Coventry 
Middlesbrough 

Score 

Southampton 1 -5 . 5  
Sunderland 15.0 
Kottingham F 14.0 
Home team 221.5 
Ties 119 

Table 3.5: Iterations and operation counts for the England example 

Jacobi 4,100 2,000 
Ford- 1 
Ford-2 66,780 
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Table 3.6: Iterations and operation counts for college hockey 

Ford- 1 
Ford-2 

iterations happen t o  behave additively.) In the presence of ties, therefore, the advantage of 

Jacobi seems to have been lost. 

3.5.4 College ice hockey 

In the US,  43 college teams compete in the top level, "Division 1". of ice hockey organized 

by the National Collegiate Athletic Association. These teams are mostly based in the 

northeastern and midwestern US, and play anywhere between fewer than 20 and more than 

40 games in a season that  stretches from October to March. In the 1996197 season, a total 

of n = 776 games were played between Division 1 teams; a fair number of games were 

played between Division 1 teams and those a t  lower levels, but these are not included here. 

The range in strength of teams is quite wide, though "upsets" do happen. The teams are 
1 

arranged in conferences, and play most of their games against teams in the same conference; 

there are also some "independent" teams, not affiliated with any conference, who tend to  

play a smaller number of games than average. This lends a fair imbalance to  the data ,  

although the four conferences were, in this season, of similar strength, so that  teams in 

different conferences will have a similar calibre of opposition. In terms of wins and losses, 

as well as according t o  the Bradley-Terry model, the strongest team was Michigan, with 34 

wins, 4 losses and 3 ties, while the weakest on both counts was Air Force, who had 2 wins, 

16 losses and 1 tie. 

The  iteration and operation counts are shown in Table 3.6. Despite the large number 

of teams, Newton's method is clearly the best here; it maintains its record of convergence 

in a small number of iterations while the imbalance in the da ta  adversely affects the other 

methods. Indeed. there is little t o  choose between Jacobi and Ford-2 here. 

Because of the arrangement of the teams into conferences, some pairs of teams play 

many games against each other and many pairs of teams do not meet a t  all. As a result, the 
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Table 3.7: Iterations and'operation counts for college basketball 

Newton 

Ford- 1 6,497,280 3,358,800 
Ford-2 

value of nl is 317, less than half of n = 776. Running the algorithms on the aggregated d a t a  

therefore saves a considerable number of operations, especially with Ford-1 and Ford-2, but 

the pattern remains the  same, with Newton preferred and little to  choose between Jacobi 

and Ford-2. 

Ties are possible, though rare, in c&llege hockey, and the advantage of home ice seems 

to  be small, though the assessment of home ice advantage is clouded by some of the games 

being played on neutral ice (which was not accounted for in the fitting process). The models 

including these parameters were fitted anyway, using Newton and Jacobi. Newton's method 

contined to  require five iterations for convergence, while Jacobi's method was essentially 

unaffected by the extra parameters, requiring from 117 iterations with one extra parameter 

t o  120 when both were included. 

3.5.5 College basketball 

For our final example, we have an extremely large d a t a  set. Basketball is played at an  

enormous number of colleges and universities in the US; our data ,  which is taken only 

from the top level ("Division 1") of the National Collegiate Athletic Association's structure, 

consists of 4,206 games played by 306 different teams during the period from October 1996 

t o  March 1997. As with the previous example, the teams are arranged in conferences and 

play most of their games against teams in their own conference, although there is a greater 

amount of inter-conference play in basketball due to a large number of small tournaments 

played before the turn of the year and the 63-team knockout competition that  ends the 

season. Not only do the teams vary widely in strength, but the conferences do as well; a 

team's won-lost record is generally a poor indicator of the team's strength. 

With the large number of teams and the unbalancedness of the data ,  estimation is 

challenging for any algorithm. Table 3.7 shows how our four algorithms fared. With this 
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many teams, Newton's method, even though convergent in six iterations, simply cannot 

compete; Jacobi appears t o  be the method of choice, though Ford-2 is not far behind, 

especially when the cost of an-exponentiation is considered. . . 

T h e  conference structure of this d a t a  set means that  many pairs of teams never meet, 

but an$ particular pair of teams plays no more than twice. The  value of nl is 2861, which 

is closg to  Zn, a larger ratio than for the other Examples. The  effect of aggregating the 3 
d a t a  is therefore not large: the operation counts are reduced by roughly a third for Jacobi, 

Ford-1 and F while the operation counts for Newton, which are dominated by t ,  are 

all games cannot end in a tie, and I have not at tempted t o  distinguish in the 

me and away teams or games played on a neutral court, so we do not 

assess the effect of estimating home advantage or a tie parameter here. 

3.5.6 Discussion 

These examples have shown that  Newton's method, though the most complicated to  pro- 

gram, requires the smallest number of operations for convergence for small and moderate 

values of 2 .  Ford-:! always seems t o  outperform Ford-1, and tends to  perform similarly to  

Jacobi's method in large or unbalanced d a t a  sets. All these methods are far superior to  

Newton when t is large. Jacobi's method, on the other hand, appears t o  perform well when 

the d a t a  set is balanced. 

Newton's method appears to  be the most reliable, converging always in a small number of 

iterations - this is unusual behaviour, since Newton's method generally requires some sort of 

safeguard to  prevent occasional large steps being taken. The reason for this may be that  the 

log-likelihood is close to  quadratic for typical Bradley-Terry problems. When the number of 

teams is small, fiewton's method can be recommended without question, but as the number 

of teams increases, the number of operations per iteration becomes insupportably large, a t  

which point Jacobi's method or Ford-:! are t o  be preferred. 
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3.6 Comparisons with round-robin and Swiss tournaments 

3.6.1 Round-robins 

It is known (see David, 1988, p. 104; Buhlmann and Huber, 1963) tha t ,  in the simplest 

version of the Bradley-Terry model in which there is no home field advantage (order effect) 

or possibility of ties, the  ranking of the teams given by the Bradky-Terry model is identical 

t o  tha t  given by the number of wins. Further, two teams with the same number of wins 

will have the same strengths as given by the Bradley-Terry model. Buhlmann and Huber 

also show that  the converse holds: only under the Bradley-Terry model are the rankings 

guaranteed to  be identical. 

.@ The identity of rankings extends to  tournaments with ties (Davidson, 1970): the teams 

are now ranked by points, with 1 point given for a win and point for a tie. As noted in 

the discussion of the likelihood equations in Section 3.2, a linear transformation of this scale 

has no effect on the estimation procedure, and since such a transformation does not affect 

the ranking of the teams by points either, the result continues to  hold. However, there is no 

guarantee of equality of rankings when some other point system is used, such as awarding 

3 points for a win and 1 for a tie (which is the world standard for soccer). 

/, We show in Theorem 3.4 tha t  equality of rankings holds in the presence of a home field 
i 

advantage, provided tha t  the round-robin is properly "balanced". As a preliminary, we 

require a Lemma that  enables us to  assert tha t  the expected number of points for a team 

from a game increases with the difference in strengths: 1 ', 
\ 

Lemma 3.3 The expected number of points p , , ~  + ~ , , ~ / 2  is an increasing function of h + 
9 1  - P I .  

Proof: Let s2 = exp(h + B , ) ,  y2 = exp(p,) and 6 = exp(d). Then p,,, = x 2 / ( x 2  + y2 + 6xy) 

and p,,o = 6xy/ (x2  + y2 + 6sy) .  Thus the expected number of points is 

For fixed y, this is seen to  be a function of x that  is zero when x = 0,  and increases t o  1 

with 2 ,  and thus, since I is an  increasing function of h + ,f3, for Dl fixed, the result is proved. 
/ 

Theorem 3.4 In a round-robin where, for each i and j play against each other r times at 

the field of team i and r times at the field of team j ,  the teams are ranked identically b y  the 
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Bradley-Terry model and  by points, with one point awarded for a win and  a half point for a 

tie (or any linear transformation of this scale). 

Proof: It suffices t o  show that  all pairs of teams ( i ,  j) are correctly ranked; in particular, we 

show that  the observed numbers of points are correctly greater, equal or smaller as B, > b,, 
, = , , < . Furthermore, since the Bradley-Terry likelihood equations require b t o  

be found such that  the observed and expected points are equal, we need only show that  the 

expected numbers of points are  ordered correctly. Let s,, = p , , ~  +pmno/2 be the expected 

number of points for team m in a game a t  home against team n. 

Consider a pair of teams i and j for which j, > b, For k # i ,  j ,  both teams play team 

k a t  home-r times and away r times. Now, s,k > s ,k because of Lemma 3.3 and sk, < s k 1  

by the same Lemma, so tha t ,  for each opponent k ,  team i has a greater number of expected 

points than team j, both home and away. Also, h -t PI - 6, > h + - PI ,  so that  team i is 

expected to  gain more points than team j in the totality of games between team. Thus the 

result holds if  13, > B,. 

The other cases follow similarly; if fit < b,, the preceding argument can be used with i 

and 1 exchanged, whereas if Dl = Dl, stk = slk and sk, = s k ,  for all k and s,, = s,,. Thus 

the proof is complete. 

It is worth noting that  the Theorem does not in general hold if the balance condition is 

not satisfied. For example, if the home field advantage is large, then a team that  plays most 

of its games a t  home will be expected to  gain a larger number of points than a team that  

plays the same opposition predominantly away from home. Even if the number of home and 

away games is balanced for each team, there is still an advantage in expected points for the 

team that  plays the very strongest and very weakest opposition away from home, where the 

probabilities are affected least, and the other teams at  home, where the probabilities a r e  

affected most by the home field advantage. 
P 

& i 

3.6.2 Swiss tournaments 

In Section 2.5, we introduced Swiss tournaments as an alternative to  round-robins when the 

number of teams t is too large for a round-robin to be feasible. 

It should be noted first t h a t ,  because the design produce$ by a Swiss tournament is 

sequential in nature, s tandard likelihood results cannot be applied blindly. In particular, the 

probability of a particular game ending in a win, loss or tie depends on the teams involved in 
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tha t  game, and this in turn depends on the results of previous games, so tha t  the  likelihood 

is a product not of independent probabilities, but of conditional ones tha t  express this 

dependence. This has a n  impact both on the information matrix and on repea ted-samphg  

inference: up t o  now, we have not had t o  worry about distinguishing between observed and 

expected information, since the second derivative of the log-likelihood for independent d a t a  

does not contain the  data ,  and therefore the  observed and expected information matrices 

are equal. However, calculation of the expected information for a sequential design requires 

us t o  include the conditioning, and this will in general be very difficult. Similarly, repeated- 

sampling inference from a sequential desigp requires us not to  conceive of replications of 

results from the design that  was observed, but  to  consider that  the design itself will vary in 

repeated sampling. (Adherents t o  the "pure likelihood" principle of inference face no such 

problem, since for them the only relevant issue is what was actually observed, rather than 

any rules determining the design of the experiment.) 

This issue also arises in the sequential construction of optimal designs, as  we shall see 

in Chapter 4.  Silvey (1980, p. 63) gives a discussion in this context. While acknowledging 

that  these problems exist, however, we continue to  estimate parameters as  if the design had 

been fixed in advance; this approach seems t o  yield sensible results with considerably less 

attention to  detail than a more careful approach would require. 

  he lack of balaice inherent in a Swiss tournament, as well as the sequential nature of 

the tournament design discussed above, precludes any easy theoretical results concerning the 

equality of rankings obtained from the tournament itself and from Bradley-Terry estimation. 

We turn,  therefore, t o  simulation studies to  investigate the nature and strength of agreement 

between the two rankings. 
i 

In order t o  do  this, we need to  recall tha t ,  in a Swiss tournament, the teams are first 

ranked by points, denoted here a,,  and then, if  tied, by Buchholz score ( the  sum of points 

obtained by all the opponents of each team, a measure of "strength of schedule" 1, which is 

here denoted 6 , .  Then we need a measure of the agreement between the two rankings. We 

have chosen Kendall's T for our measure of rank correlation, since it is based on the number 

of b L d i s ~ ~ r d a n ~ e ~ " ,  tha t  is, the number of pairs of teams ( i ,  j) such that  team i is ranked 

above team j on one ranking but below on the other; the number of discordances seems a 

natural way t o  quantify disagreement between rankings. I 

Simulations were carried out for various combinations of number of teams, disparity of 

team strengths and tendency for ties t o  happen. Specifically, we assumed tha t  the true P, for 
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the teams are equally spaced and in descending order, with the difference ,f?, -P,+, chosen so 

that  the probability of team i defeating team j (given a non-tie, in the cases where ties are  

possible) is p w ,  for p w  = 0.5,0.6,0.7. The tie parameter in the Bradley-Terry model can 

be related t o  the probability of a tie occurring between two teams of equal strength; in our 

simulations, the parameter is chosen so that  this probability is pr = 0,0.1,0.25,0.4. Finally, 

the numbers of teams t investigated were t = 10,20,30,45,  the number of rounds in the \ 
tournaments were respectively T = 6,9 ,10,12 (approximately 2 log2 t ) ,  and 100 simulations 

were carried out for each combination. 

The  results of the simulations are shown in Table 3.8. The column marked TO shows the 

mean "raw" Kendall correlations between the rankings obtained from the Swiss tournaments 

and the Bradley-Terry (I,. The  correlations are generally high, but tend to  decrease as  t 

increases and increase as pw increases ( the  relationship with p~ seems unclear). As pw 

increases for fixed t and p ~ ,  the true ranking becomes easier to  discern, and so it seems 

likely that  both rankings are approaching the true ranking. As t increases for fixed pit. 

and p ~ ,  the number of rounds iri the tournament becomes a smaller fraction of t - 1, the  

number of rounds in a single round-robin, so that  it becomes increasingly difficult t o  rank 

close-together teams correctly. : 

A more detailed investigation was conducted of the situations in which a pair of teams 

would be misranked in the Swiss tournament (relative t o  the Bradley-Terry 0,). In the vast 

majority of cases (typically 70%-80x1, especially for pw > 0.5, a pair of teams ( i ,  j )  would 

be misranked because team i had more points but a distinctly smaller Buchholz score than 

team j .  This means tha t  team i faced considerably easier opposition than team j through 

the tournament, and so, even though a ,  > a j ,  is actually assessed as weaker (P ,  < D,) by the 

Bradley-Terry model. This suggests that  a better approach might be to  calculate a Swiss 

tournament score by a, + ab, ,  for some value of a ,  and rank the teams in this fashion. Note 

that  the standard procedure consists of taking a to  be a slightly larger than zero. 

For each of the  simulated tournaments, the value a,,, of a was found such that  the mean 

value of r was maximized for that  combination of t , p w , p ~ ;  in other words, a was chosen t o  

make the rankings based on this modified score correspond as closely as possible on average 

to  the rankings from the (I,. Because a small change in a may not change the ranking, and 

hence r has a plateau as a function of a ,  the maximizing value a,,, is not uniquely defined, 

and in particular cannot be pinned down to  more than two or three decimals. In Table 3.8. 

the column labelled T,,, shows the maximum value of T (which is  precisely defined), and 
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Table 3.8: Kendall rank correlations for simulated Swiss tournaments  
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the column labelled a,,, shows the (unique to  two decimals) maximizing a.  

The values of T,,, are substantially greater than those 'of TO in almost all cases; fur- 

thermore, the variability in the values of a,,, is small over the entire range of values of 

t , p w , p ~  in the study. In particular, the value cr = seems to  be "typical" of the a,,, 

values, and is also a readily memorable number. We can therefore propose ranking teams 

in a Swiss tournament, instead of by points with the Buchholz score as a tiebreaker, by the 

L L ~ ~ ~ r e ~ "  S, = a, + b, /6 .  This was done for each simulated tournament. and the values rl of 

the mean Kendall correlation for each combination of t , p u . , p r  are'shown in the Table. It 

is seen that  the values of rl are very close t o  r,,,, even when a,,, is not especially close 
1 to  s ,  SO that ,  as with r,,,, the rank correlations are substantially improved in almost all 

cases. 

The simulations were carried out  by awarding two points for a win and one for a tie, so as 

t o  enable integer arithmetic t o  be used, but it should be noted that  any linear transformation 

of the point scale has the same effect on the Buchholz scores as it does on the points, so 

that  the same value a = can be used for any such point scale. 

In a Swiss tournament with r rounds, the points scored by each team are proportional 

to  r ,  while the Buchholz scores are the sum of r quantities each proportional t o  r ,  and so 

themselves are proportional t o  r Z .  With this in mind, one might suspect that  a score of the 

form a, + a'& would give better results. This was tried with the results of the simulation. 

It turned out that  the values of r,,, were very similar (sometimes slightly larger, sometTmes 

slightly smaller) to  those obtained with a,,,, but,  rather less conveniently, the values of 

a',,, were very much more variable with no obvious pattern. So our recommendation 

stands: namely, to  rank teams by st  = a, + b t / 6 .  

It should be borne in mind that  these conclusions are only valid in the range of the 

simulations performed. In particular, the gains in using the st rather than ranking by points 

may be negligible for a = for larger values of t or p ~ .  The evidence of our simulation 

study, however, suggests tha t  the variability in values of a,,, is small for large t ,  and that  

the biggest gains rl - ro are obtained for large values of p ~ .  



Chapter 4 

Optimal designs and comparisons 

4.1 Introduction 

1 In Chapter 2, we considered designs for paired-comparison experiments in a general setting. 

and in Chapter 3, we looked at  the Bradley-Terry model. It is natural now to  consider the 

design problem in cases where the Bradley-Terry model is tenable; in particular, we can use 

the theory of optimal design to  develop designs which should permit accurate estimation of 

the parameters in a Bradley-Terry model, and we can investigate the efficiency relative to  

these "optimal" designs of round-robin and Swiss tournaments. 

Throughout this chapter, our objective is t o  estimate accurately the strengths of all 

teams in a tournament. There are other possible objectives, such as maximizing the  prob- 

ability of detecting the best team, for which the design goals are different. (For example, a 

knockout tournament is, relative to  the number of games that  need to  be played, an  effective 

way of finding the best team but a very ineffective way of ranking all the teams; see David, 

1988,. Section 6.4.) 

We begin with a short review of the ideas of optimal experimental design. Atkinson and 

Donev (1992) and Silvey (1980) provide a more general background. We then investigate the 

nature of optimal designs and their determination when the Bradley-Terry model holds. The 

problem is interesting because of the design space: rather than being able to  choose from 

an infinite set of,z-values in some closed region, our design space consists of the t ( t  - '1)/2 

different games that  could be played between the teams, and is a matter  of choosing which 

games t o  play, and how frequently. Like Atkinson and Donev, we consider "continuous", 

"exact" and "sequential" designs, and offer some ideas about the application of optimal 
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design in practice. Finally, we present some efficiency comparisons between round-robins, 

Swiss tournaments and sequential designs with optimal exact designs of the same size. 

4.2 Optimal design 

The meaning of a "best" design depends on the objectives of the experiment. One might, for 

example, be interested in estimating the parameters of a model accurately, or be interested 

in predicting the response variable with high accuracy in some region. There are thus 

numerous optimality criteria in use - see, for example, Atkinson and Donev (1992, ch. 10). 

However, since accuracy of estimation and prediction are both governed by the information 

matrix, most of the commonly-used criteria are functions of the information matrix. There 

are, in fact, some equivalence results, given in (4 .2)  and Theorem 4.2. 

For our notation, let u denote a design, that  is, a collection of values {I,, w,) where the 

x, are design points and the w, indicate the amount of experimental effort a t  that  point. 

\.Ye distinguish between "continuous" designs, in which C, ul, = 1 and the w, indicate the 

fraction of observations to be taken a t  design point x,, and "exact" designs, where the w, 

are integers with C LC, = n for some chosen value of n .  Let M(u ,O)  denote the p x p 

information matrix based on a design u ,  evaluated at  parameter value 0. We will tend to 

have a particular value of 0 in mind, in which case the dependence on 0 will be suppressed. 

Let A,, . . . , A, denote the eigenvalues of it1 ( u ,  8); note that the eigenvalues of M- ' (u ,  0) ,  

the asymptotic covariance matrix of the parameters, are l / X 1 ,  . . . , I//\,. 

Continuous designs are generally easier t o  obtain or verify by means of the theory, but 

in practice, exact designs are required. For large samples, &act designs can be obtained by 

the obvious process of multiplying the w ,  in a continuous design by n and then rounding, 

but ,for small samples, and commonly in the designs required for the Bradley-Terry model, 

the loss of accuracy due to  rounding can be too great, and so we will consider methods for 

generating exact designs directly. 

Some commonly-used optimization criteria are expressed in terms of the eigenvalues as 

follows: 

A-optimality Minimize I , ( l / A , ) ,  the sum (or equivalently average) of the variances of 

the parameter estimates. 
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D-optimality Minimize 1/ n, A,, which is the inverse determinant of the information ma- 

trix ( the  "generalized variance" of the parameter estimates"). 

E-optimality Minimize max,(l /A,) ,  the variance of the least well-estimated contrast at@ 

where a'a = 1. 

In Linear models, designs can typically be found which are optimal under the chosen 

criterion for all parameter values, and therefore there is no doubt about the optimality of 

the design. For non-linear models, however, of which the Bradley-Terry model is an  exam- 

ple, the optimal design depends on the values of the parameters. In theory, this presents 

no problem, since optimal designs can be found for any given values of the parameters. 

but in practice the dependence on the true parameter values presents a difficulty. Two 

possible approaches suggest themselves: to  design based on a priori values for the parame- 

ters. as we do in Sections 4.3.2 and 4.3.3, or t o  adopt a sequential approach, making a few 

observations, estimating the parameters, constructing a small design based on the current 

information about the parameters, and repeating as necessary. \.Ve investigate this approach 

in Section 4.3.4. 

We concentrate on D-optimality, which turns out  to  have some attractive properties for 

the Bradley-Terry model. 

4.3 D-optimal design for the Bradley-Terry model 

4.3.1 Introduction 

As discussed above, we will need to  consider a number of different design problems. Assum- 

ing the parameters to  be known, we wish to  find continuous and,  if  possible, exact designs. 

Then we discuss sequential designs. The algorithms used in each case are well-known (see 

Atkinson and Donev, 1992); it is the nature of the designs produced by these algorithms 

that  is of particular interest here. 

In Chapter 3, we found the likelihood and derivatives for a general form of the Bradley- 

Terry model. In this thesis, we consider only the simplest form of the model, in which there 

is no home field (order) effect and no tie parameter. In this case, the design space consists 

of the set of t ( t  - 1 ) / 2  different games between the t teams, and a design consists of this 

List of games together with a value w,, , z ,  J = 1, . . . , t ,  i # j, that  represents its frequency or 

relative frequency in the design. There is no longer any need to  distinguish between, say, 
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i vs. j and j vs. i, so we adopt the convention that  w,, = w,,. The notation of Chapter 3 

simplifies: since p , , ~  = 0 for all i, j, p,,l = 1 - p,,l and pJ,l = p,,l = 1 - p,,l. Noting also 

that  the design implies w,, = w J ,  = y,,+ = y,;+, we find that the off-diagonal elements of 

the information matrix M ( u ,  P )  become 

and the diagonal elements become 

The diagonal elements are such that  the row sums of this matrix are all zero, so that  

A1 is rank-deficient by one (or more, if too many of the w,, are zero). We cannot therefore 

immediately apply D-optimality, det M being zero. Two possible remedies are: 

a Remove one row and column of h f ,  producing a ( t  - 1) x ( t  - 1 )  matrix of full rank 

for all reasonable designs. 

a Add a constant 6 to the diagonal of M ,  which will increase all the eigenvalues by 6 ,  

including any of them that  were zero, and thus render hl positive definite. 

Either course can be helpful in certain circumstances. In dealing with continuous designs, 

we know or suspect that  the information matrix will be rank-deficient by exactly one, and 

so the first course will be easier to  follow. However, with exact and sequential designs, it 

is generally easier to  take the second course (choosing 6 large enough t o  ensure that  hi is 

numerically positive definite but small enough not to  interfere with the determination of the 

design), because in the early stages of design construction, we wish to  be able t o  proceed 

sensibly even if the information matrix has multiple zero eigenvalues. The two approaches 

give answers that  are "equivalent" in the following sense: 

Theorem 4.1 Let  a n  n x n m a t r i x  A have  e igenvalues  X I , .  . . , A, with A, 2 0 for all i .  S u p -  

pose that  k e igenvalues  of A are exact ly  zero. T h e n  the  d e t e r m i n a n t  of  the  m a t r i x  obtained 

f rom A by deleting k l inearly dependen t  rows a n d  c o l u m n s  is  approximate ly  6-k det(A t 61) 

for 6 smal l .  

Proof: The matrix A + 61 has eigenvalues A1 + 6, .  . . , A, + 6, and these eigenvalues are all 

positive if 6 > 0. The determinant of A + 6 1  is n:=,(A,  + 6) ,  which can be written as the 
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sum of h:=, A;, 6 times the  s u m  of all products containing n - 1 A , ,  . . ., b k  t imes the  sum 

of all products containing n - k A,, . . ., and bn times the  sum of the  A,. Thus  if A contains 

k zero eigenvalues, de t (A + 61)  i b k  nt:x,fo A, plus terms containing higher powers of 6. 

Neglecting these terms,  we see tha t  this determinant contains the  product of t he  non-zero 

A; values. 

Now, the  matr ix A is of rank n - k,  and thus  has k rows tha t  can be expressed as linear 

combinations of other  rows of A.  Deleting these rows and their corresponding columns yields 

a non-singular matr ix A' with n3n-zero eigenvalues the  same a s  those of A. (This  can be 

shown by first applying a linear transformation t o  set the  elements of the  rows and columns 

concerned t o  zero, then noting tha t  zero rows and columns can be deleted t o  yield a matr ix 

with the same non-zero eigenvalues.) Thus ,  provided higher powers of 6 can be neglected, 

det A' = 6 - k  det (A + 61).  as  we wished t o  prove. 

4.3.2 Continuous designs when parameters known 

T h e  w,, of a continuous design are  the  proportion of all games tha t  a re  played between 

teams i and j, based on the  assumption tha t  all B, and P , , ~  are  known. Since the  w,, of a 

D-optimal  continuous design depend continuously on the  Dl and pill, it is possible t o  s ta te  

general results which allow one t o  check the  optimality of particular designs, and  t o  use 

methods of continuous optimization t o  find optimal  (continuous) designs. These issues a re  

considered in Chapter  9 of Atkinson and Donev (1992). 

For small t ,  the  continuous D-optimal  design can sometimes be found analytically. For 

example, consider a tournament with t = 3 teams,  for which p121 = and p231 = $. Since 

the Bradley-Terry model is based on additivity of log-odds, it follotvs t ha t  P131 = ;. For a 

general design u,  it follows tha t  M ( u )  is 

T h e  determinant is zero, because the  row and column sums are  zero, ut  the  determinant 
9 

2 4 147 

a 
of the  upper left 2 x 2 submatrix is 392w12w13 + - L ~ 1 2 ~ 2 3  + 

Maximizing the  determinant subject t o  the  constraint uj12 + 2013 + U123 = 1 yields the 

solution w 1 2  = 0.420, w 1 3  = 0.146, ~ 2 3  = 0.434. Thus  D-optimality tells us t o  play fewest 



CHAPTER 4.  OPTIMAL DESIGNS AND COMPARISONS 7 1 

games between the teams 1 and 3 that  are most different in strength, and most games 

between the teams 2 and 3 tha t  are most evenly matched. 

This is typical of D-optimal designs for Bradley-Terry models - the "information" in 

a game is p I l l ( l  - p,]I), which is maximum when p , , ~  = 3, so that  the optimal design 

tends t o  contain as many of these "informative" games as is consistent with being able to  A 

estimate all the team strengths accurately. One other noteworthy feature in general is that  

the teams do not play the same number of games: in this example, team 2 features in over 

85% of the games, while team 1 appears in fewer than 57%. This is in contrast with the 

other tournament types we have considered; in both round-robins and Swiss tournaments, 

all teams play the same number of games. 

If the teams are all assumed to be of equal strength, there should be no reason for the 

D-optimal design to call for any one pair of teams to  meet more often than any other pair. 

LVe will show that  this is indeed the case, and we will also derive a method for finding 

D-optimal designs in general for the Bradley-Terry model. 

To do this, we review a result, known as the General Equivalence Theorem, that  yields 

checkable conditions for D-optimality. We present the result in greater generality first. . 
Let q { L \ l ( u ) )  denote a convex function of the information matrix which is to  be min- 

imized. All of the optimality criteria above can be written in this way; for example, the 

D-optimality criterion can be taktn as - logdet{ , t l (u)) .  Let u denote the design measure 

that  puts unit mass a t  u ,  and let @(x, u)  denote the directional derivative of \Ir{iCi(u)) in 

the direction u .  The  General Equivalence Theorem (as given in Atkinson and Donev, 1992) 

is then: 

Theorem 4.2 T h e  follol~ling three s ta tements  are equivalent: 

1. T h e  design u' minimizes  9{1W(u)).  

3. Q ( X .  u*)  achiez?es its m i n i m u m  at the points of the design. 

Proof: See Silvey (1980, p. 22).  

The nature of the theorem can be seen more easily in the case of D-optimality. Let p 

be the number of parameters being estimated. When 
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it follows that  q5(~ ,  u )  = p - d(x,  u ) ,  where d(x,  u )  is the standardized variance of the pre- 

dicted response a t  z (see Atkinson and Donev, 1992, p. 95). The three equivalent conditions 

can therefore be expressed: 

2. max d(x ,  u') < p. 

3. d(x, u*) achieves its maximum at  the points of the design. 

It is worth noting that ,  by this result, D-optimality is the same as a criterion, known as 

G-optimality, which tries t o  minimize the maximum prediction variance over the design 

space. This explains the name of the Theorem. The same result, however, does not hold 

for exact designs; see Atkinson and Donev (1992, p. 43-44) for an example. 

These results can he used to  check a candidate continuous design to  see whether it is 

D-optimal or not. Typically, the maximum of the second condition is equal to  p. It should 

be noted that  this maximum is over the entire design space; it is not enough to  check the 

standardized variance only a t  the points in the design. 

For the Rradley-Terry model, with information matrix , l f ( u )  for a continuous design u 

(evaluated a t  some fixed parameter value P ) ,  the standardized variance takes the simple 

form 

d(i, j ,  u)  = p, , l ( l  - pIJ l ) (ml '  + mJ1 - 2m1]), 

where mlJ  denotes the ( i ,  j ) - t h  element of {;ll(u)}-', for a game between teams i and j 

The General Equivalence Theorem then asserts for the D-optimal design that  

for all i and j .  Li'e can therefore check a candidate design for D-optimality by checking this 

condition. The following Theorem is a useful example. 

Theorem 4.3 When p,,l = p,,, = for all i and j, the D-optimal design sets w,, = 

2/{t(t - 1)) for all i and j .  

Proof: Since p I J l ( l  - p t J l )  = $ for all i ,  j ,  each off-diagonal element of the information 

matrix for the postulated design is m,, = -1/{2t(t - 1 ) ) .  The diagonal elements are 

the negative sums of the t - 1 other entries in each row (or column), and are therefore 
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n,, = 1/(2t ) .  Applying the tactic of removing row and column t t o  produce a matrix 

h i '  tha t  is non-singular, we can apply a well-known result t o  deduce the inverse of hi ' ,  

and thus obtain an "inverse" for hf by appending a row and column of zeroes to  M I - ' .  

This "inverse" has, for 1 5 i , ~  5 t - 1, m" = 4(t - 1) and m'J = 2(t - 1 )  for i # J .  

Thus, for such z and 1, d ( i , j , u )  = :{4(t - 1)  + 4(t - 1)  - 2 .  2(t - 1)) = t - 1, and also 

-.d(z, t ,  u )  = :{4(t - 1) )  = t - 1 = d(t ,  i ,  u) .  In other words, for each pair of teams t , ~  with 

1 < i, j 5 t ,  the standardized variance is exactly equal to p = t - 1. Since the design 

space consists of all such pairs i ,  j, the General Equivalence Theorem can be applied, and 

we conclude that  the hypothesized design is indeed D-optimal, completing the proof. 

An interpretation of this result is tha t  "equally matched teams should meet an equal 

number of times". In other words, if the w,, are scaled up t o  an integer, a round-robin 

tournament is D-optimal when the teams are evenly matched. This adds a mathematical 

justification to  the heuristic notion of round-robin tournaments being "sensible". 
P 

It also turns out t o  be possible, a t  least in certain circumstances, to  obtain the D-  

optimal continuous design when the teams are not evenly matched. This is done by using 

the General Equivalence Theorem to  show that  the inverse of the information matrix for 

the D-optimal design must take a certaiA form, and showing how t o  extract the w,, for a 
P 

design from the information matrix. The  details are given in the next two Theorems. 

Theorem 4.4 For anytinformation matrzz h l ( u )  that comes from a Bradley-Terry model, 

the continuous destgn thatproduced M(u)  has w,, given by w,, = -n~ , , / {p , J l ( l  - p I J l ) )  for 

Proof: The proof is straightforward, since the only contribution t o  m,, comes from games 

between teams i and j. In particular, i f  a continuous design calls for a fraction w,, of the 
9 

sampling effort to  be applied to  i vs. j, m,, = -w,,plJl(l - p , , ~ ) .  The result follows. 

Theorem 4.5 If the D-optimal design is such that all games i us. j have weight w,, > 0, 

then the upper left ( t  - 1) x ( t  - 1 )  submatriz of h l ( u )  for the D-optimal design has a n  

inverse whose elements a w  

and 

for i # j. 
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Proof: The proof consists simply of showing that  d(i ,  j ,  u)  = t - 1 for all i and j based on 

this matrix M(u) .  First, for i ,  j < t - 1,  

The  same argument holds for d( t ,  i ,  u). Thus, without assuming that  u7,, > 0 for all i # j, 
we have obtained the form of the inverse. However, Example 2 below illustrates that  if  - 
w,, = 0 for some 2,3 with t # j ,  the above procedure does not yield a sensible h l (u) .  Thus 

the condition is necessary, and the proof is complete. 

LVe look a t  two examples to  illustrate the above theory. For Example 1, we take t = 6 

teams whose strengths are equally spaced on the logistic scale; specifically, suppose that  

- = 0.2 for 1 5 i 5 5. This means that  each team has probability approximately 

0.5.5 of defeating its "immediate neighbour", and,  by the Bradley-Terry model, team 1 will 

defeat team 6 with probability approximately 0.73. These are six reasonably well-matched 

teams. so we might expect that  the theory above will apply and will yield a design with w,, 

positive and not too dispersed. Table 4.1 shows the results. The theory has indeed worked 

correctly, but the optimal design shows that  games between teams 1 and 2 (and teams 5 

and 6)  should occur almost three times as frequently as games between 1 and- 6. In general, 

the design calls for games between close teams to  be most frequent. Note, however, tha t  

games between teams 3 and 4 are relatively infrequent, because these two teams are already 

often compared indirectly, and therefore direct comparisons between them are not especially 

profit able. 
B 

For Example 2, we return to  t '=  3 teams, but space their strengths more widely; specif- 

ically, we let P1 = 3 , j 2  = = 0. This means that  p 1 2 ~  = 0.88 and p231 = 0.73 

approximately. Applying the theory in this case, under the assumption tha t  w,, > 0 for all 

z # J ,  yields the absurd result wl2 = 0.9855, w23 = 1.2290, uq13 = -1.2145. While it is still 

t rue that  the w,, sum to  1, the value of ~ 1 3  can only point to  the fact tha t  there are no 

games between teams 1 and 3 in the D-optimal design. With this and the symmetry of the 

problem in mind, it seems likely that  the optimal design in fact places equal weight of 0.5 
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Table 4.1: Relative frequencies of games in Example 1 

6 

Rel. frequency 

on the  other two games. This design produces ( t o  the accuracy shown) 

from which, by straighthrward calculation, it follows that  for this design d(1 ,2 ,  u)  = 2 = 

t - 1 = d(2,3 ,  u) and d(1 ,3 ,  u )  = 1.2126. The General Equivalence Theorem then shows 

that  this is indeed the D-optimal design, since the maximum value, 2, of d(i,  j ,  u) occurs a t  

the games featured in the design; d (1 ,3 ,  u) < 2, but thisl+es not matter  since the design 

contains no games between teams 1 and 3. 

For t = 3, assuming without loss of generality th&t PI >_ P2 2 P3, we can show that  either 

Theorems 4.5 and 4.4 yield a D-optimal design with all three possible games occurring, or ' (when application of these results yields wl3  < 0) ,  that  the D-optimal design sets wlz  = 

w23 = 0.5, w13 = 0. The latter case is easily demonstrated t o  be D-optimal when w13 = 0 

by directly maximizing the determinant of the upper left 2 x 2 submatrix of M subject to  

u113 = 0 and q 2 - t  ~ 1 2 3  = 1. For larger values o f t ,  however, it does not seem to  be possible to  

make general statements about D-optimality when some of the possible games are missing 

from the optimal design. 

For general t we can note that  for games between i and j not in the design, d ( i ,  j ,  u)  < 
t - 1, so that  there exists a value of d(i, j ,  u) for which, if we calculate hl-' and M as 

described above, we will find that  m,, = 0 and hence that  w,, = 0 as required. If values 

d(z, j ,  u)  can be found for all i ,  j pairs for which i vs. j is not in the design in such a-way that  

each m,, = 0, then the General Equivalence Theorem tells us that  the D-optimal design has 
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been found. For designs where the number n, of games excluded is small, this leads to  a 

practical method - a grid search of trial d( i ,  j ,  u )  values will reveal the values for which mi, 

is approximately zero. For instance, in Example 2, reducing d(1 ,3 ,  u )  to  1.6 while .leaving 

d(1,2,  u)  = d(2,3,  u )  = 2 produces ml3 = 0.0002, wl2 = 0.5017, w23 = 0.5008, w13 = 

-0.0025, which strongly suggests that  the design with wl2 = ~ 2 3  = 0.5, ~ 1 3  = 0 is the 

D-*tima1 design, as we showed t o  be the case. 

When n, is larger, however, grid searches become impractical, and greater insight into 

the interdependence of d ( i ,  j ,  u )  and the elements of M ( u )  is needed. 

4.3.3 D-optimal exact designs when parameters known 

A D-optimal exact design u is one for which det M ( u )  achieves its maximum over the set 

of integer uv,,, where now I,,, w,,  = n ,  the desired number of games in the tournament. 

If n in a tournament is large, the most straightforward way t o  design the tournament 

is t o  find the D - ~ p t i m a l  continuous design, using the methods of Section 4.3.2, and then 

t o  multiply the fractional w,, thus obtained by n and round off t o  integers. For large n ,  

the distortion induced by the rounding process will be slight, and we may confidently assert 

tha t  this exact design is D-optimal or very close t o  it. 

On the  other hand, when n is small, the rounding process may induce sufficient distortion 
B 

for there to  exist a different exact design with noticeably larger det h1. In this case, we will 

wish t o  consider algorithms for producing exact designs directly, so as to  avoid the rounding 

q u e .  

There are numerous algorithms available (Atkinson and Donev, 1992, ch. 1 5 ) .  They 

share a philosophy of maintaining a "current" design and adjusting it by adding or deleting 

, design points, continuing until the design is of the right size and cannot be improved by 

exchanging one design point for another. Such algorithms are well suited for the Bradley- 

Terry model, where the set of candidate design points is discrete and finite; in our discussion 

below, we focus on application of these algorithms to the Bradley-Terry problem. For D -  

optimality, there are two other helpful facts. First, the greatest increase in det M ( u )  is 

obtained by adding the point where d(i ,  j. u )  is largest (and,  correspondingly, the smallest 

decrease is obtained by removing the point where d(i, j ,  u )  is smallest). This is shown by 

(4.2) below. Second, formulas exist (eg. Atkinson and Donev, 1992, p. 170; Dennis and 

4 Schnabel, 1983, p. 188; Thisted, 1988, p. 117) to  enable M ,  det A1 and Al-' to be updated 

without having to be recalculated from scratch each time a design point is added, removed 
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or  exchanged with another point. 

In dealing with exact optimality, it is usually easiest to  work with a "regularized" version 

of M obtained by adding a small positive constant 6 t o  each diagonal entry. As noted earlier, 

this does not. for small 6, affect the optimality or otherwise of designs, but in deriving exact 

designs, it is useful t o  have an information matrix that  is guaranteed t o  be non-singular 

even when the number of points in the current design is very small. In the remainder of 

this section. we assume tha t  the  information matrix has been so  regularized. 

The simplest algorithm is known as the "forwards procedure". It s tarts  by choosing one 

game a t  random, and thereafter adding a game i vs. j for which d(i, j, u) is maximized for 

the current design (breaking ties a t  random), until the design contains the desired number n 

of games. It is known (Wynn, 1972) that  this procedure produces designs which, as n -- oo, 

converge to  the D-optimal continuous design, so there is some hope that  stopping when the 

design contains n games will yield a reasonably good, i f  perhaps not optimal, design. 

Complementary to  the forwards procedure is the "backwards procedure". A design 

containing no > n games is chosen (perhaps randomly), and the game in the current design 

for which d(i, j, u )  is minimum is removed. This removal process is continued until the 

design contains the desired n games. 

In the same way that  explanatory variables in a regression can be chosen "automatically" 

by forward selection, backward selection, or a stepwise procedure, the natural extension of 

these design algorithms is to  allow games to  be both added t o  and deleted from the design 

as the algorithm progresses. This is desirable in the design problem for the same reason 

as in the regression variable-selection problem: whether or not a game should be added t o  

or removed from a design typically depends on which other games are also in the design. 

There are various ways in which this addition and removal can be handled, for example: 

0 Add the game for which d is largest for the current design, then remove the game for 

which d is smallest in the resulting design (Mitchell and Miller, 1970; Wynn, 1970), 

or do the removal first (Van Schalkwyk, 1971). 

0 Add, and then remove, more than one game a t  each iteration (Mitchell, 197'4) 

Combine the addition and removal processes by considering all possible games i vs. j 

that  could be added to  the design and games k vs. 1 that  could be removed (because 

they are currently in the design), and exchange the pair of games for which the increase 

in the determinant is largest (Fedorov, 1972, p. 164). 

P 
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r Instead of finding the largest increase in det h l ,  choose pairs of games at ,random and 

exchange any games for which det M is increased (Cook and Nachtsheim, 1980). 

r Speed up the Fedorov algorithm by considering only the I< games with the largest 

values of d for addition and the L games with smallest values of d for deletion (Atkinson 

and Donev, 1992, p. 173). 

In the same way tha t  stepwise regression does not necessarily detect the best set of 

explanatory variables in a regression, these algorithms are  not guaranteed to  find a design 

with the largest possible det ill, since this is a combinatorial optimization problem (unlike 

the finding of a continuous D-optimal design, which is a continuous optimization problem?, 

and the algorithms may find a local rather than a global maximum. Generally speaking, 

the above algorithms t rade  intelligence in adding and removing games for speed; the more 

sophisticated algorithms will tend to  produce better designs, but will take longer t o  do so. 

Of course, the user is a t  liberty t o  run a faster algorithm repeatedly from different starting 

designs, and to  take the best design generated by any of the runs; whether this is preferable 

to  running a slower algor?thm once will be problem-dependent. 

Since the Bradley-Terry design problem seems to  be a reasonably co-operative one, we 

do not carry out a comparison of algorithms here; the Mitchell-Miller-LVynn algorithm, re- 

run a number of times and the best design chosen from these runs, seems to  work well a t  

a reasonable speed and without undue computational complexity. Our implementation of 

the algorithm follows these steps to  produce a design with n games: 

1. Set h i  -' = 116 for some small 6, and set det M = 6'. (This corresponds to  an initial 

hi = 61, so that  the matrix hl is the Fisher information with 6 1  added.) 

2. Select n games a t  random (with equal probability and with replacement) from the set 

of possible games, and add them to  the design, keeping track of h l - '  and det h1 as 

each game is added. 

3. Save the current value of det M ( u )  
- 

4.  Find a game i vs. j ior which d(i, j, u )  is maximized (in the case of a tie, choose one 

game a t  random or arbitrarily) and add it t o  the design, updating h1-l and det M. 

5. Find a game k vs. 1 currently appearing at  least once in the current design for which 

d ( k ,  1, u)  is minimum, breaking ties as in the previous step. Remove (one instance o f )  
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this game from the design, and "downdate" M-' and det M .  

6. If the current value of det M is no bigger than the saved value, then stop. (In practice, 

one compares the  increase in the logarithm of the determinant against a small tolerance 

such as l o v 4 . )  Typically, the algorithm will s top with the same game being added 

and then removed. Otherwise, if det M is still increasing, go back to  step 3. 

There are ways t o  select the initial n-game design other than that  given in Step 2. Our 

choice, it is hoped, will allow the algorithm to  explore different parts of the design space on 

different runs, and therefore should have an improved chance of finding a D-optimal design. 

Other possibilities are to  use either the forwards algorithm or the scaled-up continuous D- ' 

optimal design t o  generate the initial n-game design, which gives a better initial design a t  , 

the expense of allowing the algorithm to  explore less of the design space, or a compromise 

version of this in which no < n games are generated in this way with the remaining n - no 

games of the initial design generated a t  random. 

As noted earlier, there are also different ways to  implement the instruction t o  update 

it1-' and det 121. Note that  the effect on M of adding a game i vs. j to  the design is t o  add 

the quantity p I J l ( l  - p,,l) to  m,, and m,, and to  subtract the same quantity from m,, and 

m,,. If x,, denotes the vector with 1 in the i- th position, -1 in the j - th ,  and zeroes elsewhere, 

this means that  iZ1 becomes h4 t ~ , , ~ ( l  - pl,l)z,,x:,, or ,  writing v = pI f1 ( l  - p l J l ) ~ x J ,  h1 7 
becomes A1 t vvl. This is a rank-one update t o  M ,  as is the case generally when adding 

points to  a regression; so is the update connected with removing a game from the design, 

since hl becomes hi - cut. 

LVe have chosen t o  use the Sherman-Morrison-Woodbury formula to  M-'  without recal- 

culating the i w r s e  from scratch. There is also a corresponding formula for the update of 

the determinant. They are given in Dennis and Schnabel (1983, p. 188) and Thisted (1988, 

p. 117), and are: 

det (h1 f rc ' )  = ( 1  f zllhl-'v) det A 1  

In our case, some further simplifications are possible. Let t = M-'x,,; the nature of x,, 

implies that  t = m' - m f ,  where m' denotes column 1 of M- ' .  The calculation of vlM-'v 

then has only four nonzero terms based on m", m f J ,  mSJ ,  mJ1; in fact, vlM-' u = d( i ,  j ,  u).  
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Thus, letting a = 1 f d(i, j, u), the updates become 

( A 4  f vv')-' = M-' 7 ~ t , l ( l  -  PI,')^^,, 
a 

d e t ( M  f vv') = a det M. 

We have chosen t o  implement this update directly because of its simplicity. Dennis and 

Schnabel (1983) note tha t  this is not the most numerically stable way t o  proceed, especially 

if  M-' becomes nearly singular during the course of the computation, which can happen, 

especially when removing games from the design (Thisted, 1988). By only ever removing 

points from our designs when they reach size n + 1, we hope t o  avoid the worst of these 

problems, although we have coded the algorithm in double precision as a precaution. A 

more numerically stable alternative is t o  update a factorization ( uch as Cholesky or Q R )  

of either M or M-'; Thisted (1988, p. 118) gives an  example and me references. 

One way t o  check the numerical quality of the algorithm using \ he Sherman-Morrison- 

Woodbury formulas is t o  take the purported M-' matrix of a final design, invert it accu- 

rately, and compare with the M that  would have been calculated directly from the design. 

As an example, consider an experiment with t = 3, pl = p2 = f13 = 0, 72 = 10. The 

D-optimal design consists of two of the three games played three times and the other game 

played four times (by symmetry, it does not matter  which). In our case, it happened that  

1 vs. 3 was played four times. The correct information matrix is therefore, using 6 = 0.01 

and displaying the upper triangle only: 

while the inverted M-' from the algorithm, implemented on an IBM 386SX with numeric 

coprocessor in Turbo Pascal, came out to  be 

There is clearly some degradation of accuracy, though not, in this case, nearly enough t o  

affect the optimality or otherwise of designs. This, however, was a reasonably co-operative 

case; when the D-optimal design calls for some matches t o  be played many more times than 



Table 4.2: Examples for exact design algorithm 

Example no. 
1 

others, it may take a large number of additions tq and deletions from the initial random 

design in order to  obtain an optimal design. In such cases, one might expect more serious 

numerical difficulties, although even then, the likelihood of being unable t o  find a D-optimal 

design as a result seems slight. 

In Section 4.3.2, we noted some properties of D-optimal continuous designs, and saw in 

general that  more games need to be played between teams of similar strength than between 

those of dissimilar strength, subject to  he demands of a n  overall level of comparison between 

the teams. Likewise, we found that  if t e teams were all of equal strength, then they should 

play each other an equal number of ti 1 es. The picture is similar for exact designs, though 

the effect of requiring the w,, to be integral is serious for small n. 

kVe now consider somk examples. While these examples all feature t = 6, for ease of 

comparison between them. what is observed is, in our experience, similar for all numbers 

of teams. Table 4.2 shows the true team strengths, arranged in a vector @, as dell as 

the number of games the design should contain. The best designs found by the algorithm 

are shown in tables 4.3-4.6. In each case, the algorithm was run 20 times and the best 

design (ranked by calculated det M )  was chosen. The designs are shown as grids where, 

for example, the number in the first row and fourth column i:dicates the number of times 

teams 1 and 4 will meet. The  grids are symmetric, but giving the whole grid makes it easier 

to  judge the opponents that  will be faced by a particular team, as well as t o  count up the 
? 

total number of games played by each team in a particular exact design. 

As a prelude to  Example 1, it is worth noting that  when all the teams are  of equal 

strength and the desired number of games is a multiple of t ( t  - 1) /2 ,  the algorithm will 

produce a round-robin as the optimal design without any trouble; indeed, in re-running 

Example 1 with 30 games instead of 24, the algorithm produced a double round-robin 

design on each of its 20 runs. 

For Example 1, therefore, it is of interest to see what kinds of design are optimal when 

No. of games 
24 

Strength vector p 
(o,o,  o , o , o , o )  
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Table 4.3: Optimal design for Example 1 

Table 4.4:  Optimal design for Example 2 

Table 4.5:  Optimal design for Example 3 

Table 4.6:  Bptimal design for Example 4 
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the number of games is not a multiple of t ( t  - 1)/2. Simply allocating the nine leftover 

games from a single round-robin a t  random is not good enough; the optimal designs have 

structure. This structure varies according t o  the number of teams and the number of games, 

of course, but takes a particularly interesting form for t = 6. n = 24 as  shown in Table 4.3. 

The teams are split into two groups (in this case the first three teams and the last three), 

and the additional games after the single round-robin are all those featuring a team from 

one group against a team from the other. This means that ,  amongst the  additional games, 

the teams within a group do not pkay against each other, but they have three common 

opponents, namely the teams in the other group, and so within-group comparisons can still 

be made with high precision. 

For the remainder of the examples, n was taken equal t o  30, to  facilitate comparison 

between the designs produced and the double round-robin design with the same number of 

games. In Example 2, the teams are somewhat closely matched: a difference of 0.2 on the 

J scale corresponds to  a probability of close t o  0.55. Even so, the probability of the best 

team defeating the worst in this example is still over 0.73. Nonetheless, Table 4.4 indicates 

that  the optimal design is close to  a round-robin, with only one ext ra  game between the 

two best and the two worst teams, and one fewer instance of two of the less evenly-matched 

games. This indicates, as we investigate further in Section 4.4.2, tha t  round-robin designs 

have a certain amount of robustness to  unequal strengths of the teams involved; hotfever, 

the next Example shows that  this robustness extends only so far. 

In Example 3, the gap in probability terms between neighbouring teams is about 0.62, 

and between best and worst is about 0.92. Now, Table 4.5 shows tha t  the optimal design is 

anything but balanced, with a large majo;ity of games being between teams that  are close 

together in strength. The relationship is not monotonic, however - for example, teams 3 

and 4 play only twice - but this is illustrative of the need for the design to  be balanced 

enough to  provide good estimation of the relative strengths of all the teams. Here, teams 3 

and 4 are compared weU by the games between them and teams 2 and 5 ,  so that  additional 

games between the two teams are not necessary. 

The  last example had a p a t t e r n  t o  it which seemed to  be the result of happenstance with 

the number of games and the equal spacing of the team strengths. In Example 4, we space 

the team strengths irregularly, with one clearly strongest team and two weak teams that  are 

close together. Table 4.6 shows that  the resulting optimal design has no particular pattern, 

other that  previously noted of generally calling for more games between teams closer in 
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Table 4.7: Summary of designs found by the algorithm in the Examples 

log det ll! 
99 

.De?ns I High LOW 
0.7852 0.7821 

Ex. 
1 
2 
3 
3 

This Example and the previous one also show that ,  when the teams vary widely in 

strength, there is no restriction on the teams each playing the same number of games; in 

these Examples, the total numbers of games vary from 8 t o  12, with the middle-strength 

teams playing the most games and the strongest and weakest teams playing the fewest. 

This phenomenon occurs generally with D-optimal designs (it  could also be observed in 

the continuous designs of Section 3.3.2), in contrast to round-robins and Swiss tournaments 

where each team plays the  same number of games. 

Another issue of interest is the variety of supposed "optimal" designs found by different 

runs of the same algorithm on the same design problem. Table 3.7 shows the results for 

our four examples. In no case was a seriously sub-optimal design found, and on these 

examples, the algorithm found the best design frequently enough t o  offer convincing evidence 

that  it indeed is the best design. The  algorithm is not always as convincing: runs with 

the parameters of Example 2, but with n = 1.5 instead of 30 yielded the (apparently) 

optimal design only about once every 50 runs, amid a large variety of other designs. These 

experiences indicate that  the likelihood of finding the optimal design and the number of 

different designs generated by the algorithm are very problem-dependent. In practice, the 

only advice that  can be given is t o  run the algorithm a few times, then look a t  the values of 

det M and decide whether a maximum seems to have been attained. Sometimes, as when 

most or all of the values are the same, this decision is easy; otherwise, a decision has t o  

be made about whether it is worth running the algorithm again. Some optimal designs are 

simply harder to  find than others, although it is some comfort t o  know tha t  the algorithm 

is unlikely ever to find a seriously sub-optimal design. 

Times found 
Runs Opt .  design 

20 7 
20 20 
20 7 
20 6 
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4.3.4 D-optimal sequential designs 
pi 

All of the foregoing has assumed that  the team strength parameters PI are known, an as- 

sumption that  is highly unrealistic in practice. We have also seen tha t  the designs generated 

from known p, are quite strongly dependent on the values of the  PI;  in other words, the opti- 

mal design for one set of values PI can be far from optimal for a different set of PI. Designing 

an entire tournament based on possibly bad guesses of the P, is therefore hazardous, and it is 

natural to  proceed sequentially: design a small subtournament based on current knowledge 

about the PI,  run this subtournament, use the results t o  improve knowledge about the P,, 

and then repeat as desired. The  final tournament design is then obtained by combining the 

subtournaments. 

Let s denote the number of "stages", that  is, subtournaments, in the sequential tourna- 

ment, and let n, denote the number of games in stage j, with n = CLJ n,. For simplicity, 

we will assume that  s and the n, are known before the tournament begins. Typically, one 

might take all the n, equal. Choice of the value or values of the n, might be made from cost 

considerations, balancing the cost of stopping the tournament to  re-estimate the P, and to  

design the next stage with the benefit of possessing the most accurate estimates of the Dl 
a t  all times. An obvious way to  proceed is then as follows: 

1. Set j = 1. 

2. Assuming that  all @, are equal (or ,  perhaps, obtaining values for the 13, from prior 

knowledge), use the algorithm of Section 4.3.3 to obtain a D-optimal design with nl 

games. 

3. Play the games in stage j 

4. Estimate the p, based on the game results from t e current design, by maximum 

likelihood, using the methods of Chapter 3.  
'$ 

1 

5 .  If j = s ,  stop; otherwise, continue. 

6. Add 1 to  j 

7 .  Use a modified version of the algorithm of Section 4.3 .3  to  find the n, games which, 

when added to the games in the current design, produce a D-optimal (xi=, nk)-game 

design. (The modification required is that  the algorithm does not delete games that  

have already been played.) 
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8. Go  back to step 3. 

There is nothing new here. Indeed, the above is merely a slight generalization of an  

algorithm given in Silvey ( 1980. p. 62). Interest therefore centres mostly in the performance 

of the algorithm in practical cases. However, two issues arise immediately, one technical 

and one practical. , 

The technical issue is one that  afflicts all sequential experimentation, vhere the choice of 

experimental conditions for one d a t a  point is dependent on previous observations. The like- 

lihood itself is unaffected by the kind of experimentation performed, but repeated-sampling 

inferences based on the likelihood are certainly affected, because a repeated sample would 

consist of observations a t  different d a t a  points, not merely different observations a t  the same 

d a t a  points, as would happen if the design were fixed. In our context, two sequentially- 

designed tournaments with an  identical set of t e a m s 4  consist of two different sets af 
< 

games, so that  inference about the team strengths has t o  consider not only the variability 

in results of particular games, but also the variability in designs in repeated samples. It 

is natural to hope that  inferences which ignore the sequential nature of the design will be 

approximately correct, but this hope should be supported by simulated repetitions of the 

entire sequentially-designed structure. We do not pursue this idea here, however. 

Given all the above, it is natural to  ask what it is tha t  a ~ - \ o ~ t i m a l  sequential design 

is optimizing. The answer seems t o  be tha t ,  a t  each stage, it is producing the D-optimal 

design conditional on the current estimates of the d,  being correct. This does not sound 

especially compelling; on the other hand, the algorithm given above does seem sensible on 

practical grounds, and therefore its effectiveness in practice is worth investigating. 

When we were looking a t  the designs generated in ~ e c t i o b s  4.3.2 and 4.3.3, we found 

that  some of the designs resembled a round-robin tournament (in particular, those where 

the 0, did not vary widely). In Chapter 2. we also looked a t  the Swiss toupament ,  which 

is constructed sequentially by pairing teams of similar apparent strength, subject to  the 
B 

constraint that  two teams may not meet more than once. We will therefore investigate 

similarities between the structure of sequential D-optimal designs and Swiss tournaments: 

In our Example below, and also in Section 4.4, we concentrate on what might be called 

a "sequential-1" design, where only one game is selected and played a t  each stage. In 

our notation, this sets s - g ,  the total number of games, and n, = 1 for a l l  j. By re- 

estimating the team strengths 0, as often as possible, we should be making the best use of 
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the information collected throughout the tournament, and therefore should be constructing 

the best possible sequential D-optimal design. Sequential-1 designs thus give us an  idea of 

the potential of sequential designs in general. Note that  the algorithm above simplifies when 

n, = 1, since step 7 ,consists only of finding the game i vs j for which d(i, j ,  u) is greatest, 

based on the current ddsign, and then adding this game to  the  design. 

Let us examine an example of a sequential-1 design. In this example, t = 6, and the 

true team strengths are all equal, although of course this affects only the simulated game 

results and not the design procedure. The estimation of the team strengths 9, is carried 

out  using the device of a "fictitious team", as described in Chapter 3, so that  the estimated 

team strengths are always finite. We begin the procedure by setting M(u)  = 6 1  for some 

small 6, and, whenever a tie exists for the best game t o  add,  we choose one of the games 

involved a t  random. 

Not surprisingly, the first three games ensure that  all of the six teams appear in the 

design. Oar algorithm produced the games 1 vs 2, 3 vs 4,  5 vs 6, with teams 1, 4 and 6 

winning. (By symmetry, any other pairing involving all six teams is equally good.) This 

yields estimated strengths of 0.76 for the winning teams and -0.76 for the losers. 

' As in a Swiss tournament, the next two games have two of the winners and two of the 

losers play each other. In our case, the games were 1 vs 4 and 2 vs 5, with 1 and 5 winning. 

Xow we see our first divergence from a Swiss tournament: there, teams 3 and 6 would 

meet to  complete the second round. Here, howe'ver, there is less information t o  be gained 

from a game between these two teams than there is from playing 1 vs 6, the two 

undefeated teams, and 2 vs 3, the two winless teams. In these games, teams 6 and 3 were 

the winners. 

At  this point, the design is 

with the estimated team strengths b being 
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Note that  team 2 has played the next two weakest teams, according t o  this estimation, and 

team 6 has played the second and fourth strongest teams. Despite team 6 having played 
* 

only twice, this team dogs not feature in any of the next five games, and then team 6 plays 

team 1 again, losing this time. After the next game, 4 vs 5, with 5 winning, the design is 

the following: 

- 1 0 1 1 2  

with being' 

(1.67, -1.70, -1.68, -O.5I,O.6O,l.56). 

At this point, the teams seem to  have split themselves into two groups, even though in t ru th  

they are all of equal strength. The next six games are all "within-group", but eventually 1 

plays 3 twice consecutively. losing both, and 3 becomes 

based on the design 

- 1 2 1 2 3  

1 - 3 2 1 0  

2 3 - 2 1 0  

1 2 2 - 2 0  

2 1 1 2 - 2  

3 0 0 0 2 -  

which is far from balanced. Indeed, continuing until 100 games have been played does not 

yield a design that  looks noticeably more balanced: 3 
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with b of 

We see tha t  a sequential-1 design can be noticeably sub-optimal, in t ha t  too  few games are  

played between teams tha t  a re  actually equal in strength but seem t o b e  far apar t  (such a s  

2 vs 5,  3 vs 5 ) .  It is also worth noting tha t  the  sequential-1 strategy of playing games early 

in the  tournament between teams with similar numbers of wins and losses guarantees t h a t ,  

after these games, there will be one team tha t  looks very strong and another  tha t  looks very 

weak, even if the  t ru th  is otherwise. 

This example suggests t ha t  sequential-1 designs will not be  optimal when the  teams are  

close together in s t rength.  On the  other hand, when the  teams vary widely in s trength,  

the teams tha t  win their first few games in a sequential-1 tournament are likely t o  be t he  

strongest,  so tha t  later games will concentrate on teams of similar ( t rue )  strength. In this 

case, we might expect a sequential-1 design t o  be nearly D - q t i m a l ,  especially as the  number 

of games increases. 

4.4 Efficiency comparisons of designs 

4.4.1 Introduction 

In Chapter  2 ,  we examined round-robin and Swiss tournaments. and saw tha t  they behaved 

in a reasonably intuitive fashion. In this Chapter ,  we have seen tha t  a round-robin tourna-  

ment is D-optimal if t he  teams are of equal strength, and we seen tha t  the guiding 

principle of the Swiss tournament ,  namely t o  pair teams of similar s t length provided tha t  
I 

they have not met too  many times before, is similar t o  the constr jct ion of a D-optimal  
..2 

design. It is natural then t o  define a measure of "efficiency" and t o  see how the tournament 

designs compare. b 
Atkinson and Donev (1992) define the D-efficiency of a design ul relative t o  u? as 

det Lhl(ul )  

Deff = (de t  . l l (u2) )  ' 

where t - 1 is the number of estimable parameters in the Bradley-Terry model. To see t ha t  

extracting the ( t  - 1 ) - t h  root is the  appropriate scaling, consider two designs ul and uz for 

which the D-efficiency of ul relative t o  uz is 0.5 for the  same number of games. Replicating 

the design u l  has the  effect of doubling M ( u l ) ,  which means t ha t  its eigenvalues are also 
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doubled. This increases det h l ( u l )  by a factor of 2'-', since in general t -  1 of the  eigenvalues 

are non-zero; therefore, from (4.3),  the  D-efficiency of t he  replicated ul relative to 'u2 is 1. 

Like other  measures of efficiency, the  D-efficiency can the~e fo re  be interpreted a s  the  ratio of 

sample sizes necessary t o  estimate the  parameters  with equal precision from the  two designs. 

T h e  definition (4.3)  can be applied t o  any designs, though a typical application has u~ 

as a D-optimal  design (continuous, exact ,  sequential) and  u l  as some other  design. 

We now look a t  t h e  different designs we have seen, and see how efficient they are as  the  

number of teams and  variability in strength of the  teams changes. A natural  measute of the  

variability is the  s tandard  deviation o of the  8,; we use this as  our  parameterization of the  

variability of team strength.  In our calculations, we assume tha t  3, = ~ - ' { i / ( t  + 1 ) )  where - 

F ( z )  is the  cumulative distribution function of a logistic distribution with mean 0 and  scale 

parameter d. This assumption was made because it mimics the  pat tern of team strengths 

often found in practice, with many teams of similar strengths and a few teams noticeably 

stronger or weaker t han  the rest. T h e  scale parameter d can be chosen t o  provide greater or  

lesser overall variability in the  team strengths. For any fixed t ,  there is a simple relationship 

between o and d, namely 

I n  our  calculations, ~ v e  choose d such tha t  a = 0,0 .2 ,0 .1 ,0 .6 ,1 ,2 ,  values again intended t o  

be illustrative of what  occurs in practice. 

Other  methods of measuring team strength variability are possible, A . r a t h e r  more 
4 

intuitive measure is t he  expected fraction w of wins by the  strongest team when playing the 

remaining teams once each; the  larger this "expected winning percentage", the  greater the  

variability in team strengths. It turns ou t  t ha t  uy, for fixed a ,  is only weakly dependent on t 

( i t  has a limit as t - w), and so the categorization of variability in strength can be viewed 

in terms of u1 as well as  in terms of a ,  as shown in Table 4.8. 

4.4.2 Efficiency of round-robin tournaments 

T h e  Examples of Section 4.3.3 showed tha t  when the teams are of  equal s t rength,  the 

round-robin design was D-optimal,  but  the  D-optimal designs in other  cases bore little 

resemblance t o  round-robins. W'e would therefore expect round-robin tournaments  to  be 

fully efficient when a = 0, but for the D-efficiency t o  drop off fairly quickly as  o increases. 
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Table 4.8: Values of ut in terms of t and us 

It is straightforward t o  calculate det hl directly for round-robin designs, and these values 

are then compared with the best design containing the same number of g a m e s e s  found by 

the  blitchell-3liller-LC'ynn algorithm. This  was done for values of t between 6 and 20, with 

the results shown in Table 3.9. 

LVe see tha t  our  expectations were justified; the second-to-last column of the Table 

shows that  once the t a m s  differ too much in strength. round-robin tournaments  a re  very 

inefficient. This is because, in a round-robin, too  much experimental effort is devoted t o  

games which are "foregone conclusions", in t ha t  p,,l is very close t o  0 or  1 and the  result of 
I 

the game gives very little information. 

T h e  results shown in Table 4.9 a re  for single round-robins, in which the  teams play 

each other  only once, but r-tuple round-robins tell exactly the same story. Indeed, the D- 

efficiencies are almost exactly the same,  because 31 for an r- tuple 

times t ha t  for a single round-robin, and the  D-optimal exact design 

an exact design with integer u.,,). 

has u.,, close to  r times those for the smaller ( though not exactly 

4.4.3 Efficiency of Swiss tournaments  

One might expect Swiss tournaments t o  have higher D-efficiency when the teams are more 

different in ability, since the structure of the  tournament means tha t  teams of appro xi mat el^ 

equal strength will tend t o  play each o ther ,  a t  least in rounds after the  first. 

To assess this, Swiss tournaments were simulated. for t = 6, 10, 14,20,30,40,F;O. T h e  

number of rounds in each tournament was 3 , 6 , 7 , 9 , 1 0 , l l ,  12 respectively; these are ap-  

proximately 210gz t ,  and might be expected t o  be typical numbers of rounds for Swiss 
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Table 4.9: D-efficiency of round-robin designs 

Teams Games o 

6 15 0.0 
6 15 0.2 
6 15 0.4 
6 15 0.6 
6 15 1.0 
6 ' 15 2.0 

10 45 0.0 
10 45 0.2 
10 4.5 OA 
10 4 5  0.6 
10 45 1.0 
10 45 2.0 
14 . 91 0.0 
1 4 91 0.2 
14 91 0.4 
14 91 0.6 
1-1 91 1.0 
14 91 2.0 
2 0 190 0.0 
2 0 190 0.2 
2 0 190 0.4 
2 0 190 0.6 
2 0 190 1.0 
2 0 190 2.0 

log det J1 
RR Seq.-1 D-opt. 

-2.545 -2.828 -2.545 
-2.661 -2.954 -2.661 
-2.993 -3.243 -2.989 
-3.486 -3.681 -3.349 
-4.750 -4.635 -4.126 
-8.240 -7.304 -5.927 
3.677 3.155 3.677 
3.482 2.973 3.482 
2.936 -2.543 3.046 
2.131 1.892 2.547 
0.105 0.550 1.528 

-5.2.59 -2.548 -0.861 
11.718 11.025 11.718 
11.444 10.757 11.450 
10.682 10.159 10.912 
9.566 9.368 10.309 
6.792 7.720 9.118 

-0.440 4.231 6.326 
26.012 25.061 26.012 
25.620 24.767 25.649 
24.532 23.9-11 24.970 
22.960 23.036 2-1.24.5 
19.054 21.202 22.825 
9.037 16.89.7 1S.Fi-17 



tournaments  for these numbers of teams. For each .combinatiob of t and u, 100 tourna-  

ments were simulated, and logdet  hf calculated for each based o n  the  t rue 3,. T h e  mean 

log-determinant is shown in Table 4.10, along with the "exact" log-determinant for the D- 

optimal exact design with the  same number of games. T h e  s tandard deviation of values of 

logdet  '11 from the simulated Swiss tournaments (not  shown) increased dramatically with 

a .  This  means that: the  relative efficiencies are not accurately determined for larger values 

of o. 

For o = 0. we see f rom-the  second-to-last column of Table 4.10 tha t  the Swiss tonrna- 

ments are essentially fully efficient relative t o  the exact D-optimal design. As with round- 

robin tournaments, t he  D-efficiency drops off rapidly as u increases; however, the initial rate  

of decrease is smaller, and in none of the  cases shown in the Table is the D-efficiency truly 

small. The  inaccuracy in estimation of the "true" D-efficiencies for larger values of a -does  

riot have a serious effect, since it is clear tha t  the D-efficiency in these cases is decreasing \ 
3 

with 0. 

4.4 .4  Efficiency of sequential-1 designs 

:Is with the Swiss tournaments ,  we can only assess the efficiency of the  sequential-1 designs 
& 

by sinlulation. For ease of comparison, we investigated designs with the same numbers 
x 

of ganies as for the round-robin and  Swiss tournaments considered in the previous two 

Sections, although of course any number of games is possible. In each case, 100 simulations 

wt.rc run and the average logdeterminant  calculated. ( I t  is worth noting that  an alternative 

approach, for the simulated Swiss tburnaments as well as  here, would be to  calculat,e the 
/ 

"average information matrix" over @-the simulations, since this is then an estimate of the 

observed information matrix even tihough the tournaments are designed sequentially and 

therefore the information matrix is not constructed from independent observations.) 

T h e  results of the simulations appear  in Tables 4.9 and  1.10, for comparison with single 

round-robin and Swiss tournaments  r~spectively. The  last column in each table shows the 

D-efficiency of the sequential-l  designs relative to the exact D o p t i m a l  design for the same 

number of games. In both cases, we see that  the Il-efficiency for the sequential- 1 designs. 

as for the round-robin and Swiss tournaments. is close to 1 when n = 0 and drops off slowly 

as  a increases. The  reason appears  t o  be that  when a is large, some ganies are played a t  

the  beginning of the sequential-1 tournament that  later turn out  t o  be between teanis of  

widely different s t rength,  so t ha t  in retrospect it would have been more informative t o  play 
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Table 4.10: D-efficiency for Swiss tournaments  

Teams Games o 
6 9 0.0 
6 9 0.2 
6 9 0.4 
6 9 0.6 
6 9 1.0 
6 .  9 2.0 

log det '21 
Swiss Seq.-1 D-opt. 

-5.350 -5.343 -5.291 
-5.459 -5.453 -5.389 
-5.760 -5.758 -5 670 
-6.267 -6.273 -6.004 
-7.526 -7.530 -6.646 

-10.930 -10.912 -8.582 

D-effic~ency 
SWISS Seq -1  
0 988 0 990 
0,986 0 987 
0 982 0 983 
0 949 0 948 
0 839 0 838 
0 625 0 628 
0 998 0 998 
0 994 0 994 
0 978 0 975 
0 952 0 943 
0 857 0 865 
0 630 0 642 
0 995 0 994 
0 990 0 990 
0 969 0 970 
0 931 0 938 
0 837 0 847 
0 650 0 659 
0 995 0 994 
0 989 0 990 
0 967 0 965 
0 933 0 939 
0 839 0 851 
0 692 0 685 
0 99.1 0 995 
0 989 0 988 
0 961 O 960 
0 920 0 921 
D 840 0 846 
0 681 0 689 
0 996 0 996 
0 988 0 988 
0 950 O 960 
0 922 0 924 
O 840 O 8-16 
0 685 0 691 
0 996 0 996 
O!)88 0988 
0 960 0 960 
0921 0921 
0 811 0 843 
0 695 0 697 
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another  game instead. However, of course, these games need t o  be played first in order t o  

learn which teams are  s trong o r  weak. 
I 4 

It iS of interest t o  see how the  round-robin 4nd Swiss tournaments  compare in efficiency 

with the  sequential-1 tournaments ,  since the  tournaments  are, one might say. 

the  best tha t  the D-optimality theory can absence of prior knowledge. 

Comparison of t he  last two columns t h a t  the  round-robin design 

becomes clearly less efficient as  a eventually, the sequential-1 

procedure will recognize t ha t  t he  begin t o  design accordingly, 

producing designs closer t o  noted tha t  the sequential-1 

efficiency figures given in the  pattern seems clear. 

Further simulation with t ha t  the  pat tern of 

relative efficiency is t he  t o  t he  

idea t ha t  a larger 

approximation to  it .  

T h e  last column of Table 4.10 shows lative efficiency of the sequential-1 designs 

relative t o  the D-optimal exact design same number of observations. T h e  last two 

columns of this Table therefore Swiss and  sequential-1 tournaments com- 

pare in terms of D-efficiency. are  subject t o  appreciable variability, 

since the  log-determinants for tournaments are estimated 

from simulations, it seems these two tournament 

txpes. For values of u in perfprm well, 

and can be recommended. 



Chapter 

Goodness of fit for logistic 

regression models 

5.1 Introduction 

LVhen the  response variable in a model is binary or binomial, it is natural  t o  consider assess- 

ing the  fit of the model by comparing the  observed successes with the  expected successes 

( t h a t  is, the exact or estimated success probabilities) in some way. 

T w o  obvious approaches suggest themselves: t o  partitidn the  observations, and then t o  

carry out  the usual chi-squared test based on the observed and expected successes within 

each group. or t o  compare observed and expected successes in a cumulative fashion. LVithin 

each approach, there is also the  choice of using the I-variables t o  guide t he  partitioning or  

cumulation, or  of using the  fitted probabilities of success. In the  partitioning camp,  Tsiatis 

(1980) uses the 1-variables, while Hosmer and Lemeshow (1980) use the fitted probabilities. 

S u  and  LVei (1991) define a supremum statistic based on cumulation by the  P-variables; they 

are  able t o  obtain the asymptotic distribution of their statistic by showing weak convergence 

of an process t0 .a  Gaussian process, which is the usual technique for statistics based on 

cumulation. LVe will investigate the  other  possibility on the  cumulation side, namely t o  

cumulate  according to  the  fitted probabilities. LVe will not be able t o  use the same kinds of 

weak conver ence arguments as Su  and Wei, however, because of t he  additional presence of 

estimated qua  f tities; we will therefore derive the asymptotic distributions of our  statistics 

directly. Although. by doing this,  we give up the ability t o  prove general results about  



CHAPTER 5. GOODAVESS OF FIT FOR LOGISTIC REGRESSIOlV hlODELS 9 7 

statistics based on the  empirical process, we are  able t o  obtain, without excessive difficulty, 

useful results about  t h e  statistics we d o  study. 

A third approach is possible if there a re  repeated observations a t  each x-value (compare 

Section 5.3.1), and  t h a t  is t o  cumulate, not by the  p,,  but  by the  numbers of successes in 

each covariate group.  This approach was explored by Spinelli (1993), and leads, for each 

k ,  t o  a comparison between the  observed and  expected numbers of groups foi  which the  

number of successes is less than or  equal t o  k .  Such an  approach focuses on whether the  

responses in each covariate group are truly binomial with a success probability t ha t  depends 

only on x .  

LC'e consider t ha t  tests based on cumulation by the p, are most suitable for our  purposes 

here. In particular, a logistic regression model may fit badly because some other  binary- 

response model is more appropriate or  because the  relationship between the  explanatory 

variables and  the  fitted probabilities is mis-specified. In these cases, departures  from the 

hypothesized logistic regression will tend t o  be smooth. Tests of the chi-squared type are 

sensitive t o  all departures  from the hypothesized model, including many non-smooth depar- 

tures which are not of interest in this context.  It therefore seems better t o  base tests on 

the  cumulative difference between observed and expizted successes. since such tests will be 

more sensitive t o  the  smooth departures t ha t  are  of interest.  

Let us suppose t ha t  there are n observations in total,  and  let y,, = 1,2.. . . , n,  denote the 

responses. In most of the following work, the  responses are assumed t o  be independently 

Bdrnoulli, with P(y ,  = 1)  denoted by p, ( and  thus P ( y ,  = 0 )  = 1 - p, ) ,  so  t ha t  y, = 1 

denotes ''success". At one point when dealing with the quadratic statistics defined below, 

the responses are instead assumed t o  be binomial with index parameters n, ;  this occasion 

is noted when it occurs. 

T h e  situation in w h ~ c h  the p, are  k wn and we desire t o  test fit based on these known 

p, is rarely of interest in practice, but 7 t e theory provides a useful stepping-stone t o  the 

more practical cases. and is therefore detailed below. It is perhaps worth notlng tha t  no 

model is involved in the  known-p, case (except for the untested assertion tha t  the y, really 

are independently Bernouh) .  

It is more useful t o  address the  case when the  success probabilities a re  estimated. T h e  

most common model, and the one addressed here, is the  logistic model, in which the ex- 

planatory variables, arranged in a design matr ix X, and the "slope" parameters 13, arranged 



../& 
CHAPTER 5. GOODNESS OF FIT FOR LOGISTIC REGRESSIO?I MODELS 98 

I 
. * 

in a vector, are connected to  the p, as follows: 

logit PI = log{pzl(l - PI)) = 71, 

w.here 7, is the so-called "linear predictor", and 

where z: denotes the i-th row of X ,  and, in general, primes denote vector and matrix 
9 

transposes. We shall need the score vector and information matrix, as functions of the 

parameter vector p: these are most compactly written as 

and 

where s, denotes the score vector and F, the information matrix, and are functions3&@ 

i m p b ~ l y ,  since each p, is a function of D. The maximum likelihood estimate is found in 
, '  

th@usual'way, by solving s,(j) = 0 (which must be done numerically in general). 

Our strategy for testing fit was outlined above; specifically, we define a process .Yn(p) 

where the indicator restricts the comparison to those observations where p, is no bigger 

than p, so that  X n ( p )  compares the observed and expected successes cumulatively. When. 

as is usually the case, the probabilities have been estimated, p, is replaced by p , .  We then 

construct test statistics by averaging (integrating) some function of this process over p. 
61' 

so as to  get a single-number summary of the discrepancy between observed and expected 

successes. The   articular functions we investigate are the process itself and its square. 

This ,strategy parallels that  of the standard tests of fit based on the empirical process 

W n ( i )  = n;'/2{C:=, I ( z l  5 z )  - n z ) ,  which are studied by Stephens (1986). In Section 5.2 

we s t idy~sta t is t ics  based on the integral of S n ( p ) ,  which correspond to  the goodness-of-fit 

statistic ~ L ' / ~ ( L -  i), and in Section 5.3 we study statistics based on the integral of { . Y , ( ~ ) ) ~ ,  

'which correspond to the Cramk-von hlises statistic. 
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5.2 - Asymptotic theory for the area family of stat&tics 

5.3.1 The area statistics 

These statistics a re  based on the  integral of X , ( p )  itself, on the basis t ha t  if X , ( p )  is usually 

close t o  zero, so is i ts integral. T h e  area statistics take a simple form, being Linear in the  y,, 

and yield relatively straightforward asymptotic distributions because of this. O n  the  other 

hand,  these statistics a re  also close t o  zero if X , ( p )  oscillates around zero without always 

being small, and so  one  might expect a loss of power in comparison with t he  quadratic 

statistics considered in the next Section. 

Specifically: 

and the  corresponding statistic,  which we call A 2 ,  in which the  p, are replaced by p,, their 

mas imum likelihood estimates under a logistic model. In addition, we look a t  a statistic A l  

formed by replacing only the  first occurrence of p, by p, ;  this is of no practical purpose, but 

eases the  theoretical development. 

Interchanging the  order of integration and summation and noting tha t  

we find tha t :  

Thet lnear  appearance of these statistics suggests t ha t  we might reasonably expect them 

t o  have asymptotic normal distributions; we devote this section t o  showing tha t  this is 

indeed the case, under certain reasonable assumptions about  the limiting behaviour of the 

p, and ,  in the case of A l  and A 2 ,  about  the 2-variables in the logistic regression. 

5.2.2 Two invariance results 

One might imagine t h a t  some arbitrary decisions have been made in the  definition of the 

area statistics. Specifically, it is of interest t o  know what  happens if the  values of y, - p, 



CHAPTER 5. GOODSESS OF FIT FOR LOGISTIC REGRESSIOLV MODELS 100 

are cumulated downwards, with decreasing p, rather t han  increasing p,, or  when successes 

and  failures are interchanged. T h e  following two results show tha t  tests based on estimated 

parameters are unaffected, a t  least when there is an intercept in the  model. - 

Theorem 5.1 If the model has a n  intercept, the statistic A; obtained by cumulating the 

values of y, - p, downwards is  the negative of the statistic A 2 .  A n  analogous result holds for 

A l .  

Proof: The  definition of A; is 

since the  indicator selects only those values p, tha t  exceed p. T h e  sum is over 1 5 i < n .  

Thus:  

IVhen the  model has an intercept,  one of the likelihood equations is X I  y, - p, = 0. and so 

the  result is proved for A 2 .  T h e  same algebra, with p, replacing p, in the  indicator function, 

shows tha t  the corresponding result also holds for A l .  

T h e  second result concerns the interchange of successes and  failures: 
? 

Theorem 5.2  If the model has a n  intercept, the statistic A;' obtaintd b y  cumulating the 

obsemed and ezpected nurnber.5 of failurts is the negatit-e of .q2. The corrvsponrfing ~ s u l t  

holds for A l .  

Proof: Let u ,  = 1 - y, be the observed numbers of failures and q,  = 1 - p, be the estimated 

probabilities of failure. Then 
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find tha t  

A: = n - 1 1 2 i 1  C(y, - f i t )  I (@,  > p )  d p  = A; = -A2.  
t 

since two minus signs cancel from the  change of variable. The  proof for A2 is complete: 

the  effect of interchanging success and failure is the  same a s  t ha t  of cumulating downwards 

rather  t han  upwards. .4nd, as  before, the  proof for Al is carried out  with exactly the  same 

algebra, replacing p, in the  indicator with p , .  

For Ao, aqd for models without an  intercept,  we have the results 

and P 

for j = 1 . 2 .  One can argue in this case t ha t  if the right-hand side differs too  much from 

zero. this in itself is evidence of a lack of fit, since the observed number of successes was 

very much larger or  smaller than the probabilities would lead one t o  expect.  Thus,  in the  
;e 

more interesting cases where the lack of fit is due t o  the pat tern of the  y,  rather than the 

number of them tha t  a re  1, we can expect the  right-hand side t o  be small, and thus the 

test statistics obtained by downward cumulation or exchange of successes and failures t o  be 

approximately the negatives of the  original statistics. 

As a final remark, it should be noted tha t  tests based on the area statistics will be two- 

tailed in general, rejecting for large IAIl, so the  appearance of minus signs in the preceding 

Theorems has no effect on the P-values of tests based on these statistics. 

5.2-3 Statistic A. 

When the  p,  are known, statistic A. of (5 .6)  can be used., random quantities 

it contains are the  y , ,  which are Bernoulli with success prob&+dty p , .  T h e  appearance 

of the  statistic,  a linear function of the  y , ,  suggests that  its asymptotic normality may be 

demonstrated using a version of the  Central Limit Theorem such as  t ha t  of Lyapunov which 

applies t o  a sum of random variables with non-identical variances. This is in fact exactly 

how it works. 

LVe begin by proving a more general result, one which will be used again later in our  

work with A l .  
i 8 
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Theorem 5 . 3  Let {u , , ) ,  1 5 i 5 n ,  be a triangular array of numbers, and let m, = 

a x n  u .  Let s i  ='n-' r p , ( l  - p,)u::  if limn-, si exists and is equal to s 2 ,  say. 
- 

with s2 > 0 ,  and if limn,, n ' I 2 m n  = 0 ,  then 

Proof: Let TI = n-112(y, -p , )u , , ,  s o  t h a t  it is C:=l TI whose l imiting d i s t r ibu t ion  we seek.  
U 

Since s;  - s2 ( s i  is n o t  r a n d o m ) ,  it suffices t o  show t h a t  )J=l T , / s  -- , Y ( 0 , 1 ) .  Now: 

E ( J ,  - p , )  = 0  3 E(T,)  = 0: 

)r  e s a  , v a ~ u n o v ' s  version of t h e  C e n t r a l  Limit   the or en^ (as  in.  fc rnplc. 

G r i m m e t t  a n d  St i rzaker ,  198'2, p .  1 l o ) ,  t h e  r a n d o m  variable ?; divided by i t s  s t a n d a r d  

devia t ion converges in d is t r ibut ion t o  s t a n d a r d  normal ,  a n d  t h e  result is proved.  

T h e  specialization of th i s  result t o  /to is i rn~r iedia te :  

2 Theorem 5 .4  Lct s: = n- '  C:=l p,( 1 - If s2 = lirn ,,,, s,, rrz,st.s u - l t h  s L  > 0 ,  thcrl 
D 

& / S n  - ' Y ( 0 , l ) .  

Proof: T a k e  u,,  = 1 - p, in T h e o r e m  5.3. S i n w  n1, 5 1 for all r r ,  t h e  rcxsr~lt holds.  

LVe remark  t h a t  t h e  condi t ion  on  t h e  p, for t h e  theorem is a n  eminent ly  rt.asonable one .  

since it will fail only  if t h e  p, a r e  t end ing  towards  0  o r  1 .  In this case  t h e  bhinforniation" in 
0 

t h e  d a t a  is not  increas ing quickly enough ,  s o  t h a t  o t h e r  p r o b l m s  such a s  inconsistency of 

e s t i m a t o r s  will a lso  occur .  
i 



CHAPTER F i .  GOODNESS O F  FIT FOR LOGISTIC REGRESSIOS IIIODELS 103 

" * 

5.2.4 Some additional results 

Before moving on to the other two statistics, we give some general results that will be used 

in the sequel. The first gives a Taylor series expansion in terms of j - 3 ,  and the second 

gives conditions for the asymptotic normality of 3 in the logistic regression case. 

Expanding p,  = p , ( J )  in a Taylor series about p,  = p , ( . l )  gives 

2 
6 ,  - P I  = p I v  - P , ) X ; ( ~  - J) + $w - j l ) ( i  - 2 j 1 )  {-+j - J ) }  . 

/ 

where p,  = p , ( j , ) ,  and each 3, lies on the line joining 3 and $. 
LVritten this way, the quantity $, i n  the renlaindcr term depends on 1 ,  but we will use the 

series expansion in sunis of the form C:=, f ( p , ) ( p ,  - p , ) .  for which one quan 

since the series is for the whole sum: 

ity 3 snffirrs. 

where now p, = p , ( S ) .  and 3 lies on the line joining 3 and .j 

Fahrrneir anti Kaufnlann (198.5) give conditions for the asyrriptotic existence, ( ~ v c n k  

and strong) consistency and asymptotic normality of maxirnuni likelihood .estirriators in 

g~icralizcti  linear models. Their Corollary 2 concerns the caw where the response variable 

is bor~ndrd,  as is the case here. since 0 5 y, 5 1 for all i .  

, . LVe will use this result frequently. I he result is true for any type of "square root" niatrix 

L ,  that  depends continuously on b,  provided that the same type is used for all n .  I n  our 

calculations we use the C'holesky square root. For a matrix 11, this is the unique lower 

triangular matrix R with positive diagonal elernents for which RR' = A .  'I'o the condition 

of Fahrmeir and Kaufmann we will, in our work, add the assumption that Lirn,,,(f,/n) 

exists and is positive definite; we will call the limit matrix C;. 
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Fahrmeir and Kaufmann (1985) show t h a t ,  in models like logistic regression which have 

a canonical li*k function and a bounded response, the condition of Theorem 5.5 implies 

their condition ( N ) ;  combining this condition with our assumption of convergence of F,/n  

t o  C;, and  using some elementary properties of matrix norms, we see t ha t  

Sow we obtain asymptotic results for linear and quadratic functions of 3: 

Noting tha t  lim,,,, n - l / ' ~ , ,  = ,I1 for sonic matrix .\1 with .Z1.\ll f (;, as a rcsult of (5.10).  
I 

and using ( . i . l  1 ) ,  wt find that  

where Z has a standard mriltivariate normal distribution, using 'I'hcorcn~ 5 . 5 .  Thus  it follo\v.; 

tha t  
D s,, - l Y ( 0 ,  l ~ ' ( ~ \ l 1 ) - ~ , \ 1 - ~ ~ ~ )  = . \ (0,  r1(;-I t q  ) .  

completing the  proof. 

Once again, the conditions imposed seem reasonable. 

information per observation to  tend t o  a limit, a s tandard 

Condition (5.10) requires ttie 

requirement in inference, and 
- 
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condition ( 5 . 1 1 )  is roughly a requirement tha t  the "average z," does not get too  large. In 

fact,  since g ( p , )  is typically a function like p , ( l  - p , ) ,  ( 5 . 1 1 )  is not as strong as this, because 

for such g ( p , ) ,  large z ,  can be, and often pre, counterbalanced by the corresponding p, being 
?,<2 

close t o  0  or 1. 

Considering now quadratic forms in j - P ,  we have the  following result: 

2 
Theorem 5.7 Let Tn = n-'1' rrXl h ( p , )  {r:( / j  - 13)) , A, = r:=l h ( p , ) r . z : .  Lrnder the 

condit~ons of Theorem 5 . 5 ,  and assuming also that lini,,, F n / n  = G,limn,, A n / n  = A 
P for some matrices .-l and G with G positive definite, we h a w  Tn -- 0.  

Proof: 

D '* 
Now. from Theorem 5 . 5 ,  LL(3  - 3 )  - : V ( 0 ,  I ) .  so write n ' / ' ~ ,  as 

T h e  matrices n - ' I 2 ~ ,  and A n / n  both have limits by hypothesis; denote lim,,, n - ' I 2 ~ ,  

by .\I. Then 
D n1I2Tn  - ~'(n-~~~.2i-')(n~){n-~~~(~\l')-'}Z = Z'QZ, 

where Q = : \ l - 'A( .~ l ' ) - '  and Z has a standard multivariate normal distribution. T h e  

distribution of Z ' Q Z  is well known t o  be tha t  of A,k;'. where p  is the dimension of 13, 

the  1; are independent s tandard normal random variables, and the A, are  the eigenvalues 

of Q .  Since this limiting distribution of Tn itself is this multiplied by  TI-'/^, it follows tha t  
P Tn - 0. 

In dealing with remainder terms, we will also be faced with quadratic forms containing 

possibly random quantities p, as  well as  p,. An extension of Theorem 5.7 enables us t o  deal 

with these as  well, provided tha t  we now allow the function h t o  depend on both p, and 6,: 

Theorem 5.8 Let 
n 

- n - ' / 2  
n - 1 h ( p I q  ~ ~ ) { z d a  - W 2 -  

1 = 1  

and assume that there erists a constant C such that 

./- h ( ~ l . P l )  L C { p , ( l  - p , )  + j , ( l  - P I ) } .  
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P Then T ,  - 0 .  
1 

Proof: By hypothesis,  

Now, n'I2(d - p )  has a limiting normal  distribution, a n d ,  a s  observed in t h e  disc ssion 

following Theorem S.5, n - l ~ , ( S )  a n d  n-' Fn both converge t o  G ,  t h e  former  in prob ility 

since t h e  sequence is of random variables. T h u s  n 1 i 2 ~ n  is bounded in probability, and  h ce 

T, itself converges in probabili ty t o  zero a s  claimed. 

ti, 
-1 

Notice t h a t  in fact t h e  conditions of Theorems 5.7 a n d  5.8 lead t o  l imiting distributions 

for n 1 I 2 ~ ,  and  n1I2Tn. 

LVith these results in hand ,  we can now move on t o  proofs of t h e  asympto t ic  distributions 

of A1 a n d  A*. 

5 .2 .5  Statistic '-11 

T h e  asymptot ic  distribution of this s ta t is t ic  is not impor tan t  in practice,  bu t  it tu rns  o u t  t o  

be a useful s t epp ing . s tone  t o  t h a t  of LVe give the  theory for A 1  in t w o  stages: first we 

show t h a t  i ts  limiting distribution is t h a t  of t h e  sum of two  random variables, one  of which 

is Ao.  a n d  then we show t h a t  t h e  distribution of this s u m  is in fact normal .  

Theorem 5.9 I f  the conditions of Theorems 5 . 4 ,  5 . 5 ,  5 . 6  and 5.8  hold, with h ( p l , j l )  = 
7 

Proof: 
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Vsing (Fj.9) with f ( p , )  = 1 - p, .  

Since 

the condition of ~ h e o r e ~ n  5.8 is satisfied, and hence the last term converges in probability 

t o  zero (in other words, is o , ( l ) ) .  T h e  result is therefore proved. 

I t  remains t o  discover what the limiting distribution of A l  is. T h e  only random quantities 

in r lo  are the y, - p , ,  so we can a t t empt  t o  write the second term as a function of y, - p, 

also. T h e  next theorem shows how this may be done: 

Theorem 5.10 ..tssume that the conditions of Theorem 5.9 hold. Let C; = limn,,, F n / n  
2 I F - l z  (the lzmit bring assurntd to exist and be positire definite), let u.,, = pl( 1 -p , )  r ,  , , 

and let $2, = 1 1 - I  pi( 1 - p1 ) (  1 - p, - u',,)'. Provided that s2  = limn,, s: exists and is 

Proof: 6 A~ = A ~ - ,  - ' I 2  I3 1 - )2x: (  j - . I)  - R,, 
1 = 1  

where R n  is a quantity tha t  converges in probability t o  zero. I'nder the  conditions t ha t  we 

have imposed here, Fahrmeir and Iiaufmann (198.5) show (in the proof of their Theorem 3 ) .  

b. using the mean-value theorem for vector-valued functions, that  

where 1,(3') = L;' ~ , ( ! 3 ' ) ( L : ) - l .  and the integral of this matrix-valued function is under- 

stood elementu'ise. Letting I., denote this integral, Fahrmeir and Kaufmann show (later  on 



CHAPTER 5: GOODNESS OF FIT FOR LOGISTIC REGRESSION MODELS 108 

- 
P 

in the same proof) that Ij', - I, so that for all n sufficiently large. trn is invertible with a 

probability that can be made as close to 1 as we please. For such n ,  

Thus, changing the index of summation in the second term of (5.12) to j ,  using (5.13), and 

neglecting the term Rn that converges in probability to zero, 

T where (5.14) defines the random variable \$in. 
\. / p  

\Ve next show that the last term on the right-hand side of (5.15) converges in probability 

to zero: 



CHAPTER 5 .  GOODNESS OF FIT FOR LOGISTIC REGRESSIOLY \;!fODELS 109 

By the hypotheses of previous theorems, these quantities all have limits: 

n-'C,",,p,(l - p L ) 2 r :  -- 2)' a s i n  Theorem 5.6, 
P - P n ( L n n L )  - ( F n )  -- 0 since IT ,  - I, 

n-'1' L, .ti since L, LL = FA. 
D 

L 1 ,  - P I ,  - lY(0.I) .  

P Thus n- l i2  x:=,(y, p,)(llv,, ,  - u,,) -- 0 as claimed. It follows that Al convergt>s to the 

same distribution as n-'j2 C:=l ( y ,  - p,) (  i - p, - win). 

To co~lple te  the proof, we wish to take u,, = 1 - p, - u-,, in Theorem 5.3; this requires 

us to show that n- ' I2 maxlc ,<, ( l  - p, - u,,,) tends to zero. Since 1 - p, ia bounded. it 

remains to show that n?"' max 1 us,,/ tends to zero; 1i.e do this by sho~ving that ,  in fact. 

the convergence holds for e m  ry 1 .  

Let b ,  = Cy=l p,( 1 - p, )2x,; then 

Since the radicand tent15 to zero by hypothes~s, it follows that ~ ~ - ' / ~ ~ w , , , l  also docs for each 

1 .  and hence that n-'1' I I I ~ X  /u' , ,I  converges to zero as well. 
U Finally, appeal to Theorem 5.3 shows that .Al/$,, - .Y(O, I ) ,  cornplcting thc proof. 

5.2.6 Statistic A' 

Our strategy with .A2  is to show that it is the sum of :Il anti some other quantities that 

converge in probability to zero, which would show that ,+I2 is also asy~upiotically rrorrnal. 

First, however, we have to note that in practice, the statistic will be normalized using 

a quantity 9, which contains estimated parameters, so that we must also show that  i:, and 

s i  converge i n  probability to the salrfe non-zero limit. 
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Specifically, define 

where it, = xYz1 F , ( 1  - ~ J ) 2 x ~ ~ ~ 1 ( j ) ~ , ,  analogously t o  the  definition of s i .  Also let 

bn = C:=, p J (  1 - p J ) 2 z , ,  and define b,  analogously. 
P 

i1.e proceed t o  establish t ha t  i: - s i  -- 0 by means of a series of Lemmas. 

Lemma 5.11 The quantity s: can be written as 

Proof: Expand out  s i  t o  obtain 

LVriting b,, for p j (  1 - P , ) ~ I , .  we find tha t  

In other  words. the third term on the right-hand side of (-5.18) can be subsumed into t he  

second. and 

as we wished t o  prove. 

S o t e  that  the same algebra yields the corresponding result 

n n 

Our  convergence proof therefore rests on the difference between the right-hand sides of (5 .17)  

and (.5.19). Lemmas 5.12 and 5.16 will show tha t  the  two constituents of this difference 

converge in probability t o  zero. 
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P Lemma 5.12 Let R ,  = n- 'C:=,{p , ( l  - p , ) 3 - p , ( l  - P , ) ~ } .  Then H ,  -- 0. 

Proof: R, contains a polynomial function of t h e  p , ,  evaluated a t  p,  a n d  p , .  This  po l~ .nomia l  

is seen t o  have derivative with respect t o  a particular p, of ( 1  - p , ) 2 ( 1  - - 4 p , ) .  Thus ,  thinking 

of R,  a s  a function of 3. R, can be writ ten in a lor series a b o u t  Lj a s  w 

for between p, and  p, for all i. ( T h e  process of differentiating p,  with repect t o  produces 

a t e r m  p , ( l  - p , ) . )  Using t h e  Cauchy-Schwarz inequality with a judicious split t ing of t h e  

t e r m s  in the  sum.  we find t h a t  

since each term in t h e  sum of t h e  first radicand is bounded by 9. T h e  second radicand can 

bc wri t ten as * 

(j - 3 ) ' ~ ~  L ; ]  F ~ ( & (  ~ k 1 - I  ~ ; ( j  - J). 

P D 
& h e r e  L ; ' F ~ ( ~ ) ( L ~ ) - '  - I for all 3 in a suitable neighbourhood of d  a n d  ~ ' , ( j  - 1 3 )  - 
.\-(0. I )  (see  Fahrmeir and  Kaufmann ,  1985. and  the  discussion following Theorem .5..5). 

T h e  second radicand is therefore bounded  in probability, and  t h e  remaining powers of n a r e  
P 

sufficient t o  ensure  t h a t  R, - 0, a s  we wished t o  prove. 

T h e r e  now follow three small l emmas  asserting some o ther  useful convergence results. 

P Lemma 5 .13  Let  L i l ( j )  dcnote L;' ez .a lua t td  a t  j. Then n ' / 2 ~ ; 1 ( , j )  - .\I-'. 

B\ assumption.  n ' I 2 ~ ; '  - .\I-'; condition ( Q )  of Fahrmeir and Kaufmann (1955) shows 
P 

t h a t  L;'(.3)1,, - I. 

Lemma 5.14 n-'bn ts bounded as  n - x. 
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Proof: W e  show t h a t  each element b,, of bn is, when divided by n ,  bounded  in absolute  

value by a quan t i ty  t h a t  has a Limit. Specifically, 

n-'(F,),, has  a limit a s  n - x, namely (r',,, t h e  j - t h  diagonal element of t h e  matr ix  G 

P 
L e m m a  5.15 n - ' ( b ,  - 6,) - 0 .  

Proof: 
n 

Since ~ , ( 3 ) / n  converges in probability t o  G', by our  assumptions a n d  t h e  discussion after 

Theorem 5..5, and  n ' I 2 ( j - 3 )  converges in distribution t o  normal ,  it follows t h a t  n-'(6,-6,) 

converges in probability t o  zero. 

P 
L e m m a  5 .16  Let T, = n- '  C:=l { p , ( 1  - p1)2611n - p l ( l  - p,)2u. , ,} .  Thcn T,  - 0. 

Proof: Using the definitions of uVIn a n d  ti>,,, 
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T h e  last line expresses Tn as the inner product of two vectors. Our aim is t o  show tha t  t he  

first vector converges in probability t o  zero, while the second is bounded in probability. 

T h e  first vector is 

Lemmas 5.13 and 5.1.5 show tha t  the  first term converges in probability t o  zero, while 

Lemmas 5.14 and .5.1.5 show tha t  the second term also does, both being the product of a 

factor converging in probability t o  zero and a factor with ;limit in probability. T h e  second 

vector is attacked in t h e  same way: 

This time. Lemmas .3.13 and 5.15 show tha t  the first term converges i n  probability t o  zero. ; 

while the second term has a limit in probability because both of its factors do. Put t ing  
P 

these results together. we see tha t  Tn - 0 as &ed. 

\.j-e now have the tools t o  prove the  following: 

P Theorem 5.17 S: - s i  - 0.  

Proof: By Lemma 5.1 1. we have 

Since both R,  and Tn converge in probability t o  zero! by Lemmas 5.12 and 5.16 respectively. 

so does their difference. and the result is proved. 

Finally, we turn t o  the main result. the convergence in distribution of .q2 

Theorem 5.18 I-nder the condztions of Theorem 5.10, .A2 has thc same limitzng distribu- 

tion as A 1 ,  that is, defining 22, analogously to the s i  of Thcorcrn .5.10, wplacing thc p,  and 
D w i n  by estimates, A 2 / a n  - .Y(0,1).  
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Proof: First,  Theorem 5.17 shows tha t  S i  and s i  have the same limit, assumed nonzero by 

Theorem 5.10. 

T h e  first term of the  right-hand side of  (5.20), A , ,  is aIready known t o  be asymptotically 

normal, so we turn t o  the second, using the  expansion of (5.9):  

where j lies on the line joining 3 and 3. Looking a t  the  second te rm,  we note t h a t ,  with 

probability 1,  ly, - pll 5 1. so in absolute value, this term is no bigger than 

probability t o  zero. 

Turning t o  the first term of (.5.22), and taking its absolute value, we find 



\ 
L- 
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The two random variables here are both conyerging in distribution to  the standard multivari- 

ate normal distribution, and so each, and therefore their product, is bounded in probability. 
b 

It follows that the term as a whole,, being multiplied by n-'I2, is converging in probability 

to  zero. 

Finally, we expand the last term of (5.20) in a Taylor series: 

Letting h ( p , , p , )  denote the quantity enclosed in braces, Theorem 5.8 shows that the whole 

t ~ r m  converges in probability to zero. Thus we have shown that  the statistic it2 can be 

written as the sum of it1 and some "correction" terms that  converge in probability to  zero, 

and therefore that r l l  and .d2 have the same asymptotic distribution. 

5.3 Asymptotic theory for the quadratic family of statistics 

5.3.1 Introduction 

Starting once again from our "empirical process" 

or the corresponding versions with one or both of the p,  replaced by estimates, we define the 

quadratic family of statistics by squaring the process and integrating. This can be expected 

to yield test statistics that  are sensitive to any departures of ,Tn(p)  away from zero. 

For example, Qo is found as follows: 



where q,, = 1 - max(p, ,  p,).  

Vnfortunately, the  theory for this general situation is difficult for the  statistics Q 1  and 

QZ (especially the la t te r ) .  For Qo, a general result can be given, as  shown in Section -5.3.6.  

First,  however, we obtain results for t he  simpler case described below. 

Suppose t ha t .  instead of n distinct success probabilities, we have p, t ha t  take on only 

a fixed number d of different values. Suppose there are n, observations a t  the  design point 

corresponding t o  p,,  and assume tha t  v, = limn,,(n,/n) exists and  lies strictly bctween 
d 0 and 1, where now n = n, .  Let y,,, i = 1 . 2 , .  . . , d .  j = 1 .2 . .  . ., n, denote the result 

of the  1 - t h  trial at the design point with success probability p,, and  let y,+ = x , " ~ ~  y,, be 

the total  number of successes observed for this value p,.  Lndcr our  assumptions, y,+ has a 

binomial distribution with index n, and probability p, .  
.v 

It is also convenient t o  express these quantities in vector-matrix terrns. Let -1- denof; 

the design matrix, let y denote the  d-vector with i - th  element y,+, and let p denote the 

d-vtctor  whose i - th  e le~nent  is p , .  Further,  let iYn denote the diagonal matr ix with ( i ,  i ) - t  h 

element n , .  ( T h e  rather  cumbersome notation is necessary because the  n,  depend on n . )  

Some additional notation is desirable: as we shall see, the statistics depend on q,,  = 

1 - ~ n a x ( p , , p , ) ;  let Q be the, matrix with ( i ,  j ) - t h  element q,,. In addition, let I , ( J )  be 

the diagonal rnatrix with ( 2 ,  i ) - th  e n t u  n , p , ( l  - p , ) ,  where p, is really p,(,3); 1',,(3) is the 

covariance matr ix of t h t  y,+, diagonal because the y,+ are independent.  Let 1.(3) be the 

diagonal matr ix with (1.1)-th entry v , p , ( l  - p , ) ;  by assumption, limn,, 1 , (3 ) /n  = L7(J). 

T h e  matrices \, and I '  without argument  are evaluated a t  the t rue , I .  

LVhen dealing with estimated parameters,  we also use the obvious notation I, for t h t  

vector of p, and Q n  for the matrix of qIl  = 1 - mas($, ,  p,) based on a saniplc of size n.  

Lj.ith the  new notation, our  empirical process bccomes 
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Clearly. it follows tha t  the  statistic Qo, and the  corresponding statistics Q1 and Q 2  

obtained by replacing some or all of the parameters with estimates, can be written as  

follows: 

Our strateg! is similar t o  that  with the area family: we show tha t  Qu and Q1 have 

different asymptotic distributions from the  same family, while Q 1  and Q 2  have the  same 

asymptotic distribution. In the proofs, we can take advantage of the fact tha t  the  number 

of the  terms in the sums,  and hence the  dimension of t he  vectors y and p, remains finite, 

whereas within the sums,  we have binomial random variables with increasing n , ,  for which 

convergence t o  normality applies. - 
In the proofs, we shall need the  forms of the  score vector and information matrix under 

this new arrangement of the da t a .  For general p, these a re  seen t o  be 

T h e  design matrix .Y, with i-th row I:, now has d rows rather than n.  As before, sn and 

Fn without argument denote the score vector and information matrix evaluated a t  the  t rue 

parameter value ?. 
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* 
3 

5.3.2 Two invariance results 

As with the area family of statistics,  two invariance results are  available for the  quadratic 

family, showing tha t ,  whenever a n  intercept is estimated, t he  statistics Q 1  and Q 2  are 

unchanged under downward cumulation and exchange of successes and failures. These 

results hold under the  most general conditions, since they do not depend on asymptotics.  

Theorem 5.19 it'hen the model includes a n  intercept, the statistic Q ;  obtained by cumu- 

lating ( y ,  - p , ) ( y J s -  p , )  downwards instead of upwards is  equal to  Q 2  calculated front the 

same data. The corresponding result holds for Q 1 .  

Proof: Beginning from the integral defining the quadratic statistics,  and modifying t o  

cumulate  downwards, we find 

- - - 1 " C C ( Y ~  - P I ) ( Y ~  - $ j ) ( p ,  t pj - 1) t Q 2 .  (5 .30 )  
1 J  

Since the  model contains an intercept,  one of the likelihood equations is C k ( y i c  - I j k )  = 0. 

I t  follows tha t ,  for any y , ,  y,, 

by carrying out  the summations in the  right order, and therefore t ha t  thc  double sun1 on 

the  right-hand side of (5.30) is also zero. Thus  Q ;  = Q 2 .  As with the  area family, the same 

argument  shows tha t  Q ;  = Q 1 ,  and so the proof is complete. 

Theorem 5.20 i t 'htn the rnodel contains a n  intercept, the statistic Q'; obtnincd by erchang- 

ing successes and failures is equal to  Q 2  calculated on  thc same data. The correspodzng 

result holds for Q  

Proof: Let u:, = 1 - y, be the observed numbers of failures, and let q, = 1 - pl be the fail\lre 

probabilities. The  definition of Q 2  gives 
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Xlaking the change of variable p = 1 - q,  and replacing ul,  by 1 - y ,  and q, by 1 - p,, we 

obtain 

This is'the same integral as t ha t  defining Q i .  I t  therefore follows tha t  QI; = Q ;  = Q ? .  T h e  

corresponding algebra shows that  Q',' = Q', = Q 1 ,  completing the  proof. 

5.3.3 Statistic Qo 

T h e  asymptotic distribution for Q o  is easily obtained. 
* 

Theorem 5.21 Let m,, = q, ,Jv ,p , ( l  - p , ) vJp , ( l  - p,),  and l i t  \I b t  the mat r i r  with ( i .  j ) -  
D fh eltrnent rn,,. Provided that 0 < p,. v ,  < 1, Q o  -- x!=l XIz,L. uvhrrc the A ,  arc the 

e i g r n l d u e . ~  of .\I, and  the z ,  are independent standard norrilnl random tmriablcs. 

Proof: Each y,+ - n,p , .  when suitably scaled, converges .independently in  distribution to  

normal, because of the  normal approsinlation t o  the  binomial distribution. In particular. 

let the vector u., = ~ ~ - ' / ~ \ ' - ' f ~ ( y  - .Vnp); E(u,,) = 0 ,  while var(u1,) = n-'\-- ' \ ,  - I as 

I L  - x.  Thus r ~ - l l ' \ ' - ~ / ~  D 
( y  - )\;,p) -- :V(0 ,  I ) .  (Note  tha t  I ; ,  and I .  are diagonal, so that  

raising these matrices t o  the power -3 is done by raising each diagonal element t o  the same 

powcr. The  assumptions 0 < p , ,  u, < 1 for all i prevent any of these elements being zero 

w h e n ~ v e r  n is sufficiently large.) 

Star t ing from (5.2Ij) .  Qo can be written as  

where the matrix .\I,, = I ' 1 / 2 Q I ' 1 / '  has ( i ,  j ) - t h  element 

# 
and u., is a d-vector with i - th  element ( y , +  - n , p , ) / d n , p , ( l  - p , ) .  h o w ,  a s n  - x.  

n-I- - for each i and j, so t ha t  the  (non-random) matrix ,\in -- 111. Thus,  by 
v 

a well-known result for quadratic forms of normal random variables, Q o  -- c:=, A,::, where 

the z I  are independent standard normal random variables anti thc A ,  arc the  eigerrvalues of 

the matrix of the quadratic form, in this case , E l .  
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5.3.4 Statistic Q1 

In the  light of our experiences with & and  A 1 ,  we might expect Q 1  also t o  have an asymp- 

tbtic distribution which is a sum of sqi%es of normal random variables, but with different 

weights. This turns ou t  t o  b e u t h e  casd, with an interesting parallel t o  weighted linear 

regression. 

Note tha t  the condition of Fahrmeir and Kaufmann (1985) now requires only t ha t  the  

maximum of I~F,-'s, tend t o  ze o over the finite set of I , ,  the dependence on n arising only / 
through f',. 

Theorem 5.22 Assume that m a x l < , < ~ r ~ F , - ' x ,  - - -- 0 a3 n - x. Assume also  thnt C; = 

lirn,,, F,/n erasls a n d  ts posatrve definite, a n d  that lim,,, n , / n  = v,  ~ r l s t s  for all 1 wath 

0 < v, < 1. Thcn  

T h e  first term of (5.31) is just Qo, and is already in the desired form. For t h t  other terms,  

we require a link between i, - p and y - h',,p, as we did in dealing with .-II. The  link takes 

a somewhat different form here, since we are dealing with p - p as a vector; Dennis and 

Schnabel (1983, p. 7-1) give a suitable mean value theorem, from which it follows tha t  

since the (mat r ix)  derivative of p with respect t o  3 is \,(J).Y. 'The integral is t o  bt) 

interpreted elementwise. Let i, denote the integral, anti note t ha t ,  from Fahr~nei r  ant1 
P P 

Iiaufrnann, f i  - 8, so t ha t  n - l i ,  -- n-I Jd I, dt = 1' .  T h e  link b e t ~ c e n  j - .j and y - .Ynp 

is the  same as before, adjusted for the vector-matris n o t a t ~ o n ;  ~t is 
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where i., is a matrix converging in probability to the identity. Putting these two results 

toget her, we have 

x n ( p  - P )  = i;x( L,C, I , : , ) -~ .Y' (~  - snp). - ( 5 . 3 2 )  

Looking now at the second term of (5.31). and applying (5 .32 ) .  we obtain 

The quantity n-'/ '(y - S,p)  is bounded in probability ( i t  has mean zero and variancr 

which tends to I..), so the convergence in bability of the second term of (5.31) rests 

on the convergcncr of the terms n. i , / n  convergrs in probability to i ' :  

meanwhile. c, converges i r l  probability to the identity matrix. so that L, ,I" , l ,~/n converges 

in  probability to the same lirnit as [',In, which is here .Yti..Y. The tcrrrls depending on n 

thus convcrgc i n  probability to i..Y(.Y1i..Y)-I .Y1,  the n's cancelling. Let,t.ing I1 dcnote this 

limit, the quantity as a u.holt> converges to 

'I'hr third tcrrr~ of ( .5 .3 l )  is the transpose of the svconti, so its limit. rnust bc 
4 

- 1 
j y -  . Y , ~ ) ' H Q ( ~  - s , ~ ~ ) .  ( .!I .:).I 1 

' I 'h t .  fourth and final tcrm of ( . j . : I l )  also contributrs to thc asymptotic (1istrit)ution of 

Q 1 :  

( 'on~bining the first term of (5.31) with (5.3:I). (5.:14) ar~d (5.:)5).  wc. f ind t h i i t  (21 c o n  

verges to the same distribution as 

which was  to be proved. 



I t  fdlopvs that. the asymptotic distribution o f 'QI  is c:=, A,:', whcrc the 2 ,  arc intip- 

pendent standard normal random variables. and now thc A ,  nrr thc cigcnvalues of I"!'( I - 

H ) Q ( I  - H )W2. 
It is also worth noting that the mat r i s  H is idi.rnpoti.nt, and intirwi rtwrnbles the "hni 

matrix" in weightcd Itast square?;. This conies about brc-a~~se~flstirrlatii>n in  g~nc.rnli/c~ti 

l i n ~ a r  models can be thought of as a n  iterated ~ e i g h t c d  It>a..t sclilart>3 problrnl, and for Inrgt. 

n ,  iterations after t tic first make alrnost nn diffrrt3nct. -'rrl t h ~  l i r ~ l i t  . c ~ r ~ r y t  hing is llirc,~r". 

5 . 3 . 5  Statistic Q2 

:\s w i t h  the arra family o f  statistics, ut3 r~ou strou thar  C), ha> t t r v  .;,irlrc c ~ s y r ~ ~ p t o t ~ c .  (11 ,  

trihtltion ns5un.s j l~s t  folrnti for Q I .  'I-hc r ~ s u l t  rrzt.; on r h t '  c -or~t i r~~~i ty  of ;) ;is ;L ~ U I I C I I O I I  r ) i  
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P 
ensures that  ,d - /3 -- 0. But there is a chain of functions linking 8 - b to  (5.36), all of 

which are continuous: 17 = .YD, t he  linear predictor, is linear and therefore continuous; 

p : RP - R~ is a continuous though nonlinear function of 0; max(p , ,p , )  is a continuous 

( though not differentiable) function of p for all i and j. Thus  Q ,  - Q is a continuous function 

of p - d ,  Finally, since any continuous function of a convergent ( in  probability) sequence of 

random variables converges in probability t o  the corresponding limit, we have shown tha t  
P Q, - Q -- 0. and thus tha t  the  statistics Q 2  and Q1 have the same asymptotic distribution. 

5.3.6 A more general result for statistic Qo 

T h e  theory of Gu t to rp  and Lockhart (1988) provides t he  means for a more general a t tack 

on Qo. As was seen above, the  restriction to  a finite number of design points enables us t o  

assert t he  asymptotic normality of each suitably standardized y , ,  and thence t o  complete 

relatively straightforward.convergence proofs. However, when each y, is a Bernoulli trial 

with a possibly different success probability, the asymptotic distribution of a statistic must 

come from a central-limit-like argument  whereby the statistic is expressed as  a large number 

of independent quantities which are each almost certainly small, but not so small as  t o  be 

converging to  zero. Gu t to rp  and Lockhart provide the theory t o  makc such an argument 

rigorous in our case. 

Equation (5.23) gives the general form of Qo. It will, however, bc more convenient for 

the  'Theorem given below if  we write 

where 

U ' ,  = Y1 - PI 

JG' 

T h e  m,, can be thought of as  elements of an n x n matrix ,\I. 

Theorem 5.24 Let B, = { i  : c 5 p, 5 1 - 0, and let Q G  = Cr=, I:=, nit,,-,=, whem the 

z,  are independent standard normal m n d o m  variables. If, for some c > 0 ,  ( B , ( / n  >_ q > 0 
1 
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for all n ,  then 

Proofi Since E(Lc: )  = E ( z 1 2 )  = 1 ,  E ( Q O )  = E ( Q 6 )  = C:=, m,, = p ,  say. Let u 2  = 2 tr.l12 

Then, provided that o > 0, we can write 

= -%<~<03 sup I P ( @ = < ~ )  o -,(+2-")1 
because Qo and Q i  have undergone the same linear transformation, and therefore the value 

u' of u at which the maximum occurs on the left-hand side becomes (u'  - p ) / u  on the 

right-hand side, and the difference in probabilities is the same. It suffices, therefore. to 

demonstrate that the right-hand side tends to zero as n -- ~ m .  

We now partition the set of pairs ( i ,  j )  as follows: let 

) Ic  = { ( i ,  j )  : i # j ,  i E B 6 ,  j  E B e } .  

A = {(i, j )  : 2 # j ,  ( 1 ,  j )  $! . A c } ,  

J, = { ( i ,  j ) , :  i = j ,  i c B e } ,  

J, = { ( i , j ) : i = j , i @ B e } .  

Sote that IJ,( = lB,l and J A , U  J,I = IBe12. Furthermore, 

for all sufficiently large n ,  since / B e /  -- x with n .  

'1Yith these definitions, we can bound o2 above and below: 

and 
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LC'e now focus our  at tent ion on a fixed value E' that  is no l a r g ~ r  than  the c stated in the  

Theorem, and decompose Qo and QE. Rote first tha t  
n n n n 

Thus  

Letting T i  be 7k with u', replaced by :,, we obtain the same decomposition for ( Q ;  - p ) / a .  

LVe will show later t ha t  the  te rms  with k = 3 dominate the  asymptotic behaviour in both 

cases. and so we concentrate on T3 and T; for the moment. 

Define .il to be t he  result of setting the diagonal elements of ,\I t o  zero and deleting 

each row and column i for which i 4 R,I. The  matrix ?;i is therefore a ID,I( x ( B , I (  matrix 

ivith diagonal elements zero, and contains 1.4,11 nonzero elements. T h e  subscripts i and j 

will be used equally for elements hi and JI,  and quantities u3,, u.,, z , ,  :,, even though the  

matrices are of different sizes. No confusion should arise, however. 

Let o2 = 2 tr.<12. Clearly (r2 < o Z ,  since !if was obtained from 31 by deleting some 

elements. Also, ril,, is, for all i # j, based only on probabilities t ha t  lie betiveen r' and 1 - E ' ,  

so tha t  such r%,, > E"( 1 - c l ) /n  (because p k ( l  - p k )  > ('(1 - c ' )  and nrax(pk .p i )  5 1 - E'). 

Therefort> 

since for c' < E .  I B,II > IR,(, and where the above defines qZ 

Having shown tha t  6 is bounded away from zero and possesses an upper bound, it 

makes sense t o  consider the closeness of the distributions of T~ = r, El(  rill] / ( r ) m ,  u; and 

T = XI , ( l l l / ) : l l .  In particular,  we would like t o  apply Corollary 1 of Gut torp  and 

Lockhart (1988).  

T h e  r ~ ,  are uniformly square integrable because they arc bounded, for c '  5 ' ; .  by 

J-. Also. 
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1 l ' n  
- 1 < ----- 

a2 n 2  16 1 6 n a 2  ' 

Since ii2 2 ~ 1 2  > 0 ,  this quantity tends t o  zero as n -- x. The  corollary anplies, therefore. 

and so, as n -- x, 

sup ( p (T3  5 u )  - P(T,' 5 u)/ -- 0 .  
U 

Now. 

T h e  same applies t o  with z , .  zJ replacing m,, w,. Thus P(T3 < u )  - P(T; < u )  = P(G 5 - 
u a / c i )  - P(i j '  < u u l c i ) .  Since the distribution functions of T~ and a re  being compared 

a t  t he  same place, and the supremum of this difference is. in absolute value, tending t o  zero. 

it follows tha t  

as n -+ x as well. 

T h e  foregoing applies t o  a fixed c' < c .  However, by using a result from C'hung ( 1974) .  

we can construct a sequence { c k )  -- 0 for which the result still holds. Let m = l l c ' ,  and let 

l F ( m ,  n )  = sup, /P(T3 < u )  - P(T; 5 u ) / ,  where T3 and T: depend on both m and n.  Since 

li~n,,, I ' (m .  n )  = 0, Lemma 1 of C'hung ( 1974, p. 206) shows tha t  there exists a sequence 

{rn,) - x such tha t  limn,, I;(na, ,n)  = 0. Then take ck  = l / m ,  t o  obtain the desired 

sequence. 

\ In  t he  remainder of the proof, we use the sequence (6:) just constructed. Next, we show 
P 

t ha t  TI,  T2 -- 0. 

Since TI  - u-' C:=l m , , ( w ~  - 1 )  and E(u,?)  = 1,  E ( T 1 )  = 0. Also. 
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since (y ,  - P , ) ~ ,  its variance, and ( 1  - are all positive and  less than 1. Since o2 > q l .  
P 

lim,,, v a r ( r l )  = 0. It follows tha t  TI -- 0. Because var(z:) is also bounded, a similar 
P 

argument shows tha t  T; -- 0. 

For 7 2  = a - I  x(,,,)EicL m., u9,w,.  we find that  E ( T 2 )  = 0 since E ( w , )  = E(u. ,)  = 0. 

Since the  same is t rue  for a,,=,, E(?;') = 0 as well. T h e  two quantities also have the  same 

variance: 

Since one of p,, 1 - p, ,  p,, 1 - p, is less than E L  and the  others,  as well as 1 - rna.u(p,, p,). 

are  bounded above by 1 ,  m:, < & / n 2  for each term in the  sum.  There are no more t han  n2 

terms (indccd. the number of  terms is typically only a small fraction of n 2 ) ,  so that  

P which tends to  zero since lirn,,, c: = 0 and crL > rll > 0. Thus  7;. 1'; - 0. 

Having disposed of 7'1 and T;? and their starred counterparts.  we now look at thc rnean 

and variance of T3 arid 7';: 

sincr i # J anti f . ' (ul , )  = 0. T h e  same applies for E ( T i ) .  Meanwhile. 

Sincc fi and 1'3. have constant means and bounded variances for all n .  they arc both bounded 

in probability; the families of distributions of 7; and of T i  are "tight". 

Now suppose tha t  the theorem were false. This would rriean that  t hew exist sequences 

i n k )  and {u,,) and a li such, tha t  

I P  ( Q ~  5 unk ) - P (v 5 u n k )  1 > * for a11 k. 

In  other  words, there has t o  exist a subsequence of poirrts u,, for uhich the distribution 

functions of the standardized Qo and Q; do  not get close together.  Passing to  a subsequence 

is necessary because there may be some values of n for which the distribution functions 

a re  arbitrarily close toget her. Consider the (sub)sequence of distribution functions { Ii:, ) 
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of T;, where the sequence {nk} is t ha t  of the  counterexample described above. By the  

Helly Selection Theorem (Theorem 25.10 of Billingsley, 1995, p. 336), there exists a further 

subsequence {H,k( , ,}  and a bounded function H& such tha t  H & ( u )  = lim,-, H:k,,,(u) 

exists for all u where H & ( u )  is continuous. Furthermore, since t h e  family { H i )  is t ight ,  

and  therefore any subfamily is t ight,  this limit is a distribution function. 

T h e  same considerations apply t o  T3, since its family of distribution functions is also 

tight.  Thus  H,(u) = lim,,, H n k ( , ) ( u )  exists for all u  such tha t  H,(u) is continuous. But  

since supu 1 H n k ( u )  - H,',(u)l - 0 and  H n k ( u )  - H,(u),  it must be t ha t  H,(zl) = H & ( u ) .  

At this point, we would Like t o  be  able t o  assert t ha t  H ,  is continuous. This  is in fact 

the  case, but we defer its non-trivial proof to  a following Lemma. 

Since ( Q o  - p ) / a  is equal t o  the  sum of T3 and some quantities t ha t  converge in prob- 
D ability t o  zero, ( Q o  - p ) / o  -- Y ,  where Y has distribution function H,. T h e  same is t rue 

of (QG - p ) / a ,  since it is the sum of T; and some 

zero. Since H,,( u )  is continuous, it foilows tha t  

and  P  (% < u )  

quantities t ha t  converge in probability t o  

for all u .  LVhile this demonstrates  the  pointwise convergence of t he  probabilities, it is not 
i 
/' quite enough t o  establish the uniform convergence tha t  we need. However, we can use 

a Lemma of Chung (1973, p. 133); taking the  Q  of the Lemma t o  be, for example, the 

set of rational numbers and the  J of the  Lemma t o  be empty  since I i ,  is continuous. 

we can conclude tha t  P { ( Q o  - p ) / a  5 u )  converges t o  H,(u)  uniformly, and so  does 

P { ( Q G  - p ) / o  5 u). Thus  

and equally for QG. As a result, 

since both terms do. As observed a t  the beginning, this suffices, t o  show tha t  
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and hence the  proof is complete. 

This proof rested on  a Lemma, which we now prove: 

Lemma 5.25 The function H ,  defined in the proof of the preceding Theorem is continuous. 

D 
Proof: Since T; - I', where P(Y 5 u )  = H,(u),  every subsequence of the  sequence of 

T; also converges in distribution t o  Y .  In t he  preceding proof. we showed tha t  0 < 772 < 
i f 2  5 u2 5 i, SO t ha t  o 2  and i f 2  are  both bounded above and bounded away from zero. 

Thus ,  from the  counterexample subsequence we can extract a subsequence for which both 

i f 2  - 6 2  and n2 -- 0 2 ,  with 72 < u & , 6 2  5 i. (For example, the required subsequence 

can be found by first extracting a subsequence for which the sequence of a2 converges, and 
& 

then extracting a further subsequence for which u2 converges.) For such a subsequence, 

Sou.. from the subsequence just constructed, we can follow the  proof of C'orollar, 1 of 

Gu t to rp  and Lockhart (1988) t o  extract  a further subsequence for which 

for scalars Xo. XI.. . . with 2C,> + A: = 1.  In other words. 

Since, b j  Feller (1968, vol. 2,  p. 144, Theorem I ) ,  the right-hand side is continuous ( i f  

Xo # 0, it is the convolution of a normal random variable, which is continuous, with some 

other  random variables, and if Xo = 0, it is the sum of a t  least one chi-squared random 

variable. also continuous),  H ,  is also continuous, as we wished t o  prove. 

5.4 Finite samples 

i17hen carrying out  a test of f i t  in practice, one would typically use the asymptotic distribu- 

tion of the test statistic,  hoping tha t  this distribution is a reasonable approximation t o  the 

exact distribution. We assess the validity of this approach by simulations on three  examples; 

in each case, three designs of the same type are chosen with n approximately equal to  20, 

50 and 100! so tha t  the  effect of increasing n can be seen. 
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Statistic AO, n=22 Statistic A3. n=22 

Statistic AO, n=55 

Ouanae d Stsrdard N ~ I  

Statrstic AO, n=99 

Statistic A3, n=55 

Statistic A3, n=99 

Figure 5.1: So rma l  Q-Q plots for statistics A. and A3,  example I 
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Statistic 00, n=55 

Statistic 00 ,  n=99 

Statistic 03,  n=22 

0 0 0 2  0 4 0 6 0 8 1 0  

C u m o h  001 U n d m  Cis- 

Statistic 03, n=55 

Statistic 03, n=99 

0 0 0 2  0 4 0 6 0 8 1 0  
C u w W  ot Undwm Cismbunm 

Figure 5.2: Lniform Q-Q plots for statistics Qo and Q 3 ,  example 1 
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Statistic AO, n=24 

Statistic AO, n=48 

~~ d S ~ n d s r d  N m l  ,' 
Statistic AO, n=96 

Statistic A3,  n=24 

Statistic A3,  n 4 8  

Oumnbs of Slud.rd Normal 

Statistic A3, n=96 

Figure 5.3: Normal Q-Q plots for statistics A. a n d  A 3 ,  example 2 
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Statistic QO, n=24 

Statistic 00, n=48 

O u a n m  d U r r t m  Ootrbmon 

Statistic 00, n=96 

Statistic Q3, n=24 

Statistic 03, n=48 

Statistic 03, n=96 

Figure 5.4: Uniform Q-Q plots for statistics Qa and Qg. example 2 
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Statistic AO, n=20 Statistic A3, n=20 

Olen(Yes d Standard N m l  

Statistic AO, n=50 

ouanma a 3 b n d l U d  N W  

Statistic AO, n=100 

(XlmObs oof Slandard N a w  

Statistic A3;n=50 

Statistic A3, n=100 

Figure 5.5: Sorrnal Q-Q plots for statistics A. and .A3. example 3 
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Statistic 00, n=20 Statistic 03, n=20 

Figure 5.6: Vniform Q-Q plots for statistics Qo and  Q 3 ,  example 3 
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All three examples contain an intercept, and contain a true intercept of zero and true 

slopes of 1. (Provided that  the slope coefficients are not exactly zero, in which case any model 

will fit equally well, the choice of coefficents is not crucial, since, for example, one can double 

a slope coefficient and halve the corresponding x-variable to  leave the probabilities the same. 

Given our choice of intercept and slope, the values for the x-variables were chosen to  give a 

mixture of high, low and intermediate success probabilities.) The first example contains one 

x-variable, Taking values between -2 and 2 in steps of 0.4. This design contains 11 points, 

and is then replicated 2,  5 and 9 times t o  produce logistic regressions with n = 22, .55,99. 

The second example has two z-variables: X I  takes values between -2 and 1 in steps of 0.6, 

and x2 takes the values -1 ,0 ,1 ,2 .  Each possible combination of values of x l  and 22 is 

taken, producing a design with n = 24; this design is then replicated twice and four times to  

produce designs with n = 48 and n = 96. In these first two examples, the passage to  infinity 

can be viewed as an increasing number of replications of a fixed design, so the simpler theory 

of Section .5.3 holds for the Q-statistics. The third example, on the other hand, has one 
\ x-variable whose values are random samples of sizes 20, 50 and 100 from a standard normal 

distribution ( the  sume design is used for all the simulations for a particular value of n ) ,  and 

so the most general theory is needed to  obtain an asymptotic distribution. 

For each example, we give Q-Q plots for the statistics A. and Qo, for which all pa- 

rameters are known, and for the statistics called here A3 and Q j ,  which are A2 and Q 2  

with the parameters of their asymptotic distributions estimated from the data .  These latter 

statistics are typically the ones that would be used in practice. The A-statistics are asymp- 

totically normally distributed, and so normal Q-Q plots are shown. The Q-statistics h a v ~  

distributions that  are weighted sums of chi-squared random variables; in the case of Q3, the 

distribution is different on each simulation, because the parameters A,  are estimated from 

the data.  For this reason, we have adopted the attitude for Q3 (and,  for ease of cornparison, 

for Qo also) that  the P-value is the test statistic, and therefore a Q-Q plot against uniform 

order statistics is appropriate. These plots are shown in Figure .5.1-5.6. 

Although the rate of convergence appears to  differ i n  the three examples, with the two- 

z-variable Example 2 showing the lowest accuracy in the approximations, some patterns are 

evident. The statistics A. and Qo converge very rapidly to  their asymptotic distributions; 

even for the smallest sample sizes shodn here, the approximations are very good. The 

statistics A3 and Q3 converge rather more slowly, and in some cases the approximations are 

still poor even for n near 100; however, convergence does appear to be taking place, even i f  
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slowly. LVe note also that the binary responses in a logistic regression do not, individually, 

convey much information (compare, for example, binary-response opinion polls in which a 

sample size of 1000 is typically required t o  achieve the desired accuracy), so that  n = 100 is 

by no means an especially "large" sample in this kind of experiment. It is also worth pointing 

out that  for Qg, it is the lower tail that  is of most interest, and this tail is approximated 

better than any other part of the distribution, at  least in the examples considered here. 

5.5 Power considerations 

We have not, so far, carried out a power study to assess the ability of our proposed tests and 

their competitors to reject false null hypotheses. Until this is done, it is difficult to do more 

than speculate about the relative performances of the tests. Nonetheless, the quadratic 

statistics of Section 5.3 may be expected to  perform well against a varfety of alternatives in 

which the true p, diverge from the hypothesized values in a smooth way. as will typically 

be the case when the link function has been misspecified. 

The same may not be true of the area statistics of Section 5.2, since there may be positive 

and negative deviations of the process X,(p) from zero that  cancel each other out when the 

statistics are calculated. For example, suppose that  the true relationship between a single 

x-variable and logit p, is hypothesized as linear but is actually quadratic. Then it may be 

that  for large and small x ,  the true p, are smaller than the hypothesized, while for the 

remaining x-values, the true p, are larger. As a result, the process X n ( p )  will generally be 

negative for small x and positive for large x. and the area statistics will exhibit lesser power. 

On the other hand, a misspecified link function will usually result in the hypothesized p, 

being too large in one tail and too small in the other; in this case, .Yn(p) will generally have 

the same sign for all p, and the area statistics can be expected to have reasonable power. 
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